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Abstract

The Internet of Things is finally blooming through diverse applications, from home automation
and monitoring to health tracking and quantified-self movement. Consumers deploy more and
more low-rate and low-power connected devices that provide complex services. In this scenario,
positioning these intelligent objects in their environment is necessary to provide geo-localized
services, as well as to optimize the network operation. However, indoor positioning of devices
using only their radio interface is still very imprecise.

Indoor wireless localization techniques often deduce from the Radio frequency (RF) signal atte-
nuation the distances that separate a mobile node from a set of reference points called landmarks.
The received signal strength indicator (RSSI), which reflects this attenuation, is known in the
literature to be inaccurate and unreliable when it comes to distance estimation, due to the
complexity of indoor radio propagation (shadowing, multi-path fading). However, it is the only
metric that will certainly be available in small and inexpensive smart objects. In this thesis,
we therefore seek algorithmic solutions to the following problem: is it possible to achieve a fair
localization using only the RSSI readings provided by low-quality hardware? To this extent, we
first study the behavior of the RSSI, as reported by real hardware like IEEE 802.15.4 sensor
nodes, in several indoor environments with different sizes and configurations1, including a large
scale wireless sensor network. Such experimental results confirm that the relationship between
RSSI and distance depends on many factors; even the battery pack attached to the devices
increases attenuation.

In a second step, we demonstrate that the classical log-normal shadowing propagation model is
not well adapted in indoor case, because of the RSSI values dispersion and its lack of obvious
correlation with distance. We propose to correct the observed inconsistencies by developing
algorithms to filter irrelevant samples. Such correction is performed by biasing the classical
log-normal shadowing model to take into account the effects of multipath propagation. These
heuristics significantly improved RSSI-based indoor localization accuracy results. We also intro-
duce an RSSI-based positioning approach that uses a maximum likelihood estimator conjointly
with a statistical model based on machine learning.

In a third step, we propose an accurate distributed and cooperative RSSI-based localization
algorithm that refines the set of positions estimated by a wireless node. This algorithm is com-
posed of two on-line steps: a local update of position’s set based on stochastic gradient descent
on each new RSSI measurement at each sensor node. Then an asynchronous communication
step allowing each sensor node to merge their common local estimates and obtain the agreement
of the refined estimated positions. Such consensus approach is based on both a distributed
local gradient step and a pairwise gossip protocol. This enables each sensor node to refine its
initial estimated position as well as to build a local map of itself and its neighboring nodes. The
proposed algorithm is compared to multilateration, Multi Dimensional Scaling (i.e. MDS) with
modern majorization problem and classical MDS. Simulation as well as experimental results
obtained on real testbeds lead to a centimeter-level accuracy. Both landmarks and blind nodes
communicate in the way that the data processing and computation are performed by each sensor
node without any central computation point, tedious calibration or intervention from a human.

Index terms— Indoor Localization, Distributed Localization, Wireless Sensor Network, RSSI,
Log-normal Shadowing, IEEE 802.15.4, Experiments, Simulations

1http://nadieng.wordpress.com/
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Résumé

L’internet des objets se développe à travers diverses applications telles que la domotique, la
surveillance à domicile, etc. Les consommateurs s’intéressent à ces applications dont les objets
interagissent avec des dispositifs de plus en plus petits et connectés. La localisation est une in-
formation clé pour plusieurs services ainsi que pour l’optimisation du fonctionnement du réseau.
En environnement intérieur ou confiné, elle a fait l’objet de nombreuses études. Cependant,
l’obtention d’une bonne précision de localisation demeure une question difficile, non résolue.

Cette thèse étudie le problème de la localisation en environnement intérieur appliqué aux réseaux
sans fil avec l’utilisation unique de l’atténuation du signal. L’atténuation est mesurée par l’indi-
cateur de l’intensité du signal reçu (RSSI). Le RSSI est connu dans la littérature comme étant
imprécis et peu fiable en ce qui concerne l’estimation de la distance, du fait de la complexité
de la propagation radio en intérieur : il s’agit des multiples trajets, le shadowing, le fading.
Cependant, il est la seule métrique directement mesurable par les petits objets communicants
et intelligents. Dans nos travaux, nous avons amélioré la précision des mesures du RSSI pour les
rendre applicables à l’environnement interne afin d’obtenir une meilleure localisation. Nous nous
sommes également intéressés à l’implémentation et au déploiement de solutions algorithmiques
relatifs au problème suivant : est-il possible d’obtenir une meilleure précision de la localisation en
utilisant uniquement les mesures de RSSI provenant des nœuds capteurs sans fil IEEE 802.15.4 ?

Dans cette perspective, nous avons d’abord étudié le comportement du RSSI dans plusieurs
environnements intérieurs de différentes tailles et selon plusieurs configurations2, y compris un
réseau de capteurs sans fil à grande échelle (SensLAB). Pour expliquer les résultats des mesures,
nous avons caractérisé les objets communicants que nous utilisons, les nœuds capteurs Moteiv
TMote Sky, par une série d’expériences en chambre anéchoïque. Les résultats expérimentaux
confirment que la relation entre le RSSI et la distance dépend de nombreux facteurs même
si la batterie intégrée à chaque nœud capteur produit une atténuation. Ensuite, nous avons
démontré que le modèle de propagation log-normal shadowing n’est pas adapté en intérieur,
en raison de la dispersion des valeurs de RSSI et du fait que celles-ci ne sont pas toujours
dépendantes de la distance. Ces valeurs devraient être considérées séparément en fonction de
l’emplacement de chaque nœud capteur émetteur. Nous avons proposé des heuristiques pour
corriger ces incohérences observées à savoir les effets de la propagation par trajets multiples et
les valeurs aberrantes. Nos résultats expérimentaux ont confirmé que nos algorithmes améliorent
significativement la précision de localisation en intérieur avec l’utilisation unique du RSSI.

Enfin, nous avons étudié et proposé un algorithme de localisation distribué, précis et coopératif
qui passe à l’échelle et peu consommateur en termes de temps de calcul. Cet algorithme d’a-
pproximation stochastique utilise la technique du RSSI tout en respectant les caractéristiques
de l’informatique embarquée des réseaux de capteurs sans fil. Il affine l’ensemble des positions
estimées par un nœud capteur sans fil. Notre approche a été comparée à d’autres algorithmes
distribués de l’état de l’art. Les résultats issus des simulations et des expériences en enviro-
nnements internes réels ont révélé une meilleure précision de la localisation de notre algorithme
distribué. L’erreur de localisation est de l’ordre du centimètre sans aucun nœud ou unité centrale
de traitement, ni de calibration fastidieuse ni d’intervention humaine.

Mots clés—Localisation environnement interne, Localisation distribuée, Réseau de capteur
sans fil, RSSI, Log-normal Shadowing, IEEE 802.15.4, Expérimentation, Simulations

2http://nadieng.wordpress.com/
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Chapter 1

Introduction

Contents
1.1 Prologue and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Background of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contribution of this PhD thesis . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis outline and methodology . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Prologue and motivation

***La science est ce que nous comprenons suffisamment bien pour l’expliquer.
On fait la science avec des faits, comme on fait une maison avec des pierres : mais
une accumulation de faits n’est pas plus une science qu’un tas de pierres n’est une

maison. (—Henri Poincaré—) ***

1.1.1 Background of the study

Progress in electronic and signal processing allows the design of low power, low cost wireless
devices leading to the concept of Internet of Things (IoT). IoT, also called internet of "Intelligent
Things", is the ability of physical objects with an identified IP address (and associated with
embedded technology) to communicate over a network of "everything"1 2. Examples of physical
objects include medical devices, electric meters and heart monitors. IoT is a sort of advanced
connectivities on a global scale to encompass every aspect of our life in order to render it much
easier and safer without the necessity of human-to-human or human-to-computer interaction.

"Things/devices" connected in an internet structure are becoming increasingly diverse. Beyond
various connected accessories, phones, computers, there are lots of different concepts, inclu-
ding everything about the smart home, household appliances and home automation. Such
connected "things or devices" in an internet-like structure, involve a complete data infrastructure
in the back end like machine-to-machine, machine-to-infrastructure, machine-to-environment
and human-to-machine.

Some applications which may be involved in the IoT require a precise localization. For instance,
applications like geographical tagging of measurements, network operation (e.g. geographic
routing), personal health monitoring, objects or persons tracking, intelligent homes and cities
as well as environment study and preservation. In the smart home context, there are still a lot
of applications more or less convincing, but all share a number of characteristics: they work

1http://www.gartner.com/newsroom/id/2564916
2http://iotinternetofthingsconference.com/

1

http://www.gartner.com/newsroom/id/2564916
http://iotinternetofthingsconference.com/


on devices with low capacity, which are in part mobile and deal with geo-localized services (i.e
LBS). Note that users are not necessarily experts and we do not want them to configure many
things on their own hand.

This thesis focuses on the problem of indoor localization with the assumption that devices only
have a radio interface. There are several reasons for a mobile device to acquire its location
automatically in an indoor environment. Indoor localization cannot use GPS signals efficiently,
due to signal obstruction: GPS signals do not penetrate physical indoor concrete structures.
Thus, before using localization information in the Internet of Things applications, several issues
need to be addressed.

First, the well-known RF technology, available in most wireless devices, is difficult to characterize
in an obstructed environment where walls and concrete structures have a strong impact on the
wireless radio signal.

Second, the mobility context, the indoor setup and layout, make localization challenging. In fact,
the mobility of devices rules out pre-assignation of localization information for several terminals
and requires the design of an online location estimation method. However, the unpredictable
nature of the signal propagation in indoor condition prevents from obtaining accurate location
information. Indoor localization has been the subject of many studies and still remains a very
difficult issue. With the instability of the indoor environment in which signal may be blocked,
dispersed or reflected, most RSSI (Received Signal Strength Indicator)-based indoor localization
algorithms accuracies are roughly about one or more meters. In applications like smart home,
such algorithms are either very complex for their use of calibration or initial training phase [2,
3, 4] or not accurate enough [5, 6, 7]. These algorithms are neither suitable for the surveillance
of elderly people in nursing homes, nor for tracking users in a mall.

Third, indoor localization using wireless sensor networks (WSN) is not trivial as it should meet
some requirements. A wireless sensor network (WSN) is composed of devices, small in size,
capable of multifunctional sensing, treating, processing data and communicating in short dis-
tances. These tiny devices usually called sensor nodes are also limited in terms of processing,
storage capability and they often have to keep energy consumption low. Sensor nodes in a WSN
are therefore built upon unique and fundamental properties. This is particularly, as mentioned,
the very limited processing capabilities and energy of individual nodes.

A wireless sensor network [8] presented in Figure 1.1, is also defined as a result of deployment
of several tiny sensor devices (i.e. interconnected micro-components) in environments whose
properties are unknown. Then, each communicating micro component is equipped with a capture
unit to collect data from their environment; a low memory as well as a battery pack to power
various components and an emission/reception radio module for data communication. Collected
data can be related to temperature, the humidity ratio and the speed. Collected data are
analyzed with a built-in computing unit in sensor node. For systems such as Moteiv TMote Sky
nodes, the cost and limitations of the hardware on sensing nodes must prevent the use of costly
algorithms in terms of computation, memory usage and energy consumption. Sensor nodes in
consequence require
using collaboration among nodes while minimizing communication. Therefore when deploying an
algorithm or communication protocols for sensor nodes, designers must pay attention to energy
consumption. The above properties of sensor nodes characterize them as low power wireless
devices with real embedded systems and therefore do not facilitate the design of application
software.

Besides aforesaid, wireless sensor network is fundamental in many applications for data collection
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Figure 1.1: An example of Wireless Sensor Network system architecture

and data processing. Collected data is used in localization algorithms, thus enabling localization
in sensor network can automatize and bring new features for many applications in many areas.
Examples of tiny sensor devices, such as Moteiv TMote Sky nodes, can be envisioned in the
IoT not only for application control, monitoring and surveillance but also for location-based
services. Location-based services with tiny devices can also be used in health care domain
to enable patient location and monitoring at medical-home or in the hospital. For example,
transmission of diseases can be studied through automatic measurements of blood pressure/blood
glucose/heart rate of a patient and transmission by health sensor nodes. Wireless sensor network
is also useful in disaster prevention, in environmental monitoring, in fire and rescue system to
monitor warehouse/building fire and direct firefighters appropriately.

Depending upon the type of application involved, the number of sensor nodes may relatively
vary. For example within a home it is between ten to fifty or more. In addition, most of the
sensor nodes should be in static positions or attached to humans and objects in movement. For
each of these examples, the acquired data is meaningless if no location information is associated.
For such reasons, localization in WSN is needed for a better understanding of the corresponding
environment.

Localization in indoor environment can bring a new framework of ideas like triggering services
in an intelligent home for easy home management. Home based services can be associated to a
position of the occupant using a WSN measurements as shown in Figure 1.2.

However, an understanding of disrupting factors and how they impact radio wave propagation
in indoor and the design of an accurate, adaptive and easy to use indoor localization are still a
challenging research problem. To address such problem, we have designed robust indoor radio
frequency-based localization algorithms. Proposed algorithms are tested on wireless sensor nodes
and are adaptive to environmental dynamics. Algorithms do not require any initial training phase
or site-survey. Those indoor localization algorithms are scalable to any indoor environment
(large or small). They are also built to capture interference and propagation disruption and
hence measurement errors.
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Figure 1.2: An example of application in smart home: all devices in a home can be automatically and
simultaneously controlled depending on the position of the occupant. This involves an interaction between
the positioning system and the remote control services. When the occupant leaves or arrives at home,
shutters can automatically be closed or opened (1), security alarm can automatically be deactivated or
activated (2), temperature, humidity sensors and radiators can be automatically regulated to maintain
ideal temperature (3); electricity, e.g. lighting is also easily controlled without action (4). At the end,
notification are directly sent to the occupant for any feedback (5).
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1.1.2 Problem Statement

Localization is a set of raw or abstract ideas about the location of something or someone. It
determines the relative or absolute position of a target in a 2D or 3D system. The location
estimation is referred to as positioning. The localization accuracy is defined as the distance
error between the estimated position and the real position. Positioning a device in a coordinated
system is possible via several techniques. Such techniques can be classified based on the nature
of the signal and the measurement method used to estimate the location.

• Non-radio frequency ranging devices such as laser telemeters are too expensive for em-
bedded devices and require a clear line of sight between the mobile and each landmark.
Indeed, the line of sight constraint rules out all light-based ranging techniques such as
infrared transmitters [9], [10], [11]. Ultrasound [11] is fairly accurate, but also requires
a dedicated hardware (e.g. a more expensive transducers) that is usually not present on
consumer devices. Ultrasound uses ultrasonic waves to measure the distance between an
ultrasonic emitter and receiver. Most algorithms that use ultrasonic systems are mostly
hybrid since the propagation speed of the sound is too slow compared to a radio frequency
signal. For instance, Priyantha et al. combine ultrasound and RF signals in cricket lo-
cation system [12]. Instead, radio frequency-based techniques, do not require any specific
electronics. RF interfaces are already used for packet communications. All these men-
tioned technologies use a common feature as a wireless device (an emitter or a receiver
node/tag) needs to be carried by a person or an object.

• As said before, localization-based on radio frequency technology is cost effective. A well
known used approach is the proximity technique [13]. It is easy to measure as the simple
use of the radio connectivity is enough to assess whether a mobile device is within the
transmission range to a reference device. For instance, a reference device can be a Wi-Fi
access point to which a mobile node or a user’s smartphone is linked. However, proximity
technique has an accuracy limited to the one of the reference equipment and equal to one
transmission range. Note that if multiple reference equipments detect a mobile device,
this device position is the position of the reference equipment receiving the strongest sig-
nal. Hence, this proximity-based method gives therefore coarse location. Resulted location
with proximity-based method is not enough accurate to be applied for instance in smart
home context in which a fine grained localization could be needed in most cases. Proxi-
mity-based method may also require association with an identification system, if it is not
included in the method of proximity detection. Examples of systems based on this tech-
nique are infrared (IR) [9] and radio frequency identification (RFID). There are two types
of proximity approaches for localization: detection of physical contact (pressure sensors,
smart floor) and monitoring of wireless access points. The works of Partridge et al. [14]
show a mechanism based on this principle and named the "fast intrabody signaling", which
is a communication mechanism that transmits data electrically through human body. The
identification phase therefore requires human contact enabling communication between
objects touched by the user in order to exchange identification information through the
same communication channel.

• Meanwhile using the empirical model may be more accurate but requires a site survey.
Commonly named as scene analysis, it matches the radio propagation environment cha-
racteristics to a database [15, 16]. In other words, scene analysis examines the differences
between two successive scenes (e.g. a place or a view) to position any target that has been
observed in a scene. For instance, in [16], Scene analysis is used to compute the position
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of the camera that has observed the horizon using the extracted samples from the horizon.
Thus, scene analysis requires to perform a pre-calibration of the environment characteris-
tics. This training phase is required by this technique to perform prior measurements in
the concerned area. Those measurements are then maintained in a database and subse-
quently used during the localization resolution phase. Therefore, a localization accuracy
using scene analysis technique is limited to the measurement environment. Position can
also be determined by RF fingerprinting [2, 17, 18]. In an offline phase, RSSI measure-
ments are collected at several positions in the concerned area from data sent by known
reference nodes (e.g. Wi-Fi access points or 802.15.4 nodes). These measurements named
training set are then recorded in a database. The data collection step is time consuming.

During the online phase, the position of a mobile node is determined using a pattern
matching mechanism. This latter matches the current RSSI measurements to those from
a database using deterministic or probabilistic approaches. In [19], the deterministic ap-
proach of K nearest neighbors is used to localize a mobile user from three Wi-Fi access
points in a floor building with dimensions 43.5 m by 22.5 m. Indeed, average signal strength
from K nearest neighbors are matched to the RSSI measured during the online phase. The
authors demonstrated that K = 3 nearest neighbors result in a best localization accuracy
ranging from 2 to 3 meters. This obtained localization accuracy corresponds to the size of
an office room in the tested building.

• Instead of considering the radio proximity or environment features, localization systems can
also be classified as distance or angle-based. Distance-based approaches can be performed
through the measurement of the propagation time or the attenuation experienced by a
receiver. Attenuation is the power loss on the communication path between an emitter
and a receiver. Distance-based (i.e. related to time-based, RSSI-based) and angle-based
measures are feed into localization algorithms like trilateration to determine the positions
of the mobile nodes as illustrated in Figure 1.3. Trilateration or triangulation techniques [1,
20], use distance or angle measurements from at least three emitting wireless devices when
considering 2D position coordinates. Such localization techniques require a precise and
predictable relationship between the distance or the angle and the measured parameter
(i.e. time, RSSI, angle).

Using the wireless interface to measure distances between communicating objects may not require
additional hardware. However, the only easily measurable parameter related to distance is the
attenuation, which has low accuracy. The time of flight of the radio signal yields a better accuracy
but is more difficult to measure, as it requires a fine time synchronization between communicating
nodes. Angles measurements can replace distances in the geometric model but require the
reception antenna to be able to precisely identify the direction of the direct path. Therefore,
signal attenuation, usually available through the RSSI, appears as the only economically feasible
ranging solution for the IoT.

However, the RSSI measures are far from constant in an indoor environment due to the wireless
radio channel instability. The radio channel being the physical support for the transmission
of information in wireless communication, is unsteady, random and lossy and thus limits the
performance of wireless communication systems. Phenomena such as shadowing, Non-Line of
Sight (i.e. NLOS) or situations of non-visibility, multipath fading, affect signal propagation.
Such wireless characteristics change with furniture, the presence of people moving inside the
environment and altering at the same time the narrowband channels like the one used by the
IEEE 802.15.4 norm. These effects make ranging based on RSSI technique inaccurate for some
specific needs such as artwork surveillance in museums. Consequently, precise RSSI-based indoor
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Figure 1.3: Localization algorithm process

localization algorithms require a characterization of the environment and of the radio channel
as accurate as possible.

The radio wave propagation varies according to environmental parameters [21]. As a result,
the shadowing effect models the wireless radio signal by considering several potential obstacles.
Given a distance that separates a wireless emitter to a wireless receiver, different environment
cluttering may disturb the received signal strength [22, 23].
Shadowing occurs with the presence of an obstacle obstructing the radio communication path.
Such obstacle can disrupt the direct path between an emitter and a radio receiver giving some
areas of weak received signal strength. Hence, the received signal power fluctuates as the direct
path (line-of-sight) can be received with multiple other indirect paths. Direct path (i.e. line-
of-sight) modeled in Figure 2.1 is viewed as a straight propagation of radio waves without any
obstacles between the emitter and receiver antennas. Fading is obstruction that emanates from
a deviation of the attenuation due to the presence of multiple paths during the propagation of
the radio wave. The presence of one noticeable predominant path is called line of sight or Direct
line of sight path. In opposite, the absence of such dominant path results in non line of sight
paths. Consequently several efforts have been made in recent years to better characterize the
corresponding statistical model to measurements errors in order to improve RSSI-based indoor
localization accuracy. Thus, indoor positioning using RSSI metric is still a challenging research
topic.

The first objective of this PhD thesis is to understand and to better characterize the indoor
channel behavior. As a starting point, to circumvent calibration phases, we use a radio pro-
pagation model. Such formal model does not implicate explicit measurement of radio frequency
signal strength at several locations but uses a mathematical model to characterize the signal
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propagation [19]. We select a propagation model in order to deduce distance from the attenuation
experienced by radio packets measured by each sensor node. The selected radio propagation
model should represent a good compromise between accuracy and complexity. Indeed, the
localization algorithm has to be performed on embedded devices and hence should not require too
much computation or data exchange. The Log-Normal Shadowing Model (i.e. LNSM) [24, 25],
often used to model indoor propagation, seems to be relevant in this situation. The input
parameters to this propagation model describe the different obstacles that may be present in
the communication path between the radio emitter and receiver. An observation model is called
log-normal shadowing if the attenuation or signal loss, expressed in deciBel (i.e. dB), has a
Gaussian distribution.

To conclude, we then designed accurate RSSI-based indoor positioning algorithms that consider
and treat above mentioned wireless signal propagation perturbations. Evaluated with sensors
data, our proposed RSSI-based localization algorithms can be applied in any indoor environment
(office, building, house) with no complementary pre-deployment efforts.

1.2 Contribution of this PhD thesis

In this thesis, we:

• introduce the background material/knowledge on radio signal propagation model by un-
derstanding the behavior of the indoor radio propagation model through the use of the
Received Signal Strength Indicator (RSSI) metric. We base our experiments on 802.15.4
wireless materials that we believe to be representative of low power and low coast wireless
devices.

• investigate the implication of the log-normal shadowing model in indoor propagation: by
clarifying its relationship with the measured RSSI in an indoor environment with presence
of furniture, obstacles and obstructing objets.

• provide a set of experimental results based on extensive measurements campaigns in a
variety of indoor environments. Such experimental results are needed in order to validate
the use of the RSSI as a unique metric for localization in realistic indoor scenarios.

• identify effective statistical tools based on maximum likelihood optimization, machine
learning as well as distributed stochastic approximation approach to improve location
accuracy of a mobile wireless sensor node in the indoor environment.

• propose efficient and non-calibration RSSI-based algorithms for positioning in real indoor
environment. For these algorithms, we provide a detailed comparisons in both: realistic
indoor testbeds as well as a large scale wireless sensor network.

• evaluate and show by multiple comparisons the performance of proposed algorithms and
the conditions for possible future improvement.

In our research work, we propose and evaluate a family of one-hop RSSI-based localization
algorithms. Our RSSI-based localization algorithms enhance indoor positioning of wireless de-
vices without consideration of an offline pre-calibration/measurement phase, neither a human
intervention nor a maintenance of a signature database. We use RSSI measurements from data
packets coming from multiple sources called landmarks. Given landmarks coordinates and RSSI
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readings, a mobile node evaluates its own position by measuring its distance from each land-
mark and using a localization algorithm like trilateration or multilateration. If landmarks are
not aware of their own position, the computed position can still be deducted but relative to the
local scene. The difficulty in this process resides in the correct estimation of the distances, also
called ranging to the landmarks. Notice that the data processing as well as the estimation and
computation of a blind mobile node position should be performed by a blind mobile node itself
to allow privacy, instead of using a dedicated server via a base station or a coordinator or a
sink node. For example, a base station centralizes the localization process as performed in [26].
As a starting point, we studied the behavior of the RSSI by carrying out experimental studies
through extensive measurement campaigns in several indoor environments and in large scale sen-
sor networks (available from the SensLAB platform).3. Such uncontrolled scenario shows that if
some sources are coherent, some are clearly incoherent with the others. This phenomenon can
be explained by the radio propagation (e.g. multipath) or by poor hardware and when excluding
these incoherent data sources from the data set should lead to a better accuracy.

We then propose a dynamic method to alleviate the effect of multipath by identifying abnor-
mal landmarks and reduce their effects, replacing their measurements by a constant bias. We
extend the algorithm to multiple abnormal sensors and propose a heuristic to select the eluded
sources quickly. We also evaluate the use of a two-modes Gaussian Mixture Model (GMM) to
reduce the effect of outlier measurements. GMM [27] is a statistical machine learning approach
which models an unknown random variable as the sum of multiple Gaussian random variables.
Two-modes GMM decomposes the pattern distribution as a big percentage of normal patterns
and a small proportion of outliers. Note that it does not need to know the exact number of
outliers nor the outlying patterns. The 2D coordinates of a blind mobile sensor node is then
computed in a realistic indoor environment by applying a maximum likelihood estimator. Such
localization algorithm, named GMM-MLE, is then followed by an accurate on-line distributed
stochastic approximation approach that minimizes the mean square error of the estimated dis-
tance derived from the noisy RSSI data. Recall that each RSSI data is measured from received
data packets sent by neighboring sensor nodes.
The proposed distributed iterative algorithm aims to solve the localization problem of any blind
nodes while taking into account indoor disrupting factors by treating the interference induced by
various obstacles that compose the indoor environment: concrete walls, plywood, roofs, cabinets,
fixtures, mobile person/user, geometry of the environment. Note that, known cooperative-based
localization techniques estimate unknown nodes positions based on newly estimated positions of
other nodes in the network in addition to those from known landmarks as well as connectivity
information [28, 29, 30, 31]. However, the main problem affecting localization accuracy is the
underlying model used to infer distance and the environment propagation; and such well-known
methods do not focus on these problems. Consequently, the applied approaches limit the per-
formance obtained after the refinement phase as they may ensure an appropriate initialization
for the minimization criteria which could drive to the global optimum. Thus, if a high ranging
error is acquired during the initial phase, such errors may affect the core algorithm, even with
the use of a refinement phase.

With our proposed Distributed Stochastic Approximation Localization algorithm named DSAL,
a set of blind nodes estimate their positions and those of their neighbors in an iterative and a
cooperative way through two on-line phases: a first phase involving a local update of position’s
set based on stochastic gradient descent of [32] depending on each new RSSI measurement at
each sensor node. A second phase concerns an asynchronous communication step [33] which
allows each sensor node to build a local map of itself and its neighboring nodes. This phase
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is an exchange of information between two randomly selected nodes to reach a consensus on
the set of estimated positions. Such consensus technique enables nodes to merge their common
local estimates and obtains the agreement of the refined estimated positions. The refinement
phase is completed when all nodes gets all updates from their neighbors. In other words, the
algorithm converges if all nodes have perform refinement. Note that the set of landmarks do not
need to refine theirs positions as they are known in advance. Numerical results are illustrated
from simulated data as well as real data acquired in a large scale wireless sensor nodes named
SensLAB Rennes platform. The RSSI-based DSAL cooperative algorithm has been compared
through simulation and real data with multilateration and both classical and modern Multi-
Dimensional Scaling (MDS) techniques.

We additionally emphasize that most RSSI-based indoor localization algorithms are mainly based
on simulations. Our proposed algorithms are evaluated under various conditions in realistic
indoor testbeds as well as in SensLAB large scale ad-hoc sensor networks with 250 nodes for
scalability testing. Simulated algorithms do not guarantee the same kind of result when applied
in a dynamic indoor environment. In all of our experimental localization scenarios, sensors are
placed on grids or randomly distributed across the environment to meet the real deployment of
a sensor network.

1.3 Thesis outline and methodology

As a first contribution we have performed extensive measurements to study and further analyze
the way the measured RSSI values behave in different indoor environments (i.e. classrooms and
offices building) and in large scale sensor networks (available from the SensLAB platform).4.

Furthermore, localization algorithms using electronics devices must include hardware limitation
in addition to physical constraints in order to incorporate the dynamic of real-indoor enviro-
nments. Thus, measurements from different indoor environments are exploited such as in an
anechoic chamber to characterize the radiation pattern of the sensor nodes used during our
research work. In fact the characteristics of real antennas may deviate to some extent from
those calculated analytically on sensor node datasheet.

Hence, having reliable antenna radiation patterns lead to the most efficient use of the radio spec-
trum and a better understanding of the wireless node characteristics. Consequently, we found
that the used wireless node (i.e. Tmote Sky mote) radiation pattern is not fully omnidirectional.

Such measurements permit to achieve the following two goals:

• determine the relationship between measured RSSI and distance focused on signal strength
variation in both time and space dimensions (i.e. in a mobile node context).

• understand and study the impact/influence of different indoor propagating environments
on the RSSI behavior. The purpose is to validate the log-normal shadowing model for the
use in any indoor environment under certain conditions. In fact, the log-normal shado-
wing model is the widely used propagation model in indoor environment and it is usually
assumed to perform well in indoor and outdoor environment [24]. We unveil from measure-
ment results that: depending on its environmental location, a receiving node may measure
different behaviors on the RSSI values even if the distance to the emitting node remains the
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same. Therefore we have validated the idea to be considered that the log-normal shado-
wing model parameters depend on the environmental locations of the wireless nodes. Such
result suggests the need to consider a modification of the log-normal shadowing model.
We also provided tools and guides to follow in order to implement a more accurate and
easy to use RSSI-based localization algorithm being suitable for any indoor environment.

It has come to our attention that, in the state of the art, already proposed indoor localiza-
tion algorithms need to consider a large number of RSSI measurements, a selective mode
of the emitting power, a less interfered and a high controlled indoor environments.

These measurements are devoted in Chapter 3 of this thesis. Our study is initiated by analyzing
previous research papers. We focus on location estimation methods using received signal strength
indicator (RSS) of RF hardware in 802.15.4 low-rate wireless personal area networks. We do not
consider centralized localization approaches which need a central unit: the blind mobile node
estimates itself its position.

In Chapters 4 and 5 of this thesis we focus on enhancing the precision and accuracy of one-hop
and distributed indoor positioning algorithms based on the use of the RSSI metric. Note that,
due to complex indoor propagation, accuracy still remains an important issue when designing
indoor localization algorithms. As we mentioned before, several proposed RSSI-based indoor
localization algorithms suffer on providing a reusable and accurate algorithm for any type of
indoor environment. In fact, regardless of the technique used, the accuracy of localization comes
at a price: as radio propagation is greatly influenced by the environment, knowledge of this
environment is required from a calibration phase or through a specific deployment. This is a
limiting factor when it comes to conceive generic and low-cost services.

For this reason, we use statistical approaches to solve this accuracy issue while avoiding the use
of calibration. Moreover, we introduce a novel cross-online localization approach. This proposed
online approach first estimates the propagation model parameters using a set of measurements
coming from a subset of positions. Second, these parameters are used by the positioning algo-
rithm. This cross-online approach provides a reliable indoor localization mechanism based on
RSSI metric. In fact, a mobile target node can accurately position itself in any indoor enviro-
nment while at the same time exploiting the site specific information of that environment. The
propagation model parameters are in the meantime learned when performing positioning.

Proposed algorithms are evaluated and compared with known localization algorithms in realistic
indoor environments. The aim of such investigation is really needed to quantify the level of
accuracy provided by our proposed RSSI-based localization algorithms. The proposed algorithms
meet some of their design goals, as for instance, they can be used with efficiency and acceptable
accuracy in any wireless indoor environment without the need of any central station.

We discuss in the same Chapters 4 and 5 the main results achieved in this thesis. Finally,
we draw in Chapter 6 the future direction, evolutions and conclusion of this study. Table 1.1
presents the overview of our research plan.
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Table 1.1: Summary of the thesis organization

Chapter Methodology Comments

Chapter 1 Introduction and problem statement
Analyze of existing localization al-
gorithms, current low power wireless
technologies

Chapter 2 Related work
State-of-the-art of radio propagation
models; related work on localization
algorithms

Chapter 3

Measurements campaign in sev-
eral real testbeds and in remote
SensLAB large scale wireless sensor
node platform

Sensitivity analysis of RSSI be-
havior under dynamic indoor envi-
ronments, reverse engineering ap-
proach. Such measurements cam-
paigns results are used in Chapters 4
and 5

Chapter 4

Study of most representative RSSI-
based one hop indoor localiza-
tion; proposition of new localiza-
tion mechanisms, algorithms perfor-
mance estimation, comparison with
most used RSSI-based localization
algorithms

Experiment, simulation, discussion

Chapter 5

Proposition of a new distributed lo-
calization mechanisms, comparison
of our localization algorithm perfor-
mance to known distributed state-
of-the art localization algorithms

Experiment, simulation, discussion

Chapter 6 Conclusion Conclusion and suggestions for fur-
ther research
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Chapter 2

Related work

Contents
2.1 Indoor channel characterization: radio propagation models . . . . . 13

2.1.1 Deterministic two-ray approximation : ground reflection model . . . . . 19
2.1.2 Multipath fading characterization : the Rayleigh and Ricean distribution 21
2.1.3 Indoor propagation models . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Localization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Indoor localization technologies . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Radio Frequency (RF) families of localization approaches . . . . . . . . 32
2.2.3 Range-free algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Range-based algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 44

In this chapter, we first present the methods of radio wave propagation. We then describe the
most relevant radio frequency-based localization algorithms and the most used radio propagation
models.

2.1 Indoor channel characterization: radio propagation models

The design of a wireless communication system with the use of the RSSI involves a selection
of a propagation model for radio waves. Such propagation model depends on dispersion pheno-
mena of wave propagation, on the selected frequency and on both the emitter/receiver antenna
characteristics. Dispersion in time, direction and frequency are important aspects of radio co-
mmunication, especially in indoor. Radio propagation techniques use mathematical models
to describe these characteristics of radio channel. At lower frequencies (below 30 MHz) radio
signals travel along ground waves while at higher frequencies (above 30 MHz) and in lower levels
of the atmosphere like indoor environments, an emitted signal propagates along a line-of-sight
(LOS) [34]. Thus, in a wireless communication system, especially in indoor, a clear LOS is
needed and any obstruction between the emitter/receiver may block the signal.

Since the wireless medium is shared among different resources in a regulated manner (through
MAC protocols) and a frequency band is attributed to each standard, there is no need to acquire
a license to operate on the 2.4 GhZ ISM band. Different wireless standards may share the same
frequency band, which can result in interference and channel overlapping [35]. For example, the
2.4 GhZ band is shared among bluetooth, Wi-Fi (i.e 802.11b/g/n), microwave and ZigBee/IEEE
802.15.4 devices. Sharing the frequency band can be particularly unfavorable for ZigBee/IEEE
802.15.4 networks [36]. Hence, the spectrum in this frequency band is highly busy, crowded and
causes an increasing path loss and a limited range [37]. Path loss is the estimation of the signal
attenuation or all lossy effects based only on the separation distance between an emitter and
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a receiver. The path loss of the radio channel can also be defined as the ratio of the emitted
power to the received power in decibel (dB) as:

PL(dB) = 10 log10(
Pe
Pr

)(dB), (2.1)

DeciBel, shortened as dB, is a measurement unit that refers to ratios and gains of an antenna on
a log scale. A decibel is equal to 1

10 of a Bel. Indoor narrow band communication system is pro-
foundly affected by power dissipation and obstruction on the propagation channel. Consequently,
propagation models are used to predict signal variation and provide a reliable estimate of the av-
erage signal strength in coverage area. In dynamic/mobile scenarios, statistical models are used
and they provide statistical parameters to predict the propagation characteristics of the coverage
area [37]. Maxwell’s equations bound conditions that express the physical characteristics of ob-
structing objects [37]. Solving Maxwell’s equations provide details on the electromagnetic wave
which propagates through either reflecting or scattering or diffracting environment. However,
this requires solving complex mathematics expressions.

Reflection, represented in Figure 2.1, happens when the propagating electromagnetic wave
named EM go through a smoothed object or surface with dimension superior to the EM wave-
length. Reflecting objects/surfaces can be furniture, walls, surface of the ground. The coefficient
of reflection depends on the properties of the reflecting object/surface (frequency of the wave,
angle of incidence, etc). Reflection causes the wave to be separated into two parts, one bypassing
the object (e.g. wall, floors) and the other one reflected back into the device who originally sends
the signal.
Scattering is caused by large rough surfaces, small objects with small dimensions compared to
the wavelength of the electromagnetic wave. Scattering can also result from other irregularities
such as stairs within buildings (for indoor environment), rough surfaces, lamp post (outdoor
environment), foliage. The last but not least, diffraction propagation effect takes place when an
electromagnetic wave encounters an obstacle (diffracting object) of wavelength comparable to
the wavelength size. Diffraction is the result of the interference of scattered waves at each point
of the diffracting object. Most often, diffraction results from the contact between an electro-
magnetic wave and the edger of an obstacle.
Diffraction can be observed with light, but also with sound, X-rays and tall buildings. Diffrac-
tion deforms the signal, as this last is wrapped around the diffracting object. Hence, the waves
produced by the diffracting object are present throughout space and behind the obstacle based
on the Huygen’s principle [38]: every point on a wavefront acts as a point source for the pro-
duction of the secondary wavelets. The combination of all wavelets produce a new wavefront in
the direction of propagation. The field strength in the shadowed region is the vector sum of the
electric field components of all the secondary wavelets that are received by the receiver.

As described in [39], the effects of reflection, diffraction and scattering are illustrated in Fig-
ure 2.2. An understanding of indoor propagation effects is very important when designing a
suitable communication system. In mobile communication system, electro-magnetic wave prop-
agation is mostly affected by irregularities arising during its transmission. Irregularities are
attenuation, free space loss, shadowing and multipath [40] (cf. Figure 2.3). Such phenomena
come from a particular or combined physical abnormality (reflection, scattering, and diffrac-
tion) that happens during the wireless signal propagation. Hence, they should be taken into
accounting when designing a wireless application.

Recall that attenuation causes over any transmission medium a loss of the strength of the signal
over distance. Instead, time varying errors can happen on the received signal due to rapid

14



Figure 2.1: An example of our System Architecture with multipath context: a signal received with two
or several paths

Figure 2.2: Demonstration of reflection, diffraction and scattering propagation effects
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Figure 2.3: Indoor propagation characteristics: Path loss, Shadowing and Multipath in function of the
distance [37]

changes on the transmission medium. In an indoor environment where the localization node
may be mobile, the location of various obstacles may change over its displacement and therefore
imply dealing with complex propagation effects. Thus, the received indoor signal often results on
a combination of linear signal loss over distance and changes that happen on the signal. Signal
loss over distance is explained by the fact that radio signal is absorbed by building structure
like walls, floors, construction materials (e.g. concrete wall) along the receiver path: this is also
known as the radio signal attenuation. Instead, changes arising on the signal are explained by
sudden and unexpected distortion of the signal. The layout of the room like wall partitions and
the presence of obstructing objects, furniture between two communicating wireless devices can
occlude the communication link. The effects of these factors can result in fading, reflection,
scattering and diffraction.

We have therefore to distinguish both characteristics during signal transmission: short-term or
small-scale variations and long-term also known as large-scale variations of the radio wave [25, 41]
(cf. Figure 2.3).
Short-term variations of the radio wave consist of large, rapid and sudden changes on the am-
plitude of the radio signal over a short period of time or distance on a scale of the wavelength λ.
Such effects usually labelled as fading, are modeled by small scale propagation models. Short-
term variations are either introduced by reflection, scattering objects or the material type of the
objects along the radio signal path. Consequently the channel may vary rapidly with the blind
mobile node’s location and movement. This is especially the case in indoor environment. Small
scale propagation models generally evaluate multipath effects and are frequency and bandwidth
dependent [42].
The long-term variations on the other hand correspond to gradual changes of the signal strength
along the communication path. The received power decreases as the separation distance increases
between the emitter and the receiver. Long-term variations are caused in part by diffracting
objects and are modeled by large scale propagation models. These propagation models evalu-
ate the received signal pattern/comportment (averaged) over distances largely superior to the
wavelength. Large scale propagation models comprise free space path loss, log-distance path
loss, shadowing, direction drifts, etc. In addition to distance, large scale propagation models are
dependent on environment characteristics and are consequently frequency independent. Short-
term variations or fading can be modeled by ricean distribution in case of fading with stronger
LOS [41]. Works from Zanca et al. [5] assert that shadowing is almost constant over long time
periods, while fast fading shows rapid fluctuations. Consequently, packets received in different
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Figure 2.4: Two basics types of multipath: constructive and destructive interference [43]

time sequences likely experiment are affected by shadowing, but almost independent fading.
Thus, the fast fading can be averaged out, therefore ignored in slowly changing environments
when considering multiple readings from the same static node. In this context, our work is not
concerned by fast fading effects.

As illustrated in Figure 2.1, multipath or multiple propagation paths result from the fact that
an emitted radio signal arrives at the receiver antenna over more than one path including the
direct line-of-sight (DLOS) and the non line-of-sight (NLOS) components. These multiple paths
happen during radio signal transmission or radio propagation because of reflections from nearby
metallic objects, objets in movement and people moving inside the environment. Consequently,
fading and dispersion constitute the principal characteristics of multipath. Recall that individual
or mixture of reflection and scattering phenomenon can also convey to multipath as presented
in Figure 2.1. As a result of physical interaction from several structures as shown in Figure 2.1,
multipath can severely attenuate the received signal, causing the composite signal to be either
larger or smaller than the direct signal.
Multipath effects contribute to constructive or destructive interference phenomenon. Construc-
tive interference increases the resulting power and arises when the reflected signal arrives in-phase
with the original (line of sight) one. Destructive interference instead decreases the power and
takes place when the reflected and original signals are out of phase as shown in Figure 2.4. Let
us consider two traveling waves. From Figure 2.4 described in [43] we can notice that if both
waves traveling in the same direction with the same frequency arrive in phase, their mutual
reinforcement gives rise to a single bigger amplitude. This bigger wave amplitude is a sum of the
resulting two waves amplitudes with equal frequencies and phases and leads to the situation of
constructive interference. However if the crests of one wave overlap with the hollows of another
they produce cancellation and drive to destructive interference. In fact, when the first wave is
up, the second wave is down or when the first wave is down and the second is up; the sum of
both waves can be less than either the smallest between both (i.e. waves), or can even be zero.

Note that multiple propagation paths can experience both slow and fast fading effects in a
narrowband transmission system like Zigbee.

Furthermore, in [37], the authors present a comprehensive description of variation and dissipa-
tion in received radio signal power over distance. Variations due to path loss (i.e. large-scale
variations) occur over relatively large distances like hundreds of kilometers. Large-scale va-
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Figure 2.5: Two basics types of variations in indoor environments [25, 44, 45]

riations imply a gradual variation of the received power. Signal attenuation is governed by the
entire radio communication path. Shadowing referred to as medium-scale variation happens
when a receiving antenna moves toward larger distances ranging from fewer tens to hundreds
of meters. However variations due to multipath occur over very short distances in the order of
sub-wavelength or wavelength. This is called small-scale variations as presented in Figure 2.5.
Small-scale variations count for the rapid fluctuations of the received power, consequence driven
by the constructive and destructive interference of the multipath waves. Therefore the indoor
radio channel is especially difficult to model. Hence a thorough understanding of indoor radio
propagation is required to design accurate and robust localization algorithms.

Due to its random unpredictable nature, modeling the wireless radio channel of the enviro-
nment is a key tool (black box) that governs the received radio signal in indoor environment.
As indoor environment characteristics may differ from each other, a generic and adapted prop-
agation model is needed to examine the detail of how a signal is propagated from an emitter
to a receiver. Such propagation model should capture any indoor propagation irregularities.
This generic model can be then applied to any specific situation as a standard to follow for
reliable indoor communication. We follow earlier works on analytical and empirical validation
of propagation models [22], [37]. Each propagation model stands for a mathematical expression,
algorithms or diagrams in order to represent the radio characteristics of a given environment.
Used to determine the electromagnetic-wave propagation characteristics analytically, theoretical
propagation models are based on Maxwell’s equations [37]. Maxwell’s equations are simplified
by path loss models which vary in complexity and accuracy. Several theoretical and empirical
propagation models have been developed for indoor propagation [24, 37].

Empirical models identify the radio wave propagation using statistical properties of recognized
features based on empirical mathematical formulation from empirical measurements. This makes
them more advantageous since they try to separately recognize all factors that influence the envi-
ronment through the use of few parameters. With the use of parameters, empirical or statistical
models capture phenomena missing from theoretical formulas used by theoretical models. The
latter instead deals with the fundamental principles of radio wave propagation phenomena.
Theoretical or deterministic models apply the principle of physics to the environment features
(mostly represented on a database). This sometimes may not be practical or need a frequently
update of the database, as the knowledge of the environment is required (building layout/ma-
terials and environment geometry). However one should not forget that the propagation of
indoor environment often changes. Thus, empirical models contribute more on the design of
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generic propagation models and reduce computational complexity. Note that empirical models
are widely used to study cellular systems performance via simulation. The following section de-
scribes the most used models, mainly empirical models, for estimating the LOS signal path. We
present the most used and relevant radio propagation models in order to validate the one to use
for our study. We also present results of most contributing works that used such models. The
results of current state of the art shed light on existing radio propagation models and inspired
our choice. We first describe generalized propagation models, that is large-scale propagation
models: the free-space path loss model, the two-ray model (deterministic), the log-distance path
loss model. We then present the most used indoor propagation models: log-normal shadowing
and the partition and floor attenuation factors models. We end-up with small-scale or fading
models. Notice that the log-distance path loss and the log-normal shadowing are empirically
proven to work in outdoor and outdoor environment [24]. Typically, the most commonly used
propagation model in free space is the Free Space Path Loss also known as Friis and presented
in equation (2.2).

Pr(d) =
PeGeGrλ

2

(4π)2d2L
(2.2)

Pr(d) is the received power and is function of the distance, Pe is the the emitted power. Gr
represents the emitter antenna gain, Gr is the receiver antenna gain. λ is the wavelength in
meters, d is the distance in meters separating the emitter to the receiver. L is the system loss
factor and is not related to propagation. It is usually due to transmission line attenuation,
filter losses and antenna losses in the communication system. Generally, L = 1 signifies that
there is no loss in the system hardware. It is common to select Ge = Gr = 1 e.g. for isotropic
antennas. An isotropic antenna broadcasts power equally in all directions. The equation 2.2 is
only valid in Fraunhofer region. The Fraunhofer region called far-filed region is the region in
which the propagating wave looks like a plane wave. Thus the power decays inversely with the
distance d0 = 2D2

λ where D is the antenna diameter (the antenna largest dimension) and λ is the
radio wavelength. Therefore, the separation distance between an emitter and a radio receiver,
d should be much larger in the order of the wavelength than the nearest minimal reference
distance d0 chosen in the far-field zone. Free Space Path Loss predicts the received power to
decrease as the square of the emitter-receiver separation distance. In this case of idealized
propagation, the received signal power is easily predictable. However, free space path loss model
is mostly relevant in outdoor environment. Free space path loss model can address the indoor
environment to predict received signal strength only when the emitter and the receiver have a
clear, unobstructed line-of-sight (LOS) path between them. In most case, the reference path loss
for a reference distance required by other models is computed through free space propagation
model.

2.1.1 Deterministic two-ray approximation : ground reflection model

[24, 46]

In the free space model the emitted signal reaches the receiver antenna with only one single
path. This model assumes a clear line-of-sight path between an emitter and a receiver antenna.
However, as mentioned and described in [39], both Figures 2.1, 2.2 demonstrated that the pro-
pagation of radio signal in realistic unsteady indoor environment causes the emitted signal to
be interfered between direct and reflected signals. The signal attains the receiver via multiple
paths. The two-ray approximation explains such effects by considering the signal to reach the
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Figure 2.6: Illustration of the Two ray model [37]

receiver in two paths: a direct path and a reflected path. The most common and accurate
approximations for signal propagation use the ray tracing techniques [37]. Such techniques
consider the wavefront as single particles and determine the reflection effects of the wave by
ignoring the scattering which is predicted by Maxwell’s equations described in [37]. The two-ray
model is the simplest ray-tracing model and a way to model the line-of-sight radio channel. The
two-ray model predicts signal variation resulting from a single ground reflection interference with
the LOS path. Such interference mostly dominates the multipath effects in outdoor context. The
two-ray model is a numerical model that takes into consideration the behavior of high-frequency
radio waves in a ray-like fashion. In fact, a more realistic treatment of the path loss takes into
account that radio propagations commonly suffer from at least one notable source of interference,
named ground reflection [47].

As mentioned, the use of the two-ray propagation model involves a scenario with one reflecting
surface [48]. Typically, as demonstrated in Figure 2.6, the reflected path bounces on the ground.
In order to receive the reflected signal, a major requirement is that the receiver antenna should be
positioned above the ground. The ray-tracing models for path loss require detailed site specific
information since they rely upon the geometry and the dielectric properties of the environment
in which the signal propagates. Ray-tracing techniques consider the radio signal propagates as
a ray between a radio emitter and a radio receiver [49].

They can generally be applied to indoor/outdoor environments. With the ray tracing models the
propagation wave related parameters are estimated according to Maxwell’s equations. However,
such models are more precise under a small number of multipath components and when detailed
information on the physical environment characteristics are known. Therefore, such models are
environment dependent.

Figure 2.6 shows an illustration of the two-ray ground reflection. A direct ray is represented by
the l segment while both x+x′ segments indicate the indirect (reflected) ray. In fact Figure 2.6
describes a wireless system in which an emitter at a height he is sending a radio signal to a
receiver device at a height hr lower than he and at distance d. The ground reflection coefficient
Γ is defined by the ray angle of incidence θ also called grazing incidence [24]. The value for Γ
depends additionally on εr, the dielectric constant of the ground.

Γ =
sin(θ)− α
sin(θ) + α

(2.3)
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Where

α =

{ 1
εr

√
εr − cos2 θ vertical polarization√

εr − cos2 θ horizontal polarization

Note that perfect ground reflection imply Γ = −1. For asymptotical large d, x + x′ ≈ l ≈ d,
θ ≈ 0, Ge ≈ Gr and Γ ≈ −1 [37].

When the transmitted signal is narrowband, the received power of the two-ray model (at a
distance d) approximately in dBm, is a summation from each contributing ray (l, x+x′) and is
given by:

Pr(dBm) = Pe(dBm) + 10log10(Ge) + 20log10(HeHr)− 40log10(d) (2.4)

This equation 2.4 has been demonstrated to closely consent with empirical data. Pe is the emitted
power and Pr, the received power. Ge represents the radiation pattern in the LOS direction and
is defined as the multiplication of emitter, receiver antenna field radiation: Ge = GaGb. Instead,
Gr is the radiation pattern of the indirect ray of length x and x′. Gr = GcGd.

Compared to the Free-Space model (cf. equation 2.2), the two-ray ground reflection model (cf.
equation 2.4) presents a faster power loss as the distance increases: the received power attenuates
to the fourth power of the distance. The two-ray model is known to better predict the received
power over long distance compared to free space model [24, 47, 50]. Because of oscillation due
to the constructive and destructive combination of the two-ray, free space model is mostly used
when the distance d is smaller compared to the two-ray approach. Distance is of the order of
several kilometers for mobile radio systems with tall towers heights exceeding 50 m in urban
environment. However in most mobile communication systems, the maximum distance between
any radio emitter-receiver is only a few tens of kilometers and the earth is assumed to be flat [24].
Two-Ray Ground models are applied in most common network simulators (e.g. NS-2.34, NS-
3.11, OMNeT++) [47]. However, experimental measurement results obtained in outdoor, on the
road and presented in [47] have demonstrated that Free-space and two-Ray Ground models are
not able to capture complex path loss effects at small and medium transmission distances. At
small distances (≤ 140 − 200 m) the prediction errors alternate between underestimating and
grossly overestimating RSS values i.e. between −5 dB and +10 dB. While, at mid distances,
i.e. 600 m, distance predictions by both simpler models consistently underestimate RSS values
by more than −5 dB. Works in [37] additionally state that the two-ray model is not typically a
good model for indoor environments as it characterizes signal propagation in isolated areas with
few reflectors, such as rural roads, along highways as well as over water.

Free-space and two-Ray Ground models are thus only relevant in scenarios where reflections on
buildings do not dominate radio propagation effects [47], like in suburban environments.

2.1.2 Multipath fading characterization : the Rayleigh and Ricean distribu-
tion

As mentioned, an emitted signal running into reflection and scattering can result to several
paths at the receiving antenna side. Each electromagnetic wave path can have its own delay. An
electromagnetic wave phase and amplitude may vary depending on the receiver node movement
as well as on the collision impact from local object in the environment. Such phenomena can
conduct to several multipath fading types as shown in Figure 2.7.
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Figure 2.7: Illustration of multipath fading types [25, 44, 45]

Described in [44, 45], two types of multipath fading are presented. Time variant introduced by
motion and changes in propagation paths; and time spreading behavior due to signal dispersion,
for instance named multiple paths. Let’s denote by fc the Doppler frequency and it measures
the time variance of the channel characteristics. Doppler frequency is based on the carrier
frequency and the relative speed of any movement along emitter and receiver communication
path. Doppler effect can be explained by the fact that a single signal (or sinusoid) is received on
a receiver as a summation of three signals (or sinusoids). Each of the three signals is the sum
of the carrier frequency (named f0) and the Doppler frequency of each sinusoid (i.e. fc). The
Doppler bandwidth (i.e. range frequencies without high attenuation) is inversely proportional to
the coherence time (i.e. channel change rate) and both specify for short term variation the time
variation of the channel [25]. The coherence time is the channel change rate in time domain
over which the channel is not invariant. Fast and slow fading focus on change of the signal
during wireless communication when considering the changing rate of the channel. Such effects
are in relation with the velocity of the mobile node, the baseband signaling (the channel and
the transmitted signal) [25, 44, 45]. Fast fading is due to fast motion speed and assumes that
weakening on the strength of the signal do not vary as a function of frequency. With fast fading,
the channel may change drastically in amplitude and in phase several times during the usage
time [25, 44, 51]. Instead, slow fading which happens in most communication system assumes
the channel varies slowly in amplitude and in phase or even constant over time during signal
transmission. In this case, we deal with the coherence bandwidth also called the bandwidth of
the channel and the signal bandwidth (i.e. w).

Multipath fading types referred to as Rayleigh fading types or Rayleigh distributions are used
to model scattered signals that reach a receiver by multiple paths. The Rayleigh distribution
assumes a received signal is composed of a sum of severals large waves with random individual
amplitudes and a uniform distribution of phases. Note that, the central limit theorem assumes
the sum of a sufficient number of random variables progress closely to a normal distribution [25].
Thus, when two components of the received signal, example, x and y, are normally distributed,
the received signal is a complex Gaussian variable. In other terms, when x and y are independent
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Figure 2.8: Illustration of shadow fading (i.e. shadowing) and Rayleigh fading [44]

Gaussian random variables with zero means and variances σ2x = σ2y = σ2, the joint probability
density function (pdf) of the Rayleigh distribution can be modeled as [41], [52]:

p(r) =

{
r
σ2 e

∣∣∣− r2

2σ2

∣∣∣
r ≥ 0

0 r ≤ 0

Where E(r2) = 2σ2 is the total power of the received signal and the envelope amplitude of the
received signal which is Rayleigh distributed is given by: r = (x2 + y2)

1
2 . This amplitude is

independent from the phase that is normally distributed. r2 = 2σ2 is the power of the signal with
exponential distribution. Such power is also known as mean-squared value of the distribution.

Rayleigh distributions describe the statistical time varying nature of the received envelope of a
flat fading signal [41, 53]. Flat fading (cf. Figure 2.7) is the most common type of fading in
which the multipath structure of the channel are preserved at the receiver, however the strength
of the received signal changes with time, due to fluctuation in the gain of the channel caused by
multipath [53].

A Rayleigh distribution is mainly applied for the use in statistical communication theory. In
fact, in most wireless communications, the envelope of the received carrier signal is Rayleigh
distributed or Rayleigh fading [52]. Recall as presented in Figure 2.8 the signal displays different
fading characteristics based on the density of the scatter in the multipath case. Hence, when
the dominant signal becomes weaker, such as in a dense scatter with non LOS case (i.e. NLOS),
signal is modeled with Rayleigh distribution while Ricean distribution is used to model fading
with a stronger line-of-sight. In fact, when a dominant signal component comes out at the
receiver side with many weaker multipath signals, it gives rise to the Ricean distribution. In
addition, as a dominant signal becomes weaker, the composite signal approximates a noise
signal which has an envelope that is Rayleigh. Thus, when the dominant component fades
away, the Ricean or Rice distribution becomes a Rayleigh distribution. Other implementations
of the Rayleigh distribution exist. Those are propagation models that give more control over
the extent of the fading as the Nakagami distributions and they can be reduced to Rayleigh
distributions [41].

To summarize, free space path loss model is too simple and requires clear line-of-sight between
an emitter and a receiver antenna. In fact, according to this model, the strength of a radio
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signal decreases with farther distance. However, in most indoor cases, the signal strength is
coupled with random fluctuations on the amplitude of the signal which depends on obstruction
along the signal path. Those random variations imply unpredictable behaviors on the measuring
parameters (e.g. the received signal strength) in the concerned area while greatly complicating at
the same time the analysis of the indoor wireless link behavior. Deterministic ray tracing models
require site-specific information and complex mathematical operations. Rayleigh distributions
and further implementations do not fit for the use in indoor environment as mentioned above
due to their high-level analysis requirements. In this context, efforts were devoted by researchers
for understanding the behavior of wireless links. Propagation models that best consider complex
behavior of indoor propagation are then proposed. Seidel and Rappaport [22, 24] introduced
the log-distance path loss model and the log-normal shadowing. The former model (i.e. log-
distance path loss) easily represents path loss as a linear function of the distance. The latter (i.e.
log-normal shadowing also known as log-normal path loss model) considers possible additional
random amplitude fluctuation on the received signal based upon measured data. The next
paragraph summarizes both models, being commonly used as large scale models to describe
signal strength.

2.1.3 Indoor propagation models

The log-distance path loss model According to [24], both empirical and theoretical-based
propagation models have demonstrated the average received power to decrease logarithmic with
distance either in indoor or in outdoor environment. The path loss represents a positive quantity,
the difference in dB between the effective transmitted power and the received power. The
distance of reliable communication between a wireless emitter and receiver can be predicted by
equation 2.5 using a path loss exponent: the strength of a radio signal decays exponentially with
distance.

PL(d) = P̄L(d0) + 10η log10(d/d0), (2.5)

Where P̄L(d0) is the reference power loss (in dBm) at reference distance d0 (in meters) for large
scale path loss models. In other words, the reference power loss is assumed to originate from free
space propagation at a shorter reference distance d0 from an emitter. d0 is chosen in the aforesaid
far-field antenna region. Typically, the value for the reference distance d0 is equal to 1 m in
indoor and from 100 m to 1 km in outdoor. The value for the reference power is usually computed
either through measurements (taking the average received power) at the reference distance d0
(i.e. from many closed-in points located at a radial distance d0 from the emitter); or predicted
from the free space equation discussed above. η is the path loss exponent. It gives the rate at
which the path loss increases with the desired distance d (in meters) that separates the emitter
to the receiver antenna. The value of the path loss exponent η is environment dependent and
is estimated with empirical data. In free space, η = 2. Consequently, the log-distance path loss
model is based on the free space path loss while accounting for more environmental factors [42].
However, the log-distance path loss model does not consider environment occlusions effects that
imply variations on the radio signal path between an emitter and a receiver and thus causing
shadowing. Siedel and Rappaport have attempted to overcome this issue by proposing the
empirical log-normal shadowing model [22].

The log-normal shadowing During its transmission, the radio wave deals with different
obstructions like building type, building wing, tunnels, indoor furniture pieces and the way
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such furniture is arranged. Such factors may weak the signal while causing at the same time
shadowing. The shadowing effects are taken into account by considering a zero mean and
Gaussian random variable for the equation of the log-distance path loss propagation model.
Seidel and Rappaport have observed and demonstrated in a former work in [22] that path loss is
log-normal distributed when assuming the distribution of gradual large-scale variations (named
large scale path loss) as shown in equation 2.5. Even if, their measured data do not always
present a log-normal distribution, the mean path loss exponent η and the standard deviation σ
(expressed in decibels) are computed according to equation 2.6 expressed as:

PL(d) = P̄L(d) + ε , (2.6)

or
PL(d) = P̄L(d0) + 10η log10(d/d0) + ε , (2.7)

PL(d) tends in this case to a log-normal distribution, P̄L(d0), η, d and d0 have a same meaning
as in equation 2.5. ε ≈ N(0;σ) is a zero mean log-normal distributed Gaussian random variable
with the standard deviation σ and accounts for the random effect of shadowing. ε models the
path loss variation due to shadowing through all location at distance d separating the receiver
to the emitter. The standard deviation σ represents quantitative measurement of the accuracy
of used path loss model for an obstructed coverage area. In addition, the values of both the path
loss exponent η and of the standard deviation σ are environment dependent and are estimated in
decibels (i.e. dB). Hence, this capability imply the log-normal model to more accurately predicts
path loss as a function of the distance. Notice that, measured received signal strengths from
different locations being at equal distance from an emitter are considered to be independent
and identically distributed (i.i.d.) normal random variables. Moreover, measurements data for
900 MHz frequency between a wireless emitter and receiver located on the same floor within
four buildings have demonstrated that the log-normal shadowing model matches well empirical
data for values of η = 2.76 and σ = 12.9 [22]. Instead, for measurements where the emitter
and receiver are on different floors, the path loss is more severe, and the standard deviation
is reduced. These parameters values can be used in a model for a first-order prediction when
no specific building information is available. However, one should not forget that the reported
values for η and σ are particularly limited within a coverage environment. Thus, for a more
accurate indoor propagation model, building features around emitters and receivers may be
considered.

