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Preface

Network economics is a very hot topic, at the same time from a research point of
view (with several conferences devoted to the theme, plus a devoted section in
most of the other main telecommunication conferences), from a political point of
view (as highlighted by the network neutrality debate, the increasing discussion
on volume-based pricing, etc.), and of course from a business point of view
(encompassing advertisement pricing definition, spectrum selling and sharing,
bundling of offers, etc.).

This dissertation summarizes about ten years of research experience in the
area after obtaining the PhD degree. While my PhD work only focused on
designing auctions and applying them in telecommunication networks (basically,
to sell bandwidth on communication links), I have had the opportunity since
then to develop and study models for a variety of issues and settings, including
the competition among providers at several levels (through price, technological
investments, retention strategies), the economics of security and of peer-to-
peer storage systems, optimal routing issues, and the debates regarding network
neutrality and search neutrality. In all those cases the interactions among actors
need to be described along with a solid scientific foundation towards a careful
analysis.

Several more topics remain to be investigated, as highlighted in the last
chapter of this document.

I would like to thank all my co-authors for the stimulating exchanges of ideas
we have had, and in particular Bruno Tuffin for the very fruitful collaboration
we have maintained since the end of my PhD work. This dissertation contains
several excerpts from the book we have co-written, I also thank him for allowing
me to use those parts.

I am very grateful to Anna Nagurney, Eitan Altman, and Samson Lasaulce,
who gave me the honor of evaluating this document, providing me with some
constructive feedback, and serving to my defense committee. This version has
been improved based on their remarks; of course, all errors and omissions remain
my sole responsibility. Finally, many thanks go to Dominique Barth, Tijani
Chahed and Bruno Tuffin (again) for participating to my defense committee.

And to Maria, for her love and support.
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Chapter 1

Why study network
economics?

1.1 A joint soaring growth of networks and de-
mand

Telecommunication networks are occupying an increasing role in our daily life:
almost everything is now available from the Internet (possibly from a mobile
phone), and getting this kind of access has even become compulsory for many
administrative operations, without mentioning the social pressure to be part of
the trend. While the telephone network commercially started in 1877 following
the birth of Bell Telephone Company, and its development slowly democra-
tized, mobile networks and the Internet have quickly occupied a major place
since the 70s: now more than 90% of the global population can reach a wireless
network [51], and the number of broadband mobile subscriptions has exploded,
reaching 2.3 billion in 2014, while the total number of Internet users is estimated
to 3 billion. As an example of usage changes, Americans spend on average more
time online (about 32 hours per week) than watching television. With an in-
creasing number of subscribers but also because of more and more demanding
applications in terms of bandwidth and resources, the Internet sees a tremen-
dous increase of traffic worldwide, as illustrated in Figure 1.1. The networks
themselves, and in particular the Internet (the key network of our analysis, as
the one over which all networks converge), have considerably evolved to be able
to cope with this increase, offering new possibilities and services [98]. The initial
(actually, non-existing) business model of the Internet, with free interconnec-
tion between academics, and that is still partly in application, has therefore been
more and more questioned: some ways to make revenues have to be defined to
at least cover the capacity expansion costs.
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Figure 1.1: IP traffic evolution in petabytes per month, logarithmic scale (Cisco
data).

1.2 A (more and more) complex set of actors

While the Internet was initially built by academics having the same purpose,
its expansion has been accompanied with the involvement of new actors, most
of them being commercial entities and therefore aiming at profit.

Nowadays telecommunication systems involve several categories of actors,
as sketched in Figure 1.2; we briefly describe them here to fix the vocabulary
used in this dissertation, and to highlight the complexity of the ecosystem. The
various categories, and the presented examples of entities pertaining to those
categories, are of course debatable.

1. End users are the actors to which services are delivered, and whose interest
is in getting those services if the prices are “reasonable". Modeling users’
behavior and level of acceptance in terms of price for a given service has
always been hard; they are often represented through demand functions
describing their reactions to the propositions of services and prices.

2. Access network service providers, also sometimes called eyeball providers,
offer access to the end users, through a wired line at home or through radio
links. Several access technologies coexist, and not all providers operate
on all technologies: they have to strategically decide on which ones to
make investments in terms of infrastructures, and licenses for wireless
technologies. Initially, access operators always operated their network,
but now virtual operators can lease the network of a competitor to serve
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Content	  providers	  
	  
Arte,	  Planete,	  Dailymo0on,	  
New	  York	  Times,	  …	  

Service	  providers	  
	  
YouTube,	  Facebook,	  Twi<er,	  
Ne=lix,	  Dailymo0on,	  tdf,	  …	  
	  
Including	  Search	  engines:	  
Google,	  Yahoo!,	  Bing,	  …	  

	  	  	  CDNs/Cloud	  
	  
Akamai,	  Amazon	  
Cloudfront,	  Google,	  AT&T,	  
MicrosoK	  Office	  365,	  …	  

Transit	  networks	  
	  
AMS-‐IX,	  Orange,	  Torix,	  
LINX,	  …	  
	  

ISPs	  
	  
Orange,	  SFR,	  Bouygues	  
Telecom,	  Free,	  Comcast,	  …	  
	  

Users	  

WiFi	  

xDSL	  

WiMAX	  

FTTX	  

Network	  Operators	  

Access	  Network	  Operators	  

	  	  	  	  	  	  	  	  	  	  APs	  
	  
Orange,	  SFR,	  Bouygues	  
Telecom,	  Free,	  
Comcast	  …	  

VAPs	  
Virgin	  mobile	  

…	  

Architects,	  device	  
builders	  
	  
Alcatel-‐Lucent,	  Apple,	  HTC,	  
CISCO,	  Samsung,	  …	  

Regulatory	  bodies	  
	  
ARCEP,	  BEREC,	  CRTC,	  FCC,	  
OFCOM,	  …	  

Figure 1.2: The main actor categories of the Internet.

customers; this has been encouraged by regulators in the mobile industry
to foster competition.

3. Transit providers run the network resources at the core to transfer traffic
between access providers and/or other transit providers. Transit providers
are organized in a multi-tier hierarchy (even if the boundaries between
levels tend to blur), with a clique of Tier-1 providers connected through
peering links; more regional Tier-2 providers, customers of Tier-1 providers
who can peer with some other providers but need to pay transit fees to
reach some parts of the network; and smaller businesses Tier-3 providers,
themselves customers of Tier-2 providers. Note that some access providers
are also transit providers (Orange in France, British Telecom in the UK,
etc).

4. Content providers create information, educational or entertainment con-
tent for the Internet, CD-ROMs or other software-based products. In
the Internet, content mainly used to be produced by users, located usu-
ally on their individual web pages, but we now also have “bigger" content
providers, i.e., companies selling goods, music (Sony or Studio Universal),
displaying news (CBS, BBC, all newspapers such as the New York Times),
providing videos (TV channels such as Arte or Planete in France). Some
content providers make money by selling their content, while others pro-
vide the content for free but get their revenue by displaying advertisements
banners.
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5. Service providers (or more exactly application service providers) provide
facilities or doorways to/for content providers. We can think of the por-
tals of ISPs on which news and personal web pages can be published, or
YouTube or Dailymotion on which you can publish your videos or music,
but also social networks such as Facebook or Twitter (remark that Face-
book could be seen as a content provider, since owning the copyright of all
published content). In most of those cases, providers make money thanks
to (targeted) advertisements on the displayed pages. Netflix, an Internet
subscription-based service for watching movies and TV programs, being
among the exceptions. Other specific categories of service providers we
can think of are search engines and application stores.

6. Content delivery networks (CDN) and cloud operators are large dis-
tributed systems of servers deployed in the Internet, used by content and
service providers for their infrastructures: while service providers provide
the tools, the computer facilities are managed by CDNs. For example,
Netflix’s customer traffic is supported by Amazon’s cloud services and
Akamai. Basically, CDNs are paid by content providers and pay network
providers for the traffic exchanged but more specific economic relationships
can exist. Somehow similarly (the resource offered being computational
power instead of storage), clouds provide facilities to perform operations
for companies and individuals without having to buy their own costly
resources.

7. Network architects and device constructors, such as Cisco or Alcatel-
Lucent, provide the network infrastructures (devices) and softwares for
performance-optimized transmissions with limited complexity. Device
constructors such as Apple, Nokia, Samsung, Hewlett Packard sell mobile
phones and computers, “physical tools" for an efficient use of applications
provided by CDNs and CPs.

8. Regulators are agencies established by governments to control the market
operations. They intervene to protect public interests, notions of fairness,
etc, hence having an important role when some actors have a dominant
position on the market. Regulators also ensure satisfying relationships
between the different sets of actors.

1.3 Some economic problems to solve

Among the many questions that the telecommunication network actors need to
answer, we can non-exhaustively mention:

• Determining the most relevant and profitable access network pricing
scheme for end users, in a competitive context between access network
providers, also called Internet service providers (ISPs). In particular, the
fact that users are used to the so-called flat-rate pricing scheme has to
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be kept in mind [37], but may not prevent providers from implementing
usage-based pricing schemes.

• Determining the best investments for network providers: new technolo-
gies, capacity and infrastructure expansions, participation in spectrum
auctions, are high-stakes strategic decisions to be taken very cautiously.

• Managing economic relations between network operators: transit opera-
tors, access operators, Content Delivery Network operators, all belong to
a complex ecosystem, and need each other to run their business. The
economic agreements among them are then complicated to analyze.

• Understanding the relations between content providers and network
providers. The Internet now counts some large and bandwidth-consuming
content and service providers (for example YouTube). Hence the ISPs
to which they are not connected (but who have to forward their traffic)
start to wonder why distant content providers should not be charged by
them [66]. This ignited the network neutrality debate at the end of 2005,
a still vivid debate where regulators play an important role.

• Defining economic models for content and (application) service providers.
To get revenue, content and (application) service providers can either
charge users for content access, or provide free access but insert advertise-
ments. A similar issue occurs for search engines such as Google, Yahoo!
or Bing. Search engines make money by presenting advertisement links,
usually at the top and/or on the right of the page, in addition to the search
results. Advertisement links are selected from an auction scheme whose
rules have evolved since its creation. Note that the combined search engine
revenue of Baidu and Google exceeded $43 billion in 2014, this business
still expanding.

Those items illustrate some of the stakes for all actors in the telecommunica-
tions business. Since telecommunication networks keep evolving, and with the
complex set of actors involved, the question about the most favorable economic
decisions always comes back.

1.4 The need for economic modeling and analysis
We now highlight that mathematical modeling and analysis is an important way
to avoid pitfalls which can have dramatic consequences, through some simple
examples.

The tragedy of the commons. An argument often advocated for chang-
ing the Internet pricing is the so-called tragedy of the commons, stating that
several individuals acting independently, rationally and selfishly can actually
deplete a shared limited resource. This type of counter-intuitive outcome can be
understood thanks to modeling and analysis through game theory. In telecom-
munication networks, such situations can occur in several settings, for example
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with regard to the use of unlicensed (wireless) radio spectrum, or of the Internet
as a whole. Hence the need to carefully design mechanisms to incentivize an
efficient use of the resources.

The Braess paradox also illustrates the need to be careful when taking
decisions, especially at the governmental/regulation level. Like the tragedy
of the commons, this undesirable outcome stems from user selfishness: adding
extra capacity to a network when users selfishly choose their route, may actually
harm all users. The possibility of experiencing the Braess paradox in the context
of wireless networks has been highlighted in [4].

Spectrum auctions. The principle of spectrum auctions is that govern-
ments sell licenses to providers, allowing them to operate on specific bands of
the radio spectrum. An auction conducted properly allows to allocate the re-
source to those who value it most, and to yield high revenues to governments.
But the goals of regulators are also to ensure a fast deployment of services, good
quality of service, and a fair competition among providers, to the benefit of end
users. Though, some problems have been noticed in the auctions previously run,
such as collusion among bidders, or final prices too high for providers. A careful
design of the auction process and rules is therefore needed to end up with a
spectrum allocation that is good for customers, and allows providers to get re-
turn on investment and governments to earn money. While spectrum auctions
are not developed in this dissertation, it is another example where economic
modeling is necessary (and indeed, the FCC and other organizations rely on
renowned economists to design appropriate schemes).

Network Neutrality basically states that all packets should be treated
equally by intermediate nodes in the network. Neutrality proponents argue
that allowing differential treatment of Internet flows would harm innovation
(since only those who could afford good quality may succeed), and could also
impinge freedom of speech and the right to information. On the other hand, the
opponents claim that ISPs currently have no incentive to invest in networking
capacities because of their reduced revenues; also economic arguments plead
for vertical integration (one actor being involved in several stages of the value
chain) and service differentiation as ways to increase not only the revenues of
providers, but also social welfare. Here again, some careful analysis is needed
to weigh both sides and possibly draw recommendations to regulators.

1.5 Methodology and tools
This dissertation aims to show how I used modeling and analysis in telecommu-
nication economics, for different settings, in order to understand the behavior of
the current Internet and some of the evolutions that we are experiencing. The
work presented here is in the stream of works on revenue management [119],
which tries to maximize the revenue of the actors.

The tools involved are economics, in particular the branch of game theory
and applied mathematics (optimization). Game theory is the study of interac-
tions among several decision-makers (called actors, or players) having different
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objectives [41, 100]. A key notion in game theory is the Nash equilibrium, that
characterizes an outcome (a decision made by each player) from which no indi-
vidual player can improve his objective through a unilateral move. Therefore,
Nash equilibria represent stable situations, and are considered as good predic-
tions for the result of the interaction.

My research methodology has evolved with the tools, theories and frame-
works I have discovered through my readings, my teaching classes, and mainly
the collaborations with some brilliant researchers. For example, I became ac-
quainted with (atomic and non-atomic) routing games during my 6-month visit
to Columbia University in 2006, during which I deeply studied them and worked
on them with Nicolás Stier-Moses; since then I used that formalism for several
different settings. Similarly, working with Bruno Tuffin and teaching stochas-
tic processes helped me develop and study stochastic models for network eco-
nomics, in settings going from user churn to search engine ranking strategies.
Finally, my knowledge of the network infrastructure and protocols has consid-
erably improved thanks to numerous exchanges with my colleagues in the RSM
department of Telecom Bretagne, allowing to build models closer to the techni-
cal realities.

Among the contributions presented here, several consider different levels
of decision making: for example a regulator will not make decisions at the
same time as operators choosing whether to invest or not in a technology, or
as end-users selecting an ISP for Internet access. For such settings, we use the
classical backward induction method, where we assume at each stage that the
decision-makers anticipate the resulting outcome from the stage below (e.g.,
that regulators anticipate how operators will behave).

Our methodology is also characterized by the willingness to obtain analytical
results, in order to be able to interpret the influence of each model parameter.
This is often at the cost of simplifications made to the models. When models
become intractable analytically, we resort to numerical computations and/or to
simulations.

1.6 Are we the best community to address net-
work economy?

The “computer networking” community’s main field of study covers the technical
aspects of computer networks. This means, to a great extent, the definition and
analysis of communication protocols from a security, flexibility, implementation
cost, or performance evaluation point of view.

Hence the study of economic relationships, and incentives, is not the specialty
of this community, despite the appearance of conferences, special issues and
journals devoted to economic problems among the networking community. This
raises several important questions, highlighted in the next subsections.
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1.6.1 Why should network economics be studied by non-
economists?

Network economics is a highly interdisciplinary field, at the boundary between
networking, applied mathematics, computer science, and economy. And several
communities . But of course the main tools and reasoning principles are from
economy. I happen to have a background in economy, from my education at
Ecole polytechnique. I do not consider myself as a “pure” economist, but I am
aware of some of the economic vocabulary and tools, mainly in microeconomics
and in particular in game theory.

Besides, I have had the chance to collaborate with economists such as Galina
Schwartz (UC Berkeley), which confirmed me with the idea that the gap between
our communities is not so large. We can moreover be very complementary, for
a good knowledge of the technical aspects can help define fine-grained models,
and tools from economy can be needed to solve those models, together with an
“economy-oriented” mind to interpret the results.

The models I try to develop in my work are quite specific, based on some
particular scenarios, and while probably covered by the more general settings
economics tend to analyze, the model specificities sometimes make them solvable
when the general ones were not. In summary, I do not claim to be a researcher
in economy (in the sense of improving economy tools and methodologies), but
rather a researcher who applies economic reasoning and tools to networking
situations.

In that context, the contribution from the “networking” community to net-
work economics is, in my opinion, in the definition of models addressing specific
questions appearing with the evolution of telecommunication networks. The
risk is to “reinvent the wheel” by defining models that would be subcases of
existing models studied by economists; it’s a pitfall we try to avoid. The tools
necessary to solve those problems are not always specific to economics, but are
part of the “common knowledge” of most communities studying such problems,
involving mainly optimization methods.

1.6.2 What remains to do in network economy after a
whole century of research?

As pointed out before, what remains to do is tackle very specific problems, that
were not covered by general economic models. Hopefully, when those models
are specific enough we can find some analytical solutions and get some insight
from them.

1.6.3 Does research on networking done by mathemati-
cians and engineers have an impact on economists?
Is this research published in economics journals?

There are many links between communities: some research results from mathe-
maticians/engineers are published in economics journals (like, for routing games,
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in journals on game theory, or for models on network neutrality, in journals
focusing on policy). In the other direction as well, some economists pub-
lish in journals/conferences from the engineering/mathematics community. As
another sign of those links, some recent journals like Netnomics, or confer-
ences/workshops like NetEcon are new convergence venues for the diverse com-
munities working on network economics.

In summary, I think engineers, mathematicians and computer scientists can
definitely bring interesting contributions to the field of network economics. But
we would benefit from more interactions with economists.

1.7 Outline of the dissertation

The rest of this dissertation is organized as follows.
Chapter 2 focuses on noncooperative situations at the user level, and dis-

cusses how the outcome can be improved through outside interventions (clas-
sically, via monetary incentives). The models developed here will also serve as
inputs for several parts of the other chapters.

Chapter 3 discusses the economic relations among ISPs. While initially,
the telecommunication industry was a monopoly in most countries, the increas-
ing competition dramatically changes the picture. The chapter presents my
main contributions in the study of competition among access providers. When
decisions other than prices have to be taken, we describe this competition as
multi-level games, played at different time scales: at the largest ones, providers
choose where and how much they invest (in terms of capacity, QoS provisioning,
etc.), then they choose their price competitively, and at the shortest time scale,
users choose their provider. Those games are usually solved by backward in-
duction as described before: the games at a higher level are solved anticipating
the solution of lower-level games. We present models of customer churn (i.e.,
switching providers), as well as provider retention strategies, and the regulation
rules that can be imagined for a more efficient economic model. The question
of licensing the resource spectrum versus sharing it is also discussed, from the
regulator perspective.

Chapter 4 discusses competition at the content and service level. Competi-
tion between content providers, and between service (here, security) providers,
and its potential impact on the providers decisions, are investigated.

Chapter 5 is about the interactions between content/service and network
service providers, with a special focus on the so-called neutrality issues: we
explain and propose models to study some aspects of the vivid net neutrality
debate, as well as the more recent search neutrality debate.

Chapter 6 concludes the dissertation, and also highlights some new research
directions opened by recent technologies, namely Content Delivery Networks—
already widely used, but not studied a lot from an economic perspective—and
the promising Software-Defined Networking paradigm.

The dissertation summarizes several models and their main results. Most of
them have been published in international journals or conference proceedings,
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the corresponding articles are provided in the appendices for completeness since
the main body of the document does not include the mathematical proofs.



Chapter 2

Modeling user behavior with
nonatomic games

This chapter focuses on the lowest-level interactions we consider in this disser-
tation, namely the competition among users for network resource. Several of
the mathematical models described here will be re-used in later chapters, where
we study higher-level interactions (e.g., competition among providers).

We consider in this chapter nonatomic games [114], i.e., games where indi-
vidual users have a negligible influence: only fractions of the population have an
impact on congestion. This framework is well adapted to the study of networks
in many contexts, where the number of users is very large and externalities (such
as congestion, or positive network effects) stem from the cumulated influence of
many users.

We first present the nonatomic routing game framework, that allows to pre-
cisely model the behavior of a large number of users, each one having a negligi-
ble weight. Then we show some results obtained for specific network contexts,
three having an underlying nonatomic routing game model (routing game with
rebates, cellular networks, choice of security solutions), and another one using
the nonatomicity assumption to gain some insight when comparing management
schemes for a peer-to-peer storage system. The contributions summarized here
can be found in the references [43,44,54,73,75,76,120].

2.1 Nonatomic routing game models

Routing games refer to situations where users try to select a cost-minimizing
route between some origin and some destination on a network, whose links have
load-sensitive costs. The typical applications are in transportation networks,
however those types of games can also be found in other domains, like supply
chain management [93], or telecommunication networks.

Non-atomic routing games in general may involve complex network topolo-
gies and multiple origin-destination pairs (hence, different types of players).

11
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There, the description of the game consists in:

• a graph (nodes and arcs) describing the network topology, let us denote
by A the set of arcs;

• a set K of origin-destination pairs and their respective demands (cost-
independent or elastic) (dk)k∈K,

• a cost function `a for each arc a ∈ A that depends on the load (generally,
only on the load of link a).

Due to the non-atomicity of players, the conditions for a situation to be an
equilibrium can be expressed in a simple way known asWardrop’s first principle,
stating that each player selects one of the cheapest paths:

“The journey times [the costs] on all the routes actually used are
equal, and less than those which would be experienced by a single
vehicle [a single player ] on any unused route.”

Wardrop, 1952 [124]

The key intuition is again that if there were an available route with a strictly
lower cost, then part of the traffic would have an interest to switch to this one.
That principle characterizes the outcome of non-cooperative behavior in non-
atomic routing games, that is called aWardrop equilibrium. The socially optimal
outcome, on the other hand, is expressed in terms of aggregated (or equivalently,
average over the population) cost, through Wardrop’s second principle:

“The average journey time [the total cost ] is a minimum.”
Wardrop, 1952 [124]

Mathematically, for non-elastic (i.e., fixed) demands, the user equilibrium
as described by Wardrop’s first principle, corresponds to the following math-
ematical program, where Pk is the set of possible paths (sets of links) for an
origin-destination pair k ∈ K and yp is the flow on path p:

∀k ∈ K,∀p, q ∈ Pk, yp ≥ 0 (2.1)

∀k ∈ K,
∑

p∈Pk
yp = dk (2.2)

∀k ∈ K,∀p, q ∈ Pk, yp > 0 ⇒
∑

a∈p
`a(xa) ≤

∑

a∈q
`a(xa), (2.3)

where xa :=
∑
p∈P:a⊂p yp is the load on link a ∈ A. Relations (2.1) and (2.2)

simply represent the constraints that the flow on each path be nonnegative and
demand of each origin-destination pair is satisfied. Relation (2.3) represents
the Wardrop condition, namely, only paths with minimum total cost (the sum
of the costs on the path’s links) are used. Solutions of this system are called
Wardrop equilibria: when the cost functions are continuous and nondecreasing,
a solution exists and is essentially unique, i.e., even if there are several solutions
the cost on each path is unique.
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On the other hand, a desirable outcome, that is often called social optimum,
would by one satisfying Wardrop’s second principle, which can be expressed
mathematically as finding y = (yp)p∈Pk,k∈K satisfying (2.1)-(2.2) and minimiz-
ing the total cost

C(y) =
∑

k∈K

∑

p∈Pk
yp
∑

a∈p
`a(xa)

︸ ︷︷ ︸
cost on path p

=
∑

a∈A
xa`a(xa), (2.4)

with xa the load on link a as before.
The research community has been quite active in the study of those routing

games in the early 2000’s, an interest ignited by the seminal results of Rough-
garden and Tardos [105, 109] on the so-called Price of Anarchy [60] of those
games. Indeed the loss of performance due to user selfishness–the total cost (2.4)
at Wardrop equilibrium versus social optimum–is often bounded, with bounds
independent on the network topology and the demand structure, but only de-
pendent on the cost functions. From there, much research has been carried out
in several directions, mainly by teams in Stanford University (investigating the
impact of controlling part of the traffic [106], of removing some edges to improve
performance [108], of adding prices on links [23]), GeorgiaTech (extending the
price of anarchy results to more general functions [101]), Columbia University
(analyzing the case of atomic users [24]), MIT (considering capacity limits on
links [26], providing new proofs of the initial results [25], studying fairness versus
efficiency tradeoffs [27,115]), and the university of Hong Kong (considering elas-
tic traffic [21]). The activity on those models has decreased recently, due to the
complexity of the untreated cases, but nonatomic routing game models are now
more and more used as the underlying model to study higher-level interactions
such as competition among providers, as we will see in the next Chapters.

The rest of this section contains our contributions in this domain, that can
be classified into four categories, according to the setting considered:

• Specific case of negative prices applied on link (rebates), that can corre-
spond to subsidies provided by cities on public transport but may also
have interpretations in telecommunications (Section 2.1.1);

• Application of existing results to specific telecommunication cases (cellular
networks) and derivation of analytic expressions for prices leading to cost-
minimal outcomes (Section 2.1.2);

• Modeling of user choices for a security solution, taking into account the
trade-offs between the price of each solution, the risk of an attack, and
the likeliness of attacks being successful (Section 2.1.3).

2.1.1 Application: Influencing routing games through re-
bates

While the possibility of adding monetary incentives (tolls) to links had been
quite studied [107], in [75] we investigate the impact of negative tolls, i.e., sub-
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sidies or rebates set by regulators, for example to incentivize the use of public
transportation.

With the notations above and denoting by sa ≥ 0 the rebate on link a ∈ A,
users will select paths p with minimal values of

∑

a∈p
[`a(xa)− sa]+,

with [x]+ := max(x, 0). Then the objective function for the system owner is a
weighted sum of the total cost experienced by users and the monetary cost of
the rebate to the regulator. More precisely, the regulator will want to minimize

Cρ(s) :=
∑

i∈L
xsi [ci(x

s
i )− si]+

︸ ︷︷ ︸
participants’ perceived cost

+ρ
∑

i∈L
xsi min(ci(x

s
i ), si)

︸ ︷︷ ︸
cost of rebates

, (2.5)

which can also be expressed as

Cρ(s) =
∑

i∈L
xsi ci(x

s
i )

︸ ︷︷ ︸
participants’ real cost

+(ρ− 1)
∑

i∈L
xsi min(ci(x

s
i ), si)

︸ ︷︷ ︸
cost of rebates

, (2.6)

for some parameter ρ representing the reluctance to spend on rebates.
Our objective (social cost) function hence explicitly considers the transfer

payments to capture the cost of providing rebates. Instead, most of the earlier
articles that studied the coordinating power of tolls and prices consider a social
cost equal to the sum of costs for all participants, thus ignoring the costs and
benefits of payments because they are transfers that stay in the system (see
[10, 12, 63] for classical references; [23] is a notable exception that considers
transfer payments as part of the social cost).

We consider a Stackelberg game in which the system owner (e.g., the city
or the transportation authority) is the leader and the participants are followers
[122]. In a first stage, the leader offers rebates in each arc; in a second stage,
participants selfishly select arcs that have minimal cost, taking rebates into
consideration.

Focusing on the modal choice problem, we characterize the optimal rebates
in the case of affine cost functions and networks with multiple arcs that connect
two nodes (the alternative modes of transportation are substitutes). In [75], we
prove that:

• if the system owner values the perceived cost more than rebates (i.e.,
ρ < 1), then an optimal strategy for the leader is to refund each participant
the perceived cost at each arc under a system optimal solution;

• if the system owner is more sensitive to the investment in rebates than
to the perceived cost (ρ > 1), it will offer rebates in the modes that
are under-utilized. We establish that the proportion of participants that
actually receive a positive rebate is then upper-bounded by 1/ρ.
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For the special case of affine cost functions on links, we use our characteriza-
tion of Stackelberg equilibria to provide a polynomial-time algorithm that selects
the arcs where rebates should be offered, and computes the optimal rebates for
those arcs. This enables us to derive an explicit formula for the resulting social
cost, from where we compute the price of anarchy, expressed as a function of the
predisposition of the system owner to offer rebates. The main conclusion is that
when the system owner is willing to offer rebates, the resulting solution has low
social cost. Conversely, when the system owner cannot afford to provide signif-
icant rebates, the resulting outcome is close to a Wardrop equilibrium. This is
represented by the ratio of the user cost experienced at the Stackelberg equilib-
rium compared to the minimum user cost, that we prove to be upper-bounded
by 4ρ

3ρ+1 for ρ > 1:

• when ρ tends to 1 the rebate cost is not too large, so that the system
owner can almost perfectly coordinate users who then experience a cost
close to the optimal one;

• for large values of ρ, the system owner cannot afford to use rebates to co-
ordinate users, hence our measure converges to the Price of Anarchy [107]
that estimates the loss of efficiency due to the lack of coordination.

While the initial motivation for rebate-based schemes was in the context of
transportation networks, the two following subsections present applications of
the nonatomic game framework to telecommunication services.

2.1.2 Application to wireless cellular networks with het-
erogeneous users

The selfish behavior of users in networks can be regulated through incentive
tools, such as taxation or penalties. The idea being that users select the cheapest
path from their position to their destination node in the network, taking into
account the cost (latency, or delay, that is sensitive to congestion) of the paths
but also possibly some additional (monetary) costs imposed by the network
manager. So that a proper definition of the price levels influences user choices.
In the homogeneous case, i.e., when all users have the same sensitivity to the
taxation, Beckmann et al. [10] showed that the so-called Pigovian taxes–applied
on each link, and computed using the derivative of the cost functions of the
links–produce a minimum-latency (delay) traffic routing (see [102]).

Cole, Dodis and Roughgarden [22] consider the case when users may per-
ceive differently the relative costs of delay and prices. The authors were the
first to study this setting, for a situation when all users have the same source
and destination, with any network topology in between. For that scenario, it
is shown that there exist prices so that the resulting user flow minimizes the
average latency. Those results are generalized to the multicommodity setting
(i.e., several source-destination pairs) in [55,56]. A constructive proof is given to
show that prices inducing the minimum average latency multicommodity flow
exist for both the cases of elastic (i.e., cost-dependent) and nonelastic demands.
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Our analysis falls in that framework (with nonelastic demand): we consider
a system with n heterogeneous wireless networks covering the same area. The
users situated in the common coverage area of these networks seek for an Internet
connection. We assume that they can easily handover from one network to
another, thus choosing at every moment the most suitable one. Users select
which network to connect to based on the QoS they experience and the prices
charged.

We assume a total user demand D, coming from different applications. Since
QoS requirements can vary depending on the applications used and on user pref-
erences, the trade-offs between QoS and monetary cost shall differ, which we
model through the sensitivity to the monetary cost (or equivalently, the ratio
of the price sensitivity to the latency sensitivity). To simplify notations, with-
out loss of generality we will treat a user running q applications with different
requirements as q separate users, each one running one application. Therefore
from now on we only evoke users, each one having a given price sensitivity.

Let us express the problem mathematically, using index i to refer to network
i, 1 ≤ i ≤ n, and exponent j to refer to user class j, 1 ≤ j ≤ m. Users in class j
have price sensitivity αj ≥ 0 and the total demand from class-j users is denoted
by dj , so that

∑m
j=1 d

j = D. Each network i has a QoS-related cost function

`i(xi) =

{
(ci − xi)−1 if xi < ci,

∞ if xi ≥ ci,
, where xi is the flow (cumulated throughput)

on network i, and ci the network capacity (we assume D <
∑n
i=1 ci, i.e., the

aggregated capacity is enough to treat all demand). Finally, all networks are
owned by the same provider, which is aiming to minimize the total QoS-cost
experienced, and can influence users behavior through charging a price τi on
each network i.

The cost perceived by a class-j user connected to network i is then a com-
bination of QoS (through the latency function) and price

Cji (f) = `i(xi) + αjτi. (2.7)

The provider owning all considered networks is interested in minimizing the
social cost (or total cost) expressed as:

C(f) =

n∑

i=1

xi`i(xi), (2.8)

where f = (x1, . . . , xn) is the flow distribution vector, with
∑n
i=1 xi = D. Note

the difference with the previous subsection when monetary exchanges were part
of the objective: here we just focus on the coordinating power of prices, ignoring
their possible impact on social welfare.

The problem is that users selfishly select a network minimizing their own
perceived cost expressed in (2.7), hence the provider does not directly control
the flows but can only indirectly influence them through prices.
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Routing game interpretation

The setting described above is actually a routing problem, with a common source
for all users (the common network coverage area), and one common destination
(the Internet). Each user forwards his flow through one of n routes, which are
the n networks, with a routing cost equal to the cost in (2.7), as depicted in
Figure 2.1.

s t

`n(xn) + αjτn

`1(x1) + αjτ1

d1, . . . , dm d1, . . . , dm
...

Figure 2.1: Logic representation of the network selection problem as a routing
problem: the perceived cost on each route i depends on the load xi and the
price τi, but also on the user type j through the sensitivity αj .

Computing optimal prices

We assume without loss of generality that c1 ≥ c1 ≥ ... ≥ cn and α1 ≤ α2 ≤
... ≤ αm, i.e., network 1 is the most performant and class-1 users are the most
QoS-sensitive (since they are the least price-sensitive).

The literature [22] already guarantees the existence of prices (τi)1≤i≤n lead-
ing to a user equilibrium minimizing the total cost 2.8, but no analytical expres-
sion is provided given the generality of the result. Our contribution [43, 44] is
then in the analytical treatment of that specific game and the design of a simple
algorithm to compute the optimal prices, as summarized below.

The expression for the optimal flows had been obtained previously [59], we
recall it here for completeness.

Proposition 1 ( [59]). The flows (xopt
i )1≤i≤n minimizing (2.8) are unique and

given by:

xopt
i =




ci −

√
ci(

∑k
j=1 cj−D)

∑k
j=1

√
cj

if i ≤ k,
0 otherwise,

(2.9)

where 1 ≤ k ≤ n is the maximum index for which

ci −
√
ci(
∑k
j=1 cj −D)

∑k
j=1

√
cj

≥ 0. (2.10)

We then use that result to compute the prices leading to an efficient use of
the network resources, even when users have different price sensitivities.
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Proposition 2. The following prices are optimal:

τi+1 = τi +
`i(x

opt
i )− `i+1(xopt

i+1)

αsi
, (2.11)

for i = 1, . . . , n− 1, with τ1 taken arbitrarily, and with

si := min

{
j :

i∑

r=1

xopt
r ≤

j∑

q=1

dq

}
. (2.12)

For networks used at the optimal situation (networks with xopt
i > 0), the index

si represents the class with maximum sensitivity among those sending flow to
network i.

We then have an algorithm to compute the optimal price: Proposition 1
should first be applied to obtain optimal flows, then (2.12) provides the value
of si for each network i to be inserted into (2.11) so as to get the price value.

The intuition behind Proposition 2 and the algorithm is illustrated in Fig-
ure 2.2. We know how much (optimal) flow we want on each network, so we

d1 α1

d2 α2

d3 α3

d4 α4

xopt
1

xopt
2

xopt
3

C2
1 (xopt

1 ) = C2
2 (xopt

2 )

C3
2 (xopt

2 ) = C3
3 (xopt

3 )

Figure 2.2: Example of user distribution among networks with optimal prices
for the case m = 4, n = 3: class-1 (resp. class-4) users all attach to network 1
(resp. 3), while class-2 (resp. class-3) users are split among networks 1 and 2
(resp. 2 and 3).

use prices to drive users away from networks with too much flow. But we also
know that the most price-sensitive users will be the first to react to prices, so
it is easy to know which user classes will be ending using which network(s). On
Figure 2.2, class-1 users would be the last ones to leave network 1 (which has
the best QoS); but their demand is below xopt

1 , so some class-2 users should also
select that network. The aggregated flow of classes 1 and 2 exceeds the opti-
mal flow xopt

1 , so some class-2 users should use other networks. The Wardrop
equilibrium conditions can then be used to express τ2 − τ1, since class-2 users
should be indifferent between networks 1 and 2.

For this setting, we also carried out simulations in [44], showing that applying
this static model (for which the analytical results are valid) to a dynamic setting
(with users entering and leaving the system over time) performs quite well, even
if the network owner has an imperfect knowledge of the repartition of classes in
the total demand.
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2.1.3 Application to users choosing a security solution

Another problem in telecommunications that we can represent as a nonatomic
routing game is the choice of a solution to protect one’s equipments against
attacks. Cybercrime concerns colossal amounts of money, and is highly orga-
nized so that attacker efforts are rationalized to maximize the associated gains.
This is why we model here an interesting negative externality effect of security
architectures and systems, through the attractiveness for potential attackers:
majority products are likely to be larger targets for hackers, and therefore be-
come less attractive for consumers. Then, the choice of a particular system and
security protection by the whole online population can now be considered as a
congestion game.

The literature on network security involving game-theoretic models and tools
is recent and still not very abundant. Some very interesting works have been
published regarding the interactions between attacking and defending entities,
where the available strategies can consist in spreading effort over the links of
a network [16, 58] or over specific targets [32], or in selecting some particular
attack or defense measures [15, 46]. In those references, the security game is a
zero-sum game between two players only, and therefore no externalities among
several potential defenders are considered.

Another stream of work considers security protection investments, through
models that encompass positive externalities among users: indeed, when con-
sidering epidemic attacks (like, e.g., worms), the likeliness of being infected
decreases with the proportion of neighbors that are protected. Since protection
has a cost and users selfishly decide to protect or not without considering the
externality they generate, the equilibrium outcome is such that investment is
suboptimal [52] and needs to be incentivized through specific measures [65]. For
more references on game theory applied to network security contexts, see [3,84].

In contrast, the work presented here considers negative externalities in the
choices of security software/procedures. Such situations can arise when attacks
are not epidemic but rather direct, as are attacks targeting randomly chosen IP
addresses. The interaction among users can then be modeled as a population
game, that is a game where the user payoffs for a given strategy (here, a security
solution) change as more users choose that same strategy [41].

In this model, we consider a very large population, where the extra con-
gestion created by any individual user is negligible, hence again forming a
nonatomic game. As stated before, nonatomic congestion games have seen re-
cent advances for the case when all users are identical or belong to a finite set
of populations [25, 56, 101, 107, 110], but we want here to encompass the larger
attractiveness to attackers of “rich” users, compared to the ones with no valu-
able data online. Fewer results exist for those games [14, 91], even when user
strategies only consist in choosing one resource among a common strategy set.

Moreover, in our model users undergo the congestion cost of the security
solution they select (which depends on the congestion as well as on their par-
ticular data valuation) but also the monetary cost associated to that solution,
which is the same for all users. As a result, following [90, 91] the game would
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be called a weighted congestion game with separable preferences, and can be
transformed into an equivalent weighted congestion game with player-specific
constants [89] (i.e., the payoffs of users selecting the same strategy only differ
through a user-specific additive constant). In general, the existence of an equi-
librium is not ensured for such games when the number of users is finite [89–91].
In the nonatomic case, the existence of a mixed equilibrium is ensured by [114]
and the loss of efficiency due to user selfishness is bounded [14], but the existence
of a pure equilibrium in the general case is not guaranteed.

Our model considers a finite set I of security solutions (each one on a given
architecture). Users differ with the valuation for their data. When an attack is
successful over a target user u, that user is assumed to experience a financial loss
vu ≥ 0, which we call her data valuation. The distribution of valuations over
the population is given by a cumulative distribution function F on R+, where
F (v) represents the proportion of users with valuation lower than or equal to v.

We may not suppose that the support of F , that we denote by Sv, is bounded,
but we assume that the overall value of the data in the population is finite, i.e.,

Vtot :=

∫

Sv

v dF (v) < +∞.

Security systems performance

In this model, we focus on direct attacks targeting some specific machines, which
may for instance come from an attack-generating robot that randomly chooses
IP addresses and launches attacks to those hosts. The attacks generated by
such a scheme have to target a specific vulnerability of a given security system.
As a result, the attacker has to select which security system i ∈ I to focus on.

If an attack is launched to a security system i, we consider that all machines
protected by a system j 6= i do not run any risk, while the success probability
of the attack is supposed to be fixed, denoted by πi > 0, on machines with
protection system i. In other terms, the parameter πi measures the effectiveness
of the security defense.

The attacker point of view

Successful attacks bring some revenue to the attacker. Be it in terms of damage
done to user data, or in terms of stolen data from users, it is reasonable to
consider that for a given attack, the gain for the attacker is proportional to the
value that the data had to the victim.

We then define for each provider i ∈ I the total value of the protected data,
as

Vi :=

∫

users with prov. i
v dF (v). (2.13)

For an attacker, the expected benefit from launching an attack targeted at
system i (without knowing which users are with provider i) is thus proportional
to πiVi. We therefore assume that the likeliness of attacks occurring on system
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i is a continuous and strictly increasing function Ri(·) of πiVi, and such that
Ri(0) = 0.

User preferences

For a user u with data valuation vu, the total expected cost at provider i depends
on the risk of being (successfully) attacked, and on the price pi charged by the
security provider. That total cost is therefore given by

vuπiRi(πiVi) + pi, (2.14)

that takes into account the price pi for the security service, the valuation for
the data to protect, the quality of the protection, and the likeliness of being
attacked.

The variables of interest in the model are drawn in Figure 2.3, to summarize

∫
v dF (v)

Vi

F (v)

0 users with prov. i
0

ni

1

User data valuation v
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Figure 2.3: Values of interest in the security game model.

the interactions among the three types of actors in the model through those
variables: for a particular provider i ∈ I
• users care about the risk (πiRi(πiVi))i∈I and the price (pi)i∈I when se-

lecting a provider j with minimal total cost vπjRj(πjVj) + pj ;

• attackers focus on the target values (Vi) (balanced with the protection
efficiencies (πi));

• each provider i is interested in his market share ni, through the product
pini.

Results

In [73], we establish the existence and essential uniqueness (the corresponding
repartition of value (Vi) among solutions is unique) of a pure equilibrium for our
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model, as well as its tractability by proving that an equilibrium solves a strictly
convex optimization problem.

Proposition 3. For any price profile (pi)i∈I , there exists a user equilibrium, that
is completely characterized by the valuation repartition V ∗, unique solution of
the strictly convex optimization problem

min
V feasible

∑

i∈I

(∫ Vi

y=0

Ti(y)dy + pi

(
N(V[i])−N(V[i−1])︸ ︷︷ ︸
Market share of prov. i

))
, (2.15)

where V[i] =
∑i
j=0 Vj , and N (x) is the minimum proportion of the population

whose aggregated value equals x (i.e., the proportion of “richest” users with total
value x, that is computed using the distribution of valuations). Moreover, the
value repartition at a user equilibrium is unique, and the user equilibrium is
unique (unless for a zero-measure set of users) when all providers set different
prices.

To the best of our knowledge, such proofs for nonatomic games had only
been given for unweighted games [111,112], with a finite number of different user
populations; here we have a weighted game with possibly an infinity of different
weight values, with the specificity that the differences in user congestion weights
are directly linked to their user-specific valuations (in other terms, the valuation
v of a user is both his sensitivity and his marginal contribution to congestion).

Those results can then be used to analyze the decisions made by security
providers, in terms of pricing (how much to charge for their service, anticipat-
ing the resulting user equilibrium) and possibly of investment (how much to
invest in improving the protection level–reducing the πi), that we will present
in Section 4.3.

2.2 Managing a peer-to-peer storage system
In this section, we focus on a specific telecommunication service, namely a peer-
to-peer storage system, where participants can store data online on the disks of
peers in order to increase data availability and accessibility. Due to the lack of
incentives for peers to contribute to the service, we suggest and compare two
approaches:

• the first one does not involve any money exchanges but enforces some
reciprocity in providing the service: each peer’s use of the service is here
limited to her contribution level;

• in the second one, we introduce a (monopolistic) system operator, who
can buy storage space from some peers and sell it to other peers in order
to maximize profit.

Using a noncooperative game model to take into account user selfishness, we
study those mechanisms with respect to the social welfare performance.
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Our model is not explicitly non-atomic since the number of users may be
finite, but we make the reasonable assumption that individual users do not
consider that they have any impact on the prices set by the monopolist, either
because this impact is negligible (the case of nonatomic games) or because
they are not aware of this impact. This assumption significantly simplifies the
analysis, users then being simply price-takers.

In [76], we consider simple functions to describe users’ willingness-to-pay for
storing data on the system and perceived cost for offering storage space to the
system, so that the resulting supply function (how much storage they are willing
to offer for a given price) si and demand function (how much data they would
store if the unit price is given) di for each user i are

si (p) = ai[p− pmin
i ]+, (2.16)

di (p) = bi[p
max
i − p]+, (2.17)

where ai, bi, pmin
i and pmax

i are user-specific parameters. Figure 2.4 illustrates
those functions, and shows the benefit for the user in the case of a manager
buying resource at a unit price po and selling it at unit price ps.
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Figure 2.4: Reactions to prices and utility of a user i.

If the heterogeneity of the parameters pmin and pmax among users is limited,
i.e., if

max
i
pmin
i ≤ p∗ + mini p

min
i

2
, (2.18)

min
i
pmax
i ≥ p∗ + maxi p

max
i

2
, (2.19)
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where p∗ :=
∑
i aip

min
i +bip

max
i∑

i ai+bi
, then we show that symmetric schemes socially

outperform profit-oriented pricing mechanisms if and only if

1

4

(
p∗ −

∑

i

αip
min
i

)(∑

i

βip
max
i − p∗

)
≥
∑

i

ωi (p∗i − p∗)2
, (2.20)

with the weights for all i ∈ I : αi := ai∑
j aj

, βi := bi∑
j bj

, p∗i :=

aip
min
i +bip

max
i

ai+bi
and ωi := ai+bi∑

j aj+bj
.

For the special case when all users have the same pmax
i and the same pmin

i = 0,
then this gives the necessary and sufficient condition

(
1∑
i ai

+
1∑
i bi

)∑

i

1
1
ai

+ 1
bi

≥ 3

4
. (2.21)

for symmetric schemes to socially outperform profit-oriented pricing mecha-
nisms. Moreover, if the couples (ai, bi) are independently chosen for all users
and identically distributed, then from the law of large numbers, symmetric
schemes socially outperform profit-oriented pricing mechanisms if and only if

E[f(a, b)]

f(E[a],E[b])
≥ 3

4
(2.22)

when the number of users tends to infinity, with f : (x, y) 7→ 1
1/x+1/y .

Hence the economic analysis of both management solutions (without mon-
etary exchanges but enforcing symmetry versus profit-driven mechanism) can
help decide what scheme to prefer in terms of total value generated by the
system.

2.3 Summary
This chapter highlights several types of contexts where a nonatomic game model-
ing is relevant in telecommunications. The nonatomicity assumption simplifies
significantly the derivations, allowing us to reach analytical conclusions that
give us general insights regarding the consequences of noncooperative behav-
ior. Those results can then be used to study higher-level interactions, involving
providers and possibly regulators, as will be seen in the next chapters.



Chapter 3

Competition among access
providers

Access providers fight to attract users and make revenue. This chapter presents
some of our contributions to the definition and mathematical analysis of such
situations.

To study competition for customers, we need to model the decisions made
by users regarding their choice of an access provider. Several ways to do that
exist in the literature, we have defined and studied competition models using
various approaches, that we summarize below, together with our main results.

3.1 Association models based on user utility

A first way to model the decision of users is to consider them as self-interested
actors willing to maximize their individual utility. More precisely, for given
provider choices made by the other users and given provider strategies (e.g.,
prices), each user has a utility associated to connecting to each provider, and is
expected to select the provider yielding the highest utility.

We provide below examples with non-atomic users (i.e., individual users have
negligible impact on congestion, as described in the previous chapter), so that
the user equilibrium notion is the Wardrop equilibrium.

3.1.1 Competition on sent packet prices

Consider a set N of providers implementing loss-based pricing: each provider
sets a price per packet sent, and all sent packets are charged so that the per-
ceived price per successfully transmitted packet increases when losses occur,
as illustrated in Figure 3.1. Such a simple way to internalize congestion was
initially proposed in [88]. In his model [88], Marbach deals with atomic users
having to choose among several priority levels in a single network, and estab-
lishes the existence and uniqueness of an equilibrium among users. Here we

25
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di
Ci served

lost

Figure 3.1: Loss model (during a slot): only Ci traffic units can be served among
the di submitted. The di − Ci remaining are lost, the lost units being chosen
uniformly among the di.

rather consider non-atomic users facing several networks with different prices
(but possibly different loss probabilities), and we add another stage, that of
price competition among revenue-maximizing providers: instead of prices being
fixed as in [88], here they are the result of strategic decisions by providers. In
practice however, networking protocols rather tend to avoid losses than to send
packets when the user wishes to pay for traffic. An alternative interpretation
of the model, that also internalizes congestion without relying on losses, can
involve a pricing per time unit (instead of per packet sent). If each user pays
a given price per time unit, when there are too many users they have to stay
longer and thus pay a higher price for the same data sent, which we represent
with the model.

Let us denote by Ci the transmission capacity (in packets per time slot) of
Provider i, and assume that losses occur when demand exceeds capacity on a
network, in which case lost packets are randomly chosen (equal loss probability
for all packets sent to a network). The perceived price p̄i per successful packet
with Provider i is then

p̄i = pi max (1, di/Ci) (3.1)

where pi is the price charged per packet sent by Provider i, and di the total
demand (number of packets sent per time slot) of that provider.

Users are assumed infinitesimal, and selfishly select the cheapest provider in
terms of perceived price when they have a choice. Finally, demand is assumed
elastic, i.e., the aggregated number of packets that all users wish to send (suc-
cessfully) is a strictly decreasing function D of the perceived price. The function
D is assumed continuous and such that D(0) >

∑
i∈N Ci, and can stem from

a distribution of valuations for the service among users and/or from individual
elastic demands. We present two scenarios in terms of network topology.

Common coverage area. First consider that all users can reach all providers,
as depicted in Figure 3.2. Then if we denote by di the total demand of Provider i,
the Wardrop equilibrium conditions can be summarized by the following system
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p1 p2

p3

Figure 3.2: A network topology with all providers competing for the same set
of users.

of equations: 



∀i ∈ N , p̄i = pi max

(
1,
di
Ci

)

∀i ∈ N , p̄i > min
j∈N

p̄j ⇒ di = 0

∑

i∈N
di = D( min

ij∈N
p̄j)

(3.2)

The first relation expresses the perceived price for each provider, based on (3.1);
the second one comes from the Wardrop condition (only cheapest options are
selected), and the last equation links total demand to the (common) perceived
price of all chosen providers.

Assuming that providers set their price so as to maximize revenue, anticipat-
ing the outcome of the non-atomic game played by users (backward induction
method), we established the following results (see [82] for proofs).

1. For any price vector p = (pi)i∈N there exists a Wardrop equilibrium,
and the corresponding perceived price of each provider is unique. This is
illustrated in Figure 3.3, where the minimum perceived price (when users
select the cheapest options) and the inverse demand function when the
aggregated demand vary are plotted. A Wardrop equilibrium corresponds
to an intersection point of those curves. If several providers set the same
price p̄ and D(p̄) <

∑
j:pj≤p̄ Cj (case of Figure 3.3(b)), then users are

indifferent between those providers, and any repartition of the demand
D(p̄) −∑j:pj<p̄

Cj among those providers such that none of them gets
congested is a Wardrop equilibrium.

2. If among two outcomes leading to the same revenue, each provider prefers
the one where he manages smaller demands, then when demand elasticity
p

D(p)
dD(p)

dp is below −1 there is a unique Nash equilibrium of the price com-
petition game: all providers set the same price p∗ := D−1

(∑
i∈N Ci

)
[82],

where D−1 is the generalized inverse of D, i.e., D−1(y) := min{x ≥ 0 :
D(x) ≤ y}.
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(a) Unique Wardrop equilibrium
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(b) Infinite number of Wardrop equilibria

Figure 3.3: The common perceived price on all chosen providers when the to-
tal served quantity evolves is given by the stair-step function. At a Wardrop
equilibrium, that perceived price is p̄ = mini∈N p̄i (intersection with the inverse
demand curve).

3. The Wardrop equilibrium for that price vector p∗ = (p∗, . . . , p∗) is unique
and such that di = Ci for each provider i ∈ I. This situation is actually
the one maximizing social welfare.

Different coverage areas. Consider now two wireless access points owned
by competing operators 1 and 2 offering service over a given area, as depicted
in Figure 3.4. Provider 2 operates in a subdomain of Provider 1, due to a

Prov. 1: LTE

Prov. 2: WiFi

zone A zone B

Figure 3.4: The competition situation: providers and topology [79].

limited range technology, e.g., a WiFi cell compared to an LTE one, covering
a proportion α ∈ (0, 1) of the users in the LTE cell. Even if the number of
providers has been reduced to two, this framework considerably complicates
the analysis with respect to the common coverage area case treated just above.
However we think the results provide interesting insights into the reasons why
different prices can be observed.
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Again, the reasoning at the pricing level is done by backward induction. A
rigorous analysis for that model is carried out in [79], we summarize here the
main results:

• For every price profile (p1, p2) with strictly positive prices, there exists
a (non-necessarily unique) Wardrop equilibrium, and the corresponding
perceived prices (p̄1, p̄2) are unique.

• If the demand elasticity dD(p)/D(p)
dp/p is strictly smaller than −1 for all p > 0,

then the pricing game played by providers has an infinity of Nash equilibria
of the form {p1 ∈ (0, p∗1], p2 ∈ (0, p∗2]}, where
– if C1

1−α ≤ C2

α ,

p∗1 = D−1

(
C1

1− α

)
≥ p∗2 = D−1

(
C2

α

)
; (3.3)

– if C1

1−α >
C2

α ,
p∗1 = p∗2 = p∗ = D−1(C1 + C2), (3.4)

where D−1 is again the generalized inverse of D. Despite the infinity of
Nash equilibrium prices, all yield the same perceived prices p̄i = p∗i , and
the same revenues to providers, R∗i = p∗iCi, i = 1, 2.

Let us take a step back here. Recall that the condition on elasticity implies
that pD(p) decreases with p, so providers should try to set low prices to max-
imize revenue. However, there is no benefit from lowering too much the price
since providers can only “sell” their capacity (extra packets being lost, which
affects the perceived price and reduces demand), so a natural objective is to
sell all of one’s capacity. The case when C1

1−α ≤ C2

α corresponds to a capacity
per user offered by Provider 2 alone in zone B larger than the one Provider 1
can offer in zone A only. Hence Provider 2 can sell all of his capacity C2 in
zone B for a perceived price p∗2 = D−1

(
C2

α

)
, a perceived price that Provider 1

can never beat: assume p̄1 < p∗2, then demand for successful traffic in zone A
is (1 − α)D(p̄1) > (1 − α)D(p∗2) ≥ C1, which Provider 1 cannot fulfill. As a
result, Provider 1 cannot compete in zone B and leaves it to Provider 2, he then
makes revenue by selling his capacity in zone A only, where he is a monopoly.
On the other hand, when C1

1−α > C2

α both providers compete in zone B, each
one getting some demand.

Depending on the Nash equilibrium selected by providers, social welfare can
go from 0 (when prices tend to 0) to its maximal possible value (when pi = p∗i
for i = 1, 2). That latter case is however more likely to be chosen by providers
(e.g., if we add some small traffic management costs as we did for the common
coverage area case).

It is worth noticing that in the examples above, a two-level game involv-
ing self-interested users and providers can lead to a socially optimal outcome.
Because of the Wardrop conditions, a price war occurs when no provider is con-
gested; but the price war stops because of congestion effects: decreasing further
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one’s charging price then does not bring any revenue improvement. Some more
elaborate models of competition based on Wardrop user behavior can be found
in [2, 53].

3.1.2 Discrete-choice models

In the previous (Wardrop) model, all users had the same comparative percep-
tion of the alternatives (here, the providers to select). Since this is not totally
realistic, we can consider models that assume not all users are exactly the same:
while some users are only looking for the cheapest option, others will consider
it worth switching providers only if the price difference is large enough. Even
more, some users can be willing to stay with the most expensive provider, even
without clear evidence of his better quality: this can explain why incumbent
providers often remain slightly more expensive than their competitors, without
loosing too much market share because of their better reputation. Such effects
are due to rather subjective aspects, such as the perception of the overall service
quality (e.g., through the reputation of the provider), and the attachment to
the provider’s brand (that can be affected by advertising).

The number of aspects other than price that can affect users’ choices, and
their somehow intangible nature, make it difficult to encompass each of them in
a model. Therefore, a natural way to proceed is to aggregate all these unknown
effects into one single value for each user and each provider, that represents
the non-monetary benefit (or cost) that this particular user associates to this
provider. Then we can still assume that each user makes a utility-maximizing
choice, but now users are heterogeneous, so that they do not necessarily all
prefer the same provider(s), even without congestion effects.

Such an approach is typical of discrete choice models, that are frequently
used in economy [11]. To be more specific, the utility for a user u making the
choice i (among a discrete set of options) is supposed to equal vi + κu,i: the
term vi encompasses the objective aspects of the option (e.g., price, quality-of-
service) and is the same for all users, while κu,i is an unobserved user-specific
value that is treated on the global level as a random variable. In most cases,
it is assumed that the variables (κu,i)u,i are all independent, and that for each
option i the variables (κu,i)u are identically distributed, so that the probability
distributions of κu,i for each option i completely characterize the model, and the
subscript u can be omitted. Then from those distributions, one can compute
the probability that a user selects option i for each i; when the population is
sufficiently large this corresponds to the proportion of users making that choice.

Let us now consider competing access providers, this time implementing a
flat-rate pricing scheme, and assume congestion is not an issue (capacities are
sufficiently large). The subscription price of Provider i is denoted by pi, and
each user has to decide which provider to subscribe to, if any. We suppose here
that the average value for an ISP i is affected by his price, but also by some
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average reputation factor xi > 0, through the standard logarithmic relation

vi = α log

(
xi
pi

)
, (3.5)

where α > 0 is a sensitivity parameter. The logarithmic functional originally
stems from psychophysics (the relationship between the magnitude of a physical
stimulus and its perceived intensity is often logarithmic), and has recently been
also observed in the context of telecommunications [104]. Remark that a null
price pi yields an infinite value vi, so that a free option will always be preferred
to one with charge. The average reputation factor can be interpreted as follows:
if x1 = 1.2 and x2 = 1 for example, then on average customers accept to pay
20% more with Provider 1 than with Provider 2 (the reputation compensates
for the larger price). Finally, we have to model the utility of the “no-provider”
option, that we label by the index 0: we take the same form as for the other
options, i.e., we denote by v0 the average (negative) value of not having Internet
access, and still consider a random part κ0 in the individual utility of option 0.

Following the literature on discrete choice models [11], we assume that the
user-specific random variables κi follow a Gumbel distribution of mean 0, i.e.,
their distribution satisfies P[κi ≤ y] = exp(− exp(−y − γ)), where γ ≈ 0.5772
is Euler’s constant. Such an assumption is mainly made for mathematical con-
venience: it leads to a simple expression for the distribution of demand among
providers. It can be seen as a way to justify the demand expression we obtain
in (3.6) from a user utility model, instead of directly assuming its form.

It can then be proved (see [11]) that the probability of a user choosing the
option i ∈ {0, 1, 2, . . . , n} (n being the number of competing providers) equals

σi(p) :=
(xi/pi)

α

∑n
j=0(xj/pj)α

, (3.6)

with p = (p0, p1, · · · , pn), x0 := 1, and p0 := exp(−v0/α) the “equivalent price”
of option 0. We assume here that the number of users is large, so that the
probability σi corresponds to the market share of Provider i for i = 1, . . . , n.

We can observe the effect of the sensitivity parameter α: when α tends to
infinity users only focus on the cheapest option(s) (the one(s) with the smallest
pi/xi). On the other hand, α going to 0 leads to a uniform repartition of users
among all alternatives.

Now let us study the price competition among two providers, labelled 1 and
2: assuming without loss of generality that the total mass of users is 1, the
revenue of Provider i equals

Ri(p0, p1, p2) = piσi(p0, p1, p2) =
pi(xi/pi)

α

(x1/p1)α + (x2/p2)α + 1/pα0
. (3.7)

Let us immediately treat the particular case of null prices: if a provider sets a
null price, then he makes no revenue but also attracts all users unless his com-
petitor sets a null price, hence preventing that competitor from making revenue.
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Thus null prices (p1, p2) = (0, 0) constitute a Nash equilibrium, however a pecu-
liar one: as soon as the opponent sets a strictly positive price, it is strictly better
for a provider to also fix a strictly positive price than to set a null price. Hence
providers should try to avoid that equilibrium, when possible. As illustrated
later in Figure 3.5, that equilibrium is actually unstable when α ∈ (1, 2). When
α > 0 it is the only equilibrium, i.e., a price war situation occurs.

We now look for equilibria different from (0, 0). An equilibrium price profile
(p1, p2) is such that each provider plays a best response to the price of his
opponent; we therefore compute here the best-response functions.

From (3.7), we obtain for all strictly positive prices (p1, p2),

∂Ri
∂pi

= σi(1− α(1− σi))

with σi given in (3.6). Since σi is a probability and is strictly positive when
prices are non-zero, the case when α ≤ 1 leads to infinite best-response prices
(i.e., maximizing Ri given pj , j 6= i). This somehow corresponds to a small price
elasticity of demand: a small α means that user choices are not much affected
by prices, hence raising prices improves revenues since only a small proportion
of users switch choices.

From now on, we make the more realistic assumption that α > 1. For i = 1, 2
and j 6= i, the maximization of Ri in terms of pi for a fixed pj > 0 leads to
1 − α(1 − σi) = 0: indeed ∂Ri

∂pi
has the same sign as 1 − α(1 − σi), which is

decreasing in pi from (3.6). We can then compute the best-response function of
Provider i:

BRi(pj) = xi

(
(α− 1)

((
xj
pj

)α
+

(
1

p0

)α))−1/α

. (3.8)

An example of those best-response functions is plotted in Figure 3.5 for two
different values of the sensitivity parameter α. We remark that for α > 2 there
is no equilibrium with strictly positive prices. Indeed, such an equilibrium would
correspond to σ1 = σ2 = 1 − 1/α, which is only possible if α ≤ 2 (recall that
σ1 +σ2 is the probability of users selecting no provider, thus σ1 +σ2 ≤ 1). When

α ∈ (1, 2], solving the system
{
p1 = BR1(p2)
p2 = BR2(p1)

yields a unique solution (as

illustrated in Figure 3.5(a)). That solution (p∗1, p
∗
2) is such that σ1 = σ2 = 1−α,

hence x1/p
∗
1 = x2/p

∗
2, which gives

p∗i = xip0

(
2− α
α− 1

)−1/α

, i = 1, 2.

We find here again the condition that α ∈ (1, 2]. Interestingly, we also ob-
serve that equilibrium prices are proportional to the “reputation” factor xi,
i.e., p∗1/p∗2 = x1/x2. Hence the relative operator prices directly reflect their
relative reputations. Similarly, since equilibrium market shares are equal
(σ1 = σ2 = 1 − 1/α), providers’ revenues are also proportional to their rep-
utation factors: Ri = xiσi = xi(1− 1/α)).
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Figure 3.5: Best-response functions for the price competition, with p0 = 1, x1 =
1.2, x2 = 1.

Finally, if α > 2 we remark that BRi(pj) < pj
xi
xj
, so that successive best

responses lead to a strictly decreasing sequence of ratios pi/xi, and eventually
to null prices as illustrated in Figure 3.5(b).

The discrete choice model presented above is developed in [30] to analyze
the relations between ISPs in terms of traffic exchange. The main conclusion
suggested by the numerical study in [30] is that regulating traffic exchange
prices (or transit prices) is not necessary: it is sufficient to let ISPs agree on
those transit prices, just imposing that an agreement be found (i.e., forbidding
disconnection among ISPs).

To reach such a conclusion, we assume that ISPs decide the transit prices
through negotiation, the result being the Nash Bargaining Solution [95]. The
result depends on the so-called “disagreement point”, that is the outcome when
no agreement is reached among ISPs. Our results in [30] suggest that when
the disagreement point is a disconnection among ISPs, the negotiation results
in a non-satisfying point (favoring the largest ISP over the smallest one), while
the solution is near to the social optimum when the disagreement point is a
“free peering” situation (i.e., null transit prices). Hence our suggestion that the
regulation would be set to a minimum, just imposing free peering in case ISPs
do not agree on transit prices.

3.2 Dynamic models

The telecommunication ecosystem is an extremely fast-changing environment. A
salient example is the churn phenomenon (users switching providers) in mobile
markets: yearly migration rates can often reach 25% [125]. In that context,
it makes sense to take that dynamicity into account in the economic model.
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We therefore propose here an analysis where user behavior over time (more
precisely, the operator he subscribes to) is modeled as a random process. More
precisely and to keep things simple, we consider a finite-state continuous-time
Markov chain [97], as is done in [71]:

• the situation of the user is represented through a state (State i if the user
is with Provider i, State 0 if the user foregoes the service);

• after some exponentially-distributed random time depending only on his
current state i and the destination state j (through the parameter–or
transition rate–λij), the user switches providers (or goes with none) and
finds himself in State j.

Let us consider a specific case, where two providers compete by playing on
price only, price being indeed one of the most relevant churn determinants [19,
57, 103]. Then the churning rates are assumed to depend on the price vector
p = (p1, p2), with pi the price set by Provider i. We therefore model the churning
behavior of a user with the Markov chain displayed in Figure 3.6. Using standard

1 0 2

λ10(p1, p2) λ02(p1, p2)

λ20(p1, p2)λ01(p1, p2)

λ12(p1, p2)

λ21(p1, p2)

Figure 3.6: Continuous time Markov chain model for user switching behavior.
State i = 1, 2 corresponds to the user being with Provider i, while State 0 means
that the user chooses no provider.

Markov chain analysis, we can easily prove the existence and uniqueness of a
steady-state probability distribution, i.e., a vector π = (πi)i=0,1,2 of probabilities
such that the proportion of time the user spends in State i = 0, 1, 2 tends
to πi as time passes. A sufficient condition is that λij(p1, p2) > 0 for all i, j.
When all users follow independently the behavior described in Figure 3.6, πi also
represents the stationary proportion of the population in State i (the average
market share of Provider i, for i = 1, 2). Those steady-state probabilities then
directly give the average per-user revenue that a provider i = 1, 2 can expect:
that revenue simply equals Ri := piπi. Since the probability vector π depends
on the price vector p = (p1, p2), the revenue (utility) of each provider depends
on both prices, hence a non-cooperative game on prices.
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We study that game as a Stackelberg game, with providers as leaders, and
users as followers (adapting to the leaders’ actions through transition rates, the
outcome being the steady-state probabilities). For this model, we cannot prove
in general the existence or uniqueness of a Nash equilibrium. When transition
rates are simple functions of prices, we may find the form of the Nash equilibria
analytically, or decide to perform a numerical study, with some more realistic
transition rates. Both approaches were presented in [71].

We only provide here some illustrative results from a numerical study
(see [71] for details). The considered transition rates are of the form λij =
eβpi/pj/γi: γi represents some reputation effect (reluctance to leave this
provider), and β is a sensitivity to prices. Let us have a look at the impact
of the parameter β (users’ sensitivities to price differences). Nash equilibrium
prices (p∗1, p

∗
2) and the resulting user repartition among the three states when

β varies are displayed in Figure 3.7. We observe (similarly to the attraction
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Figure 3.7: Influence of the price sensitivity factor β, with transition rates
λij = eβpi/pj/γi and γ0 = γ2 = 1, γ1 = 2, p0 = 1 [71].

model summarized by Relation (3.6)) that above a given threshold (around 0.85
here), user price sensitivity is such that providers engage in a price war and
prices tend to 0. Below that threshold, prices decrease when sensitivity β in-
creases, as expected, which results in more users selecting one of the providers
(see Figure 3.7(b)).

Another aspect of the model worth considering is the asymmetry among
providers, reflected by the likeliness γi to remain with Provider i. In Figure 3.8
we keep γ2 = 1, and vary γ1 from 1 (symmetric providers) to 5 (strong advantage
for Provider 1). The Nash equilibrium p∗1 increases as expected, Provider 1
taking advantage of his higher reputation to set larger prices. The effect on
price p∗2 and on market shares is less obvious; for the parameters chosen we
observe that the better reputation of Provider 1 induces a price reduction of his
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Figure 3.8: Influence of the asymmetry among providers.

competitor, but also a reduction in the competitor’s market share, illustrating
the importance of this parameter γ1 for both providers.

We believe such analyses help understand the market: it is indeed observed
that not all providers set the same price (even for comparable services), and in
general the incumbent is slightly more expensive than the newcomers, benefit-
ting from a better reputation.

Building more developed dynamic models. As we claimed before, one of
the main challenges faced by mobile operators is to retain customers. This may
imply the use of unfair practices such as delaying the migration process [94]. We
include such practices in a dynamic model in [70], through a state i′ representing
the fact that the user has expressed the will to leave Provider i but is being
delayed, as represented in Figure 3.9. From that state, three events can occur:

1. the provider finally releases the client (after some time depending on the
retention policy of the provider);

2. the regulator intervenes (possibly when alerted by the client) to release
the client, and imposes a sanction fee to the provider;

3. the client decides to give up his idea of leaving the provider, finally deciding
to stay.

The two first alternatives lead to the user leaving the provider, but in the second
case an additional fee is paid by the provider. Also, notice that while the client
is in State i′, he continues to pay the subscription price to Provider i. From
the point of view of Provider i, the trade-off in the retention policy is therefore
between the gain in terms of subscription revenues due to retention (from users
staying in State i′ for a while, and deciding to stay with Provider i), and the
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Figure 3.9: A dynamic model for user behavior with retention from providers
(retention states: 1′ and 2′).

sanction fees imposed by the regulator when informed. If the sanction fee is
not too large and users are quite patient, retention policies can be beneficial
to providers, which can explain the increasing number of sanctions imposed by
regulators to stimulate competition in the mobile market in the 2000’s.

It is noticeable that the state 1′ does not contain all the information about
the user: the model “looses” the aimed state (0 or 2) by the user when he took the
decision to leave Provider 1. However this is not a problem for the study, since
that information is irrelevant for the metrics we compute: we could similarly
consider that users decide to leave Provider 1 after some time (exponentially
distributed with rate λ1), and choose whether to go to Provider 2 or to the no-
provider state only when released by 1. The same reasoning holds for Provider
2 and State 2′.

To analyze such a model, we first notice that the Markov chain has a unique
steady-state distribution, and denote by πs the steady-state probability of State
s. Then it is easy to express the (per user and per time unit) revenue R1 of
Provider 1 in terms of those probabilities: that revenue equals

R1 = p1(π1 + π2)︸ ︷︷ ︸
income

−s0 π2µ︸︷︷︸
sanction frequency

,

where p1 is in monetary units per time unit, and s0 (the sanction price) in
monetary units. Considering the counterpart expression for Provider 2, one
can study the non-cooperative game played on prices and retention times, after
selecting the form of the transition rates in terms of those strategic variables.
We performed that study numerically in [70], in order to estimate sanction levels
that are sufficient to prevent providers from retaining users.
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3.3 Providers competing in multiple-time-scale
decision games

In practice, operators have a lot of decisions to make, that involve different
time horizons. Let us consider a wireless access provider for example: the
basic resource needed to provide some service are spectrum, access points, and
backbone network.

Wireless licenses are typically sold for a decade-long period; similarly set-
ting access points involves some long-term estate lease agreements and some
significant equipment investments (we also include backhaul links–to ensure the
connexions between access points and the backbone–in this time category). As
regards backbone connectivity, the decision can be seen both as a long-term one
(when the operator builds or upgrades his own backbone network) or a shorter-
term one (when the operator outsources that part to another company).

Decisions on applicable policies are more flexible: operators can change–
within the regulatory constraints–their prices, and/or the way they deal with
QoS provisioning (e.g., by setting priority classes) on shorter time bases.

Finally, users base their decisions (to subscribe or not, and to which provider)
on all those aspects: pricing policy, provided services (and their QoS), and
coverage areas. As we saw before, the market of mobile users is very volatile,
and regulation also exacerbates competition by favoring churn among providers.
This therefore shall be the smallest-time-scale decision level.

Given that description, how should a provider bid in the spectrum auction?
Also, what strategy should be set in terms of access points, or backbone trans-
missions? And finally, what QoS and pricing policies to implement? All those
decisions also have to take into account the competitive context, i.e., providers
are playing a noncooperative multi-level game.

Of course, there is a lot of uncertainty when making long-term decisions:
about the acceptance of new services in the next 10 years, even about the nature
of the services that might appear, etc. However those decisions can be based
on the backward induction reasoning, where at each level the utility functions
considered are given by the (Bayesian) equilibrium–if any–of the level below.
The two last time scales of the game (price/QoS strategies, and association
game for users) are the ones we have considered in the previous section, now
the outcome from those interactions are assumed to be anticipated by providers
making their higher-level investment decisions.

We summarize here a model we developed in [86], adding a third level on
infrastructure and license investments to the price game and user decisions lev-
els. The model relies on the Wardrop equilibrium notion for the user level, then
on the Nash equilibrium notion for the pricing level (intermediate time scale)
and for the investment level (highest time scale). The initial question addressed
from the point of view of the providers takes the form “What are the technolo-
gies worth investing in?", but answering it implies answering the following series
of questions, getting lower and lower in the game levels:

• What technologies will my competitors propose?
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• Given the set of proposed technologies, what prices shall be set by each
provider?

