
HAL Id: tel-01217510
https://hal.science/tel-01217510

Submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance Traffic Monitoring for Network
Security and Management

Tristan Groleat

To cite this version:
Tristan Groleat. High Performance Traffic Monitoring for Network Security and Management.
Human-Computer Interaction [cs.HC]. Télécom Bretagne; Université de Bretagne Occidentale, 2014.
English. �NNT : �. �tel-01217510�

https://hal.science/tel-01217510
https://hal.archives-ouvertes.fr

No d’ordre : 2014telb0316

Sous le sceau de l’Université européenne de Bretagne

Télécom Bretagne

En accréditation conjointe avec l’école Doctorale Sicma

High performance traffic monitoring for
network security and management

Thèse de Doctorat

Mention : STIC

Présentée par Tristan Groléat

Départements : Informatique, électronique
Laboratoires : IRISA REOP, LabSTICC CACS

Directrice de thèse : Sandrine Vaton

Encadrant : Matthieu Arzel

Soutenue le 18 mars 2014

Jury :

M. Guy Gogniat, Professeur, Université de Bretagne Sud (Président)
M. Philippe Owezarski, Chargé de Recherches, LAAS/CNRS (Rapporteur)
M. Dario Rossi, Professeur, Télécom ParisTech (Rapporteur)
Mme Sandrine Vaton, Professeur, Télécom Bretagne (Directrice de thèse)
M. Matthieu Arzel, Maître de Conférences, Télécom Bretagne (Encadrant)
Mme Isabelle Chrisment, Professeur, Télécom Nancy
M. Stefano Giordano, Professeur, University of Pisa
M. Ludovic Noirie, Chercheur Senior, Alcatel Lucent

2

Remerciements

Je remercie d’abord Sandrine Vaton, ma directrice de thèse, qui a été très pré-
sente tout au long de ces trois ans et trois mois de thèse. Elle m’a conseillé, m’a
fait profiter de son expertise sur les algorithmes de surveillance réseau, et m’a
aidé à valoriser les résultats obtenus. Je remercie aussi Matthieu Arzel qui m’a
encadré, et m’a fait profiter de son expertise en électronique numérique. Je re-
mercie Sandrine et Matthieu pour le temps qu’ils ont passé à relire et commenter
chacun de mes articles, chacune de mes présentations, ainsi que ce manuscrit.
Mais je les remercie surtout pour m’avoir permis de découvrir la possibilité de
lier la surveillance de trafic et l’électronique, en proposant un projet de détection
d’attaques alors que j’étais encore élève ingénieur à Télécom Bretagne. Ils m’ont
ensuite soutenu quand j’ai souhaité prolonger ce travail par une thèse, en m’ai-
dant à transformer une simple idée en véritable sujet de thèse, et en trouvant des
financements grâce à PRACOM et au projet européen DEMONS.

En parallèle de la recherche, Télécom Bretagne m’a aussi donné la possibilité
de participer aux enseignements, ce qui fut très enrichissant. Je remercie Sylvie
Kerouédan, qui a supervisé ma mission d’enseignement. Elle a aussi créé durant
ma thèse le Téléfab, le FabLab de Télécom Bretagne, lieu permettant à tous
d’échanger et de créer des objets de tous types simplement à partir d’une idée,
ce qui m’a permis de faire de nombreuses rencontres et découvertes, en tant
qu’étudiant et en tant qu’encadrant.

Merci à Olivier Emery, Hicham Bougdal, Sébastien Martinez, Alban Bourge,
Yannick Le Balch et Manuel Aranaz Padron pour avoir fait avancer mon sujet de
thèse durant un stage ou projet.

Je remercie aussi toutes les personnes à Télécom Bretagne qui ont facilité mon
travail de thèse, et particulièrement Patrick Adde qui a fait le lien avec PRACOM,
et Armelle Lannuzel et Catherine Blondé, qui ont du gérer mon inscription dans
deux départements à la fois. Merci à Bernard L’hostis qui a du souvent me trouver
des PCs, de la RAM ou des écrans.

Je remercie toutes les personnes au département électronique qui ont rendu le
travail quotidien très agréable, et en particulier Benoît Larras, Pierre-Henri Hor-
rein, Kévin Burgi, Gérald Le Mestre, Jean-Noël Bazin, Valentin Mena Morales,
Charbel Abdel Nour et Michel Jezequel.

Je remercie enfin ma famille et mes proches qui m’ont toujours soutenu, même
à distance.

3

4

Contents

A Abstract 9

B Résumé 13
B.1 Introduction . 13
B.2 Choisir une plateforme de développement 14
B.3 Surveillance logicielle pour la sécurité 15
B.4 Surveillance matérielle pour la classification de trafic 17
B.5 Plateforme de test avec accélération matérielle 18
B.6 Conclusion . 19

1 Introduction 21
1.1 Context . 21
1.2 Objectives . 23
1.3 Traffic monitoring . 24

1.3.1 Topology . 24
1.3.2 Time constraints . 25
1.3.3 Traffic features . 25
1.3.4 Detection technique . 26
1.3.5 Calibration . 27

1.4 Acceleration challenges . 28
1.4.1 Large data storage . 28
1.4.2 Test conditions . 29

1.5 Thesis structure . 29

2 Choosing a development platform 31
2.1 Criteria . 31

2.1.1 Supported data rate . 31
2.1.2 Computation power . 32
2.1.3 Flexibility . 32
2.1.4 Reliability . 33
2.1.5 Security . 33
2.1.6 Platform openness . 33
2.1.7 Development time . 34
2.1.8 Update simplicity . 34
2.1.9 Future scalability . 34
2.1.10 Hardware cost . 35

2.2 Commodity hardware . 35

5

2.2.1 Handling traffic . 35
2.2.2 CPU computation . 37
2.2.3 GPU computation . 39

2.3 Network processors . 40
2.3.1 Principles . 40
2.3.2 Development platforms . 41
2.3.3 Use cases . 42

2.4 FPGAs . 43
2.4.1 Composition of an FPGA 43
2.4.2 Boards for traffic monitoring 45
2.4.3 Development principles . 47

2.5 Conclusion . 48

3 Software monitoring applied to security 53
3.1 State of the art on DDoS detection implementation 53

3.1.1 Monitoring platforms . 54
3.1.2 DDoS attacks . 55
3.1.3 DDoS detection algorithms 58

3.2 Flexible anomaly detection . 60
3.2.1 Problem statement . 60
3.2.2 Algorithm for DDoS detection 62

3.3 A flexible framework: BlockMon 67
3.3.1 Principles . 67
3.3.2 Performance mechanisms 68
3.3.3 Base blocks and compositions 70

3.4 Implementing DDoS detection in BlockMon 71
3.4.1 Algorithm libraries . 71
3.4.2 Single-node detector implementation 72
3.4.3 Alternative compositions 75

3.5 Results . 78
3.5.1 Accuracy . 78
3.5.2 Performance . 78
3.5.3 Going further . 82

3.6 Conclusion . 83

4 Hardware monitoring applied to traffic classification 85
4.1 State of the art on traffic classification 86

4.1.1 Port-based classification 86
4.1.2 Deep Packet Inspection (DPI) 88
4.1.3 Statistical classification . 88
4.1.4 Behavioral classification 91

4.2 Using SVM for traffic classification 92
4.2.1 Proposed solution . 92
4.2.2 Background on Support Vector Machine (SVM) 93
4.2.3 Accuracy of the SVM algorithm 94

4.3 SVM classification implementation 96
4.3.1 Requirements . 96

6

4.3.2 The SVM classification algorithm 99
4.3.3 Parallelism . 99

4.4 Adaptation to hardware . 100
4.4.1 Architecture . 100
4.4.2 Flow reconstruction . 102
4.4.3 The RBF kernel . 108
4.4.4 The CORDIC algorithm 111
4.4.5 Comparing the two kernels 115

4.5 Performance of the hardware-accelerated traffic classifier 116
4.5.1 Synthesis results . 116
4.5.2 Implementation validation 120

4.6 Conclusion . 123

5 Hardware-accelerated test platform 125
5.1 State of the art on traffic generation 126

5.1.1 Traffic models . 126
5.1.2 Commercial generators . 128
5.1.3 Software-based generators 128
5.1.4 Hardware-accelerated generators 130

5.2 An open-source FPGA traffic generator 130
5.2.1 Requirements . 130
5.2.2 Technical constraints . 132
5.2.3 Global specifications . 132

5.3 Software architecture . 134
5.3.1 The configuration interface 135
5.3.2 The configuration format 136
5.3.3 The control tool . 138

5.4 Hardware architecture . 138
5.4.1 Main components . 139
5.4.2 Inside the stream generator 141

5.5 Generator use cases . 145
5.5.1 Design of a new modifier 145
5.5.2 Synthesis on the FPGA 148
5.5.3 Performance of the traffic generator 149

5.6 Conclusion . 152

6 Conclusion 155
6.1 Main contributions . 155

6.1.1 Development platform . 155
6.1.2 Software monitoring applied to security 157
6.1.3 Hardware monitoring applied to traffic classification 158
6.1.4 Hardware-accelerated test platform 159

6.2 Acceleration solutions comparison 161
6.3 Perspectives . 163

Glossary 165

7

Bibliography 171

8

Chapter A

Abstract

Traffic monitoring is a mandatory task for network managers, be it small company
networks or national Internet providers’ networks. It is the only way to know what
is happening on a network. It can be very basic and consist in simply measuring
the data rate of the traffic on a link, or it can be more sophisticated, like an
application to detect attacks on protected servers and raise alarms.

Use cases for traffic monitoring are very diverse. They can be separated into
categories. An important category is security: a large number of attacks are
transmitted using the networks of Internet providers everyday. These attacks
are dangerous, and some of them can saturate network resources and degrade the
quality of service offered by the network. So network managers are very interested
in detecting these attacks to try and mitigate them. Another important category
is traffic engineering. It is important for all network managers to get as much
data as possible about what happens on their network. Data can be used simply
for statistics, or it can be used in real time by automated systems: knowing what
the traffic is made of is a good way to make better real time network management
decisions.

As Internet keeps gaining importance in our societies, the exchanged data
amounts increase every year. To support these increases, network operators install
new links with very high data rates. Customers can now get a connection of
1 Gb/s by optical fiber, so aggregation links of tens of gigabits per second are
common. This is why traffic monitoring applications now have to support high
data rates to be deployable on real networks.

To implement traffic monitoring applications that support high data rates,
we first analyze four existing development platforms: powerful computers with
high-speed network interfaces, powerful computers with high-speed network in-
terfaces and a fast graphic card to accelerate processing, network processors and
Field-Programmable Gate Arrays (FPGAs). Network processors are like normal
processors, but with an optimized access to network interfaces and hardware-
accelerated features useful for traffic processing. FPGAs are chips that are con-
figurable at a very low level. They offer massive parallelism, a very low-level
access to network interfaces, and a perfect control of timing.

Normal computers are the most flexible and cheapest option, but they struggle
handling received packets at high data rates. Graphic cards can accelerate highly

9

parallel computations but cannot help for low level packets processing. Network
processors are good at packet processing and can offer good performance, but
they are specialized for some specific use cases, different for each model. FPGAs
support high data rates and can accelerate processing using parallelization, but
the development time is long and the resulting application is difficult to make
flexible.

Due to these differences, no platform is the absolute best, it depends on the
use case. This is why we study three different use cases. All require the support
of high data rates but the main goals are different. The first use case is in the
domain of security and focuses on flexibility. It allows to explore the possibilities
to support high data rates in software when implementing light algorithms, while
keeping the great flexibility of software development. In contrast, the second use
case in the domain of traffic engineering requires the implementation of heavy
algorithms in a fully real-time environment. This is a reason to explore the
possibilities offered by FPGAs to accelerate complex processing. It shows how
parallelism and low-level control can help manage high data rates. The last
use case combines the requirements of the two previous ones. It is a traffic
generator with strong real-time needs, but for which flexibility is essential too.
The chosen solution is a trade-off using an FPGA in collaboration with a processor
to configure it.

The first use case in the security domain was done in the framework of a Eu-
ropean project called DEcentralized, cooperative, and privacy-preserving MON-
itoring for trustworthinesS (DEMONS). We participated to the development of
a flexible and scalable network monitoring framework for normal computers. It
is a pure software development. We developed an application to test the frame-
work: a detector of a certain kind of network attacks called Transmission Control
Protocol (TCP) SYN flooding. We used an algorithm for counting packets called
Count Min Sketch (CMS) and an algorithm for detecting abrupt changes in time
series called CUmulative SUM control chart (CUSUM). The advantage of soft-
ware development is that it is very flexible: the detector can be made distributed
simply by changing the configuration using a Graphical User Interface (GUI). We
show that thanks to the efficient framework, the application is able to support
realistic 10 Gb/s traffic, but it struggles in stress conditions when receiving very
small packets. We then give ideas about the possibility to build an hybrid archi-
tecture, with an FPGA managing the packets and sending aggregated data to the
computer. The goal is to keep the flexibility of software while supporting higher
data rates easily.

After showing the limits of pure software development, we turn to pure hard-
ware development on FPGA with the use case of traffic classification. It consists
in associating each packet transiting on a link to the category of application that
generated it: for instance a web browsing application, a video streaming appli-
cation, or a gaming application. We use a well-known classification algorithm
called Support Vector Machine (SVM). It works with a learning phase and a
classification phase. The classification phase is implemented using an optimized,
massively parallel architecture on the FPGA. We show that a unique FPGA could
handle the computation phase of the classification of a realistic trace at a rate up

10

to 473 Gb/s if adapted interfaces were available. To let the application work, we
also need a way to group received packets into flows of similar packets, supporting
at least one million simultaneous flows. We develop a new algorithm to do that
and implement it on the FPGA. An actual implementation on an existing board
supports the link rate (10 Gb/s) without problems. The main drawback of the
implementation is the flexibility: changing parameters of the algorithm forces to
reconfigure the FPGA, which takes time.

To test the attack detector or the traffic classifier, a traffic generator is needed.
As test implementations support 10 Gb/s, the same rate has to be supported by
the traffic generator. And to get reliable results, the generator should be able
to generate traffic accurately at any rate up to 10 Gb/s, even when sending
small packets, which are the most challenging to handle. As commercial traffic
generators are expensive and not very flexible, we build our own open-source
flexible and extensible traffic generator supporting a data rate up to 20 Gb/s. To
build a reliable generator, we decide to implement it on an FPGA. But for this
application, flexibility is required. All parameters of the generated traffic must be
easy to configure: data rate, packet size, inter-packet delay, packet headers and
data. So we design a very flexible modular architecture for the traffic generator.
Each module can be configured without FPGA reconfiguration, and the creation
of new modules modifying the generated traffic is made as easy as possible. A
GUI is built to make the configuration simple. We show that the traffic generator
can support up to 20 Gb/s easily, and that it respects the configured data rate
with a very good accuracy.

Many high-performance tools built for our test implementations can be reused
for other traffic monitoring applications: counting packets using CMS (software),
detecting changes in time series using CUSUM (software), classifying data using
SVM (hardware), grouping packets into flow using a custom algorithm (hard-
ware), generating traffic in a flexible and scalable way (hardware). These differ-
ent experiments on commodity hardware and on FPGA also allow us to draw
conclusions on the best platform to use depending on the use case.

11

12

Chapitre B

Résumé

B.1 Introduction

La surveillance de trafic est une activité indispensable pour tous les gestionnaires
de réseaux, que ce soit des réseaux de petites entreprises ou de fournisseurs na-
tionaux d’accès à internet. C’est le seul moyen pour savoir ce qui se passe sur le
réseau. L’objectif peut être très simple, comme la mesure du débit d’un lien, ou
plus sophistiqué, comme la détection d’attaques contre des machines protégées.

Un aspect important de la surveillance de trafic est la sécurité. Les réseaux
sont des outils pour différents comportements illégitimes : propagation de vi-
rus, envoi de courriers non sollicités, recherche de machines vulnérables, prise de
contrôle de machines sans autorisation, envoi de grandes quantités de données
pour surcharger un serveur, ou interception de données sensibles. La plupart de
ces comportements produit du trafic spécifique qui peut être identifié par des
outils de surveillance de trafic. Mais faire la différence entre un trafic légitime
et illégitime n’est pas évident, surtout si les attaquants tentent de faire passer
leur trafic pour du trafic normal. Récemment, de nombreuses attaques de grande
envergure ont eu lieu, comme par exemple une tentative de faire tomber l’infra-
structure du NASDAQ [Rya13]. Chaque machine peut être protégée contre les
attaques par des mises à jour régulières pour colmater les failles découvertes, et
par l’utilisation d’un antivirus et d’un pare-feu. Mais les opérateurs ont également
leur rôle à jouer. En effet, ils ont une vision globale du réseau, et ils sont les seuls
à avoir la possibilité de stopper une attaque à sa source. Actuellement, les opé-
rateurs laissent leurs clients se défendre, mais les plus grosses attaques peuvent
mettre à mal leur réseau. Ils ont donc intérêt à offrir des services de protection
avancés à leurs clients. Pour cela, ils doivent disposer d’outils de surveillance en
temps réel de leur réseau.

Un autre aspect important de la surveillance de trafic est son utilisation pour
l’ingénierie de trafic. L’objectif est de mieux connaitre le trafic pour mieux le
transporter. Un application importante pour cela est la classification de trafic.
Le trafic sur Internet est fait d’une agrégation de paquets représentant des bouts
d’information. Chaque paquet contient une en-tête qui indique où envoyer le
paquet et d’où il vient, mais pas quelle application l’a généré ou quel type de
trafic il transporte. La classification de trafic consiste à associer un paquet à

13

l’application qui l’a généré. De cette manière, un paquet généré par Skype peut
être traité différemment d’un paquet généré par Firefox par exemple. En effet,
les besoins en termes de délai d’une communication vocale et de la consultation
d’une page web sont très différents. La classification de trafic peut aussi être utile
pour filtrer un type de trafic à surveiller particulièrement.

Bien que les applications de surveillance de trafic puissent être très différentes,
elles font toutes face à une difficulté commune : la montée en débit. CISCO
prévoit que le trafic global sur Internet va tripler entre 2012 et 2017 [Cis13]. La
surveillance de trafic doit donc se faire à très haut débit. Les liens de plusieurs
dizaines de Gb/s deviennent fréquents chez les opérateurs. Ces débits rendent très
difficile l’utilisation d’ordinateurs puissants du commerce pour surveiller le trafic,
mais différentes plateformes plus adaptées existent. Des cartes réseau capables
de gérer 2x10 Gb/s sont vendues par Intel. Pour la partie calculatoire, des cartes
graphiques permettent d’accélérer les traitements. Pour des débits plus élevés, il
existe des processeurs spécialisés pour les applications réseau. À encore plus bas
niveau, les Field-Programmable Gate Arrays (FPGAs) sont des puces qui peuvent
être configurées pour se comporter n’importe quel circuit numérique. Ces puces
permettent un parallélisme massif et un accès direct aux interfaces réseau.

L’objectif de cette thèse est d’évaluer différents moyens d’accélérer des appli-
cations de surveillance de trafic. Une littérature abondante existe sur la détection
d’anomalies et la classification de trafic. La précision des algorithmes étudiés est
souvent mesurée avec soin, mais la possibilité de les réaliser de manière efficace
est moins souvent analysée. C’est pourquoi nous allons d’abord étudier différentes
plateformes de développement offrant des possibilités d’accélération logicielle ou
matérielle. Nous allons ensuite réaliser une première application dans le domaine
de la sécurité en utilisant l’accélération logicielle. Puis nous réaliserons un clas-
sificateur de trafic utilisant l’accélération matérielle. Enfin, nous trouverons un
compromis entre logiciel et matériel pour réaliser un générateur de trafic flexible,
fiable et rapide.

B.2 Choisir une plateforme de développement
Il existe plusieurs plateformes de développement adaptées aux applications ré-
seau. Selon les besoins, le meilleur choix de plateforme peut être différent. Nous
avons étudié trois plateformes. La première et la moins coûteuse est simplement
un ordinateur du commerce puissant, avec une carte réseau capable de suppor-
ter des débits d’au moins 10 Gb/s. Un processeur graphique peut être ajouté à
l’ordinateur pour permettre des calculs massivement parallèles. La seconde est
un processeur réseau. C’est un processeur classique avec un accès direct à des
interfaces réseau, et un jeu d’instructions qui permet de réaliser simplement cer-
taines fonctions communes pour le traitement de trafic. La troisième est la plus
bas niveau : les FPGAs. Ces puces peuvent être programmées pour réaliser n’im-
porte quel circuit électronique. Elles permettent un accès direct à des interfaces
réseau, et un traitement complètement parallélisé. Les avantages et inconvénients
de chaque plateforme sont résumés en anglais dans les tableaux 2.1 et 2.2

Si le besoin le plus crucial pour l’application est la flexibilité, l’utilisation d’un

14

ordinateur du commerce semble être la meilleure solution car le développement
et les mises à jour sont plus simples. Selon les besoins de parallélisme de calcul,
l’utilisation d’un processeur graphique peut être nécessaire ou pas. Mais la vitesse
de communication entre l’interface réseau et le processeur est très vite bloquante,
même pour supporter seulement 10 Gb/s.

C’est pourquoi si l’objectif principal est d’obtenir le meilleur débit possible et
la plus grande puissance de calcul, le choix se portera plutôt sur les processeurs
réseau et les FPGAs. Les processeurs réseau sont très efficaces pour les tâches
communes dans le domaine des réseaux (calcul de checksums. . .) et peuvent s’avé-
rer peu coûteux s’ils sont vendus par centaines de milliers. En revanche, les FPGAs
sont plus versatiles et le code développé est plus facile à porter vers d’autres plate-
formes. Si plus de puissance de calcul est requises et si le produit doit être vendu
par centaines de milliers, les Application-Specific Integrated Circuits (ASICs)
sont une option intéressante. Il s’agit de puces spécialement réalisées pour une
tâche particulière. Le code développé sur FPGA peut être utilisé comme base
pour concevoir un ASIC.

Dans les prochaines sections, trois applications vont être développées. Une
sur un ordinateur du commerce, et les deux autres sur FPGA. Les résultats
permettront de clarifier certains aspects de ces plateformes. En particulier :

• la comparaison de la puissance de calcul disponible sur processeur et sur
FPGA, ainsi que la façon d’utiliser au mieux la puissance disponible ;

• la simplicité de mise à jour permise par les processeurs et les moyens d’ob-
tenir cette simplicité sur FPGA aussi ;

• le temps de développement sur chaque plateforme, et les méthodes pour
réduire ce temps pour les FPGAs ;

• les perspectives de futur passage à l’échelle permises par chaque plateforme.

B.3 Surveillance logicielle pour la sécurité

La façon la plus simple de réaliser une application de surveillance de trafic est de
faire du développement logiciel sur un ordinateur du commerce. C’est la solution
que nous avons étudié dans le cadre du projet européen DEcentralized, coopera-
tive, and privacy-preserving MONitoring for trustworthinesS (DEMONS). L’un
des objectifs de ce projet est de fournir une plateforme flexible de surveillance de
trafic à haut débit. Notre rôle dans DEMONS est d’aider au développement et
de tester cette plateforme appelée BlockMon. Pour cela, nous réalisons une ap-
plication de détection d’un certain type d’attaques appelé Distributed Denial of
Service (DDoS) qui consiste à envoyer depuis de nombreux ordinateurs beaucoup
de trafic à un serveur pour l’empêcher de fonctionner normalement.

Le code développé pour BlockMon est en C++. Le fonctionnement de Blo-
ckMon est optimisé pour éviter autant que possible les opérations chronophages
comme la copie des données en mémoire. BlockMon intègre une pile réseau op-
timisée appelée PFQ. Cette pile remplace la pile réseau standard de Linux et

15

est compatible avec la technologie Receive Side Scaling (RSS) d’Intel qui permet
de séparer le trafic réseau reçu dans plusieurs files qui peuvent être traitées par
des cœurs logiciels différents. BlockMon permet aussi de gérer très finement l’or-
ganisation du parallélisme grâce à la notion de groupes de processus réservés à
l’exécution de certains blocs de code.

Grâce à sa structure en blocs configurables, BlockMon est très flexible et peut
être configuré facilement grâce à une interface graphique. Sans aucun développe-
ment supplémentaire, une application développée correctement peut fonctionner
avec une sonde unique ou avec des sondes multiples distribuées dans le réseau. Il
est aussi possible d’utiliser plus ou moins de cœurs pour une application donnée,
et de régler les paramètres de fonctionnement de l’application.

Le développement de l’application de détection de DDoS est simplifié par les
blocs de base fournis par BlockMon. Nous avons développé deux algorithmes de
base comme des librairies : Count Min Sketch (CMS) pour compter les paquets
reçus avec une utilisation mémoire efficace, et CUmulative SUM control chart
(CUSUM) pour détecter des changements brusques dans les nombres de paquets
reçus. L’application elle-même est divisée en blocs pour exploiter la flexibilité
offerte par BlockMon. Tous les blocs et librairies peuvent être réutilisés pour
d’autres applications. Les librairies sont les plus simples à réutiliser car elles sont
très génériques.

Pour tester le débit maximum supporté par notre application, nous avons
utilisé un générateur de trafic pour envoyer un trafic difficile à notre détecteur.
Le détecteur était installé sur une machine puissante avec une interface réseau
à 10 Gb/s. Les résultats montrent l’intérêt de BlockMon et de son mécanisme
de gestion du parallélisme : presque tous les paquets sont perdus en utilisant un
seul cœur, mais moins d’un quart des paquets sont perdus avec sept cœurs. Ces
résultats sont pour du trafic de test. Pour du trafic réaliste, avec des paquets
plus longs, les 10 Gb/s peuvent être supportés par notre détecteur sans perdre
de paquets.

Le développement logiciel est relativement simple et rapide. La flexibilité de
BlockMon serait difficile à offrir avec des développements matériels, et l’exemple
du détecteur de DDoS montre qu’il est possible de supporter 10 Gb/s en logiciel.
Cependant, une machine très puissante est nécessaire, et les test avec le trafic le
plus difficile à gérer montre que nous atteignons les limites de cette plateforme.
En outre, une configuration très fine de la machine est nécessaire pour obtenir
ces résultats.

Il serait intéressant de mélanger des fonctions bénéficiant d’accélération maté-
rielle et des fonctions logicielles. Une société appelée Invea-Tech a déjà développé
un block BlockMon permettant de communiquer avec un FPGA. Il serait donc
possible par exemple d’utiliser une version matérielle de l’algorithme CMS, et
d’exécuter seulement l’algorithme CUSUM en logiciel, car les contraintes temps-
réel sont moins grandes pour CUSUM qui ne traite pas directement les paquets
mais des données agrégées.

16

B.4 Surveillance matérielle pour la classification
de trafic

Nous avons vu les possibilités et les limites des approches purement logicielles.
Maintenant nous allons nous intéresser à une approche purement matérielle sur
FPGA. Pour tester les capacités de calcul des FPGAs, nous nous intéressons à
une application plus lourde en calcul que la détection de DDoS : la classification
de trafic en fonction du type d’application (web, jeu, partage de fichiers. . .). Pour
que l’algorithme soit capable de classifier aussi le trafic chiffré, nous utilisons des
paramètres très simples pour classifier les paquets. Le trafic est divisé en flots, qui
sont des ensembles de paquets ayant les mêmes adresses et ports source et desti-
nation. Un flot est caractérisé par la taille des paquets 3, 4 et 5. Un algorithme de
classification par apprentissage supervisé nommé Support Vector Machine (SVM)
est utilisé pour associer les tailles de paquets à un type d’application. Pour la réa-
lisation, nous utilisons des cartes de gestion de trafic intégrant des FPGAs comme
la NetFPGA 10G.

Nous avons d’abord construit un algorithme simple et efficace de stockage de
flots inspiré de l’algorithme CMS. Il supporte avec quasiment aucune perte le
stockage d’un million de flots simultanés, et garantit des temps de recherche et
d’insertion constants. Il utilise aussi assez peu de ressources sur le FPGA.

Le processus de classification de flot basé sur SVM est réalisé de manière
complètement parallèle grâce à un pipeline capable de commencer le calcul sur
un nouveau vecteur du modèle SVM à chaque coup d’horloge. Pour accélérer ce
processus, plusieurs unités de calcul peuvent fonctionner en parallèle, divisant le
temps requis pour classifier un flot.

Le noyau est une fonction importante de l’algorithme SVM. Nous en avons
testé deux. Le classique RBF, et une version plus adaptée à une plateforme ma-
térielle que nous avons nommée CORDIC. Les deux noyaux offrent la même
précision, mais le CORDIC supporte des fréquences de fonctionnement plus éle-
vées et utilise moins de place sur le FPGA, ce qui permet de mettre plus d’unités
de calcul en parallèle. Le modèle SVM obtenu avec le noyau CORDIC est plus
simple et plus rapide à gérer que le modèle obtenu avec RBF, ce qui apporte une
amélioration inattendue du temps de traitement.

Grâce à ces optimisations, la classification de flots peut être faite à 320 075
flots par seconde pour un modèle SVM avec 8 007 vecteurs, ce qui permettrait
une classification de la trace la plus réaliste que nous avons testée, Brescia, à
473 Gb/s. Pour augmenter la vitesse supportée par le classificateur, différents
paramètres devraient être changés :

• utiliser des interfaces réseau à plus haut débit ;

• utiliser un meilleur FPGA pour permettre de paralléliser SVM encore plus ;

• utiliser une plus grosse mémoire externe pour supporter plus de flots simul-
tanés sans augmenter le risque de perte.

Une autre amélioration possible de la version actuelle serait de la rendre plus

17

flexible en stockant le modèle SVM dans des RAMs plutôt que des ROMs, pour
éviter d’avoir à refaire une synthèse pour changer le modèle.

Le mécanisme de stockage de flots peut être réutilisé pour toute application
réseau basée sur les flots. Le code de SVM sur FPGA est générique et peut être
utilisé pour d’autres problèmes de classification.

Cette réalisation sur FPGA d’un algorithme de surveillance de trafic rend les
avantages et inconvénients de cette plateforme visibles :

• le développement est long et complexe. Des problèmes comme la quantifica-
tion des variables doivent être pris en compte. D’autres problèmes triviaux
en logiciel, comme le stockage des flots, doivent être gérés manuellement à
cause des ressources limitées.

• La flexibilité n’est pas automatique. Par exemple de nouveaux développe-
ments seraient nécessaires pour changer dynamiquement le modèle SVM.

• L’accélération est très conséquente, surtout pour des algorithmes comme
SVM qui peuvent être massivement parallèles.

• Il est facile de garantir un traitement en temps réel car chaque délai est
connu et aucune autre tâche ne peut interférer avec le traitement en cours.

B.5 Plateforme de test avec accélération maté-
rielle

Nous avons vu deux approches de surveillance du trafic. Une purement logicielle et
une purement matérielle. Dans chaque cas, nous avons développé des prototypes
fonctionnant à 10 Gb/s. Pour les tester, nous avons eu besoin d’un générateur
de trafic. Nous avons utilisé un générateur commercial, mais nous souhaitons
maintenant créer notre propre générateur, plus flexible et meilleur marché. Nous
voulons un générateur qui supporte au moins 10 Gb/s sans aucun paquet perdu,
même avec le trafic le plus dur à gérer. C’est pourquoi nous le développons sur
FPGA. Mais nous voulons aussi une grande flexibilité, d’où l’utilisation d’une
approche hybride logicielle et matérielle.

Le générateur de trafic est open-source. Il utilise le FPGA d’une carte Combo
pour saturer deux interfaces à 10 Gb/s facilement, même avec les plus petits
paquets permis par le protocole Ethernet. L’architecture modulaire du générateur
lui permet d’être flexible à tous les niveaux.

La façon la plus simple de personnaliser le trafic généré est d’utiliser l’interface
graphique de configuration. Quelques clics suffisent pour spécifier le trafic sous
la forme de flux de paquets qui partagent certaines caractéristiques. Chaque flux
peut atteindre 10 Gb/s. L’utilisation de plusieurs flux concurrents permet de
générer un trafic diversifié, ou d’envoyer du trafic sur plusieurs interfaces.

Contrairement aux générateurs de trafic commerciaux, si l’interface graphique
n’offre pas les bonnes options pour générer le trafic voulu, l’utilisateur peut dé-
velopper ses propres fonctions. Le générateur est fait pour simplifier l’ajout de
nouveaux modules appelés modificateurs. Le développement d’un modificateur

18

nécessite de connaitre le VHDL et un peu de Python, mais cela reste aussi simple
que possible. Tous les modificateurs existants sont documentés et peuvent être
utilisés comme exemples.

Bien que le générateur fonctionne pour le moment avec la carte Combo d’Invea-
Tech, cette carte est très similaire au NetFPGA 10G, bien connu des cher-
cheurs. La plateforme NetCOPE utilisée par le générateur est compatible avec
le NetFPGA 10G, donc porter le générateur vers NetFPGA devrait être assez
simple. Nous souhaitons le faire dés que possible.

Actuellement, le générateur de trafic est fait pour générer du trafic à haut
débit pour des tests de charge. Il n’est pas adapté pour générer du trafic réaliste.
Mais cela pourrait changer simplement en développant de nouveaux modificateurs
contrôlant les tailles et délais inter-paquets selon l’un des nombreux modèles de
trafic disponibles dans la littérature.

Comme le générateur de trafic est un projet open-source, son code est dispo-
nible en ligne [Gro13]. Si certains lecteurs sont intéressés par le développement de
nouveaux modificateurs ou veulent aider à porter le générateur vers NetFPGA,
ou s’ils ont des idées pour améliorer le projet, qu’ils n’hésitent pas à s’impliquer.

L’architecture du générateur de trafic est un bon exemple de l’utilisation des
avantages des FPGAs sans perdre la flexibilité pour l’utilisateur. Les FPGAs
apportent des avantages clairs pour le contrôle du temps réel. Le développement
bas niveau permet de contrôler les temps inter-paquets bien plus facilement qu’en
logiciel. Le support du débit maximum se fait naturellement grâce au parallélisme
du FPGA. Une fois que l’architecture est conçue correctement, le support du débit
maximum est garanti.

Mais le développement sur FPGA est long et complexe, il devrait donc être
évité autant que possible. Faire communiquer le FPGA avec l’ordinateur pour
recevoir les données de configuration est une bonne manière de garder une partie
du traitement en logiciel. Du point de vue de l’utilisateur, bien que le FPGA soit
un outil bas niveau, il peut être caché derrière une interface graphique simple
et utilisable par tous. Quand le développement sur FPGA est nécessaire malgré
tout, il peut être simplifié en définissant clairement l’architecture dans laquelle
les nouveaux blocs doivent être intégrés, et en fournissant des exemples.

B.6 Conclusion
Cette thèse propose différentes méthodes pour accélérer la surveillance de trafic
pour supporter de très hauts débits. La meilleure solution dépend de l’application
et de ses besoins les plus importants. L’accélération doit être prise en compte à
la fois au niveau algorithmique et au niveau du développement pour obtenir les
meilleurs résultats. Nous avons vu qu’une bonne manière d’obtenir à la fois les
avantages du matériel (haut niveau de parallélisme, contrôle du temps réel) et du
logiciel (facilité de développement, flexibilité) est de concevoir des architectures
mixtes. La partie traitant directement les paquets est gérée par le matériel, et la
partie qui ne traite que des données accumulées est gérée par le logiciel.

De nombreux outils haute performance développés pour nos prototypes peuvent
être réutilisés dans d’autres applications : le comptage de paquets utilisant l’al-

19

gorithme CMS (logiciel), la détection de changements dans des séries temporelles
utilisant l’algorithme CUSUM (logiciel), la classification de données utilisant l’al-
gorithme d’apprentissage SVM (matériel), le groupement de paquets en flots uti-
lisant un algorithme inspiré de CMS (matériel), la génération de trafic de manière
flexible et efficace (matériel).

Ces développements permettent de déduire quelques règles utiles pour choisir
une plateforme de développement pour un application de traitement de trafic :

• Le débit maximal supporté est le point faible des implémentations logi-
cielles. Un débit de 10 Gb/s peut être un problème dans le pire cas, même
pour une application simple.

• Le développement sur FPGA est un processus long et complexe, ce qui rend
le développement logiciel plus attrayant.

• Cependant supporter des débits élevés en logiciel nécessite un développe-
ment précis et de très nombreux réglages de la plateforme, qui peuvent
ralentir fortement le développement logiciel.

• Les architectures hybrides logicielles et matérielles peuvent être très effi-
caces, à condition de faire attention au débit de communication avec le
processeur.

La possibilité d’intégrer un FPGA et un processeur sur la même puce, ou au
moins sur la même carte, permettrait une communication plus facile entre les
deux et des possibilités d’interactions plus grandes.

Les besoins en surveillance de trafic semblent se multiplier actuellement car
les gouvernements souhaitent de plus en plus contrôler ce que les gens font sur In-
ternet. Un Internet sans contrôle ne pourrait pas fonctionner, mais la surveillance
doit prendre en compte le respect de la vie privée des utilisateurs. En effet, malgré
l’utilisation de systèmes de chiffrement, il est techniquement possible d’apprendre
énormément de choses sur les personnes utilisant le réseau grâce à des systèmes
de surveillance en temps réel tels que ceux présentés ici.

20

Chapter 1

Introduction

1.1 Context

Traffic monitoring is a mandatory task for network managers, be it small company
networks or national Internet providers’ networks. It is the only way to know what
is happening on a network. It can be very basic and consist in simply measuring
the data rate of the traffic on a link, or it can be more sophisticated, like an
application to detect attacks on protected servers and raise alarms.

Use cases for traffic monitoring are diverse and can be separated into different
categories. An important category is security. Networks can be used for all kinds
of malicious behaviours: for example propagating viruses through malicious web-
sites or emails, sending unsolicited emails, scanning the network to find vulnerable
machines, taking remotely control of machines without authorization, sending a
large amount of traffic to a machine to overload it, or intercepting traffic to access
to sensitive data. Most of these behaviours produce specific traffic that may be
identified using traffic monitoring tools. The challenge is that legitimate traffic
can take many forms, making it difficult to differentiate the malicious traffic. And
attackers do all they can to make the malicious traffic look legitimate, so attacks
and monitoring tools have to become more and more elaborate.

Many attacks have made the news lately, like an attempt to take the NAS-
DAQ infrastructure down [Rya13]. These attacks are often successful and outline
the need to have monitoring tools that can detect attacks early and make it pos-
sible to mitigate them efficiently. Attackers use multiple techniques to create
successful attacks. First they hide their identity. To do that, they never conduct
attacks directly. They take control of machines that are not protected properly,
and use them to conduct the attacks. They also often hide the origin of the traffic
by indicating fake source addresses. Techniques used to take control of machines
usually take advantage of flaws in legitimate applications and protocols. So se-
curity has to be applied at multiple levels. The first thing to do is to fix flaws
as soon as they are discovered. Antivirus software can also be used to protect
individual machines by detecting applications with unusual behaviours. Fire-
walls can restrict incoming and outgoing traffic to try to prevent attackers from
accessing to sensitive machines. At the network level, providers can stop traffic
with fake source addresses only if it comes directly from their own customers. As

21

many providers do not apply such a strategy, fake source addresses cannot be
fully avoided. But network providers can also apply more advanced algorithms
to monitor the traffic and detect specific traffic if it behaves like an attack. They
can then stop the traffic early, making the attack fail. This kind of protection is
not really offered by providers yet, but solutions exist in the literature.

Another category of traffic monitoring applications is used for traffic engineer-
ing. It mostly consists in getting information about the traffic transiting in the
network or the state of the network. An important application is traffic classifi-
cation, which is able to associate traffic to the application that generated it. On
the Internet, traffic is made of an aggregation of packets, each packet represents a
piece of data. Each packet has a header giving some information like an address
for the sender and the receiver of the packet. The address of the receiver is used
to route the packet in the network. But there is no standard way for a packet to
indicate information like the application that generated it, or the kind of data it
contains. The role of traffic classification information is to use the packet data
and header to guess the application or the category of applications that gener-
ated the packet. For example a packet has been generated by Skype and contains
voice data. Another packet has been generated by Firefox and contains web data.
A packet could also be generated by Firefox but contain video streaming data,
when browsing YouTube for instance.

Traffic classification can be useful to network managers in different ways. It
can be used to prioritize some traffic. For example packets that contain videocon-
ference data must be delivered fast, so as to make the conversation fluid. Packets
that contain web data can be delayed if necessary, because it will only delay the
display of the page of some milliseconds. Another use of traffic classification is
lawful interception: governments are more and more interested in forcing net-
work operators to log some specific traffic, like Skype calls for example. Some use
cases make traffic classification more challenging than others. For example, if it
is used to prioritize traffic, some users may try to make all their traffic resemble
important traffic, so malicious behaviour should be taken into account.

Be it for security or for traffic engineering, the need for automatic accurate
monitoring tools is rising. This is partly due to a current trend in network man-
agement called software-defined networking. It consists in decoupling the control
and data planes of a network. Traffic is managed by manipulating abstractions
that are not directly related to the physical network. The goal is to make networks
more flexible: creating new services or adapting to new constraints becomes just
a matter of software configuration. To work, this approach requires flexible and
accurate network monitoring tools to be able to know what is happening on the
network and to check the impact of global configuration changes.

Although traffic monitoring applications can be diverse, they face common
challenges. The most important is due to the evolution of the Internet. CISCO
forecasts [Cis13] that between 2012 and 2017, the global Internet traffic will in-
crease threefold. It will reach one zettabytes per year in 2015. This means that
network operators have to cope with always higher data rates. To do that, they
deploy links supporting higher data rates. Traffic monitoring applications are not
deployed directly on very high-speed links like transatlantic cables that can have

22

a speed of multiple terabits per second. But aggregation links of 10 Gb/s or more
are common, as operators now easily offer 1 Gb/s to their customers with optical
fiber.

Supporting links of 10 Gb/s or more is difficult because it forces to process
millions of packets per second. Current commercial computers are not offered
with 10 Gb/s Network Interface Cards (NICs), but even if they were, they would
not be able to process that many packets. This is why high performance de-
velopments are necessary. Different platforms are available for high-speed traffic
processing. The most common is commodity hardware: powerful commercial
computers can be used, fine-tuning software and using specialized NICs to make
them support higher data rates. Graphics Processing Units (GPUs), which are
originally designed for gaming, can also be added to perform highly parallel com-
putations. But other platforms exist that provide more specialized hardware
acceleration. Some special processors, called Network Processing Units (NPUs),
have an architecture designed to handle high-speed traffic. At a lower level, Field-
Programmable Gate Arrays (FPGAs) are chips that can be configured to behave
like any digital electronic circuit. They provide massive parallelism and a very
low-level access to network interfaces. Each platform has its own advantages and
drawbacks in terms of performance, development time, cost and flexibility.

1.2 Objectives
The subject of this thesis is to evaluate different ways to accelerate traffic mon-
itoring applications. A large body of literature exists in the domains of security
and traffic engineering to tackle classical problems like anomaly detection or traf-
fic classification. The accuracy of the proposed algorithms is usually well studied,
but less work exists about the way an algorithm can be implemented to support
high data rates.

To accelerate traffic monitoring applications, we will test different develop-
ment platforms that provide software or hardware acceleration and see how they
are adapted to traffic monitoring. We will implement applications for security and
traffic engineering on different platforms, trying to take advantage of all features
of the chosen platform, and to avoid the drawbacks specific to the platform.

The first application in the domain of security will use pure software, leverag-
ing the flexibility inherent to software development, so that lightweight security
algorithms can be used in many different contexts. It will allow to check the
performance computers can provide using optimized software. The second appli-
cation in the domain of traffic engineering will use an FPGA to accelerate an algo-
rithm making heavy computations, so as to meet strong real-time requirements.
It will show that hardware acceleration can bring huge speed improvements to
traffic monitoring, at the cost of some other criteria like development time and
flexibility. The last application, a traffic generator, will be a trade-off between
flexibility and performance, using an FPGA to meet real-time requirements, as
well as software to provide a simple configuration tool.

These different use cases will showcase all the aspects that should be taken
into account when building a high-speed network processing application, like the

23

performance, the development time, the cost or the flexibility. We will not test
NPUs or GPUs because they require some very specific developments, and the ad-
vantages they bring (parallelism, accelerated functions, specialized architectures)
can also been obtained on an FPGA. So FPGAs are a good choice to explore all
possible acceleration techniques.

But to accelerate an application, it is not enough to work on an efficient
implementation of a pre-defined algorithm. We will see that some algorithms are
more adapted than others to support high data rates, because they are easier to
parallelize or because they use less memory than others. We will also see that
tweaking some algorithms can widely improve their scalability without necessarily
hindering their accuracy.

Finally, we will be able to give advices on the development platform that
should be chosen depending on the application, and we will provide some efficient
implementations of useful traffic monitoring applications. Many developments
will be reusable for other applications too, either as libraries for specific tasks, or
as fully functional products.

1.3 Traffic monitoring

Before starting to implement traffic monitoring applications, it is important to
choose the right algorithm. To do this, we will list some important features of
these algorithms, focusing on the ones that impact strongly the implementation.
Similar algorithms will result in the same implementation challenges.

We will discuss the topology of the application, that is to say the place in
the network where the probe or probes are located. The time constraints on
the algorithm are important too: some processing has to be done fast, while other
things can be delayed. The traffic features used define the way received packets
will be treated. The detection technique then defines how gathered data will
be processed. Some applications also require a calibration, which is usually a
separate implementation from the core of the application.

1.3.1 Topology

The first thing to differentiate traffic monitoring applications is the way they are
located on the network. The simplest alternative is to have only one standalone
probe on a link. The advantage is that it is easy to setup. It requires only one
machine and it is easy to install for a network operator.

But many traffic monitoring applications are distributed. They are made of
different probes on different links on the network. This way, the application has a
more global view of the activity on the network. Often collectors are added to the
probes. They are machines that do not monitor the traffic directly but centralize
reports from the probes. They can also analyze and store data. Distributed
applications are more costly to setup. and the communication protocol must be
well designed to avoid exchanging too much control data when monitoring traffic
at high data rates.

24

Distributed applications are usually deployed on one network, with all probes
belonging to the same operator. But it is also possible to create inter-domain
traffic monitoring applications, with probes on networks from different operators.
This is interesting because the application has an even more global view of the
network. The main difficulty is that operators are usually reluctant to share
data with potential competitors. But it is possible to let operators share some
aggregated data with operators if they are part of the same coalition.

The chosen topology fully changes the contraints on the implementation.
Standalone applications may have to cope with very high data rates, and they
have to take care of the whole processing. So they need a lot of processing
power. Distributed applications can use multiple machines for the processing.
Each probe may receive less traffic as it is distributed on multiple probes. But
communication delays between the machines can be long, and the amount of data
sent should be limited to avoid overloading the network. Inter-domain applica-
tions often have stronger security requirements as data is transmitted through
less trusted networks.

1.3.2 Time constraints

Time constraints are the requirements for the application to finish a certain pro-
cessing within a guaranteed delay. Depending on the application, time constraints
can be very different. For example an application monitoring the data rate on a
link may log it only every minute. The delay is not a problem. But an application
that detects attacks must raise an alert fast so that the network administrator
acts as fast as possible. And it is even worse for an application, which directly
acts on the transiting traffic. For instance, a traffic classification application can
tag packets on a link with a label depending on the kind of data transported. To
do that, the application has to process packets very fast. If it is slow, it will delay
all packets on the link, degrading the quality of the communication.

Time constraints must be taken into account when implementing an algo-
rithm. Some development platforms are more adapted than others to real-time
applications. Most applications are made of different parts that must meet dif-
ferent time constraints. For example, the part directly receiving packets must
work in real-time, but another part gathering data and storing it periodically in
a database can be slow.

1.3.3 Traffic features

Traffic monitoring applications can be divided into two categories: active mea-
surement applications and passive measurement applications. For active mea-
surements, applications send some traffic and then observe how it is managed by
the network. This synthetic traffic can be observed by a different probe some-
where else on the network, or an answer from another machine can be observed
directly by the same probe. Examples of passive measurements can be a delay for
packets to be sent from one probe to another, or a delay for a machine to answer
to a request from the probe. The absence of answer can also be informative.

25

For passive measurements, applications extract data from different features
of the traffic. Some simply use data in packet headers, like the size of packets.
Others use the whole data of the packet. Many applications base their analysis
on flows. The structure of packets is specified by encapsulated protocols. The
lowest level protocol is usually Ethernet, it allows machines to communicate when
they are directly connected. Then the usual protocol is Internet Protocol (IP),
it allows machines to communicate, even if they are not directly connected. The
IP header contains the source and destination IP addresses, unique identifiers
of the sender and the target. Then two transport protocols are very common:
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). They
both are made to help applications communicate with each other. To differentiate
applications on the same machine, they define source and destination ports. An
unidirectional flow is a set of packets with the same source and destination IP
address, the same transport protocol (UDP or TCP) and the same source and
destination port. Some applications are based on bidirectional flows, that is to
say that packets with inverted sources and destinations belong to the same flow.
But most traffic monitoring applications are based on unidirectional flows because
there is no guarantee on a network link to see the two directions of a flow: packets
can be sent using one path on the network, and come back using another path.