Modification of the log-distance model with addition of attenuation factors: par-
tition losses between floors Additional path loss models have been studied by researchers
with consideration of individual losses between a wireless radio emitter and a receiver path.
These losses are introduced by obstructions including the number of walls, floors and doors
travelled by a radio signal. Obstructions arise also from a turn corner in corridor, aluminum
materials. Theses enhancement are the first step for including detailed site information to im-
prove propagation prediction. Each additive path loss model first estimates each individual
attenuation loss factor based upon measured data before adding them together to constitute
the overall losses of the targeted environment. More representative models that add attenuation
factors for log-distance path loss model are presented below. The floor attenuation factor pre-
diction model proposed by Seidel and Rappaport [22] in multi-floor environment evaluates the
mean path loss as a function of the distance when considering the mean path loss exponent as a
function of the number of floors between an emitter and a receiver. In addition, for a particular
building type, a constant floor attenuation factor named FAF is added. FAF is function of
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the number of floors and building type. FAF is added to the mean path loss predicted by the
log-distance path loss model at the same floor and is given by:

PL(d) = P̄L(d0) + 10ηsamefloor log10(d/d0) + FAF, (2.8)

The value of FAF (dB) varies based upon the number of floors separating the emitter to the
receiver. This equation 2.8 should help to empirically predict the attenuation caused by floors
as the floor attenuation factor between different floors is shown to relatively differ by at least
3 dB [22]. Such result is obtained when considering two types of building with reinforced
concrete. The first building has ten years old compared to the second building. However, it
is noticed that the average FAF is not a linear function of the number of floors between an
emitter and a receiver. In fact, different floors can cause different amount of path loss. It is
also highlighted that factors such as multipath reflections may affect the path loss. Instead of
considering the attenuation factor to vary based upon the number of crossing floors within a
building; other models consider the same attenuation regarding the traversed walls/floors which
is multiplied by the number of walls or floors that separate an emitter to a receiver. Seidel and
Rappaport [22] proposed a model which takes into account the number of concrete walls and
soft partitions attenuation factors as presented in equation 2.9 shown below:

PL(d) = 10η log10(
4πd

λ
) + pPAF (dB) + qWAF (db), (2.9)

Where PAF and WAF are respectively the individual soft partition attenuation factor and the
individual wall partition loss factor. Both values are respectively multiplied by the number of soft
partitions and the number of concrete walls along an emitter and a receiver path. What should
be noted with the use of this model is that any kind of concrete support column encountered
between an emitter and a receiver communication path will be considered as introducing the same
attenuation factor. Such consideration holds even though the components and the structures
may be different from one wall to another wall, from one partition to another one. This large
scale path loss model is the one used in [54] in order to consider the attenuation terms due
to losses from the walls and floors while mapping the measured RSSI to the distance. In [55],
Keenan and Motley studied additional propagation effects for stairs being present along an
emitter-receiver path in indoor environment and expressed in equation 2.10:

PL(d) = PL(d0) + 10η log10(d) + fFAF (dB), (2.10)

f is the number of floors/stairs and FAF , the floors attenuation factor. Another new empirical
model has later been introduced by Cheung et. al [56]. The authors model is based on the
equation 2.9 and includes more features such as the distance dependence of path loss exponent,
the angle dependence of the WAF , reflection and diffraction. The authors hypothesis is built
on the fact that prediction accuracy can be poor in certain parts of a building and especially
at larger distances from the emitter. Several other scientific contributions on the modification
of the log-distance path loss model including hallways to a main corridors can be found in the
literature [24]. In addition, it was observed that due to differences in the type of construction
materials and the shape, the path loss within a home can be smaller than the one encountered
in an office building with multiple floors. After introduced the existing propagation models
and compared them, in the following, we present the state-of-the art of proposed RF-based
localization algorithms.
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2.2 Localization algorithms

2.2.1 Indoor localization technologies

Several localization technologies have been developed so far. First of all, there are cellular
networks which directly incorporate the concept of localization and offers the advantage of
working with a common standard for the description of the position [57]. positioning technique
in cellular-based networks operates in a licensed band and combines the position of cellular
phones to a belonging cell [58]. When using cell-ID positioning techniques, the identification of
the cell using the Cell-ID method is realized by combining the position of a cell-phone carried by a
person to the coordinates of the antenna that relays the communication. Available measurements
are the propagation time of the signal or the angle of arrival of the signals from the mobile station
at several base station Node.

A localization system based on cellular signals, such as Global System for Mobile communication
(GSM) works in this way. Through time or angle measurements from three closest relay and
using trilateration or triangulation lead to define an area in which the mobile cellular phone is
located (i.e. a GSM emitter carrying by a person). However localization is less precise when
the coverage area of the cellular network becomes larger. For example in rural environment the
localization accuracy with Global System for Mobile meaning (i.e GSM) can reach 5 kilometers
while in urban areas it varies from 50 to 300 meters. The availability of small cells for indoor
coverage has enable cellular-based indoor localization. As a cellular-based indoor localization,
GSM-based indoor localization system mostly use signal-strength fingerprints method. Otsason
et al. [59] present a GSM-based indoor localization using fingerprints and K-nearest neighbors to
localize a mobile station to the closest belonging cell. An accuracy ranging from 2.48 m to 5.44
m in multi-floor buildings has been obtained. In [60] another GSM-based indoor localization
is presented with the use of wide signal-strength fingerprints and 6-strongest cells. From the
authors, this GSM-based fingerprint indoor localization is able to identify a floor correctly in up
to 60% cases and within two floors in up to 98% cases.

The Universal Mobile Telecommunications System (UMTS) standard named 3GPP is another
technology based on cellular network. Works from et al. [57] compare the performance of UMTS
and WLAN using radio frequency-fingerprinting in location estimation in an indoor office en-
vironment of size 20 m×15 m. The location estimation architecture uses four 3G small cells
and four WLAN-APs. The radio map is created through fingerprints collected for a specific
period of time at predefined points. Each point is taken within a grid of one meter using access
point signal visibility and RSS as metrics. Position estimation of the mobile smartphone client
during the online phase is performed by a weighted k nearest neighbors algorithm (WKNN)
that uses deterministic Euclidean Distance norm. Precisely measured RSSI or either access
point signal visibility is compared to the previous calibrated radio-map. Then calibration points
whose metrics have the smallest distance to the current measurement, are used to estimate the
position. Experimental results report an accuracy with UMTS comparable to the one achieved
with similar WLAN-Testbed. Both methods reach an accuracy between 5 m and 7 m at 80%
confidence level. Achieved results are almost independent of the used metric (RSSI or visibil-
ity), of the distance norm or the amount of sample collected in the online phase. Thus UMTS
small cells are good alternative or complementary to WLAN for indoor RF-Fingerprinting with
the use of smartphone. In fact, the same hardware can be used for traffic and for localization
purposes. Additionally UMTS does not use frequency hopping or power control, as it is the
case in most WLAN installations for interference reduction. However, the cell coverage of both
GSM and UMTS are still larger to be applied to room level. GSM or UMTS based indoor loca-
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Figure 2.9: Overview of the range of IEEE 802 wireless technology [62, 63, 64]

lization algorithms can not leverage the lower rate and low power feature of localization based
on Low-Rate Wireless Personal Area Networks. Fine grained location accuracy is more difficult
to achieve with GSM or UMTS than localization based on IEEE 802.15.4 wireless networks.
Figure 2.9 presents a classification of wireless networks according to the range and the data rate
while Figure 2.10 shows a summary of existing location system described in [61].

Furthermore, other research efforts have exploit the radio system for localization purpose. Radio
Frequency Identification (i.e. RFID) is one of the localization system already used for tracking or
access control [65], [66]. RFID is an identification system that uses radio waves to communicate
between a reader and an electronic tag (i.e. RFID tag). A tag can store information like its
identification number, manufacturer information, product type and price [67]. At any time, a
reader can retrieve and modify information stored on a tag. A tag is incorporated or attached to
an object. There are two types of RFID tag: the passive and active one. This technique of radio
identification allows contact less communication of data contained in a tag via radio links. In
most case, communications between tags and readers do not involve greater energy consumption
on a tag as power is supplied by induction from the reader. Examples of application can be
found in various areas including in logistics for delivery of merchandises/goods tracking (e.g.
by Wall-Mart), retail stock management or for the usage by some automatic tools booths on
highways. However, this RFID type of localization infrastructure is not suitable in our case.
In fact, it is not possible to store complicated contents or dynamic information such as RSSI
measures which is instead available with wireless sensor networks.

Another approach of localization is based on Wireless Fidelity (Wi-Fi). Wireless Fidelity is
a data transmission technology via radio waves and standardized on 802.11a/b/g. Wi-Fi is
mostly employed by Wireless Local Area Networks (LANs) which have traditionally been used
to provide only data services via radio waves involving an emitter and a receiver at speeds up to 54
Mbits. Most proposed Wi-Fi-based localization algorithms use fingerprinting or location pattern
matching. As discussed in Chapter 1, a fingerprint or a pattern matching based localization uses
the assumption that a radio frequency signature of any environment is correlated to a location
of a target in that environment. A target also called blind mobile node can be any type of
object or person that needs to know its location. In most case, these mentioned approaches only
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Figure 2.10: Overview of localization systems
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require a site survey of the environment features. For instance, the measurements of the signal
strengths of several locations to store in a database. During the online phase, a comparison using
pattern matching is made between the training set and the current measurements parameters
to determine the blind node unknown position. For example, years ago Google was using this
fingerprint technique by spotting Wi-Fi networks to feed into their localization database before
being stopped for privacy reasons. A fingerprint technique can be an accurate and precise
indoor localization algorithm. However, it requires performing a fine-grained and exhaustive
offline training phase, each time there is a change in the concerned environment; this is time
consuming. In addition, Wi-Fi technology uses a high data rate that is not compatible with
low power system/networks including sensor networks. In addition, this type of localization
technique is not always accurate than those based on radio propagation model. Methods-based
on propagation models use mathematical approaches to estimate the distance between wireless
nodes [68].

In [19], in a floor building with dimensions of 43.5 m by 22.5 m, localization results report
an accuracy of 4.3 m for the one using a propagation model against 2.94 m for the empirical
fingerprint method when considering 50th percentile of the signal strength sample. Instead the
25th percentile of the signal strength sample provides a localization accuracy of 1.86 m for the
propagation method compared to 1.92 m achieved by the fingerprint method. Thus, fingerprint-
based localization technique depends on the database update frequency which changes in time
according to environment characteristics. Several works are interested by the update of the
database. Kumar et al. [69] have implemented a Bayesian method for positioning inside a
wireless local area network. The authors demonstrated the localization accuracy to degrade
with the signature age. The authors have additionally shown by integrating a Kalman filter to
suppress the noise, the improvement of positioning accuracy by 90% instead of 80% estimate
corresponding to 2.5 meters without the use of Kalman filter. Lin et al. [70] have paid attention
on the issue of the instability of fingerprinting in indoor environment of size 12 by 50 meters
space. The authors study the impact of the antenna orientation, foreground obstacles and nearby
moving obstacles. Experiments have shown that the RSSI variance is high when the wireless
node is held in hand while this variance is smaller and the RSSI is more stable when the wireless
node is placed on a chair. In addition, the localization error varies from 1 to 3 meters depending
on the orientation of the receiving wireless node antenna. It came out in order to eliminate
the need to often repeat calibration, an antenna with a uniform radiation pattern should be
used. The receiver node antenna also needs to be hold at the same orientation in order to keep
a linear localization error. The authors also highlight that the landmark density influences the
localization accuracy but have no impact on the signature instability.

Instead, Ultra Wide Band (i.e. UWB) [71] is a promising low-power, low-cost and high accurate
technology. It is a recent trend in propagation time measurement and it follows the IEEE
802.15.4a standard. Ultra Wide Band technology works by sending precise timed digital pulses of
short duration on a carrier signal across a very wide spectrum. Thus, UWB emitter and receiver
must be coordinated to send and receive pulses with a good accuracy. Through UWB, a signal
pulse is transmitted at a very high speed from 1 to 27 Mbps and the radio energy is spread over
a very wide frequency band (≥ 500 MhZ). The low power spectral density limits the interference
potential with conventional radio systems while the high bandwidth can allow very high data
throughput for communications devices. These features of UWB allow good location accuracy
of the order of decimeter [72], [61], [73]. In addition, the shortness of the measurement pulse
which can occupy several GHz of spectrum, but only nanosecond scale, makes the UWB a very
advantageous radio technology that is resistant to multipath compared to the aforementioned
technologies. However notice that the high signal propagation speed and the required high
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sampling frequencies can imply a limited range. Note again that UWB is an attractive technology
for ad-hoc networks and is mostly used in body area networks [74]. However, as we rely to RF
RSSI-based indoor localization, UWB technology is not suitable. In fact, UWB signal needs
time synchronization among nodes [75]. Note that, RSSI metric is exploited in UWB in most
case in hybrid context with time measurements techniques. According to [76], the unique very
large bandwidth characteristic of a UWB signal is not exploited to increase the accuracy in the
case of RSSI-based localization algorithm. This latter is very sensitive to the estimation of the
characteristics of the channel. In addition, accurate angle estimation using the large bandwidth
of a UWB signal is very challenging due to scattering from objects in the environment [76].
Thus, with UWB, only the time-based approaches provide precise location estimates.

Another short-distance wireless technology is Bluetooth, a standard for connecting handheld
wireless devices with other similar devices. It is also one of the most promising and cost effective
candidate to provide short range (i.e. 10 m) wireless connectivity for mobile users. The building
block of the bluetooth network is a piconet and a small cluster of devices that share a common
channel. Devices must be synchronized to the same clock and must adopt the same frequency
hopping sequence. A piconet is a small network that is instantly and automatically created
between multiple Bluetooth devices within the same radius and using a star topology of type a
"master" and several "slaves". The main features of the Bluetooth technology are robustness, low
complexity, low power consumption. Using bluetooth to locate any target can be expensive [77],
since Bluetooth operates in short range. The area must be then equipped with a large number
of bluetooth devices. A example of Bluetooth-based indoor localization system is proposed by
Fisher et al. [78]. The proposed localization system can localize any bluetooth devices with an
accuracy of 1 meter and needs the use of additional hardware on the base station. However,
Bluetooth technology requires clock synchronization among Bluetooth devices. This prevent its
use in our localization system.

Last but not least, there is ZigBee a short-range wireless data transmission standard that uses
low power, low throughput. Zigbee has enabled low energy consumption and low cost products
compared to Bluetooth, UWB and Wi-Fi technologies. Adopted in 2004 by the ZigBee
Alliance [79, 62], Zigbee is originally designed to interconnect embedded devices/units like sensor
nodes, control units with energy constraints at low data rate of 250 kbit/sec. Nevertheless, even
if ZigBee can be a good choice in many low-power communication applications like building
automation (e.g. automatic thermostat and light control), it is less popular in the areas of
wireless sensor networks. In fact, the Zigbee radio module is known to have the highest power
consumption due to packet communications. In addition, Zigbee is built on the basis that the
surround devices may have a constant source of energy. Zigbee does not also provide any power-
saving mechanism for routing nodes and consequently the lifetime of battery-powered ZigBee
network (i.e. network of devices) is limited to a few days [80]. Therefore the current Zigbee
specifications are not approved in the field of sensor networks. Instead, the usage of sensor nodes
have become key elements in any system that requires information from outside the surrounded
environment.

To improve the energy consumption new MAC protocols appeared alike power-saving X-MAC
protocol, B-MAC and duty-cycling Contikimac [81] and these are more attractive for the use
in sensor networks. With such proposed MAC protocols, there is no random back-off then
emission of the entire frame but successive sending of preambles when an emitter wakes up
until the receiver responds with an acknowledgment and ready to receive the complete frame.
Other sensor nodes can go back to sleep once they saw that the package was not intended for
them. The send of successive preambles containing the address of the receiver to wake up is
not compatible with the current IEEE 802.15.4 standard. However Contiki operators [80] state
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that this mechanism is easy to incorporate into future versions of the IEEE 802.15.4 standard.
Currently the CC2420 [82] radio layer of sensor nodes and later versions are able to send packets
conform to the specifications of the physical layer of the IEEE 802.15.4 standard. These features
of wireless sensors networks make them more reliable to be used with radio frequency technology.
Indeed, sensor networks are communicating objects that can provide services themselves. Such
services are provided individually or in cooperative way to form a network while offering at the
same time simultaneous services. For example coupled with a localization algorithm, a sensor
network determines the precise positions of network components that are then transmitted to
the home application control. Consequently, the building may be well able to detect the presence
of a user and adapt its behavior depending on the position of the user and the environmental
conditions. The next section presents the families of RSSI-based localization algorithms.

2.2.2 Radio Frequency (RF) families of localization approaches

Localization techniques mainly used two families of approaches: range-based and range-free
algorithms. Range-free algorithms use information coming from network properties such as the
number of hops between wireless nodes in a network, the radio proximity between two wireless
nodes, the radio connectivity, the average number of neighboring nodes. Precisely, range-free RF-
based localization algorithms rely on the simple information that if two nodes can communicate
together, they are likely close or less than a certain distance defined by the communication
range. Combining such proximity data can lead to an acceptable accuracy, especially in dense
environments [28, 31, 83, 84]. In this thesis, we consider the range-based algorithms. However,
we take a look on range-free localization algorithms using few examples in order to argument
the reason that such types of algorithms are not suitable in our case.

2.2.3 Range-free algorithms

In range-free algorithms, node location is typically determined using either the network connec-
tivity or the radio signal strength information coming from immediate neighbors. Range-free
algorithms can be categorized into two types: those exploiting the network connectivity (cf.
Figure 2.11) and those using the signal strength measurements to construct a protocol through
which a location is estimated [85, 86, 87].

The first category of range-free algorithms exploits the network connectivity using for instance,
the number of hops rather than absolute euclidean distances. The number of hops indicates
how close a node is with respect to its neighbors. The blind node location is then estimated
with the use of localization algorithms like trilateration. The most famous proposed localization
algorithm in this category is Ad-hoc Positioning System (i.e. APS) introduced by Niculescu et
al. in [29]. APS is a range-free and distributed algorithm. It builds a coordinate system based
on the distance in number of hops that separates two neighbors. The algorithm is implemented
in Ad-Hoc networks in which a node can only communicate with its immediate neighbors. So,
nodes which are not direct neighbors of a landmark (i.e. node with known position) infer
their position with a respect to a landmark using a forwarding distance propagation method.
Landmarks coordinates are obtained using the global positioning system. An immediate neighbor
of a landmark can estimate its distance to the landmark using signal strength measurements.
Then, any second hop neighbors of landmarks are able to infer their distances (to the landmark)
employing either the distance vector-hop propagation (DV-hop) or the distance vector-distance
(DV-distance) or even the Euclidean propagation method. The rest of the network pursues in
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Figure 2.11: The DV-hop algorithm principle

a controlled flood manner originated at the landmark [29]. DV-hop method [88] propagates the
distance in number of hop. DV-distance propagates the current measured distances estimated
from the received signal strength. Euclidean propagates the geometrically computed Euclidean
distances between nodes.

The DV-hop method works like distance vector exchange and shares distance information in
number of hops between nodes in an ad-hoc network. Each wireless ad-hoc node named landmark
maintains a table: Xi, Yi, hopi and then exchanges it with neighboring nodes. (Xi, Yi) represents
the coordinates of a landmark i. Hopi is the length of the corresponding path or the number of
hop to that landmark i. Hopi is initially set to 0.

During the network setting up, each receiving wireless ad-hoc node in the network adds to
that path length the measured hop as presented in Figure 2.11. The modified message is then
broadcasted by any wireless ad-hoc node only if the current path length is less than the previous
one. In this way, regular wireless ad-hoc nodes as well as landmarks, compute the shortest
paths to other landmarks. Each landmark then computes the distances to other landmarks and
estimates what we name the average hop distance size (AHDS) (cf. Figure 2.11). AHDS is the
ratio between the average distance to the average hop count among all the other landmarks that
this landmark is aware. This AHDS value is broadcasted into the network to represent the single
estimated average size of one hop (in meters) for that landmark i. A wireless ad-hoc node with
unknown position uses received AHDS value from closest neighboring landmarks to estimate
the minimum distances to the landmarks. A minimum distance is a multiplication of a result
from the hop count to a closest neighboring landmark i and then multiplied by AHDS value of
that landmark i: Hops_from_i ∗AHDSvalue. Note that a wireless ad-hoc node receives only
one AHDS update from a closest landmark. AHDS values are distributed in controlled flooding:
once a wireless ad-hoc node gets this value from a closest landmark and forwards it, it drops all
the subsequent ones. A location estimation of that wireless ad-hoc node is completed using the
common trilateration method involving AHDS values and distances at least three landmarks.

The same approach is later used by Savarese et al. [89] with the name of Hop-TERRAIN [88].
Both algorithms use multilateration [89] as a positioning mechanism. But instead of APS
through DV-hop, Hop-TERRAIN uses refinement of the node position estimation to ameliorate
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the obtained position accuracy. The initial position of a node is estimated by Hop-TERRAIN or
DV-hop algorithm. Then a refinement algorithm uses an iterative distributed algorithm in which
the nodes update their positions in a number of steps. Note that, the value of the number of
steps to refine a node position is not specified by the authors. During each step of the refinement
algorithm a node broadcasts its estimated position and receives at the same time the positions
and corresponding ranging (distances) estimates from its neighbors. The new position of the
node is estimated by trilateration.

The refinement of Hop-TERRAIN algorithm converges after a number of iterations, and when the
position update becomes smaller. However note that the refinement algorithm is also sensitive
to ranging errors and does not take into account all inter-node distances. In fact, the refinement
algorithm only ameliorates the estimated position over those reported by initial Hop-TERRAIN
algorithm. Simulation results show that overall refinement algorithm can improve the accuracy
of the estimated positions by Hop-TERRAIN by a factor of 3 to 5.

DV-distance propagation method on the other hand uses the same methodology as DV-hop with
the difference that the cumulative traveling distance is used. The distance between neighboring
nodes is measured using radio signal strength. Then, the estimated distance is propagated in
meters rather than in hops. However, all distances hops won’t have the same size like in DV-hop.
DV-distance propagation method is also sensitive to measurement errors. Euclidean propagation
method propagates the true euclidean distance to the landmark. The condition of such method
is that a wireless ad-hoc node in order to be localized needs at least two neighbors wireless ad-hoc
nodes having connectivity information from a landmark i. In addition, these two neighbors need
to be neighbors each other or their distances should be known. The euclidean distance between
the wireless ad-hoc node to localize and a landmark i is computed. This euclidean distance
corresponds to the second diagonal of a quadrilateral formed among the node to localize, its two
common neighbors and the landmark i.

“DV-based” algorithm and “Euclidean” are evaluated with NS-2 simulator. A random topology of
100 nodes is generated with an average node degree of 7.6 and diameter of 10. Nodes are placed
in a random manner while the communication range, the connectivity as well as the density
are the same throughout the network. Simulation results demonstrate a localization error of
less than one hop from the true location when using APS with the three proposed propagation
methods. In addition, with “DV-based” methods, almost all nodes are estimated, whereas an
accumulation of “Euclidean” error produces some unreachable nodes. Moreover, simulations
results using hop-Terrain algorithm [89] demonstrate that landmarks should be placed carefully
at the edges in order to obtain a precise positioning algorithm. In fact, their results show that,
largest errors occur along the edges of the networks.

Many studies have follow the DV-Hop method [90, 91, 92]. Recently, Zheng et al. [92] have
proposed a range free localization algorithm in Wireless Sensor Network (i.e. WSN). Such range
free algorithm uses a Neural Network Ensembles named LNNE for Localization with Neural
Network Ensembles to improve the localization accuracy in WSN. The LNNE -based localiza-
tion algorithm solely uses the diversity of the neural network components to build the sensor
position prediction model based on the hop-count information (or connectivity information) of
the wireless sensor network. The training Neural Network Ensembles gathers the hop-count and
location information of all the landmarks in the network. The base station node broadcasts the
information of the trained Neural Network Ensembles to all the sensor nodes in the network.
That is the hop-count length of the shortest path between sensor node k and landmark i. Each
regular node communicates with a landmark node through a multihop path. A regular node
then estimates its location with the received hop-count information and the trained Neural Net-
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work Ensembles as input to the Neural Network Ensembles. The performance of localization
with LNNE -based localization is evaluated in simulation. LNNE -based localization is also com-
pared with DV-Hop algorithm [29], centroid [92] and a single neural network-based localization
algorithm.

During simulation these following factors are compared: the effect of the number of landmarks,
the network density and coverage holes. Simulation results demonstrated a better performance
with LNNE -based localization with 7 components Neural Network Ensembles in an area of size
50 m by 50 m. LNNE -based localization with 7 components Neural Network Ensembles achieved
a performance of 3 m with 150 sensor nodes in total and 1.7 m with 400 sensor nodes. Instead,
an average localization error ranging from 3.7 m (i.e. 150 sensor nodes) to 3.2 m (i.e. 400 sensor
nodes) is observed with DV-hop [29]. Furthermore, a refinement of LNNE -based localization
is realized to improve the performance of localization accuracy. The refinement part uses an
enhanced mass-spring optimization algorithm (i.e. EMSO). EMSO algorithm uses the location
information of both: the neighboring beacons and those of unknown nodes.

In EMSO algorithm, each sensor node is considered as a mass and all masses are connected each
other with linear and elastic springs. A node adjusts its position using spring force computed
from its neighbors. A node location is adjusted only if the new location reduces the local energy.
The force on the sensor node k is pulled by a neighboring sensor node, which results in the total
force on node k. The localization accuracy is improved by minimizing the total energy of the
spring system. Minimizing the total energy of the spring system implicates to minimize the local
energy of each unknown node. The algorithm converges if the maximum number of iterations T
is reached. This refinement algorithm can be more advantageous than the one proposed in [89] as
the spring approach can compensate measurement errors without propagating them throughout
the grid [93, 94]. The refinement algorithm improves the localization error at about 24%. The
algorithm achieves an average localization error ranging from 2.5 m to 1.2 m for respectively
a network density of 150 and 400 sensor nodes and a landmark ratio of 0.2 in an area of size
50 m by 50 m. However, the Localization with Neural Network Ensembles reports an average
localization error from 3 m to 1.7 m using the same simulation parameters.

The second category of range free algorithm exploits the signal strength measurements as a
localization protocol. He et al. [85] present an Approximated Point-In-Triangulation based
localization algorithm named APIT. APIT is an area-based range-free localization algorithm
that compares the radio signal strength measurements. APIT localization approach first isolates
the environment into triangular regions between landmarks nodes. A node may reside inside or
outside an area if its presence is detected inside or outside of these triangular regions as shown
in Figure 2.12.

As presented in Figure 2.12, if none of the neighbors of the blind mobile node are more closer to
the three landmarks, the blind mobile node supposes to be in the interior of the triangle formed by
the corresponding landmarks. This means that the blind mobile node has respectively measured
from all the three landmarks, the strongest RSSI values compared to its neighbors. However, if
one of the neighbor assumes being farther from landmarks than the blind mobile node, in this
case, the mobile node is believed to be outside the triangle formed by the three landmarks. On
the other words, the relative position of a node is based on the triangles. Then, the intersection
(i.e. center of gravity) of all the triangles which may contain the node is performed by the
node itself to estimate the diameter of the area in which it resides. Via extensive simulation,
APIT is claimed to perform best when an irregular radio pattern and a random node placement
are considered. Moreover APIT can make an incorrect decision (14% in the worst case) if the
blind mobile node is near the edge of a triangle formed by a set of landmarks, and that some

35



(a) Step 1 : collection of RSSI values from landmarks

(b) Step 2 : process that determines whether a blind node is inside or outside a triangle

(c) Step 3 : position estimation

Figure 2.12: The area-based algorithm principle: APIT for Approximated Point-In-Triangulation
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of its neighbors are outside that triangle farther from all its points. According to the authors,
a blind mobile node can assume to be outside the triangle formed by the landmarks due to
the effect of edge mentioned above. This is not the case in [85] as the radio model supposes
an upper and lower bound on signal propagation. All nodes beyond the upper bound are out
of the communication range while those within the lower bound are guaranteed to be within
communication range.

APIT algorithm is evaluated in simulation with routing algorithms. The authors analyze how
localization error can affect a variety of location-dependent applications i.e. target estimation,
routing and object tracking. Tested routing algorithms are those whose routing decisions are
based on knowledge of the geographic location. Simulation results of APIT algorithm demon-
strate the delivery ratio of routing algorithm to increase with a small localization error and when
changing the node density. With an average localization errors of 0.2 and 0.4 times the node
radio range, the delivery ratios of the routing algorithms are very close to have no error. The
authors have additionally demonstrated that some factors when increasing alone or together can
decrease the localization error. That is the number of anchor nodes should be no more than 12
as well as the node density should remains under 6. However, the departure test of the APIT
algorithm may not always be verified in an obstructed indoor environment. Particularly, a node
to determine whether a neighboring node is closer to a given anchor uses the assumption that
the received signal strength monotonically decreases in an environment. Such assumption may
not hold in realistic indoor environments because of strong disturbances.

Instead, ROCRSSI [95, 86] originally proposed in [95] and extended in [86] is a famous range free
based localization algorithm. It assumes a monotonic decreasing function of the distance, for
the received signal strength loss measured between and emitter and a receiver. With ROCRSSI
algorithm, a blind node localizes itself by comparing the received signal strength loss readings
from several landmarks to those measured by each landmark from its neighborhood landmarks.

Let us denote byRSSI(A,BN ) a signal loss measured by a blind node BN from signal emitted by
a landmark A. If RSSI(A,B) ≥ RSSI(A,BN ), one concludes the blind node BN lies outside
the ring with center A and radius d(A,B); inversely, if RSSI(A,BN ) ≥ RSSI(A,C), then
BN lies inside the ring with center A and radius (AC). Thus, RSSI(C,D) ≥ RSSI(C,A) ≥
RSSI(A,BN ), indicates that BN lies in the shaded ring with center C. To calculate any blind
node position, the ROCRSSI algorithm generates a set of rings, each of them containing the
blind sensor node. The algorithm then computes the intersection of the rings. The center of
gravity of the intersection is the estimated position of the blind sensor node. The ROCRSSI
algorithm pseudo-code is presented in Figure 2.13.

This distributed ROCRSSI algorithm is correctly tested with three Micaz sensor nodes in an
outdoor testbed of size 40 m by 30 m. Testbed results report an average error of 5.18 m with 3
landmarks and indicate that anchors must be carefully placed for a better performance of RO-
CRSSI algorithm. ROCRSSI is also evaluated in simulation using various deployment strategies.
Simulation results with a deployment of landmarks inside a terrain have better performance than
deployment of landmarks at the edges of a terrain. In addition, this deployment should be uni-
form as the coverage of rings is reduced when landmarks are placed at the edges. In fact, a ring
is cut off by the edges and at most only half of the ring is usable for the localization algorithm.
Another conclusion from ROCRSSI simulation is a more number of landmarks i.e. more than
81 gives a better localization accuracy. A modified version of the ROCRSSI algorithm named
ROCRSSI ++ is proposed by Frattini et al. [96]. ROCRSSI ++ takes into account the RSSI
values of other unknown nodes, in addition to the one of the landmarks. Another improvement
is derived from the ROCRSSI ++ algorithm: the power-Based ROCRSSI (PB-ROCRSSI) algo-
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Figure 2.13: The pseudo code of the ROCRSSI algorithm

rithm [87]. This algorithm uses data fusion. It combines multiple RSSI readings measured by
varying the transmission power while keeping the same localization property of its predecessors.
For instance, at 0 dBm, RSSI value achieves its maximum while at −15 dBm it achieves its
minimum value. Based on ROCRSSI ++, PB-ROCRSSI algorithm exploits the increasing trend
of the RSSI regarding the transmission power variation. The authors evaluate PB-ROCRSSI
algorithm in a realistic testbed using sensor networks. ROCRSSI ++ is claimed to achieve
a lower accuracy compared to ROCRSSI algorithm. ROCRSSI ++ exhibits a lower variance
than PB-ROCRSSI algorithm. But, ROCRSSI ++ reports a localization error of more than
25% compared to ROCRSSI which has obtained a localization error of more than 38%. Instead
PB-ROCRSSI shows a lower localization error than ROCRSSI ++. PB-ROCRSSI algorithm
highlights a localization error of 12% which corresponds to a precision of 125 cm in a 31 squared
meters environment with six landmarks.

Many published papers related to range free algorithms have revealed that most of the existing
range free algorithms are evaluated in simulation. Even in the presence of a good radio channel,
the acquired localization accuracies are coarse for most simulation-based range free algorithms.
An inaccurate/roughly localization accuracy is sufficient for both outdoor applications or indoor
applications that only rely on the fact that a blind node is inside or outside a closed environment
like a room. However, when it comes to find the position of a person/object inside a room/-
conference room or to track an elder person under medical supervision, some of the proposed
algorithms can be immediately ruled out for indoor localization scenario. Accuracy requirements
have encouraged the study of range-based localization algorithms. Such type of algorithms de-
pend on the availability of absolute point-to-point distance estimates or angle information. Even
though a more accurate position can be acquired with the use of ranging measurements between
nodes, the accumulated error should be small, as it directly affects the localization algorithm.
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2.2.4 Range-based algorithms

Ranging algorithms can be divided in two categories : those based on radio propagation model
and those using empirical RF map based algorithms. Algorithms based on RF mapping uses the
same techniques as fingerprinting described above. These algorithms match a specific location
to a set of measurements (like RSSI readings) parameters in a given environment. Algorithms
based on RF mapping include matching and classifiers approaches. Such algorithms consist of
performing a measurement of RSSI values at various predefined locations of the area of interest.
Such offline training phase permits to establish a prior radio map of RSSI readings. In online
phase, when localizing an unknown target node, a matching is made between current collected
RSSI values and the closest existing fingerprint using probabilistic approach or a deterministic
approach (i.e. distance metric) [19, 17].

Deterministic techniques subdivide the physical environment into areas in which the positions are
chosen to measure corresponding RSSI values in order to build a training dataset (i.e. in offline
phase). A blind node location is estimated during the online phase using techniques that select
the nearest signal strengths comparable to current RSSI readings. Thus, such techniques link
RSSI readings to an area in the training set. An example of a deterministic technique is location-
based K-Nearest Neighbor classifier [19, 18]. Probabilistic techniques however make usage of a
probability distribution function to estimate the blind node location. Example of probability
distribution function is the area with highest probability density [97]. In [97], the authors use
particle filters methods in indoor wireless environment. Precisely, a recursive Bayesian filter is
used to estimate the current location on a posterior distribution of the blind node location. The
arbitrary a-priori distribution that computes a posterior distribution is based on the Monte-
Carlo Sampling method. Even they are claimed to be more precise [97], such methods are
also computationally intensive. These type of methods need to have a prior knowledge about
the position of a node. Furthermore, if such techniques yield a relatively good accuracy, the
calibration and the computation demanding, make them less popular for the use in dynamic
indoor environment. Another drawback of these algorithms is that their accuracy depends on
the accuracy of measurements. The ranging algorithms based on radio propagation model [98,
68, 99, 100] on the other hand do not involve a pre-deployment strategy like maintaining a
signature database. Instead, these types of algorithms depend on the underlying channel and
thus do not require detailed empirical measurements to generate a signal strength map and
consequently have a low set up cost.

However as indoor environment is mostly subject to random variations due to obstacles, some
research works use selective mode on RSSI data in order to obtain a better positioning precision.
In [68], an accurate and self-adaptive RSSI-based indoor and outdoor localization algorithm is
claimed. Such algorithm is building upon the log-normal shadowing model [24]. The proposed
algorithm is named log-normal shadowing model with dynamic variance (LNSM-DV ) and con-
trols the dynamic variance. LNSM-DV hypothesis is based on the authors experimental results
which state that the variation of the signal strength over distance is regularly described by the
variance. In other words, one hundred groups of RSSI values are collected in each point over
distances from 0 to 6.1 meters. Only twenty groups of data are selected to draw the curve of
the signal strength in function of the distance for experimental results. The analysis of such
number of experimental data has demonstrated the variance of signal strength to change regu-
larly with distance. A Gaussian distribution is assumed. LNSM-DV expresses the log-normal
shadowing model with a dynamic adjustment of the variance by proposing a polynomial func-
tion of 3rd degree (cf. [68]) between the variance of the RSSI and the distance. Linear Least
Square regression analysis is used to estimate the parameters of the LNSM-DV model: a curve
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Figure 2.14: Trilateration principle

of the variance (of collected RSSI) in function of the distance is fitted to a polynomial function
using an IBM predictive statistical analysis software named SPSS (i.e. Statistical Product and
Service Solutions [101]). However, making a data selection in somehow controlled manner do
not guarantee the repeatable property of the authors experience, neither the self adaptability of
the proposed method in any indoor environment.

Range-based localization algorithms require the knowledge of ranging information between
nodes. As mentioned the most famous ranging techniques include distance measurement, angle
measurement. Distance can be evaluated using RSSI or time-based measurement techniques.
RSSI evaluates the attenuation along the path [102]. Time-based techniques instead measure
the propagation time of electromagnetic wave between an emitter and a receiver. Recall that
atte-nuation is the loss of signal power in decibels (i.e. dB); It is a function of the distance
between a transmitter and a receiver unit. The greater is the distance, the greater is the attenu-
ation value and the weaker is the received radio signal. A full survey of measurement techniques
as well as a comparison between various strategies accuracy are available in [16], [20]. Another
survey and taxonomy is provided by Mao et al. [1]. Range-based localization algorithms require
the knowledge of ranging information between nodes such as the measurement of distance or
the angle.

Inter-nodes distance measurements techniques Localization based ranging uses distance
information among wireless nodes to estimate the corresponding position. Distances at least
three reference nodes are needed in most range-based localization algorithms such as trilate-
ration. Recall that reference nodes usually called landmarks or anchor nodes are nodes with
known positions. Assuming a Gaussian distribution and considering Free Space Path Loss pre-
diction, the received power of the radio signal decreases as a function of the separation distance
between a radio emitter and receiver. Knowing the distance separating a blind node and a land-
mark leads to a circle centered at the landmark and with radius the corresponding separation
distance. Estimating the distance between the blind node and two landmarks convey to two
circles. Distances from three landmarks lead to three circles. The intersection of these three cir-
cles provides the unknown position of the blind node estimated with trilateration. Trilateration
is a geometric technique that utilizes the geometric property of reference nodes or landmarks
locations to estimate the position of the blind node. At least three landmarks are required to
uniquely position a blind node. An example of trilateration concept is presented in Figure 2.14.

From a theoretical point of view, trilateration leads to solve equations of circles. Figure 2.14
considers three reference nodes/landmarks named LM1, LM2, LM3 and one blind node named
BN . We Assume the separation distance between the blind node BN and each reference node
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Figure 2.15: Time of Arrival measurement principle

is determined through RSSI or time-based measurements. Let us denote by d1, d2 and d3
respectively the separation distance between the blind node and LM1, LM2 and LM3. d1
represents the radius of a circle centered at the reference node LM1 and covering the position of
the blind node. Having an information from a second distance between the blind node and let’s
say LM2 conducts to a second circle in which the blind node is belonged. Such second circle is
centered at LM2 with radius d2. The intersection of these two circles results in two distinct points
in 2D positioning while a circle is obtained in the case of a 3D positioning. In a 3D positioning,
the knowledge of one reference point leads to a sphere centered at the corresponding reference
point. Theoretically, a presence of a third circle that associates the position of the blind node
leads either to a unique intersecting point (i.e. the position of the blind node in a 2D positioning)
or to two intersecting points in a 3D positioning. Thus, theoretically, a fourth reference node is
required to position a blind mobile node in a 3D localization system.

The RSSI [102] is measured through the radio frequency communication interface from a signal
emitted by a neighboring node. The RSSI or signal strength measurement uses a propagation
model to describe the path loss attenuation with distance. Time-based techniques can be eva-
luated on a receiver node with the use of the one way time of flight [103], [104] of the signal
emitted by another node. Such measurement is usually known as Time of Arrival (i.e. ToA) of
the signal. Figure 2.15 shows an example of ToA measurement.

Time measurement techniques include several variants along with the Time Difference of Arrival
(i.e. TDoA) and the Roundtrip Time Of Flight (RTOF). TDoA [105, 106] uses the same mea-
surement technique as ToA. It is based on a reference ToA and then measures the difference of
the time during which the signal travels a point (e.g. A) to another point (e.g. B) as shown in
Figure 2.16. For instance, with TDoA-based localization, a blind node may send a signal that
is received by several wireless nodes. The blind node can use a reference ToA based on the time
by which the emitted signal is received by one receiver node (e.g. landmark). Then, the blind
node can compute its position based on the time difference of the received signal among different
receivers. For TDoA-based localization, a synchronization with the blind node is not required.
However, all landmarks should use the same frequency channel and communicate with the same
blind node [106, 107, 108].

Instead, RTOF [20], [109] estimates a full return propagation time, following the response of a
receiver, for instance, at a radar signal’s query. Performing time measurement is not obvious
in distributed network context, as a clock synchronization between each radio emitter-receiver
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Figure 2.16: Two Time Difference of Arrival measurement principle [105]

is required when using the ToA technique. Moreover localization-based ToA offers high levels
of accuracy while at the same time RTOF requires relatively fast processing capabilities to
resolve timing differences for fine-grained measurements. Particularly, over short distances time
measurement requires a more faster processing for timing differences resolution which can make
them a bad candidate for wireless ad-hoc sensing network [89]. No synchronization is required
with RTOF since time measurements are made on a two way return from an emitter, the same
clock is used twice. However, according to works in [20], it is currently difficult to know the
exact delay/treatment time required by the receiver to send the signal, which is an additional
source of errors. Instead, for very large or medium systems, the delay can be ignored if it is
small compared to the transmission time which is not the case for small systems. Hence RTOF
metric requires a real-time and an accurate system.

Angle measurement techniques Angle measurement techniques measure the Angle of
Arrival (AoA) of a received signal at different nodes. From a geometrical point of view, esti-
mating the position of a point inside a triangle using angle of arrival technique requires to know
the position of the vertices of the triangle as well as the angles by which the interior point sees
these vertices. This so-called triangulation [110] is presented in Figure 2.17.

AoA scheme [111, 110, 112, 113, 114] uses an antenna array and a directive antenna to estimate
the direction of arrival of a signal. Location-based AoA as presented in Figure 2.17 is somewhat
similar to the principle of trilateration used by the GPS system. The main difference between
both techniques relies on the fact that with triangulation, a blind node (defined by the interior
point in the principle of triangulation) knows the angles between the sides of the triangle instead
of distances to the vertices.

In Figures 2.17(a) and (b), knowing the distances BNRN 2, BNRN 1, BNRN 3 and the positions
of the three reference nodes RN 1, RN 2, RN 3, trilateration can be used by the blind node BN
to infer its position.

Instead, if the blind node estimates all angles it forms with the three reference nodes:
RN 1BNRN 2, RN 2BNRN 3, RN 1BNRN 3 and having information of the coordinates of the
reference nodes, position can be estimated using triangulation. Triangulation [110] uses trigono-
metrical approach to calculate the position of the blind mobile node determined by the reference
points (RN 2, RN 1, RN 3) and known angles. Remark that distance can be acquired from
several AoAs. In general, two dimensional triangulation requires two angle measurements and
one length measurement like the distance between the reference points. In three dimensions,
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(a) Angle of arrival measurement principle (b) Example of position calculation (D(X1, Y 1)) with
angles measurement from reference points [110]

Figure 2.17: Example of position calculation with angles measurement

one length, one azimuth, and two angle measurements are needed to estimate a precise loca-
tion. The azimuth angle is defined as the horizontal angle of the observer’s bearing respective
to a reference dire-ction: usually the northern point of the horizon directly beneath a concerned
object.

Note that, AoA and time-based measurements lead to a more accurate ranging estimation than
those based on RSSI measurements. However, the accuracy is achieved at the expense of higher
equipment cost. Angles measurement require the use of directed or phased antenna array. This
approach relies on the use of several directional antennas and therefore given the differences in
arrival times and the geometry of the receiving array, it is then possible to compute the angle
from which the signal is emitted. Besides the need to acquire an extra hardware, maintaining
the antenna array can be prohibitive in size and hardware costly. Moreover, the required clock
synchronization of ToA technique counts as an extra computation step in the localization process,
and can degrade the localization accuracy [115]. RSSI is therefore the only simple available and
feasible measurement on embedded devices; but it has a low accuracy compared to ToA and
AoA-based techniques [116].

Intuitively, a precision of location estimation can be enhanced by combining two or several
measurements. Classes of hybrid schemes have been proposed to achieve a more accurate location
estimation associating either ToA and AoA [117] or AoA and RSSI [118] or even TDoA and
RSSI [3]. Works from Chen et al. [117] integrate all the available heterogeneous measurements
by combining both: ToA estimations at seven base stations and AoA information at the serving
base station to provide location estimation of the mobile station. In addition, non line-of-sight
(i.e. NLOS) errors are eliminated using all possible intersecting circles obtained from ToA and
AoA measurements in order to locate the blind mobile node. Such method does not involve
any a priori information about the NLOS error. Jiang et al. [118] have introduce a hybrid
localization algorithm that fuses RSSI differences with AoA. The proposed hybrid localization
algorithm achieves a localization errors of about 124 centimeters using 81 tested grid points in a
10 m by 10 m indoor testbed with two landmark nodes. They estimate AoA by comparing the
RSSI values of landmarks signals received from two perpendicular-oriented directional antennas
installed at the same place. With the proposed hybrid positioning algorithm named ALRD
(i.e. AoA localization with RSSI differences of directional antennas), a sensor node can localize
itself within 0.1 second by observing the RSSI values from signals emitted by two landmarks.
However, this method is not immune to measurement errors because the RSSI is susceptible to
interference from the environment and from the external factors (i.e. misplaced objects relative
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to the radio communication path, moving people). Consequently, the estimated location may
deviate from the real location.

In [3], a hybrid TDoA and RSSI extended kalman filter-based localization algorithm without a
motion model is proposed and evaluated in a warehouse of size 40 m by 60 m during the working
time. The authors Experimental approach use eight landmarks placed at a height of 2 m in order
to track a man. A man holds an IEEE 802.15.4 wireless node on his hand. The proposed hybrid
localization algorithm achieves an accuracy of up to 3 m in area of the warehouse with only one
or two landmarks with line of sight. This accuracy is below 1 m in other parts of the warehouse.
TDoA measurements is used as a primary source of location information. A blind node broadcast
a signal that is used by the landmarks to estimates the time differences. Then RSSI-based radio
propagation measurements are used to correct the estimation. The algorithm only considers
"good" RSSI values coming from a minimum distance: the smallest distance between the blind
node and a landmark defined by TDoA measurements. More precisely, measured RSSI values
are considered if they are superior to the one computed based on TDoA measurements. Then
position is estimated using multilateration and the measured time differences.

2.3 Summary and discussion

The unpredictable nature of wireless medium is challenging for radio communication, especially
in indoor. Consequently, over these ten years several research efforts are made on indoor wireless
localization. Besides, advanced development in numerous communicating low-power and low-
cost devices through the Internet of Things (IoT) coupled with the spatial localization of elements
belonging to a wireless sensor network play an important role in identifying the origin of the data
measured by a sensor node. Obviously these data lose their meaning if no location information
is associated. In addition, several applications using localization techniques are envisioned in
various domains related to the Internet of Things such as personal health monitoring, objects and
persons tracking, intelligent homes and cities or environment study and preservation. However,
before employing localization information in the Internet of Things applications, the following
question should be resolved: how to obtain a precise distance information from unsteady and
obstructed indoor environment?

For the sake of simplicity and the ease to use measurement technique, the RSSI is preferred
to localize a wireless sensor node instead of measurements based on time of arrival or on the
direction of incoming signal (AoA). Time-based measurements require a clock synchronization
among all emitters-receivers as well as identifying the LOS in multipath environment. One
TDoA measurement includes two times measurements from two different signals of two different
landmarks and clock synchronization among landmarks. This makes TDoA difficult when it
comes to identifying the outlying landmark in case of multipath [3]. Instead, angle of arrival
measurements require the use of an antenna array, which can be prohibitive in size and thus
power consuming.

We have presented several localization algorithms based on these two categories: range-
based [19],
[116], [17], [98], [102], [68], [99], [100], [68], [5], [118] and range free algorithms [29, 89, 28, 88, 85,
31, 83, 90, 86, 91, 84, 92]. Most of these localization algorithms are distributed based on how the
position is estimated: that is each wireless sensor node computes its position itself based upon
received data from its neighboring sensor nodes. A Localization algorithm is also considered as
distributed if a wireless sensor node can compute its position and those of its neighbors. Such
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algorithm can be additionally fully distributed if sensor nodes are capable of communicating
with direct neighbors as well as with intermediate neighbors through connectivity information.
Note that wireless sensor nodes are randomly deployed across the environment and thus, connec-
tivity computed either via number of hops or proximity, informs how close a neighboring node
is. However, the distance measurements should not involve a lot of communication messages
among nodes in order to avoid battery consumption while saving the energy. Consequently, a
localization algorithm should allow interference by tolerating/authorizing messages losses. It
should also permit refinement using information from neighbors to improve the node positioning
accuracy [89, 92]. Such classes of algorithms are more fault tolerant and self organizing com-
pared to centralized one. In centralized algorithm, the location of the entire sensor node in the
network is performed by a single node and conducts to a single point of failure.

An excerpt from a literature review shows that several contributions studied and preferred
range-free techniques [29, 88, 85, 119, 86, 28, 31, 83, 90, 86, 91, 84, 92]. However, such loca-
lization mechanisms do not provide sufficient and fined-grained (i.e. centimeter level) precision
to localize a mobile node in a room context (i.e. office, classroom and so on). RSSI based
ranging algorithms instead require inter-nodes distances estimation. Such models can be more
accurate but are most affected by ranging errors depending on the environment characteristics.
Range-based localization algorithms use two types of mechanisms. Those based on empirical
measurements and those using a radio propagation model in order to map measured RSSI
values to corresponding distances. However, the use of radio propagation models are preferable
to empirical fingerprinting method. The latter requires extensive calibration and maintaining
a signature database (i.e. RSSI to distance). Such fingerprinting models also suffer from the
database update recurrence each time the environment of interest changes: presence of a human
being, changing the location of an object and so on. Radio propagation models are of two
types: empirical and theoretical. Empirical radio propagation model are preferred as they
are much simpler to estimate. Such models use statistical properties to describe the radio
propagation over parameters based on measurement data. Instead, theoretical or deterministic
models are more accurate, but are site specific and require geometry information about the
environment. Theoretical models employ analytical model (e.g. Maxwell’s equations) to estimate
the propagation of radio wave. Theoretical models are more accurate then empirical one [49,
24, 47] but require more computation. Several radio propagation mechanisms are presented in
Figure 2.18 from free space; log-normal shadowing; partition loss and wall attenuation factors.

However, among the presented propagation models, the log-normal shadowing seems a good
compromise between complexity and simplicity as well as feasibility. This model captures more
environment characteristics via few parameters and is not much complicated to calculate com-
pared to free space model. In addition, the number of parameters to estimate with log-normal
shadowing model is less compared to modified models for wall or partition losses propagation.
The log-normal shadowing can be applied to indoor and outdoor environment. Also the model
parameters can be easily implemented on wireless sensor nodes. Therefore, the log-normal shad-
owing model is more pertinent for the use in RSSI-based localization algorithm in order to be
applied in confined area like room, office environment.

Several RSSI-based indoor wireless localization methods applied on wireless sensor nodes have
been used in many proposed localization algorithms (cf. Table A.1). However, none [116, 120,
121, 122, 5, 6] or few of them [98, 102, 123, 99, 7] allow the under two meters or centimeter-
level of accuracy within buildings. Conversely, such type of sub-range is necessary in smart home
context for example. Existing range-based localization approaches are classified in two categories:
one-hop and multihop localization. One-hop ranging localization techniques use direct ranging
measurements from neighboring nodes to estimate the position. One-hop localization technique
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Figure 2.18: Summary of presented propagation models: from free space - shadowing - fading
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can be a reliable localization technique if direct ranging information are accurately estimated.
In fact, additional sources of errors can be mitigated in one hop localization mechanism as
ranging measurements are not propagated through the network but directly exploited for position
estimation.

Furthermore, in a wireless sensor network architecture a blind node to localize can be within
a number of hop to the landmarks, with Number_hop ≥ 1. Consequently multihop ranging
techniques work in cooperative way either by exploiting the number of hops or by propagating
distances through the network or even using information from the unknown nodes to enhance
the location estimate. This type of localization is also known as distributed [124, 93, 7], coo-
perative [125], GPS-free [28] or GPS-free-free [31]. With this type of algorithm, in most cases,
multiples sensor nodes positions are estimated at the same time together and connectivity or
ranging information from unknown sensor nodes can participate to the localization mechanism
estimate. Moreover, from our opinion, another way of considering multihop localization me-
chanism is formalized in the following: regular nodes that are of one-hop neighbors from the
landmarks can collect the positions information of the landmarks as well as the connectivity
information to estimate their positions through a one-hop localization technique. Then, regular
nodes which are at least of two-hops neighbors of the landmarks can estimate their positions in
distributed manner based on the position of the one-hop neighbors of the landmarks (additional
newly available information) in addition to the landmarks positions.

Indeed one-hop neighboring nodes can broadcast their newly estimated positions and those of
their neighboring landmarks to their neighboring regular nodes in downlink (i.e. nodes that
are of two-hops from the landmark nodes). These two-hops neighbors estimate their positions
with the same one-hop localization algorithm and the new information available from their one-
hop neighbors (uplink to the landmarks). This mechanism continues until all the sensor nodes
locations are computed. These two-hops neighbors from the landmarks can then broadcast
their newly estimated positions to their neighbors (3-hop neighbors from the landmarks) and
those from one-hop neighbors of the landmarks. The advantage with this method is that the
same one-hop localization algorithm is used to estimate the position of the nodes lying in more
than one hop from the landmarks. In addition, local broadcast is used for communication with
immediate neighbors. The broadcasted messages are then limited to one-hop neighbors within
the communication area in the wireless sensor network with low range and low transmission
power. Thus, the accuracy of the position estimate depends on the accuracy of the localization
mechanism. Note that one-hop localization technique can be a reliable localization technique if
direct ranging information are accurately estimated. In this case, additional sources of errors
can be mitigated as ranging informations are not propagated through the network but directly
exploited for position estimation.

Afterwards, when the network converges, that is all nodes have estimated their 2D positioning
coordinates, such information can be then exchanged among nodes using controlled flooding:
each wireless sensor node in the network sends its estimated 2D coordinates to its neighbor
nodes that have not yet received such estimated positions to avoid sending too many messages
unnecessarily. Therefore every node will have a map of the 2D positions of the entire nodes in the
network. This network 2D positioning map can then be updated at each new insertion/arrival or
departure of wireless sensor nodes. Besides, if the position of the one-hop localization algorithms
are affected by ranging errors, such errors will also affect the location estimate of the other hop
neighbors which are relative to the one-hop neighbors positions.

Recently, in [7], a collaborative/cooperative spring/force based localization algorithm is pro-
posed. The spring algorithm is previously introduced in [94] with the log-normal shadowing
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propagation model. The spring algorithm can be viewed as a network of nodes connected by
springs (using the concept of graph in practice) as presented in Figure B.1 in appendix B. How-
ever, an accuracy of under 2 m is difficult to achieve in indoor localization for instance in an
indoor environment of about 11 m by 9 m [7, 94]. Such achieved localization accuracy can
not make a distinction among several users locations inside a room like a conference room for
example. In addition, from the authors results in simulation [94] and in experimentation [7],
increasing the number of sensor nodes with the spring localization mechanism increases the net-
work connectivity i.e. the number of neighbors of a sensor node and degrades the localization
accuracy [126].

Therefore, given the localization results of recent research in indoor environment, obtaining
a precise fine grained and easy-to-use RSSI-based localization algorithm in indoor remain a
challenge and an open problem. Indoor environment is a difficult context to implement an
accurate localization algorithm as the radio signal has to deal with frequent changes. In indoor
wireless mobile communication system, electro-magnetic wave propagation is not only altered
by reflection, scattering, diffraction and signal fading but those factors can lead to a dynamic
variation of signal strength over time and distance due to locals environment impediments. Such
effects can also be induced by external factors like the presence of an obstacle in the middle of the
communication link disturbing at the same time the direct path between an emitter and a radio
receiver. Such external factors may cause shadowing and signal fading. Thus an understanding
of the indoor propagation effects is needful to design a suitable communication system and also
a precise and accurate localization algorithm. Poor ranging measurements or a bad estimate of
the inter-sensor nodes separation distance will have an impact on the estimated position.

Moreover, note that most of the proposed models are tested in simulation with NS-2 network
simulator, OMNet, WSim/WSNet. However in most cases the accuracy is dependent to the
simulation environment that is the used simulation parameters. In reality, obstacles are not
considered in simulation environment. Simulation can be used to test the performance of the
implemented protocol as well as the scalability, however such protocols should be evaluated in
realistic environment for real accuracy validation. In [127] which follows the works in [128] the
credibility and the quality of wireless network simulation is discussed. The authors come up
with the conclusion that an arising question about the simulation critique is the inaccurate ex-
planation of the used simulation setup. Furthermore with the existence of large scale wireless
sensor nodes experimental platforms (e.g. 1000 nodes in total on four different platforms), pro-
tocols are easily tested for scalability reasons as well as for evaluation in realistic environment.
Even though the energy consumption is not targeted, any algorithm to be used in sensor net-
work should be designed by considering a cost-effective and accurate system with less energy
consumption. These elements are addressed in Chapter 4 in our communication protocol. In
addition, depending on the type of application (e.g. localize an elderly in a home, babies in
a nursery), a fine grained accuracy can be demanded which prevent us from using range-free
algorithms.

In the following, we first perform several indoor measurements campaigns to study the behavior
of the RSSI under realistic indoor environments (uncontrolled propagation behavior). Such
measurements campaigns realized in dynamic real life indoor environments guide our research
for the development of accurate indoor localization algorithms applicable to sensor networks.
Our goal is not to have a controlled environment or to select the measurement samples but
we aim to implement indoor localization algorithms with the only use of the RSSI metric by
analyzing and targeting the physical relationship between the RSSI and distance. Thorough
experiments presented in Chapter 3 help to better characterize the indoor wireless channel as
well as to identify discrepancies/deviations that affect the performance of the realistic indoor
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wireless channel. We also validate in Chapter 3 the usage of the log-normal shadowing model
in indoor context with presence of furniture, people moving inside the environment, wireless
access points, wood and glasses. Using an alternate log-normal shadowing model, we introduce
in Chapter 4 three one-hop RSSI-based localization algorithms to enhance indoor positioning
accuracy using IEEE 802.15.4 radio chips in 2.4 GhZ band. We finally propose in Chapter 5
a fully distributed localization algorithm in wireless sensor networks. Proposed RSSI-based
indoor positioning algorithms are adaptable to any indoor environment without either no need
to prior expensive calibration as performed in the fingerprinting like localization algorithm or no
maintenance of a signature database. We additionally show in the same Chapters 4 and 5 that
our proposed RSSI-based one-hop and distributed localization algorithms can achieve meter and
even centimeter-level of accuracy without no extra hardware.
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Chapter 3

Indoor measurement campaign: results
on experimental measurements of the

Received Signal Strength Indicator
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3.1 Introduction

As studied in Chapter 2, preferred empirical propagation models are based on approximations in
order to be general. Recall that empirical propagation models are tuned with measured data and
use statistical properties from recognized features during experimental studies to describe the
radio wave propagation over few parameters. Among existing empirical models [22], [37], the log-
normal shadowing propagation model is the simplest to estimate and a good compromise when
considering feasibility and complexity. Not many parameters are used to determine any indoor
or outdoor propagation behavior. However, as we mention in Chapter 2, indoor wireless mobile
communication system leads to dynamic variations of signal strength over time, distance due
to local environment impediments and reflection from obstacles. As our localization algorithms
aim to be adaptable to any environment characteristics as well as performed under uncontrolled
propagation behavior, we assess in this chapter the extent of the approximations under which the
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log-normal shadowing propagation model is based. We also characterize the equipment we use:
Moteiv TMote Sky nodes. We identify their behavior in indoor environment, especially to get
an idea of the variation of their characteristics that is never mentioned in the datasheet. Such
characterization should allow us to better interpret the obtained results. For this, we conducted
a series of measurements with multiple nodes in different environments.

For a better understanding of the experimental measurement campaign results we describe the
type of existing antenna configuration and the one used by a Moteiv TMote Sky node. An
antenna is a specialized transducer that converts the radio frequency (RF) power into electric
and magnetic fields or vice-versa. An antenna is required for each wireless device. A radio
wave is sent and received from an antenna also known as mechanical conductor device. A signal
radiating from an emitter and a receiver antenna is transmitted usually by a transmission line
for instance, a coaxial cable. There are many types of antennas. However, most of them are
from the dipole configuration or the ground plane antenna1. Electromagnetic waves are made
from inseparable electric and magnetic components. An electromagnetic wave is characterized
by a frequency and a wavelength. A radio signal is a form of electromagnetic wave radiation.
A dipole antenna is a 1

2 wavelength structure and straight electrical conductor. From end to
end, it is divided into two equal 1

4 wavelengths linked at the center with a transmission line. A
monopole antenna is one half of a dipole antenna and mounted above electric conductor called
ground plane. This one half retained is normal to the ground plane. If the ground plane is large
enough, the half-dipole behaves exactly like a whole dipole because its reflection in the ground
plane will replace the missing part [129, 130]. A Tmote Sky mote uses an internal antenna of
λ = 1

4 monopole wavelength. As said in Tmote Sky datasheet [131] and shown in Figure3.1(b),
this antenna is Inverted-F (i.e. I-FA) wire monopole where the top section is folded down to be
parallel with the ground plane. The Tmote Sky internal antenna effective transmission range is
about 50 m in indoor.

Printed circuit board (i.e. PCB) antenna are used to minimize the manufacturing cost while
simplifying the design of sensor nodes [130]. A ground plane on a PCB also generally known as a
terminal of the power supply consists of copper and is connected to the sensor node circuit’s main
radiating element. It is usually employed as a return path for electricity from many different
components. Tmote sky and Telos are designed with PCB antennas. However, in [130], the
authors stated that the performance of the PCB can be poor due to dielectric loss caused by
poor circuit board material and interference by coupling with other lossy components and circuit
board. Tmote Sky and Telos are designed with PCB antennas. It is better to use external
antenna which is isolated from noise induced by the circuit board. The radiation pattern of
monopole antennas above a ground plane are also known from the dipole result. The only
change that needs to be noted is that the impedance of a monopole antenna is one half of that
of a full dipole antenna. The directivity of a monopole antenna is directly related to that of
a dipole antenna. Ground plane antenna is a vertical antenna. A ground-plane antenna is a
variant of the dipole antenna presented in Figure 3.1(a): one half of a dipole mounted vertically.
Its lower section consists of straight elements called radials. There are two or more radials, each
measuring 1

4 wavelength. It is composed of coaxial cable connected to main radiating element
or earth ground. The shield below the antenna side connects to the radio. The ground plane
antenna is for ground wave propagation. The way the ground plane antenna is made (i.e. with
radials), it should have an omnidirectional pattern.

An understanding of the large scale propagation effects is very important to design a suitable
communication system. Thus, characterizing the mote we use in our testbed helps to better

1http://electronicdesign.com/wireless
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(a) An overview of a ground plane [132], monopole and
dipole antennas

(b) An overview of the Tmote Sky wire monopole antenna

Figure 3.1: An overview of types of antennas

understand RSSI-based localization accuracy results. In the following we have evaluated the
antenna gain and tested the omnidirectional pattern of the Tmote Sky node [131]. We measure,
in an anechoic chamber, the signal attenuation obtained at a constant distance between an
emitter and a receiver in various orientations. To determine the relative positions of the Moteiv
Tmote Sky sensor nodes (i.e. Emitter-receiver) that are favorables or unfavorables to the balance
of the radio link, we have conducted measurements of RSSI values between an radio emitter and
a radio receiver in an anechoic chamber situated at Telecom ParisTech. Such measurements are
performed to more characterize the radiation pattern of Tmote Sky motes. However, as shown
in Figure 3.1 we should notice that the I-FA antenna is composed of two parts: a vertical part
that radiates and an horizontal part linking to a power via coaxial cable (including a ground
plane, battery and spring). Hence, the component with metal circuit may have an effect on the
radiation pattern of the Tmote Sky node diagram. Furthermore, works from Lymberopoulos et
al. [133] clearly advocate that different antenna orientations with respect to orientation angles
(i.e. 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and 315 ◦) can yield to different sets of RSSI values for
the same distances between an emitter and a receiver. Starting from these results, it is desired
to characterize the antenna of the wireless sensor node that is involved in our study. A question
arises: does Tmote Sky node have an on-board directive antenna?