• For a given price vector and set of technologies offered, what are the user
repartition and the corresponding revenue for each provider?

The capacity aspects are not treated here, since it is assumed that the trans-
mission capacity is fixed for each technology. However, it is worth mentioning
that in other works, capacity investments and pricing decisions are taken simul-
taneously, still considering some Wardrop equilibrium for the subsequent choices
of users [53].

Let us denote by T the set of technologies that are likely to be proposed to
users (3G, 4G, WiFi, ADSL,...), and by N the set of providers. The largest time
scale decision for each provider i ∈ N therefore consists in choosing a subset
Ti ⊂ T of technologies to operate, weighing costs and expected revenues.

In terms of prices at the intermediate level/game, we assume a technology-
transparent scheme, i.e., each provider i will offer a given price pi (say, per
month) to grant access to users on any of the available technologies in Ti. This
type of offer is more and more common, an goes in the direction of a simplifi-
cation from the users’ point of view, in a context of a multiplication of mobile
devices and access technologies: users do not need (and in most cases, do not
want) to know which specific technology is used for what usage and with what
device, they just want their services to be available. The specific technology
choice may be made by the device (remaining transparent to the user), or by
the user himself; this does not affect our model as soon as the device tries to
select the best option. Due to congestion effects, not all users shall select the
same provider or technology: two subscribers of a provider will pay the same
price but may be directed to two different technologies (WiFi and LTE for ex-
ample, because one becomes more congested otherwise), in order to lead to a
better price/QoS tradeoff for all of them. This is reflected by the Wardrop
equilibrium conditions, implying that all chosen pairs (operator,technology) will
have the same total cost, also below the total cost of the other options. That
total cost, that we also call perceived price and denote by p̄i,t, is modeled as
the sum of the subscription price pi and a monetary-equivalent QoS-based cost
`i,t for each operator i and technology t ∈ Ti depending on the load on that
technology. To be more specific, we distinguish between technologies with li-
censed spectrum (such as 3G) from technologies with shared spectrum (such as
WiFi): in the former case, congestion only comes from the demand level di,t
on the corresponding (operator,technology) pair (i, t), while in the latter case
interference comes from all users on the same spectrum (technology t), hence
congestion depends on

∑
j∈N :t∈Tj dj,t:

∀i ∈ N , t ∈ Ti,

p̄i,t =

{
pi + `i,t(di,t) if t is licensed,
pi + `t(

∑
j∈N :t∈Tj dj,t) if t is a shared-spectrum technology,

(3.9)
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where `i,t and `t are continuous and strictly increasing functions reflecting the
congestion cost of the technology t.

Finally, all users prefer the cheapest option–whose total price will be denoted
by p̄ := mini∈N ,t∈Ti p̄i,t, but the aggregated demand level is naturally assumed
to decrease with p̄, through some continuous demand function, as we previously
did in Subsection 3.1.1.

Using very general results on nonatomic routing games [1], we can establish
the existence of a Wardrop equilibrium for the lowest game level (users choosing
a provider and a technology), and the uniqueness of the perceived price on each
option (i, t). The uniqueness of the Wardrop equilibrium (i.e., of all values
(di,t)i∈N ,t∈Ti) is guaranteed only if we fix a rule regarding demand repartition
on each shared-spectrum technology among several providers with the same
price; for example an even repartition can be assumed.

The study of the pricing game among operators at the intermediate level
(using the above Wardrop equilibrium) is more involved, and in the general
case the existence of a Nash equilibrium–or its uniqueness–cannot be proved.
However the numerical study carried out in [86] (with two competing providers,
linear decreasing demand, QoS-related costs given by the delay in an M/M/1
queue) exhibited unique Nash equilibria with positive prices for the pricing game
with most technology choices (T1, T2) ∈ T × T , actually for all cases where the
shared-spectrum technology is proposed by only one provider. In the other
cases, a price war occurs to attract all users of the shared-spectrum technology,
leading prices to zero.

Plugging those equilibrium points into a matrix summarizing the total net
benefit of each provider (including subscription revenues and license and infras-
tructure costs) for each combination (T1, T2) of technologies then provides us
with a two-player game in normal form for the choice of technologies at the
largest time scale: we can indeed obtain results as examplified in Table 3.1,
where the terms in the payoff matrix are of the form “U1;U2”, the value being in
bold when the corresponding strategy is among the provider’s best-responses to
the competitor’s choice (see [86] for the particular numerical values considered
and detailed justification). Table 3.1 highlights the effect of regulatory mea-
sures on the outcome of the game: by appropriately setting the license prices
for example (that act as additive constants for strategies involving each tech-
nology), the technological investment game can lead to a totally different Nash
equilibrium. It is then up to the regulator to decide which outcome should be fa-
vored (for example, the one maximizing social welfare), and to set license prices
accordingly. In the present case, reducing the 3G license price for Provider 1
may lead to both providers offering that technology, and an improved social
welfare. Such a reasoning implies considering one additional game level, that of
the regulator fixing license prices as the leader in a Stackelberg game.
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1 \2 ∅ 3G 4G 3G,4G WiFi WiFi,3G WiFi,4G WiFi,3G,4G
∅ 0;0 0;19 0;26 0;38 0;22 0;37 0;41 0;48
3G 14;0 12;17 11;22 8;31 12;20 9;32 8;35 6; 41
4G 26;0 22;15 20;20 17;29 22;19 19;30 17;33 14;37

3G,4G 32;0 27;13 24;17 18;23 27;17 21;25 18;27 12;29
WiFi 22;0 20;17 19;22 17;32 0;0 - - -

WiFi,3G 32;0 27;14 25;19 20;26 - - - -
WiFi,4G 41;0 35;13 33;17 27;23 - - - -

WiFi,3G,4G 43;0 36;11 32;14 24;17 - - - -

Table 3.1: Net benefits matrix when Provider 1 is positioned on WiFi only, while
Provider 2 is already positioned on WiFi and 3G (hence has smaller 3G license
and infrastructure costs) [86]. Values are in hundreds of euros per month and
per cell, the symbol “-” indicates that the pricing game has no Nash equilibrium
with strictly positive prices.

3.4 To license or not to license resources?

The previous example illustrates the importance of regulation (through license
prices) on the technologies implemented by operators. But the regulator can
take even more drastic decisions, by deciding whether to license some part of
the spectrum, or to leave it unlicensed and accessible for free by operators.
The tremendous success of WiFi, and the economic growth it allowed, talks in
favor of developing license-free spectrum usage: this is among the objectives
of the upcoming so-called incentive auction in the US. Moreover, with licenses
some spectrum bands may be underused while others are congested; sharing
the capacity for a more efficient use of the scarce resource may be beneficial to
society.

Let us consider a model inspired from the one of Subsection 3.1.1, but mixing
licensed and unlicensed spectrum usage. More precisely, consider two providers,
each provider i = 1, 2 owning some licensed bandwidth to serve up to a demand
Ci. In addition, some part C of the spectrum is unlicensed, and can be used by
operators when their demand exceeds the capacity of their licensed bands. We
assume that this unlicensed spectrum is shared among providers, proportionally
to their excess demand as illustrated in Figure 3.10.

Consider the same pricing model as in Subsection 3.1.1, with users being
charged for all sent packets and thus perceiving a congestion-sensitive cost per
successful packet sent (see Equation (3.1)). One can then analyze the price
competition among providers: the best-response correspondences, when plotted
(see [78]), highlight a unique Nash equilibrium with non-zero prices. Also, the
impact of the amount of unregulated spectrum can be studied; the main welfare
metrics when the proportion of unlicensed spectrum increases are plotted in
Figure 3.11.

It appears that unlicensing spectrum favors users at the expense of providers
since the shared spectrum exacerbates price competition (lowering one’s price
increases one’s demand and thus one’s share of the unlicensed capacity). For
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this model the overall effect of unlicensing in terms of social welfare is negative,
but remember that the model is quite specific and does not encompass some
WiFi-like services such as free Internet access, that are proposed more and
more widely.

3.5 Summary
This chapter has highlighted several situations where service providers compete
to attract users. My contributions in those contexts are in the modeling of those
different settings (user churn among providers, shared versus licensed spectrum,
technology investments) using various types of mathematical approaches for
user decisions and the resulting demands. In each case, the models help gain
insights about the outcome from selfish behavior (of providers and users), and
about the need for regulation.

My publications related to this chapter are [9,42,45,70–72,77–79,82,85–87].
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Chapter 4

Interactions among content or
application service providers

4.1 Introduction

While the previous chapter was discussing the competition between network
service providers, which could be access network providers, or transit providers
needing (or required) to cooperate to deliver traffic to destination, the present
chapter is focusing on the competition at the content and application service
provider level. We are going to see that the models can be formulated in a very
general way, hence closely related to what we have described in the previous
chapter for access network providers. Indeed, the main driver for customer
choices is the price, but some notions of quality (of service) and reputation,
among others, can or need to be dealt with too, leading to similar models
for customers’ service provider choice (following Wardrop principle, or some
discrete choice or stickiness models). Those choices will be briefly recalled in
next section. We thus have multilevel Stackelberg games with providers playing
first on price and sometimes at an even higher level content/service investment,
anticipating the reaction of users to any strategy profile in terms of consumption.

The categories of content and application service providers which we have
in mind are mainly (but are not limited to): (i) content providers such as news
web sites for example competing on the content relevance and quality, design of
the site, awareness and attractiveness through advertisement; (ii) online shops
with similar characteristics; (iii) content delivery networks (CDNs) who have to
attract content providers in terms of price too, but also in terms of the quality
of service for users through investments in capacities strategically located; (iv)
similarly cloud service providers; (v) service applications such as search engines
competing for keyword searches through relevance of the results, leading to more
revenues from sponsored links; we will describe security providers as an illus-
tration. As said above, most of those competitive contexts can be encompassed
in a general Stackelberg game which will be briefly recalled in the next section,

45
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so we will afterwards focus on specific and arbitrarily chosen cases, by injecting
some characteristic modeling properties in the model.

It is worth mentioning that competition at the content/application service
level has risen with the so-called dot-com bubble in the late 90s, when Internet-
based services or applications boomed. The dot-com crash occurred in 2000-
2001, slowing the development of applications, bringing it back to a more re-
alistic rate. It is interesting to note that the goal of companies at their start
was (and still is for new entrants) to develop their base of customers as much
as possible in order to get a chance to survive, even if this is at the expense
of constant financial losses in the first years; typical examples are Google and
Amazon. As a maybe unexpected consequence of the crash, some surviving com-
panies managed to get a dominant position on their market, leading to some
less competitive areas; Google on the advertisement and search engine markets
is the immediate illustration. This type of dominant position and difficulty of
emergence of competitors has to be kept in mind.

4.2 Competition at the content level

This section discusses general models of competition, but also (arbitrary) specific
situations as illustrations.

4.2.1 General models

With full generality, the (abstract) models developed in previous chapters are
also applicable to analyze competition at the application/content level. Basi-
cally, we can represent the competition by two-level games where:

1. At the largest time scale, providers compete on the quality and design of
their content/application and their price (if any);

2. at the smallest time scale, users select their provider given the strategy
profile of providers. Note that they can even choose several providers
depending on the type of consumption, by splitting their usage between
the providers. This is typically what happens for news web site readers,
or often also for search engine users.

The games are here too solved by backward induction, the providers anticipating
the reaction of users for a given profile of strategies at the largest time scale,
making use of the subsequent users reaction.

Price was considered as the (or one of the) key decision variable for network
providers in the previous chapter, since it is a parameter which has a major
impact on users. This may still be the case for some specific service providers,
such as cloud service providers, CDNs (in this case users are specific content
providers themselves), e-commerce, content providers such as paid news sites,
online video services, etc. Though there are situations where applications or
contents are free, and even where free and paid services compete, hence other
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parameters or variable decisions have to be emphasized. A few examples of such
parameters:

• Content innovation and rejuvenation (or updating) for traditional web
sites. This can be seen as a function of the level of financial investments
made by the content provider towards activity on content. The utility
(revenue) is then also a function of the investment level, as a function of
the number of visits (through advertisement, but not necessarily only),
itself dependent on the profile of investments for all providers, hence a
game.

• Web site design and amount of incorporated advertisement. The more
ads displayed, the larger the potential revenue, but displaying too many
of them may deter users from consulting the content site. This has to be
balanced, in relation with the choices made by competitors.

The models to analyze such a competition may thus again follow one of the
three following approaches for customers’ choices:

• Wardrop principle when customers are assumed non-atomic and choose
the provider yielding the smallest perceived cost, or equivalently the largest
utility. Here, cost can again be based on price, for paid services mentioned
above, and on QoS (or congestion effects) such that more users implies
a degraded service–the most relevant use case of this type of equilibrium
notion. But other notions are usually involved, such that quality of content
in addition to price, or instead of it in case of free services. On top of
that game, a game is played by providers, making use of the subsequent
Wardrop equilibrium. This type of model is of interest when congestion
effects occur (a mass of users consuming the service creates a loss of utility
for others), otherwise it ends up with only one provider with a positive
demand.

• Discrete choice models such that the valuation of a customer u for a
provider, say i, is

Vi =

k∑

j=1

vi,k + κu,i

where vi,k represents the measured objective value of a
characteristic/attribute k at Provider i, and κu,i is an unobserved
user-specific value that is treated on the global level as a random
variable. In Subsection 3.1.2, a single attribute was considered, related to
price, but more can be used, as predefined functions of a corresponding
decision variable such as reputation, content investments, design of the
application, advertisement level, etc. Customers will select the provider
maximizing their utilities, hence the proportion of customers choosing i
is P[Vi = maxj Vj ]. Here again, providers may play on decision variables
that impact the various vi,k.



48CHAPTER 4. INTERACTIONS AMONG CONTENT/APP. PROVIDERS

• Aggregated demand models, for instance if a decision vector s = (si)i∈N is
given for a set N of providers, with si the decision variable (or potentially
vector) of Provider i, demand at i is given by

di(s) = di,0 − αif(si) +
∑

j 6=i
βijf(sj)

where di,0, αi and (βij)j∈N\{i} are strictly positive parameters and f is
a non-negative function. The decision variable can be the price as in
Subsection 3.1.2 with f the identity function (typical of paid applica-
tions/content), or again content/QoS investments. Such models do not go
down to the user level, and can then be seen as more arbitrary unless the
demand function form is validated. Nevertheless they often lead to more
tractable derivations.

The analysis can then be performed like in the previous chapter.

4.2.2 Illustrative model of competition between free CPs
with advertisement

To give a mathematical model of a specific situation, we present here a simplified
version of the one in [28]. The game is summarized in Table 4.1.

CP i
Input: content quality Qi

Strategic choice: advertising level ai
Effect 1: perceived quality Vi = Qi(1− ai)
Effect 2: number of visits Ci = Vi/

∑
j Vj (competition)

Consequence: revenues (CiQiai)i

Table 4.1: Game among CPs on advertising levels: a larger ai impacts positively
the revenue per visit, but negatively the number of visits because of competition
(more ads means worse perceived quality, hence users may turn to competing
CPs).

Consider a content, which could be a video sequence, a movie, or a TV show.
This content is controlled (or offered) by a set I of different free CPs, which
can play with the amount of advertisement included in their webpage. CPs
have different qualities experienced by users, depending on the number of clicks
needed to reach the content, such as when ads are superimposed to the content
and have to be clicked to be removed, or when there is a time before accessing
the content if a video ad is displayed first. The level Ai of advertising at the
CP i is thus a nuisance for users but an additional revenue through clicks for
the CP. We assume that CP i earns Ai each time its content is accessed, and
that the quality of experience (QoE) Vi that the user has with CP i ∈ I is of
the form

Vi = Qi −Ai, (4.1)
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where Qi > 0 is the intrinsic quality of the content of CP i (i.e., the quality that
the user would experience if there were no advertisement). To simplify nota-
tions, we will define and use ai := Ai/Qi as the relative amount of advertisement
introduced by CP i, such that ai ∈ [0, 1] because the amount of advertising will
be reduced to ensure non-negative utility in (4.1). Note that we take the CP
(or more precisely, publisher) point of view: the CP is not the one creating
advertisements, it just displays them and gets paid per impression (thus, pro-
portionally to the number of views), so we do not include advertisement creation
costs in our model. We also assume, to simplify the model in [28], a stickiness
model such that the proportion Ci of users choosing CP i is proportional to the
valuation associated to that CP:

Ci =
Vi∑
j∈I Vj

=
Qi(1− ai)∑
j∈I Qj(1− aj)

. (4.2)

The expected revenue per unit of time for a content provider i ∈ I, through
advertising, is

Ri = CiAi = CiQiai, (4.3)

where it is assumed linear in the amount of displayed advertisement. Each
CP i’s revenue thus depends on its strategic choice ai but also on the amount
of advertising (aj)j∈I6=i that the other CPs fix through the market share Ci.

For this game between CPs on the level of advertising, we established in [28]
the existence of a (non-trivial) Nash equilibrium, using Brouwer’s fixed-point
result as the main tool.
Proposition 4. There exists a Nash equilibrium aNE ∈ (0, 1)|I|, and any Nash
equilibrium is such that

1/2 < 1 + φi −
√
φ2
i + φi ≤ aNE

i < 1, (4.4)

with φi =
∑
j∈I\{i}

Qj
Qi

.
Let us briefly look at two particular cases, for which we can carry the ana-

lytical study further.

Symmetric case (Qi = Q ∀i ∈ I)
Looking more closely at the simpler symmetric situation, we get the expression

Ri = ai
1− ai∑

j∈I(1− aj)
. (4.5)

The revenue optimization leads to

(1− 2ai)
∑

j∈I
(1− aj) + ai(1− ai) = 0, (4.6)

giving for any i, k ∈ I

(1− 2ai)
∑

j∈I
(1− aj) + ai(1− ai) = (1− 2ak)

∑

j∈I
(1− aj) + ak(1− ak).
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Stated otherwise, it gives

(ak − ai)


ak + ai − 1 + 2

∑

j∈I
(1− aj)


 = 0.

From our general result, aj > 1/2 for all j ∈ I at a Nash equilibrium, so that
the right part of the above expression is strictly positive, giving ai = ak. Nash
equilibria are necessarily symmetric, of the form ai = a for all i ∈ I. Plugging
that condition into (4.6), we obtain a unique equilibrium, with

aNEi =
n

2n− 1
∀i ∈ I, (4.7)

where n is the total number of CPs, i.e., n := |I|, yielding the corresponding
revenue

Ri = a
1− a

n(1− a)
=

1

2n− 1
.

From this expression, we can remark that the more competition (that is, as n
increases), the less advertisement at each CP at equilibrium, with an asymptotic
value 1/2. Moreover the sum of revenues R =

∑
i∈I Ri = n

2n−1 is also decreasing
up to an asymptotic value 1/2.

Duopoly case

Consider now the case of an asymmetric duopoly. The best response functions
then equal

a1(a2) = 1− Q2

Q1
(1− a2)

[√
1 +

Q1

Q2

1

1− a2
− 1

]

a2(a1) = 1− Q1

Q2
(1− a1)

[√
1 +

Q2

Q1

1

1− a1
− 1

]
.

(4.8)

We draw in Figure 4.1 an example of best-response functions. We can check
that there are two Nash equilibria (the points where the curves intersect), first
the unlikely dominated situation a1 = a2 = 1 that we disregard, but another
point with ai > 1/2 ∀i (since in the symmetric case here, we get ai = 2/3 in
accordance with the previous results).

Figure 4.2 investigates the evolution of that Nash equilibrium point for a
range of ratios Q1/Q2 between the qualities at CPs. It is interesting to note here
that a content provider with higher intrinsic quality can increase its advertising
load. For more numerical results on this type of model, the reader is advised to
go to [28].
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4.3 Economics of network security
Cybercriminality affects businesses (Cyber risk is considered the most critical
risk by enterprises [118]) as well as private individuals. A recent illustration is
the security breach that has been found in the PlayStation Network in April
2011, whose cost for Sony has been estimated in tens of millions of dollars. That
breach exposed the personal information, and possibly the credit card data, of
77 million customer accounts.

Therefore, network service providers face new economic issues linked to the
providing of communications that are protected against all potential types of
attacks. That task is unfortunately impossible: with the appearance of new
applications and services, the number of breaches to cover increases exponen-
tially, so that many of them get discovered only when they are exploited by an
attacker. The amounts of money that cybercriminality represent are enormous,
be it in terms:

• of damage costs (imagine the financial loss of a 1-day service rupture for
a company like Amazon),

• of investment costs (security represents about 10% of companies IT ex-
penses),

• or even in terms of the underlying economy of attackers, i.e., attackers
selling their “services”.

That last point is particularly striking: since it may become economically in-
teresting for a company to harm a competitor’s IT system, some firms can be
willing to pay to do so, which is now incredibly easy. Indeed, there now exists
a (almost open) market for zombies renting, i.e., hackers who have managed to
take control of a large number of machines rent them for a period of time, at
a given price, so as to saturate the competitor’s servers, i.e., run a Distributed
Denial of Service attack. In the same vein, but dealing more directly with peo-
ple’s wealth, a highly competitive black market of stolen credit card numbers
has risen in the last years [62,128].

Those examples illustrate the fact that cybercrime is now highly organized
and competitive. Building businesses such as credit card data selling or zombie
renting takes some considerable effort, which has to be rationalized to maximize
revenue. This is the reason why the interactions among all actors in the con-
text of cybersecurity should be modeled and studied within the framework of
game theory, that precisely considers the potential outcomes of situations where
several self-interested agents are involved.

Let us come back to the setting described in Section 2.1.3 (with users choos-
ing a security solution based on its price, performance, and likeliness of being
targeted). We proved in [73] that for any price vector p = (p1, . . . , p|I|) set by
the providers, a repartition (Vi)i∈I of the total data value among the providers
is the unique repartition minimizing a strictly convex function, which guaran-
tees that a user equilibrium exists, is unique if all providers fix different prices,
and is tractable (using classical convex optimization tools [13]).
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Those results can then be used to study a higher-level game played by
providers, consisting in fixing prices so that the resulting user equilibrium max-
imizes revenue. Again providers are leaders in a multi-level game, and are
assumed to anticipate the user behavior. Remark that providers do not directly
care about the value of the data they protect, but rather about their market
share: denoting by ni the proportion of users subscribing to Provider i, the
revenue of that provider is indeed pini.

Actually, if a bounded-price alternative exists (e.g., a free security solution),
then providers will not raise their prices to extremely high values since their rev-
enue will decrease to 0 [73]. This is illustrated in Figure 4.3, where we consider
two security providers competing on prices, but with a free alternative (denoted
by Provider 0). Numerical results suggest it is quite likely that a price war situ-
ation arises, i.e., that successive price adaptations to the competitors’ behavior
lead to outcomes where providers make no revenue. However, when studying
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Figure 4.3: Revenue of provider 2 (π2 = 0.005) when facing provider 1 (π1 =
0.01) and free provider 0 (π0 = 0.05), with ri(x) = 1− e−x.

the interaction among security providers as a repeated game, i.e., a game played
repeatedly over time, then equilibrium prices yielding positive revenues can be
reached (due to the Folk Theorem).

4.4 Summary
In this chapter, we have summarized some of the results obtained for models
where content (or service) providers are in competition. Given the numerous
interactions among them, but also with users and possibly ISPs, those models
can be very complex, hence the need for simplification to maintain tractability
while capturing the main phenomena. The examples shown in this chapter
illustrate the variety of strategic levers that actors can activate: not only prices
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can be used, but also the amount of advertising or the level of performance
(through investments) can be strategically determined. Another example, not
presented here, is that of advertisers competing to attract users by bidding for
keywords on search engines (e.g., via Google adwords). Advertisers’ bidding
strategies can then be quite elaborate, especially when advertisement budget
constraints have to be taken into account [80,81].

My publications related to this chapter are [9, 28,35,73,80,81].



Chapter 5

Net and search neutrality

This chapter focuses on debates that are still vivid, regarding the neutrality
of intermediate actors between content providers are users. Neutrality is not
easy to define, be it in technical or judiciary terms, but the underlying principle
is quite intuitive: when providing users with access to content, intermediaries
should not introduce any user-based or content-based bias.

The most famous specific cases are

• the network neutrality debate, where the behavior of ISPs (providing the
“pipes” between content providers and users) is under scrutiny to prevent
some contents from being (dis)favored over others;

• and the search neutrality debate, where search engines (providing links to
content providers as a response to user requests) should present the most
relevant results, independently of the interests they may have among the
candidate results.

We present our contributions with regard to those two debates in the next two
sections.

5.1 The network neutrality issue

5.1.1 Introduction and historical facts

Let us first briefly summarize the main facts and concerns regarding the debate.

• Especially due to vertical integration, some ISPs may favor their own
content (or content paying for being favored) with respect to external
one, by providing a better QoS for instance;

• With constantly decreasing transit prices (see Figure 5.1), ISPs are worried
that revenues will become more hazardous and that investment in the
network infrastructure will become more difficult. They are thus asking

55
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Figure 5.1: Internet Transit Prices per Mbps (the last values are projected
prices). Data from drpeering.net.

for content providers to pay transit fees (i.e., to pay for traffic transferred
by distant ISPs).

Those suggestions to discriminate traffic or to charge content providers seem in
contradiction with the traditional vision of the Internet, providing a universal
connectivity and serving all packets in the same way. This has raised the so-
called network neutrality debate.

But discussing network neutrality first requires to define what a neutral
(or a non-neutral) behavior is. Surprisingly, there is no well-defined notion
of such neutrality. There is sometimes a distinction between strong and weak
neutrality, where a strongly neutral network is such that it does not allow to
manage packets differently in whatever way, while a weakly neutral network
just prohibits user discrimination but allows discrimination between application
types. In the former case, the network is understood to be as “dumb" as possible,
just carrying packets, and the “intelligence", if any, is rather placed at the
source and destination. The idea in the latter case is that some applications
may have more stringent QoS requirements (typically video needing limited
delay and latencies with respect to email services), hence there is no harm
but benefits for users to discriminate in case of congestion. A quite generally-
used definition of neutrality was introduced by Professors Timothy Wu and
Lawrence Lessig, saying that “Network neutrality is best defined as a network
design principle. The idea is that a maximally useful public information network
aspires to treat all content, sites, and platforms equally." A kind of “official"
definition has been summarized by the four following items and provided by the
Federal Communications Commission (FCC) in the USA in 2005 [39]:
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1. no content access can be denied to users;

2. users are free to use the applications of their choice;

3. they can also use any type of terminal, provided it does not harm the
network;

4. they can competitively select the access and content providers of their
choice.

The history and more details on the issues at hand, with the arguments devel-
oped by both sides, can be found in [83]. In our opinion, the debate is actually
between two different worlds with two different goals:

• an idealistic (neutral or weakly neutral) network as imagined initially by
scientists, with an organization in layers, a low cost, and for which end-
to-end connectivity and universality are the key issues;

• a purely economic (non-neutral) view of the network, looking at an efficient
economic management.

A strict comparison is thus difficult since it depends on the view of what the
network should be. Network neutrality is thus rather a political question about
whether we want a commercial or a non-commercial network, and the recent
intervention of US President Obama indicated a clear stance toward the latter.

We can also remark here that whatever the goal, the need for regulation
may differ depending on the considered country. Indeed, there are differences
in the competition between ISPs which could mean a different output if a care-
ful analysis is not performed: in the USA for instance, competition is not as
fierce as in Europe for broadband Internet access. Moreover, the fact that the
main content/service providers come from the USA may have an impact on the
political decisions.

Regardless of the main stances toward the debate, economic modeling and
analysis of the questions at hand should help decide what regulation (if any) to
impose.

5.1.2 Modeling content and network providers interac-
tions and analyzing neutrality issues

There exist many works trying to model network neutrality-related issues and
perform an analysis thanks to game theory (see among others [5, 6, 18, 20, 40,
47, 67, 68, 92, 96] and the references therein). We illustrate in this section how
modeling can be helpful to draw conclusions.

One content provider and one access provider

The model we present is based on the one in [29], with one CP and two ISPs,
that we first simplify by considering one CP, whose parameters will be indexed
by 1 and a single ISP, named A. The flat rate subscription fees prices charged
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End-users

ISP A
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CP 1

qA

p1

Figure 5.2: Charging interactions between stakeholders. Prices p1 and pA are
positive flat rates, whereas qA is a positive per-volume unit price.

to users to access the CP and ISP A are respectively denoted by p1 and pA. We
are going to study and compare neutral and non-neutral outcomes, therefore we
introduce a side payment qA > 0 that the CP has to pay per unit of volume to
ISP A. In the neutral case, qA is just fixed to zero. The charges imposed by
actors to other players are summarized in Figure 5.2.

We assume a continuum of end users, of mass one without loss of generality.
We assume that users first choose whether to subscribe to the ISP (depending
on price), and then in the affirmative case whether to subscribe to the CP. We
separate this choice from the broadband access, because users also want to access
the network for other reasons, such as email, web browsing, etc. We consider the
discrete choice/stickiness model of Subsection 3.1.2 for the choice of subscribing
or not to ISP A, with a “cost" p0 of not subscribing to the Internet, leading to
a mass (or proportion) of users subscribing to an Internet access (through A)

σA =





p−βA
p−βA + p−β0

if pA > 0

1 if pA = 0.

(5.1)

Now, the willingness to pay a subscription to the CP is assumed to follow an
exponential distribution with mean value 1/α > 0 over the population, indepen-
dently of the ISP choice, leading to a proportion e−αp1 of the ISP subscribers
deciding to subscribe also to the CP, hence a total mass σAe−αp1 subscribing
to both. As previously with the Gumbel distribution for user preferences (Sec-
tion 3.1.2), the choice of an exponential distribution (and hence an exponential
demand) is mainly motivated by mathematical convenience. But when we study
prices in a vicinity of a given level, what matters more than the actual distri-
bution is the local sensitivity to price (or equivalently, the demand elasticity),
which for our model can be tuned with the parameter α. We denote by D0 the
average volume the CP subscribers download from the CP, giving a data volume

DA = D0σAe
−αp1 (5.2)

which will be needed to compute the volume-based transit costs for the CP to
the ISPs.

The ISP revenue is then

UA = pAσA + qADA
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and the CP revenue equals

U1 = (p1σAe
−αp1 − qADA) = (p1/D0 − qA)DA,

where we include the subscription gains and volume-based side payments.
The user welfare associated with the existence of the CP is then (looking at

the “gain" x− p1 for subscriber with willingness to pay x)

UWCP = σA

∫ ∞

p1

αe−αx(x− p1)dx

= σA
e−αp1

α

=
DA

αD0
,

User welfare can be decomposed into two components: the user welfare due
to the existence of the CP (computed above), and the user welfare due to the
presence of the ISPs. For that latter part, we take

UWISP = p0

(
p0

pA

)β
.

(See [29] for a justification; remark that since user utility functions are not
quasi-linear–i.e., expressed in a monetary-equivalent form–it is difficult to define
UWISP, and other definition choices can be made.) The global user welfare
generated by the system (ISPs and CP) is therefore

UW = UWCP + UWISP. (5.3)

Whatever the value of qA assumed fixed first, CP 1 and ISP A choose respec-
tively their price p1 and pA maximizing their revenue, but ISP A does it first
at a larger time scale, anticipating the decision of CP 1. The ISP is therefore
the leader in a Stackelberg game, hence an analysis of the interactions among
providers using backward induction. The first-order condition then gives for
CP 1 (with pA and qA fixed)

∂U1

∂p1
=
DA

D0
− α(p1/D0 − qA)DA = 0,

i.e.,
p1 = 1/α+ qAD0.

We can remark here from the value of p1 that inserting side payments induces
a larger subscription fee for the CP, such that his revenue is U1 = DA/(αD0)
whatever the side payment, which is exactly the CP-related user welfare UWCP.
In other words, the interest of users connected to the Internet and that of the
CP coincide.
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To compute the optimal price pA for ISP A, we also compute the derivative

∂UA
∂pA

= σA + pA
∂σA
∂pA

+ qAD0e
−α(1/α+qAD0) ∂σA

∂pA
.

In the neutral case (qA = 0), pA does not depend on p1, and we get ∂UA
∂pA

=

σA + pA
∂σA
∂pA

= p−βA (p−βA + (1− β)p−β0 )/(p−βA + p−β0 ).

• If β ≤ 1, this derivative is always positive, hence setting an infinite price
is the “best solution". Said differently, sensitivity to prices is not large
enough to deter the ISP from increasing his price.

• If β > 1, the first-order condition gives

pA = p0(β − 1)−1/β .

The non-neutral case is not tractable and we need to resort to a numerical
evaluation. Figures 5.3 and 5.4 display the ISP revenue, CP revenue, user welfare
and social welfare (sum of user welfare and provider revenues) in terms of qA for
the optimally chosen p1 and pA (this one being numerically determined), when
α = 1, p0 = 1, D0 = 1, and β = 1.5. To compare the outcome with the neutral
case, we just need to compare with the point at the origin (qA = 0). The
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Figure 5.3: ISP and CP revenues, when the side payment qA varies.

introduction of a side payment clearly increases the ISP revenue, user welfare
and social welfare here, up to an optimal value above which demand decreases
too significantly. Remark that the side payment optimizing the ISP revenue
is slightly larger than the one optimizing user welfare. On the other hand, the
impact of the side payment is negative on the CP revenue, explaining the strong
reluctance of CPs to that “non-neutral” practice.
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Figure 5.4: User and social welfare, when the side payment qA varies.
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Figure 5.5: Charging interactions with two ISPs. Prices p1, pA and pB are
positive flat rates, whereas qA and qB are positive per volume unit prices.

One content provider and two access providers

We now consider two ISPs in competition instead of just one, named A and B,
all parameters for B being defined as for A above. Why considering competition
between ISPs instead of between CPs? Actually ISPs complain that they endure
competition (which is particularly true in Europe) at the network access level,
while for most types of services there is often a dominant actor (Netflix, Google,
etc.) and less competition, a reason why side payments are argued to become
relevant. Because of that competition, ISPs say that they are forced to decrease
their access prices and thus forced to get money from CPs. Our model can
help to study the relevance of this argument. A new sketch of charges imposed
among players for that setting is described in Figure 5.5. We assume again that
users first choose their ISP, and then subscribe to the CP or not. We still focus
here on a discrete choice/stickiness model for the ISP selection but notice that
a model based on Wardrop principles has also been considered in [18], such that
users simply select the cheapest ISP (leading to a Bertrand competition). With
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the stickiness model, the proportion of users subscribing to ISP i ∈ {A,B} is

σi =





p−βi
p−βA + p−βB + p−β0

if pA > 0 and pB > 0

1 if pi = 0 and pj > 0
1/2 if pA = 0 and pB = 0
0 if pi > 0 and pj = 0.

(5.4)

Using exactly the same arguments as for a single ISP, user welfare associated
with the existence of the CP is

UWCP =
DA +DB

αD0

and the providers revenues are for the ISPs (i ∈ {A,B}),

Ui = piσi + qiDi

and, for the CP,

U1 = (p1σAe
−αp1 − qADA) + (p1σBe

−αp1 − qBDB)

= (p1/D0 − qA)DA + (p1/D0 − qB)DB .

The decisions on prices are still analyzed by backward induction, the decision
at a given time scale being made anticipating the output at the later time scales
(as before, ISPs play first–hence a game among them–and the CP adapts his
price to the ISP prices).

We again first look at the smallest time scale (decision on p1) for fixed
other values. For convenience, we define Pi := pβi . A solution of the first-order
condition gives (see [29] if details are required):

p∗1 =





PA
PA + PB

(
D0qB +

1

α

)
+

PB
PA + PB

(
D0qA +

1

α

)

if pA > 0 or pB > 0,

D0
qA + qB

2
+

1

α
if pA = 0 and pB = 0.

(5.5)

Here again, the CP’s revenue when using this optimal price corresponds to the

CP-related user welfare
DA +DB

D0α
.

Knowing this reaction of the CP to ISPs’ price, these ISPs play a game on
their choice of pA and pB . In the neutral case (i.e., qA = qB = 0), it can be
shown, using the following formulation for the revenue of ISP A when plugging
the expression of the optimal price p1 (a symmetric formulation being obtained
for B), that

UA =





P0PBpA
P0PA + P0PB + PAPB

if pA > 0 and pB > 0

0 if pA = 0 or pB = 0,
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so that (pA, pB) = (0, 0) is a Nash equilibrium since no player can strictly
increase his revenue by unilaterally changing his action. But such a player’s
strategy is strictly dominated by any other as soon as the adversary price is
not zero. So it is not likely to be chosen by ISPs if another equilibrium exists.
Actually, in this neutral case it can be shown (see [29] for a proof) that the
(other) Nash equilibria can be described as presented in Table 5.1. In the case of

β ≤ 1 1 < β ≤ 2 β > 2
No equilibrium
(prices tend
to infinity)

Nash equilibrium

pA = pB =
(

2−β
β−1

)1/β

UA = UA := Uneutral

= (2−β)
1
β (β−1)1− 1

β p0
β

Nash equilibrium
pA = pA = 0
(price war)
UA = UB = 0

Table 5.1: Outcomes to expect from the ISP price competition game on pA and
pB in the neutral case.

(positive) side payments, we are here too not able to get analytical results. But
equilibria can be determined numerically and the resulting utilities compared
with the neutral case. We present a part of the results in [29], still with α = 1,
p0 = 1, D0 = 1, and β = 1.5 (other values giving similar outcomes). Numerical
computations show that the revenue of the CP and the user welfare he creates
are always equal at equilibrium (which is easy to prove when qA = qB , but not
in the general case). We display the revenues of providers in Figures 5.6 and 5.7.
Discontinuities can be observed, corresponding to situations when there is a

price war: equilibrium subscription prices of both ISPs fall down to 0 for some
side payments (this is for example the case when qA = qB = 1, but never when
qB = 0 or qB = 3). We can briefly remark that the revenue of ISPs is not
monotonic with the side payment, that the maximal revenue of an ISP, say A
may be obtained for a null or positive side payment, and that the CP revenue
has a tendency to decrease with side payments.

For this model with competing ISPs, we have not evoked yet the decision
level corresponding to setting the side payment values. Side payments can be
determined by the CP, or by ISPs, through a game. Conclusions from numerical
investigations in [29] for these three cases are:

1. If side payments are decided by the CP: it is interesting to note that strictly
positive side payments can be optimal for the CP, something counter-
intuitive at first sight, especially since it was not the case when we had
a single ISP. Actually, side payments exacerbate the competition between
ISPs on access prices, reduced at equilibrium with respect to the neutral
case; this is beneficial to end users, and finally to the CP who can reach
more customers.

2. If side payments are decided by the ISPs, through a game: for the param-
eter values given above, (0, 2.80) and the symmetric point (2.80, 0) are



64 CHAPTER 5. NET AND SEARCH NEUTRALITY

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

qA

U
A

qB = 0
qB = 1
qB = 2
qB = 3

Figure 5.6: ISP A revenue at equilibrium as a function of the side payment qA
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Nash equilibria. Comparing with the neutral case, the ISPs total revenue
increases by about 15% (hence in agreement with their call), while the CP
revenue decreases by 75% of its value.

5.2 Search neutrality

5.2.1 The debate

Search engines play a pivotal role in the Internet economy, as the entry points
to websites for most Internet users. As an illustration, in the US only about
20 billion requests from home and work desktops are treated by search engines
each month1. Search engines return a ranked list of links (the so-called organic
results) to documents available on the World Wide Web given any keyword.
The list is obtained from a link analysis algorithm which assigns a weight to
documents [7, 8], the goal being to provide the most relevant results. In this
section we will only focus on those organic results, ignoring the advertisement
links aimed at yielding revenue to search engines.

But the ranking of organic links by search engines is now questioned by
actors of the Internet and regulators, claiming that relevance is not its only fac-
tor, and that some revenue-making components are taken in consideration [34].
This question has become a vivid debate worldwide [34, 50]. The term search
neutrality has been coined in 2009 by Adam Raff, co-founder of Foundem (a
price-comparison company), after a vivid argument about Google penalizing his
company in its ranking. The term is voluntarily inspired by network neutral-
ity, because of the similarities in their stakes, namely the limitations on users’
access to all relevant services on the Internet. Google actually acknowledged
affecting a penalty to results such as Foundem’s website, under the argument
that it is a vertical search engine–i.e., a search engine focusing only on a part
of the Internet, and that vertical search engines are perceived by users as spam.
But Google also offers price-comparison and other specialized search services,
and penalizing other companies in that same business can be seen as hindering
competition; Google finally decided to whitelist Foundem manually, but kept its
penalty policy towards other vertical search engines, leaving the debate open.

In addition (still focusing on Google because it represents more than 80% of
the search market), Google offers many other services–e-mail, maps, calendar,
video, shopping...–and would be naturally tempted to direct users towards them
rather than towards their competitors. For example Google favors (or is accused
to favor) YouTube content because money can be generated from those links2.
In this section, we therefore focus on the analysis of the reality of such biases,
and discuss their impact on competition and on user welfare.

1www.comscore.com
2See for instance http://www.guardian.co.uk/technology/blog/2011/sep/21/

eric-schmidt-google-senate-hearing or, for measurements, http://www.benedelman.
org/searchbias/

www.comscore.com
http://www.guardian.co.uk/technology/blog/2011/sep/21/eric-schmidt-google-senate-hearing
http://www.guardian.co.uk/technology/blog/2011/sep/21/eric-schmidt-google-senate-hearing
http://www.benedelman.org/searchbias/
http://www.benedelman.org/searchbias/
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The main arguments in favor of search neutrality (i.e., imposing that ranking
be based only on relevance) are in terms of user and social welfare. First,
neutrality should benefit to users by providing them with the most relevant
results, instead of driving them toward what yields the largest revenue to the
search engine. For the same reason, neutrality benefits to the global economy
by facilitating the access to the best-performing actors/services (and not those
paying to be ranked well), so that new businesses can emerge more easily. As a
side effect, it is also claimed that search neutrality elicits efforts from websites to
improve their content quality, rather than to pay in order to be ranked better.

On the other hand, the opponents of search neutrality consider that users
are interested in the differences among search engines, and select their preferred
one, while such a differentiation would disappear if neutrality is enforced. Also,
neutrality would prevent search engines from manipulating rankings, which they
claim to do mainly to improve the results by avoiding spam: neutrality would
then lead to worse results for users. Finally, imposing the transparency of the
ranking algorithms (as often advocated by search neutrality proponents) raises
issues in terms of intellectual property, and facilitates the job of spammers
exploiting the working of those algorithms.

5.2.2 Do we need a regulatory intervention?
Investigations carried out in 2010 [38] and 2011 [126], both highlight some mea-
surable biases in the results provided by search engines. The concern about
non-neutral search engine is strongly shared by the European Union regulators,
that are progressing toward an antitrust settlement deal with Google, after a
complaint issued in 2010 by several specialized service companies. The Eu-
ropean consumers’ organization (BEUC) has acknowledged the risks of search
bias, and suggested remedies. It has been agreed that Google search algorithm
should follow some general principles to guarantee more fairness of its search
results.

“Google must be even-handed. It must hold all services, including its
own, to exactly the same standards, using exactly the same crawling,
indexing, ranking, display, and penalty algorithms.”

BEUC, March 2013 [99]

In particular, measures consisting in labeling among organic results those
pointing to own-content or sponsored content are not sufficient. This is in
accordance with recent studies [49] showing that such labels have almost no
effect on users’ clicking behavior; the position of the link among the organic
results appearing as the main factor.

5.2.3 Neutral versus non-neutral search engine: a model
Let us now investigate through a mathematical model (introduced in [64]) the
incentives for a search engine to deviate from a ranking based only on relevance.
Such a deviation will be called biased, or non-neutral.
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To compare rankings based on relevance with other types of rankings, we first
have to assume that an objective measure of relevance exists for each webpage
potentially ranked by the search engine, and that the search engine is able
to compute it. This assumption seems reasonable since search engines deploy
complex algorithms to rank webpages, and should be able to fine-tune them for
the best interests of their users (e.g., using the feedback on rankings that users
make through their clicking decisions).

For each arriving request (i.e., a query sent to the SE by a user), different
content providers (CPs) host pages that are relevant. Out of a universe of m0

pages available online, we denote by M ≤ m0 the number of pages that match
the arriving request. Each page i = 1, . . . ,M has a relevance value Ri ∈ [0, 1],
and an expected revenue per click Gi ∈ [0,K] for the CP (here, K is a pos-
itive constant) of which the SE receives a fraction αi ∈ [0, 1]. Consequently,
the SE’s expected revenue per click from page i is αiGi. The SE might some-
times also be the CP for a subset of the pages matching the request; in those
cases αi = 1 because it receives all the revenue. Putting this all together, the
instance of the ranking problem corresponding to a given request is encoded
by a vector Y = (M,R1, G1, α1, . . . , RM , GM , αM ) that we assume to belong
to a universe of admissible requests. After getting the request, the SE must
select a permutation π = (π(1), . . . , π(M)) of the M pages and use it to display
links to those pages in order. A stationary ranking policy µ is a function that
assigns a permutation π = µ(Y ) to each possible realization of Y . We shall
only consider deterministic stationary policies, as opposed to randomized ones,
which map each Y to a probability distribution over the set of permutations of
M elements. The problem for the search engine will be to choose an optimal
ranking policy, taking both into account the short-term effect (the immediate
revenue) and the long-term effect (the number of visits, that depends on the
user perceived relevance of results). That tradeoff is illustrated in Figure 5.8.

Search Engine

ranking policy

resulting in
{

average gain Ḡ
average relevance R̄

per request

visit rate λ(R̄)
revenue λ(R̄)Ḡ

average relevance R̄

Figure 5.8: Search engine whose ranking policy produces and average relevance
of results and an average gain. The number of visits (i.e., popularity of the
engine) depends on the average relevance.

The click-through-rate (CTR) of a link that points to a page is defined as the
probability that the user clicks on that link [48, Chapter 8]. This probability
depends on the relevance of the content but also on the position number where
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the link is displayed. We assume that the CTR of the link to page i placed at
position π(i) can be expressed as the (separable) product of a position effect
and a relevance effect. That is, CTR is given by

CTR(i) = θπ(i) ψ(Ri),

where 1 ≥ θ1 ≥ θ2 ≥ · · · ≥ θm0
> 0 is a non-increasing sequence of fixed positive

constants that describe the importance of each position in the ranking. The
non-decreasing function ψ : [0, 1] → [0, 1] maps the relevance to the (position-
independent) probability of the page. The assumption that the CTR is separable
is pervasive in the e-Commerce literature [69, 121]. We will rely on it to derive
simple optimality conditions. According to this assumption, to increase the
CTR, we can either choose a more relevant page or we can choose a position
closer to the top of the list.

Fixing a request Y and a permutation π, we now define the objective function
we shall consider. The local relevance captures the attractiveness of the ordering
from the consumer’s perspective. It is computed by

r(π, Y ) :=

M∑

i=1

CTR(i)Ri =

M∑

i=1

θπ(i)ψ(Ri)Ri =

M∑

i=1

θπ(i)R̃i, (5.6)

where R̃i := ψ(Ri)Ri. The expected total revenue arising from the request
equals

g0(π, Y ) :=

M∑

i=1

CTR(i)Gi =

M∑

i=1

θπ(i)ψ(Ri)Gi, (5.7)

out of which the SE receives

g(π, Y ) :=

M∑

i=1

CTR(i)αiGi =

M∑

i=1

θπ(i)ψ(Ri)αiGi =

M∑

i=1

θπ(i)G̃i, (5.8)

where G̃i := αiψ(Ri)Gi.
To obtain an optimal ranking policy, we must consider that since customers

are quality-sensitive, the choice of policy µ(·) influences the future arrivals of
customers. This has deep implications because a myopic policy for the SE
(i.e., choosing µ(Y ) ∈ arg maxπ g(π, Y ) for each Y ) does not suffice to achieve
optimality. To capture the dependence on future end-users that arrive to the
SE, we consider the multivariate distribution of the input requests Y . Each
request is then interpreted as a realization of Y according to that distribution.

We estimate the long-term value induced by a stationary ranking policy µ
by taking expectations of the objectives presented earlier with respect to the
distribution of input requests. Therefore, the expected relevance per request is

r := r(µ) = E[r(µ(Y ), Y )], (5.9)

the expected total revenue per request is

g0 := g0(µ) = E[g0(µ(Y ), Y )], (5.10)
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and the expected SE revenue per request is

g := g(µ) = E[g(µ(Y ), Y )]. (5.11)

In the three previous definitions, the expectation is taken with respect to the
random variable Y .

A non-myopic SE would be interested in the expected long-run revenue. This
must depend on both the expected relevance per request r and on the expected
SE revenue per request g. We capture the two dependencies through the general
function

USE = ϕ(r, g), (5.12)

where ϕ is an increasing function of r and g with bounded second derivatives
over [0, 1] × [0,K]. A natural particular case is, as suggested by the above
discussion,

USE = λ(r)(β + g), (5.13)

where λ(r) is the expected number of searches per time unit when the expected
relevance of the results is r. An optimal policy from the perspective of the SE
is a stationary ranking policy µ that maximizes USE.

For that model, we characterized in [64] the optimal ranking policies:
Proposition 1. If the tuple (r, g) corresponds to an optimal policy, θk−θk+1 > 0
for all k, then then this policy for almost all Y (with respect to the measure ν),
µ sorts the pages by decreasing order of R̃i + ρG̃i, with

ρ =
∂φ(r, g)/∂(g)

∂φ(r, g)/∂(r)
. (5.14)

Note that then r and g depend on ρ, hence (5.14) is a fixed-point equation in ρ.
For the special case when φ(r, g) = λ(r)(β+g), we have sufficient conditions

for such a policy to exist
Proposition 2. Assume that the distribution F has a density.

• If x 7→ λ(x)
λ′(x) is upper-bounded for all x ∈ [0, r0] then the fixed-point

equation (5.14) has at least one solution.

• If x 7→ λ(x)
λ′(x) is non-decreasing then the fixed-point equation (5.14) has at

most one solution.

In [64], we show how to approximate this fixed-point using simulation tools.

5.2.4 Comparison of the Neutral and Non-Neutral Rank-
ing Policies

Let us now see on numerical examples how the theory developed earlier can be
used to study the impact of different ranking policies on various performance
indicators such as consumer welfare (captured by expected relevance), SE and
CP revenue. In particular, we compare neutral ranking policies, where ρ = 0,
with non-neutral ones, where the SE chooses the optimal ρ∗.
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Table 5.2: CTR values used in the simulations of Section 5.2.4

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0.364 0.125 0.095 0.079 0.061 0.041 0.038 0.035 0.03 0.022

A Vertically Integrated SE with a CP

Example 1. We first focus on a specific type of request which can be served
by either third-party CPs or by the SE itself. This is typical for many search
categories where the SE also provides content (e.g., video, weather, finance,
news, maps, flight information, and so on). In this case, a limited number of
CPs compete with the SE, and the parameters r, g, and λ(r) for the instance
correspond to just this type of request. Let us assume that always ten pages
match a request (M = 10). Nine of those pages are served by third-party
CPs but one of them is served by the SE directly. Perhaps renumbering CPs,
we have that α1 = 1, and α2 = . . . = α10 = 0. In addition to the revenue
coming from Page 1, the SE also receives an expected revenue of β = 1 per
request from sponsored links. For i = 1, ..., 10, Ri and Gi are all independent
random variables uniformly distributed over [0, 1], and CTR(i) = θi as specified
in Table 5.2. Those numbers were taken from the first table in [36], which
contains the observed relative numbers of clicks according to the position: the
actual CTRs should therefore be proportional to those numbers, and the value
of the multiplicative constant has no impact on our derivations (hence we take
it equal to 1). Finally, we set λ(r) = r, and ψ to be the unit function.

The M pages are ranked by the SE by decreasing value of R̃i + ρG̃i, for
the correct constant ρ ≥ 0. Note that for i > 1, G̃i = 0 because αi = 0. To
illustrate the dependence on ρ, Figure 5.9 shows the SE revenue USE(ρ), as ρ
varies, as well as the relevance r(ρ), the revenue and the visit rate for CP 1
and for third-party CPs. All revenues are expressed as values per time unit. As
discussed earlier, the more ρ increases, the more the SE favors CP 1, decreasing
the overall relevance and increasing the visit rate to CP 1. The trade-off between
short-term revenue and number of visits tells the SE to choose ρ∗ ≈ 0.55. Note
that the bias affects only CP 1 and that the relative positions of all other CPs
remain the same as in the neutral ranking. Consequently, the relevance r(ρ) is
only marginally affected by ρ in this case. If R1 was stochastically much smaller
than the other Ri’s (e.g., uniform over [0, ε] for a small ε), then the impact of
ρ would be larger. When ρ→∞, CP 1 is always ranked first, so the relevance
r(ρ) becomes

r(∞) =

(
θ1

2
+

9∑

i=1

θi+1E[U(10−i)]

)
=
θ1

2
+

9∑

i=1

θi+1
(10− i)

10
≈ 0.517,

where U(1), . . . , U(9) are independent random variables uniformly distributed
over [0, 1] sorted by increasing order (the order statistics), and the CP 1 visit
rate is θ1r(∞) ≈ 0.188.
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Figure 5.9: Performance measures as a function of the value ρ used in the
ranking (simulation results)

To assess the sensitivity of the SE strategy to advertising, we now examine
how results change for different values of β, i.e., depending on the level of
advertisement revenues. This shows the tradeoff that the SE faces for different
types of requests. For search keywords related to, e.g., airline tickets, hotel
reservations, or retailer products, the SE may expect to make more profit by
showing its own content among organic links than through sponsored search
because requests of this kind may produce conversions, whereas for keywords
that are appealing in the sponsored search market the SE may try to make
the search as relevant as possible to boost that revenue stream. Figure 5.10(a)
plots ρ∗ as β varies while Figure 5.10(b) plots the ensuing revenue for CP 1
and for each third-party CP. The curves shown in the figures were estimated by
simulation, using the iterative fixed-point method for ρ∗, with a fixed sample size
of n = 107 at each step. When β grows, ρ∗ tends to zero, because the revenue
from sponsored links dominates, making it rewarding for the SE to improve
quality to attract more users. In conclusion, the impact of non-neutrality is small
because biasing the ranking only attracts limited additional revenue. Instead,
when β is small, sponsored links do not pay off and it becomes worthwhile for
the SE to sacrifice relevance to some extent to boost revenue from gains of CP
1. In the extreme case when β = 0, we have ρ∗ =∞, so CP 1 is always placed at
the top regardless and the other CPs are sorted by decreasing order of relevance.
This gives an average revenue of 0.09619 for CP 1 and 0.01695 for any other CP
(even though all CPs have the same relevance and gain distributions). Although
not shown in the figure, we remark that USE tends to grow linearly with β, which
means that the increasing revenues of sponsored search dominate the possible
revenue coming from CP 1. To illustrate the impact of non-neutrality, Table 5.3
reports the variations of the most relevant performance metrics when ρ = ρ∗ is
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Figure 5.10: Optimal ρ factor to use for the ranking, and corresponding CP
revenues per time unit as a function of the average advertisement revenue per
visit β (simulation results)

used instead of ρ = 0 (neutral ranking), for different values of β. The table
illustrates that while the impact on the perceived quality (relevance) remains
small (around 10%), the impact on the visibility and the revenues of the SE-
owned CP is substantial: by being non-neutral, the SE can multiply the revenues
of its CP by a factor 2.8 and its visit rate by more than a factor of 3. On the
other hand, the other CPs see their revenues and visit rates reduced by 14% to
32%, a significant loss that is likely to affect their possibilities of being profitable
in the long term.

Finally, we explore the sensitivity of outcomes to the number of available
results. Figure 5.11(a) plots ρ∗ as a function of M while Figure 5.11(b) plots
revenues as a function of the number of matching pages M . We include curves
for both the neutral (ρ = 0) and non-neutral (ρ = ρ∗) regimes to compare both
situations. As before, we estimate these values using the fixed-point algorithm
with n = 107 at each step. As M increases, ρ∗ increases too: The SE can give
more weight to CP 1 and increase its revenue while making less damage to the
relevance, because placing CP 1 higher has less impact on the overall relevance
when M is larger. As a result, the revenue of CP 1 when ρ = ρ∗ increases with
M , and so does the advantage of CP 1 over the other CPs. The loss of revenue
of the other CPs seems close to constant as a function of M .
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Table 5.3: Impacts of a non-neutral ranking for the scenario of Section 5.2.4

CP 1 other CP CP 1 other CP
Relevance revenue revenue visit rate visit rate

Neutral, ρ = 0
(reference case
optimal for β =∞)

0.635 0.028 0.0283 0.057 0.057

Non-neutral, ρ =
0.559

0.618 0.066 0.0243 0.112 0.049

(optimal for β = 1) (-3%) (+136%) (-14%) (+96%) (-14%)
Non-neutral, ρ =
0.924

0.592 0.084 0.0215 0.140 0.043

(optimal for β = .5) (-7%) (+200%) (-24%) (+146%) (-25%)
Non-neutral, ρ =
1.374

0.568 0.093 0.0193 0.158 0.039

(optimal for β =
.25)

(-11%) (+232%) (-32%) (+177%) (-32%)
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Figure 5.11: Optimal ρ factor to use for the ranking, and corresponding CP
revenues per time unit as a function of M (simulation results)
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5.2.5 Vertical Integration and Investment

Example 2. Continuing with the example of vertical integration, we now assume
that one of the nine third-party CPs, say CP 2, invests in quality and manages
to improve the relevance distribution. More specifically, we assume that when it
invests z > 0, the relevance of CP becomes uniformly distributed over [0, 1+20z]
(instead of over [0, 1]). The other parameters and distributions, including the
distribution of its gain G2, are unchanged. Figures 5.12(a) and 5.12(b) show
simulation results when the SE ranks CPs according to R̃i + ρG̃i, for varying
values of ρ, and when z = 2. For a neutral ranking (ρ = 0), CP 2 logically
makes more revenue than the other CPs, since it regularly gets higher ranking.
However, when ρ increases and exceeds about 0.8, CP 1 becomes the one with
highest revenue, despite its (stochastically) lower relevance.
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0.8

ρ

(a) Relevance and revenues
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5 · 10−2
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ρ

(b) Visit rates

Revenue USE(ρ) CP 1 Other CPs
Relevance r(ρ) CP 2

Figure 5.12: Average relevance, revenues and number of visits per time unit for
the case of vertical integration with investment

We now take the perspective of CP 2, and compute its optimal decision.
CP 2 invests z in quality to modify its relevance distribution to [0, 1 + 20z],
anticipating that the SE is going to rank requests according to ρ∗. (We assume
that the SE can learn the distribution of relevance of all CPs quickly.) Therefore,
CP 2’s profit equals the revenue from the search market minus z. To find the
optimal value of z we simulated the outcomes for z ∈ [0, 0.45]. Figures 5.13(a)
and 5.13(b) plot the resulting curves. In both figures, we see that differences
between neutral and non-neutral revenues are small, except for CP 1. This is
particularly true for CP 2. This means that, at least in this case, non-neutrality
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does not deter innovation. Actually, the optimal investment level under both
regimes coincide and is equal to z∗ = 0.025. Optimal profits, though, vary.
They are 0.037 for the neutral case and 0.0296 for the non-neutral one; see
Figure 5.14 where we show CP 2 profits as a function of the investment z.
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Figure 5.13: Revenues and visit rates to various CPs as a function of CP 2
investment

The results for this model might prove useful to platform owners (search
engines, classified ads websites, online retailers) to navigate the tradeoff be-
tween short-term and long-term effects when defining their ranking strategies.
They can also be of interest to regulators, seeking to understand the behavior
of revenue-oriented platforms and to anticipate the impact of regulatory inter-
ventions, which is of particular importance with regard to the current search
neutrality debate.



76 CHAPTER 5. NET AND SEARCH NEUTRALITY

0 5 · 10−2 0.1 0.15 0.2

−2

0

2

4

·10−2

z

CP 2 Profit (neutral)
CP 2 Profit (non-neutral)

Figure 5.14: Profit per time unit as a function of CP 2 investment



Chapter 6

Conclusions and perspectives

6.1 A boundless research area

The Internet is an extremely complex ecosystem with enormous economic stakes,
involving a lot of actors with non-aligned objectives. The balance among those
actors, and in particular the consequences of their decisions on users and on
newcomer companies are very carefully considered by regulators, in order to
keep the Internet an innovation-fostering system, providing universal access to
users with a sufficient quality.

The current debate on Net Neutrality epitomizes that attention from regula-
tory bodies (and the highest political levels) on the management of the Internet.
The power equilibria among actors seem very sensitive to the (regulatory) con-
text, and are also very likely to be dramatically affected by some recent technical
changes in networks, when new functionalities enable new actors to enter the
market and/or endanger the survival of existing actors.

In that context, economic studies can be of great help to understand and pos-
sibly anticipate the impact of new rules or new technologies on the ecosystem.
Given the current speed of appearance of new services and technologies, there
is definitely room (and need!) for research on the economics of telecommunica-
tions. I hope that the few contributions presented in this document illustrate
this need, and the usefulness of such analyses.

From a scientific point of view, the telecommunication ecosystem is so com-
plex and rich that potentially all kinds of interactions can be found, and with the
flexibility offered by the transition to “virtualized systems”, new types of rela-
tionships among actors can even be imagined. Hence this field is an unbounded
playground for scientific studies, to build and analyze the most complex game-
theoretic models, design auction or regulation mechanisms (like the so-called
incentive auction for spectrum in the US, whose rules are being defined by
some of the most prominent economists in the world), or try to anticipate the
user behavior when faced with new choices.

There are many new topics worth developing, I am presenting here only two,

77
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but it is very likely that the coming months will witness more novelties in the
telecommunication world deserving careful economic studies.

6.2 Some perspectives

6.2.1 The role and impact of Content Delivery Networks

The term Content Delivery Network (CDN) refers to both an infrastructure
designed to deliver content at large scale over an underlying network, and the
economic actor providing that service. We focus on the economic actor.

CDN have a huge economic weight (the annual revenues of Akamai, the
CDN leading company, are over two billion dollars), and a growing impact on
the Internet ecosystem: i) CDN activities affect the traffic exchanged between
network providers, and consequently their economic relationships [61, 113]; ii)
on many aspects (per-volume charging, connectivity service) CDN actors com-
pete with transit providers, which explains why some major transit network
operators such as Level 3 have shifted a fraction of their activities to CDN; and
iii) other actors in the value chain of content delivery have started developing
a CDN activity, including Internet Service Providers (ISPs), content providers,
and equipment vendors [17, 116]. This fast-moving and business-driven envir-
onment exacerbates the concerns among user and regulation communities re-
garding service quality and economic fairness, epitomized by the net neutrality
debate [33,66,74,127].

The scientific literature provides models and analyses of the interactions
between content providers and ISPs in order to address network neutrality,
and sometimes to propose regulation remedies [5, 29, 30, 40, 96], but the role
of CDNs is barely mentioned. To the best of our knowledge, the only official
report mentioning CDNs is from the Norwegian regulator [117], where it is
stated that “the ordinary use of CDN servers is not a breach of net neutrality”.
More generally, the performance analysis community has barely considered the
economics of CDN actors so far.

Currently, a few dominant players concentrate more than half of the Internet
traffic on the behalf of millions of service providers. We would like to study
the importance of CDNs in the ecosystem, with a particular focus on the net
neutrality debate.

Our goal is to explore CDN management policies in economic terms, in par-
ticular investigating the consequences on the net neutrality debate. We therefore
need to model the interplay between the aforementioned multiple parameters,
determine general policies for actors, analyze today’s CDN policies and fore-
see possible evolutions. The finding would then help interpret the activities of
CDN vis-à-vis the net neutrality debate and suggest possible regulation policies
to mitigate disorders (if any) that CDNs introduce in the global management
of the Internet.

We have started some preliminary work on those topics, by studying the
behavior of revenue-driven CDN operators, for which the strategic decisions
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are:

• Whose content to keep in the caches? Depending on the popularity of
content, the transit costs in the network, the prices that content providers
pays for the CDN service, and the cache capacity limits, the CDN has to
decide if at all to keep some piece of content or not in its caches.

• Where to cache the content? CDNs own a whole network of servers,
located at different distances from end-users. With tree-like topologies in
the last miles, the trade-off is between caching content close to users (for
better quality) and having it accessible to the largest number.

• How much to invest in cache capacities?

We are still investigating those questions in more and more complex (and re-
alistic) scenarios, and hope to obtain results yielding insights regarding how to
regulate (if any) the behavior of CDNs.

6.2.2 Software-Defined Networking: principles, opportu-
nities and threats for the Internet ecosystem

Software-Defined Networking (SDN) solutions consist in separating the network
control plan (e.g., making the routing decisions for some specific flows in the net-
work) from the data plan (the actual material performing the data transfers).
The behavior of the hardware components can then be modified and orches-
trated in a simplified way, through standardized protocols such as OpenFlow.
This allows a great flexibility: one can “build” a new network (based on existing
hardware and infrastructure) or upgrade it very rapidly (in the order of minutes
or seconds), compared to the extremely long delays to build new infrastructures
or topologies (weeks when only commercial agreements need to be settled, or
months when new physical communication lines have to be built).

From an economic point of view, the link between the network capacities
offered and the physical resources used becomes less clear (the physical frame-
work becoming transparent to the entity asking for some network service). As
a result, many pricing schemes based on resource usage (as the ones surveyed
in [31,83,123]) are harder to justify and should be redefined.

Moreover, the flexibility that SDN allows is very likely to strongly impact
the actors involved, for example by rendering competition much fiercer. The
resulting equilibria of forces may be totally different from what we currently
know: for example we intend to investigate whether the current trend –where
the market power of service/content providers increases at the expense of in-
frastructure providers– is likely to accelerate, or whether new types of actors
(e.g., the SDN service providers) can take a preponderant place in the market.
The impacts on the net neutrality debate are also worth considering.
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1. Introduction
Congestion in most large cities in the world is preva-
lent. The Urban Mobility Study, a survey conducted
by the Texas Transportation Institute (Schrank and
Lomax 2007), estimated that the congestion bill related
to automobile traffic, in the U.S. alone, amounts to
$78.2 billion in 2005. This cost estimate is based on the
following two components: 4.2 billion hours of delay
that people lose to highway congestion plus 2.9 bil-
lion gallons worth of fuel. Given those figures, even a
small improvement in the efficiency of the road traffic
system implies that a large sum of money and time
could be saved. Furthermore, a recent study by the
(Partnership for New York City 2006, p. 3) concluded
that “traffic delays add to logistical, inventory, and
personnel costs that annually amount to an estimated
$1.9 billion in additional costs of doing business and
$4.6 billion in unrealized business revenue.”
In most urban transportation networks, commuters

do not have to pay the cost they impose to others by a
particular choice of mode and route. Because of these
under-payments, decisions—which are mostly influ-
enced by a desire to get to the destination as fast as
possible and as cheap as possible—lead to choices that
do not use the available capacity of the network well.
Because congestion increases sharply with road use,

having relatively few drivers switch to other modes
significantly improves commute times. Starting with
the seminal idea of Vickrey (1955, 1969), many trans-
portation economists have advocated the use of con-
gestion pricing to achieve this goal. The scheme forces
drivers to pay a toll when entering congested areas
as an incentive to switch to other modes of trans-
portation (operational details differ according to the
concrete implementation). The underlying idea is to
charge drivers the externality they impose to others
because when commuters internalize these externali-
ties, the corresponding choices maximize the system
welfare.
Singapore introduced congestion pricing in 1975,

London in 2003 (Santos 2005; Santos and Fraser 2006),
and Stockholm in 2007. Increasingly, many large cities
have been debating whether a congestion pricing
scheme should be adopted, New York City being the
most prominent example in the United States. Never-
theless, it has been very hard to implement congestion
pricing because of technical, economical, and politi-
cal problems (e.g., the proposal in New York was not
implemented after the State Assembly blocked it in
2008). Even though proponents claim it will decrease
the delay costs generated by congestion, will curb
harmful emissions and will reduce the dependence
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on oil, the main concern that opponents raise comes
from the perspective of social equity. Opponents favor
other alternatives such as restricting some cars from
driving to congested areas on some days of the week,
increasing the taxes for parking, and offering incen-
tives for tele-commuting, among many others.
Introducing congestion pricing is not likely to have

a large impact among the better-positioned segment
of society. They will continue to drive because they
can afford to pay the corresponding charge. In con-
trast, the not-as-well positioned segment will be rel-
egated to the less desirable options because they
cannot afford to pay the tolls. Some articles suggest
different measures to alleviate problems of inequity
raised by this type of mechanisms (e.g., Starkie 1986;
Button and Verhoef 1998).
The most important practical questions are which

incentives to offer, at what level, how much they
will improve social welfare, and who will be affected.
Most cities that do use congestion pricing, use a
second-best approach because charging tolls on each
arc is not feasible or practical, even with electronic
toll collection systems.1 Besides the implementation
cost, charging (potentially variable) tolls everywhere
makes it more complicated for the driver to select
a route. In the future, this may be less of a prob-
lem because the market penetration of route guidance
devices is likely to be larger, and it is technolog-
ically feasible that these devices receive broadcasts
with the current values of tolls. Most cities that have
adopted congestion pricing decided to charge a flat
daily fee that has to be paid on each day a driver
wants to access the central business district of the city.
Although a flat fee does not elicit the most efficient
choices, it is conducive to increase the social welfare.
Indeed, the high cost of the charge is enough to pro-
vide a detriment to some drivers who will switch
to other modes of transportation. Unfortunately, an
implementation of a congestion pricing scheme is not
likely to allow for much room for experimentation.
If not done right initially, expected benefits may not
be realized, thereby invalidating the whole effort and
potentially jeopardizing the political viability of a sec-
ond try. Quantitative models can be used upfront
to help policymakers make decisions and compare
proposals.
This article initiates the study of an approach that

complements congestion pricing. Although conges-
tion pricing considers only (positive) tolls, there is no
reason not to use negative tolls, which we refer to as

1 Electronic toll collection systems—currently in use in cities that
implement congestion pricing and in many tolled highways—
eliminate the need to stop at a toll plaza. In general, these systems
have three components: a toll tag, which is placed inside the vehi-
cle; an overhead antenna, which reads the toll tag and collects the
toll; and video cameras to identify toll evaders.

rebates or subsidies. Often, the proceeds of conges-
tion pricing are used to fund improvements in pub-
lic transportation, but very rarely are they used to
reduce operating costs by subsidizing fares. On the
contrary, it has been documented that in some cases
public transportation fares increased after the intro-
duction of congestion pricing (Wichiensin, Bell, and
Yang 2007).
In the context of the debate around the introduction

of congestion pricing in New York City, Kheel (2008)
recently proposed to completely eliminate the fare for
public transportation by paying operating costs with
the congestion charges. His own words, “[t]his more
balanced plan will result in the equivalent of a $20
after-tax pay raise for every transit-using worker in
the city. Automobile drivers will benefit too, as traffic
is vastly reduced” (p. 4), capture why rebates provide
a more equitable solution than congestion pricing
alone. Because having no fare may or may not be opti-
mal from a system welfare perspective, we focus on
finding the optimal level of subsidies. We assume that
if congestion pricing is used, toll charges are already
fixed. Specifically, we concentrate on mode decisions
in the case of linear congestion costs and homoge-
neous demand. The main assumption of this article
is that a city can set apart some funds that it will
use to subsidize users of certain modes by offering a
rebate on part of the fare. As Kheel said, rebates go to
the population segment that selects the least-desirable
modes, thus compensating users that switched out
from their preferred choices. The fact that most pub-
lic transportation systems in the world are subsidized
provides anecdotal evidence that a mechanism based
on subsidies is easier to accept by the constituents
than congestion pricing. Well-chosen rebates lead to
more efficient choices. Less people will drive, con-
gestion will be reduced, and the total commute time
will decrease. Eventually, some of the benefits will
be transferred back to the provider of subsidies in
the form of additional taxes, reduced CO2 emissions,
reduced health-care costs, etc. For example, operat-
ing expenses of companies that do deliveries will be
reduced, thereby improving their bottom line. The
additional taxes can be used to recover a fraction of
the money that was set aside initially.
Cities do not have unlimited resources and, thus,

cannot offer large rebates if they do not also imple-
ment congestion pricing. For that reason, we look at
the problem of finding rebates that maximize user
welfare, taking into account a limited budget. This
budget relates to the value placed on the reduction
of commute times. In the extreme case when com-
mute times are all that matters and the budget is
large, rebates will be set to make experienced costs
equal to zero. (Compare this to the costs experienced
by commuters under Kheel’s proposal, which are not
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zero because commuters still face the disutility aris-
ing from the time invested to complete the trip.) On
the other extreme, when the reduction in commute
time is not deemed important or when the budget for
rebates is small, rebates will not be offered and users
will experience the full cost arising from the time and
the fare or toll.
Even with optimal rebates, the coordination gener-

ated by this approach may not be enough to achieve
a significant increase in welfare. Henceforth, we
want to quantify the coordinating power of rebates.
Koutsoupias and Papadimitriou (1999) defined the
price of anarchy as the worst-case ratio of the social
welfare under a user equilibrium attained without
coordination to that with socially-optimal choices.
This indicator has been used to estimate the poten-
tial increase in welfare provided by a given mecha-
nism, and to gauge whether the opportunity cost is
large enough to outweigh the implementation cost
and justify its use. To answer this question, we com-
pare the total welfare generated by optimal rebates to
that when rebates are set to zero. We show that when
the budget is large enough, one can have a transporta-
tion pattern that is significantly more efficient than
the status quo.