Some applications are based on other features. For example they can analyze
only Domain Name Service (DNS) requests, that is to say packets sent by users to
ask for the IP address corresponding to a domain name. It is an easy way to list
the servers to which each user connects. It is also possible to analyze only Border
Gateway Protocol (BGP) packets. They are used by routers to communicate
data about the IP addresses they know how to reach. Analyzing these packets
can help have a clear view of the current network routing.

Higher-level approaches exist, like behavioural analysis: communications on
the network are studied to determine who communicates with whom and how.
A graph is then built and the communication pattern of each machine can help
identify the role of the machine.

The traffic features used impact the implementation because some are easier to
extract than others. A passive probe extracting only some headers from packets
is easy to implement. Active probes measuring delays need an accurate way to
measure time, which is not available on all platforms. Flow-level features force
the probe to group packets of the same flow, storing data about each flow in a
memory. Constraints on the memory are strong: it has to be big enough to store
all flows, and the read and write speeds have to be fast enough to process received
packets in real time.

1.3.4 Detection technique

All traffic monitoring applications use an algorithm to translate traffic features
into information. This is what we call the detection technique, although the word
detection may not be adapted to all applications.

Many applications use signatures: signatures of the applications for traffic
classification, or signature of an attack for security. A signature is a set of features.

26

For example it can be a sequence of bits that has to be found at a certain location
in a packet. If some traffic corresponds to this set of features, it corresponds to
the signature. This technique is widely used for traffic classification because
applications tend to generate always the same kind of traffic.

Learning techniques are also often used for classification. They consist in
building a model for each type of traffic to detect. The model is built by observing
traffic for which the category is known. When new traffic arrives, computations
are made to check to which model it belongs the most.

Anomaly detection is another technique, widely used for security. It requires
a knowledge of the normal traffic. When some abnormal features are detected,
an alarm is raised because it is a potential attack. The advantage is that attacks
that never happened before can be detected this way.

Some detection techniques can be very simple to implement: tree-based clas-
sification is usually implemented by a simple succession of conditions. Other
techniques can require complex computations from the traffic features, making
the implementation more complicated, and the resulting application slower. Some
techniques are also more adapted to take advantage of hardware acceleration than
others, so the choice is crucial.

1.3.5 Calibration

Most traffic monitoring applications require a calibration to be functional. The
calibration process depends on the detection technique. It is how signatures or
models are created. For learning techniques to build their models, three methods
exist:

• Supervised algorithms need a “ground truth”, an example of traffic with data
already attached. For example in the security domain, attacks should be
identified in the trace. For traffic classification, the generating application
should be identified.

• Semi-supervised algorithms need a ground truth too, but it can contain
unknown traffic. The algorithm will guess to which category the unknown
traffic should belong, and include it in its learning.

• Unsupervised algorithms require no ground truth, which makes them very
easy to deploy. Often their output is less detailed than supervised algo-
rithms.

For techniques based on signatures or anomalies, a ground truth is often
necessary too. The calibration is often more manual than for learning algorithms.
An expert can extract signatures from a ground truth, using its own knowledge
of the traffic. An expert is also often required to define rules specifying the
behaviour of normal traffic, so as to be able to detect anomalies.

The calibration does not directly impact the implementation because it is
usually done offline with no timing constraints. But it deeply impacts the ease
of deployment of the solution. An algorithm which requires no ground truth is
simple to deploy and will probably work the same way on any network, while

27

an adapted ground truth will have to be found for each deployment for other
algorithms. But using a ground truth is a way to extract more accurate data
about the traffic.

1.4 Acceleration challenges
We have seen that traffic monitoring applications have common features. This is
why one is often faced with the same challenges when accelerating a traffic moni-
toring application to support high data rates. We already talked about high-level
challenges like the need to receive data at high speed, the need to make fast com-
putations and the need for flexible applications. But some less obvious challenges
are limiting factors found in most high-speed monitoring implementations. We
will now present two of these challenges, which are not obvious but will be found
multiple times in next chapters. The solutions provided in next chapters can
often be reused for other traffic monitoring applications.

1.4.1 Large data storage

Traffic monitoring implies handling huge amounts of data. For example, dumping
all traffic on a 10 Gb/s link during one minute requires 75 GB of disk space. The
challenge becomes even bigger if data has to be stored in a way that is simple to
reuse afterwards. A simple task like counting the number of packets sent to each
IP address seen by a network probe requires to maintain one counter (an integer of
32 bits for example) for each destination IP address. If Internet Protocol version
4 (IPv4) is used, 232 = 4.3× 109 addresses exist. So using a simple memory with
the IP address used as memory address would require 232 × 32 = 1.4× 1011 bits,
that is to say 17 GB of memory. This is even worse if we want to count packets
with the same source and destination IP addresses, we would need 7.3× 107 TB
of memory.

The realistic and classical solution in computer science is to use hash ta-
bles [SDTL05]. These storage structures are able to store elements in memory
indexed by a key (the IP address in our example). The space they require in
memory is the size of stored data plus the size of the key for each element. The
key is stored alongside the pieces of data it indexes for future references. So for
example if one million IP addresses are seen, a bit more than 1 000 000×(32+32)
bits will be required to store the counters. The first 32 bits are for the IP address
and the others are for the counter itself. Hash tables provide very low mean
delays for accessing or updating data from the key. The only problem is that
to make sure that a new element is always stored somewhere, access and update
delays can sometimes become very long, as long as the time needed to browse the
whole list in the worst case. This is a blocking problem for real-time monitoring
applications that must guarantee that they are able to support a certain data
rate at all times. Another drawback is that the memory used can expand over
time to make space for new data to store, when new IP addresses are discov-
ered. Depending on the application, having no guaranteed maximum memory
requirements can be a problem.

28

This is why data storage often is a challenge for network monitoring applica-
tions. This is especially true when available memory is constrained, as we will
see it is the case on some hardware-accelerated network monitoring platforms.
This challenge will arise when trying to count packets by IP address for an attack
detector in Section 3.2.2. It will also arise when trying to keep data about flows
for a traffic classifier in Section 4.4.2.

1.4.2 Test conditions

Once implemented, traffic monitoring applications have to be tested to validate
their performance in terms of accuracy and in terms of supported data rate.

To validate the accuracy of an algorithm, realistic traffic should be used. The
best way to do that is to use a trace of actual traffic. The problem is that
only network providers have this kind of traces, and they do not particularly like
sharing them. Some traces are freely available though. But to be interesting,
the trace should be accompanied by a ground truth, just like the traces used for
calibration. Otherwise there is no way to tell if the traffic monitoring application
works properly or not. So whatever the application, test traces are always very
challenging to find.

To validate the supported data rate of an application, the best way is to use
synthetic traffic that is as hard to handle for the application as possible. To
do that, a configurable traffic generator is necessary. A simple computer cannot
be used because the generator must be able to reach data rates at least as high
as the application under test. Commercial traffic generators exist but they are
expensive.

This challenge will arise in chapters 3 and 4 to test the algorithms we propose.
Chapter 5 will bring a partial solution by describing the implementation of an
affordable high-speed traffic classifier.

1.5 Thesis structure

Chapter 2 is about the different development platforms available to accelerate
traffic monitoring applications. It lists different criteria that should be taken into
account, and uses examples from the literature to analyze the advantages and
drawbacks of each development platform. It is the chapter to read before choos-
ing a development platform for a new traffic monitoring application. Following
chapters base their platform choices on this one, and they allow to experiment to
quantify the limits of each platform.

Chapter 3 is a first traffic monitoring application implementation on the most
widespread development platform: commodity hardware, that is to say normal
computers. It is realized in the framework of a European FP7 project called DE-
centralized, cooperative, and privacy-preserving MONitoring for trustworthinesS
(DEMONS). We participated to the development of one of the important project
outcomes: a flexible high-performance software platform for traffic monitoring
called BlockMon. We developed an application for attack detection to test the

29

flexibility and the supported data rate of BlockMon. The result is a very flex-
ible platform that supports up to 10 Gb/s, which is good for a pure software
application, but the application reaches the limits of commodity hardware.

This is why Chapter 4 is focused on the use of hardware acceleration on
FPGA. The implemented application is not in the security field, but in the traffic
engineering field. It is a traffic classifier. This application has been chosen because
it uses a learning algorithm that is both challenging and interesting to implement
using hardware acceleration. The algorithm and the implementation are designed
together to get the best performance using the possibilities of FPGAs as much
as possible. The results show the huge increase in performance due to hardware
acceleration. The application also outlines a drawback of hardware development:
it is more difficult to provide flexibility.

Chapter 5 describes the implementation of a traffic generator using hardware
acceleration on FPGA. The need to develop a high-speed, accurate and flexible
generator arose when we tested our monitoring applications. As we think this
generator can be useful to the Research community to test all kinds of traffic
processing applications at high speed, it is fully open-source. It provides a way
to generate accurate and diverse high speed traffic without using extremely ex-
pensive commercial traffic generators. The generator is implemented on the same
platform as the traffic classifier. It is able to send traffic up to 20 Gb/s, and we
would like to port it to a different platform to generate traffic up to 40 Gb/s.
During development, we decided to address a drawback of hardware accelerators,
outlined by our traffic classifier implementation: the flexibility. The generator
is configurable using a simple Graphical User Interface (GUI). It is also easily
extensible to add new features.

Finally, Chapter 6 summarizes our contributions. Based on the different im-
plementations we have made on different platforms, it draws conclusions about
the way each platform can be used depending on the complexity of the algorithms
as well as the most important requirements on the application. It gives a short
guide on how to make design choices for a traffic monitoring application at the
algorithmic and implementation level, and presents some perspectives.

30

Chapter 2

Choosing a development platform

Although traffic monitoring applications can be very diverse, one is always faced
with similar challenges when implementing them. Different development plat-
forms are capable of handling traffic monitoring: cheap platforms made from com-
modity hardware, specialized platforms using network processors, or hardware-
oriented platforms using FPGAs. Each option has different advantages and draw-
backs. The intent of this chapter is to help make the good choice depending on
the application specifications. It will first list the criteria to base a choice on,
then describe each platform with its strengths and weaknesses.

2.1 Criteria

All platforms have in common a network interface able to receive and send traf-
fic simultaneously, typically on one or more Ethernet links. They also have one
or more processing units, which can receive data from the interface, make vari-
ous computations and send data to the interface. The processing units are pro-
grammed or configured by the developer.

The differences are due to the kind of processing units, the way they com-
municate between each other, and the way they communicate with the network
interface. Different processing units provide different levels of parallelism and
communicate more or less easily with the network interface. The development
complexity is also different. This makes their strengths vary for the criteria listed
below, which can allow to choose one platform instead of an other.

2.1.1 Supported data rate

This is the most obvious feature common to all traffic monitoring applications.
Independently of the application, the development platform has a maximum sup-
ported data rate. On the receiving side, it is the speed at which it can receive
data and make it ready for processing, without any actual processing happening.
On the sending side, it is the speed at which in can send data that is already
ready to send. The most important is the sustained rate, that is to say a rate
that can be supported indefinitely.

31

There is no guarantee that an application developed on a given platform will
support the maximum rate, because the processing part can be the bottleneck.
But no application can support more than the maximum rate of the platform.

This data rate is not always the speed supported by the network interfaces, for
example 10 Gb/s for 10 gigabit Ethernet. It is not enough to receive data on the
interface: it must be made available to the processing units. The maximum data
rate should be supported for any kind of packet. On Ethernet, this is usually more
challenging for the smallest packets (46 bytes of payload) because a processing
overhead is associated to each packet.

2.1.2 Computation power

Once the packets are received and sent fast enough, they must be processed fast
enough too. This is the role of the processing units. There can be many of
them of different kinds: a Central Processing Unit (CPU), a GPU, a NPU or an
FPGA. Each kind of processing unit provides processing power with important
differences in:

• the frequency: all processing units work using a discretized time, the fre-
quency is the number of clock cycles that can be run during one second;

• the parallelism: the number of operations that can be run in parallel during
one clock cycle;

• the variety and complexity of each operation.

Depending on the application, the need in computation power can vary widely.
If the goal is only to count the number of received packets and bytes, to estimate
the quantity of data received, there is almost no computation needed. If the goal
is to classify traffic using Deep Packet Inspection (DPI), an important number
of regular expressions have to be checked against each packet [AFK+12], which
requires a lot of computing power.

2.1.3 Flexibility

The computation power itself is not enough to quantify the acceleration factor a
platform will bring to a specific application. Depending on the task, the devel-
opment platform that will bring the most acceleration is not always the same.

For example, one platform may have very fast memory accesses, which will
make it very good at handling large lookup tables, while another might have very
fast floating-point computation units, which will make it adapted to complex
mathematic operations.

This is particularly true for platforms which are specialized for certain tasks,
and have highly optimized units dedicated to these tasks. An application relying
heavily on these tasks will be a perfect fit for this platform, but some applications
may not use these tasks at all.

So it is important to identify which tasks might become bottlenecks throttling
the maximum supported data rate of an application. Development platforms

32

should be especially evaluated on these tasks. If the application is not very
defined yet, the best choice will be a less specialized platform.

2.1.4 Reliability

To run on a real network, a traffic monitoring application has to be reliable. This
can have different aspects:

• The supported data rate of the application must be reliable: for example, if
the computation speed depends on external factors (other applications on
the same machine), this can slow down the packet processing and lower the
supported data rate during certain periods of time.

• The measurements made on the received traffic must be reliable. This
is particularly a problem for the timestamp that indicates when a packet
was received. Some applications rely on this delay, like applications that
measure the Quality of Service (QoS) on a network [OGI+12], or some
traffic classification applications [DdDPSR08]. If the time to process a
packet is variable and unknown, the timestamp will be impossible to obtain
accurately.

The reliability is mainly linked with the ability for the processing units to
support real-time applications, that is to say applications that must perform
some computations in a determined delay.

2.1.5 Security

No development platform can guarantee the security of any application. But it
is easier to develop secure applications on some platforms. A perfectly secure
application would work reliably even if attackers try to prevent it, and would not
expose data that should remain private.

For some applications security may be crucial. A firewall is for example an
obvious target to attack a network. For other applications, like passive probes
that only collect statistics about the traffic, security is not the most important
feature.

2.1.6 Platform openness

This factor is often overlooked, but the openness of a platform has an important
impact on the development process. Different parameters can make a platform
more or less open:

• The availability of open-source projects using the platform. Studying a well-
documented open-source project is a very easy way to learn how to develop
for a specific platform. The presence of an online support community is a
big help too [SH13].

33

• The possibility to study and modify the code of the development framework.
If this code is open-source and well documented, developers will be able to
understand faster how to develop new applications.

• The possibility to reuse the code developed for this platform on other similar
platforms. It may be important to not be locked with specific hardware or
a specific vendor, so as to be able to change for a new cheaper of more
powerful option. This depends mainly on the language and framework
used. Some frameworks are focused only on working on a specific platform,
while others are focused on inter-operability. This difference can be seen for
example in frameworks for development of scientific applications on GPUs:
CUDA works only on Nvidia GPUs, while OpenCL is made to work on all
GPUs and on other kinds of processing units like FPGAs [DWL+12].

2.1.7 Development time

The development time is especially important for research applications: testing
different algorithms will require to implement them all on the same platform.
For a production application, the algorithm is chosen in advance. If the risk of
changing requirements is not too big, a platform with a long development time
may be chosen if it brings better performance.

A development process is divided in three phases that can be repeated: design,
development and test. The development and test times strongly depend on the
platform. For example, the availability of high-level functions adapted to the
application will speed-up the development considerably. It can also speed up the
tests because the provided functions are already tested. The time to test is also
strongly affected by the efficiency of the debugging tools.

2.1.8 Update simplicity

In production, most applications will need to be configured or updated. This
process may be more or less complicated depending on the development platform:

• modifying the application and getting a new deployable version can take a
long time if the test process or a compilation process is long,

• a physical handling of the machine may be required, making an online
update impossible,

• the unavailability time of the application during the update can vary. De-
pending on the real-time needs of the application, this point may become
crucial.

2.1.9 Future scalability

The future scalability depends on the amount of work that would be required
to adapt an existing application to support higher data rates. Most platforms
evolve, and more powerful hardware becomes available. The exploitation of these

34

improvements requires changing the application. The complexity of this process
depends on the considered application. But the design, the code modularity and
the abstractions that certain platforms enforce help make these changes easier.

For example, to exploit higher parallelism, most platforms will allow to run
more concurrent threads of the same code simply by changing a parameter and
compiling the application again. Some might even decide of the best level of
parallelism at run time.

2.1.10 Hardware cost

The hardware cost is a very visible criterium. This is the first encountered cost
when starting with a new development platform. Specialized hardware will cost
more than commodity hardware, but depending on the scale of the deployment,
different costs must be considered:

• If the application will be deployed only in few places on a large network,
the hardware cost will remain low compared to the development cost, even
choosing expensive options.

• If the application will be deployed in thousands of places, the hardware
cost becomes important. Choosing the most affordable option will probably
lower the total cost.

• If the application will be deployed in hundreds of thousands of places, mass
production becomes interesting. In this case, a solution with a high devel-
opment cost but a small unitary hardware cost is the best choice.

If the goal is only to develop a prototype, a flexible development platform
is needed, even if it is expensive. But it is important to make the transition to
cheaper hardware for mass production easy.

2.2 Commodity hardware

When developing a traffic monitoring application, the most obvious idea is to
use commodity hardware that is often already available. NICs are now publicly
available that are able to handle up to 40 Gb/s of traffic [Int13]. And if the CPU
is not powerful enough to run the algorithm, a GPU may be used. This section
will describe the principles and challenges of using commodity hardware, and will
evaluate this development platform using criteria from Section 2.1.

2.2.1 Handling traffic

To receive and send Ethernet packets using a computer, a NIC is used. For exam-
ple, Intel has a NIC with four interfaces at 10 Gb/s [Int13], at a hardware cost
of about $1 100. To allow the host CPU to handle multiple received packets in
parallel, this NIC has a feature called Receive Side Scaling (RSS). This technology
divides the received packets into multiple queues, which are sent concurrently to

35

the host CPU. This way, CPUs with multiple cores can handle multiple packets
in parallel. The rule to decide which packet is sent to which queue is configured
by the developer. It is based on the value of a hash computed on some configured
fields of the packet headers.

But connecting a modern NIC like this to any computer is not enough to
support 40 Gb/s incoming and outgoing traffic in an application. Usually Linux
is used for network monitoring applications development, but the Linux kernel,
which handles the communication with the NIC, was not designed to support 40
Gb/s interfaces.

The current Linux kernel already takes advantage of some improvements that
help supporting higher data rates:

• Multiple hardware queues (RSS) support has been added. This means that
if the NIC supports the RSS technology, packets can be received concur-
rently on multiple cores.

• New Application Programming Interface (NAPI) has been introduced. This
is a new way for the Linux kernel to handle received packets. It is based on
two main principles [SOK01]:

Interrupt mitigation is a way to avoid receiving one interruption per
packet, which would overload the CPU. When the threads managing
the packets are busy, no more interruptions are sent.

Packet throttling is simply a lower-level dropping of the packets which
cannot be received when the CPU is overloaded. This means that less
work is needed to handle these lost packets.

But this is not enough to support 40 Gb/s on commodity hardware. Different
papers present factors that limit the supported data rate in the design of the
Linux kernel [BDPGP12b, RDC12, LZB11]:

Inefficient memory allocations. For each received packet, some memory is
allocated by the driver to store a packet descriptor. It is then de-allocated
when the packet is sent back to memory. This process is slow, and takes a
constant time for each packet. This means that it is especially a problem
with small packets, reducing the maximum data rate.

Communication between the kernel and applications. For security reasons,
the memory used by the kernel is different from the memory used by ap-
plications. This means that data from the received packets must be copied
twice in memory: once in the kernel memory, and once in the applications
memory, before being processed. A function call is also necessary for each
received packet to indicate to applications that a new packet has been re-
ceived.

Poor use of available memory caches. Caches are available to the CPU to
reduce the delay to fetch data from memory. The Linux kernel suffers from
a lot of cache misses when handling packets, slowing down the process.

36

Due to these reasons, new solutions have been proposed that rewrite a part
of the network stack on the Linux kernel, as well as the NIC driver. These
solutions use pre-allocated memory slots to store packet descriptors. They also
give applications a direct access to the part of kernel memory where packets are
stored. Their design is made very carefully to take full advantage of available
caches and to use the memory with the fastest access: all cores of a CPU are not
always able to access the same parts of memory at the same speed.

Examples of novel network stacks include the PFQ [BDPGP12b] stack, as well
as PF_RING DNA [RDC12] or Netmap [Riz12]. The latter is different from the
others because applications do not have to be rewritten to take advantage of the
new network stack, while others have custom functions to use. It is also designed
to be independent of the NIC driver. These design choices make it capable of
handling less traffic than other choices.

Using these custom network stacks, the maximum supported data rate ap-
proaches 40 Gb/s. For example, a software router is able to forward packets on
commodity hardware at 39 Gb/s [HJPM10].

With these complex network stacks, a lot of software is implied to transmit
packets to an application, first in the NIC, and then in the kernel. And to
avoid sending too many interruptions, packets may be stored in buffers before
being processed. This has an impact on the reliability of the platform. For
example it is impossible to assign precise timestamps to packets [MdRR+12].
It is also very difficult to guarantee precisely the maximum speed rate of the
platform because resources on the CPU are shared with all programs running
on the computer, which may affect the packet processing. This article [BDP10]
shows for example that the data rate of software traffic generators is unreliable.
The main cause is the interference between different processes working in the
generator. Multiplie processes work on traffic generation tasks like time-stamping
or logging, and other processes are not directly related to traffic generation but
manage the user interface for example. All these processes compete for CPU
ressources, and switches between processes can slow down the traffic generation
unexpectedly.

The future scalability of the platform depends on the future commercially
available NICs. As the interest for this technology is high, NICs with higher
data rates will become available. But exploiting it will also make it necessary to
increase the communication speed between the CPU and the NIC, the memory
access speed, the processing power, and probably to adapt again the network
stack. This is an important amount of work implying different specialized teams,
which will have to cooperate to make speed improvements a reality.

2.2.2 CPU computation

Once received data is transmitted to the application, the actual algorithm pro-
cessing can start. Depending on the application, it can prove very heavy. The
difficulty is that CPUs are not specifically designed for traffic processing. This
limits the computation power: the main problems are related to memory ac-
cesses [HJPM10] because the access latency can be long, and the bandwidth gets

37

very limited if random accesses are done, which is the case for example for hash
table lookups that network applications might do for each received packet.

To still be efficient and reach wire speed, the implementation has to be tailored
to the hardware architecture:

• The parallelization is important: to get the best efficiency, all cores of all
processors have to be used. Depending on the network stack, at least one
core per incoming queue of the NIC is already used for receiving packets.
For the remaining cores, independent tasks must be found that can run
concurrently, to avoid as much as possible sharing data between threads,
which is a costly process.

• Although the communication should be minimal, reading packets data in
memory is an essential step for all applications. Modern computers use a
Non Uniform Memory Access (NUMA) architecture: each processor has an
area in RAM with low access delays, it can access other RAM areas but
with higher delays. So the location of the memory for each NIC queue is
chosen to minimize the writing delay from the corresponding CPU core.
Each thread has to be manually assigned to a specific core to optimize all
communication delays, and the interrupts sent by the NIC for each queue
must be configured to be sent to the corresponding core.

• If the algorithm is very heavy, even the parts that do not directly receive
packets will have to be optimized to work on the chosen CPU to keep up
with the received data speed. For example, copying data in memory should
be avoided, and dynamic allocation of memory replaced by pre-allocated
memory.

The most adapted development language for this kind of low-level and highly
optimized applications is C++ because it benefits both from the low-level control
of C, and from the maintainability and flexibility of object-oriented programming.
The development time of the application is increased by the need for optimiza-
tion. For example, this article [SdRRG+12] presents the complex development
and optimization process of a 10 Gb/s statistical classification algorithm on com-
modity hardware.

The interest of pure software development is that it is widely used and benefits
from the best platform openness: the full Linux kernel is open-source and all
major high-speed network stacks like PFQ or PF_RING DNA are open-source
too. Development in C works on all platforms, although the different network
stacks are not compatible. Migrating to a different platform would require to
rewrite the code for receiving packets, and probably to work again on the opti-
mization for the new platform.

The flexibility of CPU development is very good as CPUs are designed to
be able to handle all kinds of tasks with good performance.

In terms of security, the use of the Linux kernel is both an advantage and
a drawback [Cow03]: many people work on making it secure, but flaws are also
researched actively by attackers. The complexity of the full Linux operating
system and applications also gives more opportunities to find flaws.

38

The update simplicity of software development is very good, as processes for
online software updates are well-known and used everywhere. Many full-featured
solutions are freely available [MBdC+06].

2.2.3 GPU computation

When massive computations are required, GPUs are more and more suggested as
a way to overcome the limitations of CPUs. The main interest of GPUs is that
they provide massive parallelism with hundreds of cores and a big high-bandwidth
memory [HJPM10]. They also have a way to hide memory accesses by having
more threads than cores, and running the ones that are not waiting for a memory
access first.

This architecture brings more computation power for heavy computing on
large data. But using the GPU also adds some constraints, that must be taken
into account to leverage the computation power:

• The GPU may not replace the CPU as no direct connection can be made
between the GPU and the NIC. So the CPU still handles the transmission
of packets between the application and the NIC. The GPU is only used to
offload some of the heaviest processing from the CPU.

• The communication speed between the CPU and the GPU is limited. The
connection if often done using a PCI express (PCIe) link with effective data
transfer rates up to 5.6 GB/s from host to device and up to 3.4 GB/s
from device to host [HJPM10] (PCIe 2.0 x16). This makes sending all data
received from the network to the GPU usually impossible.

• Launching new tasks on the GPU implies significant overhead. For this
reason, handling packets one after the other is inefficient. Batching tasks
for multiple packets often improves performance, although it also increases
the average response time of the application.

Examples of applications using the GPU include a software router with ac-
celerated Internet Protocol version 6 (IPv6) routing lookups supporting up to
39 Gb/s [HJPM10], a traffic classifier with accelerated DPI supporting up to
6 Gb/s [SGV+10] and an intrusion detection system with accelerated pattern
matching supporting up to 5.2 Gb/s [VPI11]. These examples all focus on the
importance of choosing the part of the processing that will be offloaded to the
CPU wisely: it must benefit from massive parallelism, not require too much data
transfers, and be easy to batch in big enough tasks.

The flexibility of GPU development is actually as good as for CPU develop-
ment because the CPU is still available for tasks where the GPU is not adapted.
But if the main tasks are not adapted, then the GPU probably should not be
used at all.

The development time is more important than using only a CPU due to
the more complex design. The development itself is more complicated and less
developers are expert at it. Two main languages exist for scientific development on
GPU: CUDA and OpenCL [DWL+12]. CUDA is developed by Nvidia and works

39

only with Nvidia GPUs, while OpenCL is an open standard designed to work with
all GPUs and other platforms. CUDA offers more high-level tools and is more
advanced than OpenCL. Efforts exist to make these languages simpler [ULBH08].

The choice of language also affects the platform openness. While code in
CUDA can be used only on Nvidia GPUs, code in OpenCL can be used on many
GPUs, as well as on other kinds of devices, like FPGAs.

The reliability and the security of the platform is about the same with or
without using a GPU, as it is just an offloading device that is not directly in
relation with the network interfaces. The update simplicity is a bit smaller
as online update of GPU software is not as common, but deploying CUDA or
OpenCL executables remains simple.

The hardware cost can vary widely depending on the required power. Nvidia
Tesla GPUs, which are made to run scientific applications, cost between $1 000
and $3 000 [Ama13], but a full system (NIC, CPU and GPU) may be obtained
at only $2 739 [VPI11].

2.3 Network processors

Instead of using commodity hardware, with CPUs that are not designed for traffic
processing, processing units tailored to this kind of applications can be used. They
are called NPUs. This section will describe the principles and use cases of these
specialized processors.

2.3.1 Principles

The main advantage brought by NPUs is a direct communication between the
processing units and the network interfaces. As the processors are designed to
work with these interfaces, they transmit data at full rate to and from the applica-
tion, without using the computation units available for the application. Another
advantage is that network processors come with some common network functions
implemented in hardware, which accelerates their execution.

Network processors form a wide variety with very different designs depending
on the requirements: some are specialized for very specific tasks, some are more
flexible and generic. But they are typically made of [Hep03]:

Network interfaces which define the supported data rate of the processor.
They work just like a NIC except that they are connected directly with
other components, without the need of an important software network stack
to manage them.

Network co-processors are specialized pieces of hardware that perform a sin-
gle task. This way, the most common tasks for network applications are
directly handled in hardware:

Lookup engines are used for routing, by selecting a route from an IP
address for example.

40

Queue management is often useful to manage congested links: packets
are stored and sent as soon as possible, with the ability to give some
packets higher priorities than the others.

CRC calculation is required by many protocols to detect transmission
errors. They typically have to be computed when receiving and when
sending packets.

Encryption functions are useful for security to prevent anyone reading
the packet from understanding its content, or to sign a packet and
guarantee its origin.

Memory is an important component and may be used to store received data,
routing tables, etc.

Programmable processors can be used in the same way as small CPUs, ex-
cept that they have a direct access to all other components of the network
processor. They are usually programmed in C with some special functions
available to use the co-processors. They are designed specifically for traffic
processing, with an adapted architecture.

This architecture is at the origin of the increased processing power of NPUs.
Processors are helped by a direct access to network interfaces and very efficient
co-processors. This benchmark [MMSH01] compares the performance of an Intel
NPU and a CPU and shows that the NPU performs better for all traffic process-
ing tasks. The gains are impressive, but only for applications that do need the
functions provided by co-processors. If the bottleneck of the application is in a
function that is not common in networks, gains will be much less impressive.

The direct access to interfaces also helps in terms of reliability: network
processors are guaranteed to work at line rate because of their much simpler
network stack.

2.3.2 Development platforms

Development platforms for NPUs are very different from each other. For example,
Marvell has [Mar13] network processor chips that have to be integrated on a board
with network interfaces, memory, and optionally additional co-processors. The
supported data rate can go up to 160 Gb/s with multiple 10 Gb/s interfaces.
Requesting a quote for the Marvell X11-D240T, which supports up to 40 Gb/s,
we were given a price of $250. But the actual hardware cost is much higher
because the price is only for the chip: an integrated board with network interfaces,
memory, and optional co-processors will cost much more than the chip itself.

A very popular development platform is based on the Intel network proces-
sors [Int07] but they stopped producing these processors. The reason may be
that the market was smaller than expected, as explained by this article [Sch06].
Indeed, NPUs have very specific use cases, so they are confined to small mar-
kets. In terms of platform, Intel NPUs use the same principles as the Marvell
processors.

41

EZChip Technologies also sells network processors, which can handle up to
240 Gb/s of traffic [Tec13]. These processors are offered standalone or in full-
featured evaluation boxes. The announced speed is impressive, but this is the
maximum speed when no application is implemented on the NPU: packets are
simply forwarded. The impact of the application of actual supported speed is
important.

The particularity of these three platforms is that they are fully incompatible
with each other. That means that code developed for one platform would have
to be rewritten in big parts to work on a new platform: the framework is differ-
ent, the available hardware-accelerated functions work differently and the control
architecture is different too. This is bad for the platform openness. As the
development is very low-level, portability is very hard. The C language is used
by the three platforms, but assembly development is even advertised for more
optimized results on the EZChip development platform.

The complexity and specificity of each platform also increases the develop-
ment time, and finding developers who know the selected platform will prove
very difficult. But efforts exist to simplify the development and portability: the
concept of virtual NPU has been suggested to develop an universal NPU develop-
ment framework [BR09], as well as a common architecture for all NPUs [VM04].
These initiatives do not seem to be followed by manufacturers yet. An example
development [LHCK04] shows the complexity issue: four algorithms were tested
but they had time to implement only one on NPU.

The update simplicity depends on the platform, but building executables
for the included processors should be easy. The deployment can then be done
remotely if a programming interface is accessible.

In terms of future scalability, the potential is very high. Alcatel-Lucent
claims to use a proprietary network processor in its products able to handle
400 Gb/s [AL11]. The problem is that once a platform is chosen, changing is
very costly, so improvements depend fully on the will of the manufacturer. This
is concerning as some major manufacturers like Intel have discontinued their
network processors family [Int07].

The security of each platform depends on the manufacturer. The network
stack is simple, which means that software running on the platform is limited
and controlled either by the manufacturer or by the application developer. This
limits security risks.

2.3.3 Use cases

Depending on the application, using network processors will bring different per-
formance improvements. If the application relies massively on common network
functions like lookup engines, NPUs will be efficient accelerators because these
functions are implemented in hardware [MMSH01]. But if the bottleneck is due
to a more original function, that is not available as a co-processor, improvements
will be less impressive.

As vendors offer solutions with different architectures and co-processors, the
best platform choice depends on the requirements of the developed application.

42

As changing during development would be very costly, making a wise choice from
the start is essential. This also limits the flexibility of the platform, as some
applications will not be adapted because the speed bottleneck is an uncommon
task in networks.

An example use case is an application for flow management [QXH+07]. It
receives packets and builds information about UDP and TCP flows. It is also
capable of remembering the state of each flow. They use the Intel IXP2850
network processor. The process of gathering flows relies heavily on hash tables,
which is one of the common functions implemented on NPUs. To get better
performance, they use the CRC hash function, which is already implemented
on the NPU. This way, they support the line rate of 10 Gb/s. This kind of
applications is very adapted to an NPU implementation.

Another possible application is traffic classification using DPI [LKL12]. They
use a network processor with 4x10 Gb/s interfaces. This example shows the
flexibility of network processors: modular software development is used to be
able to change on the fly parts of the code executed on the NPU.

2.4 FPGAs
Field-Programmable Gate Arrays (FPGAs) are special integrated circuits that
can be configured as many times as necessary at a very low level. Their big
difference with all previous solutions is that they are not processors and are not
made to be programmed. They work at a lower level: it is actually possible to
implement CPUs, GPUs or NPUs using an FPGA. Systems on chip exist that
associate FPGAs and CPUs, and if programmability is needed, a CPU can always
be implemented on the FPGA, but this is not the main interest of FPGAs. This
section will describe how these circuits work, how they can be used for network
applications, and their interests.

2.4.1 Composition of an FPGA

An FPGA is a reconfigurable integrated circuit. It basically provides three types
of very low-level elements [RAMV07]:

Inputs and outputs are just ports capable of receiving and sending binary data
outside the chip to communicate with other elements.

Look-Up Tables (LUTs) are components that can realize any combinatorial
logic function: they receive a certain number of words as input, and set
their output bits to a combination depending only on the input bits. The
LUTs can be configured so that any output corresponds to any input. This
way, a LUT with four input bits and three output bits can be used for
example to realize an adder of two words of two bits: the two first input
bits are used for the first word, the two others for the second word, and the
output is the result of the addition of the two words. Other basic functions
like a logical or, a logical and or a multiplexer (to implement conditions)
can be realized.

43

Registers are small local temporary memory elements. They take as input a
word, an enable signal and the global clock signal of the circuit. When the
enable signal is active, they change their output at each clock cycle to the
input word. When the enable signal is inactive, the output keeps its current
value. Registers allow to synchronize the values in the circuit on the global
clock. They also allow to keep temporary values in memory.

These three types of elements are present in very important quantities in an
FPGA. Configuring an FPGA simply consists in drawing wires between these
elements, and configuring the function realized by each LUT. All complicated
operations on bits can be realized this way. Of course, building complex circuits
this way would take a very long time. This is why development tools exist that
support all basic operations: arithmetic operations, boolean operations, condi-
tions. . . The wanted circuit is realized at a higher level, and an automatic tool
decides how to use the LUTs and how to do the wiring.

Figure 2.1: Sample circuit on an FPGA realized with Xilinx ISE

Figure 2.1 is an example of circuit that can be configured on an FPGA. It
has two inputs A and B. Output RES is the result of the accumulation of the A
values at each clock cycle. Output COMP is the result of the comparison of RES
with B. Here LUTs will be used to implement the addition and the comparison.
Registers will be used to store the result of the addition at each clock cycle, so
as to reuse it during the next clock cycle to compute the accumulation.

Although LUTs and registers are the main components of an FPGA, some
other elements are often present to simplify certain operations:

Memory is often available on the chip to store bigger quantities of data than
the registers can contain. This memory is usually small but can be read or
written in only one clock cycle, which makes it very easy to use.

Digital Signal Processing (DSP) units are also available to realize some com-
plex arithmetic operations. They are often used as multipliers. They are
faster and use less space than the same function implemented in LUTs.

44

Transceivers are special inputs and outputs made to connect the FPGA to
links that work at a higher frequency than the FPGA can directly handle.
They are essentially serial-to-parallel converters in input and parallel-to-
serial converters in output.

The computation power provided by FPGAs comes from their inherent
massive level of parallelism. Processors work by processing instructions which
depend on each other, so the instructions are executed one after the other. On
an FPGA, all elements can work concurrently. If the design is well done, no
part of the circuit will be idle at any time during processing. For example on
Figure 2.1, both the adder and the comparator perform one operation at each
clock cycle. On a larger design, thousands of operations happen at each clock
cycle. Here [GNVV04] is an analysis of the speedup factor of an FPGA over a
CPU.

An FPGA also provides a very good flexibility. All kinds of applications can
be developed on it. Compared to CPUs, it is not originally designed for floating-
point computations. It can still be done [Und04], but it increases the complexity
and requires a lot of resources on the chip. This is why most applications are
converted to fixed-point computations when ported to FPGA. If a variable in
an application requires a very good accuracy on small numbers and a big range
of values, or if a variable may not be bounded, the conversion to fixed-point
computations will make the results inaccurate. In this situation, using an FPGA
is probably not the best solution.

The two main manufacturers of FPGAs are Xilinx and Altera. They are used
for very diverse applications [RAMV07] like medical imaging, signal processing,
error correction codes, etc.

2.4.2 Boards for traffic monitoring

An FPGA is just a computation unit. It receives binary data, processes it, and
generates binary data. It has a large number of input and output wires. This
is why it is usually integrated on a board, which connects the FPGA to other
electronic components.

Some boards are specialized for network applications. They mainly connect
the FPGA to network interfaces and memories. Most of these boards are designed
to be embedded into a computer, and are able to communicate with the CPU
through a PCIe port. Among these boards are:

The NetFPGA 1G [LMW+07] embeds a Xilinx Virtex-II Pro 50 FPGA, 4x1
Gb/s Ethernet interfaces, 4.5 MB of SRAM and 64 MB of DRAM.

The NetFPGA 10G [Net12] embeds a Xilinx Virtex 5 TX240T FPGA, 4x10
Gb/s Ethernet interfaces, 27 MB of SRAM and 288 MB of DRAM.

The Combo 20G [IT13] embeds a Xilinx Virtex 5 LX155T FPGA, 2x10 Gb/s
Ethernet interfaces and 144 MB of SRAM.

45

The NetFPGA 10G represents a hardware cost of $1 675 for academics. The
only other hardware required to use it is a normal computer that will communicate
with it and be able to reconfigure it. The most obvious difference between these
three boards is the speed of their interfaces, but the FPGA model differs too.
Different models have different numbers of logic units (LUTs, registers, inputs
and outputs, memory and DSP units). The most powerful FPGA is on the
NetFPGA 10G, and the least powerful on the NetFPGA 1G. The available on-
board memory varies as well. Other models of FPGA exist that are much bigger,
but they have not been chosen for these boards to keep the cost low.

The supported data rate of the boards only depends on the speed of their
interface. Network interfaces are connected to the FPGA in a very direct way.
For example on the NetFPGA 10G, each 10 Gb/s optical link is connected to
an enhanced Small Form-factor Pluggable (SFP+), which converts the optical
signal into an electrical signal. This signal is then connected to an electronic
dispertion compensation equalizer, which cleans the signal, and to four RocketIO
GTX transceivers, which are special transceivers directly integrated to the Xilinx
Virtex 5 FPGA. This way, the signal is seen inside the FPGA as two parallel buses
that work on the FPGA frequency and support the 10 Gb/s speed. The actual
speed of the bus is even higher than 10 Gb/s to allow to add internal headers
to each packet to transmit information between different entities implemented
on the FPGA. There is one bus receiving data, and one bus sending data. This
article [BEM+10] describes more deeply the architecture of the NetFPGA 10G
board. All the application has to do to support the maximum speed is to not slow
down the buses. This also affects the reliability of the platforms: the boards are
designed to support the maximum data rate of their interfaces with the smallest
packets. The application developers control all the factors that may slow down
the computing as they decide how to use each electronic component.

To guarantee the future scalability of applications developed on these boards,
different solutions are possible:

• Use FPGA boards with faster interfaces: a Combo 100G board is for ex-
ample in development [Pus12]. It will have one Ethernet interface at 100
Gb/s.

• Reuse the FPGA development to design an Application-Specific Integrated
Circuit (ASIC). These specialized circuits are made of basic logic and arith-
metic gates to realize a specific function. Contrary to FPGAs, they cannot
be reconfigured after manufacturing. This means that all the reconfigura-
tion logic that takes a lot of space on an FPGA can be removed, and that
basic logic gates can be optimized. This way, ASICs reach higher speeds
and are more compact, which would help support higher data rates. A
design for an FPGA is usually used as base to design an ASIC. Specialized
circuits cost more to design, but if a lot of units are sold, each unit will cost
less than an FPGA.

46

2.4.3 Development principles

Development on FPGA is usually based on one of two languages: VHDL or Ver-
ilog. Both are hardware description languages. They look similar to classical
programming languages, but do not work the same way. The main difference
is that lines written one after the other do not execute consecutively but con-
currently. A file usually describes one entity, with input and output wires, and
the description of the processing made by this entity. Entities can include other
entities as components by connecting to their inputs and outputs.

Full-featured development suites are provided both by Xilinx and Altera. Each
suite works only with FPGAs from the same manufacturer, but development can
always be done using indifferently VHDL or Verilog. So code developed for one
platform can be used on the other. The important tools for development on
FPGA are:

A simulator, which is used to check the proper behavior of an entity described
in VHDL or Verilog. All there is to do is to write a testbench in VHDL
or Verilog, which will manipulate the input values of the entity during the
simulation time. The graphical simulation shows everything that happens
on each wire inside the entity. It is also possible to automate the verification
by checking the output values against predicted ones. This tool is essential
to save time and ensure that no obvious development mistakes were made
before testing the entity on the FPGA.

A synthesizer, which transforms an entity written in VHDL or Verilog into a
bitfile that can be used to configure an FPGA. This process is made in
many steps and can take a long time. The code is first transformed into
a list of basic operations that are available on the FPGA. Operations are
then mapped on the actual layout of the FPGA, and the tool tries to route
all connecting signals on the chip. This is a heavy optimization problem:
each bit manipulated by the entity is a wire, and if any wire between two
registers is too long, the global clock frequency of the FPGA will have to
be lowered, which will reduce the computation speed.

Once the bitfile is configured on the FPGA, its functionality can be tested.
But it is a very slow and complicated process. The main problem is that is is
difficult to access to the internal values of wires inside the FPGA. This is why
the simulation must be done very thoroughly to avoid having to debug hardware.

The development time on FPGA is longer than on processors because it is
very low-level. Simple operations can take long to implement. Software devel-
opers will also need time to get used to the different development paradigms on
FPGA. The debugging process can also be very long, especially if the bug is not
visible during simulation, because the synthesis operation takes very long, and
access to internal wire values of the FPGA is complicated. A comparison of the
development of the same application on FPGA and GPU [CLS+08] shows that
FPGA development is longer.

To support the specific features offered, NetFPGA and Combo boards come
with a development framework. The NetFPGA framework is open-source and

47

free. Some design choices are different between the NetFPGA 1G and the NetF-
PGA 10G [ASGM13]. The Combo framework is closed, it is called NetCOPE.
It is compatible with all current Combo boards and recently with the NetFPGA
10G [KKZ+11]. Each framework contains the description of the global entity that
can be used on the NetFPGA, with the configuration of the connections to all
components on the board. The global entity is made to connect to the network
interfaces and manage incoming and outgoing traffic. An application developer
just has to design an entity, which will connect to buses to communicate with
the network interfaces, and respect the specified bus protocol. A simulation en-
vironment is also provided to simulate the developed entity in a context as close
as possible to the actual board.

The platform openness is better for NetFPGA because the framework is
fully open-source, and open-source projects using the platform are encouraged
and listed on their website. But the NetCOPE platform is compatible with more
boards. It can be noted too that thanks to the use of VHDL or Verilog on both
platforms, and the inherent modularity of hardware description code, migrating
from one platform to another is not very difficult. It essentially implies to adapt
the bus interfaces in input and output. The existence of an adaptation of the
NetCOPE platform for the NetFPGA 10G is an evidence of the similarity of their
design [KKZ+11].

The update simplicity of FPGAs is not very good. As the process to gen-
erate the bitfile (which is the equivalent of an executable for an FPGA) is very
long, even small changes require some time. And as development is more com-
plex, the validation phase should be more thorough. The workflow is described
more precisely here [RAMV07]. Reconfiguring an FPGA can be made remotely
if its reconfiguration interface is connected to a computer on the network. But
FPGA implementations can be made much more flexible as it is even possible
to configure a programmable CPU on an FPGA, enabling simple software up-
dates. For example, this article [LSS+09] implements a specialized CPU made
for forwarding traffic on a NetFPGA 1G. This is a custom NPU with hardware
accelerators specifically designed for the application.

Ensuring the security of an application on FPGA is simpler than on a CPU
because less external code runs on it. The code that does not belong to the
application developers belongs to the used framework. It can be open-source
code, but there are also closed-source blocks, called Intellectual Properties (IPs).
For these parts, developers have to trust the providers.

2.5 Conclusion
Different development platforms are adapted for network applications. Depending
on the requirements, the best platform to choose may be different. The advan-
tages and drawbacks of each platform are summarized in Tables 2.1 and 2.2.

If the main requirement of the application is to be flexible, using commodity
hardware seems to be the best solution because development and updates are
easier. Depending on the needs in parallelization, using a GPU will be necessary
or not.

48

If the goal is to have the highest data rate and computation power, a choice
has to be made between NPUs and FPGAs. NPUs are very good for common
network tasks, and may be cheap if hundreds of thousands of units are sold.
FPGAs are more flexible and the developed code is more easily portable. If more
computation power is required and hundreds and thousands of units are to be
sold, ASICs should be considered, as development on FPGA is a good base to
design an ASIC.

In next chapters, three applications will be developped. One on commodity
hardware and the two others on an FPGA. The results of these developments will
shed more light on some aspects of these platforms, especially:

• the compared computation power available on CPU and on FPGA, and
how to exploit it best,

• the update simplicity provided by CPUs and the ways to get some flexi-
bilty on FPGAs too,

• the development time on each platform, and the possibilities to reduce
it on FPGA,

• the future scalability perspectives provided by each platform to the ap-
plications.

49

CPU/NIC CPU/NIC/GPU

Supported
data rate

Interfaces up to 4 × 10 Gb/s [Int13]. Supporting about 40 Gb/s re-
quires novel network stacks and software highly customized to hard-
ware [HJPM10].

Computation
power

CPUs design is not the most
adapted for packet process-
ing [HJPM10] (memory access,
parallelism level)

GPUs provide a higher level
of parallelism and processing
power. The CPU/GPU commu-
nication bandwidth may become
a bottleneck [HJPM10, NI10].

Flexibility All algorithms can be imple-
mented

GPUs are not adapted if compu-
tations require a lot of data com-
munication [AMY09]

Reliability Accuracy of timestamps and supported data rates is low [MdRR+12,
BDP10]

Security More complicated software means more risks of security flaws, use of
the open-source Linux kernel [Cow03]

Platform
openness

Full open-source network stacks
exist (e.g., PFQ [BDPGP12b],
PF_RING DNA [RDC12],
HPCAP [MdRR+12],
Netmap [Riz12]) but are not
compatible with each other.

For GPU programming, OpenCL
is an open standard, CUDA is
specific to Nvidia [DWL+12]

Development
time

Pure software development, but
great care must be taken to cus-
tomize the architecture to the un-
derlying hardware [SdRRG+12]

GPU programming is more com-
plicated than CPU [ULBH08],
GPU/CPU communication re-
quires careful design [HJPM10]

Update
simplicity

Development on CPUs and GPUs is based on C [DWL+12, HJPM10].
After compilation, the executable can be deployed remotely.

Future
scalability

Current implementations reach around 40 Gb/s [HJPM10]. Sup-
porting higher data speeds would require better hardware, and an
adaptation of the software part to eliminate the numerous limiting
factors (buses speed, memory speed, processing power)

Hardware
cost

Intel 40 Gb/s NIC: $1 100 [Int13] Nvidia Tesla GPU from $1 000 to
$3 000 [Ama13]

Table 2.1: Advantages and drawbacks of different development platforms (1)

50

NPU FPGA
Supported
data rate

1 Gb/s and 10 Gb/s up to
160 Gb/s at Marvell [Mar13]

Interfaces up to 4 ×
10 Gb/s [Net12]. Full support
guaranteed by design [BEM+10].