As localization performance depends on the environment and the used model to infer distance
from path loss, we also evaluated through several experiments the RF signal propagation over
few different indoor testbeds with various setup and sizes. We also investigated whether the
log normal shadowing propagation model, often used to model indoor propagation, is enough
accurate to capture irregularities in an office environment. Our experimental works are preceded
by the results of Lymberopoulos et al. [133], Stoyanova et al. [134] (both are applied on out-
door environment) and of Wang et al. [135] while demonstrating in indoor environments, the
variations observed in the measured RSSI values do not depend on a directional antenna. In
the following, we do in-depth experiments in indoor environments with different configurations
to better quantify these RSSI fluctuations. Our aim is to reduce error in the distance mea-
surement, an element governing an accurate range-based indoor localization algorithm. Deep
analyses and a quantification of RSSI fluctuations can further prevent the use of a complex
localization algorithm that can be time and power consuming regarding wireless sensor network
properties.
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Notice that, our aim is not to impose a particular direction to a receiver node, in other terms
our goal is not to constrain any person/object carrying a sensor node and wishing to accurately
localize itself within a room/confined area to adopt a certain direction. Instead, our objective is
to minimize the interference effects (less variations on measured RSSI values) while proposing
accurate, precise and easy to use localization algorithms. Such localization algorithms should
be adaptive to any wireless indoor environment dynamics without no need for calibration, nor
fingerprinting as mostly did by lots of algorithms proposed so far. We do not also want to deal
with complex localization algorithms in order to pay attention to the wireless sensor network
(i.e. WSN) energy saving requirements.

3.2 Comparison of the most representative contributions on
RSSI-based localization algorithms

A good relationship between RSSI and distance is possible in controlled ways by exploiting
certain factors as in [68]. We recall that in such works, a selection of RSSI values is made
from a measured data samples. Moreover, works in [123] have shown that we can have a good
relationship between the measured RSSI values and the corresponding distance by controlling the
radio frequency, the number of the reference measurements, a specific node orientation. Several
other works study the threshold beyond which the RSSI readings from the received signal are
considered to be incoherent. However, a small disruption in the physical environment is sufficient
to bring the measured RSSI values for a given distance out of the expected range. Given a link
connecting a landmark and a receiving target node, the level of the received signal strength
fluctuates considerably as a function of the position of a blind mobile node in an environment.
Such phenomenon is due to objects blocking the line of sight path (i.e. shadowing phenomenon).
Works from Elnahrawy et al. [116], Bahl et al. [19], [5], [7] have shown that the RSSI metric
is not suitable for indoor localization due to the above mentioned propagation effects. [136]
also demonstrated that RSSI approach performs poorly in indoor environment but did not look
out why this phenomenon occurs. Conversely, Srinivasan et al. [137] mention that RSSI is not
such a bad indicator when its value is above a certain threshold, measured at -87 dBm on the
authors’ experimental platform composed of IEEE 802.15.4 MicaZ nodes. While the works of
Srinivasan et al. [137] provides good results, they do not provide much details on the testbed.
Their conclusion may not hold in a realistic environment.

The system described by Hara et al. in [98] shows by simulation that the probability distribution
factor (i.e. PDF) of the received signal power follows an exponential distribution with a power
decay factor. The larger that power decay factor is, the more accurate the estimation of location
should be. The authors also demonstrated that the number of RSSI measurements can improve
the location estimation performance more than the number of sensor nodes. The same PDF is
used as an indoor propagation model by Zemek et al. in [138]. The authors propose to reduce the
traffic load ratio by studying a threshold beyond which RSSI values should not be transmitted to
a given sink node for data aggregation. While this approach reduces the traffic load to the sink,
it can still affect the target location estimation accuracy and even have a poor estimation of the
link quality. Therefore several contributions show that the accuracy that one can expect with
RSSI measures is very limited. A classification of the most representative ad-hoc and 802.15.4
wireless sensor networks localization algorithms in indoor environments with the use of RSSI
metric is presented in Tables A.1 and A.2 in appendix A. Such classification concerning most of
the state-of-the-art algorithms gives insight on achieved location accuracy against the number
of used landmarks, usually NbLandmarks ≥ 10.
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(a) An overview of semi-furnished office testbed (#1) of
size 4 m by 3 m)
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(b) Testbed 1: (5 landmarks, 48 receiver node unknown posi-
tions)

Figure 3.2: Locations of the landmarks (yellow bullets) and of the test positions (blue stars) in testbed
(#1)

3.3 Experimental conditions: testbeds and hardware description

We present three principal testbeds in which experiments are carried out. Those testbeds are also
designed to evaluate our proposed localization algorithms detailed in Chapter 4. Other locals
and remote testbeds have been used for evaluating the characteristics of the indoor wireless link.
Those are also presented below.

3.3.1 Details of testbed (#1) and (#2)

The first principal testbed named (#1) presented in Figure 3.2 is a semi-furnished office of size
4m by 3m. It is part of the Telecom ParisTech Lincs laboratory situated at place d’italie in
Paris. It comprises 5 emitters. The office is divide into 6 squares grid and each square contains
8 random positions, for 48 receiver positions in total.

The second testbed named #2 is a semi-furnished classroom of size 7m by 7m. The testbed
#2 is also part of Telecom ParisTech at Barrault site. Emitters in the number of 4 are placed
over desired distances to cover the communication range over the 47 positions of the receiver.
The receiver positions are randomly dispatched in 5 grids as shown in Figure 3.3. The number
of sensor nodes in each testbed are chosen depending on the available hardware.

All emitter and receiver sensor nodes are Tmote Sky nodes and placed at the height of 1.25 m,
which corresponds to the hip of the human.
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(a) An overview of testbed (#2) of size 7 m by 7 m)
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(b) Testbed 2: (4 landmarks, 47 receiver node unknown posi-
tions)

Figure 3.3: Locations of the landmarks (yellow bullets) and of the test positions (blue stars) in testbed
(#2)

3.3.2 Details of testbed (#3)

The testbed (#3), illustrated in Figure 3.5 is a classroom with 8 emitters acting as landmarks.
The number of landmarks in each testbed is chosen depending on the available hardware. In
each environment, the receiving blind mobile node is positioned in different tested locations
which are 57 in total. The testbed #3 measures 8.77m by 6.46m and is part of the Rennes
Rammus platform hosted by the RSM department at Telecom Bretagne. Rammus stands for
RAdio Mobile Multi Standards [139] and is a wireless experimentation platform deployed at
Telecom Bretagne in both Rennes and Brest sites. Rammus enables the deployment in a real
situation of algorithms using wireless networks for testing purpose. The Rammus platform is
divided into three levels such as infrastructure, relay nodes and terminal nodes as shown in the
diagram presented in Figure 3.4(a):

The infrastructure level is composed of ALIX [140] access points types that are programmable
devices in GNU/Linux environment. Two Wi-Fi interfaces are available through a network
of Ethernet and controlling at the same time one or several programmables 802.15.4 wireless
sensor nodes [141]. For our experiments, we use the Rennes Rammus platform hosted by the
RSM department of Telecom Bretagne, the one located in a classroom named A27 and presented
in Figure 3.4(b). This figure shows a top view of the testbed with 8 Tmote Sky nodes which
can be programmable as emitters, receivers or both emitters and receivers functionalities.

3.3.3 Lincs Isup corridor testbed

The Lincs Isup corridor presented in Figure 3.6 is also located at Telecom ParisTech, Lincs
laboratory in place d’italie, Paris. However it separates the Isup institute to the Lincs laboratory
and is a busy corridor frequented by students. It is a hallway allowing access to the main meeting
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(a) The composition of the Rammus platform (b) Top view of the Rammus wireless sensor nodes platform
at Rennes site

Figure 3.4: Rammus platform description

(a) An overview of testbed (#3) of size 8.77 m by 6.46
m)
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(b) Testbed 3: (8 landmarks, 57 receiver node unknown posi-
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Figure 3.5: Locations of the landmarks (yellow bullets) and of the test positions (blue stars) in testbed
(#3)
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(a) An overview of the Lincs Isup corridor (b) Another view of the shape of the Lincs Isup corridor

Figure 3.6: Two views of the Lincs isup corridor

room. The dimension of the Lincs Isup corridor testbed is 2.54 m width, 2.30 m height and
about 26.57 m long. During experiments, both emitters and receivers are placed at a height of
1.25 m from the ground.

3.3.4 Description of the SensLAB platform

We additionally made some measurements in a remote large-scale wireless sensor network plat-
form named SensLAB2. SensLAB is a wireless sensor platform for large-scale experiments in-
volving communication protocols for sensor networks. SensLAB platforms are composed of
1024 wireless sensor nodes over 4 sites in France such as Grenoble, Lille, Rennes and Stras-
bourg [142, 143]. Figure 3.7 presents an overview of the SensLAB Rennes site which is essentially
composed of 256 wireless sensor nodes using the CC2420 radio chip [82]. A frequency of 2.4
GHz radio interface is used as well as an omnidirectional SMD chip antenna [144] [144].

A SensLAB wireless sensor node named WSN430 is composed of three modules [144]:

• the open node running the user program.

• the control node storing data such as the level of the quality of the signal and the power
consumption. However, we measure the RSSI values through a communication protocol
that we have designed in Contiki operating system. Using the communication protocol, a

2www.senslab.com
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(a) SensLAB sites characteristics [145] (b) Overview of the SensLAB Rennes WSN nodes platform during
our experiment

(c) Overview of the application controller at SensLAB Rennes platform during our
experiment

(d) An overview of SensLAB WSN430 wireless sensor node [144]

Figure 3.7: SensLAB plateform overview
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Figure 3.8: An overview of the semi-furnished office testbed of size 7 m by 5 m (Testbed (#4))

receiver node is responsible for collecting needed information which includes RSSI values,
emitters positions and sequence numbers of the received packets. At each location a
receiver sends a localization request that is received by all emitters in its range. Each
emitter then broadcasts beacons packets at a rate of one packet per second over a given
duration and then stops emitting until another request is received.

• the gateway reprograming the nodes. The gateway embeds a small operating system and
communicates with the server by its IP address. The gateway also controls the supply
(i.e. battery) of the open node. A SensLAB WSN430 wireless sensor node is presented in
Figure 3.7(d).

3.3.5 Other indoor local testbeds (#4) and (#5)

This paragraph describes two another testbeds. Testbed (#4), presented in Figure 3.8 is another
office room of size 7m by 5m located at Telecom ParisTech Lincs laboratory. It is composed
of 4 desks, cupboards, glass, and five people during working day time. The last testbed (#5)
is another semi-furnished office room, located near the Lincs Isup corridor testbed. This last
testbed has almost the same size and same configuration as the testbed (#4).

3.3.6 Experimental setup procedure

In the following, we attempt to analyze whether the RSSI with the use of the log-normal shado-
wing propagation model is a good indicator of distance between wireless sensor nodes in in-
door environment In order to assure reliability of the obtained results, we used different indoor
testbeds environments with different scenarios and a hallway testbed. A common setup pro-
cedure for each testbed has been explained above. Note that at least two persons are moving
inside each testbed. To localize itself, a receiver node sends a localization request to emitters,
which then begin sending broadcast packets at a rate of 256 kb/s. Such broadcast continues on
the emitters node until about 100 packets are achieved and then stops. It does not reiterate
until a next request comes from a receiver node. This process is repeated for all possible blind
target nodes (i.e. receiver) positions. Additionally, the 2.4 Ghz frequency is used, which is the
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same used in 802.11 wireless network. During experiments, we remark the presence of such
wireless networks. The type of sensor nodes we used are Tmote Sky nodes from Moteiv Corpo-
ration [131]. Sensors are programmed using Contiki 2.5 operating system release3. Each node
is powered through its USB port to an Asus Eee pc computer, which eliminates any decrease
or variation coming from battery power levels. Furthermore a manual rangefinder was used for
all physical measures; this can imply a small difference in terms of precision. This part of our
work is intended for studying the reliability of the measured RSSI values from the sensed data
packets. In fact, our aim is to accurately position a blind mobile user/object that carries a
wireless sensor node.

3.4 Characterization of the Tmote Sky mote and of the RSSI
metric

As we mention, the received signal strength indicator has the advantage of requiring no additional
hardware. It is already implemented in Tmote Sky sensor nodes [131] and is widely used in 802.11
and in 802.15.4 standards. Viewed as an indication of the incoming signal power level being
received by the antenna, each RSSI value is a voltage measurement according to a common
frequency [146]. Such frequency is provided for each received radio message by the CC2420
radio chip module supplied with a sensor node [82]. Note that RSSI readings via CC2420 have
a dynamic range of about 100 dBm.

In embedded devices like in TMote Sky nodes from Moteiv Corporation, the received signal
strength is converted to RSSI and is defined as ratio of the received power to the reference
power of 1 milliWat as:

RSSI(dBm) = 10 log10(
Pr
Pref

) (3.1)

Where Pr is the signal reception power and Pref = 1mW . The RSSI computation built in
CC2420 produces a discrete value averaged over 8 symbol periods and stored in a register named
RSSI VAL. Chipcon specifies the following formula to compute the received signal power (i.e.
P) in dBm: P = RSSIV AL + RSSIOFFSET , where RSSIOFFSET ≈ −45. We refer to
this power, named P (in dBm) as RSSI throughout this document.

3.4.1 Characteristics of a Tmote sky mote in an anechoic chamber: Tmote
Sky antenna radiation pattern

This section analyses the antenna effects on the RSSI fluctuation. In the following we draw the
antenna diagram of a TMote Sky node in an anechoic chamber to check whether the antenna
gain is, as announced in the datasheet, close to almost omnidirectional but not perfect, i.e. the
gain is somehow independent to the direction. A front back view of the Tmote Sky node is
presented in Figure 3.9.

To determine the polar variation of the emitter w.r.t the receiver deployment, we first test the
antenna polarization by having the emitter turning around an horizontal axis. We measure the
partial gain of the Tmote Sky node with respect to a vertical and an horizontal deployment

3https://www.sics.se/search/content/contiki
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Figure 3.9: Block diagram and front view of the Tmote Sky node module [131]

(a) Vertical deployment of a receiver (b) Vertical deployment of a receiver: another
view

Figure 3.10: Deployment position scenario A : a vertical deployment of the receiver w.r.t an horizontal
deployment of an emitter rotated within horizontal axis

position of the receiver node and when the emitter is deployed horizontally. We first study a
vertical deployment of a receiver represented by the deployment position scenario named A (cf.
Figure 3.10). We measure RSSI values at the receiver side when the emitter is only rotated
around the horizontal axis from 0◦ to 350◦ with a step of 10◦ as shown in Figure 3.11. The
results in Figure 3.11 show that this polarization is uniform. In fact, Figure 3.11 reports less
variation in polarization (i.e. polar without variation).

The variation of the emitter within the horizontal axis is also performed with respect to the
horizontal deployment of the receiver as shown in Figures 3.13 and 3.12. Experiment results show
some variations in polarization (i.e. polar with the presence of variations) when the receiver lies
horizontally. To resume, a better polarization and less variation is reported within the vertical
deployment of the receiver w.r.t the horizontal deployment of the emitter node (represented by
the deployment position scenario A).

To confirm both hypothesis : the not omnidirectional pattern of the Tmote Sky node and the not
adapted horizontal deployment position of the receiver with respect to the horizontal deployment
of the emitter, we measure the total gain of the Tmote Sky antenna for an horizontal deployment
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TX (horizontal) rotated within horizontal axis: 0deg:10deg:350deg; RX−vertical
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Figure 3.11: Emitter i.e. TX (horizontal) rotated within horizontal axis w.r.t a vertical deployment of a
receiver

TX (horizontal) rotated within horizontal axis: 0deg:10deg:350deg; RX−horizontal

Horizontal tmote sky (RX) antenna radiation pattern conducted in anechoic chamber
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Figure 3.12: Emitter i.e. TX (horizontal) rotated within horizontal axis w.r.t horizontal deployment of
a receiver

Figure 3.13: Deployment position scenario B : an horizontal deployment of a receiver w.r.t a horizontal
deployment of an emitter rotated within horizontal axis
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(a) Rotation of an emitting antenna within horizontal axis

(b) Rotation of an emitting antenna within vertical axis

Figure 3.14: Architecture of a 3D radiation pattern of a Tmote Sky node conducted in an anechoic
chamber

of a receiver with respect to an horizontal deployment position of an emitter antenna. As shown
in Figure 3.14 the emitter antenna is first rotated within horizontal axis w.r.t these angles : 0◦,
45◦, 90◦, 135◦ and 180◦. Second, in each of these angles the same emitter antenna is rotated
with respect to the vertical axis ranging from 0◦ to 360◦ with a step of 45◦. Finally, for each
deployment position of the emitter, we have collected the RSSI values on the receiver being
deployed vertically (cf. Figure 3.14). The distance between the emitter and the receiver node is
set to 2.30 m and there are no obstacles that introduce reflections, fading within this separation
distance. The emitted power is set to 0 dBm and all data are measured during 10 seconds for
each angle. The 3D radiation pattern is then plotted and represented in Figure 3.15.

Experiments results of the Tmote Sky radiation conducted in an anechoic chamber at Telecom
ParisTech do not show a directive diagram, but also not an omnidirectional pattern. An om-
nidirectional antenna is an antenna which radiates in same way in all directions or with very
slight variations; this is not the case on the drawn diagram for Tmote Sky node. Such results
confirm those obtained in the works of Sungwon Yang et al. [147] in which it is assessed that
the common 1

4 wavelength monopole antenna which is supplied with a Tmote Sky node does
not have a regular pattern.

In addition, the authors have demonstrated that antenna orientation problem comes from the
small length of the ground plane. A second factor affecting the radiation pattern of a PCB
internal antenna is the closeness to circuits as well as to devices that compose a sensor PCB.
In fact, the electric field of the antenna is disturbed by interference from other devices like
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(a) An overview of the Telecom ParisTech anechoic
chamber
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(b) 3D radiation pattern of the Tmote Sky conducted
in the Telecom ParisTech anechoic chamber

Figure 3.15: 3D radiation pattern of the Tmote Sky node conducted in an anechoic chamber at Telecom
ParisTech

SubMiniature version A and peripheral connectors that are close to the antenna. This can be
solved by matching the ground plane with the proper length of the antenna or even keeping
enough distance between an antenna and sensor node peripheral devices to minimize the electri-
cal interference from devices of a sensor node and keep the horizontal omnidirectional radiation
pattern of the internal antenna. Furthermore, the authors (i.e. in [129]) experimental results
using 1.5 m separation distance between two wireless nodes and an output power of −10 dBm
have demonstrated that a monopole antenna with a wavelength λ = 1

2 or λ = 5
8 has a more

isotropic radiation pattern than a common wavelength λ = 1
4 . The

1
2 wavelength monopole ho-

rizontal radiation pattern is omnidirectional. These results are also affirmed in an outdoor case
by the works of Graefenstein et al. [148]. This radiation pattern becomes more perfect circular
for both the 1

2 ,
5
8 and 1

4 wavelength monopole when the antenna is mounted a wavelength away
from a sensor mote. In case of mounting, the radiation pattern is more circular with the 1

2 , then
follows the 1

8 and then the 1
4 wavelength monopole antenna; however, RSSI values get weaker

when compared to the 1
4 wavelength. From the authors, this is due to the fact that, the 1

2 or 5
8

wavelength monopole length do not match the given frequency of 2.4 GHz i.e. antenna does not
resonate at the given frequency of 2.4 GHz. Therefore, such wavelength receives weak signals,
and consequently shortens the communication range. Thus, an antenna that has an analogous
radiation pattern to 1

2 or 5
8 wavelength antenna without attenuation of RSS is required. How-

ever, in this thesis, the question to solve is how to overcome and deal with such irregularities
when it comes using the manufactured Inverted-F 1

4 wavelength monopole internal antenna.

Ideally, it would be better to have a range of values where the directivity of the 1
4 wavelength

monopole antenna is fairly constant for a largest angular range as possible, hence an omnidirec-
tional radiation pattern. However, our following experiment results present lots of dispersions
on the measured RSSI values. RSSI measurements conducted in an anechoic chamber show the
right part in Figure 3.15 to present a better polarization when the rotated angle around the
ho-rizontal axis is around 0 ◦, 90 ◦ and 270 ◦ for any emitter with respect to the deployment po-
sition as in left side of Figure 3.15. Over −50 dBm is observed there, which is more better than
around 180 ◦ in which we observe RSSI readings between −60 dBm to −55 dBm. Furthermore,
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when looking angles that are rotated through the vertical axis, we notice RSSI values being
around −50 dBm and between −60 dBm to −55 dBm at 180 ◦. We can note that the radiation
pattern is not entirely uniform, nor smooth, a few directions experience a strong attenuation
due to electronics on one of the board as shown in Figures 3.15 and 3.16.

We come up with the conclusion that in short, what is important is the relative orientation of
the antennas one with regards to the other. In addition, a more uniform polarization and thus
less variation is observed for a vertical deployment of a Tmote Sky receiver w.r.t an horizontal
deployment of a Tmote Sky emitter node (cf. Figure 3.11) compared to an horizontal deployment
of the same receiver. The horizontal deployment of a Tmote Sky receiver (cf. Figure 3.12)
reports some variations in polarization. In brief, Information from datasheets should in most
cases be verifiable. Electronics devices we manipulate are not almost, nor fully omnidirectional.
Such results confirm our guess and would be considered for all kind of devices. Our algorithms
we design fully consider such results. In our subsequent experiments, we take into account
such deployment scenarios of sensor nodes in order to better interpret ensuing results. In the
next paragraph, we consolidate these results by measuring RSSI values using the same node
deployment scenarios in a typical indoor scenario.

3.4.2 Characteristics of a Tmote sky mote in a typical indoor environment

The analysis of the signal strength variability by means of the relative position of the emitter-
receiver antennas deployment is necessary in indoor wireless environment due to its complexity
that renders indoor location more difficult. To this purpose and to improve ranging accuracy,
thorough measurements are needed in several indoor environments with different configurations
to study the behavior of the RSSI. We do not use an isolated room to be resilient to interfe-
rence/perturbation. Our approach is different to the experiment condition performed in the
works of Lymberopoulos et al. [133]. In fact in such works, the wireless nodes under test
were placed in the middle of a room without furniture to minimize the effects of reflections in
measurements.

We first perform measurements between 4 emitters and one receiver using different positions of
deployment of emitters-receiver with the default integrated PCB antenna. These inclinations
are different from those presented in the works of Stoyanova et al. [149] where nodes deploy-
ment were only based on emitters antenna orientations. The receiver antenna should also be
taken into account in terms of which emitter position provides less variation on reported RSSI
values in accordance with a receiver antenna. As presented in Figures 3.17 and 3.18, in all of
our experiments, the receiver are exactly in two positions (i.e horizontal and vertical deploy-
ment) while the same antenna orientation is used for each of them. In each receiver position of
deployment (cf. Figures 3.17 and 3.18), we study two positions of deployment of the emitters
which are in the total number of 4. The four considered deployment positions with respect
to both the emitter and receiver antennas are respectively named TowardCenter emitter para-
llel receiver, FromCenter emitter parallel receiver, TowardCenter emitter perpendicular receiver
and FromCenter emitter perpendicular receiver as shown in graphs of Figures 3.17 and 3.18.
For simplicity, we will call them respectively: TowardCenter parallel, FromCenter parallel, To-
wardCenter perpendicular and FromCenter perpendicular. The parallel one considers both, the
emitters and a receiver antenna to be parallel and in horizontal position.

More precisely, considering the graphs in Figures 3.17 and 3.18 the term TowardCenter lies to
the fact that the emitter antenna is in horizontal position and pointed inside the room, the sensor
board is also in horizontal position. The battery pack facing the wall and the USB pointing
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(e) Emitter rotated in the horizontal axis: 180◦ and in
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Figure 3.16: 2D antenna diagram in an anechoic chamber representing RSSI values vs. antenna orienta-
tion when emitter is rotated considering horizontal deployment with respect to an horizontal deployment
of the receiver
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toward outside of the room.

The graphs in Figures 3.17 and 3.18 show the deployment scenario of the antennas as well as
the RSSI values recorded at the receiver at each of the two receiver deployment inclinations (i.e
horizontal and vertical deployment) with respect to both emitter deployment inclinations. Each
emitter was broadcasting packets in two different orientations.

The term FromCenter refers to an emitter antenna pointing outside the room, its battery pack
facing the wall and the USB part points inside the room. Instead, the term perpendicular
corresponds to a vertical position of a receiver: the USB pointing to the ground and the antenna
up towards the ceiling as shown in graphs in Figures 3.17 and 3.18.

In each position of the receiver, we took about 140 measurements which are about one minute
interval; packets are broadcasted randomly by emitters at each second. RSSI values reported on
a receiver are then plotted according to an emitter. The corresponding results present different
curves shapes according to each architecture; but they still all have the same trends. We always
see that the RSSI values are not well correlated with distance. However, the architecture for
TowardCenter perpendicular antennas seems to be better as it shows less dispersion of RSSI
values in the LINCS-ISUP corridor testbed. Results from the architecture of the TowardCenter
perpendicular antennas also present a more Gaussian pattern compared to both results from
the TowardCenter parallel antennas and the FromCenter perpendicular antennas in which the
obtained curves resemble to two non overlapping Gaussian bell curves.

In addition, the different positions of deployment of the sensor nodes do not produce the same
polarization results. A better polarization is observed with the TowardCenter perpendicular an-
tennas deployment (from −60 dBm to −30 dBm) compared to the other three deployment posi-
tions which report less polarization such as [−75dBm− 35dBm] for the TowardCenter parallel
antennas, [−75dBm− 30dBm] for the FromCenter parallel antennas and [−65dBm− 25dBm]
for the FromCenter perpendicular antennas. Indeed, the TowardCenter perpendicular antennas
deployment shows less fluctuations (i.e less difference in dB between the RSSI values) compared
to the others. Our actual results achieved by several internal environments are consistent with
those of Azevedo et al. [150] realized inside a laboratory with non-mentioned size using a Tmote
Sky node as an emitter and a spectrum analyzer acting as a receiver in a line of sight environ-
ment. Works in [150] also demonstrate the presence of variations between RSSI readings at the
same position when using different transmitted power. The authors also show that two types
of sensor nodes can not produce the same polarization results as a difference of about 13 dBm
was reported on the signals measured from both: Tmote Sky and Micaz sensor nodes. Further-
more, it is demonstrated that due to ground reflection, the distance of the sensor node from the
ground should be greater than 40 cm; under this height, RSSI began fluctuating. Almost the
same variation of the received signal according to distance was observed for receiving antennas
placed at 40 cm and 1 m above the floor.

The curves obtained by this first experiment outside anechoic chamber do not only confirm the
shape of the radiation pattern of the Tmote Sky sensor node, but also identify one cause of
interference due to deployment positions of an emitting node with respect to a receiver node.
Further experiments in different indoor environments are going to be performed in the following
to better characterize the variations of the RSSI. For this reason the measurement results about
the indoor obstruction cause proposed in [133, 147, 134] were adopted while adding other effects
presented in Section 3.4.3 and a more dynamic procedure in the way such effects can be mi-
tigated during measurement process. Results from our experiments and conclusion from these
works [133, 134, 135] conduct to adopt these following parameters in our work:
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(a) TowardCenter parallel antennas scenario (i.e A) (b) Reported RSSI values from the scenario A

(c) FromCenter parallel antennas scenario (i.e B) (d) Reported RSSI values from the scenario B

Figure 3.17: RSSI distribution from the Lincs-Isup corridor performed at different emitter-receivers
deployment positions (part 1)
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(a) TowardCenter perpendicular antennas scenario
(i.e C)

(b) Reported RSSI values from scenario C

(c) FromCenter perpendicular antennas scenario (i.e
D)

(d) Reported RSSI values from scenario D

Figure 3.18: RSSI distribution from the Lincs-Isup corridor performed at different emitter-receivers
deployment positions (part 2)
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• Exploiting channel utilization strategy from the results observed in [135] in which the
authors come up with the experimental conclusion that the channel 26 has the best quality
and reduces packet loss rate. Therefore the channel 26 is used for node communication.
Besides, the average RSSI value increases as the transmission power enhances. We also
know that the 802.15.4 channel 26 does not overlap with any 802.11b/g channel [35], which
minimizes interference from co-located Wifi networks.

• The output power 0 dBm is used to cover the whole experiment area and to follow the
previous efforts from [123]: a lower transmission power does not conduct to a good range
in distance measurement. In fact, levels of transmission power lower than 0 dBm or power
level 31 [99] render a problematic communication because of the great percentage of packet
losses: more than 80% [134].

• The following node alignments are used: a vertical position of deployment of a receiver
and an horizontal position of deployment of emitters through the deployment scenario C
called the TowardCenter perpendicular antennas.

• The emitters and receivers antennas are placed at the same height as recommended by
Lymberopoulos et al. in [133] and Yang et al. [129]. In addition, Stoyanova et al. [134]
have demonstrated that higher heights from the ground conduct the RF signal to be more
sensitive to the reflections than the lower heights which present more "energy holes". In
this way, the height from the ground should not be more than 2 m in order to correspond
to the standard height of the human and being minimum to 1 m [133]. Under the given
condition, the height of 1.25m from the ground is used for all Tmote sky nodes involved
in our experimental work. Furthermore, the increase of the height difference between an
emitter and a receiver antennas leads the antenna orientation to become a principal cause
of the signal propagation perturbation [133].

• Two persons are moving inside each environment and impact radio propagation. A few Wi-
Fi access points are also located nearby in order to stand in real experimental conditions
like a room, a confined space in indoor building.

We should also notice in the works of Lymberopoulos et al. [133] and of Stoyanova et al. [134]
that some frequencies are more vulnerable to disturbance than others. In fact a higher frequency
is better as a high standard deviation was remarked on the lower frequencies.

In the next paragraph, we will study the other reasons of the RSSI fluctuations by investigating
the relations among RSSI and distance. Moreover, it is interesting to investigate the path loss
effect at different environments with interference and obstacles.

3.4.3 RSSI to distance mapping

The linearity of RSSI readings with respect to a corresponding distance To test
whether the RSSI values are linear for the same distance, we performed some measurements with
two equidistant emitters and one receiver in a corridor whose details are given in Section 3.3.3.
Data coming either from emitter #1 (node identifier = 4.0) or emitter #2 (node identifier =
12.0) are collected at the receiver in two different intervals of 15 min and 30 min respectively.
Results are shown in Figure 3.19.

Figure 3.19 shows the RSSI values recorded at one receiver for both emitters within the same
orientation. In such figure, the first emitter node identifier = 4.0 is represented by "Plus sign"
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(a) Experiment conducted between one receiver and two
equidistant emitters during 15 min

(b) Experiment conducted between one receiver and two
equidistant emitters during 30 min

Figure 3.19: Experimental results when testing the RSSI to distance reliability from the LINCS ISUP
corridor: first emitter node identifier = 4.0 represented by plus sign (+) and second emitter node
identifier = 12.0 represented by crosses (x)

(+) and the second emitter node identifier = 12.0 by crosses (x). The used orientation is
the one described in Figure 3.18 which is the TowardCenter perpendicular antennas deployment
scenario. Analyzing all the recorded RSSI values over time for both emitters, we found that
the distribution of the RSSI values from the equidistant emitters are different according to the
receiver. The results highlight the presence of different asymmetric links. In addition, the
environmental location of the emitter is important and the indoor channel varies with the time.
In fact, the two emitters located at equal distance of 7 m to a receiver do not result in the
same RSSI behavior. We realized the same experiment several times with different emitters
and receiver. For each experiment we did not measure the same RSSI behavior regarding each
equidistant emitter with respect to a receiver. Such results identify a variability on RSSI readings
depending on the emitter environmental location. Besides the dispersion of RSSI values is not
equal in two different time periods. These variations can be attributed to obstacles arising from
people moving inside the environment, attenuation from the ceiling, floor as well as the shape
of the wall constituting the corridor.

Is the communication of wireless sensor node symmetric or asymmetric? In this
paragraph, we study the properties of bidirectional communication links between sensor nodes.
Indeed a knowledge of the links properties (i.e symmetric or asymmetric) is necessary as it is
an information that contributes during the design of a localization algorithm. In the case of a
communication scenario involving sensor nodes with both functionalities (emission and recep-
tion), we draw for each individual link the distribution of the RSSI readings. We additionally
draw the density function of the measured RSSI values from the data packets sensed by each
wireless sensor node receiver in testbed (#1) (cf. Section 3.3.1). We also compare the shape
of all density functions to a normal distribution. Such comparison is made using the Matlab
normal probability density function applied to our measured RSSI samples. Compared density
functions are computed from the measured data to be analyzed and results are represented in
Figure 3.20 in which we show almost symmetrical radio links between the two nodes.
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Figure 3.20: Overview of a symmetrical bidirectional link between two wireless sensor nodes

However, we do not observe the same results when we further consider another two-unidirectional
link involving two wireless sensor nodes labeled A (for node identifier 7.0) and C (for node
identifier 4.0) as shown on the right curve in Figure 3.21. From communication links between A
(node identifier 7.0) to C (node identifier 4.0) and C (node identifier 4.0) to A (node identifier
7.0), the RSSI readings are generally almost centered at the same average value of −56 dBm.
However, we report a totally different representation accompanied by lots of disruption between
both links curves.

Indeed, the curve with solid line in blue color in Figure 3.21 and representing the unidirectional
link A (node identifier 7.0) to C (node identifier 4.0) has two independent maximum values on
−58 dBm and −54 dBm. This is not the case for the curve with dashed line in pink color for
unidirectional link C (node identifier 7.0) to A (node identifier 4.0). This latter shows small
and close peaks of different sizes: a maximum value at −56 dBm with two small peaks at
−55 dBm and −57 dBm. In the curve of the communication link A (node identifier 7.0) to C
(node identifier 4.0) (i.e. curve with solid blue line) we note two distinct maxima and a large
disturbance of about 4 to 5 dBm difference between them. Thus, the signal has been received two
to three times larger than the emitted signal between these two maxima on that unidirectional
link. However, for the communication link of C (node identifier 7.0) to A (node identifier 4.0)
represented by the curve with dashed pink line, there is a difference between its maxima called
delta signal equal to approximately 1.2 times higher than the output power. Such difference can
be somehow negligible.

From the overall relationship between the two communications links: A (node identifier 7.0)
to C (node identifier 4.0) and C (node identifier 7.0) to A (node identifier 4.0), when taking
the average value of the maximum for each link, we are left with −56 dBm on both sides and
the resulting difference leads to a signal received with the same output power. The presence of
significant disturbances on the signals is also noticed. Such effects result in asymmetric links (i.e
links A (node identifier 7.0) and C (node identifier 4.0)). Unidirectional links C (node identifier
4.0) to A (node identifier 7.0) and A (node identifier 7.0) to C (node identifier 4.0) are roughly
centered at the same averaged mean values, but distributions are too different and there is too
much interference between the two curves. Considering the curve with solid blue line, we observe
the presence of two independent peaks or two maxima, this is not the case for the curve with
dashed pink line. This curve with dashed pink line presents different peaks of small size and
enough close. There is also an asymmetry behavior for the link A to B (node identifier 6.0) with
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Figure 3.21: View of symmetrical bidirectional links

the dotted line curve and for the link B to A (node identifier 7.0) with dash-dotted line. Such
links have small peaks and a difference of 2 to 3 dBm between their maxima.

From one link to another we can observe a symmetrical or asymmetrical behavior depending on
disturbances on the signal and at the same time on the measured RSSI values. Therefore we can
not anticipate the behavior of the intensity of the signals received at two different unidirectional
radio communication links as disturbances can provoke asymmetric links. We cannot conclude
at a given time named t that disturbances from links B to A and A to B are identical. The left
curve in Figure 3.21 shows this aspect of asymmetrical behavior. In fact for symmetric link, the
represented RSSI values should follow the diagonal and not dispersed around the diagonal as
seen in Figure 3.21. According to our experimental results and those from Heurteufeux et al. [7]
conducted on large scale experimental sensor nodes platforms (i.e SensLAB), communication
links are mostly symmetrical when considering 0 dBm as the transmitting power. This is the
case for SensLAB Strasbourg and Lille platforms in the work of Heurteufeux et al. [7]. However
the links are asymmetric at the Grenoble platform. In addition, works in [7] also show a very high
measurement dispersion on the large-scale SensLAB experimental platform. The authors come
up with this conclusion: RSSI over a single link is not always bidirectional, as often assumed.
The majority of links seems quite symmetric, but a significant part of the links are clearly not
depending on the used emitted power. In fact a slight proportion of the considered link (about
10%) can be asymmetric.

RSSI values are log-normal distributed with respect to the distance? This paragraph
studies whether RSSI readings are log-normal distributed with respect to the distance. Our aim
is to use the RSSI metric to localize a blind mobile wireless sensor node carried by a person or
an object in any indoor environment using few wireless emitters nodes. Assuming the RSSI is
an indicator function of the distance i.e. a decreasing function of the distance; we first need to
select a propagation model in order to map a distance to the attenuation experienced by radio
packets and measured by each wireless sensor node. This propagation model should represent
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a good compromise between accuracy, feasibility as well as complexity. Indeed, our algorithms
have to be performed on embedded devices and hence should not require too much computation
or too much data exchange between nodes. The propagation model meeting these criteria and
most often used to model indoor and outdoor propagation is the Log-Normal Shadowing Model
named LNSM. Such model is described in Chapter 2 of this document. LNSM model has been
involved in lots of works [133, 149, 5, 68, 99, 150, 151, 7, 152].

This model relates the path loss called PL(d) between an emitter and a receiver node to the
distance that separates these two nodes (d) according to equation (3.2):

PL(d) = PL(d0) + 10.η. log10

(
d

d0

)
+N (0, σ2) , (3.2)

Where the constant calibration offset PL(d0) is a reference path loss (in dBm) measured at a
distance d0 (usually equal to 1m in indoor), η is the attenuation factor of the environment, and
N (0, σ2) is a Gaussian random variable with 0 as a mean value and a standard deviation of σ.
η reflects the average attenuation of the environment and σ2 counts for the random effect of
shadowing (i.e. large scale fading). This model does not reflect, indeed the effect of fast fading
described in Chapter 2 as when considering multiple readings from the same static node, the
fast fading effect can be ignored in the LNSM propagation model [5]. The RSSI measured by a
wireless receiver is the difference between the transmission power and this path loss. In most of
our experiments, as the transmission power is fixed at 0 dBm, the RSSI is simply the opposite
of the path loss: RSSI(d) = −PL(d).

We evaluate in this paragraph whether the measured RSSI values with distance are log-normal
distributed. For this, we conducted several measurements in the aforementioned Lincs corridor
(cf. Section 3.3.3) composed of one emitter and one receiver node moving away from the emitter
over 20 positions starting from 1 m to 15 m with a step of 0.5 m. As the corridor is a waveguide
and to reduce the wall reflection effects, the same test was performed in the closed testbed (#1).
This test involves one receiver node moving over 40 positions away from one fixed emitter node
at 2D position (0 m, 0.08 m). Figure 3.22 presents the recorded RSSI values by a receiver node
with respect to the distance regarding an emitter node using the TowardCenter perpendicular
antennas orientation. It shows the presence of noise which is probably due to the shape of the
corridor wall (non-straight wall) that creates reflections. However, we still remark the same
trend such as the obtained curve with the TowardCenter perpendicular architecture which is
somehow the more close to the log-normal distribution.

The same experiment performed in the testbed (#1) described in Section 3.3.1, quantifies the
RSSI variability and confirms the RSSI distribution over distance. We did not remark any energy
hole on measured RSSI values according to a given distance as shown in Figure 3.23. In addition,
a linear regression curve from the RSSI distribution is fitted and almost demonstrates a close
log-normal distribution with a mean µ = −52.976 and a variance σ = 5.80731. The patterns
observed from experimental results confirm that there are distances information on RSSI values
as mentioned in the works of Srinivasan et al. [137]. The authors demonstrated that RSSI is not
such a bad indicator when its value is above a certain threshold, measured at -87 dBm on the
authors’ experimental platform composed of IEEE 802.15.4 MicaZ nodes. Unfortunately, this
contribution does not provide much detail on the testbed and their conclusion may not hold in
a realistic environment such as a typical office. In that case, other results in realistic indoor
testbed are needed to certify an absolute log-normal distribution pattern.

The same experiment as above has been performed in another testbed (#4) (cf. Section 3.3.5).
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Figure 3.22: RSSI distribution between one emitter and one receiver node moving away in the Lincs Isup
hallway testbed
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Figure 3.23: RSSI distribution between one emitter and one receiver node moving away over 40 positions
in testbed (#1) (cf. Section 3.3.1)

RSSI values between one emitter and a receiver node are measured with two types of configu-
ration. One configuration involves an emitter placed near the furniture and a receiver moving
away from the emitter towards the back of the office room (i.e the wall). The second configu-
ration involves a receiver situated in the back of the office room precisely near the wall and the
receiver is moving from the wall to the center of the office room, i.e. near furniture. There are
one person moving inside the office room and at least two people sitting at their desks. The
experiments results using the architecture of the TowardCenter perpendicular antennas for these
two configurations are shown in Figure 3.24.

The analysis of these two curves are presented in Figure 3.24. Obtained results do not show
the same dispersion of RSSI values for the same separation distance between an emitter and
a receiver. It is clear that the furniture has disruptive effects on signal. A shape nearly to
the normal distribution is reported with the left figure, which is not the case for the right one.
Consequently, depending on how emitter and receiver are oriented with respect or not to the
furniture, we do not report the same behavior concerning RSSI values for the same distance. This
suggests and confirms a need to take into account in the localization algorithm the environmental
orientation of the landmarks and of the receiving target node antennas.

To confirm the above results, we draw the histogram of the collected RSSI values. We also
draw the histogram of the same RSSI samples in function of the distance for both different
configurations of emitter-receiver node deployment. The smooth curve of the best fitted gaussian
distribution based on the same data samples is also drawn using Matlab for both of the two
deployment configurations of emitter-receiver node (cf. Figures 3.25). Histograms related to the
configuration in which the emitter is near the furniture and the receiver is moving to the wall
are presented in Figure 3.25. Such histograms when compared to the best fitted Gaussian curve
show a Gaussian distribution of the RSSI samples with mean µ = −45.4025dBm and variance
σ = 5.2516. The achieved results confirm our hypothesis that is the layout of the furniture in
indoor environment plays an important role (i.e. disruptive or not) in signal propagation effects.
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Figure 3.24: RSSI behavior depending on the orientation of emitter (TX)-receiver node (RX) moving
away with respect or not to the furniture in testbed (#4) (cf. Section 3.3.5)

Table 3.1: Known reference path loss PL(d0) and path loss exponent values η from 5 landmarks named
TX in testbed (#1)

TX1 TX2 TX3 TX4 TX5
PL(d0) 41.5016 28.9089 42.9325 56.5850 39.5202
η 1.8462 3.5697 2.3185 1.8165 1.6783

Influence of Multipath on RSSI Figure 3.26 which uses the same deployment scenario as
in Figure 3.24 (cf. testbed (#4) in Section 3.3.5) shows the variation of the RSSI values collected
by two equidistant receivers situated at 5.6 m from the emitter. The distributions of the RSSI
values for each receiver regarding the emitter are not the same even if the distances between
the receivers are equal. In fact, one of the receivers has a misbehavior which results from the
proximity with the indoor obstructing factors (furniture, obstructing object, layout of the room).

Figure 3.27 on the other hand, performed in testbed (#3) represents, for a given position, the
distribution of the RSSI values from each landmark and the number of successfully received
beacons.

Experimental results emphasize with this example that the node whose values are shown in the
second position from the top is a bit far in terms of dispersion of RSSI values compared to the
others. Those results are a key idea of considering that a node can be affected by an abnormal
comportment. In other word, in environment with no or little perturbation we should measure
equal or lower variations on the standard deviation because the environment doesn’t change and
also the propagation condition remains the same. Hence, the idea to consider the propagation
model parameters dependent on landmark location as shown in Tables 3.1 3.3. Such results are
first published in one of our works [153] in which the linear regression was used to compute the
values of the parameters η and PL(d0) when considering a minimum mean square error (MMSE)
of the sensed data.

In fact, the same experiment has been performed in in our laboratory, in different mentioned
testbeds to clearly advocate that the dominant factor is the multipath. Recall that multipath
are introduced by reflection, diffraction phenomena or a combination of them. It arises from
obstruction of the signal happening along the communication path. One should note that changes
appearing on a wireless node in reception mode vary differently depending on the data source
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Figure 3.25: Histograms of RSSI readings distribution depending on the orientation of emitter (TX)-
receiver (RX) node moving away with respect or not to the furniture in testbed (#4) (cf. Section 3.3.5)

Table 3.2: Known reference path loss PL(d0) and path loss exponent values η from 4 emitters named
TX in testbed (#2)

TX1 TX2 TX3 TX4
PL(d0) 54.6315 52.8471 28.5622 53.0334
η 1.0143 1.4663 3.3471 2.4317
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Figure 3.26: Overview of the multipath effects on RSSI values in indoor environment: RSSI in function
of the distance on two equidistant receivers situated at 5.6 m from the emitter

Figure 3.27: An histogram of RSSI distribution from each landmark at testbed (#3)(cf. Section 3.3.2)
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Table 3.3: Known reference path loss PL(d0) and path loss exponent values η from 8 landmarks named
TX in testbed (#3)

TX1 TX2 TX3 TX4 TX5
PL(d0) 50.3452 49.1444 55.3127 40.4212 44.9725
η 1.0950 0.8237 0.4307 2.0919 1.2565

TX6 TX7 TX8
PL(d0) 41.7087 51.8631 61.1757
η 2.1450 0.7759 0.6272

Figure 3.28: Pattern of measured RSSI values on receivers nodes observed for a particular emitter node
(use case 1)

named emitter node. This means that the RSSI values measured from an emitter node may
be affected by fluctuations and these are even more important when the emitter node is in less
favorable propagation conditions than another emitter node. This is highlighted in the graphs in
Figure 3.28 in which we observe a pattern for a given receiver node (named node 1.0): when there
is a change on a link, this can be found more consistently on another link. As an example the
signal from emitter node identifier 7.0 to receiver node identifier 1.0 is reliable up to t = 600sec
then it is affected by slight variations up to a gap of 5 dBm. Instead, the signal from the emitter
node 8.0 to the receiver node 1.0 is stable up to t = 600sec and then modified by high variations
up to 10 dBm difference. Such result is also verified for the link 4.0 to 1.0 and for the link 54.0
to 1.0 as well in which we notice a gap of 8 dBm and a curve with a little more fluctuation.

Obviously the receiver node 8.0 is not well situated in terms of propagation condition; this is the
case in the experimental platform in which this node is very close to a back wall of the testbed.
There is several fluctuations in reception mode for this node whatever the emitted node is (e.g.
link 7.0 to 8.0, link 4.0 to 8.0 and link 54.0 to 8.0) as shown in the graphs in Figure 3.29.
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Figure 3.29: Pattern of measured RSSI values on receivers nodes observed for a particular emitter node
(use case 2)

Furthermore this variation is even more important if the emitter node is not well located due to
the presence of disturbing factors in the communication link. The curve of the link 7.0 to 8.0 is
much smoother and stable compared to the curve of the communication link of 54.0 to 8.0 and
even smoother and presents less variation than the curve of the communication link 4.0 to 8.0.

Quality of the circuits of sensor nodes (hardware quality) We evaluated in this para-
graph the quality of the circuits of sensor nodes by measuring the RSSI between an emitter and
four different receivers situated respectively at 3 m, 6 m, 12 m and 20 m in Lincs isup corridor
testbed (cf. Section 3.3.3). In ideal case which means no change coming from receiver sensitivity
neither from environmental disruption, we should measure decaying RSSI values when moving
from one distance to another greater one. We additionally should observe constant RSSI values
for a given distance. Instead from the reported results in the experiment 1 which results are
presented in Figure 3.30, the measured RSSI values at a distance of 3 m by a node named 1.0
are greater than those at the distance of 6 m measured by a node 6.0. In experiment 2 (cf.
Figure 3.30), reported RSSI values at the distance of 3 m at the node 12.0 are almost equal to
those reported at the distance of 6 m from the node 6.0. In addition at the distance of 12 m
and 20 m in the experiment 1 (cf. Figure 3.30), the reported RSSI values are not decaying with
the distance if we take into account the dispersion of RSSI values from all involving distances
that are at 3 m, 6 m, 12 m and 20 m. However the measured RSSI values at 12 m on node 7.0
are greater than those measured at the distance of 20 m and also greater than the RSSI values
reported at the distance of 6 m.

Clearly in the experiment 1 in Figure 3.30, the node located at the distance of 12 m and named
7.0 and the node being at the distance of 20 m and named 12.0 have abnormal behavior because
of their sensitivity. The experiment 2 in Figure 3.30 however reports smaller RSSI readings
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(a) Experiment 1 (b) Experiment 2

Figure 3.30: RSSI behavior over time with respect to the distance

at the distance of 20 m reported by the node 1.0 compared to RSSI readings reported at the
distance of 12 m by the node 7.0. In fact at the same distance of 12 m, the same node named
7.0 involved in the same repeated experiment in two separate days in the same environment
and conditions show the RSSI values dispersed in the interval of [−50− 45] dBm for the first
experiment and between [−55− 50] dBm for the second experiment. These results demonstrated
a receiver sensitivity highlighted by a gap of 5 dBm between the two intervals of the RSSI values
for the two experiments.

In addition, results reported by both nodes 12.0 and 1.0 in both Figures emphasize the disrup-
tive effect of receiver sensitivity through different radio chips. We noticed that the RSSI values
measured at two different receivers (nodes identifiers 12.0 and 1.0) are different even though
they were measured at the same distance and in similar environmental conditions: all param-
eters that affect the received signal strength are constant. On the node with identifier 1.0, at
the same distance of 20 m in the experiment 2 in Figure 3.30, the RSSI readings are around
[−67− 65] dBm. Comparing these values to those measured at the distance of 3 m, 6 m and 12
m, the principle that the attenuation decreases with the distance is validated. This is not the
case with the experiment 1 in Figure 3.30 in which we found the RSSI values reported at the
node 12.0 at the distance of 20 m being between [−63− 54] dBm, thus greater (i.e. attenuation
is smaller) than the RSSI values measured at the distance of 6 m by the node 6.0.

Is indoor radio channel varying with the time? A question solves in this paragraph is
the following: does the time of day have an influence on the measured RSSI values? does the
start time of the measure have an influence? From how many samples can we trust the measured
RSSI values? To answer these questions we performed the same experiment at different times of
the day with five nodes including four emitters and one receiver in SensLAB Rennes platform (cf.
Section 3.3.4). A receiver node measures RSSI values from four emitter nodes during 20 minutes
in the morning at 9 am, in the afternoon at 2 pm and in the evening at 9 pm. Figure 3.31 shows
the achieved experimental results.

We notice that the RSSI values reported during the morning experiment by the node with
identifier 214 from the emitter node with identifier 177 are distributed between −62 dBm and
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Figure 3.31: Histogram of RSSI values (dBm) collected during the morning, the afternoon and the
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−63 dBm. These values moved slowly between −64 dBm and −63 dBm during the afternoon
and remain stable and same for the evening. In addition, the value −63 dBm appears more than
the others (almost 100%). RSSI values measured at the same node with identifier 214 from the
message coming from the node with identifier 197 are spread between −62 dBm and −61 dBm in
the morning while the same values are measured during the afternoon and the evening. However
the measured RSSI values recorded at the link 230→ 214 are observed between −59 dBm, −58
dBM, −57 dBm and −54 dBm in the morning, −60 dBm, −59 dBm, −55 dBm and −54 dBm
in the afternoon and stable between −60 dBm, −59 dBm and −54 dBm in the evening. The
proportion of values from −60 dBm and −54 dBm are dominated for this communication link.
Finally RSSI values measured for the data packets coming from the node with identifier 252 are
only observed during the morning and distributed in these two values −86 dBm and −85 dBm
with the same proportion. Because of environmental disturbance, this node is somehow far from
the receiver node with identifier 214.

To summarize, the distribution of the RSSI values do not change as much during the time of the
day unless with the presence of factors that can disturb the signal propagation between an emitter
and a receiver such as people walking around, the presence of an object in the communication
link like a chair, a table, a cupboard. . . . Notice that the receiver with identifier 214 has received
data from the emitter node with identifier 252 only from the morning experiment. The rest of
the time it does not measure RSSI values from the emitter node with identifier 252 which is
probably in unfavorable propagation conditions with respect to the communication link of the
receiver node 214. In conclusion measuring the RSSI values in indoor environment at different
time of the day in the same propagation conditions should not have a big impact on localization
accuracy. However, the indoor environment dynamics and changing behavior prevent to consider
the parameters of the propagation model constant regarding any indoor environment. Such
phenomena also prevent using the same propagation model parameters every time there is a
need to localize a target in a nearest indoor environment. For instance, in [3] with the use of
the log-normal shadowing model, path loss from different indoor environment are measured and
then averaged. Measured path loss is then kept constant and used to localize any pedestrian in
a warehouse. But, in the case the propagation of the indoor environment changes (e.g. presence
of walking people), the constant estimated path loss can deviate from the previous estimation
and thus affects the localization error that should be perceived. Our suggested solution is to
renew the estimation and in a dynamic way the values of the propagation model parameters for
any indoor environment.

3.4.4 RSSI versus distance

In the following we additionally describe how data are distributed when distance increases in di-
fferent testbeds. We use two distinct testbeds with sizes: testbed (#1) and (#3). Figures 3.32(a)
and 3.32(b) represent two sets of distributions of the measured RSSI values by a blind mobile
node in function of the distance from beacons received from 8 different emitters in two re-
presentative positions. Both positions are randomly picked in testbed (#3). The blue dots in
Figures 3.32(a) and 3.32(b) reproduce measured RSSI values, while green stars represent the
result from a linear regression interpolation performed on the RSSI sample. In most cases, the
RSSI values are only affected by noise, and the variance of the RSSI remains acceptable.
However, for a few communication links between the mobile node and each emitter (seventh
scatter in Figure 3.32(a) or fifth scatter in Figure 3.32(b)), the variance becomes very large,
which introduces a bias. As these large variations do not always concern the same emitter, they
are due to multipath propagation effects and shadowing (cf. Figure 2.1 in Chapter 2).
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(a) 1st testing position (#11): x=2.27m; y=3.397m
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(b) 2nd testing position (#17): x=3.02m; y=2.252m

Figure 3.32: RSSI as a function of the distance measured at one receiver node from the 8 landmarks in
two arbitrary positions in testbed (#3)

To confirm/validate the results observed above we conduct the same experiment in testbed
(#1). We use statistics box plots tool to compare RSSI values in connection with distance.
Measured RSSI samples are gathered in testbed (#1) over 48 different positions of a mobile
receiver node. We randomly choose 5 of the 48 mobile receiver node positions. We then draw
in Figure 3.33 as box plots, the attenuation experienced with each of the 5 emitters at each
of these 5 positions. Note that a box plot or whisker diagram is a standard statistical tool of
representation of the distribution of data. Box plot representation is useful in detecting either
shifts and large variations on data sets or the shape of the corresponding data set. In case where
the data set contains abrupt change for outliers, they are plotted separately outside the chart of
the box. As presented in Figure 3.33, a box plot displays distribution of data according to the
data set lowest value (minimum), the size of the first quartile, the median value, the size of the
third quartile and the data set highest value (maximum). The central rectangle of the box-plot
is delimited by the first quartile to the third quartile. The segment inside the rectangle is the
median value and those small and outside the rectangle, precisely those segments situated above
and below the box are named "whiskers". The positions of the lowest and highest value are
shown by whiskers. A box-plot is complement to a histogram and a helpful tool to formulate the
median value and to characterize any distribution. In the following we use box plots to perform
simultaneous comparisons in order to figure out how the RSSI values are distributed in relation
to distance.

In ideal case, as long as the median is high, when moving toward greater distances, box plots
of corresponding measured RSSI values should show effective Gaussian shape. This Gaussian
shape is remarked for the first two distances of the mobile receiver (i.e distance = 1.69 m and
distance = 1.88 m) in which RSSI values are measured on data sent by the fifth emitter. The
same result is also observed for the first two distances from the fourth emitter. However, we
do not notice the same results for all distances from the emitter 1 and also for the three first
distances separation between the mobile receiver and the third emitter. The height of the box
represents the dispersion of the measured RSSI values and a small box means all measurements
lie in a small range of values, in other word a small dispersion. The red crosses (+) indicate
the presence of outliers on the measured RSSI values, this mean these measured values are
too dispersed to be correlated to the others. From the results observed on the fifth emitter,
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Figure 3.33: Boxplots of the data collected on the receiver at 5 random distances in meter from each of
the 5 emitters in the testbed (#1)

a highest signal strength is reported at distance = 1.88 m. The same trend is reported at
distance distance = 3.05 m. Such results from box plots confirm that RSSI values are not
always correlated with distance. Due to environment disturbances that create multipath, the
log-normal shape of RSSI readings is not always respected when the mobile receiver evolves
toward greater distances.

Furthermore, we represent the distribution of the RSSI values by selecting two random positions
of the receiver and we measure during 1 minute interval the RSSI values of data packets coming
from the 5 emitters in testbed (#1). Packets were broadcasted randomly by each emitter at each
second. The RSSI distribution of collected data from the 5 emitter nodes and measured at one
receiver node position (i.e. left curve in Figure 3.34) as well as at two different receivers positions
(i.e. right curve in Figure 3.34) are illustrated in Figure 3.34. The right curve in Figure 3.34
represents the measured RSSI values at one receiver position while the right curve in Figure 3.34
is obtained by measuring the RSSI values at two distinct receivers positions. Such experimental
results highlight that if the RSSI values of the emitters are not learned separately at the receiver
node, we would not verify the hypothesis that the RSSI values decrease as a function of the
distances according to log normal shadowing propagation model in indoor environment.

From these plots, we note that unless we distinguish RSSI values from emitters by treating data
that comes from each of them separately, RSSI measurements at a single receiver are not clearly
correlated with distances. In fact, reference path loss parameter and path loss exponent are
different for each emitter. Table 3.4 reports estimations of the reference path loss PL(d0) and
path loss exponent η parameters calculated using maximum likelihood estimation over the full
measurements set and for all possible receiver positions in a given testbed.

87



(a) 1st testing position (#29): x=1.871m; y=2.33m (b) 2nd two testing positions (#29): x=1.871m; y=2.33m
and x=3m; y=4m (1 landmark)

Figure 3.34: RSSI as a function of the distance measured by one (i.e. left curve) and two receivers in
two arbitrary positions (i.e. right curve) from 5 landmarks in testbed (#1)

Table 3.4: Known reference path loss PL(d0) and path loss exponent values η from 5 emitters named
TX in testbed (#1)

TX1 TX2 TX3 TX4 TX5
PL(d0) 41.5647 40.0314 41.2408 58.2899 40.9747
η 1.8058 1.3083 2.7786 1.5726 1.3893
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Results shown in Table 3.4 above is in conformity with those of [99] about the variability of the
path loss in indoor, but we also demonstrate that the reference path loss PL(d0) is variable in
addition to the path loss exponent η. Results reported in Figure 3.34 recall again to learn each
emitter separately otherwise there will not be any correlation between measured RSSI values and
the distances. In addition, in Figure 3.35 we can denote that attenuation is different depending
on the location of an emitter. It can also be seen on the set of values from Figure 3.35, a behavior
that matches the log normal shadowing model pattern: RSSI decreases as a function of distance.

Figure 3.35: RSSI (in dBm) versus distance (m) at the receiver collected from each emitter in testbed
(#1); red lines are linear regression prediction

However, the dispersion of values is still very important and cannot lead to a good accuracy
or a small confidence interval on the prediction of the distance calculated from the maximum
likelihood. For example in Figure 3.35 for the points that are 4 m away from the emitter 1 with
2D coordinates: 0.00 m, 0.08 m, there are variations of RSSI values ranging from −65 dBm to
−40 dBm, so almost a gap of 25 dBm, which is very wide. In addition, we observe that the
attenuation depends on the environmental locations of both receivers and emitters which are
different from one corner to another.

Another experiment is realized in testbed (#2). Among these 5 nodes, 4 are emitters and one is a
receiver node. We choose two random positions of the receiver to measure the RSSI distribution
in function of the distance. Packets were broadcasted randomly by emitters between 2 and 4
seconds. After a successful testbed setup, RSSI values reported at one and then two receivers
positions are then plotted according to all emitters and presented in Figure 3.36.

Table 3.5 reports estimation of the reference path losses PL(d0) and path loss exponents η
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(a) 1st testing position (#4): x=0.50m; y=0.068m (b) 2nd two testing positions (#4): x=0.50m;
y=0.068m and (#23): x=4.419m; y=5.60m

Figure 3.36: RSSI as a function of the distance measured by one (i.e. left curve) and two receivers in
two arbitrary positions (i.e. right curve) from 4 emitters in testbed (#2)

Table 3.5: Known reference path loss PL(d0) and path loss exponent values η from 4 emitters named
TX in testbed (#2)

TX1 TX2 TX3 TX4
PL(d0) 54.5084 52.1867 36.8205 47.9144
η 1.3544 1.5651 2.4060 3.0286

parameters computed using maximum likelihood over the full measurements set and for all
possible receiver positions in the testbed (#2).

Results from Figure 3.36 and Table 3.5 confirm previous experiments results: RSSI values should
be considered separately related to each emitter. As the average values of the RSSI samples
measured at different positions do not always decrease as a function of the distance, we confirm
that the parameters of the propagation model at least differ from one emitter to one another,
which prevents from treating all emitter nodes equally in a statistical estimation. A localization
algorithm should therefore takes into account the possibility that the signals obtained from one
emitter may be affected by such effects and should not be taken into account in the localization
process. We also verify from the blind mobile receiver node the non-presence of lots of outliers or
abrupt change or even large gap between the measured RSSI values, only very few outliers were
remarked. Hence we consider a node among the others in a network can be affected by abnormal
behavior due to the multiple paths and indoor signal perturbation factors. Then the effects of
corrupted data sample coming from that abnormal node are reduced following a probability
distribution (cf. Chapter 4).