Main Contributions and Structure of the Paper
Although others considered rebates implicitly (as neg-
ative taxes), to our knowledge, this is the first arti-
cle that formally studies the computation of optimal
rebates with the goal of coordinating a congestion
game. Our main contribution is a mechanism that
provides incentives for coordination that does not
penalize participants, but instead rewards those that
were worse-off without such a mechanism by offer-
ing them a rebate. Our social cost function explic-
itly considers the transfer payments to capture the
cost of providing rebates, and the mechanism aims
to minimize this more general expression of cost.
Instead, most of the earlier articles that studied the
coordinating power of tolls and taxes consider a
social cost equal to the sum of costs for all par-
ticipants, thus ignoring the costs and benefits of
payments because they are transfers that stay in
the system (see Beckmann, McGuire, and Winsten
1956; Bergendorff, Hearn, and Ramana 1997; Labbé,
Marcotte, and Savard 1998 for classical references;
Cole, Dodis, and Roughgarden 2006 is a notable ex-
ception that considers transfer payments as part of
the social cost).
We consider a Stackelberg game in which the sys-

tem owner (e.g., the city or the transportation author-
ity) is the leader and the participants are followers
(von Stackelberg 1934). In a first stage, the leader
offers rebates in each arc; in a second stage, partici-
pants selfishly select arcs that have minimal cost, tak-
ing rebates into consideration. Focusing on the modal

choice problem, we characterize the optimal rebates
in the case of affine cost functions and networks with
multiple arcs that connect two nodes (the alternative
modes of transportation are substitutes). Many exam-
ples of recent work in this area such as Engel, Fischer,
and Galetovic (2004), Xiao, Yang, and Han (2007),
Acemoglu and Ozdaglar (2007), and Wichiensin, Bell,
and Yang (2007), also consider this type of simple net-
works. Although Labbé, Marcotte, and Savard (1998)
present results for general networks, they do it for
a simplified model that ignores congestion effects,
which is an important feature of our model.
We first prove that if the system owner values the

perceived cost more than rebates, then an optimal
strategy for the leader is to refund each participant
the perceived cost at each arc under a system opti-
mal solution. When the system owner is more sensi-
tive to the investment in rebates than to the perceived
cost, it will offer rebates in the modes that are under-
used. We also establish an upper bound on the pro-
portion of participants that receive a positive rebate.
Using our characterization of Stackelberg equilibria,
we provide a polynomial-time algorithm that selects
the arcs where rebates should be offered, and com-
putes the optimal rebates for those arcs. This enables
us to derive an explicit formula for the resulting social
cost, from where we compute the price of anarchy,
expressed as a function of the predisposition of the
system owner to offer rebates. The main conclusion is
that when the system owner is willing to offer rebates,
the resulting solution has low social cost. Conversely,
when the system owner cannot afford to provide sig-
nificant rebates, the resulting outcome is close to a
Wardrop equilibrium.
This paper is organized as follows. First, we review

the literature in §2. In §3, we introduce the model and
the performance measures of interest. Section 4 offers
some results for general network topologies, while §5
focuses on instances with parallel arcs (substitutes)
and characterizes the optimal rebates. In §6, we com-
pute the price of anarchy for instances with affine cost
functions. Finally, we offer some concluding remarks
and open questions in §7.

2. Connections to the Literature
We work under the setting first described by Wardrop
(1952). The corresponding equilibrium concept has
been called a Wardrop equilibrium, which under mild
conditions coincides with a Nash equilibrium (Haurie
and Marcotte 1985). Although in some cases a system
may be better off without a coordination mechanism
because the overall implementation and operating
costs may outweigh the potential benefits, equilib-
ria have been found to be too inefficient in many
applications of interest. This makes it necessary to
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coordinate participants to mitigate the adverse effects
of the misalignment of incentives. As imposing deci-
sions to users is not an option in most real-world
situations, equilibria can be improved by system
(re)design (Roughgarden 2006), by considering rout-
ing part of the flow preemptively (Korilis, Lazar, and
Orda 1995), or by using pricing mechanisms to cre-
ate incentives (Bergendorff, Hearn, and Ramana 1997;
Labbé, Marcotte, and Savard 1998). This article con-
siders the third approach.
Even before the work of Vickrey (1955), economists

such as Dupuit (1849), Pigou (1920), and Knight (1924)
proposed to use pricing so participants internalize
the externalities, defined as the additional cost they
impose to others. If implemented properly, this results
in equilibria that are efficient from a social welfare
perspective. For a complete treatment of network
pricing and many additional references, see, e.g., the
book by Yang and Huang (2005).
We study a mechanism based on rebates. Rebates

are used in logistics, supply chain management, and
marketing, with the objective of revenue maximiza-
tion as well as to create incentives for coordination
(Gerstner and Hess 1991; Ali, Jolson, and Darmon
1994; Taylor 2002; Chen, Li, and Simchi-Levi 2007).
We find the optimal rebates by solving a Stackelberg
equilibrium problem, which structurally is a math-
ematical program with equilibrium constraints (MPEC).
There are relatively standard optimization techniques
to compute solutions to this type of problems. For
a background on MPECs and solution methods, we
refer the interested reader to the book by Luo,
Pang, and Ralph (1996). One could get the opti-
mal rebates and the corresponding modal choices
from a Stackelberg equilibrium computed numeri-
cally; actually, computational studies are routinely
used to analyze congestion-charging systems. In our
case, though, finding the optimal rebates numerically
is not enough for our purposes because such an anal-
ysis does not provide the structure needed to under-
stand how much benefit the mechanism provides.
Recently, many authors have studied the maximum

efficiency-loss under an equilibrium, using social wel-
fare to measure the quality of solutions. Koutsoupias
and Papadimitriou (1999) defined the price of anar-
chy as the largest possible ratio of the social cost at
an equilibrium to the minimum attainable social cost
(the term itself was coined by Papadimitriou 2001).
Starting from the work of Roughgarden and Tardos
(2002), the price of anarchy in transportation networks
(the setting suggested by Wardrop 1952) has been
characterized by Roughgarden (2003), Correa, Schulz,
and Stier-Moses (2004), Chau and Sim (2003), and
Perakis (2007), who successively considered more gen-
eral assumptions. It turns out that equilibria of these

games are reasonably efficient; for example, when con-
gestion costs increase linearly with flow, the extra total
cost of an equilibrium does not exceed 33% more than
that of a system optimum. For other typical classes
of functions, the inefficiency is somewhat larger but
bounded. Nevertheless, for practical purposes these
inefficiencies are too high; even smaller improvements
translate to big savings for societies and governments
(recall the figures provided by the Urban Mobility
Study). Hence, some researchers looked for improved
measures of inefficiency (Friedman 2004; Qiu et al.
2006; Schulz and Stier-Moses 2006; Correa, Schulz,
and Stier-Moses 2008), while others focused on mech-
anisms to improve the inefficiency itself. Some ref-
erences that look at pricing mechanisms from the
perspective of the price of anarchy are Koutsou-
pias (2004), Karakostas and Kolliopoulos (2005), Cole,
Dodis, and Roughgarden (2006), Wichiensin, Bell, and
Yang (2007), Xiao, Yang, and Han (2007), and Yang,
Xu, and Heydecker (2009).
The study of the inefficiency of equilibria has

recently received increased attention from researchers
in various communities such as Transportation, Oper-
ations Research, Operations Management, Economics,
and Computer Science. Consequently, there is a grow-
ing amount of interdisciplinary literature on the price
of anarchy. For example, some additional references
in the application domains of telecommunication and
distribution networks are the articles by Johari and
Tsitsiklis (2004), Golany and Rothblum (2006), Perakis
and Roels (2007), Acemoglu and Ozdaglar (2007), and
Johari, Weintraub, and Van Roy (2009).

3. Description of the Model
In this section, we introduce the model and its neces-
sary notation. We consider the framework of network
games, originally introduced by Wardrop (1952) and
first analyzed formally by Beckmann, McGuire, and
Winsten (1956). An instance of our problem is given
by a network, cost functions, a system owner, and par-
ticipants. The network encodes the modal and route
choices, and the cost functions associated to each arc
model congestion and charges. The system owner
defines the level of rebates, and participants—who are
infinitesimally small—select a route from their origins
to their destinations with minimum cost.
The network is represented by a directed graph

�V �A�, where V is a set of vertices and A is a set of
arcs. In general the graph may be arbitrary, but we
will concentrate on the case where A is a set of parallel
links that represent each of the modes. When possible,
we will present results for general graphs to allow for
route choice. For a total flow of xi in an arc i ∈A, the
cost of traversing it is ci�xi�. Functions ci, referred to
as cost functions, are assumed to be affine on xi for the
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main results of this study. When possible, we will also
consider more general cost functions that are nonneg-
ative, nondecreasing, differentiable, and convex. Fur-
thermore, we assume that cost functions are separable,
meaning that the only argument of a cost function is
the flow along that arc.
As we described in the introduction, the most typi-

cal example of this model is given by a urban network
in which commuters have to decide between driv-
ing their cars, walking or taking one form of public
transportation. Cost functions encode commute time,
delays, and fares, all of which are assumed to be
expressed in monetary units, and indicate the over-
all equivalent cost perceived by users for traversing
a link. Although we do not explicitly model conges-
tion pricing, it can be partially incorporated in our
model by adding the corresponding charges to the
cost functions.
The system owner offers rebates to elicit coordina-

tion. We denote the rebate for arc i by si ≥ 0. As par-
ticipants will not be reimbursed more than their cost,
we restrict the actual reimbursement to not exceed
ci�xi�. Hence, as the rebates are announced before par-
ticipants make their selections, participants receive a
rebate up to the cost of the arc. Indeed, the experi-
enced cost is

csi �xi� 
= �ci�xi�− si�
+�

where �y�+ denotes the positive part of y. Equiva-
lently, the actual rebate equals min�si� ci�xi��. Collec-
tively, we denote the vector of all rebates with s ∈�A

+.
Each participant selects the arc in A that corre-

sponds to the mode of choice. For the results in
which we also consider route selection, participants
are associated with a pair of nodes, called an origin-
destination pair (OD-pair), and have to select a path
from their origins to their destinations. Let us denote
the set of OD-pairs by K, the demand corresponding
to OD-pair k ∈ K by rk, and the total demand

∑
k∈K rk

by r . In addition, we refer to all the possible paths
connecting an OD-pair k ∈ K by �k and we let � 
=⋃

k∈K �k. For the mode-choice model, there is a single
OD pair that consists of the only two nodes.
We use flows to encode all participants’ decisions,

as specific identities are irrelevant. A flow x is feasible
if it is nonnegative and it satisfies all demand con-
straints. Mathematically, this is represented by the set
�x ∈ ��

+

∑

P∈�k
xP = rk for all k ∈ K�. The flow on an

arc xi is given by the sum over the paths
∑

P∈�
 P�i xP .
Competition leads participants from the same

OD-pair to select paths of cheapest equal cost
because otherwise they would have an incentive to
change their selection. This is the basis of the tra-
ditional solution concept called Wardrop equilibrium
(Wardrop 1952).

Definition 3.1. A flow xWE is a Wardrop equilib-
rium of a network game (without rebates) if it is fea-
sible, and for all k and all P�Q ∈�k such that xWEP > 0,
cP �x

WE�≤ cQ�x
WE�, where cP �x� 
=

∑
i∈P ci�xi�.

The previous definition provides us with a solution
concept that models the behavior of the second stage
players:

Definition 3.2. If the system owner selects the
rebate vector s, participants select a solution xs , which
is a Wardrop equilibrium with respect to cost func-
tions �ci�·�− si�

+.
For a given rebate vector s, the corresponding

Wardrop equilibrium xs always exists because the
modified cost functions �ci�·� − si�

+ are continuous
(Beckmann, McGuire, and Winsten 1956). In general,
the equilibrium xs need not be unique but if there
are more than one, the prevailing costs under differ-
ent equilibria are equal. Because any equilibrium can
arise in practice, we consider an arbitrary one.
We now focus on the best strategy for the system

owner. Because it is the leader of the Stackelberg game
and it fixes the rebates knowing that participants are
going to select a Wardrop equilibrium, its optimal
strategy is to select the vector s that minimizes the
social cost, defined as the sum of the costs of all par-
ties in the game (Mas-Colell, Whinston, and Green
1995). This objective function includes the perceived
cost experienced by each participant and the amount
the system owner invests in rebates. As the system
owner may be more sensitive to one of the terms than
to the other, we consider a parameter �≥ 0 that trans-
forms the rebate investment into social cost units. Sec-
tion 6.1 provides further justification for this choice of
social cost functions. (Note that we can alternatively
define the social cost as the sum of the real costs that
participants face by using a modified coefficient as
shown in (1b).)

Definition 3.3. The strategy �s� xs� is a Stackelberg
equilibrium if the vector of rebates s minimizes the
social cost, defined as

C��s� 
=
∑
i∈A
xsi �ci�x

s
i �−si�+︸ ︷︷ ︸

participants’ perceived cost

+�∑
i∈A
xsimin�ci�x

s
i ��si�︸ ︷︷ ︸

cost of rebates

� (1a)

which can also be expressed as
∑
i∈A

xsi ci�x
s
i �︸ ︷︷ ︸

participants’ real cost

+��− 1�∑
i∈A

xsi min�ci�x
s
i �� si�︸ ︷︷ ︸

cost of rebates

� (1b)

In this case, we refer to s as an optimal rebate vector.
The parameter � allows the system owner to con-

trol the tradeoff between the social cost of the solution
and its investment. Alternatively, it can be viewed as
the Lagrangian multiplier of the system owner’s bud-
get constraint. In fact, 1/� represents the investment
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the system owner is willing to commit to make the
participants’ perceived cost decrease by one unit:
• � = 1 corresponds to the situation in which the

system owner is only interested in minimizing
the participants’ real cost

∑
i∈A xici�xi�, regardless of

the rebate cost (see (1b)).
• �=+
 corresponds to the situation in which the

system owner does not want to spend any money on
rebates. Here, the outcome will be a Wardrop equilib-
rium, as without rebates.
• Values of �< 1 correspond to the case where the

network planner values the participants’ perceived
cost more than its own investments.
As we said in §2, the Stackelberg equilibrium can

be found by solving an MPEC. If the leader wants
to compute optimal rebates for a particular instance,
there are relatively standard optimization techniques
to solve this problem, even if more constraints are
added to the problem (e.g., restrict rebates to a subset
of arcs, or impose that rebates may not exceed mon-
etary charges such as tolls or fares). Instead, we will
work with the optimality conditions of this problem
to explicitly characterize the Stackelberg equilibrium.
This will allow us to design an efficient algorithm and
to find the worst-case inefficiency of the correspond-
ing equilibrium.
Not only do we want to compare the social cost

of different solutions with rebates, but we also want
to compare using rebates to not using them. There-
fore, another measure of interest is the participants’
real cost, represented by the objective function C�x� 
=∑

i∈A xici�xi�. The following definition captures the sit-
uation when the system owner controls the whole
system.

Definition 3.4. A flow xSO is a system optimum if
it is feasible and minimizes C�·�.
The following proposition draws on the first-order

optimality conditions to the mathematical program
that defines a system optimum.

Proposition 3.5 (Beckmann, McGuire, and
Winsten 1956). For instances with differentiable and
convex cost functions, a flow xSO is a system optimum if
and only if it is a Wardrop equilibrium with respect to the
modified cost functions c∗i �xi� 
= ci�xi� + xic

′
i�xi�, where

c′i�x� is the derivative of ci�x� with respect to x.

Note that if � ≥ 1, the social cost of a Stackelberg
equilibrium �s� xs� satisfies

C�xSO�≤C��s�≤C�xWE�� (2)

The lower bound follows from (1b) because its sec-
ond term is nonnegative, and the upper bound comes
from the feasibility of s = 0 because C�xWE�=C��0�.

3.1. Examples
In this section we introduce two concrete instances
that will be the running examples for the rest of the
article. These instances will be used to illustrate the
different concepts and calculations along the way.

Instance 1. (Roughgarden and Tardos 2002).
The first instance represents a competitive situation
first described by Pigou (1920). As illustrated in Fig-
ure 1, participants must select one of two avail-
able modes: the first is expensive but its cost is
not influenced by demand, while the second one is
cheap under low demand but becomes expensive if
it attracts many participants. This instance models a
decision that commuters make daily in many cities. A
person can use mass transit and experience an almost
constant but large commute time, or can drive to
(hopefully) experience a short commute while being
exposed to the possibility of congestion.
The total demand in this instance is equal to 1, com-

posed of an infinite number of price-taking users. The
Wardrop equilibrium routes all flow in the lower arc
because all participants take lowest-cost routes. Under
this solution, C�xWE�= 1. To exploit the effects of con-
gestion, the system optimum assigns half of the par-
ticipants to each mode, implying that C�xSO�= 3/4.
If � ≤ 1, the system owner will propose rebates

equal to �1�1/2�, which is the vector of prevailing
costs under the system optimum. This results in an
equilibrium that matches the system optimum. Actu-
ally, §4.1 shows that, for arbitrary instances, rebates
lead to the system optimum when �≤ 1 because expe-
rienced costs are zero. Let us now consider the case
� > 1. It does not make sense to offer a rebate in
both arcs because subtracting a constant everywhere
will not change the equilibrium. Therefore, the sys-
tem owner should only consider giving a rebate in
the upper arc (the lower one is always cheaper so
it should not be subsidized). Denoting this rebate by
s ∈ �0�1�, the perceived cost on this arc equals 1− s.
Therefore, the corresponding Wardrop equilibrium xs

is the flow that routes s units in the upper arc. After
some algebra, C��s�= 1−s+�s2. The minimum, which
provides the Stackelberg equilibrium, is s = 1/�2��
and achieves a social cost of 1− 1/�4��.

1

11

x

Figure 1 Pigou’s Example
Note. Arcs are labeled with their cost functions.
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2 + x

1 1

x

1 + x

Figure 2 Running Example
Note. Arcs are labeled with their cost functions.

Instance 2. The second network is similar to
Pigou’s but contains an extra mode. As depicted in
Figure 2, the three modes, numbered from 1 to 3
for simplicity, have cost functions equal to ci�xi� 
=
�i − 1� + xi. At the Wardrop equilibrium, all partici-
pants select the first mode, and therefore C�xWE�= 1.
The system optimum is given by the flow �3/4�1/4�0�,
with total cost C�xSO�= 7/8. Finally, an optimal rebate
vector for � > 1 is s = �0�1/�2���y�, with 0 ≤ y ≤
1 + 1/�4��. The corresponding Wardrop equilibrium
xs is �1− 1/�4���1/�4���0�, and its social cost equals
C��s�= 1− 1/�8��.

3.2. An Application to Logistics
The framework that we consider can readily be used to
model competition in other settings such as telecom-
munication and distribution networks. This section
briefly comments on an application in the area of
logistics.
We consider a freight company that sends goods

across a network. The system owner models the corpo-
rate headquarters while participants model business
units that manage different markets. The system is
not controlled centrally; units make their own deci-
sions about how goods are transshipped across the
network, considering their individual costs. This net-
work is composed of resources, which may represent
different carriers that transport freight or facilities that
process it. Resources include sorting facilities, ware-
houses, flight legs, airports, ship routes, ports, canals,
etc. Some of those resources belong to the unit, others
belong to the company and are shared between units,
and some are controlled by third parties. Resources
that are not controlled directly by the unit will be
priced according to the laws of offer and demand.
Hence, competition for a resource will drive its price
up, which can be represented by cost functions (in this
case cost-demand curves). We assume that units are
not big enough to influence prices independently (i.e.,
they are price-taking).
Units select a set of resources to transship their

goods at minimum cost, and are rewarded by the

profits they generate.2 Cost-demand curves create
externalities between units, which is what causes
competition among them. If nothing is done, the sta-
ble situation would be an equilibrium among the
business units that is generally inefficient in terms of
the company’s total profit. Realizing the problem, the
company can compute the system optimum ignoring
the goals of the individual business units, and find the
rebates that it should offer for each resource. In this
way, the headquarters will be offering incentives that
help align business units into maximizing the com-
pany’s profits.

4. General Network Topologies
We start our study of the structural characteristics
of Stackelberg equilibria. In this section, we con-
sider general network topologies, with possibly sev-
eral OD-pairs. We start by considering the case of
the system owner assigning more value to the partic-
ipants’ perceived cost than to its own rebate invest-
ment, and characterize the optimal strategy when
setting the rebates. Later, we turn into the opposite
case and provide some properties that will be used to
characterize optimal rebates.

4.1. Small �
This section focuses on achieving a fully efficient coor-
dinated solution for the case of � ≤ 1 and networks
with arbitrary topology. As suggested in §3.1, let us
consider the rebate vector given by si = ci�x

SO
i � for all

i ∈ A. With those rebates, the system optimum xSO

is an equilibrium for the participants’ game because
participants experience a cost equal to zero (which is
the absolute minimum because of the nonnegativity
of modified cost functions).
Beckmann, McGuire, and Winsten (1956) proved

that payments equal to marginal costs at the sys-
tem optimum also lead to a system optimum
(see Proposition 3.5); recalling that c∗i �xi� = ci�xi� +
xic

′
i�xi�, this corresponds to negative rebates si =

−xSOi c′i�x
SO
i �. Moreover, any convex combination of

optimal transfers payments (tolls or rebates) is also
optimal (Bergendorff, Hearn, and Ramana 1997),
which implies that the set of transfers payments that
lead to system optimality is a polyhedron. We summa-
rize these claims in the following remark.

2 All of the results valid for arbitrary networks are also valid in
the more general setting of nonatomic congestion games (Rosenthal
1973). In this case, business units will select one set of resources
from a list of feasible sets, without insisting that these sets have
to be paths. This more general competitive situation is called
nonatomic because participants are price taking, and a congestion
game because participants are anonymous and costs of resources
depend only on the number of participants selecting them.
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Remark 4.1. When rebates equal

s = ��1−��ci�x
SO�−��xSOi c′i�x

SO
i ���i∈A

with 0 ≤ � ≤ 1, a system optimal solution xSO is
at equilibrium. Here, positive values of si repre-
sent rebates and negative values represent payments.
Moreover, if cost functions are strictly increasing, the
corresponding equilibrium xs is unique.
The next proposition shows that the previously-

mentioned rebates are optimal when cost functions
are strictly increasing. It turns out that this is the only
optimal vector and leads to a unique second-stage
equilibrium, which matches the system optimum.
If we only consider weakly increasing functions, then
a system optimum is always at equilibrium for that
rebate vector but there may be other equilibria. In that
case, though, an optimal rebate vector may not exist.

Proposition 4.2. Assume that � ≤ 1 and that cost
functions are strictly increasing. For arbitrary net-
works, a Stackelberg equilibrium �s� xs� satisfies that s =
�ci�x

SO
i ��i∈A and xs = xSO. This equilibrium achieves a

social cost of C��s�= �C�xSO�.

Proof. Considering s as described in the proposi-
tion, let us prove that xs has to be equal to xSO. The
Stackelberg flow xs is a Wardrop equilibrium under
the modified cost functions. The variational inequal-
ity characterization of Wardrop equilibria (Smith 1979)
and the choice of s implies that for a feasible flow x,∑

i∈A�xi − xsi ��ci�x
s
i � − ci�x

SO
i ��+ ≥ 0. Because the opti-

mal flow xSO is feasible, we have
∑

i∈A�xSOi − xsi � ·
�ci�x

s
i �− ci�x

SO
i ��+ ≥ 0. The summands vanish on arcs

i such that xsi ≤ xSOi , and are strictly negative on arcs
i for which xsi > xSOi . Consequently, x

s
i ≤ xSOi for all i ∈

A, resulting in xs = xSO because xSO is a feasible flow
without cycles (because it minimizes the participants’
real cost and link cost functions are strictly increasing).
Evaluating the social cost, we compute that C��s� =
�C�xSO�.
Let us now show that this choice of s provides the

same social cost as an optimal rebate vector s∗. Using
the nonnegativity of the first term of (1a) and the
feasibility of s, respectively, �

∑
i∈A xs

∗
i min�ci�x

s∗
i �� s

∗
i �≤

C��s
∗� ≤ C��s�� from where

∑
i∈A xs

∗
i min�ci�x

s∗
i �� s

∗
i � ≤

C�xSO�. Bounding each of the terms in (1b) separately,
C��s

∗� ≥ C�xSO� + �� − 1�C�xSO� = �C�xSO�, where we
used that xSO minimizes C�·� and that � ≤ 1. Hence,
�C�xSO� is a lower bound for the optimal social
objective that is attained at s, which establishes the
proposition. �

4.2. Large �
In this section we consider that � > 1. For constant
cost functions, it is optimal to offer no rebates. Indeed,
when s = 0, the participants’ real cost under a Nash
equilibrium equals that of a system optimum and the

cost of rebates is zero. Because both terms of (1b)
equal a lower bound, this choice of s is optimal for
the leader. Rebates are useful only in the presence of
congestion. (Note that we get to a similar conclusion
in the model of Labbé, Marcotte, and Savard 1998,
who assumed that there is no congestion and that the
leader is a revenue-maximizer.)
We will characterize the benefits of offering rebates

by studying the structure of Stackelberg equilibria. We
start by proving that under an optimal rebate vector
there is always at least one used arc with positive
experienced cost, and one used arc in which no rebate
is offered. We let � ⊆A be the set of arcs with positive
flow under the equilibrium, which we partition into
sets �s , containing arcs with positive rebates, and �0,
containing arcs with no rebates.

Definition 4.3. For a given rebate vector s, define
� 
=�i∈A �xsi >0�=�s∪�0� where �s 
=�i∈� �si >0�
and �0 
= �i ∈� � si = 0�.
Without loss of generality, we will sometimes

assume that rebates for arcs in A\� are zero. Indeed,
if an unused arc has a positive rebate, it will still
be unused without the rebate. Consequently, the cor-
responding Wardrop equilibrium and all the aggre-
gate measures we considered do not change when the
rebate is removed. For example, for the Stackelberg
equilibrium of Instance 2, we have that �0 = �1� and
�s = �2�. The third arc does not belong to � because
its flow is zero.

Lemma 4.4. Assume that � > 1 and that all cost func-
tions are strictly increasing. For an arbitrary network,
if �s� xs� is a Stackelberg equilibrium, then there exists an
arc i ∈� such that si < ci�x

s
i �.

Proof. Assume that all perceived costs are zero,
i.e., si ≥ ci�x

s
i � for all i ∈ � . Without loss of general-

ity, it is enough that si = ci�x
s
i � for all those arcs. Then

the social cost equals C��s� = �C�xs� ≥ �C�xSO�. As
stated in §4.1, the social cost �C�xSO� can be attained
with rebates �ci�xSOi ��i∈A. Since s was assumed to be
an optimal rebate vector, we must have that C�xs�=
C�xSO�, from where we see that xs is a system opti-
mum. Because of Proposition 3.5, xs is at equilibrium
with respect to modified costs ci�xsi �+ xsi c

′
i�x

s
i �.

As perceived costs are zero and cost functions are
strictly increasing, si > 0 for all i ∈ � , or equivalently
�0 =�. Hence, there exists a small enough � > 0 such
that s̃ ≥ 0, where

s̃i 
=


si − ��ci�x

s
i �+ xsi c

′
i�x

s
i �� i ∈��

0 i ∈A\� �
Under rebates s̃ and flow xs , the perceived cost
on each arc is �ci�x

s
i � − s̃i�

+ = ��ci�x
s
i � + xsi c

′
i�x

s
i ��

for i ∈� . Similarly, �ci�xsi � − s̃i�
+ = ci�x

s
i � ≥ �ci�x

s
i � =

��ci�x
s
i �+ xsi c

′
i�x

s
i �� for i ∈A\� . The last two equations
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imply that xs is at equilibrium under rebates s̃, and
the perceived cost on each used arc is strictly posi-
tive. Finally, xs is the unique equilibrium under s̃ since
the potential function F �x� 
=∑

i∈A
∫ xi
0 �ci�zi�− s̃i�+ dzi is

convex in general, strictly convex in a vicinity of xs as
the cost functions are strictly increasing, and achieves
a minimum at xs . (We refer the reader to Beckmann,
McGuire, and Winsten 1956 for details on the char-
acterization of Wardrop equilibria with this type of
potential function.) Consequently,

C��s̃� =
∑
i∈A
�xsi ci�x

s
i �+ ��− 1�xsi s̃i�

= C��s�− ���− 1�∑
i∈�

xsi �ci�x
s
i �+ xsi c

′
i�x

s
i ��︸ ︷︷ ︸

>0

<C��s��

which is a contradiction to the optimality of s. �

When we presented the examples in §3.1, we men-
tioned that it cannot be optimal to offer rebates in all
arcs. The next lemma generalizes this observation to
any network topology. It shows that, if all arcs are
used, then �0 is necessarily nonempty. In §5, we will
further generalize this lemma to instances in which
not all arcs are used, but under the restriction that
the network has parallel links. Notice that in the case
of a general network without the restriction that all
arcs are used, we do not know if �0 could be empty.
If such generalization were valid, Lemma 4.4 would
not be necessary because it would be implied by this
result. Indeed, because cost functions are nonnegative
and strictly increasing, any arc in �0 would experi-
ence a positive cost because it is used and has no
rebate.

Lemma 4.5. Assume that � > 1 and that all cost func-
tions are strictly increasing. For an arbitrary network,
if �s� xs� is a Stackelberg equilibrium and all arcs are used,
then there exists an arc i ∈� such that si = 0.

Proof. With the purpose of deriving a contradic-
tion, let us assume that s is an optimal vector of
rebates such that si > 0 for all i ∈� . We will show that
we can decrease the rebates while maintaining the
same user equilibrium. Note that, unless the network
only consists of parallel links, subtracting a constant
from all rebates may change the user equilibrium
because it would make longer paths more attractive to
users. Instead, the proposed rebates are such that the
resulting perceived cost on all links is a multiple of
the original perceived costs. Let us therefore consider
new rebates s̃ = �ci�x

s
i �− �ci�x

s
i �− si�

+�i∈A, where

 
=min
i∈�

ci�x
s
i �

�ci�x
s
i �− si�

+ �

The definition implies that s̃ ≥ 0 and Lemma 4.4
implies that  < 
, so the new rebates are well-
defined. The perceived cost for arc i under the new

rebates equals �ci�xsi �− s̃i�
+ =  �ci�x

s
i �− si�

+, meaning
that xs is also at equilibrium under s̃. Furthermore,
as s > 0, we have that  > 1 and s̃ ≤ s. Hence, look-
ing at (1b), the participants’ real cost is unchanged,
whereas the cost of rebates strictly decreases because
s̃i = 0 for the argument i achieving the minimum. This
contradicts the optimality of s. �

5. Networks with Parallel Links
Equipped with the structural results of the previous
section, we now embark in the design of an efficient
algorithm for computing Stackelberg equilibria. The
outline of the procedure described in this section is
as follows. First, we will partition arcs into those in
which rebates must be offered, those in which no
rebates must be offered and those that are not used in
an equilibrium. With this partition, we will compute
the actual rebates for the corresponding arcs.
We focus on networks in which participants have

to select exactly one out of many possible arcs.
This primarily models the mode choice problem but
one can also use it for other applications in which
users choose among substitutes. The network topol-
ogy that corresponds to this situation comprises
two nodes joined by several parallel arcs (see Fig-
ure 3). Networks with parallel arcs extend the clas-
sic two-route network introduced by Pigou (1920).
They have been widely used because of their rele-
vance to practical applications—such as transporta-
tion, telecommunication, scheduling, and resource
allocation problems—and because of their tractability
(see, e.g., Korilis, Lazar, and Orda 1995; Koutsoupias
and Papadimitriou 1999; Roughgarden 2004; Engel,
Fischer, and Galetovic 2004; de Palma and Picard
2006; de Palma, Kilani, and Lindsey 2007; Wichiensin,
Bell, and Yang 2007; Xiao, Yang, and Han 2007;
Acemoglu and Ozdaglar 2007; Johari, Weintraub, and
Van Roy 2009). Note that the restriction to simple
topologies seems necessary if we hope to find the
optimal rebates in polynomial time because Cole,
Dodis, and Roughgarden (2006) proved that finding

cn(x)

c1(x)

c2(x)

c3(x)

rr

Figure 3 A Network with Parallel Arcs
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optimal taxes in general networks with affine cost
functions is hard.3 Finally, we only consider the case
of � > 1, because the optimal rebates for � ≤ 1 were
already found in §4.1. We can assume without loss of
generality that si ≤ ci�x

s
i �, as it is never beneficial to

offer more.
Consider a Stackelberg equilibrium �s� xs� of an

instance in which cost functions are strictly increas-
ing. The equilibrium conditions imply that there is a
constant L� ≥ 0 such that

L� = ci�x
s
i �− si ∀ i ∈�� (3a)

L� ≤ ci�0�− si ∀ i ∈A\� � (3b)

Moreover, Lemma 4.4 implies that L� has to be strictly
positive. Hence, ci�xsi � > si for all i ∈A. For networks
with parallel arcs, then, we do not need to enforce the
constraint that the system owner cannot offer rebates
that are larger than the cost of arcs. In this case (1)
simplifies to C��s�=

∑
i∈A xsi �ci�x

s
i �+ ��− 1�si�.

Remark 5.1. The positivity of L� also implies that
when cost functions are strictly increasing there
is a unique Wardrop equilibrium corresponding to
the optimal s because the potential function F �x� =∑

i∈A
∫ xi
0 �ci�z�− si�

+ dz is strictly convex in a vicinity
of xs . Later, we shall prove that in this case the opti-
mal s is also unique.
Going back to the examples of §3.1, it is not hard to

check that L� for Instances 1 and 2 equals 1− 1/�2��
and 1− 1/�4��, respectively.
5.1. General Cost Functions
We start with general cost functions and then, in the
next section, switch to the particular case of affine cost
functions. This section proves a result that will allow
us to decide for which arcs we must offer positive
rebates. To get there, we first have to present a series
of lemmas. The first one establishes that a rebate vec-
tor that is optimal for a given network is also optimal
when some unused arcs are taken out. In other words,
removing i ∈A\� does not affect the optimality of s.
Missing proofs are given in the appendix.

Lemma 5.2. Consider a network with parallel arcs and
an optimal rebate vector s. If l is an arc in A\� , then
the vector s with the entry corresponding to l removed is
optimal for a similar instance with arc l removed.

3 Cole, Dodis, and Roughgarden (2006, Theorem 6.2) prove that an
approximation algorithm with guarantee better than 4/3−� cannot
exist unless P = NP. Although their reduction does not work for
our problem, we conjecture that finding the optimal rebates in a
general network with affine cost functions is also NP-hard because
of the similarity between their social cost function and (1b) (see
also §6.1). Another evidence in this direction is given by Labbé,
Marcotte, and Savard (1998), who prove that computing taxes and
rebates that maximize the leader’s profit is an NP-hard problem,
even when the network is not subject to congestion effects.

Notice that the previous lemma generalizes
Lemma 4.5 to an arbitrary instance with parallel arcs.
Indeed, Lemma 5.2 implies that an optimal rebate vec-
tor s is still optimal for the network consisting only of
arcs in � . Because that instance makes use of all arcs,
it must contain at least one arc without rebate.
In the following propositions, we derive necessary

conditions for a rebate vector s to be optimal. The
next proposition shows that the optimal rebates sat-
isfy the following equilibrium conditions: rebates are
offered only in arcs for which the expression c∗i �·� is
minimal. This is implied by the first-order optimality
conditions of the MPEC that characterizes the optimal
rebates. Contrast this to Proposition 3.5 that states that
in a system optimum, participants are assigned only to
arcs for which the expression c∗i �·� is minimal.

Proposition 5.3. Consider a network with parallel
arcs and strictly increasing and differentiable cost func-
tions, and let �s� xs� be a Stackelberg equilibrium. There
exists V� > 0 such that

V� = ci�x
s
i �+ xsi c

′
i�x

s
i � ∀ i ∈�s� (4a)

V� ≤ ci�x
s
i �+ xsi c

′
i�x

s
i � ∀ i ∈A\�s � (4b)

From (3a) and (4), we get that there exists a constant
D� 
= 2L�−V� such that

D� = ci�x
s
i �− xsi c

′
i�x

s
i �− 2si ∀ i ∈�s� (5a)

D� ≥ ci�x
s
i �− xsi c

′
i�x

s
i �− 2si ∀ i ∈�0 � (5b)

The common perceived cost at equilibrium therefore
equals L� = �V� +D��/2. Comparing the expressions,
it is clear that D� < L� < V�. For example, looking at
a Stackelberg equilibrium of Instance 2, the constants
are V� = 1+ 1/�2�� and D� = 1− 1/�.
In the sequel, we will make extensive use of the

following definition to characterize and to compute
optimal rebates:

Definition 5.4. ForX ⊆A, letK�X� 
=∑
i∈X c′i�x

s
i �

−1.
For the special case of an empty set, it is assumed that
K��� 
= 0.
The following technical lemma provides a formula

that will be useful later. Its proof considers another
feasible direction from the optimal rebate vector.

Lemma 5.5. Consider a network with parallel arcs and
strictly increasing and differentiable cost functions. Letting
�s� xs� be a Stackelberg equilibrium, then

∑
i∈�s

(
xsiK���+

si
c′i�x

s
i �
K��0�

)
= r

�
K��s�� (6)

Using the previous results, we can characterize the
sets �0 and �s , which will allow us to compute the
optimal rebates.
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Proposition 5.6. Consider a network with parallel
arcs and strictly increasing and differentiable cost func-
tions. Letting �s� xs� be a Stackelberg equilibrium, for all
i ∈A we have that

i ∈�0 ⇔ D� ≥ ci�x
s
i �− xsi c

′
i�x

s
i �� (7a)

i ∈A\� ⇔ V� ≤ ci�0�� (7b)

Proof. We start with (7a). The forward implication
is (5b). Conversely, consider i ∈ A, and assume that
D� ≥ ci�x

s
i �−xsi c′i�xsi �. If i ∈A\� , then xsi = 0 and ci�0�≤

D� < L� , contradicting the Wardrop equilibrium con-
dition. If i ∈�s , then (5a) implies that ci�xsi �−xsi c′i�xsi �=
D�+ 2si > D� , yielding a contradiction again.
The forward implication of (7b) follows from (4b).

Conversely, consider an i ∈ A, and assume that V� ≤
ci�0�. If i ∈�0, then ci�0� < L� < V� , which yields a con-
tradiction. If i ∈�s then (4a) implies that ci�0� < ci�x

s
i �+

xsi c
′
i�x

s
i �= V� , which is again a contradiction. �

In other words, we have the following partition of
the arcs according to the expression ci�x

s
i �− xsi c

′
i�x

s
i �:

considering i0 ∈�0, is ∈�s , and j ∈A\� , we have
ci0�x

s
i0
�− xsi0c

′
i0
�xsi0� ≤ D� < cis �x

s
is
�− xsis c

′
is
�xsis �

< V� ≤ cj �0�� (8)

This characterizes which arcs are used naturally
because they are cheap, which arcs are used because
of the rebates offered, and which arcs are not
used, even having the possibility of offering rebates,
because they are too expensive. Of course, to use this
result constructively one would first need to know the
Stackelberg equilibrium. In the next section, we will
see how to work around that problem for affine cost
functions. Going back to Instance 2, one can see that
c1�x

s
1�−xs1c

′
1�x

s
1�= 0≤D� = 1−1/� < c2�x

s
2�−xs2c

′
2�x

s
2�=

1<V� = 1+ 1/�2��≤ c3�0�= 2.
We can now use the, so far partial, characteriza-

tion of Stackelberg equilibria to determine how many
participants extract a benefit from the availability of
rebates in the network.

Proposition 5.7. Consider a network with parallel
arcs and strictly increasing and differentiable cost func-
tions, and let �s� xs� be a Stackelberg equilibrium. The pro-
portion of participants that receive a rebate is strictly lower
than 1/�.

Proof. Assume that �s �= � because otherwise the
claim is obvious. Dividing (6) by K��s�,

r

�
= K��0�

K��s�

∑
i∈�s

(
xsi +

si
c′i�x

s
i �

)
+ ∑

i∈�s
xsi

= K��0��V�−L��+
∑
i∈�s

xsi �

Therefore,
∑

i∈�s x
s
i /r = 1/� − K��0��V� − L��/r < 1/�,

as we wanted to show. �

As expected, there is a strong correlation between
how many participants respond to the incentive and
the gains in the social cost that arise from it. The pre-
vious bound turns out to be tight as demonstrated by
the following instance.

Instance 3. Consider a network similar to that
depicted in Figure 1 but with cost functions c1�x� =
1 − �1 − ��/� + &x and c2�x� = x, where 0 < � < 1
and & > 0. Using results we will develop in §5.2,
we must have that �0 = �2� and �s = �1� (because
b2 < L
�1− 1/�� = 1− 1/� < b1 < L
�1+ 1/��; see the
next section for the notation). Hence, the rebate s =
��/�2���0� is optimal and the corresponding equilib-
rium is given by

xs =
(

2− �

2�1+&��
�1− 2− �

2�1+&��

)
�

The proportion of participants that receive positive
rebates is xs1, which tends to 1/� as � and & tend to 0.

5.2. Affine Cost Functions
Having derived properties for general cost functions,
this section considers instances with affine cost func-
tions and explicitly provides expressions for the opti-
mal rebates. Instances with this type of cost func-
tions are rich enough for many congestion phenomena
to appear. For example, the well-known Braess para-
dox was initially formulated with affine cost functions
(Braess 1968). Even for applications in which cost func-
tions are more complex, an affine approximation can
already show evidence of first-order effects (Acemoglu
and Ozdaglar 2007; Johari, Weintraub, and Van Roy
2009). We denote the cost function on arc i ∈ A by
ci�x�= aix+ bi, with ai > 0 and bi ≥ 0. Without loss of
generality, we consider that arcs are sorted according
to bi, so we have that b1 ≤ b2 ≤ · · · ≤ b�A�. For ease of
notation, we let �i� 
= �1� � � � � i�, and b�A�+1 =+
.
In the case of affine functions, we can simplify some

of the formulas we provided in previous sections.
For example, Definition 5.4 becomes K�X�=∑

i∈X 1/ai
for X ⊂ A. Notice also that a consequence of (5) is
that D� ≥ 0 and si ≤ bi/2 for all i ∈ �s . Furthermore,
(8) allows us to partition the arcs into the sets �0, �s ,
and A\� as follows.

Proposition 5.8. Consider a network with parallel
arcs and affine cost functions. If we consider i0 ∈ �0, is ∈
�s , and j ∈A\� , then bi0 ≤D� < bis < V� ≤ bj .

The following lemma and theorem show that if we
know how the arcs are partitioned, we can compute
the optimal rebate values for all arcs.
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Lemma 5.9. Consider a network with parallel arcs and
affine cost functions, and let �s� xs� be a Stackelberg equi-
librium. If rebates are beneficial (i.e., if �s �= �), then

D� =
1

K��0�

(
r
�− 1
�

+ ∑
i∈�0

bi
ai

)
�

V� =
1

K���

(
r
�+ 1
�

+∑
i∈�

bi
ai

)
�

If �0 is known, making use of the previous lemma,
we can compute the optimal rebates using the rela-
tions that we developed in the previous section. This
result implies that, essentially, there is a unique opti-
mal rebate vector.

Theorem 5.10. Consider a network with parallel arcs
and affine cost functions. Then, the optimal rebates must
satisfy that

si =
[
bi −D�

2

]+

for all i ∈ � . Moreover, if this formula is used for all
arcs, the corresponding solution �s� xs� is a Stackelberg
equilibrium.

Proof. Consider an arc i ∈ � . If i ∈ �0, then si = 0
by definition and this agrees with the proposed for-
mula because of Proposition 5.8. If i ∈�s , then solving
for si in (5a) also gives the proposed formula.
Now consider using the proposed formula for all

i ∈ A. We must prove that each arc j ∈ A\� is not
used under the corresponding Wardrop equilibrium.
Proposition 5.8 implies that bj > V�. Therefore, the
rebate computed by the theorem is positive and bj −
sj = �bj+D��/2. We conclude that the experienced cost
when the flow is zero equals bj−sj ≥ L� , which means
that xsi = 0. �

Evidently, plugging the values into the expression
of the previous theorem for Examples 1 and 2 gives
us the rebates that we indicated in §3.1. What remains
to be done to finish the characterization of optimal
rebates is to find �0, which will allow us to deter-
mine the value of D�. The following result provides
a characterization of the common cost experienced by
participants under a Stackelberg equilibrium. We will
use it to compute the values of D� and V�.

Proposition 5.11. Consider a network with parallel
arcs, affine cost functions, and total demand r > 0. For j ∈
A, define )�j� r� 
= �r +∑j

i=1�bi/ai��/K��j��. There exist
unique arcs i0� i1 ∈A such that

bi0 ≤ )�i0� r� < bi0+1� (9a)

bi1 <)�i1� r�≤ bi1+1 � (9b)

Moreover, )�i0� r� = )�i1� r� = L
, where L
 is the com-
mon cost experienced by participants under a Wardrop
equilibrium (without rebates).

Proof. Let us define i0 
=max�i ∈A
 bi ≤ L
�, and
let x be the Wardrop equilibrium. From the defini-
tion, i0 satisfies that bi0 ≤ L
 < bi0+1. The equilibrium
condition implies that xi = �L
 − bi�/ai for all i ≤ i0.
Summing over that range we get that L
 = )�i0� r�.
What is left to prove is that there is no other i0
that satisfies (9a). Hence, assume that there is another
index ĩ0, and define x̃ equal to �)�ĩ0� r� − bi�/ai for
i≤ ĩ0 and 0 otherwise. This flow is feasible because it
is nonnegative and its total demand equals r . Further-
more, it satisfies the Wardrop equilibrium conditions
with cost equal to )�ĩ0� r� for all participants. Recall
that because cost functions are strictly increasing,
there exists a unique Wardrop equilibrium. Because
x and x̃ are both at equilibrium, they must be equal.
This implies that )�i0� r�= )�ĩ0� r�, from where ĩ0 = i0
because of (9a).
A similar argument proves the existence of a unique

index i1 
=max�i ∈ A
 bi < L
� that satisfies (9b). We
highlight that i0 and i1 differ only when there is a
link i with bi = L
, in which case i0 > i1. �

Computing )�i� r� for the different arcs in
Instance 2, we get that )�1� r�= r , )�2� r�= �r + 1�/2,
and )�3� r� = �r + 3�/3. Then i0 = 1 when 0 ≤ r < 1,
i0 = 2 when 1≤ r < 3, and i0 = 3 when r ≥ 3. Similarly,
i1 = 1 when 0≤ r ≤ 1, i1 = 2 when 1< r ≤ 3, and i1 = 3
when r > 3.
In the sequel, we consider the function L
�z� which

represents the perceived cost under a Wardrop equi-
librium (without rebates) when the total demand is z.
When we do not denote a demand explicitly, we
assume that the regular demand of r is used. It is
well known that the function L
�z� is nondecreas-
ing and continuous (Hall 1978). In addition, Proposi-
tion 5.11 implies that it is piecewise linear with slope
1/K��i�� when its value is between bi and bi+1. There-
fore, it is a concave function. For an illustration, see
Figure 4 in the following section. Under our assump-
tions, L
�·� is easy to compute using an incremental
loading algorithm.
Using the previous result, we can now express the

perceived cost of participants at the Stackelberg equi-
librium. In addition, the next proposition will clearly
identify the sets �0 and �s . First, �0 = �i0�, where
i0 corresponds to the index introduced in Proposi-
tion 5.11 for a demand of r�1− 1/��. The arcs with-
out rebates that are used in a Stackelberg equilibrium
coincide with those that are used under a Wardrop
equilibrium (without rebates) with a total demand of
r�1− 1/��+ �, for a sufficiently small � > 0. Likewise,
� = �i1�, where i1 is the index introduced in Propo-
sition 5.11 for a demand of r�1+ 1/��. The arcs used
under a Stackelberg equilibrium coincide with those
that are used under a Wardrop equilibrium with a
total demand of r�1+ 1/��.
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Proposition 5.12. Consider a network with parallel
arcs and affine cost functions, and a Stackelberg equilib-
rium �s� xs�. If rebates are beneficial (i.e., if �s �= �), then

D� = L


(
r
�− 1
�

)
and V� = L


(
r
�+ 1
�

)
�

and the perceived cost of each participant under xs is

L� =
1
2

(
L


(
r
�− 1
�

)
+L


(
r
�+ 1
�

))
�

Proof. From Proposition 5.8 and Lemma 5.9, we
know that there exist i0� i1 ∈ A such that �0 = �i0�,
� = �i1�,

bi0 ≤ )

(
i0� r

�− 1
�

)
< bi0+1� and

bi1 <)

(
i1� r

�+ 1
�

)
≤ bi1+1�

Hence, Proposition 5.11 implies the first two claims.
The third follows simply from the relation displayed
right after (5). �

Using the values of i0 that we previously computed
for Instance 2, it is easy to see that L
�r� = r when
0≤ r < 1, L
�r�= �r+1�/2 when 1≤ r < 3, and L
�r�=
�r + 3�/3 when r ≥ 3. Using this, D� = 1− 1/�, V� =
1+ 1/�2��, and L� = 1− 1/�4�� as expected.
Notice that Proposition 5.12 provides an explicit

way to compute D�. Hence, this value is unique and,
relying on Proposition 5.11, the vector of optimal
rebates is unique as well (disregarding that a rebate
for an arc l ∈A\� can take any value between 0 and
cl�0�− L�, which does not count as multiple equilib-
ria because l is unused). Because there is a unique
Wardrop equilibrium for any given rebate vector such
that L� > 0, the Stackelberg game has an essentially
unique solution. This means that any two different
Stackelberg equilibria will be undistinguishable from
a practical point of view because flows and costs
under both solutions will be equal.
The following proposition provides an easily verifi-

able condition to check whether rebates can help lower
the social cost in a specific instance. Note that when
the inequality does not hold, the formula must hold
with equality because of the concavity of L
�r�.

Proposition 5.13. Consider a network with paral-
lel arcs and affine cost functions. Rebates are beneficial
(i.e., �s �= �) if and only if

1
2

(
L


(
r
�− 1
�

)
+L


(
r
�+ 1
�

))
<L
�

5.3. A Polynomial-Time Algorithm for Computing
Optimal Rebates

The results we have presented in the previous section
lead to a polynomial-time algorithm for finding the
optimal rebates. The following algorithm receives an
instance described by a network with parallel arcs,
affine cost functions, and a fixed demand as input,
and computes a Stackelberg equilibrium.

Algorithm
(1) Sort the arcs with respect to bi to cast the

instance into the form we considered.
(2) Compute the function L
�z� for the instance.
(3) Use Proposition 5.13 to decide whether rebates

need to be used.
(4) If rebates are not beneficial, we are done.
(5) Compute D� using Proposition 5.12.
(6) Finally, compute the rebate to offer in each arch

using Theorem 5.10.

Each of these steps requires a computation that
can be done in polynomial time. The bottleneck is
computing L
�z�, which requires solving at most
�A� systems of linear equations to load the network
incrementally and compute the breakpoints of the
piecewise linear function.
At this point, it is convenient to discuss how to esti-

mate the information needed to create an instance in
practice. This estimation has been discussed at length
in the literature of transportation engineering (see,
e.g., Sheffi 1985). We provide a short overview. First,
one needs to list the modes and their costs as a func-
tion on the flows. Cost functions are calibrated from
historical information, taking into account how dif-
ferent modes operate. Overall, one needs to sum the
travel time and the fare or toll for the mode, which
can be converted to the same units by using the aver-
age value of time for the population. The latter can
usually be estimated from socioeconomic informa-
tion coming from census data. The demand can be
measured directly or may come from historical OD
matrices that can be calibrated using up-to-date traf-
fic counts. The most difficult parameter to estimate in
our model is � because it is hard to attach a dollar
figure to a reduction in the total cost experienced by
travelers. This estimation has been attempted by the
Partnership for New York City (2006), who measure
the economic impact of reducing traffic congestion.
Alternatively, one can compute the optimal rebates,
social costs, and total cost experienced by commuters,
as a function of �. This can be done easily because the
algorithm above runs fast enough to solve the prob-
lem for many different values of �. With this curve in
hand, one can look at the tradeoff between the bud-
get invested in rebates and the overall social benefit.
This can guide policymakers in selecting the optimal
rebates to be used in a concrete situation.
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6. The Benefits of Using Rebates
6.1. Coordination Mechanisms Based on

Transfer Payments
First, we introduce some measures derived from the
price of anarchy that will be useful to quantify the
quality of equilibria resulting from a coordination
mechanism. As we said in §2, Roughgarden and
Tardos (2002) were the first to measure the price of
anarchy in the network competition model introduced
by Wardrop (1952). They defined the coordination
ratio of an instance as

C�xWE�

C�xSO�
� (10)

and the price of anarchy as the supremum of (10)
among all Wardrop equilibria and all possible in-
stances (meaning all possible networks, demands, and
allowed cost functions). Note that this value is at least
1 and it can be interpreted as follows: if it is low, then
there is not much improvement to be expected from
the introduction of a coordination mechanism in the
game that was considered. On the other hand, a large
price of anarchy suggests that there is a potentially
large benefit to be made. For example, the coordina-
tion ratio of Pigou’s instance (Instance 1) is 4/3. The
following result establishes that this ratio is the largest
possible.

Proposition 6.1 (Roughgarden and Tardos 2002).
The price of anarchy for instances with affine cost
functions is 4/3.

For quadratic, cubic, and quartic cost functions, the
price of anarchy is 1.626, 1.896, and 2.151, respectively
(Roughgarden 2003; Correa, Schulz, and Stier-Moses
2004). For a simple proof of these results we direct the
reader to Correa, Schulz, and Stier-Moses (2008).
Traditionally, the efficiency of a solution involv-

ing congestion pricing has been defined in terms
of the total cost C�·� because charges are transfer
payments that stay inside the system, or alterna-
tively by assuming that these payments can be redis-
tributed back to the users. For that social cost func-
tion, as Proposition 3.5 shows, charging users the
externalities they introduce produces a socially effi-
cient outcome. Some more recent articles look at
social cost functions that include a term correspond-
ing to taxation, similar to what we do in (1a). Under
these more general social cost functions, a system
owner may take a more holistic view, and not only
care about outcomes, but also about investments.
Cole, Dodis, and Roughgarden (2006) considered the
problem of finding the taxes * that minimize∑

i∈A xi�ci�xi� + *i�, where x is a Wardrop equilib-
rium with respect to modified cost functions c�·�+ * .
Unfortunately, finding an optimal mechanism for this

social cost function is NP-hard for arbitrary instances.
Although they did not explicitly specialize their
results to networks with parallel arcs, a generaliza-
tion of the results of §5 can be used to compute opti-
mal payments in polynomial time (still considering a
general conversion factor � like in (1a)). Karakostas
and Kolliopoulos (2005) extended the previous analy-
sis and found bounds for the social cost achieved by
an extension of the marginal taxation mechanism to
heterogeneous values-of-time. Under this setting, the
ratio of the social cost of an equilibrium to the solution
of minimum social cost with respect to the optimal
taxes is bounded with a smaller constant than that of
Proposition 6.1 and its generalizations. In addition, the
social cost is not too large compared to the minimum
possible total cost (without taxes).
One can use different variations of the concept of

the price of anarchy to quantify the power of a coor-
dination mechanism. We consider the two definitions
that are most interesting in our opinion. Both con-
sist of ratios of the same cost function under two dif-
ferent solutions, thereby not falling into the situation
of comparing apples and oranges. In addition, both
compare the outcome provided by the coordination
mechanism to a an upper or lower bound, depending
on the circumstances.
The first measure we consider is a straightforward

extension of (10). Indeed, to quantify the loss of effi-
ciency because of the limited coordinating power of
the system owner, we consider the ratio

C�xs�

C�xSO�
� (11)

For example, looking at Instance 2, this ratio equals 1
for � ≤ 1 and �8− 2/�+ 1/�2�/7 for � > 1. Note that
although the previous ratio measures the quality of
a given solution �s� xs� for a fixed instance, our main
interest is on the supremum of the coordination ratio
of an arbitrary Stackelberg equilibrium over all pos-
sible instances, as it is done for the price of anar-
chy. Another option would have been to define the
price of anarchy as in (11) but using perceived costs,
as Cole, Dodis, and Roughgarden (2006) proposed for
their study of taxes in networks. Remark 6.5 shows
that the bound that can be obtained is the same as
that for (11).
Previous research has determined that the price

of anarchy is sometimes a pessimistic measure, as
can be expected from a general worst-case bound.
For example, Correa, Schulz, and Stier-Moses (2008)
proposed to restrict the analysis to instances with
fixed congestion loads to get more realistic estimates.
Another aspect of the previous definitions is that
they do not consider that in certain settings a system
optimum is unrealistic and cannot be implemented.
For example, Schulz and Stier-Moses (2006) proposed
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Figure 4 Illustration of the Decomposition of 2r �V� −D��/�

to quantify the performance of a route guidance sys-
tem for vehicular traffic by comparing the solutions
with and without guidance instead of using a social
optimum.
To get a measure that is both less pessimistic and

more realistic, we consider that the best possible out-
come is what the system owner can enforce by set-
ting rebates correctly. Hence, we consider the ratio of
the social cost of a Wardrop equilibrium to that of
a Stackelberg equilibrium. Letting s be the optimal
rebate vector, this ratio is expressed as

C��0�
C��s�

= C�xWE�

C��s�
� (12)

When � < 1, this quantity may be large because the
denominator of (12) can be arbitrary small. Instead,
when � ≥ 1, the lower bound in (2) implies that
this ratio is less pessimistic (smaller) than (10). For
the examples provided before, we get that this ratio
equals 4�/�4� − 1� for Instance 1, while the coordi-
nation ratio displayed in (10) equals 4/3. The corre-
sponding values for Instance 2 are 8�/�8� − 1� and
8/7, respectively.

6.2. Computing the Price of Anarchy
Now that we have already characterized the optimal
rebates for a particular instance of the problem, we
are ready to analyze the performance of this coordina-
tion mechanism. We continue to work with networks
consisting of parallel arcs and affine cost functions.
We start by providing a bound between the unco-

ordinated solution (no rebates) and the Stackelberg
equilibrium. The case of � ≤ 1 follows from Proposi-
tion 4.2. Indeed, using Proposition 6.1, we have that
C��0�/C��s� = C�xWE�/��C�xSO�� ≤ 4/�3��. This means
that the price of anarchy arising from (12) is 4/�3��
for an arbitrary network with affine cost functions.
The case of � > 1 is more involved. We start by com-
puting the social cost of the Stackelberg equilibrium
making use of the relations developed in the previous
section.

Lemma 6.2. Consider a network with parallel arcs and
affine cost functions. For � > 1, the optimal social cost
equals ��/2�

∫ r�1+1/��
r�1−1/�� L
�z� dz.

Proof. We rewrite the expression 2r�V� − D��/�
using the graphical decomposition shown in Figure 4.
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Indeed, the area of the rectangle equals

K��0�
�V�−D��

2

2
+∑

i∈�s

�V�−bi�2
2ai

+
∫ r�1+1/��

r�1−1/��
�L
�z�−D��dz

= V�−D�

2

(
�V�−D��K��0�+

∑
i∈�s

V�− bi
ai

)
︸ ︷︷ ︸

=2r/�

− 2∑
i∈�s

xsi si +
∫ r�1+1/��

r�1−1/��
�L
�z�−D��dz �

where we used the expression for xsi in the proof of
Lemma 5.9, the expression for si in Theorem 5.10, and
that �V� − bi�

2 = �V� − bi��V� −D� +D� − bi�. The term
with the brace equals 2r/� because of (17). After some
algebra,

∑
i∈�s

xsi si =
1
2

∫ r�1+1/��

r�1−1/��
�L
�z�−D��dz−

r

2�
�V�−D��

= 1
2

∫ r�1+1/��

r�1−1/��
L
�z� dz−

r

�
L�� (13)

Consequently, the optimal social cost is

C��s� = rL�+�
∑
i∈�s

xsi si

= ��/2�
∫ r�1+1/��

r�1−1/��
L
�z� dz� � (14)

Theorem 6.3. Consider a network with parallel arcs
and affine cost functions. For �> 1, the unique Stackelberg
equilibrium �s� xs� satisfies that

C��0�
C��s�

≤ 4�
4�− 1 �

Proof. Let us assume that �s �= � because oth-
erwise the result is trivial. We need to compare
the cost C��s� computed in the previous lemma to
rL
�r�. Since L
�z� is a positive and concave func-
tion, L
�z�/z is a nonincreasing function. Bounding
the integral from below as Figure 5 illustrates, we get
that

C��s�≥
�rL
�r�
2�

(
2− 1

2�

)
=C��0�

(
1− 1

4�

)
�

as claimed. �

The previous result characterizes the tradeoff
between willingness to offer rebates and coordination
power of the mechanism. The corresponding bound is
tight, as Instance 1 demonstrates. (Note that the top-
most arc has a constant cost, but one can take that
cost equal to ax+1 for an arbitrarily small a and noth-
ing changes.) When the system owner’s willingness
to offer rebates is high (� is not much larger than 1),
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Figure 5 Illustration of the Bound for
∫ r �1+1/��
r �1−1/�� L
�z� dz

the optimal social cost is approximately equal to the
total cost under a system optimum; hence, the pre-
vious theorem provides a bound that is close to 4/3.
Here, recall that 4/3 is the price of anarchy when the
coordination mechanism can achieve a socially opti-
mal solution (Proposition 6.1). Not surprisingly, when
the willingness to offer rebates decreases (big �), the
previous theorem gives a bound that is close to 1
because the system owner cannot do much better than
in a Wardrop equilibrium.
Finally, we compute the worst-case ratio between

the participants’ real cost under a Stackelberg equilib-
rium and under a system optimum, as we proposed
in (11). In the case of � ≤ 1, the flow xSO is at equi-
librium (and it is the unique one for strictly increas-
ing cost functions, see §4.1), which implies that for an
arbitrary network with affine cost functions the mech-
anism coordinates the network. The following results
provide the bound corresponding to the case of �> 1.

Theorem 6.4. Consider a network with parallel arcs
and affine cost functions. The Stackelberg equilibrium
�s� xs� described in the previous section satisfies that

C�xs�

C�xSO�
≤ 4�
3�+ 1 � (15)

This bound is close to 1 for � ≈ 1 because in that
case a Stackelberg equilibrium is similar to a system
optimum, and close to 4/3 when � is large because in
that case it is similar to a Wardrop equilibrium. As for
the previous bound, Theorem 6.4 provides the curve
that characterizes the tradeoff between willingness to
offer rebates and coordinating power. We highlight
that this bound is tight, which can be observed by
taking �= 0 and letting & tend to 0 in Instance 3.

Remark 6.5. The bound provided by Theorem 6.4
is also valid if one takes the ratio of the partic-
ipants’ perceived cost in the Stackelberg equilib-
rium to that in the system optimum. This holds
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because
∑

i x
s
i �ci�x

s
i �− si�

+ ≤C�xs�. Moreover, the same
instance as before shows that this bound is tight.

7. Conclusions
We have studied the possible improvement that can
stem from the use of rebates to coordinate an urban
transportation network. If a system owner can afford
to offer rebates and the system is highly congestible,
rebates can significantly lower the social cost, which
includes commute times and costs, as well as the cost
of providing the rebates themselves. The algorithm
we have presented can be used to determine opti-
mal subsidies for each mode of transportation. Subsi-
dies only affect a limited proportion of the demand,
implying that the cost of providing them will not be
exceedingly large. We have also estimated how much
improvement this coordination mechanism brings to
the system, as a function of the city’s sensitivity to the
cost of offering rebates. The coordinating power of a
rebate scheme increases as the owner’s sensitivity to
the rebate cost decreases.
Several questions related to this study remain

open. First and foremost, we have worked under the
assumption that an instance has parallel arcs and
affine cost functions. It would be interesting to gen-
eralize our results to more general instances. Another
interesting problem is to determine the computational
complexity of finding optimal rebates. Proving its
hardness would shed light into this problem and
would motivate the need to look for good heuris-
tics. For quadratic cost functions for example, optimal
rebates can be irrational numbers.4 Hence, an opti-
mal rebate vector cannot be computed exactly in poly-
nomial time. Nevertheless, it would be interesting to
find a way to approximate it. Finally, another inter-
esting open question is whether optimal rebates are
unique in general. We have shown that this is true for
networks with parallel arcs and affine cost functions.
Our model has some limitations that we would

like to address in future research. On the one hand,
we plan to incorporate the possibility that the sys-
tem owner considers congestion pricing and rebates
at the same time. Such extension will be useful to
model systems in which both incentive mechanisms
co-exist to create a larger differential between the total
cost of driving and that of public transportation. On
the other hand, we also want to look at an hetero-
geneous population because the valuation of time is
user-dependent. This extension would allow a mod-
eler to look at more precise measures of equity among
commuters. Furthermore, it is important to consider

4 For example, considering the instance shown in Figure 1 with
costs functions 1 and x2, and �= 2, it is optimal to offer a rebate of
�11−√

13�/18 for the arc with constant cost.

elastic demands because in practice some trips are
optional and will not happen if the price of trans-
portation is too high. The last element that would be
interesting to consider is a situation in which multiple
agencies in the government have to coordinate their
efforts and budgets to offer incentives to the pop-
ulation. Because each agency has its own goal and
agenda, they may not agree in the policy that should
be chosen.
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Appendix A. Proofs

A.1. Proof of Lemma 5.2
Proof. Let Ã 
=A\�l� and s̃ be the restriction of s to Ã.

Assume that s̃ is not optimal for Ã, and let s̃∗ be an opti-
mal rebate vector for that network. Then, CÃ

� �s̃
∗� < CÃ

� �s̃�=
CA
� �s�, where the superscript represents the instance and
the equality holds because if no participant selects the
arc, it makes no difference whether the arc exists. Now,
we take the optimal rebate vector s̃∗ and extend it to
the original network by setting s∗l 
= 0 and s∗i 
= s̃∗i for
i ∈ Ã. Because a situation like Braess’ paradox (1968) can-
not occur in networks with parallel arcs, the participants’
real cost at a Wardrop equilibrium decreases when link l is
(re)introduced. Together with the fact that arc l is not subsi-
dized, we have that CA

� �s
∗�≤ CÃ

� �s̃
∗�, which contradicts the

optimality of s in the original instance. �

A.2. Proof of Proposition 5.3
Proof. Without loss of generality assume that si = ci�0�−

L� for all i ∈ A\� . Consider two fixed arcs i ∈ �s and j ∈
A. Since si is strictly positive, it is possible to simultane-
ously reduce si by a positive infinitesimal dsi and increase
sj so that the only effect is that some participants switch
from arc i to j . In other words, we have that dxj = −dxi,
where we denote an infinitesimal variation of a quantity
w by dw. By design, the perceived cost L� at equilibrium
remains the same. The local effect at the arcs in question is
d�ci�x

s
i �− si�= 0 and d�cj �x

s
j �− sj � = 0. Because s was opti-

mal, this modification cannot decrease the total rebate cost∑
i∈A xsi si, as it does not modify the total participants’ per-

ceived cost. This implies that d�xsi si + xsj sj � ≥ 0. Putting all
together,

dxsi �x
s
i c

′
i�x

s
i �+ si − xsj c

′
j �x

s
j �− sj �≥ 0�

As dxsi < 0, we must have x
s
i c

′
i�x

s
i � + si ≤ xsj c

′
j �x

s
j � + sj , and

adding ci�xsi �− si = cj �x
s
j �− sj , we finally obtain that ci�xsi �+

xsi c
′
i�x

s
i �≤ cj �x

s
j �+xsj c

′
j �x

s
j �. We get the claim by letting i and j

vary. �
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A.3. Proof of Lemma 5.5
Proof. To ensure that the modification to the rebates we

are going to make does not change the sets �s and �0, we
first remove all unused arcs. Indeed, Lemma 5.2 proves that
if s is optimal for the original network, it is also optimal for
the instance containing the arcs in � only. The proposition
is obvious for �s = �, so let us assume the opposite. We
consider adding or subtracting a common infinitesimal ds
to all rebates that are strictly positive. After modifying s the
outcome is still at equilibrium and all arcs are still used;
hence, differentials of perceived costs are equal for all arcs
in � . For a fixed is ∈ �s and a fixed i0 ∈ �0 �= �, we have
that c′is �x

s
is
�dxis − ds = c′i0 �x

s
i0
�dxsi0 and

dxsi =


c′is �x

s
is
�dxsis /c

′
i�x

s
i � i ∈�s�

c′i0 �x
s
i0
�dxsi0/c

′
i�x

s
i � i ∈�0�

As the total demand does not change, we must have
that 0=∑

i∈� dxsi =K��s�c
′
is
�xsis �dxis +K��0�c

′
i0
�xsi0 �dx

s
i0
. After

some algebra, c′is �x
s
is
�dxis = dsK��0�/K���. Finally, let us con-

sider how the social cost changes.

dC��s� = d

(
r�cis �xis �− sis �+�

∑
i∈�

xisi

)

= r�c′is �x
s
is
�dxsis − ds�+�

∑
i∈�s

(
c′is �x

s
is
�dxsis

si
c′i�x

s
i �

+ xsi ds

)

= c′is �x
s
is
�dxsis

(
r +�

∑
i∈�s

si
c′i�x

s
i �

)
+ ds

(
�
∑
i∈�s

xsi − r

)

= ds

((
K��0�

K���
− 1

)
r +�

K��0�

K���

∑
i∈�s

si
c′i�x

s
i �

+�
∑
i∈�s

xsi

)

= ds
�

K���

(
− r

�
K��s�+K��0�

∑
i∈�s

si
c′i�x

s
i �
+K���∑

i∈�s
xsi

)
�

The claim follows because the optimality of s implies that
dC��s�≥ 0 for feasible directions ds > 0 and ds < 0. �

A.4. Proof of Lemma 5.9
Proof. On the one hand, (3a) and (4a), respectively,

imply that

xsi =




V�+D�− 2bi
2ai

i ∈�0�

V�− bi
2ai

i ∈�s �

Since
∑

i∈� xsi = r , we have

V�
2
K���= r − D�

2
K��0�+

∑
i∈�s

bi
2ai

+ ∑
i∈�0

bi
ai
� (16)

On the other hand, (4a), (5a), and Lemma 5.5 imply that

r

�
K��s� =

V�
2
K��s�K���+ �K��0�−K����

∑
i∈�s

bi
2ai

− D�

2
K��0�K��s��

and since �s �= �,
V�
2
K���= r

�
+ ∑

i∈�s

bi
2ai

+ D�

2
K��0�� (17)

Adding and subtracting (16) and (17) yield the claim. �

A.5. Proof of Proposition 5.13
Proof. Rebates are beneficial only if the social cost of a

Stackelberg equilibrium is lower than that of the Wardrop
equilibrium. In that case, L� < L
 and, hence, the strict
inequality of the claim holds because of Proposition 5.12.
We now focus on the reverse implication. Assuming that

the inequality in the hypothesis holds, there exists an i ∈A
such that

L


(
r
�− 1
�

)
< bi < L


(
r
�+ 1
�

)
�

Proposition 5.8 implies that if i ∈A\� then bi ≥ V� , and if
i ∈�0 then bi ≤D�. Therefore, i ∈�s , which is consequently
nonempty. �

A.6. Proof of Theorem 6.4
First, we express the cost of the system optimum as a func-
tion of L
 to be able to relate it to a Stackelberg equilibrium.

Lemma A.1. For networks with parallel arcs and affine cost
functions, the minimal value of the participants’ real cost is

C�xSO�= 1
2

∫ 2r

z=0
L
�z� dz�

Proof. Proposition 3.5 implies that there exists a constant
LSO > 0 such that

LSO = 2aixSOi + bi ∀ i s.t. xSOi > 0�

LSO ≤ bi ∀ i s.t. xSOi = 0�

Proceeding as in Stackelberg equilibrium case, xSOi =
�LSO − bi�

+/�2ai�. If we let iSO 
= max�i ∈ A
 bi ≤ LSO�, we
have that r =∑iSO

j=1 �L
SO− bj �/�2aj �. Hence,

LSO = 1
K��iSO��

(
2r +

iSO∑
j=1

bj

aj

)
�

Since biSO ≤ LSO < biSO+1, Proposition 5.11 implies that LSO =
L
�2r�. Then

C�xSO� =
iSO∑
j=1

xSOj

(
L
�2r�−

L
�2r�− bj

2

)

= rL
�2r�−
1
2

iSO∑
j=1

�L
�2r�− bj �
2

2aj
�

Finally, using a similar decomposition as in Figure 4, it can
be shown that

2rL
�2r�=
∫ 2r

z=0
L
�z� dz+

∑
i∈A
bi≤L
�2r�

�L
�2r�− bi�
2

2ai
�

The claim follows from the last two equations. �

Now we are ready to offer the proof of Theorem 6.4.
Proof. Equations (1b), (13), and (14) imply that

∑
i∈A

xsi ci�x
s
i �= r

�− 1
�

L�+
1
2

∫ r�1+1/��

r�1−1/��
L
�z� dz� (18)
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L
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Figure A.1 Illustration of the Bound for C�xSO�

From Lemma A.1, the concavity of L
, and decomposing the
area under the curve as Figure A.1 illustrates, we have that

2C�xSO� ≥ r
�− 1
�

D�

2
+ r

�− 1
�

V�+
∫ r�1+1/��

r�1−1/��
L
�z� dz

= 2
∑
i∈A

xsi ci�x
s
i �− r

�− 1
�

D�

2

≥ 2∑
i∈A

xsi ci�x
s
i �− r

�− 1
�

L�
2

≥ C�xs�

(
2− �− 1

2�

)
�

where the second, third, and fourth lines hold because
of (18), D� ≤ L� , and rL� ≤

∑
i x

s
i ci�x

s
i �, respectively. �
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Abstract—Almost all modern mobile devices are equipped with
a number of various wireless interfaces simultaneously, so that
each user is free to select between several types of wireless
networks. This opportunity raises a number of challenges, since
in general selfish choices do not lead to a globally efficient
repartition of users over networks. The most popular approach
in this context is to charge an extra tax for connecting to
overloaded networks, thus incentivizing users to choose less
congested alternatives.