Computation
power

High parallelism level and spe-
cialized accelerated functions
(hashing. . .) [Hep03, MMSH01]

FPGAs provide massive paral-
lelism and low communication la-
tencies [GNVV04]

Flexibility Possibilities depend on each
model. Very common tasks bene-
ficiate from the most acceleration

FPGAs may not be adapted if
numerous floating-point compu-
tations are essential [Und04]

Reliability Designed to work at full rate
[Hep03]

Designed to work at full rate
[BEM+10]

Security Risk of security flaws in the APIs
provided by manufacturers like
Marvell [Mar13]

Risk of security flaws in the IPs
provided by manufacturers like
NetFPGA [BEM+10]

Platform
openness

Each vendor has its proprietary
framework, although efforts exist
to unify them [BR09, VM04]

Verilog and VHDL are languages
that work for all FPGAs, packet
handling frameworks are similar
and conversion is easy [KKZ+11]

Development
time

Development complexity is
high [LHCK04] and dependent
on each platform.

Development on FPGA
is the most com-
plex [CLS+08, RAMV07]

Update
simplicity

Development on NPUs is mostly
based on C [Mar13], remote de-
ployment is possible only if it was
included in the board design.

To reconfigure an FPGA, a bit-
file is required. The process to
get it is called a synthesis, it can
be very long (1 day) [RAMV07].
But it can be made very flexible
(programmable) if designed so.

Future
scalability

Manufacturers claim supporting
up to 400 Gb/s using proprietary
(unavailable to the public) net-
work processors [AL11]. Scaling
requires changing the processor.

The current supported speed is
40 Gb/s [Net12]. A 100 Gb/s
board is in development [Pus12].
Scaling requires essentially
adapting to a new communi-
cation bus width. An FPGA
implementation can also be used
to design a more powerful ASIC.

Hardware
cost

Network processors are often sold
alone, they must be integrated on
a custom board. Marvell X11-
D240T processor costs $250 (ne-
gotiable)

NetFPGA 10G board academic
price: $1 675 [Net12]

Table 2.2: Advantages and drawbacks of different development platforms (2)

51

52

Chapter 3

Software monitoring applied to
security

The most straightforward way to implement traffic monitoring is by developing
software on commodity hardware. This is a solution we studied in the frame of an
European project called DEMONS. One of the goals of this project is to provide
a flexible framework for traffic monitoring applications at high data rates. Our
role in DEMONS is to test this framework by developing a test application. As
DEMONS is focused on security, the chosen use case is to detect a specific kind
of attacks called Distributed Denial of Service (DDoS). This choice is especially
due to previous work [SVG10] made at Télécom Bretagne on DDoS detection for
a French Research project called Overlay networks Security: Characterization,
Analysis and Recovery (OSCAR).

DDoS attacks consist in sending traffic from multiple locations in order to
prevent a target from serving normal requests. These attacks are more and more
visible in the news [Rya13] because big companies and even states are attacked.
They are simpler to stop early in the network than at the level of the target,
because attack packets all converge to the target from different locations. This
is why network providers should be equipped of DDoS detection and mitigation
systems.

We will first describe the state of the art about DDoS detection and software
monitoring platforms. We will then explain our focus on detecting a specific kind
of attack. The flexible and scalable network monitoring framework provided by
DEMONS will then be described. Finally we will detail the implementation of
our application in this framework and evaluate the results in terms of scalability.

3.1 State of the art on DDoS detection implemen-
tation

In this section, we study parts of the literature on traffic monitoring that are
interesting to implement a DDoS detection application in a flexible and scalable
way. As we are interested in evaluating the monitoring platform provided by the
DEMONS project, we first study different existing monitoring platforms, as well

53

as their advantages and drawbacks. Then we focus on the DDoS detection use
case, first listing different kinds of DDoS attacks, and then describing different
ways to detect these attacks.

3.1.1 Monitoring platforms

It is possible to develop a DDoS detection system as a standalone application.
But to improve the flexibility and hopefully reduce the development time, existing
monitoring platforms can be interesting. For the user, the monitoring platform
defines the ease to install the system on the network, the maximum data speed
that may be supported, and the way the system is used and maintained. It is
also important for the developers because it can make the implementation easier
or harder.

CoMo [Ian06] is an example of network monitoring platform. Its principle is
to work on different time scales depending on the task:

• The capture, that is to say the extraction of certain simple features in the
flow of monitored packets, is made in real-time. This is the most time-
constrained operation.

• The export, which consists in storing the extracted features into a database,
is periodic.

• The advanced analysis on received data is made at user request.

The point of this differentiation is to give the most resources to the capture, so
that it can process a large amount of traffic. Application Programming Interfaces
(APIs) are available to control each task, so that developers can customize their
behaviour. This means that developers write code that has to run in real-time,
but the CoMo API provides the capture and export primitives, as well as the user
interface.

ProgMe [YCM11] is another monitoring platform that is more strict to devel-
opers than CoMo. The goal is to make sure that developers will not hinder the
performance of the capture mechanism. ProgMe defines the concept of flowsets,
sets of packets with common properties (like the same source IP or the same
source and destination TCP ports). The real-time capture engine updates con-
figured counters when it receives packets that belong to the corresponding flowset.
Flowsets can be programmed dynamically. That means that developers do not
write code that is executed in real time, but only code that configures the real-
time capture engine. This is less flexible than CoMo, but easier to scale to higher
bit rates.

It is also possible to choose a different direction and give as much flexibility
as possible to developers, so that they are responsible of the scalability of the end
result. This idea can be found in the modular router Click [KMC+00]. This is not
a monitoring platform but it is also designed to handle packets. Here developers
can add elements of code that are inserted in the datapath: they act directly
on packets. It is even more flexible than the principle of CoMo because there
are no fixed tasks: developers can add as many elements as they want to modify

54

the behaviour of the router. We will see that this system can be applied to a
monitoring platform.

As discussed in the previous chapter, for a software monitoring platform to
support high bit rates, the network stack is very important. The Voice over IP
(VoIP) monitoring system RTC-Mon [FHD+09] is an example of platform using
a fast network stack, PF_RING [RDC12].

In the frame of the DEMONS project, a network monitoring platform called
BlockMon has been developed. Its specificities are described in Section 3.3. We
will now focus on the use case made to test the BlockMon framework: a DDoS
detection algorithm.

3.1.2 DDoS attacks

Attack techniques

DDoS attacks are more and more widespread because they are both simple and
efficient. They consist in using a large number of computers to attack a single
target, so that it stops working normally. Results of these attacks are visible
in the news [Rya13]: big companies under attack are not able to provide their
online services for long periods, and the global traffic on the Internet can even
significantly increase [Mat13].

The usual goal of these attacks is to disrupt the normal operation of the target.
This is used for example by the “Anonymous” group to protest against companies
for ideological reasons. The website of Paypal for instance was under attack in
2010 [New13] because Paypal blocked accounts financing WikiLeaks. But DDoS
attacks can also be used as part of a more sophisticated attack to get access to
restricted resources. Once a server is out of order because of a DDoS attack, it
is easier to replace it by a fake server that other servers will trust, and that is
controlled by the attacker. For example, most local networks are equiped with a
DHCP server that provides the address of the router to all machines arriving on
the network. Setting up a fake DHCP server to provide a wrong router address is
easy, but the selection of the real or fake DHCP server by new machines arriving
on the network will be random. A DDoS attack on the real DHCP server can
prevent it from answering and make sure that all computers use the fake DHCP.

Many different kinds of DDoS attacks exist, but the basic principle is mostly
the same: it relies on sending multiple times a request that is:

• easy to generate, so that it can be sent at a high rate to the victim;

• difficult to handle for the destination server, so that a low request rate is
enough to use all resources on the destination server;

• difficult to differentiate from normal traffic, so that the attack cannot be
filtered easily.

Classical DDoS attack techniques use inherent flaws of various layers of the
network stack [JP12]:

At the network layer:

55

The teardrop attack targets the reassembly mechanism of the IP proto-
col. Invalid IP segments are sent to the target, giving it a lot of useless
work to try and reassemble the segments.

The Internet Control Message Protocol (ICMP) attack consists in
sending ICMP requests, called “ping” to the target, so that it replies
with ICMP echo packets. The goal is to create network congestion and
use the target’s resources.

At the transport layer:

UDP flooding consists in sending many UDP packets to random ports
of the victim, to force it to reply with ICMP network unreachable
packets.

TCP SYN flooding works by sending many TCP SYN packets to the
victim. The TCP protocol is flow-based, which means that a state has
to be maintained in memory on the two machines implied in a TCP
connection. The TCP SYN packet is designed to start a connection,
so it forces the receiving machine to allocate memory to manage the
new connection, and to send acknowledgement messages. By sending
many TCP SYN packets to a target, its resources are intensively used.

TCP reset is a bit different from other attacks because it does not consist
in sending a massive amount of packets. It simply consists in sending
a TCP reset message to the victim, making it look as if it belongs
to an existing connection, with an existing source address and port,
and existing destination port. This way, the legitimate connection is
stopped and the victim cannot provide the expected service. This is a
small scale attack that can be useful to stop one specific connection.

At the application layer:

The DNS request attack is interesting to attackers because it contains
an amplification mechanism: many DNS requests are sent to domain
name servers with the source IP address set as the IP of the victim.
Domain name servers reply to each request with data about the re-
quested domain. But as the source IP address of the requests was
forged, the replies are sent to the victim. The replies are much bigger
than the requests, so attackers only have to send small requests, and
the victim is flooded by big messages.

The mail bomb works by sending many email messages to the address
of a victim. This will fill the disk of the victim, making it unable to
provide its normal services.

Another important aspect for attackers is the need to mask the sources of the
attack, to make it more difficult to identify the attacker. The best way to do this
is to use reflectors, that is to say open servers on the Internet that easily reply to
large amounts of requests. Attackers send requests to this server with a forged
source IP address, set to the address of the target, so that the server answers to

56

the target instead of answering to the attacker. This is the principle behind the
DNS request attack: the reflectors are then domain name servers.

With the same principle, a variant of the TCP SYN flooding attack is also
used: instead of sending SYN packets directly to the victim, they are sent to an
open server, with the source address set to the address of the victim. This way
the server replies with TCP SYN ACK packets to the victim. Contrary to the
previous attack, this variant contains no amplification mechanism: SYN ACK
messages are the same size as SYN messages. But the source of the attack is
masked.

These two kinds of attacks using reflectors (DNS requests and TCP SYN
flooding) have been involved in a recent attack against Spamhaus [Mat13].

Generating the traffic

The last remaining problem is that most attackers do not have the resources
required to send large DDoS attacks, and they do not want to send these attacks
using their own machines as this would make them easy to identify. This is where
botnets come into play.

Botnets are sets of remotely-controlled machines used to perform a common
task. Although legal botnets exist, attackers use illegal botnets. The difference is
that they are usually made of machines from normal Internet users, who have no
idea that their machines are parts of a botnet. Viruses are used to take control
of these machines: once the virus has gained access to the machine, it installs
a backdoor that enables the pirate to send orders to the machine. These orders
are usually simple: “send TCP SYN packets to this address”, “send this email to
these addresses” or “send random DNS requests to this server”.

Actions from the botnet seem to come from innocent Internet users who are
not even aware of what their machines are doing. The only way that remains
to identify the pirate is to find the way it controls the botnet. So pirates have
made it very difficult to find whom the backdoor communicates with. Some
backdoors connect to Internet Relay Chat (IRC) servers on a given channel, and
wait for the attacker to send a specific control message [CJM05]. Others use a
centralized command server with an address masked using multiple domain names
stored in a list by all bots [SK12], and some even use more Peer-to-peer (P2P)
architectures where the order is sent only to some bots that transfer it to the
others. Mobile botnets running Android are even controlled by Short Message
Service (SMS) [NP12].

Botnets are usually not directly used by the pirates who create them. Others
pay the pirates to use their botnets. One common use is to send massive amounts
of spam messages. Generating traffic for DDoS attacks is also a very frequent use.
It is an efficient way to get large resources, while keeping the risk to be identified
very low.

As identifying attackers and finding or destroying botnets are very challenging
tasks, the best current way to defend against DDoS attacks is to mitigate their
effects when they happen. Currently commercial services exist that act as a
shield between a server and the attackers. They have farms of servers located all
around the world, replying to the same IP address. This way attacks are spread

57

between all servers that receive fewer packets, and are able to ignore them. This
routing method is called anycast. Network providers use a protocol called BGP
to communicate between each other where each IP address can be contacted.
When using unicast, the same IP address is announced at different locations on
the network. Routers choose the nearest location.

This technique dilutes the impact of the attack but does not actually stop it.
Only operators have the ability to mitigate attack traffic on their network. This
is an interesting service that network operators could provide to their customers:
a guaranteed protection against DDoS attacks. To do that, attacks must first be
detected. We will now see different ways to detect DDoS attacks, focusing on the
very common TCP SYN flooding attacks.

3.1.3 DDoS detection algorithms

Depending on the technique used, DDoS detection can be deployed at different
levels:

At the server level, only one machine is protected. All inbound and outbound
traffic of the server is watched. This allows very fine-grained monitoring.
By knowing the role of the server, a list of expected types of communication
can be made, as well as a description of the way each client is expected to
behave for each type of communication. If a client behaves in an unexpected
way, trying to join unexpected ports or sending an unusual amount of traffic,
an alarm can be raised. It signals a malfunction or an attack.

An example of such a system is described in this article [PYR+13]. It is
located on a router close to the server to protect. It checks all inbound
and outbound packets by maintaining state machines. There is one state
machine for each communication (for example an Secure SHell (SSH) ses-
sion or an HyperText Transfer Protocol (HTTP) file download). If the
communication brings the state machine into an unusual state, an alarm is
raised.

This technique is very accurate, but it is difficult to manage for network
administrators: each legitimate service provided by each server to protect
must be listed and precisely analyzed. The task of protecting a server under
attack is also very heavy for the router, because it receives all the attack
traffic targeted to the server, and it has to maintain state machines about
this traffic. So there is an important risk for the router to fall under the
DDoS attack, while trying to protect the server. If this happens, the server
will become unreachable, and the attack will have succeeded.

At the access network level, a whole set of machines on the same subnetwork
can be protected at once. The main interest of staying near the network
border is that attacks are easier to detect. Indeed DDoS attacks come from
different locations on the Internet. So a router in the core network does
not see the whole attack, but only a small part. Other packets use different
ways to reach their target. Another advantage of the access network is

58

that for each protected machine, both inbound and outbound traffic can
be watched. As routing in the core network is not symmetric, there is no
guarantee that a router will see both inbound and outbound packets.

Techniques made to protect a large number of machines from DDoS attacks
monitor the traffic in a more global way than at the server level. This makes
these approaches more scalable.

At the core network level, the goal is to detect all transiting attacks, the tar-
get does not matter. Although attacks are easier to detect in the access
network because they are more focused, they are more dangerous too, and
more difficult to handle. So detecting and mitigating them in the core
network is very interesting, because the load is distributed among many
routers. Detection at the core network level requires less capture points but
with higher data rates. The detection probes are more complex to design,
but the mitigation is simpler at this level.

As the amount of traffic transiting in the core network is huge, approaches
at this level must be highly scalable. As the attack is distributed, some
collaboration between core routers located in different places can help detect
attacks. It can even be interesting for different operators to share data about
attacks they detect. This is called inter-domain collaboration. It can be very
powerful because operators could act globally. It is also very challenging
because operators are usually unwilling to share data about their network
with potential competitors. They will not share their number of customers
or the details of their transiting traffic, but it might be possible to let them
share aggregated data if they have strong enough incentives. An example of
incentive could be the ability to offer a protection service to their customers.

Depending on the level, and on the wanted features, two categories of detection
mechanisms can be considered [AR12]. The first mechanism consists in detecting
attacks using signatures that are known a priori. Past attacks are observed and
discriminating features are extracted. These features are called signatures, and
when they are seen again in the traffic, an alarm is raised. This technique does not
allow to detect new attacks that never happened, but they have a very low false
positive rate, because signatures match only a very specific behaviour, known to
be an attack.

The second mechanism consists in finding anomalies in the traffic. It learns
usual features of the traffic when there is no attack, and detects when the features
seem to vary in an unusual way. This technique usually detects both attacks and
network malfunctions. It is capable of detecting attacks that were not known
before, just because they do not resemble normal traffic. The drawback is that
normal changes in the traffic, like a sudden surge in popularity of a server, might
trigger alerts [LZL+09].

As attackers are very inventive and try to avoid all detection mechanisms,
attacks are not very often repeated the same way, so signature-based mechanisms
are not very efficient. This is why the research currently focuses on anomaly
detection.

59

The first requirement to design an anomaly detection algorithm, is to choose
the features to watch. These features can be very different. The most obvious is
the quantity of traffic to a certain destination. It is used in [SDS+06]. But other
features are possible, like for example the covariance of TCP flags in TCP flows.
These flags made to open or close a connection, or to acknowledge a received
packet, are used in [JY04] to detect TCP SYN flooding attacks. The principle
is that the ratio between SYN flags, made to open a connection and FIN flags,
made to close it, is different for an attack and for normal traffic. Indeed, attack-
ers send SYN packets but do not care about closing the connection. Another
example [YZD08] uses the distribution of the number of packets per period of
time in a flow. It assumes that, due to their common generating programs, TCP
and UDP flows of a same attack all share a similar distribution of packets. By
detecting these similarities, they detect the attack. The goal with this technique
is to detect attacks that mimic normal traffic, because generated packets are not
as diverse as real traffic, even if the generating program is complex. It is also
possible to monitor the mean packet inter-arrival time to a specific destination
to detect attacks [SKKP12]. This means that a server that suddenly receives a
massive amount of traffic is probably attacked. The drawback is that natural
surges in popularity are interpreted as attacks.

For this kind of analysis on the amount of traffic, an algorithm called CUmula-
tive SUM control chart (CUSUM) is widely recognized [TRBK06, AR12, SVG10]
to be both efficient and simple. It is lightweight and can detect accurately changes
in a time series. It will be detailed in Section 3.2.2.

We will now describe the way we implemented the DDoS detection algorithm
for DEMONS.

3.2 Flexible anomaly detection

3.2.1 Problem statement

DEMONS is a European FP7 project. The project is over for some months but
its aim was to provide the infrastructure for network operators to cooperate on
a global decentralized monitoring platform. The expected benefits of this new
infrastructure lie in the ability to detect global attacks or failures faster and to
mitigate them cooperatively. To be successfully adopted, the proposed infras-
tructure has to incorporate any kind of monitoring and mitigation applications
network operators may want to use. Challenges for such an infrastructure arise
at all levels:

Capture flexibility and speed. Multiple capture points can be deployed on
the network. At each capture point, metrics must be updated about the
received traffic. The capture point can monitor a link with high data rates,
so the monitoring application has to support it. But each monitoring ap-
plication may need to process received packets differently: filter only some
packets, keep counts on some features, search for a specific packet. So cap-
ture points have to be programmable by application developers, and the

60

task should be made as easy as possible. The challenge is technical: the
capture point must be both flexible and able to process high data rates.

Mitigation interactivity. The infrastructure has to incorporate mitigation ap-
plications. But these applications are very different from monitoring appli-
cations because they cannot be fully automated. At each mitigation point,
actions must be taken only on orders from network administrators. So an
user interface must be provided to network administrators so that they can
see alerts in the network and make decisions on how to mitigate them. The
challenge is about complex data representation: many sources of alerts have
to be aggregated together in a meaningful way.

Efficient intra-domain communication. At the intra-domain level, that is
to say inside the same network operator, capture points must be able to
communicate with each other. Aggregation points may also be implied to
centralize and analyze data. This enables distributed traffic monitoring. As
each capture point sees only a part of the traffic, cooperation is the only
way to get a global view. This is another technical challenge: capture and
aggregation points must communicate without generating too much traffic,
and the communication must be easy to implement for developers.

Inter-domain cooperation. At the inter-domain level, different network oper-
ators cooperate and exchange information about what is happening on their
network. At this level, the challenge is about confidentiality: operators do
not want to disclose data about their network to their competitors, so any
kind of information that is automatically exchanged must first have been
approved manually.

Our contribution to the project is mainly on capture flexibility and speed and
on efficient intra-domain communication. To assess the efficiency of the architec-
ture, we developed a scalable distributed TCP SYN flooding detection application
in the framework of DEMONS. Other applications developed by partners include
an heavy hitter statistics system to detect large flows and a VoIP fraud detection
system [dPHB+13]. For the DDoS detection application to be deployable on a
real network, some requirements are mandatory:

• Alerts should be generated with IP addresses of both the attacker and the
victim. If the attack is distributed, one alert should be generated for each
attacker.

• Alerts should be exported in a normalized format. This makes it easier for
mitigation applications to react to these alerts.

• Detection should be distributed, that is to say that different capture points
should be able to collaborate to detect attacks coming from different parts
of the network.

• A legitimate increase in popularity of a server generating a flash crowd
should not be detected as an attack.

61

• The deployment and configuration of the application should be highly flex-
ible. The level of distribution of the application, the resources assigned to
each monitoring point to support high data rates, the thresholds at which
alerts are sent, should all be easy to configure.

With the development of this test application, we contributed to DEMONS
a lot of code that can be reused for other traffic monitoring applications. This
code is especially focused on counting packets, detecting changes in series, and
communicating alerts on the network in a standardized format. We also tested
parts of the code we did not develop, essentially for packet capture and inter-
machine communication.

Before describing the framework of DEMONS and the way the example ap-
plication is integrated into this framework, we will detail the chosen algorithm
for DDoS detection.

3.2.2 Algorithm for DDoS detection

The list of existing DDoS attacks described in Section 3.1.2 is long. To develop
an example monitoring application, we focus on a very common attack: the TCP
SYN flooding attack. It consists in sending multiple TCP packets to the victim,
with the SYN flag set. This flag indicates the start of a communication, so
the victim has to maintain a state in memory each time it receives one of these
packets. This way, the machine is fast over-loaded, and it cannot serve its normal
clients anymore.

Although we focus on one kind of DDoS attack, most attacks use the same
principle: send a large number of packets to a victim from multiple attackers. So
the principles we will use to filter packets, count them, and analyze the counts in
a scalable way can all be reused for other anomaly detection applications.

The monitoring application is not located on machines that are potential
victims, but it monitors several important links on the network, and tries to
detect all attacks. The goal is to identify the IP addresses of all victims and all
attackers. To monitor multiple links, the application may be located in multiple
capture points.

Probe 1
Count SYN packets

to each IP

Probe 2
Count SYN packets

to each IP

Analyzer
Merge counts

Analyzer
Detect abrupt

Increases.
Victim IP

Probe 1
Watch Victim IP

Detect
Attacker IP

Probe 2
Watch Victim IP

Detect
Attacker IP

Analyzer
Centralize and
export alerts

Figure 3.1: TCP SYN flooding detection principle

The method we use to detect TCP SYN flooding is illustrated on Figure 3.1.
The process is simplified to describe the major tasks of the detection algorithm.
The figure shows only two probes, but the number can vary from one to as many
as necessary. The detection process starts by counting the number of TCP SYN

62

packets sent to each IP address. If an IP address starts receiving a huge number
of TCP SYN packets, it is probably victim of an attack. It can then be monitored
more closely to check that it is an actual attack and to find the attackers.

Of course, all these tasks are challenging to implement at high data rates. We
saw in Section 1.4.1 that it is not easy to maintain one counter per IP address
in a way that is memory efficient and provides a fast access. The counters have
to be updated at each received TCP SYN packet, and they have to be read
regularly for monitoring. The total number of counters can be huge: one counter
per IP address seen on the network. In the same way, monitoring a large number
of counters to detect abrupt increases is complicated. Monitoring closely some
victims to detect attackers is not simple either because few interesting packets
have to be extracted from the whole traffic.

So we will now describe the different tools that help implement the process
described on Figure 3.1. The first tool is the Count Min Sketch (CMS) algorithm
to count packets in a memory-efficient way. The second one is the CUSUM
algorithm to detect abrupt changes accurately. The last one is the attackers
detection mechanism to make the generated alerts more informative.

Counting packets: the CMS algorithm

The CMS [CM05] algorithm is made to store a large number of counters referenced
by keys in a fixed memory. It guarantees short and fixed delays to look-up counter
values or increment them. The counterpart is that when reading the value of a
counter, an estimate is returned instead of the exact value. But the probability
for the estimation error to be over a threshold can be set exactly.

Identifier min = 22

12

18

12

22

12

23

12

5

9

8

62

12

0

7

47

12

12

27

1 2 3

Hash 2

Hash 1

Hash 3

Figure 3.2: CMS algorithm principle with w = 6 and d = 3

A sketch is represented by a two-dimensional array of integers with width w
and depth d. Each integer of the array, noted count [i, j] , 0 ≤ i < d, 0 ≤ j < w
is initially set to 0. d pairwise independent hash functions φi, 0 ≤ i < d are used
to hash the keys. These functions take the key as input (32-bit IPv4 addresses
for our example application) and return an integer from 0 to w − 1.

Update: to increment the counter for key k, for each hash function φi, 0 ≤ i < d,
the integer count [i, φi (k)] is incremented.

Estimate: to get an estimation of the counter value ak for key k, the value
âk = min0≤i<d (count [i, φi (k)]) is computed. Figure 3.2 is an example with

63

d = 3: the minimum of the three values is taken, so the estimated value is
22.

Let ε = e/w and δ = e−d. It is proved [CM05] that âk ≥ ak but also that
Pr (âk > ak + ε ‖a‖1) ≤ δ where ‖a‖1 is the sum of all the counters stored in the
sketch. So ε and δ set the wanted confidence interval and error probability for the
sketch. Once these values are chosen, the dimensions of the sketch are set: w =
de/εe and d = dln (1/δ)e. The increment operation requires d hash computations
and d increments, the estimation operation requires d hash computations and d
comparisons. The memory requirements are the size of w × d integers.

An important property of the sketches is that they are difficult to revert.
It is not simple to know which keys affect a certain value count [i, j] without
computing hashes over all possible keys. It can be an advantage to provide some
data encryption, but it can also be a drawback as we will see later.

Another interesting property is that two sketches can easily be merged. Pro-
vided that they have the same dimensions and use the same hash functions, merg-
ing two sketches countA and countB into a new sketch countAB is as simple as
computing countAB [i, j] = countA [i, j] + countB [i, j] , 0 ≤ i < d, 0 ≤ j < w.
As all update operations are simple additions, the resulting sketch is exactly the
sketch that would have been obtained if all operations made on countA and all
operations made on countB had been made on countAB. This will help making
the DDoS detection application distributed.

For DDoS detection, the CMS algorithm is implemented on each capture point
to count the number of TCP SYN packets sent to each IP address through the
monitored link. To avoid saturating the sketch and increasing the confidence
interval, The full sketch is periodically reset. The reset delay is a parameter
that can be fine-tuned depending on the amount of traffic monitored. This way,
at each reset, an estimate of the number of TCP SYN packets sent to each IP
address over a fixed period is available.

The CUSUM algorithm can then be applied to the sketch to detect abrupt
changes. The method used is described in next section.

Detecting changes: the CUSUM algorithm

CUSUM is an algorithm designed to detect change points in a series of values
Xi, i ∈ N≥0. For the DDoS detection application, i represents the discrete time
and Xi represents a count of TCP SYN packets. CUSUM works with two prob-
ability density functions: γ0 represents the behaviour of the X series before the
change, and γ1 after the change. Detection is made by computing a cumulative
sum:

S0 = 0, Sn = max

{
0, Sn−1 + ln

(
pr (Xn|γ1)
pr (Xn|γ0)

)}
, n ∈ N>0 (3.1)

The logarithm is called the log likelihood ratio. It is positive if the probability
to get the current value is higher before the change, and negative otherwise.
Sn is defined recursively. It is called the test statistic. It increases when the
value is more likely under the post-change distribution than under the pre-change
distribution and vice versa. The test statistic is never less than 0, so that if

64

the series behaves exactly as it should before the change, Sn remains around
0. Thanks to the log likelihood ratio, Sn increases if the series starts behaving
as it should after the change. When the test statistic reaches a threshold h,
an alarm is raised to signal that a change happened. The speed at which h
is reached depends on the Küllback divergence between γ0 and γ1. If the two
density functions are similar, the change will be longer to detect. While the
threshold has not be reached, the change can always be reverted: if the series
starts behaving like before the change again, the test statistic will get back to 0.
This mechanism enables a fine-grained control of the change detection, by setting
the right threshold.

The drawback of this technique is that γ0 and γ1 have to be known so as to
detect the change. This is not realistic for DDoS detection because the way the
TCP SYN counters will behave during an attack is not known a priori. It depends
on the way the attack is realised, and attackers often change their methods. The
only certain fact is that the traffic will be higher after the change because of the
attack. Non parametric CUSUM is a variant that does not use the γ0 and γ1
probability density functions. The cumulative sum is computed using only the
mean of the values of the watched series before the change (µ0) and after the
change (µ1), supposing that µ1 > µ0:

S ′0 = 0, S ′n = max
{
0, S ′n−1 +Xn − (µ0 + εµ1)

}
, n ∈ N>0 (3.2)

ε is a tuning parameter in [0, 1]. It moderates the impact of an increase in the
value of the time series. Setting it to a high value allows the values of the series
to be a bit above the mean, without being considered as an indication that the
change happened. ε is multiplied by µ1 to take into account the magnitude of
the expected mean after the change. If it is very high, a bigger margin can be
left before considering a value as after the change. To guarantee that changes are
detected, the mean of Xn− (µ0 + εµ1) must be strictly positive after the change,
that is to say that µ1 − (µ0 + εµ1) > 0, so we must have ε < 1− µ0/µ1.

The remaining problem is that the means µ0 and µ1 are not known a priori.
To fix this, µ0 is set to the mean of the last N values of the series. This way, the
mean before the change is adjusted dynamically. This mechanism avoids raising
alerts for slow changes in the network. But µ1 remains unknown. So α = εµ1 is
considered as a second tuning parameter. The cumulative sum becomes:

S ′0 = 0, S ′n = max
{
0, S ′n−1 + (Xn − µ0)− α

}
, n ∈ N>0 (3.3)

Xn − µ0 represents the increase compared to the mean. It is moderated by the
α parameter, so that increases smaller on the average than α are not taken into
account. If the increase is higher, S ′n increases until it reaches the threshold h. If
the increase is slow, µ0 will have enough time to adjust, and S ′n will get back to
0. This way, the CUSUM algorithm is transformed into a self-learning algorithm
with only three parameters to set: N is the number of values on which the mean
is computed, α is the minimum increase that should not be ignored, and h is the
threshold to raise an alarm.

The result of this change detection algorithm is a compromise between the
delay to detect a change, and the false alarm rate. With non parametric CUSUM,

65

under the constraint of a set false alarm rate, the detection delay is proved to
be optimal, that is to say as small as it can be [TRBK06, SVG10]. Choosing
between a lower detection delay or a lower false alarm rate is just a matter of
tweaking the parameters, especially the threshold h.

For DDoS detection, the CUSUM algorithm is used to monitor multiple
time series. Values are extracted from the CMS sketch just before the peri-
odic reset. n represents the time: at the n-th period, monitored values are
Xi,j,n = count [i, j]n , 0 ≤ i < d, 0 ≤ j < w. This means that w × d time
series are monitored. The interesting point is that the number of monitored time
series does not directly depend on the number of IP addresses on the network.
This is good for scalability.

When an alarm is raised on a time series, it is not possible to know directly
which IP address is under attack. This is why capture points keep a fixed-size
list of the last IP addresses they have seen. When CUSUM raises an alarm on
some time series, all IP addresses in the list are tested, until an address is found
that impacts cells in the CMS sketch that all raised an alarm. This IP address is
considered as under attack.

The raised alarm contains the IP address of a potential victim. In next sec-
tion, we explain how the attack is then confirmed and the alarm is made more
informative.

Finding the attackers

IP addresses are now identified as potential victims of a TCP SYN flooding attack.
But the attackers remain unknown, and the alleged attack could even be a simple
flash crowd: if a server becomes suddenly popular, a large number of new clients
will try to open connections to this server, and the number of TCP SYN packets
received by this server will increase.

To confirm the attack and to find the attackers, a closer monitoring of the
potential victim is necessary. So for all IP addresses in alert, a new monitoring
system is activated. It corresponds to the step “Watch Victim IP” of each probe
on Figure 3.1. It filters only packets received by the potential victims, counting
for each source IP address, the number of TCP SYN packets and the number
of TCP packets with the ACK flag set. These counters are maintained thanks
to two CMS sketches. Monitored traffic is unidirectional: from sources to the
potential victim. The other way is not monitored because asymmetric routing on
the network may prevent the probe from seeing return traffic.

ACK is a TCP flag that acknowledges the reception of a packet. Attackers
usually don’t bother sending ACK packets, while normal users do. Each time a
new SYN packet is received, the rate of SYN packets over ACK packets sent by
the IP address is checked. If this rate is over a threshold, and the number of SYN
packets is significant, this IP address is considered as an attacker. This confirms
that it was a real attack, and not a legitimate flash crowd.

It is then possible to send an accurate alert with the IP address of the victim
and the IP address of the attacker. Multiple alerts can be sent for the same victim
if there are multiple attackers.

66

3.3 A flexible framework: BlockMon
Once the monitoring algorithm is specified, it has to be integrated into the the
DEMONS architecture. Two goals must be kept in mind: the flexibility of the
configuration and deployment of the monitoring application, and the performance
in terms of supported data rate. We will now present the development framework
provided by DEMONS, in which we will integrate our own application later.

3.3.1 Principles

BlockMon is an open-source [DEM13] part of the DEMONS architecture. In the
list of challenges of Section 3.2.1, BlockMon addresses the capture flexibility and
speed and the efficient intra-domain communication. It is a framework for the
development of applications on network probes. It also handles the communi-
cation between these probes and interfaces with a GUI to configure the probes.
BlockMon goals are similar to the ones of other monitoring platforms like CoMo
and ProgMe [Ian06, YCM11], but it is made to be more flexible, defining no rigid
structure of how a monitoring application works. It is also strongly focused on
supporting higher data rates than other platforms, despite its flexibility.

The core of BlockMon is developed in C++11 for performance. The version
is important because it provides several new mechanisms to handle pointers that
improve performance. A daemon developed in Python provides a control interface
in command-line or through the network using Remote Procedure Call (RPC).
The daemon can start or stop processing on the probe. It can also access to some
counter values, or even reconfigure the probe. Configuration is managed using
one eXtensible Markup Language (XML) file for each probe.

Figure 3.3: DEMONS GUI example: block configuration

The GUI is able to generate the XML configuration file automatically, and to
do everything the daemon can do. Figure 3.3 shows an example of how the GUI
works. The composition is visible in the background. Blocks can be moved around

67

and linked using the mouse. The window in the foreground is the configuration of
a block. All parameters can be changed the same way as in the XML configuration
file. Once the configuration is right, the GUI is able to start and stop BlockMon.
It is also able to monitor its status.

A very important aspect of BlockMon is the ability to support high bit rates.
As it is very flexible, no network stack is enforced by BlockMon. It can use the
default Linux network stack with the libpcap library, or it can use the optimized
PFQ [BDPGP12b] network stack. Of course, the maximum supported speed is
higher using PFQ. The development has been done with performance in mind, so
once in BlockMon, packet data is never copied in memory. It is kept in the same
location throughout processing and only pointers are moved.

The architecture of BlockMon is based on independent parts of code called
blocks. Blocks communicate by sending and receiving messages. Block and Mes-
sage are two C++ classes that developers can extend. Each block is responsible
of a part of the processing. A block can have input and output gates, it listens to
messages received on input gates, and sends messages through output gates. A
message can represent a packet, a flow of packets, an alert, or any other type of
information. When a message is received, the method receive_msg of the block
is called. This architecture is inspired by the modular router Click [KMC+00],
except that messages are not only packets.

The configuration consists in the description of the composition of blocks.
Each source file of a block contains a normalized comment section with the list
of its input and output gates, the type of messages that can be sent or received
through the gates, and a list of named configuration parameters that can be
integers, IP addresses, files paths. . . The XML configuration file is made of a list
of block instances with a specific configuration for each instance. A block can
be instantiated multiple times with a different configuration. The XML file also
contains a connections list. Each connection links an output gate of a block to a
compatible input gate of another block. This is enough to configure the behaviour
of the probe.

3.3.2 Performance mechanisms

To use the full power of the computer it runs on, BlockMon is multi-threaded.
We saw in Section 2.2.2 that the association of an activity to a specific core can
impact the performance. To manage this, BlockMon uses the notion of thread
pools. A thread pool is a specified number of threads running on specified cores.
Each block is associated to a thread pool in the XML configuration file.

Although parallelism is useful for long tasks, all blocks do not need a ded-
icated thread to run. BlockMon supports three methods of block invocation:
asynchronous, direct or indirect. Asynchronous invocation means that the block
runs its own loop in a dedicated thread. The do_async method of the block is
invoked when BlockMon starts and runs continuously. Direct invocation means
that the block is only activated when it receives a message or when a timer is
fired. It does not have its own thread but runs in the thread of the sending block.
Sending a message to a block using direct invocation is equivalent to calling the

68

Thread pool 2Thread pool 1

Source

Asynchronous

Filter

Direct

Accumulator

Direct

Exporter

Indirect

Timer

Figure 3.4: Example of BlockMon composition with all invocation methods

receive_msg method of the block. With indirect invocation, the block is still only
activated when it receives a message or when a timer is fired, but the receive_msg
method is called in a different thread from the sending block. Figure 3.4 shows
an example of composition with four imaginary blocks using the three invocation
methods. The source block is asynchronous because it queries the NIC continu-
ously to get new packets. The filter and accumulator blocks are direct because
they perform rapid tasks on each packet: their tasks are executed in the thread
of the source block. A timer signals the accumulator to periodically send its data
as a message to the exporter. To separate the capture domain that works in real
time from the export domain that is not so time sensitive, the export block is
indirect.

Messages sent to indirect blocks are handled by wait-free rotating queues.
This means that the delay to send a message is only the time needed to write the
message pointer in memory. This is important for real-time blocks that cannot
waste time sending messages. The scheduler periodically dequeues messages in
the queue and invokes the receive_msg method of the indirect block.

As explained in Section 2.2.2, memory allocation is a time-consuming task
when dealing with traffic at high speed, and the way it is done effects the data
access speed. So BlockMon uses two optimizations to make memory allocation
more efficient. First, when capturing packets, memory allocations are performed
in batches. A batch is able to contain multiple packets. A reference to each batch
is kept using a C++11 shared pointer with shared ownership, this way the count
of references to each packet is handled by C++ and the memory is freed when all
packets in the batch have been destroyed. The second optimization increases the
use of cache locality to speed up data access. It works by dividing stored packets
into chunks (for example IP header, transport header, start of the payload). All
chunks of the same type are allocated space in the same memory location. This
way a block that only accesses IP headers will get data from multiple packets in
cache.

It is also important to avoid copying data in memory to avoid useless pro-
cessing. This is why sending a message does not imply copying it. Only a shared
pointer to the message is transferred to the receiving block. To do this without
having to increment and decrement the reference count, BlockMon uses C++11-
specific shared pointers optimizations.

Experiments have been conducted [dPHB+13] that prove that all these opti-

69

mizations have significant effects on the overall performance.

3.3.3 Base blocks and compositions

Developers can build their own blocks and messages in BlockMon, but many base
functions are already provided. The architecture is designed to encourage reuse.
The most fundamental blocks are the packet sources. They are asynchronous
and read packets continuously by different means. They have one output gate
called source_out, through which they send all packet messages. These messages
contain the binary data of a packet, and provide commodity methods to parse
the most common headers (like Ethernet, IP or TCP). Source blocks include
PCAPSource, which uses libpcap to get packets from a trace file or a live network
interface, and PFQSource, which gets packets from the optimized PFQ network
stack. This block is made to work with high-performance NICs, so it can be
configured to read packets from a specific RSS queue of the NIC.

Useful blocks at the other end of the chain are exporters. They are able
to convert certain messages into a standardized format and send them through
the network. For each exporter, an importer is usually also provided to convert
data received from the network back into messages. These blocks can be used
by distributed BlockMon nodes to communicate with each other, or they can be
used to send data from BlockMon to other applications. Currently blocks exist
for the Internet Protocol Flow Information eXport (IPFIX) [CT13] and Intrusion
Detection Message Exchange Format (IDMEF) [DCF07] formats. They are called
IPFIXExporter, IPFIXSource, IDMEFExporter and IDMEFSource. IPFIX is a
generic format, it can represent any message. So a developer just has to provide
some conversion functions to make a message compatible with IPFIX export
and import. IDMEF is a format specific to alerts, so only alert messages are
compatible with IDMEF export and import.

Many other useful blocks and messages are available. There is a message rep-
resenting a flow, another representing an histogram. There is a block to filter
packets based on addresses and ports. Another block counts the number of pack-
ets and bytes. A block prints packet data to the terminal. Many other available
blocks and messages are in the core directory in the BlockMon source code.

Thread pool 1
Asynchronous Direct

PcapSource

Source type: live
Source name: eth0

out_pkt
PacketCounter

in_pkt

Packet

Figure 3.5: A very simple example composition

Figure 3.5 represents a very simple composition that listens on interface eth0
and counts the number of packets received. It uses libpcap to communicate with
the NIC. The number of packets can be read using the PktCount readable variable.

70

This can be done directly using the Python daemon, or using the GUI. The GUI
can even be configured to generate histograms or other diagrams representing
the variable values. Information on the figure is exactly what is described in the
XML composition file.

3.4 Implementing DDoS detection in BlockMon

With the architecture of BlockMon in head, it is time to start implementing our
own application. The first step is to divide the different tasks of the TCP SYN
flooding detection algorithm into blocks. A block is a part of code responsible for
a coherent task in a flow monitoring chain, like filtering packets or counting flows.
The interest of this division is that blocks can be reused by different applications
with a different configuration.

But some parts of our algorithms are so generic, that they can be used for
very different purposes and applied on very different kinds of data. These parts
are only low-level tools that can be used in different ways by multiple blocks. So
they are better implemented as libraries than as blocks. A library provides tools
that can be used by any blocks.

For this reason, we started the development of two generic C++ libraries: a
CMS library and a CUSUM library. These algorithms are so well-known and
generic that they may be used in very different ways.

3.4.1 Algorithm libraries

Count Min Sketch (CMS)

The CMS algorithm is described in Section 3.2.2. For implementation, the chosen
hash functions are the same as in the original C code [Mut04]. They are of the
form φi(x) = aix + bi [w] with ai and bi integers. If ai and bi never take the
same value and ai is never 0, the functions are pairwise independent hashes. This
hash algorithm is very simple and fast, and it fulfills the requirements of the CMS
algorithm. It is implemented under the name ACHash31 in a generic hash library
provided by BlockMon.

The CMS library is made to be flexible. It contains two classes. The SketchId
class represents a key to index the sketch. A maximum length of the key is
specified in the constructor. Then bytes can be appended to each other to form
the key. Helper functions are provided to append integers and characters. The
CMSSketch class is initiated with a width, a depth, and a list of hash parameters.
Memory is reserved during the initialization. The class provides functions update
and estimate described in Section 3.2.2. Each function takes as argument a key
of type SketchId. The update function adds an integer value taken as argument to
the current value of the counter for the given key. The estimate function returns
an estimate of the current value of the counter for the given key.

A SketchMsg message class is also provided in BlockMon core. It enables
blocks to send or receive sketches as messages. A bridge class called IPFIXSketch-
Bridge also makes this message compatible with the IPFIX export and import

71

blocks, so that sketches can be sent over the network.

CUSUM

The principle of the CUSUM algorithm is described in Section 3.2.2. It is made
to detect changes in time series. For DDoS detection, we use the non-parametric
variant of CUSUM described in Equation 3.3 because we assume no a priori
knowledge about the traffic without and with attacks. To make the library
generic, an abstract Cusum class is the base of the library. Its single argument
is a threshold, referred to as h, that is used to decide if an alarm must be raised.
The class provides the check function that takes as argument the current value
Xn of the watched metric. This function should be called periodically. It returns
a boolean indicating if an alarm is raised or not.

But the Cusum class cannot be used alone, because its compute_score method
is virtual. It has to be implemented by a subclass. The role of the subclass is
to compute the log likelihood ratio necessary to compute Sn from Sn−1 in Equa-
tion 3.1. It takes the value Xn as argument. CusumNP is a subclass of Cusum
specialized for non-parametric CUSUM. Its constructor takes as arguments the
mean_window N and the offset α, as well as the threshold h. The check function
value is computed as in equation 3.3 as Xn− µ0−α, where µ0 =

∑N−1
i=0 Xn−i/N .

So after instantiating a CusumNP class with the right parameters, a simple
periodic call to check on the value to watch is enough to run the non-parametric
CUSUM algorithm. But for DDoS detection, there is not just one value to moni-
tor. All values of the CMS sketch have to be watched separately, so one instance
of the CusumNP class is required for each cell of the sketch. The principle used
is called multichart CUSUM [Tar05]. To simplify this process, a specific class
called MultiCusum is made to apply any variant of CUSUM to a list of values
instead of just one value. It is initiated with a Cusum instance and a count of the
number of values to watch. The Cusum instance is cloned for each value, which
means that the computed cumulative sum is fully independent for each variable.
The check function is applied to a list of values instead of just one value. If at
least one value raises an alert, a global alert is returned with the indexes of all
values in alert.

3.4.2 Single-node detector implementation

Once basic libraries have been developed, blocks can be implemented for each
important function of the TCP SYN flooding detection. To decide which blocks
should be implemented, the simplest use case is studied: a detector with only
one machine that is used to receive the traffic and to raise alerts. This is an even
simpler use case than the one described in Figure 3.1 because there is only one
probe instead of two, and the analyzer is on the same machine as the probe.

Figure 3.6 presents the different blocks the detector is made of, as well as
the messages used for inter-block communication. All blocks will be described in
detail later in this section.

Here is a summary of the global architecture. The first block is PcapSource,
it simply uses the standard network stack to receive packets and send them as

72

PcapSource TCPFlagCounter SynFloodDetector

IDMEFExporter

SynFloodAlertManager

SynFloodSourceCounter

Packet

Sketch

Alert (indexes)

Alert (dest. IP)

Alert (source IP, dest. IP)

Alert (source IP, dest. IP)

Figure 3.6: Single-node SYN flooding detector composition

messages. The TCPFlagCounter counts the TCP SYN packets using the CMS
library and exports a sketch periodically. The SynFloodDetector uses the CUSUM
library to raise alerts with the indices of cells in alert. The alert message is
then sent to the TCPFlagCounter again to revert the sketch and find the target
IP address in alert. The SynFloodSourceCounter receives alert messages with
the IP address of potential victims and starts monitoring them more closely. It
counts the number of TCP SYN and ACK packets sent by each source to the
potential victim. If a source sends much more SYN than ACK packets, it is
an attacker. An alert is then sent by the SynFloodSourceCounter block to the
IDMEFExporter, which can send the alert using the standard IDMEF format to
a configured address.

Below are the detailed descriptions of all blocks of the composition. The Pcap-
Source block is not described because it is a basic block provided by BlockMon.
The implemented algorithm is exactly the one already described in Section 3.2.2.

TCP SYN counter (TCPFlagCounter)

The first step to detect TCP SYN flooding is to count the number of TCP SYN
packets to each target IP. This is what the TCPFlagCounter block does.

The block instantiates a sketch message provided by the CMS library. It
has an input gate in_pkt, by which it receives all network packets as messages.
When a TCP SYN packet is received, its destination IP address is used as key
to increment the corresponding counters in the sketch. A periodic timer is set in
the block. Each time it is fired, the sketch message is cloned and sent through
an output gate out_sketch. The sketch is then reset to count next packets.
So exported sketches contain the number of TCP SYN packets sent to each IP
address during one period.

As explained in Section 3.2.2, once the CUSUM algorithm has detected the
cells of the CMS sketch that raise an alarm, the sketch has to be reverted to find
the IP address under attack. So the TCPFlagCounter block also has the ability
to partially revert the sketch algorithm. It keeps a list of the last destination
IP addresses it has seen. It can receive an alert message through the in_alert
input gate, with the indexes of cells in the sketch. It will then test each recent

73

IP address to check if it corresponds to these indexes. If an IP address does
correspond, it will send the received alert message through the out_alert output
gate, but with the destination IP address instead of the sketch indexes.

This block can use direct invocation because it only adds a small processing
time for each packet. Its configuration includes the parameters of the CMS sketch
(width, depth, and hash functions), and the export period.

Change detector (SynFloodDetector)

Exported CMS sketches can be watched to check if a sudden increase in the
number of TCP SYN packets sent to an IP address is found. This is the role of
the SynFloodDetector block.

It has an input gate in_sketch, by which it can receive the periodic sketches
sent by the TCPFlagCounter block. When a new sketch is received, the Multi-
Cusum class of the CUSUM library is used to watch independently each cell of
the sketch. If alerts are raised for some cells, the block sends an alert message
through its out_alert output gate. The alert contains the indexes of cells in alert.
It cannot contain directly the corresponding IP address because the SynFloodDe-
tector block is unable to revert the CMS sketch. To get the IP address, the alert
has to be sent to the in_alert gate of the TCPFlagCounter block.