Characterization of measured RSSI variation and non-conformity of data smoothing
methods for filtering Figures 3.37 and 3.39 introduce experiment results obtained from three
different testbeds. We simultaneously measure on 3 receivers nodes the RSSI values sent by an
emitter node located in testbed (#5) (cf. paragraph 3.3.5). The two first receivers nodes are
located in the same testbed (#5) as the emitter node: the first receiver is distant to 3.65 m
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from the emitter node and the second one is separated from 7.3 m of the emitter node across
a desk. The third receiver node which is 18.69 m away from the emitter node, is situated in a
meeting room of size 7.20 m width, 7.12 m long and separated to the emitter node by the Lincs
isup corridor testbed. The meeting room is often used by about fifteen people.

Since the RSSI values are mainly affected by noise, we propose to smooth such noisy data
measured on a receiver node using Exponentially Weighted Moving Average (EWMA) statistics
methodology [154, 155]. EWMA is always used to detect small shift through changes accu-
mulated under exponential smoothing in a sequence of independent samples [156]. EMWA
technique is not sensitive to normality assumptions [157]. The EWMA technique gives greater
weight to recent measurements samples as its value is regularly computed. This shows the effect
of process improvements. The EWMA approach introduces the weighted parameter α called the
smoothing factor/parameter. Under the condition that 0 < α ≤ 1, the weight parameter α is
viewed as the way to determine how the prior data are smoothed. To this aim, when the value
of α is close to 1, the dampening of the data is quick and when the value of α is close to 0, the
dampening is slow. In other word, the value of α parameter should be selected depending on
the one that gives the smallest mean squared error (i.e MSE) and that best smooth the original
curve. The choice of smoothing parameter α is carefully chosen to make the chart more or less
sensitive to these fluctuations.

According to our experimental results the weight parameter α = 0.01 is the one that gives
better results compared to the other tested weight parameters in the interval [0; 1]. IIn fact, we
first measure the RSSI values on a receiver node from data sent by the three aforementioned
emitter nodes that are respectively distant from 18.69 m, 7.3 m and 3.65 m to the receiver node.
We then apply the EWMA approach to filter the measured RSSI values while estimating the
corresponding distance using the log-normal shadowing model to validate the filtered data. To
this aim the measured RSSI data are filtered in accordance with a reference distance, a reference
path loss computed according to the Free Space Path Loss formula presented in equation (2.2)
in Chapter 2. The estimated distance is then computed according to the log-normal shadowing
model presented in Section 3.4; the filtered RSSI values as well as the corresponding variance
σ2 based on EWMA. At the end, the value of the weighted parameter α is the one that gives
a better estimate of the distance that separates an emitter node to a receiver node in line with
the true distance separation. The variance computed within EWMA formula is expressed as:

variance_ewman = (α)
(rssiV alue−mean_RSSI )2

total_number_RSSI_values
+ (1− α)variance_ewman−1

The used algorithm is shown below:

#The smoothed RSSI and var iance computation us ing s t a t i s t i c s EMWA technique
i f ($i ≤ $RSSI_values_number ) {

($timeV alue, $rssiV alue) = split(//, $line) ;

i f ($i == 0) { #The f i r s t l i n e o f the f i l e conta in ing the measured
#RSSI over time at any d i s t anc e

$ewma_prev = $rssiV alue ;

$variance_ewma_prev = $α2 ∗ ($rssiV alue−$mean_RSSI)2
$RSSI_values_number + $∆

$∆ = ((1− $α2) ∗ $initial_variance) ;

$smoothed_RSSI = $ewma_prev ;
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$σ = $variance_ewma_prev ;
$PL(d) = −($smoothed_RSSI) ;

}
#After the f i r s t l i n e o f the f i l e conta in ing the measured
#RSSI over time at any d i s t anc e
e l s e {

#Smoothed RSSI va lue s from EWMA method
$ewma2 = ($α ∗ $rssiV alue) + ((1− $α) ∗ $ewma_prev) ;
#σ c a l c u l a t i o n us ing the var i ance formula
#and smoothed RSSI va lue s

$variance_ewma = $α2 ∗ (
($rssiV alue−$mean_RSSI)2

$RSSI_values_number ) + $δ

$δ = ((1− $α2) ∗ $variance_ewma_prev) ;

$ewma_prev = $ewma2 ;
$smoothed_RSSI = $ewma2 ;

$variance_ewma_prev = $variance_ewma ;
$σ = $variance_ewma ;
$PL(d) = −($smoothed_RSSI) ;

}

$i = $i+ 1 ;
}

# The d i s t anc e computation
#The wavelength computation from the speed o f the l i g h t and
#frequency o f the channel : 2 . 4 Ghz
$λ = 3∗(108)

2.48∗(109) ;
#The r e f e r e n c e path l o s s

$PL(d0) =
(($Pe∗$receiver_antenna_gain∗$emitter_antenna_gain∗($λ2))

(((4∗π)2)∗($d20)))
;

$resultat = ($PL(d)−$PL(d0)−$σ)
10∗$η ;

# The cor re spond ing d i s t anc e
$distance = (10$resultat ∗ $d0) ;

Where α and α2 are the EWMA smoothing factor applying to calculate the smoothed RSSI
values and variance. Using a constant smoothing factor (also named a weighted parameter) of
value α = 0.01 leads to an estimated distance whose value is closer to the real distance. This
is valid for the three separation distances between the emitter sensor node and three receivers
nodes. Moreover, we generally observed almost the same results when using α = 0.03 (cf.
Figure 3.37). However, it should be noted that the value of the used reference distance change
the obtained results. Indeed, when applying the recommended reference distance of value d0 = 1
m [22] an estimated too large distance is obtained compared to the current distance. In addition
the same reference distance value can not be applied for a good estimate of the corresponding
current distances of 3.65 m, 7.3 m and 18.69 m. For instance, with a current distance of 18.69
m, when applying α = 0.01 or α = 0.03, Ge = Gr = 1, d0 = 0.1 m, we obtain an estimated
distance of 18.3725 m. This resulted estimated distance value corresponds to the one that is
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(a) Measured and non-filtered RSSI values at distance of
18.69 m

(b) Filtered RSSI values at distance of 18.69 m: α =
0.01, d0 = 0.1 m

(c) Filtered RSSI values at distance of 18.69m: α = 0.03,
d0 = 0.1 m

(d) Filtered RSSI values at distance of 18.69 m: α = 0.3,
d0 = 0.1 m

Figure 3.37: RSSI in function of the distance collected by a receiver node located in a different room and
distant to 18.69 m from an emitter node

the most closer to the current distance when testing several values of α, d0 and η. However, as
shown in Figure 3.37 the same estimated distance value is obtained when applying a weighted
parameter value of α = 0.3. But this weighted parameter value of α = 0.3 displays distances
much closer to 18.69 m compared to α = 0.03. Instead this result is not validated for the two
other real distances of 3.65 m and 7.3 m while our goal is to find a weighted parameter value α
that is adaptable to different indoor environments.

α = 0.03 or α = 0.01 and d0 = 0.04 m lead to an estimated distance of 7.33 m which almost
corresponds to the true distance of 7.3 m as reported in Figure 3.38. Instead, when applying
a reference distance d0 = 0.1 m as presented in Figure 3.38 we observe an erroneous too high
estimated distance of value 18.35 m. We come up with this conclusion: the greater the refe-
rence distance decreases, better the result converges toward a better distance estimation. This
hypothesis is also verified for the data measured at the real distance of 3.65 m as presented
in Figure 3.39. Such figure shows an estimated distance of 4.9924 m. When d0 = 0.1 m, we
note an erroneously higher estimated distance of about 12.480 m as presented in Figure 3.39. A
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(a) Measured and non-filtered RSSI values at distance of
7.3 m

(b) Filtered RSSI values at distance of 7.3 m: α = 0.01,
d0 = 0.1 m

(c) Filtered RSSI values at distance of 7.3 m: α = 0.03,
d0 = 0.1 m

(d) Filtered RSSI values at distance of 7.3 m: α = 0.01,
d0 = 0.04 m

Figure 3.38: RSSI in function of the distance collected by a receiver node in the same room and distant
to 7.3 m from an emitter node
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(a) Measured and non-filtered RSSI values at distance of
3.65 m

(b) Filtered RSSI values at distance of 3.65 m: α = 0.01,
d0 = 0.1 m

(c) Filtered RSSI values at distance of 3.65 m: α = 0.03,
d0 = 0.1 m

(d) Filtered RSSI values at distance of 3.65 m: α = 0.01,
d0 = 0.04 m

Figure 3.39: RSSI in function of the distance collected by a receiver node in the same room and distant
to 3.65 m from an emitter node
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Figure 3.40: RSSI distribution at one receiver node on data coming from 30 emitters nodes at SensLAB
Rennes platform testbed during 20 minutes: blue geometric patterns are measured RSSI and red asterisk
pattern are a fitted log-normal distribution shape

better result requires a more smaller reference distance value. The obtained estimated distance
of 4.9924 m is even an inappropriate estimation according to the real distance of 3.65 m.

With EWMA, we have demonstrated the need to take into account different values of reference
distances according to three different positions of three receiver nodes in two different environ-
ments to estimate the corresponding distance from the measured RSSI. The reference distance
value is taken into account when computing the value of the reference path loss. This shows at
the same time the non-conformity of data smoothing methods based on exponential weighted
moving average to smooth the measured RSSI values for adaptable technical filtering in any
indoor environment. In fact, there are lots of obstructions which are introduced by shadowing
effects while disrupting the direct path between a source named an emitter and a destination
i.e a receiver. Obstacles can be obstructing objets in the office, furniture, people moving inside
the environment. The direct path is therefore recovered with other paths called non line of sight
paths. Recall from our experimental results that the constant smoothing factor value of α = 0.01
or α = 0.03 are the values of the constant smoothing factor that lead to better results compared
to the other parameters in the interval [0; 1]. α = 0.01 or α = 0.03 better fit the original curve
and result in less errors on distance estimation. The use of time series analysis helps to better
characterize variations observed on measured RSSI values while confirming the dominant effect
is the multipath.

Furthermore we realized several experiments in SensLAB Rennes platform testbed. Achieved
results show that even if data are mostly altered due to obstructing factors in the indoor en-
vironment, there can be some distance information as the RSSI distribution almost follows a
log-normal distribution as shown in Figure 3.40.
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3.5 Summary and discussion

Based on deployment strategy, we have conducted several experiments in which we have studied
in detail RSSI behavior in indoor environment. From experimental results, even with a quasi
absence of antenna directivity and not entirely omnidirectional radiation pattern, irregularities
and high dispersion obtained from reported RSSI values depend on both: the deployment ori-
entation and position of the antennas of the emitter/landmark node and receiver/blind mobile
node. This assumption is confirmed by experiment in an anechoic chamber and in several re-
alistic indoor testbeds. In short, what is important is the relative orientation of the antennas
one with regards to the other. This result remains valid in all the testbeds we collected data on
and are considered for all kind of devices. Results also affirm the electronics devices we manipu-
late are not fully omnidirectional, nor errorless. Consequently, we suggest an explicit validation
of datasheet technical information by performing additional tests in case of electronic sensor
devices with antennas features. The proposed RSSI-based localization algorithms presented in
Chapter 4 integrate these results. Recall, in a IEEE 802.15.4 network, a landmark is an emi-
tter node with known position. A blind mobile node is a receiver node trying to determine its
unknown position or coordinates.

We have experimented what should be the behavior of RSSI values in small time periods. Re-
sults in all testbeds report very dispersed and fluctuated RSSI readings. Different ranges of
RSSI values provide distance information with different levels of accuracy. We also studied the
difference between a large and a small room. Our experimental studies have shown a certain
dependence on the material: RSSI readings are also affected by hardware quality and the battery
pack of Tmote Sky node produces attenuation.

Other independent experiments conducted in a corridor and in three different testbeds size in
indoor environments and presented in Section 3.3 demonstrate the necessity to learn each emitter
node separately; if not, there is no correlation between measured RSSI values and distances. On
the receiver node, only when considering the RSSI readings separately from each emitter node,
a behavior that matches the log normal shadowing model pattern is able to be verified: RSSI
decreases as a function of distance. Considering RSSI readings from each landmark separately,
we were able to detect that, an emitter node among the others can be affected by abnormal
behavior due to its environmental location. As RSSI is greatly affected by the environment,
a node may not be in a good propagation conditions. In consequence, when considering all
together all emitter nodes regarding the same receiver node position, RSSI readings on a receiver
from data packets sent by this abnormal node could be a lot dispersed compared to the others.
Consequently the overall distribution may be biased and thus deviates from normal pattern.

According to our experimental results and those of Heurteufeux et al. [7] conducted on SensLAB
large scale experimental sensor nodes platforms, RSSI over a single link is not always bidirectional
(about 10%) even if communication links are mostly symmetrical when using 0 dBm as a
transmitting power. Indeed, because of multipath, attenuation is different depending on how
emitter and receiver nodes are oriented with respect or not to the furniture. This suggests and
confirms a need to take into account in the localization algorithm the environmental orientation
of the landmarks and of the receiving blind node antennas. We also demonstrated and argue
the parameters of the propagation model should be estimated according to each emitter node
environmental location and even more those values should be re-estimated for any environment
and not kept constant.

In the presence of multipath, we additionally validated through measurements from different
indoor testbeds 3.4.4 the non-conformity of the use of data smoothing methods based on expo-
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nential weighted moving average to smooth the measured RSSI values for adaptable technical
filtering in any indoor environment.

The analysis of corresponding results in different indoor testbeds emphasizes the behavior of
RSSI values in indoor environments to not fully correlate with the use of the log-normal sha-
dowing propagation model. In fact, the usage of the log normal shadowing model suggest the
RSSI value to decrease with distance, on the other words attenuation is an increasing linear
function of the distance. The log-normal shadowing propagation model is supposed to be more
relevant then what we observe: there is somehow existing behavior that matches the log normal
shadowing model pattern when separating the RSSI readings according to each emitter node
position; RSSI decreases as a function of distance. This assumption is remarked by the whole set
of results presented in this document. However, the dispersion between RSSI values is still very
important and cannot lead to good accuracy on the prediction of the distance computed from
the linear regression. Other contributions like [137, 54, 68] consider that, in an indoor context,
signal attenuation increases monotonously with the distance. That observation may not be valid
anymore in presence of multi-path propagation effects. We proposed to alleviate the multipath
effects by implementing an alternate model named the Biased Log-Normal Shadowing Model or
B-LNM.
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Chapter 4

Proposed RSSI-based one hop
localization algorithms:

Indoor localization accuracy
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4.1 Introduction

Measurement campaigns and results obtained from several indoor experimental testbeds demon-
strate the greater variability of the RSSI measure because of the irregular pattern of the indoor
radio channel propagation. Several parameters should be take into consideration when desi-
gning an indoor localization algorithm: the layout of the room, the smaller covered distance,
the construction materials, the furniture pieces and their arrangement, the obstacles, the non-
omnidirectional pattern antenna. The radiation pattern drawn in Chapter 3 is not entirely
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uniform, a few directions experience a strong attenuation due to electronics on one of the board.
These are multiple factors that impact the ranging error or the estimation of the separation
distance between a wireless emitter node and a wireless receiver node.

Consequently some deployment positions are more favorable than others: one deployment po-
sition of the wireless sensor nodes antennas (TowardCenter perpendicular) have a better po-
larization compared to the others. That is the emitter antenna deployment with respect to a
receiver antenna should additionally be considered, in terms of identifying the emitter position
which provides a better linear relationship between measured RSSI values (i.e. less variation on
reported RSSI values) and the corresponding separation distance.

Among the four studied deployment positions with respect to a wireless emitter node antenna
and a wireless receiver node antenna, one deployment position (TowardCenter perpendicular)
acquires a better polarization, less dispersion of RSSI values and best linearity between RSSI
and distance. This deployment is used in our present localization architecture scenario. Despite,
notice that as presented in Chapter 3, the other deployment strategies while showing few more
fluctuations and less polarization, still have nearly the same trend as the selected one.

However, the high difference between corner landmarks and other landmarks indicates that
reflections on the walls, from furniture pieces have a similar effect as having an even less circular
antenna diagram. In fact, depending on the location in the room, the behavior of the signal
propagation differs greatly. These results and the ones from [133, 147, 134, 135, 5] confirm that
most actual wireless sensor node cannot be considered as omnidirectional in an indoor scenario.

Furthermore, our actual results in different indoor environments (cf. Chapter 3) have demon-
strated the localization performance depends on the environment and the used model to infer
distance from attenuation. Moreover, in addition of accumulated errors (ranging errors) during
the distance measurement phase, the localization calculation techniques have an impact on the
final localization accuracy.

Classical localization algorithms make use of a set of reference nodes, usually called landmarks,
which know their own position and transmit this information to the mobile node.
A mobile willing to find its own position can then combine these coordinates with, for example,
evaluation of the distance that separates it from each landmark and applies then trilateration
or multilateration techniques. If landmarks are not aware of their own position, the computed
position can still be deduced but it will remain relative to the local scene.

Recall, since no additional devices and no synchronization between nodes are needed compared to
AOA and TOA approaches, the RSSI ranging measurement method involves an overall low-cost
wireless sensor network localization approach.

However as demonstrated in Chapter 3, the range-based RSSI measurement in indoor, is mostly
affected by environment variations and multipath fading. Acquiring ranging information here-
after, a localization computation technique uses such information as input to compute the co-
rresponding 2D or 3D coordinates. As mentioned in Chapter 2.2, in a case where a node is in the
communication range of another node, both nodes are neighbors each other and their distance
separation can be estimated as one-hop ranging.

However, the achieved accuracy of most range-free algorithms are not well suitable for the use in
indoor environment. Achieved accuracy is around more than 3 m using more than 80 landmarks
for instance with DV-hop in [29]. Accuracy of 2 m is reported in [92] with 75 landmarks in a
map of dimensions 50 m by 50 m.

Both algorithms use the radio connectivity to compute the number of hops as the localization
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metric. In [86], ROCRSSI only compares raw measured RSSI values to find out the radio
pro-ximity between the nodes. Evaluated in an indoor testbed of size 40 m by 30 m, the
ROCRSSI algorithm reports an average localization error of 5.18 m using three landmarks and
11 receiver nodes positions. In addition, most of these range-free algorithms are obtained in
simulation. Besides, as discussed in Chapter 3 and demonstrated in [127, 123, 136, 5], most of
the simulated indoor RSSI-based localization algorithms achieve poor accuracy when deployed
in real environment as the indoor environment is a dynamic and unpredictable environment in
which the radio signal varies greatly.

Furthermore, in most proposed RSSI-based ranging algorithms using connectivity informa-
tion [7], the accuracy is not good enough for implementation in indoor environments (e.g. a
2D localization error of about 2.2 m is obtained in 11 m by 9 m indoor area) when regarding
the number of used landmarks.

Besides, because of indoor environment irregularities that affect the RSSI, most relevant pro-
posed RSSI-based localization algorithms with ad-hoc or 802.15.4 wireless sensor architectures
summarized in Table A.1 in appendix A do not provide a sufficient localization accuracy (cf.
Table A.2).

Consequently the RSSI-based indoor localization accuracy still need to be improved. As a result
in this chapter we consider the design of RSSI-based indoor localization algorithms. However,
a design of such localization algorithm is related to the consideration of different constraints:
the type of positioning mechanism (one-hop or multihop) and the amount of communication
messages needed to perform localization within the wireless sensor network under the require-
ment of energy conservation. We should also consider the choice between a local or a global
coordinate system, such as the global positioning system (i.e. GPS). However, recall that GPS
signals are mostly attenuated in indoor environment. GPS receivers are acquired at an expensive
cost and use high amounts of energy due to the GPS continuous location update [28, 31, 158].
Consequently, GPS is not suitable to be used in wireless sensor networks for indoor location. In
the case of local coordinates systems, there can be a need to have some reference nodes with
known positions.

We are looking for adaptable localization mechanism to compute one or more positions from
the estimated distances based on RSSI measurements. This problem is considered from different
points of view: geometrically by solving linear system of equations like trilateration and trian-
gulation [159, 5, 6, 88], multilateration and multiangulation [88, 1, 20] and min-max [30, 160, 6];
statistical machine learning [123, 161, 162]; statistical point of view using signal processing
with a parametric model such as Maximum likelihood [163, 5, 164, 6]; analysis of a vector
subspace of matrix (e.g. analytical methods of principal component like Multi Dimensional
Scaling [165, 166, 167, 1, 168, 169, 170, 125]); linear optimization methods such as semi definite
programming (SDP) [168] and Discrete Stochastic Approximation (DSAL) [171, 33].

The common solution to all these mechanisms is to estimate one or several positions at the same
time in a network using the measured RSSI values and a propagation method to map measured
RSSI to corresponding distances. The estimated absolute position(s) is (are) generally relative
to the position of one or several sensor nodes selected as reference and named landmarks or
anchor nodes. In fact, the distance is a relative measure that does not depend on the considered
reference system.

After presenting each mentioned localization mechanism, we first implement and evaluate a
Maximum Likelihood Estimator (MLE)-based localization algorithm [5, 6, 164] to find out the
accuracy that can be achieved in a realistic indoor testbed. These help us to quantify the
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loca-lization accuracy. MLE is a signal processing localization mechanism based on a statis-
tical model. MLE-based localization can compute one position at each execution with some
landmarks.

We obtain a localization accuracy of 1 m in an indoor semi-furnished office testbed of size 4 m by
3 m. We then propose three other more accurate one-hop localization mechanisms/algorithms
for low-power and low-cost wireless sensor nodes.

We also implement a fully distributed one-hop RSSI based localization algorithm in which we
introduce the concept of virtual landmark. We define a virtual landmark as a blind node whose
RSSI values are involved in the localization process of its neighbors blind nodes. In addition of
RSSI values received from neighbors virtual landmarks, a blind node uses the measured RSSI
values as well as the 2D coordinates from neighbors landmarks. Finally the blind node is able
to compute itself its 2D coordinates and those of its neighbors. This distributed algorithm
only needs at least two landmarks and some neighbors virtual landmarks to be implemented.
However, in order to compare under the same conditions our proposed algorithm with multi-
lateration and multi dimensional scaling, we use four landmarks which is the minimum number
of landmarks required by localization with multilateration approach. The chapter is organized
as follows: in Section 4.2 we present the state of the art of localization mechanism. We then
validate each presenting localization algorithm/mechanism based on the theoretical log-normal
shadowing model. Section 4.2.4 is devoted to the proposed one-hop localization mechanism.
Each proposed one-hop localization mechanism is described, evaluated and compared with the
aforementioned localization mechanisms in realistic local indoor testbeds. Simulation and ex-
perimental results (in remote SensLAB large scale wireless sensor network) from distributed
localization is presented in Section 5.2. Discussion and summarization of the experimental re-
sults are progressively provided.

4.2 Reference localization algorithms

Many different techniques have been proposed to derive a position from RSSI measurements.
The RSSI measurements are commonly modeled as log-normal random variables (cf. Chapter 3
of this thesis document). Before computing the unknown position of a blind mobile node within
a wireless sensor network, we first need to select a propagation model in order to map a distance
from measured RSSI values. RSSI is viewed as the attenuation experienced by radio packets
measured by sensor nodes depending on the distance. This propagation model should represent a
good compromise between accuracy and complexity. Indeed, the algorithm has to be performed
on embedded devices and hence should not require too much computation or too much data
exchange. As mentioned in Chapter 3, among the presented propagation models, the Log-
Normal Shadowing Model (LNSM) [24], often used to model indoor propagation represents a
good compromise between complexity and feasibility. Recall that this model relates the path
loss between an emitter and a receiver PL(d) to the distance that separates these two nodes (d)
according to the following equation (4.1):

PL(d) = Pe + PL(d0) + 10.η. log10

(
d

d0

)
+N (0, σ2) , (4.1)

where Pe is the emitted/transmitted power, PL(d0) is a reference path loss (in dBm) measured
at a distance d0 (usually 1m), η is the attenuation factor of the environment, and N (0, σ2) is a
gaussian random variable with zero mean value and standard deviation σ. PL(d0) is a constant
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calibration offset, η reflects the average attenuation of the environment and σ2 reflects the effect
of shadowing (slow fading).

Recall again that the RSSI measured by a wireless receiver is the difference between the trans-
mission power and the corresponding path loss. In most of our experiments, as the transmission
power is fixed to 0 dBm, the RSSI is simply the opposite of the path loss: RSSI(d) = −PL(d).

Under this definition, when a wireless sensor node measures a RSSI value of R, the random
variable r which defines the variable RSSI(d) from the model in Equation (4.1), can be expressed
with a Gaussian distribution as r ∼ N (−PL(d0) − η10 log10 d , σ

2) whose probability density
function is:

f(r) =
1√

2πσ2
e−

1
2σ2

(r+PL(d0)+10η log10 d)
2

(4.2)

Thus, this parametrical model is used to derive the following parameters: the path loss η of
the environment, the reference power loss PL(d0) and the variance σ2) of the random effect of
shadowing. The shadowing effect could be due to the presence of an obstacle in the middle of the
communication link disturbing at the same time the direct path between an emitter node and
a receiver node. However, from the results of our experimental testbeds, if the RSSI values of
the emitters are not learned separately on the receiver, we would not verify the hypothesis that
the RSSI values decrease as a function of the distance within log-normal shadowing propagation
model in indoor environment. Thus, the log-normal shadowing propagation model parameters
are learnt separately from each emitter node position being in the communication range. In
addition, for the distributed algorithm, those parameters are learnt separately depending on
a blind node position. During the localization process, such parameters should be computed
before to derive the distance that separates any emitter node to any receiver node. Moreover,
in our strategy this pre-processing step is included in the localization process without a need of
a calibrating phase as did in [54, 172, 3].

4.2.1 Propagation model parameters estimation

The values of the log-normal shadowing propagation model parameters (PL(d0), η, σ2) are
estimated using a set of RSSI measurements coming from the landmarks. From our localization
algorithm architecture point of view, the blind mobile node is responsible at each unknown
location to collect position-related information which includes RSSI values, landmarks identifiers
and 2D coordinates, the sequence number of the received packet, etc.

While receiving position-related data, a blind node can compute online the propagation
model parameters of the corresponding environment using the regression model equations (4.5)
and (4.7) based on maximum likelihood estimation. The estimators for PL(d0) and η that corre-
spond to the regression parameter estimation is based on the least square criterion. The method
of ma-ximum likelihood is chosen to estimate those values that are more consistent with the
sample data [173]. After estimating the propagation model parameters, the blind node then
estimates its 2D coordinates using the landmarks 2D coordinates and the RSSI readings from
such landmarks. From the algorithm point of view, the propagation model parameters estima-
tion step is not an offline phase that is separated from the position estimation phase as realized
in many works [99, 3].

In addition, as demonstrated in our experimental results during measurement campaigns in
Chapter 3, such parameters depend on the environment and where the landmarks are placed
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with respect to the blind node. However, in previous research works a fixed path loss exponent
is used in the radio propagation model whatever the environment is. Only in the recent works of
LU et al. [99], the path loss exponent η is considered to vary with the environment. The authors
have demonstrated that the localization error (i.e. RMSE) is reduced from 4. 45 m when a
fixed path loss exponent is chosen to 2.13 m when using their method. The authors assumed an
indoor environment of size 18 m by 18 m using their Polygon method.

We have proposed and have implemented online localization mechanisms that first compute the
propagation model parameters according to each landmark environmental location using a set of
measurements coming from a subset of known positions that we call the learning data set. Then,
these estimated parameters are considered to find out the corresponding unknown positions.
These two-online steps included in any blind mobile node positioning process is different from
calibration. In fact these steps are computed online during the localization process and not
separated from the localization phase.

In most cases when using a calibration, RSSI values are required to be collected during an
offline phase using several sets of measurement points in the corresponding environment. These
values are then used to compute the propagation model parameters being the same constant
value (one estimated value for PL(d0), one for η and one for σ) for any involved landmarks.
In our approach, regarding one-hop localization algorithms, propagation model parameters are
first estimated by the blind mobile node itself according to each landmark position. Then, such
parameters are used by the same blind mobile node to estimate its unknown position within the
environment. Note that the number of positions and RSSI data to use for propagation model
parameters estimation are different to those used by the blind mobile node to estimate its own
position.

We assume the log-normal shadowing model (cf. the equation 4.1) for T RSSI values measured
by a wireless sensor node from signals coming from N different sensor nodes whose corresponding
distances {d1, . . . , dN} are known. The goal is to compute the set of parameters P̂L(d0), η̂ and
σ̂2 that characterize the environment. Let us define the T RSSI measurements as a vector
rn = (rn(1), . . . , rn(T )) associated to each distance dn. In this case, the random vectors rn are
considered to be independent and identically distributed (i.i.d) according to a Gaussian law of
dimension T whose components are also considered independent of each other.

If each component rn(t) of the vector rn is considered as a random variable with distribu-
tion N (−PL(d0) − η10 log10 dn , σ

2), with probability density function as in equation 4.2, the
probability density function of the vector rn is expressed as:

f(rn) =
T∏
t=1

1√
2πσ2

e−
1

2σ2
(rn(t)+PL(d0)+10η log10 dn)

2

=
1

(2πσ2)T/2
e−

1
2σ2

∑T
t=1(rn(t)+PL(d0)+10η log10 dn)

2

(4.3)

From the set of the N random vectors r = {rn}n=1,...,N and when each of them uses the
definition in equation (4.3) above, the joint probability density function of these N random
vectors is obtained as:

f(r) =
N∏
n=1

f(rn) =
1

(2πσ2)NT/2
e−

1
2σ2

∑N
n=1

∑T
t=1(rn(t)+PL(d0)+10η log10 dn)

2

(4.4)

If a sensor node collects the NT RSSI values as a set of N vectors
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{(R1(1), . . . , R1(T )), . . . , (RN (1), . . . , RN (T ))} and when assuming the parametric model
defined in equation (4.4), we estimated the set of parameters that maximize the likelihood
between the measured values and the values defined by the model. Applying the logarithm to
the expression (4.4), the problem to solve is finally expressed as:

(P̂L(d0), η̂, σ̂
2) = max

(PL(d0),η,σ2)
−NT

2
ln(2πσ2)− 1

2σ2

N∑
n=1

T∑
t=1

(Rn(t) + PL(d0) + 10η log10 dn)2

Rewriting the above expression permits to estimate the propagation model parameters
({PL(d0), η} and σ2) separately. The estimation problem is summarized under a vector form
following the vector expression below:

(α̂, σ̂2) = max
(α,σ2)

−NT
2

ln(2πσ2)− T

2σ2
||R− dα||2

where :

R =

 1/T
∑T

t=1R1(t)
...

1/T
∑T

t=1RN (t)

 d =

1 10 log10 d1
...

...
1 10 log10 dN

 α =

(
PL(d0)
η

)
(4.5)

From equation (4.5) and denoting dt the transpose of vector d, we derive the log-normal sha-
dowing propagation model parameters using the maximum likelihood estimator which also cor-
respond to the regression parameters estimation based on least squares:

α̂ = (dtd)−1 dtR then : ˆPL(d0) = α̂(1), η̂ = α̂(2) (4.6)

σ̂2 =
1

TN

N∑
n=1

T∑
t=1

(
Rn(t) + P̂L(d0) + η̂10 log10 dn

)2
(4.7)

This simplified estimation of σ2 can be extended to the case where we consider different additive
noise levels (that may disturb) for each link between sensor nodes. In such case, there would be
N different values of estimated σ2 as:

σ̂2 =

 σ̂
2
1
...
σ̂2N

 =


1/T

∑T
t=1

(
R1(t) + P̂L(d0) + η̂10 log10 d1

)2
...

1/T
∑T

t=1

(
RN (t) + P̂L(d0) + η̂10 log10 dN

)2
 (4.8)

with each entry of the vector σ2 being σ2n defined as : σ̂2n =

1/T
∑T

t=1

(
Rn(t) + P̂L(d0) + η̂10 log10 dn

)2
for n = 1, ..., N . We can then obtain the
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maximum likelihood estimator (MLE) of any distance associated to measured RSSI from signals
emitted by any landmark node.

We consider the log-normal shadowing model parameters and we obtain the estimated values
by maximum likelihood (cf. equation 4.7) at each sensor node from a network of 16 selected
nodes in SensLAB1 large scale wireless sensor platform (Rennes platform). These values are
summarized in Table 4.1. The average estimated values in the network composed of N = 16
wireless sensor nodes whose configuration is given in Figure 4.4) are PL(d0) = −61 dBm and
η = 2.1. Note that, such values also correspond to the typical indoor environment values [25].

Table 4.1: Estimation of the propagation model parameters by maximum likelihood estimator (cf. the equa-
tion 4.5 and 4.7) using the RSSI values from an experiment when 16 SensLAB Rennes sensor nodes are selected
as shown in Figure 4.5.

ID 214 176 178 193 198 218 225 232 247 249 252 253 157
PL(d0) -52.95 -60.05 -50.18 -59.88 -61.94 -59.60 -66.75 -56.31 -67.53 -52.69 -66.42 -63.03 -62.74
η 3.54 2.02 4.22 2.04 1.59 2.01 1.29 2.80 0.66 3.21 0.72 1.74 1.66
σ2 17.55 8.55 20.19 22.18 12.36 9.16 10.10 13.02 14.09 31.36 12.43 9.81 15.67
ID 163 236 244
PL(d0) -66.27 -59.92 -58.95
η 0.94 2.06 3.14
σ2 21.69 15.38 28.29

In the following, we analyze the properties of the regression estimators when applied to the
distance estimation process. Similarly to equation 4.7, we can deduce the maximum likelihood
regression estimator (MLE) of any distance d associated to RSSI measurements from data packets
received by a wireless sensor node. Assume that a wireless sensor node (receiver) measures
T RSSI values, referred to the vector R = (R(1), . . . , R(T )), from another remote emitting
wireless sensor node known as landmark and situated at distance d from the receiver wireless
sensor node. Using equation (4.7), we additionally assume the parameters of the propagation
model {PL(d0), η, σ

2} being already estimated. We defined by d̂b the biased maximum likelihood
estimator of the distance calculated as:

d̂b = max
d
−T

2
ln(2πσ2)− 1

2σ2

T∑
t=1

(R(t) + PL(d0) + 10η log10 d)2

thus : d̂b = 10
−R−PL(d0)

10η with R =
1

T

T∑
t=1

R(t)

We evaluate the impact of the parameters of the maximum likelihood estimator on the esti-
mated distance from its corresponding bias and variance values. Under the assumption that the
parameters {PL(d0), η, σ

2} are estimated, the maximum likelihood estimator of the distance d̂b
defined above is observed as a noisy version (multiplicative noise) of the true distance d. If we
substitute the values of R̄ in the above expression by the values from the propagation model
(cf. equation 4.1), we obtain the expression of the following distance estimator :

d̂b = d 10
ξ

10η , ξ ∼ N (0, σ2) with : σ2 =
σ2

T
(4.9)

The mathematical expectation E[d̂b] of the corresponding biased estimator (cf. the equation 4.9)

is computed using the property ax = eln ax and E[10αξ] = 10α
2 σ2

2
ln 10 for a given constant α :

1www.senslab.com
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E[d̂b] = Kd where : K = 10
σ2 ln 10
2T (10η)2 (4.10)

An unbiased estimate d̂ can be derived if a multiplicative term K−1 is added to the biased
distance estimator (cf. equation 4.9) as:

d̂ = K−1d̂b = K−1 10
−R−PL(d0)

10η = d 10
ξ

10η 10
− σ2 ln 10

2T (10η)2 =⇒ E[d̂] = d (4.11)

The variances of both estimators, var{d̂b} and var{d̂} (biased and unbiased respectively) are:

var{d̂b} = E[d̂2b ]− E[d̂b]
2 = d2K2

(
K2 − 1

)
(4.12)

var{d̂} = E[d̂2]− d2 = d2
(
K2 − 1

)
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Figure 4.1: Expectations of biased (db in blue color) and unbiased (dnb in red color) estimators of distances for the
following additive noise values: σ2 = (1, 5, 10, 50, 100) and different values of the number of RSSI measurements
T = 1, 2, 5, 10).

To illustrate the behavior of the two estimators, we first generate RSSI data under log normal
model in Matlab to simulate a radio communication (RSSI measurements) between two nodes
according to several distances from 1 m to 20 m with a step of 1 m. We draw a log-normal
distribution of RSSI values from a 1000 Monte Carlo independent runs based on distances that
separate two wireless sensor nodes.

Let us denote by d̂b and d̂, the respective biased and unbiased estimators of the distances d
estimated with the maximum likelihood estimator. To analyze the effects of the values taken
by both σ2 and T (the number of the RSSI measurements from an emitter sensor node) on the
estimated distances, we evaluate both the bias (Figure 4.1) and the variance (Figure 4.2) of
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estimators d̂b and d̂ at the distances ranging from [0, 20] m. More precisely, we study the impact
of dealing with more or less noise and more or less number of RSSI measurements on the bias
and the variance of the estimators of the distances.
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Figure 4.2: Biased (db in blue color) and unbiased (dnb in red color) variance estimators of distances for
the following noise values σ2 = (1, 5, 10, 50, 100) and different values of the number of RSSI measurements
T = 1, 2, 5, 10).

We observe that, when considering for instance the unbiased maximum likelihood estimator, the
distances are accurately estimated and close to the real distances values for any tested noise
level ranging from σ2 = (1, 5, 10, 50, 100) and even with a single T RSSI measurement. The bias
for the biased estimator d̂b increases with σ2 but it has a good performance when considering a
minimum number of RSSI measures (for instance from T = 5). This can be explained by the
fact that averaging decreases the gap around the real distance value. Such averaging (of RSSI
measures) is considered under high levels of noise. In fact, in the expression of the variances (cf.
the equation 4.12), K tends to 1 if the factor 2T (10η)2 increases more strongly than the value
of σ2. The variances of the two estimators have the same shape for all values of T and σ2 to
within a constant K2 defined in equation 4.12. However, in general the variance of d̂ is always
smaller than the one of d̂b. But, the difference is still imperceptible when the values of the noise
level σ2 is below 10 and quite negligible for high values of σ2 when considering T = 10 or more
RSSI measurements.

Finally we illustrated in Figure 4.3 the law of the estimated distance error when considering
both estimators: the biased d̂b and unbiased d̂ one. We choose for instance a real distance of
d = 1 m and try to estimate it using both estimators. Note that the histogram resembles to a
log-normal distribution as expected with a Gaussian shape for lower noise levels (σ2 = 1) and
when considering both number of RSSI measures (T = 1 and T = 10).
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Figure 4.3: Histograms of the errors of both the biased d̂b−d and unbiased estimators d̂nb−d for different noise
levels σ2 (1, 10 and 100) (d = 1m) when first considering one RSSI measure T = 1, then several T = 10 RSSI
measures to average.

From the histograms in Figure 4.3, we observe the distance estimator to behave like a noisy
version of the true distance d:

d̂ = d+ ζ whose : ζ ∼ LogN (µ , d2(K2 − 1))

In the case of the unbiased estimation, the noise is centered as (µ = 0), while for the biased case
the noise has a mean equal to the bias of the estimator (µ = E[d̂b]− d).

Note that with the studied localization mechanisms hereafter, we will need to use the square of
the distance. In this case, we consider the estimated values of the squared distances d2 defined
by d̂square. If the following expression in (4.11) is used as an estimator, it is biased by the
term calculated with the equation (4.12) since the term E[d̂2] is not equal to d2 but K2d2.
We multiply each estimated distance d̂ by the term K−2 to obtain an unbiased estimate of the
square of the distance d̂square as:

d̂square = 10
−R−PL(d0)

5η K−2 = d2 10
2ξ
10η 10

− σ2 ln 10
T (10η)2 =⇒ E[d̂square] = d2 (4.13)

Using the property ax = eln ax and E[10αξ] = 10α
2 σ2

2
ln 10 for a given constant α, the variance of

the resulting estimator is:

var{d̂square} = E[d̂2square]− d4 = d4
(
K8 − 1

)
(4.14)
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We have validated the theoretical model of the maximum likelihood estimator based regression
parameter estimation by studying the impact of the acquisition parameters to the corresponding
distance estimators.

We have noticed that even with additive noise on the RSSI values generated following a normal
law (log-normal distribution), the unbiased maximum likelihood estimator is able to accurately
estimate the distance. In the remainder of this thesis memory, in addition of other localization
methods like trilateration and proposed methods, we will study the localization-based maximum
likelihood estimator when firstly considering actual RSSI measurements on our local testbeds
and secondly on SensLAB Rennes platform.

Localization accuracy is obtained using both empirical measures and 1000 independent Monte
Carlo realizations (RSSI data generated with Matlab) for each localization algorithm. With
Monte Carlo realizations, data are generated in Matlab according to a log normal distribution.
Empirical RSSI measures are obtained in a network of 16 wireless sensor nodes whose confi-
guration is shown in Figure 4.4. This wireless sensor node experiment is realized in SensLAB
Rennes platform. Note that each sensor is associated to an identifier NodeID by the SensLAB
Rennes platform. Such number are used during the post-processing phase.
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Figure 4.4: Architecture of the used wireless sensor nodes (total number of 16) in the SensLAB Rennes platform

In order to illustrate/validate theoretical model and empirical values, we will use for the re-
maining sections the unbiased distance and square distance estimators defined respectively by
equations (4.11) and (4.13). We computed the first two moments (mean and variance) using
data from one selected sensor node in the network in Figure 4.4. While selecting the first sensor
(the node with identifier 214) we have computed the empirical bias and variances of the set of
estimated square distances {d̂square(1, i)}i=2,...,16 as:

Bias =(−0.002,−0.001,−0.0013,−0.002,−0.0083,−0.061, 0.0002, 0.0075,−0.003,

0.009,−0.0077, 0.0085, 0.01, 0.014, 0.021)

Variance =(0.62, 0.26, 0.55, 0.17, 1.32, 14.57, 0.016, 1.14, 0.34, 0.52, 1.30, 2.87, 2.80, 1.27, 7.91)
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The bias are almost null (near zero) as expected and their variances are near to the theoretical
expression of the equation (4.14) whose real values are:

{d41,i
(
K8 − 1

)
}i=2,...,16 = (0.77, 0.32, 0.69, 0.20, 1.50, 15.14, 0.02, 1.58, 0.42, 0.77, 1.58, 3.88, 3.88, 1.87, 11.0386)

We run experiments remotely in the SensLAB Rennes platform through the website by selecting
the list of sensors as shown in Figure 4.5 which corresponds to the configuration of Figure 4.4.
Firmware are then uploaded on the selected nodes.

Figure 4.5: Network with 16 selected wireless sensor nodes (blue circles) deployed in SensLAB Rennes platform.

To illustrate whether there is a log normal shape, Figure 4.6 presents the RSSI values measured
by 8 of the 16 sensor nodes (214, 176, 178, 225, 232, 163, 236 and 244 (cf. Figure 4.4)) depending
on the real distance between each of the 8 nodes and the nodes related to the RSSI received
packets during the acquisition time. We draw as a function of distances, the RSSI values
measured between 8 sensor nodes knowing that each of the node has an emitter and a receiver
feature. In most cases, the measured RSSI values do not decrease under a normal distribution
as the distance increases.

Figure 4.7 details the number of packets received between 16 sensor nodes named: 157, 163,
176, 178, 193, 198, 214, 218, 225, 232, 236, 244, 247, 249, 252 and 253. We can observe that
the sensor with the identifier 157 is not communicating (not receiving messages) with the sensor
nodes 176, 218 and 252. No packet is received from the sensor 176 while this last is receiving
packets from the other 11 sensor nodes. This can be explained by the fact that the sensor node
176 is not in a favorable propagation condition, thus the data message it sends is mostly affected
by noise. Instead, the following sensor nodes with identifier 178, 193, 198, 225, 232, 247, 249,
253, 163 and 244 receive packets from all other sensor nodes except the one with the identifier
176.

In order to illustrate the latter distance estimator applied with real data, Figure 4.8 shows the
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Figure 4.6: RSSI values measured from 600 data packets received at each sensor node depending on the distance
between the sensor nodes. Each of the 8 different markers corresponds to a selected sensor node in SensLAB.

Figure 4.7: Table of number of packets received at each sensor node (in red the landmarks nodes) from data
packets coming from the other sensor nodes during an experiment in SensLAB Rennes platform where each sensor
node receives until 6000 packets. Given a value in line i and column j we obtain the number of received packets
at sensor node i coming from sensor node j.

estimated distances by 8 of the 16 sensor nodes in the network: ( 214, 176, 178, 225 232, 163 236
and 244). Distances are estimated using the RSSI data received at each sensor node according
to the expression of the unbiased estimator of distances (cf. equation (4.11)).
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Figure 4.8: Estimated distances d̂ (blue markers) using the data received at 8 sensor nodes. The black straight
line corresponds to the true distance d.

4.2.2 Standard methods

4.2.2.1 Random localization

Random Localization (RL) process uses statistical Monte Carlo approach to draw random coor-
dinates according to a uniform distribution over the whole room corresponding to each testbed.
This random localization process is used to evaluate the contribution of RSSI under the
assumption of the Gaussian distribution. A full description of Monte Carlo algorithm is available
in [174].

Monte Carlo method is a algorithm considered from a statistical point of view. It consists of
generating a large number of independent realizations (set of random samples) under a given
distribution. For instance, it can be applied to represent the best distribution of RSSI according
to a log-normal shadowing model.

4.2.2.2 Localization mechanism based on geometrical techniques: Trilatera-
tion [159, 5, 6, 88]

In this section we recall the main methods used to solve the localization problem from a geo-
metrical point of view. Some of them appeared to be implemented in the GPS localization (i.e.
trilateration). Such methods are characterized by the need of a minimum number of landmarks
to solve the localization problem. Localization mechanism based on a geometrical approach uses
a linear equation system. They are based on the principle of circles intersection [88, 1, 20].
Each blind mobile sensor node aiming to compute its position needs to be in the communi-
cation range of at least 3 non-collinear landmarks nodes in two-dimensional case. The formal
mechanism based on this geometrical approach is the trilateration.

Distance measurements are obtained from the received signals through the measured RSSI and
as long as the log-normal shadowing propagation model is assumed. With trilateration, the
resulting position of an object depends on the estimation of the distance and the positions of
the landmarks. Trilateration uses the geometric properties of access points (or reference nodes)
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locations to estimate the location of a blind mobile node. Moreover, due to internal factors
disturbances, this technique requires a precise and predictable relationship between distance
and the measured RSSI. We defined dj as a distance between the landmark j and a given blind
node willing to localize itself. With trilateration, this distance leads to the equation of a circle
whose center is the landmark j. In that case the blind node can estimate the distance dj through
RSSI values measured on data packets sent by the landmark j.

Instead, in the context of min-max which is another localization mechanism based on geometrical
technique and presented in appendix F, the estimation of this distance dj conducts to the
equation of a quadrilateral.

Two estimated distances dj , from two different landmarks will therefore lead to two equations
of circles for trilateration method. And so on, as shown in Figure 4.9, three estimated distances
from three different landmarks lead to the intersection of three circles. In the ideal case, the
intersection of three circles for trilateration leads exactly to the unknown position of the blind
mobile node. In the case of an accurate trilateration mechanism, two circles will intersect in two
points and the blind mobile node 2D coordinates are determined using a third circle according
to a third nearest landmark.

Such geometric-based localization method requires a small number of computations and co-
mmunications and are effective when landmarks are well placed. In general, emplacement of
landmarks are the corners of the surrounding area in which the sensor nodes are located, ac-
cording to the results in [86, 175].

There are two variants for the trilateration mechanisms: the range measurement techniques (also
known as lateration) and the angulation-based techniques. The Range Measurement Techniques
or lateration is based on distance measurements. It considers the position of an object by
measuring its distance from multiple landmarks/reference points. In two dimensional case (2D),
you need at least three landmarks/reference points and a target named blind mobile node while 4
landmarks/reference points and at least one blind mobile node are required in three dimensional
case (3D). However, as described in many papers, if the antenna array of sensor nodes is above
the blind mobile node, two reference points are enough in 2D environment and three reference
points in a 3D one. Distance computation is possible with metrics like the Received Signal
Strength Indicator (RSSI), the Time of Arrival (ToA) and its variant. Such localization metrics
are presented in Section 2.2. A more general overview can also be found in [176]. Notice in the
case of trilateration, the radius rj of any circle j is supposed to be equal to dj . Using the known
positions (xj , yj) of each landmark and the distances rj , the blind mobile node position results
in solving the following systems of three equations in 2D or 3D case:
3D positioning:


(xBN − x1)2 + (yBN − y1)2 + (zBN − z1)2 = r21
(xBN − x2)2 + (yBN − y2)2 + (zBN − z2)2 = r22
(xBN − x3)2 + (yBN − y3)2 + (zBN − z3)2 = r23

 .

2D positioning:


(xBN − x1)2 + (yBN − y1)2 = r21
(xBN − x2)2 + (yBN − y2)2 = r22
(xBN − x3)2 + (yBN − y3)2 = r23

 .

To find the absolute position in three dimensional (3D), one can assume that the centers of the
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spheres lie on the z = 0 plane (i.e. zi = 0 for i = 1, 2, 3). A reference coordinate system with
the origin at (0, 0) is taken at one of the centers of the circles. In our case, we have chosen the
first landmark as the origin of the reference coordinate system and we have chosen the second
landmark passing on its X-axis. The position of the other landmarks and regular wireless sensor
nodes including all blind mobile nodes are related to this reference system. Hence, the relative
positions of the three centers of the three circles can be expressed from this reference coordinate
system as: x′1 = (0, 0), x′2 = (x2, 0) and x′3 = (x3, y3)

The positions on this reference system are expressed according to a translation t and a rotation
matrix R from the absolute system as follows:

(x′BN , y
′
BN ) = [(xBN , yBN ) + t]R

with : t = −(x1, y1) , R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
et θ = arctan

(
y2−y1
x2−x1

) (4.15)

The above linear system of equations are formulated in this reference coordinate system as:

x′2BN + y′2BN + z′2BN = r21
(x′BN − x′2)2 + y′2BN + z′2BN = r22
(x′BN − x′3)2 + (y′BN − y3)2 + z′2BN = r23

Then the solution (x′BN , y
′
BN , z

′
BN ) is the relative position to the selected reference coordinate

system and is given by:

x′BN =
r21 − r22 + x22

2x2

y′BN =
r21 − r23 + x23 + y23

2j
− i

j
x′ (4.16)

z′BN = ±
√
r21 − x′

2
BN − y′2BN

Considering a two-dimensional case, the absolute position of the initial system (x, y) is obtained
from the inverse transform of the relative position (x′, y′). The absolute position of the blind
mobile node (xBN , yBN ) is obtained as: (xBN , yBN ) = (x′BN , y

′
BN )Rt − t. However note that

the ambiguity in the sign of the z coordinate should be resolve when the third dimension is
considered.

However, in practice, measurements of three distances (d1, d2, d3) are tainted by error, because
of the noise due to the phenomena of indoor disturbance. Consequently, the intersection of the
circles result in an area instead of a point, or in some cases there could not be intersection at all.
Assuming that the distances are estimated with noise from the RSSI measurements according
to the log-normal shadowing model. In Figure 4.9 we illustrate and example with estimated
distances from the log-normal shadowing model where PL(d0) = 0dBm.

Another drawback of this method is the need of the rotation angle θ of the coordinate system.
A possible option may be to have an angle of arrival (AOA) measurement between the first
two landmarks nodes, which is then sent to the other landmarks in the system. However, these
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Figure 4.9: Intersection of three circles when considering the center of the first circle as a reference (0, 0), its
horizontal axis intersecting the center of the second circle: (x2, 0) = (1.5, 0). The third circle is centered at
the coordinates: (x3, y3) = (0.75,−0.6614). Example of a noisy environment in which the intersection point
(unknown position of the blind mobile node (x′BN , y

′
BN ) lies on the colored area) does not accurately measure

the radii (d1, d2, d3) but erroneous distances: (d̂1, d̂2, d̂3).
.

steps are implicit when taking one more landmark as a reference and include its information
in the system of equations to be solved. This is considered in the version of trilateration and
multilateration we have implemented.

In most cases, in a real environment, a precise measurement of the three distances (r1, r2, r3)
are not obtained but a noisy version. Assuming these distances (r̂1, r̂2, r̂3) follow the noisy log-
normal shadowing model and estimated from the RSSI measurements with PL(d0) = 0dBm; we
define:

r̂i = ri10ξi with : iid ξi ∼ N (0,
σ2

(10η)2
) , i = 1, 2, 3 (4.17)

This expression defined in equation 4.17 holds for any constant α, E[r̂αi ] = rαi K
α2 with K =

E[10ξi ] = 10ln 10σ2
i /2. The estimated position (x̂′BN , ŷ

′
BN ) of the blind mobile node being in

the colored field as presented in Figure 4.9 can be obtained from the expressions (4.16) with
(r̂1, r̂2, r̂3).

An estimation of the relative position (x̂′BN , ŷ
′
BN ) is obtained which is generally biased and

whose resulting mathematical expectation is:
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E[x̂′BN ] =x′BN + (K4 − 1)
r21 − r22

2x2
(4.18)

E[ŷ′BN ] =y′BN + (K4 − 1)(
r21 − r23

2y3
− x3
y3

r21 − r22
2x2

)

It is observed from the expressions in equation (4.16) that the coordinates are no longer inde-
pendent each other and since the coordinate ŷ′ depends on the component x̂′, there is a non
null correlation of the crossed term E[(x̂′ − E[x̂′])(ŷ′ − E[ŷ′])] which appears in the covariance
matrix of the estimate.

Note that a position has two coordinates (or components or dimensions) and is represented by
two variables that we have denoted x and y. The positions (x, y) is represented in an absolute
coordinate system where the origin is (0, 0). As we get estimated values, the estimated position
is denoted by its estimated coordinates x̂ and ŷ. Taking one of the landmarks as the origin, we
compute a relative estimated position whose estimated coordinates are denoted by x̂′ and ŷ′.

These estimated coordinates, which are often affected by noise, are modeled as random variables
characterized by their expectations (thus the bias) and their covariances (the variances when
the cross term E[(x̂′ − E[x̂′])(ŷ′ − E[ŷ′])] is zero, i.e the variables are independent).

Therefore, if we want to estimate the position (two coordinates (x, y)) with the trilateration
method represented in a separate orthogonal Cartesian axis (for two independent coordinates),
we observe that the values are not represented independently because the dimension of the
estimated value ŷ′ depends on the value of the estimated x̂′ dimension or vice versa (if we
get first ŷ′ as a function of x̂′). The empirical results have demonstrated that the cross term
E[(x̂′ − E[x̂′])(ŷ′ − E[ŷ′])] is not null and thus the axes are not orthogonal. For example, in
the x direction, if the channel is affected by a noise, it may affect the estimated value for the
coordinate y. In the case if one is interested by the y coordinate for some reason, for example
when tracking a blind node, the estimated 2D coordinate will be biased. However, trilateration
is a simple with low computational cost localization method.

In addition, when considering the expression in equation (4.18) there is a null bias in two cases:
for K → 1 (low noise environment (ξi ∼ 0)∀i ) or when the landmarks are equidistant from
the blind mobile node with unknown position (that is r1 = r2 = r3 = r). In the second case
(equidistant one) the equations 4.16 are simplified giving the unknown position coordinates to
estimate as (x′, y′) = (x22 ,

x23+y
2
3−x3x2
2y3

). Then, the components of the estimated position can be
written as a noisy version of the true values such:

x̂′ =x′ +
r2

2x2
(102ξ1 − 102ξ2) (4.19)

ŷ′ =y′ +
r2

2y2
(102ξ1 − 102ξ3 − x3

x2
(102ξ1 − 102ξ2))

The covariance matrix computed as E[(x̂′BN−x′BN , ŷ′BN−y′BN )t(x̂′BN−x′BN , ŷ′BN−y′BN )] results

117



in:

K8r4

2
(K8 − 1)


1
x22

1
2y3x2

(1− 2x3
x2

1
2y3x2

(1− 2x3
x2

) 1
y23

(1− x3
x2

) +
x23
x22

)

 (4.20)

These expressions are evaluated using the example in Figure 4.9 with values r = 1, x2 = 1.5,
x3 = 0.58 and y3 = −1.65 and for different values of σ2. We illustrated in Figure 4.10 that when
considering the trilateration unbiased estimator of the distance, the mean squared error of the
estimated positions are nearly the values of the variances defined by the theoretical expressions
in (4.20).
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Figure 4.10: Theoretical values of the variances of the two coordinates x̂′ and ŷ′ and its covariance x̂′−ŷ′ obtained
with the expression (4.20); and with their empirical values from 1000 independent Monte Carlo realizations (RSSI
data generated with Matlab) for the estimated distances (r̂1, r̂2, r̂3) and when considering different values of σ2.

We also demonstrated in appendix F that the trilateration localization mechanism is more
accurate but less robust against the presence of noise than Min-Max localization algorithm.
Note additionally, when there is no intersection between the involved circles according to RSSI
measurements from three landmarks when using trilateration, the blind mobile node will not be
able to estimate its 2D coordinates.

RSSI-based indoor localization using the trilateration approach (named 3later) Be-
low is the trilateration algorithm we implement from the equation of the log-normal shadow-
ing 4.1:

di = d0.10
PL(d0)−PL(di)

10.η (4.21)

Let us denote by di the distance that separates a blind node to any landmark node i with
coordinates (xi, yi); dj the distance that separates the same blind node to another landmark j
with coordinates (xj , yj). We define Ri,j , the distance ratio between two landmarks nodes i and
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j. If dk is the distance between the blind node and a third landmark k with coordinates (xk, yk),
we can deduce:

di = Ri,jdj . di = Ri,kdk (4.22)

Note that the equation di = Rj,kdk can be easily obtained from the above two relations defined
in the equation 4.22.

Replacing di, dj and dk by their expression of euclidean distance and by squaring: d2i = R2
i,jd

2
j

and d2i = R2
i,kd

2
k, we obtain the following two forms of equations of two conical:

(x−xi)2+(y−yi)2) = R2
i,j(x−xj)2+R2

i,j(y−yj)2 (x−xi)2+(y−yi)2) = R2
i,k(x−xk)2+R2

i,k(y−yk)2

By developing the expressions of the conical:

x2 − 2xxi + x2i + y2 − 2yy2i + y2i −R2
i,jx

2 + 2R2
i,jxxj −R2

i,jx
2
j −R2

i,jy
2 + 2R2

i,jyyj −R2
i,jy

2
j = 0

x2 − 2xxi + x2i + y2 − 2yy2i + y2i −R2
i,kx

2 + 2R2
i,kxxk −R2

i,kx
2
k −R2

i,ky
2 + 2R2

i,kyyk −R2
i,ky

2
k = 0

then

(1−R2
i,j)x

2 + (1−R2
i,j)y

2 + 2(R2
i,jxj − xi)x+ 2(R2

i,jyj − yi)y + x2i + y2i −R2
i,jx

2
j −R2

i,jy
2
j = 0

(1−R2
i,k)x

2 + (1−R2
i,k)y

2 + 2(R2
i,kxk − xi)x+ 2(R2

i,kyk − yi)y + x2i + y2i −R2
i,kx

2
k −R2

i,ky
2
k = 0

Let us mention:

Ai,j = (1 − R2
i,j), Bi,j = 0, Ci,j = (1 − R2

i,j), Di,j = 2(R2
i,jxj − xi), Ei,j = 2(R2

i,jyj − yi) and
Fi,j = x2i + y2i −R2

i,jx
2
j −R2

i,jy
2
j

Finally we have:

Ai,jx
2+Bi,jxy+Ci,jy

2+Di,jx+Ei,jy+Fi,j = 0 Ai,kx
2+Bi,kxy+Ci,ky

2+Di,kx+Ei,ky+Fi,k = 0
(4.23)

We recognize two conical equations like ellipse, hyperbola or parabola. We must then determine
the intersection of two conical which may give 0, 1, 2, 3 or 4 intersection points [177, 178].

In the case when two intersection point are obtained, a third distance estimation between the
same blind mobile node and a fourth landmark is needed to find the unique intersection point,
that is the position of the blind mobile node. In fact the unique intersection point, if exist, will
be one of the two points (from the conical intersections) that is closer to the third conical defined
by the distance estimate dl between the blind mobile node and a fourth landmark l. Figure 4.11
presents the pseudo code of the trilateration algorithm assuming n = 4 landmarks:

With any number of landmarks in the localization system, we will always choose 4 distances
measurements between the mobile node and 4 different landmarks among n landmarks in total to
find a unique intersection point at each step of the iteration of the trilateration algorithm until the
algorithm converges. This recursive version of trilateration that we name Lodachai first find the
intersection of the two conical C1, C2 as a result of three distances measurements (two distances
ratio) from three different landmarks. This first intersection of the two conical results either
in two intersection points p1,2 and p1,2′ or in one intersection point p1,2 if d(C1, C2) ≤ r1 + r2.
d(C1, C2) is the distance to both centers of both conical if R1,2 6= 1 and R1,3 6= 1 and r1 + r2
are the radii of the conical. In the case for one intersection, this value is retained and stored in
the list of intersection points. Whereas, if the two conical result in two intersections points, the
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Figure 4.11: The pseudo code of the trilateration algorithm
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retained point is the one that is the most closest to a third conical defined by the distance ratio:
di = Ri,ldl.

This method of finding a solution (intersection) for a given location of a blind node in a
localization system in indoor with n landmarks is done iteratively and verifies all possible
intersection points. This heuristic associates at each iteration 4 among n landmarks chosen
according

(
n
4

)
. For instance, if n = 5 landmarks, the solution leading to the

blind node position is the centroid of the intersection points determined with
quadruplets (LM1, LM2, LM3, LM4), (LM1, LM2, LM3, LM5), (LM1, LM2, LM4, LM5),
(LM1, LM3, LM4, LM5), (LM2, LM3, LM4, LM5). Finally, the centroid of all the intersection
points is taken as the estimated position of the blind node by summing all individual previously
retained intersections and dividing by their total count.

It is easy to demonstrate that the points PT that verify the equation d(PT, PTi) =

Ri,jd(PT, PTj) is an ellipse and more precisely a circle of center C (
(R2
i,jXj−Xi)
(R2
i,j−1)

,
(R2
i,jYj−Yi)
(R2
i,j−1)

)

and radius (Ri,j∗d(Pi,Pj)√
(R2
i,j−1)2

): (cf. appendix D).

Clearly, trilateration involves the distances measurements from at least three landmarks. Mean-
while the multilateration [88] is the version of the trilateration involving RSSI measurements,
then distance estimation from at least four different landmarks nodes. Instead, the multiangula-
tion uses the same principle as multilateration but with angle measurements from at least four
landmarks.

Multilateration Multilateration is another method based on the geometric analysis and is
an extension of the trilateration case using the cosine theorem. As presented in Figure 4.12,
multilateration measures the difference between the square of the distances and conduct to a
number of locations that satisfy the distance measurements. This is different to trilateration
or triangulation that respectively use the distances and angles measurements. If we have M
landmarks (sensor nodes with known positions) surrounding a sensor node, the cosine theorem
is applied to any of the M − 1 triangles formed from three sensor vertices. Each triangle
corresponds to : a landmark chosen as a reference, one of the each remaining M − 1 landmark
and the sensor node itself. We can apply this method to a set of N sensor nodes having a set of
M available landmarks for each sensor node.

Then, each of the N regular sensor nodes obtains its position independently using the data from
M landmarks. Therefore, with one landmark chosen as a reference, each regular node hasM−1
equations to solve to estimate its position.