In this paper we apply that idea to a system where several
networks with a common coverage area coexist. Moreover we as-
sume that users –or the applications they use– are heterogeneous
in their sensitivity to the congestion-varying Quality-of-Service
(QoS). We show the technical and computational feasibility of
computing taxes leading to a globally optimal outcome for any
number of networks and application types (QoS-sensitivities),
hence generalizing the results from previous works.

I. INTRODUCTION

Wireless networks technologies such as 3G, WiFi (IEEE
802.11 a/b/g/n/ac), or LTE, are becoming more and more
crucial and widespread. Each technology has its own advan-
tages and drawbacks, in terms of throughput, geographic area
covered, energy consumption, etc. Moreover, recent mobile
terminals are equipped with a number of different network
interfaces, offering the possibility to connect through different
technologies to a variety of networks concurrently. Wireless
network users can then switch from one network to another,
for example using the IEEE 802.21 standard [7].

Switching between networks implementing different tech-
nologies is referred to as vertical handover. We expect that
one of the major objectives in future generations of mobile
networks would be to find a solution for the vertical handover
decision, satisfying both mobile users and providers. Indeed,
allowing each user to select at any time its most suitable
wireless network, i.e., to be always-best-connected [10], could
cause the overload of some technologies and the under-
utilization of others. This is due to user selfishness: users
ignore the negative consequences of their actions on others
when making their choices, which can lead to inefficient
situations. In order to cope with that problem and profit

from the diversity of technologies, operators have to improve
resource management.

A number of recent papers in the transportation science
literature addressed that same problem (see [4], [8], [12]).
They discuss the introduction of incentive tools, interpreted
as taxes, which could influence user choices towards a more
efficient situation. In this paper, we focus on applying that
idea to a situation when we need to influence user’s choices
between several wireless heterogeneous networks. Due to the
specificity of the wireless framework, our problem can be
modeled as a routing game simpler than the general ones
studied in [4], [8], [12], which allows us to reach analytical
results.

II. RELATED WORK

Various works in the literature investigate how the selfish
behavior of users in networks can be regulated through in-
centive tools, such as taxation or penalties. The idea being
that users select the cheapest path from their position to their
destination node in the network, taking into account the cost
(latency, or delay, that is sensitive to congestion) of the paths
but also possibly some additional (monetary) costs imposed
by the network manager. So that a proper definition of the
tax levels influences user choices. In the homogeneous case,
i.e., when all users have the same sensitivity to the taxation,
Beckmann et al. [2] showed that the so-called Pigovian taxes–
applied on each link, and computed using the derivative of the
cost functions of the links–produce a minimum-latency (delay)
traffic routing (see [18]). In [11], Pigovian taxes are also used
to influence user preferences, and induce a repartition of flows
among the available access networks that optimizes the overall
network performance.

Reference [4] considers the case when users may perceive
differently the relative costs of delay and taxes. The authors
were the first to study this setting, for a situation when all
users have the same source and destination, with any network
topology in between. For that scenario, it is shown that there
exist taxes so that the resulting user flow minimizes the
average latency. Those results have been generalized to the
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multicommodity setting (i.e., several source-destination pairs)
in [12], [13]. A constructive proof is given to show that taxes
inducing the minimum average latency multicommodity flow
exist for both the cases of elastic (i.e., cost-dependent) and
nonelastic demands.

In the articles evoked above, users are sensitive to the
latency caused by congestion; however there are several papers
where other congestion-dependent costs are considered. In [3],
three different cost functions are proposed: two of them depend
both on the interference level and the transmission rate, and
the third one depends only on the interference level. In [17]
users are supposed to have information about the geographical
locations and current loads of network access points, and are
able to move between the coverage areas of different networks.
Thus users face a trade-off between the load level of their
current access point and the distance they have to travel.
In both works, the authors take into account only the user
behavior, i.e., mobile users select the access network selfishly,
hence a noncooperative game. The interaction between mobile
users and the operator is not considered there, while in the
current paper we consider the impact of the operator’s actions
(the incentives).

A totally different approach is to seek for an optimal user
admission policy in a network, through SMDPs (Semi Markov
Decision Processes). This approach is applied to the problem
of global expected throughput maximization with the help
of a central controller (taking admission decisions) in [5],
[6], [14]. The methods consider that the user arrival process
and the time spent in the network are known stochastically.
An admission policy maximizing total throughput can then
be derived. However, the presence of an authority making
decisions instead of users could be perceived negatively. In
our model, users make their own choices, the operator’s
intervention consisting only in adding incentives.

III. MODEL AND PROBLEM FORMULATION

We consider a system with n heterogeneous wireless net-
works covering the same area. This model is a generalization
of the one in [9] where only two networks and two user (or
application) classes were considered. The users situated in the
common coverage area of these networks seek for an Internet
connection. We assume that they could easily handover from
one network to another, thus choosing at every moment the
most suitable one. Users select which network to connect to
based on the QoS they experience and on the prices charged
by the network owner. We investigate how users make their
decisions, what is the outcome of these decisions, how far
that outcome is from the optimum situation from the point
of view of the network owner, and, finally, how the network
owner could stimulate users to act efficiently.

A typical application case of our approach is that of network
off-loading, with the objective to reach the most efficient load
balance between indoor and outdoor coverage technologies.

A. Mathematical formulation

We identify all parameters related to a specific network i
through the use of the lower index i, for 1 ≤ i ≤ n. Each
network i has a QoS-related cost function `i(fi) that we will
call the latency function, where fi is the flow (cumulated
throughput) on network i. All networks are owned by the same
provider, which is aiming to minimize some cost function and
could influence users behavior through charging a tax τi on
each network i.

We assume a total user demand D coming from users’
applications. Since QoS requirements can vary depending on
the applications used and on user preferences, the trade-offs
between QoS and monetary cost shall differ, which we model
through the sensitivity to the monetary cost (or equivalently,
the ratio of the price sensitivity to the latency sensitivity). We
can represent this variability by considering price sensitivities
of users and price sensitivities of applications, so that each pair
(user,application) would lead to a specific sensitivity value.
Assuming a finite number of application types and of user
types, we would have a finite number of overall sensitivities.
To simplify notations, without loss of generality we will treat
a user running q applications with different requirements as
q separate users, each one running one application. Therefore
from now on we only evoke users, each one having a given
price sensitivity. This simplification can be done because the
interactions among flows from a single user are negligible
due to a non-atomicity assumption explained below: no user
can improve his utility by coordinating his own flows, so we
can treat those flows as being issued by distinguished (non-
cooperating) users.

We consider m classes of users, implying that users from
the same class have the same price sensitivity value. We write
all the parameters related to class j with the upper index j ,
1 ≤ j ≤ m; users in class j have tax sensitivity αj ≥ 0 and
the total demand from class-j users is denoted by dj , so that∑m

j=1 d
j = D.

We assume that the cost perceived by a class-j user con-
nected to network i is a combination of QoS (through the
latency function) and price

Cj
i (f) = `i(fi) + αjτi, (1)

and that every user seeks for a connection which minimizes
this cost. The following assumption specifies the type of
latency functions we use in our model:

Assumption A: Each network i has a capacity ci, and a
load-sensitive latency function corresponding to the mean
sojourn time in an M/M/1 queue:

`i(fi) =

{
(ci − fi)−1 if fi < ci,

∞ if fi ≥ ci,
(2)

with fi the total flow on network i.
With this type of latency function we also have to assume
that D <

∑n
i=1 ci, in other words the aggregated capacity

is enough to treat all demand. We assume that the provider
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owning all considered networks is interested in minimizing
the social cost (or total cost) expressed as:

C(f) =
n∑

i=1

fi`i(fi), (3)

where f = (f1, . . . , fn) is the flow distribution vector, with∑n
i=1 fi = D. That cost corresponds to the aggregated

latencies undergone by users.

B. Routing game interpretation

Assuming that only radio links incur QoS-related costs (i.e.,
latency), the setting described above could be seen as a routing
problem, with a common source for all users, represented by
the common coverage area of the networks, and one common
destination (the Internet). Each user forwards his flow through
one of n routes, which are the n networks, with a routing cost
equal to the cost in (1), as depicted in Figure 1. When users
selected their route, their interactions form a noncooperative
routing game.

s t

`n(fn) + αjτn

`1(f1) + αjτ1

d1, . . . , dm d1, . . . , dm
...

Fig. 1. Logic representation of the network selection problem as a routing
problem: the perceived cost on each route i depends on the load fi and the
tax τi, but also on the user type j through the sensitivity αj .

In this paper we assume that users are non-atomic [1], i.e.,
the individual impact of each player on the network loads is
negligible. Those games have been extensively studied since
the seminal work of Wardrop [19]. In particular, for our routing
game there are theoretical results proving the existence of
optimal taxes, i.e., taxes driving the system to a situation with
minimum social cost [12]. For the specific latency functions
considered in this paper, we find an analytical expression for
those optimal taxes.

Note that our model does not include network attachment
costs: adding such costs (possibly different among networks)
would affect the attachment decisions of users but also pos-
sibly deter them from performing vertical handovers during
the connection (due to varying network conditions over time).
Such considerations are left for future work.

C. The case of several providers

In this paper we consider that all networks are owned and
controlled by the same entity, that we call the provider. The
objective for the provider here is to make the best use of the
network resource, in the sense of the aggregated user cost
of Equation (3). Hence the provider is not directly driven
by revenue, the taxes imposed on network are only used as
incentives to reach the best flow repartition.

Considering several providers managing the different net-
works would totally change the paradigm, since those
providers would compete to attract customers and make rev-
enue, and would use taxes for that purpose. We would then
have a non-cooperative game played among providers deciding
their tax levels, and anticipating user reactions when making
those decisions. Such situations of competing providers have
been studied in [15] with cost functions similar to ours, but
with few positive analytical results: even the existence of a
Nash equilibrium of the tax-setting game is not guaranteed.
However, if such an equilibrium exists, it can reasonably be
expected to benefit to users (a general property of competition)
with respect to a case where a single entity controls all
networks and sets prices to maximize revenue (not the case
treated here).

The case when several providers perfectly cooperate to
optimize network usage would be equivalent to the one-
provider case. However there are some in-between situations,
where providers may partially compete and cooperate: for
example they may have roaming agreements, or may have to
share the capacity of their access networks. Those aspects are
partially treated in [16] but would deserve more attention.

IV. USER EQUILIBRIUM AND OPTIMAL SITUATIONS

In this section we define the user equilibrium of the routing
game, and compare the equilibrium without taxes to an optimal
situation from the point of view of social cost (3). To simplify
notations, we assume without loss of generality that:

Assumption B:
1) c1 ≥ c2 ≥ . . . ≥ cn
2) α1 < α2 < . . . < αm

A. User equilibrium

When users act selfishly, each one choosing a network
minimizing his individual cost (1), then the game has an
equilibrium, i.e., a situation such that no user can reduce his
cost by a route change. We call that situation user equilibrium
or Wardrop equilibrium, and it is characterized by Wardrop’s
principle [19].

Definition 1: A Wardrop equilibrium is a flow repartition

f = (f ji )1≤i≤n,1≤j≤m , such that
{
f ji ≥ 0 ∀i, j
dj =

∑n
i=1 f

j
i ∀j

and such that

∀i, i′, j f ji > 0⇒ `i(fi) + αjτi ≤ `i′(fi′) + αjτi′ , (4)

with fi =
∑m

j=1 f
j
i . The quantity f ji represents the flow from

class-j users that is routed through network i (recall that dj

is the total flow of class-j users).
In other words, at a Wardrop equilibrium, the cost of each
used route is lower (for the users taking that route) than the
cost of any other.

B. User equilibrium without taxes

Consider the case when the provider does not charge taxes
for using his networks (or equivalently all taxes are the same),
and thus users make their choices without any intervention
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from the provider. Then the flows at a Wardrop equilibrium
have the form stated in the following proposition.

Proposition 1: Under Assumptions A and B, at a Wardrop
equilibrium fWE with no taxes being applied, we have:

fWE
i =

{
D−∑t

q=1 cq+tci

t if i ≤ t,
0 otherwise,

(5)

where 1 ≤ t ≤ n is the maximum index for which

D −
t∑

i=1

ci + tct > 0, (6)

and represents the number of used networks.
The proof comes quite directly from Definition 1, since

without taxes all users should perceive the same cost on all
used routes. The proof details are omitted due to lack of space.

Proposition 1 provides a way to compute the equilibrium
flows (in a time linear in the number n of flows).

C. Optimal situation

In this section we investigate the optimum situation, which
we later intend to reach by introducing appropriate taxes.
An optimal flow assignment f opt = (f opt

1 , . . . , f opt
n ) which

minimizes social cost (3) is the solution of the following
mathematical program:

min
f1,...,fn

n∑

i=1

fi`i(fi) (7)

s.t.

{∑n
i=1 fi = D

fi ≥ 0, for i = 1, . . . , n
(8)

Note that this problem does not distinguish among user
classes, it only involves aggregate flows on each network. With
the specific latency functions (2) we can express the optimal
flows analytically.

Proposition 2: Optimal flows (f opt
i )1≤i≤n minimizing (3)

are unique and given by:

f opt
i =




ci −

√
ci(

∑k
j=1 cj−D)

∑k
j=1

√
cj

if i ≤ k,
0 otherwise,

(9)

where 1 ≤ k ≤ n is the maximum index for which

ci −
√
ci(
∑k

j=1 cj −D)
∑k

j=1

√
cj

≥ 0. (10)

Proof: We apply the following result from [2]:
Lemma 1 (Beckmann et al., 1956): For any non-atomic

routing game with latency functions (`i), the optimal flows
minimizing social cost (3) correspond to the Wardrop
equilibrium flows of a modified game where latency functions
are

¯̀
i(fi) = `i(fi) + fi`

′
i(fi). (11)

Therefore, applying the equilibrium conditions (4) there exists
H > 0 such that for all i, 1 ≤ i ≤ n:
{
f opt
i > 0⇒ `i(f

opt
i ) + f opt

i `′i(f
opt
i ) = H,

f opt
i = 0⇒ `i(f

opt
i ) + f opt

i `′i(f
opt
i ) = `i(0) ≥ H. (12)

With our latency functions (2), we immediately remark that

f opt
i > 0⇔ 1

ci
< H, (13)

thus from Assumption B there exists k (the number of used
networks at the optimal situation) such that (f opt

i > 0 ⇔ i ≤
k). From (12) we get

f opt
i = ci −

√
ci√
H
, i = 1, . . . , k, (14)

and the condition
∑k

i=1 f
opt
i = D yields H =

(
∑k

i=1

√
ci)

2

(
∑k

i=1 ci−D)2
.

Plugging that last expression into (14) gives (5), while plug-
ging it into (13) leads to the characterization (10) for k.

Similarly to Proposition 1 for equilibrium flows, Proposi-
tion 2 implicitly defines a linear-time algorithm to compute
optimal (i.e., globally cost-minimizing) flows. Note that to
compute optimal (as well as equilibrium) flows we only need
to know the network capacities (ci)1≤i≤n and the total demand
D, that do not depend on any characteristics of user classes.

V. ELICITING OPTIMAL USER-NETWORK ASSOCIATIONS
WITH TAXES

To reduce the total cost the provider has to give an incentive
to some users to switch networks, so as to provide higher
QoS to the majority of users and lower QoS to some others,
instead of providing the same QoS to everyone (what we get
at the Wardrop equilibrium without taxes). Here the provider
introduces special taxes, such that the flow assignment in the
Wardrop equilibrium induced by these taxes is the optimum
flow assignment. Previous works (see [4]) ensure that those
taxes exist, and the following lemma will help to compute
them.

Lemma 2: Under Assumptions A and B, optimal taxes are
such that τ1 ≥ τ2 ≥ . . . ≥ τk, where k is the number
of networks used (i.e., networks with positive flows) at the
optimal situation. For networks i > k, it is sufficient to have
τi ≥ τk.

Proof: Let us first consider used networks, i.e. networks
1, . . . , k. From Lemma 1, for i, i′ ≤ k we have

ci

(ci − f opt
i )2

=
ci′

(ci′ − f opt
i′ )2

:= K2 (15)

for some constant K.
Suppose that τi < τi+1 for some i < k, and that those taxes

lead to an equilibrium coinciding with the optimal situation.
Then for a class of users j choosing network i+ 1, we have
from the equilibrium conditions

`i+1(f opt
i+1) + αjτi+1 ≤ `i(f opt

i ) + αjτi,

hence `(f opt
i+1) < `(f opt

i ).
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But `i(f
opt
i ) = 1/(ci − f opt

i ) = K/
√
ci from (15), therefore

since ci ≥ ci+1 we have `(f opt
i+1) ≥ `(f opt

i ), a contradiction.
Now, we consider networks k+1, . . . , n, which do not carry

any flow in the optimal situation: no user should prefer one
of those networks to their current one. In particular, denoting
by j a class sending flow to network k under optimal taxes,
we must have

`i(0) + αjτi ≥ `k(f opt
k ) + αjτk, ∀i = k + 1, . . . , n,

thus

τi ≥
`k(f opt

k )− `i(0)

αj
+ τk, ∀i = k + 1, . . . , n. (16)

But from (12) we have `k(f opt
k )− `i(0) ≤ 0, therefore taking

τi ≥ τk is sufficient to ensure that (16) holds, i.e., that
networks i = k + 1, . . . , n are not chosen by users.

Now we provide a method to calculate the optimal taxes:
Proposition 3: Under Assumptions A and B, the following

taxes are optimal:

τi+1 = τi +
`i(f

opt
i )− `i+1(f opt

i+1)

αsi
, (17)

for i = 1, . . . , n− 1, with τ1 taken arbitrarily, and with

si := min

{
j :

i∑

r=1

f opt
r ≤

j∑

q=1

dq

}
. (18)

For networks used at the optimal situation (networks with
f opt
i > 0), the index si represents the class with maximum

sensitivity among those sending flow to network i.
Proof: For a network i with positive optimal flow, we

define αmax
i and αmin

i as respectively the maximum and
minimum sensitivities among classes sending some flow to
network i (i.e., classes j such that f ji > 0). Then the Wardrop
equilibrium conditions for classes choosing networks i and
i+ 1 (both with positive optimal flows) yield

αmax
i (τi − τi+1) ≤ `i+1(f opt

i+1)− `i(f opt
i ) ≤ αmin

i+1(τi − τi+1)

Since τi ≥ τi+1 from Lemma 2, we obtain αmax
i ≤ αmin

i+1 .

• If αmax
i = αmin

i+1 then a class of users, denoted by j′, is indif-
ferent between both networks. From the Wardrop equilibrium
conditions we have:

`i(fi) + αj′τi = `i+1(fi+1) + αj′τi+1. (19)

From this we derive (17), with j′ satisfying (18).

• If αmax
i < αmin

i+1 , then this corresponds to a rare case, when
two neighbor classes are perfectly divided, and there is no
class whose users are indifferent between both networks. One
more time using the Wardrop equilibrium conditions we write:

{
`i(fi) + αmax

i τi ≤ `i+1(fi+1) + αmax
i τi+1

`i(fi) + αmin
i+1τi ≥ `i+1(fi+1) + αmin

i+1τi+1.
(20)

These two inequalities imply that

τi +
`i(fi)− `i+1(fi+1)

αmax
i

≤ τi+1 ≤ τi +
`i(fi)− `i+1(fi+1)

αmin
i+1

.

So, in this particular case a whole range of taxes for network
i + 1 induce an optimal division of users. Note that our
proposition in Equation (17) falls in that range.

For networks with empty flows in the optimal situation, our
proposition is still valid. Indeed, since taxes decrease with the
network index, the class m with the highest sensitivity to price
is the first class which would be interested in connecting to
these empty networks. It is easy to see that the taxes defined
by (17) will prevent them from doing this. If k is the maximum
index of a network with non-empty flow in optimal situation,
then from the Wardrop equilibrium conditions we should have:

`k(f opt
k ) + αmτk ≤ `i(0) + αmτi ∀i > k, (21)

which is verified with the tax defined by (17).
Like the two previous propositions in the paper, Propo-

sition 3 implicitly defines an algorithm to compute optimal
taxes: Proposition 2 should first be applied to obtain optimal
flows, then (18) provides the value of si for each network i
to be inserted into (17) so as to get the tax value.

The freedom to arbitrary choose τ1 gives us an interesting
feature: the provider could regulate his total revenue by
adjusting appropriately τ1 without any harm to the social cost.
For example, τ1 could be set (to a negative value) such that
the total revenue is null.

The intuition behind Proposition 3 is illustrated in Figure 2.
We already know from Lemma 2 that the bigger tax should be

d1α1

d2α2

d3α3

d4α4

f opt
1

f opt
2

f opt
3

C2
1 (f opt

1 ) = C2
2 (f opt

2 )

C3
2 (f opt

2 ) = C3
3 (f opt

3 )

Fig. 2. Example of user distribution among networks with optimal taxes for
the case m = 4, n = 3: class-1 (resp. class-4) users all attach to network 1
(resp. 3), while class-2 (resp. class-3) users are split among networks 1 and
2 (resp. 2 and 3).

charged on networks with lower indexes (bigger capacities).
This in turn means that the “richest” users are connected
to them (the smaller their sensitivity values). Thus, the least
price-sensitive users will choose network 1. On the example
on Figure 2, the total flow of class-1 users is not enough to
ensure an optimal flow f opt

1 in network 1. So, the following
(by sensitivity value) class should fulfill the optimal flow in
network 1. The total flow of classes 1 and 2 is bigger than
the optimal flow f opt

1 , so we have to split users from class 2.
Here we should use the Wardrop equilibrium conditions to find
an expression for τ2 depending on τ1, this condition meaning
that users of class 2 are indifferent between networks 1 and 2.
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In general, the only computational difficulty is to find a class
with users indifferent between two networks with consecutive
indices. In the proposed example, it is class 2 for networks 1
and 2, and class 3 for networks 2 and 3.

VI. EFFICIENCY ANALYSIS

In this section we present some analytical investigations
about the efficiency of our taxation method. As an efficiency
measure we use the Price of Anarchy (PoA), which is the
ratio between the total cost value achieved from the selfish
users behavior and the minimum total cost value that could
be reached by coordinating users [12]. This value is larger or
equal to one. The larger the PoA, the less efficient the selfish
users behavior, while if the PoA equals one, then selfish user
behavior leads to an optimal situation and no intervention is
needed. Recall that the taxes computed in Proposition 3 drive
the system to an optimal situation, i.e., to a situation with PoA
equal to one.

A. Influence of heterogeneity on the PoA

At first, we provide the PoA values while varying the het-
erogeneity among networks, which comes from the different
capacities. For simplicity, we consider capacities of the form
ci = c0w

i−1 for i = 1, . . . , n, where we call w ∈ (0, 1] the
homogeneity value. On Figure 3 we plot the PoA for different
values of the total user demand D, with c0 such that the total
capacity of the system equals 10 [Mbit/s]. We observe more
heterogeneous systems lead to a larger worst-case PoA (higher
inefficiency due to user selfishness). It is especially clear when
total demand is close to the total capacity value (i.e, the system
is congested), but for very heterogeneous systems the PoA is
quite high even for small demand values, thus the introduction
of taxes would lead to significant performance gains.
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Total Demand [Mbit/s]

Po
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w = 0.9

w = 0.8

w = 0.7

w = 0.6

Fig. 3. PoA versus total demand D with n = 10 and total capacity equal
to 10 [Mbit/s].

B. The PoA interpretation

Finally, we present two counterparts for the Price of An-
archy in our model. For simplicity, we consider only a case
with two networks in which c1 = 4 [Mbit/s] and c2 = 11
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Fig. 4. Demand gain versus PoA, for different demand levels in the case of
two networks.

1 1.02 1.04 1.06 1.08 1.1 1.12

0.94

0.96

0.98

1

Price of Anarchy C/Copt

C
ap

ac
ity

ne
ce

ss
ar

y
fo

r
un

ch
an

ge
d

co
st D/(c1 + c2) = 0.4

D/(c1 + c2) = 0.5

D/(c1 + c2) = 0.6

D/(c1 + c2) = 0.7

Fig. 5. Capacity gain versus PoA, for different demand levels in the case of
two networks.

[Mbit/s]. First, Figure 4 shows how many more users the
operator could serve if using network resources in an optimal
way for the same total cost, compared to the case when he
does not influence users behavior. In a somehow similar way,
Figure 5 indicates the capacity (or investment) reduction that
would lead to an unchanged total cost, just because of effective
resource management. These two values are comparable to the
Price of Anarchy, but have the advantage of being convertible
into monetary gains, probably more appealing to network
providers. These figures have to be understood as follows.
Consider a system with relative load equal to 0.7 (dotted
curve) and a PoA of 1.02: Figure 4 show that if we optimize
resource usage (e.g., through optimal taxes), we could have 2%
more users in our system without increasing the total cost.
The analogical explanation works for Figure 5: in the same
situation, if we introduce optimal taxes, we can decrease our
system’s capacity by 2% without changing the overall cost
perceived by users.
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VII. CONCLUSIONS AND PERSPECTIVES

In this paper we have considered the inefficiency of selfish
user behavior in heterogeneous wireless systems. We have
generalized the results of [9] to a model with an arbitrary
number of user classes (corresponding to user-specific and/or
application-specific perceptions of price), and also an arbitrary
number of networks. We have derived analytical expressions
for the optimal taxes, which drive the system to an optimal
flow repartition minimizing the total cost. We have showed
that the “cost” of inefficiency can have monetary equivalents.

Our model relies on some strong assumptions, one of which
is the simple network topology–all networks being supposed
to have the same coverage area. Obviously, this topology is
quite far from reality, and in the future we aim to consider
more complicated systems. Further, we would like to study
other–possibly application-specific–cost functions.

Additionally, the non-atomicity assumption significantly
simplifies the analysis, however its validity becomes question-
able if we consider small-cell networks with only a few users
and bandwidth-consuming applications. Extending our work
to the atomic case would thus be of high interest; in such
a case the decisions made by users could involve attaching
simultaneously to several networks and splitting the flows
among them (benefiting from protocols such as MultiPath
TCP).

Finally, our work did not consider the practical implemen-
tation aspects of our mechanism. Those of course need to be
examined for our mechanism to be applicable. In particular,
measuring precisely the congestion level at the access point,
and transmitting this information to users so that they make
their decisions, warrants specific investigations. Among the
possible tools that can be used for the latter task, one can
evoke the 802.21 standard [7] and the Generic Access Network
techniques for the management of cross-technology handovers
and the information diffusion to users. Also, another path
toward proving the applicability and efficiency of our approach
would be to observe its behavior on scenarios based on real
traffic data (instead of Markovian simulated traffic as we did
in [9]).
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Abstract. Network users can choose among different security solutions
to protect their data. Those solutions are offered by competing providers,
with possibly different performance and price levels. In this paper, we
model the interactions among users as a noncooperative game, with a
negative externality coming from the fact that attackers target popular
systems to maximize their expected gain. Using a nonatomic weighted
congestion game model for user interactions, we prove the existence and
uniqueness of a user equilibrium, and exhibit the tractability of its com-
putation, as a solution of a convex problem. We also compute the corre-
sponding Price of Anarchy, that is the loss of efficiency due to user self-
ishness, and investigate some consequences for the (higher-level) pricing
game played by security providers.

Keywords: Security, Game theory, Competition

1 Introduction

Within the current evolution towards the Future Internet, the provision of ap-
propriate network security is considered to be one of the most difficult as well as
most challenging tasks. Among the broad range of related research approaches,
the attempt to better understand the mindset of attackers serves for sure as one
of the key sources for developing advanced protection mechanisms. Cybercrime
concerns colossal amounts of money, and is highly organized so that attacker
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efforts are rationalized to maximize the associated gains. This is why we model
here an interesting negative externality effect of security architectures and sys-
tems, through the attractiveness for potential attackers: majority products are
likely to be larger targets for hackers, and therefore become less attractive for
consumers. Then, the choice of a particular system and security protection -that
we will call a security provider from now on- by the whole online population can
now be considered as a congestion game, where congestion is not considered in
the common sense of an excessive demand for a finite resource amount, but more
generally as a degradation of the performance on a given choice when it gets too
popular. Here the performance degradation is indirect, since it stems from the
behavior of attackers.

In the specific context of security, the link between the audience of a system
and its attractiveness to attackers can be further described when attacks are
intended to steal or damage data: an attacker would be attracted by the potential
gain (or damage) of the attack, which depends on the value of the users’ data,
but that value affects (and is therefore, to some extent, revealed by) the security
option users choose. For example, the “safest” solutions may attract users with
high-value data to protect, making those solutions an interesting target for an
attacker even if their market share is small.

In this paper, we propose a model that encompasses that effect, by consider-
ing users with heterogeneous data values making a choice among several security
possibilities. The criteria considered in that choice are the security protection
level -measured by the likeliness of having one’s data stolen or damaged, that is
subject to negative externalities- and the price set by the security provider.

The literature on network security involving game-theoretic models and tools
is recent and still not very abundant. Some very interesting works have been
published regarding the interactions between attacking and defending entities,
where the available strategies can consist in spreading effort over the links of a
network [6,15] or over specific targets [8], or in selecting some particular attack
or defense measures [5,11]. In those references, the security game is a zero-sum
game between two players only, and therefore no externalities among several
potential defenders are considered.

Another stream of work considers security protection investments, through
models that encompass positive externalities among users: indeed, when con-
sidering epidemic attacks (like, e.g., worms), the likeliness of being infected de-
creases with the proportion of neighbors that are protected. Since protection
has a cost and users selfishly decide to protect or not without considering the
externality they generate, the equilibrium outcome is such that investment is
suboptimal [12] and needs to be incentivized through specific measures [17]. For
more references on game theory applied to network security contexts, see [1,18].

In contrast, the work presented here considers negative externalities in the
choices of security software/procedures. As highlighted above, the negative ex-
ternality comes from the attractiveness of security solutions for attackers. Such
situations can arise when attacks are not epidemic but rather direct, as are at-
tacks targeting randomly chosen IP addresses. The interaction among users can
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then be modeled as a population game, that is a game where the user payoffs
for a given strategy (here, a security solution) change as more users choose that
same strategy [10]. Such games are particular cases of so-called congestion games
where user strategies are subsets of a given set of resources, and the total cost
experienced by users is the sum of the costs on each resource [2,22]. Here, users
select only one resource, and congestion corresponds to the fact that the more
customers, the more likely an attack.

In this paper, we consider a very large population, where the extra congestion
created by any individual user is negligible. The set of players can therefore be
considered as a continuum; note that such games are called nonatomic [29]. The
study of nonatomic congestion games has seen recent advances for the case when
all users are identical or belong to a finite set of populations [7,14,24,25,26], but
we want here to encompass the larger attractiveness to attackers of “rich” users,
compared to the ones with no valuable data online. More precisely, we intend to
model the heterogeneity in users congestion effects, by introducing a distribution
among users valuation for the data to protect. The congestion game is therefore
weighted in the sense that not all users contribute to congestion in an identical
manner. Fewer results exist for those games [4,21], even when user strategies
only consist in choosing one resource among a common strategy set.

Moreover, in our model users undergo the congestion cost of the security so-
lution they select - which depends on the congestion as well as on their particular
data valuation -, but also the monetary cost associated to that solution - which
is the same for all users -. As a result, following [20,21] the game would be called
a weighted congestion game with separable preferences, and can be transformed
into an equivalent weighted congestion game with player-specific constants [19]
(i.e., the payoffs of users selecting the same strategy only differ through a user-
specific additive constant). In general, the existence of an equilibrium is not
ensured for such games when the number of users is finite [19,20,21]. In the
nonatomic case, the existence of a mixed equilibrium is ensured by [29] and the
loss of efficiency due to user selfishness is bounded [4], but the existence of a
pure equilibrium in the general case is not guaranteed.

In this paper, we establish the existence and essential uniqueness of a pure
equilibrium for our model, as well as its tractability by proving that an equilib-
rium solves a strictly convex optimization problem. To the best of our knowl-
edge, such proofs for nonatomic games had only been given for unweighted
games [27,28], with a finite number of different user populations; here we con-
sider a weighted game with possibly an infinity of different weight values, with
the specificity that the differences in user congestion weights are directly linked
to their user-specific valuations.

The remainder of the paper is organized as follows. The model is formally
introduced in Section 2. We focus on the user equilibrium existence, uniqueness
and tractability in Section 3, and give an upper bound on the loss of efficiency
due to user selfishness. The results are then applied in Section 4 to give some
insights about the prices that profit-oriented security providers should set. We
conclude and suggest directions for future work in Section 5.
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2 Model

We consider a set I of security providers (each one on a given architecture), and
define I := |I|.

2.1 User data valuation

Users differ with the valuation for their data. When an attack is successful over
a target user u, that user is assumed to experience a financial loss vu ≥ 0, which
we call her data valuation. The distribution of valuations over the population is
given by a cumulative distribution function F on R+, where F (v) represents the
proportion of users with valuation lower than or equal to v. Since users who do
not value their data (i.e., for whom vu = 0) will not play any role in our model,
we can ignore them; the distribution function F is therefore such that F (0) = 0.
The overall total “mass” of users is finite, and through a unit change we can
assume it to be 1 without loss of generality.

Equivalently, the repartition F of user preferences among the population
can be represented by its corresponding quantile function q : [0, 1) → R+. For
x ∈ [0, 1), the quantity q(x) represents the valuation4 of the (infinitesimal) user
at (continuous) position x on a valuation-related increasing ranking. Formally,
we have

∀x ∈ [0, 1), q(x) = inf{v ∈ R+ : F (v) ≥ x}, (1)

∀v ∈ R+, F (v) = inf{x ∈ [0, 1) : q(x) > v}, (2)

with the convention inf ∅ := 1 in the latter equation. Note that F is right-
continuous, while the quantile function q is left-continuous. Both functions are
nonnegative and nondecreasing.

We may not suppose that the support of F , that we denote by Sv, is bounded,
but we assume that the overall value of the data in the population is finite, i.e.,

Vtot :=

∫

Sv

v dF (v) < +∞.

Finally, we define N (V ) as the user mass5 such that the total data valuation
for the N (V ) users with smallest valuation exactly equals V :

∀V ∈ [0, Vtot), N (V ) := min

{
x :

∫ x

y=0

q(y)dy = V

}
.

N (V ) is obtained by inverting the bijective function

V : [0, 1] 7→ [0, Vtot]

x → V(x) =

∫ x

y=0

q(y)dy. (3)

4 Except, possibly, on a zero-measure set of users.
5 i.e., proportion since we normalized the total user mass to 1.
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Notice that V is continuous and differentiable on [0, 1], with left-derivative q(x)
and right-derivative q(x+), where q(x+) = limy→x,y>x q(y). Since q is nonde-
creasing and strictly positive for x > 0, then V is convex and strictly increasing
on [0, 1]. As a result, its inverse function N is concave on (0, Vtot), and has
left-derivative

N ′
l (V ) =

1

q(N (V ))
(4)

and right-derivative

N ′
r(V ) =

1

q(N (V )+)
. (5)

The distribution F , the quantity Vtot as well as the functions q and N are
illustrated in Figure 1.

Vtot

V
)

F (v)

0 q(x)
0

N (V )

x

1

User data valuation v

P
o
p
u
la
ti
o
n
p
ro
p
o
rt
io
n
s

Fig. 1. Values and functions of interest regarding the user valuation distribution F .

2.2 Security systems performance

In this paper, we focus on direct attacks targeting some specific machines, which
may for instance come from an attack-generating robot that randomly chooses
IP addresses and launches attacks to those hosts.

The attacks generated by such a scheme have to target a specific vulnerability
of a given security system. As a result, the attacker has to select which security
system i ∈ I to focus on. If an attack is launched to a security system i, we
consider that all machines protected by a system j 6= i do not run any risk,
while the success probability of the attack is supposed to be fixed, denoted by
πi, on machines with protection system i. In other terms, the parameter πi

measures the effectiveness of the security defense.
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2.3 The attacker point of view

Successful attacks bring some revenue to the attacker. Be it in terms of damage
done to user data, or in terms of stolen data from users, it is reasonable to
consider that for a given attack, the gain for the attacker is proportional to the
value that the data had to the victim. Indeed, in the case of data steal, more
sensitive data (e.g., bank details) are more likely to bring high revenues when
used. Likewise, when the objective of the attacker is simply to maximize user
damage, then the link between attacker utility and user data valuation is direct.

For a given distribution of the population among providers, let Fi be the
(unconditional) distribution of valuations of users associated with provider i, so
that F =

∑
i∈I Fi. We then define for each provider i ∈ I the total value of the

protected data, as

Vi :=

∫
v dFi(v). (6)

For an attacker, the expected benefit from launching an attack targeted at system
i (without knowing which users are with provider i) is thus proportional to πiVi.
We therefore assume that the likeliness of attacks occurring on system i is a
nondecreasing function of πiVi. We discretize time, and denote by Ri(πiVi) the
probability that a particular user is the target of a system-i attack over a time
period. Remark that we consider system-specific functions (Ri)i∈I , so that the
model can encompass some heterogeneity in the difficulty of creating system-
targeted attacks.

To simplify a bit the writing, let us define Ti(Vi) as the risk, for a user, of
having one’s data compromised when choosing security provider i. Note that it
can be written as a function of the total protected data value Vi:

Ti(Vi) := πiRi(πiVi) = πiRi

(
πi

∫
vdFi(v)

)
. (7)

We will often make use of the assumption below.

Assumption A For all i ∈ I, Ti is a continuous and strictly increasing func-
tion of Vi, and Ti(0) = 0.

For Ti functions of the form given in (7), Assumption A is equivalent to

– πi > 0 for all i ∈ I (no provider offers a perfect protection against attacks),
– Ri is a continuous and strictly increasing function with Ri(0) = 0, for all

i ∈ I (attackers do not target providers not protecting valuable data).

2.4 User preferences

For a user u with data valuation vu, the total expected cost at provider i depends
on the risk of being (successfully) attacked, and on the price pi charged by the
security provider. That total cost is therefore given by

vuTi(Vi) + pi.
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To ensure that all users select one option, we can assume that there exists a
provider i with pi = 0, which would correspond to security solutions offered by
free software communities (e.g., avast! R©6). Indeed, if pi = 0, the total cost is the
valuation times a product of probabilities, and therefore less than the valuation
itself, so that this choice of a free service is always a valuable option7.

Remark that we consider risk-neutral users here, as may be expected from
large entities, while private individuals should rather be considered risk-averse.
Nevertheless, one can imagine some extra mechanisms (e.g., insurance [17]) to
reach a risk-neutral equivalent formulation.

3 User equilibrium

In this section, we investigate how demand is split among providers, when their
prices pi and security levels πi are fixed. Recall we assumed that users are in-
finitely small: their individual choices do not affect the overall user distribution
among providers (and therefore the total values (Vi)i∈I).

The outcome from such user interactions should be determined by user self-
ishness: demand should be distributed in such a way that each user u chooses
one of the cheapest providers (in terms of perceived price) with respect to her
valuation vu and the current risk values (Ti(Vi))i∈I . Such a distribution of users
among providers, if it exists, will be called a user equilibrium. In other words,
if provider i ∈ I is chosen by some users u, then it is cheaper for those users
(in terms of total expected cost) than any other provider j ∈ I, otherwise they
would be better off switching to j. Formally,

i ∈ argmin
j∈I

vuTj(Vj) + pj.

We use here the nonatomicity assumption: each user u considers the values
(Vj)j∈I as fixed when making her individual choice.

3.1 Structure of a user equilibrium

We now investigate the existence and uniqueness of a user equilibrium, for fixed
values of prices and attack success probabilities. To do so, we first define the
notion of user repartition.

Definition 1. Denote by PI the set of probability distributions over providers
in I, i.e., PI := {(y1, ..., yI) ≥ 0,

∑
i∈I yi = 1}. For a given price profile p =

(p1, ..., pI), a user repartition is a mapping A : Sv 7→ PI, that is interpreted as
follows:

For all v ∈ Sv, among users with valuation v, a proportion Ai(v) chooses
provider i, where A(v) = (A1(v), ..., AI (v)).

6 http://www.avast.com
7 We implicitly assume here that each user u is willing to pay at least vu to benefit
from the online service.
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Therefore, to a given user repartition A corresponds a unique distribution
V = (Vi)i∈I of the total data valuation Vtot among providers, given by

Vi(A) =

∫

v∈Sv

v Ai(v) dF (v) ∀i ∈ I. (8)

Remark also that Fi(v) =
∫
w≤v Ai(w)dF (w).

Reciprocally, we say that a distribution V = (Vi)i∈I of the data valuation
is feasible if Vi ≥ 0 for all i, and

∑
i∈I Vi = Vtot. For a feasible distribution V,

when providers are sorted such that p1 ≤ ... ≤ pI , we define for each i ∈ I ∪ {0}
the quantity

V[i] :=
i∑

j=1

Vj ,

with V[0] = 0. V[i] therefore represents the total value of the data protected by
the i cheapest providers.

We now formally define the outcome that we should expect from the inter-
action of users, i.e., an equilibrium situation.

Definition 2. A user equilibrium is a user repartition Aeq such that no user has
an interest to switch providers. In other words, for any value v ∈ Sv, a user with
valuation v cannot do better than following the provider choice given by Aeq(v).
Formally, Aeq is a user equilibrium if and only if
∀v ∈ Sv,

Aeq
i (v) > 0 ⇒ i ∈ argmin

j∈I
vTj(Vj(A

eq)) + pj, (9)

where Vj(A
eq) is given by (8).

We now establish some monotonicity properties that should be verified by a
user equilibrium: if a user y values her data strictly less than another user x,
then she selects cheaper (in terms of price) providers than x.

Lemma 1. Consider a user equilibrium Aeq. Then user choices -in terms of
price of the chosen provider(s)- are monotone in their valuation: for any two
users x and y with respective valuations vx and vy, and any providers i and j,

(vx − vy) · Aeq
i (vx) · Aeq

j (vy) > 0 ⇒ pi ≥ pj. (10)

Proof. Let us write Vi := Vi(A
eq) and Vj := Vj(A

eq). From (9) applied to users
x and y, the left-hand inequality of (10) implies

vxTi(Vi) + pi ≤ vxTj(Vj) + pj

and vyTi(Vi) + pi ≥ vyTj(Vj) + pj . (11)

Subtracting those inequalities gives Ti(Vi) ≤ Tj(Vj) since (vx−vy) > 0. Then (11)
yields the right-hand side of (10).

We then use that result to prove that for a given value repartition (Vi)i∈I
over the providers, there can be only one equilibrium repartition if all providers
set different prices.
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Lemma 2. Assume that all providers set different prices. If a user equilibrium
exists, it is completely characterized (unless for a zero-measure set of users) by
the total values (Vi)i∈I of protected data for each provider i ∈ I, provided that∑

i∈I Vi = Vtot.

Proof. Without loss of generality, assume that provider prices are sorted, such
that p1 < p2 < ... < pI .

From Definition 1 and (8), to a given equilibrium corresponds a unique set
of values (Vi)i∈I .

Reciprocally, consider a feasible data value repartition V = (Vi)i∈I , and
assume it corresponds to a user equilibrium Aeq. Since we do not differentiate
users with similar valuations, we can sort them -still without loss of generality- in
an increasing order of the price of their chosen provider: if x < y and q(x) = q(y)
then we can impose that pix ≤ piy , where ix (resp. iy) would be the (unique)
provider chosen by user at position x (resp. y) in the user valuation ranking.
Therefore from Lemma 1, at the user equilibrium Aeq, provider prices can be
considered as sorted in a increasing order of user valuations among all users.
Thus, user choices are uniquely (unless on a zero-measure user set) determined
by their position x ∈ [0, 1] in the user valuation ranking, and given by

V(x) ∈ (V[i−1], V[i]) ⇒ user x selects provider i, (12)

where V is defined in (3).

3.2 The case of several providers with the same price

In this subsection, we establish a way to consider several providers with the same
price as one single option from the user point of view. Let us consider a common
price p, and define Ip := {i ∈ I : pi = p}.

First, if one such provider i gets positive demand (i.e., Vi > 0), then at a user
equilibrium all providers with the same price also get positive demand: indeed,
Assumption A implies that Ti(Vi) > 0, and thus the total cost of a user u with
positive valuation choosing provider i ∈ Ip is vuTi(Vi) + p > p. Therefore each
provider j ∈ Ip necessarily has a strictly positive Tj, otherwise it would have
cost vuTj(0) + p = p for user u, who would be better off switching from i to j.
Consequently, at a user equilibrium we necessarily have Ti(Vi) = Tj(Vj).

When the set of users choosing one of the providers with price p is fixed, so
is the total valuation VIp of those users’ data. Consequently, the distribution of
users among all providers in Ip should be such that

{
i, j ∈ Ip ⇒ Ti(Vi) = Tj(Vj)∑

i∈Ip
Vi = VIp .

(13)

Following [2], we reformulate (13) as a minimization problem:

(Vi)i∈Ip ∈ arg min
(xi)i∈Ip≥0

∑

i∈Ip

∫ xi

y=0

Ti(y)dy (14)

s.t.
∑

i∈Ip

xi = VIp .
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Under Assumption A, there exists a unique vector of values (Vi)i∈Ip satisfying
the above system. In the following, we will denote by TIp(V ) the corresponding
common value of Ti(Vi). Interestingly, remark that the function TIp that we have
defined also satisfies Assumption A. As a result, in the rest of the analysis of user
equilibria, we will associate providers with the same price p and consider them
as a single choice Ip that we assimilate as a single provider k, with corresponding
risk function Tk(V ) := TIp(V ) satisfying Assumption A.

3.3 Game equilibrium as a solution of an optimization problem

Based on the reasoning in Subsection 3.2, we assume that all providers submit
a different price, and we sort them such that p1 < ... < pI . Now let us consider
the following measure:

L(V,p) :=
∑

i∈I

(∫ Vi

y=0

Ti(y)dy + pi

(
N(V[i]) − N(V[i−1])︸ ︷︷ ︸
Market share of prov. i

))
(15)

=

I∑

i=1

∫ Vi

y=0

Ti(y)dy + pI −
I−1∑

i=1

(pi+1−pi)N(V[i]), (16)

with p0 := 0. Remark that the first part of the quantity L(V,p) in (15) is the
potential function usually associated to unweighted congestion games (see, e.g.,
[2]), while the second part stands for the total price paid by all users.

The expression (16) highlights the fact that L is a strictly convex function of
V, since N is concave and under Assumption A, Ti is strictly increasing. It thus
admits a unique minimum V∗ on the (convex) domain of feasible value shares;
and V∗ is completely characterized by the first-order conditions. We now prove
that this valuation repartition V∗ actually corresponds to a user equilibrium.

Proposition 1. Let Assumption A hold. For any price profile p, there exists
a user equilibrium, that is completely characterized by the valuation repartition
V∗, unique solution of the convex optimization problem

min
V feasible

L(V,p). (17)

Proof. We first consider the feasible directions consisting in switching some in-
finitesimal amount of value from i > 1 to j < i, when V ∗

i > 0. The optimality
condition in (16) then yields

0 ≤ Tj(V
∗
j ) − Ti(V

∗
i ) −

i−1∑

k=j

(pk+1 − pk)N ′
r(V

∗
[k])

≤ Tj(V
∗
j ) − Ti(V

∗
i ) − (pi − pj)N ′

r(V
∗
[i−1]), (18)

where the second line comes from the concavity of N .
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Notice that since pj < pi and N is nondecreasing,(18) and Assumption A
imply that V ∗

j > 0. Consequently, if we define i∗ := max{i ∈ I : V ∗
i > 0}, then

V ∗
i > 0 ⇔ i ≤ i∗. (19)

As a result, since Vi > 0 and i > 1 in (18), then 0 < V ∗
[i−1] < Vtot. Thus,

from (5), N ′
r(V

∗
[i−1]) = 1

q(N (V ∗
[i−1]

)) is strictly positive. (18) is then equivalent to

v∗iTi(V
∗
i ) + pi ≤ v∗iTj(V

∗
j ) + pj , (20)

with v∗i := q(N (V ∗
[i−1])

+) = inf{v :
∫ v

u=0 udF (u) > V ∗
[i−1]}. Remark that neces-

sarily from (20), Ti(V
∗
i ) < Tj(V

∗
j ) since pi > pj .

For i < I such that V ∗
i > 0 (i.e., i ≤ i∗), we now investigate the possibility

of switching some value from i to j > i. Still applying the optimality condition
for V∗, we get

0 ≤ Tj(V
∗
j ) − Ti(V

∗
i ) +

j−1∑

k=i

(pk+1 − pk)N ′
l (V

∗
[k])

≤ Tj(V
∗
j ) − Ti(V

∗
i ) + (pj − pi)N ′

l (V
∗
[i]), (21)

where we used again the concavity of N .
Applying (4), Relation (21) is equivalent to

v̄∗i Ti(V
∗
i ) + pi ≤ v̄∗i Tj(V

∗
j ) + pj , (22)

with v̄∗i = q(N (V ∗
[i])) = inf{v :

∫ v

u=0 udF (u) ≥ V ∗
[i]}.

Relations (20) and (22) can be interpreted as users with valuation v ∈ [v∗i , v̄
∗
i ]

preferring provider i over any other one, for the repartition value V∗. Formally,

v ∈ [v∗i , v̄
∗
i ] ⇒ i ∈ argmin

j∈I
vTj(V

∗
j ) + pj . (23)

Now, consider the provider choices induced by the value repartition V∗ as
given in (12). We prove here that this repartition is a user equilibrium: no user
has an interest to change providers. Take a provider i ∈ I. Then for x ∈ [0, 1],

V(x) ∈ (V ∗
[i−1], V

∗
[i]) ⇔ V ∗

[i−1] <

∫ x

y=0

q(y)dy < V ∗
[i]

⇔ N (V ∗
[i−1]) < x < N (V ∗

[i])

⇒ v∗i ≤ q(x) ≤ v̄∗i .

The last line and (23) imply that the considered user, that is at position x in
the population when it is ranked according to valuations, cannot do better than
choosing the provider suggested by (12). In other words, each user is satisfied
with her current provider choice, i.e., we have a user equilibrium.

We now establish the uniqueness of the equilibrium value repartition V∗ (and
thus, of the user equilibrium due to Lemma 2 when all prices are different).

133



Proposition 2. Under Assumption A, the value repartition at a user equilib-
rium necessarily equals V∗ = arg min

V feasible
L(V,p). Consequently, there exists a

unique value equilibrium value repartition, and the user equilibrium is unique
(unless for a zero-measure set of users) when all providers set different prices.

Proof. We consider a user equilibrium, and prove that the corresponding value
repartition Ṽ satisfies the first-order conditions of the convex optimization prob-
lem (17), that has been shown to have a unique solution V∗.

We actually only need to show the counterpart of Relation (18) (resp., (21))
for j = i−1 (resp., j = i+1), since the other cases immediately follow. From (12),
at a user equilibrium we should have for all x ∈ (0, 1) and all i, j ∈ I,

x ∈
(
N (Ṽ[i−1]),N (Ṽ[i])

)
⇒ q(x)(Ti(Ṽi) − Tj(Ṽj)) + pi − pj ≤ 0. (24)

Consider i ∈ I such that Ṽi > 0.

– If j = i − 1, then Ti(Ṽi) < Tj(Ṽj). When x tends to N (Ṽ[i−1]), (24) yields

q(N (Ṽ[i−1])
+)︸ ︷︷ ︸

=N ′
r(Ṽ[i−1])

(Ti(Ṽi) − Tj(Ṽj)) + pi − pj ≤ 0,

which is exactly the counterpart of (18).
– Likewise for j = i + 1, from (24) for x tending to N (Ṽ[i]) we get the coun-

terpart of (21) (using the fact that q is left-continuous)

q(N (Ṽ[i]))︸ ︷︷ ︸
=N ′

l (Ṽ[i])

(Ti(Ṽi) − Tj(Ṽj)) + pi − pj ≤ 0.

The repartition Ṽ satisfies the first-order conditions of the convex optimization
problem (17) and is feasible, therefore Ṽ = V∗, the unique solution of (17).

The second claim of the proposition is a direct application of Lemma 2.

Note that the uniqueness of the equilibrium value repartition V∗ implies that
even when several user equilibria exist, for all users the cost of each provider at
equilibrium is unique; the user equilibrium is then said essentially unique [2].

Note also that it was not compulsory to aggregate providers with the same

price p: at the minimum of L(·,p) we notice from (14) that the term
∫ VIp

0
TIp

involving the aggregated function coincides with
∑

i∈Ip

∫ xi

y=0
Ti(y)dy. Therefore,

the equilibrium value distribution V∗ can directly be found by solving the poten-
tial minimization problem (17). Nevertheless, the interpretation of the potential
is changed, since the terms N (V[i]) − N (V[i−1]) of (15) do not necessarily corre-
spond anymore to provider i’s market share.

The next result shows some continuity properties of the user equilibrium.

Proposition 3. The (unique) equilibrium value repartition V∗ is continuous in
the price profile. Moreover, at any price profile such that all prices are different,
the provider market shares are continuous in the price profile.

134



Proof. Remark that L(V,p) is jointly continuous in V and p, and that the
set of feasible value repartitions is compact. Therefore, from the Theorem of
the Maximum (see [3]) applied to the minimization problem (17), the set of
equilibrium distributions is upper hemicontinuous in p. It is actually continuous
due to the uniqueness of the equilibrium distribution V∗.

For a given price profile p̄ where all prices differ, the strict order of prices
is maintained within a vicinity of p̄, where the market share of provider i is
N (V ∗

[i])−N (V ∗
[i−1]), which is jointly continuous in V and p since N is continuous.

Note that while the equilibrium value repartitionV∗ is continuous for all price
profiles, that is not the case of provider market shares. Indeed, market shares
(θi)i∈I strongly depend on the order of prices through the expression N (V ∗

[i]) −
N (V ∗

[i−1]), that holds when prices are sorted in an increasing order. Since N is a
concave function, then the market share of a provider may drastically decrease
when a slight price modification changes his position from k to k+1 in the price
ranking. This effect is more prominent when N is more concave, i.e., when user
valuations are heterogeneous.

3.4 Price of Anarchy of the user game

In non-cooperative games, the Price of Anarchy measures the loss of efficiency
due to user selfishness [16]. This metric is usually defined as the worst-case ratio
of the total cost at an equilibrium to the minimal feasible total cost, and has
been extensively studied in the last years [7,24,25,26]. The results closest to the
one presented in this subsection come from [4]: the authors consider weighted
congestion games, where the cost experienced by each user would correspond to
the situation where all prices are set to 0 in our model. Then the authors prove
that the upper bound for the Price of Anarchy is not greater for the weighted
game than for its unweighted counterpart. We actually establish the same kind
of result for any value of the provider price profile p, except that in our case
the total user cost (sum of the costs perceived by all users) for any feasible user
valuation repartition V is

Cu :=
∑

i∈I

(
ViTi(Vi) + pi(N (V[i]) − N (V[i−1]))

)
. (25)

Proposition 4. Assume that the risk functions (Ti)i∈I belong to a family C,
and define as in [7] the quantity β(C) := sup

T∈C,(x,y)∈[0,Vtot]2

x(T (y) − T (x))

yT (y)
. Then

for any nonnegative price profile p,

C∗
u

Copt
u

≤ 1

1 − β(C)
, (26)

where C∗
u (resp. Copt

u ) is the total user cost at the user equilibrium (resp. the
minimum total user cost) for the price profile p.
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Proof. We apply a variational inequality that is satisfied by the user equilibrium
value repartition V∗, and that directly stems from the fact that users only select
their preferred provider: for any feasible value repartition V, we have
∑

i∈I

(
V ∗
i Ti(V

∗
i ) + pi(N(V ∗

[i]) − N(V ∗
[i−1]))

)
≤
∑

i∈I

(
ViTi(V

∗
i )+ pi(N(V[i])− N(V[i−1]))

)
.

This yields
C∗

u ≤ Cu +
∑

i∈I
Vi(Ti(V

∗
i ) − Ti(Vi)) ≤ Cu + β(C)

∑

i∈I
V ∗
i Ti(V

∗
i ) ≤ Cu + β(C)C∗

u ,

which establishes the proposition.

It is shown in [7] that if C is the set of affine risk functions the bound 1/(1−
β(C)) equals 4/3, resulting in a moderate loss of efficiency due to selfishness.
Values 1.626 and 1.896 have also been found respectively for the sets of quadratic
and cubic cost risk functions, and β(C) = d/(d+1)1+1/d for the set of polynomials
of degree at most d with non-negative coefficients.

As in [4], we find that the introduction of weights among user congestion
effects (and here, in addition, among user perceived costs) does not worsen the
Price of Anarchy. The bound given in Proposition 4 can indeed be attained,
when C includes the constant functions, with a simple 2-provider instance with
prices set to zero, and all users having the same weight.

4 Pricing decisions of security providers

We now focus on the decisions made by security providers when choosing their
charging price. We consider that providers are able to anticipate user reactions
when fixing their prices. We then have a two-stage game, where at a first step
(larger time scale) providers compete on setting their prices so as to maximize
revenue, considering that at a second step (smaller time scale) users selfishly
select their provider.

The utility of provider i is given by his revenue ri := piθi, where θi is the mar-
ket share of provider i. When all providers propose different prices and providers
are ranked such that p1 < p2 < ... < pI , from Proposition 2 the user equilibrium
exists and is unique, and we simply have θi = N (V ∗

[i]) − N (V ∗
[i−1]), where V∗ is

the equilibrium value repartition. On the other hand, if several providers in a
set Ip propose the same price p, then the equilibrium valuation repartition V∗ is
unique, but the user equilibrium choices need not be unique: indeed, any price-
monotone user repartition consistent with V∗ is a user equilibrium, and several
such repartitions may exist. For those special cases, a reasonable assumption
could be that users make their provider choice independently of their valuation
when they have several equally preferred providers. As a result, the total market
share of providers in Ip would be split among them proportionally to the data
value V ∗

i that they attract, yielding

θi =
V ∗
i∑

j:pj=pi
V ∗
j


N (

∑

j:pj≤pi

V ∗
j ) − N (

∑

j:pj<pi

V ∗
j )


 .
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We now establish that, when there exists a bounded price alternative, the
revenue of any provider tends to zero if he increases his price to infinity. In prac-
tice, such a bounded-price option always exists, even if it has bad performance:
one just needs to consider any free security possibility. Therefore, prices will not
be arbitrarily high when providers want to maximize revenue.

Proposition 5. Assume that there exists a provider i0 with price pi0 ≤ p̄i0 < ∞.
Then for any provider j 6= i0, the revenue rj = pjθj tends to 0 when pj → ∞.

Proof. Let us consider a user with valuation v, for whom provider j is among
the favorite providers. In particular, that user prefers j over i0, thus at a user
equilibrium we have

v(Ti0(Vi0) − Tj(Vj)) ≥ pj − pi0 ≥ pj − p̄i0 . (27)

Therefore if pj > p̄i0 then Tj(Vj) < Ti0(Vi0 ) and

v ≥ pj − p̄i0
Ti0(Vi0 ) − Tj(Vj)

≥ pj − p̄i0
Ti0(Vtot)

:= vmin.

The revenue rj = pjθj of provider j can then be upper bounded:

rj ≤ pj

∫ +∞

v=vmin

dF (v) = Ti0(Vtot)
pj − p̄i0
Ti0(Vtot)

∫ +∞

v=
pj−p̄i0

Ti0
(Vtot)

dF (v)

︸ ︷︷ ︸
−−−−→
pj→∞

0

+p̄i0

∫ +∞

v=
pj−p̄i0

Ti0
(Vtot)

dF (v)

︸ ︷︷ ︸
−−−−→
pj→∞

0

,

where the two terms tend to zero since
∫∞
0 vdF (v) = Vtot < ∞.

4.1 Licensed versus free security provider

We consider here a simple situation with two providers, but only one trying to
maximize his profit through subscription benefits. The other provider (or, more
likely, a community of developers) offers the security service for free.

Denote by 0 and 1 the freeware provider and the licensed provider, respec-
tively. From Proposition 1, there exists a unique value repartition (V0(p), Vtot −
V0(p)) at the user equilibrium, for any price p set by provider 1. Likewise, for
any p > 0 the equilibrium market share of provider 1 is unique and given by
θ1 = 1 − N (V0(p)); the profit maximization problem of provider 1 can therefore
be written as

max
p≥0

p · (1 − N (V0(p))). (28)

Note that provider 1 gets demand as soon as his price is strictly below
sup(Sv) × T0(Vtot), therefore by choosing p ∈ (0, sup(Sv)T0(Vtot)) he can ensure
a positive revenue. Therefore from Propositions 3 and 5, the provider revenue
optimization problem (28) has a solution, that is finite.

Corollary 1. When a profit-oriented provider faces only a competitor with null
price, then under Assumption A there exists a finite price p̄ > 0 that maximizes
his revenue, whose maximum value is strictly positive.
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4.2 Competition among providers: the risk of price war

Competitive contexts where providers play on price to attract customers often
lead to price war situations, i.e., situations where each provider has an interest
in decreasing his price below the price of his competitor. The outcome then
corresponds to providers making no profit, and possibly not surviving.

With the model presented in this paper, not all demand goes to the cheapest
provider because of the congestion effect due to attackers’ behavior. However,
some threshold effect still exist, as illustrated by the non-continuity of provider
market shares when provider prices cross each other.

Let us for example consider two identical profit-oriented providers and a free
alternative. Due to the symmetry of the game, one would expect a situation
where both providers set their price to the same level, say p > 0. As a result,
again from symmetry arguments both providers would be chosen by users to
protect, at equilibrium, the same value V ∗

1 = V ∗
2 := V ∗ of data each, while the

free provider covers a total data value V0. Then, if provider 1 sets his price to
p − ε for a small ε > 0, the market share repartition is such that when ε → 0,

θ0 = N (V ∗
0 ),

θ1 = N (V ∗
0 + V ∗) − N (V ∗

0 ),

θ2 = N (V ∗
0 + 2V ∗) − N (V ∗

0 + V ∗).

When users choosing provider 1 or 2 are not all homogeneous in their data
valuations (which is for example the case if the valuation distribution F admits
a density), then θ1 > θ2. In other words, provider 1 strictly improves his market
share (and thus his revenue) by setting his price just below the price of his
competitor. But provider 2 can make the exact same reasoning, resulting in a
price war situation.

Consequently, there can be no symmetric Nash equilibrium (i.e., a price pro-
file such that no provider can improve his revenue by a unilateral change) where
p1 = p2 > 0, despite the symmetry of the pricing game. Furthermore, the price
profile where all prices are set to 0 is not an equilibrium either: both providers
would get no revenue, which each one could strictly improve by a small price
increase as stated in Corollary 1.

Remark that this reasoning does not rule out the possibility of the pricing
game having a (non-symmetric) Nash equilibrium, however we cannot always
guarantee that such an equilibrium exists. An explanation to the existence of
stable price profiles can nevertheless still be found from game-theoretic argu-
ments, since the pricing game among providers is not played only once but
repeatedly over time. When considering repeated games (i.e., where players take
into account not only their current payoff but also a discounted sum of the future
ones), the set of Nash equilibria is indeed much larger than for their one-shot
counterpart, as evidenced by the Folk theorem [23]. The stability of prices can
then stem from the threat of being sanctioned by competitors for an (immediate-
profit) price change.
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We illustrate those results when user valuations are distributed according to
an exponential law with average value 1/λ = 10 monetary units. Such a distri-
bution models an unbounded continuum of valuations among the population,
where a large majority of users have limited valuations, but there exist few peo-
ple with extremely high value data to protect. The risk function considered in
our numerical computations is Ri(x) = 1 − e−x for each provider i, which mod-
els the fact that systems with no valuable data are not targeted while successful
systems are very likely to attract attacks.

In our numerical illustration, we consider here three providers: a provider 0
with performance parameter π0 = 0.05, that is always free: p0 = 0; and two
profit-oriented providers, namely 1 and 2, with respective performance values
π1 = 0.01 and π2 = 0, 005. Providers protected data values and market shares are
shown in Figures 2 and 3, and the revenue of provider 2 is displayed in Figure 4.
The curves illustrate the continuity results of Proposition 3. Interestingly, we
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Fig. 2. Protected data values when provider 2 varies his price.

remark in Figure 4 that despite the discontinuity in revenue when prices cross
each other, provider 2 actually has a revenue-maximizing price pBR

2 (p1) strictly
below the price of his competitor. That last figure shows the price war situation:
if providers engage in successive best-reply price adaptations to the competition,
then prices tend to very low values, which jeopardizes the viability of security
providers. However, a situation with strictly positive prices from both providers
could be stable in a repeated game context. Consider a price profile (p1, p2)
such that each provider obtains at least what he could obtain with an aggressive
competitor (i.e., a competitor that tries to minimize the provider revenue); when
providers value the future almost as much as the present (i.e., when the discount
factor that relates current prices to future prices is close to 1), that price profile
can be maintained as a subgame-perfect equilibrium of the repeated game [9].
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Fig. 3. Market shares when provider 2 varies his price.

5 Conclusions

The model introduced in this paper takes into account the attractiveness that
successful security systems represent to profit-minded attackers. This constitutes
a negative externality among users: their (selfish) security choices then form a
noncooperative congestion game. We have considered heterogeneity among user
valuations for data protection, which affects both the externality level and the
user cost functions. The corresponding game is therefore a weighted congestion
game with user-specific payoffs. We have studied that game for the case of a
continuum of infinitesimal users, and have proved that it admits a potential and
therefore an equilibrium, that is unique when providers submit different prices.

The study of the user selection game has helped us understand the interaction
among security providers, who have to attract customers but are then subject to
quality degradation due to more attacks, hence a trade-off. Our analysis shows
that providers will keep their prices low, and that competition may lead to price
war situations, unless providers consider long-term repeated interactions.

Future work can focus on the information asymmetry and uncertainty among
actors: we have studied the interactions in a complete information context,
whereas users may not have a perfect knowledge of the performance level of
the different providers, or of their total protected data value. Likewise, attackers
can only estimate the potential gain from targeting a given system.

Another interesting direction for future research concerns the investment
strategies that security providers should implement: indeed, improving the pro-
tection performance has a cost, that has to be compensated by the extra revenue
due to user subscription decisions. While there exist references for this kind of
problem when users are homogeneous [13], the case when users have different
weights deserves further attention.
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Managing a Peer-to-Peer Data Storage System in a
Selfish Society

Patrick Mailĺe, Lászĺo Toka

Abstract—We compare two possible mechanisms to manage
a peer-to-peer storage system, where participants can store
data online on the disks of peers in order to increase data
availability and accessibility. Due to the lack of incentives for
peers to contribute to the service, we suggest that either each
peer’s use of the service be limited to her contribution level
(symmetric schemes), or that storage space be bought from and
sold to peers by a system operator that seeks to maximize profit.
Using a noncooperative game model to take into account user
selfishness, we study those mechanisms with respect to the social
welfare performance measure, and give necessary and sufficient
conditions for one scheme to socially outperform the other.

Index Terms—Peer-to-peer networks, game theory, incentives,
pricing.

I. I NTRODUCTION

T HE “digital society” that has been soaring since the
creation of the Internet implies that all kinds of digital

documents are now likely to be created, accessed, and modified
from several types of devices. Therefore, an appropriate sys-
tem for storing the data of a user should offer various services,
such as versioning, ease of access, protection against device
failures, and short transfer time to a given device.

In that context, the possibility of storing data online appears
as a promising solution. Indeed, having access to the Internet
becomes easier and easier, with the multiplication of WiFi
hotspots, the development of WiMAX and third generation
wireless networks, and the appearance of other access modes,
such as multi-hop networks that work in an ad-hoc fashion to
reach an access point. Let us also highlight the high rise of
available transmission rates in access networks, which renders
transfer times reasonable, even for large files. Finally, online
storage systems are able to cope with document versioning,
and to protect data not only against user device failures but
also against disk failures, through the use of data replicates
stored on different disks.

For those reasons, many companies now propose online
data storage services, most of them offering a given storage
capacity (between2 and 25 gigabytes) for free, with the
possibility of extending that quota to a higher value for a fixed
price per year (the price per year per gigabyte being of the
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order of 1$). However, while creating such a storage service
implies owning huge memory capacities and affording the
associated energy and warehouse costs, one can imagine using
the smaller but numerous storage spaces of the service users
themselves, as is done in peer-to-peer file sharing systems.

In a peer-to-peer storage system, the participants are at
the same time the providers and the users of the service:
each participant offers some memory capacity (possibly from
multiple locations in the network: part of her disk space at
home, storing device devoted to the service, ...) to providethe
service to the others, and benefits from storing her own data
onto the system. The added value of the service then comes
from the protection against failures provided by the system,
from the ease of data access, from the versioning management
that may be included, and from the difference in the amount
of data stored into the system versus offered to the service.

An online storage service is valuable only if data are avail-
able: therefore to cope with disk failures and with participants
disconnecting their disk from the system, data replicates must
be spread over several (sufficiently reliable) peers to guarantee
that data are not lost and are almost always available; the
data replication rate then depends on the reliability of the
participants. To work properly, a peer-to-peer storage network
therefore needs that participants offer a sufficient part oftheir
disk space to the system, and remain online often enough.
However, both of those requirements imply costs (or at least
constraints) for participants, who may be reluctant to devote
some of their storage capacity to the system instead of using
it for their own needs.

In this paper, we consider that users behave selfishly, i.e.
are only sensitive to the quality of service they experience,
regardless of the effects of their actions on the other users. The
framework of noncooperative Game Theory[1] is therefore
particularly well-suited to study the interactions among peers.
For a peer-to-peer storage system, it is clear that without
any reward for contributing participants, selfishly behaving
users will only benefit from the service without providing any
part of it1. In other words, the only Nash equilibrium of the
noncooperative game is the situation where the system actually
does not exist due to the lack of offering peers.

The work presented in this paper focuses on the incentives
that can be used to make participants contribute to the system,
i.e. the changes that can be brought to the game to modify its
Nash equilibria. While the economic aspects of peer-to-peer
file sharing networks have already been extensively studied
(see [3], [4], [5], [6] and references therein), there are toour

1Such a behavior, calledfree-riding [2], also appears in peer-to-peer file
sharing networks, and is problematic for the survival of those altruism-based
networks.
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knowledge no references on the economics of peer-to-peer
storage networks. Now, the economic models developed for
peer-to-peer file sharing systems do not apply to peer-to-peer
storage services: in file sharing systems, when a peer provides
some files to the community, she adds value to the system
for all users since they all can access the data she proposes;
in that sense the resource offered to the system is a public
good. On the contrary, in a peer-to-peer storage system the
memory space offered by a peer is a private good: it can be
shared among different users but each part is then devoted to
only one user. Therefore the economic implications of those
systems are necessarily different.

The existing literature on peer-to-peer storage systems
mainly focuses on security, reliability and technical feasibility
issues [7], [8], [9], whereas the incentive aspect received
little attention. Only solutions that do not imply financial
transactions are considered in current works, therefore to
create some incentives to participate, the counter paymentfor
providing service is usually the service in question as well.
This approach finally leads to a scheme where every peer
should contribute to the system in terms of service at least
as much as she benefits from others [10], [11]. We call such
a mechanism imposing the contribution of each peer to equal
her use of the system asymmetricscheme.

In this paper, we also investigate solutions based on mon-
etary exchanges: users can “buy” storage space for a fixed
unit price, and “sell” their own memory space to the system
at another unit price. It is known from economic theory that
when those unit prices are fixed by the supply and demand
curves (as in a perfect market [12]), then user selfish choices
lead to a socially efficient situation. However, it is more likely
here that the system be managed by a profit-maximizing entity
that fixes prices so as to maximize revenue. That entity then
acts as the leader of a Stackelberg game [1].

The main question addressed in this paper is whether it is
socially better to impose a symmetric scheme or to let a profit-
maximizing monopoly set prices. The performance measure
we consider is social welfare, i.e. the total value that the
system has for all participants. Under some assumptions on
the peers utility functions, we derive a necessary and sufficient
condition for symmetry-based systems to outperform revenue-
oriented management. We obtain that user heterogeneity tends
to favor pricing-based schemes that are more flexible, and
above a given user heterogeneity threshold even a monopoly-
managed system will be socially better than a system imposing
symmetry. The results presented here are a generalization of
our preliminary work [13] that did not consider incentives to
stay online and where the only source of heterogeneity came
from the price sensitivities.