This block can use direct invocation, processing will be done in the thread of
the export timer of the TCPFlagCounter block. Its configuration is made of the
CUSUM parameters (threshold, offset and mean window).

Source detector (SynFloodSourceCounter)

Once an alert is available with the destination IP address of a potential attack,
one step remains: we must find the source IP address of the attackers. It is also
important to check that it is not a flash crowd phenomenon due to the sudden
popularity of a server. To do that, the SynFloodSourceCounter will monitor more
closely all packets to the destination IP addresses in alert.

This block makes heavy use of the CMS library. It has two input gates:
in_pkt and in_alert. All packets are received through in_pkt. When an alert is
received through in_alert, the target IP address it contains starts being watched.
To remember that this address must be watched, a CMS sketch called filter is
used. The counter for the IP address is increased by 1 when the address starts
being watched, and is decreased by 1 when the address stops being watched. This
way, the address is watched only if the counter value is not 0. An address stops
being watched after a certain delay without receiving an alert. For each watched
address, two CMS sketches are created using the source IP addresses as key: one
for counting TCP SYN packets and one for counting packets with the TCP ACK
flag set. For a normal communication, the number of TCP SYN packets will be
lower than the number of packets with the ACK flag set, whereas for an attack,
much more TCP SYN packets will be sent.

When a packet is received, the block first checks if it is a TCP SYN or ACK
packet. Then it uses the filter sketch to check if the destination IP address should
be watched. If the address is in the filter, then the corresponding SYN or ACK

74

sketch is updated. The SYN and ACK counts are then estimated. If the number
of SYN is over a configured value, and the SYN to ACK ratio is over a threshold,
then the source IP address is considered as an attacker. An alert is then sent
through the out_alert gate. It contains the addresses of both the attacker and
the victim. All SYN and ACK counts are periodically reset to avoid overflowing
the sketches.

This block can use direct invocation. Processing received alerts is fast. Pro-
cessing received packets is fast for most packets, which are simply dropped. For
packets that are currently monitored, it can be a bit longer because it requires
to find the proper SYN and ACK sketches, update a sketch, and make estimates
for both sketches to check the values. Configuration is made of the periods to
reset sketches and forget old alarms, the CMS parameters, the minimum number
of SYN packets to check for an attack, and the threshold for the SYN to ACK
ratio.

Alert manager (SynFloodAlertManager)

Alerts from the source detector contain all required data. The only role of the
SynFloodAlertManager block is to centralize alerts and make sure that they are
not duplicated if multiple probes detect the same attack.

This block receives alerts through an in_alert gate. It keeps a log of a config-
urable size of all received alerts. If it receives an alert that is already in the log,
it ignores it. Otherwise, it forwards the alert through the out_alert gate.

This very simple block should use direct invocation. Its only configuration is
the size of the alerts log.

Sketch merger (SketchMerger)

An interesting feature of CMS sketches is that two sketches using the same width,
depth and hash functions can be summed very simply by summing the values of
each cell one by one. This means that the measurements performed by different
TCPFlagCounter blocks distributed on the network can be combined easily. It
can also be used to distribute the load using multiple TCPFlagCounter blocks on
different threads on the same probe. This merge is the role of the SketchMerger
block.

It is simply made of one input in_sketch gate, and one output out_sketch
gate. Each received sketch is added to an internal sketch kept by the block.
When a configured number of sketches have been received, the resulting sketch
is sent through the out_sketch gate, and the internal sketch is reset.

This block is very simple. It can use direct invocation. Its only configuration
is the number of sketches to merge together.

3.4.3 Alternative compositions

Once all basic blocks have been developed for a simple use case, the flexibility of
BlockMon makes it possible to support much more complicated use cases without
writing new code. The first use case we have seen is the one of a single machine

75

running the full detector with a very simple architecture. But an interesting use
case to consider is a distributed version with multiple probes and a centralized
analyzer. Another important use case is related to the supported data rate. The
simple architecture receives packets in a single block, that is to say in a single
thread. It could be interesting to use more threads to support higher data rates.

Single-node SYN flooding detector

This is the simple scenario studied in Section 3.4.2. The SYN flooding detector
works fully on one machine. Using composition described in Figure 3.6, packet
processing and attack detection is made on the same machine in the same in-
stance of BlockMon. All blocks use direct invocation except the asynchronous
PcapSource block, which captures packets. Final alerts are exported in the ID-
MEF format using the IDMEFExporter block. They are sent through TCP to a
configured IP address and TCP port. This architecture is simpler than the one
described in Figure 3.1 because there is only one probe and the analyzer and the
probe are on the same machine, but the workflow is the same.

Multi-node SYN flooding detector

IDMEFExporter

SynFloodSourceCounter

Sketch Alert (indexes)

Alert (dest. IP)

Alert (source IP, dest. IP)

Alert (source IP, dest. IP)

PcapSource

TCPFlagCounter

Packet
Probe 1

Packet SynFloodSourceCounter

Alert (dest. IP)

PcapSource

TCPFlagCounter

Packet

Probe 2
Packet

Alert (indexes)

Alert (source IP, dest. IP)

Analyzer

SynFloodAlertManager

IDMEF

IDMEF IDMEF

IDMEF

IPFIX

SynFloodDetector

Sketch (merged)

SketchMerger

Figure 3.7: Multi-node SYN flooding detector composition

To capture packets in different locations, a more distributed architecture may
be necessary. Thanks to the flexibility of BlockMon, changing the XML com-
position files is enough to get a distributed architecture. Figure 3.7 shows a
composition with three machines: two probes and one analyzer. Communication
between the machines is made through the network thanks to the exporters pro-
vided by BlockMon. Sketches are transmitted in the IPFIX format and alerts

76

are transmitted in the IDMEF format. Distant connections are represented by
dotted lines. The IPFIXExporter and IPFIXSource or IDMEFExporter and ID-
MEFSource blocks used to convert the messages are hidden to simplify the figure.
Each dotted line hides one exporter and one source block.

This architecture corresponds exactly to the more high-level Figure 3.1. The
communication that was hidden on the high-level figure is the one to revert the
CMS sketch once the SynFloodDetector block has sent an alert.

Multi-thread single-node SYN flooding detector

IDMEFExporter
Direct

SynFloodSourceCounter
Direct

Sketch Alert (indexes)

Alert (dest. IP)

Alert (source IP, dest. IP)

Alert (source IP, dest. IP)

PFQSource
Asynchronous

TCPFlagCounter
Direct

Packet
Thread pool 1

Packet
SynFloodSourceCounter

Direct

Alert (dest. IP)

PFQSource
Asynchronous

TCPFlagCounter
Direct

Packet

Thread pool 2
Packet

Alert (indexes)

Alert (source IP, dest. IP)

Thread pool 3

SynFloodAlertManager
Indirect

SynFloodDetector
Direct

Sketch (merged)

SketchMerger
Indirect

Figure 3.8: Multi-thread single-node SYN flooding detector composition

The same mechanism used to monitor packets on multiple probes can also be
used to balance the load on multiple threads on the same machine. Figure 3.8
shows a composition using two CPU cores for packet capture on the same machine.
It makes use of the PFQ network stack and the multiple packet queues provided
by high-end 10G NICs. Two PFQSource blocks are configured to read packets
on different queues. For best performance, it is important to make sure that the
thread pool of a PFQSource block is on the core on which the interruptions for
the configured packet queue are received. So it is good to set the interrupt affinity
of the network queues manually to control which queue is handled by which core.

All blocks are executed in the same BlockMon instance, so communication is
exclusively local. There is no need to use exporters in this composition, except
to send the final alerts to mitigation tools. This example uses three cores, two to
capture packets and one to analyze the results. But it is very easy to use more
than two packet queues, so as to exploit all available cores.

77

3.5 Results

Thanks to the modular architecture of BlockMon, the DDoS detection application
we developed is highly customizable. It can work on a single core on a single
machine, it can be distributed over multiple machines, or it can exploit all cores
available on a powerful machine to support high data rates. Changing from one
architecture to another can be made simply using the configuration GUI.

Tools such as the integration of the PFQ network stack make it simple to
get high performance from BlockMon applications, and the optimized blocks and
messages architecture provides flexibility without lowering performance. We will
now assess the results obtained with our DDoS detection application.

3.5.1 Accuracy

The combination of CMS and CUSUM algorithms we use in our TCP SYN flood-
ing detection algorithm has already been used. Article [SVG10] studies the ac-
curacy of the algorithm using different public traces containing known attacks,
as well as ADSL traces obtained in the framework of a French research project
called OSCAR.

ANOMALY-BASED INTRUSION DETECTION SYSTEMS : THEORY AND PRACTICE 21

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

D
et

ec
tio

n
ra

te

Threshold (h)

True positive
False detection

(a) P = 12.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

D
et

ec
tio

n
ra

te

Threshold (h)

True positive
False detection

(b) P = 14.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
et

ec
tio

n
ra

tio

False positive rate

P=12
P=14

CUSUM

(c) PTP = f(PFA).

Figure 9.PTP = f(h),PFA = f(h), ROC curve for CUSUM and MNP-CUSUM over sketch (P = 12,P = 14).

victim servers, the number of existing attacks, and their instants. The power or true positive ratioPTP

is the number of detected attacks divided by the total numberof existing ones (100). The false alarm
ratePFA is the percentage of raised alarms that did not correspond toreal attacks. Figure9 shows the
variations of the power and the FAR as functions of the detection threshold,PTP = f(h) (figure9(a)),
andPFA = f(h) (figure9(b)) as well as the ROC curve (figure9(c)) for two values of theMLRSwidth
(P = 12 andP = 14). As it was expected theFAR as well as the power decrease as the threshold
increases. Hence, a tradeoff between false alarm rate and detection rate must be found to control the
sensitivity of the test and prevent false alarms. From this study it seems that a good choice of operating
point is to selecth ≃ 7 for P = 12 (andh ≃ 5 for P = 14) since for these values the detection rate is
high while keeping a low FAR. We also notice that a large sketch width value upgrades the performance
as displayed by ROC curves on figure9(c). As a matter of comparison Figure9(c) displays the ROC
curve summarizing the performance of a single channel CUSUMalgorithm over the raw traffic data for
the same dataset. We notice that low intensity attacks are not detected after aggregation of the whole
traffic into one time series. False alarms continue to raise even with large threshold value whereas
the algorithm is still unable to detect any existing attacks. Thus is due to the high variability in the
aggregated traffic pattern.

6. CONCLUSION

In this paper, we propose a new framework that integrates multi-stage sketch and multi-chart CUSUM
for anomaly detection over high speed links. The proposed framework is able to automatically pinpoint
the IP flows responsible for anomaly, through exploiting thematrix index in an additional multi-layer
reversible sketch. The proposed approach consists of threestages: data reduction, anomaly detection
and classification. The contributions are: data reduction when collecting flow records for bandwidth
saving and analysis complexity reduction, software efficient sketch inversion method, making up
overall an efficient algorithm to uncover hidden anomalies in the overall traffic.

It is obvious that worm signatures are unknown in their outbreak phase, and as some polymorphic
worms (change their signatures to evade detection) use encryption with different keys and different
encryption algorithms for every instance, it becomes a challenge for a signature based IDS to detect
them. However, worms spreading phase tend to have a large number of destinations (NetScan) to infect
all vulnerable systems, and thus can be identified by our proposed approach.

We proved that our approach is effective through implementation and testing on real traces with
DDoS & Scan attacks. The sampling technique used discards many deviations generated by legitimate

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt2010;00:1–24

(a) Threshold variation

20 O. SALEM, S. VATON, A. GRAVEY

0.0*100

5.0*104

1.0*105

1.5*105

2.0*105

2.5*105

 0 20 40 60 80 100 120

#S
Y

N

Time (min)

(a) DDoS & NetScan attacks.

0*100

2*106

4*106

6*106

8*106

1*107

1*107

1*107

 0 20 40 60 80 100 120

#S
Y

N

Time (min)

#SYN
Raised Alarms

(b) CUSUM raised alarms.

0*100

2*106

4*106

6*106

8*106

1*107

1*107

1*107

 0 20 40 60 80 100 120

#S
Y

N

Time (min)

#SYN
Raised Alarms

(c) MNP-CUSUM over sketch raised
alarms.

Figure 8. Comparison between CUSUM over raw data & CUSUM oversketch.

Experiment 4. This experiment is conducted in order to study the accuracy of the proposed
framework and to test its sensitivity with respect to the parameters of the detection algorithm. We
begin our evaluation by a comparison between CUSUM over raw data and CUSUM over sketch. By
raw data we mean that the input of the CUSUM algorithm is the time series of aggregated number of
SYN. We use an IP trace of 2 hours, with 6 known anomalies instant & type (4 DDoS and 2 NetScan
attacks) as shown in figure8(a). The 2 scan attacks are represented by filled curves in figure8(a).
The alarms raised by single channel NP-CUSUM over raw data are shown in figure8(b), where we
can observe false alarms due to variations in the aggregatednumber of SYN, and misdetection of low
intensity attacks, which evade the detector after aggregation of the whole traffic into one time series.
The 2 NetScan attacks are not detected when aggregating the whole traffic in one time-series, because
the change is smoothed by the aggregation of the number of flows. Furthermore, to detect DDoS with
small intensity attacks, a low threshold value for CUSUM is required. However, low threshold value in
CUSUM algorithm incurs high false alarm rate with the detection of only 4 over the 6 existing attacks.
Figure8(c)shows the alarms raised by the MNP-CUSUM over sketch. A finer grained analysis results
from using many channels in order to monitor the traffic. Thisclearly reduces the number of false
alarms, and increases the hit ratio of low intensity attacks.

The efficiency of an anomaly detection algorithm is usually described by two values: the power of the
test (or detection rate) and the false alarm rate (FAR). In our context false alarms are legitimate flows
that are classified as malicious, whereas the power of the test is the proportion of malicious flows that
are effectively detected as malicious. There is an inherenttradeoff between power and FAR. Indeed,
in an attempt to detect malicious flows with a higher probability one could be tempted to decrease the
detection threshold but this would automatically result ina higher FAR. The ROC (Receiver Operating
Characteristics) curve is usually used to depict such a tradeoff between power and FAR.

In our analysis we conduct off-line and many times the same experiments with different values of
detection thresholdh in order to test the impact of the thresholdh over the power of the test and over
the FAR. We also test the impact of theMLRSsketch widthP , considering different values ofP .
Because of the lack of public and well documented traces withwell known attacks, we use theOTIP
trace (the largest trace with6.9GB of data) as background traffic in which we manually delete the
previous anomalies, and instead insert 100 SYN flooding attacks of different intensities in different
times. Firstly, we apply CUSUM algorithm over this trace by aggregating whole flows in one time
series. Afterward, we apply our implementation over the same trace while changing the value of the
parametersh andP .

Power and FAR values are easily established because we know in advance the IP address of the

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt2010;00:1–24

(b) Attacks in a trace

20 O. SALEM, S. VATON, A. GRAVEY

0.0*100

5.0*104

1.0*105

1.5*105

2.0*105

2.5*105

 0 20 40 60 80 100 120

#S
Y

N

Time (min)

(a) DDoS & NetScan attacks.

0*100

2*106

4*106

6*106

8*106

1*107

1*107

1*107

 0 20 40 60 80 100 120

#S
Y

N

Time (min)

#SYN
Raised Alarms

(b) CUSUM raised alarms.

0*100

2*106

4*106

6*106

8*106

1*107

1*107

1*107

 0 20 40 60 80 100 120

#S
Y

N

Time (min)

#SYN
Raised Alarms

(c) MNP-CUSUM over sketch raised
alarms.

Figure 8. Comparison between CUSUM over raw data & CUSUM oversketch.

Experiment 4. This experiment is conducted in order to study the accuracy of the proposed
framework and to test its sensitivity with respect to the parameters of the detection algorithm. We
begin our evaluation by a comparison between CUSUM over raw data and CUSUM over sketch. By
raw data we mean that the input of the CUSUM algorithm is the time series of aggregated number of
SYN. We use an IP trace of 2 hours, with 6 known anomalies instant & type (4 DDoS and 2 NetScan
attacks) as shown in figure8(a). The 2 scan attacks are represented by filled curves in figure8(a).
The alarms raised by single channel NP-CUSUM over raw data are shown in figure8(b), where we
can observe false alarms due to variations in the aggregatednumber of SYN, and misdetection of low
intensity attacks, which evade the detector after aggregation of the whole traffic into one time series.
The 2 NetScan attacks are not detected when aggregating the whole traffic in one time-series, because
the change is smoothed by the aggregation of the number of flows. Furthermore, to detect DDoS with
small intensity attacks, a low threshold value for CUSUM is required. However, low threshold value in
CUSUM algorithm incurs high false alarm rate with the detection of only 4 over the 6 existing attacks.
Figure8(c)shows the alarms raised by the MNP-CUSUM over sketch. A finer grained analysis results
from using many channels in order to monitor the traffic. Thisclearly reduces the number of false
alarms, and increases the hit ratio of low intensity attacks.

The efficiency of an anomaly detection algorithm is usually described by two values: the power of the
test (or detection rate) and the false alarm rate (FAR). In our context false alarms are legitimate flows
that are classified as malicious, whereas the power of the test is the proportion of malicious flows that
are effectively detected as malicious. There is an inherenttradeoff between power and FAR. Indeed,
in an attempt to detect malicious flows with a higher probability one could be tempted to decrease the
detection threshold but this would automatically result ina higher FAR. The ROC (Receiver Operating
Characteristics) curve is usually used to depict such a tradeoff between power and FAR.

In our analysis we conduct off-line and many times the same experiments with different values of
detection thresholdh in order to test the impact of the thresholdh over the power of the test and over
the FAR. We also test the impact of theMLRSsketch widthP , considering different values ofP .
Because of the lack of public and well documented traces withwell known attacks, we use theOTIP
trace (the largest trace with6.9GB of data) as background traffic in which we manually delete the
previous anomalies, and instead insert 100 SYN flooding attacks of different intensities in different
times. Firstly, we apply CUSUM algorithm over this trace by aggregating whole flows in one time
series. Afterward, we apply our implementation over the same trace while changing the value of the
parametersh andP .

Power and FAR values are easily established because we know in advance the IP address of the

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt2010;00:1–24

(c) Alarms raised

Figure 3.9: CUSUM accuracy results

Figure 3.9 is taken from [SVG10]. Results are obtained by applying using a
software prototype to apply the algorithm to a trace with known attacks. Fig-
ure 3.9a presents the percentage of actual attacks detected (true positive) and
the percentage of alarms raised that did not correspond to actual attacks (false
detection). Varying the threshold h of the CUSUM algorithm is a way to set
the wanted true positive and false detection rates. Parameters of the CMS algo-
rithm (width and depth of the sketch) are also important but they are fixed for
this experiment. Figure 3.9b presents the number of TCP SYN packets due to
known attacks in the trace along time. Figure 3.9c shows the alarms raised by
the CUSUM algorithm for the same trace. It can be observed that attacks are
all detected and no alarms are raised when there is no attack.

3.5.2 Performance

The important result tested with this implementation of DDoS detection on
BlockMon is the performance in terms of supported data rate. We have seen

78

that BlockMon provides a deep level of flexibility and makes the development of
reusable functions easy, but we want to check if it comes at the cost of perfor-
mance.

The way to separate the load between different cores, the methods to create
packet messages that take advantage of cache locality, the message passing with-
out copies and without delays, the support of optimized network stacks like PFQ
are all optimizations to make sure that BlockMon will run as fast as possible.
But we know that software platforms have difficulties to scale to data rates of 10
Gb/s and more.

To test performance results, we use the composition described in Section 3.4.3
with a varying number of capture threads. The thread pool 3 in Figure 3.8 is not
duplicated. It has three available threads on one core. If possible, it should be
on a core that is not used for capture to avoid slowing down the capture. Thread
pools 1 and 2 are identical. Each pool has one available thread used for capture.
Each capture thread is on its own core. In performance tests, the number of
capture threads varies from one to eight. The example of Figure 3.8 has two
capture threads.

PFQSource
Asynchronous

PacketCounter
Direct

Thread pool 1

Packet

PFQSource
Asynchronous

PacketCounter
Direct

Thread pool 2

Packet

Figure 3.10: Multi-thread single-node packet counter composition

In addition to the DDoS detection application, a much lighter application is
tested: a packet counter. This is useful to check if the computation required by
the DDoS detection application slows down the processing. The packet counter is
also implemented on BlockMon using a default block called PacketCounter. The
composition for two capture threads is visible on Figure 3.10.

The test machine is an HP Z800 with two Intel Xeon E5620 processors. Each
processor contains four cores working at 2.4 GHz. Hyperthreading, a technology
that transforms each CPU core into two virtual cores to reduce idle times, is
deactivated to make results easier to interpret. The NIC is an Intel Ethernet
Server Adapter X520-DA2 with two optical 10 Gb Ethernet ports. To get the
best performance from the NIC, the PFQ network stack is used, packets are
spread between multiple hardware queues using RSS. Figure 3.11 displays the
architecture of the machine, obtained using the lstopo tool. Two NUMA nodes
are visible, one for each processor. This means that each processor has a privileged
access to half of the RAM. It is very visible that two cores from the same processor
can cooperate much faster than two cores from different processors, because they
have a common cache layer. The two interfaces called eth2 and eth3 are provided
by the Intel 10 Gb/s NIC. They are connected through PCIe.

79

Figure 3.11: Architecture of the test machine

We generate traffic using a commercial traffic generator called Xena [xen12],
with two interfaces at 10 Gb/s. Only one interface is used, connected directly
to one interface of the Intel NIC. The goal is to stress-test the DDoS detector,
so packets generated are TCP SYN packets because their processing is heavier
for the monitoring application. The destination IP address is random for each
packet, so that different cells of the CMS sketch are updated for each packet. The
fact that packets are TCP SYNs has no impact for the simple counter application.
For each test, 10 000 000 packets are sent at top speed.

Before obtaining results presented below, a long configuration phase was nec-
essary. Many parameters are accessible on the machine, that have a noticeable
effect on performance: the size of the chunks read for the communication with
the PCIe bus, the size of buffers used in the network stack and in the NIC, or
the CPU frequency adjustment method. Results below use the best parameters
we could find. All other NICs on the computer as well as the graphical interface
have also been deactivated to avoid slowing down the packet processing.

87654321
0

10

20

30

40

50

60

70

80

90

100

Packet counter

DDoS detection

Number of capture threads

P
e

rc
e

n
ta

g
e

 o
f d

ro
p

p
e

d
 p

a
ck

e
ts

Figure 3.12: Dropped packets with the smallest possible packets

Figure 3.12 displays the percentage of dropped packets using the packet counter

80

and the DDoS detection application. Packets sent are of the smallest possible size
(64 bytes excluding the inter-frame gap and preamble). The number of capture
threads varies. The interest of RSS is clear on this figure. Using only one cap-
ture thread, the simple counter application drops 89 % of the packets. Increasing
the number of capture threads, the number of dropped packets decreases linearly
down to 26 % of dropped packets using six threads. With seven threads, results
are better with only 24 % of packets dropped, but the improvement is less im-
portant. Using eight threads is worse than using seven, with 25 % of packets
dropped. It seems that 24 % of packets dropped is the lowest reachable value.
Packets are dropped by the NIC and are not sent to the CPU, they appear as
rx_missed_errors in the statistics of the NIC. This is due to the limits of the
communication link between the NIC and the CPU. This limit is not due to
BlockMon or to the application. The only way to get better results would be
to use a more powerful computer or to find a mean to fine-tune even more the
configuration of this computer.

For the DDoS application, results are almost the same as for the counter. The
number of dropped packets decreases a bit more slowly, but it reaches the same
limit as for the counter. The slower decrease is due to the heavier processing that
has to be done for each received packet. The fact that the results are very close
shows that the update of the CMS sketch for each packet is not a major problem
in software. Results are worse with eight capture threads than with seven. This
is due to the same limit as the one observed for the counter. But it is also due to
the fact that with seven capture threads, all eight cores are already used because
one core is used to centralize all sketches, analyze them and check for alarms.
When using eight cores, one core is used both for capture and for analysis, and
its resources are shared between all tasks.

64 100 128 256 512
0

5

10

15

20

25

30

Packet counter
DDoS detection

Size of each TCP SYN packet (bytes)

P
e
rc

e
n

ta
g
e

 o
f d

ro
p
p

e
d
 p

a
ck

e
ts

Figure 3.13: Dropped packets using seven capture threads

The fact that some packets are dropped at top speed might be seen as a
problem for a real-world use of this software implementation. But the results are
for the smallest packets, and the average size of received packets in real traffic is
never 64 bytes. Figure 3.13 displays the number of dropped packets depending
on the size of the generated packets. Packets are still all TCP SYN, but with

81

a payload of variable size. As TCP SYN packets carry no data, the payload is
only made of zeros. Both the counter and the DDoS detector use seven capture
threads as this is the configuration that provides the best results. Results for the
counter are simple: with packets of 100 bytes, almost no packets are dropped.
And it remains the same with bigger packets. In this case, the delay taken to
update the CMS sketch has a more visible impact on performance than with small
packets. The CPU is less overwhelmed by packet capture because fewer packets
are received per second. The heavier processing of the DDoS detector compared
to the counter makes it more difficult to drop no packets but with a size of 512
bytes, the full 10 Gb/s traffic is supported.

These results show that BlockMon is very handy to get the best performance
from a computer. The overhead it adds is small enough that with enough capture
threads, dropped packets are due to the communication between the NIC and the
CPU, and not to the load of the CPU. Supporting 10 Gb/s on a powerful computer
is still not an easy task, and packets are dropped under stress test conditions.
But a complex application can be implemented in an efficient way in software to
support a traffic of 10 Gb/s under normal conditions.

3.5.3 Going further

To improve performance, different approaches are possible. The most basic is
to use a more powerful computer, it may allow to support 10 Gb/s even with
small packets, but going further will still be difficult. Another approach is to use
hardware acceleration.

As the current implementation is pure software, the simplest way to add
hardware-acceleration would be to take advantage of the GPU of the computer.
But we just explained that performance issues are due to the communication
between the NIC and the CPU, not to the processing power of the CPU. So using
the GPU would be useless, as the communication between the NIC and the CPU
would remain unchanged.

Another option is to use an NPU or an FPGA. Both platforms offer the
possibility to support the whole algorithm. As all NPUs offer different features,
and as FPGAs are great prototyping platforms, and can be used to design an
architecture that will then be implemented on an NPU, we will focus on FPGAs.
The CMS algorithm is perfectly adapted to hardware implementation. Each
column of the sketch can be a RAM element embedded on the FPGA. This way,
all columns can be handled in parallel. If more space is needed, a big external
RAM can also be used. The hash functions are easy to compute. We already have
implemented the CMS algorithm on FPGA during a project [FGH10] and could
reuse this implementation. The CUSUM algorithm is not a problem either on
FPGA: it simply consists in some additions and comparisons. It would take some
time as all memory cells of sketches have to be read the one after the other, but
the delay would be small compared to the period at which the CUSUM algorithm
is run. This way, alerts could be raised on the FPGA and sent to the computer,
which would export them in the IDMEF format.

Such an implementation would support without problem 20 Gb/s on the

82

Combo board or 40 Gb/s on the NetFPGA 10G board. But it has a drawback:
all the flexibility that was provided by BlockMon is lost. Adding the ability to
have distributed probes would require to modify the implementation. Changing
the size of sketches would require to reconfigure the FPGA, which would take
multiple hours. Another drawback is that development on FPGA is slower that
development on CPU, so it should be kept at its minimum. The CUSUM algo-
rithm works without any problem on the CPU, there is absolutely no reason to
implement it on FPGA.

The only task that should be offloaded to a hardware accelerator is the lowest-
level task: counting packets. This is the only task that has to be performed at
wire speed. The change detection algorithm is only run periodically and rep-
resents no problem. To keep the flexibility of BlockMon, the best thing to do
would be to count packets on the FPGA, and then to do everything else on the
CPU using BlockMon. This is possible thanks to Invea-Tech: they developed a
BlockMon block that is able to communicate with the Combo board. Two blocks
would have to be implemented on hardware: TCPFlagCounter and SynFlood-
SourceCounter. There are two communication channels between the FPGA and
the CPU: a very simple configuration channel with a low data rate, and a data
channel with a maximum theoric data rate of 20 Gb/s. Sending alerts from the
FPGA to the CPU is simple: it represents very few data. The most challenging
task is for the FPGA to send periodically CMS sketches to the computer, as the
TCPFlagCounter has to do. But a sketch may represent just a few hundreds of
kilobits. Sending it for example once per second using the data channel is not a
problem. It is much less challenging to support for the CPU than receiving the
packets. This technique would allow to support 20 Gb/s, even in the worst case.
It would require only limited development on FPGA, and it would be almost as
flexible as the pure software implementation.

Hybrid solutions using software in collaboration with hardware accelerators
are a great way to combine the advantages of hardware and software. The method
to do simple low-level processing in hardware and send aggregated metrics to
the computer is often efficient. The development cost is higher than for a pure
software solution, but performance can be much better.

3.6 Conclusion
In this chapter, we have studied a software implementation of a traffic monitoring
application. As part of our contribution to the DEMONS European project, we
developed reusable code for the BlockMon framework. This framework is made
so that probes can support high data rates. It is developed in C++ and opti-
mized to avoid data copies as much as possible. It integrates with the optimized
PFQ network stack, making it compatible with the RSS technology from Intel to
separate traffic into multiple hardware queues. It also provides a very accurate
control of the way multi-threading works thanks to the notion of thread pools, a
set of threads linked to a specific core that can run blocks.

Thanks to the use of configurable blocks, BlockMon is also very flexible and
can be configured easily using a GUI. Without any new development, a well-

83

designed application can be adapted to work on a single probe, or distributed on
multiple probes, and to exploit more or less the multi-threading capabilities of
the machines. The parameters of the applications can also be tuned.

To test the efficiency of the BlockMon framework, we developed an application
for one use case: the detection of TCP SYN flooding attacks. The development
was eased by the building blocks that already existed in BlockMon. We imple-
mented two base algorithms as libraries: CMS to count packets and CUSUM to
detect abrupt changes. The application itself was divided into multiple blocks to
take advantage of the flexibility of BlockMon. All blocks and libraries we devel-
oped may be reused for other applications. The libraries are the easiest to reuse
because they are very generic. The blocks are designed for a precise use.

To test the ability of our application to support high data rates, we used a
traffic generator to send stressing traffic to the DDoS detection algorithm. The
application was installed on a powerful computer with a 10 Gb/s Intel NIC. Re-
sults show the interest of BlockMon and its multi-threading mechanisms: almost
all of the packets were dropped using only one capture thread, but less than a
quarter of the packets were dropped with the most stressful traffic possible using
seven capture threads. As we saw by increasing the size of the sent packets, traf-
fic on a 10 Gb/s link on a real network should be supported without dropping
packets.

The advantage of software development is that it is relatively easy and fast.
The flexibility provided by BlockMon would be difficult to offer on dedicated
hardware. And the example presented here shows that supporting 10 Gb/s on
commodity hardware is possible. But a very powerful machine is required, and its
configuration must be fine-tuned to get the best results. With our configuration,
we were not able to support 10 Gb/s with the most stressful traffic.

An interesting perspective provided by the DEMONS project is a mix of
hardware-accelerated functions and software processing. Invea-Tech has devel-
oped a BlockMon block that can communicate with the Combo board. So it
is possible to develop some basic processing on FPGA, and then to exploit the
flexibility of BlockMon at higher levels. For example for the DDoS detection
application, the CMS algorithm is very adapted to an FPGA implementation.
So it would be possible to count packets on the Combo board, and then only
send sketches periodically to the computer so that BlockMon takes care of the
CUSUM algorithm and the data centralization. It would even be possible for
some probes running exclusively in software and others using the Combo board
to work together.

84

Chapter 4

Hardware monitoring applied to
traffic classification

We have seen the possibilities offered by software-accelerated approaches, as well
as their limits using the DDoS use case. This use case is interesting to focus
on packet processing, because the algorithm to detect attacks is very simple. It
mostly consists in updating counters and comparing them to thresholds. Now we
will see the advantages and drawbacks of hardware-accelerated traffic monitoring.
But packet processing alone is not a challenge using hardware acceleration, so we
will study an application with a heavier algorithmic part: traffic classification.

Traffic classification is the task of associating unknown packets transiting
on a link of a network to their generating application. It is used by network
operators to get statistics to know more about the traffic that transits on their
links. It can also be used to ensure different levels of QoS for different categories
of applications, for example by giving a priority to VoIP calls, which require a
lower latency than simple downloads. Finally, it is more and more used for lawful
interception. In different countries, laws have been in project to force operators
to log data about all VoIP calls transiting on their network, which would require
operators to identify these calls first. Algorithms we will present can be useful in
all these scenarii.

We will first see different algorithms suggested in the litterature for traffic clas-
sification, and analyze how they can be implemented to support high data rates
in Section 4.1. This will lead us to focus on one algorithm called Support Vector
Machine (SVM). Section 4.2 will provide a description of the SVM algorithm, its
accuracy, and how it is used for traffic classification. Section 4.3.1 will describe
the requirements on the traffic classifier to support high bit rates and show that a
software implementation is not enough. The remainder of Section 4.3 will study
the SVM classification algorithm and present its challenges and potential. The
hardware architecture and implementation of the flow storage and of the clas-
sifier will be detailed in Section 4.4, along with a variation of the classification
algorithm, which is more adapted to hardware. Finally, Section 4.5 will present
both theoretical and real stress-test results using a 10 Gb/s traffic generator.

85

4.1 State of the art on traffic classification

Different techniques have been used for traffic classification. These techniques
have evolved to adapt to the changing nature of the classified traffic [DPC12].
First Internet applications like email, IRC, File Transfer Protocol (FTP) or SSH
have been assigned well-known UDP or TCP port numbers by the Internet As-
signed Numbers Authority (IANA). Checking only the port number and transport
protocol was enough to identify an application. Then P2P applications appeared.
The protocols they use are not standardized, and they often use random ports
to avoid being filtered. With the evolution of the web, many applications now
communicate over HTTP (TCP port 80), be it for file transfers, video or au-
dio streaming, or games. To make traffic classification even more complicated,
HyperText Transfer Protocol Secure (HTTPS) is used more and more. For ex-
ample Google enabled it by default on its homepage. This addition of a security
layer means that a bigger and bigger part of the traffic is encrypted, making it
impossible to analyze the content of the packets.

All these evolutions explain why traffic classification algorithms are still an
open problem, with many different solutions described in the litterature. These
solutions can be split into four categories:

Port-based classification is the oldest method. It is based on simply checking
the transport protocol and the port number.

Deep Packet Inspection (DPI) is the most wide-spread method. It works by
searching for regular expressions in the payload of the packet.

Statistical classification is based on some features computed from the header
of one or more packets. It usually applies machine learning algorithms on
these features to classify packets into applications.

Behavioral classification uses the same principles as statistical classification,
but with higher-level features like the topology of the connections estab-
lished between IP addresses.

Some traffic classification algorithms actually fall into a fifth category: active
classifiers that require the applications to label the packets they generate. We
will not study this category because active classifiers have very different use-cases:
applications are trusted to label their packets themselves. This is a technique that
cannot be used on a public network for QoS or lawful interception, but it can be
useful for research to study some generated traffic [GSD+09a].

We will now present algorithms in each of the four categories, and study their
ability to support high data rates.

4.1.1 Port-based classification

This is the oldest and the simplest method to classify traffic. The most common
transport protocols used over IP are TCP and UDP. Both use 16-bit integers
called port numbers to enable multiple applications to communicate at the same

86

time on the same computer without mixing their packets. A TCP or UDP packet
has a source port and a destination port. The source port is reserved on the
sending computer for this communication, and the destination port is reserved
on the receiving computer. On a classical client/server connection, the commu-
nication is initiated by the client. But the client has to send the first packet with
a destination port. This is why well-known ports have been created: these port
numbers are reserved for a specific application, and servers running an applica-
tion listen to its well-known port constantly. Standardized protocols have even
reserved ports, assigned by the IANA. These ports should not be used by other
applications.

Port-based classification consists in finding these well-known ports as desti-
nation port for a communication from the client to the server, or as source port
from the server to the client. Ports are in a standardized location in the header
of the TCP or UDP packets, making it very simple for a classifier to read them.
If no well-known port is found, the traffic is considered as unknown.

The CoralReef network administration tool [MKK+01] used this technique
in 2001. It did bring good results at the time because most applications used
this client/server model with well-known ports. The biggest advantage of this
technique is that traffic classification cannot be made simpler, and it can scale
to very high data rates. In software, reading a port number is even simpler
than transmitting full packet data, so tens of Gb/s could be supported without
problem.

Port-based classification was also used in 2003 to identify traffic on a network
backbone link [FML+03]. These results are interesting because P2P applications
were gaining importance at that time, representing up to 80% of the traffic in
some traces, and they are listed in a category “unknown/P2P”. The reason is that
P2P applications do not use the classical client/server model and use random
ports.

In addition to this limit, many applications now use a simple custom pro-
tocol over HTTP instead of a protocol directly over UDP or TCP. It has two
advantages:

• HTTP is the default protocol for the web so it is authorized everywhere,
risks are small to find a private network where this protocol is filtered.

• HTTP directly provides the notion of resources and the handling of server
errors. It makes application development faster and more flexible.

This method adds some overhead to the amount of data transfered (custom head-
ers could be simplified), but developers do not consider this as an important
problem since connections have become faster. As all HTTP traffic is on the
same well-known port, port-based identification of an application that works over
HTTP is not possible. Actually, so many applications now work over HTTP that
specific classifiers have been designed for this traffic [BRP12].

This is why port-based traffic classification is now considered inefficient [MP05]
and other methods have been studied. Although we will see that ports still play
a role in some of these methods.

87

4.1.2 Deep Packet Inspection (DPI)

DPI is currently considered as the most accurate way to classify traffic. It is
often used in research as a ground truth [CDGS07] to which new algorithms are
compared. It works in two phases:

• First, an expert studies the traffic generated by each application to identify,
and finds specific patterns that are found in all TCP or UDP flows gener-
ated by an application. These patterns are usually described using regular
expressions. This is done offline. At the end of this phase, each application
is associated to a signature made of a set of regular expressions.

• Then, online traffic classification is done by comparing the payload of re-
ceived flows to each regular expression until a match is found. The matching
signature corresponds to the identified application.

The basic principle is simple and reliable, so current litterature about DPI
focuses on making it simpler to use, for example with a technique to generate
signatures automatically without the need of an expert [GHY+13].

But the main research subject about DPI is the acceleration of the online
classification. Matching regular expressions against the payload of each received
packet is a very challenging task. This is why high data rates can only be reached
with specific hardware. For example, an implementation on GPU [FSdLFGLJ+13]
manages to reach 12 Gb/s of classified traffic. Different improvements have also
been proposed at an algorithmic level [SEJK08, HSL09, CCR11] to build faster
pattern-matching automata or to stop searching before the end of the flow for
example. FPGA implementations are also available, like this one [MSD+07] with
a specific architecture to accelerate pattern matching.

Although DPI is very accurate, it still suffers from the current evolutions of
the traffic. Security concerns force more and more developers to encrypt the
traffic their application generates. This is for example the case of Google for its
search engine and email platform, and Facebook for its social network. In this
situation, DPI cannot access to the payload of the packets. The only available
piece of information is the certificate used to identify the provider, which will
not be enough as more and more providers use encryption for all their services.
So the accuracy of DPI is not guaranteed any more [XWZ13]. DPI is also badly
perceived in public opinion [MA12] because it means operators study the full
traffic their users generate, a fact that raises privacy concerns.

This is why other techniques are studied that do not access the payload of the
packets. This is a way to preserve users’ privacy, and to make algorithms lighter
and more scalable. It also circumvents the problem of traffic encryption, as IP,
UDP and TCP headers are not encrypted.

4.1.3 Statistical classification

Many different algorithms [NA08] are used for statistical classification, but they
share common points:

88

• The classification is made by flow. A flow is a set of packets with the
same source and destination IP adresses and ports, and the same transport
protocol (UDP or TCP).

• The features used to describe a flow are deduced only from the headers of
its packets, usually the IP, UDP and TCP headers. These features can be
for example packet sizes, inter-arrival times or the number of packets in a
flow.

• The algorithm used to classify the flows is based on machine learning. A
model is created offline during a learning phase, and the actual classification
is made online thanks to the model.

The interest of using only the headers of packets is that statistical classification
can work on encrypted traffic [WCM09]. The variety of algorithms comes from
the design choices that have to be made.

The first design choice is the set of features used to describe a flow. Some
features discriminate different applications better than others. The choice can
be made to keep all features and to let the algorithm decide how to separate the
applications. Another choice is to select as little features as possible. Automatic
algorithms exist [WZA06] for this task. This can make the classification lighter.

The second design choice is the classification algorithm. The machine learn-
ing domain is vast and different classification algorithms exist, which are more
or less adapted to traffic classification. Each algorithm has its advantages and
drawbacks. For example some algorithms are supervised [XIK+12], which means
that the classification requires a model built from a data set with flows labeled
with the generating application. These data sets are usually generated manually
by installing applications and using them, or from a real trace analyzed using
DPI or manually. Other algorithms are unsupervised [ZXZW13], which means
that they build clusters of similar flows, and use other techniques, often based
on DPI, to label each cluster with its generating application. The advantage is
that there is no need for a labeled data set, which is challenging to get, but the
drawback is that it relies on DPI again, which we try to avoid.

To get the best possible scalability, a proposal uses the Naïve Bayes classifi-
cation algorithm [SdRRG+12] and the highly optimized capture engine Packet-
Shader [HJPM10]. This way, up to 2.8 millions flows can be classified per second
on commodity hardware. But it is proved [WZA06] that the accuracy of this
algorithm is lower than SVM or C4.5. In the same way, [JG10] implements the
k-Nearest Neighbor classification algorithm on FPGA to classify multimedia traf-
fic, and manages to support up to 80 Gb/s of traffic. Although it is limited to
multimedia traffic, it shows the interest of FPGAs, that help scale to higher data
rates.

We will focus on two classification algorithms because they proved to have a
high accuracy for traffic classification:

• The first one is SVM [CV95]. It has been used successfully in different arti-
cles [KCF+08, GP09, EGS09, EG11]. It is a supervised algorithm that uses
flow features as vector components and looks for separating hyperplanes

89

between the flows of each application. A specific function called kernel is
used to change the considered space if no hyperplanes can be found. This
algorithm brings very good accuracy for traffic classification. Its drawback
is that the computation required to classify one flow can be quite heavy.

• The second one is C4.5. It seems to bring a slightly better accuracy than
SVM in some situations [LKJ+10]. It is a supervised algorithm based on
binary trees. Its main advantage is that it is very light. Learning consists
in building a decision tree, with each branch corresponding to a condition
on a flow feature. To classify a flow, a condition is evaluated on a flow
feature at each level of the tree, and the leaf indicates the application. We
will show anyway in Section 4.2.3 that depending on the flow features used,
C4.5 can be less accurate than SVM.

SVM brings an excellent accuracy [EG11] at the cost of an increased classifi-
cation complexity. Classifying a flow using SVM requires the computer to make
complex calculations, iterating many times over the kernel function. In [EG11],
authors optimize their software implementation of the SVM algorithm to sup-
port only 1Gb/s links. A drawback of commodity hardware is that the simple
task of processing packets requires a big part of the processing power of the
CPU. In [GNES12], authors avoid this problem by using a NetFPGA 1G board
to offload packet processing tasks. This way, only the classification is made in
software. Using six threads and a simple SVM model with only two applications,
they classify 73.2 % of the packets of a trace replayed with a rate of 384 000 flows
per second. Section 4.3.1 will give more results about SVM classification speed
on commodity hardware, and prove that it is not enough to support a bit rate of
only 10 Gb/s.

As SVM is very challenging to implement, it is worth using hardware ac-
celeration to make it scale to higher data rates. Multiple hardware-accelerated
implementations of SVM already exist. Although most implementations focus
on accelerating the training phase [ABR03], which is not the most important for
online traffic classification, some accelerate the classification phase. Some use
GPUs [CSK08, Car09], others use FPGAs [IDNG08, PB10, AIN13]. Although
GPUs are interesting, FPGAs provide the maximum parallelization possibilities,
allowing to explore the best possible hardware acceleration for SVM. Existing
implementations [PB10, AIN13] focus on supporting as many features as pos-
sible, with a classification problem between only two classes. This is opposed
to the statistical traffic classification use-case, where a choice must be done be-
tween multiple classes (one per category of applications), and few features are
usually available (some packet sizes or inter-arrival times). These approaches use
high-speed multipliers of DSP blocks massively to compute kernel values. This
is very efficient because DSP blocks are specialized FPGA blocks designed to
perform complex computations. But available FPGA boards designed for traffic
monitoring like the NetFPGA 10G are not designed to make complex computa-
tions, so the integrated FPGA contains few DSP blocks, making these approaches
inefficient.

90

No customized FPGA implementation of SVM has been studied yet for traf-
fic classification. Ideally, such implementation should avoid using DSPs and be
adapted to multi-class problems. This is the object of Section 4.4.1. Some arti-
cles provide promising ideas about the way to make such implementation. For
example in [IDNG08], an algorithm is proposed to compute kernel values using
look-up tables, that is to say memory, instead of DSP blocks. In [APRS06], an-
other solution is suggested that modifies the kernel function to make it easier to
compute on an FPGA without DSP blocks.

Unlike SVM, the C4.5 algorithm is very simple. Depending on the use case,
it can be more or less accurate than SVM. Classifying a flow is only a matter
of browsing a tree, with each branch corresponding to a condition. So a soft-
ware implementation [dRR13] of C4.5 is able to support a traffic of 10 Gb/s,
which corresponds to up to 2.8 millions of flows per second. These good results
using commodity hardware show the potential of this algorithm. An hardware-
accelerated implementation of C4.5 on FPGA for traffic classification manages to
support up to 550 Gb/s of traffic [TSMP13].

As a conclusion, SVM and C4.5 have very good accuracy results. We will
show in Section 4.2.3 a use case where SVM is better. Although both algorithms
are lightweight in terms of data required from the traffic (only some parts of the
IP, UDP and TCP headers), SVM is more challenging to scale to high data rates,
which makes its hardware implementation particularly interesting.

4.1.4 Behavioral classification

Behavioral classification is based on the observation of the behavior of each host
on the network to determine the role of the host, and the reason why a flow
is established between two hosts. For example, a host towards which a lot of
connections are established is probably a server. By observing the data rate of
the flows or their length, it is possible to determine that it is not a web server
but a video streaming server. Then all flows communicating with this host on a
certain range of ports can be considered as video streaming.

A good example of behavioral classification is BLINC [KPF05]. First a de-
tailed analysis of the behavior of hosts is manually performed for each category
of application (mail, P2P, games. . .), so as to find discriminating connection
patterns. Then these patterns are automatically used to classify traffic. For
real-time traffic classification, the main challenge is that an important number
of connections must first be found with a host so that it can be identified. So
first flows cannot be identified. This technique is better suited for offline traffic
classification, so that the whole trace can be analyzed before classifying the flows.

Behavioral classification has also been used to classify traffic from P2P video
applications [BMM+11]. In this approach, the number of packets and bytes ex-
changed between hosts is used as feature for an SVM classification algorithm. It
gives good results but as for the previous method, a communication must be over
before it is classified, so this is better suited for offline classification.

For online classification, an article [BTS06] uses only the size of the first
packets of a flow and their direction to or from the server. A flow is seen here

91

as bi-directional. That is to say that packets with inverted source and destina-
tion addresses and ports are considered in the same flow, contrary to previous
approaches. This way they reach an accuracy of 90%, which is lower than statis-
tical approaches.

This last method outlines another drawback of behavioral classification: it
requires a more global view of the network, which means that data about flows
must be bidirectional. This is opposed to the way most statistical approaches
work, and it means that classification cannot be done on a backbone, which may
not receive both directions of a flow, as routing is not symmetrical.

So behavioral classification is more interesting for offline traffic classification
if a global view of the traffic is possible. It has the advantage of being able to
identify applications with similar behaviors on the network, and not to require
any data about the payload of packets. But it is not the best approach for online
traffic classification, both in terms of accuracy and scalability.

4.2 Using SVM for traffic classification
The current state of the art shows that statistical traffic classification is the most
promising technique for online traffic classification. Two algorithms give partic-
ularly good accuracy results: C4.5 and SVM. SVM is more challenging to scale
to high data rates, but it gives better results than C4.5 in some situations (see
Section 4.2.3), and a custom hardware-accelerated implementation for traffic clas-
sification has not been studied. So we will now present the real implementation of
a lightweight classification engine with a high-performance hardware-accelerated
solution using SVM.

4.2.1 Proposed solution

Classification is performed on flows. A flow is defined as a set of packets with
identical 5-tuples (source IP address and port, destination IP address and port,
transport protocol). Flows are unidirectional, so that a TCP session is made of
two flows. Each flow is described by simple packet-level features, in this case the
size of the Ethernet payload of packets 3, 4 and 5 in the unidirectional flow. The
first two packets are ignored because they are often very similar for TCP flows as
they correspond to the TCP handshake. This way to use SVM on packet lengths
is proved to give good results [GP09, EGS09].