Assume a blind mobile node receiving the positions ofM landmarks nodes {(xi, yi)}i=1,...,M and
getting at the same time the RSSI measurements to estimate the distances separation between
itself and each landmark. The purpose of this method is to construct a linear system of M − 1
equations with the two unknowns coordinates (xBN , yBN ). The solution for the equations is
obtained by solving a linear optimization problem: minimizing the mean square error associated
to distance measurements.

Consider a triangle of three vertices {S1, S2, S3}={(x1, y1), (x2, y2), (x3, y3)}, for instance like
the one presented in Figure 4.13 whose distances {d12, d13, d23} correspond to the three sides
and γ being the angle of one vertex let say (x1, y1); the cosine law is applied as follows: the
square of the length of a side of any triangle is equal to the sum of the squares of the two other
sides minus twice the product of these sides by the cosine of the angle between these two sides.
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Figure 4.12: Overview of the multilateration approach

Figure 4.13: The cosinus law says: c2 = a2 + b2 − 2ab cos γ. The formula is applied to our problem statement
with the sides (a, b, c) corresponding to sensor node distances (d23, d12, d13).

d223 = d212 + d213 − 2d12d13 cos γ = d212 + d213 − 2d12d13
<
−−→
S1S2,

−−→
S1S3 >

d12d13
d223 = d212 + d213 − 2 ((x2 − x1)(x3 − x1) + (y2 − y1)(y3 − y1))

If this cosine law is applied to the M − 1 triangles formed by {(x1, y1), (x, y), (xi, yi)} with
i = 2, . . . ,M . The M − 1 equations are obtained from the previous expression with (x1, y1)
being the position of the first landmark node used as a reference for all triangles, (xBN , yBN )
being the unknown position of the blind mobile node to estimate and the remaining positions
correspond to those of the M − 1 remaining landmarks. The system is written as:

122



d21 + d212 − 2 ((xBN − x1)(x2 − x1) + (yBN − y1)(y2 − y1)) = d22
d21 + d213 − 2 ((xBN − x1)(x3 − x1) + (yBN − y1)(y3 − y1)) = d23
d21 + d214 − 2 ((xBN − x1)(x4 − x1) + (yBN − y1)(y4 − y1)) = d24
...
d21 + d21M − 2 ((xBN − x1)(xM − x1) + (yBN − y1)(yM − y1)) = d2M

We rewrite the above expression under a matrix form in order to see it as a linear system
{di}i=1,...,M with distances between the blind mobile node and the M landmarks nodes:

b = Aθ with : b = d− δ =
1

2

 d212 − (d22 − d21)
...

d21M − (d2M − d21)


A =

 (x2 − x1) (y2 − y1)
...

...
(xM − x1) (yM − y1)

 and θ = (xBN ,−x1 , yBN ,−y1)t = z − (x1, y1)
t (4.24)

Note that the variable t within the equation 4.24 corresponds to the mathematical transpose
formula. This geometric method gives a system of equations whose vector form is b = Aθ, with
θ dependent on the unknown position z to compute. Note that this system of equation 4.24
corresponds to an ideal situation without noise. Such system also considers that all involved
values can be known that is the distances and thus positions. However, the vector b is not known
in our situation, we obtain a noisy (estimated) version denoted by b̂. Next, we consider on one
hand having the vector with the square of the distance between landmarks (d212, d

2
13, . . . , d

2
1M ),

that is in general {d21i}i=2,...,M .

This vector of distances is well known so we do not add the notation hat (^) above the corre-
sponding variable. Recall that from a statistical point of view, the notation hat (^) above a
variable is always for the notion of estimation, i.e., when trying to calculate the best possible
way a value of a variable that is unknown, noisy. This variable is always a random variable
whose average (which implies to be the true value, so no bias) and variance can be computed; or
in the case of a vector, we may calculate the covariance matrix that is the best we can estimate.
This covariance matrix is expected to be a diagonal matrix whose variances are the smallest. On
the other hand there is a vector δ that contains the squares of the distances between the blind
node to localize and the M landmarks (d21, . . . , d2M ) in the mentioned system of equations (cf.
equation 4.24) given by the geometric method. However, this vector is not known due to the
presence of noise on measured RSSI values; we denote δ̂ as the unbiased estimate of the vector
δ (using the square of the distance estimator d̂square already presented in equation 4.13). Thus,
a noisy version (unbiased estimated) denoted b̂ = d− δ̂ is obtained and involved in the system
of equations defined in 4.24. Then, we try to minimize the mean square error between the real
value of the vector b equal to Aθ = A(z − (x1, y1)) and the obtained noisy vector b̂ = (d − δ̂)
which is also the one that is unknown and can be measured through the RSSI values.

To summarize , the norm ||b̂ − b||2 = ||b̂ − Aθ||2 = ||b̂ − Aθ||2 = ||b̂ − A(z − (x1, y1))||2 is
minimized. b̂ is measured from d and δ̂; the matrix A is computed, the position (x1, y1) of a
reference landmark is known, and therefore, we aim to compute the unknown position z of the
blind node. Then the best estimate for z is found and it is denoted by ẑ. The system of linear
equations is solved by a least squares method since the distribution of the resulting equations is
not known.
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Using the M known landmarks positions (xi, yi)i=1,...,M , the vector d contains the set of the
squares distances {d21i}i=2,...,M between the reference landmark 1 and the remaining M − 1
landmarks. The vector δ contains the M − 1 differences between the square of the distances at
the blind node d2i − d21i=2,...,M from the reference landmark 1 and theM−1 remaining landmarks.

As the vector δ is not perfectly known by the blind node, instead, it obtains estimation of the
set of {d̂2i }i=1,...,M received from the M landmarks. In such case, we denote as δ̂ it resulting
noisy version and we seek to find the estimated position of the blind node ẑ that minimizes the
mean square error between the real and the estimated vector computed as the linear system
described above. The problem is summarized as follows :

ẑ = min
z
||b̂−Aθ||2 = min

z

(
b̂
t
b̂+ θtAtAθ − 2b̂

t
Aθ
)

(4.25)

The solution of the estimated position of the blind mobile node is obtained:

ẑ = C(d− δ̂) + (x1, y1)
t (4.26)

while defining the matrix C = (AtA)−1At.

As multilateration is a generalization of the trilateration method, it provides absolute positions
at one step without needing a last step to calculate the rotation and translation of the principal
axes. In fact, these steps are implicit when taking one more landmark as the reference and
including its position in theM−1 linear system of equations. While for trilateration,M is equal
to 3 for two dimensional case, multilateration needs at least 4 landmarks. With multilateration,
several blind nodes can simultaneously compute their positions.

Since the expression of ẑ depends on the estimations of the square of the distances {d̂2i }i=1,...,M

the solution of equation 4.25 results an unbiased estimate of the position as long as the unbiased
ML estimator d̂squared defined in equation 4.9 is used. Hence, the multilateration method gives
a random estimated position ẑ such E[ẑ] = z and its covariance matrix cov[ẑ] is computed as :

E[(ẑ − E[ẑ])(ẑ − E[ẑ])t] = Ccov[δ̂]Ct

where : cov[δ̂] = (K8 − 1)


d41 + d42 d41 · · · d41

d41 d41 + d43
...

...
. . .

...
d41 d41 · · · d41 + d4M

 (4.27)

We observe that estimated position by multilateration has no bias, as the unbiased maximum
likelihood estimator d̂square is used for all the square distances separation from the blind node
to the set of landmarks. The resulting unbiased position ẑ has a covariance matrix defined in
equation 4.27 which depends on the noise level (as long as constant K contains σ2) and the
corresponding distances with exponent 4.

Thus, we may note from the above expression three main facts : firstly, the variance of the
estimated position by the multilateration method depends proportionally on the noise level σ2

throughout the factor K8 and the distances to the M landmarks (far distant landmarks are
not desired); secondly, in general the estimated position has correlated coordinates since the
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resulting covariance matrix is not a diagonal matrix and the cross terms are not in general equal
to zero (having a coordinate not well estimated could negatively affect the remaining estimated
coordinate); and finally, the covariance could be null in some cases as long as the factor K tends
to one (e.g. low noise level).

To minimize this effect, i.e. the ependency between the variance of the resulting estimated
position and the distances to the landmarks, one may take into account the noise by introducing
in the equation 4.25 a diagonal matrix W of dimensions (M − 1)× (M − 1) whose weights are
inversely proportional to the computed variance of δ̂. For example, defining W as {W (i, i) =
1/(d̂4i + d̂41)}i=2,...,N , the solution becomes : ẑ = C(d− δ̂) + (x1, y1)

t with C = (AtWA)−1AtW .

The performance of multilateration method is shown more in detail in Section 5.2 using the
experimental data acquired from the SensLAB Rennes platform and selecting N blind sensor
nodes. These blind sensor nodes form a connected network whose aim is to find its own position
using data from 4 landmarks. As it is described later in this chapter, we selected N = 12 blind
nodes and computed each estimated position (for each blind node) as defined in equation 4.25
from estimated distances according to T RSSI data packets received from the 4 landmarks. We
note that such method involves for the whole network a computational cost scaling a factor
N(M − 1) and a communication cost scaling NMT .

4.2.3 Maximum likelihood optimization-based localization mechanism

The maximum likelihood has been used in many works [5], [179], [164] and is demonstrated to be
an accurate and powerful approach to be use in RSSI-based one-hop localization. However other
works request that such an approach-based optimization is not a good positioning mechanism [6]
as its performance is sensitive to the number of reference nodes.

Maximum Likelihood Estimator (MLE) principle The Maximum Likelihood Estimator
is a statistical approach that maximizes the likelihood between the probability density function
(pdf) induced by the assumed parametrical model (in our case we assumed data follows a log-
Normal distribution) and the pdf function induced by the distribution of the measured data. It
is used to find the parameters that maximize the probability of measured data to fit the assumed
model. In our context, measured data corresponds to the measured RSSI packets by a set of
N sensor nodes in order to find their unknown positions. Hence, the problem states as : find
the set of N unknown positions that maximize the likelihood of the measured RSSI data whose
distribution is assumed to be Gaussian depending on the parameter set θ. Note that a position
(x, y) is implicitly related to the distance parameter d while assuming for example the euclidean
distance function d(x, y).

Consider a network of N sensor nodes: C = {1, . . . , N}, and the goal is to calculate the set
of unknown positions {(xc, yc)}c∈C of such nodes. Suppose the signal received by each regular
sensor node follows the log-normal shadowing propagation model (cf. equation 4.1). Each
regular sensor node c ∈ C obtains M RSSI measures from its neighbors Kc = {k ∈ C | k ∼ c}.
Noted as rc,k := (r(1)c,k, . . . , r(M)c,k) the vector of RSSI measured at the regular sensor node
c from its neighbor k. Assume that the M random variables are independent and identically
distributed and follow a Gaussian distribution

r(m)c,k ∼ N (−PL(d0)c,k − ηc,k10 log10 dc,k , σ
2
c,k). If the Gaussian vectors {rc,k}k∈Kc are also

independent each other, the joint probability density function of the sensor c can be written as:
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fθc(rc) =
∏
k∈Kc

f(rc,k) which: fθc(rc,k) =
1

(2πσ2c,k)
M/2

e
− 1

2σ2
c,k

||rc,k+PL(d0)c,k+ηc,k10 log 10dc,k||2

(4.28)

The expression (4.28) is the likelihood function of the parametric model, which depends on all
θc = {dc,k, PL(d0)c,k, ηc,k, σ

2
c,k}k∈Kc .

Moreover, observations are assumed to be independent among the N regular sensor nodes, the
maximum likelihood is expressed aggregating the logarithm of the N pdf functions defined in
equation (4.28):

maxθ={θc}
∑N

c=1

∑
k∈Kc L(θc)

with :

L(θc) = ln fθc(rc,k) = −M
2 ln 2π − M

2 lnσ2c,k −
1

2σ2
c,k

∑M
m=1

(
r(m)c,k + PL(d0)c,k + ηc,k10 log 10dc,k

)2
(4.29)

The parameter that defines the distance between a regular sensor node c and a regular sen-
sor node k from the equation 4.29 is the euclidean distance, dk,c and is equal to dk,c =√

(xc − xk)2 + (yc − yk)2. For simplicity, suppose the case M = 1, which means one RSSI
values is measured at each regular sensor node from data sent by the landmarks for example.
The N positions of each blind node is estimated by combining all P = N(N−1)

2 measured RSSI
values.

r := (r(1), . . . , r(P )) = (r1,2, . . . , r1,n, r2,3, . . . , r2,n, . . . , rn−1,n)T where : r(p) = ri,j = r(di,j)

Following the model of observation (cf. equation 4.28) applied to P values of observation r,
position estimation by maximum likelihood as described in equation 4.29 corresponds to find
the N pairs of values θ = ((x1, y1), . . . , (xN , yN )) which satisfy:

θ̂ = maxθ L(θ)

with :

L(θ) = −P
2 ln 2π − 1

2

∑P
p=1 lnσ2p + 1

2σ2
p

(
r(p) + PL(d0)p + ηp10 log10 dp

)2
This global optimization problem with 2N variables is determined by calculating the gradient
L(θ) with N partial derivatives in x and y. Note that each pair of variables (xi, yi) appears in
N − 1 terms of the function L(θ) and the derivative of the distance function satisfies d

dxi
di,j =

− d
dxj

di,j , then the system of equations is written as:
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d
dx1
L = (r1,2 + PL(d0)1 + η110 log10 d1,2)

x1−x2
d21,2

+ · · ·+ (r1,n + PL(d0)1 + η110 log10 d1,n)x1−xn
d21,n

= 0

d
dx2
L = −(r1,2 + PL(d0)1 + η110 log10 d1,2)

x1−x2
d21,2

+ (r2,3 + PL(d0)2 + η210 log10 d2,3)
x2−x3
d22,3

+ . . .

· · ·+ (r2,n + PL(d0)2 + η210 log10 d2,n)x2−xn
d22,n

= 0

...
d

dxn−1
L = −(r1,n−1 + PL(d0)1 + η110 log10 d1,n−1)

x1−xn−1

d21,n−1
−

(r2,n−1 + PL(d0)2 + η210 log10 d2,n−1)
x2−xn−1

d22,n−1
− . . .

· · ·+ (rn−1,n + PL(d0)n−1 + ηn−110 log10 dn−1,n)xn−1−xn
d2n−1,n

= 0

d
dxn
L = −

∑n−1
i=1

d
dxi
L = 0

By symmetry, we have the same equations for the partial derivatives in yi:

d
dy1
L = (r1,2 + PL(d0)1 + η110 log10 d1,2)

y1−y2
d21,2

+ · · ·+ (r1,n + PL(d0)1 + η110 log10 d1,n)y1−yn
d21,n

= 0

d
dy2
L = −(r1,2 + PL(d0)1 + η110 log10 d1,2)

y1−y2
d21,2

+ (r2,3 + PL(d0)2 + η210 log10 d2,3)
y2−y3
d22,3

+ . . .

· · ·+ (r2,n + PL(d0)2 + η210 log 10d2,n)y2−yn
d22,n

= 0

...
d

dyn−1
L = −(r1,n−1 + PL(d0)1 + η110 log10 d1,n−1)

y1−yn−1

d21,n−1
−

(r2,n−1 + PL(d0)2 + η210 log10 d2,n−1)
y2−yn−1

d22,n−1
− . . .

· · ·+ (rn−1,n + PL(d0)n−1 + ηn−110 log10 dn−1,n)yn−1−yn
d2n−1,n

= 0

d
dyn
L = −

∑n−1
i=1

d
dyi
L = 0

A system of 2N−2 equations are obtained with 2N variables. If all terms di,j are always positives
and assuming that all positions are different (i.e. x1 6= x2 · · · 6= xn and y1 6= y2 · · · 6= yn), P
equations are obtained and those are the same equations in both coordinates x and y and must
verify the following system of equations:

(r1,2 + PL(d0)1 + η110 log10 d1,2) = 0 =⇒
√

(x1 − x2)2 + (y1 − y2)2 = 10
−r1,2−PL(d0)1

10η1

...

(r1,n + PL(d0)1 + η110 log10 d1,n) = 0 =⇒
√

(x1 − xn)2 + (y1 − yn)2 = 10
−r1,n−PL(d0)1

10η1

(r2,3 + PL(d0)2 + η210 log10 d2,3) = 0 =⇒
√

(x2 − x3)2 + (y2 − y3)2 = 10
−r2,3−PL(d0)2

10η2

...

(r2,n + PL(d0)2 + η210 log10 d2,n) = 0 =⇒
√

(x2 − xn)2 + (y2 − yn)2 = 10
−r2,n−PL(d0)2

10η2

...
(rn−1,n + PL(d0)n−1 + ηn−110 log10 dn−1,n) = 0

=⇒
√

(xn−1 − xn)2 + (yn−1 − yn)2 = 10
−rn−1,n−PL(d0)n−1

10ηn−1

These above equations are a system with P = N(N−1)
2 equations and 2N unknown variables (i.e.

all N x coordinates and N y coordinates) with the number of measured RSSI values P ≥ 2N if
the number of involved sensor nodes verifies N ≥ 5.
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As a consequence of such a difficult system, it is not convenient to solve this problem as trying
to find the whole N unknown positions at once and without including the landmark nodes.
Instead, one can separately resolve the ML estimator at once for each of the blind node position
with the only use of RSSI data coming from multiple landmarks nodes named reference nodes.

Then, the location estimation problem with the maximum likelihood estimator can be analyzed
by computing the position (x, y) of a sensor node using a set of known positions ({(am, bm)}∀m)
and K measures ({r(m, k)}∀m,k) of M landmarks nodes. In this case, the involved number of
communications scales KM for any blind sensor node. Furthermore, the number of operations
needed by the blind node when estimating its position with MLE, depends on which algorithm
is used to solve this stochastic optimization problem of the maximum likelihood. Such algorithm
are explained in the paragraph below. The latter problem is reduced to find the position of the
blind node (xBN , yBN ) such:

(x̂, ŷ) = max(x,y) L(x, y)

with :
L(x, y) = −KM

2 ln 2π −
∑M

m=1

∑K
k=1

1
2 lnσ2m + 1

2σ2
m

(r(m, k) + PL(d0)m + ηm10 log10 dm)2

with dm =
√

(x− am)2 + (y − bm)2

To implement a localization system-based maximum likelihood estimator, multiple algorithms
could now be applied to solve this stochastic optimization problem. For example, one can
implement an exhaustive research if the dimensions/size of the area/environment where the
sensor node evolves is known. In such case, the area is divided into a grid, then the likelihood
function (cf. equation 4.30) is evaluated at each center of the squared grid in order to find the
estimated position (x̂, ŷ) giving the maximum value (cf. in [180], [181], [182]).

Note that the accuracy of the resulting position is related to the resolution of the chosen grid.
In fact, it represents a trade off with the number of computations as a higher resolution means
more values to evaluate and thus, it implies a possible long execution time before the maximum
value is found. Instead, with fewer points to evaluate, a larger grid search implies a faster
research, but with a chance to get a less accurate estimated position. To reduce such execution
time, iterative algorithms for nonlinear optimization function are more appropriate in order to
solve equation 4.30. Some of them have been proposed in the literature as : the Nelder-Mead
simplex [163], the conjugate gradient descent [172] or the Levenberg-Marquardt [183].

RSSI-based indoor localization by maximum likelihood estimation approach After
characterizing a bit how signal was attenuated in an indoor environment in Chapter 3 and
defining a maximum likelihood estimator in the above section of this chapter 4, we implement a
RSSI-based maximum likelihood localization approach (MLE) applied to a log-normal shadowing
model to evaluate indoor localization accuracy.

We denote RSSIj,L the jth RSSI sample measured by the mobile node on packets coming from
a given landmark L. We write:

RSSIj,L ≈ PLL(d0) + 10.ηL log10

(
dL
d0

)
(4.30)

where dL is the distance to landmark L that we try to estimate, η a positive constant that
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represents the environment path loss exponent and d0 the reference distance where the value of
the attenuation is equal to PLL(d0). We have demonstrated in Chapter 3 that this model is not
fully valid in a practical indoor context. To confirm quantitatively this assertion, we consider
the problem of localization based on RSSI. We show, through experiments, that the location
accuracy with the use of Maximum Likelihood estimation algorithm-based on RSSI, is slightly
improved than the simple trilateration mechanism and even than a random localization.

More precisely the confidence interval stays in 1 meter. Rewrite equation 4.30 as:

RSSIj,L = PLL(d0) + 10ηL log10

(
dL
d0

)
+N (0, σ2L) , (4.31)

where RSSIj,L denotes the j-th attenuation observed in the unknown location (x, y) received
from the landmark L, dL the distance between the landmark L and the location (xBN , yBN )
of the blind mobile node. N (0, σ2j,L) is the noise associated to the landmark L for the j-th
observation. JL denotes the total number of observations from the landmark L, and L the
number of landmarks. For simplicity, let us write εj,L = N (0, σ2j,L). We assume that the
random variables εj,L are independent, Gaussian, with zero-mean and variances σ2L depending
on the landmark.

Let us also write: αL,0 = PLL(d0) and αL,1 = ηL.

Here, as it is noticed in the previous section, the regression parameter αL = (αL,0, αL,1) and the
noise variance σ2L do depend on the landmark nodes through index L.

The maximum likelihood estimator of the location (x, y) writes:

(x̂, ŷ) = arg min
x∈(0,X),y∈(0,Y )

L∑
L=1

JL log(σ2L) + (4.32)

L∑
L=1

σ−2L

JL∑
j=1

(Aj,L − αL,0 − αL,1 log10 dL(x, y))2 ,

where (x, y) are 2D coordinates of the blind mobile node named: (xBN , yBN ). We have deter-
mined numerically the minimum, using a grid with step 50 cm and with X = 3 m and Y = 4
m.

The regression parameter estimation is based on the least square criterion. That writes

α̂L = (Ht
LHL)−1Ht

LAL (4.33)

where AL is the sequence of the attenuations observed from the landmark L and the design
matrix

HL =

1 10 log10(dL,1)
...

...
1 10 log10(dL,KL)


where KL is the number of the observations received from the landmark L in the learning data
set. The estimated variance is given by

σ̂2L =
(AL −HLα̂L)t(AL −HLα̂L)

(KL − 2)

In the next section we present localization accuracy of Maximum Likelihood estimation (MLE)
approach.
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4.2.4 Comparison of RSSI-based maximum likelihood estimator and trilat-
eration indoor localization results

Experimental protocol To evaluate the localization accuracy on the sole position estimation,
we separate each experiment in two online steps as described in section 4.2.1. We use 20 positions
as the learning data set to learn the α parameters, that is PLL(d0) and ηL parameters w.r.t. the
five landmarks L. The rest of the positions, i.e. 28 positions, is the testing data set for testing
the localization accuracy.

The results are reported in Figure 4.14. We observe that the distance error between the estimated
location and the true location is a little better for Maximum Likelihood estimator (MLE). At
first the mean of the error over all positions is 1 meter with MLE instead of 1.51meters with
simple trilateration and 1.84meters with the random localization (RL). However the presence
of large errors is also observed whereas 12 positions are estimated at less than 80 cm from the
true location. We may conclude that the localization based on the model of attenuation given
by equation 4.30 is not able to achieve an accuracy better than 1meter. This result may be
enhanced by taking into account the origin of large discrepancy of some locations. For that,
some parameters should be considered : the height of the room, a more important number of
landmarks and also the environmental location of the landmarks into the office.

Preliminary results of maximum likelihood and trilateration mechanism From our
experimentation and results presented in Figure 4.14, we provide an affirmation of Elnahraw
et. al [116] assumptions and additionally give information about parameters that should be
determined. Due to the inability of the log-normal shadowing propagation model to capture
other propagation effects than the distance in indoor environment, RSSI does not give much
information about the distance even if the measurements and calculations it involves are less
complicated than other localization metrics. In that context, the log-normal shadowing model is
not well-suited in indoor environment for localization purpose due to high variability observed
on the RSSI that can not be only explained by the log-normal shadowing model. Our studies
highlight a certain dependency on material while the battery pack produces attenuation. That
appears clearly when the MLE approach is used to localize : the results are very poor even
if they are slightly better than those of trilateration and even of a random localization. This
is mainly due to the presence of multi-path propagations, involving the effect of walls on the
antenna gain, and/or occlusions.

In the following, we propose and evaluate a family of algorithms to enhance indoor positioning
of wireless devices using RSSI measurements from data packets coming from multiple sources.
We base our study on simulations and on experimental measurements campaigns in real envi-
ronments.

Recall that, using one-hop localization algorithm in wireless sensor network (WSN) broadly
supposes the presence of sensor nodes with initially unknown location information called blind
mobile nodes. The location of each blind mobile node is estimated using inter-sensor measure-
ments like distance and location information of nodes with known location (named landmarks
or references nodes). Reference nodes positions can be obtained in a global coordinate system
like GPS or manually when they are deployed at known coordinates.
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Figure 4.14: Left graph: landmarks location represented by yellow circles. Learning database from a
target locations, represented by diamonds. Testing dataset locations indexed from 1 to 28, from top
to bottom and from left to right. Triangle are location computed at less than 0.80 cm from the true
position. Right graph: dashed line is the average gap distance from random localization. Solid line is
the gap distance between the estimated location and the true location from MLE and square dashed line
for trilateration (named "3later").

4.2.5 Localization System Overview

To evaluate and compare different localization strategies that will be presented in the following,
we use the same localization setup/procedure as well as the same experimental protocol presented
below. Recall, our proposed localization methods using the RSSI have been implemented and
tested in real indoor environments. Our proposals performance have been evaluated in Chapter 3.

Localization procedure All sensors nodes in our testbeds, including landmarks and blind
mobile nodes, are Tmote Sky motes, using IEEE 802.15.4 in the 2.4 GHz band to communicate.
Nevertheless, the method we propose should be applicable at least to all types of narrowband RF
transmissions in the same frequency band. This frequency band is open and devices operating
in the same frequency band may impact the frame reception ratio as well as the reading RSSI.
As such interferences can be expected in any real scenario, we recall we did not seek to conduct
our experiments in isolated rooms.

Landmarks as well as the blind mobile node are placed at a 1.25m height from the ground,
which is a standard height, for example corresponding to the hip of a human. In addition,
two persons are moving inside each environment and impacting radio propagation. The mobile
node is moved by an operator in several tested positions chosen randomly and different for each
testbed.

RSSI values are used to determine the distances that separate a blind mobile node, willing to
determine its position, and a set of landmarks also known as anchor nodes with known locations.
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The collection of RSSI values require to design a communication protocol. Localization request
is first sent by any blind mobile node to landmarks. The localization procedure is as follows as
shown in Figure 4.16.

1. At each location, the mobile node tries to estimate its position by broadcasting a localiza-
tion request that is received by all landmarks in its range.

2. Each landmark within the communication range of the requested blind mobile node then
answers by broadcasting 100 beacons packets at a rate of one packet per second and then
stops emitting until another request is received. In such communication structure, when
landmarks receive a localization request from a blind node, they (landmarks) reply follow-
ing a pseudo-random scheduling that is specific to each of them. Furthermore, depending
on the desired configuration, parameters of sending packet frequency can be modified on
each landmark, in order to send localization response to a blind node every millisecond or
even nanosecond for example.

3. The blind mobile node collects position-related information including the RSSI values
measured/sensed on a set of data packets sent by any landmark in its range. At each
received message, a blind node measures an RSSI value that can be different from the
previous one. Then, we use statistical techniques to improve the localization accuracy
based on these RSSI measurements. Thus, no additional equipment is used, only the
supplied Moteiv Tmote Sky nodes. Then, the blind node directly plugged to an Eee
PC estimates online in the aftermath the propagation model parameters according to the
deployment position of each landmark while using equations 4.5 and 4.7. Such information
is used by the blind node (connected to an Eee PC) to compute its position from the data
set. This process is repeated at all positions in each environment. Moreover, notice that
Tmote Sky sensor nodes are different from commercial sensors (e.g. those from Coronis
System) which have more powerful embedded processors, therefore such computations are
possible on the sensor node itself.

Even if the energy consumption is not the target of this thesis, the communication protocols of
our proposals are designed in the way that can be labeled to more respect the energy saving
requirements of the wireless sensor network. Landmark in a confined/indoor area are in standby
mode until a localization request message is received from any blind mobile node. Then a
blind mobile node computes itself its position using any of the proposed indoor localization
algorithms. This mechanism saves probably more energy than letting landmarks to continuously
send localization information. Indeed, for a given packet received by a blind mobile node, the
number of bits used by our communication protocols takes into account the value of the measured
RSSI value coded under 8 bits, the landmark’s position and its address that are between 4 and 20
bytes; as well as the sequence number of the packet, one byte. Such combined information makes
a total number of roughly 8 bytes which is much lower than the required throughput by the
IEEE 802.15.4 standard (i.e. 8 KBps). Thus, 1000 packet per second can be received on a blind
node without contention. In addition, regarding the related work on the energy consumption,
including those from Heinzelman et al. [184] [185], in transmission mode of packets, the energy
consumption of the network depends on the following factors: the number of sent bits, i.e.
the packet size, the square of the radius or the communication distance as well as two other
constants. The first factor depends on the electronic and the second one is the amplification
factor which increases with the distance. Note that that we communicate over short distances
in indoor environments and the transmission range of the Tmote Sky in indoor is 50 m. The
combination of such elements result in less energy consumption, as even if the packet sending
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(a) localization step1 (b) localization step2

(c) localization step3

Figure 4.15: Our localization system overview
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Figure 4.16: An example of view of localization step in a testbed

frequency is increased at about 1 packet per millisecond, our algorithms meet the required
technical specifications of the IEEE 802.15.4 in terms of maximum throughput.

The landmarks positions and the successive mobile node positions are reported in Figures 3.2, 3.3
and 3.5 in Chapter 3. Landmarks are randomly deployed and their number is different for each
tested environment.

Moreover, other works [86, 175] realized in realistic indoor testbeds using localization with sensor
networks based on min-max algorithms and landmarks selection have demonstrated that better
landmarks nodes with low standard error are situated in the extremity of the building, not in
the corridors. According to the authors, the corner landmarks nodes are located in positions
less sensitive to multipath fading and are considered as more informative ones.

Below, we describe the communication protocols and structure that respect all proposed loca-
lization algorithms.

Localization communication protocols When using one-hop localization algorithms, only
RSSI values coming from the landmarks are exploited by any blind mobile node. In ideal
propagation condition cases without or less packet losses, the number of RSSI values that can
be collected by a blind mobile node in 1 min is shown in Table 4.2.

Table 4.2: The collected number of RSSI values in our communication structure for one-hop localization algo-
rithms.

Number of RSSI values in a minute
Blind mobile node to localize ⇐ landmark node 140

However, when dealing with distributed localization algorithms, that is a blind mobile node can
estimate its position and those of its neighboring sensor nodes in the network, the communi-
cation structure changes. This new communication structure integrates the concept of virtual
landmarks. The virtual landmarks are landmarks with unknown positions, in which only the
measured RSSI values from data packets they send are involved in the blind mobile node lo-
calization process. Note that from its own point of view, each independent sensor node with
unknown position is a blind node and the rest of the nodes in the network are virtual landmarks
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and landmarks. Such consideration is valid for each node with unknown position. Then, to
localize itself in a sensor network, a blind node sends a localization request. This request is
received by all landmarks in its range and in the same time by virtual landmarks. As shown
in Table 4.2 a blind mobile node gathers RSSI data measured from data packets send by all
landmarks in its range as well as all neighboring nodes with unknown positions called virtual
landmarks. Thus a blind node is a virtual landmark from the other blind nodes point of view.
Using our proposed distributed localization algorithms, a blind node is able to localize itself
while estimating virtual landmarks (i.e. other blind nodes) positions. In this way, any blind
mobile node as well as any virtual node can have the complete map of the network with respec-
tive positions. The position accuracy of these three algorithms are evaluated in three different
indoor environments represented in Figures 3.2, 3.3 and 3.5 in Chapter 3 and also illustrated
in this chapter (cf. Figures 4.20(a), 4.20(b) and 4.20(c)). These scenarios characteristics are
reported in Table 4.4, including the number of people in each testbed, their movements and
objects obstructions.

4.3 Bias-based methods

4.3.1 Excluding a single aberrant landmark

Uncontrolled scenario from our measurement campaigns show that if some sources are coherent,
some are clearly incoherent with the others. This phenomenon can be explained by the radio
propagation (e.g. multipath), or by poor hardware and excluding these incoherent data sources
from the dataset should lead to a better accuracy. We propose a dynamic method to identify
abnormal landmarks and to reduce the effects of corrupted RSSI values measured from data sent
by such landmarks, and finally replacing these RSSI measurement by a constant bias.

4.3.1.1 Biased Log-Normal Shadowing Model (B-LNM)

Due to practical situation encountered from our testbeds presented in Chapter 3, we notice some
variations on the standard deviation even if the environment and the propagation condition
remain the same. Hence, the idea to consider the LNSM parameters are based on landmark
locations.

This section introduces a method that potentially reduces the effects of a single outlier landmark
from the set of landmarks used by the mobile node for localization if the mobile node considers
that the associated measurements do not improve localization accuracy. Furthermore, as shown
in Chapter 3, measurements coming from landmarks can present a high standard deviation, or a
distribution that does not fit a normal distribution (cf. histogram of RSSI values in Chapter 3).
In this case, values coming from this landmark should not be included in our estimation, as they
will only decrease accuracy. In the first method presented here, we compensate this effect by
introducing a constant bias, that constitutes an additional variable to estimate, to replace the
log-normal shadowing model of the measurements associated to this landmark. We select the
aberrant landmark by comparing the global likelihood values obtained when each landmark is
considered as outlier. This method requires to use RSSI measurements from at least 4 landmarks
for the algorithm to work. In the case there is abnormal landmarks, RSSI measurements from a
minimum of three landmarks are used to compute the blind node 2D coordinates. Therefore, in
each of the experiment, we estimated the distances to the third closest landmark for each blind
mobile node position.
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Table 4.3: Main notations

PL(d) Path loss over distance d
PLL(d) Path loss between mobile node and a landmark L
η Attenuation factor
ηL Attenuation factor between mobile node and a landmark L
d0 Reference distance
dL Distance between mobile node and a landmark L
σ Standard deviation of the channel noise
σL Standard deviation of the channel noise between mobile node and

a landmark L
β Unknown constant bias
K number of landmarks
NL Number of RSSI observations from a landmark L to mobile node

A summary of the notations used in the following paragraphs is reported in Table 4.3. Let
us denote by RSSIj,L the jth RSSI sample measured by the mobile node on packets coming
from a given landmark L. If we denote by PLL(d0), ηL and σL the log-normal shadowing
model specific parameters for landmark L, we can rewrite the equation (3.2) in the general case,
replacing measurements coming from a given landmark O by a constant bias, β, as follows:

RSSIj,L =

(
PLL(d0) + 10.ηL log10

(
dL
d0

))
.1L6=O + β.1L=O +N (0, σ2L) , (4.34)

where dL is the distance to landmark L that we try to estimate and 1 is the indicator function
(equal to 1 when the subscript expression is true, to 0 otherwise).

4.3.1.2 Biased-Maximum Likelihood Location Estimation Method (B-MLE): se-
lecting the outlier landmark

Combining all the measured values altogether, we can apply a maximum likelihood estimator
on this new model to compute the likelihood expressions in the case where landmark O is
considered as abnormal. If we denote by NL the number of samples received from landmark L,
the likelihood function is expressed as follows for every landmark L 6= O:

LL(x, y) = −NL. log σ2L −
NL∑
j=1

RSSIj,L − PLL(d0)− 10ηL log10

(
dL
d0

)
σL

2

. (4.35)

And for the outlier landmark, O, it becomes:

LO(β) = −NO log σ2O −
NO∑
j=1

(
RSSIj,O − β

σO

)2

. (4.36)

The global likelihood function from the data set, reflecting the coherence of the whole system
when landmark O is the outlier one is then simply the sum of the previous expressions over the

136



K landmarks:

LO(x, y, β) =
K∑

L=1;L6=O
LL(x, y) + LO(β) (4.37)

The global likelihood function without abnormal landmark is also expressed as:

L0(x, y) =

K∑
L=1

LL(x, y)

Equation 4.37 can be written for each of the K landmarks. This defines, for each of the K situa-
tions, a maximum likelihood estimation problem that can be solved to deduce the corresponding
position and bias:

(xO, yO, βO) = arg max
x,y,β
{LO(x, y, β)} (4.38)

The maximum likelihood estimation for the model without bias is written as:

(x0, y0) = arg max
x,y
{L0(x, y)} (4.39)

In the expression of equation 4.37, the LL(x, y) terms does not depend on β while the LO(β)
term does not depend on x or y. Therefore the maximization of equation 4.38 can be achieved
by separating the variables. In particular, the bias expression that maximizes LO(β) is straight-
forward:

βL =
1

NL

NL∑
j=1

RSSIj,L (4.40)

If we also consider the case in which no landmark is considered abnormal, we get K+1 likelihood
values to compare. We then have to select the situation that yields to the best (i.e. highest)
likelihood value to identify the most aberrant landmark.

Results, detailed in section 4.3.3 show that sometimes the best likelihood corresponds to the
situation in which no landmark is outlier. It is most likely that in some situations, accuracy can
be further improved by considering more than one landmark as abnormal. The global flowchart
of the algorithm is represented in Figure 4.17.

4.3.2 Excluding multiple landmarks: Extended Biased-Maximum Likelihood
Location Estimation Method (xB-MLE)

As mentioned above, there are cases in which it would be profitable to consider more than one
outlier landmarks. To study the pertinence of such an Extended Biased-Maximum Likelihood
Estimation (xB-MLE), we first examine the achieved accuracy when two landmarks are abnor-
mals, then three landmarks in our various experimental setups. When more than one landmark
is abnormal, each set of measurements is replaced by a distinct bias. This allows to keep the
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Figure 4.17: Flowchart of B-MLE algorithm
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same maximization method as above, separating variables for the optimization. For example, in
the case we consider two landmarks, O1 and O2, for exclusion, the global likelihood function is
expressed as:

LO(x, y, β1, β2) =
K∑

L=1;L6=O1;L6=O2

LL(x, y) + LO1(β1) + LO2(β2) (4.41)

Nevertheless, this process does not scale. If considering one landmark as abnormal requiresK+1
maximization operations, two outlier landmarks requires 1 + K +

(
n
2

)
maximizations. In order

to reduce this global complexity, we derive a heuristic based on the computation of a bias gap,
defined as the relative difference between the bias and the estimated average path loss. This
heuristic is the corrected extension of B-MLE named B-MLEC (Biased-Maximum Likelihood
Location Estimation extension Correction) and expressed as follows:

BL =

∣∣∣∣∣∣
βL −

(
PLL(d0) + 10ηL log10

(
dL
d0

))
PLL(d0) + 10ηL log10

(
dL
d0

)
∣∣∣∣∣∣ (4.42)

This value is computed based on the bias expression of equation 4.40 and hence induces a
relatively low computational cost. We then compare this value with a threshold, γ, and when
BL ≥ γ, landmark L is considered as abnormal. In the same way if BL ≤ γ, the landmark
of index L is considered as normal. In the end, we only have one maximization operation to
perform, as we can ignore all landmarks that do not satisfy this condition. For the present
paper scenarios we empirically chose γ = 0.05, as this value corresponds to a generally admitted
rejection threshold. To confirm this threshold, we evaluated the performance of our algorithms
with different threshold values (ranging from 0.004 to 0.7). Figure 4.18 represents the average
localization error achieved by B-MLEC in our three testbeds and shows that error increases from
a threshold value of 0.1. The best value varies with the testbed, but 0.05 seems a fair choice.

The flow chart of this algorithm can be found in Figure 4.19.

4.3.3 Experimental results

4.3.3.1 Experimental setup

The position accuracy of these three algorithms was evaluated in three different indoor envi-
ronments, represented in Figures 4.20(a), 4.20(b) and 4.20(c). These scenarios characteristics
are reported in Table 4.4. In all scenarios, Wi-Fi access points are present and active in the
room vicinity.

Two testbeds (named #2 and #3) are furnished classroom of different sizes. The other testbed
(named #1) is a lightly furnished office. Testbed #3, measuring 8.77m by 6.46m, is part of
a classroom that is divided in two parts. We only used one part for our measurements. 8
landmarks compose the testbed #3 while 5 for the testbed #1 and 4 for the last one (testbed
#2). The number of landmarks in each testbed are chosen depending on the available hardware.
In each environment, the receiving mobile node is positioned in different tested locations which
are respectively 57 for the testbed #3, 48 for the testbed #1 and 47 for the testbed #2.
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Figure 4.18: Average localization errors achieved by B-MLEC for different values of the rejection threshold
in the various testbeds

Table 4.4: Testbeds characteristics

Testbed 1 Testbed 2 Testbed 3
Fig. 4.20(a) Fig. 4.20(b) Fig. 4.20(c)

Room Size 4m × 3m 7m × 7m 8.77m × 6.46m
Moving people 2 2 Variable

(open classroom)
Furniture, walls woods, glass-fronted, metal
Node position Random grid

Number of mobile 48 47 57
node locations

Number of landmarks 5 4 8
Nodes height 1.25m
Emitted power 0 dBm
MAC protocol XMAC

Operating system Contiki
Type of nodes Moteiv TMote Sky
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Figure 4.19: Flowchart of the extended B-MLE algorithm
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We recall that each experiment is composed of two steps, which are both performed online.
In the first step, we only estimate the values of the propagation model parameters (PL(d0),
η and σ) for each landmark using least squares estimation. We use, for this first phase, a
set of measurements coming from learning data set defined in section 4.2.1 and represented in
Figure 4.20. As stated before, this estimation is done by the mobile and is not the results of a
pre-calibration by an operator. Then, on the remaining position, we consider these parameters
as constant and compare the three algorithms accuracy. This second set of positions used
to compare localization algorithms constitutes the testing data set. Figure 4.20 divides the
successive positions of the mobile node locations into three groups to identify the datasets we
used for learning. The positions materialized by orange squares compose the smallest learning
set (10 positions). The larger learning set (25 positions) is composed by the points identified by
both the orange squares and the magenta triangles; it fully includes the smaller one. The blue
stars are always part of the testing data set.

Main results are summarized by the 6 box-plots presented in Figures 4.21 and 4.22 and in
Tables 4.5, 4.6 and 4.7. These graphs compare the different algorithms with a classical MLE
estimator and with the random localization process to evaluate the contribution of RSSI. The
results for B-MLE approach are obtained from all three testbeds, while the results when ruling
out two landmarks, named 2B-MLE (2 landmarks biased maximum likelihood estimator), are
only presented in two testbeds (a smaller (cf. testbed #1) and a bigger one (cf. testbed #3)).
As we need at least three landmarks to localize, and based on the number of landmarks in
each testbed, we will be able to present the results when ruling out three landmarks (named
3B-MLE for 3 landmarks biased maximum likelihood estimator) for only one testbed (testbed
#3). Figures 4.21 and 4.22 represent the statistical properties of the achieved localization errors.
They are analyzed under different angles and detailed in the subsequent paragraphs.

Table 4.5: Compared performance of the different algorithms in testbed #1

Database mean error Median STD
Random A 1.79 m 1.74 m 0.31
MLE A 1.29 m 1.20 m 1.29

B-MLE A 1.39 m 1.29 m 0.85
2B-MLE A 1.40 m 1.33 m 0.74
B-MLEC A 1.30 m 1.20 m 0.85
Random B 1.87 m 1.80 m 0.33
MLE B 1.36 m 1.24 m 1.20

B-MLE B 1.34 m 1.20 m 0.92
2B-MLE B 1.39 m 1.41 m 0.75
B-MLEC B 1.29 m 1.06 m 0.93

4.3.4 Results when excluding one landmark

By comparing the results on the simple B-MLE on the different testbeds, we can see that B-MLE
slightly improves accuracy over the classical unbiased MLE. Figure 4.24 represents the square
error achieved by MLE and B-MLE with different learning sets sizes on the three testbeds. Each
column represents one measurement point and the higher the points in the column are, the less
accurate the method is. We can see that regardless of the testbed, the relative performance
of the three algorithms is far from constant. Sometimes, excluding a landmark that appears
aberrant really improves the positioning while sometimes (less often, though), it ends degraded.

142



1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

(a) Testbed 1: (5 landmarks, 48 positions)
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(b) Testbed 2: (4 landmarks, 47 positions)
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(c) Testbed 3: (8 landmarks, 57 positions)

Figure 4.20: Locations of the landmarks (red dots) and identification of the positions composing the
small learning set (orange squares) and the large learning set (orange squares and magenta triangles) in
the three testbeds
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(a) Testbed 1 - leaning set A (10 positions)
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(b) Testbed 2 - leaning set A (10 positions)
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(c) Testbed 3 - leaning set A (10 positions)

Figure 4.21: Box-plots of the localization errors achieved by the different algorithms in the various
testbeds - Learning Set A (10 positions)
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(a) Testbed 1 - leaning set B (25 positions)
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(b) Testbed 2 - leaning set B (25 positions)
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(c) Testbed 3 - leaning set B (25 positions)

Figure 4.22: Box-plots of the localization errors achieved by the different algorithms in the various
testbeds - Learning Set B (25 positions)
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Table 4.6: Compared performance of the different algorithms in testbed #2

Database mean error Median STD
Random A 3.48 m 3.40 m 0.54
MLE A 3.27 m 3.31 m 3.11

B-MLE A 3.16 m 3.11 m 1.51
B-MLEC A 3.30 m 3.20 m 1.76
Random B 3.27 m 3.15 m 0.48
MLE B 3.30 m 3.43 m 3.19

B-MLE B 3.22 m 3.19 m 1.76
B-MLEC B 3.86 m 4.01 m 2.38

Table 4.7: Compared performance of the different algorithms in testbed #3

Database mean error Median STD
Random A 3.53 m 3.46 m 0.39
MLE A 3.41 m 2.96 m 2.27

B-MLE A 2.73 m 2.27 m 1.93
2B-MLE A 2.72 m 2.67 m 1.59
3B-MLE A 2.72 m 2.42 m 1.68
B-MLEC A 3.49 m 3.40 m 2.05
Random B 3.55 m 3.49 m 0.40
MLE B 2.38 m 2.28 m 1.94

B-MLE B 2.20 m 1.94 m 1.40
2B-MLE B 2.73 m 2.51 m 1.49
3B-MLE B 2.72 m 2.42 m 1.43
B-MLEC B 2.56 m 2.38 m 1.40
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Figure 4.23 represents the error mapped on the 2D map of testbed #1. This graph shows
that there does not seem to be an environment-related reason to this, though, as the relative
performance neither depends on the proximity to walls or structures, nor to the closeness to
landmarks. It also shows that the points on which MLE fails are not the same as the points on
which B-MLE exhibits a limited performance. Looking back at the global results, we can see
that the overall performance is a bit better in testbed #3, which is the large classroom with 8
landmarks. This suggests that increasing the number of landmarks makes it more effective to
remove one, but it is not systematic as confirmed by Figure 4.24(c).

Similar conclusions hold concerning the size of the learning set. If increasing the number of
samples often improves accuracy, it also often yields the same performance and sometimes de-
grades the situation. However, in the smallest testbed (#1), there are several outliers with the
smallest learning set that disappear when the learning set size increases. This shows that the
learning set size matters at least when the size of the room is small. Figures 4.23 and 4.24(a)
show, however, that the locations at which B-MLE performs poorly are often the same with the
two datasets. This shows that, if the decision taken by the algorithm regarding the abnormal
landmark is similar in both cases, the performance improvement comes from a better estimation
of the model parameters.

4.3.5 Results when excluding more than one landmark (xB-MLE)

As seen above, considering one abnormal landmark is not effective in all situations. In this section
we are interested in what happens when we iterate this process, excluding successively two or
three landmarks. The results presented in Figure 4.25 represent the relative performance of the
different strategies on testbed #3. Coupled with the global results (see Figs. 4.21 and 4.22), we
can draw the same conclusion: the strategy may be effective for some positions, but does not
always have a positive effect. We can see, for example, that on the smallest testbeds (#1), 2B-
MLE, which consists in reducing the effects of corrupted RSSI values from two landmarks, does
not yield any improvement. Increasing the size of the learning data set only improves lightly the
accuracy, reducing the number of outliers. On testbed #3, 2B-MLE slightly improves accuracy
for the smallest learning set, but not with the largest. This result shows that it can be profitable
to consider more than one landmark as abnormal and that the estimation of the propagation
parameters can be performed more rapidly (i.e. a smaller learning database is required) when
the number of sources is reduced.

When looking at the threshold-based exclusion (B-MLEC described in section 4.3.2), we can no-
tice different results on the three testbeds. On testbed #1, we can notice that the threshold-based
approach is comparable to unbiased MLE and only slightly improves performance compared to
B-MLE for smaller learning data set. However, for bigger learning data set, this threshold-based
approach improves performance, as the standard deviation is reduced compared to MLE as well
as to B-MLE. On this testbed #3, we can see that the adaptive selection of abnormal landmarks
does not improve accuracy.

These results are confirmed by Figure 4.26, which represents, for each testbed, the percentage
of positions among the testing positions for which each strategy is the most or the less efficient.
If B-MLE and B-MLEC seem the most promising in the smallest testbed, the threshold does
not seem appropriate in the large classroom (testbed 3). Surprisingly, the random strategy is
often effective in the second testbed, followed by B-MLE and the adaptive strategy. The good
performance of 3B-MLE on the large testbed is also encouraging.
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Figure 4.23: Positioning Error projected on testbed #1 map
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(c) Testbed #3

Figure 4.24: Relative accuracies of the random localization, MLE and B-MLE on the three testbeds and
for two learning sets
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(a) Smaller learning set
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(b) Larger learning set

Figure 4.25: Relative accuracies of all strategies on testbed #3 for both learning sets
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Figure 4.26: Percentages of positions for which each strategy achieves the best/worst performance of all
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4.4 Concluding remarks on biased methods

We presented an algorithm and a few variations to reduce the effects of aberrant landmarks
before performing a maximum likelihood estimator (MLE) in order to evaluate a mobile node
position in a wireless network. Excluding data coming from one or several landmarks intends
on alleviating effects due to multipath propagation. We compared over three different testbeds,
algorithms that replace data coming from some landmarks with a constant bias. The landmarks
selection is first performed by maximizing the likelihood in the resulting subset of landmarks.
We compare, in this situation, the cases when one, two or three landmarks are abnormals with
the unbiased MLE. We then evaluate a heuristic approach that does not need to examine all
possible subsets of landmarks but selects abnormals landmarks based on a threshold on the bias.

Results do not privilege one strategy over the others. Depending on the testbed configuration,
on the variability in the environment and on the time passed estimating propagation parameters
(reflected through the learning data set), one method can lead to a better accuracy than the
others. These experiments showed however that, in the general case, this technique can improve
accuracy when compared to classical MLE, ultimately leading to leave only the necessary number
of landmarks active. For larger testbeds, the exclusion of a single landmark proves to be the most
efficient strategy, while in smaller testbeds, the heuristic algorithm improves results. Considering
the global results, it seems that smaller testbeds are more difficult to address than larger testbeds,
which means that the effect of the walls, even when they are non-concrete walls is noticeable.

The location is decided instantaneously and thus support the node mobility. Localization is
performed on time that the mobile node moves from one location (e.g. #1) to another location
(e.g. #2) in 1 second for trilateration and between 1 to 3 seconds for B-MLE, as it can take time
sometimes to B-MLE to investigate the position where the target node is located by searching
the global maximum of the targeted environment. The average number of RSSI that can be
collected a minute is about 140 with a total number of 8 landmarks. With trilateration, there
may be some case in which the mobile node cannot obtain the RSSI from some landmarks,
because nodes are not close to the mobile and thus their data cannot be received to reach the
practical minimum number of the landmarks needed to localize.

This means, our algorithm is robust in dynamic environment where signal condition change,
due to shadowing, multipath fading, as what is important is to select the abnormal landmarks
adequately rather than a selection of RSSI values from a landmark node, which is used in most
localization system in the literature by defining an RSSI threshold in beyond which RSSI values
are rejected from a mobile node.

In the following, we will evaluate the use of a two-modes of Gaussian Mixture Model (GMM)
to reduce the effect of outlier measurements. GMM [27] is a statistical model that models an
unknown random variable as the sum of Gaussian random variables. With this method, it is
possible to determine the composition function over a training set and to utilize the resulting
expression to detect and filter aberrant patterns. We evaluate the accuracy of this method and
compare it with regular trilateration and with our previous proposal: B-MLE [186] over a few
sets of experimental measurements.

We first introduce the two-modes of Gaussian Mixture Models approach in Section 4.5 before pre-
senting an excerpt of the related literature in the same Section. We then describe in Section 4.5.1
the concept of a two-modes Gaussian Mixture Model based indoor localization algorithm. Sec-
tion 4.5.2 provides details about the testbeds we acquired measurements from. The same section
presents our experimental results. Conclusions are summarized in Section 4.5.3.
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4.5 Why a two-modes of Gaussian Mixture Models?

Mixture models [187] are a well known technique in statistics. It can be understood as a weighted
sum of laws that provide approximations for a multi-modal distribution. It is used when one
analytic distribution does not accurately model the situation. Honary et al. [162] use an offline
clustering process based on GMM to identify in which room of a building a GSM phone is located.
This positioning algorithm is compared to k-Nearest Neighbor (k-NN) based positioning. In
an offline phase, a maximum likelihood estimator is used and the GMM algorithm is applied
recursively until all GMM parameters converge for each class of the calibration data. Then, an
online classification process uses the optimal parameters calculated during the offline process to
identify the probability to which the real time data samples belong to the GMM clusters. The
authors experimental results have shown that both classification techniques the k-NN approach
and the proposed GMM algorithm can provide equally accurate results using tags transmitting
at 433 MHz with 3 infrared beacons that are placed in three different rooms. Goswami et al. [161]
propose to use packet sniffing devices in a wireless LAN to learn parameters of a GMM algorithm.
This algorithm, called WiGEM can localize on a building map different WiFi devices that work
at different transmit power levels and it performs better than RF map-based techniques.

Such works, even though they require the help of an external element to perform computation,
show that GMM is a good candidate to enhance localization accuracy in wireless networks. In
the rest of this paper, we consider GMM in a similar way to the approach presented in [162]
without an offline clustering process. We do not deal neither with mapping nor using an extended
Kalman filter as in [188]. We only use two-modes in mixture model: one for the direct path and
another one for the outliers. The likelihood of a sample x for Gaussian Mixture Models is given
by:

F (x) =
K∑
l=1

πlfl(x) (4.43)

with
∑K

l=1 πl = 1 and fl() can be any density and the fl() should not be from the same family.
Gaussian Mixture Models (GMM) is statistical Machine Learning approach that have been
already used successfully. GMM assumes linear super-position of Gaussians distributions. It
can be applied to data where observations emanate from various groups with unknown group
affiliations. In a finite mixture model the distribution of the random variable x has a known
form (e.g. Normal). However, the values of the parameters of the distribution are unknown.
GMM are universal approximates of densities and given a set of data points x = x1, . . . , xN , the
mixing probability given a mixture of K Gaussians and πl, the weight of Gaussian l.

P (x) =
K∑
l=1

πlfl(x\µl, εl) (4.44)

fl(x\µl, εl) =
1

(2π)
d
2

√
|εl|

e(−
1
2
(x−µl)tε−1

l (x−µl)) (4.45)

Where d is the dimension of x, µ is the mean and ε is the covariance matrix. Moreover, when
considering multivariate Gaussian in one dimension (d = 1) with mean µl and variance σ2l .

fl(x\µl, εl) = 1√
2πσ1

e
− l

2σ2
l

(x−µl)2
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Finite mixture models with a fixed number of components are usually estimated with the
expectation-maximization (EM) algorithm within a maximum likelihood framework [189]. The
idea behind EM algorithm is to introduce a hidden variable in order to simplify the maximization
of Equation (4.44). The distribution and the value of the parameters of that hidden variable
are then estimated. Finally, the joint distribution of the data and the hidden variable are max-
imized. In other words, the EM algorithm computes in iterative way the expected maximum
likelihood estimate of the whole distribution and then maximizes this computed likelihood of
complete distribution.

If θ represents the parameters of the distribution, the maximum is given by:

θ = arg maxθ p(x1, . . . , xN\θ) = arg maxθ
∏N
i=1 p(xi\θ)

Works from Lauer et al. [27] extended the use of GMM to describe the pattern’s distribution.
This so-called two-modes GMM use a two-level approach which analyzes the training patterns
using widespread outlier distribution to model the existence of outliers. This widespread outlier
distribution models the pattern distribution as the composition of a big percentage of normal
patterns and a small proportion of corrupted patterns without any need to know the exact num-
ber of outliers, neither which training patterns are outlying, nor the exact number of anomalous
patterns. The estimation of the parameters of the complete mixture can be done by the EM
algorithm. The Em-algorithm locally maximizes the likelihood-function and that the existence
of the outlier component bounds the log-likelihood below.

As mentioned, in order to improve indoor positioning and to find the distribution that acquired
data (samples) come from among outliers, this GMM approach has been adopted using two
modes. Given the data set acquired by a blind mobile node, the idea is to estimate its most
probable location by finding the corresponding parameters of the direct path component which
is separated to the outliers one.

4.5.1 GMM-MLE localization algorithm approach

In the previous approaches we consider that the path loss, expressed in dB, follows a linear model
w.r.t. the log-distance and we have assumed that the model noise is Gaussian. This model is not
(well) appropriate in the presence of outliers. In such cases a well-known approach consists of
using a Gaussian Mixture Model (GMM) of two modes [27], one for the direct path and the other
one to trap the outliers. GMM estimates the distribution of the Normal patterns from training
data which contain outliers. We recall the expression of the GMM assuming two modes and
N independent, identically-distributed (i.i.d.) observations Xn=1:N . The log-likelihood function
writes:

log p(RSSI1:N ; θ) =
N∑
n=1

log
2∑

k=1

πkfk(RSSIn;β0,k, β1,k, σk) (4.46)

where p(RSSI1:N ; θ) denotes the probability density from the parameters θ,
θ = (π1, π2;β0,2, β1,2, σ1;σ2) with π1 + π2 = 1, and

f1(r;σ1) = 1√
2πσ1

e
− 1

2σ21
r2

f2(r;β0,2, β1,2, σ2)= 1√
2πσ2

e
− 1

2σ22
(r−β0,2−β1,2 log10(d2(x,y)))2
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Table 4.8: Localization error in the LINCS testbed

Data Set Average Median STD
GMM-MLE A 1.11 m 1.00 m 0.62
Trilateration A 1.30 m 1.16 m 0.79

B-MLE A 1.39 m 1.29 m 0.85
GMM-MLE B 1.12 m 0.86 m 0.75
Trilateration B 1.62 m 1.58 m 0.87

B-MLE B 1.34 m 1.20 m 0.92

Table 4.9: Localization error in the Rammus testbed

Data Set MSE Median STD
GMM-MLE A 3.79 m 3.67 m 1.95
Trilateration A 2.06 m 2.01 m 0.98

B-MLE A 2.73 m 2.27 m 1.93
GMM-MLE B 2.37 m 1.88 m 1.62
Trilateration B 2.36 m 2.13 m 0.92

B-MLE B 2.20 m 1.94 m 1.40

The likelihood estimate of θ have been obtained by the Expectation-Maximization algo-
rithm [189]. As the maximum likelihood estimator is applied on the function p expressed in
Equation (4.46); and as the logarithm is a monotonic function, we can apply MLE on the func-
tion log p. Then, the estimated coordinates (x, y) is obtained as:

(x̂, ŷ) = arg min
x,y

J∑
i=1

log p(RSSIi,1:N ; θ) (4.47)

The N RSSI samples are measured from the N emitted messages when considering J landmarks
in total.

4.5.2 Results and interpretation

We compare the three methods described above (Trilateration, B-MLE and GMM-MLE) on a
set of results acquired from two experimental campaigns conducted in the testbeds (#2) and
(#3).

Tables 4.8 and 4.9 report the average, the median and the standard deviation of the positioning
error (expressed in meters) for the three algorithms over the testing sets A and B. The testing
set represents the number of positions used for algorithms comparison and testing set A is bigger
than testing set B. Figure 4.27 shows the CDF of the localization errors for the three algorithms
in the four scenarios.

In the smallest testbed (LINCS), both the average values and the graphs show that GMM-
MLE achieves a better accuracy. In particular, Figure 4.27(b) shows that about 40% of the
localization errors are below 0.5m with GMM-MLE. When the learning database is bigger (cf.
Figure 4.27(b)), all three algorithms have similar error profiles, even though GMM-MLE has the
smallest average and median error.

On the largest testbed, though (RAMMUS), trilateration and B-MLE both achieve better results
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(a) LINCS testbed - testing set A
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(b) LINCS testbed - testing set B
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(c) Rammus testbed - testing set A

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Localization error

C
u

m
u

la
te

d
 p

e
rc

e
n

ta
g

e
 o

f 
p

o
s

it
io

n
s

 

 

B−MLE

Trilateration

GMM−MLE

(d) Rammus testbed - testing set B

Figure 4.27: CDF of the distance error for GMM-MLE, B-MLE and trilateration
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than GMM-MLE, with a small advantage for trilateration when the learning database is smaller
(cf. Figure 4.27(c)). This means that in this scenario, trilateration is good enough and that
removing measurements considered as outliers is counter-productive. It may be due to the size
of the room, which is slightly larger than the previous testbed. In this case, it would mean that
increasing the room size brings experimental conditions closer to a free space situation, and that
the threshold between both models should be determined. Nevertheless, the validation of such
hypothesis requires additional testings in various rooms.

4.5.3 Concluding remarks on two-modes GMM (i.e. GMM-MLE)

In this section, we presented an experiment-based indoor localization method with the use of the
imprecise RSSI metric. RSSI is known to be a poor ranging metric in an indoor scenario as it is
highly sensitive to signal propagation effects such as multipath. To alleviate the randomness that
results from these propagation effects, we evaluated here a method to keep, for the localization
process, only the most coherent measurements with the help of a two-modes Gaussian Mixture
Model. This proposed method does not require any previous complex calibration or area specific
training phase. We compare this method with two other candidates: classical trilateration on
the whole dataset and a previous proposal based on the introduction of a bias in a maximum
likelihood estimator. Results obtained show that the GMM-MLE based method has a good
potential, as it improves significantly localization errors in some environments. However, it is
not efficient in every scenario and can yield to worse results than trilateration. This means that a
localization system should consider this method as one of the potentially relevant tools. However,
performing a clever selection between the different available methods requires to identify online
the operational scenario and to match it to some criteria such as the room size, or the presence
of interfering access points. We believe that such decision could be based on a single node’s
perception, coming for example from the statistical properties of the dataset.

4.6 Summary and discussion on proposed RSSI-based one-hop
indoor localization algorithms

We proposed one-hop localization algorithms to take into account the inconsistencies observed
in several indoor environments and highlighted by our measurement campaigns results. Such
discrepancies are identified effects introduced by multipath and outliers. We then demonstrated
that such proposed algorithms are adaptable to any environment without no need to calibration,
no central processing unit and no human intervention. These localization algorithms are indeed
able to improve the localization performance in the presence of noise.