This paper is organized as follows. Section II introduces
the model we consider for user preferences, and for the two
incentive mechanisms studied in this paper, namely symmetry-
based and profit oriented price-based schemes. In Section III
we define the social welfare performance measure and com-
pute its value for those two types of schemes. We compare
them in Section IV to determine the management scheme that
is best suited to the society, and present our conclusions in
Section V.

II. M ODEL

A. Content availability management and associated costs

In a peer-to-peer storage system the availability of the stored
data is considered as the most important factor in user’s
appreciation. As the storage disks are users’ property, there
are no direct means to guarantee that a given user disk storing
a specific file will be online 100% of the time. To ensure
data availability, the system can introduce several tools,such
as data replication and coding [14]. We suppose here that
the system detecting that a peer has gone offline triggers a
recovery of the data stored in that peer from the replicas in
the system, and a new storage of those data into other peers.
Likewise, when a peer comes back online, then new data will
be transferred into her offered storage space, independently
what and whose data she was storing before. Such a scheme
is purely reactive (actions are taken when a user departure is
detected). One could also imagine using proactive approaches,
or a combination of both, to smoothe the incurred traffic [15].

This data protection mechanism implies data transfers, and
therefore nonmonetary costs due to resource consumption
(CPU, bandwidth utilization, etc.). A peeri is concerned by
those data transfers in two situations: when she comes back
online after an offline period (new data load), and when other
peers enter and leave the system (upload traffic if useri
stores replicates of the leaving user’s data, download traffic
when useri has to store more data). The mean data transfer
associated to the first situation is thus proportional to the
amount of capacityCi she offers to the system, and to
the mean number of online-offline cycles per unit of time:
denoting byton

i (resp.toff
i ) the mean duration of online (resp.

offline) periods of useri, the corresponding mean amount of
data transferred is then proportional toCi/(t

on
i + toff

i ). The
mean amount of data transferred to and from useri per unit
of time in the second situation is proportional to the weighted
(by the offered capacity) mean̄µ of peer status changes per
unit of time2. This term appears only at those peers who offer
storage space (proportionally to their offered capacity since the
probability that useri be concerned by a peer’s departure is
proportional toCi), and only during the time they are online
(it is therefore also proportional to the mean availabilityof
useri, πi := ton

i /(ton
i + toff

i )).
Consequently, the transfer cost perceived by useri for

offering capacityCi with the mean availabilityπi expresses
Ciπi (δi/t

on
i + γiµ̄), whereδi andγi are parameters that reflect

the user characteristics such as sensitivity, access bandwidth,
or hardware profile.

B. User preferences

We describe the preferences of a useri in the user set
denoted byI by a utility function, that reflects the benefit
of using the service by storing an amountCs

i of data in the
system, the cost of offering storage spaceCo

i := πiCi for

2Actually peer i should only be sensitive to the status change rate of
all other peers but hers. However we consider here a system with a very
large number of users, so that taking the mean of the change rates over all
participants but one is equivalent to considering all participants.
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other users, and the monetary transactions, if any. We suggest
to use a separable additive function.

Definition 1: The utility Ui of a useri ∈ I is of the form

Ui

(
Cs

i , Ci, t
on
i , toff

i , ǫi
)

=

Vi(C
s
i ) − Oi(Ciπi) − Ciπi (δi/t

on
i + γiµ̄)︸ ︷︷ ︸

:=Pi(Ci,ton
i ,toff

i )

−ǫi, (1)

where
• Vi(C

s
i ) is useri’s valuation of the storage service, i.e. the

price she is willing to pay to store an amountCs
i of data

in the system3. We assume thatVi(·) is positive, continuously
differentiable, increasing and concave in its argument, and that
Vi(0) = 0 (no service yields no value).
• Pi(Ci, t

on
i , toff

i ) is the overall non-monetary cost of useri
for offering capacityCi to the system with mean online and
offline durations respectively equal toton

i and toff
i , i.e. with

availability πi =
ton
i

ton
i +toff

i

. It consists of two distinct costs:

• an opportunity costOi(Ciπi) of offering storage capacity
for other users (during online periods) instead of using
it for her own needs4, whereOi(·) is assumed positive,
continuously differentiable, increasing and strictly con-
vex, and such thatOi(0) = 0 (no contribution brings no
cost);

• data transfer costsCiπi (δi/t
on
i + γiµ̄) due to the data

protection mechanism implemented by the system as
described in the previous subsection.

• ǫi is the monetary price paid by useri. This term is0 in
case of a symmetric scheme, and otherwise equals the price
difference between the charge for storing her data into the
system and the remuneration for offering her disk space.

Remark that we implicitly say that the storage space nec-
essary to safely store some data in the system equals the size
of those data. This is done without loss of generality, taking
into account the redundancy factorr added by the system
in users’ cost function: a user considered to offer space to
store an amountCi of data actually devotes more of her disk
space (rCi) to the service. Likewise, prices are then per unit
of “protected data”.

C. Incentive schemes for cooperation

Users selfishly choose strategies that maximize their utility.
We assume here that apart fromCs

i andCo
i , each useri can

also decide about her behavior related to availability. In this
subsection, we describe the two types of incentive mechanisms
that we intend to compare in this paper. Both schemes may
imply the existence of a central authority or clearance service
to supervise the peers behavior and/or manage payments: as
the model aims to give hints for commercial applications, we
do not try to avoid such a centralized system control.

3We assume here that data replication ensures a given availability, so that
this availability does not appear in the utility function.

4We implicitly assume here that the opportunity cost depends only on the
mean capacity offered over time, since during offline periods the user can use
the disk space for other purposes than the service.

1) Symmetric schemes:We follow here the ideas suggested
in the literature for schemes without pricing. As evoked in the
introduction, the principle of those schemes is that users are
invited to contribute to, at least as much as they take from, the
other users. The availability of the peer is therefore checked
(e.g. at randomly chosen times) to ensure thatCo

i = πiCi

exceeds the peer’s service useCs
i .

We assume in this paper that this verification is technically
feasible. Determining whether and how it can be done remains
an active topic of research and is beyond the scope of this
paper, since we only focus here on incentives.

2) Payment-based schemes:We consider a simple payment-
based mechanism where users can “buy” storage space in the
system for a unit priceps (per byte and per unit of time) and
“sell” some of their (time-average available) disk capacity for
a unit pricepo.

The (possibly negative) amount that useri is charged is then

ǫi = psCs
i − poCo

i .

In this paper, we assume that prices are set by the system
operator so as to maximize her revenue, knowing a priori the
reactions of the users. The operator can thus drive the outcome
of the game to the most profitable situation for herself, and
in this sense, she acts as the leader of a Stackelberg (or
leader-follower) game [1]. In a real implementation of the
mechanism, the operator may not perfectly know the user
reactions, but an iterative tâtonnement of prices can converge
to those profit-maximizing prices.

D. User behavior related to availability

In the game we study, a peeri ∈ I has four strategic
variables, namely her offeredCi and storedCs

i capacities,
and her mean onlineton

i and offline toff
i period durations.

Equivalently, we can also consider that the four strategic
variables areCs

i , C
o
i , t

on
i , and toff

i . From (1), whenCs
i and

Co
i are fixed, the utility of each user is increasing inton

i , so
ton
i will be set by useri to a maximum value. We denote by
t̄on
i that maximum value, which is only limited by uncontrolled

events (power black-out, accidents, hardware failures, etc) that
may force the user off the network.

Notice that this selfish decision is profitable to the whole
network: longer online periods mean fewer data protection
transfers and therefore smaller costs for the system (the pa-
rameterµ̄ in (1) being small). Remark also that sincetoff

i does
not appear in (1), there remain only two decision variables,
namelyCs

i andCo
i (that equalsCit̄

on
i /(t̄on

i + toff
i )). From now

we will therefore writePi(C
o
i ) instead ofPi(Ci, t

on
i , toff

i ), and
will also use the notation

pmin
i := δi/t̄

on
i + γiµ̄, (2)

so that the transfer costs simply writeCo
i p

min
i .

E. User supply and demand functions

Supply and demand functions are classically used in eco-
nomics [12], and are respectively derived from the valuation of
consumers and cost functions of providers. Notice however the
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particularity here that peers can be consumers and providers
at the same time.

Definition 2: For a useri ∈ I, we callsupply function(resp.
demand function) the functionsi(·) (resp.di(·)) such that for
all p ∈ R+,

si(p) := inf{q ≥ 0 : P ′
i (q) ≥ p},

di(p) := inf{q ≥ 0 : V ′
i (q) ≤ p},

whereg′ stands for the derivative function ofg, and with the
conventioninf ∅ = +∞.

For a givenp ≥ 0, si(p) (resp. di(p)) is the amount of
storage capacity that useri would choose to sell (resp. buy)
if she were paid (resp. charged) a unit pricep for it.

For the sake of simplicity, our main results in the following
consider a particular form of supply and demand functions
described in the assumption below.

Assumption A:For all i ∈ I, the supply and demand
functions of useri are affine. More precisely, there exist
nonnegative valuesai, bi, andpmax

i such that

si (p) = ai[p − pmin
i ]+, (3)

di (p) = bi[p
max
i − p]+, (4)

wherepmin
i is given in (2),x+ := max(0, x), and we assume

that maxi p
min
i < mini p

max
i .

This actually corresponds to quadratic functions for the
valuation and opportunity cost (with∧ denoting themin):

Oi(C
o
i ) =

1

ai

Co
i
2

2
,

Vi(C
s
i ) =

1

bi

(
− (Cs

i ∧ bip
max
i )2

2
+ bip

max
i (Cs

i ∧ bip
max
i )

)
.

Under Assumption A, a useri is entirely described by four
parameters (see Figure 1):

• two price thresholds, namelypmin
i andpmax

i , that respec-
tively represent the minimum value of the unit pricepo

such that useri sells some of her disk space and the
maximum value of the unit priceps such that she buys
some storage space,

• two price sensitivitiesai and bi, that respectively corre-
spond to the increase of sold capacity with the unit price
po ≥ pmin

i and the decrease of bought storage space with
the unit priceps ≤ pmax

i .

Consequently, the total supply functionS :=
∑

i∈I si is a
(piecewise affine) nondecreasing convex function on the inter-
val [mini p

min
i ,maxi p

min
i ], and is affine on[maxi p

min
i ,+∞).

Likewise, the total demand functionD :=
∑

i∈I di
is nonincreasing, affine on[0,mini p

max
i ] and convex on

[mini p
max
i ,maxi p

max
i ], as illustrated in Figure 2 displayed

in subsection III-C.

III. SOCIAL WELFARE PERFORMANCE OF INCENTIVE

MECHANISMS

In this section we introduce the performance measure used
in this paper to compare incentive schemes, and study its value
for the social optimum and the outcomes of the two incentive
schemes that are the object of this paper.

pmin
i

pmax
i

unit price

qu
an

tit
y

utility Ui

Co
i

Cs
i

C∗
i

p∗i

slope−bisl
op

ea
i

di(p)

si(p)

ppo ps

Fig. 1. Reactions to prices and utility of a useri ∈ I under Assumption A.

Definition 3: We callsocial welfare(or welfare) and denote
by W the sum of the utilities of all agents in the system:

W :=
∑

i∈I
Vi(C

s
i ) − Pi(C

o
i ). (5)

Notice that no prices appear in (5), since all system agents
are considered, including the operator that receives or gives
payments, if any, and whose utility is her revenue. The
operator being a member of the society, all money it exchanges
with the users stays within the system and therefore does not
influence social welfare.

A. Optimal value of social welfare

The optimal situation (in terms of social welfare) that the
system can attain corresponds to the maximization problem
maxCs

i ,C
o
i

∑
i∈I Vi(C

s
i ) − Pi(C

o
i ), subject to the feasibility

constraintsCo
i ≥ 0, Cs

i ≥ 0 for ∀i and
∑

i C
o
i ≥∑i C

s
i .

This classical convex optimization problem can be solved by
the Lagrangian method: ifp∗ andC∗ are the (unique) solutions
of the demand-supply equation

C∗ :=
∑

i

si (p
∗) =

∑

i

di (p
∗), (6)

then the maximum social welfare is attained whenCs
i =

di (p
∗), andCo

i = si (p
∗) for all i ∈ I. Under Assumption

A, the optimal social welfareW ∗ is then

W ∗ =
1

2

∑

i

bi

(
pmax
i

2 − p∗2
)

− ai

(
p∗2 − pmin

i

2
)
. (7)

This maximal valueW ∗ as well as the so-called “shadow
price” p∗ are illustrated in Figure 2 displayed in Subsec-
tion III-C. Remark that this optimal situation can be attained
with a payment-based scheme wherepo = ps = p∗.

B. Performance of symmetric schemes

Under a symmetry-based management scheme, each user
i choosesCo

i and Cs
i so as to maximizeVi(C

s
i ) − Pi(C

o
i ),

subject toCo
i ≥ Cs

i . As Pi(·) is increasing inCs
i , it is in

each user’s best interest to choose a strategy withCo
i = Cs

i .
Useri then maximizes her utility at the pointCs

i = Co
i = C∗

i
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whereV ′
i (C

∗
i ) = P ′

i (C
∗
i ), as illustrated in Figure 1. Under

Assumption A, this corresponds to every user “exchanging”
capacityC∗

i = aibi
ai+bi

(pmax
i − pmin

i ) at the virtual unit price

p∗i :=
aip

min
i +bip

max
i

ai+bi
. Compared to the socially optimal situa-

tion, each and every user loses1
2 (p∗ − p∗i )

2(ai + bi) of utility
if maxi p

min
i ≤ p∗ ≤ mini p

max
i . In that case, the welfare loss

of the system is

W ∗ − Wsym =
∑

i

ai + bi
2

(p∗ − p∗i )
2
. (8)

Remark thatp∗ =
∑

i(ai+bi)p
∗
i∑

i ai+bi
is then the weighted mean

of p∗i , therefore the loss of welfare only depends on the
heterogeneity of users’p∗i . In particular, in the case when all
users have the samep∗i , then symmetric management schemes
maximize social welfare.

C. Performance of profit-oriented pricing schemes

We now study a pricing mechanism where the system
operator strives to extract the maximum profit out of the
business by playing on pricesps and po. Knowing that each
useri will sell si(po) and buydi(ps), the operator faces the
following maximization problem.

max
ps,po

(
ps
∑

i

di (p
s) − po

∑

i

si (p
o)

)
, (9)

subject tops ≥ 0, po ≥ 0 and the feasibility constraint∑
i si(p

o) ≥∑i di(p
s).

Let us examine the best choices for such a profit-driven
monopoly. Figure 2 plots two curves: the total supplyS =∑

i si and the total demandD =
∑

i di as functions of the
unit price p. First remark thatpo and ps must be chosen
such thatS(po) = D(ps): otherwise it is always possible for
the operator to decreasepo (if S(po) > D(ps)) or increase
ps (if S(po) < D(ps)) to strictly improve its revenue. The
operator revenue with such prices is then the area of the
rectangle displayed in the left hand side of Figure 2, embedded
within a zone whose area is the maximum value of social
welfare. While po > maxi p

min
i and ps < mini p

max
i , the

largest revenue is attained whenS(po) = D(ps) = C∗/2.
However we are not guaranteed that suchpo and ps indeed
verify po > maxi p

min
i and ps < mini p

max
i , nor are we

assured that such a choice yields the maximum revenue (that
maximum might actually be attained withpo < maxi p

min
i or

ps > mini p
max
i ).

To be able to predict the choices of the profit-oriented
monopoly, we therefore make the following assumption re-
garding user price thresholds, that fixes those two points.

Assumption B:The repartition of price thresholdspmin and
pmax is such that

max
i

pmin
i ≤ p∗ + mini p

min
i

2
, (10)

min
i

pmax
i ≥ p∗ + maxi p

max
i

2
, (11)

wherep∗ =
∑

i aip
min
i +bip

max
i∑

ai+bi
from (6). Moreover user profile

valuesai (resp. bi) of all usersi ∈ I are independent and
identically distributed, andai andbi are independent.

Remark that this straightforwardly imply thatmaxi p
min
i ≤

p∗ ≤ mini p
max
i , so under Assumptions A and B, (8) holds as

noticed in the previous subsection.
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Maximal
welfareW ∗

Operator’s
profit

User welfare

C∗

C∗/2

p∗

D
(p) = ∑

i d
i (p) S

(p
)
=
∑ i

s i
(p
)

ppo ps

Fig. 2. Total supplyS and demandD functions, maximum social welfare
and surplus repartition with a revenue-driven monopoly under Assumption A.

maxi(p
min
i ) mini(p

max
i )

unit price

qu
an

tit
y

C∗

p∗ p

D
(p) S

(p
)

Fig. 3. Illustration of the proof of Proposition 1.

We can now quantify the performance of pricing mecha-
nisms designed to maximize revenue.

Proposition 1: Under Assumptions A and B, a profit-
oriented pricing yields a social welfareWmon such that (with
C∗ given in (6)):

W ∗ − Wmon =
1

8
C∗2

(
1∑
i ai

+
1∑
i bi

)
. (12)

Proof: We first establish that the monopoly chooses the
profit-maximizing unit pricespo and ps such thatS(po) =
D(ps) = C∗/2, where p∗ is the welfare-maximizing price
given in (6). To do so, we compute an upper bound of the rev-
enue that can be attained when choosing the prices in the non-
linear part ofS or D. Since both functions are convex, we can
upper bound them by their cords on[mini p

min
i ,maxi p

min
i ]

for the supply function, and on[mini p
max
i ,maxi p

max
i ] for

the demand function. We extend these segments until the
vertical line p = p∗ to form two triangles (with the abscissa
axis). Under Assumption B, the largest rectangle embedded
in each triangle is indeed embedded in the triangle formed by
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extending the affine parts ofS andD, as illustrated in Figure 3.
Therefore the sum of their areas is smaller than the revenue
yielded by the prices verifyingS(po) = D(ps) = S(p∗)/2,
which are thus the profit-maximizing prices.

As illustrated in Figure 2, the differenceW ∗−Wmon is then
simply the area of the hatched triangle above the horizontal
line C∗/2, which gives (12).

IV. W HICH MANAGEMENT TO PREFER?

In this section we compare the outcomes of the two practical
schemes, i.e symmetric and payment-based schemes. From (8)
and (12) we immediately have the following result.

Proposition 2: Under Assumptions A and B, symmetric
schemes socially outperform profit-oriented pricing mecha-
nisms if and only if

1

4
C∗2

(
1∑
i ai

+
1∑
i bi

)
≥
∑

i

(ai + bi) (p∗ − p∗i )
2
,

whereC∗ and p∗ are given in (6), andp∗i =
aip

min
i +bip

max
i

ai+bi
.

That condition is equivalent to

1

4

(
p∗ −

∑

i

αip
min
i

)(∑

i

βip
max
i − p∗

)
≥
∑

i

ωi (p
∗
i − p∗)2,

(13)
with the weights for alli ∈ I : αi := ai∑

i ai
, βi := bi∑

i bi
, and

ωi := ai+bi∑
i ai+bi

.
Proof: Relation (13) comes after some algebra, using the

equalitiesp∗ =
∑

i ωip
∗
i and C∗ =

∑
i ai(p

∗ − pmin
i ) =∑

i bi(p
max
i − p∗).

Proposition 2 combines the four user heterogeneity factors,
namely the price thresholdspmin, pmax and price sensitivities
a, b, to determine the best mechanism in terms of social
welfare. Whereas the right-hand term of (13) is the variance of
thep∗i with weightswi, the left-hand term is hard to interpret.
We thus suggest to have a look at the particular cases where
user heterogeneity lies entirely on prices sensitivities (resp. on
price thresholds).

A. Homogeneous price thresholds

We consider here that users only differ by their price
sensitivitiesai andbi. That simplified model has been studied
in a previous work [13], we therefore recall the main results
and refer the interested reader to [13] for details.

Assumption C:All usersi ∈ I have the same price thresh-
olds pmin

i andpmax
i . Without loss of generality (via a change

of abscissa in Figure 2), we can therefore assume that

∀i ∈ I, pmin
i = 0 and pmax

i = pmax.

Notice that under Assumptions A and C, Assumption B
always holds. It can then be proved (see [13]) that





Wsym =
(

1∑
i ai

+ 1∑
i bi

)∑
i

[
1

1
ai

+ 1
bi

]
W ∗,

Wmon = 3
4W

∗.

This yields the following comparison (which can also be
directly obtained from Proposition 2 after some algebra).

Proposition 3: Under Assumptions A and C, symmetric
schemes socially outperform profit-oriented pricing mecha-
nisms if and only if

(
1∑
i ai

+
1∑
i bi

)∑

i

1
1
ai

+ 1
bi

≥ 3

4
. (14)

Moreover, if the couples(ai, bi) are independently chosen for
all users and identically distributed, then when the numberof
users tends to infinity, (14) writes

E[f(a, b)]

f(E[a],E[b])
≥ 3

4
, with f : (x, y) 7→ 1

1/x + 1/y
. (15)

Since the functionf is strictly concave, from Jensen’s
inequality the left-hand term of (15) is always smaller than
1, and decreases as the dispersion of(a, b) increases. Remark
that when(a, b) are deterministic then the left-hand term of
(15) equals1 and symmetric schemes are better than profit-
oriented ones, as we remarked in subsection III-B.

Let us have a look at (15) for two simple examples of
distributions for(a, b), assuming thata andb are independent
variables.
• Uniform distribution. If a (resp.b) is uniformly distributed
over [0, amax] (resp.[0, bmax]),

E[f(a, b)]

f(E[a],E[b])
=

2

3

(
1

amax

+
1

bmax

)(
amax + bmax

− a2
max

bmax

ln(1 +
bmax

amax

) − b2max

amax

ln(1 +
amax

bmax

)

)
. (16)

This expression is minimum whenamax = bmax, in which case
it equals8(1− ln(2))/3 ≃ 0.82. Consequently inequality (15)
always holds.
• Exponential distribution. If a (resp.b) follows an exponential
distributions with parameterµa (resp.µb), i.e. P(a > x) =
e−µax, then we obtain after some calculation

E[f(a, b)]

f(E[a],E[b])
≥ 3

4
⇔ α ≤ µa

µb
≤ 1

α
,

where α ≃ 0.179 is the smallest positive root ofx 7→
1+x

(1−x)3 (1−x2+2x ln(x))−3/4. In that case, either a symmetric
or a profit oriented mechanism is socially preferable depending
on the relative values ofµa andµb .

B. Homogeneous price sensitivities

We now consider the case where the price thresholdspmin
i

and pmax
i can be user specific, but the price sensitivitiesai

andbi are identical for every user.
Assumption D:All users have the same price sensitivity of

supply (resp. demand), i.e.∀i ∈ I, ai = a and bi =
b. Moreover, the couples(pmin

i , pmax
i ) are independent and

identically distributed among users, andpmin
i is independent

of pmax
i for all i ∈ I.

In that case, we establish that one mechanism is always
preferable to the other.

Proposition 4: Under Assumptions A, B and D, manage-
ment mechanisms based on symmetry are always socially
better than profit-oriented pricing mechanisms.
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Proof: Assumption D implies that for alli, the weights
αi, βi andωi introduced in (13) all equal1n , wheren is the

number of users. Moreover we havep∗ = ap̃min+bp̃max

a+b , where

p̃min :=
∑

i p
min
i

n and p̃max :=
∑

i p
max
i

n . So whenn tends to
infinity, (13) is equivalent to

ab

4

(
p̃max − p̃min

)2 ≥ a2Var(pmin) + b2Var(pmax),

where Var denotes the variance, and where we used the
independence assumption ofpmax and pmin to develop the
right-hand term.

Since the variance of a real variable with support lengthy
is always smaller thany2/4, and using (10)

Var(pmin) ≤ (p∗ − max pmin
i )2

4
≤ (p∗ − p̃min)2

4
,

where the last inequality comes from̃pmin ≤ max pmin ≤ p∗.
Likewise, Var(pmax) ≤ (p̃max − p∗)2/4. Therefore by replac-
ing the optimal shadow pricep∗ by (ap̃min + bp̃max)/(a+ b)
and applying the inequality(a + b)2 ≥ 2ab, we get

a2Var(pmin) + b2Var(pmax) ≤ ab

4
(p̃max − p̃min)2,

Therefore Relation (13) is always satisfied and symmet-
ric schemes always outperform profit-maximizing pricing
schemes.

V. CONCLUSIONS AND FUTURE WORK

In this work we have addressed the problem of user incen-
tives in a peer-to-peer storage system. Using a game theoretical
model to describe selfish reactions of all system actors (users
and the operator), we have studied and compared the outcomes
of two possible managing schemes, namely symmetry-based
and profit oriented payment-based. Not only the size of the
offered storage space was targeted with incentives, but as
the availability and reliability are particularly important issues
in storage systems, the model also aimed to reduce churn.
By comparing the social welfare level at the outcome in the
two cases, under some assumptions on user preferences we
exhibited a necessary and sufficient condition for a type of
management to be preferable to the other: it appears that profit
oriented payment-based schemes may be socially better than
symmetric ones under some specific circumstances, namely if
the heterogeneity among user profiles is high.

There are different ways to extend the results we have
obtained. First of all, in reality the perceived utility of auser
should not only depend on the amount of stored data and the
associated availability, but also on the rapidity to accessthose
data. Therefore the available bandwidth of a storage space
offerer should be taken into account in addition to the amount
of space proposed. Another interesting direction would be to
consider demand and supply functions that are not affine, but
can have any form, or eventually to carry out experiments to
estimate the form of those functions. Finally, since a more
complete and realistic model may not be solvable analytically,
a simulation testbed could be built in order to study the
behaviour of a peer-to-peer storage system in a more complex
setting and eventually exhibit other phenomena that are not
captured by our model.
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Patrick Mailléa, Bruno Tuffinb

aInstitut Telecom; Telecom Bretagne
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Abstract

Wireless users have the opportunity to choose between heterogeneous ac-

cess modes, such as 3G, WiFi or WiMAX for instance, which operate with

different distance ranges. Due to the increasing commercial interest in ac-

cess networks, those technologies are often managed by competing providers.

The goal of this paper is to study the price war occuring in the case of two

providers, with one provider operating in a sub-area of the other. A typi-

cal example is that of a WiFi operator against a WiMAX one, WiFi being

operated in the smaller area. Using a simple model, we discuss how, for

fixed prices, (elastic) demand is split among providers, and then characterize

the Nash equilibria for the price war. We derive the conditions on provider

capacities and coverage areas under which providers share demand on the

common area. A striking additional result is that among the Nash equilib-

ria, the one for which providers set the largest price corresponds to the case

when the competitive environment does not bring any loss in terms of social

welfare with respect to the socially optimal situation: at equilibrium, the

Email addresses: patrick.maille@telecom-bretagne.eu (Patrick Maillé),
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overall utility of the system is maximized. The price of stability is one.

Key words: Wireless networks, Pricing, Competition, Game theory

1. Introduction

1.1. Context

Broadband access networks are becoming prominent in nowadays life,

with various applications such as Internet access, wired or wireless telephony,

television... One of the main trends is the convergence of all those services

in a single network. At the same time, personal devices such as laptops

or cellular phones are reliant on ubiquitous connectivity: there is now the

possibility to access the network by different means in terms of provider and

technology. Each user may have the opportunity to choose his access mode

depending on the service availability first, and then the feasible quality of

service (QoS), pondered by the corresponding access charge. Among the

numerous network access technologies, we can mention

• cable modem, fiber optic links and digital subscriber line (xDSL), that

require fixed access from houses or offices,

• 3G (for third generation) wireless that may be accessed from most

inhabited areas,

• WiFi (for Wireless Fidelity) technology, that has been developed by

working group IEEE 802.11 to provide wireless access from local area

networks or hotspots [1],

2
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• WiMAX [2, 3] (for Worldwide Interoperability for Microwave Access),

that has been more recently standardized by working group IEEE

802.16, in order to reach devices at further distances.

With respect to WiFi, WiMAX is a long-range system, covering many

kilometers, while WiFi typically covers tens of meters, but WiMAX and

WiFi also provide different Quality of Service (QoS).

Apart from this diversity in access technologies, another trend in net-

working is the transition from monopolies to oligopolies. Since the Internet

has moved from an academic network to a commercial one with providers

fighting for customers by choosing the appropriate access price, competition

issues in Internet access are highly relevant. Providers have to charge for

access as a return on investment and want to maximize their profits. On the

other hand, they have to take care of prices of competitors, since users can

find a better combination of QoS and price with a competitor, and change

providers. This kind of interaction is typical of non-cooperative game theory

[4], and one usually tries to look for a Nash equilibrium, representing here

a state where no provider can increase his revenue by an unilateral price

change.

1.2. Goal

In this paper, we consider two providers in competition for customers.

Users are assumed non-atomic, in the sense that their individual actions

have no influence on the QoS of others. They are charged a fixed price per

sent packet, so that the average price per served packet is the packet price

charged divided by the probability of successful transmission. This way, a

3
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congestion cost is imposed thanks to the loss probability. Indeed, losses are

frequently an issue in wireless networks, such as when dealing with WiFi for

instance. Total demand, in terms of effective throughput, is assumed to be

a decreasing function of the average price per served packet, that we call

the perceived price. Each customer chooses the provider with the best -i.e.,

cheapest- perceived price. This results in a customer distribution equilibrium

satisfying the Wardrop principle. That principle is widely used in transporta-

tion theory, an area closely related to telecommunications [5], and states in

our context that within an area of competition between providers, the per-

ceived price has to be the same at both providers provided they attract

some demand; otherwise the highest charged users would have an interest

in switching to the cheapest provider. The providers (which will be called

provider 1 and provider 2) are assumed to have fixed (but possibly different)

capacities, and operate in different areas. We assume that provider 2 oper-

ates in a sub-domain of provider 1’s access area. Provider 1 could typically

represent a WiMAX operator while the other proposes WiFi access. WiMAX

can reach customers at a much longer distance than WiFi, and therefore runs

a larger coverage area. We can then think of a WiMAX provider enduring

competition on a fraction only of his customers, since the other part is not

reachable from his competitor. The questions we aim at answering are:

• What is the strategy of each provider in terms of price setting, knowing

what the user distribution would be (the Wardrop equilibrium) for any

given couple of prices?

• Shall the (WiMAX) provider compete for demand on the common mar-

ket, or shall he just focus on revenue on the monopolistic area to de-
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termine his price so that all users in the common area could prefer to

go to the (WiFi) competitor?

• Is there a (Nash) equilibrium in the price war? If it is the case, is it

unique?

• What is the price of anarchy due to non-cooperation? The price of

anarchy is a measure of the loss of efficiency due to actors’ selfishness.

This loss has been defined in [6] as the worst-case ratio comparing the

global efficiency measure (that has to be chosen) at an outcome of the

noncooperative game played among actors, to the optimal value of that

efficiency measure. Similarly, what is the price of stability, measuring

the loss of efficiency when the best Nash equilibrium is reached [7] (i.e.,

if we consider the socially optimal situation such that no actor will

defect)?

1.3. Related work

Our work uses game theory to model competition among providers. Game

theory [4] is a powerful tool for representing the interactions of selfish actors,

and has been quite recently introduced in telecommunication networks; see

[8] for a survey on the different types of problems that can be encountered.

More specifically, our goal is to study pricing issues. Pricing [9, 10, 11]

has been used in telecommunications to cope with congestion due to more

and more demanding applications and an increasing number of customers;

here typically, game theory is the natural tool to describe the interplay of

selfish customers in front of a given pricing scheme. Providers use pricing
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to better control demand, differentiate services for different QoS-requiring

users/applications, and/or provide return on investment.

On the other hand, most of the studies investigate the case of a single

provider, a monopoly, and it is only recently that modeling the competition

among providers has been introduced in networking. Competition may dis-

rupt the monopoly-case behavior of some schemes such as the very promising

Paris Metro Pricing (PMP) scheme, consisting in separating the network into

disjoint networks served in the same manner but with different access prices.

In that case, there is no guarantee that the QoS will be better at a subnet-

work than at another, but it is expected that most expensive ones will be

less congested due to the higher price. It is shown in [12] that such a simple

and attractive scheme to differentiate service actually does not allow service

differentiation under competition, since at equilibrium no provider has an

interest in offering several classes. Other competition models, with less com-

plexity than ours, have been studied. For example, [13] models competitive

providers playing both on price and on a QoS parameter, but demand is there

driven by an arbitrary function which does not depend on price and QoS at

competitors and therefore does not cover the fact that users could switch

to more attractive providers, if any. The Wardrop’s principle we consider

here precisely encompasses that aspect. [14] considers on the other hand a

Wardrop equilibrium among users, but QoS does not depend on demand, a

simplifying assumption we do not make here. In wireless networks, compe-

tition has been analyzed by several works in the case of a shared spectrum,

in order to lead to a more efficient utilization than with potentially unused

fixed licenses. For instance, [15] uses a more specific model than ours and
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shows that competition may increase users’ acceptance probability for of-

fered service. In [16], competition among selfish wireless providers is also

considered, but their strategy space is only on the power of the pilot signals

of their base stations,and does not include any pricing activity, a lever that

should require attention. [17] studies the case where an operator can lease

part of the bandwidth he owns from his license; a learning automaton is used

to converge to an equilibrium, while in our model a direct proof of existence

and uniqueness of an equilibrium is obtained. In a more general context, [18]

studies competition in the case of uncertainty on demand, whereas in our

case demand repartition among providers is obtained through a (determin-

istic) equilibrium among users. In [19], the pricing competition between a

WiMAX and a WiFi community is investigated, but the externality is cov-

erage instead of QoS here: the more customers the WiFi community has,

the more connectivity it has. A model more closely related to ours is in

[20], where atomic users can choose betwen two technologies operating on

different ranges, typically a WAN and WiFi hotspots. Using a stochastic

geometric model for the locations of customers and providers’ access points

and a greedy algorithm for the decision about which technology to use, mul-

tiple equilibria are found for a final selection. WAN and WiFi competition is

analyzed in an asymptotic scenario where the service zones of WAN provider

are much larger than those of WiFi access providers. Our model is different

from the fact that users are assumed non-atomic. This drives to an analyti-

cal characterization of the equilibrium. Moreover, no asymptotic scenario is

required for the analysis and we are able to precisely determine when both

providers will attract customers in the common area.
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Studying competition for customers when demand is distributed accord-

ing to Wardrop’s principle, was considered in [21, 22, 23], where the QoS

externality is the expected delay, while it is the loss probability here, which

seems more relevant for some wireless contexts. The price of anarchy, mea-

suring the loss of efficiency due to competition with respect to cooperation,

is determined, for fixed demand in [21] and random demand but linear delay

in [23]; we do look at the price of anarchy too (that is unbounded here),

but we also have a look at the price of stability and prove it equals one, i.e.,

competition can lead the system to the socially optimal situation. Moreover,

we consider a more comprehensive model, by including the fact that part of

customers are not accessible from one of the providers, thus competition is

only on one part of demand. On the other hand, setting a price too high

would also reduce (elastic) demand in the part where the WiMAX provider

has a monopoly.

Note that competition can also occur in interdomain or multihop net-

works, where selfish providers need to send their traffic through competitors’

networks to ensure end-to-end delivery, and pricing is a mean to produce

such incentives [24, 25, 26]. The goal is different in this paper because we

only look at direct competition for users between providers.

We have studied competition among providers in a previous work [27] us-

ing also loss probability as the externality, but for a specific network topology

where all users have the choice among all providers. That could represent

competition among access providers using the same technology, say WiFi, at

a given hotspot or hotzone.

In this paper, we intend to model the competition in heterogeneous net-
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works, i.e. for providers using different wireless technologies. Those tech-

nologies correspond to different coverage areas, and it therefore results in a

model drastically different from the one studied in [27]. Indeed, the math-

ematical characterization of the user equilibrium changes completely since

the different coverage zones have to be taken into account. Consequently,

the higher level game played on prices by competing providers is much more

complicated to study and all the required proofs are of different nature. On

the other hand, we believe that studying the heterogeneousness we introduce

here is a primal need, because it is a very important aspect of nowadays

wireless networks.

1.4. Organization of the paper

The paper is organized as follows. Section 2 presents the mathemati-

cal model we will use to represent provider competition in heterogeneous

networks, while Section 3 defines our social welfare measure as the sum

of utilities of all actors (customers plus providers) and compute its maxi-

mum value; this will provide a reference to investigate the loss of efficiency

due to competition. Section 4 discusses how demand is split -according to

Wardrop’s principle- between providers in both zones, the common one and

the one where provider 1 is a monopoly. Section 5 then shows what the

Nash equilibria are for the pricing game between providers, with an explicit

characterization depending on the proportion of demand that is common. It

is also shown that with social welfare as a global performance measure, the

price of stability is one, meaning that there is no loss of efficiency by intro-

ducing competition when using the “best” Nash equilibrium. An argument is

provided in favor of that particular equilibrium. The price of anarchy, when
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comparing social welfare at the optimal value and at the worst Nash equi-

librium, is also computed. Finally, Section 6 concludes and gives directions

for future research.

2. Model

2.1. Network topology and perceived prices

Consider two providers, denoted by 1 and 2, with provider 2 operating in a

subdomain of provider 1, as illustrated in Figure 1. This is a typical situation

Prov. 1: WiMAX

Prov. 2: WiFi

zone A zone B

Figure 1: The competition framework

of a WiFi provider operating on smaller distances -tens of meters- than a

WiMAX one -covering many kilometers-. As a consequence, competition

only occurs in the domain of operator 2, while operator 1 has a monopoly

in the remaining area. But operator 1 having a unique price, competition

influences the optimal price in the monopoly area. As illustrated in Figure 1,

we partition the total domain in

• zone A, the domain where only provider 1 operates, and

• zone B, the domain where both providers operate.
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In order to analyze the outcome of competition, we consider a model

where time is discretized, divided into slots. Provider i (i ∈ {1, 2}) is as-

sumed to be able to serve Ci packets (or units, seen as a continuous number)

per slot. Congestion is experienced at provider i if demand exceeds capac-

ity, and demand in excess is lost, lost packets being chosen uniformly over

the set of submitted ones. Formally, let di be the total demand at provider

i. Then the number of packets served is min(di, Ci), meaning that packets

are actually served with probability min(Ci/di, 1), i.e., packets are eventually

served after a random time following a geometric distribution with parameter

min(Ci/di, 1). Following an idea first introduced in [28], prices are per sub-

mitted packet rather than received one in order to prevent users from sending

as many packets as possible, which would maximize their chance to be served.

Charging on sent packets instead of successfully transmitted ones may seem

unrealistic. However, that mechanism can be seen as a volume-based pricing

scheme, with a congestion-dependent charge. Somewhat equivalently, it can

also be seen as a consequence of the more frequently used time-based charg-

ing with a fixed price per time unit. Indeed, when congestion occurs on a

network i and packets are lost, having to send them again multiplies the total

transfer time (and thus the price paid) by max(1, di/Ci), the mean number

of transmissions per packet. If each packet sent to provider i is charged pi,

the expected price p̄i to successfully send a packet is therefore given by

p̄i = pi/min(Ci/di, 1) = pi max(di/Ci, 1), (1)

which will from now be called the perceived price per served traffic unit at

provider i. Figure 2 plots that perceived price p̄i depending on the demand di:

p̄i is constant while provider i is not saturated, and increases linearly when
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demand exceeds capacity Ci. Demand for provider 1 is decomposed into d1,A,

pi

Ci Demand di

Price p̄i

p̄i

Figure 2: Perceived price at provider i versus demand di.

the demand in zone A, and d1,B, the demand in zone B, with d1 = d1,A+d1,B.

Remark that our work does not deal with customer mobility: we assume that

the (wireless) users do not move as soon as connected, a situation typical of

most current WiFi users. Therefore coverage is not an issue for customers.

In a given zone z ∈ {A,B} where the subset of operating service providers

is Iz ⊂ {1, 2}, the perceived price can be defined as

p̄z := min
i∈Iz

p̄i.

This models the fact that users are only sensitive to the lowest perceived

price available, since they choose the least expensive network.

2.2. User demand and valuation

In this paper, we assume that users are sensitive to the perceived price, in

the sense that they reduce their demand when the perceived price increases.

We model that effect using an aggregated demand function D(·).
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Definition 1. If the perceived price p̄ were the same on the whole domain,

then the total demand is a function D(·) of that perceived price p̄. Let us

denote by [0, pmax) the support of D.

The demand function D is assumed to be continuous and strictly decreasing

on its support, with D(pmax) = 0 and possibly pmax = +∞, meaning that

there is demand starvation when price is sufficiently high.

In other words, D(p̄) represents the number of users/packets having a

willingness to pay larger than or equal to p̄. To deal with the case where

there actually is competition, we assume that there is not enough resource

to satisfy all demand, i.e., D(0) > C1 + C2.

A useful function in the rest of the paper is the marginal valuation func-

tion, that is the generalized inverse of the demand function.

Definition 2. The maximum unit price at which a given quantity of traf-

fic units can be sold is called the marginal valuation for that quantity. The

marginal valuation is thus the application v : q 7→ min{p : D(p) ≤ q}, with

the convention min ∅ = 0.

The sum of the marginal valuations of the q units of users with largest

willingness-to-pay is denoted by V (q), and V (·) is called the global valua-

tion function. Formally,

V (q) :=

∫ q

x=0

v(x)dx.
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Notice that v is a nonincreasing function since D is nonincreasing. It is

easy to see that

v(q) =





D−1(q) if q ∈ (0, D(0))

pmax if q = 0

0 if q ≥ D(0).

(2)

Consequently, the valuation function V is nondecreasing and concave. V (q)

measures the “value” that the service has for the whole population, since it

is the total price that the q units of demand with highest marginal valuation

(i.e., those that actually accept to pay the unit price v(q)) are willing to pay

to be served.

Since perceived prices on both zones may be different, we introduce a

new parameter (namely, the proportion of the population covered by zone

B) to express separately the demand in each zone, still using the aggregated

demand function D.

Definition 3. Let us denote by α the proportion of the population in zone

B. We consider that users’ willingness-to-pay across sub-domains A and B

are equidistributed. Therefore, total demand in zone A (resp., zone B) is

(1−α)D(p̄A) (resp., αD(p̄B) if the perceived price on that zone is p̄A (resp.,

p̄B).

If users are uniformly distributed over the domain, α is simply the proportion

of the surface covered by provider 2 with respect to provider 1, but it can be

more general if we assume a non-uniform repartition.

Most of our results hold under the following assumption on the influence

of price on demand.
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Assumption A. Demand function D is differentiable, and price elasticity

of demand −D′(p)p
D(p)

is strictly larger than 1 for all p ∈ [p̂, pmax), with p̂ ≤
min

(
v
(
C1

1−α
)
, v
(
C2

α

))
.

The price elasticity of demand measures the percentage change in demanded

quantity implied by a percentage change in perceived price. Values larger

than 1 (leading to relatively elastic demand in economic terms) correspond

to a quite high reactivity to a perceived price change.

Under Assumption A, the function p 7→ pD(p) is strictly decreasing on

[p̂, pmax); this is a typical assumption in telecommunications (p̂ = 0 is often

considered, our assumption here is weaker), confirmed by operators1. This

property will be used in this paper to characterize the Nash equilibrium of

the pricing game.

Assumption A can be interpreted as follows: if all users in zone B always

choose provider 2 (or equivalently, if both zones were disjoint), then both

providers have an interest in setting a price such that all of their capacity is

used. Indeed, otherwise the revenue of provider i covering a proportion αi of

the population is αipiD(pi), which is strictly decreasing in pi, thus provider

i should decrease its price to maximize its revenue.

2.3. Methodology

Our analysis of the pricing game is decomposed into three steps:

1. We first study how, for fixed prices pi (i ∈ {1, 2}), total demand is split

among providers. This is described and discussed in Section 4 in terms

1From discussions at Orange Labs.
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of a Wardrop equilibrium. The output, also called user equilibrium,

consists in a demand distribution d := (d1,A, d1,B, d2). Notice that we

do have to consider the two different zones, each one impacting the

other, when computing that equilibrium. As we will see, we may end

up with different perceived prices on the two different zones.

2. Knowing how demand is distributed for fixed prices, each provider i ∈
{1, 2} tries to maximize his revenue

Ri(p1, p2) := pidi

by playing with the price charged to customers. The strategy of a

provider has an impact on the demand distribution, and therefore on

the revenue of the other. In Section 5 we determine the Nash equilibria

for the price game. Recall here the definition of a Nash equilibrium

when applied to our problem

Definition 4. A Nash equilibrium is a price vector p∗ := (p∗1, p
∗
2) such

that no provider can increase his own benefit by unilaterally changing

his access price, i.e., ∀p ≥ 0,

R1(p∗1, p
∗
2) ≥ R1(p, p∗2) and R2(p∗1, p

∗
2) ≥ R2(p∗1, p).

3. In the same section, we show that among all the Nash equilibria, there

is one corresponding to the socially-optimal situation, so that there is

no loss of efficiency due to competition (the price of stability is one).

We actually argue that this equilibrium is the most likely if (even if

negligible and not counted here) management costs are involved. We

also compute the price of anarchy if the worst Nash equilibrium, in

terms of social welfare, is chosen.
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3. Social welfare and optimal value

We define here social welfare (SW) as the sum of utilities of all agents

(customers plus providers) in our specific context, and then study the optimal

value that can be obtained.

If we consider only zone B, v(q) is the price a user would pay to buy the

α× q-th unit since only a proportion α of the population is in that zone. A

customer buying the q-th unit of resource in zone B is therefore willing to

pay v(q/α) to be served. If total demand in zone B is d1,B + d2, then the

total price that users in zone B are willing to pay is

∫ d1,B+d2

x=0

v(x/α)dx = αV

(
d1,B + d2

α

)
.

However, the demand d1,B + d2 might not totally be served due to capacity

limitations. Consequently, reasonably assuming that packet loss are inde-

pendent of user willingness-to-pay, the value that the service has to zone B

users should include the average transmission success probability in zone B:

that overall value is then

d1,Bπ1 + d2π2

d1,B + d2

αV

(
d1,B + d2

α

)
,

where π1 := min
(
1, C1

d1,B+d1,A

)
and π2 := min

(
1, C2

d2

)
are the transmission

success probabilities with provider 1 and provider 2, respectively. Similarly,

the total value that the service has for zone A users is

π1(1− α)V

(
d1,A

1− α

)
,

leading to the following definition of social welfare.
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Definition 5. For a demand configuration (d1,A, d1,B, d2), social welfare (sum

of utilities of all actors) is

SW(d1,A, d1,B, d2) = π1(1− α)V

(
d1,A

1− α

)
+
d1,Bπ1 + d2π2

d1,B + d2

αV

(
d1,B + d2

α

)
,

(3)

where π1 := min
(

1, C1

d1,B+d1,A

)
and π2 := min

(
1, C2

d2

)
.

Remark that social welfare depends only on (d1,A, d1,B, d2), but not on

prices paid by users since SW is the sum of the utilities of all actors: cus-

tomers (with their willingness to pay minus price paid) and providers (with

the revenue they get from prices).

From Definition 5, maximizing social welfare can be formally written as

max SW(d1,A, d1,B, d2) (4)

s.t. d1,A ≥ 0, d1,B ≥ 0, d2 ≥ 0.

We now solve that optimization problem.

Proposition 1. The maximal value SW∗ of social welfare is

SW∗=




V (C1 + C2) if αC1 ≥ (1− α)C2,

(1− α)V
(
C1

1−α
)

+ αV
(
C2

α

)
otherwise.

The proof is provided in Appendix A.

4. Demand distribution

Let us now describe more clearly how demand distributes itself among

providers. As in several other works where the number of users is large and

no user has a significant weight with respect to the others [29, 30], we assume
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that users are infinitely small: their choices do not individually affect the

demand levels (and therefore the perceived costs) of the different providers.

Games involving infinitesimal users are called nonatomic games [31]. Under

that nonatomicity assumption, an equilibrium among users follows Wardrop’s

principle [5] taken from road transportation: demand is distributed in such

a way that all users choose the available provider with the least perceived

price, and none if this perceived price is too expensive. That principle is

formalized below.

Definition 6. A Wardrop (or user) equilibrium is a triple (d1,A, d1,B, d2)

that verifies the following system, where p̄i stands for the perceived price at

provider i ∈ {1, 2}.

p̄1 = p1 max

(
1,
d1,A + d1,B

C1

)
(5)

p̄2 = p2 max

(
1,
d2

C2

)
(6)

d1,A min

(
1,

C1

d1,A + d1,B

)
= (1− α)D(p̄1) (7)

d1,B min

(
1,

C1

d1,A + d1,B

)
+ d2 min(1, C2/d2) = αD(min(p̄1, p̄2)) (8)

p̄1 > p̄2 ⇒ d1,B = 0 (9)

p̄1 < p̄2 ⇒ d2 = 0. (10)

We now give the interpretations for those relations. (5) and (6) are sim-

ply (1) applied to provider 1 and 2, respectively. Relations (7) and (8) link

19

173



demand (in terms of effective throughput, hence the multiplications by the

success probabilities) to perceived prices in zones A and B. In zone B,

where 100α% of the population is, the perceived price is p̄B = min(p̄1, p̄2).

The other users (a proportion 100(1 − α)%) are in zone A, with perceived

price p̄A = p̄1. As suggested in the definition of perceived prices per zone,

the min in the right-hand side of (8) reflects the fact that users in zone B

choose the cheapest provider (only provider 1 is available in zone A). Finally,

relations (9) and (10) also represent user choices in zone B: if one provider

is strictly more expensive than the other, then he gets no demand in that

zone. An example of the situation faced by users is illustrated in Figure 3.

To see how things happen in each zone, we artificially consider that demand

p

q

p

q

v
(

q
1−α

)
v
(
q
α

)

C1 C1 + C2

p1

p2

p1
p̄2

C1 − d1,B

C2

C1 − d1,A

d1,Ap1/p̄1 d1,Bp1/p̄1 + d2p2/p̄2

P
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Served quantities Served quantities

Figure 3: Demand repartition in zones A (left) and B (right).

is fixed in the other zone. In zone A, while demand d1,A ≤ C1 − d1,B, then

from (5) the perceived price is p̄1 = p1. Then when d1,A > C1 − d1,B we

get p̄1 = p1
d1,A+d1,B

C1
. In that case, losses occur, so that for a fixed d1,B,

the perceived price to actually get a service rate q on zone A (i.e., because
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provider 1 is saturated, the total quantity served, C1, is decomposed into

C1 = q + d1,Bp1/p̄1 among the two zones) is p̄1 = p1
d1,B
C1−q . At a Wardrop

equilibrium, from (7) in zone A the pair (d1,A, p̄1) is the (unique) intersection

point of the functions q 7→ p1 max
(

1,
d1,B
C1−q

)
and q 7→ v

(
q

1−α
)
.

In zone B, both providers are involved and users first choose the cheapest

provider (here, provider 2) until it is saturated, then they continue choosing

it, increasing the perceived price due to losses, until both providers have

the same perceived price. Then some demand is served by provider 1 at a

unit price p1, until it gets saturated. Afterwards, if d1,A is fixed, then the

perceived price in zone B to be served at a rate q is p̄1 = p̄2 = p1
d1,A

C1+C2−q .

From (8), the pair (d1,B + d2, p̄2) is the (unique) intersection point of that

demand-price relation with the function q 7→ v (q/α). In the example of

Figure 3, we have d2 > C2 but p̄2 < p1, thus d1,B = 0 (i.e. all users in zone B

choose provider 2 because demand is fulfilled in that zone before perceived

price at provider 2 reaches p1, the price at provider 1).

The difficulty of the Wardrop equilibrium is that both zones have to be

combined: the demand d1,A in zone A must correspond to the values of d1,B

and d2 in zone B and vice-versa.

The following proposition gives insightful results about the existence and

characterization of a Wardrop equilibrium.

Proposition 2. For every price profile (p1, p2) with strictly positive prices,

there exists at least a Wardrop equilibrium. Moreover, the corresponding

perceived prices (p̄1, p̄2) are unique.

The proof is given in Appendix B.
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Remark 1. The uniqueness of perceived prices at a Wardrop equilibrium

leads in most cases to a uniqueness of demands. Actually from (7) and (8),

d1,A and d1,Bp1/p̄1 + d2p2/p̄2 are unique. From (5) and (6), if p̄1 > p1 or

p̄2 > p2 then demands are unique. Also, (9) and (10) imply that demands

are also unique if p̄1 6= p̄2. Therefore the only cases when demands might

not be unique are when p̄1 = p1 = p2 = p̄2. Moreover, if d1 + d2 = C1 + C2

then demands are also unique (proof by contradiction: either d1 = C1 and

d2 = C2, or from (1) one provider i ∈ {1, 2} has p̄i > pi). This will actually

be the case for the Nash equilibrium of the pricing game: we will end up with

d1 + d2 = C1 + C2, and a unique Wardrop equilibrium.

We will see in the next section that even in a competitive context, sit-

uations with p̄1 > p̄2 can occur. In that case, all customers in zone B join

provider 2, but the revenue that provider 1 gets from zone A exceeds what

he could obtain by entering the price war on zone B.

5. Price war and Nash equilibrium

Knowing the above user equilibrium, we can discuss the pricing game

between the two providers. Provider i ∈ {1, 2} tries to maximize his revenue

Ri(p1, p2) = pidi by playing with his price. Again, a price change modifies

the Wardrop equilibrium, therefore the revenue of the competitor.

We give here a simple lemma regarding providers revenues.

Lemma 1. For each provider i, i = 1, 2, we have at a Wardrop equilibrium

Ri ≤ p̄iCi, and

di ≥ Ci ⇔ Ri = p̄iCi. (11)
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As a consequence, we also have p̄i > pi ⇒ Ri = p̄iCi.

Proof: The lemma immediately follows from (5), (6) and the expressions of

the revenues Ri = pidi. �
We now show our main result, characterizing the set of Nash equilibria.

Proposition 3. Under Assumption A, in the price war between providers

there is a set of Nash equilibria (0, p∗1] × (0, p∗2] for the price profile (p1, p2),

all yielding the same revenues R∗1 = p∗1C1 and R∗2 = p∗2C2. This set is

characterized as follows.

• If C1

1−α ≤ C2

α
, that set of Nash equilibria is such that

p∗1 = v

(
C1

1− α

)
≥ p∗2 = v

(
C2

α

)
. (12)

We then have d1,B = 0, meaning that zone B is left to provider 2 by

provider 1.

• If C1

1−α >
C2

α
, the set of Nash equilibria (0, p∗1]× (0, p∗2] is such that

p∗1 = p∗2 = p∗ = v(C1 + C2). (13)

In that case, zone B is shared by the providers.

The proof is given in Appendix C.

Remark 2. The assumption C1

1−α ≤ C2

α
means that the capacity per unit of

surface for (the smaller-range) provider 2 is larger than that in the remaining

area for provider 1. This can happen for fixed C1 and C2 if the proportion α of

the common zone is small enough. As a consequence, at a Nash equilibrium,
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it is better for provider 1 to disregard potential revenue from zone B, and

all users there go to the cheaper provider 2. We therefore end up with two

monopolies in the different zones. On the other hand, if the assumption is

not verified, zone B is too important for provider 1, and the price war is

played. Both providers then share the area.

Remark 3. Among all the Nash equilibria, all yielding the same revenues,

the price profile (p∗1, p
∗
2) is the one for which demand is the smallest, because

price is the highest. We claim that it is the most likely situation since there

is in this case less demand to manage, therefore less management costs, even

if those costs are assumed negligible and not considered here. In the next

proposition, we actually show that this equilibrium exactly corresponds to the

socially-optimal situation.

Corollary 4. In this system, the Nash equilibrium (p∗1, p
∗
2) corresponds to the

socially-optimal situation. As a consequence, the price of stability, defined

as the best-case ratio comparing social welfare at the Nash equilibrium to the

optimal value, is equal to one.

Proof: This corollary is a direct consequence of the Nash equilibrium (p∗1, p
∗
2)

demand repartition, that exactly corresponds to the socially optimum one

computed in Section 3. �
However, if we consider any Nash equilibrium, then the performance of the

system can be arbitrarily bad with respect to the socially optimal situation.

Corollary 5. In this system, the price of anarchy is unbounded. Indeed,

social welfare tends to 0 when the prices fixed by providers tend to 0 (that

situation being a Nash equilibrium of the pricing game).
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Proof: As seen in the proof of Proposition 3, when prices (p1, p2) set by

providers are sufficiently small then (p1, p2) is a Nash equilibrium, and p̄i = p∗i

for p∗i given in (12)-(13). From (5)-(6) and (7), this means that demands

d1,A and d2 tend to infinity. Now remark that due to the concavity and

increasingness of V ,

lim
x→∞

V (x)/x = lim
x→∞

v(x) = 0,

where the last equality is a consequence of D being bounded for strictly

positive prices.

Consequently, using diπi ≤ Ci in the social welfare expression, we have

when prices tend to 0:

SW ≤ C1
1− α
d1,A

V

(
d1,A

1− α

)

︸ ︷︷ ︸
→0

+(C1 + C2)
α

d1,B + d2

V

(
d1,B + d2

α

)

︸ ︷︷ ︸
→0

, (14)

which concludes the proof. �

6. Conclusion

In this paper, we have studied a pricing game between two wireless access

providers, one of the two (say, with WiFi technology) operating only in a

sub-area of the other (say, with WiMAX technology). Demand is driven

by the perceived price, being the price charged per packet sent divided by

the probability to be served (i.e. the average price per served unit). Users

are assumed to choose the cheapest available provider, or none if both are

too expensive. We have explained how demand is distributed according to

Wardrop’s principle. Knowing this distribution, providers play a pricing

game in order to maximize their revenue. We have characterized explicitly
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all Nash equilibria for that game. Moreover, if the capacity per user offered

in the WiFi hotzone exceeds the capacity per user of the WiMAX access in

the remaining zone, then the WiMAX provider leaves the common area to

the WiFi provider and only takes care of the region where he is the only

provider available. Otherwise, the providers share the common area. A last

contribution is to study whether competition brings a loss in terms of social

welfare with respect to the cooperative case. We have shown that the price

of stability (i.e., when looking at the Nash equilibrium yielding the largest

welfare) equals one, and remarked that this situation is actually a likely one.

As directions for future research, we plan to look at several issues. First,

the case of more than two providers would be interesting to study, but much

more complex. Adding demand uncertainty, and/or other externalities than

loss probability such as delay [22], to the model could highlight more complex

provider strategies and increase the price of stability. Also, considering that

providers can not only play with their price but also with their capacity or

the area they can reach would be of interest: in wireless networks, this could

typically mean playing with the transmission power of the antennas (or base

stations), similarly to [33]. Those points would help understand better the

providers behavior in a competitive wireless network environment.
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A. Proof of Proposition 1

Proof: We are looking for nonnegative values (d∗1,A, d
∗
1,B, d

∗
2) that maxi-

mize the objective function SW(d1,A, d1,B, d2) given in (3). To do so, we prove

two intermediate results.

a) We can take d∗2 = C2, since SW is nondecreasing in d2 if d2 ≤ C2, and

nonincreasing if d2 ≥ C2.

Indeed, remark that only the second term in the sum in (3) depends on

d2, so we only focus on that term. Remark also that π1 does not depend on

d2, while π2 = min(1, C2/d2).

• If d2 ≥ C2 then π2 = C2/d2, so that the second term of SW is

d1,Bπ1+C2

d1,B+d2
V
(
d1,B+d2

α

)
. The valuation function V being concave with

V (0) = 0, z 7→ V (z)/z is nonincreasing, which implies SW being non-

increasing in d2.

• If d2 ≤ C2 then the second term of SW is
d1,Bπ1+d2
d1,B+d2

V
(
d1,B+d2

α

)
, which

is a product of two terms that are nondecreasing in d2, since π1 ≤ 1

and V is nondecreasing.

b) We can also take d∗1,A + d∗1,B = C1:

• If d1,A+d1,B ≤ C1 then π1 = 1, so that only the first term in (3) depends

on d1,A. Thus SW is nondecreasing due to the nondecreasingness of V ,

and consequently we can consider that d∗1,A + d∗1,B ≥ C1.

• If d1,A + d1,B ≥ C1, then π1 = C1

d1
with d1 = d1,A + d1,B. We then define

β :=
d1,A
d1

, so that d1,A = βd1 and d1,B = (1 − β)d1. The objective
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function SW can then be written

(1− α)
C1

d1

V

(
βd1

1− α

)
+

(1− β)C1 + d2π2

(1− β)d1 + d2

αV

(
(1− β)d1 + d2

α

)
,

where both terms in the sum are nonincreasing in d1 because V is

concave and V (0) = 0.

As a result, we can find some nonnegative values (d∗1,A, d
∗
1,B, d

∗
2) maximiz-

ing SW, and that are such that d∗2 = C2 and d∗1,A + d∗1,B = C1. Remark that

π1 = π2 = 1 in that case. There just remains one parameter to find, say d∗1,B

(since d∗1,A = C1−d∗1,B) to obtain the maximum value of social welfare. That

value is thus the solution of the problem

max
y

f(y)

s.t. 0 ≤ y ≤ C1,

where f(y) := (1 − α)V
(
C1−y
1−α

)
+ αV

(
C2+y
α

)
is differentiable. The marginal

valuation function v being strictly decreasing, f ′(y) = v
(
C2+y
α

)
− v(C1−y

1−α )

verifies

• f ′(y) > 0⇔ C1−y
1−α > C2+y

α
, and

• f ′(y) < 0⇔ C1−y
1−α < C2+y

α
.

Using the constraints over y, function f reaches its maximum at y =

max(0, αC1 − (1− α)C2).

We therefore have proved the proposition, by just inserting the values in

the expression of social welfare. �
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B. Proof of Proposition 2

Proof: A very general proof of the existence of a Nash equilibrium in

nonatomic games (what we call here a Wardrop equilibrium) was provided

by Schmeidler [32]. Therefore a solution to the system (5)-(10) exists.

We now establish the uniqueness of perceived prices at a user equilibrium.

We will use the fact that (5) and (6) respectively imply

min

(
1,

C1

d1,A + d1,B

)
=

p1

p̄1

and min

(
1,
C2

d2

)
=

p2

p̄2

.

Assume two user equilibria (d1,A, d1,B, d2) and (d̃1,A, d̃1,B, d̃2) with different

perceived prices (p̄1, p̄2) and (p̃1, p̃2) exist for a given price profile (p1, p2), and

suppose that p̃1 > p̄1. Then (5) implies that

d̃1,A
p1

p̃1

+ d̃1,B
p1

p̃1

= C1 ≥ d1,A
p1

p̄1

+ d1,B
p1

p̄1

. (15)

On the other hand, (7) yields2 d̃1,A
p1
p̃1
< d1,A

p1
p̄1

, therefore (15) gives

d̃1,B
p1

p̃1

>
p1

p̄1

d1,B. (16)

Thus d̃1,B > 0, and from (9) we have p̃1 ≤ p̃2. Now applying (8) twice gives

d̃1,B
p1

p̃1

+ d̃2
p2

p̃2

= αD(p̃1) < αD(p̄1) ≤ αD(min(p̄1, p̄2)) = d1,B
p1

p̄1

+ d2
p2

p̄2

.

Relation (16) then yields

d̃2
p2

p̃2

< d2
p2

p̄2

≤ C2, (17)

2Notice that D(p̃1) > 0, otherwise one can check that we would get d̃1,A = d̃1,B = 0, a

contradiction with (15). Therefore D is strictly decreasing on [p̄1, p̃1] and D(p̃1) < D(p̄1).
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where the second inequality comes from (6). This implies that d2 > 0, and

thus p̄2 ≤ p̄1 from (10). Summarizing our results we get p̄2 ≤ p̄1 < p̃1 ≤ p̃2,

thus p̃2 > p̄2. From (6) this means d̃2 > C2 and therefore d̃2
p2
p̃2

= C2, a

contradiction with (17). Therefore the perceived price p̄1 is unique.

Likewise, knowing that p̃1 = p̄1, assume p̃2 > p̄2. Then from (6) we get

d̃2 = C2
p̃2
p2

. Therefore d̃2 > 0, and (10) implies p̃2 ≤ p̃1 = p̄1, thus

p̄2 < p̄1. (18)

Now applying (8) we obtain3

d̃1,B
p1

p̃1

+ d̃2
p2

p̃2︸︷︷︸
=C2

= αD(p̃2) < αD(p̄2) ≤ αD(min(p̄1, p̄2)) = d1,B
p1

p̄1

+ d2
p2

p̄2︸︷︷︸
≤C2

,

therefore d1,B > 0, and thus p̄1 ≤ p̄2 from (9), which is a contradiction

with (18) and proves the uniqueness of p̄2. �

C. Proof of Proposition 3

We distinguish the two cases that appeared when computing the welfare

maximizing situation.

C.1. Case αC1 ≤ (1− α)C2

Lemma 2. Consider that Assumption A holds, and assume that αC1 ≤ (1−
α)C2. For any price p1 > 0, any price p2 ∈ (0, p∗2] ensures provider 2 a

revenue R2 = p∗2C2, while any other price yields a strictly lower revenue.

3Again, since d̃2 > 0, from (8) we are in the zone where D is strictly positive, thus

strictly decreasing.
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Proof: We consider a strictly positive price p1 and a price p2 ∈ (0, p∗2], and

we proceed in several steps to prove that R2 = p∗2C2.

1. We have p̄1 ≥ p∗2: if not, (5) and (7) would imply

C1 ≥ d1,A
p1

p̄1

= (1− α)D(p̄1) > (1− α)D(p∗2) ≥ (1− α)D(p∗1) = C1,

a contradiction.

2. Also, p̄2 ≥ p∗2: otherwise from step 1 and (9) we would have d1,B = 0,

and (8) and (6) would give

C2 ≥ d2
p2

p̄2

= αD(p̄2) > αD(p∗2) = C2,

another contradiction.

3. But on the other hand, p̄2 ≤ p∗2: otherwise we would have p̄2 > p2,

and thus d2p2/p̄2 = C2 from (6). Then (10) would yield p̄1 ≥ p̄2, and

applying (8) would give

d1,B
p1

p̄1

+ C2 = αD(p̄2) < αD(p∗2) = C2,

another contradiction. As a consequence of this and of previous result,

p̄2 = p∗2.

4. Finally, R2 = p∗2C2: we use results from the previous steps, and distin-

guish two cases.

• if p̄1 = p∗2, then adding (7) and (8) gives

d1
p1

p̄1︸︷︷︸
≤C1 from (5)

+ d2
p2

p∗2︸︷︷︸
≤C2 from (6)

= αD(p∗2) + (1− α)D(p∗2) ≥ C1 + C2,

thus all inequalities are equalities, and in particular d2p2 = p∗2C2.
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• if p̄1 > p∗2 then (9) and (8) directly give p2d2 = p∗2C2.

Now we prove that any price p2 > p∗2 corresponds to a revenue R2 < p∗2C2.

From (10):

• either d2 = 0, and therefore R2 = 0;

• or p̄2 ≤ p̄1, which from (8) implies that

d2p2/p̄2 ≤ αD(p̄2) ≤ αD(p2) < αD(p∗2) = C2,

and from (6) yields p̄2 = p2. Then applying (8) again, we have d2 ≤
αD(p2), and

R2 ≤ αp2D(p2) < αp∗2D(p∗2) = p∗2C2,

where the last inequality comes from Assumption A. This concludes

the proof.

�

Lemma 3. Consider that Assumption A holds. For any fixed price p2 ∈
(0, p∗2], any price p1 ∈ (0, p∗1] ensures provider 1 a revenue R1 = p∗1C1, while

any other price yields a strictly lower revenue.

Proof: Fix p2 ∈ (0, p∗2]. As seen in the proof of Lemma 2 we have p̄2 = p∗2 and

d2p2/p̄2 = C2 whatever the value of p1, which from (10) gives p̄2 ≤ p̄1, and

from (8) implies that d1,B = 0. As a result, the total demand for provider 1

is in zone A, and is given by (7). Then,

• If provider 1 sets p1 ≤ p∗1, then (5) and (7) give

C1︸︷︷︸
(1−α)D(p∗1)

≥ d1
p1

p̄1

= (1− α)D(p̄1), (19)
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thus p̄1 ≥ p∗1. But actually p̄1 = p∗1, otherwise (5) and (7) would give

C1 = d1
p1

p̄1

= (1− α)D(p̄1) < (1− α)D(p∗1) = C1,

a contradiction. As a result, from (19) we have R1 = p1d1 = p∗1C1.

• If provider 1 sets p1 > p∗1, then p̄1 > p∗1 from (5), and (7) yields

d1
p1

p̄1

= (1− α)D(p̄1) > (1− α)D(p∗1) = C1,

thus from (5), d1 < C1 and p̄1 = p1. As a result, (5) implies

d1p1 = (1− α)p1D(p1) < (1− α)p∗1D(p∗1) = p∗1C1,

where the inequality comes from Assumption A. �
The fact that any price (p1, p2) with pi ∈ (0, p∗i ], i = 1, 2 is a Nash

equilibrium of the price game is a direct consequence of Lemmas 2 and 3.

C.1.1. Case αC1 > (1− α)C2

Recall that in that case we have

C2

α
< D(p∗) = C1 + C2 <

C1

1− α. (20)

Lemma 4. Consider that Assumption A holds. All price profiles (p1, p2) ∈
(0, p∗]2 form a Nash equilibrium. Those profiles are the only Nash equilibria

of the pricing game, and the corresponding revenue for each provider i = 1, 2

is Ri = p∗Ci.

Proof: The proof follows three steps:

1. We first prove that when both providers set a price below p∗ then each

provider k gets a revenue p∗Ck.
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2. Then we show that if only one provider j sets a price pj > p∗ he gets

a strictly smaller revenue, while his opponent i gets at least the same

revenue p∗Ci.

3. Finally, we prove that if both providers were to set a price strictly

above p∗, then at least one provider i would obtain strictly less than

p∗Ci, and thus from the previous point he would be better off reducing

his price below p∗.

Step 1. Consider a price profile (p1, p2) with pk ∈ (0, p∗], k = 1, 2. Then

adding (7) and (8) gives

d1
p1

p̄1︸︷︷︸
≤C1 from (5)

+ d2
p2

p̄2︸︷︷︸
≤C2 from (6)

≥ D(p̄1),

thus p̄1 ≥ p∗, due to the nonincreasingness of D. Now, we also have p̄2 ≥ p∗,

otherwise (9) would imply d1,B = 0, and (6) and (8) would give

C2 ≥ d2
p2

p̄2

= αD(p̄2) > αD(p∗) > C2,

a contradiction. Now we prove that we actually have p̄1 = p̄2 = p∗. Assume

p̄1 > p∗: then d1p1/p̄1 = C1 from (5), and adding (7) and (8) would give

C1 + d2
p2

p̄2

< D(p∗) = C1 + C2,

thus d2p2/p̄2 < C2, and p̄2 = p2 from (6). Since p2 ≤ p∗ and p̄2 ≥ p∗, we

would have p̄2 = p∗. But then (10) and (7) would imply

C1 = (1− α)D(p̄1) < (1− α)D(p∗) < C1,
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a contradiction. We therefore have p̄1 = p∗, which implies p̄2 ≤ p∗ (oth-

erwise (10) and (6) would lead to a contradiction). Summarizing, we have

p̄1 = p̄2 = p∗. Adding again (7) and (8) now gives

d1
p1

p∗︸︷︷︸
≤C1 from (5)

+ d2
p2

p∗︸︷︷︸
≤C2 from (6)

= C1 + C2,

implying d1p1/p
∗ = C1 and d2p2/p

∗ = C2, which gives dkpk = p∗Ck for

k = 1, 2 and establishes the first step of the proof.

Step 2. Now consider a provider i setting pi ∈ (0, p∗], while his opponent j

sets a price pj > p∗. Then we prove that Rj < p∗Cj and Ri ≥ p∗Ci.

• If p̄i < p̄j, then using (9) or (10), and adding (7) and (8), we have

di
pi
p̄i︸︷︷︸

≤Ci from (1)

= D(p̄i).

Thus p̄i ≥ v(Ci) > p∗ ≥ pi, and therefore from Lemma 1, Ri = p̄iCi >

p∗Ci. To study Rj we distinguish two cases.

– Case i = 1: (10) directly gives R2 = 0;

– Case i = 2: (9) implies d1,B = 0, and (7) yields

d1p1 = (1− α)p̄1D(p̄1) < (1− α)p∗D(p∗) < p∗C1,

where the first inequality comes from Assumption A, and the sec-

ond one from (20).
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• If p̄i ≥ p̄j, then from (1) this implies dipi/p̄i = Ci and directly gives

Ri > p∗Ci. Moreover, adding (7) and (8) we obtain

dj
pj
p̄j

+ Ci ≤ D(p̄j),

which gives

djpj ≤ p̄j(D(p̄j)− Ci) < p∗(D(p∗)− Ci) = p∗Cj,

where we used Assumption A and the fact that p̄j > p∗.

This concludes the second step of the proof.

Step 3. Assume now that both providers set a price strictly above p∗. We

index the providers such that p̄i ≥ p̄j at the Wardrop equilibrium.

• If p̄i > p̄j then Ri < p∗Ci for the same reasons as in the previous step

(Ri = 0 if i = 2, and Ri = (1− α)p∗D(p∗) < p∗C1 if i = 1).