Like any supervised classification method, the SVM algorithm consists of two
main phases: a training phase and a detection phase. During the training phase,
the algorithm starts from a learning trace labeled with categories of applications
and computes the classification model. Using this model, the detection phase
decides the application category of new flows.

We consider a hardware-accelerated implementation of the detection phase
of the SVM algorithm. The learning phase is done offline in software, as a fast
implementation is not required for online traffic classification. Indeed the model
might have to be updated once a month, so learning is made offline once a month,
but detection is made in real time for each received flow.

92

Section 4.2.2 gives some background on the SVM algorithm, and Section 4.2.3
shows that the algorithm is interesting for traffic classification in terms of accu-
racy.

4.2.2 Background on Support Vector Machine (SVM)

SVM [CV95] is a supervised classification algorithm. It transforms a non linear
classification problem into a linear one, using a so-called “kernel trick”. It takes a
set of sample points in a multi-dimensional space, each sample point being asso-
ciated beforehand with a class. SVM tries to find hyperplanes which separate the
points of each class without leaving any point in the wrong class. But it is often
impossible to separate sample points from different classes by hyperplanes. The
idea of SVM is to use a specific function, called “kernel”, to map training points
onto a transformed space where it is possible to find separating hyperplanes. The
output of the training phase is the SVM model. It is made up of the parameters
of the kernel and a set of support vectors xi that define the separating hyper-
plane. During the detection phase, SVM simply classifies new points according
to the subspace they belong to, using the SVM model. Several algorithms exist
for SVM-based classification. We have used the original and simplest C-Support
Vector Classification (C-SVC) algorithm [BGV92].

More formally, let us assume that we have a set of training points xi ∈ Rn, i =
1, . . . , l in two classes and a set of indicator values yi ∈ {−1,+1} such that yi = +1
if xi belongs to class 1 and yi = −1 if xi belongs to class 2. Let us also assume
that we have selected a function φ such that φ(xi) maps training point xi into a
higher dimensional space.

The training phase involves searching for a hyperplane that separates points
φ(xi) belonging to classes 1 and 2. It solves the following optimization problem:

minw,b,ζ
1
2
wTw + C

∑l
i=1 ζi

subject to yi(w
Tφ(xi) + b) ≥ 1− ζi

ζi ≥ 0, i = 1, . . . , l

(4.1)

In the above equation, vector w defines the direction of the separating hyperplane
and ζi, i = 1, . . . , l are slack variables. C is a regularization parameter that
penalizes solutions where certain points are misclassified. Once the problem is
solved, the optimal w is given by:

w =
l∑

i=1

yiαiφ(xi) (4.2)

α is a vector corresponding to the decomposition of the w vector on the base
represented by the φ(xi). Only a subset of the αi coefficients are non-zero, the
corresponding φ(xi) are the support vectors. They are the only vectors which
will be useful for classification.

In the detection phase, any new point x is classified according to the following
decision function:

sign(wTφ(x) + b) = sign(
l∑

i=1

yiαiK(xi, x) + b) (4.3)

93

The kernel function is defined as K(xi, x) = φ(xi)
Tφ(x). x is placed into class 1

if the obtained sign is positive and into class 2 if it is negative.
In this chapter, we first use the Radial Basis Function kernel as a reference,

as it was used in article [EGS09]:

K(xi, xj) = exp(−γ ‖ xi − xj ‖2) (4.4)

Section 4.4.4 presents another kernel, more adapted to hardware implementation,
and proves that it brings better performance and accuracy for traffic classification.

From this simple two-class SVM problem, one can easily deal with multi-
class SVM classification problems. An usual approach is the so-called “one versus
one” (1 vs 1) approach. In this approach n(n−1)

2
two-class SVM problems are

considered, one for each pair of classes. Training and classification are performed
for each two-class problem thus producing n(n−1)

2
decisions. The final decision is

taken on the basis of a majority vote, that is to say that the new point is allocated
to the class which was chosen the highest number of times.

4.2.3 Accuracy of the SVM algorithm

For a given dataset, the accuracy of the SVM-based classifier is measured by the
percentage of flows with a known ground truth that are placed in the proper class.

In order to assess this accuracy we have performed validation over three dif-
ferent datasets. The learning and detection phases were performed using the
libSVM library [CL11]. The input of the SVM classifier is the one described in
Section 4.2.1.

In each dataset, each flow is associated with a label which identifies the ap-
plication which has generated the flow, called the “ground truth”. It has been
obtained either by Deep Packet Inspection (DPI), with for example L7-filter [Cle],
or by using a tool such as GT [GSD+09b], which is based on the analysis of logs
of system calls generated by the different applications and their correlation with
traffic dumped on one network interface of a host machine.

Trace Network of capture Bytes Flows Known Rate
flows (Mb/s)

Ericsson Local Area Network, 6 222 962 636 36 718 16 476 3.96
Ericsson Laboratory

Brescia Campus trace, 27 117 421 253 146 890 74 779 103
University of Brescia

ResEl Campus trace, 6 042 647 054 25 499 10 326 176
Télécom Bretagne

Table 4.1: Traffic traces and their properties

The characteristics of the three traffic traces used as benchmarks are listed in
Table 4.1. Known flows are flows for which the generating application is known.
Traces correspond to three different scenarios: one laboratory environment, one

94

campus network, and one student residential network. As a consequence, the
composition of traffic is significantly different from one trace to the other.

1. The Ericsson dataset corresponds to some traffic that has been generated
in a laboratory environment at Ericsson Research.

2. The Brescia dataset is a public dataset [GSD+09b]. It corresponds to traffic
captured on a campus network. The ground truth has been obtained with
the GT tool.

3. The ResEl dataset is a trace we captured ourselves on the network for
student residences at Télécom Bretagne. ResEl is the association managing
the network, which agreed to the capture on the single link between the
residences and the Internet. It was performed around 1 PM on a workday
for a bit more than 5 minutes with an average data rate of 84 Mb/s. The
ground truth was obtained using L7-filter. The GT tool was not used,
because it would have required installing probes on the computers of certain
students, which was not possible.

As each trace corresponds to a completely different network, the parameters
of the SVM algorithm have been set differently, and one different SVM model has
been learnt for each trace.

The definition of classes is not universal. It mainly depends on the filters that
have been defined for DPI. In order to enable a comparison between traces we
have merged applications into different categories, listed in Figure 4.1. An order
of ten classes is classic. Unsupervised classifiers produce more classes, but this is
an undesired feature.

Using the RBF kernel and the best parameters found in cross-validation, the
accuracy, that is to say the overall percentage of flows that are correctly classified
is 97.82 % for Ericsson, 98.99 % for Brescia and 90.60 % for ResEl.

A global accuracy figure is usually not considered sufficient to demonstrate the
performance of a classifier. Some classes could be frequently misclassified with
not much impact on the global figure if few flows correspond to those classes.
A usual representation of results is given by the confusion matrix. Figure 4.1
provides the accuracy per application category, that is to say the percentage of
flows of each application category that has been accurately classified.

As one can see from this figure, the accuracy of the SVM algorithm differs
from one application category to another and from one trace to another. The
proportion of an application category in a trace impacts the ability of the SVM
algorithm to detect it. For example, as the “Web” class is present with a good
proportion in all three traces, the accuracy of the detection is high. However,
as the “Streaming” class, is almost absent in the three traces, it has the worst
classification accuracy. Some classes are completely absent from certain traces.
For example no gaming applications have been detected in the Brescia and ResEl
traces, maybe because recent games were not detected when applying DPI with
too old signatures.

Accuracy for the ResEl trace is not as good as for the other traces. This might
be due to the way we got the ground truth, simply using L7-filter instead of more

95

W
eb

P2P

Dow
nlo

ad

Stre
am

ing

Gam
e

M
ail IM RC

0
10
20
30
40
50
60
70
80
90

100

Ericsson

Brescia

ResEl

Class

A
cc

u
ra

cy
 (

%
)

Figure 4.1: Accuracy per traffic class

elaborate tools like GT: some flows may be misclassified in the ground truth. But
this represents real-world applications where the ground truth is always difficult
to get, so we keep this trace to check that an implementation works on it as well.

As discussed in Section 4.1.3, C4.5 is an algorithm known to give good results
for traffic classification, even better than SVM in some situations [LKJ+10]. So
we tried to use C4.5 on the Brescia dataset, using two third of the trace for
testing, and a part of the remaining trace for learning. C4.5 always resulted
in more classification errors than SVM, with 20% more errors using a third of
the trace for learning (16 602 flows), and even 45% more errors using a tenth of
the trace (498 flows). This may be due to the fact that we do not use ports as
classification features.

The same article [LKJ+10] also claims that using discretization improves the
results of SVM classification. Discretization consists in grouping the feature val-
ues (here the packet sizes) into intervals. Classification is then done using these
intervals instead of the values. We tried using the entropy-based minimum de-
scription length algorithm to discretize the features of the Brescia dataset. We
obtained a model with fewer support vectors, which is interesting in terms of
classification time, but with almost three times more classification errors. So
the implementation described below uses SVM without discretization, although
it would be simple to add.

4.3 SVM classification implementation

4.3.1 Requirements

In the following, the implementation of on-line SVM traffic classification is stud-
ied. In our scenario, probes are located on an operator access or core network
to monitor traffic at packet level, reconstruct flows and classify them with an
SVM. Only the detection phase of SVM is performed on-line. The learning phase
is performed off-line periodically with a ground truth generated by tools such
as GT. Using boards such as the NetFPGA 10G [Net12] or the COMBO LXT
[IT13], algorithms should be able to support up to 40 Gb/s. But the eventual

96

goal for the algorithm is scaling to 100 Gb/s and more.
Two main functions will be required for traffic classification:

• The flow reconstruction reads each packet, identifies which flow it belongs
to, and stores the packet lengths required for classification. The processing
speed depends on the number of packets per second in the traffic.

• The SVM classification runs the SVM algorithm once for each received
flow. The processing speed depends on the number of flows per second in
the traffic.

The traces used to test the classification algorithm are described in Table 4.1.
To reach a specified bit rate, requirements in terms of packets per second for flow
reconstruction and flows per second for classification are different depending on
the dataset considered. This is due to different average packet and flow sizes. The
flow size is the number of bytes received between the reception of two flows with
enough data to send them to be classified. It includes possible delays between
packets. Table 4.2 provides these numbers for each trace. So for example, to
support a data rate of only 10 Gb/s, the flow reconstruction speed should range
from 1 420 313 to 1 921 405 packets per second and the SVM classification from
6 771 to 9 054 flows per second. The ResEl trace is the easiest to handle for flow
reconstruction because it contains large packets, but the hardest to handle for
SVM classification because it contains small flows.

Trace Average packet size (B) Average flow size (kB)
Ericsson 651 169
Brescia 812 185
ResEl 880 138

Table 4.2: Average packet size and flow size for each trace

We first developed a software version of the classifier that is fed by a trace, to
assess the possible performance in software. The classifier is made up of 3 main
modules: (i) reading the trace, (ii) rebuilding flows from the stream of packets,
and (iii) classifying flows. Flow reconstruction is handled using the C hash table
library, Ut Hash [Han13]. For the SVM algorithm, the libSVM [CL11] library
(written in C) was chosen. To use all the cores of the processor, openMP [DM98]
for libSVM is enabled.

Table 4.3 shows the performance of the software implementation on a 2.66 GHz
6-core Xeon X5650 with hyper-threading enabled and 12 GB of DDR3 RAM. Per-
formance values are derived from the time it takes the flow builder and classifier
modules to process the whole trace, divided by the number of packets and flows
in the trace. Maximum speeds are computed using the mean values in Table 4.2.
It shows that the software implementation is only able to support low speeds,
under 10 Gb/s. The best supported speed ranges from 2.7 Gb/s to 8.1 Gb/s
depending on the trace.

97

The flow reconstruction speed does not really depend on the trace, as the flow
reconstruction algorithm requires a time that is almost constant per packet due
to the hash table.

SVM classification is always more limiting than flow reconstruction (with a
maximum speed of 2.7 Gb/s in the worst case). Its speed depends on a variety
of factors, including the number of support vectors in each SVM model: Brescia
is the trace for which the learnt model has the most support vectors (14 151),
followed by the ResEl (5 055) and Ericsson (3 160) traces.

Trace Packets per second Flows per second
(flow reconstruction) (classification)

Ericsson 5 214 218 5 975
max. 27 Gb/s max. 8.1 Gb/s

Brescia 5 531 895 1 827
max. 36 Gb/s max. 2.7 Gb/s

ResEl 4 750 621 5 619
max. 33 Gb/s max. 6.2 Gb/s

Table 4.3: Performance of the software implementation

Even with a powerful computer, a software implementation is not able to
reach 10 Gb/s, mainly due to its limited ability to parallelize the computation.
This justifies the use of hardware acceleration. Different platforms may be used
to provide hardware acceleration for network monitoring:

• Graphics processing units can help accelerate the algorithm, but not the
packet processing.

• Network processors are programmable in software and provide hardware-
accelerated tools for tasks commonly required in network monitoring. But
platforms are proprietary, development is not portable, and each commercial
solution has very different performance.

• Programmable cards with an integrated Field-Programmable Gate Array
(FPGA) are very flexible and provide hardware access to network interfaces.
Although development time is long, the code is portable and the results do
not depend on a specific vendor.

To be able to fully explore the parallelism possibilities in the SVM classifi-
cation algorithm, we have chosen to use a board with an FPGA that is more
flexible than network processors. Two main vendors provide such boards: (i)
NetFPGA with the NetFPGA 10G, which has four interfaces at 10 Gb/s and a
Xilinx Virtex-5 XC5VLX155T FPGA, and (ii) INVEA TECH with the Combo,
which has two to four interfaces at 10 Gb/s and a Xilinx Virtex-5 XC5VTX240
FPGA. The FPGA provided by the NetFPGA 10G performs better than that on
the Combov2 board, so we will perform synthesis on the NetFPGA 10G FPGA.
But for now the only 10 Gb/s board we have is a Combo, so stress tests will be

98

made on the COMBO-LXT board with a COMBOI-10G2 extension (two inter-
faces at 10 Gb/s).

Before studying the actual implementation of both the flow reconstruction
and the SVM classification, next section will check that the SVM algorithm can
benefit from hardware acceletion.

4.3.2 The SVM classification algorithm

The classification part of the SVM algorithm takes a vector as input and re-
turns the class of that vector as an output. The main part of the computation
is repeated for each support vector. Algorithm 1 describes the steps of this com-
putation. It is the multi-class implementation of the decision making procedure
described in Section 4.2.2 equation 4.3. This pseudo-code has been written in
order to enlight the possibilities for parallelizing the algorithm.

Algorithm 1 SVM classification algorithm
1: x← the vector to classify
2: for all support vector xi do {Main loop}
3: ci ← the class of xi
4: ki ← K(xi, x)
5: for all class cj 6= ci do {Sum loop}
6: d← index of the decision between ci and cj
7: Sd ← Sd + yd,i × αd,i × ki
8: end for
9: end for

10: for all decision d between ci and cj do {Comp. loop}
11: if Sd − bd > 0 then
12: Votes Vi ← Vi + 1
13: else
14: Votes Vj ← Vj + 1
15: end if
16: end for
17: Select class cn ← class with the highest votes Vn

The support vectors and the y, α and b values are parts of the SVM model.
Compared to the notations used in Section 4.2.2, index d is added to identify the
binary decision problem considered for the model values.

4.3.3 Parallelism

The Main loop is where most of the computation time is spent. It iterates many
times (from 3 160 to 14 151 support vectors for the traces presented in Table 4.1)
and includes complicated operations (exponential, multiplications). But it can
be easily parallelized, as each iteration is independent of the others. The only
shared data is in the additive S values. These values have to be duplicated so
that iterations are computed in parallel. Then, as S is additive, the duplicated
values can be merged by adding them together.

99

The Sum and Comparison loops have few iterations: one per class. For our
traffic classification problem, there are eight classes defined in Figure 4.1, so the
loops can be totally parallelized. The Sum loop iterations are totally independent,
while the Comparison loop iterations share the vote counter, which is additive.
So it can be duplicated and then merged.

All loops can be removed by using parallel processing except the main loop,
which has too many iterations and would require more area than is available on
the Virtex-5. But it is possible to implement the Main loop more than once, so
that fewer iterations are required to process one vector. Section 4.4.1 describes
an architecture with an adjustable level of duplication of this loop.

4.4 Adaptation to hardware

4.4.1 Architecture

Header
parser

Flow
Builder

RAM

Flow classifier

ROM : SVM model

Computation unit

Computation unit
... N

packet class

Classifier labeled
packet

id.

id.

class

Figure 4.2: Architecture of the classifier

The architecture of a traffic-processing module on NetFPGA or Combov2
boards is very similar. It uses a block with an input bus for input traffic, and an
output bus for output traffic. The classifier block is described in Figure 4.2. It is
divided into different blocks:

The header parser just reads the packet headers to get the flow identifier
(source and destination IP addresses, transport protocol, source and desti-
nation ports) and the size of the packet. The current implementation sup-
ports only IPv4 over Ethernet, so it is very basic. Supporting IPv6 would
simply change the flow identifier, which includes the source and destination
IP addresses. It would not change the design fundamentally.

The flow builder contains the list of all current flows. It is a big memory in
which a lookup is made for each received packet. It contains for each flow a
state (number of received packets, classification running or done), the three
packet sizes used for classification if known, a timestamp and the class if
already known. If the class of the flow is already known, the packet is
labeled and transmitted. Otherwise, the received packet size is stored in

100

memory, and if enough data is available, a classification request is sent. The
packet is transmitted without label.

The flow classifier is made up of multiple computation units. It is the most
important part of this architecture. It implements the computation of the
main loop described in Algorithm 1. To get the best performance from
the FPGA, the operations of the algorithm must be parallelized. As seen
in Section 4.3.3, all loops except the main loop can be totally unrolled
by duplicating the hardware for each iteration. The computation unit is
duplicated, as much as the FPGA supports.

Time

Data 2

Operation C

Data 3

Data 4

Data 3

Operation B

Data 4

Data 5

Operation A

Data 4

Data 5

Data 6

Data 2 done

Data 3 done

Start data 5

Start data 6

Pipeline

Data 1 done

Start data 7

Figure 4.3: Pipeline with three operations A, B and C during three clock cycles

As the computation in the main loop is complicated, each iteration will take
many clock cycles in hardware. To improve the throughput of the loop and
reduce its computation time, the iterations can be pipelined. The principle
of a pipeline is described on Figure 4.3 with three operations A, B, and C.
Each operation depends on data computed during the previous operation,
so they cannot be fully parallelized. But with a pipeline architecture, one
new data item is sent for computation to each unit at each clock cycle. Data
item 4 is first sent to operation A, while operation B processes data item 3
and operation C processes data item 2. At the next clock cycle, operation
B can compute data item 4, as operation A has completed. This way, one
new data item enters the pipeline at each clock cycle, and one new result
exits the pipeline at each clock cycle. All operations work in parallel. For
the main loop, each data item is a support vector, so computation starts
for one new support vector at each clock cycle.

As Figure 4.2 shows, the SVM model is currently stored in ROMs. This
makes it necessary to synthesize the design again to change the SVM model
used. If more flexibility is required, ROMs can be converted into RAMs, so
that it is possible to change the SVM model faster. This should not require
the implementation to be changed, but might complicate the placement of
the logic on the FPGA, as new connections will have to be created to write
into these memories.

In this section, the design of the flow builder will first be described. Then two
different implementations of the computation units will be studied, as well as the
advantages and drawbacks of each method.

101

4.4.2 Flow reconstruction

Requirements

Flow reconstruction is made in the flow builder block. It consists mainly in
managing an external RAM to store data about each flow and find it back when
a new packet is received. Data stored is made of:

• A status field to know if the flow is incomplete (less than five packets),
being classified, or already classified. 3 bits are needed for this.

• The three packet sizes needed for classification. Packet size can be up to
1500 bytes, so it is stored on 11 bits. For the three sizes, 33 bits are required.

• A timestamp to know when the flow timed out and may be erased. 8 bits
are enough to store it. A resolution of one minute is enough, and more than
one hour is needed to get back to the same timestamp using 8 bits. Flows
do not stay that long in memory.

So at least 44 bits are required to store data about one flow.

Data

Pointer

Pointer

Pointer

Indexed list

Pointer Pointer

Pointer

Linked lists

Key

Hash
function

Id. DatakeyDatakey

Datakey

Datakey

Datakey Datakey Datakey

Datakey Datakey

Datakey

Address

Selected slot

Figure 4.4: Classical hash table look-up principle

As explained in Section 1.4.1, the classical solution to store this kind of data
is a hash table [SDTL05]. The principle is illustrated on Figure 4.4 : each stored
element has an identifier, called a key. When an insertion request is received, a
hash function is used to transform the key into an index in a list of slots stored
in memory. If the selected slot is not used, the element is stored in the slot. If
it is used, a collision arises. In this case, an algorithm is used to find another
slot for the element. The algorithm can for example be a linked list: each slot

102

stores an element and a pointer to another slot. The last slot of the linked list
has an empty pointer. To add an element, a new slot is created by allocating
memory, and the pointer of the last slot is updated. During lookups, the pointers
are followed until the good key or the end of the list is found.

A lot of research has been done on improving hash tables, reducing their read
and write latencies and their memory requirements. But to ensure that a new key
can always be saved somewhere, hash tables all have two common drawbacks. The
first one is that the space they use is variable because a slot may have to be added
to any linked list, requiring new memory to be allocated. The second drawback
is that although the insertion and lookup delays are most of the time very low,
no sensible maximum can be guaranteed because of possible cascaded collisions.
If all elements end up in the same linked list, a number of read operations equal
to the number of stored elements may be required for one lookup.

For flow reconstruction on FPGA for online traffic classification, some require-
ments are mandatory:

• To optimize performance, we use all the external RAM available on the
board for flow reconstruction. So the memory space has a fixed size and
cannot be increased when needed. For example there are two 72 Mb QDR-
II SRAM memories on the Combo board. So two times 1 048 576 slots of
72 bits can be addressed. Both memories can be used in parallel.

• To tag packets in realtime with their application category, at each received
packet, a flow lookup is sent, and it must return before the packet can
be released. So the flow lookup time must be guaranteed and constant.
A slow lookup would mean that the packet is delayed on the link, and a
variable lookup time would increase jitter. Delay and jitter are essential
QoS features on a network, so an equipment that will be used on a real
network must give guarantees about the degradation of delay and jitter.

Identifier
Hash

function
Key Address

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Selected
slot

Bucket 19 Bucket 20 Bucket 21 Bucket 22

19

Figure 4.5: Bucket-based algorithm principle

To attain these goals, an implementation of NetFlow on NetFPGA [Mar08]
uses a simplified hash table described on Figure 4.5 : the available memory is

103

divided into buckets of eight slots. Each slot is big enough to store data about one
flow. A hash is computed from the flow identifier. It can work with many hash
functions. An easy-to-implement hash function is discussed in Section 4.4.2. The
first part of the hash is used as an address to select a bucket. The second part
of the hash is used as a key, smaller than the original identifier, so as to waste
less space in memory than the full identifier. The key is stored in the selected
slot with flow data. This way, during lookup, the key is compared to the value
stored in each occupied slot of the corresponding bucket. If the same value is
found, flow data is returned, otherwise the flow is unknown. If no space is found
during insertion, a random slot is chosen and the previously stored flow is lost.
Using this method, insertion requires up to eight read and one write operations,
and lookup up to eight read operations. The unavoidable cost of a fixed memory
size and lookup delay is a non-zero loss probability.

Although this method is very simple to implement and fast, if more than eight
concurrent flows are in the same bucket, some flows will be lost. We performed a
simulation detailed in next section with 2 097 152 slots (the number of 72-bit slots
on the Combo board). It shows that with one million concurrent flows, 0.66%
of the flows are lost (Figure 4.7). This is an important loss considering that the
number of available slots is double the number of flows to store.

The storage algorithm

To get better results, we used a principle based on the CMS algorithm described in
Section 3.2.2. CMS has been designed to store a large associative list of counters
using a constrained memory space. It is highly adapted to hardware implemen-
tations. The principle is to use multiple uncorrelated hash functions to compute
different hash values from an identifier. These hash values are used as addresses
in the memory. Each address points to a counter value. When incrementing a
counter, each counter pointed by one hash value is incremented. To get the value
of the counter, the minimum of all pointed counters is taken. The idea is that
collisions are accepted. If at least one of the pointed counters encountered no
collision, taking the minimum will give the good result.

For flow reconstruction, stored data is not only made of counters but the same
principle can be used. Here is the adapted algorithm, illustated on Figure 4.6:

Eight independent hash functions are used. Each hash value is split into
two parts: the first part is used as the address of a slot in memory, and
the second part is used as a key stored in the slot with flow data. For the
SRAM on the Combo board, 22 bits of the hash are used as address, and a
memory slot is 72 bits wide.

During a lookup, each of the 8 slots are read. The first one with a stored key
equal to the one computed by the hash is a valid value. It is returned.

During an update/insertion, each of the 8 slots are read. Then multiple slots
are selected for writing: the slots with the same key if it is an update, the
empty slots and the slots with a timestamp older than a set threshold. This
timeout threshold impacts directly the number of concurrent flow. It must

104

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Datakey

Identifier

Key Address

Key Address

Key Address

Hash 1

Hash 2

Hash 3

Selected
slot

Selected
slot

Figure 4.6: CMS-inspired algorithm principle

be set to a big enough value so that most flows with no new packets during
this delay are actually over, but small enough so that old flows are not kept
too long. Before writing, a new field is added to flow data: the replication
level. This is the number of slots that have been selected for writing. This
field will be used for future insertions if no slot is available: then one of
the slots with the highest replication level will be overriden. This way the
chances for this deleted flow to still be stored somewhere else are higher.

This method uses up to eight read operations for a lookup, and eight read oper-
ations and up to eight write operations for an update or insertion. The way it is
implemented in hardware, it always uses the time of eight read operations for a
lookup, and eight read and write operations for an insertion. For an update, an
optimization is used: as a lookup always happens before an update, information
on where data should be stored is returned by the lookup process, and is used by
the update process to avoid the eight read operations.

Another hardware optimization is used: on the Combo board, two SRAM
memories can be used in parallel. So four hash functions are used to address the
first memory, and the four other hash functions are used to address the second
memory. This reduces a bit the diversity of the hash values, but it allows to
always make two read operations or two write operations in parallel, reducing the
lookup, insertion and update delays.

To test the ability of each algorithm to avoid losing flows, a software simulation
tool was built using the Python development language. A memory similar to the
Combo SRAM memory (two times 1 048 576 72-bit slots) is simulated, as well as
a timer that is incremented at each insertion request. Depending on the number
of simultaneous flows in memory, the performance of each algorithm will differ.
So to simulate 100 000 simultaneous flows, the delay for a flow to expire is set to
100 000. Then the algorithm under test is asked to store 100 000 random flows.
These flows are only used to fill the memory, as it would be in normal use. The
actual test is then made by first asking to store 100 000 new random flows, and
then sending one lookup request for each flow to verify if the expected data is

105

returned.

100 000 500 000 800 000 1 000 000
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Bucket-based (%)
CMS-inspired (%)

Concurrent flows

Figure 4.7: Percentage of lost flows depending on the number of concurrent flows

Figure 4.7 shows the percentage of lost flows for both the basic bucket-based
algorithm and the CMS-inspired algorithm with a varying number of concurrent
flows. With 100 000 concurrent flows (4.8% filling), no flows are lost by any
algorithm. But for 1 000 000 concurrent flows (48% filling), 0.02% of the flows are
lost by the CMS-inspired algorithm, and 0.66% by the bucket-based algorithm.
So the bucket-based algorithm loses more than 30 times more flows than the
CMS-inspired algorithm with 1 000 000 concurrent flows.

To check that supporting one million simultaneous flows is realistic, we com-
pared this number to the traces described in Table 4.1. To adapt the bit rate,
we supposed that if a trace at a bit rate of 1 Gb/s creates s simultaneous flows,
it will, by aggregation of similar traffic, create 10 × s simultaneous flows at 10
Gb/s. Using this technique, we found that at 10 Gb/s, the Ericsson trace would
create about 29 535 000 simultaneous flows, the Brescia trace 161 000 and the Re-
sEl trace 418 000. The Ericsson trace generates many orders of magnitudes more
flows, but it is the only trace captured at a very low data rate in a laboratory,
so we consider that its traffic composition is not realistic. This leaves two traces
under 500 000 simultaneous flows, which could be supported even at 20 Gb/s, the
maximum bit rate of the Combo board.

So this method to store flows in RAM is realistic and scalable. Using a
bigger memory would allow to store more simultaneous flows without making the
algorithm more complex.

Hash functions

A hash function must be deterministic and spread its output values as uniformly
as possible in the output range. That is to say that choosing a random input value,
each value in the output range should have about the same probability of being
returned by the hash function. Another important feature for storage algorithms
is that a small change in the input value should change as much as possible the
output value. This way, flows with the same IP addresses but different ports for

106

example should result in very different hash values, and be stored in different
locations.

Many hash functions exist in the litterature and most have been implemented
in hardware [DHV01, MCMM06, RLAM12]. But flow storage is only a tool for
traffic classification on FPGA, and it must take as little space as possible so that
the SVM implementation can be parallelized as much as possible. It must also
be very fast, as eight hash functions will have to be computed before the packet
can be tagged. Common hashes like Message Digest 5 (MD5) or Secure Hash
Algorithm (SHA) have properties that are interesting for encryption algorithms,
like the difficulty to reverse the functions. For flows storage, this is not needed.
The only requirement is to avoid collsisions, as this would result in a storage
error.

This is why we designed a very basic hashing algorithm, that is perfectly
adapted to hardware implementation. The first step is to build the hash function:

• First the number of input bits I and output bits N are selected depending
on the needs.

• Then a number of links L is selected. It can range from 1 to I.

• For each output bit, L different input bits are randomly selected.

• If an input bit is implied in no link, the random selection is started again,
to make sure that all input bits impact the output value.

• The value of each output bit is the exclusive or of the L selected input bits.

+ ++ +

Input bits

Output bits

Figure 4.8: Example of hash function from 10 to 4 bits with 3 links

Figure 4.8 shows an example of hash function with I = 10, N = 4 and L = 3.
With this function, the hash of 1010101010 would be 0110. In this example, the
eighth input bit has no effect on the output. This shows that L must be chosen
big enough so that all input bits have a high probability to have a noticeable
effect on the output.

In the current implementation, the output of the hash function is on 32 bits.
Only 21 bits are used as address by the CMS-inspired algorithm. The 11 others

107

are used to differentiate the stored values. The number of bits has been chosen to
be 20. This means that 32 “exclusive or” between 20 bits are executed in parallel
to compute one hash value. These parameters have been chosen experimentally
to have a good accuracy while keeping the resources used on the FPGA low. The
same parameters have been used for the software simulation.

Using these parameters, with 2 000 000 random input values, 436 collisions
happened. Using the 32 least significant bits of the values from the MD5 algo-
rithm, only 421 collisions happened with the same input values. The difference
between these numbers is not significant, which shows that the algorithm can be
efficient as a hash function.

It might be possible to improve the performance of this hashing algorithm
by making a parallel with the theory on error correction codes, especially Low-
Density Parity-Check (LDPC) codes. But the current version is enough to im-
plement flow storage, and this is left for future work.

The main interest of this hash function is that it can be computed in only
one clock cycle. This would be totally impossible to do with classical hash func-
tions. All “exclusive or” operators are directly wired on the FPGA. So even if its
properties are not as interesting as the MD5 or SHA algorithms for example, this
hashing algorithm requires very low resources and is very fast. It makes it very
interesting for flows storage on FPGA.

In the current implementation of the CMS-inspired algorithm, all eight hash
functions are computed in parallel, adding only one clock cycle to the required
delay for a flow lookup. This is crucial to make the classification in real time.

4.4.3 The RBF kernel

Once the flow builder works, the remaining task is the most complex: the SVM
classification. We will first describe an implementation using the most common
and generic kernel: the RBF kernel.

Computation of the RBF kernel function (Equation 4.4) requires three integer
additions (one per vector component), three integer multiplications (to compute
the squares), one multiplication by a floating-point constant, and one exponential
computation.

Floating-point operations are complex to realize and use too much area on the
FPGA. The best solution is to transform the algorithm to use a fixed-point model
instead of a floating-point model. This section will present a direct hardware
implementation of the classification algorithm using the RBF kernel, and the
next section will present an implementation using an adaptation of this kernel,
simpler to implement in hardware.

Operations

Multiplications are complex to realize in hardware. They could be done on spe-
cialized multipliers, but few are available on the chosen FPGA, so parallelism
would be limited. They are required to compute the squares in the RBF kernel,
but squares are symmetric functions with one integer parameter varying from
−1500 to 1500 (maximum size of an Ethernet payload). A read-only memory

108

(ROM) with 1519 values is used to emulate squares. This memory is implemented
on FPGA using specialized memory cells (BlockRAM).

To avoid the yd,i×αd,i×ki multiplication, ln (|yd,i × αd,i|) (ln is the natural log-
arithm) is precomputed, and the exponential used to get ki is executed only after
the addition of this term. Delaying the exponential computation transforms the
multiplication into an addition. This way only one multiplication by a constant
remains in the kernel computation, which is much simpler than a multiplication
of two variables. This simplification has a cost, visible in Algorithm 1, as the
exponential is moved from the computation of k (line 4) to the computation of
Sd (line 7). So instead of computing the exponential once for all classes, it is
computed once for each class. There are therefore eight times more exponentials
to compute with our dataset. These computations are done in parallel, so more
time is not required, but it does require more space on the FPGA.

A ROM is also used to emulate the exponential function. As the function
y = ex tends towards 0 when x tends towards −∞ and y is stored on a fixed
number of bits, there is a minimum value xmin for which ymin = exmin = 0.
The value xmax is determined experimentally by observing the input values of
the exponential with different traces. With this technique and the quantization
parameters described in section 4.4.3, only 10 792 values have to be stored in
memory. To reduce this number even more, we use the property of the exponential
ea+b = ea × eb: instead of storing values from −4 to 4, we store values from 0
to 4 and we store e−4. This way, e0.8 is read directly and e−3.2 is computed
as e0.8 × e−4. This technique costs one comparison and one multiplication by a
constant, but divides the memory used by two. In the current implementation,
the input domain is divided into eight segments, requiring seven comparisons and
seven multiplications by a constant, and reducing the memory used to only 1 349
values. Multiplications by constants are converted during synthesis into simple
shifts and additions.

Quantization

Table 4.4 shows the bit widths of different variables used in the SVM fixed-point
model.

Variable Integer part Decimal part Signed
Vector component 11 0 ×

log2 (γ) 3 0 ×
ln (α) 4 10 X

Exponential input 4 10 X
Exponential output 12 7 ×

Square input 12 0 X
Square output 22 0 ×

b 15 11 X
S 15 11 X

Table 4.4: Quantization of the main SVM fixed-point model values

109

These quantization parameters have been chosen so that the mathematical
operations are carried out on values that are as small as possible, while keeping
the same classification accuracy. Experiments show that the accuracy can be as
good when using the fixed-point model as when using the floating-point model,
but accuracy drops very fast if too small a parameter is chosen. Some parameters
have quite large bit widths because the classifier should work whatever the SVM
model. The possible values of the variables have been determined by analyzing
SVM models learnt in different conditions.

The most critical parameters are the exponential and square input and output
widths, because they change the width of the memories used, which may take a
lot of space on the FPGA, decreasing the possibility of parallelizing the design.

11-bit-wide vector components have been chosen because we assume that the
size of a packet will not be larger than 1500 bytes. This is the maximum size of
standard Ethernet payloads. Jumbo frames are not supported. Supporting them
would only require this width to be increased.

The γ parameter is chosen as a power of 2 to simplify hardware operations.
Its value is determined for each trace by testing different values: first learning
is applied on different subsets of the trace, then classification is applied on the
whole trace. Results are compared to the ground truth and the parameter which
gives the best accuracy is kept. With the traces we use, selected values are always
higher than 2−7 and lower than 1, so the − log2 (γ) value is between 0 and 7.

The width of ln (α) is chosen to fit the width of the exponential input, which
is made as small as possible to decrease the memory used by the exponential. The
square output is kept at 22 bits because it is then multiplied by gamma, which
transforms up to seven integer bits to decimal bits. The b and S parameters share
the same width because they are compared with each other.

Accuracy

Ericsson Brescia ResEl
0
1
2
3
4
5
6
7
8
9

10

Floating-point
errors (%)

Fixed-point
errors (%)

Figure 4.9: Differences between floating and fixed-point implementations for the
RBF kernel (% of known flows)

To assess the loss in precision, a software implementation of the classification
algorithm with the fixed-point model has been written. Figure 4.9 displays the
percentage of errors compared to the ground truth for the floating and fixed-point
implementations. The floating-point results have been described in Section 4.2.3.

110

There are actually fewer errors with fixed-point implementation for most traces.
This very small improvement in accuracy is only due to errors which compensate
by chance the SVM classification errors. This is not a reliable improvement and
changes depending on the trace. But it shows that the transition to fixed-point
does not decrease the accuracy of the algorithm. A relatively big percentage of
differences is observed between the classification made by the floating and fixed-
point implementations (between 0.32 and 7.6 %), but this is mainly on flows with
no ground truth, so they cannot be considered errors.

4.4.4 The CORDIC algorithm

The RBF kernel is known to be efficient in most situations, and we have seen
that it gives good results for traffic classification. But it makes it necessary to
compute squares and exponentials, which is done using read-only memories. The
routing of these memories increases the critical path on the FPGA, preventing it
from working at high frequencies.

D. Anguita et al. suggested in an article [APRS06] a different kernel function
that is much more adapted to hardware, because it can be computed using the
CORDIC algorithm [And98]. This algorithm, described in Section 4.4.4, is used
to approach trigonometric functions using only add and shift operations. These
operations are the most simple arithmetical computations that a conventional
digital circuit can handle.

Here is the suggested kernel function:

K(xi, xj) = 2−γ‖xi−xj‖1 (4.5)

It is very similar to the RBF kernel (equation 4.4), except that the exponential
has been replaced by a power of 2 and the square function has been replaced by a
simple absolute value. The replacement of the exponential by a power of 2 simply
corresponds to a scaling of the γ parameter, but it makes some implementation
simplifications more obvious.

Floating-point accuracy

The following section explains how using the CORDIC algorithm makes this
kernel more adapted to hardware implementation. But before implementing it,
the accuracy of the classification with this kernel must be checked. So we first
integrated the floating-point version of the kernel in the LibSVM library to test
the accuracy in software.

Results are shown on Figure 4.10. Using the floating-point kernel, classifi-
cation errors represent 1.4 % of all known flows for the Ericsson trace, 0.75 %
for the Brescia trace and 6.8 % for the ResEl trace. This is smaller than the
2.2 %, 1.0 % and 9.5 % with the RBF kernel (Figure 4.9). So this kernel is even
more adapted to traffic classification than the RBF kernel. This is due to the use
of a l1-norm instead of the l2-norm: it differentiates more vectors with multiple
different components, that is to say flows that have more than one of the three
packets with different sizes. These flows are more likely to be in different classes

111

than a flow with two packets of the same size, and one packet of a very different
size.

Ericsson Brescia ResEl
0
1
2
3
4
5
6
7
8
9

10

Floating-point
errors (%)

Fixed-point
errors (%)

Figure 4.10: Differences between floating and fixed-point implementations for the
CORDIC kernel (% of known flows)

Algorithm

The CORDIC algorithm is used to compute trigonometric functions using only ad-
dition and shift operators. It has also been extended to compute the exponential
function, using the relation ex = sinh (x) + cosh (x). For the kernel computation,
it will be used to get the value of Equation 4.5, combined with the multiplication
by αd,i × ki (line 7 of Algorithm 1). To do so, we will compute something of the
form B02

E0 , with input values B0 and E0 in [0; 1[to ensure convergence. The way
to get to this form from the equations is explained later in Section 4.4.4. The
CORDIC algorithm works by defining two sequences:

E0, B0 = initial values (4.6a)
Bn = Bn−1

(
1 +Dn2

−n) (4.6b)
En = En−1 − log2

(
1 +Dn2

−n) (4.6c)

Each Dn is chosen equal to 0 or 1. The goal is to get En as near as possible
to 0. ln = log2 (1 + 2−n) is a positive, strictly decreasing sequence. If ln > En−1,
Dn is chosen equal to 0, and En = En−1, otherwise Dn = 1 and En < En−1.

The interesting thing about these equations is that they can be computed
using only shift and addition operations once ln has been pre-computed for each
n. Indeed, at each step, En = En−1 and Bn = Bn−1, or En = En−1 − ln and
Bn = Bn−1 + Bn−1 × 2−n. Multiplying by 2−n is equivalent to a right shift of n
bits.

The way Dn is chosen, it is proved [And98] that En → 0, so that with a big
enough N , we have EN ≈ 0:

EN = E0 −
N−1∑
n=1

log2
(
1 +Dn2

−n) ≈ 0 (4.7)

112

Using this approximate EN value, we obtain for BN :

BN = B0

N−1∏
n=1

(1 +Dn2
−n) (4.8a)

= B02
∑N−1

n=1 log2(1+Dn2−n) ≈ B02
E0 (4.8b)

It is proved in [APRS06] that if E0 < 1 and B0 < 1, in order to get an
output accuracy of N bits (in fixed-point representation), N iterations of the
algorithm are necessary, and some iterations have to be repeated to guarantee the
convergence. For example, to guarantee an accuracy of 8 bits, N = 8 iterations
are necessary and iterations n = 2, 4 and 8 have to be duplicated, so a total of
11 iterations have to be implemented. The way to choose which steps should be
repeated depending on N is described in article [ABR03]. To avoid decreasing
the accuracy, intermediate En and Bn results should be stored on N + log2 (N)
bits, which means 11 bits in this example.

These accuracy values are guaranteed, but the number of steps and bits used
in the implementation may be reduced by experimenting and testing that the
resulting accuracy is still acceptable. This technique reduces strongly the area
used by the implementation, but it may give poor results for some untested input
values.

Implementation

Compared to Algorithm 1, using the CORDIC kernel changes the computation of
ki (line 4). But the yd,i×αd,i×ki multiplication (line 7) is avoided by integrating
αd,i × ki into the computation of the power of 2 (yd,i = + − 1 so it is a simple
inversion). So the CORDIC implementation described below changes line 7 of
Algorithm 1, integrating the multiplication and the kernel function.

The CORDIC is used to compute αd,i × 2−γ‖xi−xj‖1 . As explained in Sec-
tion 4.4.4, to be sure that the algorithm will converge, its input value E0 must
be in [0; 1[, so −γ ‖ xi − xj ‖1 is separated into a negative integer part I and a
decimal part D. Only D, in [0; 1[, is used as input value E0. A scaling of the
α and b parameters by a fixed parameter is also computed beforehand to ensure
that input value B0 = αd,i is always in [0; 1[. This scaling by a fixed factor of
the two elements of the inequation line 11 of Algorithm 1 does not change the
classification results.

Algorithm 2 describes the CORDIC implementation. The loop is computed
on the original N iterations, and the repeated steps. n represents the number of
the iteration without repetition, m includes the repetitions.

As only the decimal part of γ ‖ xi−xj ‖1 has been used, the result must then
be multiplied by 2I , which is equivalent to a left shift of −I bits (I is negative by
construction).

113

Algorithm 2 CORDIC algorithm to compute yd,i × αd,i × 2D

1: E0 ← D
2: B0 ← yd,i × αd,i
3: m← 1
4: for all iteration n from 1 to N (some iterations are duplicated) do {CORDIC

loop}
5: if Em ≥ ln then
6: Em ← Em−1 − ln
7: Bm ← Bm−1 − (Bm−1 >> n)
8: else
9: Em ← Em−1

10: Bm ← Bm−1
11: end if
12: m← m+ 1
13: end for
14: The result is Bm

Quantization

To develop a fixed-point version of this new kernel, the same quantization process
is used as for the RBF kernel in Section 4.4.3, in order to get as good a classifica-
tion accuracy as with the floating-point model. The most important parameter
to set is the number of steps in the CORDIC algorithm. In theory, the number
of steps sets the number of bits of precision of the output. But by testing many
options and comparing their accuracy, the complexity was reduced as much as
possible and the parameters in Table 4.5 were selected.

Variable Integer part Decimal part Signed
CORDIC output width 16 0 ×

ln 17 0 ×
Scaled α 0 16 ×
Scaled b 0 17 X
Scaled S 8 16 X

Table 4.5: Quantization of the main CORDIC values

The number of steps in the CORDIC is 15, and step 3 is repeated once. It
is important to decrease this number of steps as much as possible because the
CORDIC is implemented as a pipeline. This means that each step of the CORDIC
is implemented on its own hardware, making it possible to start computing a new
kernel value at each clock cycle. But this also means that each step has a cost in
resources used on the FPGA.

Although the S parameter is only used to compare it to the b parameter,
its integer part width is much bigger. This is important because S accumulates
positive or negative values at each clock cycle, so it can grow and then decrease
afterwards. If big values are cut, the final result will be changed.

114

Fixed-point accuracy

Figure 4.10 shows that, like for the RBF kernel, fixed-point implementation has
the same accuracy as floating-point implementation. It is even a bit better on
some traces, but this is not significant. A point not visible on this figure is that
more differences are observed between the floating-point classification and the
fixed-point classification than with the RBF kernel: for Ericsson there are 1.3%
of flows classified in different classes instead of 0.92% and for Brescia 1.6% instead
of 0.33%. The ResEl dataset is an exception with 0.96% of differences instead
of 7.6%. As these flows in different classes are mainly flows for which we do not
know the ground truth, they cannot be qualified as errors.

So the accuracy of SVM with the CORDIC kernel is a bit better overall than
the accuracy of SVM with the RBF kernel for our traces.

An other unexpected difference is in the number of support vectors provided
by the learning phase. Table 4.6 shows that models with the CORDIC kernel have
almost half as many support vectors for some traces as with the RBF kernel. This
side effect is very useful as the classification time of one flow depends linearly on
the number of support vectors. But it should be checked for each trace, as nothing
guarantees that the CORDIC kernel will always use fewer support vectors than
the RBF kernel.

Ericsson Brescia ResEl
RBF kernel 3 160 14 151 5 055

CORDIC kernel 1 745 8 007 4 838

Table 4.6: Number of support vectors of different SVM models

4.4.5 Comparing the two kernels

We have seen that in terms of accuracy, the CORDIC and RBF kernels are very
similar, with a small advantage for the CORDIC kernel.

In terms of processing speed, the CORDIC models for some traces use almost
half as many support vectors as the RBF models, although this is not so obvious
for all traces. This means that the main loop has to be iterated less.

But the processing speed also depends on the possibility of duplicating the
processing units, and on the maximum frequency at which the FPGA can work.
So the next section will allow us to conclude which kernel is the fastest.

115

4.5 Performance of the hardware-accelerated traf-
fic classifier

4.5.1 Synthesis results

Synthesis parameters

The proper behavior of the hardware implementation has been tested by checking
that its results are exactly identical to the software implementation of the fixed-
point model, first in simulation, and then implemented on a NetFPGA 1G and
on a Combo board. So the classification results of the hardware implementation
are those in Figures 4.9 and 4.10. This section focuses on performance in terms
of the number of flows classified per second.

To assess the performance of the hardware implementation and compare it
with the software implementation, it has been synthesized on a Xilinx Virtex-5
XC5VTX240, which is present on NetFPGA 10G boards. Only the SVM flow
classifier is synthesized. The header parser and flow builder visible in Figure 4.2
are not included in the results. A different model has been tested for all 3 traces,
using the RBF and the CORDIC kernel. The number of processing units has been
changed as well to exploit the maximum parallelism on the FPGA while keeping
a high working frequency. Table 4.7 presents the results of these syntheses for
the Ericsson trace, Table 4.8 for the Brescia trace, and Table 4.9 for the ResEl
trace. For each trace, the RBF kernel has been tested with 2, 4 or 8 computation
units in parallel and the CORDIC kernel with 2, 4 or 16 computation units.

The number of occupied slices, registers and look-up tables (LUTs), as well
as the maximum frequency, are given by the synthesis tool. They are an indi-
cation of the hardware complexity of the implementation. The number of cycles
required per flow has been determined by analyzing the code of the hardware
implementation. It increases with the number of support vectors in the model,
and decreases with the number of parallel computation units.

Increasing the number of computation units makes it possible to classify a
flow using fewer clock cycles, but it requires more resources on the FPGA. If the
design contains too many computation units, it does not fit on the FPGA. So
the synthesis fails or if it succeeds, the resulting working frequency is very low
because routing the logic on the FPGA is too complicated. This is why results for
the RBF kernel use only up to 8 computation units while up to 16 computation
units are used for the CORDIC kernel: the RBF kernel uses more space on the
FPGA, so the working frequencies with 16 computation units are too low to be
usable.