With statistics approaches/filtering applied to measured RSSI values and using few landmarks
nodes compared to the related work as presented in Table A.2 in appendix A, our proposed
one-hop RSSI-based localization algorithms are able to provide sufficient localization accuracy
for desired types of application. With our improvements, we are able to follow a person in his
home. Our proposed localization algorithms can also enable to locate babies in a nursery, to
position accurately a camera in front of a person or to monitor artworks in a museum.

Besides these proposed one-hop localization algorithms, we additionally introduce a distributed
localization algorithm to effectively and significantly refine location accuracy of sensor nodes in
a wireless sensor network.

157



The contributions of our work are summarized below. Our proposed algorithms are able to
improve the indoor location accuracy performance at about:

• 30% with GMM-MLE compared to B-MLE

• 50% with GMM-MLE over trilateration localization algorithm.

• 40% with B-MLE over MLE

• 20% with B-MLE compared to trilateration

• an average of 70% with DSAL compared to B-MLE

• 85% with DSAL compared to multilateration and MDS
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Chapter 5

Proposed RSSI-based distributed
localization algorithm
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5.1 Data Analysis Techniques : background . . . . . . . . . . . . . . . . . 159

5.1.1 Multi Dimensional Scaling (MDS) . . . . . . . . . . . . . . . . . . . . . 159
5.1.2 SemiDefinite Programming (SDP) . . . . . . . . . . . . . . . . . . . . . 162

5.2 Implementation of RSSI-based distributed localization algorithms
using data analysis techniques . . . . . . . . . . . . . . . . . . . . . . . 163

5.2.1 Used distance error formula . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.2 Reference: Monte Carlo simulation for generating RSSI data . . . . . . 164
5.2.3 Multilateration-based localization algorithms . . . . . . . . . . . . . . . 164
5.2.4 Classic MDS-based localization: Principal Component Analysis (PCA) . 168
5.2.5 On-line Distributed Stochastic Approximation-based localization algo-

rithms (DSAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.3 Summary and discussion on distributed algorithms results . . . . . 189

In previous algorithms, a node can only estimate its own position. Recall that such localization
scenario is useful and needed in some application like artworks surveillance in a museum; locate
babies in a nursery; localize and track an elderly person in a house, so as to learn their habits
and then trigger actions if needed (e.g. for medical reasons). However, in order to be closer to
wireless sensor networks-based applications for cooperation purpose, we proposed a distributed
localization algorithm. With this proposed distributed stochastic localization algorithm named
DSAL, each sensor is able to estimate its own position as well as those of its neighbors. To
test its performance, our DSAL localization algorithm is compared with multilateration and
MDS-based techniques.

In this chapter, we first describe the principle of data analysis techniques and multilateration-
based localization algorithms (i.e. geometrical techniques). We also present our distributed
stochastic localization algorithm mechanism named (i.e. DSAL). Finally we present the DSAL
localization accuracy compared to multilateration and MDS-based techniques.

5.1 Data Analysis Techniques : background

5.1.1 Multi Dimensional Scaling (MDS)

Multi Dimensional Scaling (MDS) is a data analysis technique to infer the main dimensions
involved within a spatial configuration of objects when the available data is related to some
measures of their general similarity or dissimilarity [190]. The data collected for MDS analysis
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is arranged as a square matrix named the proximity matrix which describes the overall (dis)
similarity of the objects under investigation. The idea behind Multidimensional Scaling for po-
sitioning problem is the following: a node computes a relative map (initial local map) according
to the relative positions from its immediate neighbors.

This type of method does not require the use of landmarks to find the relative positions of the
set of blind nodes unlike the aforementioned methods such as multilateration and Maximum
likelihood estimator. Indeed, with MDS, the landmarks are only used if one needs to compute
the absolute positions. In this case, It is required to use landmarks. But if an application
only requires relative positions, those can be derived without the need of landmarks. Unlike to
multilateration, with MDS the coordinates reference is the barycenter of the network formed
by all sensors with unknown positions. In [165] different localization techniques are analyzed in
depth as long as several examples are shown for different applications.

In [165] the authors proposed two different methods to solve the problem of localization of a set
of N unknown positions when data is available under the form of square and symmetric matrix
named Dsquare whose elements {Dsquare(i, j)}∀i,j correspond to the set of the N(N−1)

2 pairwise
square distances between the N nodes.

We denote by Z the matrix containing the positions of each regular sensor node and whose
dimensions are N × 2 (two dimensional case). The position of each node i can be defined as
Z(i) = (xi, yi). As the aim is to find the relative positions Z, one found different ways to express
the available matrix Dsquare as a function of matrix Z. One approach relies matrix Dsquare on
a double centered version of Z to obtain the Principal Component subspace (See Chapter 12
in [165]). A second approach defines a scalar function called Stress depending on Z appropriate
to minimize iteratively (see Chapter 8 in [165]).

As measured distances are not perfectly known, we assume the following model : a set of N
nodes composed of one blind node and virtual landmarks forming a connected graph whose
distances are estimated from the RSSI data packets received at each blind node and using the
unbiased estimator defined in equation 4.13 for each entrance of the matrix d̂square. In such case,
we obtained an estimated matrix D̂square and both methods seek to minimize the corresponding
mean square error between the estimated and the true matrix. The two proposed approaches in
the literature are detailed in [165] and can be summarized as follows :

1. Classic: Principal Component Analysis (PCA)

This first method seeks to find the principal subspace related to the matrix D̂square (theory
of Principal Component Analysis) through its corresponding eigen decomposition. As
matrix Dsquare can be written under the form of the unknown positions ZZt, the method
is defined as the following minimization problem such :

min
X
||XXt +

1

2
J⊥ D̂square J⊥||2 (5.1)

where: J⊥ = I − 1/N11t

Equation 5.1 aims to minimize the mean square error between the true unknown distances
Dsquare which can be written as a product of positions XXt, and the estimated squared
distances obtained with the matrix D̂square.

Note that matrix J⊥ defined as J⊥ = I − 1/N11t denotes the centralized operation J⊥Z
which means to apply a translation of the N unknown absolute node positions (having
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a network configuration) to its corresponding centroid 1/N
∑N

i=1Z(i). After that, we
define the N unknown relative node positions as the matrix X whose dimensions are
N × 2. We recall that I is the identity matrix. It is shown in [165] that a solution to
equation 5.1 corresponds to find the eigenvalues decomposition (using PCA) to the double-
centered matrix −12 J⊥D̂square. In fact, matrix Dsquare can be written under the form :
c1t+1ct−2ZZt, where vector c has dimensions N×1 and is defined as c = (c(1), . . . , c(N))
whose component i is c(i) = ||Z(i)||2 = x2i + y2i . Note that vector 1 verifies J⊥1 = 0 and
1tJ⊥ = 0. Then, the double centering operation applied toDsquare gives one of the possible
set of relatives nodes positions X as :

−1

2
J⊥Dsquare J⊥ =

−1

2
J⊥(c1t + 1ct − 2ZZt)J⊥ = J⊥ZZ

tJ⊥ = XXt (5.2)

Note also that matrix X is equal to J⊥Z then it contains the relative positions to the
centroid of the network configuration, i.e., the unknown absolute node positions Z centered
at the network centroid defined as Zc = (1/N1tZ1, 1/N1tZ2), then X = Z − 1Zc.

As the resulting matrix XXt with dimensions N × N , has rank 2, it can be found the
first two associated eigenvalues (λ1 and λ2) and eigenvectors (V 1 and V 2) written as:

XXt = V ΛV t = V
√

Λ
√

ΛV t (5.3)

then : X = V
√

Λ = [
√
λ1V 1,

√
λ2V 2] (5.4)

Regarding the double centering operation in equation 5.2, it could be computed in a
centralized way. One sensor node i is chosen to collect all the N(N−1)

2 pairwise distances
(i.e. distances between pairs of N sensor nodes). It simply requires for sensor node i
to measure RSSI values from data sent by their N − 1 immediate neighbors to compute
estimated {di,1, . . . , di,N}; then to communicate with those neighbors at the end to collect
the rest of the estimated distances to build the matrix D̂square and finally to compute
the low rank matrix XXt. This step involves a communication cost of N(N−1)

2 and the
number of operations scales N(N−1)

2 .

The second centralized computation concerns the eigenvalues decomposition in equa-
tion 5.3 and it can be implemented with the iterative method of Power Method (PM,
p.405 in [191]) or the QR-factorization (p.114 in [192]). It involves N2 number of opera-
tions in equation 5.3 to compute each eigenvector. Since we first estimate the square of
the distance with a variance value defined in equation 4.12, this method will be suitable
for position estimation within networks with a lower or medium number of sensors being
well connected.

In [167], a localization method based on this centralized approach (MDS-MAP) is used
in a wireless sensor network in which sensors are not necessarily all connected with each
other and have different connectivity (number of neighbors). A first step using shortest
path computation is used to estimate the matrix Dsquare. The bound of the algorithm
error are calculated and detailed in [168].

Later on, in [193], the authors proposed to use the same method locally, by dividing the
network of between 100 and 200 sensor nodes and getting local maps of neighborhoods
closest sensor nodes whose positions are estimated by MDS. A final step of joint of local
maps is proposed for the global map. For mobile networks or networks with links between
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sensor nodes vary with time, the methods that can implement the MDS in a distributed
manner is considered [170].

2. Modern MDS ([165], Chapter 8) or Modern Majorization Problem (SMACOF)

The method known as SMACOF is based on Scaling by Majorizing a Compli-
cated Function. The majorization problem is formulated as a minimization prob-
lem of the function σr(X) known under the name of raw Stress that expresses the
mean square error between the true distances between each pair of nodes i and j.
di,j =

√
(z1(i)− z1(j))2 + (z2(i)− z2(j))2 and the measured distances {d̂i,j}∀i,j as follows:

X̂ = min
X

σr(X) = min
X

∑
j>i

wij(d̂i,j − di,j(X))2 (5.5)

where : di,j(X) =
√

(X1(i)−X1(j))2 + (X2(i)−X2(j))2

As the optimization problem of equation 5.5 concerns the minimization of a non-trivial
function due to its locals minima, an auxiliary quadratic function is used to obtain the
expected global minimum iteratively. The general method is appeared in [194] where it is
described the iterative majorization method. The SMACOF algorithm is later proposed
in [166] to adapt to this optimization problem.

In [165] (Chapter 8) the solution to the equation 5.5 is implemented with an iterative
method based on the quadratic majorization using an auxiliary function whose gradient
function can be easily computed. It is shown that the solution that cancels the gradient
is obtained from the Guttman Transformation (TG).

It is then applied to each estimate Xk at iteration k (cf. the summary of the algorithm
on the page 191 of the Chapter 8 in [165]). After an initializing X0 and σr(X0) step the
algorithm continues as follow:

i) Increments in an iteration k.

ii) Calculates the Guttman Transformation (TG) of Xk.

iii) Returns to the step i) if σr(Xk−1) − σr(X
k) > ε and k ≤ maximum number of

iterations.

The obtained solution results in a configuration network centered to the barycenter (cen-
troid) as in the previous method. Thus, a version of the equation 5.3 is obtained for a
given rotation. The algorithm can be implemented in a centralized manner on any wireless
sensor node within the network if it is able to collect all the N(N−1)

2 pairwise distances
between all sensor nodes. A distributed version is proposed by [125] with a sequential
approach where at each iteration the global function to minimize is calculated from the
aggregation of the local position estimate of each sensor node which is sent in the network
through an update message.

5.1.2 SemiDefinite Programming (SDP)

Semidefinite programming (SDP) localization mechanism is a centralized localization so-
lution based on convex optimization. In general, with semidefinite programming the mea-
surements (distance or connectivity) among the wireless nodes in the network are modeled
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as a set of convex constraints to solve by the localization optimization problem. More pre-
cisely, in this type of method, the solution is found from a convex optimization problem in
which the system has a linear structure with some constraints on the unknown variable.
This method applied to the localization problem is studied and analyzed by Monatari et
al. in [168]. They give the bounds of error based on the results of the theory of Global
Rigidity : for instance, one can consider a sensor network as a connected a graph G(N,V )
with N sensor nodes and a set of edges V = {(i, j) | i ∼ j} denoting the connections links
between sensor nodes. As in the MDS method, a semi definite problem turns to find the
Principal Component Analysis (PCA) (decomposition in eigenvectors and eigenvalues) of
a square matrix Q under the constraints of being symmetric and defined semi-positive.

Unlike the double centralization in Classical MDS defined by the minimization equa-
tion 5.2, the SDP method minimizes the trace of matrix Q (trace(Q)) under the
appropriate constraints :

However, unlike the double centralization step as in the Principal Component Analysis
(PCA) defined by the equation ( 5.2), the matrix Q of the SDP is calculated as:

Q̂ = min
Q

trace(Q) = min
Q

(Q11 + · · ·+QNN ) (5.6)

subject to : |Qii +Qjj − 2Qij − d̂2ij | < ∆ if (i, j) ∈ V (5.7)

Q � 0

With trace(Q) is the trace of the matrice Q. The trace of a matrix is the sum of the
elements being in the diagonal of a matrix.

The solution to the equation ( 5.6) satisfies the structure XXt as in MDS algorithm
and therefore a step as in Principal Component Analysis (i.e. PCA) as defined in the
equation ( 5.3) is used to find the relative positions from the eigenvalues and eigenvectors.
The complexity of this method is how to solve a system of up to N(N−1)

2 unknowns and
equations when N is number of sensors with a limited number of operational resources.

5.2 Implementation of RSSI-based distributed localization
algorithms using data analysis techniques

In this section we present simulation and experimental results of the proposed distributed
localization algorithm named DSAL and compare such results to those from multilatera-
tion, classical MDS and Modern MDS.

5.2.1 Used distance error formula

We recall the expression of the average estimation error (Em) used to evaluate the perfor-
mance of localization mechanisms under simulation and when using real sensors data. If we
consider a set of N positions to estimate, {X(i)}i=1,...,N in which, each X(i) corresponds
to the two dimensions (i.e. 2D) position of the sensor node i and all of these estimated
positions {X̂(i)}i=1,...,N is defined as Em:
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Em =
1

N

N∑
i=1

‖X̂(i)−X(i)‖ (5.8)

In the equation ( 5.8) we have units of distance in meter m for our experiments. To
obtain a qualitative and absolute value in percentage, the expression in equation 5.8 can
be normalized by a factor that takes into account the dimensions of the area in which
evolves the wireless sensor network. For example, consider experiments with a network of
sensors on a rectangle of dimensions Pm×Qm. The value of the distance d is normalized
by the diagonal of the rectangle to obtain an estimate of the normalized mean error (NME)
as:

NME =
1√

P 2 +Q2

1

N

N∑
i=1

‖X̂(i)−X(i)‖ (5.9)

If the Normalized Mean Error named NME is calculated for each position i, it can be
defined as 1√

P 2+Q2
‖X̂(i)−X(i)‖.

5.2.2 Reference: Monte Carlo simulation for generating RSSI data

Monte Carlo algorithm is referred to a statistical technique in which a large quantity
of independent-random samples are generated and evaluated under an optimally chosen
probabilistic distribution function like Uniform, Normal, Log normal, and so on [195]. The
Monte Carlo approach performs the distribution from the generated data sample thus it
can determine numerical results which are sampled at random from the input probability
distributions. Then, one can derive whether the empirical result matches or not one of the
performed distributions within a given confidence level.

In Monte Carlo simulation analysis, each set of random samples is named a realization
and it may be generated independently more than hundred or even thousand times. Such
realizations are computed each time using a different chosen density probability function
from a known distribution. When analyzing the performance of the different localization
methods from simulated RSSI data, we draw data samples from several Monte Carlo
runs whose distribution are chosen as log-Normal. Simulated RSSI data is used with the
implemented algorithms in order to quantify the theoretical accuracy of such localization
algorithms. Then, they are compared to the empirical accuracy obtained when using
real measured RSSI values from our testbeds. Monte Carlo analysis is performed with
MATLAB and Statisticals Toolbox.

5.2.3 Multilateration-based localization algorithms

Localization with multilateration algorithm is first validated by generating RSSI mea-
surements using Matlab (Monte Carlo realization) according to the log-normal shadowing
model (cf. equation 4.1). We obtain non-biased estimated square distances as described
above in the section 4.2.2.2 with a value of η = 2.1. Figure 5.1 shows the mean error
estimation of N positions in percentage when taking the diagonal of the rectangle 5× 8m
as a normalization term of the error for different noise values levels (σ2) of the model.
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Figure 5.1: Normalized Mean Error (NME) of N = 12 estimated positions with multilateration and when using
different noise values of the variance of the model: σ2.

In Figures 5.3(a) and 5.3(b) we show the results achieved with multilateration using one
Monte Carlo realization for 12 estimated nodes positions including blind node and virtual
landmarks. For such Monte Carlo realization we generated the random square distances
using the unbiased estimator expression presented in equation (4.13) with T = 1, η = 2.1
and log-normal random noise with parameter σ2 equal to 2 and 10. The effect of the
variance of the multilateration estimator is analyzed according to the expression in equation
(4.27). From this expression the variance depends and increases with distances and σ2.

The performance of position estimation with multilateration under the log-normal shadow-
ing model assumption is validated using empirical data to estimate the x-coordinate of the
blind node identifier 214 position using multilateration as illustrated in Figure 5.4. Em-
pirical data are illustrated according to 1000 Monte Carlo independent realizations (1000
rounds of RSSI data generated with Matlab for 12 unknown positions) with additive noise
σ2 equal to 10. Empirical results are then compared to a Gaussian distribution centered
at the real value (real abscissa) of this coordinates with a variance value obtained from
the theoretical covariance matrix of the estimator according to the expression of equation
(4.27). The Multilateration algorithm runtime for the estimation of 12 unknown nodes
positions is 0.47 seconds.

To confirm the theoretical results observed on position estimation with multilateration,
we realize 10 independent experiments by collecting RSSI measurements on 12 nodes on
a total of 16 wireless sensor nodes from the SensLAB Rennes platform. These 12 are
blind nodes and virtual landmarks with unknown positions and 4 remaining nodes are
landmarks. Recall that each blind node is considered as a virtual landmark from another
blind node point of view.

In Figure 5.5, we illustrate the average estimate of 12 positions for 12 blind nodes with
estimated distances from 10 independent experiments. 600 RSSI measures are recorded
at each experiment for each blind node position. A blind node can communicate with its
neighbors landmarks and virtual landmarks.

From the aforementioned RSSI measures, an average value of σ2 = 16.37 is estimated at
involved sensor node network selected in the SensLAB Rennes testbed. In this case, the
normalized mean error estimation for each of the N sensor nodes are:
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Figure 5.2: Average estimated position with multilateration from 1000 independent Monte Carlo real-
izations for N = 12 nodes positions including blind node and virtual landmarks
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Figure 5.3: Estimated positions with multilateration when considering one Monte Carlo realization (RSSI
data generated with Matlab)
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Figure 5.4: Histogram when estimating the abscissa of the blind node (214) when considering empirical and
theoretical model with σ2 = 10
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The mean positioning error (normalized mean error along the diagonal of the concerned
rectangle) for N sensor nodes under 10 experiments is: NME = 0.23.
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Figure 5.5: Average estimated positions with multilateration for each of the 12 nodes (blind nodes and virtual
landmarks). 10 independent experiments using real RSSI measurements are performed at the remote SensLAB
Rennes platform. At each experiment, each sensor node collects until 600 packets.

5.2.4 Classic MDS-based localization: Principal Component Analysis
(PCA)

We implement Classic MDS-based localization algorithm by analyzing the network con-
figuration of 16 sensor nodes as shown in Figure 4.4. We use the algorithm described in
equations (5.2) and (5.3) to calculate the N = 12 unknown positions of the blind nodes.
We first carry out Monte Carlo simulation by generating in Matlab the values of the
squared distances with additive noise and by varying the value of σ2 between 0 to 10. The
purpose of such process is to obtain unbiased estimates of the matrix Dsquare. We then
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Figure 5.6: Normalized mean error (NME) of Classic MDS-based localization of N = 12 estimated positions for
different values of σ2 with Monte Carlo simulation using 1000 Monte Carlo independent realizations (RSSI data
generated with Matlab).

illustrat in Figure 5.6 the values of the normalized mean error (NME) (cf. the equation
(5.9)) of N positions when considering 1000 Monte Carlo independent realizations (RSSI
data generated with Matlab) for each value of σ2.

Resulting positions Ẑ are estimated with Classic MDS after resetting the relative positions
X to the absolute positions Z using M = 4 landmarks with the procedure explained in
( [165], Chapter 12). The results of the averages positioning errors from 1000 Monte Carlo
independent realizations (RSSI data generated with Matlab) are shown in Figure 5.7(a)
and 5.7(b). Note that the runtime of the Classic MDS algorithm for the estimation of
12 unknown nodes positions is 1.48 seconds. We observe that the averages estimated
positions have a bias proportional to their distance to the centroid of the network and the
configuration of the network is maintained.

Figures 5.8(a) and 5.8(b) illustrate the position estimation for a given Monte Carlo rea-
lization when σ2 is equal to 2 and 10.

Without noise, the eigenvalues of the matrix H (from which the decomposition of the
main components) are equal to λ1 = 63.25 and λ2 = 34.09. The empirical laws of the
first two estimated eigenvalues λ̂1 and λ̂2 are illustrated in Figure 5.9. As noted in the
Section 4.2.1, the maximum likelihood estimator of the distances follows a log-normal
distribution depending on the value of σ2 and thus on the model of the measured RSSI.

The average empirical law of the estimator d̂square is illustrated for the sensor node 1 and
for the sensor node 2 as well as for the two values of σ2. The first sensor node is located
close to the centroid. The distances that separate it to the remain sensor nodes within the
network is around an average distance. The sensor node 12 is located in an outside corner
of the network and the distances to the other sensors are twice the distances reported for
the sensor 1. This effect is marked on the variance as we can observe that it depends on
the distance to exponent 4. If the average of the square of the distance of the sensor node
1 are computed; {d21,i}i=1,...,16 is equal to 6.15 m2 (i.e. square meters) and the one for the
sensor node 12 is equal to 12.94 m2.

Experiments are realized on the wireless sensor nodes at SensLAB Rennes platform.
We consider 10 independent experiments and the network configuration presented in Fi-
gure 4.4. At each experiment, 600 RSSI measures are recorded for each blind sensor node
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Figure 5.7: Positioning error with classical MDS using 1000 independent Monte Carlo realizations (RSSI
data generated with Matlab) for N = 12 positions
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Figure 5.8: The estimation of N = 12 positions with classical MDS-based localization algorithm using
one Monte Carlo realization (simulation)
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Figure 5.11: Average positions estimate of N = 12 positions with classic MDS-based localization from 10
independent experiments realized in 2 hours on sensor nodes at SensLAB Rennes platform.

position. The total duration for all experiments is 2 hours. Note that, in each experiment,
due to the layout of the room and disturbances, all the blind sensor nodes were not able to
communicate with all landmarks nodes. Figure 5.11 illustrates the average of N estimated
positions obtained with the conventional MDS method. A normalized mean error (NME)
of 0.3 is obtained. The values of the normalized mean error estimated at each position are:

(0.23, 0.29, 0.05, 0.35, 0.02, 0.14, 0.59, 0.12, 0.47, 0.29, 0.32, 0.12).

The average estimate of the two eigenvalues are equal to λ̂1 = 42.19 instead of 63.25 and
λ̂2 = 35.7 instead of 34.1.

5.2.4.1 Modern MDS-based localization: Modern Majorization Problem
(SMACOF)

We analyze as in the previous method the results by considering the network in Figure 4.4 in
which we aim to compute the N = 12 unknown positions of the blind nodes. First data are
simulated in the same manner as above under different noise levels. The initialization point
is randomly selected for each sensor node in the network using two uniform components
between 0 and 5. In Figure 5.12(a), the normalized average error estimate of N positions
is illustrated (cf. the equation (5.9)) using Monte Carlo simulation with 1000 independent
realizations (RSSI data generated with Matlab); and for each value of σ2 between 0 and 10;
and with 300 iterations of the SMACOF algorithm. Figure 5.12(b) shows the normalized
bias (in the same factor as the expression of the normalized average error estimate in the
equation (5.9)) for each estimated position in which the error increases with the value of
σ2.

We observe that the estimated position of the blind sensor node with identifier 1 (node
214): Z(1) = (4.73, 6.79) is the closest to the centroid. Unlike, most external blind nodes
locations estimation are slower to converge to the correct solution and the introduced bias
is more important. Note that the centroid in this network is (4.78, 6.52)). In all achieved
results, the estimated location of the bind sensor node with identifier 1 is the one whose
the estimation error is the smallest. With the SMACOF algorithm the relative positions
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Figure 5.12: Analyze of positions estimation with the SMACOF algorithm for different values of σ2 (from
0 to 10)

174



are obtained at centroid X centered at (0, 0). The algorithm is initialized at points that
are close, the minimum is quickly determined and is the same with the true location.

Figures 5.13(a) and 5.13(b) show the average results of the estimated positions when σ2

is equal to 2 and 10.

Furthermore Figures 5.14(a) and 5.14(b) illustrate the result for one Monte Carlo real-
ization (one round of RSSI data generated with Matlab). However, when considering the
RSSI measures from the SensLAB Rennes Platform as shown in Figure 5.15(a), the N po-
sitions estimates are obtained using the SMACOF method with random initialization as in
the previous case and after 300 iterations. The corresponding runtime for such estimation
when N = 12 is 1.644 seconds.

For one independent experiment, 6000 RSSI measures are taken at each blind sensor node
position for a duration of 2 hours. The normalized mean error (NME) of the N estimated
positions reports a value of 0.16 for each position and corresponds to:

(0.2, 0.11, 0.27, 0.09, 0.11, 0.09, 0.16, 0.25, 0.063, 0.41, 0.13, 0.088).

The average normalized mean error (NME) is illustrated for 10 independent experiments.
At each experiment, each blind sensor node measures 600 RSSI values in a duration of 10
minutes. A value of the normalized mean error (NME) on the 12 estimated positions is
0.25 and for each position the estimated individual errors are:

(0.19, 0.17, 0.27, 0.23, 0.15, 0.28, 0.51, 0.24, 0.063, 0.41, 0.35, 0.18).

5.2.5 On-line Distributed Stochastic Approximation-based localization algo-
rithms (DSAL)

In this section we introduce a new refinement phase based on distributed stochastic approx-
imation to improve the estimated position accuracy in real noisy environments in which the
presented methods have a fairly low performance. It has been already discussed an existing
general structure to solve the problem of localization of a set of N unknown positions in wireless
sensor network (see in [1]). Such structure uses range or distance measures and a number of
known positions from a set of M landmarks which are usually placed at the surrounding area of
the network and it is usually verified such M << N . The common structure of such well-known
methods ( [29, 30, 89, 193]) is: compute the estimated distances matrix, apply a core algorithm
to solve the location problem and finally introduce a refinement phase using a cooperative-based
technique to obtain high accurate estimated positions. Such cooperative-based approach uses the
temporal estimated positions of the unknown nodes in addition of connectivity information and
known landmarks positions [28, 29, 30, 31]. Examples of such refinements phases are : in [89];
the authors computed trilateration step iteratively at each node being declared as a landmark
when it becomes well located depending on its confidence level; in [30] they choose a distributed
iterative Kalman filter to solve the least square minimization problem implemented sequentially
throughout the sensors at each iteration to guarantee the global optimum is achieved; and sim-
ilarly, in [193] the authors solved the least square minimization problem using a centralized
gradient descent approach implemented using the Levenberg-Marquardt algorithm. Because the
non-linear and non-convex nature of the function to minimize, the use of gradient descent
approaches is limited to the refinement phase in order to ensure an appropriate initialization
first; which depends on the result given by the previous phase, and the global optimum then.
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Figure 5.13: Average normalized mean error estimation of N = 12 unknown positions with the Mod-
ern SMACOF algorithm under 1000 independent Monte Carlo realizations (RSSI data generated with
Matlab)
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Figure 5.14: Estimation of the N = 12 positions using SMACOF algorithm
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(a) Position estimation of N = 12 positions with the SMACOF algorithm for one experiment
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(b) Average position estimation for N = 12 unknown positions using 10 independent experiments
at the Senslab Rennes platform.

Figure 5.15: Results of the SMACOF localization algorithm using RSSI measures from experiments at
SensLAB Rennes platform
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In our work inspired from the two-phases of above mentioned approaches, we propose to im-
plement an iterative on-line distributed stochastic approximation approach based on [32] which
joins two methods : stochastic approximation ( [196], [171]) and gossip-based communications
( [33]). Such gradient descent approach helps to minimize the mean square error of the estimated
distance derived from the noisy measured RSSI from received data. In the literature, we found
several works related to the distributed gradient descent where it was firstly proposed in [197],
later analyzed in [198]) and proved in both theoretical and practical ways ([199], [200]). Before
defining the algorithm, we first detail the notation as follows.

We define the N unknown node positions as the set {zi}i=1,...,N and the set of the M known
landmark’s positions as {ζk}k=1,...,M . For any sensor node i, we denote by Ni the set of sensor
nodes j 6= i such that di,j = |zi − zj | < r and Ai all landmarks k such that di,k = |zi − ζk| < r.
We assume that each sensor node i is at least connected to one landmark, i.e. |Ai| ≥ 1 ∀i.
Moreover, we recall that for each sensor node i its position in two dimensional spaces is written
as the following two-coordinates vector : zi = (xi, yi). We assume also that any sensor node
i can compute the following set of positions which include its own position and the set of its
neighboring positions as:

z(i) = (zj)j∈Ni∪{i} whose two coordinates are: x(i) = (xj)j∈Ni∪{i} , y(i) = (yj)j∈Ni∪{i}

Because the set of pairwise distances {di,j}∀j∈Ni and {di,k}∀k∈Ai are not perfectly known at
each sensor node but they can be estimated from noisy measures of RSSI signal. Assuming
the parametrical log-Normal shadowing model for the RSSI signal (defined in equation 4.1) and
using the unbiased maximum likelihood (i.e. MLE) distance’s estimator d̂ = dK−110

ξ
10η (defined

in equation 4.11), one can deduce that for the considered distances di,j (or di,k) we obtain their
corresponding estimated values d̂i,j (or d̂i,k) verifying :

log10 d̂i,j = log10 di,jK
−1 +

ξi,j
10η

→ log10 d̂i,j ∼ N (log10 di,jK
−1,

σ2

10η
)

From above expression, note that the estimated values of the form log10 d̂i,j are related to the
ML estimator of its corresponding true distance di,j = |zi−zj | throughout the logarithm to base
10. Then, we define for each sensor node i the estimated values as Li,j = log10 d̂i,j (respectively
for Li,k = log10 d̂i,k) which correspond to random variables l following a Normal distribution
N (log10 dK

−1, σ
2

10η ) whose probability density function (pdf) is written as:

f(l) =
1

2πσ2
e−

10η

2σ2
(l−log10 dK−1)2

The goal for each sensor node i is to compute its estimated position ẑi and those of its neighbors
{ẑj}∀j∈Ni from measured values {Li,j}∀j∈Ni and {Li,k}∀k∈Ai of received RSSI packets which
depend on distances {d̂i,j}∀j∈Ni and {d̂i,k}∀k∈Ai (thus zi and zj). In such context, assuming the
above parametrical model for the obtained measures at sensor node i we compute the unknown
positions using the maximum likelihood criteria. Given a measured value Li,j and its relation
di,j = |zi − zj |, the maximum likelihood criteria applies as follows :

max
zi,zj

1

2πσ2
e−

10η

2σ2
(Li,j−log10 di,jK−1)2 ⇐⇒ min

zi,zj
(Li,j − log10 |zi − zj |K−1)2
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We then apply the above optimization criteria to find the set of unknown positions {zi}i=1,...,N

from the set of measured values {Li,j}∀j∈Ni and {Li,k}∀k∈Ai obtained at each sensor node
i. Because positions zi are written under two coordinates (xi, yi), we define the vector x =
(x1, . . . , xN ) as the set of the N x-coordinates and in the same way, the vector y = (y1, . . . , yN )
for the y-coordinates. The global maximum likelihood optimization problem is summarized as:

{ẑi}∀i = min
(x,y)

N∑
i=1

fi(x
(i),y(i))

where

fi(x
(i),y(i)) =

∑
j∈Ni

(
Li,j − log10 |zi − zj |K−1

)2
+
∑
k∈Ai

(
Li,k − log10 |zi − ζk|K−1

)2
In this context, we note that the function to minimize fi is differentiable as long as we do not
consider the case of singular points zi = zj and is not convex. When implementing stochastic
approximation approach in both centralized ([171]) and distributed ([199]) ways, the convergence
results can not be applied directly. As it has been already pointed in [30] among others, the
solution is issued to local minima if any random initialization is considered. To avoid this problem
and ensure the optimum is achieved, an initialization being a noisy version of the true positions
has to be expected. Then, it seems justified the use of such optimization algorithms to improve
the inaccurate estimated positions obtained from the already mentioned localization algorithms
as multilateration or MDS. A stochastic approximation approach is chosen thanks to its simple
implementation by an iterative gradient descent step whose computational design is minimal (i.e.
usage of sum and product). However, when the dimension of data under consideration is high (N
in our case), the computational and the communication cost may not be suitable for a wireless
sensor network with a central node processor. We deal with this problem proposing a distributed
version which entails : a local iterative gradient descent step carried out at each individual node
to reduce the computational cost. Then a gossip communication step involving two uniformly
random selected sensor nodes (from the N possible) at each iteration time to exchange and
average their common estimated positions, thus reducing the overall communication cost of the
network. Although the centralized algorithm achieves a given accuracy faster than its distributed
version, we conclude that a reasonable and well-suited trade off is obtained for wireless sensor
network technology.

The distributed stochastic algorithm proposed to solve the previous minimization problem in-
volves two steps at each iteration time t: each sensor node i maintains an estimation of z(i)t at
time t and performs a local update of its positionÕs set based on a classical gradient descent
(GD) step. And later all sensor nodes exchange their estimated z(i)t with its neighboring sensor
node. This last step of the algorithm works in two steps at each iteration time t:

• Local gradient descent step [171]

Each sensor i generates a temporary estimate of its known positions’ set based on the local
current RSSI measurements. Those are the positions of the sensor nodes from which it
receives packets and its own position:

(x̃
(i)
t+1, ỹ

(i)
t+1) = (x

(i)
t ,y

(i)
t )− γt∇fi(x(i)

t ,y
(i)
t )

where (γt)t≥1 is a decreasing step: γt = 1/
√
t.
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• Gossip step [33]

A sensor node i is uniformly randomly selected, then it chooses randomly a node j in its
neighborhood Ni for the position consensus phase. For this step, we use a communication
protocol known as Pairwise in [33]. Each sensor node i from the set of N sensor nodes,
estimates its own position (x

(i)
t+1(i), y

(i)
t+1(i)) as well as those of its neighboring sensor nodes

{(x(i)t+1(j), y
(i)
t+1(j))}∀j∈Ni .

Let Ni the set of neighboring sensor nodes i and Nj the set of neighboring sensor nodes
of sensor j. During this position exchange step, each sensor node randomly selects the
neighbor with which it will communicate its list of position estimates; and therefore both
neighboring sensor nodes mutually exchange their respective position but also those es-
timated for their respective neighboring positions. It should be noted that during this
position exchange process, only the positions of neighbors lying in both of the two sets Ni
and Nj will be updated by the two neighboring sensor nodes i and j. Estimated sensor
nodes positions from nodes that will not be in both of the two sets Ni and Nj will not be
shared by the two neighbors i and j. For example, consider two sensor nodes: the sensor
node 1 has estimated its position (x1, y1) and those of its neighbors N1 = {2, 3, 4} while the
sensor node 5 has estimated its position (x5, y5) and those of its neighbors N5 = {2, 3, 7, 8}.
Each of the sensor nodes 1 and 5 exchange their estimated positions and those from the
shared nodes 2 and 3. The position estimation of the other neighbors: 4 for the sensor
node 1, 7 and 8 for the sensor node 5 will not be exchanged in this iteration in which the
sensor nodes 1 and 5 communicate.

The two uniformly randomly selected sensor nodes involved in the Gossip step merge their
common estimated positions and average their values as follows:

∀` ∈ Ni ∩Nj , (5.10)
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(5.11)

In other cases, the rest of sensor nodes not concerned in the communication phase
maintain their temporary estimated positions as: ∀` /∈ Ni ∩ Nj and ∀m 6= i, j then
(x

(m)
t+1(`),y

(m)
t+1(`)) = (x̃

(m)
t+1(`), ỹ

(m)
t+1(`)).

To present the results of this method and compare them to the previous ones, we analyze its
behavior in a network of N = 16 sensor nodes in SensLAB Rennes platform whose configuration
is shown in Figure 4.4. First Data are simulated using Monte Carlo with additive noise using
different noise levels values σ2. Initialization points are randomly chosen for each sensor node
according to two uniform components between 0 and 5. We illustrated in Figure 5.16, the
normalized Mean Error named NME (cf. equation ( 5.9) of N positions using 1000 independent
Monte Carlo realizations (RSSI data generated with Matlab)) with 1000 iterations and for each
value of σ2 ranging from 0 and 10.

Figure 5.17 shows the decreasing mean error through the time (as the number of iteration t
increases) in the simulated data case. Note that the index of iterations is a discrete time index.
For example, it is worth watching the value taken by the sequence (γt) used by the iterative
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Figure 5.16: Normalized mean error of N = 12 unknown positions estimated from noisy data simulated with
log-normal noise (different values of σ2) and using the Distributed Stochastic Approximation (DSAL) algorithm.
We consider a random initialization and a decreasing step of γt = 1/

√
t.

algorithm DSAL when it is executed at iteration of discrete time t with t ≥ 1. t ≥ 1 thus defines
the discrete time index when the DSAL algorithm starts working and generates the estimated
sequences (xt) and (yt). The DSAL algorithm is applied using constant and decreasing step size
and data generated with Matlab from the noisy estimated distances as the log-normal model (cf.
equation 4.11). The data is drawn when we set the parameters T = 1 number of RSSI measure,
η = 2.1 and the noise variance σ2 = 16.37.
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Figure 5.17: Mean error (see equation (5.8)) of the N = 12 unknown positions estimated at each iteration t
while using the DSAL algorithm. A constant step size (γt = 0.025)t≥1 and decreasing step size (γt = 1/

√
t)t≥1

are considered. Simulated data with Matlab is used to draw noisy estimated distances as (cf. equation4.11) with
T = 1, η = 2.1 and log-normal noise with variance σ2 = 16.37.

Figures 5.18(a) and 5.18(b) show the average results of the estimated positions using the Dis-
tributed Stochastic Approximation algorithm (named DSAL) when σ2 is equal to 2 and 10.

While Figures 5.19(a) and 5.19(b) illustrate the result when one data is generation with Matlab.

After validating the algorithm in simulation, we will now experiment its results using real data
coming from remote large scale wireless sensor nodes in SensLAB Rennes platform. 10 indepen-
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(a) Noise variance: σ2 = 2.
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Figure 5.18: Average of the N = 12 unknown positions estimated with Distributed Stochastic Approxi-
mation (DSAL) algorithm using 1000 independent Monte Carlo realizations (RSSI data generated with
Matlab)
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(a) Noise variance: σ2 = 2.
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Figure 5.19: N = 12 unknown positions estimated with the Distributed Stochastic Approximation
algorithm (DSAL) with the use of one independent Monte Carlo realization (one round of RSSI data
generated with Matlab)
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dent experiments are realized in the SensLAB Rennes platform. In each experiment, each sensor
node collects until 600 packets. We select 12 blind nodes (including virtual landmarks) and
4 landmarks. The average positioning estimates with a random guess/initialization and after
t = 1000 iterations are presented in Figures 5.20(a) and 5.20(b). We consider a decreasing step
value of (γt)t≥1 at each iteration as 1/

√
t. The DSAL runtime for the estimation of 12 unknown

nodes positions and after t = 1000 iterations is 15.16 seconds. Furthermore, the normalized
mean error (NME) of N unknown positions estimated under 10 independent experiments is
0.14. The average error value for each position of each sensor node is:

(0.1, 0.21, 0.09, 0.15, 0.1, 0.05, 0.11, 0.16, 0.47, 0.22, 0.11, 0.08).

The same algorithm is evaluated with the same error estimation under 100 independent experi-
ments (60 RSSI values are measured by each sensor node). A normalized mean error (NME) of
0.135 is obtained. For each sensor, the position estimation is:

(0.1, 0.21, 0.08, 0.16, 0.09, 0.05, 0.1, 0.15, 0.51, 0.18, 0.1, 0.07).

Figures 5.21(a) and 5.21(b) show the mean estimation of the N = 12 positions after 1000
iterations. We consider a randomly initialization of the DSAL algorithm and a constant local
gradient step through each iteration; we set γt = 0.025 for all t. In such case, the normalized
mean error (defined in equation 5.9) of N positions from 10 independent experiments is 0.082.
The estimated normalized mean error (NME) for each sensor node is summarized as:

(0.05, 0.11, 0.03, 0.07, 0.041, 0.04, 0.07, 0.09, 0.35, 0.09, 0.09, 0.06).

When running 100 independent experiments (60 packets received at each sensor node at the
SensLAB platform) the NME value is 0.083. The individual NME estimation at each sensor
node is:

(0.05, 0.1, 0.06, 0.09, 0.06, 0.05, 0.07, 0.08, 0.34, 0.09, 0.06, 0.07).

In Figures 5.22(a) and 5.22(b) we show the estimation of N = 12 sensor node positions from 10
independent experiments at SensLAB platform and using the DSAL algorithm with constant
and decreasing step size respectively. In each experiment, the distributed algorithm is initialized
with the MLE position estimator from the RSSI data received from the landmarks at each sensor
node (using the fminsearch function provided in Matlab). We computed the NME error from
the 10 experiments after 1000 iterations.

If we take a constant step size γt = 0.025 for all iteration t, the NME is 0.076 and the mean
error at each sensor node position is:

(0.02, 0.064, 0.067, 0.048, 0.066, 0.03, 0.06, 0.088, 0.35, 0.07, 0.032, 0.012).

Meanwhile taking the decreasing step size as (γt = 1/
√
t)t≥1, the NME value is slightly higher

0.1 in opposite as we expected from the simulated data model (cf. Figure 5.17). The mean error
at each sensor node position is:

(0.041, 0.095, 0.05, 0.073, 0.049, 0.075, 0.086, 0.1, 0.43, 0.13, 0.044, 0.065)
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(a) Mean estimation of N = 12 positions under 10 independent experiments in
the SensLAB Rennes platform.
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(b) Mean estimation of N = 12 positions under 100 independent experiments
in the SensLAB Rennes platform.

Figure 5.20: Mean estimation of N = 12 positions with the Distributed Stochastic Approximation
algorithm (DSAL) with random initialization under 10 independent experiments in the SensLAB Rennes
platform. A decreasing step value of (γt = 1/

√
t)t≥1 is considered
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(a) Average positions estimation from 10 independent experiments.
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(b) Average positions estimation from 100 independent experiments.

Figure 5.21: Average of the resulting N = 12 unknown positions estimated with the DSAL algorithm
with random initialization and a constant step size (γt = 0.025)t≥1. Experiments are realized at SensLAB
Rennes platform.
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(a) Constant step size (γt = 0.025)t≥1.
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(b) Decreasing step size (γt = 1/
√
t)t≥1.

Figure 5.22: Average of the resulting N = 12 unknown positions estimated from SensLAB experiments when
using the DSAL algorithm with MLE initialization. Both, constant and decreasing step size are considered.
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5.3 Summary and discussion on distributed algorithms results

In order to compare the proposed method to the several ones presented above, we set the sensor
node configuration with N equal to 16 as shown in Figure 4.4. In such network, we consider
12 blind sensor nodes including virtual landmarks and 4 landmarks. We analyze the resulting
mean error (defined in equations (5.9) and 5.8) from the simulated data in Matlab first and
from the real data collected at SensLAB Rennes platform then. We compare the performance of
the following three methods: multilateration (named MC), multidimensional scaling (classical
MDS and SMACOF) and distributed stochastic approximation (DSAL) also named Distributed
Gradient (DG). We show in Figure 5.23 the four curves of the normalized mean error (NME)
of the 12 unknown positions estimated under 1000 independent Monte Carlo simulations run of
each algorithm. We vary the variance noise parameter σ2 from 0 to 20. The simulated data with
Matlab is drawn as noisy estimated distances from the log-normal model (unbiased estimators
in equations (4.11) and (4.13) when T = 1 RSSI reading and η = 2.1). This value for the
parameter η corresponds to the mean estimated from RSSI measurements from the SensLAB
nodes.
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Figure 5.23: Normalized mean error of N = 12 unknown positions estimated with simulated data from 1000
Monte Carlo trials depending on σ2. With DSAL algorithm, a constant step size (γt = 0.025)t≥1 and a random
initialization is considered

When using the real data from the SensLAB experiment, a first phase involves the estimation
of the parameters PL(d0), η and σ2 (see Table 4.1); if we assume the log-normal shadowing
model of the RSSI readings from the packets collected at the SensLAB nodes platform. We
summarized in Table 5.1 the values of the normalized mean error (NME) and the mean error
in meters (Em) for the three methods recalled above and for the MLE estimation. Both mean
errors are computed from 10 independent experiments in which each sensor node collected until
600 packets.

Table 5.2 details the NME for each of the 12 unknown sensor nodes positions estimated with
the same different methods described above and using real SensLAB data. DSAL results are
obtained with a constant step size (γt = 0.025)t≥1 and MLE location initialization. η = 2.1, σ2

= 16.37 and T = 1 RSSI measure.

Finally, Figure 5.24 shows the normalized mean error (NME) of N = 12 unknown positions
estimation and when using SensLAB data. Positioning results for the selected network illustrated
in Figure 4.4 are summarized in Table 5.2.
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Table 5.1: Normalized and absolute mean error values (NME and Em) estimated for 12 sensor nodes positions
from SensLAB real data using different methods explained in above sections

Method NME (%) Em (m)
Multilateration (MC) 0.23 2.2

Classical MDS 0.3 2.8

Modern MDS (SMACOF) 0.25 2.4

MLE 0.28 2.63

DG (decreasing step and random ini.) 0.14 1.3

DG (constant step and random ini.) 0.08 0.77

DG (decreasing step and MLE ini.) 0.1 0.98

DG (constant step and MLE ini.) 0.076 0.72

Table 5.2: Values of the NME for each of the 12 unknown positions to be estimated using different methods
when collecting data from 10 independent experiments at SensLAB platform.

Simulated Matlab data Real SensLAB data
NodeID MC MDS SMACOF DG MC MDS SMACOF DG
214 / 1 0.15 0.13 0.093 0.051 0.13 0.23 0.19 0.02

176 / 2 0.21 0.17 0.13 0.056 0.2 0.29 0.17 0.064

178 / 3 0.20 0.16 0.13 0.064 0.05 0.05 0.27 0.067

193 / 4 0.19 0.15 0.12 0.056 0.21 0.35 0.23 0.048

198 / 5 0.23 0.16 0.11 0.053 0.2 0.02 0.15 0.066

218 / 6 0.34 0.22 0.11 0.054 0.45 0.14 0.28 0.03

225 / 7 0.41 0.27 0.15 0.071 0.22 0.59 0.51 0.06

232 / 8 0.17 0.16 0.1 0.051 0.21 0.12 0.24 0.088

247 / 9 0.23 0.21 0.13 0.06 0.2 0.47 0.063 0.35

249 / 10 0.21 0.20 0.12 0.054 0.25 0.29 0.41 0.07

252 / 11 0.28 0.23 0.15 0.052 0.25 0.32 0.35 0.032

253 / 12 0.33 0.25 0.15 0.055 0.35 0.12 0.18 0.012

Regarding the achieved results, localization with multilateration fails when the sensor nodes to
localize lies at the outside bound of the network. For instance, those nodes with identifier 218
and 253 have higher mean errors with multilateration. In the same way, the worst localized
node positions with MDS belong to nodes with identifier 225 and 247 which are at outside the
bound of the landmarks. However with the DSAL algorithm, we have the lowest mean error
for all sensor nodes unless for those with identifier 247 and 193 in which SMACOF and MDS
algorithms respectively outperform. Note that the sensor node with identifier 247 has the lowest
η parameter which value is 0.66 and high noise variance σ2 which value is 14.09. From our
experiments and simulation results, we have shown the proposed DSAL distributed localization
algorithm outperforms all the other compared algorithms. Indeed, it can achieve a localization
error of 0.77 m in a confined area of 5 m by 8 m with four landmarks. One should note that, when
using the refinement step of DSAL algorithm, blind node and virtual landmarks nodes positions
can be estimated at the same time with the DSAL with at least two landmarks. However, in
order to make a comparison with multilateration approach, four landmarks are used with DSAL.
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Figure 5.24: Normalized mean error (NME) for each unknown sensor node position estimated with different
methods using the real data collected from 10 independent experiments runs at the SensLAB platform. The
network has 12 blind sensor nodes (unknown positions to be estimated including virtual landmarks) and 4
landmarks.

DSAL is also able to improve the accuracy of blind nodes locations initially estimated by our
proposed B-MLE algorithm (cf. Figures 5.25 and 5.26). At Lincs testbed, localization errors
of 0.775 m and 1.3 m are obtained by applying DSAL algorithm on B-MLE localization results
which are respectively 1.39 m and 1.35 m for the small (i.e. 10 positions) and large (i.e. 25
positions) learning set. At Rammus testbed (Rennes platform), DSAL refines the location
accuracy at about 1.73 m and 1.64 m respectively while B-MLE obtains a mean error of 2.73 m
and 2.20 m for a small (i.e. 10 positions) and large (i.e. 25 positions) learning set.

Finally, we notice that for all blind nodes positions to localize at the Lincs testbed, DSAL has
refined localization accuracy at 79% and 55% compared to B-MLE respectively for the small
(i.e. 10 positions) and large (i.e. 25 positions) learning set. The accuracy is 72% and 74% on
the Rammus testbed with respect to B-MLE for both, the small (i.e. 10 positions) and the large
(i.e. 25 positions) learning set (cf. Table 5.3).
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(a) DSAL localization performance with a decreasing step ((γt)t≥1, γt = 1/
√
t) and

B-MLE initialization. Results from Lincs testbed when considering a small learning
set size (10 positions).

(b) DSAL localization performance with a decreasing step ((γt)t≥1, γt = 1/
√
t) and

B-MLE initialization. Results from Lincs testbed when considering a big learning set
size (25 positions).

Figure 5.25: DSAL localization performance with a decreasing step ((γt)t≥1, γt = 1/
√
t) and B-MLE initializa-

tion. Results from Lincs testbed and two different learning set size.

192



(a) DSAL localization performance with a decreasing step ((γt)t≥1, γt = 1/
√
t) and

B-MLE initialization. Results from Rammus testbed when considering a small learn-
ing set size (10 positions).

(b) DSAL localization performance with a decreasing step ((γt)t≥1, γt = 1/
√
t) and

B-MLE initialization. Results from Rammus testbed when considering a big learning
set size (10 positions).

Figure 5.26: DSAL localization performance with a decreasing step ((γt)t≥1, γt = 1/
√
t) and B-MLE initializa-

tion. Results from Rammus testbed and two different learning set size.
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Table 5.3: DSAL localization results with B-MLE initialization (our previous proposal) and a decreasing step
sequence such (γt)t≥1, γt = 1/

√
t

Characteristics Lincs
testbed-
small
learning
set

Lincs
testbed-
bigger
learning
set

Rammus
testbed-
small
learning
set

Rammus
testbed-
bigger
learning
set

Number of blind nodes positions 38 22 47 27

Number of positions with whom
localization Error increases w.r.t
DSAL

8 10 13 7

Number of positions with whom
localization Error decreases w.r.t
DSAL

30 12 34 20

Percentage of position well esti-
mated w.r.t DSAL compared to
B-MLE

79% 55% 72% 74%
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Chapter 6

Conclusions and suggestions for further
work

Contents
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6.1 Summary

*** Le début ne laisse pas présager la fin. (—Hérodote— ) ***

This thesis has investigated the problem of indoor localization using RSSI (i.e. Received Signal
Strength Indicator) measurements. Localization in indoor environment is a challenging issue
mainly due to both constraints: first the unavailability of global positioning system (i.e. GPS)
in indoor. GPS signals are attenuated in indoor due to buildings, basements construction ma-
terials (concretes walls, metal) that block them. Indeed, in the case where few GPS signals
can bypass such obstructing factors, they are not fine accurate (about 10 meters) to be used in
indoor environment. GPS receivers are costly in terms of price. Such receivers are also power
consuming and thus costly in term of energy consumption to be supported by low power devices
like wireless sensor nodes. Such embedded tiny nodes are micro components limited in terms
of processing, storage capability and they often have to keep energy consumption low. Second,
indoor environment is dynamic. It comprises several obstacles, furniture pieces, materials (glass,
wood, bricks, iron materials, roofing tiles, wall, plywood), moving people and objects. Such ob-
stacles are disposed and arranged in confined areas and can reflect, scatter as well as diffract the
radio signal causing at the same time multipath and shadowing. Hence, performing localization
in such uncontrolled scenario is non trivial and a difficult issue to solve.

Furthermore, the measurement of the attenuation of the radio signal along the path between a
radio emitter and receiver named RSSI is the only economically feasible and available measure-
ment in IEEE 802.15.4 devices. The RSSI has been used in most of the localization algorithms
in indoor and outdoor for inter-node distance estimation also called ranging. In fact, the RSSI
does not require any time synchronization among devices and no extra hardware compared to
the time of flight of the radio signal (ToA or ToF) or the use of angle of arrival of the signal
(AoA). Both ToA and AoA yield a better accuracy but are more energy demanding and re-
quire more expensive equipments and thus are very difficult to measure compared to RSSI. This
latter is directly measurable from each supplied wireless sensor node radio chip. However, the
unpredictable nature of the indoor environment propagation behavior makes the use of RSSI
an inaccurate and feeble technique affected by indoor obstacles. Consequently, on the localiza-
tion point of view, when considering an adaptable localization algorithm to work in any indoor
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scenario, studying the RSSI behavior according to indoor radio signal propagation is needful.
In fact, such analysis helps to characterize the RSSI dispersion as well as the widely used and
being less complex propagation model: the log-normal shadowing model. To this aim, we have
realized several distinct measurements campaigns in different indoor testbeds and in SensLAB,
a remote large scale wireless sensor network. These measurements campaigns are performed to
identify the behavior of the RSSI in relation to distance, data measurement time, presence or
not of people. In fact the wireless signal is absorbed by human body and affected by variation
over time. Such situations are examined under different configurations including RSSI behavior
in an anechoic chamber, in a large as well as a small room with different emitter � receiver
deployment scenarios in random grids. The antenna gain of the sensor node we use; the Tmote
Sky mote has also been characterized and shows a non-omnidirectional pattern. The radiation
pattern is not entirely uniform, nor smooth, a few directions experience a strong attenuation
due to electronics on one of the board and reflections effects from the wall, furniture. Such
effects, even when walls are non-concrete walls are noticeable and are more representative in
small room.

Our experiments have also highlighted that the measured RSSI do not decreases regularly with
distance as stated in many previous research efforts. We have also showed that the high variation
of RSSI cannot be explained only by the log normal shadowing model. We additionally observe
that RSSI values are dependent to radio emitter node environmental location with respect to a
receiver. Consequently, RSSI readings only match the log-normal shadowing model pattern when
they are considered independently according to each emitter node in the localization system.
Overall measurements results from our experimental studies and from the several other ones
that were published, conclude that the RSSI can sometimes, on some links, provide a good
indication on the distance. On the other hand, in many situation, the mapping between signal
attenuation and emitter-receiver distance is far from obvious. In a dense network (i.e. when
each node possesses strictly more than 3 neighbors) it should be possible to improve localization
accuracy by carefully selecting the links that are taken into account for ranging.

Thereby, having an accurate and efficient localization algorithms adaptable to all types of in-
door environment such as from office buildings, room, tunnels, basement, mall, better address
the problem of localization in these dynamic environments. Such environments are also vari-
able over time and are dependent to the instability of the radio channel propagation. To this
ambition, as a second objective of this PhD thesis, we have proposed and evaluated a family
of algorithms to enhance indoor positioning of wireless devices using RSSI measurements from
data packets coming from multiple sources named landmarks. In addition, such adaptable local-
ization algorithms can be performed with no pre-deployment efforts. We assume a blind mobile
node to evolve in an unknown environment composed of some landmarks (minimum of three)
with known positions. A person or an object that are carrying this blind node can estimate its
own 2D coordinates in the environment using RSSI measurements from landmarks while running
one of the available localization algorithms. As our proposed localization algorithms use ranging
from the RSSI measurements, note that the propagation model parameters are computed online
together with the position estimate. Instead, in most previous works, the propagation model
parameters are computed offline and kept constant while separated from the localization part.

Thus, in this thesis, as a third objective, we have observed the problem of solving 2D coordinates
of any blind mobile node from one-hop then distributed localization algorithms point of view.
We based our study on real sensor nodes data in real environments. Uncontrolled scenarios show
that if some sources are coherent, some are clearly aberrant and introduce high shadowing vari-
ance and multipath. Therefore, after studied the localization results of RSSI-based maximum
likelihood estimator (i.e. MLE) compared to a trilateration and a random localization mecha-
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nism, we have proposed and evaluate a family of algorithms to enhance indoor positioning of
wireless devices using RSSI measurements from data packets coming from multiple landmarks.
We first proposed a dynamic method to identify an abnormal landmark and to reduce its effects,
replacing its measurements by a constant bias. This dynamic method named Biased-maximum
likelihood estimator (i.e. B-MLE) only uses the necessary number of active landmarks. This
algorithm is evaluated in real testbeds with different configurations. Experimental results have
demonstrated B-MLE to achieve a more accurate result than classical localization algorithms
like maximum likelihood applied on a classical log-normal shadowing model. We then envisaged
a general heuristic localization mechanism that directly reduces the effects of abnormal land-
marks based on a threshold on the bias and thus does not need to examine all possible subsets of
landmarks. This generic heuristic localization mechanism is called Biased-Maximum Likelihood
Location Estimation extension Correction (i.e. B-MLEC). Compared to the first approach (i.e.
B-MLE), the generic heuristic localization mechanism (i.e. B-MLEC) is more efficient in smaller
testbeds which seem to be more affected by indoor obstacles than larger testbeds in which igno-
ring a single abnormal landmark is the best method. But both have ameliorated the RSSI-based
indoor location estimation compared to MLE while demonstrating a better estimation of the
propagation model parameters.

With an objective to offer a better location accuracy, we have also proposed another efficient
RSSI-based indoor localization algorithm named GMM-MLE for Gaussian Mixture Model. This
GMM-MLE simple heuristic localization algorithm is based on statistical machine learning
approach. GMM-MLE detects and filters aberrant patterns while identifying the distribution of
acquired data to be used to position a blind node in a localization system composed of some
landmarks. In experimental testbeds, GMM-MLE has been shown to be robust against outliers
and multipath in smaller testbeds. In a testbed of size 4 m by 3 m, GMM-MLE improves the
localization accuracy from 0.86 m against 1.06 m, 1.20 m and 1.58 m achieved respectively by
B-MLEC, B-MLE and trilateration. However, no single algorithm outperforms all the others
under all scenarios. Sometimes localization results may not be efficient on a few sole position
estimation. In larger testbeds, for instance of size 8.77 m by 6.46 m, B-MLE outperforms the
other localization strategies and yields to 1.94 m when three landmarks are used to compute a
blind node position while 8 are considered with MLE and trilateration. Our proposed algorithms
are able to improve the indoor location accuracy performance at about: 30% with GMM-MLE
compared to B-MLE; 50% with GMM-MLE over trilateration localization algorithm; 40% with
B-MLE over MLE and 20% with B-MLE compared to trilateration. Furthermore, such presented
results also show that the best technique depends on the situation and that there is clearly a
need for an online method to select the best algorithm based on a measurable parameter.
However, it is difficult to estimate such parameters in a live scenario from a mobile node’s
isolated point of view. Involving the architecture, relying on locations history, or even calling to
machine learning techniques could be fruitful tracks that are part of our future works directions.

An immediate extension of this work is to clearly identify situations in which one algorithm is
more efficient than the others and to let the nodes perform this selection on the fly. If a node is
able, for instance, based on statistical properties of the sample set, to distinguish between these
different situations, the resulting accuracy shall be improved. Holding a map of the network in
terms of node positions can lead to know its neighboring nodes and thus a more collaboration
among nodes. For example it is useful to localize itself while at the same time its neighbors.
This may help to automatically determine and avoid the part of a shopping store or a parking lot
garage that concentrates a lot of flow of people. Such feature also enables to intuitively determine
its own position and at the same time the locations of the other conference participants in a
big conference hall. In so far as sensor nodes in a wireless sensor network are mostly spread
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across an unknown geographical area, the knowledge of the exact positions of its neighbors
nodes is profitable for routing. For instance, the data packet can be directly forwarded to closer
neighboring nodes in terms of position and thus making the routing more dynamic and more
straightforward.

To this purpose, as a fourth objective, we have designed a distributed localization algorithm
based on an on-line distributed stochastic approximation algorithm. This cooperative-based al-
gorithm allows position refinement of a node which is able to estimate at the same time its own
position and those of its neighbors. At each iteration of the algorithm, two uniformly randomly
chosen nodes merge their common estimated positions for refinement purpose. This is different
from the previous proposed algorithms in which a node is only able to estimate its own position
in a sensor network. Note that, both types of scenario are possible and are applicable in real life
depending on the targeted application. The RSSI-based Distributed Stochastic Approximation
localization algorithm (i.e. DSAL) is compared through simulations and experiments in real en-
vironments with multilateration, multi dimensional scaling with Modern Majorization Problem
(i.e. Modern MDS) and classical multi dimensional scaling. Achieved results demonstrated that
the robust DSAL algorithm is more accurate and can improve the localization accuracy at 85%
compared to MDS based localization algorithm and multilateration. A localization result of 0.77
m is obtained in a confined area of size of 5 m by 8 m at SensLAB Rennes platform using four
landmarks; against 2.2 m for multilateration, 2.8 m for classical MDS and 2.4 m for modern MDS
(i.e. SMACOF). Thus, the distributed DSAL localization algorithm is an attractive solution for
adaptable RSSI-based localization problem under uncontrolled indoor scenario.

We have integrated and implemented statistical models and machine learning, in order to mini-
mize the effects introduced by outliers and improve the localization accuracy. With automatic
statistical filtering, we render possible the usage of such type of application: accurately localize
a person at home in order to learn its habits and then to trigger several events simultaneously
depending on its position. Our algorithms are initially proposed for indoor environment, but
they can be applied to outdoor. In fact, the RSSI readings performed at outdoor show less
variability.

6.2 Further work

Our carried research work has greatly improved the accuracy of indoor localization with the
only use of the RSSI metric. We have made great efforts and the best we could to study RSSI
behavior and ameliorate indoor location accuracy while ensuring incorporating diverse views
including statistics and machine learning approaches. Moreover, as in any scientific research,
they also open new questions and responding to them could be very valuable. In this section,
we present future work and result in perspectives from the contributions of this PhD thesis.