• If p̄i = p̄j, then adding (7) and (8) we have

di
pi
p̄i

+ dj
pj
p̄j

=
Ri +Rj

p̄i
= D(p̄i),

and from Assumption A we obtain

Ri +Rj = p̄iD(p̄i) < p∗D(p∗) = p∗(Ci + Cj),

which implies that either Ri < p∗Ci, or Rj < p∗Cj.

Those three steps completely characterize the Nash equilibria of the pric-

ing game: if a provider (or both) sets his price strictly above p∗ then at

least one provider is strictly better off reducing his price, while when both

providers set their price below p∗ no provider can strictly improve his revenue

by a unilateral price change. �
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Email: patrick.maille@telecom-bretagne.eu

Maurizio Naldi
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Abstract—In the telecommunication world, competition among
providers to attract and keep customers is fierce. On the other
hand customers churn between providers due to better prices,
better reputation or better services. We propose in this paper
to study the price war between two providers in the case where
users’ decisions are modeled by a Markov chain, with price-
dependent transition rates. Each provider is assumed to look
for a maximized revenue, which depends on the strategy of the
competitor. Therefore, using the framework of non-cooperative
game theory, we show how the price war can be analyzed and
show the influence of various parameters.

I. INTRODUCTION

The migration of customers from a service provider to
another, a.k.a. as churn, has become a relevant phenomenon
since the liberalization of telecommunications service and the
ensuing proliferation of network operators. Churn is especially
large in mobile networks, where yearly migration rates as
high as 25% are not uncommon [1]. The migration of each
customer, to the benefit of another service provider, implies
both the loss of the stream of future revenues associated to
that customer and of the acquisition cost. Service providers
are therefore very keen on retaining their customers as well
as on attracting new ones. In doing so they can rely both on
preventive and on reactive strategies. An example of the latter
is given by unfair practices such as the malicious introduction
of delays in the migration process [2] [3]. Preventive strategies
rely instead on the identification of the factors having a
major influence on the churning decision (the churn deter-
minants) [4] [5] and on successive actions on those factors.
Among the identified churn determinants, price plays the
most relevant role. Price always appears as a major factor:
in the context of mobile number portability (a mechanism
allowing to switch provider with minimal discontinuity, since
the telephone number is retained), price is stated as a key
element in spurring churn [6]. Another example is provided
in [7], where retention and attrition phenomena are studied in
an experimental setting by proposing different pricing plans
to test customers. We can then expect that providers may
compete for retaining customers by acting primarily on price.
In this paper we propose a model for the competition among
service providers based on price, the competition being here
limited to two service providers. To our knowledge, it is
the first time that such a competition model is introduced
in telecommunications to model the price war. While most

research efforts on telecommunication pricing are concerned
with congestion externality for usage-based pricing [8], here
we focus more on subscription-fee based pricing, where users
are charged for the amount of time they stay with a provider,
regardless of their usage (e.g., the Internet subscription fee
incorporated in most of the current pricing packages). Our
model makes use of a Markov chain to mimic the churn be-
haviour of a customer in terms of prices and other parameters.
Basically, the user can be with any of the providers or none
of them if not satisfied with their combination of price and
services. The per-user revenue of each provider can then be
easily computed from steady-state probabilities, considering a
single user without loss of generality. Indeed, assuming that
customers behave independently and according to the same
Markov chain, the expected revenue of providers is exactly
the expected revenue per customer times the total population.
Those state probabilities depending on both prices, so are the
revenues of providers. As a consequence, the natural frame-
work for analyzing the competition between providers seeking
to maximize their revenue is non-cooperative game theory. We
show how to solve this game, and illustrate the influence of
parameters such as impact of other churn determinants, and
(social or financial) cost for not getting any service due to
excessive prices.

The paper is organized as follows. Section II presents the
Markov chain model representing the user behaviour and
computes the associated steady-state probabilities. Section III
explains in full generality why non-cooperative come into play
and how it can be solved, either analytically or numerically.
Section IV then shows how, in a simplified setting, the game
can be solved analytically. Section V on the other hand makes
use of a description of rates issued from logit models. In
this case, a numerical analysis is performed. In addition, we
investigate the sensitivity of the resulting equilibria to the
degree of asymmetry between the two providers in attracting
customers and to the relevance of the price factor for the
customers. Finally, Section VI describes our conclusions.

II. MARKOV CHAIN MODEL OF USERS’ BEHAVIOR

We assume that the behavior of a customer is represented
by the continuous time Markov chain1 that is depicted in

1We therefore implicitely assume that all events leading to a state change
occur after an exponentially distributed time.
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Q :=




−2α α α
λ10(p1, p2) −(λ10(p1, p2) + λ12(p1, p2)) λ12(p1, p2)
λ20(p1, p2) λ21(p1, p2) −(λ20(p1, p2) + λ21(p1, p2))


 .

Figure 2: Infinitesimal generator of the Markov chain

Figure 12. Here state 1 means that the customer is with
provider 1, state 2 that he is with provider 2 and state 0 that
he does not use any service. The parameter α is a constant
rate independent of prices. Remark on the other hand that
other rates will be considered in the numerical section, but
the resulting steady-state probabilities will be computed in the
same way. The resulting infinitesimal generator Q is given in

1 0 2

λ10(p1, p2) α

λ20(p1, p2)α

λ12(p1, p2)

λ21(p1, p2)

Figure 1: Continuous time Markov chain model of the cus-
tomer’s switching behaviour

Figure 2. From standard Markov chain analysis, the steady-
state probabilities for each of the three states grouped in the
row vector π = (πi)i=0,...,2 exist and are given by the solution
of equations

πQ = 0,

2∑

i=0

πi = 1.

If

c = α (2λ12(p1, p2) + 2λ21(p1, p2) + λ10(p1, p2) + λ20(p1, p2))

+λ10(p1, p2)λ21(p1, p2) + λ20(p1, p2)λ12(p1, p2)

+λ10(p1, p2)λ20(p1, p2),

we have

π0 =
λ10(p1, p2)λ21(p1, p2) + λ10(p1, p2)λ20(p1, p2)

c

+
λ12(p1, p2)λ20(p1, p2)

c

π1 =
(λ20(p1, p2) + 2λ12(p1, p2))α

c

π2 =
α (λ10(p1, p2) + 2λ21(p1, p2))

c
.

2Remark that other distributions for sojourn times can be used as well. In
that case the model requires to be handled by simulation, while here steady-
state probabilities can be computed analytically and as a consequence the
game is solved using simple numerical analysis tools.

III. NON-COOPERATIVE GAME FROM THE PROVIDERS’
SIDE

The previous section describes the behaviour of a customer
as a function of prices set by providers. The question is now to
define the best pricing strategy for each provider knowing that
behaviour. We therefore have a so-called Stackelberg game [9],
with leaders (the providers) choosing their prices knowing the
consequences they would have on users’ behaviour, and the
followers (the users) whose reaction is a direct consequence
of providers’prices. This means that providers play first, but
using backward induction, they anticipate the resulting strategy
of end users who actually make the last move.

It is important to stress that our model, considering a single
customer in front of two providers, is sufficient if assuming
that each user has a behaviour independent of others’. The case
of N users can then indeed be easily derived by multiplying
the expected revenue by N (thanks to the independence).

In the first step of the Stackelberg game, each provider tries
to maximize its revenue. There is a trade-off to be analyzed
between the fact that increasing the price will increase the
revenue per customer, but on the other hand potentially reduce
the number of customers (i.e., the probability of having the
user as customer in our case). The revenue per customer Ri
for provider i ∈ {1, 2} is therefore expressed formally as the
price charged multiplied by the probability that this customers
is indeed with provider i, i.e., Ri = piπi ∀i ∈ {1, 2}, or more
exactly using the expressions for the steady-state probabilities
of the Markov chain:

R1(p1, p2) = p1
α (λ20(p1, p2) + 2λ12(p1, p2))

c

R2(p1, p2) = p2
α (λ10(p1, p2) + 2λ21(p1, p2))

c
.

From those expressions, it is clear that the revenue of a
provider depends on the price strategy of the concurrent.
Indeed, steady-state probabilities are functions of rates which
themselves depend on both prices. As a consequence, this
fits the framework of non-cooperative game theory [9]. Each
provider strives to find its best strategy, i.e., its price maximiz-
ing its revenue, which can be modified by the strategy of the
competitor. The solution concept is that of a Nash equilibrium:
a Nash equilibrium is a price profile (p∗1, p

∗
2) such that no

provider can unilaterally increase its revenue, i.e.,

R1(p
∗
1, p

∗
2) = max

p1≥0
R1(p1, p

∗
2)

R2(p
∗
1, p

∗
2) = max

p2≥0
R2(p

∗
1, p2).

198



In general the existence of a Nash equilibrium cannot be en-
sured without assumptions, nor its uniqueness when existence
is shown. In the case where rate functions are simple enough in
terms of prices, we may find the form of the Nash equilibria
analytically (see next section). Otherwise, the computations
can be performed numerically using the following algorithm.
We define the best response of each provider as a function of
the strategy of its opponent by

BR1(p2) := argmax
p1≥0

R1(p1, p2) and

BR2(p1) := argmax
p2≥0

R2(p1, p2).

In this setting, a Nash equilibrium is just a point (p∗1, p
∗
2) such

that BR1(p
∗
2) = p∗1 and BR1(p

∗
1) = p∗2 (if best responses

are not unique, it means that p∗1 in the set of best responses
when provider’s price is p∗2, and reciprocally). Algorithm 1
describes how to algorithmically and graphically determine
Nash equilibria (if any)

Alg. 1 Graphically finding the Nash equilibria of the game
Input: transition rates of the Markov chain in Figure 1, as
functions of prices p1 and p2.

1) For all possible values of p2 ≥ 0, find the set BR1(p2)
of p1 values maximizing R1(p1, p2).

2) For all possible values of p1 ≥ 0, find the set BR2(p1)
of p2 values maximizing R2(p1, p2).

3) On a same graphic, plot the best response functions
p1 = BR1(p2) and p2 = BR2(p1), as illustrated
Figure 3.

4) The set of Nash equilibria is the (possibly empty) set
of intersection points of those functions.

Two practical remarks can be made:
• Instead of assuming the set [0,∞) for each price, we will

limit ourselves to [0, pmax] since customers are unlikely
to come to the provider if price is too high.

• When analytical derivation cannot be performed and
solved to determine the best response functions, only a
finite number of values can be tried in practice in each
case, and the best responses determined at these points,
and the solution investigated on the corresponding lattice.

IV. ANALYSIS FOR SPECIFIC BUT REALISTIC RATES

This section is dedicated to the case where rates of the
Markov chain are simple, but realistic enough, to derive analyt-
ical expressions for the Nash equilibria. We more specifically
assume that

λ10(p1, p2) = p1

λ20(p1, p2) = p2

λ12(p1, p2) = ζp1/p2

λ21(p1, p2) = p2/p1,

with ζ a strictly positive real number. Expressions for λ10 and
λ20 mean that a customer is more likely to leave a provider

p1
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BR1(p2)

BR2(p1)
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Figure 3: Graphical determination of Nash equilibria. Two
solutions here (circled points).

for no service if its price is high, and depend linearly (and
only) on the price at the incumbent provider. Values for λ12
and λ12 mean that swapping between providers depend on the
ratios of prices. The insertion of parameter a is to introduce
some asymmetry, because provider 1 may have a better (worse)
reputation and it is therefore less (more) likely to be left for
provider 2 when ζ < 1 (ζ > 1).

In that case, we end up, after simple computations, with

R1 =
αp22p1(p1 + 2)

2αp22 + (α+ 1)p2p21 + (1 + α)p1p22 + p21p
2
2 + 2ζαp21

R2 =
αp21p2(p2 + 2ζ)

2αp22 + (α+ 1)p2p21 + (1 + α)p1p22 + p21p
2
2 + 2ζαp21

.

In order to determine the existence of a Nash equilibrium,
we compute the derivatives. Using D = 2αp22+(α+1)p2p

2
1+

(1 + α)p1p
2
2 + p21p

2
2 + 2ζαp21, we have

∂R1

∂p1
= −αp22

[
p21((1− α)p22 + 2(α+ ζ)p2 + 4ζα)

D2

+
p1(−4αp22) + (−4αp22)

D2

]

∂R2

∂p2
= αp21

[
p22(−2ζ(1 + α)p1 + (α− ζ)p21 − 4ζα)

D2

+
p2(4ζαp

2
1) + (4ζ2αp21)

D2

]
.

Note that (p1 = 0, p2 = 0) is always a solution of the
system ∂R1

∂p1
= 0 and ∂R2

∂p2
= 0, and a Nash equilibrium. On

the other hand, equating the numerators to zero, any solution
with (p1, p2) 6= (0, 0), i.e., any non-degenerate strictly positive
and finite Nash equilibrium, then solves the system of second
degree equations

p21((1− α)p22 + 2(α+ ζ)p2 + 4ζα)

+p1(−4αp22) + (−4αp22) = 0 (1)
p22(−2ζ(1 + α)p1 + (α− ζ)p21 − 4ζα)

+p2(4ζαp
2
1) + (4ζ2αp21) = 0. (2)
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The unique strictly positive solution of this system is given by

p1 = −2 α
(
−ζ2 + ζ + α2ζ − α2

)

ζα3 − 2α2ζ − α2 + 3ζα− a2 (3)

p2 = 2
ζα
(
−ζ2 + ζ + α2ζ − α2

)

3ζ2α− ζ2 − ζ2α2 − 2α2ζ + α3
, (4)

provided those values are positive. At most one Nash equilib-
rium with strictly positive prices is possible in that case.

V. NUMERICAL RESULTS

A. Churn rates and prices in the literature

In Section II the transition rates that mark the passage from
a provider to the other are shown to depend on the prices
offered by the providers and Section IV illustrates that, in
very simplified cases, the Nash equilibrium can be obtained
analytically, though not easily. In order to adopt a model
as close as possible to reality, we briefly review the related
literature on the mathematical relationship between churn rates
and prices in this sub-section, that which will be adopted
during our numerical analysis.

Significant efforts have been spent to identify the most
relevant factors in determining churn (often named churn
determinants). In order to model the relationship between
prices and churn rates in a quantitative fashion both parametric
and non-parametric approaches have been proposed in the
literature. Among the non-parametric approaches we can cite
[10], where neural networks and decision trees are employed,
and [11] where a novel evolutionary learning algorithm is
proposed. Since we need a closed form relationship here
we are more interested in parametric approaches. The most
widespread model adopted in the literature to represent that
relationship is the logit model, which employs a logistic
probability distribution function [12] [13] [14]. The argument
of the logistic function is a linear function of a number
of churn determinants. The most general expression of the
probability that a user churns in the next period (e.g., a year
as in [12]) is then

Pchurn =
1

1 + e−I
, (5)

where I is the logit factor, in turn given by

I =
n∑

i=1

βiXi, (6)

where Xi, i = 1, . . . , n are the explanatory variables (churn
determinants) and βi, i = 1, . . . , n, are the coefficients
representing the relative importance of those determinants. In
this paper we have focussed on the price factor, so that we
can group the impact of the other churn determinants in the
overall term γ, arriving at the simpler expression

Pchurn =
1

1 + γe−βp1/p2
(7)

for the probability that in the specified period the user switches
from Provider 1 to Provider 2. We may employ that expression
for a time period of any duration, so we can adopt it in the

Markov chain model described in Section II. We note that,
according to expression (7), there is a non zero probability,
namely Pchurn = 1

1+γ , that the user switches provider due to
the ensemble of other dissatisfaction factors, even when the
service offered by the losing provider is free.

B. Transition rates

The transition rates that we assume now are chosen to reflect
the conclusions of the previous subsection. However, the data
and conclusions drawn from the literature do not provide us
with a complete description of all the transition rates we need,
in particular the state where users do not subscribe to the
service is not encompassed in previous results. Moreover, the
literature considers discretized time, whereas we focus here
on a continuous-time model.

That latter difficulty is addressed here by assuming that
time periods considered in Subsection V-A, are short with
respect to the mean sojourn time in a given state. This implies
that the discrete time transition probabilities are approximately
the continuous-time transition rates multiplied by the period
duration. Consequently, we would like to consider transition
rates from state i ∈ {1, 2} to state j ∈ {1, 2} \ {i} of the
form κ

1+γie
−βpi/pj , where κ > 0 represents the inverse of

the period duration. Since β represents the user sensitivity to
prices, we consider it is the same for the different states of
the model. However, such an expression would imply that all
transition rates be in an interval [κ/(1 + γi), κ] regardless of
the price values. This is not realistic, since it would imply that
a provider could ensure an arbitrarily large revenue by setting
a very large price. We therefore need that the transition rates
to a provider i tend to 0 and/or that the rates from provider
i tend to ∞, when pi →∞. To that end, we slightly modify
the previous expression, and take transition rates of the form

λij(pi, pj) =
κ

γie−βpi/pj
=

κ

γi
eβpi/pj , (8)

We introduce asymmetry among providers through the pa-
rameter γi: as explained before, this parameter encompasses
the reasons other than price (e.g., Quality of Service, reputa-
tion, ...), why a user should leave state i.

We propose to address the former difficulty (no hints regard-
ing the transitions to/from our state 0) by assuming that being
in state 0 corresponds to perceiving a cost p0, that reflects
the inconvenience for not benefitting from the service. We
therefore treat state 0 as the two other states, but considering
p0 as a fixed value instead of a strategic variable. As a result,
the transition rate we assume from any state i ∈ {0, 1, 2} to
state j ∈ {0, 1, 2} \ {i} is given by (8).

The model parameters that we consider are then:
• the user sensitivity to price β,
• the likeliness γi to stay in current state i, i = 0, 1, 2,
• the inverse of period duration κ (this parameter should

not play a role in our model, since by a time unit change
we can assume κ = 1),

• the user perceived cost p0 for not benefitting from the
service.
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C. Numerical analysis of the game

In this subsection, we suggest to study the game while
considering the previous expressions of the transition rates.
The dependence of those rates on provider prices are too
complicated to solve the problem analytically, therefore we
perform here a numerical study. Unless otherwise stated, the
parameter values considered in this section are the following:
p0 = 1, κ = 1, β = 0.5, γ1 = 1, γ2 = 2, γ0 = 1. We will refer
to this set of parameter values as S.

Figure 4 plots the steady-state revenue R1 of provider 1
when its price p1 varies, for different values of the opponent
price p2. We remark that the revenue of provider 1 is first
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Figure 4: Provider 1 revenue versus p1 for fixed p2.

increasing, then decreasing in p1. However, this is not always
the case: for some parameter values, the revenue of a provider
as a function of its price may have two local maxima, and
depending on the opponent’s price, the first or the second local
optimum is a global one. This is exemplified in Figure 5 for
γ2 = 7 and the other parameter values in S. Nevertheless, it
appears that the revenue of provider 1 tends to 0 as its price
tends to infinity, which implies that there exists a finite price
p1 maximizing R1. That revenue-maximizing price constitutes
the best reply of provider 1 to the price set by provider 2.

As explained in Section III, plotting the best-reply curves
of both providers on the same graph highlights the Nash
equilibria of the game. Those curves are shown in Figure 6
for the parameter values in S. Figure 6 shows that there
are two Nash equilibria of the game, namely (0, 0) and
p∗ ≈ (2.29, 2.84). However, we notice that (0, 0) is not a
satisfying situation, since it brings no revenue to the providers,
and moreover it is not a stable Nash equilibrium: if any of the
two providers slightly deviates from that situation by setting a
strictly positive price, then successive best replies lead to the
other (stable) Nash equilibrium p∗. We will consequently focus
on that equilibrium in the following, when it exists. Indeed,
notice that as the example of Figure 5 illustrates, the best
reply correspondence p2 7→ BR1(p2) may not be continuous
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Figure 5: Provider 1 revenue versus p1 for fixed p2 and γ2 = 7
(other parameters taken from S).
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Figure 6: Best-reply curves of both providers.

due to the fact that the global maximum can switch from
one local maximum to the other. Figure 7 plots the best-
reply correspondences with the same parameter values as for
Figure 5. Interestingly, for that set of value there are two stable
Nash equilibrium: one around (p1, p2) = (0.14, 0.7) and the
other one near (p1, p2) = (2, 3.9). Nevertheless, those cases
were rarely met in our numerical computations, and were not
met with the “reasonable” values that we used.

D. Influence of the parameter p0
In Subsection V-B we have interpreted p0 as the user

perceived cost for not benefitting from the service. When
the service in question concerns a rapidly time-evolving sec-
tor such as telecommunications, it is very likely that this
perceived cost p0 changes. For example, Internet access or
cellular telephony are now almost priceless services for many
users, because those tools are extensively used and becoming
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Figure 7: Best-reply curves of both providers when γ2 = 7
(other parameter values taken from S).
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Figure 8: Nash equilibrium prices when the no-service cost p0
varies.

mandatory for regular business. This was not the case at the
very beginning of those technologies. On the other hand,
some services/technologies can lose value because they get
abandoned or can be replaced by other ones. Services with
higher importance/impact can therefore be modeled by a larger
p0

For those reasons, we investigate now the effect of the no-
service cost p0 on the outcomes of the game. We assume that
the variations of p0 are on a longer time scale than the game
on prices and user behavior, so that we still compute the Nash
equilibrium of the pricing game as described in the previous
subsection.

Figure 8 plots the Nash equilibrium prices (p∗1, p
∗
2) versus

p0, while the corresponding user repartition at steady-state is
plotted in Figure 9. We remark that the steady-state distribu-
tion (again, at Nash equilibrium depending on p0) is almost

constant when p0 varies, and equilibrium prices increase close
to linearly with p0. Therefore, if providers are aware of an
increase in p0, they should raise their prices correspondingly
to benefit from the increased value of the service. Interestingly,
this price increase compensates the service value increase from
the point of view of the users, since the proportion of users
choosing the service or not is unchanged.
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Figure 9: User repartition at Nash equilibrium when the no-
service cost p0 varies.

E. Influence of the price sensitivity β

We study here the effect of the parameter β, that repre-
sented users’ sensitivities to price differences between the
different states of the Markov chain. When β increases, we
expect providers to decrease their prices so as to attract more
efficiently a maximum of customers. The Nash equilibrium
prices (p∗1, p

∗
2) when β varies are shown in Figure 10. We

give the corresponding user repartition and provider revenues
in Figure 11 and 12, respectively. It appears that when the
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Figure 10: Nash equilibrium prices when β varies.
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Figure 11: Steady-state user repartition at Nash equilibrium
when β varies.
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Figure 12: Provider revenues at Nash equilibrium when β
varies.

price sensitivity exceeds a given threshold (that is around
0.85), providers engage in a price war that makes their price
tend to 0, and they finally get no revenue from providing the
service. This benefits users who all end up with one of the two
providers. Below that threshold, an increased price sensitivity
already implies a provider price reduction, and a revenue
decrease for them. Remark also that provider 2, being more
attractive than its opponent (since γ2 > γ1 in our parameter
values), takes benefit of that advantage by setting higher prices.

F. Influence of the asymmetry between providers

In our model, providers only differ for their parameter γi,
that reflects the user likeliness to stay with him: from (8), a
larger γi means lower transition rates to the other states of
the Markov chain. That asymmetry between providers may
for example come from users being more reluctant to leave

the incumbent operator than another one, because they trust
less the newly-arrived operators in terms of honesty and/or
QoS. Therefore, those parameters γi may vary due to word
of mouth, advertisement, and are consequently difficult to
evaluate.

We therefore investigate here the influence of the asymmetry
in providers’ γi value. To do so, we fix all values but γ2
from the parameter set S, and make γ2 vary. We assume that
provider 2 is the one with an advantage, i.e. γ2 ≥ γ1. In
Figures 13, 14, and 15, we respectively plot the Nash prices,
user repartition and provider revenues versus 1/γ2 (therefore
abscissa also gives the ratio γ1/γ2). Notice that the curves are
only given for the values of 1/γ2 > 0.18, because for values
below that threshold the game may have several stable Nash
equilibria (as in the case shown in Figure 7) and we cannot
predict which one will be chosen. Nevertheless, those extreme
values may seem unrealistic, since they mean an asymmetry
magnitude larger than 5.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

1/γ2

Se
rv

ic
e

pr
ic

es

p∗1
p∗2

Figure 13: Nash equilibrium prices when 1/γ2 varies.

We remark that provider 2 takes benefit from his advantage
by setting a higher price than his opponent, while still having
more customers. That difference in price and user repartition
increases with the game asymmetry, and vanishes when the
game becomes symmetric, i.e. when γ2 tends to 1.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a competition game model,
where providers take into account the user churn behavior to
determine the price they fix for the service, so as to maximize
their steady-state revenue. Through a numerical analysis, we
remarked that the game has a Nash equilibrium, that might not
be unique if the asymmetry between providers is very large.
When providers are not too different in terms of attractivity
or reputation, we investigate the effect of user sensitivity to
prices (that is seen to exacerbate the price war), and the effect
of an increase in the need for the service (that is observed to
benefit only to providers).
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Figure 14: Steady-state user repartition at Nash equilibrium
when 1/γ2 varies.

One interesting direction for future work is to have a
different approach as to the considered time scales. In this
paper, we have considered several time scales: at the smallest
time scale users are assumed to react to prices, while those
prices are fixed at a larger time scale, reasoning on the user
behavior steady-state outcome. Finally, the value of the service
may vary at an even larger time scale. Those assumptions
can be justified, but it would also be interesting to relax
them, for example by considering the user dynamics within
the pricing game: an incumbent provider may start the game
with more customers than his opponent, and may therefore be
better off beginning with a large price since not all users will
immediately churn to the opponent. Likewise, the competitor
may have an incentive to start with low prices so as to attract
customers, before possibly raising its price.
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Figure 15: Provider revenues at Nash equilibrium when 1/γ2
varies.
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[3] P. Maillé, M. Naldi, and B. Tuffin, “Competition for migrating cus-
tomers: A game-theoretic analysis in a regulated regime,” in Proceedings
of IEEE GLOBECOM 2008, Nov. 30 2008-Dec. 4 2008.

[4] J. Ahn, S. Han, and Y. Lee, “Customer churn analysis: Churn deter-
minants and mediation effects of partial defection in the korean mo-
bile telecommunications service industry,” Telecommunications Policy,
vol. 30, no. 10-11, pp. 552–568, November-December 2006.

[5] A. Eshghi, D. Haughton, and H. Topi, “Determinants of customer loy-
alty in the wireless telecommunications industry,” Telecommunications
Policy, vol. 31, no. 2, pp. 93–106, March 2007.

[6] S. Buehler, R. Dewenter, and J. Haucap, “Mobile number portability
in Europe,” Telecommunications Policy, vol. 30, no. 7, pp. 385–399,
August 2006.

[7] P. Danaher, “Optimal pricing of new subscription services: Analysis of
a market experiment,” Marketing Science, vol. 21, no. 2, pp. 119–138,
2002.

[8] B. Tuffin, “Charging the Internet without bandwidth reservation: an
overview and bibliography of mathematical approaches,” Journal of
Information Science and Engineering, vol. 19, no. 5, pp. 765–786, 2003.

[9] M. Osborne and A. Rubinstein, A Course on Game Theory. MIT Press,
1994.

[10] M. Mozer, R. Wolniewicz, D. Grimes, E. Johnson, and H. Kaushansky,
“Predicting Subscriber Dissatisfaction and Improving Retention in the
Wireless Telecommunications Industry,” IEEE Transactions on Neural
Networks, vol. 11, no. 3, pp. 690–696, May 2000.

[11] W. Au, K. Chan, and X. Yao, “A Novel Evolutionary Data Mining
Algorithm With Applications to Churn prediction,” IEEE Transactions
on Evolutionary Computation, vol. 7, no. 6, pp. 532–545, December
2003.

[12] H.-S. Kim and C.-H. Yoon, “Determinants of subscriber churn and
customer loyalty in the Korean mobile telephony market,” Telecommu-
nications Policy, vol. 28, pp. 751–765, 2004.

[13] M.-K. Kim, J.-H. Park, J.-H. Paik, S.-H. Seol, and H.-J. Park, “An
empirical study on the influencing factors of customer churning intention
after introducing mobile number portability in korea,” in 15th ITS
Biennial Conference, Berlin, 4-7 September 2004.

[14] J. Qi, Y. Zhang, Y. Zhang, and S. Shi, “Treelogit model for customer
churn prediction,” in APSCC ’06: Proceedings of the 2006 IEEE Asia-
Pacific Conference on Services Computing. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 70–75.

204



205



206 APPENDIX B. MAIN PUBLICATIONS EVOKED IN CHAPTER 3



INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2008; 00:1–6 Prepared using nemauth.cls [Version: 2008/03/18 v1.00]

Technological Investment Games Among Wireless
Telecommunications Service Providers ‡
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SUMMARY

With the development of new technologies in a competitive context, infrastructure investment and licence
purchase as well as existing technology maintenance are crucial questions for current and emerging operators.
This paper presents a three-level game analyzing this problem. At the highest level, the operators decide on
which technologies to invest, given that some may already own licences or infrastructures. We limit ourselves
to the realistic case where technologies are 3G, WiFi and WiMAX. At the intermediate level, with that set of
operated technologies fixed, operators determine their service price. Finally, at the lowest level, customers choose
their provider depending on the best combination of price and available quality of service. At each level, the
best decision of actors depends on the actions of others, the interactions hence requiring to be studied as a
(noncooperative) game. The model is analyzed by backward induction, meaning that decisions at a level depend on
the equilibria reached at the lower levels. Different real-life cost scenarios are studied. Our model aims at helping
both the operators to make their final decision on technological investments, and the regulator to determine a
proper licence fee range for a better competition among providers. Copyright © 2008 John Wiley & Sons, Ltd.

KEY WORDS: Network pricing, Nash equilibrium, Wardrop equilibrium, technological game, telecommunica-
tion investments

1. INTRODUCTION

Telecommunications are becoming omnipresent, with all kinds of services, telephony, television, web
browsing, email, etc., now available on the same terminals. Similarly, due to the market liberalization,
customers may choose among different providers, their choice being based on different parameters
such as price, quality of service (QoS), coverage or used technology for instance. Those providers are
therefore competitors, fighting to attract customers in order to maximize their revenue. In this context,
providers need to carefully determine not only the access price they will impose, but also on which set
of technologies to operate. Basically when talking about wireless providers, the choice is among 3G,
WiFi and WiMAX (or LTE).
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We will assume in this paper that customers have at their disposal terminals supporting multiple
interfaces, and the technology used is the one providing the best combination of price and QoS meaning
that there is no coverage issue (all technologies can be potentially used by all customers). Our goal is
to model, understand and propose to operators strategical choices in terms of technology investment,
as well as to suggest rules that a regulator could apply to induce a more efficient competition (from a
global or a user perspective). Examples of questions we aim at answering are:

• is it worth for an operator paying a licence and an infrastructure for being present in a new
technology? Will the return on investment be sufficient? That question is typical of what
operators ask themselves with regard to the implementation of WiMAX [2] or LTE.

• Does this investment help to attract more customers, or is it just at the expense of other
technologies already implemented? This has to be studied in a competitive environment, given
that other operators may make similar strategic moves. Some operators may already be present
on some technologies, and therefore their costs are limited; this potential heterogeneity has also
to be taken into account.

• Why investing on a technology where a competitor is installed and dominant? The total cost has
to be pondered with the revenue from customers. A regulator, in order to break such dominant
positions, may decide to compensate that unbalance through the licence fees. An illustration
comes from the third generation wireless licences in France, where the regulator wants to open
an additional licence to increase competition, this new licence being offered at a lower cost than
the initial ones. Our paper helps understanding the range of licence fees allowing a candidate to
enter the market and make benefits.

We introduce a model made of three levels of game, corresponding to three different time scales.
At the lowest level, given fixed operated technologies and service costs, customers spread themselves
among available operators in order to get the “best” combination of price and QoS, where the QoS
(or the congestion) they get depends on the choice of the other users. To simplify the analysis, users
are assumed infinitesimal. As a consequence, the (selfish) decision of a single individual does not
have any influence on the system behavior. The equilibrium analysis is therefore provided by the so-
called Wardrop’s principle [3] coming from transportation theory: at equilibrium, all providers with a
positive demand have the same perceived combination of price and QoS, otherwise customers would
switch to the “best”. When choosing their price at the intermediate level, providers can anticipate what
the resulting equilibrium (and therefore their revenue) would be for a given price profile, i.e., for given
and fixed prices for all providers, which induces a pricing game among providers at this second level.
The general framework is here again that of non-cooperative game theory, and the equilibrium notion
is now that of Nash equilibrium with atomic players [4]. Finally, at the largest time scale, providers
can decide which technologies to operate. In order to make that decision, they have to compute what
their revenue would be at the equilibrium or equilibria (if any) of the lower-level pricing game, and
compare it with their costs. That choice, which also depends on the strategy of competitors, will be
made in order to reach again a Nash equilibrium for this “technology game”. While there exist papers
on the first two levels of game (see the literature review subsection below), we are not aware of any
other paper analyzing the technological game, especially when using the results of the two other levels.
This paper seems to be the first in that important direction of modeling and understanding the complete
chain of provider strategies. We additionally illustrate the interest of our methodology by modeling
practical situations of competition and technology investment arising in France.
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1.1. Literature review

Several papers can be found on the two lower levels of game, i.e., the game among users to find the
best provider and the pricing game among providers [5, 6, 7, 8, 9, 10]. In [5], Acemoglu and Ozdaglar
consider infinitesimal users choosing a provider so as to minimize their perceived price, that is the
sum of a congestion cost and a financial charge. When an equilibrium on prices exists (and the authors
show it does when congestion costs are linear), then competition is proved to lead to an overall social
welfare not too far from the optimal one. Our model can be seen as a variation of theirs, by considering
some technologies where the resource is shared among operators, and imposing operators to set a
unique price for all the technologies they implement. The main extension though comes from the third
level of game where providers can choose the operated technologies, and from the associated real-
life scenarios. Another model in [6] describes several retailers periodically selling product units and
competing on the initial fill rate (i.e., the fraction of available items to be sold), the periodical retail
price and the stock-policy they choose. The authors show that an equilibrium on those parameters
can be deduced from another equilibrium of a single-period game on prices and fill rates only. For
some demand expressions, it is also shown that such equilibria exist. In our context, product units can
be interpreted as data units or packets, and fill rates are supposed constant. Our model makes use of
Wardrop principle to define the customer equilibrium, while attraction models are considered in [6];
above all, no technological game is considered there due to the different focus.

A model for the two lower levels of game has been again proposed in [7, 8], similarly to ours; but
congestion is modeled there by losses instead of delay, and the higher-level technological game is still
not considered. In [10], a two-sided competition model is proposed. Users choose operators offering
the highest utility in term of price and QoS too, but two populations, with different sensitivity to the two
parameters are considered. Providers offer different QoS because they operate on different frequency
bands, an aspect which can be covered by our model. A new aspect is that some bandwidth can be sold
to ad-hoc networks, serving as secondary users. The equilibrium on prices is searched numerically by
means of a learning algorithm, but there again, no technological game is considered.

There is to our knowledge no other paper dealing with the technology game, especially using the
result of the pricing game. But other multilevel games exist, the most notable ones being [11] and [12].
Though, [11] rather models the interactions among Internet service providers and content providers,
while we rather aim at investigating which technologies a provider should implement, given the
potential revenue and the potential infrastructure and licence costs. On the other hand, [12] considers
investments to improve the quality of service, but not to implement a new technology. Moreover, that
paper mixes the investment and the pricing decisions into a single game level, while we separate here
those choices due to different time scales. We have not seen elsewhere that kind of study in a similar
competitive context. We also provide typical and real-life competition situations of providers already
installed but which could try to extend their technological range to increase their revenue.

1.2. Organization

This paper is organized as follows. In Section 2, we present the basic model that will be used: the user
behavior, the set of providers and available technologies, and the three levels of game. The lowest level
of game, that is the competition among users looking for the network with the best combination of price
and QoS, is analyzed in Section 3; the equilibrium is characterized, and existence and uniqueness are
discussed. Section 4 analyzes the pricing game for fixed technologies, anticipating what the reaction
of users would be. The third level of game, the game on technologies, is described in Section 5. This
game makes use of the revenues at the pricing-game level, and pastes the infrastructure and licence
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costs. We show how this can be solved. Section 6 on the other hand considers practical situations of
competition, and illustrates which equilibria can be found. Real-life scenarios are considered, typical
of competition encountered in France, and we show how the model can help to propose relevant
technological investment strategies for providers, but also to propose ranges of licence costs for the
regulators towards a better use or sharing of the resource. We finally conclude and give directions for
future research activities in Section 7.

2. THE MODEL

We describe in this section the definitions and assumptions on the model, as well as the three levels of
game that will be analyzed later on. We assume that we have a setN = {1, ...,N} of telecommunication
providers trying to maximize their revenue. Each provider i ∈ N has to decide which set of technologiesSi it will operate, and the access price pi per unit of flow that a customer needs to pay if using her
network. The set of technologies Si is to be chosen within a set T of available technologies. In our
practical scenarii, considering wireless operators, this set will be

T = {3G, WiMAX, WiFi}.
This set T of technologies is partitioned into two subsets Tp and Ts. For a technology in Tp, each
operating provider owns a licence and a part of the radio spectrum, using it alone. In other words,
congestion on this technology depends only on the level of demand the operator experiences on her
own network. On the other hand, for a technology in Ts, the spectrum is shared by the customers of the
competing providers, so that congestion depends not only on the level of demand at the provider, but
also on demand coming from competitors using this technology. Basically, we will consider

Tp = {3G, WiMAX} and Ts = {WiFi}.
We assume that the price pi charged by provider i ∈ N is independent of the technology used

by customers. In other words, provider i fixes a price for network access that is the same for all the
technologies she operates. We moreover assume that users have terminals with multiple interfaces,
allowing them to use any technology, and that they can sense the available QoS. The choice of the
technology is left to the user terminal, that will (selfishly) choose a couple (provider, technology)
offering the best combination of price and QoS.

Users are modeled by the aggregate level of flow demand di,t experienced at technology t ∈ T by
provider i ∈ N . Users are seen as infinitesimal (also said non-atomic), so that the action of a single user
is considered having no impact, contrary to that of an (infinite) set of users. This kind of assumption is
usual in the related transportation theory where a car has no influence on congestion, but where a flow
of cars rather has to be dealt with. We call d the vector of all flow demands.

QoS is modeled by a congestion cost function `i,t of di,t for owned-spectrum technology t (i.e.,
t ∈ Tp) operated by provider i, and `t of total demand ∑j dj,t for shared-spectrum technology t (i.e.,
t ∈ Ts). Those functions are assumed strictly increasing -more demand implies more congestion-,
continuous and non-negative.

User behavior is modeled in the following way. We assume that each user tries to minimize her
perceived price p̄i,t, that is for technology t and provider i defined by

p̄i,t(d) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

pi + `i,t(di,t) if t ∈ Tp
pi + `t ⎛⎝∑j dj,t

⎞⎠ if t ∈ Ts. (1)
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This means that the perceived price is a linear combination of a monetary cost (the price charged) and a
QoS cost (the congestion level). Any other combination form could be considered, but we follow here
the representation proposed in [5, 13]. Our model is actually an extension of the one in [13], where
i) different technologies can be operated by a single provider, and ii) some can also be shared. This
addition is for introducing the technological game which is not addressed in [5, 13]. We will see in the
next section how demand is distributed at equilibrium, which will result in a system perceived price p̄,
common to all technologies that do get some demand.

We also assume that total user demand d = ∑Ni=1∑t∈Si
di,t is a continuous function D(⋅) of the

perceived price p̄, strictly decreasing on its support and with limp→∞D(p) = 0. D(p) represents
the total amount of traffic that users would want to transmit at a fixed perceived unit price p, it
may encompass (cumulated) individual demand variations with respect to price, and/or (cumulated)
individual decisions to abandon the service. In addition, we call v the inverse function of D on its
support.

The system is characterized by three different time scales, resulting in three different levels of game:

• at the shortest time scale, for fixed prices and sets of offered technologies, users choose their
provider and technology in order to minimize their perceived price. This drives to a user
equilibrium situation (d∗i,t)i,t where for all technologies with positive demand, the perceived
price is the same, other technologies having larger perceived prices (otherwise some users would
have an interest to change to a cheaper option).

• At the intermediate time scale, providers compete for customers by playing with prices for fixed
sets of implemented technologies. The goal of each provider i is to maximize her revenue

Ri = ∑
t∈Si

pid
∗
i,t, (2)

playing on price pi and making use of what the user equilibrium d∗ = (d∗i,t)i,t would be for a
given price profile. Since the revenue of a provider depends on the price strategy of competitors
(through the user equilibrium), this is analyzed using non-cooperative game theory.

• At the larger time scale, providers have to choose which technologies to invest on. This is again
analyzed thanks to non-cooperative game theory, using the equilibrium situation (p∗i )1≤i≤N of
the intermediate level.The goal is here again to optimize

Bi = ∑
t∈Si

(p∗i d∗i,t − ci,t)
(where ci,t represents the licence and infrastructure costs to provider i to operate on technology
t), by playing with the set Si.

3. FIRST LEVEL OF GAME: COMPETITION AMONG USERS

To study our three-level game, we first need to determine how user demand is distributed among
providers. Access prices are assumed fixed in this section, those prices only being changed at a
larger time scale. Following our non-atomicity assumption about users, the equilibrium is driven by
Wardrop’s principle [3] coming from transportation theory: at a user equilibrium the perceived price
at each provider getting some demand is the same, otherwise, if one is larger than another, then her
customers would prefer to change and go to the cheapest. Some providers may also be too expensive,
with an access price larger than the perceived price of competitors, and therefore get no demand.
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Wardrop’s principle can be formalized as follows. Consider a technology configuration S =(S1, ...,SN) and a price configuration (p1, ..., pN). A Wardrop (or user) equilibrium is a family(di,t)i∈N ,i∈Si of positive real numbers such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀i ∈ N ,∀t ∈ Si p̄i,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

pi + `i,t(d∗i,t) if t ∈ Tp
pi + `t( ∑

j∶t∈Sj

d∗j,t) if t ∈ Ts
∀i ∈ N ,∀t ∈ Si d∗i,t > 0 Ô⇒ p̄i,t = min

j∈N ,τ∈Sj

(p̄j,τ)
∑
i∈N ∑t∈Si

d∗i,t =D( min
i∈N ,t∈Si

(p̄i,t)).
(3)

The first equality presents the perceived price at each couple (operator, technology), separating the
case where the technology is owned by the operator (in Tp) and the case where it is shared (in Ts). The
second equality states that users choose the cheapest option in terms of perceived price, and that the
perceived price at providers getting demand is necessarily the same - otherwise, again, some customers
would have an interest in churning - . Finally, the last equality states that total demand, i.e., sum of
demands at each network, is the demand function at the perceived price.

Remark that this kind of nonatomic game played among users falls into the widely-studied set of
routing games [14, 15, 16]. Indeed, the user problem can be interpreted as finding a route (i.e., a pair
provider-technology) to reach the global internet, while congestion effects occur. Several powerful
results exist for that kind of games, that we apply to prove existence of a user equilibrium for our
particular problem, and uniqueness of perceived prices.

Proposition 3.1. There always exists a user equilibrium. Moreover, the corresponding perceived price
at each provider-technology pair (i, t) is unique.

Proof: For strictly positive prices (pi)i∈N , the existence of a Wardrop equilibrium directly comes
from Theorem 5.4 in [15], where existence is ensured when perceived price functions are strictly
positive, which is the case when providers set strictly positive prices. Just a few extra verifications are
needed for the specific case where some providers set their price to 0: by choosing ε > 0 and replacing
`i,t(x) by ¯̀

i,t(x) ∶= max(ε, `i,t(x)) for all provider i with pi = 0, we know that a solution of the
system (3) with modified perceived price functions exists. But when ε tends to 0, the corresponding
perceived price p̄ = min

i∈N ,t∈Si

(p̄i,t) does not tend to 0 since all congestion cost functions are strictly

increasing, and demand is continuous and strictly positive at price 0. As a result, ε can be chosen
sufficiently small such that for a Wardrop equilibrium with modified cost functions, modified and
original cost functions coincide, which means the original system (3) has a solution.

We now focus on uniqueness. For a Wardrop equilibrium, we denote by p̄ the common perceived
price of all options (i.e., pairs provider-technology) that get positive demand. Assume there exist two
Wardrop equilibria d and d̂ with different perceived prices, say p̄ and ˆ̄p, and assume without loss
of generality that p̄ > ˆ̄p. Since the demand function is strictly decreasing on its support, then total
demand for d is strictly smaller than for d̂. This implies that either total demand on one of the shared
technologies, or demand on one proprietary technology of a provider, is strictly smaller for d than for
d̂. But following Wardrop’s principle, this would mean that the corresponding cost for that technology
is the minimal cost ˆ̄p for d̂, that is strictly larger (due to congestion cost increasingness) than for d,
itself being larger than p̄, a contradiction. As a result, the perceived price p̄ for options with demand is
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unique, and we necessarily have for each provider-technology pair (i, t):

t ∈ Tp ⇒ p̄i,t = max(p̄, pi + `i,t(0))
t ∈ Ts ⇒ p̄i,t = pi +max(p̄ − p

t
, `t(0)),

where p
t
∶= min{pi, t ∈ Si}. All perceived prices are unique, which concludes the proof. ∎

In general, the Wardrop equilibrium is not unique, as illustrated by the following example.

Example 3.1. Consider a situation where two providers operate the same shared technology, with a
linear congestion function `(d) = d and a demand function D(p̄) = [2 − p̄]+. If p1 = p2 = 1, then
any demand profile (d1, d2) = (x, 1

2
− x) with x ∈ [0, 1

2
] is a solution to system (3), i.e., a Wardrop

equilibrium.

Though, one can assume that when a shared technology is charged exactly the same price by several
providers, the total demand splits among those providers according to some predefined proportions.
This can for example be interpreted as inner preferences of users, involving reputation effects for
example: if the perceived prices were to be the same, users have a propensity to follow those
preferences, and therefore to distribute accordingly among providers. This is formalized in the
following assumption.

Assumption 3.1. Define a weight wi > 0 associated to each provider i ∈ N , characterizing her
reputation among the user population. If for a technology t ∈ Ts there is a set Nt of providers with
the same minimal price, the total demand dt on t is shared such that

∀i ∈ Nt di,t = dt wi∑j∈Nt
wj
.

A strict priority among providers, which would correspond to a limit case of the previous formulation,
could also be considered. We can then establish a uniqueness property for the Wardrop equilibrium
demand distribution.

Proposition 3.2. Under Assumption 3.1, for any price profile, the Wardrop equilibrium is unique.

Proof: From Proposition 3.1, all perceived prices are unique at a Wardrop equilibrium, as well as the
common price perceived by all users p̄ = min

i∈N ,t∈Si

p̄i,t. Then for i ∈ N , the conditions in (3) imply that

• if t ∈ Si is such that p̄i,t > p̄, then di,t = 0,
• if p̄i,t = p̄ for a t ∈ Si ∩ Tp, then di,t = `−1i,t(p̄ − pi),
• if p̄i,t = p̄ for a t ∈ Si ∩ Ts, then from Assumption 3.1, di,t = `−1t (p̄ − pi) wi∑j∈Nt

wj
.

In all possible cases, demand di,t is uniquely determined. ∎
4. INTERMEDIATE LEVEL: THE PRICING GAME AMONG OPERATORS

For the rest of this paper, we assume that Assumption 3.1 holds. Now, for a fixed profile of implemented
technologies (S1, . . . ,SN), the operators need to choose at the intermediate level the price they will
charge to users. They act strategically, in the sense that for any price profile p = (p1, . . . , pN) they
predict the corresponding (unique) Wardrop equilibrium discussed in the previous subsection, noted
here (di,t(p))1≤i≤N, t∈Si .
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Figure 1. Curves of best-reply prices for Example 4.1.

Each provider i ∈ N tries to maximize her revenue

Ri(p) ∶= pi ∑
t∈Si

di,t(p),
defined as the product of the price charged and the total demand at provider i.

The equilibrium notion in this case is the so-called Nash equilibrium, which is a price profile p∗
such that no provider, acting selfishly, can increase her revenue by an unilateral deviation. Formally, a
Nash equilibrium is a price profile p∗ such that ∀i ∈ N ,

∀pi ≥ 0 Ri(p∗i ;p∗−i) ≥ Ri(pi;p∗−i)
where (pi;p∗−i) is vector p∗ with price p∗i of operator i replaced by pi.

A Nash equilibrium does not necessarily exist, as illustrated by the following example.

Example 4.1. Consider a scenario with two providers proposing both an owned-spectrum technology,
and such that demand and congestion cost functions are defined by

D(x) = [4 − x]+
`1(d1) = 1(5 − d1)5 − 1

55

`2(d2) = 1(3 − d2)5 − 1

35

Then there is no Nash equilibrium for the pricing game. To illustrate this, Figure 1 displays the
best response curves of providers (i.e., prices maximizing their revenue) in terms of the price of the
competitor. A Nash equilibrium should be an intersection point of those two curves. Here, there is no
intersection point, due to a discontinuity in Player 2’s best response at around p2 = 0.39. This comes
from the fact that the revenue curve of Player 2 has two local maxima for a given p1, and the global
maximum switches from one to the other. This transition is illustrated in Figure 2.

Though, in all practical scenarios that will be investigated in Section 6, when both operators propose
owned spectrum technologies, a unique Nash equilibrium exists and is non null.

In the rest of this section, we characterize some properties of a Nash equilibrium, when it exists.
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Figure 2. Provider 1 revenue as a function of prices of both providers.

Proposition 4.1. Under Assumption 3.1, at a Nash equilibrium with strictly positive prices, each
technology in Ts (i.e., shared-spectrum) is used by at most a single operator.

Proof: To establish the proposition, we apply a result from [17], where a model similar to ours is
used, but no shared technologies are involved. In that paper, Hayrapetyan, Tardos, and Wexler establish
that the Wardrop equilibrium repartition is continuous in the price profile. In our case, each shared
technology t ∈ Tp can be seen as a single option (i.e., regardless of the provider chosen) with a charge
price p

t
∶= min{pj , t ∈ Sj}, and a congestion cost `t(∑j dj,t). Since min{pj , t ∈ Sj} is continuous

in the price profile, then so is the total flow on each shared technologies, as well as flows on each
owned-spectrum technology t ∈ Ts.

Suppose that there exists a Nash equilibrium with a shared-spectrum technology t ∈ Ts for which at
least two providers have a positive demand.

Remark first that in that case, the providers have declared the same price p. Indeed, from (3) the
perceived price at those providers are necessarily the same due to the fact that they have a positive
demand, and the congestion cost is the same for both providers on that shared technology.

Let us consider a provider i that does not obtain all the demand on technology t at the Wardrop
equilibrium, i.e., d∗i,t < ∑j∶t∈Sj

d∗j,t ∶= d∗t . Then consider that operator decreasing her price by a small
amount ε > 0. Consequently, by a small decrease of one’s price, provider i would only slightly affect
demand on her owned-spectrum technologies, but will be the only cheapest provider on technology
t, and thus get all demand (itself being slightly modified) on that technology. Likewise, if provider i
operates on other shared technologies, her demand does not decrease on those. Therefore, when ε tends
to 0, the change in revenue for provider i tends to a value that is at least pi (d∗t − d∗i,t), which is strictly
positive. Provider i can then choose ε small enough to strictly improve her revenue, which contradicts
the price profile being a Nash equilibrium. ∎

A Nash equilibrium of the pricing game does not always exist. However, when there is one, the
prices set by providers satisfy a relation similar to the ones proved in [12, 13].

Proposition 4.2. Assume Assumption 3.1 holds and that, on its support, the demand function D is
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concave and differentiable with bounded differential function D′. Further assume that all congestion
functions `t and `i,t are such that `t(0) = `i,t = 0, i.e., no congestion means no cost. Then at any
Nash equilibrium (p∗1, . . . , p∗N) of the pricing game, with corresponding demands (d∗i,t)1≤i≤N,t∈Si and
perceived price p̄, we have

p∗i = d∗i∑k∈Si

1
`′
i,k
(d∗

i,k
)
+ d∗i

(∑j≠i∑t∈Sj

1
`′j,t(d∗j,t)) −D′(p̄) , (4)

where d∗i ∶= ∑t∈Si
d∗i,t is the total demand of provider i and d∗ ∶= ∑i∈N d∗i is the overall demand.

Remark that the right-hand side of (4) can be completely expressed in terms of demands, since p̄ is the
solution of D(p̄) = d.

The proof is provided in the Appendix.

5. THIRD LEVEL OF GAME: COMPETITION ON TECHNOLOGIES

At an even larger time scale, providers have to decide which technologies to operate. Here again, their
decisions will depend on the anticipation about what their revenue would be at the equilibrium of the
intermediate level, for any profile S = (S1, . . . ,SN) of strategies implemented by the operators. The
goal is therefore for each provider i to determine the combination of technologies Si ⊂ T which will
maximize her revenue, taking into account the implementation (infrastructure plus licence) costs.

Formally, each provider can choose her (finite) subset of technologies, resulting in a
(multidimensional) matrix of revenues (R1(S), . . . ,RN(S))S∈T N . Similarly, let ci,t represent the
licence and infrastructure costs to provider i to operate on technology t. For simplicity of the
presentation, those costs are assumed additive, such that the cost of implementing Si for i is∑t∈Si

ci,t,
but one can without any added complexity consider a general cost function ci(Si). Those costs ci,t can
be highly asymmetric because some providers may already own an infrastructure, or a part of it, and/or
a licence, when it is required. The goal of each provider i is at this time scale also to maximize her net
benefit

Bi(S) = Ri(S) − ∑
t∈Si

ci,t = ∑
t∈Si

(p∗i d∗i,t − ci,t),
given that competitors proceed similarly. The equilibrium notion is here again that of a Nash
equilibrium, which is a profile S∗ of implemented technologies, such that no provider can improve
her benefit by changing unilaterally her set of technologies:

∀i ∈ {1, . . . ,N}, ∀Si ⊂ T , Bi(S∗) ≤ Bi(Si;S∗−i)
where (Si;S∗−i) is vector S∗ with S∗i replaced by Si. Note that the set of strategies is finite here instead
of continuous in the previous section.

In the next section, we consider specific situations and analyze the existence and uniqueness of an
equilibrium, which cannot be guaranteed in general. We will consider the situation of N = 2 providers
in competition. We will therefore end up with two matrices:

• a matrix of revenues from subscribers

R ∶= (R1(S),R2(S))S1,S2⊂T
giving for each combination of technology choices, the respective revenues of the two providers
at the equilibrium of the pricing game, obtained from Section 4;

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 00:1–6
Prepared using nemauth.cls

216



GAMES AMONG WIRELESS TELECOMMUNICATIONS SERVICE PROVIDERS 11

• and a cost matrix
C = (c1(S), c2(S))S1,S2⊂T .

From those two matrices, the net benefit matrix

R −C = (R1(S) − c1(S),R2(S) − c2(S))S1,S2⊂T
is deduced. A Nash equilibrium, if any, is then an element of that last matrix such that the first
coordinate R1 − c1 is maximal over the lines, and the second coordinate R2 − c2 is maximal over
the columns.

If in general, we may have several and non-symmetric Nash equilibria, one of them may be more
relevant, be it from users point of view, or regarding the overall wealth generated by the resources
(here, the radio spectrum). We therefore introduce corresponding measures, that can be computed for
each technology profile.

Define the valuation function V as the total money that customers are ready to spend in order to buy
q flow units, i.e.,

V (q) = ∫ q

0
v(q)dq, (5)

where v is the generalized inverse of the demand function D, i.e., v(q) = min{p ∶ D(p) ≤ q}. Define
also the user welfare as the difference between the money customers are ready to spend, and the total
price they actually pay to buy q flow units,

UW = V (q) − v(q) × q.
As a last definition, we call social welfare, noted SW , the sum of utilities of all actors in the game:

• customers, with aggregate utility represented by the user welfare,
• providers, with utility Rj − cj for provider j,
• and licence sellers and infrastructure sellers, with respective total revenues Rls and Ris

Hence,

SW = UW +Rls +Ris + N∑
j=1(Rj − cj)

= UW + N∑
j=1Rj ,

the last equality coming from Rls +Ris = ∑Nj=1 cj because revenues of licence and infrastructure sellers
are exactly the sum of costs of providers. From the customers point of view (resp. from the point of view
of the society as a whole: users, providers, licence seller, infrastructure sellers) the most interesting
Nash equilibrium is the one maximizing user welfare (resp. social welfare).

6. PRACTICAL EXAMPLES

We now apply our model to some particular contexts of telecommunication operator competition. In
the case of the competition among french wireless providers in 2010, we present a technology choice
analysis with a WiMAX deployment option for two operators.
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Figure 3. Curves of best-reply prices when both players propose the WiMAX technology.

6.1. Intermediate level pricing game

We first focus on the game on prices at the intermediate level, ignoring for the moment the licence and
infrastructure costs. Formally, we build the revenue matrix R defined in the previous section.

We assume that a set of users is positioned in a bounded predefined zone, and that all users have a
terminal with multiple interfaces. We have in mind a specific zone covered by a 3G UMTS base station
in France. There are approximately 104 such zones on the French territory. We additionally assume
that the zone is covered by a WiFi 802.11g access point and a single 802.16e (WiMAX) base station.
We only consider downlink for convenience and choose realistic values of demand and capacities:

• 28 Mb/s per operator for 3G [18];
• 40 Mb/s, still in downlink, for WiMAX technology [19];
• 25 Mb/s for WiFi [20].

We moreover assume the demand function D to be linear on its support, given by (in Mb/s)

D(p̄) = [300 − 3p̄]+,
with p̄ in e/month. Hence no user is willing to pay more than 100 e monthly to benefit from the
service. In our numerical computations, the congestion function `i,t of a couple demand-technology(i, t) is supposed to be the average waiting time of a M/M/1 queue of parameters (di,t,Ci,t) if the
technology t belongs to the set Tp, and of parameters (∑t∈Si

di,t,Ct) if t belongs to Ts. Recall that the
average waiting time of an M/M/1 queue with parameters (λ,µ) is 1/(µ − λ) − 1/µ.

To illustrate how those Nash equilibria are found, consider for instance the case where the two
operators decide to propose only a WiMAX access to the users. Figure 3 displays the best responses
(i.e., prices maximizing their revenue) of providers in terms of the price of the other. A Nash
equilibrium is an intersection point of those two curves. One can check that there exists a single
non-null intersection point between the two curves, here approximately equal to (72.5,72.5). For the
practical examples studied in this paper, we proceeded numerically to compute best-replies of both
providers, and find the Nash equilibria on prices (actually, we always found either one unique Nash
equilibrium, or no equilibrium at all).

Table I displays the monthly revenues in euros of both operators at the Nash price profile, for every
technology profile. On each element of the table, the first number is the revenue of Provider 1, while the
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1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0;0 0;2470 0;3379 0;5081 0;2228 0;4220 0;4921 0;6193
3G 2470;0 2200;2220 2090;3022 1843;4506 2241;1985 1970;3752 1859;4367 1623;5415

WiMAX 3379;0 3022;2090 2864;2864 2489;4240 3061;1887 2689;3545 2532;4112 2192;5043
3G,WiMAX 5081;0 4506;1843 4240;2489 3638;3638 4572;1666 3957;3079 3691;3538 3092;4232

WiFi 2228;0 1985;2241 1887;3061 1666;4572 0;0 − − −
WiFi,3G 4220;0 3752;1970 3545;2689 3079;3957 − − − −

WiFi,WiMAX 4921;0 4367;1859 4112;2532 3538;3691 − − − −
WiFi,3G,WiMAX 6193;0 5415;1623 5043;2192 4232;3092 − − − −

Table I. Revenues matrix (from users) for providers depending on the implemented technologies.

1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0.0 74 182 662 54 384 600 1396
3G 74 486 726 1442 408 938 1262 2282

WiMAX 182 726 975 1785 662 1368 1755 2709
3G.WiMAX 662 1442 1785 2799 1368 2305 2799 4087

WiFi 54 408 662 1368 103 - - -
WiFi.3G 384 938 1368 2305 - - - -

WiFi.WiMAX 600 1262 1755 2799 - - - -
WiFi.3G.WiMAX 1395 2282 2709 4087 - - - -

Table II. User welfare depending on the implemented technologies.

second is the revenue of Provider 2. We can notice a direct consequence of Proposition 4.1: when both
operators choose to implement the WiFi technology, then if a Nash exists (which is when they operate
WiFi only), then they both end up with a null revenue. The price equilibrium is when both providers
set their price to 0: from that situation, no provider can unilaterally change her price and get a strictly
positive revenue, since setting a strictly positive price implies that all users on the shared technology
-here thus, all the demand- go to the competitor. In all other cases where the operators implement WiFi
but at least one provider operates another technology, no Nash equilibrium actually exists, because at
the only possibility (0,0), any provider operating an unshared technology could increase her price and
make profit on that technology. We thus end up with the “−” symbol in Table I to represent that no
Nash equilibrium exists.

Best responses of providers, in terms of technology sets, are displayed in bold in the Table. A Nash
equilibrium is therefore easily spotted as cells with both numbers on bold. If we considered the game
on technologies without any implementation cost, we would then have two possible (and symmetric)
Nash equilibria, ({WiFi, 3G, WiMAX}, {3G, WiMAX}) and ({3G, WiMAX}, {WiFi, 3G, WiMAX}).

We now aim at investigating for different scenarios the outcome of the game on technologies, as well
as the selection of those equilibria from a user and social welfare optimization point of view.

6.2. Symmetric game

Consider again, as well as in the rest of the paper, a zone covered by a single base station, for a period
of one month. Estimated infrastructure plus licence costs, if any, are therefore also divided by the 104

zones in France and by the duration in months of the licence rights. As presented in Section 5, we define
a cost per zone and per month at provider i for technology t and a cost matrix (c1(S1), c2(S2))S1,S2⊂T .
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2008; 00:1–6
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14 P. MAILLÉ, B. TUFFIN AND J.M. VIGNE

1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0 2544 3561 5742 2282 4604 5521 7588
3G 2544 4886 5838 7791 4634 6660 7488 9320

WiMAX 3561 5838 6703 8514 5610 7602 8399 9944
3G.WiMAX 5743 7791 8514 10075 7606 9341 10028 11411

WiFi 2282 4634 5610 7606 103 - - -
WiFi.3G 4604 6660 7602 9341 - - - -

WiFi.WiMAX 5521 7488 8399 10028 - - - -
WiFi.3G.WiMAX 7588 9320 9944 11411 - - - -

Table III. Social welfare depending on the implemented technologies.

1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0;0 0;762 0;2555 0;2549 0;2178 0;2462 0;4047 0;3611
3G 762;0 492;512 382;2198 135;1974 533;1935 262;1994 151;3493 -85;2833

WiMAX 2555;0 2198;382 2040;2040 1665;1708 2237;1837 1865;1787 1708;3238 1368;2461
3G,WiMAX 2549;0 1974;135 1708;1665 1106;1106 2040;1616 1425;1321 1159;2664 560;1650

WiFi 2178;0 1935;533 1837;2237 1616;2040 -50;-50 -50;-1758 -50;-874 -50;-2582
WiFi,3G 2462;0 1994;262 1787;1865 1321;1425 -1758;-50 -1758;-1758 -1758;-874 -1758;-2582

WiFi,WiMAX 4047;0 3493;151 3238;1708 2664;1159 -874;-50 -874;-1758 -874;-874 -874;-2582
WiFi,3G,WiMAX 3611;0 2833;-85 2461;1368 1650;560 -2582;-50 -2582;-1758 -2582;-874 -2582;-2582

Table IV. Benefits matrix for the symmetric game.

In this symmetric game, we consider two incoming providers without any wireless infrastructure
paying the same infrastructure and licence costs. A total 3G licence of 649 Me [21] needs to be paid to
the regulation authority, and 3G infrastructure of 1.4Be (value inspired from [22]) has to be purchased,
both monthly paid over 10 years. Hence, the licence cost (resp. the infrastructure cost) is then evaluated
to 541 e (resp. 1167 e) per month and per zone, giving c1,3G = c2,3G = 1708 e. We also assume that a
licence costs 649 Me for WiMAX and the infrastructure costs 340 Me (inspired from [23]), yielding
c1,WiMAX = c2,WiMAX = 541 + 283 = 824 e. We assume that every WiFi access point is renewed each
year and is bought at the average price of 600 e per year. In France, since only a declaration to the
regulation authority, negligible taxes an no licence purchase are necessary to deploy and use a WiFi
infrastructure [24, 25], we then choose c1,WiFi = c2,WiFi = 50 e.

The resulting benefits matrix (revenue matrix minus cost matrix) is displayed in Table IV. It
can be readily checked that there exists two Nash equilibria, ({WiFi,WiMAX},{WiMAX}) and
({WiMAX},{WiFi,WiMAX}).

In that case, we remark in Table IV that there are two Nash equilibria, ({WiFi,WiMAX},{WiMAX})
and ({WiMAX},{WiFi,WiMAX}). With respect to the previous situation, 3G is actually too expensive
with the proposed licence cost to be implemented . Since those Nash equilibria on technologies are
symmetric, user and social welfare values are the same and no preference can be defined.

6.3. A WiFi-positionned provider against a 3G one

Consider a WiFi-installed provider, named Provider 1, wishing to extend her position against a 3G-
installed provider, noted Provider 2. We suppose that Provider 1 already owns a complete WiFi
infrastructure over the 104 zones (basically like the provider called Free in France) and that Provider 2
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1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0;0 0;1929 0;2555 0;3716 0;2178 0;3629 0;4047 0;4778
3G 1437;0 1167;1679 1057;2198 810;3141 1208;1935 937;3161 826;3493 590;4000

WiMAX 2555;0 2198;1549 2040;2040 1665;2875 2237;1837 1865;2954 1708;3238 1368;3628
3G,WiMAX 3224;0 2649;1302 2383;1665 1781;2273 2715;1616 2100;2488 1834;2664 1235;2817

WiFi 2228;0 1985;1700 1887;2237 1666;3207 0;-50 - - -
WiFi,3G 3187;0 2719;1429 2512;1865 2046;2592 - - - -

WiFi,WiMAX 4097;0 3543;1318 3288;1708 2714;2326 - - - -
WiFi,3G,WiMAX 4336;0 3558;1082 3186;1368 2375;1727 - - - -

Table V. Benefits matrix for the WiFi-3G game.

similarily owns a complete 3G infrastructure over the same zones (Bouygues Telecom for instance).
Bouygues Telecom already owning an infrastructure, only its licence cost of 649 Me accounts, giving
c2,3G = 541e. The cost of the fourth licence in France (the one Free is buying) is fixed to 240 Me [21],
and of the new infrastructure estimated at 1.0 Be (value inspired from [22]), so that c1,3G = 1033e per
month and per site. For WiFi, we choose c1,WiFi = 0 e and c2,WiFi = 50 e to illustrate the better position
of Provider 1, while WiMAX costs are the same as in the previous subsection (that technology being a
new one). The benefits matrix is given in Table V, with again best responses highlighted in bold. For this
game, there are two non symetric Nash equilibria. The first one is ({WiFi,WiMAX},{3G,WiMAX}):
each operator chooses the technology on which she is already present, and additionally goes to the
new WiMAX technology. The second Nash equilibrium is ({WiMAX},{WiFi,3G,WiMAX}) and
corresponds to a situation where Provider 2 proposes all technologies and Provider 1 only proposes
the WiMAX technology. Again, it is better not to fight on (the low-cost) WiFi.

Since the ({WiFi,WiMAX},{3G,WiMAX}) results in a computed social welfare SW = 10028, and
the ({WiMAX},{WiFi,3G,WiMAX}) equilibrium yields SW = 9944, the first one would be better-
suited in terms of social welfare. Similarily, user welfare values are respectively 2799 and 2709, the
first equilibrium is more advised from the users point of view too.

It is possible to vary the Nash equilibria set by changing licences prices. Indeed, obtaining a Nash
equilibrium with 3G implemented by Provider 1 requires the cost c1,3G to be reduced to 900 e (the
situation ({WiMAX},{WiMAX,WiFi,3G})) is not an equilibrium anymore if this cost is reduced even
more). This would mean a licence fee of 67 e (or equivalently a global 3G licence selling price
of 80 Me). In that case, the situation ({3G,WiMAX},{WiFi,3G,WiMAX}) would be a third Nash
equilibrium of the technological game: Provider 1 would focus on licenced technologies, giving up
on WiFi. Social welfare and user welfare values are in this case respectively equal to 11411 and 4087.
Those values are the maximal ones that can be attained, as could be expected: it is indeed in the interest
of the community to use the maximum of resources (i.e., all the radio spectrum), and this also benefits
to users since more available resources correspond to a harder competition for customers and less
congestion.

6.4. A single technology-positionned provider against a dominant one

This kind of game would for instance correspond in France to Free (strongly established in the Internet
and WiFi networks), named Provider 1 again, against Orange, named Provider 2, already positionned
on almost all technologies, except WiMAX, for which we keep the costs of previous subsections.
The 3G costs are also considered the same as in the previous subsection, but WiFi costs are here
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1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0;0 0;1929 0;2555 0;3716 0;2228 0;3679 0;4097 0;4828
3G 1437;0 1167;1679 1057;2198 810;3141 1208;1985 937;3211 826;3543 590; 4050

WiMAX 2555;0 2198;1549 2040;2040 1665;2875 2237;1887 1865;3004 1708;3288 1368;3678
3G,WiMAX 3224;0 2649;1302 2383;1665 1781;2273 2715;1666 2100;2538 1834;2714 1235;2867

WiFi 2228;0 1985;1700 1887;2237 1666;3207 0;0 - - -
WiFi,3G 3187;0 2719;1429 2512;1865 2046;2592 - - - -

WiFi,WiMAX 4097;0 3543;1318 3288;1708 2714;2326 - - - -
WiFi,3G,WiMAX 4336;0 3558;1082 3186;1368 2375;1727 - - - -

Table VI. Benefits matrix for the WiFi-Dominant game.

c1,WiFi = c2,WiFi = 0 e due to the past presence of both providers on this technology. The results of
the technological game are displayed in Table VI. One can see here that, again, two Nash equilibria
exist and are the same as those of the previous game in part 6.3, with user and social welfare equal to
2799 and 10028 for the first equilibrium, and 2709 and 9944 for the second one. That is, the existence
of the WiFi infrastructure for Provider 2 does not affect the Nash equilibria. Hence, we deduce that
the impact of the WiFi infrastructure cost is negligible compared to the 3G and WiMAX licence and
infrastructure costs. Similarly, if the monthly cost per site for 3G gets as low as 694 e, then Provider 1
could keep operating WiFi, since the situation ({WiFi,3G,WiMAX},{3G,WiMAX}) would arise as a
technological Nash equilibrium. In that case, the monthly licence cost would be equal to 153 e (the
total licence price would be equal to 184Me). The social welfare and user welfare values are in this
case respectively 11411 and 4087. Hence reducing the 3G costs would be beneficial, since this last
Nash equilibrium yields larger user and social welfare values.

6.5. A 3G technology-positioned provider against an omnipresent one

This last scenario corresponds in France to Bouygues Telecom (Provider 1, operator only owning
a 3G infrastructure), against SFR (Provider 2, owning a 3G and WiFi infrastructure). The WiMAX
infrastructure and licence costs are again assumed to be the same as before for both operators. In
addition, the WiFi infrastructure cost is assumed to be equal to 50 eper month. The 3G licence cost
is also equal to 541 e, given that both licences are supposed equal to 649 Meand paid over 10 years.
We can notice on Table VII that there exist two symmetric Nash equilibria on technologies which are
({WiFi, 3G, WiMAX},{3G,WiMAX}) and ({3G, WiMAX},{WiFi, 3G,WiMAX}). Both providers
have an interest to invest in the WiMAX technology and to keep their 3G infrastructure active. This
conclusion contrasts with the one opposing a 3G operator to a dominant one depicted in Table VI.
Since the found Nash equilibria maximize the user and social welfare values among every technology
combinations of operators, no new interesting Nash equilibrium on technologies would come from a
3G licence price variation.

7. CONCLUSION

In this paper, we have presented a three-level competition model on technology investments among
wireless telecommunications service providers. Each level corresponds to a different time scale. At a
first level, users choose the couple operator-technology offering them the best compromise between
congestion and price per flow unit, where total demand is supposed elastic. Some demand can be
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1 \2 ∅ 3G WiMAX 3G,WiMAX WiFi WiFi,3G WiFi,WiMAX WiFi,3G,WiMAX∅ 0;0 0;1929 0;2555 0;3716 0;2178 0;3629 0;4047 0;4778
3G 1929;0 1659;1679 1549;2198 1302;3141 1700;1935 1429;3161 1318 ;3493 1082;4000

WiMAX 2555;0 2198;1549 2040;2040 1665;2875 2237;1837 1865;2954 1708;3238 1368;3628
3G,WiMAX 3716;0 3141;1302 2875;1665 2273;2273 3207;1616 2592;2488 2326;2664 1727;2817

WiFi 2228;0 1985;1700 1887;2237 1666;3207 0;-50 - - -
WiFi,3G 3679;0 3211;1429 3004;1865 2538;2592 - - - -

WiFi,WiMAX 4097;0 3543;1318 3288;1708 2714;2326 - - - -
WiFi,3G,WiMAX 4828;0 4050;1082 3678;1368 2867;1727 - - - -

Table VII. Benefits matrix for the 3G-Dominant game.

possibly be shared among providers under a predefined rule based on their reputation. At a second level,
operators choose their price per flow unit maximizing their revenue at the obtained flow distribution,
such that no one would have an incentive to change it. At a third level, operators choose the technology
combination maximizing their revenue, which is based on the price and flow distribution of the previous
levels and the infrastructure and licence costs. We illustrate our model with a simple competition study
among french wireless operators, where considered technologies are 3G, WiMAX and WiFi. Hence,
given some initial infrastructure or licence price reduction, it has been shown in the four scenarios
opposing two operators that it is in their interest to invest in the WiMAX infrastructure. A licence cost
reduction can be necessary in some cases, because this reduction can generate a new equilibrium on
technologies maximizing the social welfare.