Kernel comparison

Thanks to massive parallelism, hardware implementations all have better per-
formance in terms of flows per second than software implementations. It can be
observed that the RBF kernel uses more area on the FPGA in terms of slices than
the CORDIC kernel. This is logical, as the CORDIC kernel has been specifically
designed to be easily implemented on hardware. The RBF kernel uses a lot of

116

Trace Ericsson
Kernel RBF CORDIC

Computation
units 2 4 8 2 4 16

Occupied slices 6 223 11 362 22 431 4 767 8 092 24 325
Slice registers 8 395 21 010 44 302 8 966 17 168 59 347
Slice LUTs 19 451 36 345 79 602 14 880 24 973 74 664

FPGA usage (% of
slices) 16.6 30.3 59.9 12.7 21.6 65.0

Maximum
frequency (MHz) 153 165 171 201 199 183

Cycles per flow 1 602 814 421 903 469 146
Flows per second 95 636 203 091 405 894 223 090 424 148 1 254 223
Max. rate (Gb/s) 130 275 550 302 575 1 700

Table 4.7: Synthesis results of SVM traffic classification for the Ericsson trace on
a Virtex-5 XC5VTX240 FPGA

Trace Brescia
Kernel RBF CORDIC

Computation
units 2 4 8 2 4 16

Occupied slices 11 007 15 716 24 311 6 131 9 108 25 444
Slice registers 7 362 17 644 38 644 8 048 16 462 60 945
Slice LUTs 38 242 51 914 83 968 20 440 29 137 80 762

FPGA usage (% of
slices) 29.4 42.0 64.9 16.4 24.3 68.0

Maximum
frequency (MHz) 126 71.0 77.6 176 201 172

Cycles per flow 7 098 3 562 1 795 4 034 2 034 537
Flows per second 17 707 19 944 43 256 43 704 98 822 320 075
Max. rate (Gb/s) 26.1 29.5 63.9 64.5 146 473

Table 4.8: Synthesis results of SVM traffic classification for the Brescia trace on
a Virtex-5 XC5VTX240 FPGA

117

Trace ResEl
Kernel RBF CORDIC

Computation
units 2 4 8 2 4 16

Occupied slices 5 575 8 962 17 225 4 730 6 834 24 694
Slice registers 5 826 13 399 30 983 6 436 12 624 47 847
Slice LUTs 17 881 28 356 58 568 15 664 22 419 78 681

FPGA usage (% of
slices) 14.9 23.9 46.0 12.6 18.2 66.0

Maximum
frequency (MHz) 175 181 154 182 181 125

Cycles per flow 2 550 1 288 658 2 449 1 242 339
Flows per second 68 463 140 194 233 844 74 201 145 808 369 794
Max. rate (Gb/s) 75.6 155 258 82.0 161 408

Table 4.9: Synthesis results of SVM traffic classification for the ResEl trace on a
Virtex-5 XC5VTX240 FPGA

memory as look-up tables, while the CORDIC kernel computes simple operations
directly. The memory usage of the RBF kernel has a cost in terms of routing:
the memory is not always located in the same place where computations occur,
so long wires have to be used to fetch data from these memories. The delay
induced by these wires lowers the maximum frequency at which the design can
work. Tables 4.7, 4.8 and 4.9 show that CORDIC implementations work at higher
frequencies than the RBF implementations.

Particularly with the RBF kernel, the Brescia trace gives poor results because
of its low working frequency. The particularity of this trace is that the SVM
model contains more support vectors than the others. They use too much space
on the FPGA, which makes the delays caused by the look-up tables worse. Long
and slow routes are created in the design and decrease its maximum frequency.
The Ericsson and ResEl traces’ SVM models have fewer support vectors.

Another important advantage of the CORDIC kernel is that models have fewer
support vectors. This means that less memory has to be used on the FPGA to
store these vectors, and less time has to be spent for classifying one flow. With
n computation units, each support vector costs 1/n clock cycle.

Both the higher frequencies and lower number of support vectors give an
important advantage to the CORDIC kernel, which is visible in the much higher
bit rate supported for each trace. The area used is also smaller for the CORDIC
kernel, which allows a higher level of parallelism.

Overall performance

The lowest supported bit rate is 26.1 Gb/s for the Brescia trace using the RBF
kernel with 2 computation units. With the CORDIC kernel and at least four
computation units, all traces can be handled with a data rate of more than

118

100 Gb/s. The Brescia trace is the most challenging: fewer flows can be classified
per second by one computation unit because the model has the most support
vectors. But parallelization makes it possible to reach high bit rates: with 16
computation units, the trace could be processed at 473 Gb/s.

It can be noticed that using two computation units, the CORDIC kernel is
70% faster in terms of flows for the ResEl trace than for the Brescia trace, but
only 27% faster in terms of bit rate. This is because there are more flows to
classify per second for the ResEl trace (see Table 4.2). Improvements compared
to the software implementation are very important. For the Brescia trace, using
the CORDIC kernel with 16 computation units, the bit rate is multiplied by more
than 173 when compared to the software implementation (see Table 4.3), which
is mostly due to the massive parallelism of the FPGA implementation.

One performance result that is not visible in the tables is the delay that the
classifier adds to the packets if it is used directly on a network link to tag packets
with their class number (and not just as a passive probe set up in derivation on the
link). The current implementation sends the classification to the host computer
instead of tagging the packets, but it could be modified without overhead. For
now, 10 clock cycles are required between the arrival of the packet in the classifier
and the time when the class of the packet is known. This delay is constant
because a packet is considered unknown if the flow has not yet been classified (its
class is not in RAM), so it does not depend on the classification time, but only
on the flow reconstruction time. On the Combo board, packets are processed
with a frequency of 187.5 MHz, which gives an induced delay of 53.3 ns. This
figure does not include the time required to handle the Ethernet protocol, but
it is a very acceptable delay as latency in IP networks is usually expressed in
tens of milliseconds [ATT13]. The delay is also smaller than the minimum delay
to receive a full Ethernet frame (67.2 ns), which guarantees that 10 Gb/s are
supported without any need to parallelize the packet processing using a new
pipeline.

To improve the supported speed for all traces, many directions are possible.
Critical paths in the design may be improved to achieve higher frequencies, by
adding registers that cut these paths. Algorithmic changes might also allow a
reduction in the number of support vectors, as the use of the CORDIC kernel
unexpectedly does. It is also possible to use more powerful FPGAs, or to use
multiple FPGAs in parallel to reach higher speeds by having more parallel units.
For example, we tested a synthesis using the CORDIC kernel on the Brescia trace
with 32 computation units on a Virtex-7 FPGA, which corresponds to the Xilinx
VC709 board. With this configuration, 661 987 flows per second are classified,
a 107% improvement compared to the NetFPGA 10G. That is to say that the
Brescia trace can be classified in real-time at a data rate up to 978 Gb/s.

Sensitivity analysis

Performance results presented above are valid with the chosen parameters of the
SVM algorithm. Depending on the parameter, the effects on the computation
complexity and supported speed can be more or less important. The most im-
portant parameters are:

119

• The number of support vectors affects the on-chip memory require-
ments and the computation time. Each computation unit is able to start
computation for one new support vector at each clock cycle. So with n
computation units, each support vector costs 1/n clock cycle.

• The number of classes affects the FPGA usage. With n classes, n(n−
1)/2 binary classifications have to be made in parallel, so FPGA usage
increases in n2. For example, to support twice as many classes, four times
less computation units could be implemented on the same FPGA, dividing
the supported speed by four.

• The number of flow features affects the FPGA usage. Only the first
stage of the kernel computation is affected by an increase in the number of
flow features. For the CORDIC kernel, one subtraction and one addition
is required for each feature. These operations are duplicated linearly when
the number of flow features increases.

These parameters can all be changed in our generic SVM implementation
simply by changing a variable value.

An implementation change that could also affect performance is the conver-
sion of the ROMs used to store the SVM model into RAMs. This would allow
to change the model without having to synthesize the design and program the
board again. A small mechanism would have to be implemented to update the
model, and the RAMs would have to be big enough to contain the biggest model
supported by the board. So this would use a bit more space on the FPGA, but
performance results should stay in the same range as the current implementation
for the biggest model (Brescia).

4.5.2 Implementation validation

Experimental setup

Previous results were obtained using only a synthesis tool. In this section we
present results obtained directly by sending traffic to a Combo card on which the
classifier is implemented. Packets are received through an optical fiber at 10 Gb/s
by the Combo card, which processes them, adds a tag with their class number in
their header, and sends them to the computer hosting the card. A program runs
on the computer and logs all received classifications. The traffic generator used
for this task is a XenaCompact 10G generator [xen12].

Packet processing speed

The first thing to test is that the classifier handles traffic of 10 Gb/s without
dropping packets. The most challenging packets to handle are the smallest ones,
because handling a packet takes a constant time, whatever its size. The Ethernet
standard defines smallest Ethernet frames as being 64 bytes long. Figure 4.11
shows the rate of 64-byte packets received by the classifier but not sent depending
of the inter-packet time. The lowest time authorized by the Ethernet protocol is

120

050100150200250
0

0,1

0,2

0,3

0,4

0,5

0,6

16

Inter-packet gap (ns)

D
ro

p
p

in
g

 r
a

te
 (

%
)

Figure 4.11: Packet dropping rate depending on the inter-packet gap

the time required to send 20 bytes, which is 16 ns at 10 Gb/s. This is precisely the
last point for which the dropping rate is 0. The last point is for an inter-packet
gap of 13 ns (the lowest possible gap with the generator) and some packets are
dropped. So the classifier supports 10 Gb/s even with the smallest packets. This
validates that the flow builder works fast enough to retrieve flow data for one
packet in less time than is needed to receive a new packet header.

Flow processing speed

The second thing to test is the speed of the classifier itself. All the packets are
handled properly, but how long does it take to classify one flow? To answer this
question, 10 000 UDP flows of 6 packets of 64 bytes are sent to the classifier. The
rest of the link is filled with ICMP packets that should be ignored. Six packets
is the minimum to get one classified packet. Indeed, the first two packets are
ignored, then the sizes of the 3 next packets are used for the classification. So the
classifier starts working once the 5th packet is received, and if it is fast enough, the
class found is put in the 6th packet and the next ones. Sending exactly six packets
per flow, the maximum classification time is the delay between two packets. If
the delay is too long, no packet from the flow is classified.

Figure 4.12 shows the percentage of classified flows depending on the packet
rate for an SVM model with a CORDIC kernel, 1 000 support vectors and two
computation units. Figure 4.13 shows the results with 2 000 support vectors. The
packet rate is constant throughout each experiment. The clock used for the flow
classifier is the same as that for the packet processing unit, so its frequency is
187.5 MHz on the Combo board.

In Figure 4.12 with 1 000 support vectors, the classification percentage is
around 100% up to about 350 000 packets per second. In Figure 4.13 with 2 000
support vectors, it starts failing at about 180 000 packets per second. This is
actually the maximum number of flows that can be classified per second, as
the delay available to classify a flow is the delay between 2 packets. Using the
same method as in Section 4.5.1, the theoretical maximum is 353 773 flows per
second for 1 000 support vectors, and 182 039 flows per second for 2 000 support

121

0 100 000 200 000 300 000 400 000
0

10

20

30
40

50

60
70

80

90
100

Experimental result
Theory

Packets / second

C
la

ss
ifi

e
d

 fl
o

w
s

(%
)

Figure 4.12: Classified flows depending on the packet rate for an SVM model
with a CORDIC kernel, 1 000 support vectors and two computation units

0 100 000 200 000
0

10

20

30

40

50

60

70

80

90

100

Experimental result
Theory

Packets / second

C
la

ss
ifi

e
d

 fl
o

w
s

(%
)

Figure 4.13: Classified flows depending on the packet rate for an SVM model
with a CORDIC kernel, 2 000 support vectors and two computation units

122

vectors, as illustrated by the green dotted line on both figures. Differences near
the maximum supported speed are only due to the small number of tested packet
rates.

It can be seen that some flows are not classified even with a low number of
packets per second. This seems to be due to the generator, which sometimes does
not respect the configured inter-packet time. By logging sent packets in a file, we
noticed that at low speeds, the generator tends to send packets in bursts, which
means that the packet rate is not constant, so some flows are not classified when
the packet rate is too high. This is a flaw of the traffic generator.

The concordance of the theoretical and measured results indicates that the
implementation works as expected. It also validates the method used to compute
theoretical performance values in Section 4.5.1.

4.6 Conclusion

This chapter describes the practical implementation of SVM-based traffic classi-
fication. Simpler classification algorithms like C4.5 exist, but we show that with
the chosen flow features, that do not include source and destination ports, SVM
provides a slightly better accuracy. The proposed SVM implementation is also
very generic and can be adapted to other classification problems.

We use traffic-processing boards based on FPGAs like the NetFPGA 10G,
taking advantage of very low-level access to network interfaces and massive par-
allelism.

We first build a simple but efficient flow storage algorithm inspired by the CMS
algorithm. It supports with almost no loss one million simultaneous flows, and
guarantees a constant update and look-up delay. It also uses very few ressources
on the FPGA.

The main focus of this chapter is the flow classification process using the SVM
algorithm, which is implemented in a fully parallel way thanks to a pipeline com-
puting classification data on one support vector each clock cycle. To accelerate
this process, multiple processing units can work in parallel, dividing the required
time to handle flows faster.

Two different kernels were tested, namely the well-known and generic RBF
kernel, and a kernel more adapted to hardware called the CORDIC kernel. They
both give very similar classification accuracies, but the CORDIC implementation
supports higher working frequencies and uses less area on the FPGA, which makes
it possible to put more processing units in parallel. An unexpected improvement
is that SVMmodels obtained with the CORDIC kernel have fewer support vectors
than with the RBF kernel, which accelerates the processing.

Thanks to all these optimizations, flow classification can be performed at
320 075 flows per second for an SVM model with 8 007 support vectors, which
would allow a real-time classification of the most realistic Brescia trace at 473Gb/s.

To increase the speed supported by this traffic classifier, different parameters
would have to be changed:

• Use higher-speed network interfaces

123

• Use a better FPGA to be able to parallelize the SVM algorithm even more.
This way more flows can be classified each second.

• Use a bigger memory to be able to support more concurrent flows without
increasing the risk of losing flow data.

Another possible improvement of the current implementation would be to
make it more flexible by storing the SVM model in RAMs instead of ROMs, so
that a new synthesis is not necessary at each model update.

This hardware classifier is another step towards flexible and accurate online
traffic classification without subsampling on high bit rate links. The very effi-
cient flow storage mechanism can be reused for other flow-based algorithms. The
generic SVM implementation on hardware can also be used for other classification
problems.

This traffic monitoring implementation on FPGA makes the advantages and
drawbacks of this platform very visible:

• The development is complex and long. Problems like quantization have to
be taken into account. Other problems that seem trivial in software, like
flow storage, have to be handled manually due to more limited resources.

• Flexibility is not automatic. For example to allow dynamic SVM model
changes, new developments would be needed.

• The speed improvement is huge, especially on algorithms like SVM that can
be made massively parallel.

• It is easy to guarantee real-time processing, because each delay is known
and no other task can interfere with the processing

124

Chapter 5

Hardware-accelerated test platform

We have seen two approaches to traffic monitoring. The first one to detect DDoS
attacks was a full software implementation, very flexible and configurable. The
second one to identify applications generating traffic was a full FPGA implemen-
tation, very efficient thanks to massively parallel computations. To prove the
scalability of both solutions, we developed prototypes with 10 Gb/s interfaces.
The ultimate goal is to support much higher speeds, but equipments supporting
more than 10 Gb/s remain for now overly expensive for a prototype. Even with
10 Gb/s interfaces, the problem remains of how to check that the prototypes work
the way they are expected to work. To do that, it is necessary to generate traffic
with specified features at a configurable speed up to 10 Gb/s.

As we saw in Section 2.2.1, it is challenging to support a speed of 10 Gb/s in
software, be it for receiving or sending traffic. Generating traffic at a specific speed
on commodity hardware is so difficult, that many existing software generators
have been shown to be unreliable [BDP10]. As commercial traffic generators are
expensive, we will present a hardware-accelerated traffic generator that works on
the Combo [IT13] FPGA platform, which we already own. This implementation
will be an affordable and flexible solution for any researcher willing to try new
traffic monitoring algorithms at high speeds. It will be possible to adapt to the
widely available and affordable NetFPGA 10G [Net12] platform.

The presented traffic generator will have to be very reliable, especially in
terms of generated data rate. The very low-level control provided by FPGAs
will help for that. But it is also important for the traffic generator to be easily
configurable, so as to generate different kinds of traffic depending on the algorithm
under test. In Chapter 3, we preferred flexibility to performance, so as to provide
a comprehensive and configurable monitoring platform to network operators. In
Chapter 4, we focused on performance to support high data rates. For the traffic
generator, a more balanced trade-off has to be found: a speed of 10 Gb/s must
be supported without any problem, even generating small packets, but the profile
of the generated traffic must be very easy and fast to configure. The way to add
features to the traffic generator has also to be straightforward. As we think this
generator can be useful to all researchers working on traffic processing, we make
it fully open-source and available online [Gro13]. We hope others will help make
it evolve with feedbacks and new features.

125

We will first list existing solutions for traffic generation. Second we will detail
the specific requirements the traffic generator has to meet. Then we will describe
the global architecture, divided into a software part, and a hardware part. Finally
we will assess the performance of the generator by measuring generated traffic
for specific use-cases with a simple commercial traffic analyzer [xen12].

5.1 State of the art on traffic generation

5.1.1 Traffic models

Traffic generation is the task of sending network traffic on a link to simulate
the use of this link in an actual network of computers. It is used mainly by
researchers to assess new algorithms performance, and by deployment teams to
test new equipments.

Depending on the goal, the requirements on generated traffic can be very
different. Here are some example use cases for traffic generation:

• To test the minimum supported data rate of an algorithm in the worst
case, the generated traffic must have very specific features. If the algorithm
processes packet headers one by one, it will have much more problems with
small packets than with big packets, as the number of packets received per
second will be much higher for the same data rate. If the algorithm considers
only TCP traffic, other kinds of packets will be ignored, so a traffic with
only TCP packets will be more challenging to support.

• To create plots of the performance of an algorithm depending on some
varying traffic features, the composition of the generated traffic will have to
be precisely specified too, and different traffic models will have to be tested.

• To assess the mean performance of an algorithm, realistic traffic will have
to be generated. Only some generic features, like the data rate, have to
be specified. The exact composition of the traffic (packet sizes, flow sizes,
inter-arrival delays, packet data) only have to look realistic. The criteria to
decide that a traffic is realistic depend both on the tested application, and
on the location it will have on the network.

So the generated traffic may have to be either very specific to test edge cases,
or realistic to test the normal behaviour of the application. Whatever the goal,
two methods exist for traffic generation. The traffic can be fully synthetic, with
each transmitted bit written using automata from a specification. Or the traffic
can be replayed from a trace. In this case, a probe is used to save some actual
traffic in a file, then the file is used to generate the exact same traffic.

The problem when replaying traces is that it is difficult to get real traffic data
from operators. And a trace from a probe located in a certain network can rarely
be considered as representative of all situations the algorithm should be tested
for. It is even more complicated to find traces with some specific features, like
the presence of attacks. So synthetic traffic provides more flexibility and allows
a larger test cover.

126

Realistic traffic models

To generate synthetic traffic for edge cases, only some parameters have to be set
(like the inter-frame delays, packet sizes or IP addresses), depending on the needs.
But to generate realistic traffic, it is necessary to have a model of the real traffic.
This is a very active and huge field of research. A 27-year old article presents a
simple on/off model to characterize network traffic [JR86]. Packets are sent in
multiple bursts separated by random time intervals.

Some years later, an article presents a more complex probabilistic model ac-
counting for the burstiness of Ethernet traffic on aggregated links [LTWW94]. It
presents the traffic as self-similar, that is to say that the shape of the traffic looks
the same at different aggregation levels. This results in a burstiness of the traffic:
intense transmission periods alternate with realitively idle periods. Self-similar
stochastic models are used to characterize the traffic.

Instead of considering the traffic globally, a more recent article [SRB01] ex-
plains that only some big flows, called alpha traffic, are responsible for traffic
burstiness and have a non-Gaussian behaviour. The remaining traffic is called
beta and modeled as Fractional Gaussian noise. This model can be used to gen-
erate synthetic traffic using wavelets. Even more recently, [SMV10] provides a
global probabilistic model of traffic on a backbone link based on fractional Brow-
nian motion and fractional Gaussian noise.

These articles offer models that can be used to vary the data rate of a generator
over time in a realistic way, so as to evaluate the average data rate an algorithm
can support. But more accurate models can also be made when focusing on
specific applications. A model exists for example [BAAZ10] for network traffic
inside a data center. Traffic in a data center is generated by different servers
communicating together, not directly by humans. It seems to result in an on/off
behaviour, with some links alternating between busy and idle situations.

Some models are even more specific, like for example a model of traffic for
wireless sensor networks [WA11]. This model takes into account the mobility of
nodes, which communicate directly, and are not always able to reach the same
neighbours. Sensors also need a strong energy efficiency, so they try to shorten
their communication periods as much as possible. This results in a model far
different from the one of an access network.

It can also be interesting to focus on a kind of traffic. For example, in [IP11],
authors study only the web traffic, that is to say HTTP and HTTPS traffic.
Another study [ZSGK09] is even more specific: its goal is to model Youtube
traffic. These very accurate studies are more about measuring and analyzing the
traffic than about creating a model to generate synthetic traffic. But the hints
they provide about the way the traffic behaves could be used to build realistic
models.

Our first goal is to test algorithms in the most demanding edge cases, so
generating realistic traffic is not our main concern. But the traffic generator
has to be reusable and extensible. This is why it remains important to build a
flexible generator, that can be extended to take advantage of existing realistic
traffic models. This way, the difficulty to implement a specific realistic model
on the generator only depends on the complexity of the implementation of the

127

model (for example fractionan Brownian motion, fractional Gaussian noise or
self-similar stochastic processes) on FPGA.

We detailed the different kinds of traffic models a generator may have to
support. We will now see what existing generators offer.

5.1.2 Commercial generators

As traffic generators are widely used for Research and Development, many so-
lutions exist. Different companies sell their own solutions, like Ixia [ixi12] or
Xena [xen12]. These tools work out-of-the-box. Some software is usually pro-
vided with the machine to configure the parameters of the traffic to be generated
using a simple interface. They are also often capable of receiving the traffic after
it went through the device under test, and of providing statistics like the rate of
dropped packets.

We recently acquired a XenaCompact traffic generator with two interfaces at
10 Gb/s. It is able to saturate both interfaces, even with the smallest packets. It
is controlled remotely using a Windows program called XenaManager. Configu-
ration of the generated traffic is done using the concept of stream. All packets in
a stream use the same configuration. They can include counters that are incre-
mented at each sent packet or random fields. The inter-frame delay can be set
precisely. This generator is especially suited for edge case tests. It can generate
packets with realistic payloads with existing protocols, but the inter-frame delay
is constant between all packets of a same stream. Even if multiple streams can
be intertwined, it does not offer a wide variety of traffic profiles.

An interest of the XenaCompact is that it also contains a very basic analyzer.
It is able to measure the mean data rate, and to build histograms of the inter-
frame delay of the received traffic.

The first drawback of commercial generators is that they are expensive. The
way they are implemented is also kept secret, making it impossible to extend
their functions when the configuration options are not enough. For example for
the XenaCompact, it would not be possible to try to generate realistic traffic with
random inter-frame delays following a custom probability density function.

5.1.3 Software-based generators

Any computer with a NIC is able to generate packets. This is why different traf-
fic generators have been developed in software, to run on commodity hardware.
Many focus on generating realistic traffic. For example, an implementation fo-
cuses on generating flows that have the same distribution of packet length as some
well-known application types (HTTP, FTP, SMTP, etc.) [AOP+08]. The traffic
composition is configured using a GUI and could be used to test the behavior of a
device under some realistic traffic. It uses simple models (on/off for single appli-
cations and b-Model for aggregated traffic) to generate packets of realistic sizes.
It does not support specifying the content of packets (header fields or payload).
The maximum supported data rate is 1 Gb/s.

128

The Harpoon [SKB04] traffic generator goes even further in the idea of gen-
erating realistic traffic. It can generate TCP and UDP flows with a realistic
distribution of packet sizes, flow sizes and inter-packet delays. The goal is to
recreate the load of a real network on the device under test. Specialized traffic
generators also exist, like a generator of online gaming traffic [SKS+10], based on
a study of traffic generated by two popular online games. Such generators can be
very helpful for specific use cases.

As discussed in the previous section, the problem for all these generators
is to build traffic models. An interesting approach is the Swing traffic genera-
tor [VV09]. It uses a probe on an actual network to measure some features of
the traffic, and is then able to generate traffic with the same features. It focuses
on packet inter-arrival times and sizes, flow inter-arrival times and sizes, and
destination addresses. Traffic is generated using a simulated network with the
same characteristics (packet loss for example) as the measured network. So this
generator is able to automatically create a simple model of the traffic, without
any a priori knowledge of the network and applications.

These solutions focus more on the traffic model than on the ability to sup-
port high data rates. They are usually limited to traffic up to 1 Gb/s. An
approach that could lead to support higher data rates is a distributed traffic
generator [BDP12]. It uses multiple machines connected to the same network to
generate traffic. Using this technique, it is possible to test the resistance of a
wide network, with multiple links loaded simultaneously. It is also possible to
generate traffic with higher bit rates. Although each machine is still limited to
generate about 1 Gb/s of traffic, packets from multiple machines can be aggre-
gated. But such a generator is complicated to setup only to test one equipment,
and the generated traffic is not fully controlled, because it is difficult to synchro-
nize multiple machines accurately. For example, it is not possible to guarantee
the order of packets from two different machines after aggregation. Depending
on the application, it may be a problem.

As explained in Section 2.2.1, standard operating systems do not permit to
control accurately the delay between two sent packets. This results in inaccurate
data rates and inter-packet delays in most software traffic generators [BDP10].

But some software traffic generators focus on the rate of the generated traffic
and the reliability of announced inter-packet delays. They do not generate realis-
tic traffic, but are great to stress test an equipment. To circumvent the problems
due to the operating system, N. Bonelli et al. [BDPGP12a] implemented a solu-
tion that uses the custom network stack PF_DIRECT. With a powerful computer
and a 10 Gb/s Intel NIC, they succeed to send packets at almost 10 Gb/s. But
an use case shows that they reach the limits of what is currently possible using
commodity hardware: they can send traffic at 10 Gb/s only if generated packets
are big enough. With the smallest packets, only about 85 % of the link can be
filled. This is an important drawback to stress-test an equipment, because small
packets often constitute the most difficult traffic to handle. If the traffic generator
does not support this traffic, it is not possible to guarantee that the algorithm
under test will support it. The problem is that the CPU is not designed to han-
dle the task of sending a huge number of small packets to the NIC. This is why

129

hardware-accelerated solutions are necessary.

5.1.4 Hardware-accelerated generators

As it is very challenging to obtain precise timing and high data rate in software,
hardware acceleration is often required. In [BBCR06], a network processor is
used to build a generator, which can send traffic up to 1 Gb/s. A limited number
of flows with identical data are configured using a GUI and then sent at full
speed. BRUNO [ADPF+08] is another approach, which uses the same strategy
but supports an unlimited number of flows, because each generator instance can
send a packet from any flow.

To get more flexibility than with a network processor, Caliper [GSG+12] uses
a custom network processor implemented on the NetFPGA 1G. This implemen-
tation focuses on precise timing and works at 1 Gb/s. Scaling it to 10 Gb/s
would be difficult because it relies on the computer to generate the traffic, so the
computer would act as a bottleneck.

Using an FPGA with a network interface at 1 Gb/s too, A. Tockhorn et
al. [TDT11] have a more hardware-focused approach: they stream headers with
all data about one packet from the computer to the FPGA, which transforms this
header into a full packet. As the header is smaller than the packet, the FPGA is
able to reach a higher data rate than the computer. This approach would show
its limits when trying to send small packets, as the header and packet would be
of similar sizes.

FPGEN [SSG11] is a traffic generator based on an FPGA, which does not
require a computer to stream traffic to it. It stores configuration in RAM, and
can reach up to 5 Gb/s. It is focused on packets size and arrival time statistical
distributions, and does not allow to specify some fields like IP addresses, ports.

An approach with goals similar to ours exists using the well-known NetFPGA
10G board [SAG+13]. Few details are given, but it is meant to be an open-source
implementation using the four 10 Gb/s ports of the board. It includes a traffic
analyzer for packets that are sent back to the generator. Implementation seems
to focus on timestamping generated packets and analyzing the delays and laten-
cies when they come back. It is configurable but does not advertise the ability
to extend the hardware part of the generator easily. The described hardware ar-
chitecture does not seem to make it easy to add features to generate traffic using
complex traffic models.

In next section, we describe in details our needs for an affordable, configurable
and extensible 10 Gb/s traffic generator.

5.2 An open-source FPGA traffic generator

5.2.1 Requirements

We have presented a scalable and flexible software-based DDoS attack detector
in Chapter 3. We have also implemented a high-speed on line traffic classifier
in Chapter 4. For both algorithms, prototypes have been developed that should

130

support a data rate up to 10 Gb/s. To be able to prove that this speed is
actually supported, we had to send the most challenging possible traffic to these
prototypes. We explained in last section that freely available generators do not
fulfill our requirements, so we decided to build our own traffic generator.

Although the implementation was started for our own use, we realized that an
affordable, configurable and extensible traffic generator, able to fill at least a 10
Gb/s link, can be useful for all researchers willing to test a network monitoring
application at high speed.

The first purpose of this traffic generator is to push the limits of the device
under test. This means that the most important is not to generate realistic traffic,
but to generate traffic designed to be difficult to handle. The definition of such
traffic depends on the functions of the device under test.

For example for the traffic classifier, two factors are important: the number
of packets per second for flow reconstruction, and the number of flows per second
for classification. Packets should be UDP or TCP because others are ignored. As
some caching mechanisms are implemented, it is much less challenging to always
send the same packet, than to send packets with changing flow identifiers. The
payload of the UDP or TCP packets is of no interest to the classifier.

For the DDoS detector it is a bit different. The most challenging traffic is made
exclusively of TCP SYN and ACK packets, because others are ignored. Packets
with varying source and destination IP addresses simulate multiple attackers and
multiple packets, although important numbers of packets should be sent to the
same address so that an attack is detected.

Another interesting possibility for the DDoS detector would be to generate
realistic traffic as background, and then generate one attack at a specified rate. It
would allow to check the accuracy and detection delay of the algorithm. Contrary
to other scenarios, this is not a stress test, and it requires the support of realistic
traffic models. This test is not the most important for us, so we will first focus on
generating synthetic traffic with specified parameters. But the traffic generator
must be extensible, so that it is easy to add features, like the support of some
realistic traffic models.

As we want researchers to be able to use the generator to stress-test all kinds
of algorithms, the synthetic traffic has to be highly configurable: number of
packets, size of the packets, content of the headers and payloads, etc. This
configuration should be easy to do for anyone with basic network knowledge.
The supported speed should be at least 10 Gb/s, and it should be easy to scale
the implementation to higher data rates.

In terms of protocols, the generator should be based on Ethernet, as this is
the most common low-level protocol and it is implemented on all platforms. But
the protocols on top of Ethernet should be completely configurable: IPv4, IPv6,
ICMP or others, and higher-level protocols UDP, TCP or even HTTP, SSH, etc
should all be supported.

The traffic generator has to be open-source. It will be directly available on
GitHub [Gro13]. We will keep maintaining and improving the current implemen-
tation. We also hope that others will use it. The more people use it, the more
feedbacks we will get to improve the generator. Anyone is also encouraged to

131

develop new features and make them available to everyone.

5.2.2 Technical constraints

To allow a precise timing of packets, and to be able to guarantee that a 10 Gb/s
link can be saturated, even generating the smallest packets, the traffic generator
will be developed on an FPGA platform. The low-level control of the FPGA
is great to guarantee the supported speed, and the massive parallelism enables
complex processing of packets at high speed. Our preferred development platform
would be the NetFPGA 10G, as it is affordable and the development platform is
open-source. It also provides four interfaces at 10 Gb/s. But when we started
the development of the generator, we only had a COMBO-LXT board, with a
COMBOI 10G2 interface board offering two interfaces at 10 Gb/s. The board
embeds a Xilinx Virtex 5 XC5VLX155T FPGA and comes with a development
platform called NetCOPE [MK08]. The current implementation of the generator
is for the Combo board. But porting it to the NetFPGA 10G platform should
be fairly easy, as a full port of the NetCOPE platform on NetFPGA 10G already
exists [KKZ+11], and we will do it as soon as possible.

Using an FPGA is efficient to support high speeds, but it does not favor flexible
implementations. The generator should be both configurable and extensible. To
make configuration as easy as possible, a control GUI is necessary. This is why
we use an hybrid approach. The Combo board is embedded in a computer and
can communicate with the CPU through a PCIe bus. So the generator is made of
control software on the CPU and a generation module in the FPGA. The careful
design of the generation module makes it easy to extend.

To make the traffic as configurable as possible, the most flexible way would be
to specify each packet separately, using for example a trace file in the pcap format.
But this would make it necessary to send configuration data to the FPGA for
each packet. As explained is Section 2.2.1, this would create a bottleneck between
the computer and the FPGA.

To avoid this problem, generated traffic is made of configurable streams.
Streams are sets of packets that can be different but are generated from the
same configuration. Differences in packets are due to the configuration indicating
parts of the packets that are random or incrementing. The structure of the config-
uration will be detailed later. This approach is similar to [BBCR06, ADPF+08].

5.2.3 Global specifications

Respecting both the requirements and the technical constraints, we propose a
traffic generator on a computer embedding a Combov2 FPGA board, able to
saturate the two 10 Gbit/s Ethernet interfaces.

Configuration is made using a GUI. Generated traffic is made of a set of
streams. To provide a maximum of flexibility, each stream is defined by:

a skeleton: list of bytes defining default packet data, including the full Ethernet
frame but without preamble. This is the default packet that will be gener-

132

ated multiple times in a stream. All the packets of a stream start with the
same skeleton and are modified afterwards.

a number of packets: this is the number of packets in a stream. Packets will
be generated as fast as possible to saturate the link. The rate of the stream
can be modified afterwards.

a list of modifiers: these are modules that modify packets before they are sent.
Each modifier has a specific role and its behaviour can be configured. Mod-
ifiers make packets in a stream different from one another.

Modifiers are able to change the size of the packets, the time between each
packet, or any bytes of the packets. This allows packets to vary by introducing,
for example, incrementing fields, random fields or computed checksum fields.
Configuration is able to activate and deactivate modifiers that are already present
in hardware.

For instance, to define a stream of 50 ICMP packets that ping successively the
IP addresses from 192.168.0.1 to 192.168.0.50, sent at 5 Gb/s, the configuration
should be:

• Skeleton: the bytes of a valid ICMP/IP/Ethernet ping packet with destina-
tion address set to 192.168.0.1, IP header checksum bytes set to 0, Ethernet
Frame Check Sequence (FCS) bytes set to 0.

• Number of packets: 50.

• Modifiers:

– Increment : for byte 33 (least significant byte of the destination IP
address), with a step of 1.

– Checksum: for bytes 24 to 25 (IP header checksum), computed on
bytes 14 to 33 (IP header).

– Ethernet FCS: activated.

– Rate: limit the rate to 5 Gb/s.

As shown on Figure 5.1, the increment modifier makes the destination IP address
vary. The checksum modifier computes for each packet the checksum of the IP
header, a redundant field made to check for transmission errors in the IP header.
Otherwise packets would risk to be rejected as invalid because the checksum does
not fit the modified header. The Ethernet FCS, another redundant field made to
check for transmission errors in the whole frame, is automatically computed to
make sure that the frame is valid. The rate modifier limits the rate to 5 Gb/s.

To make the streams totally configurable would require the hardware to con-
tain a large number of modifiers of different types. For now, only the most
commonly-used modifiers are available. But developing a new modifier is made
as easy as FPGA development can be thanks to a flexible architecture. To add
new modifiers to the hardware traffic generator, a new synthesis is necessary.

133

Increment

Checksum

Skeleton sender

50 pings, destination 192.168.0.1, checksum 0, FCS 0, 10 Gb/s

50 pings, destination 192.168.0.1 to 192.168.0.50, checksum 0, FCS 0, 10 Gb/s

50 pings, destination 192.168.0.1 to 192.168.0.50, checksum ok, FCS 0, 10 Gb/s

Ethernet FCS

50 pings, destination 192.168.0.1 to 192.168.0.50, checksum ok, FCS ok, 10 Gb/s

Rate limiter

50 pings, destination 192.168.0.1 to 192.168.0.50, checksum ok, FCS ok, 5 Gb/s

Figure 5.1: Example configuration to send ICMP ping packets

The generated traffic consists of configured streams mixed together. The data
rate of each stream is modulated by modifiers. Ordering of packets in a stream
is guaranteed, but no specific order is required for packets of different streams.

Next sections describe how this specification is implemented. First the soft-
ware part is described, along with the communication between the CPU and the
FPGA. Second the hardware architecture is detailed.

5.3 Software architecture

Combo boardComputer

config.
PCI Express

FPGA
2x 10 Gb/s
Ethernet

Configuration
tool (GUI)

config.
file

Python/Qt C VHDL

Control
tool Generator block

Figure 5.2: Global components of the generator

Figure 5.2 shows the global architecture of the generator. It is made of a
computer embedding the Combo board with its two 10 Gb/s Ethernet interfaces.
The configuration GUI on the computer is developed in Python using the Qt
graphical framework. It produces a configuration file describing each flow. A
small control tool developed in C is then used to send the configuration to the
FPGA through a PCIe bus. The generator block on the FPGA is developed in
VHDL. It receives the configuration and waits for an order from the control tool
to start generating traffic.

All the C, Python and VHDL code is open-source and available online [Gro13].
A technical documentation to install, use or extend the traffic generator is also
available in the same location.

134

5.3.1 The configuration interface

The generated traffic is made of streams. For each stream, the configuration is
made of a skeleton, a number of packets and a list of modifiers. The skeleton
and the number of packets actually are the configuration of a special mandatory
modifier: the skeleton sender. So the configuration GUI has just to provide a
way to configure modifiers for each stream.

(a) Skeleton sender (b) Rate modifier

Figure 5.3: Configuration tool

Figure 5.3 shows the interface of the configuration tool. 5.3a is the configu-
ration of the skeleton sender and 5.3b is the configuration of the rate modifier.
They are configured for the ping example of Figure 5.1. Configuration of each
modifier is fully dynamic depending on user input. For example on the figure, the
data rate is set by the user to 5000 Mb/s. The data rate is defined as the number
of “useful” bytes of Ethernet frame, excluding the preamble and the inter-frame
gap, sent each second. The link usage ratio and inter-frame gap are computed
automatically from the rate. If the user changes the size of the skeleton, this
will immediately affect the computed inter-frame gap, so as to keep the rate to
5000 Mb/s.

The architecture of the configuration tool is made to simplify the creation of
new modifiers. The tool is separated into a GUI and a backend. The backend
is responsible of listing configuration options for each available modifier, storing
configuration values, and preserving the coherence of all configuration fields. The
GUI simply uses the backend, presenting data in an user-friendly way. This makes
the development of potential different configuration interfaces simple.

To list the possible configuration options, the backend needs to know what is
available in the hardware generator block. This is done using a configuration file
in JavaScript Object Notation (JSON) [Cro06], called hardware.json. It contains

135

the maximum number of streams, and an ordered list of modifiers available in
each stream, in the order in which they modify packets. Each modifier has a type
and an unique identifier. Different modifiers of the same type may be available,
with a different identifier. Identifiers 0 and 255 are reserved and may not be
used. As the identifier is coded on 8 bits, at most 28 − 2 = 254 modifiers can
be available for one stream. For now, we have never needed more than 6 active
modifiers on a stream, so there is room for creativity.

Each modifier type has its own configuration fields, which work in a specific
way. They may accept a range of integer values, a list of options, etc. . . Their
value may also be automatically computed when other field values change. To
make this flexibility possible, the configuration of each modifier type is described
in a Python class. A typical modifier class contains:

A list of configurable fields. Generic field types like “unsigned” for integers,
“select” for choices and “packet” for packet data are available. The modifier
may list as many fields of these types as necessary. For each field, options
are available, like a name and a description, and the possible range for an
unsigned field. Two specific boolean options are also available: editable and
inConfig. An editable field is visible in the GUI and can be modified by the
user. An inConfig field will be stored as configuration data.

Event listeners. These are special functions that are called when a field value
is changed directly by the user, or automatically. A modifier can listen to
value changes for its fields, or for fields from other modifiers. These listeners
are used to update fields automatically to keep the configuration integrity.

A “mandatory” flag. If the flag is set, it means that the modifier cannot be
deactivated. For now, the only mandatory modifier is the skeleton sender.
Figure 5.3a shows that the GUI displays mandatory modifiers in their own
tab, instead of displaying them in the list of optional modifiers on Fig-
ure 5.3b.

This architecture makes creating a new modifier type very simple. The only
thing to do is to write a Python class that describes the meaning of configuration
data and the way it can be changed. There is no need to take care of the GUI or
of the configuration storage.

Once the traffic is described properly, an option to export the configuration
to a file is available in the configuration menu.

5.3.2 The configuration format

The format of the file exported by the configuration interface is designed to be
easily sent to the hardware generator on the Combov2 board. It is a text file
describing binary configuration data as hexadecimal values. The exact format
is specific to the Combov2 board, so that it can be used with the hardware
simulation tools provided with the board. This way, the exact behaviour of the
hardware generator can be simulated. This is extremely useful to debug new
modifiers.

136

The whole configuration is divided into frames representing the configuration
for one stream. Each frame is divided into parts containing the configuration for
one modifier. Each part is made of 64-bit words, this constraint is due to the
64-bit wide bus used on the Combo board to receive the configuration.

Data (64) Structure (4)
Id. (8) Config. (56) SoF EoF SoP EoP

5 Rate Yes Yes Yes
2 Ethernet FCS Yes Yes
3 Checksum Yes Yes
6 Increment Yes Yes
1 Skeleton (word 1) Yes

...
Skeleton (word N) Yes Yes

Table 5.1: Sample configuration structure for a flow sender

Table 5.1 shows the configuration of the stream described in Figure 5.1. Four
flags are used to signal a start of frame (SoF), end of frame (EoF), start of part
(SoP) or end of part (EoP). As there is only one stream in this example, there is
only one frame, with one part for each modifier. Parts start with an identifier, the
same as in the hardware.json file, identifying the modifier affected by the part.

Each modifier is free to define the structure of configuration data inside its
part, only the identifier is required, so that other modifiers ignore this part.
Most parts are only 64 bits long because the SoP and EoP flags are set on the
same data word. This leaves 56 bits for configuration data. But a part can be
as long as necessary by using multiple 64-bit words. A part of 2 words leaves
56 + 64 = 120 bits for configuration data, and so on. An example of long part
is the configuration of the skeleton sender, because it contains all bytes of the
initial packet skeleton.

The Ethernet FCS modifier is fully automatic and requires no configuration
data. It just sets the FCS at the end of the frame. But it has still its own
configuration part, using 64 bits in the configuration. Except the identifier, all
other bits are unused and set to 0. The part is still necessary, because a modifier
that receives no configuration is inactive and will not modify packets. The wasted
bits are not really a problem because the configuration phase is not really time-
constrained. Configuration data remain small and are sent almost instantly to the
traffic generator. Traffic generation has not started in the configuration phase.

This is why the configuration structure is designed for simplicity, not for
efficiency. Configuration is aligned on words of 64 bits to simplify development
of new modifiers: reading aligned configuration data in hardware is simple. An
example of modifier configuration will be detailed in Section 5.5.1.

137

5.3.3 The control tool

The control tool is a very small C program. It uses libraries provided by the
NetCOPE platform to communicate with the Combo board. Its role is to send
configuration data to the generator block, and to send orders to start or stop
traffic generation. For now, it has no GUI and is used in command line. It could
be integrated into the configuration GUI in the future.

The NetCOPE platform provides two communication methods between the
computer and the FPGA. The first is for small data transfers: 32-bit registers
on the FPGA can be made readable and/or writable from the computer like
a memory. An address is assigned to each accessible register, and a simple C
method call with the right address from the computer allows to read the value
or to write a new value. The second communication method is for fast and big
data transfers, it can be used to forward packets between the computer and the
FPGA at link rate, that is to say 20 Gb/s (two network interfaces at 10 Gb/s
each). It is accessible in C as two interfaces that can be read and written to in a
similar way to network interfaces. On the FPGA side, data are sent and received
through four 64-bit buses (one for each interface, and for each direction).

The first method is used to send orders to the FPGA. Two orders are defined:
“start” and “reset”. “start” orders the generator block to start sending packets. It
must be sent after the configuration phase. “reset” stops traffic generation and
orders the generator block to forget its configuration.

The second method is used to send configuration data to the hardware gen-
erator. The configuration file exported by the GUI is used. It is sent almost
without conversion. One packet is sent for each modifier, with a special header
to indicate the start and end of frames and parts.

5.4 Hardware architecture

The architecture of the generator block on the FPGA is of course more compli-
cated to change than the software architecture. This is why it provides configura-
tion mechanisms, able to change the behaviour of the generator without changing
the hardware. But to create custom modifiers, it is still necessary to change the
hardware. This is why the hardware architecture must be as simple and flexible
as the software architecture.

Development on the Combo board is done in VHDL using the NetCOPE
platform [MK08]. This platform intends to make development as independent as
possible of the board architecture. The management of the Ethernet protocol is
integrated. Received packets are made available through a specific bus type called
FrameLink. Sending a packet simply consists in sending data on a FrameLink bus
too. As two network interfaces are available, NetCOPE provides two buses for
reception, and two buses for sending. Packets on the bus represent the whole Eth-
ernet frame without preamble. Received packets start with a NetCOPE header
that contains the size of the packet.

FrameLink is a one-way synchronous 64-bit wide bus developed specifically
for the NetCOPE platform. It is able to transmit any kind of large streaming

138

data. It can be implemented easily on any FPGA. It includes two control signals
that allow both the receiver and the sender to halt the data flow. These signals
are asynchronous so as to avoid wasting time when the receiver is ready again.
Data on the bus are divided into frames. Each frame is divided into parts. A
part is made of multiple 64-bit words. The last word may not be fully used. The
bus includes four specific control signals to specify the start and end of frames
and parts. Each Ethernet frame is received as a FrameLink frame. The frame
contains one part with the whole Ethernet frame data, as well as an optional
part with the FrameLink header. The part with the FrameLink header is always
included for packets received from a network interface, but should not be included
when sending a packet to a network interface.

For the hardware generator block, incoming traffic is the configuration data
sent by the software control tool. Outgoing traffic is the generated traffic. So
configuration is received on an incoming FrameLink bus, and generated traffic is
sent by an outgoing FrameLink bus. The software configuration file has been for-
mated in a way that respects the FrameLink format, with a division into frames,
parts and 64-bit words, so as to be easy to transmit on the bus.

5.4.1 Main components

FrameLink bus

reconf signal

State
registers

Stream
generator

Stream
generator

Converter

Stream
generator

Control Merger

...

Config. Traffic

Software

Software

Network

Figure 5.4: Architecture of the hardware generator block

Figure 5.4 details the design of the hardware generator block. It is struc-
tured around the FrameLink bus, used to transfer both the configuration and the
generated traffic. It is made of different blocks described below.

The converter

This block is only necessary because of limits of the NetCOPE communication
tools. It receives configuration data as sent by the software control tool. When
received, the configuration of each modifier is in one different FrameLink frame.

The role of the converter is to transform the received configuration so that it
respects the configuration format. In output, one FrameLink frame corresponds
to the configuration of one traffic stream, and one FrameLink part corresponds
to the configuration of one modifier.

139

The control block

The control block is in direct contact with the software control tool. It receives
configuration data through the FrameLink bus, and it receives orders and sends
status information through the state registers. The state registers are read and/or
written by the software control tool.

The first role of the control tool is to receive configuration data and dispatch
it to the stream generators. Each stream generator can receive at most one
configuration frame. The first frame is sent to the first generator, and so on.
The maximum number of supported simultaneous streams is thus limited by the
number of stream generators implemented.

The second role of the control tool is to check the state of all stream genera-
tors. When stream generators have received their configuration frame, they stop
accepting data on the FrameLink bus. This indicates to the controller that they
are in configuration phase. When they are fully configured, they start accept-
ing data on the FrameLink bus again. This means that they are ready to start
generating traffic.

Data (64) Structure (4)
Id. (8) Config. (56) SoF EoF SoP EoP

0 0 Yes Yes Yes Yes

Table 5.2: Special configuration frame: start

The third role of the control tool is to send the start signal. When all the
stream generators are ready, the control block checks periodically the state reg-
isters for a “start” order written by the software control tool. If it is present,
the start signal can be sent. It actually is a special FrameLink frame sent to all
stream generators at the same time. Its structure is presented in Table 5.2. It
uses the reserved modifier identifier 0.