First of all, regarding B-MLEC localization algorithm (cf. Chapter 4), the choice of the threshold
of acceptance-rejection of a landmark was determined experimentally by comparing the results
obtained by different rejection threshold values. We have experimentally determined the order
of the threshold that gives the strongest results in term of location accuracy, i.e. the smallest
distance error. An immediate extension is to provide a theoretical study in order to bind
the step of acceptance-rejection of a landmark to the general methodology of statistical test.
This is to assess whether the implemented decision policy follows in fact, a particular form of
statistical test (e.g. famous Neyman-Pearson lemma). If this is the case, it would give us the
theoretical method for choosing the rejection threshold associated with the optimal decision
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policy of acceptance-rejection of a landmark.

Another extension of this work is multi-hop networks, in which such an approach can help to
form groups of coherent nodes that can reinforce their mutual location. Different groups can
then exchange and combine information e.g. the propagation model parameters to enhance
global positioning. Such technique allows processing data locally as it is closer to the source.
Also, since sensors will communicate data associated with a small distance in a group/cluster
environment, the energy consumed by the network will be lower than the one consumed without
group/cluster formation in the network.

In addition, the network self organization properties of sensor networks can be exploited through
the grouping of node or "clustering" to provide an efficient mechanism to manage addressing
and Internet Protocol version 6 (i.e. IPv6) addresses prefixes. Sensor nodes can thus be grouped
according to certain criteria. A group formation can be detailed as follows: a group leader also
called cluster head can be selected based on its location or proximity in relation to a number of
close neighbors, its identifier or its residual energy. The IP prefix can then be associated with
the position of the cluster head to form a stable information shared by nearby nodes or nodes
which move together. Therefore a cluster head can handle the distribution of addresses of its
group according to an assigned prefix.

Rendering every sensor node sensitive to its position (absolute or relative), allows the design of
an automatic and fully distributed addressing mechanism, facilitating the deployment of sensor
networks e.g. for routing protocols. That means no manual address configuration; neither
a central server for address management. Indeed, tracking nearby sensor nodes allows the
formation of close sensor nodes clusters and thus, enable to route data cluster among cluster.

The routing can be thus identified macroscopically, by sending the information to the group
(cluster head node or another node in the group). Then any node in the group receiving the
data can route them to the next group. This allows scalability and also contributes to limit
sending routing packet in the entire network.

To belong to a cluster, a node having a knowledge of its position, chooses the closest cluster
head in terms of location. Moreover, once established, the grouping of nodes can be further
exploited using the results of data aggregation to locate a comer node with unknown position.
Thus, a node can easily and dynamically acquire an address by means of membership in a group,
i.e. its position. If the node happens to move, this address will be freed and can be reused by
another node. In the case where a node moves, this last should acquire a new IP address as its
new position will be probably related to a new group/cluster. An application such as a routing
protocol uses these IP addresses for data communication. A blind mobile node location/path
can be exploited by a routing protocol for authentication purpose before sending data. The
routing protocol thus cooperates actively with the localization and clustering algorithms. The
clustering algorithm should then dynamically manage and in real-time the mapping between
IP address ↔ node identifier. Such information is communicated to the routing protocol as
presented in Figure 6.1.

Moreover, the deployment of these sensor nodes capable of localizing themselves in a smart home
application will foster an environment that is open to heterogeneous equipment including smart
phones, computers, home automation actuators: a set of objects that communicate and collabo-
rate. This contributes to have a distributed localization architecture which can be opportunistic
and heterogeneous. In addition of accepting the node mobility, this localization architecture
must be able to locate a node based on available information. Thus, such localization archi-
tecture should be able to choose the best localization algorithm according to the propagation
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Figure 6.1: Proposed architecture for clustering-based location to enhance routing in multihop wireless
sensor network
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conditions of the environment (room size, number of landmarks, size of the learning set for
the computation of the propagation model parameters, ranging errors, etc.). Furthermore, this
opportunistic localization system can communicate with home automation actuators to trigger
actions depending on the position of the occupant. Such system can additionally collaborate
with smartphone for event notification to the occupant.

The energy consumption constraints of sensor nodes should also be taken into account in order
to maximize the lifetime of the sensors network. This can be done by programming the sensors in
inactive mode when no localization request is received by adding features to detect the presence
of a user. The size of the network should also be considered due to the fact that, more the
network is bigger and more there are messages. At long-term, better living quality and location-
based services can be supplied to smart home users such as services related to home automation
by automatically selecting the appropriate localization algorithm that is the best depending on
the environment characteristics and required services.

Finally, it must be mentioned that the security was not a major concern when designing the
proposed algorithms. However, the communicating micro-components that use these algorithms
function in wireless mode and are targeted to multiple attacks. This requires special attention to
detect an intrusion that may happen on the communication channel as this last is not currently
encrypted and thus data packets can be modified. Hackers can also intrude the communicating
node itself by recovering its contents. Along these lines, it is important to add security aspects on
each localization algorithm. For example, this can be done by exploiting the mobility, because
a trajectory is a unique feature for each person. Localization algorithms should also include
dynamic cryptography key that are also energy efficient as besides the localization, the energy
consumption is one of the major problems for sensor networks.
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Synthèse en français

Introduction

L’internet des objets se développe à travers diverses applications comme la domotique, la sur-
veillance à domicile, etc.. Les consommateurs s’intéressent à ces applications dont les objets
interagissent avec des dispositifs de plus en plus petits et connectés.

La localisation est une information clé pour plusieurs services ainsi que pour l’optimisation du
fonctionnement du réseau. En environnement intérieur ou confiné, elle a fait l’objet de nom-
breuses études. Cependant, l’obtention d’une bonne précision de localisation demeure une ques-
tion difficile, non résolue. Tout algorithme de localisation utilise des nœuds avec positions connues
appelés landmarks et des nœuds dont les positions sont à localiser. Pour le GPS, les landmarks
sont les satellites. Mais comme nous le savons tous, les signaux GPS sont fortement atténués en
environnement interne. En effet, même si en ville nous avons des immeubles, l’environnement de
propagation interne est beaucoup plus hostile. Le signal sans fil en environnement interne est for-
tement atténué et a un comportement imprévisible du fait de la présence d’obstacles en intérieur
du bâtiment mais également la façon dont les objets sont disposés dans l’environnement.

Cette thèse étudie le problème de la localisation en environnement intérieur appliqué aux réseaux
sans fil avec l’utilisation unique de l’atténuation du signal. L’atténuation est mesurée par l’indi-
cateur de l’intensité du signal reçu (RSSI). Le RSSI est connu dans la littérature comme étant
imprécis et peu fiable en ce qui concerne l’estimation de la distance, du fait de la complexité
de la propagation radio en intérieur : il s’agit des multiples trajets, le shadowing, la fading.
Cependant, il est la seule métrique directement mesurable par les petits objets communicants et
intelligents. La mesure du RSSI ne nécessite ni la synchronisation d’horloge entre un émetteur
et un récepteur radio comme pour la mesure du temps d’arrivée du signal (ToA), ni la mise en
œuvre de matériel supplémentaire comme le requiert la mesure de l’angle d’arrivée du signal
(AOA), ce qui est prohibitif et consomme beaucoup d’énergies.

Pour nos travaux, nous nous sommes intéressés à l’amélioration de la précision des mesures du
RSSI pour les rendre applicables à l’environnement interne pour une localisation plus précis.
Nous nous sommes également intéressés à l’implémentation et au déploiement de solutions al-
gorithmiques relatifs au problème suivant : est-il possible d’obtenir une meilleure précision de
localisation en utilisant uniquement la mesure du RSSI fournie par les nœuds capteurs sans fil
IEEE 802.15.4 ?

La plupart des travaux de l’état de l’art se focalisent à proposer des algorithmes coopératifs
dans le but d’améliorer la précision de localisation sans se préoccuper du modèle sous-jacent
de la propagation radio, un facteur qui affecte l’erreur de localisation. Dans cette perspective,
nous avons d’abord étudié le comportement du RSSI dans plusieurs environnements intérieurs
de différentes tailles et selon plusieurs configurations, y compris un réseau de capteurs sans fil à
grande échelle (SensLAB). Pour expliquer les résultats des mesures, nous avons caractérisé les
objets communicants que nous utilisons dans nos expériences, les nœuds capteurs Moteiv TMote
Sky par une série de mesures en chambre anéchoïque. Nos études expérimentales confirment que
la relation entre le RSSI et la distance dépend de nombreux facteurs même si la batterie intégrée
à chaque nœud capteur produit une atténuation. Une fois le nœud capteur sans fil qualifié, nous
avons mieux compris le comportement du RSSI.
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Ensuite, nous avons démontré que le modèle de propagation log-normal shadowing n’est pas
adapté en intérieur, en raison de la dispersion des valeurs de RSSI et du fait que celles-ci ne sont
pas toujours dépendantes de la distance. Il en résulte que ces valeurs devraient être considérées
séparément en fonction de l’emplacement de chaque nœud capteur émetteur sans fil. Ainsi, les
résultats expérimentaux ont mis en évidence que la technique du RSSI n’aboutit pas toujours à
une bonne précision d’estimation de la distance dans un environnement intérieur réaliste.

Nous avons proposé des heuristiques pour corriger ces incohérences observées. Nos algorithmes
tiennent compte des effets de la propagation par trajets multiples et des valeurs aberrantes. Les
effets de la propagation par trajets multiples sont pris en compte en biaisant le modèle classique
de propagation log-normal shadowing. Biaiser le modèle de propagation log-normal shadowing
conduit à sélectionner les landmarks qui ont un comportement anormal. Avec cet algorithme de
localisation nommé B-MLE, un landmark est considéré comme aberrant ou anormal lorsque les
mesures de RSSI associées n’améliorent pas la précision de la localisation estimée par le nœud
mobile aveugle. L’algorithme de localisation B-MLE est aussi comparé à une autre proposition
qui sélectionne efficacement les landmarks normaux sur la base d’un seuil. La valeur du seuil est
choisie de façon empirique sur la base d’expérimentations.

Nous avons aussi développé un nouvel algorithme de localisation s’appuyant sur le RSSI et
utilisant une approche statistique d’apprentissage automatique de données dont le modèle de
mélanges Gaussiens à deux modes. Cet algorithme de localisation nommé GMM-MLE est un pro-
cédé à deux niveaux : il identifie d’abord la distribution des échantillons de données de mesures
de RSSI comme la composition d’un grand pourcentage de valeurs dites « normales »et d’une
faible proportion de valeurs aberrantes. Ensuite la position d’un nœud mobile aveugle est loca-
lisée en appliquant l’estimateur du maximum de vraisemblance conjointement avec l’approche
statistique de modèle de mélanges Gaussiens à deux modes.

Les algorithmes de localisations proposés pour prendre en compte les incohérences observées du
milieu interne à savoir la propagation par trajets multiples et la présence de valeurs aberrantes
(les méthodes basées) sont comparés aux travaux de l’état de l’art : la trilatération classique
sur l’ensemble des données et le maximum de vraisemblance appliqué au modèle log-normal
shadowing appelé encore MLE non biaisé. Nos résultats expérimentaux obtenus en environne-
ments internes réels ont confirmé que nos algorithmes améliorent significativement la précision
de localisation en intérieur avec utilisation de la seule métrique du RSSI.

Enfin, nous avons étudié et proposé un algorithme de localisation distribué précis qui passe
à l’échelle, respecte les caractéristiques de l’informatique embarquée des réseaux de capteurs
sans fil et peu consommateur en termes de temps de calcul. L’algorithme de localisation d’ap-
proximation stochastique distribué (DSAL) proposé affine la précision des positions estimées
par un nœud capteur sans fil en utilisant la technique du RSSI. Notre approche a été comparée
à d’autres algorithmes distribués de l’état de l’art. Les résultats issus des simulations et des
expériences réalisées dans des environnements internes réels ont révélé une meilleure précision
de la localisation avec notre algorithme distribué. L’erreur de localisation obtenue est de l’ordre
du centimètre sans aucun nœud ou unité centrale de traitement ni de calibration fastidieuse ni
d’intervention humaine.

Contributions

Dans la première partie de cette thèse nous allons présenter les résultats de campagnes de mesures
pour caractériser le comportement du RSSI en interne. Il s’agit du diagramme de rayonnement du
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nœud capteur Tmote Sky que nous pensons représentatif. Nous étudions ensuite le comportement
du RSSI en fonction de la distance en environnement réel après avoir validé l’utilisation du modèle
log-normal shadowing en environnements internes.

Dans la deuxième partie de cette thèse, nous allons ensuite présenter les mécanismes et les
résultats obtenus par les algorithmes de localisation à un saut que nous avons proposé. Notre
démarche se base sur des simulations et des expériences.

Dans la dernière partie de cette thèse, nous allons présenter l’algorithme stochastique distribué
que nous avons proposé pour affiner l’ensemble des positions des nœuds dans un réseau de capteur
sans fil. Nous avons évalué les performances de notre algorithme dans la plateforme SensLAB de
Rennes. Les résultats issus des simulations et des expériences en environnements réels obtenus
par l’algorithme DSAL ont été comparés aux résultats obtenus par les algorithmes distribués
de l’état de l’art : la multilatération, le multi dimensional scaling with modern majorization
problem et le classical multi dimensional scaling. Ces résultats ont révélé une meilleure précision
de la localisation basée sur l’approximation stochastique distribuée (DSAL). Nous allons finir
par conclure sur les travaux futurs.

Dans les sections qui suivent nous présentons brièvement chacune des parties mentionnées de la
thèse.

Caractéristiques du modèle de propagation

Nos travaux se basent sur les algorithmes à mesure de distance ou « range-based algorithm »,
plus précisément ceux qui utilisent un modèle de propagation radio. En d’autres termes, il sera
nécessaire de construire l’équation d’un modèle de régression sur la relation entre les valeurs
de RSSI mesurées et la distance correspondante. Ceci afin d’estimer les distances entre chaque
nœud landmark et la source aveugle à localiser.

Le modèle de propagation le plus couramment utilisé en environnement interne et externe et
qui représente un bon compromis entre faisabilité et complexité est le modèle log-normale sha-
dowing (LNSM) proposé par Rappaport et Seidel [22]. C’est un modèle empirique qui prend en
compte les effets de réverbération conséquence des perturbations affectant le signal le long du
canal de communication entre un émetteur et un récepteur radio. La réverbération ou « shado-
wing »est définie par le fait qu’en milieu interne, le signal ne se propage pas directement entre
un émetteur et un récepteur, mais se diffuse sur toute la surface de l’environnement interne. Par
environnement interne, on sous-entend une pièce fermée, des endroits confinés, sous un tunnel.

L’utilisation du modèle log-normale shadowing requiert une distribution log-normale (comme
présenté sur la figure 6.2) de la puissance reçue à n’importe quelle distance de l’émetteur. La
fonction mathématique du modèle log-normale shadowing est la suivante (cf. equation (6.1)) :

PL(d) = PL(d0) + 10.η. log10

(
d

d0

)
+N (0, σ2) , (6.1)

Ce modèle de propagation log-normal shadowing exprime l’atténuation PL(d) entre un émetteur
et un nœud récepteur radio séparé d’une distance d que nous voulons estimer. Avec PL(d0) la
puissance de référence exprimée en « dBm »et mesurée à la distance de référence d0 (généra-
lement égal à 1m en environnement interne. η est le facteur prenant en compte l’atténuation
de l’environnement. N (0, σ2) est une variable aléatoire gaussienne de valeur moyenne nulle et
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Figure 6.2 – An example of log-normal distribution [201] [202]

d’écart-type σ. η est le paramètre de perte de trajet et σ2 prend en compte les effets de réver-
bération (en anglais « shadowing ») dans l’environnement.

Ce modèle ne tient pas compte des effets de « fast fading »ou variations brusques et rapides
dans la mesure où plusieurs valeurs de RSSI peuvent être lues à partir des messages provenant
d’un même nœud émetteur radio [5]. Dans la plupart de nos expériences, nous utilisons une
puissance d’émission de 0 dBm, le RSSI est de ce fait égal à l’opposé de l’atténuation mesurée :
RSSI(d) = −PL(d).

Etude du comportement du RSSI en environnements internes réels

Cette section caractérise les nœuds capteurs Tmote Sky en chambre anéchoïque mais également
en environnements réels. Une chambre anéchoïque est dépourvue de réflexions, d’interférences car
composé de matériaux absorbant les ondes électromagnétiques. Notre objectif est de caractériser
le gain de l’antenne dans la chambre anéchoïque mais également en environnements internes réels
avec des perturbations supplémentaires dans le but de mieux caractériser le comportement du
RSSI.

Diagramme de rayonnement du nœud capteur Tmote Sky dans
une chambre anéchoïque

Pour déterminer les positions relatives du nœud capteur Tmote Sky les plus favorables ou dé-
favorables au bilan de la liaison, nous avons réalisé son diagramme de rayonnement dans une
chambre anéchoïque. Nous avons mesuré les valeurs de RSSI sur un récepteur en position de
déploiement horizontal depuis les messages envoyés par un émetteur en position de déploie-
ment horizontal. Ainsi nous faisons d’abord tourner l’émetteur suivant les axes horizontaux puis
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(a) Rotation de l’antenne d’un nœud capteur émet-
teur suivant l’axe horizontal

(b) Rotation de l’antenne d’un nœud capteur émet-
teur suivant l’axe vertical

Figure 6.3 – Architecture du diagramme de rayonnement 3D du nœud capteur Tmote Sky réalisé dans
une chambre anéchoïque

(a) Une vue de dessus de la chambre anéchoïque
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(b) Diagramme de rayonnement 3D du nœud capteur
Tmote Sky réalisé dans une chambre anéchoïque

Figure 6.4 – Diagramme de rayonnement 3D du nœud capteur Tmote Sky réalisé dans une chambre
anéchoïque

suivant les verticaux pour un déploiement vertical du récepteur.

Les résultats ont démontré un diagramme proche mais qui n’est pas tout à fait omnidirectionnel.
En effet nous recherchons une grande plage de valeurs où la directivité est assez constante pour
une plage angulaire la plus grande possible, ce qui n’est pas le cas dans le graphique ci-dessous
sur lequel nous avons remarqué des disparités.

Le diagramme de rayonnement du nœud capteur Tmote Sky réalisé dans la chambre anéchoïque
de Telecom ParisTech ne montre ni une forme directive ni un modèle totalement omnidirection-
nelle : il ne rayonne pas de la même manière sur toutes les directions.

Le graphique de droite présente le diagramme de rayonnement obtenu. La partie de droite du
diagramme présente une meilleure polarisation lorsque l’angle horizontal est d’environ 0◦, -90◦ et
270◦ pour tout émetteur respectant la position de déploiement comme montré sur le graphique de
gauche. Plus de −50 dBm comme valeurs de RSSI sont observées sur cette plage angulaire, ce qui
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(a) Scénario de l’architecture TowardCenter parallel
antennas (i.e A)

(b) Les valeurs de RSSI mesurées du scenario A

(c) Scénario de l’architecture FromCenter parallel
antennas (i.e B)

(d) Les valeurs de RSSI mesurées du scenario B

Figure 6.5 – Distribution des valeurs de RSSI mesurés pour différentes positions de déploiement de
capteurs émetteurs-récepteur sur le testbed Lincs (partie 1)

est mieux comme polarisation qu’aux alentours de 180◦ vers lesquels on observe des valeurs de
RSSI comprises entre −60 dBm et −55 dBm. Par ailleurs, quand on regarde les angles verticaux,
nous remarquons des valeurs de RSSI comprises de -50 dBm et −60 dBm à −55 dBm à 180◦.
Nous remarquons que l’orientation de l’émetteur par rapport à la position de déploiement du
récepteur est importante.

Nous avons réalisé des tests sur différentes orientations possibles et par rapport à notre dé-
marche, le fait de changer d’orientation n’influence pas significativement les résultats, même si
cette position de déploiement dénommée TowardCenter perpendicular obtient un comportement
plus proche du comportement log-normal shadowing comparé aux autres (i.e. TowardCenter
parallel, FromCenter perpendicular et FromCenter parallel) présenté et interprété dans la sous
section 3.4.2 du chapitre 3.

Les résultats du diagramme de rayonnement 3D du nœud capteur Tmote Sky sont présentés pour
une position de déploiement vertical d’un nœud capteur récepteur par rapport à un déploiement
horizontal de nœuds capteurs émetteurs. Le diagramme de rayonnement 3D obtenu n’est pas
tout à fait omnidirectionnel, mais nous pouvons l’utiliser tout en sachant que cette limite existe.

208



(a) Scénario de l’architecture TowardCenter perpen-
dicular antennas (i.e C)

(b) Les valeurs de RSSI mesurées du scenario C

(c) Scénario de l’architecture FromCenter perpendi-
cular antennas (i.e D)

(d) Les valeurs de RSSI mesurées du scenario D

Figure 6.6 – Distribution des valeurs de RSSI mesurés pour différentes positions de déploiement de
capteurs émetteurs-récepteur sur le testbed Lincs (partie 2)
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Dans la suite nous allons étudier le comportement du RSSI en environnements réels avec des
perturbations.

Comportement du RSSI en environnements internes réels avec des
perturbations

Après avoir caractérisé les nœuds capteurs, nous étudions le comportement du RSSI en enviro-
nnements réels sous la présence d’obstacles.

Nous avons mesuré les valeurs de RSSI entre un émetteur et un récepteur radio qui s’éloigne
dans un testbed, un bureau meublé et occupé de taille 7 m par 5 m situé dans le laboratoire
Lincs, département Infres, Télécom ParisTech Place d’Italie. Nous avons remarqué que pour une
même position de déploiement entre l’émetteur et le récepteur, dépendant de la manière dont
l’émetteur et le récepteur sont orientés en respectant ou non la proximité avec le mobilier, nous
n’obtenons pas le même comportement des valeurs mesurés de RSSI par rapport à la même
distance.

Ces deux graphiques représentent la distribution des valeurs de RSSI en fonction de la distance.
Nous observons un comportement proche de la distribution log-normale sur le graphique de
gauche où nous avons mesurées les valeurs de RSSI entre un émetteur se trouvant près du
mobilier et un récepteur qui se déplace du mobilier vers le fond de la pièce (i.e. le mur).

Cependant, nous n’observons pas la même dispersion des valeurs de RSSI mesurées pour les
mêmes distances lorsque l’émetteur se trouve au fond de la salle (i.e. le mur) et que le récepteur
se déplace vers le mobilier (cf. graphique de droite). Ces résultats démontrent que le mobilier a un
effet perturbateur sur le signal radio sans fil en interne. En effet, sans perturbation, nous aurions
dû obtenir le même comportement au niveau de la dispersion des valeurs de RSSI puisque les
mesures de RSSI sont réalisées aux mêmes distances et suivant une même position de déploiement
entre un émetteur et un récepteur.

Les résultats obtenus suggèrent la nécessité de prendre en compte l’orientation des antennes des
émetteurs (ou encore landmarks) par rapport à celle du nœud aveugle à localiser. Ce qui est fait
par nos algorithmes même si nous ne prenons pas cela en compte explicitement sur les nœuds. En
effet, nous n’imposons pas une orientation particulière aux antennes émettrices et réceptrices. Il
faut noter que dans nos travaux nous avons utilisé une seule position de déploiement du récepteur
sur lequel nous mesurons les valeurs de RSSI depuis les messages envoyés par tout émetteur en
position de déploiement horizontal. Toutefois, nous avons également Ã c©tudié d’autres orienta-
tions (cf. chapitre 3, section 3.4.2) qui montrent des formes différentes des courbes des valeurs de
RSSI en fonction de la distance mais décrivant toujours les mêmes tendances même si l’antenne
du nœud capteur Tmote Sky n’est pas isotrope.

Présentation des différents testbeds

Cette section présente une vue de dessus de nos différents testbeds. Dans les différents graphiques
des figures 6.7 à 6.9 modélisant les tailles des testbeds, les landmarks sont illustrés par les
cercles jaunes et les positions du nœud aveugle à localiser par les croix bleues. Le graphique de
gauche présente le plus petit dénommé Lincs et différent du testbed précédemment mentionné.
Le testbed lincs est un bureau de taille 4 m par 3 m, situé au laboratoire Lincs, Telecom Paristech
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(a) Une vue de dessus du testbed Lincs (#1) de taille 4
m * 3 m)
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(b) Testbed Lincs : (5 landmarks, 48 positions)

Figure 6.7 – Position des landmarks (les cercles jaunes) et de la source à localiser (les croix bleues) sur
le testbed Lincs (#1)

site place d’Italie. Le testbed Lincs se compose de 48 positions du nœud mobile aveugle à localiser
et de 5 landmarks représentés par les cercles jaunes. Le graphique de droite quand à lui représente
le testbed nommé Barrault, qui est la salle C49 barrault. Le testbed Barrault mesure 7m× 7m :
il se compose de 47 positions du nœud mobile aveugle à localiser et de 4 landmarks. Nous avons
également le testbed Rammus, qui est une salle de classe (A27) se trouvant sur la plateforme
Rammus, Télécom Bretagne Rennes. Il est représenté par le graphique de droite de la figure 6.9.
Il se compose de 8 landmarks et de 57 positions de la source à localiser. Dans chaque testbed
nous avons en moyenne la présence de deux personnes et des points d’accès sans fil. Chacune
des positions de test (représentées par les croix bleues) est choisie au hasard et différente pour
chaque testbed. Ainsi, sur chacune de ces positions de test, la source à localiser est déplacée par
un opérateur et estime sa position selon les valeurs de RSSI mesurées sur les paquets envoyés
par chaque landmark selon la figure 6.14. La localisation est décidée instantanément et permet
ainsi la mobilité.

Enfin, nous avons le testbed SensLAB (cf. figure 6.9) de taille 5 m par 8 m, une plateforme de
capteurs sans fil à large échelle se trouvant sur la plateforme SensLAB du site de Rennes. Le
testbed SensLAB utilise 12 nœuds capteurs aveugles avec des positions inconnues et 4 landmarks.

Influence des trajets multiples sur le RSSI

Dans les sections ci-dessus nous avons caractérisé le nœud capteur Tmote Sky dans une chambre
anéchoïque et en environnements internes réels. Dans ce paragraphe nous allons étudier la pro-
pagation du signal radio sans fil en environnement réel.

Nous avons représenté sous forme d’histogramme la distribution des valeurs de RSSI mesurées
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(a) Une vue de dessus du testbed Barrault (#2) de taille
7 m par 7 m)
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(b) Testbed Barrault : (4 landmarks, 47 positions)

Figure 6.8 – Position des landmarks (les cercles jaunes) et de la source à localiser (les croix bleues) sur
le testbed Barrault (#2)

(a) Une vue de dessus du testbed Rammus (#3) de taille
8.77 m par 6.46 m)
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(b) Testbed Rammus : (8 landmarks, 57 positions)

Figure 6.9 – Position des landmarks (les cercles jaunes) et de la source à localiser (les croix bleues) sur
le testbed Rammus (#3)
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(a) Une vue de dessus du testbed SensLAB Rennes. Un
réseaux de capteurs sans fil
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(b) Testbed SensLAB Rennes : (4 landmarks, 12 positions de
nœuds aveugles)

Figure 6.10 – Testbed SensLAB Rennes : position des landmarks représentés par les croix rouges et des
nœuds aveugles à localiser symbolisées par les astérisque bleues

sur une période du temps, sur une position du récepteur en fonction de l’emplacement de chacun
des 8 landmarks (depuis les messages envoyés) dans le testbed Rammus. Nous avons représenté
le nombre de valeurs de RSSI mesurés sur les paquets de données reçus avec succès de chaque
landmark. La figure 6.11 présente les valeurs de RSSI en abscisse et le pourcentage des valeurs
de RSSI en ordonnée. Nous remarquons que les distributions des valeurs de RSSI pour chaque
landmark en ce qui concerne le récepteur ne sont pas les mêmes ; ceci est normal car les distances
entre chaque landmark et cette position arbitraire du récepteur ne sont pas les mêmes.

Toutefois, nous devrions mesurer de petites ou égales variations sur l’écart type parce que l’en-
vironnement ne change pas et les conditions de propagation sont les mêmes. D’où l’idée de
considérer que les paramètres du modèle de propagation log-normal shadowing (i.e. LNSM)
dépendent de l’emplacement des landmarks.

Cet histogramme de la figure 6.11 montre que le facteur dominant est la propagation par trajets
multiples. En fait, notre étude montre clairement que le nœud émetteur dont les valeurs (de
RSSI) mesurées sur le récepteur et représentées à la deuxième position à partir du haut est un
peu loin en termes de dispersion des valeurs RSSI à l’égard des autres émetteurs. En effet, ce
nœud émetteur dont les valeurs de RSSI sont situées à la deuxième position à partir du haut
sont trop dispersées par rapport à l’ensemble des autres valeurs mesurées des autres landmarks.
A cause des trajets multiples, cet émetteur se trouve en mauvaises conditions de propagation
par rapport à la position du récepteur, entrainant de larges dispersions qui sont observées au
niveau des valeurs de RSSI mesurées sur le récepteur des messages envoyés par cet émetteur.
Dans le chapitre 3, nous avons aussi démontré que la sensibilité au niveau du récepteur existe,
mais elle ne peut pas causer d’aussi larges variations. De plus, les trajets multiples impliquent
également que les valeurs de RSSI mesurés à partir des messages envoyés par un landmark sont
soient trop fortes, soient trop faibles même à courte et égale distance (cf. figure 6.12).
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Figure 6.11 – Histogramme des valeurs de RSSI mesurées sur un émetteur à partir des messages prove-
nant de 8 landmarks différents sur le testbed Rammus

Figure 6.12 – Deux comportements différents de RSSI mesurés sur deux nœuds distincts situés à égale
distance de 5.6 m d’un nœud émetteur dans un bureau semi-meublés
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Figure 6.13 – Histogramme des valeurs de RSSI mesurés sur un émetteur à partir des messages provenant
de 5 landmarks différents sur le testbed Lincs

Nous pouvons donc considérer qu’un nœud landmark parmi ceux du réseau peut être affecté
d’un comportement anormal. De ce fait les valeurs de RSSI mesurées sur un récepteur à partir
des messages envoyés par ce landmark sont considérées comme étant corrompues.

Nous avons également illustré la distribution des valeurs de RSSI mesurées sur une position
du récepteur en fonction de l’emplacement de chacun des 5 landmarks sur le testbed Lincs
(cf. figure 6.13). Nous remarquons cette fois la présence de valeurs aberrantes. Ceci est peut-
être normal du fait de la petite taille du testbed qui le rend favorable ou plus sensible aux
interférences.

Les résultats de ces expériences et d’autres que nous avons réalisés au laboratoire Lincs et au
départment Infres Telecom ParisTech montrent clairement que les facteurs dominants sont les
trajets multiples (en anglais « multipath ») et les valeurs aberrantes (« outliers »).

Description du processus de localisation

La figure 6.14 présente notre processus de localisation tel qu’il est réalisé. Sur chaque position de
test, le nœud mobile calcule instantanément sa position en utilisant les valeurs de RSSI reçues
des messages envoyés par chaque landmark et la position de ces derniers.

Estimation en ligne des paramètres du modèle de propagation

D’un point de vue de notre architecture de localisation, tout en recevant des données nécessaires
au calcul de sa position, le nœud aveugle calcule instantanément les paramètres du modèle de
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Figure 6.14 – Une vue de notre processus de localisation réalisé instantanément sur chaque position

propagation relative à son environnement. Pour réaliser cela, le nœud se base sur les équations
du modèle de régression basées sur le maximum de vraisemblance. Ce qui est différent des autres
travaux de l’état de l’art pour lesquels les estimations des paramètres du modèle de propagation
sont réalisées hors ligne et indépendantes du processus de localisation.

Nous avons adopté la démarche suivante :

• Un premier sous-ensemble est utilisé comme base d’apprentissage : 10 positions sont uti-
lisées pour estimer les valeurs des paramètres du modèle de propagation en fonction de
l’emplacement de chaque landmark : il s’agit de la valeur du paramètre η de perte de
trajet, des valeurs de l’atténuation de référence PL(d0) et de la variance du bruit σ2. Nous
pouvons aussi utiliser les positions des landmarks et les valeurs de RSSI mesurées de ces
derniers pour estimer les valeurs des paramètres du modèle de propagation en fonction de
l’emplacement de chaque landmark de l’architecture de localisation.

• Un deuxième sous-ensemble est considéré comme la base de test. Il est utilisé pour évaluer
la précision des algorithmes. La source à localiser se localise elle-même sur ces positions.

La figure 4.20 présente une vue de dessus de la carte de nos testbeds lorsqu’on applique notre
principe de base d’apprentissage et de base de test. Les cercles rouges illustrent les positions des
landmarks. Les carrés jaunes à eux seuls constituent la petite base d’apprentissage nommée A :
10 positions sont utilisées pour apprendre les paramètres du modèle de propagation LNSM par
rapport à l’emplacement de chaque landmark. Les carrés jaunes en plus des triangles violets re-
présentent la grande base d’apprentissage nommée B : 25 positions sont utilisées pour apprendre
les paramètres du modèle de propagation LNSM. Les astérisques bleus illustrent les bases de
tests, les positions à localiser du nœud mobile aveugle.

Dans les sections qui suivent, nous faisons d’abord un rappel des algorithmes du maximum de
vraisemblance et de l’algorithme de la trilateration. Nous présentons ensuite les algorithmes de
localisation proposés. Nous comparons sur des plateformes expérimentales réelles nos algorithmes
à ceux mentionnés de l’état de l’art.
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Algorithmes de localisation à un saut basés sur la technique du
RSSI

Nous présentons les heuristiques proposées pour corriger les incohérences observées. Nos al-
gorithmes tiennent compte des effets de la propagation par trajets multiples et des valeurs
aberrantes.

L’algorithme du maximum de vraisemblance

Le Maximum de Vraisemblance (i.e. MLE) est une approche statistique couramment utilisée
pour localiser une position d’un nœud aveugle. Il se base sur la théorie de l’inférence statistique
classique. Etant donné l’emplacement de chaque nœud de référence et la distance séparant
chacun d’eux de la source à localiser, l’algorithme du maximum de vraisemblance maximise
la probabilité de l’emplacement possible de la source à localiser en minimisant la variance de
l’erreur estimée. Cependant, la performance de l’estimateur du maximum de vraisemblance est
sensible au nombre de landmarks participants. Voici la fonction mathématique que nous avons
utilisé pour estimer la position de la source à localiser :

(x̂, ŷ) = arg min
x∈(0,X),y∈(0,Y )

L∑
L=1

JL log(σ2L) + (6.2)

L∑
L=1

σ−2L

JL∑
j=1

(AL,j − αL,0 − αL,1 log10 dL(x, y))2 ,

avec (x,y), le paramètre d’intérêt, autrement dit la position inconnue du nœud mobile aveugle
en 2D ; RSSIi,j est l’atténuation j mesuré à la position inconnue du nœud mobile aveugle à
partir du message envoyé par le landmark j. σ2i est la variance du bruit associée au landmark i.
Ji est le nombre total d’observations (de valeurs de RSSI mesurés) provenant du landmark i.

Grâce à cette équation présentée ci-dessus (cf. equation 6.2) et ne prenant en entrée que des
valeurs de RSSI et les valeurs des paramètres du modèle de propagation, on détermine la position
du nœud mobile aveugle avec l’algorithme du maximum de vraisemblance.

L’algorithme de la trilateration

Un autre algorithme fréquemment utilisé pour localiser la position d’un nœud mobile aveugle
est la trilateration. C’est la technique de localisation utilisée par le GPS. La trilateration est
une technique géométrique qui se base sur le principe d’intersection de cercles. Il utilise les
propriétés géométriques de l’emplacement des points de référence pour estimer la position du
nœud mobile aveugle. La distance séparant le nœud mobile aveugle de chaque point de référence
est le rayon d’un cercle dont le centre est le point de référence qui a envoyé le message sur lequel
la valeur de RSSI est mesurée. L’intersection de tous les points de référence donne la position du
nœud mobile aveugle. Pour faire de la trilateration en environnement 2D, il faut deux points de
référence et un nœud mobile aveugle. En environnement 3D, la trilateration nécessite 3 points
de référence et un nœud mobile aveugle.
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(a) 1ère position de test (#11) : x=2.27m ; y=3.397m (b) 2eme position de test (#17) : x=3.02m ; y=2.252m

Figure 6.15 – RSSI en fonction de la distance mesurés sur un nœud récepteur placé à deux positions
différents (choisis de manière aléatoire) à partir des messages envoyés par 8 landmarks sur le testbed
Rammus Rennes (#3)

L’algorithme de la localisation aléatoire

Nous avons aussi utilisé une technique de localisation aléatoire pour déterminer la contribution
des mesures de RSSI. Pour cela, nous déterminons des coordonnées aléatoires suivant une dis-
tribution uniforme sur toute la taille du testbed en utilisant la méthode Monte Carlo. Cette
dernière nous permet d’ être sûr que la valeur aléatoire générée suit une loi recherché. Nous
concernant, il s’agit de la loi uniforme.

Nous allons maintenant illustrer les algorithmes proposés pour prendre en compte les effets de
propagation par trajets multiples et les valeurs aberrantes.

Localisation avec les algorithmes proposées

Nous avons représenté séparément les valeurs de RSSI mesurées sur deux positions différentes
d’un nœud mobile aveugle à partir des messages reçus des 8 landmarks du testbed Rammus
Rennes. Ces positions du nœud mobile aveugle sont choisies au hasard. Les résultats présentés à
la figure 6.15 mettent en évidence que dans la plupart des cas, les valeurs de RSSI sont affectées
de bruit et la variance du RSSI reste stable. Cependant, pour quelques liens de communication
illustrés par des cercles rouges, la variance devient très grande et introduit un biais.

Ces résultats présentés ci-dessus et ceux des études expérimentales mentionnés plus haut et
détaillés dans le chapitre 3, ont démontré que certaines valeurs de RSSI peuvent être affectées
de grandes dispersions comparées aux autres. Autrement dit, un landmark parmi plusieurs peut
être affecté d’un comportement anormal.

Nos premiers algorithmes de localisation proposés tiennent compte de la possibilité qu’un land-
mark en mauvaise condition de propagation par rapport à la position d’un récepteur peut être
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Figure 6.16 – Equation de Biased Log-Normal Shadowing Model (B-LNM)

affecté des effets de la propagation par trajet multiples induisant un comportement anormal. Les
signaux reçus de ce landmark sont entachés de bruit. Les valeurs de RSSI mesurés des messages
reçus de ce landmark anormal sont corrompues et de ce fait les effets de ces valeurs corrompues
sont minimisés dans le processus de localisation. Nous proposons un modèle d’observation biai-
sée nommé : Biased-log-normal shadowing (B-LNM). Nous appliquons ensuite l’estimateur du
maximum de vraisemblance pour permettre la localisation.

B-LNM ou le modèle de réduction des effets des valeurs de RSSI
corrompues mesurées à partir des messages provenant d’un land-
mark anormal

B-LNM considère certaines valeurs de RSSI comme étant corrompues comparées aux autres.
Ensuite ce modèle réduit les effets de ces valeurs corrompues provenant de landmarks anormaux
suivant une re-paramétrisation du modèle log-normale shadowing qui conduit à ce nouveau
modèle d’observation (cf. figure 6.16) :

RSSIj,L est la valeur du RSSI No j mesuré du message envoyé par le landmark L situé à une
distance inconnue dL. Nous retrouvons les paramètres du modèle de propagation log-normal
shadowing : PLL(d0), ηL et N (0, σ2L).

L’équation de B-LNM prend en entrée toutes les valeurs de RSSI mesurées de tous les landmarks
et calcule instantanément les paramètres du modèle de propagation dépendant de l’emplacement
de chaque landmark. B-LNM définit ensuite le modèle statistique pour réduire les effets des va-
leurs anormales de RSSI mesurées des messages provenant d’un landmark anormal. Le paramètre
β de l’équation de B-LNM (cf. figure 6.16) est un entier à optimiser, c’est l’indice du modèle
sélectionné. Ensuite nous appliquons à B-LNM l’estimateur du maximum de vraisemblance pour
localiser un nœud mobile aveugle en environnement interne.

Algorithme de localisation Biased-Maximum Likelihood (B-MLE)

En appliquant l’estimateur du maximum de vraisemblance à B-LNM, cela conduit aux maximi-
sations suivantes :

La fonction de vraisemblance associée à tout landmark l et la fonction de vraisemblance associée
au landmark O biaisé. Grâce à ces maximisations on détermine l’indice du modèle sélectionné,
la position du nœud mobile aveugle, mais également la valeur du biais et le landmark biaisé
s’il existe. En effet le landmark biaisé est le landmark qui étant exclu conduit à une valeur de
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vraisemblance dont le maximum est le plus grand.

Grâce à la proposition d’un algorithme de localisation simple nommé B-MLE, nous localisons un
nœud mobile aveugle tout en prenant en compte les effets de la propagation par trajets multiples.
Cet algorithme se compose d’un modèle alternatif au modèle log-normal shadowing sur lequel est
appliqué l’estimateur du maximum de vraisemblance. Cet algorithme de localisation n’est pas
plus complexe que la plupart des algorithmes de l’état de l’art se basant sur la borne de Cramer
Rao par exemple [28], [159], [31]. Outre les opérations de multiplications, divisions et d’additions,
le log de la vraisemblance qui intervient dans l’équation de B-MLE peut être facilement supporté
par les capteurs grâce au développement limité de la fonction logarithme.

Versions étendu de B-MLE : xB-MLE

Pour examiner les performances de l’algorithme de localisation proposé, nous avons étendu
B-MLE pour prendre en compte le cas où plusieurs landmarks peuvent être affectés par un com-
portement anormal. Plus précisément, nous confrontons les cas où un (B-MLE), deux (2B-MLE)
ou trois (3B-MLE) landmarks sont anormaux à l’estimateur classique du maximum appliqué au
modèle log-normal shadowing (MLE non biaisé) sur les trois différents testbeds.

Présentée dans l’équation 6.3, la fonction de vraisemblance lorsque deux landmarks sont consi-
dérés comme biaisés se déduit aisément de la fonction de vraisemblance de B-MLE (i.e. un et
un seul landmark peut être anormal). Le même principe s’applique lorsque trois landmarks sont
considérés comme anormaux.

LO(x, y, β1, β2) =
K∑

L=1;L6=O1;L6=O2

LL(x, y) + LO1(β1) + LO2(β2) (6.3)

Nous avons également évalué une deuxième approche qui n’a pas besoin d’examiner tous les
sous-ensembles possibles de landmarks anormaux. Au lieu de cela, cette approche sélectionne
efficacement les landmarks normaux sur la base d’un seuil dépendant de la valeur du bais et
défini dans l’équation 6.4.

BL =

∣∣∣∣∣∣
βL −

(
PLL(d0) + 10ηL log10

(
dL
d0

))
PLL(d0) + 10ηL log10

(
dL
d0

)
∣∣∣∣∣∣ (6.4)

Illustrée sur la figure 6.17, la valeur du seuil de cet algorithme de localisation nommé B-MLEC
est choisie de façon empirique. Nous avons réalisé des expériences sur nos différents testbeds
en confrontant les résultats obtenus lorsque différentes valeurs de seuils sont appliquées sur
l’intervalle ]0; 0.7]. Le seuil de valeur γ = 0.05 est la valeur optimale en terme de précision de
localisation. En effet la valeur de seuil γ = 0.05 obtient la plus petite erreur de localisation pour
tous les testbeds.

Nous allons maintenant présenter les résultats et comparer en environnements réels les précisions
de localisation de B-MLE, MLE non biaisé et la trilateration sur les trois testbeds présentés à
savoir Lincs, Barrault et Rammus.
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Figure 6.17 – Erreurs de localisation obtenues par B-MLEC dans les différents testbeds pour différentes
valeurs du seuil BL

Résultats expérimentaux

Nous avons comparé dans nos différents testbeds, la performance des algorithmes proposés (B-
MLE, xB-MLE (2B-MLE, 3B-MLE) et B-MLEC) prenant en compte les effets de la propagation
par trajets multiple à l’algorithme de localisation basé sur le maximum de vraisemblance (MLE)
appliqué au modèle log-normale shadowing (MLE non biaisé). Nous avons également comparé
nos algorithmes à la technique de la localisation aléatoire pour, rappelons le déterminer la
contribution des mesures de RSSI.

Les résultats sont présentés sous forme de box-plots ou boites à moustaches qui sont des ou-
tils statistiques permettant de représenter la distribution des données de sorte que les valeurs
aberrantes sont tracées à l’extérieur du graphique de la boite.

Si nous nous concentrons sur le testbed Lincs, le plus petit testbed, considérer plus d’un landmark
comme étant anormal (2B-MLE) n’améliore pas la précision de localisation.

Pour le plus petit testbed, Lincs, il n’y a pas eu d’amélioration de la précision en considérant deux
landmarks comme étant biaisés (2B-MLE) ; en effet, les résultats présentés sur la figure 6.18(a)
montrent que la valeur médiane de 1.4 m obtenue par 2B-MLE n’est pas plus petite que celle
obtenue par B-MLE qui est de 1.39 m. Par contre, lorsque la taille de la base d’apprentissage
augmente, la précision de localisation n’est pas améliorée. Les résultats obtenus par B-MLEC,
l’algorithme basé sur le seuil, sont meilleurs comparés à ceux obtenus par B-MLE et encore
meilleurs que 2B-MLE. Toutefois nous remarquons que les valeurs aberrantes disparaissent avec
l’augmentation de la taille de la base d’apprentissage (cf. figure 6.19(a)).

Les résultats obtenus pour le plus grand testbed, Rammus, ne démontrent pas une amélioration
de la précision de localisation. Par exemple, pour la petite base d’apprentissage (i.e. A) (cf.
figure 6.18(c)), la valeur médiane obtenue par 2B-MLE (2.67 m) n’est pas meilleure que celle
obtenue par B-MLE (2.27 m). De plus, B-MLE obtient une meilleure performance de localisation
comparée à 3B-MLE qui a obtenu une valeur médiane de 2.42 m. Lorsque nous comparons les
valeurs moyennes, les résultats sont comparables pour les trois algorithmes. Par contre, à la
différence du testbed Lincs, les résultats obtenus par B-MLEC pour le testbed Rammus ne sont
pas meilleurs que ceux obtenus par B-MLE. La valeur médiane de B-MLEC 3.49 m ou encore la
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(a) Testbed 1 (Lincs) - base d’apprentissage A (10 posi-
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(b) Testbed 2 (barrault) - base d’apprentissage A (10
positions)
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(c) Testbed 3 (Rammus) - base d’apprentissage A (10
positions)

Figure 6.18 – Box-plots des erreurs de localisation obtenues par les différents algorithmes dans les
différents testbeds pour la base d’apprentissage A (10 positions)
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(a) Testbed 1 (Lincs) - base d’apprentissage B (25 posi-
tions)
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(b) Testbed 2 (Barrault) - base d’apprentissage B (25
positions)
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(c) Testbed 3 (Rammus) - base d’apprentissage B (25
positions)

Figure 6.19 – Box-plots des erreurs de localisation obtenues par les différents algorithmes dans les
différents testbeds pour la base d’apprentissage B (25 positions)
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valeur moyenne 3.40 m, sont respectivement supérieures à celles obtenues par B-MLE : 2.27 m
comme valeur médiane et 2.73 m comme valeur moyenne. Il en résulte que diminuer le nombre de
landmarks peut être rentable. L’estimation des paramètres du modèle de propagation s’effectuée
plus rapidement. Ces résultats se confirment lorsque la taille de la base d’apprentissage augmente
(cf. figure 6.19(c)). B-MLE obtient une meilleure performance de localisation comparée à B-
MLEC. Une valeur médiane de 1.94 m et une valeur moyenne de 2.20 m obtenues par B-MLE
sont meilleures en terme d’erreur de localisation comparés à 2.28 m de valeur médiane et 2.38 m
de valeur moyenne obtenues par MLE non baisé. Ces performances de localisation sont encore
meilleures que celles obtenues par B-MLEC : 2.38 m en valeur médiane et 2.56 m en valeur
moyenne contre 2.42 m et 2.51 m en valeur médiane et 2.72 m et 2.73 m en valeur moyenne
obtenues respectivement par 3B-MLE et 2B-MLE.

Outre le fait que B-MLE obtient une meilleure performance de localisation sur le testbed Ram-
mus, ces résultats confirment aussi que le RSSI renseigne encore sur la distance, même si c’est
peu car la localisation aléatoire obtient de mauvaises performances de localisation sur le testbed
Rammus et Lincs comparées aux algorithmes que nous avons proposés quelle que soit la taille
de la base d’apprentissage. De plus, l’ensemble des résultats montre une meilleure performance
de localisation pour notre algorithme B-MLE comparés à MLE non biaisé quels que soient le
testbed et la taille de la base d’apprentissage.

Les résultats globaux montrent que B-MLE améliore la précision de localisation comparée à
MLE non biaisé. Nous avons aussi comparé les résultats individuels de localisation obtenus par
B-MLE et MLE non biaisé sur le testbed Rammus. Chaque colonne du graphique de la figure 6.20
représente un point de mesure et plus la mesure est basse, plus précise est la méthode résultante.
Nous avons remarqué :

• Considéré un landmark comme étant anormal améliore significativement la précision de
localisation sur le testbed Rammus, ceci n’est pas le cas sur le testbed Lincs. L’algorithme
de sélection de landmarks anormaux basé sur le seuil (i.e. B-MLEC) obtient une meilleure
performance de localisation.

• Les positions pour lesquelles B-MLE obtient une mauvaise performance sont souvent les
mêmes quelle que soit la taille de la base d’apprentissage.

• La taille de la base d’apprentissage joue un rôle. Plus la base d’apprentissage est grande
et plus les valeurs aberrantes disparaissent (petit testbed Lincs).

• B-MLE est capable de prendre en compte les effets de la propagation par trajets multiples.
En effet, avec B-MLE la précision de localisation a été significativement améliorée sur la
majeure partie des positions individuelles par rapport à MLE non biaisé (cf. figure 6.20).
Les valeurs de RSSI mesurées sur ces positions étaient affectées de larges dispersions à
cause des effets de la propagation par trajets multiples et B-MLE a été capable d’estimer
avec une bonne précision ces positions (illustrées par les traits pleins en couleur verte).

Nous avons prouvé qu’avec l’utilisation des seules valeurs de RSSI et y appliquer des traitements
statistiques (B-MLE), il est possible d’améliorer la précision de localisation en environnement
interne de 40% comparé au MLE non baisé (cf. tableau 6.1 6.3).
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(b) Testbed #2
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(c) Testbed #3

Figure 6.20 – Erreurs individuels de localisation pour la technique de localisation aléatoire, B-MLE
et MLE non biaisé. Ces résultats de localisation relative sont obtenus pour les trois testbeds et en
considérant deux bases d’apprentissage
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Table 6.1 – Performance de localisation des différents algorithmes comparés sur le testbed #1

Database mean error Median STD
Random A 1.79 m 1.74 m 0.31
MLE A 1.29 m 1.20 m 1.29

B-MLE A 1.39 m 1.29 m 0.85
2B-MLE A 1.40 m 1.33 m 0.74
B-MLEC A 1.30 m 1.20 m 0.85
Random B 1.87 m 1.80 m 0.33
MLE B 1.36 m 1.24 m 1.20

B-MLE B 1.34 m 1.20 m 0.92
2B-MLE B 1.39 m 1.41 m 0.75
B-MLEC B 1.29 m 1.06 m 0.93

Table 6.2 – Performance de localisation des différents algorithmes comparés sur le testbed #2

Database mean error Median STD
Random A 3.48 m 3.40 m 0.54
MLE A 3.27 m 3.31 m 3.11

B-MLE A 3.16 m 3.11 m 1.51
B-MLEC A 3.30 m 3.20 m 1.76
Random B 3.27 m 3.15 m 0.48
MLE B 3.30 m 3.43 m 3.19

B-MLE B 3.22 m 3.19 m 1.76
B-MLEC B 3.86 m 4.01 m 2.38

Table 6.3 – Performance de localisation des différents algorithmes comparés sur le testbed #3

Database mean error Median STD
Random A 3.53 m 3.46 m 0.39
MLE A 3.41 m 2.96 m 2.27

B-MLE A 2.73 m 2.27 m 1.93
2B-MLE A 2.72 m 2.67 m 1.59
3B-MLE A 2.72 m 2.42 m 1.68
B-MLEC A 3.49 m 3.40 m 2.05
Random B 3.55 m 3.49 m 0.40
MLE B 2.38 m 2.28 m 1.94

B-MLE B 2.20 m 1.94 m 1.40
2B-MLE B 2.73 m 2.51 m 1.49
3B-MLE B 2.72 m 2.42 m 1.43
B-MLEC B 2.56 m 2.38 m 1.40
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Algorithmes distribués proposés

Dans les algorithmes précédents, un nœud ne peut qu’estimer sa position. Pour se projeter
dans un scénario plus proche des applications des réseaux de capteurs et de plusieurs autres
applications, nous avons proposé un algorithme distribué dans lequel chaque capteur est ca-
pable d’estimer et d’affiner sa position mais également celle de ses voisins pour des besoins de
coopération.

Algorithme d’Approximation Stochatisque Distribué (en anglais Distributed
Stochastique Approximation Localization Algorithm : DSAL)

L’algorithme de localisation distribué proposé est le DSAL pour algorithme d’Approximation
Stochatisque Distribué. Dans la mesure où les valeurs de RSSI mesurées sont bruitées en en-
vironnement interne, l’algorithme distribué DSAL affine les positions initialement estimées par
les nœuds d’un réseau de capteur sans fil en deux étapes en ligne : la première est une étape
de calcul de descente du gradient distribué sur chaque capteur. Il s’agit de la minimisation de
l’erreur quadratique entre la distance obtenue sur les valeurs de RSSI mesurées, bruitées et les
valeurs de RSSI qu’on obtiendrait avec les vraies positions recherchées. Autrement dit chaque
nœud capteur calcule une estimation provisoire de sa position et de celles de ses voisins, suivant
cette formule stochastique :

(x
(i)
t+1,y

(i)
t+1) = (x

(i)
t ,y

(i)
t )− γt∇fi(x(i)

t ,y
(i)
t )

avec γt est un pas décroissant : γt = 1/
√
t et qui intervient à chaque itération de l’algorithme.

Cette étape de calcul de la descente du gradient distribué se fait en local sur chaque nœud
capteur.

La seconde est une étape de communication entre deux capteurs et utilise la version bidirection-
nelle du protocole de communication Gossip [33] : chaque itération de l’algorithme représente une
étape de communication aléatoire entre deux capteurs. Deux nœuds capteurs i et j choisis au ha-
sard communiquent pour s’échanger leurs positions estimées afin de converger vers un consensus
sur l’ensemble des positions des nœuds capteurs qui sont voisins communs aux capteurs i et j.
Si t représente l’instant de temps discret, chaque itération t de l’algorithme comporte l’ensemble
des positions estimées par un nœud capteur. Il est à noter que seul les positions des nœuds
qui sont voisins communs des nœuds i et j seront mis à jour suivant cette équation ci-dessous,
exécutée jusqu’à ce que le protocole converge :

∀` ∈ Ni ∩Nj , (6.5)
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(x
(j)
t+1(`),y

(j)
t+1(`)) = (x

(i)
t+1(`),y

(i)
t+1(`))

(6.6)

Sinon, les positions des nœuds non voisins communs de i et j sont pris en compte (maintenus)
suivant l’équation suivante :
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Figure 6.21 – Overview of the multilateration approach

(x
(m)
t+1(`),y

(m)
t+1(`)) = (x

(m)
t+1,y

(m)
t+1).

La précision de localisation de notre algorithme distribué est comparée à d’autres algorithmes
de l’état de l’art : la multilatération, le multi dimensional scaling with modern majorization
problem et le classical multi dimensional scaling.

Algorithme de la multilateration : état de l’art

La multilateration est une technologie basée sur l’analyse géométrique. C’est une extension de
la trilateration utilisant le théorème du cosinus. Elle est utilisée pour localiser un nœud mobile
aveugle entouré d’au moins 4 landmarks avec des positions connues (xi; yi), i = 1, . . . , 4 . A
la différence de la trilateration où on mesure des distances, la multilateration (cf. figure 6.21)
implique de mesurer la différence entre le carré des distances séparant le nœud mobile aveugle
des landmarks.

Avec M landmarks, le théorème du cosinus est appliqué à n’importe lequel des M − 1 triangles
formés de trois sommets de capteurs composés entre les landmarks et le nœud mobile à localiser.

Le principe de la méthode de multilateration est de construire un système linéaire de M − 1
équations à deux inconnues (coordonnées du nœud mobile à localiser (xbn; ybn)) entre le nœud
mobile à localiser, un landmark choisi comme référence et le reste des landmarks comme suit :

d21 + d212 − 2 ((xBN − x1)(x2 − x1) + (yBN − y1)(y2 − y1)) = d22
d21 + d213 − 2 ((xBN − x1)(x3 − x1) + (yBN − y1)(y3 − y1)) = d23
d21 + d214 − 2 ((xBN − x1)(x4 − x1) + (yBN − y1)(y4 − y1)) = d24
...
d21 + d21M − 2 ((xBN − x1)(xM − x1) + (yBN − y1)(yM − y1)) = d2M

Nous réécrivons l’expression ci-dessus sous forme d’une matrice afin d’avoir un système linéaire
{di}i=1,...,M formé des distances entre le nœud mobile aveugle et les M landmarks :
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b = Aθ avec : b = d− δ =
1

2

 d212 − (d22 − d21)
...

d21M − (d2M − d21)


A =

 (x2 − x1) (y2 − y1)
...

...
(xM − x1) (yM − y1)

 et θ = (xBN ,−x1 , yBN ,−y1)t = z − (x1, y1)
t (6.7)

La solution du système d’équations, d’où les coordonnées inconnues du nœud mobile à localiser
(xbn; ybn) est obtenue en résolvant une optimisation linéaire. Il s’agit de la minimisation de
l’erreur quadratique moyenne associée aux mesures de distance entre le nœud mobile à localiser
et les landmarks du réseau, y compris le landmark de référence. Avec la multilateration, plusieurs
nœuds aveugles peuvent se localiser en même temps.

Les algorithmes de localisation présentés ci-dessus sont également comparés aux approches de
localisation basées sur le Multidimensional Scaling (MDS).

Algorithme de localisation basé sur le Multidimensional Scaling
(MDS) : état de l’art

Le Multidimensional Scaling (MDS) est une technique d’analyse de données par le biais de
laquelle on peut déduire les principales dimensions liées à la configuration spatiale des objets
lorsque des données disponibles telles que les mesures de RSSI entre les nœuds permettent
de renseigner sur la similitude générale ou la différence entre ces objets mesurés. La matrice
proximité nécessaire avec MDS contient les carrés des distances entre tous les capteurs

Les données recueillies et nécessaires pour l’analyse MDS et permettant de renseigner la similarité
ou la différence entre les objets sont représentées dans une matrice appelé matrice de proximité.
Grâce à la matrice de proximité, on peut déduire les coordonnées de l’ensemble des nœuds du
réseau soit en déterminant le sous espace principal lié à la matrice, soit en résolvant un problème
de minimisation.

Dans la mesure où les distances entre les nœuds ne sont pas connues, nous supposons le modèle
suivant : un ensemble N de nœuds aveugles formant un graphe connexe dont les distances
sont estimées à partir des valeurs de RSSI mesurées sur chaque nœud aveugle et en utilisant
l’estimateur sans biais défini dans l’équation d̂square :

d̂square = 10
−R−PL(d0)

5η K−2 = d2 10
2ξ
10η 10

− σ2 ln 10
T (10η)2 =⇒ E[d̂square] = d2 (6.8)

T étant le nombre de valeurs de RSSI mesurées d’un nœud émetteur voisin et représentées dans
un vecteur R = (R(1), . . . , R(T )). {PL(d0), η, σ

2} sont les paramètres du modèle de propagation
log-normal shadowing [22] définit dans l’équation (6.1). ξ est la variable aléatoire gaussienne de
moyenne nulle et de variance σ2.

Avec MDS, le nœud central calcule toutes les N(N − 1)/2 distances entre chaque pair de nœud
i et j, crée la matrice de distance résultante, fait le « double centering »et ensuite détermine les

229



positions relatives de l’ensemble des nœuds du réseau suivant deux méthodes différentes et en
se basant sur la positions relatives de ses voisins. De ce fait les coordonnées de référence sont
le barycentre du réseau formé par l’ensemble des nœuds du réseau. Le « double centering »,
est le mécanisme permettant de considérer le barycentre du réseau comme les coordonnées de
référence. On part d’une matrice en fonction des positions absolues pour estimer la matrice de
carré des distances suivant un référentiel relatif (barycentre du réseau).

Borg et al. ont proposé deux manières différentes de résoudre le problème de la localisation d’un
ensemble N de nœuds capteurs aveugles avec des positions inconnues lorsque des données sont
disponibles sous la forme d’une matrice de distance carrée et symétrique Dsquare. Les éléments
Dsquare(i,j)∀i,j de la matriceDsquare correspondent à l’ensembleN(N−1)/2 des pairs de distances
carrées entre les N nœuds du réseau. On note Z, la matrice N contenant les positions de chaque
nœud capteur du réseau et dont les éléments sont de dimension N × 2. Les positions relatives
Z sont obtenues suivant deux méthodes. Ces méthodes présentent les différentes manières de
résoudre la matrice Dsquare en fonction de la matrice Z :

Analyse de la composante principale (Principal Component Analysis (PCA))

Avec la méthode MDS d’analyse en composante principale, le nœud central détermine le sous
espace principal lié à la matrice de distance. Autrement dit, il réalise une décomposition en
vecteurs propres et en valeurs propres de la matrice de distance. Ces vecteurs propres et va-
leurs propres conduisent aux positions relatives recherchées des nœuds du réseau suivant ces
équations :

−1

2
J⊥Dsquare J⊥ =

−1

2
J⊥(c1t + 1ct − 2ZZt)J⊥ = J⊥ZZ

tJ⊥ = XXt

(6.9)

et

XXt = V ΓV t = V
√

Λ
√

ΛV t (6.10)

alors : X = V
√

Λ = [
√
λ1V 1,

√
λ2V 2] (6.11)

MDS moderne (SMACOF)

Au lieu d’utiliser la décomposition en vecteurs et valeurs propres, MDS moderne ré-
sout un problème de minimisation d’une fonction nommée « Raw Stress »exprimant l’er-
reur quadratique moyenne entre les distances réelles entre chaque pair de nœud i et j.
di,j =

√
(z1(i)− z1(j))2 + (z2(i)− z2(j))2 et les distances estimées {d̂i,j}∀i,j par l’intermédiaire

des valeurs RSSI comme suit :

X̂ = min
X

σr(X) = min
X

∑
j>i

wij(d̂i,j − di,j(X))2 (6.12)

avec : di,j(X) =
√

(X1(i)−X1(j))2 + (X2(i)−X2(j))2
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Utilisant PCA ou MDS moderne, le nœud central affiche en sortie une carte contenant les
positions relatives de tous les nœuds du réseau. Cette carte peut être convertie suivant un
référentiel absolu avec l’utilisation de landmarks.

Nous allons maintenant comparer ces algorithmes de l’état de l’art, à savoir les approches basées
sur MDS, la multilateration avec notre proposition (i.e. DSAL).