The work presented in the paper can be extended in several ways. A first possibility is to adapt the
model to an unshared technology zone covered by several shared technology subzones under similar
flow equilibrium constraints. A second way to model this is to modify the model such that some
smooth increase of a minimal perceived price does not jeopardize the whole corresponding demand
and to analyze the existence of price equilibrium in the case where technologies are shared. Finally,
customers may not have multiple interfaces, i.e., they may not be able to choose among all technologies.
This heterogeneity could be taken into account.
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APPENDIX: Proof of Proposition 4.2

Proof: First, if a Nash equilibrium exists, then from Proposition 4.1, there are no shared-spectrum
technologies for which more than one provider obtain some demand. But at a Nash equilibrium, any
shared-spectrum technology t ∈ Ts gets some demand: if this were false, this would mean that all
operators of t have a price above p̄ and thus get no revenue, while they could obtain a strictly positive
revenue by choosing a price strictly below p̄.

Consequently, at a Nash equilibrium each shared-spectrum technology is effectively operated (i.e.,
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with strictly positive demand) by exactly one provider, that is the cheapest one among the operators
of that technology. As a result, infinitesimal price variations from providers do not change the identity
of the cheapest ones on shared-spectrum technologies. A consequence is that in a vicinity of the Nash
price profile (p∗1, . . . , p∗N), each shared-spectrum technology behaves exactly as if is were an owned-
spectrum technology of its cheapest operator.

We can therefore apply Proposition 2 of [13], where all links (in our context, technologies) are owned
by providers, but only the property of Nash equilibria being local maxima of revenues is used. That
property can also be used in our model, considering all technologies as (locally) owned-spectrum ones.

The only difference from [13] is that we allow here providers to operate on several technologies.
However, since they declare a unique price and demand distributes itself according to a Wardrop
equilibrium, then all technologies for a provider have the exact same perceived cost (this should hold
only for technologies with demand, but here all technologies get demand since `i,t(0) = 0 for all t ∈ Si),
and therefore the same congestion cost `i,t(di,t). If a provider gets a total demand di = ∑t∈Si

di,t, we
refer to that common value of the congestion cost by `i(di), which should satisfy:

∀di ≥ 0, `i(di) = `i,t(xt) ∀t ∈ Si (6)
s.t. xt ≥ 0, ∑

t∈Si

xt = di. (7)

Now consider an infinitesimal variation of ε from an initial di > 0. We denote by εt the corresponding
variation of xt, for each t ∈ Si. From (6), we have for all t ∈ Si, `i(di + ε) = `i,t(xt + εt). Since the
functions `i,t are strictly increasing and concave, εt = O(ε), and moreover xt > 0 and `′i,t(xt) > 0.
Thus,

`i(di + ε) = `i,t(xt + εt) = `i,t(xt) + εt`′i,t(xt) + o(εt)= `i(di) + εt`′i,t(xt) + o(ε),
and therefore εt = `i(di+ε)−`i(di)

`′i,t(xt) + o(ε). Then (7) yields

∑
t∈Si

εt = (`i(di + ε) − `i(di)) ∑
t∈Si

1

`′i,t(xt) + o(ε) = ε,
which implies that `i is differentiable, with derivative

`′i(di) = 1∑t∈Si

1
`′i,t(xt)

. (8)

As a result, from the provider point of view, the set of technologies Si behaves exactly as a unique
technology that would have a congestion cost function `i. Moreover, since `i,t is convex for all t, so is
`i. Proposition 4.2 is then directly obtained by plugging (8) into the Proposition 2 of [13]. ∎
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The present near-monopoly structure of that market further strengthens concerns about
the capability to influence operators located elsewhere in the value chain.

Search engines’ business model is based on advertising [Levene 2011], with both organic
and sponsored links. Slots are assigned to sponsored links through auctions [Maillé et al.
2012] and to organic ones through a proprietary ranking mechanism, based on the relevance
of the linked webpage for the user’s query. However, when ranking organic links, the search
engine may use metrics related to its own interest, inducing an unfair result for some links,
ranking them below where they should be and making them rarely reached by users.

Ranking criteria are crucial for the business model of all the stakeholders: search en-
gines, content providers, and advertisers. Content providers wish to improve their ranking
among organic links, e.g. through search engine optimization techniques without affecting
the quality of the displayed content [Berman and Katona 2013]. Quality is a main driver
for users’ choices, in the competition between organic and sponsored links [White 2013],
but among sponsored links as well [Chen and He 2011; Athey and Ellison 2011], though
being influenced by the ranking strategy of the search engine. Search engines may use that
influence to their own advantage, distorting both users’ choices and the market structure.
Acting as intermediaries between buyers and sellers, they can divert their users from their
preferred websites to websites for which the search engine has a vested interest [Hagiu and
Jullien 2011]: a non-neutral behaviour, which raises the issue of search neutrality.

A parallel can be made with the issue of net neutrality [D’Acquisto et al. 2012], where
network providers may unduly discriminate among the service/content providers that use
their network. Search neutrality is considered as the next frontier even if net neutrality
should prevail [Odlyzko 2009]. Critics of the search neutrality approach have cast doubts
about the capability of measures to lead to neutral search results and really protect users
against the abuse perpetrated by websites [Grimmelmann 2010], and have even promoted
search bias as the product of the competitive process, and the presence of vertical integration
(the search engine favouring its own content) as a generally efficient and pro-competitive
practice [Manne and Wright 2011]. But the search engine’s ranking strategy may adversely
affect the market position of content providers, and the debate on search neutrality should
consider the impact of a non neutral behavior on the content providers’ revenues.

In this paper, we define a model to analyze the influence of search neutrality on the
distribution of free content (funded by advertising revenues). A neutral search engine should
rank the results of a search based on the relevance of contents for users, i.e., their quality
of experience (QoE), which is negatively affected by advertising. On the other hand, a non-
neutral SE would display results based on the potential revenue from CPs (such a model
encompasses both cases where the search engine favors its own content and where it receives
payment from CPs to favor their content). Our objective is to investigate the consequences
(as to user QoE, content provider and search engine revenue) of the presence of a regulation
imposing search neutrality. We focus on the competition among content providers, though
we consider the presence of competition among search engines through the possibility for
users to reduce their queries on a search engine (hence, leaving for competing search engines).
For that purpose, we define a noncooperative game among the content providers, which use
their level of advertising as a strategic leverage to maximize their revenues. Their behavior
is strongly influenced by the ranking rules applied by the search engine. The application of
rules favoring some CPs at the expense of others may strongly distort the market, especially
with a monopolistic search engine. The onset of this situation should call for a regulatory
intervention. Here we provide grounds for such a decision, examining the case where the
SE decides its own ranking criterion. We consider both the case of a monopolistic search
engine (the rate of requests to the SE being assumed independent of the QoE) and that
where that rate depends on the quality of the content providers it addresses users to. The
ranking policies we examine are based on either quality alone (the neutral approach) or
the revenues the content provider transfers to the search engine, possibly weighted through

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

230



Influence of search neutrality on advertisement-financed content A:3

the quality of experience perceived by the user – representing two different non-neutral
approaches. We also consider the case of vertical integration between the search engine and
one of the content providers, which may then be favoured by its parent company. This
case has become particularly interesting: the acquisition of YouTube by Google is a major
example of vertical integration, with a search engine owning a video content provider.

To the best of our knowledge, this paper is one of the very first to try to model mathe-
matically the impact of a non-neutral search engine behavior on the Internet actors, and to
analyze it thanks to game theory. The other noticeable reference is [Coucheney et al. 2012],
but it is not focusing on the impact of advertisement as we are doing here.

The paper is organized as follows. Section 2 introduces the mathematical models for the
QoE resulting from content with advertising, the influence of ranking on the visit rate of
content providers, and the strategies of content providers. In Section 3, we analyze the case
where content providers neglect their individual influence on the success of the search engine
(the number of requests per time unit), through a non-cooperative game. We prove the
existence of a Nash equilibrium, whatever the ranking policy. Under a neutral policy, we find
that content providers with the same intrinsic quality (that in the absence of advertising) are
led to reduce their advertising level as the number of competitors grows. Content providers
with higher intrinsic quality are instead led to advertise more, getting larger revenues. If the
search engine adopts a revenue-based ranking policy, we prove that content providers are led
to set their advertising level to the maximum possible value, zeroing the quality perceived
by users, regardless of their relationship to the search engine. If the revenue-based policy is
mitigated by considering the QoE as well, vertically integrated content providers are favored,
yielding more advertising and larger revenues. Section 4 treats the case of content providers
including their effect on the request arrival rate in their strategic decision, and compares
the performance of neutral and non-neutral rankings. In that case, we prove that the Nash
equilibrium can be found as the solution of a system of polynomial equations. Under the
neutral policy, content providers with the same intrinsic quality set their advertising level
so as to halve their QoE. Under a non-neutral policy, content providers are instead led to
increase their advertising as the number of competitors grows, though their revenues decline
until being lower than in the neutral case. The conclusions are given in Section 5.

2. MODELS FOR THE BEHAVIOR OF THE STAKEHOLDERS

We consider a single search engine that has to rank different webpages hosting content
when a user performs a search. We focus on a single search engine, but we do account for
the possibility that the user selects an alternative search engine, abandoning the strictly
monopolistic market structure for SEs. Contents are controlled by different CPs, which
can play with the amount of advertisement on their webpage. In this paper, we consider a
piece of information that is searched for by a user and proposed by a set I of CPs. In this
section, we provide models for the behavior of all the stakeholders: users, the search engine,
and content providers. A general discussion on modeling issues and interactions between
stakeholders in the field of network economics can be found in [Maillé and Tuffin 2014].

2.1. User’s quality of experience with content providers

The content delivered in response to a query may be, e.g., a video sequence, a movie, a
TV show, a document. The quality of the content delivered by CP i is Qi and captures
both the case where the same content is delivered by different CPs and the case where the
contents offered in response to a query by different CPs are different. Different contents
have naturally a different quality. Even if the content is the same, the quality of CPs may
be influenced by several factors: the graphical design of the user interface, the format of
the content (e.g., a document delivered as either a pdf or a Word file), the number of
clicks needed to reach the content, the information to provide to get the content (e.g., a
registration phase), the time elapsed before accessing the content.
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Whatever the quality of the content delivered, the user experience is also affected by the
advertising included by the CP, e.g., a sequence of a few seconds before a video can be
watched. Advertisements are perceived as a nuisance by users, lowering their quality of ex-
perience, and have therefore a two-fold effect: positive on the content providers’ advertising
revenues, but negative on the QoE perceived by users. The total amount Ai of advertising
introduced by CP i can be interpreted in two ways, depending on the point of view.

— For the CP: Ai is proportional to the advertising revenue that the CP gets each time a
user clicks on the link.

— For users: Ai corresponds to a nuisance, and advertisement is supposed to yield a loss of
QoE proportional to Ai.

Through some inessential changes of unit, we consider that CP i earns Ai each time its
content is accessed, and that the quality of experience Vi for the user with CP i ∈ I is

Vi = Qi −Ai,

where Qi > 0 is the intrinsic quality of the content of CP i (that experienced by the user if
there were no advertisement). We assume that Vi is an intrinsic characteristic of the content
and advertisement bundle, depending neither on the decisions taken by the search engine
(e.g., its ranking criterion), nor on the user’s tastes. We also consider the relative amount
ai := Ai/Qi of advertisement introduced by CP i; since we limit the advertising level to
values that give a non-negative QoE, we have Ai ∈ [0, Qi], or equivalently ai ∈ [0, 1].

2.2. User’s choice of a search engine

We focus only on one SE in this paper, but the user may not choose that SE, e.g., if the
quality of the results provided by the SE is bad. We summarize that effect through the
average request arrival rate β (for the considered content) that the SE receives per time
unit. We assume that it depends on the expected QoE of the user with that SE. We use β
as a proxy for the probability that the user chooses that SE among all the possible choices.

2.3. SE ranking policies and click-through-rates

While the user’s QoE is determined by both the webpage’s intrinsic quality and the amount
of advertisement, the ranking criterion influences the behavior of users, and may reduce
the visibility of CPs with good QoE. In general, most users click on one of the links in
the highest slots. Here we assume that the link clicked after a search depends only on the
ranking chosen by the SE based on the scores s = (si)i∈I attributed by the SE to each CP.
The SE can adopt one of several score functions, depending on its aim. In this section, we
examine the most relevant, falling into the two classes of neutral and non neutral behavior.

Rather than addressing separately ranking and the subsequent user clicking behavior,
here we aggregate them by considering that the SE allocates the slots (possibly introducing
randomness) based on the scores s, so that the proportion of clicks on CP i is

Ci =
si∑
j∈I sj

. (1)

The average total number of clicks per search may be different from 1 (some users may
not click any link while others may try several ones), but we can however consider it equal
to 1 without loss of generality, since it can be included in the value of β (to be interpreted as
the number of links visited via the SE per time unit), while Ci is the probability (conditional
on a link being clicked) that CP i is accessed and describes the overall behavior of the user.

2.3.1. Neutral ranking behavior. Search neutrality should correspond to a situation where
QoE is the only thing that matters when ranking, without any consideration for profit. The
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resulting score, equalling the QoE, and the proportion Ci of clicks on CP i from Eq. (1) are

si = Vi, Ci =
Vi∑
j∈I Vj

=
Qi(1− ai)∑

j∈I Qj(1− aj)
. ∀i ∈ I. (2)

2.3.2. Non-neutral ranking strategies. We say that the SE is non-neutral when the scores are
not the QoE values (Vi)i∈I . In particular, we investigate the case when the ranking criterion
considers that the SE gets a share bi of the advertising revenue of each CP i ∈ I. Both
parties (the search engine and the content provider) know where the traffic comes from: the
SE knows how many times a specific ad was clicked; the CP knows the referral traffic, i.e.
which search engine the traffic came from (through the HTTP referer field of the HTTP
header). This is an incentive for the SE to favor CPs with a large bi and large advertising
levels. In particular, we consider two possible non-neutral ranking strategies:

— Revenue-based ranking, where the SE ranks CPs on the basis of the revenue it can collect
from them rather than the quality experienced by the users. The ranking adopted by the
SE impacts on the click-through-rate, and therefore on the revenues of CPs. If the search
engine receives money by content providers, it has a real interest in favoring those that
may generate more revenues. The ranking scores and the resulting click-through rate are

si = biAi = biQiai, Ci =
biQiai∑

j∈I bjQjaj
, ∀i ∈ I. (3)

— Weighted-QoE ranking, where the SE modifies the neutral ranking rule, introducing a bias
to favor the CPs that provide larger revenues. The bias is modelled through the corrective
factor bi in the neutral rule (2), which may be interpreted as the share of the CP controlled
by the SE: in the search neutrality debate search engines may be accused of favoring the
contents they (partially) own. The scores and the click-through rate are

si = biVi = bi(Qi −Ai) = biQi(1− ai), Ci =
biQi(1− ai)∑

j∈I bjQj(1− aj)
∀i ∈ I. (4)

2.4. Content providers: revenues and strategies

The expected revenues (per time unit) of a content provider i ∈ I are denoted by Ri. Since
we are considering free content in this work, CPs’ revenues only come from advertising and
are proportional to the amount of advertisement added to their content, but also to the
number of clicks they receive per time unit, depending on the SE ranking through (1).

After deducting the fee paid to the SE, the average revenues per time unit of any CP are

Ri = βCiAi(1− bi) = βCiQiai(1− bi). (5)

The revenue of a CP i depends on its strategic choice ai, but also on the amount of adver-
tising (aj)j∈I6=i set by the other CPs, through the proportion of clicks Ci to that CP defined
in (3). We assume that CPs are able to evaluate the strategies of their opponents by visiting
their pages, measuring the advertising level, and adapting their strategies. Here we model
those interactions among CPs as a noncooperative game [Osborne and Rubinstein 1994],
where each CP chooses its advertising load ai to maximize its revenues, and distinguish two
sub-cases, where content providers act as either price takers or price setters.

2.4.1. Price-taking content providers. The search engine market is currently dominated by
Google: the statistics for the period October 2011 - March 2012 give Google a share of
80.39% (see http://www.statowl.com/search engine market share.php), with a normalized
Hirschmann-Herfindahl index of 0.66, which indicates strong dominance. In the short-term,
we can expect that this quasi-monopoly situation would remain even if the quality of the
results displayed were affected by a change in the ranking policy (from neutral to non-
neutral). In our model, this can be interpreted as the rate β of requests not being affected
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by the quality of the results (in fact, under a monopoly you have no choice but submit your
requests to the only search engine, whatever its quality). Actually, that rate may still vary
with the average QoE, but CPs do not consider that effect when deciding their advertising
policy. That bias can, e.g., stem from a large number of CPs (hence the individual effect
of each CP on β is small, and neglected). In that sense, CPs are price takers: they do not
consider the effect of their own actions on the global price (here, the search rate β).

2.4.2. Price-setting content providers. In this model, content providers do anticipate the effect
of advertising strategies on the global success of the SE, embodied by β = β(a), where
a = (ai)i∈I is the advertising profile of CPs. Each CP i chooses then its advertising level ai
so as to maximize

Ri = β(ai, a−i)Ci(ai, a−i)ai(1− bi), (6)

where a−i is the profile of advertising strategies of all CPs but i, i.e., a = (ai, a−i).
In such a case, CPs are said to be price setters, since they are aware of their contribution

to the search rate β, which may decrease as the amount of advertisement increases. Acting
as price setters corresponds to making strategic moves with an eye on the long term.

3. EQUILIBRIUM ADVERTISING STRATEGIES OF PRICE-TAKING CONTENT PROVIDERS

In this section, we investigate the case when CPs are price takers, i.e., they treat the total
request rate β as a constant when determining their advertising strategy. We study the
response of CPs to the ranking strategy of SEs as a non cooperative game. Content providers
act as the players using the level of advertising as their strategic leverage to maximize their
revenues. The game is solved by searching for a Nash equilibrium, after identifying the best
response function of each player. For each ranking policy, we will provide results for the
general case, before treating two specific situations:

— the symmetric case, where all CPs are identical;
— the duopoly case where only two CPs compete.

3.1. Neutral ranking

Since the multiplicative factor (1−bi) is constant, and β is considered as constant by CPs in
this section, the quantity that the i-th content provider intends to maximize, under neutral
ranking with the scoring function defined in (2), is the utility proportional to

Ui :=
Ri

β(1− bi)
= aiQiCi = aiQi

Vi∑
j∈I Vj

= aiQi
Qi(1− ai)∑

j∈I Qj(1− aj)
. (7)

We can establish here the existence of a (non-trivial) Nash equilibrium for the noncoop-
erative game played among CPs.

Proposition 3.1. When the search engine adopts a neutral ranking (i.e., based on
relevance), there exists at least one Nash equilibrium aNE ∈ (0, 1)|I| in the noncooperative
game played by CPs setting their advertising level, and any Nash equilibrium is such that

1/2 < 1 + φi −
√
φ2i + φi ≤ aNE

i < 1, φi :=
∑

j∈I\{i}

Qj

Qi
. (8)

Proof. When all the other CPs set their advertising quantities, the i-th content provider
seeks the quantity ai maximizing Ui, that is, its best-response to the others’ strategic choices.

The case when all competitors of CP i set their advertising level to the maximum value
aj = 1 is degenerate. In that case, Ci = 1 when ai < 1, and Ui = aiQi is strictly increasing
in ai. But Ci is not defined for ai = 1, hence no exact best-response exists. However, that
case is not a problem, since the strategy ai = 1 is dominated for each CP i, and strictly
dominated when at least one opponent j sets aj < 1. It is therefore an unlikely situation.
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We now consider the case when at least one CP j 6= i sets aj < 1. In that case, Ui is a
continuous function of ai, as can be easily seen in (7).

We remark that Ui = 0 when ai = 0 and when ai = 1, and that ∂2Ui

∂a2
i

has the same sign

as aiQi − (Qi +
∑

j∈I\{i}Qj(1− aj)), that is strictly negative. As a result, Ui is a strictly

concave function of ai on the interval [0, 1], and has a unique maximum that is in (0, 1).
Therefore, the best response of CP i is the only solution in (0, 1) of the equation

∂Ui

∂ai
=

∂

∂ai

[
aiQi

Qi(1− ai)∑
j∈I Qj(1− aj)

]
= 0, (9)

which brings a quadratic equation in the advertising quantity

a2i − 2


1 +

∑

j∈I\{i}

Qj

Qi
(1− aj)


 ai + 1 +

∑

j∈I\{i}

Qj

Qi
(1− aj) = 0. (10)

The larger solution of the quadratic equation is to be discarded, since it would give ai > 1.
The smaller one is then in (0, 1), and gives us the best response function for CP i:

aBR
i = 1 + ψi −

√
(1 + ψi)2 − (1 + ψi) = 1 + ψi −

√
ψi(1 + ψi), (11)

with ψi :=
∑

j∈I\{i}

Qj

Qi
(1− aj). (12)

For convenience we define f(x) := 1 + x−
√
x(1 + x), so that aBR

i = f(ψi).
Differentiating f , we get for x > 0

df(x)

dx
= 1− 2x+ 1

2
√
x(1 + x)

= 1− x+ 1/2√
(x+ 1/2)2 − 1/4

< 0, (13)

therefore f is strictly decreasing on R+, and thus

lim
x→∞

f(x) = 1/2 < f(φi) < aBR
i = f(ψi) < f(0) = 1, φi :=

∑

j∈I\{i}

Qj

Qi
. (14)

Now let us consider a small ε ∈ (0, 1), and consider any strategy vector a in the compact

set [0, 1 − ε]|I|. From (12), ψi ≥ (n − 1) Qmin

Qmax
ε, where Qmin := minj∈I Qj and Qmax :=

maxj∈I Qj . From (11), the best-response of each CP i to that strategy vector equals

aBR
i = f(ψi) ≤ f

(
(n− 1)

Qmin

Qmax
ε

)
.

Remark from (13) that the derivative of f is continuous on (0,+∞) and tends to −∞ at

0, therefore we can find ε small enough so that f
(

(n− 1) Qmin

Qmax
ε
)
≤ f(0) − ε, using the

continuity of f . Since f(0) = 1, we obtain that the best-response correspondence

G :

{
[0, 1− ε]|I| 7→ [0, 1]|I|

a 7→ (aBR
i )i∈I

is such that f
(
[0, 1− ε]|I|

)
⊂ [0, 1 − ε]|I|. Since G is continuous and [0, 1 − ε]|I| is a com-

pact convex subset of R|I|, from Brouwer’s fixed point theorem, it has a fixed point that
constitutes a Nash equilibrium with strategies ai ∈ [0, 1).

The lower bound in equilibrium comes from the lower bound of Equation (14).
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Though not solvable analytically, the collection of best response functions (11) builds a
system of nonlinear equations in the ai’s, to be solved numerically.

3.1.1. Symmetric case. We can consider the symmetric case where all CPs have the same
intrinsic quality, so that Qi = Q in Equation (10) and the utility for the i-th provider
becomes as follows, allowing for the game to be fully solved:

Ui = ai
1− ai∑

j∈I(1− aj)
.

Proposition 3.2. When the search engine adopts a neutral ranking, the noncooperative
game played by CPs setting their advertising level has the unique Nash equilibrium

a
NE

i =
n

2n− 1
∀i ∈ I, n := |I|. (15)

Proof. The revenue optimization procedure leads to the equation

(1− 2ai)
∑

j∈I
(1− aj) + ai(1− ai) = 0. (16)

This implies that for any i, k ∈ I, we have

(1− 2ai)
∑

j∈I
(1− aj) + ai(1− ai) = (1− 2ak)

∑

j∈I
(1− aj) + ak(1− ak),

which yields (ak − ai)


ak + ai − 1 + 2

∑

j∈I
(1− aj)


 = 0.

But from Proposition 3.1, we know that at a Nash equilibrium aj > 1/2 for all j ∈ I, hence
the right factor is strictly positive, and ai = ak: Nash equilibria are necessarily symmetric,
of the form ai = a for all i ∈ I. Plugging that condition into (16), we obtain a unique
equilibrium, where the optimal advertising quantity a for any provider is as in (15).

The Nash equilibrium advertising level of (15) is a decreasing function of the number of
content providers: each content provider is led to stuff less advertisements as the competition
level (number of content providers) grows. In the limit, when the number of competitors
becomes very large, we have the optimal advertising quantity that cuts by half the QoE
with respect to the upper bound represented by intrinsic quality

alim = lim
n→∞

a =
1

2
.

In the symmetric case, the utility for each content provider is

Ui = a
1− a

n(1− a)
=

1

2n− 1
,

while the cumulated utility of the bunch of content providers (recall that the revenue of
each provider is its utility multiplied by β(1− b)) is

U =
∑

i∈I
Ui =

n

2n− 1
.

Since utilities are proportional to revenues as in Eq. (7) and can be taken as a proxy
for them, that last expression shows that the aggregated revenue shrinks as the number of
players grows: the overall utility reduces by 1/3 when there are just two providers, but by
1/2 when the number of players gets very large.
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3.1.2. Duopoly case. Another special case of interest is duopoly, where just two content
providers (with different quality) are present. In fact, the presence of high fixed costs reduc-
ing profit margins may raise barriers to the entrance of new players and favour a monopoly
or duopoly situation (a case of high fixed costs and low marginal costs is presented in [Naldi
and D’Acquisto 2008]). In this duopoly case, the best response functions (11) become

a1 = 1− Q2

Q1
(1− a2)

[√
1 +

Q1

Q2

1

1− a2
− 1

]

a2 = 1− Q1

Q2
(1− a1)

[√
1 +

Q2

Q1

1

1− a1
− 1

]
.

Again, we can solve that system of nonlinear equations numerically, finding the Nash
equilibrium as the intersection (if any) between the best responses, as in Figure 1 (left). The
best-response functions for the duopoly are shown when the providers have equal intrinsic
quality and have the same shape in all the other cases we have examined. Though the curves
cross in two points, the solution leading to a1 = a2 = 1 is to be discarded, since, as in the
proof of Proposition 3.1, there is no real best-response for CP i when the opponent j 6= i
sets aj = 1, with the strategy ai = 1 being dominated, and strictly dominated if aj < 1.
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Fig. 1. Best response functions in the symmetric duopoly case (left) and locus of Nash equilibrium points
in a duopoly, both under neutral behavior

In Figure 1 (right), we see how the Nash equilibrium point moves as the differences in
quality between the two providers change. A content provider with higher intrinsic quality
can increase its advertising load. In the symmetric case (Q1 = Q2), we obtain the Nash
equilibrium point a1 = a2 = 2/3 from Equation (15) with n = 2.

3.1.3. Numerical study. We now go back to the general asymmetric case of n content
providers and assess the presence and characteristics of Nash equilibrium in typical sce-
narios. For that purpose, we consider two types of repartition of the intrinsic quality among
CPs: linear and geometric. Without loss of generality, we sort the CPs in decreasing order
of quality: CP 1 exhibits the largest intrinsic quality, and CP n has the lowest one. We can
define the quality of the generic i-th content provider as a function of the two bounds Q1

and Qn. In the linear model, the intrinsic quality of the i-th content provider is

Qi = Q1 −
i− 1

n− 1
(Q1 −Qn). (17)
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Fig. 2. Impact of the intrinsic quality on the game outcome (left) and utility (right), for price-taking CPs
and a neutral ranking

In the geometric model, we have instead

Qi = Q1 exp

(
− i− 1

n− 1
ln(Q1/Qn)

)
.

Note that we consider here that the share of benefits taken by the search engine is the same
for all CPs, i.e. bi = b for all i ∈ I.

We report here the case of 5 content providers, with Q1 = 0.9 and Q5 = 0.1. We use the
solution (11) to see how the intrinsic quality influences the optimal amount of advertisement.
Both in the linear and the geometric case, we find a single Nash equilibrium. The relation
between the intrinsic quality and the amount of advertising ai is shown in Figure 2: content
providers with larger intrinsic quality put more advertising, though the sensitivity is quite
small: with a ninefold increase in the intrinsic quality the advertising factor increases by
just 17.58% in the linear model and by 21.94% in the geometric one.

Utility (and therefore, the revenue of the CP) is also affected by the intrinsic quality, as
shown in Figure 2 (right). Though both trends are approximately linear, the more uneven
repartition of qualities in the geometric case leads to wider imbalances in the repartition
of utilities. While the ratio Qmax/Qmin of extreme intrinsic qualities is 9 in both cases, the
range of utility Umax −Umin is larger for the geometric repartition (though the high-to-low
ratio for utility is 8.63 for the linear case and just 8.41 for the geometric one)

After examining the impact of the intrinsic quality on the individual strategic decisions,
we now consider the impact on the quality perceived by users. For CP i, the introduction
of advertisement lowers its quality from the intrinsic value Qi to the QoE Vi = Qi(1− ai).
In the above example, we considered a wide range for intrinsic quality values to examine if
the introduction of advertisement (which is the leverage through which content providers
seek their maximal profits) magnifies those differences in quality or levels them out.

In order to assess that impact, we employ the Herfindahl-Hirschman Index, which mea-
sures the concentration of a market among a number of competitors (i.e., the level of com-
petition) and is the most sensitive among such indicators [Naldi 2003]. Given a set of market
shares {m1,m2, . . . ,mn}, which satisfy the constraint

∑
i∈Imi = 1, the HHI is

HHI =
∑

i∈I
m2

i , (18)

and lies in the interval [0, 1]. Higher values of the HHI indicate a larger degree of concentra-
tion (hence a lower level of competition). Here we do not have the market shares (expressed
as fractions of the overall revenues), but we consider utility values as their proxy. In fact,
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Table I. Attraction power concentration (price-taking CPs)

Linear repartition Geometric repartition

HHIQ 0.264 0.305
HHIV 0.253 0.279
HHIU 0.261 0.298

utilities are proportional to revenues, the proportionality constant being equal for all com-
petitors. After normalizing the utility values to their sum, we get figures equal to the market
shares. In order to distinguish the HHI computed by using utilities from that computed using
the market shares (though they lead to the same numerical result), we use the definition

HHIU =
∑

i∈I

(
Ui∑
j∈I Uj

)2

=

∑
i∈I U

2
i(∑

i∈I Ui

)2 .

In addition to measuring the concentration of the market, we can use the HHI to measure
the attraction power due to quality. Though used typically for market shares, the HHI is
basically a concentration metric, not unlike the classical Gini index (which is used, e.g.,
to measure the distribution of wealth). For example, the HHI has been used to measure
the distribution of patents [Pilkington and Liston-Heyes 2004]. We can draw a similarity
between market shares and quality values. Let’s consider two cases at either end of a market
structure: quasi monopoly and perfect competition. In a quasi monopoly a single company
has nearly 100% of the market and its competitors have negligible market shares. The
analogous case for quality is where a SE has a quality much higher than the other SEs.
Instead, in a perfect competition, the market is divided equally among all the companies.
The analogous case for quality is where the SEs have all the same quality. In this context,
the HHI can be used to measure the degree of concentration of quality among the content
providers. If we replace the market shares in the definition (18) with quality values, we obtain
two quality-based HHI employing respectively the intrinsic and the perceived quality.

HHIQ =
∑

i∈I

(
Qi∑
j∈I Qj

)2

=

∑
i∈I Q

2
i(∑

i∈I Qi

)2 ,

HHIV =
∑

i∈I

(
Vi∑
j∈I Vj

)2

=

∑
i∈I V

2
i(∑

i∈I Vi
)2 ,

Larger values of HHIQ mean higher imbalances in quality. By comparing HHIQ (no adver-
tising) with HHIV (including advertising), we can assess the effect of advertising choices of
all content providers on quality distribution. We report the results in Table I. Under both
the linear and the geometric model, the HHI index is larger for the intrinsic quality than
for the QoE: the introduction of advertisement brings along a slight levelling of the quality
perceived by the user. In Table I, we also report the HHI (denoted by HHIU) pertaining
to market concentration. We see that the concentration is somewhat intermediate between
that of the intrinsic quality and that of the perceived quality: the repartition of utility is
less affected by the introduction of advertisement than the quality perceived by users.

3.2. Non-neutral behavior: revenue-based ranking

When the ranking is only based on the potential revenue for the SE, and scores are taken
from (3), with the position Xi := biQi, the utility of the content provider is given by:

Ui = βAiCi(1− bi) = β
1− bi
bi

a2i (biQi)
2

∑
j∈I ajQjbj

=
1− bi
bi

a2iX
2
i∑

j∈I ajXj
.
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The following proposition shows that the non-neutral behavior incentivizes CPs to in-
crease their advertising level with respect to the neutral case. That incentive is indeed
twofold, since a larger ai yields more revenue per click, but also attracts more clicks be-
cause of the non-neutral ranking (where si increases with ai).

Proposition 3.3. If the search engine adopts a revenue-based ranking, the noncoopera-
tive game played by price-taking CPs setting their advertising level has a unique Nash equilib-
rium where each CP sets its advertising level to the maximum possible value, ai = 1,∀i ∈ I.

Proof. We simply see that the revenue Ri of a CP i ∈ I is strictly increasing in ai: it
is indeed null for ai = 0, and for ai > 0 it is strictly positive with

∂Ui

∂ai
= β

1− bi
bi

X2
i

2ai
∑

j 6=i ajXj + a2iXi

(
∑

j∈I ajXj)2
> 0.

We immediately remark that, in that case, the resulting QoE is Vi = 0 for each CP i.

The revenue of each CP i ∈ I becomes Ri = β
1− bi
bi

X2
i∑

j∈I Xj
.

If all CPs transfer to the search engine the same share of their revenue, i.e. bi = b for all

i, then we obtain Ri = β(1−b) Q2
i∑

j∈I Qj
. Additionally, if as in Section 2.3.1 we consider the

symmetric case, where the n content providers have the same intrinsic quality, i.e. Qi = Q,

then each CP gets a revenue Ri = β(1− b)Q
n
.

Note that when β varies (increases) with the average QoE for users, that revenue can
be much smaller than initially expected by CPs, i.e., as price takers made their strategic
choices considering β to be a constant. For example, if as in Section 4 we take β proportional
to the expected user QoE, then the final outcome is a situation where users prefer not to
use the search engine (since β = 0), and the CPs make no revenue.

3.3. Non-neutral behavior: weighted-QoE ranking

We investigate here the situation where the ranking scores are taken from (4), i.e., the
search engine considers the QoE as in the neutral case, but introduces some weights among
them so as to favor the CPs it has most interest in.

The resulting proportion of clicks per search on CP i is then

Ci =
Qi(1− ai)bi∑n

j=1Qj(1− aj)bj
.

Accordingly, the utility of the content provider is given by the difference between what
it receives through advertising and what it passes to the search engine:

Ui = aiCi(1− bi) =
Qiaibi(1− ai)(1− bi)∑n

j=1Qj(1− aj)bj
. (19)

Again, each content provider seeks to maximize its revenue by setting the quantity of
advertising. The analysis follows that carried out in Section 3.1, where for each CP i the
parameter Qi is replaced by biQi. In particular, the best response function of CP i is then

ai = 1 +

n∑

j=1
j 6=i

Qjbj
Qibi

(1− aj)−
√√√√√1 +

n∑

j=1
j 6=i

Qjbj
Qibi

(1− aj)
√√√√√

n∑

j=1
j 6=i

Qjbj
Qibi

(1− aj).

We then have the counterpart of Proposition 3.1.
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Table II. Intrinsic quality and revenue transfer to the
search engine in the non-neutral case study

Intrinsic quality Qi Revenue transfer bi
Linear Geometric Scenario A Scenario B

0.1 0.1 0.1 1
0.3 0.17 0.1 0.1
0.5 0.3 0.1 0.1
0.7 0.52 0.1 0.1
0.9 0.9 1 0.1

Proposition 3.4. When the search engine performs a weighted-QoE ranking with
weights (bi)i∈I , the noncooperative game played by price-taking CPs fixing their advertising
level has at least one Nash equilibrium aNE ∈ (0, 1)|I|. More precisely, there exists a Nash
equilibrium, and any Nash equilibrium is such that

1/2 < 1 + φ̄i −
√
φ̄2i + φ̄i ≤ aNE

i < 1, φ̄i :=
∑

j∈I\{i}

bjQj

biQi
.

Remark that the symmetric case, where the n content providers have the same intrinsic
quality and transfer to the search engine the same share of their utility (i.e., Qi = Q, bi = b)
gives the exact same case as the one analyzed in Section 3.1.1 for the neutral ranking.

3.3.1. Numerical study. We examine now the asymmetric case, solving the game numerically.
We use the case of Section 3.1.3, with 5 content providers, one of which is owned by the
search engine (it transfers all its utility to it) and all the others pay the same share bi = 0.1.
Their intrinsic quality follows either a linear or a geometric trend, with the content provider
owned by the search engine exhibiting either the highest intrinsic quality (Scenario A) or the
lowest one (Scenario B), as reported in Table II, i.e., the two extreme cases. The two most
important questions here concern the impact of vertical integration on the CP’s results. If
the CP has the worst intrinsic quality, how much does it gain from being the search engine’s
favorite one? And if the CP is instead already the best in the group, does it gain or does it
lose from being owned by the SE? In this section, we examine the advertising choices made
by the content providers and their impact on utility.

We report the results of the game, namely the resulting advertising factor ai, in Figure 3
for the two scenarios. In both cases, the content providers not owned by the search engine
use an advertising factor that increases slightly with the intrinsic quality through a roughly
linear trend. We expect that in the absence of vertical integration the CP would follow the
trend depicted for the other CPs. Instead, we see that with vertical integration the behavior
of the vertically integrated CP differs markedly from that trend: the content provider owned
by the search engine increases substantially its advertising load, especially when its intrinsic
quality is large: the boost is much higher in Scenario A (where the vertically integrated
content provider has an intrinsic quality of 0.9) than in Scenario B (where that intrinsic
quality is just 0.1). For example, let’s consider the linear case in Figure 3a with Scenario A,
with the behavior of the CPs represented by black dots. We see that there is a linear trend:
the advertising factor is expected to grow linearly with the intrinsic quality. On this basis,
we would expect the vertically integrated CP, whose intrinsic quality is 0.9 (as shown in
Table II), to follow that linear trend (if it were not vertically integrated) and end up with
an advertising factor around 0.55. Instead we see its black dot in the upper right corner
just below of 0.8. That means that the vertically integrated CP is led to put much more
advertising in its content because of vertical integration. The same can be said for Scenario
B, where the vertically integrated CP is instead that with the lowest intrinsic quality.

If we consider the net utility (that remaining after transferring a share to the search
engine), the vertically integrated content provider has of course zero utility. But we get a
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Fig. 3. Impact of the intrinsic quality on the advertising factor (left) and gross utility (right), with price-
taking CPs, weighted-QoE ranking.

Table III. Concentration of attraction power with price-taking CPs and
weighted-QoE based ranking

Scenarios A linear B linear A geometric B geometric

HHIQ 0.264 0.264 0.305 0.305
HHIV 0.247 0.259 0.249 0.292
HHIÛ 0.644 0.227 0.708 0.261

better view of the competition between content providers by considering the gross utility
(that obtained prior to paying the tax to the search engine), defined after Equation (19).

In Figure 3 (right), we see that for all providers but that owned by the search engine
the utility grows roughly linearly with the intrinsic quality, though at a faster rate in the
geometric case. The utility of the content provider owned by the search engine is instead
boosted by the larger cash flow it transfers to the search engine, which in turn raises its score
in the non-neutral case. The boost is again larger in Scenario A, i.e., when the vertically
integrated content provider has the largest intrinsic quality. However, even in Scenario B
the boost is enough to bring the vertically integrated content provider to include as much
advertisement as the content provider with the highest intrinsic quality.

We can now perform the same concentration analysis as in the neutral case. For the gross
utility defined in (19), we can similarly define the HHI

HHIÛ =

∑
i∈I Û

2
i(∑

i∈I Ûi

)2 .

The values obtained for HHIs are shown in Table III. The comparison of HHIQ and HHIV
(before and after introducing advertisements) tells us that the introduction of advertisement
levels the quality perceived by users, since HHIV < HHIQ. Instead, the market concentration
is altered, depending on which content provider is owned by the search engine. If the search
engine owns the content provider with the highest intrinsic quality (Scenario A), that further
boosts its score and its utility, leading to a quite stronger concentration: HHIÛ is more than
twice as large as HHIQ. When the search engine owns the content provider with the lowest
intrinsic quality (Scenario B), the utility of the latter is likewise pushed up, but this leads
to a more balanced repartition and a diminishing HHI.
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4. EQUILIBRIUM ADVERTISING STRATEGIES OF PRICE-SETTING CONTENT
PROVIDERS

After examining the situation of a quasi-monopolistic search engine market in Section 3,
in this section we consider that users may select a different search engine. We define a
game model and find the best response functions, for the cases of neutral and non neutral
behavior, examining the resulting advertising strategies in some scenarios.

The propensity of a user to use the search engine under consideration is still represented
by β, assumed here to be proportional to the average QoE of content providers accessed
through that search engine (the expected user’s QoE when clicking on a link, Ci being the
probability that the user ends up visiting CP i):

β =
∑

i

CiVi.

We recall the general expression (6) for CP i’s revenues

Ri = β(1− bi)Ciai, (20)

where Ci = si/
∑

j∈I sj , and si is the score credited to CP i by the SE.

4.1. Neutral behavior

As in Section 3.1, the neutral ranking is based on Vi, hence the proportion of clicks on CP i

Ci =
Vi∑
j∈I Vj

.

By neglecting the revenue transfer to the search engine in the general expression (20) for
the revenues, we can use the utility Ui = βCiai.

Under that ranking behavior, the revenue of the i-th content providers is proportional to

Ui =

∑
j∈I V

2
j∑

j∈I Vj

Vi∑
j∈I Vj

ai, (21)

which, by setting X =
∑

j∈I Vj and Y =
∑

j∈I V
2
j , can be simplified to Ui = Vi

Y

X2
ai.

The i-th content provider optimizes its advertising behavior by maximizing its utility
through the appropriate amount of advertising. Remark that Ui = 0 if ai = 0 or ai = 1,
and Ui > 0 when ai ∈ (0, 1), therefore if the equation ∂Ui/∂ai = 0 has a unique solution,
that solution would give the best response function a∗i = f(a1, a2, . . . , ai−1, ai+1, . . . , an).
However, since ∂Ui/∂ai = Ui/ai +∂Ui/∂Vi ·∂Vi/∂ai, and ∂Vi/∂ai = −Qi, the optimization
equation becomes simply Ui/(Qi − Vi) − ∂Ui/∂Vi = 0. By expanding this equation, we
obtain the following simplified form of the optimization equation for CP i

2Vi(ViX − Y )

(
1− Vi

Qi

)
+XY

(
1− 2

Vi
Qi

)
= 0. (22)

If we now replace the full expression for X and Y , and rearrange terms, we obtain a
fourth-degree polynomial equation in the QoE

V 4
i +


2

∑

j∈I\{i}
Vj −

Qi

2


V 3

i −


3

2
Qi

∑

j∈I\{i}
Vj


V 2

i +

∑

j∈I\{i}
V 2
j


 ∑

j∈I\{i}
Vj +

Qi

2


Vi −

Qi

2

∑

j∈I\{i}
Vj

∑

j∈I\{i}
V 2
j = 0.
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By collecting the n similar expressions for the best response functions of all the content
providers, we end up with a system of n polynomial equations, which has to be solved to
find Nash equilibria. The system of equations can be solved numerically.

We can consider the special symmetric case by setting Qi = Q, bi = b, and ai = a in the
general Equation (21), since nothing else depends on the specific content provider:

U =
nV 2

nV

V

nV
a =

Q

n
a(1− a).

The first order optimality condition is then
∂U

∂a
=
Q

n
(1− 2a) = 0, whose solution is a = 1

2 .

4.2. Non-neutral behavior: revenue-based ranking

In that case, the utility function of the search engine becomes

Ui = Ciai
∑

j∈I
CjVj = bia

2
i

∑
j∈I bjQjaj(1− aj)
(∑

k∈I bkak
)2 . (23)

From the utility maximization condition, we get

∂Ui

∂ai
= 2biai

∑
j∈I bjQjaj(1− aj)

(
∑n

k=1 bkak)
2 +b2i a

2
i

Qi(1− 2ai) (
∑n

k=1 bkak)− 2
∑

j∈I bjQjaj(1− aj)
(
∑n

k=1 bkak)
3 = 0,

which leads to the following optimization equation whose solution should provide the best
response function for the i-th content provider

2
∑

j∈I
bjQjaj(1− aj)

(
1− biai∑n

k=1 bkak

)
+ biaiQi(1− 2ai) = 0,

giving the following third degree polynomial equation in ai:

−2bia
3
i +


bi − 4

∑

k 6=i

bkak


 a2i − 3

∑

k 6=i

bkakai + 2

∑
k 6=i bkak

∑
j 6=i bjQjaj(1− aj)
biQi

= 0.

Instead of the numerical approach required in the general case, we can find a simple form
of the best response function in the symmetric case. If all the content providers transfer the
same percentage of their utility to the search engine and exhibit the same intrinsic quality,
we expect their best response function to be the same. After setting bi = b, Qi = Q, and
ai = a, and some manipulation, we obtain the symmetric equilibrium advertising level

a = 1− 1

2n
. (24)

When the number of providers grows, the relative amount of advertising tends towards the
saturation value 1. If we insert the solution (24) in the general expression of utility (23), we
get the utility for the symmetric case

U = ba2
nbQa(1− a)

n2b2a2
= Q

2n− 1

4n3
.

4.3. Non-neutral behavior: weighted-QoE ranking

With the scores taken from (4), the utility function of CP i becomes

Ui = biQiai(1− ai)
∑

j∈I bjQ
2
j (1− aj)2∑

j∈I bjQj(1− aj)
.
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Fig. 4. Nash equilibrium advertising factors (left) and CP utility (right) in the neutral and two non-neutral
scenarios, for the symmetric case and price-setting CPs, with b = 0.1 and Q = 1

If we set, for sake of simplicity, X =
∑

j∈I bjQ
2
j (1 − aj)2 and Y =

∑
j∈I bjQj(1 − aj),

the optimization equation can be written as a fourth-degree polynomial equation in ai

(1− 2ai)XY − 2biQ
2
i ai(1− ai)2Y + biQiai(1− ai)X = 0. (25)

If we consider the symmetric case, we have X = nbQ2(1−a)2 and Y = nbQ(1−a), which,
when replaced in (25), give the symmetric equilibrium advertising factor

a =
n

2n+ 1
, (26)

which tends to the limit a = 1/2 when the number of providers grows.
In the symmetric case, the utility of each CP is therefore

U = bQa(1− a)
nbQ2(1− a)2

nbQ(1− a)
= bQ2n(n+ 1)2

(2n+ 1)3
.

4.4. Neutral vs Non-neutral Ranking

We now compare the ranking strategies when the CPs have identical intrinsic qualities. We
plot in Figure 4 the equilibrium advertising levels in the symmetric case vs the number
of content providers. We call the equilibria in (24) and (26) respectively as revenue-based
and weighted-QoE scoring. Both functions grow with the number of providers, but achieve
different values. When the behavior of the SE is purely greedy, the advertising factor starts at
0.75 with two CPs and tends to 1 when the number of CPs grows (under tough competition
the QoE gets very close to zero). Instead, if the scoring function includes the QoE, the
optimal advertising factor starts at 0.4 under duopoly, grows, but is upper bounded by the
value 0.5: users will get a QoE never lower than in the neutral case (half the intrinsic quality
value). In the same figure we also plot the gross utility of each CP. A neutral ranking favors
CPs, unless the number of competing CPs becomes large (above 20 when b = 0.1). In that
case, the weighted-QoE based ranking would yield a larger utility to CPs.

We now assess the impact of the ranking policy in a non-symmetric setting, with a linear
repartition of quality (17), when the number of CPs changes (the geometric distribution
yields similar results). We consider two scenarios: the CP owned by the SE is that with the
highest (Figure 5) or the lowest intrinsic quality (Figure 6). We solve the game iteratively.
In order to evaluate the impact on users, we define user welfare (or, with a slight abuse of
vocabulary, the revenue of users) as being equal to β, i.e. the propensity of users to use the
search engine. We examine the revenue of the SE (which includes that of its CP), the gross
revenue (the aggregated revenue of all CPs but the owned one prior to paying the SE, the
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revenue of the SE hence including the integrated CP revenue), and the global revenue, i.e.
the sum of both. Notice that, even in the neutral scenario, the equilibrium depends on the
CP vertically integrated with the SE, since their revenue is shared between both entities.

When the smallest CP is integrated with the SE, we observe on Figure 6 that all revenues
decrease with the number of CPs. In addition, when there are more than three CPs, the
ranking policies are Pareto ordered: the revenue-based ranking is worst for every stakeholder,
and the neutral one is always preferred. This suggests that there is no need to enforce search
neutrality: even for the search engine it is preferable to implement a neutral ranking.

In the case of the biggest CP integrated, we see on Figure 5 that the comparison is not
as clear. The revenues are decreasing w.r.t. the number of players for every stakeholder,
except the gross revenue, which increases at first: as the number of CPs grows, they get a
bigger and bigger proportion of the global revenue at the expense of the SE. The weighted-
QoE based ranking provides larger revenues both for the SE and on the overall, probably
because owning the greatest quality CP (rather than the smallest quality one) gives the
SE a stronger position in the game so as to adopt a non-neutral ranking. Also, users get a
larger welfare for any ranking policy compared to Figure 6 and prefer weighted-QoE based
ranking. Since the user’s welfare corresponds to the propensity of using the SE, the average
relevance is better with the non-neutral ranking. This observation, although not intuitive,
shows that the use of non-neutral ranking may result in a Nash equilibrium where less
advertisement is set compared to the neutral equilibrium. But this holds here because the
SE owns the most relevant CP, and therefore should not be taken as a valid argument
against neutrality. Indeed, one of the objectives of search neutrality is to enable innovation,
by making (relevant) new entrants reachable through the SE: in our case a weighted-QoE
based ranking goes against that objective, since the average perceived relevance is lower
than in the neutral case in Figure 6 (when the best CPs are not owned by the SE).

When there is no vertical integration, but the CPs do not offer the same intrinsic quality,
the results we obtain are very close to the case where the worst CP is vertically integrated
to the SE: the integration effects are boosted by the intrinsic quality of the CP.

Finally, note that in both scenarios the revenue of the non-integrated CPs is larger with
a neutral ranking, which suggests enforcing neutrality. Indeed, even if a non-neutral stance
increases the user’s QoE when the SE integrates quality content, it harms the other CPs
revenue, possibly preventing them from innovating and improving their quality.

5. CONCLUSIONS

This paper provides a mathematical model for the analysis of different ranking policies
by search engines, in a context when content providers have to compete for users, and
get revenue through advertising. Depending on the ranking adopted, content providers can
choose their advertising level, balancing larger advertising revenues against lower quality-of-
experience and less users. We have analyzed the noncooperative game played among content
providers in different settings, and studied the corresponding equilibria.

Our results indicate that the neutral ranking provides users with the largest perceived
quality-of-experience, which is not surprising. But we also observe that such a ranking policy
can be preferred as well by a search engine willing to maximize revenue, a less intuitive
outcome: this is true if the search engine does not control the best-performing content
providers. However, if the search engine integrates quality content, then it can increase its
revenue by switching to a non-neutral ranking; this may even benefit users who will perceive
a better quality-of-experience, but would be at the expense of the other content providers,
and can then be seen as an impediment to innovation for new entrants.
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Impact of Competition Between ISPs on the Net
Neutrality Debate

Pierre Coucheney, Patrick Maillé, Bruno Tuffin

Abstract—Network neutrality is the topic of a vivid and very
sensitive debate, in both the telecommunication and political
worlds, because of its potential impact in everyday life. That
debate has been raised by Internet Service Providers (ISPs), com-
plaining that content providers (CPs) congest the network with
insufficient monetary compensation, and threatening to impose
side payments to CPs in order to support their infrastructure
costs. While there have been many studies discussing the advan-
tages and drawbacks of neutrality, there is no game-theoretical
work dealing with the observable situation of competitive ISPs
in front of a (quasi-)monopolistic CP. Though, this is a typical
situation that is condemned by ISPs, and, according to them,
another reason of the non-neutrality need.

We develop and analyze here a model describing the relations
between two competitive ISPs and a single CP, played as a three-
level game corresponding to three different time scales. At the
largest time scale, side payments (if any) are determined. At a
smaller time scale, ISPs decide their (flat-rate) subscription fee
(toward users), then the CP chooses the (flat-rate) price to charge
users. Users finally select their ISP (if any) using a price-based
discrete choice model, and decide whether to also subscribe to
the CP service. The game is analyzed by backward induction. As
a conclusion, we obtain among other things that non-neutrality
may be beneficial to the CP, and not necessarily to ISPs, unless
the side payments are decided by ISPs.

Index Terms—Network neutrality, Game theory, Pricing

I. INTRODUCTION

There has recently been a strong debate around the so-
called network neutrality. The debate has been ignited by
the increasing traffic asymmetry between Internet Service
Providers (ISPs), mainly due to some prominent and resource
consuming content providers (CPs) which are usually con-
nected to a single ISP. The typical example is YouTube (owned
by Google), accessed by all users while hosted by a single
Tier 1 ISP, and whose traffic now constitutes a non-negligible
part of the whole Internet traffic. Another example is the
subscription-based video service Netflix, that is in the US
the most bandwidth-consuming source of traffic, representing
23.3% of the total Internet traffic in late 2011 [1], while having
commercial relationships with only one ISP. For those reasons,
there has been a surge of protest among ISPs, complaining that
the current Internet business model where ISPs charge both
end-users and content providers directly connected to them,
and have public peering or transit agreements with other ISPs,
is not relevant anymore. The main solution proposed is that
ISPs should also charge content providers that are associated

Pierre Coucheney and Bruno Tuffin are with INRIA Rennes Bretagne-
Atlantique, Campus de Beaulieu, 35042 RENNES Cedex - France

Patrick Maillé is with Télécom Bretagne, 2, rue de la Chataigneraie, 35576
Cesson Sévigné Cedex - France

with other ISPs [2], as first advocated by Ed Whitacre (CEO
of AT&T) at the end of 2005 [3].

The underlying concern is that investment is made by
ISPs but content providers get an important part of the divi-
dends. The revenue arising from on-line advertising (meaning
showing graphical ads on regular web pages) is estimated at
approximately a $24 billion in 2009 [4], while textual ads on
search pages has led to a combined revenue of $8.5 billion
in 2007 [5], those figures increasing every year. Meanwhile,
transit prices - which constitute the main source of revenues
for transit ISPs - are decreasing. ISPs argue that there is
no sufficient incentive for them to continue to invest on
the network infrastructures if most benefits go to content
providers. The threat is to lower the quality of service of
CPs that do not pay any fee to them, or even to block their
traffic. This possibility has led to protests from CPs and user
associations, complaining that this might impact the network
development and is an impingement of freedom of speech [3].
The debate was thus launched, essentially at the law and policy
makers level, to decide whether the Internet should be neutral,
i.e., all packets should receive equal treatments in terms of
price and service. In the US, the Federal Trade Commission
(FTC) released in 2007 a report not supporting neutrality
constraints, increasing the debate at the political level. This
debate is also active in Europe and in France, as illustrated
by the open consultation on network neutrality launched in
2010. For instance, the French regulation authority, ARCEP,
has published in its response a proposal intending to define
how net neutrality could be implemented [6], [7].

There has been an increasing attention in the literature
on providing a mathematical analysis of the advantages and
drawbacks of network neutrality. The idea is to investigate the
output of the interactions between selfish actors that are end
users, CPs and ISPs, using the framework of non-cooperative
game theory [8], [9]. Let us briefly describe here, non ex-
haustively, some important existing works in that direction. In
[10], [11], the authors propose to share the revenue among
providers using the Shapley value, the only mechanism that
satisfies a set of axioms representing a sense of fairness; in this
case CPs participate to the network access cost. The work in
[12] analyzes how neutrality or non-neutrality affects provider
investment incentives, network quality, and user prices. A sim-
ilar comparison is made in [13] between a two-sided pricing
scheme where ISPs are allowed to charge CPs, and one-sided
pricing where such side-payments are not allowed. In each
case, at the equilibrium of the game, the levels of investment
in content and architecture are determined. The paper gives
conditions on the ratio between parameters characterizing

251



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

advertising rates and end-user price sensitivity, under which
a non-neutral network outperforms a neutral one in terms of
social welfare. On the other hand, [14] investigates the case
where ISPs negotiate joint investment contracts with a CP in
order to enhance the quality of service and increase industry
profits. It is found that an unregulated regime leads to higher
quality investments, but that ISPs have an incentive to degrade
content quality. The paper [15] studies the implications of non-
neutral behaviors, taking into account advertising revenues and
considering both cooperative and non-cooperative scenarios. In
[16], we analyze and compare thanks to game-theoretic tools
three different situations of interactions between ISPs: the case
of peering between the ISPs, the case where ISPs do not share
their traffic (exclusivity arrangements), and the case where
they fix a transfer price per unit of volume. The paper supports
the transit price scenario and suggests a limited regulation
(enforcing global connectivity) to prevent incumbent ISPs
from having a dominant position in the bargaining. Finally, in
[17], a game-theoretic model is considered with a single CP,
a single ISP, a (consumers’) demand function that depends on
price and quality of service, and involving advertisement and
network investment components.

In those works, there is in general a single ISP, and one
or several CPs. Though, in practice, we often have ISPs
in competition for customers, while for many services, the
CPs are in a quasi monopoly, a characteristic ISPs complain
about. (Typical examples are YouTube for non-copyrighted
videos, and Netflix for movies and TV shows in the US.) We
propose to specifically address this issue in this paper. Remark
that in addition to [13], considering competitive ISPs has
been proposed in [18], but with competition over consumers,
quality and prices for heterogeneous CPs: none of those
works consider a monopolistic CP as can be encountered for
some applications. We already addressed this type of problem
in [19], whose model was inspired by [15], users were assumed
to always go with the cheapest provider. As a consequence, we
ended up with a price war (a classical Bertrand competition)
such that ISPs always decrease their subscription price in order
to attract all demand.

We consider here a more realistic user association model
such that users make their choice still based on the price of
ISPs, but also on other unknown considerations, hence the use
of a classical discrete choice model as in [16]. This requires a
derivation of results totally different from [19]. To analyze that
situation, we propose a multi-level game where decisions are
taken at different time scales. The solutions of the games at the
largest time scales, played first, are determined using backward
induction, meaning that players anticipate the impact on, and
the resulting solution of, the games played later on at smaller
time scales.

The paper is organized as follows. Section II presents the
basic assumptions of the model we are going to consider,
the different levels of game, and the mathematical description
of the investigated comparison between the neutral and the
non-neutral regimes. It also describes how users select their
ISP (if any), and how the aggregated demand at the CP is
determined. The next sections present the various game levels
for providers’ decisions: we describe in Section III how the

End-users

ISP A
pA

ISP BpB

CP 1

qA

qB

p1

Fig. 1. Charging interactions between stakeholders. Prices p1, pA and pB
are positive flat rates, whereas qA and qB are positive per volume unit prices.

CP, anticipating the decisions of end users, chooses the content
price. At a higher level, by backward induction, ISPs play a
game on the access charge for end users; this competition is
described in Section IV. We then describe the game at the
highest level, on the economic relationships between the ISPs
and the CP, by determining the side payments of the CP to the
ISPs in Section V. We address the case when those prices are
fixed by ISPs, based on a game; we also look at the case when
they are decided by the CP, or by a regulator (maximizing
the supply chain value for instance). Section VI concludes by
discussing the impact and relevance of side payments on the
providers’ revenues, highlighting that it is not always in the
interest of the ISPs (but could be), while an appropriate choice
of side payments may increase the CP revenue. We also give
in that section directions for future research.

II. MODEL

A. Topology and Pricing Structure

We consider a single CP, whose parameters will be indexed
by 1, and two ISPs, named (and indexed by) A and B. The
access prices charged to users are flat rate subscription fees,
denoted by p1, pA and pB for respectively the CP, ISP A
and ISP B. In order to study non-neutrality, we also introduce
side payments qA and qB representing the per unit of volume
prices that the CP has to pay to A and B, respectively. All
prices are assumed to be positive. Finally, the set of end users
is considered continuous and (without loss of generality) of
mass one, so that we will indifferently refer to “mass” and
“proportion” of users. The charges imposed by actors to other
players are summarized in Figure 1, the arrows indicating the
cash flows.

B. User Demand

Users have to pay both the ISP and the CP to access
the content. Users first choose their ISP, to which they pay
a flat-rate subscription fee, and then subscribe to the CP
too if its (flat) fee is not too high. Since users need an
Internet access, not only to reach the content of the CP, but
also for other purposes (e-mail, web browsing, ...), we de-
correlate the ISP choice from the (individual) decision to
subscribe to the CP, hence the independence from p1. Among
those access subscribers, the proportion who also subscribe
to the CP depends on p1 on the other hand, but not on the
subscription price to the ISPs as a first-order model, assuming
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as a consequence that users do not relate their consumption
of content to the previously paid ISP subscription fee.

Let us focus first on the ISP selection by users. In a previous
work [19], we have considered users simply selecting the
cheapest ISP (or choosing it randomly if price equality holds).
However, this does not take into account the phenomenon
of stickiness or loyalty of the users, highlighted in [20]. In
the model considered here, user choices are influenced by
the ISP subscription prices, but also by other considerations
(reputation or preferences) that can be modeled as an addi-
tive noise to the main criteria determining the choice. We
consider here a discrete choice model, a standard paradigm
in economy, transportation, etc., and surprisingly not often
applied in telecommunications. It is a common way to model
how decision makers choose among a set of alternatives.
Mathematically, we assume that a user has a valuation of
the form vi = β log(1/pi) + κi for ISP i, and selects the
highest-valued option (see [16] for details). The term κi is an
individual-specific random term, taking into account unknown
aspects and assumed to follow a Gumbel distribution as in
standard discrete choice models [21]. We additionally assume
that there is a fictitious price p0, assumed to be strictly
positive, and representing the cost of the outside option, i.e.,
the perceived cost of not having access to the Internet. Thus if
the (random) valuation associated with that outside option is
larger than the ones associated with each ISP, the user prefers
not to join the network. The parameter β > 0 represents the
user sensitivity to the subscription prices: values of β close
to zero lead to an uniform choice over the three alternatives
(connecting to one of the two ISPs, or not having access
to the Internet) regardless of the prices set, whereas large
values of β make the users choose the least expensive option.
The term log(1/pi) expresses the dissatisfaction for higher
prices, the logarithm being used to represent the fact that the
same variation of price is felt smaller at high prices than
at low prices: users are sensitive to relative price variations
rather than absolute ones. Finally, the case pi = 0 leads to
the maximal possible valuation independently of the random
terms, meaning that ISP i attracts all users, or (say, from
symmetry) half of them if the other ISP chooses a null price
as well.

At a macroscopic level, by discrete choice analysis, the
proportion (or equivalently, the mass) σi of users selecting
ISP i (with also j ∈ {A,B}; j 6= i), can be shown to equal
from our expression of vi (see [21] for a general derivation)

σi =





p−βi
p−βA + p−βB + p−β0

if pA > 0 and pB > 0

1 if pi = 0 and pj > 0
1/2 if pA = 0 and pB = 0
0 if pi > 0 and pj = 0.

(1)

This repartition function expresses the fact that all users select
an ISP if at least one of the subscription prices is null (pA = 0
or pB = 0). Of course, the higher the price, the fewer
subscribers; this effect increasing with the user sensitivity to
price β.

In this paper, we propose a new aggregated user demand in
terms of data volume on ISP i, where users having selected an

ISP then decide whether to use the content offered by the CP,
depending on the flat-rate price p1. We consider that users’
willingness-to-pay for the CP service (i.e., the access to all the
content offered by the CP) follows an exponential distribution
with mean value 1/α > 0 over the population, independently
of the ISP choice. Therefore, a proportion e−αp1 of each
ISP’s subscribers also subscribes to the CP, hence a number
σie−αp1 subscribing to both the CP and ISP i. Note that the
consequence of our assumption is an exponentially decreasing
demand function (in terms of the CP price), a usual setting in
economic theory.

We assume that there is an average volume D0 of data that
a user downloads from the CP if subscribing to it. The value
will be helpful to compute the volume-based transit costs for
the CP to the ISPs. This volume is assumed to be independent
of the ISP choice. Instead of considering an average volume,
we could say that it is the same value for all users without
changing the expressions; an average value just allows to take
into account the potential variations between users that are
averaged when summing over all subscribers of an ISP. D0

is additionally assumed independent of p1, meaning that users
just get what they “need" if subscribing. As a result, the data
volume for users subscribing simultaneously to the CP and to
ISP i is given by:

Di = D0σie−αp1 . (2)

The parameter α > 0 can be interpreted as the sensitivity of
users to the CP price: the global demand (sum of demands on
all ISPs) is a decreasing function of α.

Notice that demand does not directly depend on the side
payments qA and qB . But the introduction of side payments
will induce a reaction on the prices pA, pB and p1 set by ISPs
and the CP at equilibrium, which, in turn, indirectly affects
demand. Finally, the global volume demand for CP data DA+
DB equals (σA + σB)D0e−αp1 .

C. Utility and revenue functions

Among the proportion σA+σB of users having accepted to
pay for an access to the network, and then paying a flat-rate
price p1 to the CP, some would have accepted to pay more to
benefit from the content of the CP. The surplus of users that
would have accepted to pay p is p− p1, while the proportion
of users willing to pay more than p is e−αp1 .

We can then compute the user welfare associated with the
existence of the CP, as the sum over all users of the benefit
they make accessing the content of the CP. Note that this
does not include the benefit that users make by selecting an
ISP, which is associated with other (free) on-line services.
From our assumption of an exponential distribution of users’
willingness-to-pay for the content (yielding a density αe−αx),
the user welfare due to the CP can be computed as:

UWCP = (σA + σB)

∫ ∞

p1

αe−αx(x− p1)dx

= (σA + σB)
e−αp1

α

=
DA +DB

αD0
. (3)
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The utilities (revenues) of the ISPs come from the end users
subscription fee, and from the CP through the possible side
payment. The first one depends on the mass of users with
the ISP, and the second one on the total amount of volume
downloaded by users. Hence, for ISP i (i ∈ {A,B}), the
revenue is

Ui = piσi + qiDi. (4)

We can remark here that the revenue is always positive since
we do not consider the cost of the network.

The utility of the CP in this model is the sum of revenues
gained by users subscribing through A and through B. Those
gains come from the flat-rate subscriptions by users through
each ISP i, p1σie−αp1 , but the volume-based side payments
qiDi paid to i also have to be taken into account. The CP net
benefit (utility) is thus given by

U1 = (p1σAe−αp1 − qADA) + (p1σBe−αp1 − qBDB)

= (p1/D0 − qA)DA + (p1/D0 − qB)DB . (5)

Since p1 is decided after qA and qB , the CP can also ensure
a positive revenue by setting p1/D0 ≥ max(qA, qB).

D. Multi-stage Decision Problem

The decision variables are the prices p1, pA, pB , qA, qB , im-
pacting end users (demand), as well as revenues of providers.
Those variables are decided at different time scales or levels,
that can be described as follows.

1) At the largest time scale, the side payments qA and qB
are decided. In the neutral case, they are either fixed to 0,
or determined as a common value. They can be different
in the non-neutral case, and can be determined either by
the ISPs (in a game), the CP, or a regulator. All those
options will be investigated. Those determinations will
be obtained anticipating the solution of the games below
whatever the values of qA and qB (the so-called backward
induction).

2) At a smaller time scale, for fixed values of qA and
qB , the ISPs fix their prices pA and pB during a non-
cooperative game to attract customers and maximize their
revenues. Here again, the decisions are made anticipating
the solutions at lower levels.

3) At an even smaller time scale, the CP sets the price p1.
Finally, for those fixed values of p1, pA, pB , qA, qB , users

choose their ISP (if not too expensive), and decide whether to
use the service offered by the CP, as described by formulas
(1) and (2).

All those interacting levels are now solved by backward
induction, from the smallest time scale to the largest one.

It is possible to perform the same analysis with a different
hierarchy in the three levels of game, assuming for example
that subscription prices are decided before the side payments.
Though, we think it is reasonable to consider that the decisions
on side-payments to take place on a large time scale, given the
difficulty, span, and costs of such decision processes. Similarly,
regarding the time scale difference between prices set by the
CP and by the ISPs, our approach is consistent with the
(commonly spread) vision that CPs can adapt faster than ISPs,

in part because of the different contract durations binding users
to providers (larger durations with ISPs than with CPs), the
various difficulties to switch ISPs, etc.; see also [22].

III. CONTENT PROVIDER PRICE DETERMINATION

The CP aims at maximizing his revenue U1, for fixed values
of pA, pB , qA, qB , making use of what the total user demand
DA + DB , with Di given by (2), will be. For convenience,
we define Pi := pβi .

Proposition 1. Given the side payments qA and qB and the
prices pA and pB decided by the ISPs, the price of the CP
maximizing its revenue (5) is

p∗1 =





PA
PA + PB

(D0qB +
1

α
) +

PB
PA + PB

(D0qA +
1

α
)

if pA > 0 or pB > 0,

D0
qA + qB

2
+

1

α
if pA = 0 and pB = 0

(6)

Proof: We first consider the case pA > 0 and pB > 0.
The derivative ∂U1

∂p1
of the CP revenue is then equal to

P0e−αp1
PA(αqB + (1− αp1)/D0) + PB(αqA + (1− αp1)/D0)

P0PA + P0PB + PAPB

which is strictly positive until p1 achieves the value given in
the first equation of (6), and strictly negative after. Hence the
result.

If pA = 0 (and then PA = 0) and pB > 0 (the opposite case
is symmetric and then omitted), the CP revenue is e−αp1(p1−
D0qA), whose derivative is e−αp1(1− α(p1 −D0qA)).

Finally, if pA = pB = 0, then the CP revenue is
1
2e−αp1(2p1 −D0(qA + qB)), and its derivative is e−αp1(1−
αp1 +

α
2D0(qA + qB)).

Notice that the optimal price does not depend on the outside
option valuation p0. One can also check that it increases with
the price pi of ISP i that has the biggest side payment qi,
and decreases with the other price. In the limit (that can be
interpreted as neutral) case qA = qB = q, the optimal pricing
for the CP is qD0 + 1/α whatever the value of pA and pB .
In that case, as an important remark, the CP’s revenue is
DA +DB

D0α
, which corresponds to the CP-related user welfare:

the interest of users and that of the CP coincide here. Finally,
we can remark that the optimal price for the CP is always
greater than D0 min(qA, qB) + 1/α, because it is a convex
combination of D0qA + 1/α and D0qB + 1/α. In particular,
it is greater than the inverse of the user price sensitivity α.

IV. PRICING GAME BETWEEN ISPS

Before the users decide which ISP to join and the CP
chooses p1, the ISPs play a pricing game, making use of
what the CP and users decisions would be. In this section, we
determine the Nash equilibrium solutions of this pricing game
in an analytical way when there are no side payments, and
numerically (because intractable) in the general case. Recall
(see [9]) that a Nash equilibrium would be a price profile
(pA, pB) such that no ISP can improve (strictly) his utility by
unilaterally changing his price. The best-response curves are
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defined as (by expliciting the dependence of UA and UB on
pA, pB)

BRA(pB) = arg max
pA≥0

UA(pA, pB) and

BRB(pA) = arg max
pB≥0

UB(pA, pB).

With those notations, a Nash equilibrium is a point (pNE
A , pNE

B )
for which BRA(pNE

B ) = pNE
A and BRB(pNE

A ) = pNE
B . Graphi-

cally, if we draw the two best-response curves on the same
figure, the set of Nash equilibria is then the (possibly empty)
set of intersection points of those curves.

A. No side payments

In the case where no side payments are established, qA =
qB = 0, we get a simple formulation for the revenue of ISPs.
From the previous section, the optimal CP pricing is 1/α.
Using the notation Pi := pβi , the revenue of ISP A is then
(the revenue of ISP B being symmetrical)

UA =





P0PBpA
P0PA + P0PB + PAPB

if pA > 0 and pB > 0

0 if pA = 0 or pB = 0
(7)

We first stress that pA = pB = 0 is a Nash equilibrium
since no player can strictly increase his revenue by unilaterally
changing his action: the revenue always remains equal to zero.
But setting one’s price to zero is a dominated strategy, that is
strictly dominated as soon as the adversary price is not zero:
it always yields no revenue whereas a strictly positive revenue
can be guaranteed with any other choice. Therefore it is not
likely to be chosen by ISPs if another equilibrium exists.