The last role of the control tool is to react to the “reset” order written by the
software control tool in the state registers. When this order is read in any state, a
reconfiguration signal called reconf is set to 1. This means that stream generators
should stop generating traffic and get ready to receive a new configuration.

The stream generators

Each stream generator manages only one stream during a whole execution. It
receives the configuration of the stream during the configuration phase, and then
waits for the start word to start sending. If the reconf signal is set to 1 at any
time, it goes back to the configuration phase.

Many stream generators are implemented in parallel so as to be able to handle
simultaneously streams with different configurations. But each stream generator
should be able to fill the 10 Gb/s link even with small packets, so that the link
can be filled without losing control of the ordering of the packets.

140

Sending traffic at 10 Gb/s is not a problem for the FrameLink bus. It is 64-
bit wide, and its frequency is the same as the whole design: 187.5 MHz, so the
maximum data rate is 12 Gb/s.

The merger

The merger receives packets generated by all the streams and stores them in
FIFO queues. It has one FIFO per stream generator. Each FIFO is checked
successively in round-robin: if a packet is ready, it is sent, otherwise the next
FIFO is checked.

The merger preserves the order of packets in each stream, because they are
all stored in the same FIFO. But the relative order of packets from different
streams cannot be guaranteed. The only guarantee is that each stream starts
being generated at the same time, because the start command is sent to all the
stream generators during the same clock cycle.

As all the streams are able to produce data up to 10 Gb/s, the total rate
may be superior to the output link rate. In this situation, FIFOs get full and the
merger starts refusing incoming data. Thanks to the control mechanisms of the
FrameLink bus, this slows down all the stream generators. So packets are still
generated properly, at wire speed. This situation can be avoided by configuring
the rate modifier for each stream.

The architecture of Figure 5.4 is valid to send traffic on only one of the two
possible network interfaces. It is also possible to send different traffic to both
interfaces simultaneously. To do this, two mergers have to be used. Each merger
receives traffic from one half of the stream generators. Each merger then sends
traffic to a different network interface. So for example if ten stream generators
are available, up to five streams will be generated per network interface. This
allows the generator to send traffic up to 20 Gb/s.

5.4.2 Inside the stream generator

The stream generator is where the packets are actually created. An example of
composition of a stream generator is visible in Figure 5.5. Each modifier has
a unique identifier (number in green). The generator is a long pipeline where
blocks are synchronized through the FrameLink bus. The interest is that all the
blocks in the pipeline are constantly working: while the skeleton sender sends the
last bytes of a packet, the rate block may already be working on the first bytes,
wasting no clock cycle.

The reconf signal is received by all the modifiers. This is a kind of synchronous
reset. Modifiers must stop sending traffic and forget their configuration when this
signal is set to 1.

Blocks with a gray background in Figure 5.5 are mandatory in all streams.
The skeleton sender is always the first modifier. It receives and stores the skeleton
associated to its stream during the configuration phase. The skeleton is a piece
of data from 64 to 1500 bytes, which contains the basic packet that will then
be modified by the next blocks. This modifier also stores the number of packets
that should be sent for this stream. Then when the start configuration word

141

FrameLink

reconf

Skeleton sender (1)

Increment (6)

Checksum (3)

Checksum (4)

Ethernet FCS (2)

Rate (5)

Config. remover

Figure 5.5: Example of blocks composing a stream generator

is received, the block starts sending the same skeleton continuously, until it has
reached the number of packets to send. This is the only modifier receiving the
start configuration word. The skeleton sender prepends a small header of two
64 bits words to each generated packet. Its format is specified by NetCOPE. It
contains the size of the packet in bytes and in number of 64 bits words. This is
useful to some modifiers that need to know the size of the packet before processing
it.

The config. remover block is a very special modifier because it cannot be
configured or deactivated, so it does not appear in the configuration GUI. It is
always the last modifier of a stream. Its only role is to prepare generated data
to be sent to the network interface, which consists in dropping the configuration
frame and the small NetCOPE header prepended to each packet.

The ability to generate traffic at link rate depends on all the modifiers. As
each modifier is able to stop data transfers on the bus, it can slow down the whole
chain and prevent the stream to reach the link rate. The FrameLink bus works
at 12 Gb/s, while the network interface supports 10 Gb/s on the Combo board.
Moreover, a preamble and inter-frame gap of 20 bytes are added to packets to
send them respecting the Ethernet protocol. This is why the 16 bytes of header
prepended to each packet by the skeleton sender are not a problem. The bus
is still much faster than the Ethernet link. The minimum useful speed for the
FrameLink bus generating the smallest 64 bytes packets is 9.6 Gb/s, and only
7.6 Gb/s for the 10 Gb/s Ethernet link.

All currently available modifiers never slow down the bus. They may add
some latency to packets because they use FIFOs. But this only delays the start
of the traffic generation. It does not impact the data rate.

All white blocks in Figure 5.5 are optional modifiers. The functions of cur-
rently available modifiers are described below.

142

The increment modifier

It allows to modify a field of 2 bytes of the skeleton, setting it to the value of
an internal counter that is incremented or decremented at each packet gener-
ated in the stream. The way the counter is incremented or decremented can be
configured.

The configuration is made of:

• A field offset, indicating the number of bytes to count from the start of the
packet to find the field to modify.

• A count mode: increment or decrement the counter.

• An increment value, indicating the positive value by which the counter
should be incremented of decremented every time it is changed.

• A minimum and a maximum. The counter starts from the minimum or
the maximum depending on the count mode. When the minimum or the
maximum is reached, the counter is reset and starts again.

• A change skip period n, which means that the counter value is modified
every n+ 1 generated packet.

It can be used to make IP addresses vary for example. Combining two incre-
ment modifiers on the same stream, it is possible to increment a field of up to 32
bits, using the change skip period configuration.

On the FPGA of the Combo board, the maximum frequency of this module is
241MHz and it uses 0.9% of the space. The minimum frequency for the generator
to work is 187.5 MHz, so this module will not slow down the processing. This
module is very simple because it only has to select the right data and compute
one addition.

The checksum modifier

It allows to modify one field of 2 bytes of the skeleton, setting it to the value of
the checksum computed on a configurable range of bytes of the skeleton. It is
compatible with checksums in IPv4, TCP and UDP headers. This may be used
for example to set the checksum in the IP header after some fields of this header
have been modified.

Its configuration is made of:

• A data start offset, indicating the number of bytes to count from the start
of the packet to find the first byte that should be taken into account for
checksum computation.

• A data end offset, indicating in the same way the last byte for checksum
computation.

• A value offset, indicating the first of the two bytes that should be set to the
checksum value.

143

• A pseudo-header mode, that can be none, IPv4 or IPv6. The IPv4 setting
is used to compute a TCP checksum, which must be computed on an IP
pseudo-header, made of some fields of the actual IP header. The IPv6
setting is not supported yet. It will be used to compute a checksum for
TCP over IPv6.

• An IP header offset, indicating the start of the IP header. It is used only if
the pseudo-header mode is not none.

The details of implementation of this modifier are described in Section 5.5.1, as
an example of modifier design. On the FPGA of the Combo board, the maximum
frequency of this module is 189 MHz and it uses 1.8 % of the space. It is slower
and bigger than the increment modifier because the checksum computation is
much more complex.

The Ethernet FCS modifier

It computes the FCS field of each generated packet and sets it, to conform to the
Ethernet specification. The FCS field depends on all bytes of the frame. This
block may only be omitted if the goal is to generate packets with wrong FCSs or
if no change is made to the skeleton generated by the skeleton sender.

The FCS is always located in the last four bytes of the packet. The modifier
locates these bytes using the size information available in the NetCOPE header
of the packet. No specific configuration is needed. The modifier can simply be
activated or not.

On the FPGA of the Combo board, the maximum frequency of this module is
204 MHz and it uses 1.3 % of the space. The module is simpler than the checksum
modifier because it is less configurable, and an FCS is simpler to compute than
a checksum.

The rate modifier

It allows to limit the data rate of this particular stream. If it is not present, the
stream will be sent at maximum speed. It works by setting a constant inter-frame
gap as an integer number of bytes on the FrameLink bus. As the FrameLink bus
works at a speed of 12 Gb/s, one byte corresponds to 667 ps.

The configuration of this modifier is only made of the minimum average inter-
frame gap in bytes on the bus. It is a minimum because the rate modifier is only
able to slow down traffic on the bus. It cannot speed it up. So if other modifiers
slow down the generated traffic, the actual average inter-frame gap may be wider
than expected.

On the FPGA of the Combo board, the maximum frequency of this module is
194 MHz and it uses 0.6 % of the space. This module simply counts clock periods
and stops the traffic if needed, which explains a very limited space usage.

144

Other modifiers

Modifiers described above are enough to test the DDoS detection and traffic
classification algorithms under stress conditions. But many other modifiers may
be developed to add features to the traffic generator.

An example of modifier for which development was started but is not finished
yet, is a payload modifier. It is capable to append a random payload to generated
packets. The payload size may be either fixed, or random. This allows to generate
more variable traffic.

It would also be possible to develop modifiers to try and generate realistic
traffic, using the models described in Section 5.1.1. Modifiers can act on the pay-
load, the headers, the size of the packets, and the inter-packet delays to generate
as realistic traffic as possible. It is possible to generate on/off traffic easily. More
complex models can also be used, the development complexity depends only on
the difficulty to implement the model on the FPGA, the control over generated
packets is total.

5.5 Generator use cases
Users of the traffic generator can choose the customization level they need. At the
deepest level, they can create custom modifiers to get the exact traffic features
they need. Section 5.5.1 describes through an example how a new modifier can be
created. If existing features are enough, it is possible to customize the composition
of stream generators, duplicating useful modifiers, and fully removing useless
ones. Section 5.5.2 presents the possibilities and limits to synthesize a generator
block on FPGA. Finally, the generator can be used directly as a tool using the
configuration GUI, with an already configured FPGA. Section 5.5.3 assesses the
performance of the traffic generator as a simple tool configured using exclusively
the GUI.

5.5.1 Design of a new modifier

Designing a new modifier is made in four steps:

1. The specification of the features of the modifier.

2. The specification of the configuration options and their hardware represen-
tation.

3. The description of the modifier in software for the GUI.

4. The development of the modifier in VHDL.

To illustrate the design of a modifier, we take as example the checksum mod-
ifier described in Section 5.4.2.

The role of the checksum modifier is to set checksums in IPv4, TCP or UDP
headers after data changes. To do this, the modifier should read the proper fields,
compute the checksum using the Cyclic Redundancy Check (CRC) algorithm, and

145

write it at the proper location in headers. The checksum value is always 16-bit
long. The TCP and UDP protocols add a difficulty because a pseudo-header
derived from the IP header has to be included to compute the CRC. So necessary
configuration variables are:

• start : the byte offset at which computation should start (0 to 1517),

• end : the byte offset at which computation should end (0 to 1517),

• value: the byte offset at which the result should be inserted (0 to 1517),

• ip: if a pseudo-header has to be computed, the byte offset of the IP header
(0 to 1517),

• type: a flag indicating if a pseudo-header should be computed, and if the
IP version is 4 or 6 (none, 4 or 6).

The limit of all offsets at 1517 bytes is due to the Ethernet protocol, which
states that an Ethernet frame can handle up to 1500 bytes of data (to which 18
bytes of header are added). The Ethernet protocol defines Jumbo frames, which
can carry more than 1500 bytes of data, but they are not supported by most of
the current modifiers. Supporting them would imply modifying the structure of
the configuration of most modifiers to support offsets up to 9017. This change
would be simple to make, but the need for generating jumbo frames did not arise
yet.

Config. (56)
start (11) end (11) value (11) ip (11) type (2) 0 (10)

Table 5.3: Checksum modifier configuration

Table 5.3 specifies the structure of the configuration part for the checksum
modifier. It uses only one word on the FrameLink bus. One word is 64 bits, but
8 bits are used by the identifier from Table 5.1, so only 56 bits remain for the
configuration. Any identifier that is not already used by another modifier can
be chosen. For the type field, possible values are 0 for no pseudo-header, 1 for an
IPv4 pseudo-header and 2 for an IPv6 pseudo-header. The last field is padding,
made of ten bits at 0 to fill the 56 bits.

Once the configuration is specified, the best way is to write the Python class
that describes the identifier for the GUI. The constructor of the class defines
the name of the modifier and a short description. It also declares a list of the
configuration fields. The order of the fields is the actual order of the bits in the
configuration. For the checksum modifier, four fields of type UnsignedField are
needed for the offsets. Their size is 11 bits. Then one field of type SelectField is
used to describe the type field. It can take values “None”, “IPv4” or “IPv6”. The
last field is a BitsField with a width of 10 bits and a flag editable set to false.
It is only used as padding to fill the last bits of the configuration with zeros.

146

The Python class is registered as a modifier with the name checksum, and a flag
mandatory set to false.

Now that the configuration is specified, the checksum block should be de-
signed. The configuration phase is simple: wait for a data word with the SoP
flag set and the first 8 bits representing the value of the modifier identifier. The
value of the identifier is a parameter of the block. When this word is found, store
all configuration data in registers. When data is received with the EoF flag set,
go to the generation phase.

The generation phase can be divided into 2 steps:

• compute the checksum by adding interesting bytes according to the config-
uration at each clock cycle,

• set the checksum value at the proper position in the packet.

But the checksum is usually in packet headers, and it may be computed on bytes
that are in the payload. So the packet has to be stopped until all the bytes have
been received to compute the checksum. As processing speed is critical when
generating packets, a pipeline has to be used in order to never stop the data flow
during the process.

FIFO checksum

FrameLink

reconf

config.

Insert
FSM

Compute
FSM

Figure 5.6: Architecture of the checksum modifier block

Figure 5.6 describes the architecture used for this block. Two Finite-State
Machines (FSMs) are used. The compute FSM reads received data without ever
modifying it. It manages configuration storage and checksum computation. The
insert FSM lets data flow until it finds the location where the checksum should
be inserted. Then it waits until the checksum is ready. During this time, received
data is stored in the FIFO. When the checksum is ready, it sends it along with
the received data, and lets data flow again until a new checksum has to be written
in the next packet. The FIFO has to be big enough to store a whole packet, to
be able to handle the case when the checksum is at the start of the packet, and
is computed on the whole packet.

This process incurs a delay when the first packet is sent, but then while the
insert FSM sends data stored in the FIFO, the compute FSM computes the next
checksum. So the bit rate is not decreased by this block.

147

The source of this block is available [Gro13]. Note that although it is possible
to specify in the configuration that the pseudo-header has to be created from
an IPv6 packet, the function is not implemented yet and the checksum modifier
supports UDP and TCP only over IPv4.

5.5.2 Synthesis on the FPGA

To use the traffic generator, the generator block first has to be synthesized. The
generated bitfile is then used to configure the FPGA. We can provide a ready-
to-use bitfile for the Combo board. But the synthesis allows to change some
interesting parameters of the generator:

• The composition of a stream generator is described in a VHDL file. It is
possible to add or remove as many modifiers as necessary. This is where
newly designed modifiers must be inserted. Having a lot of increment mod-
ifiers chained may be useful to create traffic with highly varying headers for
example.

• The number of stream generators is also a parameter in a VHDL file. No
code has to be written to change this parameter. The value can simply
be modified because the generator block is generic. For now, all stream
generators are exactly the same. This is a design decision made to sim-
plify the configuration. Of course, each stream generator receives its own
configuration, but the same modifiers are available in each stream.

The ability to use multiple stream generators in parallel is important to gen-
erate diverse traffic, and to support multiple output interfaces. To explore the
capacity in number of stream generators of the FPGA on the Combo board, we
use the example stream generator of Figure 5.5 made of seven modifiers. We
synthesize the full generator block, including the converter, control and merger
blocks, on the FPGA of the Combo board.

Number of stream generators 1 5 2× 3
Maximum frequency 189 MHz 188 MHz 189 MHz

Number of slice registers 2 560 12 978 16 606
Number of slice LUTs 4 321 20 735 25 572

Number of slices 1 539 7 904 9 679
Occupation 6.3 % 32 % 40 %

Table 5.4: Synthesis results of the sample traffic generator on the Xilinx Virtex
5 LX155T FPGA of the Combo board

Table 5.4 details the FPGA usage of the traffic generator with one stream
generator for one interface, five stream generators for one interface, and three
stream generators for each of the two interfaces. With only one stream generator,
6.3 % of the FPGA is used. So using multiple stream generators in parallel is not
a problem. The maximum frequency supported by the design is over 187.5 MHz,

148

the frequency at which the Combo board works, so it can be implemented on
the board without problems. Results in the table are for the traffic generator
itself. They do not include the little space taken on the FPGA by the NetCOPE
framework. So the results would be the same using the NetFPGA framework.
Actually, as the NetFPGA 10G board embeds a more powerful FPGA, it provides
more space to parallelize more stream generators.

With five stream generators, it is possible to send five concurrent streams on
the same network interface to reach 10 Gb/s. With two times three stream gen-
erators, it is possible to send three concurrent streams on two network interfaces
to reach 20 Gb/s. The choice of the number of stream generators and interfaces
has to be made before the synthesis because the hardware architecture depends
on the output interfaces. It would also be possible to have for example four
stream generators for one interface and two for the other, but this possibility is
not implemented to simplify the configuration.

Currently, the modifier using the most space on the FPGA is the checksum
modifier. The computation it does is more complicated than other modules.
Another reason that makes this module complex is that it can be configured
to support checksums for different protocols. The maximum working frequency
of the generator is also defined by the checksum modifier. This means that
this module tries to make the most complex operation during one clock cycle.
Simplifying this module would relax the constraints on the whole design, allowing
to parallelize even more stream generators.

The synthesis and place-and-route steps needed to transform the VHDL code
into a configuration file for the FPGA can take up to two hours. So putting
more modifiers and streams than needed on the FPGA can be a good idea to
avoid having to do it again when needs change. The GUI allows to activate or
deactivate a modifier or a stream in one click.

5.5.3 Performance of the traffic generator

From the point of view of an end user using the traffic generator as a tool, modifier
development and FPGA synthesis are rarely needed. The most important is to
get good performance using the default traffic generator with the configuration
GUI.

To make sure that the traffic generator sends traffic with the right features,
an analyzer is needed. The XenaCompact commercial tool has some built-in
traffic analysis functions. It is capable of building an histogram of the inter-
frame gaps between packets. The inter-frame gap includes the Ethernet preamble.
It is expressed in bytes. For a 10 Gb/s Ethernet link, one byte corresponds
to 0.8 ns. The minimum gap enforced by the protocol is 20 bytes or 16 ns.
From the measurement of the gap, the data rate can be computed. A limit of
the XenaCompact is that it groups inter-frame gaps by four bytes to build the
histogram. But the result is still accurate enough to have a good idea of the
efficiency of the traffic generator.

Performance tests are made using the stream generator of Figure 5.5. Only
one stream is activated. All modifiers are enabled to make sure that they do

149

not affect the output data rate. 100 000 frames of a fixed size are sent for each
experiment.

0 200 400 600 800 1000 1200 1400
7500

8000

8500

9000

9500

10000

Measured mean value

Theoretical maximum

Frame size (bytes)

D
a

ta
 r

a
te

 (
M

b
/s

)

Figure 5.7: Generated data rate depending on the frame size

The first thing to check is that the traffic generator is able to fill the 10 Gb/s
link for all packet sizes. To do that, the rate modifier is disabled. This way, the
traffic generator sends traffic as fast as it can.

Figure 5.7 shows the results with frame sizes from 64 to 1518 bytes. The
continuous line represents the theoretical maximum data rate. It is not 10 Gb/s
because the Ethernet preamble and minimum gap are not considered as data.
The maximum data rate is lower for small frames. The dots represent measured
values. They are all perfectly on the line, meaning that the maximum data rate is
supported by the traffic generator, whatever the frame size. The minimum frame
size authorized by Ethernet, 64 bytes, is supported without problems.

8308 8312 8316 8320 8324 8328 8332 8336 8340 8344
0

10 000

20 000

30 000

40 000

50 000

60 000

1 0 0 27 930 1 162

44 060

1 491

52 235

93

Inter-frame gap (bytes)

N
u
m
b
e
r
o
f p

a
ck
e
ts

Figure 5.8: Repartition of inter-frame gaps for a configured gap of 8336 bytes

Once the maximum speed has been checked, it is also interesting to test the
ability to send traffic at a specified speed, that is not the maximum speed. To do

150

that, the rate modifier has to be enabled. All other modifiers are still enabled.
The skeleton sender is configured with frames of 64 bytes, and the rate modifier
is configured with an inter-frame gap of 8 336 bytes, corresponding to a link usage
of 1 % and a data rate of 76.2 Mb/s.

Figure 5.8 represents the repartition of inter-frame gaps measured by the
XenaCompact. The mean inter-frame gap is 8 336.12 bytes, with a standard
deviation of 4.20 bytes. The mean is very close to the configured value, and the
deviation only amounts to 3.36 ns. So the rate modifier is an efficient way to set
the data rate at a value lower than the link rate.

It can be seen that almost no packets are measured with the right inter-frame
gap of 8 336 bytes, but two spikes exist at 8 332 and 8 340. This is due to the
way the rate modifier works. It affects the inter-frame delay by stopping the
FrameLink bus during a certain number of clock cycles. But eight bytes are sent
at each clock cycle on the bus, so the rate modifier can modify the inter-frame
gap by steps of eight bytes. To get the right mean inter-frame gap, it delays one
frame a bit too much and the next a bit less, and so on.

16 83 218 621 6 669 67 149
-2,2

-1,7

-1,2

-0,7

-0,2

0,3

0,8

1,3

1,8

Configured inter-frame gap (ns)

M
e
a
n
 in
te
r-
fr
a
m
e
 g
a
p
 e
rr
o
r
(n
s)

Figure 5.9: Inter-frame gap errors for a link usage from 100 % to 0.1 %

To make sure that the rate modifier behaves the same at any speed, the same
experiment can be made while varying the configured link usage. The obtained
histograms are very similar to the one of Figure 5.8. Some histograms have only
one spike because the configured gap nearly corresponds to an integer number of
FrameLink words.

Figure 5.9 presents the difference between the measured mean inter-frame gap
and the configured inter-frame gap for a link usage varying from 100 % to 0.1 %.
Vertical lines represent the standard deviation of the measured inter-frame gap.
The mean error is always less than 0.3 ns, and the standard deviation is almost
constant near 3.3 ns. The standard deviation is smaller at top speed, with a
configured inter-frame gap of 16 ns, because the Ethernet protocol prevents the
traffic generator from sending too fast.

It can be observed that it is better to disable the rate limiter, instead of
configuring it with the minimum inter-frame gap, because it slows down the

151

generated traffic a bit. It is indeed more efficient to fill all FIFOs as fast as
possible and let the Ethernet protocol manage these as fast as possible, than to
send the traffic at the exact right speed.

The inaccuracies may be due to different factors: FIFOs delaying the traffic,
or a way the included Ethernet IP transforms the traffic. Although this generator
is less accurate than very expensive commercial solutions, it is also much more
flexible and affordable.

5.6 Conclusion

This chapter presents an open-source traffic generator based on FPGA. Its use
of the Combo board enables it to saturate its two 10 Gb/s interfaces easily, even
with the smallest packets the Ethernet protocol allows. The modular architecture
of the traffic generator is focused on one goal: be flexible at all levels.

The easiest way to customize the generated traffic is to use the configuration
GUI. Some clicks are enough to specify the traffic in terms of streams of packets
sharing certain features. Each stream can reach 10 Gb/s. Using multiple con-
current streams is useful to generate diverse traffic, as well as to send traffic to
multiple network interfaces.

Contrary to commercial traffic generators, if the configuration GUI does not
provide the proper options to generate the wanted traffic, the user can implement
its own features. The generator is fully open-source and it is made to simplify
the addition of new modules called modifiers. Developing a modifier requires
knowledge of VHDL and a bit of Python, but it is made as simple as possible.
All existing modifiers are documented and can be used as examples.

Although the generator currently works on the Combo board from Invea-Tech,
it is very similar to the NetFPGA 10G, which is well-known and very affordable
for academics. The NetCOPE platform used by the generator is compatible with
the NetFPGA 10G, so porting the generator to the NetFPGA platform should
be fairly easy. We intend to do so as soon as possible.

Currently, this traffic generator is focused on generating high-speed traffic for
stress tests. It is not really adapted to generate realistic traffic. But this could
be changed simply by developing new modifiers controlling frame sizes and inter-
frame gaps to make them respect one of the numerous traffic models available in
the literature.

As this traffic generator is an open-source project, the source code is available
online [Gro13]. If some readers are interested in developing new modifiers, or
want to help porting the generator to NetFPGA, or if they have ideas on how to
make it better, they should not hesitate to get involved.

The architecture of this traffic generator is a good example of how the benefits
of FPGAs can be used without hindering flexibility for the user. FPGAs bring
strong benefits for real-time control. The low-level development makes controlling
inter-frame gaps much easier than it would be on commodity hardware. Support-
ing the top data speed is done naturally thanks to the parallelism of the FPGA.
Once the architecture is properly designed, the support is guaranteed.

152

But development on FPGA is complex and long, so it should be avoided as
much as possible. Making the FPGA communicate with a computer to receive
configuration data is a good way to implement a part of the task in software.
From the point of view of the user, although FPGAs are low-level tools, they
can be hidden behind user-friendly GUIs to be used by anyone. When FPGA
development is needed anyway, it can be made simpler by defining clearly the
architecture in which new blocks should be integrated, and by providing examples.

153

154

Chapter 6

Conclusion

6.1 Main contributions
This thesis is about finding the best methods to accelerate traffic monitoring to
support high data rates. The best solution depends on the application, and on the
most important requirements for the application. Acceleration has to be taken
into account at the algorithmic level as well as at the implementation level to get
the best results.

6.1.1 Development platform

The choice of a development platform determines the processing power available
to the traffic monitoring application. Each development platform offers different
advantages and drawbacks. I presented ten criteria that should be taken into
account when selecting the right development platform:

The supported data rate. It is not simply the maximum data rate of the in-
terfaces. On some platforms, it is very difficult to avoid dropping packets
under stress conditions.

The computation power. It is important to implement the algorithmic part of
the monitoring application. Some platforms offer a high level of parallelism,
others offer a high number of operations per second or the ability to realize
more complex operations. The best choice depends on the specificities of
the algorithm: heavy computations and data dependencies for example.

The flexibility. A flexible application can be useful for network operators when
facing changing requirements. Some platforms are more adapted to flexi-
ble applications, although flexibility can be achieved on all platforms with
different degrees of effort.

The reliability. This is obviously an important requirement of network opera-
tors, although some applications may be less critical than others.

The security. Simple platforms can be guaranteed to be secure easier than com-
plex platforms.

155

The platform openness. It may not be important for all applications, but the
existence of an open community for a platform can make development and
maintenance easier.

The development time. It determines an important part of the cost of an
application.

The update simplicity. Applications deployed on a network have to be main-
tained, and some platforms make this easier than others.

The future scalability. Some platforms make it simple for developers to use
the latest technology improvements and make their application more effi-
cient over time.

The hardware cost. Monitoring applications can be made of a large number
of probes, so the hardware cost can be a decisive factor.

I focused on four development platforms that provide acceleration for traffic
monitoring. By studying their use in the literature, I was able to find their
advantages and drawbacks:

• Commodity hardware with pure software development is very flexible and
development is easy. The hardware cost is low although a powerful com-
puter is required to support high data rates. The computation power is
provided by the CPU. It can take advantage of algorithmic parallelism de-
pending on the number of cores of the CPU. The problem is that an im-
portant part of the CPU is used for packet processing. The simple fact to
receive packets is challenging on commodity hardware at high data rates,
even with powerful NICs made to support up to 4×10 Gb/s. The reliability
of the platform suffers from this difficulty to process packets.

• Powerful GPUs can be used on commodity hardware to provide more pro-
cessing power. This does not change the packet processing issues, but more
powerful algorithms can be implemented. The high level of parallelism
offered by GPUs can make the implementation of some algorithms very ef-
ficient. But the communication between the GPU and the CPU can become
a bottleneck depending on the application.

• Network processors can support very high data rates reliably and provide
hardware-accelerated functions for common network monitoring tasks. The
development is specialized for each NPU and cannot be reused on other
platforms. Performance for an application highly depend on the model of
NPU chosen.

• FPGAs can support high data rates. Development platforms are designed
to guarantee the support of the interface rate without difficulties. They
provide massive parallelism and a very low-level development. But this
makes development difficult and long. As FPGAs are configured instead of
programmed, they are also less flexible than other platforms.

156

There is no one-size-fits-all platform that would be the best for all traffic mon-
itoring applications. The choice must be made depending on the most important
requirements.

6.1.2 Software monitoring applied to security

The most widespread development platform is commodity hardware with pure
software development. The interest is to use the flexibility, simplicity and low
cost of normal computers. This is the solution I studied in the framework of the
DEMONS European project.

I participated to the development of BlockMon, a flexible high-speed traffic
monitoring framework. The interest of this framework is that it offers a very
high degree of flexibility thanks to its architecture made of modular blocks that
communicate through messages. The topology of the monitoring application, the
traffic capture, the extracted data, everything can be customized. A GUI is even
available to layout the organization of the blocks and the way they communicate.
Blocks can be setup to be all on the same machine or distributed on multiple
probes, without any new development.

But BlockMon is also focused on supporting high data rates. For this reason,
the latest version of C++ is used for the development of blocks and messages.
It allows a very careful management of the memory and the parallel processing.
Everything is done to avoid copying data in memory, because it takes time. Each
block can be configured to work on a specific thread on a specific core of the
CPU. To process packets, a block allows the use of the PFQ network stack, a
stack that is optimized to support traffic over 10 Gb/s.

Inside BlockMon, my first contribution was to develop reusable libraries and
blocks for basic tasks that may be needed for traffic monitoring, like maintaining
a large number of counters in a memory-efficient way, or detecting abrupt changes
in series. Algorithms used for these tasks are called CMS [CM05] for counting
and CUSUM [TRBK06] for change detection. They are examples of algorithms
that are adapted to an efficient implementation to support high data rates. CMS
is adapted because it uses little space and requires a processing for each packet
that takes a small constant time. CUSUM is adapted because it has optimality
properties that guarantee a good accuracy. It requires a long processing, but it
is not done for each packet, but only periodically.

My second contribution was to test the flexibility and performance of Block-
Mon by focusing on a specific use-case in the domain of security: the detection of
a type of DDoS attacks called TCP SYN flooding attacks. I used the CMS and
CUSUM algorithms to build a fully modular TCP SYN flooding detector, able
to raise alerts indicating the IP addresses of attackers and victims. Alerts are
exported in the standard IDMEF format. Thanks to BlockMon, it is possible to
use the application on a standalone machine, or to use multiple probes distributed
on the network and a central collector. Configuration is simple using the GUI.

To test the supported data rate of this monitoring application, I used a com-
puter with eight cores on two CPUs and an Intel 2 × 10 Gb/s NIC. The PFQ
network stack exploits the NIC as well as possible. Results show that the multi-

157

threading offered by BlockMon is extremely important for monitoring applica-
tions. The use of BlockMon does not slow down the application, which is able to
support a 10 Gb/s traffic if received packets are not too small. This limitation
is due to a communication bottleneck between the NIC and the CPU, not to
BlockMon.

To obtain good performance results, I had to fine-tune a large number of
settings on the NIC and the computer. This task is time-consuming and does
not even allow the test machine to support a 10 Gb/s traffic in the worst case,
even when simply counting packets. This outlines the limits of traffic monitoring
on commodity hardware: supporting 10 Gb/s or more is very challenging and
a perfect result is difficult to guarantee. If the application has to support even
higher data rates, the only solution is to wait for technological improvements that
will make computers more powerful, or to use a hardware-accelerated development
platform.

This implementation shows the main advantage of commodity hardware: the
flexibility of the resulting application. A GUI allows to change from a single-
node to a distributed application in some clicks. But it also shows the limits in
terms of supported data rate. Simply receiving packets without dropping them is
challenging. In terms of computation, the lightweight DDoS detection algorithm
can support normal traffic up to 10 Gb/s, but an heavier algorithm would slow
down packet processing. The development speed on commodity hardware is a bit
lower than expected because software has to be fine-tuned to get good results,
and a long test process has to be done to select exactly the right configuration to
get the best performance from a given computer and NIC.

Contributions on BlockMon and software traffic monitoring have led to this
publication:

• Andrea di Pietro, Felipe Huici, Nicola Bonelli, Brian Trammell, Petr Kas-
tovsky, Tristan Groléat, Sandrine Vaton, and Maurizio Dusi. Toward com-
posable network traffic measurement. In INFOCOM 2013: 32nd IEEE
Conference on Computer Communications.

6.1.3 Hardware monitoring applied to traffic classification

As software traffic monitoring had shown its limits, I decided to test hardware
traffic monitoring. I used the FPGA platform COMBO from INVEA-TECH
because it offers the most freedom to explore new architectures. I focused on
an use case that requires heavier computations than DDoS detection: real-time
traffic classification. The classification is based on very simple flow features: the
size of the first packets of the flow.

My first contribution was to show that using these features, a learning algo-
rithm called SVM can give better results than other widely-used algorithms like
C4.5. Although SVM is more complex than C4.5 to implement, it is an interesting
challenge because SVM is widely used for diverse classification applications.

Before implementing the classification algorithm itself, I had to find an effi-
cient flow storage algorithm, using a small memory space to store data about a
very large number of flows. The algorithm also had to guarantee small update

158

and look-up delays because these operations happen for each received packet. I
suggested a new solution inspired by the CMS algorithm, and showed using sim-
ulation that it is able to store data about more simultaneous flows than existing
solutions [Mar08]. I then implemented the algorithm on FPGA, proving that it
requires only a small space on the FPGA.

To make the classification algorithm more adapted to an hardware implemen-
tation, I tested an existing variant of SVM that uses a different kernel function.
This function has to be computed a lot for classification. The variant uses an algo-
rithm often used to compute trigonometric functions in hardware: the CORDIC.
I showed that this variant was very adapted to traffic classification, causing no
loss in terms of classification accuracy.

I implemented both the classical version of SVM and the variant on FPGA,
exploiting as much as possible the massive parallelism. For simplicity, I called
the classical version “RBF”, from the name of the classical kernel function, and
the variant “CORDIC”. I showed that the CORDIC version was more efficient,
processing more flows per second because it can be parallelized more efficiently
than the RBF version. Actual results obtained using a traffic generator showed
that the classifier supports 10 Gb/s without problems. The limit is more in the
number of flows the classifier can process each second. But this number is still
massively better using an FPGA than in pure software.

This implementation shows that FPGAs make it easy to process packets at
high data rates. They also provide massive improvements in the speed of al-
gorithms that can be parallelized like the SVM algorithm. Finding variants of
algorithms that are more adapted to hardware can be a great way to improve
performance. But this implementation also shows the drawback of FPGAs: the
implementation is not very flexible, and changing the parameters can take a long
time.

Contributions on the hardware implementation of the traffic classifier have
led to these publications:

• Tristan Groléat, Matthieu Arzel, and Sandrine Vaton. Hardware acceler-
ation of SVM-based traffic classification on FPGA. In 3rd International
Workshop on TRaffic Analysis and Characterization co-located with Wire-
less Communications and Mobile Computing Conference (IWCMC). Limas-
sol, Cyprus, 2012.

• Tristan Groléat, Matthieu Arzel, and Sandrine Vaton. Stretching the edges
of SVM traffic classification with FPGA acceleration. Final review pro-
cess in IEEE Transactions on Network and Service Management.

• Tristan Groléat, Sandrine Vaton, and Matthieu Arzel. High-Speed Flow-
Based Classification on FPGA. In International Journal of Network Man-
agement.

6.1.4 Hardware-accelerated test platform

To test the traffic classifier and the DDoS detector, I needed a traffic generator.
The task of generating traffic is very similar to the task of monitoring it. The same

159

problems arise when trying to support high data rates. A traffic generator that
cannot reliably fill a 10 Gb/s link is useless: no reliable results can be obtained
by testing an algorithm with a generator that is unreliable. For this reason, I
decided to use the same platform as for the traffic classifier: the Combo board
with an embedded FPGA.

My contribution is a fully open-source, flexible and extensible traffic generator
able to fill two 10 Gb/s links simultaneously, even with the smallest Ethernet
packets. The development of the generator was started with the help of Télécom
Bretagne students in the framework of two academic projects.

The modular hardware architecture of the generator, made of multiple parallel
pipelines, guarantees that it can support the interfaces data rate if no mistake
is made in the design of the blocks that compose the pipelines. The generated
traffic is divided into flows. Each flow can reach a data rate of 10 Gb/s. Each flow
is customized by multiple chained modifiers. Each modifier is able to change the
characteristics of generated packets: delay, size, header and data. This method
guarantees a good flexibility to define the traffic.

A GUI is provided to configure the generated traffic easily. It addresses the
problem encountered with the traffic classifier: FPGAs are not very flexible. For
the traffic generator, flexibility is a requirement from the start, and the whole
architecture has been thought to be flexible. The use of a custom software pro-
gram to configure the hardware traffic generator brings a part of the flexibility of
software to the traffic generator.

If the GUI does not provide the options required for a test, it is possible to
develop new modifiers that can be added simply to the generator. This way,
the features of the generator can be indefinitely extended. It would for example
be possible to generate realistic traffic with the generator by developing new
modifiers.

Using a commercial analyzer, I proved that the traffic generator generates
traffic at 10 Gb/s easily, and that it can be configured to generate traffic reliably
at a lower speed too. Currently, the generator is implemented on a Combo board,
but it could easily be ported to the NetFPGA board. It would then be able to
fill simultaneously four links at 10 Gb/s.

I think this traffic generator can be useful to other researchers, and I hope
some will be interested in extending its features to test different applications.
This implementation shows that applications on FPGA can be flexible if this
requirement is taken into account in the design. Combining the flexibility of soft-
ware with the performance of FPGAs is possible. This is done here by letting
software configure the FPGA. This way, a simple GUI is available for configura-
tion. The architecture of the hardware traffic generator is designed for flexibility
too because it allows adding new modules easily. This process requires knowledge
about FPGA development and is still slower than pure software development, but
it does not require a full knowledge of the architecture of the generator.

Contributions on the open-source traffic generator have led to these publica-
tions:

• Tristan Groléat, Matthieu Arzel, Sandrine Vaton, Alban Bourge, Yannick
Le Balch, Hicham Bougdal, and Manuel Aranaz Padron. Flexible, extensi-

160

ble, open-source and affordable FPGA-based traffic generator. In Proceed-
ings of the first edition workshop on High Performance and Programmable
Networking (ACM HPPN). New-York, USA, 2013.

• Tristan Groléat, Sandrine Vaton, and Matthieu Arzel. Accélération matérielle
pour le traitement de trafic sur FPGA. In 15èmes Rencontres Francophones
sur les Aspects Algorithmiques des Télécommunications (AlgoTel). Pornic,
France, 2013.

6.2 Acceleration solutions comparison

Based on the different implementations of traffic monitoring applications I have
worked on, I can provide some tips on the development platform to choose de-
pending on the requirements:

Supported data rate

• The supported data rate is the weak point of pure software implemen-
tations. Although it is possible to support a data rate of 10 Gb/s
or even more on commodity hardware, stress traffic with particularly
small packets may still cause some packets to be dropped, even with
a very light application like a packet counter, as seen in Section 3.5.2.
So if you need to guarantee a perfectly supported data rate above
10 Gb/s, a pure software implementation is not adapted.

• The use of a powerful GPU on commodity hardware is not a way to
increase the supported data rate. The bottleneck is between the NIC
and the CPU, so there is nothing the GPU can do.

• On all specialized hardware-accelerated platforms, be it NPUs or FP-
GAs, the ability to support the maximum data rate of the interfaces
is guaranteed by design. The result is visible in Section 4.5.2. But a
slow processing applied to each received packet will still cause dropped
packets.

Computation power

• CPUs provide high working frequencies and elaborated instruction
sets, but a limited parallelism level. They are a good choice for light
algorithms, or for algorithms that cannot be parallelized because of
data dependencies. The DDoS detection algorithm in Section 3.2.2 is
a good example of light non-parallel algorithm adapted to a CPU.

• GPUs can help CPUs because they are very good at massively parallel
floating-point computations. They are not adapted to all applications
because the communication between the CPU and the GPU is slow.
If the number of similar computations to realize is not big enough,
the time saved by the GPU will be wasted to send data to the GPU
and to get the results. For traffic monitoring, GPU is not adapted

161

to accelerate a computation made for each packet. But it is useful if
computations on a large number of packets can be aggregated before
being sent to the GPU.

• NPUs are usually more basic than powerful CPUs, but they offer a
higher level of parallelism. They also provide hardware-accelerated
functions specialized for traffic monitoring. They are interesting for
applications that rely heavily on these functions.

• FPGAs offer massive parallelism and a very low-level control, but they
work at frequencies much lower than CPUs. They are interesting for
algorithms that can be parallelized like the SVM algorithm in Sec-
tion 4.3. They have difficulties with floating-point computations, so
the algorithm should be converted to fixed-point if possible.

Flexibility

• The most flexible development platform is without a doubt the CPU
with a pure software implementation. The development of a GUI is
very easy, as well as the integration of variable configuration param-
eters in the algorithms. This is outlined by the BlockMon framework
and its extreme flexibility 3.3.

• FPGAs are efficient when they use custom hardware to realize complex
functions. Modifying the behaviour of the function usually requires a
change of the custom hardware, which can only be done by reconfig-
uring the FPGA, a slow and complex process. This is what makes the
implementation of the traffic classifier in Section 4.3 difficult to adapt
to new situations.

• But flexibility can be obtained on any platform if it is a requirement
considered during the design process. It usually implies a control of
the hardware accelerator by a computer. This way a GUI can be used
for configuration. This is the method used for the traffic generator in
Section 5.3.

Ease of use

• The ease of use is a subjective concept. It depends on the knowledge
of the user. An experienced C programmer will prefer software devel-
opment, but a developer more used to FPGAs might be faster using
an FPGA than a CPU.

• A lot of programmers are used to software development, and it is for
sure the easiest platform to start with. But developing an application
that supports high data rates actually requires a lot of expertise about
the way a computer works. Getting the application to actually work
on a machine is even more complicated, with a lot of parameters to
tune to get good results. This is what I discovered when getting results
about the performance of BlockMon in Section 3.5.2.

162

• FPGA development is very specific. It requires a methodology that has
to be learnt before starting. For an experienced programmer, devel-
opment can be fast. The longest task on FPGA usually is debugging,
because the visibility on what happens inside the FPGA is limited.
Debugging tools help the process, but it remains slow. It is partic-
ularly true when discovering a new board. Less debugging time was
required for the traffic generator than for the traffic classifier because
I already knew the board.

I have tested FPGAs and not GPUs or NPUs, although all platforms have
different advantages. The reason is that FPGAs are the most low-level platform.
It is very interesting for research, because everything that can be done on a CPU,
a GPU or an NPU can be done on an FPGA. It is actually totally possible to
implement a CPU, a GPU or an NPU on an FPGA. Of course, it is not always
the best solution to get a working solution as fast as possible, but it is great to
explore different possible architectures, with as few constraints as possible. Good
solutions can then be ported to more efficient platforms.

6.3 Perspectives

Use cases for traffic monitoring seem to become more and more numerous. Gov-
ernments want more control over the Internet, they want to intercept commu-
nications and to block access to some contents. Network operators are looking
for new ways to make money, while unlimited broadband accesses get always
cheaper. Offering new services with a guaranteed QoS is a potential solution. All
of this requires a precise knowledge of the traffic flowing through the links of the
network.

Although many people would like to keep the Internet free of any control, the
importance the network has taken in everyone’s life and in the global economy
is so important, that some control is required. Without invading the privacy
of their customers, Internet providers have to know what is transiting on their
network, if only to keep the network up. Large scale attacks have the ability to
take down big parts of the Internet. And as the Internet is more and more used
for commerce and for communication, laws must apply on the Internet in the
same way as they apply everywhere else. This means that the police needs some
ways to act on exchanges happening online.

On the same time, the global quantity of data exchanged in networks keeps
increasing, which means that the data rates increase too. So the need for high-
speed traffic monitoring applications will only increase in the future.

The BlockMon framework could be used by operators to manage a flexible and
powerful network of probes to get real-time data about their network. The goal
of the DEMONS project was even to make operators collaborate to get a more
global vision of the network, and to be able to react to attacks in a coordinated
way. Although the TCP SYN flooding detection application I built on top of
BlockMon is just a test application, it could be used as a base to develop an
efficient network-wide DDoS detection system.

163

The high speed real-time traffic classification application I have developed
could be very useful to apply some QoS rules to packets depending on the type of
application that generated them. Future works on a way to automate the SVM
learning phase, to facilitate the deployment of the application on new networks,
would be needed.

The flexible open-source hardware-accelerated 20 Gb/s traffic generator is
very promising for researchers who want to test their new algorithms using an
affordable tool. Especially once it will be adapted to work on the widely available
NetFPGA 10G board, which I hope to do soon. Anyone interested is welcome to
use the generator and contribute to add new features.

To go even further in high data rates support, new development platforms are
arriving on the market. Like for example a board with an FPGA and a 100 Gb/s
interface. CPUs, GPUs and NICs evolve fast too. Publicly available NPUs seem
to evolve less fast than other technologies. But manufacturers use custom-made
NPUs that seem very powerful. An interesting point is that a custom NPU can
always be implemented on an FPGA.

We saw that solutions mixing pure software development with hardware-
accelerated functions on FPGA can be very efficient to provide both the per-
formance improvements of FPGAs and the flexibility of software. This is the way
our traffic generator works, and it can also be used in BlockMon with low-level
blocks on FPGA. The architecture is always the same: the part in direct con-
tact with the network is implemented on FPGA, aggregated data is exchanged
between the computer and the FPGA, and the most high-level processing is done
on the FPGA. But some new boards could make this kind of architectures even
more efficient: Zynq boards from Xilinx [Xil14] include an ARM CPU directly
connected to an FPGA. So mixing pure software and hardware-accelerated func-
tions on the same board is possible. The communication between the CPU and
the FPGA is more efficient on the board than using a PCIe bus, offering the
possibility to get even better performance. And if the FPGA on the Zynq is not
enough, it could communicate with a second FPGA on the same board. The
latest Virtex 7 FPGAs provide much more computation power than the Virtex
5 FPGAs used in the NetFPGA 10G and Combo 20G boards. We saw with the
traffic generator that a Virtex 5 FPGA provided an acceleration of a factor su-
perior to 200 over a pure software implementation for SVM computation. Using
a Virtex 7, the results would be even better. The architecture of the Zynq, with
a very efficient communication between an FPGA and a CPU, could bring an
improvement of a factor of at least 10 on the supported data rate, reaching at
least 100 Gb/s.

We could wonder if hardware-accelerated solutions will become useless because
of the rapid improvements in standard computer architectures. But CPUs are
made to be generic. They can be used to play games, browse the Internet, make
mathematical computations or process traffic. This genericity forces them to
make trade-offs. This is why specialized hardware will remain more efficient, and
as the needs will keep increasing, they will remain a solution to study.