Formule d’erreur de distance utilisée

Nous rappelons l’expression de l’erreur d’estimation moyenne de localisation (Em) utilisée pour
évaluer la performance des mécanismes de localisation en simulation et avec des données réelles
des capteurs.

Si nous considérons un ensemble de N positions inconnues à localiser, {X(i)}i=1,...,N où chaque
X(i) correspond à la position estimée en 2D du nœud de capteur i, l’erreur moyenne de locali-
sation de l’ensemble des positions estimées {X̂(i)}i=1,...,N est définie par Em :

Em =
1

N

N∑
i=1

‖X̂(i)−X(i)‖ (6.13)

Dans l’équation 6.13 nous avons des unités de distance en mètre m pour nos expériences. Pour
obtenir une valeur qualitative et absolue en pourcentage de l’erreur de localisation moyenne,
l’expression ( 6.13) peut être normalisée par un facteur qui prend en compte les dimensions du
testbed dans lequel évolue le réseau de capteurs sans fil. Par exemple, pour les expériences avec
un réseau de capteurs sur un rectangle de dimensions Pm × Qm, la valeur de la distance d
est normalisée par la diagonale du rectangle, pour obtenir une estimation de l’erreur moyenne
normalisée (NME) comme suit :

NME =
1√

P 2 +Q2

1

N

N∑
i=1

‖X̂(i)−X(i)‖ (6.14)

Si l’erreur moyenne normalisée (NME) est calculée pour chaque position i, elle peut être définie
par 1√

P 2+Q2
‖X̂(i)−X(i)‖.

Comparaisons des algorithmes de localisation distribués en envi-
ronnements réels

Les algorithmes ont d’abord été testés en simulation en générant 1000 réalisations de Monte
Carlo sous Matlab avec une distribution log-normale. 12 nœuds capteurs aveugles sont déployés
sur une surface de 10 m par 7 m.

Nous avons également comparé ces algorithmes sur la plateforme réelle de capteurs, SensLAB,
Rennes avec 12 nœuds capteurs aveugles déployés sur une surface de 8 m par 5 m, 4 landmarks
et 10 expériences indépendantes de l’algorithme DSAL.
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Figure 6.22 – Convergence de l’algorithme DSAL en simulation

Convergence de l’algorithme DSAL en simulation

Les résultats de simulation présentés sur la figure 6.22 montrent qu’une meilleure précision de
l’algorithme DSAL est obtenue lorsqu’on considère un pas décroissant. En effet, en utilisant un
pas décroissant au lieu d’un pas croissant, on passe d’une erreur de localisation de 1.25 m à en
dessous de 0.79 m en 200 itérations. L’erreur de localisation est réduite de 40

Précision d’erreur de localisation de l’algorithme DSAL sous la présence de
bruit

Nous avons étudié en simulation l’erreur de localisation obtenue par DSAL par rapport à la
présence de bruit. Nous ne remarquons pas une augmentation significative de l’erreur de locali-
sation lorsque la variance du bruit augmente. Par contre les résultats de localisation obtenus par
la multilateration ou par les méthodes basées sur MDS démontrent une erreur de localisation
qui augmente avec la variance du bruit.

Les résultats de localisation sont présentés sous forme d’erreur moyenne normalisée de localisa-
tion suivant les dimensions P et Q du testbed concerné comme dÃ c©fini dans l’équation 6.14 :

En effet, avec DSAL, nous obtenons une erreur moyenne de localisation autour de 0.05 m lorsque
la variance du bruit passe de σ2 = 2 à σ2 = 10. Par contre la multilateration obtient une
erreur moyenne normalisée de localisation supérieure à 0.09 et 0.2 pour les mêmes variances du
bruit. Les méthodes basées sur MDS quant à elles obtiennent une erreur moyenne normalisée
de localisation comprise entre 0.05 ≤ NME ≤ 0.1 lorsque σ2 = 2. Si la variance du bruit
augmente de σ2 = 10, l’erreur moyenne de localisation est très supérieure à 0.1 (NME ≥ 0.1).
Ces résultats de simulation présentés dans le tableau 6.23 confirment que l’algorithme DSAL
obtient une meilleure précision de localisation sous la présence de bruit. Cette performance est
meilleure que celles obtenues par les algorithmes de la multilateration et ceux basés sur MDS.

La figure 6.24 confirme les résultats présentés ci-dessus tout en montrant les courbes de com-
paraisons des erreurs moyennes normalisées de localisation obtenues par les quatre algorithmes
comparés.

Comparaison des algorithmes sur une plateforme réelle de capteurs

Les résultats de localisation obtenus durant les expériences en environnement réel sont présentés
dans le tableau 6.4. Ils ne confirment pas ceux obtenus en simulation. Ce qui est normal car
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Figure 6.23 – Tableau de comparaison des résultats de localisation obtenus en simulation avec l’al-
gorithme DSAL, de la multilateration (MC), et des methodes basées sur Multi Dimensional Scaling
(Modern et MDS classique)
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Figure 6.24 – Erreur moyenne normalisée (NME) estimée en simulation avec DSAL avec 1000 réalisations de
Monte Carlo pour N = 12 positions inconnues de nœuds aveugles pour différentes valeurs de la variance σ2 du
bruit. Un pas constant (γt = 0.025)t≥1 et une initialisation aléatoire sont considérés pour l’algorithme DSAL.

la simulation ne prend pas en compte tous les facteurs perturbateurs de la propagation en
environnement réel.

Table 6.4 – Erreurs moyennes normalisée (NME) et absolues (Em)) de localisation obtenues par 12 nœuds
capteurs aveugles en éxecutant les différents algorithmes de localisation comparés sur la plateforme SensLAB
Rennes.

Methodes EMN (%) Em (m)
Multilateration (MC) 0.23 2.2

MDS classique 0.3 2.8

MDS moderne (SMACOF) 0.25 2.4

MLE 0.28 2.63

DG (pas décroissant et initialisation aléatoire) 0.14 1.3

DG (pas croissant et initialisation aléatoire) 0.08 0.77

DG (pas décroissant et initialisation avec MLE) 0.1 0.98

DG (pas croissant et initialisation avec MLE) 0.076 0.72

En effet une meilleure précision de localisation est obtenue avec l’algorithme DSAL lorsqu’un
pas constant est considéré au lieu d’un pas décroissant (cf. figures 6.26). Et cette précision
de localisation est encore meilleure lorsqu’on considère une initialisation avec le maximum de
vraisemblance (MLE) (i.e. pas constant + initialisation avec MLE pour DSAL). Une erreur
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moyenne normalisée de 0.72 m est obtenue avec DSAL en considérant un pas constant et une
initialisation avec MLE. Cette erreur moyenne de localisation est meilleure (i.e. plus petite) que
0.77 m obtenue lorsque l’algorithme DSAL est considèré avec un pas constant et une initialisation
aléatoire. Ces résultats sont meilleurs que 0.98 m et 1.3 m obtenus lorsqu’on considère DSAL
avec un pas décroissant et une initialisation avec MLE puis une initialisation aléatoire. Toutefois
ces résultats d’erreur de localisation obtenus par DSAL sont meilleurs que ceux obtenus par le
MDS classique : 2.8 m, encore meilleurs que ceux obtenus par MLE= 2.63 m, et MDS moderne :
2.4 m et la multilateration : 2.2 m. Les figures 6.25 et 6.26 confirment ces résultats présentés
ci-dessus et montrent les performances de localisation de l’algorithmes DSAL sur la plateforme
réelle de capteurs de SensLAB Rennes.

Les erreurs de localisations individuelles obtenues par les algorithmes distri-
bués comparés

Nous avons aussi comparé les erreurs de localisations individuelles obtenues par les algorithmes
DSAL, multilateration et ceux basés sur MDS (cf. tableau 6.5 et figure 6.27).

Table 6.5 – Valeurs de NME pour chacun des 12 nœuds aveugles à localiser pour différentes différents algo-
rithmes de localisation et en considérant 10 expériences indépendentes sur la plateforme SensLAB Rennes.

Simulated Matlab data Real SensLAB data
ID du nœud MC MDS SMACOF DG MC MDS SMACOF DG
214 / 1 0.15 0.13 0.093 0.051 0.13 0.23 0.19 0.02

176 / 2 0.21 0.17 0.13 0.056 0.2 0.29 0.17 0.064

178 / 3 0.20 0.16 0.13 0.064 0.05 0.05 0.27 0.067

193 / 4 0.19 0.15 0.12 0.056 0.21 0.35 0.23 0.048

198 / 5 0.23 0.16 0.11 0.053 0.2 0.02 0.15 0.066

218 / 6 0.34 0.22 0.11 0.054 0.45 0.14 0.28 0.03

225 / 7 0.41 0.27 0.15 0.071 0.22 0.59 0.51 0.06

232 / 8 0.17 0.16 0.1 0.051 0.21 0.12 0.24 0.088

247 / 9 0.23 0.21 0.13 0.06 0.2 0.47 0.063 0.35

249 / 10 0.21 0.20 0.12 0.054 0.25 0.29 0.41 0.07

252 / 11 0.28 0.23 0.15 0.052 0.25 0.32 0.35 0.032

253 / 12 0.33 0.25 0.15 0.055 0.35 0.12 0.18 0.012
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Figure 6.25 – Résultats de localisation de N = 12 nœuds aveugles (présentés sous forme de carte) sur la
plateforme SensLAB Rennes avec l’algorithme DSAL lorsqu’on considère un pas décroissant, une initialisation
aléatoire et une initialisation avec MLE
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tion de DSAL avec un pas constant et une initialisation avec MLE (γt = 0.025)t≥1.

1 2 3 4 5 6 7 8

2

4

6

8

10

1

2

3

4

5
6

7

8

9

10

11

12

x (m)

y
 (

m
)

Estimated NME of 12 sensor node positions at Senslab Rennes
with DSAL using random guess and constant local gradient step

 

 

o Real positions 
 * Estimated positions
x Landmarks

(b) Performance de localisation de l’algorithme DSAL en environnement réel : ité-
ration de DSAL avec un pas constant et une initialisation aléatoire (γt = 1/

√
t)t≥1.

Figure 6.26 – Résultats de localisation de N = 12 nœuds aveugles (présentés sous forme de carte) sur la
plateforme SensLAB Rennes avec l’algorithme DSAL lorsqu’on considère un pas constant ; une initialisation
aléatoire et une initialisation avec MLE
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Figure 6.27 – Erreur moyenne normalisée (NME) de localisation obtenue par chaque nœud aveugle individuel
pour les différents algorithmes sur la plateforme SensLAB Rennes. 10 expériences indépendantes sont réalisées.
Le réseau est composé de 12 nœuds aveugles et 4 landmarks.

L’algorithme de la multilateration obtient une mauvaise performance de localisation pour les
nœuds situés aux extrémités du réseau. Ceci est normal car l’algorithme de la multilateration
n’obtient une bonne performance de localisation que lorsque les landmarks sont situés aux
extrémités du réseau de façon à entourer l’ensemble des nœuds aveugles à localiser. Cette re-
marque est valable aussi pour les algorithmes basés sur MDS (MDS classique et MDS moderne)
lorsqu’on utilise des landmarks pour avoir un référentiel absolu. L’algorithme DSAL quant
à elle obtient de bonnes performances de localisation pour l’ensemble des nœuds individuels
aveugles du réseau. L’erreur moyenne de localisation est inférieure à 0.72 m ou inférieur à 0.076
m en erreur moyenne normalisée pour tous les nœuds aveugles du réseau exceptés ceux dont les
identifiants sont ID 247 et ID 198. En effet ces nœuds obtiennent une plus petite erreur moyenne
de distance et une erreur moyenne normalisée de localisation respectivement (NME = 0.063
et NME = 0.02) avec MDS moderne et MDS classique. Toutefois il est à noter que le nœud
dont l’identifiant est 247 est celui dont la position a été estimée avec la plus grande valeur
de variance de bruit : σ2 = 14.09 et la plus petite valeur de paramètre de perte de trajet η = 0.66.

Les résultats des simulations et d’expériences en environnements réels ont démontré une meilleure
performance significative de localisation avec l’algorithme DSAL comparé à la multilateration,
au MDS classique et au MDS moderne. En moyenne une performance de localisation de 0.77 m
est observée sur une surface de 8 m par 5 m sous la présence de bruit. Cette performance est
encore meilleure lorsqu’une initialisation avec un algorithme différent de la méthode aléatoire,
exemple MLE, est considérée. DSAL est donc capable d’affiner et d’améliorer la performance de
localisation de 85% comparée à ces algorithmes précités.

DSAL est également capable d’affiner la précision de localisation initialement estimée par B-
MLE que nous avons proposé (cf. figures 6.28 et 6.29). Sur le testbed de Lincs, une erreur de
localisation de 0.775 m et 1.3 m est obtenue en y appliquant DSAL sur les résultats de B-
MLE respectivement de 1.39 m et 1.35 m pour la petite (i.e. 10 positions) et grande (i.e. 25
positions) base d’apprentissage. Sur le testbed Rammus Rennes, DSAL affine la précision de
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localisation de 1.73 m et 1.64 m respectivement par rapport à B-MLE qui obtient une précision
de localisation de 2.73 m et 2.20 m pour la petite (i.e. 10 positions) et grande (i.e. 25 positions)
base d’apprentissage.

Nous remarquons ainsi sur l’ensemble des positions à localiser de nœuds aveugles sur le testbed
Lincs que DSAL a affiné la précision de localisation de 79% et 55% par rapport à B-MLE
respectivement pour la petite (i.e. 10 positions) et grande (i.e. 25 positions) base d’apprentissage.
Cette précision va de 72% à 74% sur le testbed Rammus par rapport à B-MLE pour la petite
(i.e. 10 positions) et grande (i.e. 25 positions) base d’apprentissage (cf. Tableau 6.6).

Table 6.6 – Résultats de la localisation de l’algorithme DSAL en utilisant un pas décroissant ((γt)t≥1, γt = 1/
√
t)

et une initiation avec notre précédente proposition B-MLE.

Caractéristiques Testbed
Lincs-
petite base
d’appren-
tissage

Testbed
Lincs-
grande
base
d’appren-
tissage

Testbed
Rammus-
petite base
d’appren-
tissage

Testbed
Rammus-
grande
base
d’appren-
tissage

Nombre de positions inconnues
de nœuds aveugles

38 22 47 27

Nombre de positions de nœuds
aveugles pour lesquels l’erreur de
localisation n’est pas améliorée
avec DSAL

8 10 13 7

Nombre de positions de nœuds
aveugles pour lesquels l’erreur de
localisation est significativement
améliorée avec DSAL

30 12 34 20

Pourcentage de position dont
l’erreur de localisation est nette-
ment améliorée (plus petite) avec
DSAL par rapport à B-MLE

79% 55% 72% 74%

Conclusion

Nous avons réalisé des campagnes de mesures dans différents environnements internes afin de
comprendre le comportement du RSSI en interne. Ces résultats de campagne de mesures sont
disponibles dans mon site web1.

Nous avons ensuite proposé des algorithmes pour prendre en compte les incohérences observées
du milieu interne, provenant de nos résultats des campagnes de mesures. Ces incohérences iden-
tifiées sont les effets induits par les multi-trajets et des valeurs aberrantes. Nous avons ensuite
démontré que ces algorithmes sont adaptables à tout environnement interne sans calibration et
sont capables d’améliorer la performance de localisation sous la présence de bruit, sans unité
centrale de traitement et sans intervention humaine.

Grâce à ces filtrages statistiques appliqués sur les valeurs de RSSI mesurées et malgré quelques

1http://nadieng.wordpress.com/
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(a) Performance de localisation de l’algorithme DSAL avec un pas décroissant
((γt)t≥1, γt = 1/

√
t) et une initialisation avec B-MLE. Résultats du testbed Lincs

avec une petite base d’apprentissage de 10 positions.

(b) Performance de localisation de l’algorithme DSAL avec un pas décroissant
((γt)t≥1, γt = 1/

√
t) et une initialisation avec B-MLE. Résultats du testbed Lincs

avec une base d’apprentissage plus grande, i.e. 25 positions.

Figure 6.28 – Performance de localisation de l’algorithme DSAL avec un pas décroissant ((γt)t≥1, γt = 1/
√
t)

et une initialisation avec B-MLE. Résultats du testbed Lincs.
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(a) Performance de localisation de l’algorithme DSAL avec un pas décroissant
((γt)t≥1, γt = 1/

√
t) et une initialisation avec B-MLE. Résultats du testbed Rammus

avec une base d’apprentissage petite de 10 positions.

(b) Performance de localisation de l’algorithme DSAL avec un pas décroissant
((γt)t≥1, γt = 1/

√
t) et une initialisation avec B-MLE. Résultats du testbed Rammus

avec une base d’apprentissage plus grande, i.e. 25 positions.

Figure 6.29 – Performance de localisation de l’algorithme DSAL avec un pas décroissant ((γt)t≥1, γt = 1/
√
t)

et une initialisation avec B-MLE. Résultats du testbed Rammus.
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erreurs, nous arrivons à avoir une précision de localisation suffisante pour le type d’application
souhaité. Grâce à nos améliorations nous pouvons suivre une personne dans sa maison. De plus,
nos algorithmes de localisation proposés peuvent également permettre de localiser des bébés dans
une nursery, positionner une caméra avec précision devant une personne ou encore surveiller des
œuvres d’art dans un musée.

Outre ces algorithmes de localisation à un saut proposé, nous avons également introduit un
algorithme distribué pour affiner de façon efficace et significative la précision de localisation des
nœuds d’un réseau de capteur sans fil.

Nos algorithmes proposés sont capables d’améliorer la performance de localisation en environ-
nement interne. Les contributions de nos travaux sont résumées ci-dessous. Nous observons une
amélioration de :

• 30% avec GMM-MLE par rapport à B-MLE

• 50% avec GMM-MLE par rapport à trilateration

• 40% avec B-MLE par rapport à MLE

• 20% avec B-MLE par rapport à trilateration

• en moyenne de 70% avec DSAL par rapport à B-MLE

• 85% avec DSAL par rapport à la Multilateration et MDS

Travaux futurs

Dans la mesure où nous avons proposé différents algorithmes pour prendre en compte différentes
incohérences, une extension immédiate de notre travail est la localisation opportuniste.

Avec la localisation opportuniste il devrait être possible d’identifier en ligne le scénario d’usage
pour une sélection intelligente entre les différentes méthodes de localisation disponibles. Il s’agit
par exemple d’identifier certains critères à lier à la sélection des algorithmes : la taille du testbed,
la présence de points d’accès sans fil. Nous croyons qu’une telle décision pourrait être basée sur
la perception d’un seul nœud, provenant par exemple des propriétés statistiques de l’ensemble
des données (i.e. « dataset »en anglais).

Une autre extension directement liée est d’utiliser cette localisation opportuniste pour optimiser
la formation de groupe au sein d’un réseau de capteur sans fil. Par exemple grâce à la localisation
opportuniste, on peut identifier plus facilement les nœuds proches ou les nœuds qui bougent
ensembles.

Différents groupes peuvent ensuite échanger et combiner des informations (par exemple, les
paramètres du modèle de propagation, la distance entre les nœuds) pour améliorer encore leur
précision suivant le réseau de capteur global. Une telle technique permet de traiter des données
localement car on est plus proche de la source. Une gestion du mécanisme d’adressage des nœuds
et des préfixes d’adressage IP peut aussi être rendue plus souple pour le passage à l’échelle du
système d’adressage.

Ainsi, l’allocation des préfixes globaux d’adressage IP peut être améliorée. Les préfixes d’adresses
IP peuvent être alloués à des clusters et le « cluster head »(chef de groupe) va s’occuper d’attri-
buer ces adresses IP aux nœuds. De plus, avec une localisation précise, l’identifiant du « cluster
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Figure 6.30 – Architecture proposée de regroupement de nœuds capteurs ou « clustering »basé sur la
localisation pour améliorer le routage dans un réseau de capteurs sans fil multi-sauts

head »peut être associé à la position localisée pour former ensemble une information stable, par-
tagée par des nœuds proches ou des nœuds qui bougent ensemble. Localiser des nœuds capteurs
qui sont proches permet d’avoir des groupes/clusters et permet ainsi le routage des données
entre clusters. Pour aller à une destination, la route peut être identifiée de façon macroscopique,
en envoyant les informations au groupe (« cluster head »ou un des nœuds du groupe). Ensuite
n’importe quel nœud du groupe ayant reçu la donnée peut le router au groupe suivant. Ce
qui contribue à limiter l’envoi de paquets de routage dans l’ensemble du réseau et permet la
scalabilité.

Dans cette perspective, l’auto-organisation d’un réseau par le biais du regroupement des nœuds
associé à la localisation opportuniste permet d’améliorer le routage multi-saut au sein d’un
réseau de capteur (cf. figure 6.30). De plus, la position ou le chemin de localisation du nœud
mobile aveugle, caractéristiques unique de ce dernier, peuvent être exploité par un protocole de
routage à des fins d’authentification avant l’envoi des données.

En outre, puisque les capteurs communiquent des données associées à une faible distance dans
un environnement de groupe/cluster, l’énergie consommée par le réseau sera inférieure à celle
consommée sans formation groupe/cluster.

242



Appendix A

Comparison of RSSI-based indoor
localization mechanisms

A.1 Comparison of RSSI-based indoor localization mechanisms

According to Table A.1, non-distributed algorithms do not mean they use centralized approach.
Instead, most one-hop based algorithms do not use a base station (centralized approach), as the
localization can be performed by a blind node itself. In addition, almost all algorithms use the
log-normal shadowing model as wireless propagation model. If this is not the case, we mention
the used propagation model in the field of the accuracy.

Table A.1: Comparison of RSSI-based indoor localization mechanisms

Refe-
rence

Control
of node
placement

Experi-
ment-
based

Accuracy in me-
ters

Type of
algorithm Used approach

[120]

Each node
is separated
from its
neighbor by
an angle of
120◦

yes 2 m within 20 m

1 hop non-
distributed
localization
with 3
landmarks

Gaussian distribution func-
tion

[99] None yes

2.13 m for variable
office and 1.13 m for
non obstructed of-
fice. (size of 18 m by
18 m)

Centralized
approach
with 4
landmark, a
base station
and 10
blind nodes
positions

Estimation of the path loss
exponent according to each
environment: Path loss
exponent estimation algo-
rithm based on polygon
method

Continued on next page
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Table A.1 – continued from previous page

Refe-
rence

Control
of node
placement

Experi-
ment-
based

Accuracy in me-
ters

Type of
algorithm Used approach

[123]

Adaptive
testbed for
distance
measure-
ment,
control
of node
antenna
orientation

yes
0.50 cm of accuracy
in an area of 3.5 m by
4.5 m

1 hop non-
distributed
localization
with 7 land-
marks and 6
blind nodes
positions

RSSI-based localization
in WSN which controls
and exploits indoor influ-
enced factors to improve
measurements results (ad-
justment of transmission
power, frequency, antenna
orientation, quality of the
reference measurements).
Distance estimation
between nodes from mea-
sured RSSI with Artificial
neural networks and
trilateration mechanism

[164] None No

Need at least 12
landmarks to obtain
localization error less
than 150 cm in spe-
cific single room sce-
nario of size 7 m by
4.95 m and a height
of 3.12 m

One-hop
localiza-
tion with
MLE using
Montecarlo
simulation

One-hop localization with
MLE using Montecarlo
simulation. For each grid
(mobile node position)
computing the likelihood
that the mobile node is
there

[6] No yes

Better positioning
accuracy of 3 m
with min-max in a
testbed of size 12 m
by 19.5 m, node den-
sity of 0.013 nodes
squared meter, min-
imum is 0.08 nodes
per squared meter.
Instead, using two
antennas (Mimo)
spaced 10cm, on a
receiver and read
RSSI alternatively
from both, increases
positioning accuracy
by 20 %

1 hop non-
distributed
localization
with 3
landmarks
and 3 blind
nodes po-
sitions,
repeated 25
times

Comparison of three rang-
ing algorithms: Geometric
consideration (Min-max,
trilateration) and statis-
tics (MLE). RSSI values
cleaned from outliers

Continued on next page
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Table A.1 – continued from previous page

Refe-
rence

Control
of node
placement

Experi-
ment-
based

Accuracy in me-
ters

Type of
algorithm Used approach

[5] No Yes

Better positioning
accuracy of 2.5-3
m with MLE in a
testbed of size 10
m by 10 m with 7
landmarks. Instead
MLE require more
much computational
coast then min-
max. Performance
of multilateration
and ROCRSSI are
comparable and
worst than the other
schemes

1 hop non-
distributed
localization
with 48
landmarks
at height
75 cm from
ceiling and
12 land-
marks (2nd
testbed
composed
of WSN) 3
blind nodes
positions

Channel characterization
and error correlation
techniques are exploited
performance comparison
of Mix-max, ROCRSSI,
trilateration and MLE in
indoor WSN

[102] No Yes

Conference room
(area: 7.08 m by
10.60 m), density
of 0.27 nodes per
squared meter leads
to positioning error
of 1.5-2 m

Centralized
approach,
position es-
timation on
a sink node
with 20
landmarks
and 6
blind nodes
positions

MLE based indoor localiza-
tion system with the use of
the RSSI threshold (based
on proposed linear equa-
tion between RSSI and dis-
tance) for data filtering and
an effective data collection
methodology for accuracy
improvement: a user de-
cides the number of data
to collect based on prior
knowledge (proposed den-
sity function) and send it
to sensor nodes by flooding
from the sink node

[7] No Yes

Better results ob-
tained with maxi-
mum transit power
(0dBm), at Stras-
bourg platform : 2 m
of localization error
using RSSI-based
distance. Spring
method do not re-
quire here to increase
the landmarks as
localization accuracy
decrease with more
that 50 landmarks

Spring-
based 1 hop
collabora-
tive non-
centralized
algorithm.
Evaluation
in 3 large
scale sensor
network
testbeds of
256 nodes
each

RSSI-based spring algo-
rithm in large scale sen-
sor network testbed (i.e.
SensLAB)
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Table A.2: Comparison of RSSI-based localization algorithms accuracy

Refe-
ren-
ces

Authors Title (year) Number
of
nodes
(N)

Number
of Land-
marks
(M)

Accuracy
(Em) in
meters

Dimensions
(P,Q) in
meters

NME
as

Em√
(P 2+Q2)

[29] Dragos
Niculescu
et al.

Ad hoc positioning
system (APS) (2001)

100 ≥ 80 3 10× 10 0.2121

[5] Giovanni
Zanca
et al.

Experimental com-
parison of RSSI-
based localization
algorithms for in-
door wireless sensor
networks (2008)

48 25 2.2 10× 10 0.1556

[92] Jun
Zheng
et al.

Range-free localiza-
tion in wireless sensor
networks with neural
network ensembles
(2012)

250 75 2 50× 50 0.0283

[86] Chong
Liu et
al.

Range free sensor
localization with ring
overlapping based
on comparison of re-
ceived signal strength
indicator (2007)

- - 5.18 40× 30 0.1036

[7] Karel
Heurte-
feux et
al.

Is RSSI a good
choice for localization
in wireless sensor
network? (2012)

206 50 2.2 11× 9 0.1548

[123] Abdalkarim
Awad
et al.

Adaptive distance es-
timation and localiza-
tion in WSN using
RSSI measures (2007)

7 6 0.5 3.5× 4.5 0.0877

[203] Mehdi
Essoloh
et al.

Localisation dis-
tribuée dans les
réseaux de capteurs
sans fil par résolu-
tion d’un problème
quadratique (2007)

72 8 5.12 90× 90 0.0402

[125] Jose A.
Costa
et al.

Distributed
Weighted-
Multidimensional
Scaling for Node Lo-
calization in Sensor
Networks (2005)

40 4 2.269 14× 14 0.1146

[159] Neal
Patwari
et al.

Relative Location
Estimation in Wire-
less Sensor Networks
(2003)

12
40

4
4

1.02
2.18

9 × 9
14× 13

0.0801
0.1141
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Appendix B

Short survey on Spring algorithms

Contents
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B.1 Short survey on Spring algorithms

Using the concept of graph, the spring algorithm is defined as a network of nodes connected by
spring. In the spring localization mechanism, forces (based on RSSI measurements) are applied
to all nodes in the network. Applied forces attract or repulse nodes each other until the system
reaches its equilibrium state. In other words, the spring algorithm minimizes springs extension
or compression and thus uses a local minima: initial sensor location are randomly assigned by
the designer. The wireless sensor nodes are then modeled as particles connected by a network of
springs: The length of the spring is the distance between nodes. Distances between each sensor
node and the neighboring landmarks are estimated from RSSI measurements to the landmarks.
Additionally, distance between blind nodes are measured [204]. The estimated distances between
sensor nodes are then iteratively used to refine the position of each nodes within the network
of spring. Note that measured RSSI values used to estimate the distance are averaged within 3
hours. Finally, the position error difference in meters between the real position and the estimated
position is computed for each node and defined as the localization accuracy [7].

The proposed RSSI-based spring relaxation algorithm has been recently implemented and tested
in SensLAB large scale wireless sensor network platform with 700 nodes deployed in 3 different
sites with TI CC11101 and CC2420 802.15.4 RF nodes [7]. Using the maximum transmit power
(i.e. 0 dBm) which is the best condition for linear RSSI according to the authors experimental
results, an average localization error of 3 meters is obtained on the first SensLAB platform named
Grenoble platform. Authors link this result to a larger deployment area that leads to a worst
initial random location of the RSSI-based spring algorithm. However, a comparable performance
is observed on the second SensLAB platform named Lille. Furthermore, on the third SensLAB
platform named Strasbourg and of size 11 m by 9 m, a localization error of about 2.2 m is
obtained in 2D dimension while less than several centimeters is reported when using euclidean
distance instead of RSSI-based distance estimation [7]. The used number of landmarks for each
testing platform is not given by the authors. Instead, authors state that the increase of the
number of landmarks is not needful when the total number of N = 50 landmarks is reached. In
fact, their results demonstrated that the usage of more than 50 landmarks degrades the average
localization accuracy. Authors qualify such deterioration to come from poor distance estimation
from RSSI readings. Instead, a prior work from [94] have demonstrated with simulation that
increasing the number of sensors involves more sensors’locations to be estimated with the spring
relaxation localization technique; because the network connectivity (number of neighbors in this
case) will increase. In addition, when evaluated the spring algorithm in simulation using two-
hops network of size 350 m by 350 m square map, the average localization error diminishes from
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Figure B.1: Overview of a wireless network connected by springs using five landmarks (represented by
black circle) and a blind node [94]

42.4 m to 22.63 m when increasing the number of sensor nodes: i.e. number of neighbors from
100 (connectivity of 4.13 neighbors for a node and unsolvedlocation = 13%) to 600 (connectivity
of 8.82 neighbors for a node and unsolvedlocation = 0.33%). The used number of landmarks
in simulation is about 64.24% of sensors with one-hop to some landmarks, and about 35.76%
sensors with two-hops cases. Undoubtedly the result of spring layout degrades when the number
of nodes increases [126]. In [204] an accuracy of 3 m is obtained using the spring method in
an indoor testbed of size 34.6 m by 18.3 m at Berkeley. This accuracy of 3 m is obtained with
Micaz nodes composed of three landmarks and 28 receiver nodes.

This better accuracy observed in the works presented in [204] and compared to the one in [7] that
almost use the same distributed localization mechanism can be explained by the used method
to infer distance from measured RSSI values. In [204], measured RSSI are converted to distance
using a graph available online from [205] performed on the same CC1000 radio chip used by
mica2dot [204]. Based on the authors, mica2dot has a slower performance than Telos node and
can not perform time of flight measurement.

Instead, in [7], the path loss model to map measured RSSI values to distances is Friis radio
propagation. Or, Friis path loss, presented earlier in Chapter 2, is not designed for the use in
indoor environment. From the authors, the spring relaxation algorithm has two drawbacks that
can affect its effectiveness: the first one is the used local minima needed by the algorithm to work.
Actually, a used local minima found by the algorithm during its execution can be significantly
worst than the global minima. The second drawback that affects the Spring relaxation algorithm
is its running time complexity equivalent to O(n3) and the number of iteration which is O(n), n
corresponds to the number of the sensor nodes in the wireless sensor network. From the authors
conclusion, Range-based RSSI method is not a good candidate for distance estimation in wireless
sensor network. They suggest to investigate connectivity based range-free algorithms as they
can give useful metrics instead of RSSI-distance estimation. However, as we demonstrated
in Chapter 2 in Section 2.2.3, most range-free localization algorithms provide coarse location
accuracy which is not sufficient when it comes to to track a person in an indoor environment.
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Appendix C

Selection of a propagation model
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B.1 Short survey on Spring algorithms . . . . . . . . . . . . . . . . . . . . 249

C.1 Selected propagation model

Additional path loss models have been investigated and presented in several works. Such a work
have concentrated on modifying the log-distance model by adding some encountered situation
loss factors from different indoor environments. In fact, an adaptive two-ray model has been
utilized in [175] (cf. the equations C.1, C.2) when considering the path loss as the (logarithmic)
difference between an emitted power at 0 dBm and a receiving power while reading the received
power (RSSI) in dBm.

For the distance d ≤ 8
PL(d) = 40.2 + 20 log10(d), (C.1)

And for the distance d ≥ 8

PL(d) = 58.5 + 33 log10(
d

8
), (C.2)

The authors use the above two ray model based on the assumption that many works like in [54]
have added an error correction to the equations C.1, C.2, that is WAF for the wall attenuation
factors and FAF for the floor attenuation factors. However such parameters are then minimized
in their investigation. This is the case in [54] where the floor attenuation factor is minimized
while considering only the walls attenuation by assuming the localization system to work in one
floor. However, many walls in modern building are plywood, thus traversing them does not
attenuate a lot RSSI readings. However, the features, the objects and their layout within the
environment considerably affect the RSSI measurements. Such effects are in most case modeled
by the shadowing within the log-normal shadowing model. Compared to other propagation
model, this latter model is the best candidate for indoor localization when taken into account
the trade off between complexity and feasibility. The log-normal shadowing model which uses
fewer parameters than the modification of the log-distance model with additional attenuation
factors (partition losses between floors and walls), is claimed to be more accurate than the
two-ray ground model and can be easily programmed on the current sensor nodes.
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Appendix D

Trilateration

Contents
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D.1 Trilateration Lodachai

Let denote by k a positive constant for the distance ratio Ri,j between two landmarks and a
mobile node. Let also use two points PTi and PTj . We will study all point PT with the following
property: d(PT, PTi) = kd(PT, PTj).

1. If k = 1 d(PT, PTi) = d(PT, PTj)

In the orthogonal reference such as PTi with coordinate (0, 0) and PTj with coordinate
(xj , 0) and xj > 0, the system of equations is:

x2 + y2 = (x− xj)2 + y2, x2 = x2 − 2xxj + x2j , x =
x2j
2xj

, x =
xj
2

(D.1)

We show that the solution is the median of the segment [PTi, PTj ]

2. If k < 1

d(PT, PTi) = kd(PT, PTj) Let k′ = 1
k and PTi′ = PTj and PTj ′ = Pi.

Solving the d(PT, PTi) = kd(PT, PTj) amounts to solve d(PT, PTj ′) = d(PT,PTi′)
k′ or

d(PT, PTi′) = k′d(PT, PTj ′) with k′ > 1

It is the same to solve the case k > 1 by reversing the points PTi, PTj

3. If k > 1

d(PT, PTi) = kd(PT, PTj)

In the orthogonal reference with both points with coordinates PTi(0, 0) and PTj(xj , 0)
with xj > 0, the systems of equations is expressed as:

x2 + y2 = K(x− xj)2 +Ky2 with K = k2, x2 + y2 = Kx2− 2Kxjx+Kx2j +Ky2 (D.2)

(1−K)x2 + (1−K)y2 + 2Kxjx−Kx2j = 0
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is of the form of

ÊAx2 +Bxy + Cy2 +Dx+ Ey + F = 0

wtih A = 1−K, B = 0, C = 1−K, D = 2Kxj , E = 0, F = −Kx2j .

The solution, if it exists, is part of the conical.

We will now study the function f in R→ R which associates (1−K)x2 + 2Kxjx−Kx2j to
x with K > 1.

In +∞ and −∞, the function f tends to −∞ for 1−K < 0

Let solve the function f(x) = 0, that is (1−K)x2 + 2Kxjx−Kx2j = 0.

∆ = 4K2x2j − 4(1−K)(−Kx2j )∆ = 4K2x2j + 4Kx2j − 4K2x2j∆ = 4Kx2j (D.3)

∆ > 0 because K > 0 and xj > 0

ri =
−2Kxj−

√
(4Kx22)

2(1−K)

rj =
−2Kxj+

√
(4Kx22)

2(1−K)

ri =
−Kxj−xj

√
(K)

(1−K)

rj =
−Kxj+xj

√
(K)

(1−K)

ri =
(−
√
K−K)xj
1−K

rj =
(
√
K−K)xj
1−K

if x = ri or x = rj then f(x) = 0

As 1 − K < 0 if x < rj < ri, x − ri > 0, x − rj > 0 and (1 − K) < 0 we have
(1−K)(x− ri) < 0 and

(1−K)(x− ri)(x− rj) < 0 then f(x) < 0

If rj < x < ri, x− ri > 0, x− rj < 0 and

(1 − K) < 0 we have (1 − K)(x − ri) < 0 and (1 − K)(x − ri)(x − rj) > 0 then
f(x) > 0

if rj < ri < x, x − ri < 0, x − rj < 0 and (1 − K) < 0 we have (1 − K)(x − ri) > 0 and
(1−K)(x− ri)(x− rj) < 0 then f(x) < 0

Note that if x = 0, (in (PTi)), f(0) = −Kx2j < 0

if x = xj , (in (PTj)), f(xj) = x2j > 0
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Let solve the derivative f ′ of f f ′(x) = 2(1 − K)x + 2Kxj f ′(x) = 2((1 − K)x + Kxj)
f ′(x) = 0− > (1−K)x+Kxj = 0 x =

Kxj
(K−1)

therefore the function f reaches its maximum when x =
Kxj

(K−1) Let us now solve the function
g, y 7→ (K − 1)y2 with K > 1

In +∞ and −∞, the function g tends to +∞ for (K − 1) > 1

g(y) = 0 admits one and only one solution: y = 0 For all y 6= 0, g(y) > 0 for K − 1 > 0
and y2 > 0

Let us study the set (E) of couples (x, y) such as g(y) = f(x)

We know that for all y, g(y) ≥ 0 and that f(x) is positive if and only if rj ≤ x ≤ ri
The set of pairs (x, y) that satisfy f(x) = g(y) is the set defined by:

((rj ≤ x ≤ ri) , y = ±

√
(1−K)x2 + 2Kxjx−Kx2j

(1−K)
)

As the function f reaches its maximum at (
Kxj

(K−1)), all (x, y) pairs are included in the
rectangle defined by:

((rj ≤ x ≤ ri) ,−

√
fmax

(1−K)
≤ y ≤

√
fmax

(1−K
)

with fmax being the maximum of the function f.

We are going to show that the set E is the solution of d(PT, PTi) = Kd(PT, PTj)

The equation (1 − K)x2 + (1 − K)y2 + 2Kxjx − Kx2j = 0 found above can be written as:
(1 − K)x2 + 2Kxjx − Kx2j = (K − 1)y2 which corresponds to the expression f(x) = g(y)

The set E then corresponds to the solution of d(PT, PTi) = Kd(PT, PTj) with K = k2

Let study the nature of the set E:

We have seen that the set E is a conical bounded in the plane by a rectangle. The only
conical meeting this requirement is an ellipse [206].

The set of points in d(PT, PTi) = Kd(PT, PTj) with K > 1 is an ellipse. This ellipse
surrounds the point PTj but not the point PTi; (PTj being inside and PTi being outside).

Studying a little further:

(1−K)x2 + (1−K)y2 + 2Kxjx−Kx2j = 0

x2 + y2 +
2Kxjx
(1−K) −

Kx2j
(1−K) = 0

x2 +
2Kxjx
(1−K) +

K2x2j
(1−K)2 −

K2x2j
(1−K)2 −

Kx2j
(1−K) + y2 = 0

x+Kxj
(1−K)2 + (y − 0)2 =

K2x2j
(1−K)2 +

Kx2j
(1−K)
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x−Kxj
(K−1)2 + (y − 0)2 =

(K2x2j+Kx2j (1−K))

(1−K)2

x−Kxj
(K−1)2 + (y − 0)2 =

(K2x2j+Kx2j−K2x2j )

(1−K)2

x−Kxj
(K−1)2 + (y − 0)2 =

Kx2j
(K−1)2

This is the equation of a circle with center (
k2xj

(k2−1) , 0) and radius k∗d(PTi,PTj)√
(k2−1)2

.

The radius of the circle is simply estimated by calculating this value: k∗d(PTi,PTj)√
(k2−1)2

.

For the center of the circle C, we have: the vector PiC = k2

(k2−1) , the vector PTiPTj

if PTi coordinate is (Xi, Yi) and PTj(Xj , Yj) then

Xc −Xi = ( k2

(k2−1))(Xj −Xi)

Yc − Yi = ( k2

(k2−1))(Yj − Yi)

Xc =
(k2Xj−Xi)

(k2−1)

Yc =
(k2Yj−Yi)
(k2−1)

The solution of the conical is:

Let us denote two points PT1(X1, Y1) and P2(X2, Y2); the set of points PT such as
d(PT, PT1) = kd(PT, PT2) is a circle of center C ( (k

2X2−X1)
(k2−1) , (k

2Y2−Y1)
(k2−1) ) and radius

(k∗d(P1,P2)√
(k2−1)2

).
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Appendix E

Localization metrics estimation

Contents
D.1 Trilateration Lodachai . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

E.1 Localization metrics estimation

RSSI is an available measurement on embedded devices. Angle of arrival metric can be estimated
using the Fourier transform by separating sinusoids resulting from plane waves. The Fourier
transform is a mathematical tool for signal processing used to analyze spectra. In other words,
the Fourier transform is an operation that transforms an integrable function on R to another
function while describing the frequency spectrum of this last. If f is an integrable function on
R its Fourier transform is the function F (u) given by the following formula in equation E.1:

F (u) =

∫ ∞
−∞

f(x) exp−i2πuxdx (E.1)

Thus a temporal/time-related function f(t) can be associated through a Fourier transform to
a complex-valued function F (u) called spectrum of f(t). This spectrum contains the weight of
each of the frequencies u in the original function [207].

Similarly the inverse Fourier transform is defined in equation E.2 expressed as:

f(x) =

∫ ∞
−∞

F (u) exp +i2πuxdu (E.2)

The estimation of a direction of angles with Fourier transform follows this procedure: a frequency
representation is first performed for a given wave. Then there is a display of an energy peak
for the direction that the source is. In case of a superposition of several waves, there are peaks
for each Direction of Angle (i.e. DoA) [208]. In addition, to be able to distinguish with Fourier
transform two sinusoids resulting from two planar waves with angles of arrival θ1 and θ2, the
window between the two sinusoids should be necessary wide enough [208] and the requirement
is given in the equation(E.3).

‖sin θ1 − sin θ2‖ ≥
λ

2πd
(E.3)

Instead, the estimation of time of arrival (ToA) can be done with inverse Fourier transform (cf.
equation E.2) by first determining the correlation of received signals on a receiver; and then
identifying the first path (based on precise clock synchronization) [106], [104]. Note that the
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(a) An example of ToA profile in multipath situation

(b) Overview of Inverse Fourier Transform algorithm for ToA estimation

Figure E.1: An example of Time of Arrival (ToA) estimation [106]

correlation between two objects helps to measure their mutual dependence. The autocorrelation
of a signal thus measures the internal dependencies of the signal [209, 210]. Estimating the time
of arrival from the channel profile requires several steps as presented in Figures E.1(a) and (b):

Because of the presence of noise and multipath induced by reflections from the obstacles, the
direct path does not always correspond to the strongest signal. Therefore the estimation of ToA
from the channel profile requires several steps and an example is shown in Figure E.1. In fact
the obtained transfer function is first passed through a Hanning window to reduce the secondary
lobes of the impulse response while preventing losses and false peaks. Then an inverse Fourier
transform is performed on the filtered impulse response to move to the time domain. The ToA
is then estimated for each peak corresponding to the Direct Line of Sight (DLoS). Finally, the
peak detection algorithm will select the first peak corresponding to the current ToA. An impulse
response of a discrete or sampled system is the system output when the input is an impulse. Also
called the temporal response, an impulse is mathematically modeled by a Dirac function [211]
presented in equations E.1 and E.4. The impulse response is then the output of a system in
response to an impulse. A filter is a linear system whose input-output behavior is characterized
by the coefficients of its impulse response.

δ(t) =

{
0 si t 6= 0
+∞ si t = 0

and

∫ +∞

−∞
δ(t) dt = 1 (E.4)
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Fourier analysis consists of representing the signal in a transformed domain: from time to
frequency domain. It has been used in the fields of radar and sonar to detect sources, but it
does not provide sufficient accuracy [208]. As Fourier cannot detect two closed sinusoids, this
leads to non efficient technique on detecting arrival angles while showing the necessity to move
toward more precise techniques. To achieve better accuracy and overcome the limits of Fourier
transforms, some improvements have been made and they are based on (downstream) signal
processing of antennas: these are high resolution methods (HR). ToA and AoA (i.e. Angle
of Arrival) can also be estimated using such high resolution methods which are parametric
estimation methods applied to antennas treatment. The following section is not intended to
present complete HR methods. We first want to first notify the reader with the concepts on
which they are based. Second we want to inform about the existence of these approaches being
robust to estimate the time of arrival or the angle of arrival of the received signal, two alternatives
metric to the measurements of signal attenuation.

High resolution methods estimate the parameters of a signal which usually consists of a sum of
sinusoids modulated exponentially and disturbed by additive noise. The total signal received
at the antenna array is the sum of signals received at different sensor antennas. With high
resolution methods (for a plane wave approximation), it is possible to distinguish two closed
sinusoids which is not able to perform the Fourier transform [208]. The high resolution methods
can be used in practice with a shorter window than that usually applied in the Fourier analysis.

High resolution methods have many variants [208]:

• The Prony method or the linear prediction approach is the first approach from high resolu-
tion methods. An exponential sum is estimated by linear prediction approach. The output
signal from the sensors or the antenna array is first decomposed into a sum of exponential.
Then the obtained exponential samples satisfy the relationship that will allow to deduce
a system of multiple equations with multiple unknowns. The resolution of this equation
system in the absence of noise gives the Direction of Arrival angle estimation (DoAS).
However the Prony method is very sensitive to noise.

• The CAPON method or the maximum likelihood performs an estimate without bias and
minimum variance. From several samples of the received signals, an estimation of the
amplitude of sources is performed depending on the direction of the angle.

• The quadratic minimization method minimizes a criterion for the maximum likelihood with
the theoretical results. When applied to a sensor network, the autocorrelation matrix is
first estimated; then the value of the angle by which the standard Least Squares recursive
algorithm (i.e. MCR) is minimal. The corresponding angle is given by the MCR.

• Subspace-based methods are those based on the calculation of the auto-correlation matrix
of the received signals on the different sensors. The subspace-based methods decompose
the observation space of the sensor array (i.e. wherein the signal evolves) into two sub-
spaces: a signal subspace and a noise subspace. This decomposition is made by research
of eigenvalues as presented in Figure E.2. Such decomposition shows that the smaller area
corresponds to the noise. The signal space is generated by the sinus curves and noise sub-
space is its orthogonal complement. This decomposition is also possible through a singular
value decomposition (i.e. SVD) of the data matrix or eigenvalue decomposition (i.e. EVD)
of the covariance matrix of the signal.

Eigenvectors and eigenvalues are part of linear algebra and aim to decompose efficiently
the space in direct sum of stable subspaces [212, 213]. The eigenvectors are the vectors
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whose direction is unchanged by the linear application of a vector space into itself. A
singular value decomposition is a factorization of a rectangular real or complex matrix.
The singular value decomposition is general and can be applied to any rectangular matrix.
Instead the eigenvalue decomposition applies only to certain classes of square matrices.
Note that these decompositions exist in practice with iterative algorithms.

Subspace methods are often used when localizing emitters nodes by a network of sensors
as shown in Figure E.3: estimation of the angle of arrival of the received signal.

For example, consider an antenna array of M sensors nodes and N emitters nodes with
N ≤M . The signal without noise from a receiver entering the linear antenna array at time
t can be expressed using a correlation matrix with N columns. Such correlation matrix
named Rx is presented in equation E.5 [208].

R̂x =
1

N

t=N∑
t=1

xtx
H(t) , (E.5)

Two methods have been developed: the MUtliple SIgnal Classification (i.e. MUSIC) method
based on the noise subspace and the Estimation of Signal Parameters via Rotational Invariance
Techniques (i.e. Esprit) based on the signal subspace. Music and Esprit share this subspace
decomposition method as a starting point.

These two methods have been studied in many works in [214]. Such high resolution methods
emanating from this subspace decomposition are more robust than the linear prediction tech-
niques one such as Prony [215]. However, despite their high spectral resolution especially on
short time windows, high resolution methods imply high computational complexity compared
for example to Fourier transform [215].

Music is a high resolution method to estimate directions of arrival of electromagnetic waves
arriving on an antenna array. The principle of Music algorithm is based on finding the eigenvalues
to obtain the corresponding eigenvectors. To achieve this, Music algorithm uses a set of vectors
of the noise subspace to test the orthogonality. Knowing the noise subspace, a research is done
on the directions of arrival of electromagnetic wave, such as their direction vector is orthogonal
to the noise subspace. A prior estimation of the correlation matrix, that is Rx, is done from
measured data. Then, This matrix is diagonalized. Detection of angle of arrival follow these
steps:

• Derive a noise subspace base from a diagonalization of the correlation matrix : first the
eigenvectors and eigenvalues of the correlation matrix are estimated. Eigenvalues are
ranked according to a decreasing order. Then eigenvectors are identified by association
with the largest values (e.g. the top first vectors). Such vectors constitute the signal
subspace. The rest of the vectors form the noise subspace.

• Extraction of the angles of arrival of emitted electromagnetic waves: using the Music cost
function, a projection of this family of vectors of signal subspace is performed on the
noise subspace. Then the values of the direction of arrival of the electromagnetic wave is
determined. The MUSIC cost function is expressed as follows (cf. equation E.6 [208]):

PMUSIC(θ) =
a∗(θ)a(θ)

a∗(θ)EnE∗na(θ)
(E.6)
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Figure E.2: Overview of the subspace method principle
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Figure E.3: An antenna array of M sensors nodes and N = 2 emitters nodes

Where a(θ) is the direction vector or impulse response of the sensor array in the direction θ.
E(N) is the network of antenna space. Let denote by L the top first vectors that constitute
the signal subspace. The condition, L ≤M − 1 must be satisfied for the Music algorithm
to work. The Music cost function actually looks for which values of θ, corresponding to
an angle of arrival, the noise subspace is orthogonal to the signal space. This function is
a spectrum depending on θ and maximum for an angle of arrival.

The Music algorithm fits a priori any network structure. Note that it is necessary to have both
the signal and noise subspaces for the Music algorithm to work. As mentioned, Esprit is another
subspace-based method and it uses the signal subspace. Esprit calculates the directions of
arrival (DoA) or angle of arrival of emitted signals (from emitters nodes) relative to a movement
of linear antenna arrays. This approach is equivalent to a division of the antenna array into
two identical sub antennas networks separated by a vector ∆. Measuring angles relative to the
direction of "Delta" is obtained by working with these two sub antenna arrays. The obtained Rx
matrix is the sum of both autocorrelations matrices resulting from the two sub antenna arrays.
In practice, the array of M sensors are cut into two sub networks of dimension M − 1 and ∆
will be the gap between the two antennas. Thus, Esprit does not research maxima like Music.
Instead, Esprit requires special antennas geometries (e.g. linear and uniform) as the two sub-
antennas should be identical [208]. Moreover, a sufficient and necessary condition for the Music
and Esprit algorithms to work is that emitters nodes sources must be uncorrelated or must emit
uncorrelated signals. This is generally the case when recovering a signal S(t) containing several
distinct radio emitters nodes: the signals are uncorrelated in time. This is not the case in the
presence of a single emitter node and multiple echo due to multiple paths. Thus, both, Music
and Esprit are sensible to multipath.

To pass these limits, improvements have been made to Music and Esprit. Below, we briefly
mention the improvements made to Music. But note that the same improvements done with
Music were also applied to Esprit.

• The Root version to decorrelate the received signal by doubling the number of measurement
samples [216, 217]. A new matrix is obtained and it is the average of two matrices.

• The Smoothing version to increase the order of the autocorrelation matrices [218, 219, 220].
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Figure E.4: Shape of the spectra obtained from a linear array of 10 antennas and one emitted node
source when using Fourier transform (a) and Music approach (b) [208]

Smoothing Music either decorrelates the correlated emitter nodes whose signal incidence
directions differ or the multiple echoes from the same emitter node. Thus, the sensor
network let sayM is divided into several sub-networks (i.e N). The autocorrelation matrix
Rx is computed as the sum of the autocorrelation matrices of the sub antenna arrays. It
can detect more AoA compared to Music, under the assumption that if the number of
measurement samples is insufficient, or if the sources are correlated, the order of the matrix
is too low. This gives a too small number of eigenvalues and thus a limited detection of
AoA.

• The cyclic method for the detection of several emitters nodes sources, taking into account
the cycle-stationary information contained in the signal [221, 222].

• the Unitary version to accelerate the calculations of finding the angle of arrival of the
received signal [223, 95].

Figure E.4 from the works of De la Roche et al. [208] is an example of comparison of two distinct
curves obtained with a linear array of 10 antennas from one emitter node source when first using
Fourier transform (cf. the left curve) and second applying the Music approach (cf. the right
curve).

It is easier to remark that the angle of arrival of the emitter node is accurately and precisely
estimated at an angle of 250 ◦ with the Music approach represented in the right curve in Fig-
ure E.4. The angle estimation with Music is also more finer than the Fourier transform. Results
in Figure E.4 from the works of De la Roche et al. [208] confirm that the Fourier transform is
less accurate than the high-resolution methods, for instance, Music.

Another work from Aassie et al. [104] presents a ToA estimation using super resolution Ma-
trix Pencil (i.e. MP) in an indoor WLAN positioning system. The matrix pencil algorithm is
based on the signal space. As shown in Figure E.5, authors demonstrated in simulation and
from experimental results that the Matrix Pencil algorithm has better performance than Es-
prit when estimating the ToA of a received electromagnetic wave. Esprit algorithm has better
computational performance than the root-Music method. The matrix pencil algorithm is also
demonstrated to efficiently estimate ToA of a direct line-of-sight path with lower complexity
compared to the Inverse Fourier Transform (i.e. IFT). These results can be interpreted with the
fact that Music and Esprit are sensible to multipath propagation. It is demonstrated in [104],

263



(a) Error prediction performance of Matrix Pencil algo-
rithm in ToA estimation in indoor as a function of the num-
ber of points of the frequency response for IEEE 801.11
WLAN

(b) Computational time performance of the Matrix Pencil algo-
rithm for a ToA estimation in indoor WLAN compared to ES-
PRIT and Root-MUSIC

Figure E.5: Comparison of Matrix Pencil, Music and Esprit algorithms when estimating a Time of
Arrival of the received signal in an indoor WLAN positioning [104]

to run properly, the MP algorithm needs to identify and to estimate the number of multipath
components. Several methods based on statistical classification criteria such as the Minimum
Descriptive Length (i.e. MDL) and Akiake information Criterion (i.e. AIC) [104] are then used
to estimate the number of multipath components.
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Appendix F

Other localization mechanism based on
geometrical techniques

Contents
E.1 Localization metrics estimation . . . . . . . . . . . . . . . . . . . . . . 257

F.1 Other localization mechanism based on geometrical tech-
niques: Triangulation and Min-Max

F.1.1 Triangulation [1]

Triangulation uses the same mechanism as trilateration, but instead, the identification of the
position of an object is based on the angle of arrival estimation of the incoming signal rather
than distance. Trilateration involves the distance measurements from at least three landmarks
while the triangulation results in angle measurements from at least three landmarks [110]. The
multiangulation uses the same principle as multilateration presented in section 4.2.2.2 but with
angle measurements from at least four landmarks.

Min-max algorithm or Intersection of quadrilaterals Like trilateration, Min-max is a
simple geometric-based localization mechanism based on quadrilaterals intersection that does
not require the use of a propagation model to depict the shadowing term from indoor obstacles.
This method appeared in [30] (also known as Min-Max ) as an initialization step to estimate
the position of a blind node from known three landmarks nodes positions {(x1, y1), (x2, y2),
(x3, y3)} and distances separation to the landmarks {r1, r2, r3}. The idea consists in bounding
the position into a quadrilateral whose intersection [xi− ri, xi+ ri]× [yi− ri, yi+ ri] is expressed
as the following bounds :

[max(xi − ri) , min(xi + ri)]× [max(yi − ri , min(yi + ri)]

Two estimated distances dj from RSSI measurements from two different landmarks, will therefore
lead to either two equations of circles for trilateration method or two quadrilaterals for min-max.
And so on, as shown in Figure F.1, three estimated distances from RSSI measurements from
three different landmarks lead to the intersection of three quadrilaterals for min-max.

This principle is illustrated in FigureF.1. Taking the estimated distances {r̂1, r̂2, r̂3} following
the noisy model in equation 4.17 as in the example in Figure F.1, the bias of the estimated values
being the centroid of the quadrilateral and resulting from this method is shown in Figure F.2.
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Figure F.1: Intersection (-) of three quadrilaterals (-) when considering values in the example in Figure 4.9 with
three equidistant circles (r = 1) and therefore r1 = r2 = r3 = 1. In this case, the position of the blind node,
estimated as the centroid (x) of the quadrilaterals does not coincide with the true position(o) obtained by the
expressions in equation 4.16
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Figure F.2: For different values of σ2, drawing the average of 10000Monte Carlo simulation (RSSI data generated
with Matlab) which result in {r̂1, r̂2, r̂3} of quadrilaterals (-) and the true position (o), estimated by Min-Max
(x) and the estimated positions with 4.19 (x)

As noted in [30] and analyzed in detail in [160] and in [6], the Min-Max positioning result is
highly dependent on the locations of landmarks that are around the blind node. In addition,
with less computational time than localization-based maximum likelihood estimator, min-max
does not perform well when the number of landmarks is high [5], like more than 8 landmarks as
this may lead to situation with no intersection point. Some configurations assess, for example,
if the position to bound is outside the convex envelope formed by the three landmarks, the
resulting intersection area in this case is large.

If a good configuration is considered as in the example in Figure F.1 and when calculating the
mean of estimated positions with Min-Max (cf. Figure F.2), the component y is always biased
by the center of the resulting quadrilaterals which does not coincide with the real position even
if σ2 = 0 (cf. the behavior of the dashed red line curve in Figure F.3 for small values of σ2).
With a lower noise, the estimated position with Min-Max localization mechanism will always be
moved to the center of the quadrilaterals. However, in the case of the presence of lots of noises
varying the sides of the quadrilaterals, there has less impact on the centroid of the resulting
quadrilateral (as noted by [160], the area of the resulting intersection may sometimes becomes
smaller (i.e. in case of destructive interference) and sometimes larger (i.e. in case of constructive
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Figure F.3: For different values of σ2 the normalized mean error (NME) and the covariance obtained from 10000
independent Monte Carlo realizations (simulated RSSI data generated with Matlab) of {r̂1, r̂2, r̂3} is plotted.
The curves correspond to different values (Normalized mean error of x and of y and the covariance between these
two components) with trilateration (-, -, -) and Min-Max (*, *, *).

interference) without no effect on the position of the centroid which does not much vary).

We illustrate the behavior of Min-max in Figure F.3 by comparing the results using the same
configuration with trilateration and Min-Max. The black curve shows the components of the
covariance of the estimated coordinates with Min-Max being not correlated unlike the case
of trilateration. From the curves of the variances (blue and red), Min-Max is less accurate
than trilateration in the case of lower noise (i.e. small values of σ2). But the variance of the
estimated position with trilateration increases linearly with the value of σ2 unlike the behavior
of the variance of the position estimated by Min-Max; which tends to be constant even in
the case of lots of noises. Thus, Min-Max localization mechanism is more robust against the
presence of noise but less accurate than the trilateration algorithm. In addition, the Min-
Max localization algorithm running time is 48 seconds which is greater than the trilateration
localization algorithm running time: i.e. 8 seconds (cf. Table F.1). Consequently, we implement
the trilateration mechanism as a tested one-hop localization mechanism and the one from the
geometric methods to compare with our proposed one-hop localization algorithms.

Algorithm running time (seconds)
Min-Max 48

Trilateration 8

Table F.1: Trilateration and Min-Max running time in seconds when considering 10000 independent Monte
Carlo realizations (RSSI data generated with Matlab)

Intersection of Hyperbola This is another geometric-based method that exploits time differ-
ence of arrival (TDOA) measurements of two signals received by a blind node [224]. This method
aims to exploit the time difference of arrival (TDOA) measurement of two signals received by
any sensor node at an unknown position. The hyperbolic equation can be expressed as the dif-
ference of two distances between an unknown position (xBN , yBN , zBN )andtwoknownpositions
(x1, y1) and (x2, Y2) in general:√

(xBN − x1)2 + (yBN − y1)2 −
√

(xBN − x2)2 + (yBN − y2)2 = d1 − d2. As in the previous
section dealing with the trilateration mechanism, the first landmark (x1, y1) is chosen as the
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origin of the reference system. This provides the coordinate for four known positions (4.15) in
the reference system:

{(x1, y1), (x2, y2), (x3, y3), (x4, y4)} to {(0, 0), (d12, 0), (x′3, y
′
3), (x′4, y

′
4)}. The three hyperbolic

system of equations whose intersection on the point (x′BN , y
′
BN ) can be described as:√

xBN ′
2 + yBN ′

2 −
√

(xBN ′ − d12)2 + yBN ′
2 = d1 − d2 = a√

xBN ′
2 + yBN ′

2 −
√

(xBN ′ − x′3)2 + (yBN ′ − y′3)2 = d1 − d3 = b√
xBN ′

2 + yBN ′
2 −

√
(xBN ′ − x′4)2 + (yBN ′ − y′4)2 = d1 − d4 = c

Determining the solution (x′BN , y
′
BN ) involves combining the first and the second equation and

then using it in the combination of the first and the third equation.

A =
y′4
c

b

y′3

(
a

2
− b

2
+
x′23 + y′23

2b
− d212

2a

)
+
c

2
− a

2
− x′24 + y′24

2c
+
d212
2a

B =

(
d12
a
− x′4

c

)
− y′4

c

b

y′3

(
d12
a
− x′3

b

)
then : xBN

′ =
A

B

yBN
′ =

b

y′3

[(
d12
a
− x′3

b

)
xBN

′ +
a

2
− b

2
+
x′23 + y′23

2b
− d212

2a

]

Similarly to the previous section on trilateration, the same analysis can be performed. A blind
sensor node aims to estimate its relative position (x′BN , y

′
BN ) from measurements of values

(a, b, c) with additive noise from at least 3 landmarks nodes. This gives an estimate of (x̂′BN ŷ
′
BN )

from which the bias and the covariance matrix can be calculated. We can note that the covariance
might not be diagonal due to the dependence between the two components (x̂′BN ŷ

′
BN ).
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