164

Glossary

ADSL Asymmetric Digital Subscriber Line (ADSL) is a data transmission tech-
nology very widely used over copper telephone lines to provide fast Internet
access. 78

API An Application Programming Interface (API) is a specified interface a pro-
gram makes available, so as to communicate with other programs. It can
be made of function calls, network requests. . . . 54

ASIC An Application-Specific Integrated Circuit (ASIC) is designed at hardware
level using basic logic and arithmetic gates to realize a specific function at
very high speed. 15, 46, 49

BGP Border Gateway Protocol (BGP) is used by network providers to commu-
nicate routes on the network. 26

botnet A botnet is a set of remotely-controlled machines used to perform to-
gether the same task. It is a way to manage efficiently tasks that require a
lot of resources. 57

C4.5 C4.5 is a supervised learning algorithm used for classification. It is based
on binary decision trees.. 89–92, 96, 123, 158

CMS A Count Min Sketch (CMS) is a probabilistic algorithm to store a list of
counters in a constrained memory space. 10, 11, 16, 17, 20, 63, 64, 66,
71–75, 77, 78, 80–84, 104, 123, 157, 159

CPU A Central Processing Unit (CPU) is the integrated circuit used to make
all basic operations in a computer. It may contain multiple cores to be able
to process multiple operations concurrently. There may also be more than
one CPU cooperating in a computer to increase the parallelism. 32, 35,
37–41, 43, 45, 48–50, 77, 79–83, 90, 129, 132, 134, 156–158, 161–164

CRC The Cyclic Redundancy Check (CRC) is a code used to detect errors in
a transmitted message. Message data is used to compute a checksum ap-
pended to the message before transmission, and the same algorithm is used
after transmission to check the received value. 145, 146

CUSUM The CUmulative SUM control chart (CUSUM) is an algorithm made
to detect sudden changes in series of values. 10, 11, 16, 20, 60, 63–66, 71–74,
78, 82–84, 157

165

DDoS Distributed Denial of Service (DDoS) attacks use multiple computers
connected to the Internet to send more traffic to a target than it can handle,
so as to make it unresponsive. 15–17, 53–55, 57–62, 64–66, 72, 78–82, 84,
85, 125, 130, 131, 145, 157–159, 161, 163

DEMONS DEcentralized, cooperative, and privacy-preserving MONitoring for
trustworthinesS (DEMONS) is the subject of the FP7 European project we
contributed to. 10, 15, 29, 53, 55, 60–62, 67, 83, 84, 157, 163

DNS Domain Name Service (DNS) is a protocol that maintains an association
between easy-to-remember domain names and routable IP addresses. It
provides simpler addresses to contact machines. 26, 56, 57

DPI Deep Packet Inspection (DPI) is a traffic classification technique which
consists in reading the full content of each received packet and check if
it fits some pre-defined signatures. Each signature belongs to a class of
applications to which the packet is then assigned. 32, 39, 86, 88, 89, 95

DSP Digital Signal Processing. 44, 46, 90, 91

FCS Frame Check Sequence (FCS) is the last field of an Ethernet frame. It is a
kind of checksum computed from the whole frame data. It is used to check
data integrity. 133, 137, 144

FIFO First In, First Out (FIFO) is a method used to queue data. All received
data items are stored in an ordered way. The read item is always the one
that was stored first. Once an item is read, it is removed from the queue.
141, 142, 147, 152

FPGA A Field-Programmable Gate Array (FPGA) is an integrated circuit that
can be configured as many times as necessary at a very low level by con-
necting logical gates and registers together. The main languages used to
represent the configuration are VHDL and Verilog. 9–11, 14–20, 23, 24,
30–32, 34, 40, 43–49, 51, 82–84, 89–91, 103, 108, 123–125, 128, 132–134,
138, 139, 143–145, 148, 149, 152, 153, 156, 158–164

FSM A Finite-State Machine (FSM) is an automaton used to control a process.
It transitions from state to state depending on input data, and it outputs
control signal depending on its internal state and input data.. 147

FTP File Transfer Protocol (FTP) is designed to transfer files between a client
and a server. 86

GPU A Graphics Processing Unit (GPU) is a specialized integrated circuit de-
signed for images manipulations. They are also used in other situations.
They are particularly suited for highly parallel floating-point calculations
on important amounts of data. 23, 24, 32, 34, 35, 39, 40, 43, 47, 48, 50, 82,
90, 156, 161–164

166

GUI A Graphical User Interface (GUI) is a communication tool between a com-
puter and a human based on visual representations on a screen. It is the
most current kind of interface used on computers.. 10, 11, 30, 67, 68, 71,
78, 83, 128, 130, 132, 134–136, 138, 142, 145, 146, 149, 152, 153, 157, 158,
160, 162

HTTP HyperText Transfer Protocol (HTTP) is the communication protocol
used by the web. 58, 86, 87, 127

HTTPS HyperText Transfer Protocol Secure (HTTPS) is the use of the HTTP
protocol over a security layer that provides website authentication and com-
munication encryption. 86, 127

IANA The Internet Assigned Numbers Authority (IANA) controls the assign-
ment of reserved UDP and TCP ports, among other Internet resources. 86,
87

ICMP Internet Control Message Protocol (ICMP) is used by network devices to
request and send status messages. It is mostly known for its “ping” feature
that is made to check the responsiveness of an IP address. 56, 133

IDMEF Intrusion Detection Message Exchange Format (IDMEF) is a message
format for detailed network alert messages. 70, 73, 76, 77, 82, 157

IP Intellectual Property is a term used to design closed-source entities provided
by third-parties in electronics. 48, 51, 152

IP Internet Protocol (IP) is the base protocol used on the Internet.. 26, 28, 29,
40, 56, 58, 61–64, 66, 69, 70, 73–76, 80, 86, 88, 89, 91, 92, 100, 106, 127,
131, 133, 143, 144, 146, 157

IPFIX Internet Protocol Flow Information eXport (IPFIX) is a protocol made
to communicate network-specific information over the network. 70, 71, 76

IPv4 Internet Protocol version 4 (IPv4) is the current version of the protocol.
It is slowly being replaced by version 6.. 28, 63, 100, 143–145, 148

IPv6 Internet Protocol version 6 (IPv6) is a new version of the protocol being
currently deployed. It has not yet replaced the current version 4, but should
soon.. 39, 100, 144, 148

IRC Internet Relay Chat (IRC) is a text-based instant communication protocol.
57, 86

JSON JavaScript Object Notation (JSON) is a lightweight text-based data ex-
change format. 135

LDPC A Low-Density Parity-Check (LDPC) code is a method to add informa-
tion to a message, so as to recover it after transmission if errors have been
inserted. 108

167

LUT A Look-Up Table (LUT) realizes a function that takes a word made of a
certain number of bits as input, and outputs another word made of another
number of bits, depending only on the input. It can be configured to link
each input word to any output word. 43, 44, 46

MD5 Message Digest 5 (MD5) is a cryptographic hash function commonly used
to check data integrity. 107, 108

NAPI New Application Programming Interface (NAPI) is an improvement of
the Linux kernel to support high-speed networking with a lighter load on
the CPU. 36

NIC A Network Interface Card (NIC) is a board that can be connected to a
computer to provide it a network connection. The most common wired
boards use the low-level Ethernet protocol. They usually manage the lowest
parts of the network stack to help the CPU. A driver is needed for the CPU
to communicate with the board. 23, 35–40, 50, 69, 70, 77, 79–82, 84, 128,
129, 156–158, 161, 164

NPU A Network Processing Unit (NPU) is a specialized integrated circuit de-
signed for network applications. It has a direct access to network interfaces,
and some specialized instructions (CRC computation for example) make fre-
quent operations on packets faster. 23, 24, 32, 40–43, 48, 49, 51, 82, 156,
161–164

NUMA Non UniformMemory Access (NUMA) is a computer architecture where
each processor is assigned an area of RAM with low access delays. Other
areas are accessible but slower.. 38, 79

OSCAR Overlay networks Security: Characterization, Analysis and Recovery
(OSCAR) is the name of a French Research project in which Télécom Bre-
tagne was implied. 53, 78

P2P Peer-to-peer (P2P) is a kind of communication system where each implied
computer is both a server and a client. It is often used for file sharing.. 57,
86, 87, 91

pcap pcap (Packet CAPture) is both an API to capture packets on a network
interface, and a file format used to save a trace of captured packets. Imple-
mentations exist for Windows and Linux. 132

PCIe Peripheral Component Interconnect express (PCIe) is a standard for a
local serial communication bus. It is used to connect extension cards to a
motherboard. 39, 45, 79, 80, 132, 134, 164

QoS Quality of Service (QoS) is a measure of the quality assured on a netwokr
link. Many parameters can be used: inter-packet delay, jitter, data rate,
etc. 33, 85, 86, 103, 163, 164

168

RAM A Random Access Memory (RAM) is a memory with fast read and write
operations at any address. The memory is volatile, which means that data
is lost when power is cut. 38, 79, 82, 102, 103, 106

RPC Remote Procedure Call (RPC) is a network protocol designed to allow
different programs to make transparent procedure calls to one another. 67

RSS Receive Side Scaling (RSS) is a technology used by some NICs to send
received packets to the host CPU in different queues, which can be handled
in parallel by the CPU.. 16, 35, 36, 70, 79, 81, 83

SFP+ An enhanced Small Form-factor Pluggable (SFP+) is a small pluggable
transceiver that converts optical signal to electrical signal and vice versa.
46

SHA Secure Hash Algorithm (SHA) is a family of cryptographic hash functions.
107, 108

SMS Short Message Service (SMS) is a protocol designed to send short text
messages to mobile phones. 57

SSH Secure SHell (SSH) is a secure remote control and file transfer protocol.
58, 86

SVM Support Vector Machine (SVM) is a supervised learning algorithm used
for classification. It is based on finding hyperplanes between categories..
10, 11, 17, 18, 20, 85, 89–99, 101, 107–111, 115–124, 158, 159, 162, 164

TCP Transmission Control Protocol (TCP) is a transport protocol very com-
monly used over IP. It is designed for reliable connected data transfer. 10,
26, 56–58, 60–66, 70–74, 76, 78, 80–82, 84, 86–89, 91, 126, 131, 143–146,
148, 157, 163

UDP User Datagram Protocol (UDP) is a transport protocol very commonly
used over IP. It is designed for simple data transfer. 26, 56, 60, 86–89, 91,
131, 143, 145, 146, 148

VoIP Voice over IP (VoIP) is a category of applications that allow to make calls
over the Internet. 55, 61, 85

XML eXtensible Markup Language (XML) is a generic text-based description
language. 67, 68, 71, 76

169

170

Bibliography

[ABR03] D. Anguita, A. Boni, and S. Ridella. A digital architecture for
support vector machines: theory, algorithm, and FPGA imple-
mentation. Neural Networks, IEEE Transactions on, 14(5):993–
1009, 2003.

[ADPF+08] G. Antichi, A. Di Pietro, D. Ficara, S. Giordano, G. Procissi,
and F. Vitucci. Design of a high performance traffic generator
on network processor. In Digital System Design Architectures,
Methods and Tools, 2008. DSD ’08. 11th EUROMICRO Con-
ference on, pages 438–441, 2008.

[AFK+12] Rafael Antonello, Stenio Fernandes, Carlos Kamienski, Djamel
Sadok, Judith Kelner, IstváN GóDor, GéZa Szabó, and Tord
Westholm. Deep Packet Inspection tools and techniques in com-
modity platforms: Challenges and trends. J. Netw. Comput.
Appl., 35(6):1863–1878, November 2012.

[AIN13] Yuki Ago, Yasuaki Ito, and Koji Nakano. An efficient imple-
mentation of a Support Vector Machine in the FPGA. Bulletin
of Networking, Computing, Systems, and Software, 2(1), 2013.

[AL11] Alcatel-Lucent. FP3: 400G network processor. http://www3.
alcatel-lucent.com/products/fp3/, 2011. [Online].

[Ama13] Amazon. Amazon.com: nvidia tesla. http://www.amazon.com/
s/?field-keywords=nvidia%20tesla, 2013. [Online].

[AMY09] S. Asano, T. Maruyama, and Y. Yamaguchi. Performance com-
parison of FPGA, GPU and CPU in image processing. In Field
Programmable Logic and Applications, 2009. FPL 2009. Inter-
national Conference on, pages 126–131, 2009.

[And98] Ray Andraka. A survey of CORDIC algorithms for FPGA based
computers. In Proceedings of the 1998 ACM/SIGDA sixth inter-
national symposium on Field programmable gate arrays, FPGA
’98, pages 191–200, New York, NY, USA, 1998. ACM.

[AOP+08] Carsten Albrecht, Christoph Osterloh, Thilo Pionteck, Roman
Koch, and Erik Maehle. An application-oriented synthetic net-

171

http://www3.alcatel-lucent.com/products/fp3/
http://www3.alcatel-lucent.com/products/fp3/
http://www.amazon.com/s/?field-keywords=nvidia%20tesla
http://www.amazon.com/s/?field-keywords=nvidia%20tesla

work traffic generator. In 22nd European Conference on Mod-
elling and Simulation., 2008.

[APRS06] Davide Anguita, Stefano Pischiutta, Sandro Ridella, and Dario
Sterpi. Feed-Forward Support Vector Machine Without Mul-
tipliers. IEEE Transactions on Neural Networks, 17(5):1328–
1331, 2006.

[AR12] Mohammed Alenezi and Martin Reed. Methodologies for de-
tecting DoS/DDoS attacks against network servers. In ICSNC
2012, The Seventh International Conference on Systems and
Networks Communications, pages 92–98, 2012.

[ASGM13] Gianni Antichi, Muhammad Shahbaz, Stefano Giordano, and
Andrew Moore. From 1g to 10g: code reuse in action. In Pro-
ceedings of the first edition workshop on High performance and
programmable networking, HPPN ’13, pages 31–38, 2013.

[ATT13] ATT. Global IP network latency. http://ipnetwork.bgtmo.
ip.att.net/pws/network_delay.html, 2013. [Online; ac-
cessed 21-March-2013].

[BAAZ10] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming
Zhang. Understanding data center traffic characteristics. SIG-
COMM Comput. Commun. Rev., 40(1):92–99, January 2010.

[BBCR06] Raffaele Bolla, Roberto Bruschi, Marco Canini, and Matteo
Repetto. A high performance IP traffic generation tool based on
the intel IXP2400 network processor. In Distributed Cooperative
Laboratories: Networking, Instrumentation, and Measurements,
pages 127–142. Springer, 2006.

[BDP10] A. Botta, A. Dainotti, and A. Pescapé. Do you trust your
software-based traffic generator? Communications Magazine,
IEEE, 48(9):158–165, sept. 2010.

[BDP12] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. A tool
for the generation of realistic network workload for emerging
networking scenarios. Computer Networks, 56(15):3531 – 3547,
2012.

[BDPGP12a] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi. Flex-
ible high performance traffic generation on commodity multi–
core platforms. Traffic Monitoring and Analysis, pages 157–170,
2012.

[BDPGP12b] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano, and Grego-
rio Procissi. On multi-gigabit packet capturing with multi-core
commodity hardware. In Proceedings of the 13th international

172

http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html
http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

conference on Passive and Active Measurement, PAM’12, pages
64–73, 2012.

[BEM+10] Michaela Blott, Jonathan Ellithorpe, Nick McKeown, Kees Vis-
sers, and Hongyi Zeng. FPGA research design platform fuels
network advances. Xilinx Xcell Journal, (73), 2010.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vap-
nik. A training algorithm for optimal margin classifiers. In Pro-
ceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144–152, 1992.

[BMM+11] Paola Bermolen, Marco Mellia, Michela Meo, Dario Rossi, and
Silvio Valenti. Abacus: Accurate behavioral classification of
p2p-tv traffic. Computer Networks, 55(6):1394 – 1411, 2011.

[BR09] Mario Baldi and Fulvio Risso. Towards effective portability
of packet handling applications across heterogeneous hardware
platforms. In Active and Programmable Networks, pages 28–37.
Springer, 2009.

[BRP12] T. Bujlow, T. Riaz, and J.M. Pedersen. Classification of http
traffic based on c5.0 machine learning algorithm. In Computers
and Communications (ISCC), 2012 IEEE Symposium on, pages
882–887, 2012.

[BTS06] Laurent Bernaille, Renata Teixeira, and Kave Salamatian. Early
application identification. In Proceedings of the 2006 ACM
CoNEXT conference, CoNEXT ’06, pages 6:1–6:12, 2006.

[Car09] AUSTIN Carpenter. CUSVM: A CUDA implementation of sup-
port vector classification and regression. 2009.

[CCR11] Niccolò Cascarano, Luigi Ciminiera, and Fulvio Risso. Opti-
mizing Deep Packet Inspection for high-speed traffic analysis.
J. Netw. Syst. Manage., 19(1):7–31, March 2011.

[CDGS07] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli. Traffic clas-
sification through simple statistical fingerprinting. ACM SIG-
COMM Computer Communication Review, 37(1):5–16, 2007.

[Cis13] Cisco Systems. Cisco Visual Networking Index: Forecast and
Methodology, 2012–2017, 2013.

[CJM05] Evan Cooke, Farnam Jahanian, and Danny McPherson. The
zombie roundup: Understanding, detecting, and disrupting bot-
nets. In Proceedings of the USENIX SRUTI Workshop, vol-
ume 39, page 44, 2005.

173

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1–27:27, 2011.

[Cle] Clear Foundation. l7-filter: application layer packet classifier
for Linux. http://l7-filter.clearfoundation.com/.

[CLS+08] Shuai Che, Jie Li, J.W. Sheaffer, K. Skadron, and J. Lach. Ac-
celerating compute-intensive applications with GPUs and FP-
GAs. In Application Specific Processors, 2008. SASP 2008.
Symposium on, pages 101–107, 2008.

[CM05] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal
of Algorithms, 55(1):58–75, 2005.

[Cow03] C. Cowan. Software security for open-source systems. Security
Privacy, IEEE, 1(1):38–45, 2003.

[Cro06] Douglas Crockford. The application/json media type for
javascript object notation (json), 2006. RFC 4627.

[CSK08] Bryan Christopher Catanzaro, Narayanan Sundaram, and Kurt
Keutzer. Fast Support Vector Machine Training and Clas-
sification on Graphics Processors. In Technical Report No.
UCB/EECS-2008-11. EECS Department, University of Califor-
nia, Berkeley, 2008.

[CT13] B. Claise and B. Trammell. Specification of the IP flow infor-
mation export (IPFIX) protocol for the exchange of flow infor-
mation, 9 2013. RFC 7011.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks.
In Machine Learning, pages 273–297, 1995.

[DCF07] H. Debar, D. Curry, and B. Feinstein. The intrusion detection
message exchange format (IDMEF), 3 2007. RFC 4765.

[DdDPSR08] A. Dainotti, W. de Donato, A. Pescape, and P. Salvo Rossi.
Classification of network traffic via packet-level hidden markov
models. In Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, pages 1–5, 2008.

[DEM13] DEMONS. BlockMon source code. https://github.com/
blockmon/blockmon, 2013.

[DHV01] J. Deepakumara, H.M. Heys, and R. Venkatesan. FPGA imple-
mentation of MD5 hash algorithm. In Electrical and Computer
Engineering, 2001. Canadian Conference on, volume 2, pages
919–924, 2001.

174

http://l7-filter.clearfoundation.com/
https://github.com/blockmon/blockmon
https://github.com/blockmon/blockmon

[DM98] L. Dagum and R. Menon. OpenMP: an industry standard API
for shared-memory programming. Computational Science En-
gineering, IEEE, 5(1):46 –55, jan-mar 1998.

[DPC12] A. Dainotti, A. Pescape, and K.C. Claffy. Issues and future
directions in traffic classification. Network, IEEE, 26(1):35–40,
2012.

[dPHB+13] Andrea di Pietro, Felipe Huici, Nicola Bonelli, Brian Trammell,
Petr Kastovsky, Tristan Groleat, Sandrine Vaton, and Maur-
izio Dusi. Toward composable network traffic measurement. In
INFOCOM 2013: 32nd IEEE Conference on Computer Com-
munications, 2013.

[dRR13] Pedro Marıa Santiago del Rıo and Javier Aracil Rico. Internet
Traffic Classification for High-Performance and Off-The-Shelf
Systems. PhD thesis, Universidad autonoma de Madrid, 2013.

[DWL+12] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gre-
gory Peterson, and Jack Dongarra. From CUDA to OpenCL:
Towards a performance-portable solution for multi-platform
GPU programming. Parallel Computing, 38(8):391 – 407, 2012.

[EG11] A. Este and F. Gringoli. On-line SVM traffic classifica-
tion. In Proceedings of the 7th IWCMC Conference (IWCMC
TRAC’2011), 2011.

[EGS09] A. Este, F. Gringoli, and L. Salgarelli. Support vector machines
for TCP traffic classification. Computer Networks, 53(14):2476
– 2490, 2009.

[FGH10] B. Fontaine, T. Groléat, and F. Hubert. Surveillance réseau sur
NetFPGA. http://trac.benoute.fr/netfpga/attachment/
wiki/Livrables/rapport_technique.pdf, 2010.

[FHD+09] F. Fusco, F. Huici, L. Deri, S. Niccolini, and T. Ewald.
Enabling high-speed and extensible real-time communications
monitoring. In Integrated Network Management, 2009. IM ’09.
IFIP/IEEE International Symposium on, pages 343–350, 2009.

[FML+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and C. Diot. Packet-level traffic measure-
ments from the sprint IP backbone. Network, IEEE, 17(6):6–16,
2003.

[FSdLFGLJ+13] Alysson Feitoza Santos, Stenio Flavio de Lacerda Fernandes,
Petrônio Gomes Lopes Júnior, Djamel Fawzi Hadj Sadok, and
Geza Szabo. Multi-gigabit traffic identification on GPU. In
Proceedings of the first edition workshop on High performance
and programmable networking, pages 39–44, 2013.

175

http://trac.benoute.fr/netfpga/attachment/wiki/Livrables/rapport_technique.pdf
http://trac.benoute.fr/netfpga/attachment/wiki/Livrables/rapport_technique.pdf

[GHY+13] Lu Gang, Zhang Hongli, Zhang Yu, M.T. Qassrawi, Yu Xi-
angzhan, and Peng Lizhi. Automatically mining application
signatures for lightweight Deep Packet Inspection. Communi-
cations, China, 10(6):86–99, 2013.

[GNES12] F. Gringoli, L. Nava, A. Este, and L. Salgarelli. MTCLASS: en-
abling statistical traffic classification of multi-gigabit aggregates
on inexpensive hardware. In Proceedings of the 8th IWCMC
Conference (IWCMC TRAC’2012), 2012.

[GNVV04] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A quan-
titative analysis of the speedup factors of FPGAs over proces-
sors. In Proceedings of the 2004 ACM/SIGDA 12th interna-
tional symposium on Field programmable gate arrays, FPGA
’04, pages 162–170, New York, NY, USA, 2004. ACM.

[GP09] G.Gomez and P.Belzarena. Early Traffic Classification using
Support Vector Machines. In Fifth International Latin Ameri-
can Networking Conference (LANC’09), 2009.

[Gro13] T. Groléat. Open-source hardware traffic generator. https:
//github.com/tristan-TB/hardware-traffic-generator,
2013. [Online].

[GSD+09a] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and
K. Claffy. Gt: picking up the truth from the ground for internet
traffic. ACM SIGCOMM CCR, 2009.

[GSD+09b] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and
K.C. Claffy. GT: picking up the truth from the ground for
Internet traffic. ACM SIGCOMM Computer Communication
Review, 39(5):13–18, 2009.

[GSG+12] M. Ghobadi, G. Salmon, Y. Ganjali, M. Labrecque, and J.G.
Steffan. Caliper: Precise and responsive traffic generator. In
High-Performance Interconnects (HOTI), 2012 IEEE 20th An-
nual Symposium on, pages 25–32, aug. 2012.

[Han13] Troy D. Hanson. Ut hash. http://troydhanson.github.com/
uthash/, 2013. [Online; accessed 1-March-2013].

[Hep03] Andrew Heppel. An introduction to network processors. Roke
Manor Research Ltd., White paper, 2003.

[HJPM10] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon.
Packetshader: a GPU-accelerated software router. SIGCOMM
Comput. Commun. Rev., 40(4):195–206, August 2010.

[HSL09] Nan Hua, Haoyu Song, and T. V. Lakshman. Variable-stride
multi-pattern matching for scalable Deep Packet Inspection. In
INFOCOM 2009, IEEE, pages 415–423, 2009.

176

https://github.com/tristan-TB/hardware-traffic-generator
https://github.com/tristan-TB/hardware-traffic-generator
http://troydhanson.github.com/uthash/
http://troydhanson.github.com/uthash/

[Ian06] Gianluca Iannaccone. Fast prototyping of network data mining
applications. In Passive and Active Measurement Conference,
2006.

[IDNG08] K.M. Irick, M. DeBole, V. Narayanan, and A. Gayasen. A hard-
ware efficient Support Vector Machine architecture for FPGA.
In Field-Programmable Custom Computing Machines, 2008.
FCCM ’08. 16th International Symposium on, pages 304–305,
2008.

[Int07] Intel. Ixp4xx product line of network processors.
http://www.intel.com/content/www/us/en/intelligent-
systems/previous-generation/intel-ixp4xx-intel-
network-processor-product-line.html, 2007. [Online].

[Int13] Intel. Intel ethernet server adapter i350 product family.
http://www.intel.com/content/www/us/en/network-
adapters/gigabit-network-adapters/ethernet-server-
adapter-i350.html, 2013. [Online].

[IP11] Sunghwan Ihm and Vivek S. Pai. Towards understanding
modern web traffic. In Proceedings of the 2011 ACM SIG-
COMM Conference on Internet Measurement Conference, IMC
’11, pages 295–312, 2011.

[IT13] Invea-Tech. COMBO-20G FPGA Card. https://www.invea-
tech.com/products-and-services/fpga-cards/combo-20g,
May 2013. [Online].

[ixi12] 10G Ethernet test solution. http://www.ixiacom.com/
products/interfaces/display?skey=in_10g_universal,
2012. [Online; accessed 6-February-2013].

[JG10] Weirong Jiang and Maya Gokhale. Real-Time Classification of
Multimedia Traffic Using FPGA. In Field-Programmable Logic
and Applications, pages 56–63, 2010.

[JP12] Shuchi Juyal and Radhika Prabhakar. A comprehensive study of
ddos attacks and defense mechanisms. Journal of Information
and Operations Management, 3(1), 2012.

[JR86] R. Jain and S. Routhier. Packet trains–measurements and a new
model for computer network traffic. Selected Areas in Commu-
nications, IEEE Journal on, 4(6):986–995, 1986.

[JY04] Shuyuan Jin and D.S. Yeung. A covariance analysis model for
ddos attack detection. In Communications, 2004 IEEE Inter-
national Conference on, volume 4, pages 1882–1886 Vol.4, 2004.

177

http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/ethernet-server-adapter-i350.html
http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/ethernet-server-adapter-i350.html
http://www.intel.com/content/www/us/en/network-adapters/gigabit-network-adapters/ethernet-server-adapter-i350.html
https://www.invea-tech.com/products-and-services/fpga-cards/combo-20g
https://www.invea-tech.com/products-and-services/fpga-cards/combo-20g
http://www.ixiacom.com/products/interfaces/display?skey=in_10g_universal
http://www.ixiacom.com/products/interfaces/display?skey=in_10g_universal

[KCF+08] H. Kim, KC Claffy, M. Fomenkov, D. Barman, M. Faloutsos,
and KY Lee. Internet traffic classification demystified: myths,
caveats, and the best practices. Proc. of ACM CoNEXT, 2008.

[KKZ+11] P. Korcek, V. Kosar, M. Zadnik, K. Koranda, and P. Kastovsky.
Hacking NetCOPE to run on NetFPGA-10G. In Architectures
for Networking and Communications Systems (ANCS), 2011
Seventh ACM/IEEE Symposium on, pages 217–218, oct. 2011.

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The click modular router. ACM Trans.
Comput. Syst., 18(3):263–297, August 2000.

[KPF05] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
multilevel traffic classification in the dark. In Proceedings of
the 2005 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 229–240.
ACM, 2005.

[LHCK04] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen, and Chia-Nan
Kao. A fast string-matching algorithm for network processor-
based intrusion detection system. ACM Trans. Embed. Comput.
Syst., 3(3):614–633, August 2004.

[LKJ+10] Yeon-sup Lim, Hyun-chul Kim, Jiwoong Jeong, Chong-kwon
Kim, Ted “Taekyoung” Kwon, and Yanghee Choi. Internet traf-
fic classification demystified: on the sources of the discrimina-
tive power. In Proceedings of the 6th International COnference,
Co-NEXT ’10, pages 9:1–9:12, 2010.

[LKL12] Wangbong Lee, Dong Won Kang, and Joon Kyung Lee. A plug-
in node architecture for dynamic traffic control. In EMERGING
2012, The Fourth International Conference on Emerging Net-
work Intelligence, pages 19–21, 2012.

[LMW+07] J.W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and J. Luo. NetFPGA–an open
platform for gigabit-rate network switching and routing. 2007.

[LSS+09] Martin Labrecque, J Gregory Steffan, Geoffrey Salmon, Mo-
nia Ghobadi, and Yashar Ganjali. NetThreads: Programming
NetFPGA with threaded software. In NetFPGA Developers
Workshop ’09, 2009.

[LTWW94] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On
the self-similar nature of ethernet traffic (extended version).
Networking, IEEE/ACM Transactions on, 2(1), 1994.

178

[LZB11] Guangdeng Liao, Xia Zhu, and L. Bnuyan. A new server i/o
architecture for high speed networks. In High Performance
Computer Architecture (HPCA), 2011 IEEE 17th International
Symposium on, pages 255–265, 2011.

[LZL+09] Ke Li, Wanlei Zhou, Ping Li, Jing Hai, and Jianwen Liu. Dis-
tinguishing ddos attacks from flash crowds using probability
metrics. In Network and System Security, 2009. NSS ’09. Third
International Conference on, pages 9–17, 2009.

[MA12] Milton L. Mueller and Hadi Asghari. Deep Packet Inspec-
tion and bandwidth management: Battles over BitTorrent in
Canada and the United States. Telecommunications Policy,
36(6):462 – 475, 2012.

[Mar08] Zadnik Martin. NetFlow probe on NetFPGA. http://
www.liberouter.org/~xzadni00/netflowprobedoc.pdf, De-
cember 2008. [Online; accessed 1-October-2013].

[Mar13] Marvell. Network processors. http://www.marvell.com/
network-processors/, 2013. [Online].

[Mat13] Prince Matthew. The DDoS that knocked spamhaus offline
(and how we mitigated it). http://blog.cloudflare.com/
the-ddos-that-knocked-spamhaus-offline-and-ho, March
2013. [Online; accessed 15-October-2013].

[MBdC+06] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak,
X. Leroy, and R. Treinen. Managing the complexity of large free
and open source package-based software distributions. In Auto-
mated Software Engineering, 2006. ASE ’06. 21st IEEE/ACM
International Conference on, pages 199–208, 2006.

[MCMM06] Robert P. McEvoy, F.M. Crowe, C.C. Murphy, and William P.
Marnane. Optimisation of the SHA-2 family of hash functions
on FPGAs. In Emerging VLSI Technologies and Architectures,
2006. IEEE Computer Society Annual Symposium on, 2006.

[MdRR+12] V. Moreno, P.M.S. del Rio, J. Ramos, J.J. Garnica, and J.L.
Garcia-Dorado. Batch to the future: Analyzing timestamp ac-
curacy of high-performance packet I/O engines. Communica-
tions Letters, IEEE, 16(11):1888–1891, 2012.

[MK08] T. Martmek and M. Kosek. Netcope: Platform for rapid de-
velopment of network applications. In Design and Diagnostics
of Electronic Circuits and Systems, 2008. DDECS 2008. 11th
IEEE Workshop on, pages 1–6. IEEE, 2008.

179

http://www.liberouter.org/~xzadni00/netflowprobedoc.pdf
http://www.liberouter.org/~xzadni00/netflowprobedoc.pdf
http://www.marvell.com/network-processors/
http://www.marvell.com/network-processors/
http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho
http://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho

[MKK+01] David Moore, Ken Keys, Ryan Koga, Edouard Lagache, and
K. C. Claffy. The coralreef software suite as a tool for system
and network administrators. In Proceedings of the 15th USENIX
conference on System administration, LISA ’01, pages 133–144,
2001.

[MMSH01] Gokhan Memik, William H. Mangione-Smith, andWendong Hu.
NetBench: a benchmarking suite for network processors. In
Proceedings of the 2001 IEEE/ACM international conference on
Computer-aided design, ICCAD ’01, pages 39–42, Piscataway,
NJ, USA, 2001. IEEE Press.

[MP05] AndrewW. Moore and Konstantina Papagiannaki. Toward the
accurate identification of network applications. In Passive and
Active Network Measurement, volume 3431 of Lecture Notes in
Computer Science, pages 41–54. 2005.

[MSD+07] Jun Mu, S. Sezer, Gareth Douglas, D. Burns, E. Garcia, M. Hut-
ton, and K. Cackovic. Accelerating pattern matching for dpi. In
SOC Conference, 2007 IEEE International, pages 83–86, 2007.

[Mut04] S. Muthukrishnan. MassDAL Code Bank – Sketches, Fre-
quent Items, Changes. http://www.cs.rutgers.edu/~muthu/
massdal-code-index.html, 2004.

[NA08] T.T.T. Nguyen and G. Armitage. A survey of techniques for
internet traffic classification using machine learning. Commu-
nications Surveys Tutorials, IEEE, 10(4):56–76, 2008.

[Net12] NetFPGA. NetFPGA 10G. http://netfpga.org/10G_specs.
html, 2012. [Online].

[New13] BBC News. Thirteen plead guilty to anonymous hack of paypal
site. http://www.bbc.co.uk/news/business-25327175, De-
cember 2013. [Online; accessed 11-December-2013].

[NI10] Alastair Nottingham and Barry Irwin. Parallel packet classi-
fication using GPU co-processors. In Proceedings of the 2010
Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT
’10, pages 231–241, New York, NY, USA, 2010. ACM.

[NP12] Anh Nguyen and Lei Pan. Detecting sms-based control com-
mands in a botnet from infected android devices. In ATIS 2012:
Proceedings of the 3rd Applications and Technologies in Infor-
mation Security Workshop, pages 23–27. School of Information
Systems, Deakin University, 2012.

180

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://www.cs.rutgers.edu/~muthu/massdal-code-index.html
http://netfpga.org/10G_specs.html
http://netfpga.org/10G_specs.html
http://www.bbc.co.uk/news/business-25327175

[OGI+12] A.-C. Orgerie, P. Goncalves, M. Imbert, J. Ridoux, and
D. Veitch. Survey of network metrology platforms. In Applica-
tions and the Internet (SAINT), 2012 IEEE/IPSJ 12th Inter-
national Symposium on, pages 220–225, 2012.

[PB10] M. Papadonikolakis and C. Bouganis. A novel FPGA-based
SVM classifier. In Field-Programmable Technology (FPT), 2010
International Conference on, pages 283–286, 2010.

[Pus12] Viktor Pus. Hardware acceleration for measurements in 100
gb/s networks. In Dependable Networks and Services, vol-
ume 7279 of Lecture Notes in Computer Science, pages 46–49.
Springer Berlin Heidelberg, 2012.

[PYR+13] PyungKoo Park, SeongMin Yoo, HoYong Ryu, Cheol Hong
Kim, Su il Choi, Jaehyung Park, and JaeCheol Ryou. Service-
oriented ddos detection mechanism using pseudo state in a flow
router. In Information Science and Applications (ICISA), 2013
International Conference on, pages 1–4, 2013.

[QXH+07] Yaxuan Qi, Bo Xu, Fei He, Baohua Yang, Jianming Yu, and
Jun Li. Towards high-performance flow-level packet process-
ing on multi-core network processors. In Proceedings of the
3rd ACM/IEEE Symposium on Architecture for networking and
communications systems, pages 17–26, 2007.

[RAMV07] J.J. Rodriguez-Andina, M.J. Moure, and M.D. Valdes. Features,
design tools, and application domains of FPGAs. Industrial
Electronics, IEEE Transactions on, 54(4):1810–1823, 2007.

[RDC12] Luigi Rizzo, Luca Deri, and Alfredo Cardigliano. 10 Gbit/s line
rate packet processing using commodity hardware: Survey and
new proposals. http://luca.ntop.org/10g.pdf, 2012. [On-
line].

[Riz12] Luigi Rizzo. Netmap: a novel framework for fast packet I/O. In
Proceedings of the 2012 USENIX conference on Annual Tech-
nical Conference, USENIX ATC’12, pages 9–9, Berkeley, CA,
USA, 2012. USENIX Association.

[RLAM12] M.Muzaffar Rao, Kashif Latif, Arshad Aziz, and Athar
Mahboob. Efficient FPGA implementation of secure hash
algorithm grøstl – SHA-3 finalist. In BhawaniShankar
Chowdhry, FaisalKarim Shaikh, DilMuhammadAkbar Hussain,
and MuhammadAslam Uqaili, editors, Emerging Trends and
Applications in Information Communication Technologies, vol-
ume 281 of Communications in Computer and Information Sci-
ence, pages 361–372. Springer Berlin Heidelberg, 2012.

181

http://luca.ntop.org/10g.pdf

[Rya13] Cox Ryan. 5 notorious DDoS attacks in 2013 : Big prob-
lem for the internet of things. http://siliconangle.com/
blog/2013/08/26/5-notorious-ddos-attacks-in-2013-
big-problem-for-the-internet-of-things/, August 2013.
[Online; accessed 15-October-2013].

[SAG+13] Muhammad Shahbaz, Gianni Antichi, Yilong Geng, Noa Zil-
berman, Adam Covington, Marc Bruyere, Nick Feamster, Nick
McKeown, Bob Felderman, Michaela Blott, Andrew Moore, and
Philippe Owezarski. Architecture for an open source network
tester. In Proceedings of the Ninth ACM/IEEE Symposium
on Architectures for Networking and Communications Systems,
ANCS ’13, pages 123–124, 2013.

[Sch06] Andrew Schmitt. The future of network processing units doesn’t
look too rosy. 2006.

[SdRRG+12] Pedro M. Santiago del Rio, Dario Rossi, Francesco Gringoli,
Lorenzo Nava, Luca Salgarelli, and Javier Aracil. Wire-speed
statistical classification of network traffic on commodity hard-
ware. In Proceedings of the 2012 ACM conference on Internet
Measurement Conference, pages 65–72, 2012.

[SDS+06] Vyas Sekar, Nick G Duffield, Oliver Spatscheck, Jacobus E
van der Merwe, and Hui Zhang. Lads: Large-scale automated
ddos detection system. In USENIX Annual Technical Confer-
ence, General Track, pages 171–184, 2006.

[SDTL05] Haoyu Song, Sarang Dharmapurikar, Jonathan Turner, and
John Lockwood. Fast hash table lookup using extended bloom
filter: an aid to network processing. SIGCOMM Comput. Com-
mun. Rev., 35(4):181–192, August 2005.

[SEJK08] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong.
Deflating the big bang: fast and scalable deep packet inspection
with extended finite automata. SIGCOMM Comput. Commun.
Rev., 38(4):207–218, August 2008.

[SGV+10] Géza Szabó, István Gódor, András Veres, Szabolcs Malomsoky,
and Sándor Molnár. Traffic classification over Gbit speed with
commodity hardware. IEEE J. Communications Software and
Systems, 5, 2010.

[SH13] Vandana Singh and Lila Holt. Learning and best practices for
learning in open-source software communities. Computers &
Education, 63:98–108, 2013.

182

http://siliconangle.com/blog/2013/08/26/5-notorious-ddos-attacks-in-2013-big-problem-for-the-internet-of-things/
http://siliconangle.com/blog/2013/08/26/5-notorious-ddos-attacks-in-2013-big-problem-for-the-internet-of-things/
http://siliconangle.com/blog/2013/08/26/5-notorious-ddos-attacks-in-2013-big-problem-for-the-internet-of-things/

[SK12] Mark Scanlon and Tahar Kechadi. Peer-to-peer botnet inves-
tigation: A review. In Future Information Technology, Appli-
cation, and Service, volume 179 of Lecture Notes in Electrical
Engineering, pages 231–238. Springer Netherlands, 2012.

[SKB04] J. Sommers, H. Kim, and P. Barford. Harpoon: a flow-level
traffic generator for router and network tests. In ACM SIG-
METRICS Performance Evaluation Review, volume 32, pages
392–392. ACM, 2004.

[SKKP12] Stavros N. Shiaeles, Vasilios Katos, Alexandros S. Karakos, and
Basil K. Papadopoulos. Real time {DDoS} detection using fuzzy
estimators. Computers & Security, 31(6):782 – 790, 2012.

[SKS+10] Kwangsik Shin, Jinhyuk Kim, Kangmin Sohn, Changjoon Park,
and Sangbang Choi. Online gaming traffic generator for repro-
ducing gamer behavior. In Entertainment Computing - ICEC
2010, volume 6243 of Lecture Notes in Computer Science, pages
160–170. 2010.

[SMV10] S. Stoev, G. Michailidis, and J. Vaughan. On global modeling
of backbone network traffic. In INFOCOM, 2010 Proceedings
IEEE, pages 1–5, 2010.

[SOK01] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Be-
yond softnet. In Proceedings of the 5th annual Linux Showcase
& Conference, volume 5, pages 18–18, 2001.

[SRB01] Shriram Sarvotham, Rudolf Riedi, and Richard Baraniuk.
Connection-level analysis and modeling of network traffic. In
Proceedings of the 1st ACM SIGCOMM Workshop on Internet
Measurement, IMW ’01, pages 99–103, 2001.

[SSG11] M. Sanlı, E.G. Schmidt, and H.C. Güran. FPGEN: A fast, scal-
able and programmable traffic generator for the performance
evaluation of high-speed computer networks. Performance Eval-
uation, 68(12):1276–1290, 2011.

[SVG10] O. Salem, S. Vaton, and A. Gravey. A scalable, efficient and in-
formative approach for anomaly-based intrusion detection sys-
tems: theory and practice. International Journal of Network
Management, 20(5):271–293, 2010.

[Tar05] A.G. Tartakovsky. Asymptotic performance of a multichart
CUSUM test under false alarm probability constraint. In Deci-
sion and Control, 2005 and 2005 European Control Conference.
CDC-ECC ’05. 44th IEEE Conference on, pages 320–325, 2005.

183

[TDT11] A. Tockhorn, P. Danielis, and D. Timmermann. A config-
urable FPGA-based traffic generator for high-performance tests
of packet processing systems. In ICIMP 2011, The Sixth In-
ternational Conference on Internet Monitoring and Protection,
pages 14–19, 2011.

[Tec13] EZChip Technologies. Products. http://www.ezchip.com/
products.htm, 2013. [Online].

[TRBK06] A.G. Tartakovsky, B.L. Rozovskii, R.B. Blazek, and Hongjoong
Kim. A novel approach to detection of intrusions in computer
networks via adaptive sequential and batch-sequential change-
point detection methods. Signal Processing, IEEE Transactions
on, 54(9):3372–3382, 2006.

[TSMP13] Da Tong, Lu Sun, Kiran Matam, and Viktor Prasanna. High
throughput and programmable online traffic classifier on FPGA.
In Proceedings of the ACM/SIGDA international symposium
on Field programmable gate arrays, FPGA ’13, pages 255–264,
2013.

[ULBH08] Sain-Zee Ueng, Melvin Lathara, SaraS. Baghsorkhi, and Wen-
meiW. Hwu. Cuda-lite: Reducing GPU programming complex-
ity. In Languages and Compilers for Parallel Computing, vol-
ume 5335 of Lecture Notes in Computer Science, pages 1–15.
Springer Berlin Heidelberg, 2008.

[Und04] Keith Underwood. FPGAs vs. CPUs: trends in peak floating-
point performance. In Proceedings of the 2004 ACM/SIGDA
12th international symposium on Field programmable gate ar-
rays, FPGA ’04, pages 171–180, 2004.

[VM04] Harrick Vin and Jayaram Mudigonda. A programming envi-
ronment for packet-processing systems: Design considerations.
In In Workshop on Network Processors & Applications - NP3,
pages 14–15, 2004.

[VPI11] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioanni-
dis. MIDeA: a multi-parallel intrusion detection architecture.
In Proceedings of the 18th ACM conference on Computer and
communications security, pages 297–308, 2011.

[VV09] K.V. Vishwanath and A. Vahdat. Swing: Realistic and respon-
sive network traffic generation. Networking, IEEE/ACM Trans-
actions on, 17(3):712–725, 2009.

[WA11] Pu Wang and Ian F. Akyildiz. Spatial correlation and mobility-
aware traffic modeling for wireless sensor networks. IEEE/ACM
Trans. Netw., 19(6):1860–1873, December 2011.

184

http://www.ezchip.com/products.htm
http://www.ezchip.com/products.htm

[WCM09] Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic
morphing: An efficient defense against statistical traffic analy-
sis. In NDSS, 2009.

[WZA06] N. Williams, S. Zander, and G. Armitage. A preliminary perfor-
mance comparison of five machine learning algorithms for prac-
tical IP traffic flow classification. ACM SIGCOMM Computer
Communication Review, 2006.

[xen12] XenaCompact. http://www.xenanetworks.com/html/
xenacompact.html, 2012. [Online; accessed 6-February-2013].

[XIK+12] Guowu Xie, M. Iliofotou, R. Keralapura, Michalis Faloutsos,
and A. Nucci. Subflow: Towards practical flow-level traffic clas-
sification. In INFOCOM, 2012 Proceedings IEEE, pages 2541–
2545, 2012.

[Xil14] Xilinx. Zynq-7000 All Programmable SoC. http://www.
xilinx.com/products/silicon-devices/soc/zynq-7000/,
January 2014. [Online].

[XWZ13] Yibo Xue, Dawei Wang, and Luoshi Zhang. Traffic classifica-
tion: Issues and challenges. In Computing, Networking and
Communications (ICNC), 2013 International Conference on,
pages 545–549, 2013.

[YCM11] Lihua Yuan, Chen-Nee Chuah, and Prasant Mohapa-
tra. Progme: towards programmable network measurement.
IEEE/ACM Trans. Netw., 19(1):115–128, February 2011.

[YZD08] Shui Yu, Wanlei Zhou, and R. Doss. Information theory based
detection against network behavior mimicking ddos attacks.
Communications Letters, IEEE, 12(4):318–321, 2008.

[ZSGK09] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. Char-
acteristics of youtube network traffic at a campus network –
measurements, models, and implications. Computer Networks,
53(4):501 – 514, 2009.

[ZXZW13] Jun Zhang, Yang Xiang, Wanlei Zhou, and Yu Wang. Unsuper-
vised traffic classification using flow statistical properties and
IP packet payload. Journal of Computer and System Sciences,
79(5):573 – 585, 2013.

185

http://www.xenanetworks.com/html/xenacompact.html
http://www.xenanetworks.com/html/xenacompact.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

	A Abstract
	B Résumé
	B.1 Introduction
	B.2 Choisir une plateforme de développement
	B.3 Surveillance logicielle pour la sécurité
	B.4 Surveillance matérielle pour la classification de trafic
	B.5 Plateforme de test avec accélération matérielle
	B.6 Conclusion
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Traffic monitoring
	1.3.1 Topology
	1.3.2 Time constraints
	1.3.3 Traffic features
	1.3.4 Detection technique
	1.3.5 Calibration

	1.4 Acceleration challenges
	1.4.1 Large data storage
	1.4.2 Test conditions

	1.5 Thesis structure

	2 Choosing a development platform
	2.1 Criteria
	2.1.1 Supported data rate
	2.1.2 Computation power
	2.1.3 Flexibility
	2.1.4 Reliability
	2.1.5 Security
	2.1.6 Platform openness
	2.1.7 Development time
	2.1.8 Update simplicity
	2.1.9 Future scalability
	2.1.10 Hardware cost

	2.2 Commodity hardware
	2.2.1 Handling traffic
	2.2.2 CPU computation
	2.2.3 GPU computation

	2.3 Network processors
	2.3.1 Principles
	2.3.2 Development platforms
	2.3.3 Use cases

	2.4 FPGAs
	2.4.1 Composition of an FPGA
	2.4.2 Boards for traffic monitoring
	2.4.3 Development principles

	2.5 Conclusion
	3 Software monitoring applied to security
	3.1 State of the art on DDoS detection implementation
	3.1.1 Monitoring platforms
	3.1.2 DDoS attacks
	3.1.3 DDoS detection algorithms

	3.2 Flexible anomaly detection
	3.2.1 Problem statement
	3.2.2 Algorithm for DDoS detection

	3.3 A flexible framework: BlockMon
	3.3.1 Principles
	3.3.2 Performance mechanisms
	3.3.3 Base blocks and compositions

	3.4 Implementing DDoS detection in BlockMon
	3.4.1 Algorithm libraries
	3.4.2 Single-node detector implementation
	3.4.3 Alternative compositions

	3.5 Results
	3.5.1 Accuracy
	3.5.2 Performance
	3.5.3 Going further

	3.6 Conclusion

	4 Hardware monitoring applied to traffic classification
	4.1 State of the art on traffic classification
	4.1.1 Port-based classification
	4.1.2 Deep Packet Inspection (DPI)
	4.1.3 Statistical classification
	4.1.4 Behavioral classification

	4.2 Using SVM for traffic classification
	4.2.1 Proposed solution
	4.2.2 Background on Support Vector Machine (SVM)
	4.2.3 Accuracy of the SVM algorithm

	4.3 SVM classification implementation
	4.3.1 Requirements
	4.3.2 The SVM classification algorithm
	4.3.3 Parallelism

	4.4 Adaptation to hardware
	4.4.1 Architecture
	4.4.2 Flow reconstruction
	4.4.3 The RBF kernel
	4.4.4 The CORDIC algorithm
	4.4.5 Comparing the two kernels

	4.5 Performance of the hardware-accelerated traffic classifier
	4.5.1 Synthesis results
	4.5.2 Implementation validation

	4.6 Conclusion

	5 Hardware-accelerated test platform
	5.1 State of the art on traffic generation
	5.1.1 Traffic models
	5.1.2 Commercial generators
	5.1.3 Software-based generators
	5.1.4 Hardware-accelerated generators

	5.2 An open-source FPGA traffic generator
	5.2.1 Requirements
	5.2.2 Technical constraints
	5.2.3 Global specifications

	5.3 Software architecture
	5.3.1 The configuration interface
	5.3.2 The configuration format
	5.3.3 The control tool

	5.4 Hardware architecture
	5.4.1 Main components
	5.4.2 Inside the stream generator

	5.5 Generator use cases
	5.5.1 Design of a new modifier
	5.5.2 Synthesis on the FPGA
	5.5.3 Performance of the traffic generator

	5.6 Conclusion

	6 Conclusion
	6.1 Main contributions
	6.1.1 Development platform
	6.1.2 Software monitoring applied to security
	6.1.3 Hardware monitoring applied to traffic classification
	6.1.4 Hardware-accelerated test platform

	6.2 Acceleration solutions comparison
	6.3 Perspectives

	Glossary
	Bibliography