Proposition 2. Assuming that there are no side payments, i.e.
qA = qB = 0, then
• if β ≤ 1, there is no Nash equilibrium different from

(0, 0) with finite prices: the only other alternative is both
ISPs setting infinitely large prices (PNE

A = PNE
B =∞),

• if 1 < β < 2, there is a unique Nash equilibrium different

from (0, 0) with PNE
A = PNE

B =
2− β
β − 1

P0,

• if β ≥ 2, (0, 0) is the unique Nash equilibrium, yielding
no revenue for the ISPs.

The proof relies on the following general result about
symmetric games.

Lemma 1. If the best response functions BRA and BRB are
• equal: BRA = BRB = BR,
• single-valued,
• strictly increasing,

then (pA, pB) is a Nash equilibrium if and only if pA = pB =
p with p a fixed point of the best-response function: p = BR(p).

Proof: (Lemma) The pair of prices (pA, pB) is a Nash
equilibrium if and only if pA = BR(pB) and pB = BR(pA).
Let us suppose that pA 6= pB , for instance pA > pB (should
the indexes be permuted). Then:

pB = BR(pA) > BR(pB) = pA,

where the inequality comes from the strict increasingness of
BR, hence a contradiction. At Nash equilibrium, pA = pB is
then a necessary condition, and from the definition of such an
equilibrium, it is necessary and sufficient to have p = BR(p).

Proof: (Proposition) Assuming that pA > 0 and pB > 0,
the derivative of ISP A revenue (7) is

PBP0

(PAPB + PBP0 + PAP0)2
(PA(1− β)(PB + P0) + PBP0) .

Hence the derivative has the same sign as the affine function of
PA: PA(1−β)(PB+P0)+PBP0. When β ≤ 1, that derivative
is always strictly positive for PA ≥ 0, thus (by symmetry) each
ISP should set infinitely large prices.

When β > 1 the derivative of ISP A revenue is strictly
positive while PA is smaller than the unique root of the affine
function above, and negative afterwards. Given pB > 0, the
best-response of ISP A is then

BRA(PB) =
PBP0

(β − 1)(PB + P0)
.

For the case β > 1, notice that the best response is
the same function for ISP B due to symmetry, that equals
BR(P ) = 1

(β−1)(1/P0+1/P ) , and is a strictly increasing func-
tion of P . Hence it follows from the previous lemma that
every Nash equilibrium is symmetric, which results here in
the necessary and sufficient condition at Nash equilibrium
PNE
B = PNE

A = BRA(PNE
A ). The last equation has a unique

strictly positive solution in the case 1 < β < 2, the one given
in the proposition, and no solution otherwise.

This proposition shows in particular that, when the price
sensitivity of users is high (β ≥ 2), we are led to the same
price war as in the model of Bertrand competition studied
in [19]. But for smaller levels of price sensitivity, this does no
longer happen: the price set by ISPs at equilibrium is strictly
positive, hence providing some revenue from users to both
ISPs.

B. Positive side payments

In the general case, the computation of the Nash equilibrium
or even the best response function is not analytically tractable.
We are then led to study numerically the price competition
between ISPs. From here, we take α = 1, p0 = 1, D0 =
1, and β = 1.5. We remark that the choices of p0 and D0

are made without loss of generality (they correspond to unit
changes of ISP prices and data volumes). The choice of α also
corresponds to a unit change in the CP prices, and is therefore
linked to that of p0 (i.e. for a given user sensitivity to the
CP price, the value of α is a consequence of the monetary
unit choice, and thus is determined by the choice for p0).
Therefore our choice of α and of β are subject to discussion.
We however stress here that we have also run experiments
with other values (in the range (1, 2) for parameter β) and
observed similar results.

Let us first remark that if the price set by an ISP (say
ISP A) is equal to zero, then the other ISP (ISP B), at
a Nash equilibrium, sets his price to zero as well. This is
because ISP B does not attract any users if his price is not
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0 3
0

3

Pw

qA

q B

Fig. 2. Set Pw of side payments (qA, qB) for which the Nash equilibrium
is such that pNE

A = pNE
B = 0, i.e. price war holds.

0 4
0

0.5

1

qA

p
N

E
A

qB = 0
qB = 1
qB = 2
qB = 3

Fig. 3. ISP A user price pNE
A at equilibrium as a function of the side payments

qA with qB ∈ {0, 1, 2, 3}.

zero, and then his revenue is null, whereas the revenue is
1
2qBD0e−

α
2D0(qA+qB)−1 otherwise, hence strictly positive.

Numerical computations show that there is a set of side
payments qA and qB for which the price war phenomenon
between ISP happens. That set is shown in Figure 2. In the
following, we will denote by Pw the set of side payments for
which a price war between ISPs takes place, leading to null
subscription prices.

Figures 3 to 6 show the prices and revenues at Nash
equilibrium (recall that this is for qA and qB fixed). Numerical
computations point out the fact that the revenue of the CP, and
the user welfare he creates, are always equal at equilibrium,
the reason why we do not plot user welfare here. While
this equality is clear when side payments are the same, our
numerical results suggest that it remains true in the general
case.

Figure 3 represents the price pNE
A set by ISP A at Nash

equilibrium, when the side payment qA varies, and for several
ISP B side payments qB . This reveals that the price at
equilibrium first decreases with the side payment set by the
ISP, and then increases. For some value of the opponent ISP
side payment, it goes to zero when a threshold is reached.
That threshold corresponds to the case where the side payment
revenue that ISPs get by setting their prices to zero, and then

0 2 4
0

2

4

qA

p
∗ 1

qB = 0
qB = 1
qB = 2
qB = 3

Fig. 4. CP optimal price at equilibrium as a function of the side payments
qA with qB ∈ {0, 1, 2, 3}.

0 4
0

0.2

0.4

qA

U
A

qB = 0
qB = 1
qB = 2
qB = 3

Fig. 5. ISP A revenue at equilibrium as a function of the side payment qA
with qB ∈ {0, 1, 2, 3}.

attracting the whole set of users, becomes larger than the one
they get on a limited market share with both the subscription
fees and the side payments. This is the price war situation:
equilibrium subscription prices of both ISPs fall down to 0 as
the side payments enter the “price war zone” Pw highlighted
in Figure 2, and each ISP finally only attracts half of the user
set, hence the discontinuity. Finally, we observe that there is
no monotonicity in the opponent side payment.

Figure 4 displays the optimal price p∗1 of the CP in terms of
qA for different values of qB . We can notice the discontinuity
due to the price war thresholds (for the cases qB = 1 and
qB = 2, since there are no such thresholds for the two
other cases from Figure 2). However, this discontinuity is
barely visible, which is quite surprising when compared to
that observed at the ISP level. It can also be remarked that
the optimal price increases with qA (and qB) both before and
after the thresholds, but not in general. One can also check
here the general property that p∗1 ≥ D0 min(qA, qB) + 1/α,
which, in particular, ensures a strictly positive revenue to the
CP.

Figure 5 shows that the revenue of ISPs is not monotonic
with the side payment. Again, some discontinuities occur
when side payments enter and leave the price war zone Pw.
Moreover, depending on the ISP B side payment, the maximal
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Fig. 6. CP revenue at equilibrium as a function of the side payment qA,
with qB ∈ {0, 1, 2, 3}.

revenue of ISP A is reached either for a null side payment
(e.g., when qB = 3.0) or for a strictly positive value (e.g.,
when qB = 0.0). This illustrates that predicting the effect
of the various parameters in the output of the game(s) is a
difficult task and game-theoretic tools are helpful here to get
a result: a side payment increase can indeed lead to a content
price increase by the CP to compensate for the loss, and a
reaction of the other ISP; this also has an effect on demand
and depending on the variations, this may or may not result
in an ISP revenue increase.

On the other hand, the CP revenue, plotted in Figure 6,
has a tendency to decrease with side payments, even if it is
not strictly the case, as can be seen for qB = 1 and small
values of qA. When a discontinuity occurs, the CP revenue is
maximized for the smallest side payment leading to the price
war. The non-monotonicity is due to the threshold for the price
war between ISPs, inducing a discontinuity in the ISP prices.
Because of those prices becoming null, the revenue jumps up.

Finally, over the price war set Pw, the CP subscription price
is p1 = D0

qA+qB
2 + 1

α and the revenues are

Ui =
1

2
qiD0e−

αD0
2 (qA+qB)−1 (8)

U1 = UWCP =
1

α
e−

αD0
2 (qA+qB)−1. (9)

V. SIDE PAYMENTS DETERMINATION

We consider at the highest level three possibilities for the
choice of the side payments qA and qB . We first look at the
case when they are determined by the CP (even if unlikely in
practice), then the case when they result from a game played
between ISPs, and finally the case when they are determined
by a regulator (e.g., to maximize social welfare).

Since we don’t have the analytical expression for the ISPs
price at Nash equilibrium, we provide numerical results, where
we take α = 1, β = 1.5, p0 = 1 and D0 = 1.

A. Determined by the CP

The revenue of the CP is maximized when the side pay-
ments are qA = qB = 0.3 as illustrated in Figure 7 (instead of
plotting a hard-to-read 3D-curve of CP revenue in terms of qA

0 4
0

0.1

0.2

0.3

qA

U
1

qB = 0.2
qB = 0.3
qB = 0.4

Fig. 7. CP revenue at equilibrium as a function of the side payment qA, with
qB ∈ {0.2, 0.3, 0.4}. The maximal revenue is reached when qA = qB =
0.3.

0 2 4 6 8 10

0

5

10

NE

NE

qA

q B

BRA(qB)
BRB(qA)

Fig. 8. The optimal side payment of each ISP as a function of the opponent
ISP side payment. There is a threshold qi ≈ 2.80 beyond which the best
response falls to zero. There are two Nash equilibria (NE) where one ISP sets
its side payment to zero.

and qB , we have preferred to draw 2D-curves in terms of one
of the parameters for various values of the second parameter
close to optimal). It is interesting to notice that, for such a set
of side payments, there is a price war on the user prices, i.e.,
pNE
A = pNE

B = 0 here. In fact it corresponds to the symmetric
(qA = qB) point of the price war set Pw described in Figure 2
for which the sum of side payments is minimized. Indeed, if
pNE
A = pNE

B = 0, then the revenue of the CP can be rewritten
as U1 = 1

αe−
αD0

2 (qA+qB)−1, and then is maximized when
qA + qB is minimal.

At this point the revenues of the stakeholders are UA =
UB ≈ 0.04, and UWCP = U1 ≈ 0.27. Hence the revenues
of ISPs are much smaller than the one of the CP. Note that
the situation is quite counter-intuitive, since the CP gains
to introduce side payments. This is because those payments
exacerbate the competition between ISPs, which is beneficial
to end users, and finally to the CP who can reach more
customers.

B. Determined by the ISPs, through a game

If we instead assume that the side payments are non-
cooperatively determined by the ISPs, we are led to study
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the best response of each ISP to the other ISP side payment.
As shown in Figure 8, the best response is first increasing
in the other ISP side payments, and then falls to zero above
a threshold, which is approximately 2.80. Since the best-
response to a null price is 2.80, it follows that (0, 2.80) and
the symmetric point (2.80, 0) are Nash equilibria, and they are
the only ones. It is interesting to notice that the resulting side
payments are not symmetric at Nash equilibrium, so are the
revenues equalling 0.42 for the ISP with side payment 2.80
and 0.34 for the other ISP.

Now let us compare that outcome to the case without
any side payments. From Subsection IV-A, with β = 1.5,
the revenue of ISPs is 0.33. Hence the ISPs global revenue
increases by about 15%, which goes in the direction of ISPs
arguments about side payments improving their revenue. On
the other side, the CP revenue decreases from 0.25 to 0.06,
hence losing nearly 75% of its value. The benefit of ISPs is
then at the expense of the CP and consequently of the user
welfare.

C. Determined by a regulator

A regulator can either decide to maximize the revenue of the
supply chain (sum of utilities of the ISPs plus the CP), the user
welfare (end-users surplus), or the social welfare (including
user welfare and all providers utilities).

The total value of the supply chain is the total revenue got
from the users, i.e., U1 + UA + UB .

User welfare can be decomposed into two components: the
user welfare due to the existence of the CP -that is computed
in (3)-, and the user welfare due to the presence of the ISPs.
Let us focus on the latter part: we have assumed that users
not connected to the Internet perceive a cost p0 (thus p0 can
be seen as the value of the connectivity service). When a
user decides to subscribe to ISP i and pays the corresponding
price pi, its benefit is then p0 − pi with respect to the no-ISP
situation: the user does not bear anymore the cost p0 of not
having Internet access, and instead perceives the monetary cost
pi. Aggregating over the whole population, the user welfare
that is due to the presence of the ISPs (with their prices pA
and pB) equals

UWISPs = σA(p0 − pA) + σB(p0 − pB).
The global user welfare generated by the system (ISPs and
CP) is therefore

UW = UWCP + UWISPs (10)

Finally, social welfare is defined as the overall value of the
service for the society. It therefore includes the surpluses of
all actors, and equals SW = U1 + UA + UB + UW Note
that Social Welfare also corresponds to the total value that the
service has for subscribers, without considering any monetary
exchanges because they stay within the society. We indeed
obtain, simplifying the sum of the terms in SW:

SW = (σA + σB)

(
p0 +

(
p1 +

1

α

)
e−αp1

)
,

where the term (σA + σB)p0 is the value of the connectivity
service for ISPs’ subscribers, and the other term is the value

of the CP service for CP subscribers, computed as

(σA + σB)

∫ ∞

p1

αe−αxx dx.

1) Side payments to maximize User Welfare: Since CP
revenue and user welfare are equal at Nash equilibrium, it
follows that user welfare is maximized when the CP revenue
is maximized. This case has already been treated in Subsec-
tion V-A.

2) Side payments to maximize Social Welfare: We have
obtained numerically that social welfare is maximized for the
same side payments as the ones maximizing the CP revenue
and the user welfare.

3) Side payments to maximize the supply chain value: The
supply chain value is maximized when the side payments are
both null, which has been studied in Subsection IV-A. In this
neutral case the revenue of ISPs is approximately 0.33 whereas
that of the CP (and the induced user welfare) is 0.25. We
can remark that among the three alternatives considered in
this subsection, this one leads to the fairest revenue sharing
between stakeholders.

VI. DISCUSSION, CONCLUSIONS AND FUTURE WORK

We have provided in this paper a model describing the
interactions between two ISPs in competition, a CP, and end
users connecting to the network. With respect to the literature,
we believe that considering competitive ISPs and a single CP
is a more realistic representation of the current network where
we have a quasi-monopoly for some applications (for instance
YouTube or Netflix), while several ISPs are in competition
(an argument of ISPs). The goal is to study the impact of
side payments on providers’ revenues, and conclude whether
they can help reduce the unfairness of the current revenue
sharing among all actors, as claimed by ISPs in the current
network neutrality debate. We restricted the analysis to two
ISPs because in many cases, competition is limited to a very
small number of ISPs, and very often only two ISPs are
available to a given user [22]; but a numerical analysis can
be extended to more than two.

In this paper, we have presented a three-level game where
(from the largest to the shortest time scale) the side payments
are first determined, then a pricing game is played between
ISPs, followed by the content provider price, and finally,
knowing all those prices, end users choose their ISP (or none
if too expensive) and possibly decide to subscribe also to the
CP service. All those levels are played by backward induction,
meaning that players anticipate the solutions of the later games
when choosing their strategies.

Our results have highlighted the fact that side payments,
unless decided by ISPs, have little chance to address the
concern from ISPs regarding the fairness of the revenue
sharing associated with users accessing content through their
infrastructures. This is due, to a great extent, to the competition
played among ISPs on the access prices that drives their
revenues to low values. On the other hand, the CP being in
a monopolist situation, always obtains significant revenues.
An interesting paradox we have highlighted is that side pay-
ments may be beneficial to the CP. Nevertheless, when side
payments are decided by the ISPs (non-cooperatively), it can
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be beneficial to them, but at the expense of both the CP and
the users. Remarkably, the side payments maximizing social
and user welfare are the same than those maximizing the CP
revenue. But looking at the whole supply chain, in order to
avoid too big disparities between revenues of providers, the
neutral case is the most suitable. If the side payments are
decided non-cooperatively by ISPs, in our experiment, one
(only) is a big winner, while the other ISP gains a bit more
than in the neutral case. This asymmetry may be a problem
and can create complicated tensions and negotiations.

As future research, we would like to go into several direc-
tions: first to include several CPs with different contents, but
such that some end users are targeting only a subset of them,
for all possible subsets. ISPs may also charge each other to
let the CPs not connected to them reach their own customers
(transit pricing). Other extensions to our model could include
architecture investment and content innovation characteristics,
for the ISPs and the CP respectively.
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When a keyword-based search query is received by a search engine (SE), a classified ads website, or an online

retailer site, the platform has exponentially many choices in how to sort the output to the query. Two extreme

rules are (a) to return a ranking based on relevance only, which attracts more requests (customers) in the

long run because of perceived quality, and (b) to return a ranking based only on the expected revenue to be

generated by immediate conversions, which maximizes short-term revenue. Typically, these two objectives

(and the corresponding rankings) differ. A key question then is what middle ground between them should

be chosen. We introduce stochastic models and propose effective solution methods to compute a ranking

strategy that optimizes long-term revenues. A key feature of our model is that customers are quality-sensitive

and are attracted to the platform or driven away depending on the average relevance of the output. The

proposed methods are of crucial importance in e-business and encompass: (i) SEs that can reorder their

organic output and place their own content in more prominent positions than that provided by third-parties,

to attract more traffic to their content and increase their expected earnings as a result; (ii) classified ad

websites which can favor paid ads by ranking them higher; and (iii) online retailers which can rank products

they sell according to buyers’ interests and also the margins these products have. This goes in detriment of

just offering rankings based on relevance only and is directly linked to the current search neutrality debate.

1
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1. Introduction

The Internet occupies an increasingly important position in our daily lives. Electronic commerce,

in particular, has enabled marketplaces in which participants can buy, sell, or rent a huge variety

of objects and services in a very convenient way. Because the current Internet is a complex eco-

system of companies, there are various business models that have proved profitable. Among them,

we will specially focus on three specific classes: search engines (SE) such as Google, that allow

users to find content of their interest on the web, and use these transactions as a chance to sell

advertisement; online retailers such as Amazon.com that act as intermediaries between producers

and consumers; and classified ad websites such as eBay that allow sellers or service-providers, and

buyers or service-consumers, respectively, to meet and conduct transactions. To be profitable, those

marketplaces typically rely on one or more of the following revenue streams. In some cases, they

charge a commission equal to a percentage of the agreed price-tag (e.g., eBay or Airbnb). Some

marketplaces provide a basic service for free but charge sellers to display their classified ads in

premium locations or for additional time (e.g., leboncoin.fr in France, or Mercado Libre in Latin

America). In addition, they offer additional services such as insurance or delivery for a fee. Finally,

another common revenue source comes from third-party advertisers that display text or banners

within the pages of the marketplace in exchange for payment.

The common feature in all those platforms is that when a user connects to them and enters a

query or category, the site provides a list of relevant items that match what the user wants. To

provide value to users, it is crucial to present the relevant items in the platform in the correct

order so the user can find the most appropriate ones. Indeed, by presenting certain items first, the

site can boost users’ interest by increasing relevance. For example, eBay provides relevance-based

ranking, among other possibilities such as time until the end of the auction, distance, price, etc. The

details of how to assign a relevance value to a query vary depending on the intrinsic details of the

platform. For example, eBay may use the distance between the query string and item description

as well as the rating of the seller, Amazon may use the number of conversions for a product and

its quality, and Google may use PageRanks as inputs (Google 2011). How to define and compute

these indices has been the topic of several studies, especially in the case of SEs. Examples include

Avrachenkov and Litvak (2004), Austin (2006), Auction Insights (2008), Williams (2010). Since

our focus is finding the correct ranking and not how to compute those relevance indices, we assume

that they are given as part of the input.

Instead of sorting items by relevance, a platform could take a myopic approach to increase short-

term revenue by placing highly-profitable items in prominent positions. The purpose of our work is

to study the compromise that can be made by the platform when choosing how to order the items
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corresponding to a user query. The tradeoff is between maximizing the expected revenue that could

be obtained directly and indirectly from this request, and the long-term impact on the future arrival

rate of requests (which impacts future expected revenues). Our aim is to find an optimal ordering

in the long run, taking both effects into account. That is, to achieve a balance between both goals

when customers are quality-sensitive and their likelihood of visiting the platform is a function of

the perceived relevance. Our results provide optimal ranking policies with respect to long-term

revenue maximization. Also, we compare the optimal policy to other possible rankings—such as

those based on relevance only or those based on short-term revenue only—in terms of expected

revenue for the platform, expected revenue for the various content providers, and consumer welfare

(captured by the expected quality).

Note that most platforms display paid ads (usually referred to as sponsored search), in addition

to the regular output (usually referred to as organic search). The most common arrangement is that

advertisers pay the platform whenever users click on an ad. The payment amount is automatically

decided using a bidding process between the SE and all advertisers interested in that keyword. We

want to stress that our discussion applies to organic content, since sponsored search is handled

using an ad-hoc and well-studied procedure. Our choice relies in that sponsored links and their

ordering are much less likely to impact the future arrival rate of requests than the ranking of

organic links. We think it is quite reasonable to assume that the user satisfaction (and likelihood

to use the platform again) depends mostly on whether the user is pleased with what she finds

among the proposed organic links, and not on whether the ads that were displayed are relevant.

Actually, a big percentage of users is by now trained to not look at the portion of the screen that

displays the ads. Henceforth, our model assumes that the average arrival rate of search requests is

influenced by the average relevance of organic links, and not by the sponsored results given in the

ads section of the page. In the case of sponsored search results, the ordering of items is typically

determined by a generalized second price (GSP) auction. This mechanism is also used to fix the

price that advertisers pay to have their ads displayed. The mechanism orders ads from higher to

lower expected revenue (notice that the click-through-rate takes into account the relevance of the

ad). Precisely, that is the outcome at equilibrium of a GSP auction. For details of these mechanisms,

we refer the reader to Varian (2007), Edelman et al. (2007), Lahaie et al. (2007), Athey and Ellison

(2011), Maillé et al. (2012) and the references therein. Since it is not our focus, we abstract away

the sponsored search mechanism, and represent the total expected ad revenue (per user per visit)

by a fixed coefficient β. While there is an extensive literature on sponsored search, the impact of

using alternative rankings to classify organic links has not yet received a similar level of attention.

Most platforms employ unpublished and secret algorithms to rank relevant results, so it is any-

body’s guess what they do exactly. In the last couple of years, some SEs have been under scrutiny by
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individuals and organizations that oversee the Internet as well as by regulators in various countries

because some believe that the organic search ranking is not only done with respect to an objec-

tive measure of relevance but that some revenue-making ingredients also play a role (Crowcroft

2007). For example, it has been said that Google may favor YouTube and other of its own con-

tent because of the extra revenue it generates. This has been discussed even by the Federal Trade

Commission in the US (Brill 2013) and in a Senate hearing (Rushe 2012). It has also been amply

documented that search bias occurs in experiments (Edelman and Lockwood 2011, Wright 2012,

Maillé and Tuffin 2014). A search for a video in Google is likely to generate some organic links

to YouTube pages, which contain ads that directly benefit Google. Since videos in competitors’

platforms do not generate additional revenue, Google has a financial interest in the user to click

on YouTube content. Similarly, the expected revenue may increase if a link to a Google map is

included in the output instead of a link to MapQuest, Yahoo Maps, etc. There are many other

similar situations like this, including weather reports, movies and showtimes, product search, news

articles, and so forth. Heterogenous characteristics, including different ownership, can be captured

by explicitly associating each link within the organic output to the expected revenue attained when

somebody clicks on it, and using those expected revenues as input to find the optimal ordering.

The debate about whether SEs should or should not enter into these considerations when ranking

links is usually referred to as search neutrality and has ignited public interest (Crowcroft 2007,

Inria 2012). It relates to other policy debates regarding whether or how to regulate the Internet;

the most prominent example being network neutrality (see, e.g., Odlyzko (2009) for a discussion

about both issues). A neutral SE should only use relevance to construct its rankings, and ignore

the revenue parameter mentioned earlier. This would allow new entrants that perform well (i.e.,

that are commonly clicked) to be listed near the top of the list of organic search results. The risk

of a non-neutral ranking is that it may slow down innovation by favoring the incumbents that are

known to generate profits, thereby preventing new applications/content from being shown, and

hence to become known and successful.

Motivated by the fact that many of these platforms are public companies that strive to maximize

returns to stakeholders, and also considering the search neutrality debate, we study the impact of

ranking policies on platforms’ revenue, as well as on social welfare. The policies may range from

the extreme of being neutral (and hence only considering relevance) to being just profit-driven

(and hence giving prominence to links that generate the most profit). The main goal of this paper

is to develop a modeling framework that permits us to design tractable algorithms for computing

optimal ranking policies for the platform, assuming that customers are quality-sensitive and may

defect to competing platforms if they do not find what they are looking for. Surprisingly, as far

as we know, we are the first to provide an economic analysis of ranking policies, and to show how
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to design optimal policies from the perspective of the platform. The tools we develop can prove

useful to websites that want to fine-tune ranking policies to achieve long-term profitability. Since

SEs play an important role in our connected society by allowing end-users to access content and

applications without necessarily knowing of them, such revenue-maximizing strategies are directly

linked to the search neutrality debate. Hence, the framework we introduce can also be of high

interest to regulators who study the impact that search neutrality has on users and on overall

social welfare. This may allow regulators to determine if intervention is warranted, and to study

the consequences of doing so. In particular, our study may prove useful to provide arguments for

or against non-neutral SEs.

To capture that users are more or less likely to visit a platform depending on the long-term

reputation, in our model requests arrive at a rate that depends on the average relevance of displayed

links; the more relevant the expected results, the larger the number of visits. The expected revenue

is the rate of visits to each page, multiplied by the expected revenue per visit for that page, summed

over all possible pages. These quantities depend on the ranking policy, defined as a rule that assigns

a permutation of matching pages to each possible keyword. A ranking based only on immediate

revenue is generally suboptimal; it must also take into account the impact on relevance because

that affects the rate of visits since customers are quality-sensitive. For the purpose of this study,

we consider that the distributions of relevance and expected revenues for each page are known in

advance, so we consider them as inputs. (These distributions can be estimated empirically using

data available in the SEs’ and marketplaces’ servers. Although exploring this data is an interesting

direction of research, we leave this to follow-up work.)

Our main contribution is the characterization of the optimal stationary policy for the ranking

problem. We propose an algorithm that exploits the characterization of the optimal policy that

allows the SE to assign a scalar number to each matching item to then find the optimal ranking by

simple sorting. Our model is an infinite-horizon time-stationary sequential decision process that fits

the general framework of stochastic dynamic programming (DP), so one could think of using DP

methodology to characterize and compute an optimal ranking policy. However, a ranking policy in

general is a mapping which to each state of the system, assigns a permutation of all relevant links.

Since the state must contain (at least) the current request and the current arrival rate, the number

of states is huge, so computing and storing so many permutations appears impractical. Moreover,

this is not an ordinary discrete-time DP model because the arrival rate depends on the policy

that is used: the objective function is not additive and classical DP tools do not readily apply.

Fortunately, our characterization of the optimal policy, which is our main technical contribution,

resolves this issue. We draw some inspiration from the derivation of optimal ranking conditions
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proved via an interchange argument, in a DP setting, in Bertsekas (2005, Section 4.5). However,

our solution is more involved because of the impact of the policy on future arrivals.

While there are many other ‘simple’ heuristics that platforms may have selected to factor in

profitability in their algorithms, we show that the particular one that turns out to be optimal is

clear and simple. We think this is a nice insight that can inform platforms about how to better

position their results to tradeoff relevance with profits. Of course, the time-stationary modeling

assumption simplifies reality. But reputation is built over a large time-horizon and one can argue

that a stationary model is a reasonable way to capture that market dynamic. A model whose

parameters depend on time would give rise to complexities that go beyond the scope of this paper.

The rest of the article is organized as follows. Section 2 presents our modeling framework while

Section 3 explains how the ranking problem can be simplified so one does not need to consider the

exponentially-many possible orderings. Using the conditions presented there, we show how it suffices

for a SE to sort the pages with respect to a scalar number, coming from a linear combination of

relevance and revenue. Having characterized optimal rankings, in Section 4 we present an algorithm

that computes the correct linear combination of relevance and revenue, which enables the SE to

execute the sorting procedure. Section 5 discusses the impact that arises from an SE that takes a

middle ground between offering a search-neutral output and a myopic one considering only short-

term revenue. Finally, we offer conclusions in Section 6.

2. Model Formulation

In this section we provide the definition of the model we consider. For the presentation, we use the

context of a SE that receives keyword-based queries and generates a list of organic results using

links to relevant and/or profitable web pages. The model could be easily adapted to be used by

other marketplaces such as electronic retailers and classified-ad websites.

For each arriving request (i.e., a query sent to the SE by a user), different content providers

(CPs) host pages that are relevant. Out of a universe of m0 pages available online, we denote

by M ≤m0 the number of pages that match the arriving request. Each page i = 1, . . . ,M has a

relevance value Ri ∈ [0,1], and an expected revenue per click Gi ∈ [0,K] for the CP (here, K is a

positive constant) of which the SE receives a fraction αi ∈ [0,1]. Consequently, the SE’s expected

revenue per click from page i is αiGi. The SE might sometimes also be the CP for a subset of the

pages matching the request; in those cases αi = 1 because it receives all the revenue. Putting this

all together, the instance of the ranking problem corresponding to a given request is encoded by a

vector Y = (M,R1,G1, α1, . . . ,RM ,GM , αM) that we assume to belong to a universe of admissible

requests. After getting the request, the SE must select a permutation π= (π(1), . . . , π(M)) of the M

pages and use it to display links to those pages in order. A stationary ranking policy µ is a function
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that assigns a permutation π = µ(Y ) to each possible realization of Y . Except when otherwise

indicated, we shall only consider deterministic stationary policies, as opposed to randomized ones,

which map each Y to a probability distribution over the set of permutations of M elements.

The click-through-rate (CTR) of a link that points to a page is defined as the probability that the

user clicks on that link (Hanson and Kalyanam 2007, Chapter 8). This probability depends on the

relevance of the content but also on the position number where the link is displayed. We assume

that the CTR of the link to page i placed at position π(i) can be expressed as the (separable)

product of a position effect and a relevance effect. That is, CTR is given by

CTR(i) = θπ(i)ψ(Ri),

where 1 ≥ θ1 ≥ θ2 ≥ · · · ≥ θm0
> 0 is a non-increasing sequence of fixed positive constants that

describe the importance of each position in the ranking. The non-decreasing function ψ : [0,1]→
[0,1] maps the relevance to the (position-independent) probability of the page. The assumption

that the CTR is separable is pervasive in the e-Commerce literature (Varian 2007, Maillé et al.

2012). We will rely on it to derive simple optimality conditions. According to this assumption, to

increase the CTR, we can either choose a more relevant page or we can choose a position closer to

the top of the list.

Fixing a request Y and a permutation π, we now define the various objective functions we

shall consider. The local relevance captures the attractiveness of the ordering from the consumer’s

perspective. It is computed by

r(π,Y ) :=
M∑

i=1

CTR(i)Ri =
M∑

i=1

θπ(i)ψ(Ri)Ri =
M∑

i=1

θπ(i)R̃i, (1)

where R̃i :=ψ(Ri)Ri. The expected total revenue arising from the request equals

g0(π,Y ) :=
M∑

i=1

CTR(i)Gi =
M∑

i=1

θπ(i)ψ(Ri)Gi, (2)

out of which the SE receives

g(π,Y ) :=
M∑

i=1

CTR(i)αiGi =
M∑

i=1

θπ(i)ψ(Ri)αiGi =
M∑

i=1

θπ(i)G̃i, (3)

where G̃i := αiψ(Ri)Gi.

To obtain an optimal ranking policy, we must consider that since customers are quality-sensitive,

the choice of policy µ(·) influences the future arrivals of customers. This has deep implications

because a myopic policy for the SE (i.e., choosing µ(Y ) ∈ arg maxπ g(π,Y ) for each Y ) does not

suffice to achieve optimality. To capture the dependence on future end-users that arrive to the SE,
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we consider the multivariate distribution of the input requests Y . Each request is then interpreted

as a realization of Y according to that distribution.

We estimate the long-term value induced by a stationary ranking policy µ by taking expectations

of the objectives presented earlier with respect to the distribution of input requests. Therefore, the

expected relevance per request is

r := r(µ) =E[r(µ(Y ), Y )], (4)

the expected total revenue per request is

g0 := g0(µ) =E[g0(µ(Y ), Y )], (5)

and the expected SE revenue per request is

g := g(µ) =E[g(µ(Y ), Y )]. (6)

In the three previous definitions, the expectation is taken with respect to the random variable Y .

As discussed in the introduction, a non-myopic SE would be interested in the expected long-run

revenue. This must depend on both the expected relevance per request r and on the expected SE

revenue per request g. We capture the two dependencies through the general function

USE =ϕ(r, g), (7)

where ϕ is an increasing function of r and g with bounded second derivatives over [0,1]× [0,K].

An optimal policy from the perspective of the SE is a stationary ranking policy µ that maximizes

USE.

We are going to pay special attention to the class of ranking policies that sort the M pages

by decreasing order of their value of R̃i + ρG̃i, for a given constant ρ > 0. We refer to such a

policy as a linear ordering (LO) policy with ratio ρ (or LO-ρ policy, for short). In fact, if θk = θk+1,

the ordering at positions k and k + 1 does not matter, and we still say that we have an LO-ρ

policy regardless of the order at these positions. When ρ = 0, the ordering is based only on R̃i,

whereas in the limit as ρ→∞, the ordering is based only on G̃i. We show below that under mild

conditions on the distribution of queries Y , an optimal policy µ∗ coincides with an LO-ρ policy for

a specific value of ρ that we will characterize. We also highlight that specifying ρ is not enough

to uniquely characterize an optimal policy in the case when several R̃i + ρG̃i may be equal with

positive probability.

The objective function (7) is very general, and the assumptions written after its definition are

enough to develop our theoretical analysis. In practice ϕ(r, g) usually takes the form of an (average)
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arrival rate of requests multiplied by an expected revenue per request. To develop intuition, the

examples we provide below have more structure, as we now describe. We assume that search

requests arrive according to a (Poisson) process of (constant) rate λ(r), where λ : [0,1]→ [0,∞) is

an increasing, positive, smooth (continuously differentiable), and bounded function. Its argument

r is the average relevance corresponding to the policy in use, as defined in (4). Each time the SE

receives a search request, it gets a revenue β in expectation from the third-party advertisement

displayed in the page. Hence, the expected SE advertisement revenue per time unit is βλ(r), which

depends on the ranking policy only via r. The main assumption here is that average relevance in

organic research drives reputation. Paid search is not going to drive users (significantly) to the

website in the long term so the two mechanisms (organic and sponsored) co-exist without much

interference between them. On top of this, and as discussed earlier, we assume that the SE receives

a proportion of the CP revenue, totalling λ(r)g. Putting it all together, the total expected SE

revenue per unit time in our examples is

USE = λ(r)(β+ g). (8)

This expression is increasing in r and in g. When αi = 0 for all i, g= 0 and the SE’s best interest is

being neutral to just maximize r, i.e., to rank based on relevance. Otherwise, if g > 0, the SE may

be interested in selecting permutations that increase g even if this decreases r a bit. The larger

the αi’s, the stronger the incentive of the SE to consider non-neutral ranking policies. In the next

sections, we characterize optimal strategies and develop algorithms to compute or approximate

them.

3. Optimality Conditions for Ranking Policies

In this section we derive optimality conditions on the permutation π = µ(Y ) associated with any

given request vector Y . Later, these conditions will be used to develop computational algorithms

that can provide a ranking for each Y . We first develop approximate necessary optimality conditions

under the assumption that Y has a discrete distribution. Then we show that these conditions

must hold in the limit if we assume that each Y has a negligible probability, that is, if Y is a

continuous random variable with a density. Under further assumptions, these necessary conditions

determine the optimal policy uniquely, up to a set of realizations Y of measure 0. This provides

simple, approximate optimality conditions for the situation where the current request Y has a

small probability, small enough that changing π in the local relevance r(π,Y ) can only bring a

small change to r and g.
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3.1. Necessary Optimality Conditions Under a Discrete Distribution for Y

Let us first suppose that Y has a discrete distribution p(y) = P[Y = y]. Assume that µ is an

optimal policy, with r and g the associated objectives. Since µ is optimal, for any y, permuting

two successive elements in π = µ(y), say at positions k and k+ 1, must not increase the expected

long-term revenue. Let δ = π−1, the inverse permutation to π. Then the numbers of the pages at

positions k and k + 1 are δ(k) and δ(k + 1). Let ∆θ = θk − θk+1 ≥ 0. Switching the two pages at

positions k and k+ 1 will permute the vectors (R̃δ(k), G̃δ(k)) and (R̃δ(k+1), G̃δ(k+1)) in (1) and (3).

The changes on r and g resulting from this switch would be

∆r= (R̃δ(k+1)− R̃δ(k))∆θ p(y)

and

∆g= (G̃δ(k+1)− G̃δ(k))∆θ p(y).

The corresponding change in USE is

∆USE = ϕ(r+ ∆r, g+ ∆g)−ϕ(r, g) =ϕr(r, g)∆r+ϕg(r, g)∆g−O((|∆r|+ |∆g|)2),

where ϕr and ϕg are the partial derivatives of ϕ with respect to r and g, respectively. The optimality

of π (or equivalently of δ) implies that this change on USE cannot be positive, so we must have

ϕr(r, g)∆r+ϕg(r, g)∆g ≤ O((|∆r|+ |∆g|)2),

yielding, whenever ∆θ p(y)> 0,

ϕr(r, g)(R̃δ(k+1)− R̃δ(k)) +ϕg(r, g)(G̃δ(k+1)− G̃δ(k)) ≤ O(∆θ p(y))

since R̃· and G̃· are bounded. This can be rewritten as

ϕr(r, g)R̃δ(k+1) +ϕg(r, g)G̃δ(k+1) ≤ ϕr(r, g)R̃δ(k) +ϕg(r, g)G̃δ(k) +O(∆θ p(y)), (9)

which must hold for all y and all k for which ∆θ p(y)> 0. If ∆θ p(y) = 0, there is no change on ∆r

or ∆g, so the order at positions k and k+ 1 does not matter.

For every pair (r, g), we set

h(r, g) :=
ϕg(r, g)

ϕr(r, g)
, (10)

for which we assume that ϕr(r, g)> 0. Using this notation, if p(y)� 1 and we decide to neglect the

O(∆θ p(y)) term in (9), we obtain the following (approximate) necessary optimality conditions:

When θk > θk+1, we must have

R̃δ(k+1) +h(r, g)G̃δ(k+1) ≤ R̃δ(k) +h(r, g)G̃δ(k). (11)
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These necessary conditions tell us that if µ is an optimal policy and if the O(∆θp(y)) terms can

be neglected, then µ must be an LO-ρ policy with ratio ρ= h(r, g).

For the special case of the running examples introduced in the previous section, we have ϕ(r, g) =

λ(r)(β+ g), which implies that ϕr(r, g) = λ′(r)(β+ g), ϕg(r, g) = λ(r), and

h(r, g) =
λ(r)

λ′(r)(β+ g)
. (12)

The conditions in (11) suggest that in a search for a (near-)optimal policy, we may restrict

ourselves to LO-ρ policies and try to optimize the value of ρ. This may appear simple at first

sight, but there are potential difficulties with this plan. First, the O(∆θp(y)) term may be non-

negligible, when p(y) is not very small. Second, finding the optimal ρ is not necessarily obvious

or easy. Third, fixing ρ does not necessarily determine a unique policy, because there might be

equalities in (11) and then the selected order might still matter. Fourth, when such equalities

happen, there are situations where the optimal policy must be randomized (e.g., select one order

with some probability p and the other with probability 1−p; see below). Fifth, the conditions (11)

are necessary for an optimal policy, but perhaps not sufficient. The following example illustrates

those difficulties.

Example 1. We consider an instance with two pages and a unique request. The input data consists

of Y = (M,R1,G1, α1,R2,G2, α2) = (2,1,0,0,1/5,8,1/4) with probability 1, ψ(R) = 1 for all R,

λ(r) = r, β = 1, and (θ1, θ2) = (1,1/2). Replacing in the objective, we have ϕ(r, g) = r(1 + g).

At each request, we must select a ranking, either (1,2) or (2,1). Suppose that instead of always

selecting the same ranking for all requests, we adopt a policy that selects the ranking (1,2) with

probability p and (2,1) with probability 1− p. We want to find the optimal value of p ∈ [0,1]. For

this randomized policy, we compute

r = p(θ1R1 + θ2R2) + (1− p)(θ1R2 + θ2R1) = (7 + 4p)/10,

g = p(θ1α1G1 + θ2α2G2) + (1− p)(θ1α2G2 + θ2α1G1) = 2− p,

ϕ(r, g) = r(1 + g) = (7 + 4p)(3− p)/10 = (21 + 5p− 4p2)/10.

The objective function is quadratic and it attains its maximum at p∗ = 5/8. Evaluating, r= 19/20,

g = 11/8, and ϕ(r, g) = 361/160. Note that by taking p= 0 we get 21/10 = 336/160 and by taking

p = 1 we get 22/10 = 352/160. This clearly shows that randomized ranking policies can perform

better than deterministic ones.

Here we have h(r, g) = r/(1+g) = (7+4p)/(10(3−p)). With the optimal p∗ = 5/8, this expression

evaluates to h(r, g) = 2/5. If we consider the LO-ρ rule with ρ = ρ∗ = 2/5, we have R̃1 + ρ∗G̃1 =

R̃2 + ρ∗G̃2 = 1. So with the ρ∗ that corresponds to the optimal randomized policy, the ordering
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conditions are always satisfied, regardless of the order, because the two linear expressions are equal.

On the other hand, this ρ∗ is not sufficient to determine the optimal policy! Any policy satisfies

the ordering conditions with ρ= ρ∗, but is not necessarily optimal. Moreover, as mentioned earlier,

none of the two possible deterministic policies is optimal.

If we adopt an LO-ρ policy with ρ 6= ρ∗, then the choice of ρ defines the policy uniquely, but this

policy is not optimal either. Indeed, if ρ < 2/5, then we always take the order (1,2), which gives

r= 11/10, g= 1, and h(r, g) = 11/20> 2/5, so the LO rule with ρ= h(r, g) tells us to always select

the order (2,1). Reciprocally, if we always select the order (2,1), we obtain h(r, g)< 2/5 and the

LO rule with ρ= h(r, g) always tells us to select the order (1,2). Thus, we cannot guarantee the

existence of optimal rankings with deterministic policies. �

Perhaps one could argue that the problem of this example comes from the fact that the instance

is deterministic so p(Y ) = 1. In fact, this is not the case. It is always possible to construct request

densities that assign small probabilities p(y) to all request realizations y. This can be done by split-

ting artificially each possible realization of Y into an arbitrary large number of subrealizations, say

`, each one having probability p(y)/`. Conceptually, one would achieve this by adding one artificial

component to Y to obtain an extended vector Y ′ whose added component only identifies what

subrealization we have. In this case, the ranking policy could output different rankings according

to the subrealization Y ′ that was drawn. In other words, different permutations π can be selected

for the same (original) realization Y . In the limit when `→∞, this mechanism effectively mimics a

randomized ranking policy, where for any given realization Y , each permutation π is selected with

a given probability. This randomized ranking policy is effectively specified as a deterministic policy

in terms of the extended vector Y ′, which in the limit when `→∞ has a density (the artificial

extra component has a continuous distribution).

Inspired by these observations, in the next subsection we study a framework in which Y is

assumed to have a continuous distribution. This can be seen as an approximation when the set of

possible request inputs is a huge set and each p(y) is increasingly small. We will provide conditions

under which there is a non-randomized optimal policy, and then show how it can be computed.

3.2. Approximation by a Continuous Distribution for Y

In this section, we extend the discussion to include continuous distributions for the input requests.

We let Y be a continuous random vector, with probability measure ν over the class Ω of Borel

subsets of vectors Y = (M,R1,G1, α1, . . . ,RM ,GM , αM) where M ∈ {1, . . . ,m0} and (Ri,Gi, αi) ∈
[0,1]× [0,K)× [0,1] for each i. We assume that it has a (finite) density function f . That is, for

each D ∈ Ω, ν(D) =
∫
D
f(y)dy. Then, if ν(D)> 0, we can always select D̃ ⊂D, D̃ ∈ Ω, such that

ν(D̃) is positive and arbitrary small.
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Suppose that µ is an optimal policy, with its corresponding r and g, and that we change µ into

µ′ by permuting the two successive elements at positions k and k + 1 in µ(y), for all y ∈D, for

some fixed D ∈Ω. Note that µ(y) might not be the same for all y ∈D. Let δ(k)(y) and δ(k+ 1)(y)

be those page numbers at positions k and k + 1 in µ(y), for each y. Switching those two pages

permutes the vectors (R̃δ(k)(y), G̃δ(k)(y)) and (R̃δ(k+1)(y), G̃δ(k+1)(y)), for all y ∈D. The changes on r

and g coming from this switch are

∆r=

∫

D

(R̃δ(k+1)(y)− R̃δ(k)(y))∆θf(y)dy

and

∆g=

∫

D

(G̃δ(k+1)(y)− G̃δ(k)(y))∆θf(y)dy.

Since ∆θ≤ 1, Ri ∈ [0,1], ψ(Ri)∈ [0,1], Gi ∈ [0,K], and αi ∈ [0,1], these changes satisfy |∆r| ≤ ν(D)

and |∆g| ≤Kν(D). The corresponding change on ϕ is

∆USE = ϕr(r, g)∆r+ϕg(r, g)∆g+O((|∆r|+ |∆g|)2). (13)

We now rigourously define the linear ordering policies with ratio ρ that were mentioned in

Section 2, and establish that optimal ranking policies belong to that category for a specific value

of ρ.

Definition 1. A policy µ is called an LO-ρ policy if for almost all Y (with respect to the measure

ν), µ sorts the pages by decreasing order of R̃i + ρG̃i, except perhaps at positions k and k + 1

where θk = θk+1, at which the order can be arbitrary. That is, whenever θk > θk+1, one must have

R̃δ(k+1)(Y ) + ρG̃δ(k+1)(Y ) ≤ R̃δ(k)(Y ) + ρG̃δ(k)(Y ). (14)

Proposition 1. If the tuple (r, g) corresponds to an optimal policy, then this policy must be an

LO-ρ policy with ρ= h(r, g).

Proof. The proof is by contradiction. Take a k such that ∆θ := θk− θk+1 > 0, and suppose that

there exists ε > 0 and D ∈Ω such that ν(D)> 0 and

ϕr(r, g)R̃δ(k+1)(Y ) +ϕg(r, g)G̃δ(k+1)(Y ) >ϕr(r, g)R̃δ(k)(Y ) +ϕg(r, g)G̃δ(k)(Y ) + ε

for all Y ∈D. Then,

εν(D) ≤
∫

D

[
ϕr(r, g)R̃δ(k+1)(y) +ϕg(r, g)G̃δ(k+1)(y)−ϕr(r, g)R̃δ(k)(y)−ϕg(r, g)G̃δ(k)(y)

]
f(y)dy

= (ϕr(r, g)∆r+ϕg(r, g)∆g)/∆θ.
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The current policy being optimal, performing the permutation of positions k and k + 1 over D

can only reduce the revenue, i.e., ∆USE ≤ 0. From (13), for ν(D) sufficiently small there exists a

constant C such that

ϕr(r, g)∆r+ϕg(r, g)∆g≤C((|∆r|+ |∆g|)2)≤C(1 +K)2ν2(D).

Therefore, ν(D)≥ ε∆θ/ (C(1 +K)2). This also holds for D replaced by any D̃⊂D with D̃ ∈Ω. By

taking D̃⊂D small enough so that ν(D̃)< ε∆θ/ (C(1 +K)2), we obtain a contradiction. Therefore,

(14) must hold with ρ= h(r, g) for all Y except perhaps over a set of measure zero. �
Proposition 1 tells us that any optimal policy must satisfy the LO-ρ conditions for ρ= h(r, g).

But we need further assumptions to make sure that this specifies an optimal policy. In the rest of

this section, we assume that the following condition holds.

Assumption A. For any ρ≥ 0, and any j > i > 0, P[M ≥ j and R̃i + ρG̃i = R̃j + ρG̃j] = 0. �

One example of a sufficient condition for this assumption to hold is that each pair (R̃i, R̃j) has a

bivariate density with no probability mass concentrated on a set of Lebesgue measure zero in two

dimensions (such as a line, for example).

Under Assumption A, for any fixed ρ ≥ 0, there is an LO-ρ policy µ = µ(ρ) that sorts almost

any Y ∈Ω (i.e., there is a unique order with probability 1). This ranking policy has corresponding

values of (r, g) = (r(µ), g(µ)) and of h(r, g) that are uniquely defined. To refer to h(r, g) as a function

of ρ, we write h̃(ρ). From Proposition 1, if µ is the optimal policy, then ρ must be a fixed point

of h̃. Indeed, one must have ρ= h(r(µ(ρ)), g(µ(ρ))) = h̃(ρ). The next proposition says that under

certain conditions such a fixed point exists and is unique.

Proposition 2. (i) If h(r, g) is bounded over [0,1]× [0,K], then the fixed-point equation

h̃(ρ) = ρ (15)

has at least one solution in [0,∞).

(ii) If the derivative h̃′(ρ)< 1 for all ρ> 0, then the solution is unique.

Proof. (i) If h̃(0) = 0, then ρ= 0 is already a solution. Otherwise, we have h̃(0)> 0 and h̃(ρ)≤K ′

for all ρ ≥ 0 for some constant K ′. In particular, h̃(K ′) ≤K ′. Since h̃ is a continuous function,

there must be at least one point ρ∈ [0,K ′] at which h̃(ρ) = ρ.

(ii) The slope of the function h̃(ρ) is always less than 1, so it cannot cross the line f(ρ) = ρ more

than once. �
Going back to the special case of our running examples where ϕ(r, g) = λ(r)(β+g), Proposition 2

becomes:
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Proposition 3. Suppose ϕ(r, g) = λ(r)(β+ g).

(i) If λ(r)/λ′(r) is bounded for r ∈ [0,1] and β + g(0) > 0, then (15) has at least one solution in

[0,∞).

(ii) If λ(r)/λ′(r) is also non-decreasing in r, then the solution is unique.

Proof. (i) In this case, we have

h̃(ρ) =
λ(r(µ(ρ)))

λ′(r(µ(ρ)))(β+ g(µ(ρ)))
.

Note that g(µ(ρ))≥ g(µ(0)) for all ρ≥ 0. Therefore, the conditions in (i) imply that h̃(ρ) is bounded

and we can apply Proposition 2 (i).

(ii) If λ(r)/λ′(r) is non-decreasing in r, then it is non-increasing in ρ since r(µ(ρ)) is non-

increasing in ρ. Additionally, since we know that g(µ(ρ)) is non-decreasing in ρ, it follows that h̃(ρ)

is non-increasing in ρ, so h̃′(ρ)≤ 0 and we can apply Proposition 2 (ii). �
The condition that λ(r)/λ′(r) is non-decreasing, in (ii), is actually a bit stronger than what we

need to satisfy the condition of Proposition 2 (ii). To illustrate when this condition is satisfied, take

λ(r) = a0 + b0 ln(c0 + r) for some constants a0 ≥ 0, b0 > 0, and c0 ≥ 1. Then, λ′(r) = b0/(c0 + r), and

therefore λ(r)/λ′(r) = [a0 + b0 ln(c0 + r)](c0 + r)/b0, which is bounded and increasing in r ∈ [0,1].

Other simple cases where the condition holds are the monomial forms λ(r) = a0r
b0 for any positive

values a0 and b0; which includes the case λ(r) = r considered in several examples in this paper.

When α= 0, we immediately find ρ∗ = 0 and Proposition 3 simplifies to the following intuitive

result, which establishes that it is optimal for the SE to rank according to relevance. In this case,

the SE has the incentive to conform to search neutrality.

Corollary 1. If ϕ(r, g) = λ(r)β, so g= 0, an optimal ranking policy must always sort the pages

by decreasing value of R̃i. �

The value of r obtained under this ordering, say r0, is the maximal possible value, so we always

have r ∈ [0, r0].

We conclude the section by offering an example that establishes that having a density for Y is

not sufficient for the optimal policy to be deterministic and uniquely defined by ρ∗.

Example 2. Starting from Example 1, we add a third page with relevanceR3 uniformly distributed

over [0, ε] for some small ε > 0, and revenue G3 = 0. We assume that θ3 = 1/4. Since R3 has a

density, p(y) = 0 for all y ∈ Ω. For any ρ > 0, if ε is small enough, this third page will always be

ranked last, and its impact on h(r, g) is very small. Then the problem of ranking the first two pages

becomes the same as Example 1, which means that the optimal policy must be randomized.
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3.3. Some Illustrative Examples of our Methodology

This section provides two examples that, although simple and stylized, capture some features of the

search market in the real world. The first example can model an SE that has content that competes

with third-party CPs. Imagine that Google receives a video-search request and there are two pages

that match the search; the first is from YouTube, owned by Google, while the second belongs to

a competitor such as Dailymotion. Google’s revenue generated by the YouTube page is positively

correlated with the page relevance because of higher advertisement revenue and higher YouTube

perception. Instead, Google’s revenue generated by the Dailymotion page is negatively correlated

with the page relevance because the more relevant, the more it diverts traffic from YouTube.

To simplify the exposition, we assume in all our illustrative examples that ψ(R) = 1, i.e., that

the CTR depends only on the position of the page, but this assumption is by no means necessary

or realistic, and it does not really make the computations much faster or easier. We also assume

that ϕ(r, g) = λ(r)(β+ g).

Example 3. Consider an instance with two pages where R1 and R2 are independent and uniformly

distributed over [0,1], G1 =R1, G2 = 1−R2, and α1 = α2 = α. In addition, we let λ(r) = r, θ1 = 1,

θ2 = 0, ψ(R) = 1, and ϕ(r, g) = λ(r)(β+ g). We also define ρ̃ := αρ.

At the optimal ρ, Page 1 will be ranked before Page 2 if and only if R1 + ρ̃G1 >R2 + ρ̃G2; i.e.,

on the domain

D=

{
(R1,R2) :R1 >

ρ̃

1 + ρ̃
+R2

1− ρ̃
1 + ρ̃

}
,

We define D̄ := [0,1]2 \D. Then, since

0<
ρ̃

1 + ρ̃
≤ ρ̃

1 + ρ̃
+R2

1− ρ̃
1 + ρ̃

≤ 1

1 + ρ̃
< 1,

we find that the LO-ρ policy gives

r =

∫

D

r1dr1dr2 +

∫

D̄

r2dr1dr2

=

∫ 1

0

∫ 1

ρ̃+r2(1−ρ̃)
1+ρ̃

r1dr1dr2 +

∫ 1

0

∫ ρ̃+r2(1−ρ̃)
1+ρ̃

0

r2dr1dr2

=
2

3
− ρ̃2

6(1 + ρ̃)2

and

g/α=

∫

D

r1dr1dr2 +

∫

D̄

(1− r2)dr1dr2

=
1

3
+

ρ̃

6(1 + ρ̃)2
+

∫

D̄

dr1dr2−
1

6
− 1

6(1 + ρ̃)

=
2

3
− 1

6(1 + ρ̃)2
.
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Figure 1 Expected SE Revenue in terms of ρ when α= β = 1

The SE revenue is thus

USE = r(β+ g) =

(
2

3
− ρ̃2

6(1 + ρ̃)2

)(
β+

2α

3
− α

6(1 + ρ̃)2

)

=
αρ̃2/36− (3β+ 2α)ρ̃2(1 + ρ̃)2/18−α(1 + ρ̃)2/9

(1 + ρ̃)4
,

which we want to maximize over ρ̃≥ 0. Taking the derivative with respect to ρ̃ and setting it to 0,

we get the following equation, whose root divided by α (since ρ̃= αρ) provides us with ρ∗:

(3β+ 2α)ρ̃3 + (6β+ 5α/2)ρ̃2 + (3β− 5α/2)ρ̃− 2α= 0.

It follows from Proposition 3 (ii) that this ρ∗ is unique. Moreover, Assumption A is satisfied, so ρ∗

defines the order uniquely with probability 1.

To complete this example numerically, let us take α= β = 1. Then, ρ∗ is the unique positive root

of 5ρ3 + 17ρ2/2 + ρ/2− 2, which is ρ∗ ≈ 0.412149553. Figure 1 shows the expected SE revenue for

this example, as a function of ρ. One can also compute that for ρ= ρ∗, we have r= 0.6524696521

and g= 0.583089554, and then h(r, g) = r/(1 + g) = 0.412149553 = ρ∗, as expected. �

In our next example, we consider payments that are all-or-nothing, where the SE gets a revenue

when it is also the CP serving the corresponding page. Otherwise, the SE does not have any

financial gain when showing the link to the page. An alternative interpretation of this example is

that content, instead of being served by the SE, is served by CPs some of whom agree to pay the

SE a fixed price, normalized to 1, for each click to their pages served from the SE’s output. That

price is not tied to a fixed position for the link; it just provides an incentive so the SE favors links

with Gi = 1 in its ranking.
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Example 4. Consider an instance with two pages (M = 2) where revenues Gi can only take values

0 and 1. Indeed, for i= 1,2, Gi is a Bernoulli random variable with parameter p, Ri has a uniform

distribution over [0,1] independent of Gi, and αi = 1. We let (θ1, θ2) = (1,0), λ(r) = r, ψ(R) = 1,

and ϕ(r, g) = λ(r)(β+ g). Note that this is equivalent to saying that only one page is displayed in

the search output.

The density of Y is a mixture of two uniforms, which verifies Assumption A. Focusing on LO-ρ

policies, we derive explicit formulas for r= r(ρ), g= g(ρ), and ϕ(r(ρ), g(ρ)). The fixed point ρ∗ can

be computed from them. To start, we compute the average relevance r= r(ρ). We distinguish two

cases for the vector ((R1,G1), (R2,G2)):

1. If G1 =G2, only the most relevant link is displayed, resulting in conditional expected relevance

E[max(R1,R2) |G1 =G2] = 2/3.

2. If G1 6= G2, we can assume (possibly by swapping the roles of pages 1 and 2) that G1 = 1

and G2 = 0. If R1 + ρ ≥ R2, link 1 is displayed and the observed relevance is R1; otherwise, the

observed relevance is R2. Note that if ρ> 1, link 1 is always shown, leading to an expected observed

relevance of 1/2. If ρ≤ 1, the expected relevance conditional on (G1,G2) is

E[R11l{R1+ρ>R2}+R21l{R1+ρ≤R2} |G1 = 1,G2 = 0] =

∫ 1

r1=0

∫ 1

r2=0

r11l{r1+ρ>r2}+ r21l{r1+ρ≤r2}dr2dr1

=
2

3
− ρ

2

2
+
ρ3

3
.

Combining the four possibilities for (G1,G2), the overall expected relevance for the LO-ρ policy is

r= r(ρ) =
2

3
+ p(1− p)ρ̄2

(
2ρ̄

3
− 1

)
, (16)

where ρ̄ := min(1, ρ).

Similarly, to compute the expected revenue g= g(ρ) per request, we consider two cases:

1. If G1 =G2, the expected revenue is 0 if G1 = 0, and 1 otherwise.

2. If G1 6= G2, we can assume again that G1 = 1 and G2 = 0. Again, if ρ > 1, link 1 is always

shown and the revenue is 1. If ρ≤ 1, the expected revenue conditional on (G1,G2) is

E[1l{R1+ρ>R2} |G1 = 1,G2 = 0] =

∫ 1

r1=0

∫ 1

r2=0

1l{r1+ρ>r2}dr2dr1

= 1− (1− ρ)2

2
.

Regrouping all cases, we obtain

g= g(ρ) = p2 + 2p(1− p)
(

1− (1− ρ̄)2

2

)
. (17)
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Note that both r(ρ) and g(ρ) are constant for ρ≥ 1, so we can reduce the search for an optimal

ρ to the interval [0,1], and in that interval ρ̄= ρ. With λ(r) = r, the expected revenue per unit of

time is USE(ρ) = r(ρ) · (β+ g(ρ)), which equals
(

2

3
+ p(1− p)ρ2

(
2ρ

3
− 1

))
·
(
β+

(
p2 + 2p(1− p)

(
1− (1− ρ)2

2

)))
.

Figure 2 depicts the expected revenue as a function of ρ, along with r(ρ) and g(ρ), for β = 1 and

p= 1/2. While g(ρ) increases and r(ρ) decreases with ρ, the maximal revenue is obtained by taking

ρ around 0.4. This optimal ρ uniquely determines the optimal policy (with probability 1). �

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

ρ

Revenue USE(ρ)

Relevance r(ρ)

Gain g(ρ)

Figure 2 Expected SE revenue per unit time for β = 1 and p= 1/2

The previous example illustrates that to appropriately solve the tradeoff between short-term

revenue coming from payments and long-term revenue coming from more exposure due to higher

relevance, one must place an appropriate weight on short-term revenues and on relevance (the

former being around 40% of the latter in our example). This will provide short-term benefits to

the SE without impairing its possibility to attract future users.

4. Finding Optimal Rankings by Computing ρ∗

In this section, we discuss how to find the optimal ρ∗ that allows the SE to determine the revenue-

maximizing ranking easily. Proposition 1 shows that to achieve an optimal revenue, the SE should

rank the items in the request Y by decreasing order of R̃i + ρG̃i, for a properly chosen ρ= h(r, g).

But ρ depends on r and g, which in turn depend on the selected policy µ and are unknown a-priori.

Moreover, typically, this dependence is not expressed in a closed-form formula. In the examples

of Section 3.3, we were able to derive explicit analytical expressions for r(ρ) and g(ρ), and use

them to find the optimal ρ. Unfortunately, instances of real size do not admit such closed-form
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derivations and they would usually have to be estimated through simulation. This motivates the

following stochastic root-finding problem: estimate a root of h̃(ρ)−ρ= 0 when only noisy estimates

of h̃ can be obtained, via simulation. Several algorithms have been designed and studied for this

type of problem; see, e.g., Pasupathy and Kim (2011) and the references therein. We assume that

a root exists and is unique.

An estimator ĥn(ρ) of h̃(ρ) at any given value of ρ can be defined and computed as fol-

lows. We generate n independent realizations Y1, . . . , Yn of Y , with Yi = (Mi,Ri,1,Gi,1, αi,1, . . . ,

Ri,Mi
,Gi,Mi

, αi,Mi
). For each i, we order the triples (Ri,k,Gi,k, αi,k) by decreasing order of R̃i,k +

ρG̃i,k, and we compute ri(ρ) =
∑Mi

k=1 θkR̃i,δ(k) and gi(ρ) =
∑Mi

k=1 θkG̃i,δ(k). Unbiased estimators of

r(ρ) and g(ρ) are then r̂n(ρ) = (1/n)
∑n

i=1 ri(ρ) and ĝn(ρ) = (1/n)
∑n

i=1 gi(ρ), respectively. They

lead to the estimator

ĥn(ρ) =ϕ(r̂n(ρ), ĝn(ρ)), (18)

which is generally biased for finite n when ϕ is nonlinear, but is consistent, and the bias typically

decreases as O(1/n) (Asmussen and Glynn 2007). For the special case where ϕ(r, g) = λ(r)(β +

g), this gives ĥn(ρ) = λ(r̂n(ρ))(β + ĝn(ρ)). A confidence interval for h̃(ρ) can be computed using

the Delta method (Asmussen and Glynn 2007), under the assumption that r̂n(ρ) and ĝn(ρ) have

(approximately) a normal distribution.

When searching for a root of h̃(ρ)−ρ, or if we want to estimate the function h̃ over some interval,

we need to compute ĥn(ρ) at many values of ρ. This can be done using common random numbers

(CRN), which means that we use exactly the same n realizations Y1, . . . , Yn at all values of ρ at

which we perform a function evaluation, or using independent random numbers (IRN), in which

case we draw a fresh independent sample Y1, . . . , Yn at each ρ where we estimate h̃(ρ). In the CRN

case, ĥn(ρ) becomes a deterministic function of ρ and this function typically varies much less than in

the IRN case. The sample average optimization method consists in optimizing this sample function

ĥn(ρ) defined with CRNs. However, for any fixed n, this sample function is piecewise-constant in

ρ, because it depends on ρ only via the selected permutation for each i, and therefore only takes a

finite number of values as a function of ρ. As a result, its derivative is zero almost everywhere and

(in general) ĥn(ρ)− ρ has no exact root. Therefore, the best we can do for fixed n is to compute

an approximate root ρ̂∗n of ĥn(ρ) − ρ, and for this, any method that relies on the derivative of

ĥn(ρ) must be ruled out. We can compute the approximate root either by a method that does not

rely on derivatives (such as binary search), or by a derivative-based method (e.g., a Newton-type

method) by approximating the derivative with finite differences. Thus, we can compute ρ̂∗n such

that εn = |ĥn(ρ̂∗n)− ρ̂∗n| is small, and do this for an increasing sequence of values of n, in a way that

εn→ 0 when n→∞. This is possible under the assumption that ĥn→ h̃ uniformly when n→∞,
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which usually occurs with CRNs (under mild conditions). For each considered sample size n, we

would use the approximate root ρ̂∗n as a starting point when finding the approximate root for the

next (larger) value of n.

Another approach is to use a Robbins-Monro-type stochastic approximation (SA) iterative

method; see Pasupathy and Kim (2011) for an overview and convergence results. For the situation

where h̃(ρ)− ρ is decreasing in ρ, SA starts from some ρ0 and generates iterates of the form

ρj+1 = ρj + aj(ĥnj (ρj)− ρj), (19)

where ĥnj (ρj) is an estimate of h̃(ρj) based on sample size nj. These estimates are independent

across values of j, and {aj, j ≥ 0} is a slowly-decreasing sequence such that
∑∞

j=0 aj =∞ and
∑∞

j=0 a
2
j <∞. Note that there is no need to have nj →∞; one can take nj as a small constant

independent of j. If we replace aj by the inverse derivative 1/(h̃′(ρj)−1) and the estimate of h̃(ρj)

by its exact value, we obtain the Newton method, which usually converges much faster, but requires

knowledge of the function and of its derivative (or accurate estimators and nj →∞), in contrast

to SA. On the other hand, without a good choice of the aj’s, SA might converge extremely slowly.

If we replace aj by 1 in (19), we obtain

ρj+1 = ρj + (ĥnj (ρj)− ρj) = ĥnj (ρj). (20)

If nj →∞, this iteration becomes equivalent in the limit to the mapping ρ→ h̃(ρ). Recall that

ρ→ h̃(ρ) is a contraction mapping if there is a constant γ ∈ [0,1) such that

|h̃(ρ)− h̃(ρ′)| ≤ γ|ρ− ρ′|

for all ρ, ρ′ ≥ 0. A sufficient condition for this to hold is that |h̃′(ρ)| ≤ γ for all ρ (in the region of

interest). When this holds, we can start from some ρ0 > 0 and iterate: ρj+1 = h̃(ρj), for j = 1,2, . . . .

Then, the fixed-point theorem for contraction mappings (Bertsekas and Shreve 1978) guarantees

that ρj→ ρ∗ at a geometric rate: |ρj−ρ∗| ≤ γj|ρ0−ρ∗|, which provides very fast convergence when

γ� 1. In practice, we can replace h̃(ρj) by ĥnj (ρj), and convergence to ρ∗ will occur if nj →∞
when j →∞. On the other hand, if nj does not increase with j, ρj will generally not converge

to θ∗. If nj is fixed to some large constant n and we use IRN, ρj will never converge but wander

around in a small neighborhood of θ∗. If we use CRNs, it will converge to a value close to θ∗, but

generally different.

It is very common in our model that ρ→ h̃(ρ) is a contraction mapping. In particular, this holds

in all the examples considered in this paper. Generating iterates of (20), we verified that in all

cases it converged very quickly to a very good approximation of ρ∗.

To illustrate the previous discussion about computation we solve the examples provided in Sec-

tion 3.3 numerically.
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Table 1 Values of ρj at the first six iterations of (20) for Example 5, with IRN and CRN

Method ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
IRN 0.4444478 0.4102066 0.4122955 0.4121269 0.4121527 0.4121252
CRN 0.4444478 0.4101850 0.4122638 0.4121351 0.4121428 0.4121424

Table 2 Values of ρj at the first six iterations of (20) for Example 6, with IRN and CRN

Method ρ1 ρ2 ρ3 ρ4 ρ5 ρ6
IRN 0.4444471 0.377720 0.387115 0.3857771 0.3860725 0.3859246
CRN 0.4444471 0.377670 0.387079 0.3857318 0.3859223 0.3858940

Example 5. We revisit Example 3 and estimate r(ρ), g(ρ), and USE(ρ) =ϕ(r(ρ), g(ρ)) with IRN.

In particular, we take a sample of size n= 107, and ρ from 0 to 1 with a step size of 0.001. The plot

on the left of Figure 3 displays the estimates of USE(ρ). This gives an idea of the high-frequency

estimation noise achieved with IRN. The true maximum of USE(ρ) is found at ρ∗ = 0.41214955

whereas the numerical estimate is ρ = 0.437. We see that, even with this large sample size, the

noise is significant compared with the variation of USE(ρ) around ρ∗. This illustrates the fact that

sample-average optimization with IRN is not a good method to approximate the optimal ranking

policy, because of the large high-frequency noise in the sample function.

We also applied the mapping (20) for several iterations, starting at ρ0 = 0, with a fixed sample

size of nj = 107 for all j, and IRN across iterations. This gave already ρ1 = 0.44446 at the first

iteration and ρ4 = 0.4121 (accurate up to four digits) after four iterations. Thus, this method gets

close to the optimum very quickly. For comparison, we ran the same method with CRN. The values

of ρj with both methods are shown in Table 1, for j = 1, . . . ,6. With both methods, ρj provides a

good approximation of ρ∗ very quickly. With CRN, it converges to 0.4121425 for j ≥ 7, which is

not the correct value but is accurate to five digits.

To show that we indeed have a contraction mapping, recall that for this example, λ(r) = r,

r= 2/3− ρ2/(6(1 + ρ)2), and g= 2/3− 1/(6(1 + ρ)2). This gives

h̃(ρ) =
2/3− ρ2

6(1+ρ)2

β+ 2/3− 1
6(1+ρ)2

and h̃′(ρ) =− 2(4ρ2 + 6βρ2 + 6βρ+ 7ρ+ 4)

(6β+ 12βρ+ 6βρ2 + 3 + 8ρ+ 4ρ2)2
.

For β = 1, one can verify that h̃′(ρ) is negative and increasing, with |h̃′(ρ)| ≤ |h̃′(0)| = 8/81 < 1.

Therefore the mapping ρ→ h̃(ρ) is contracting with γ = 8/81. �

Example 6. We also revisit Example 4 and solve the problem numerically. The plot on the right

of Figure 3 shows the estimates of r(ρ), g(ρ), and USE(ρ), computed with IRN with n= 105. We

also superimpose the corresponding exact curves. Again, we applied (20) for six iterations, starting

with ρ0 = 0, and a fixed sample size of nj = 107 for all j. The results are in Table 2. We find that

ρ∗ ≈ 0.3859.
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Figure 3 (Left) Estimate of expected SE revenue per unit time in terms of ρ for α= β = 1 in Example 3, and

(Right) Estimate of expected SE revenue per unit time for α= 1, β = 1, p= 1/2 in Example 4

For this example, with the expressions previously derived for r and g, we get

h̃(ρ) =
2/3 + p(1− p)ρ̄2(2ρ̄/3− 1)

β+ p2 + 2p(1− p)(1− (1− ρ̄)2/2)

and

h̃′(ρ) =−2

3
p(1− p)(1− ρ̄)

(3ρ̄β+ 3pρ̄+ 3pρ̄2− pρ̄3− 3p2ρ̄2 + p2ρ̄3 + 2)

(β+ p+ 2pρ̄− pρ̄2− 2p2ρ̄+ p2ρ̄2)2
.

For β = 1 and p= 1/2, one can verify numerically that for 0≤ ρ≤ 1, h̃′(ρ) is negative and achieves

a maximum absolute value of approximately 0.15< 1 (although the derivative is not monotone).

Hence, we have a contraction mapping with γ ≈ 0.15 in that area. �

5. Comparison of the Neutral and Non-Neutral Ranking Policies

In this section, we show via numerical examples how the theory developed earlier can be used to

study the impact of different ranking policies on various performance indicators such as consumer

welfare (captured by expected relevance), SE and CP revenue. In particular, we compare neutral

ranking policies, where ρ= 0, with non-neutral ones, where the SE chooses the optimal ρ∗.

5.1. A Vertically Integrated SE with a CP

Example 7. We first focus on a specific type of request which can be served by either third-party

CPs or by the SE itself. This is typical for many search categories where the SE also provides

content (e.g., video, weather, finance, news, maps, flight information, and so on). In this case, a

limited number of CPs compete with the SE, and the parameters r, g, and λ(r) for the instance

correspond to just this type of request. Let us assume that always ten pages match a request

(M = 10). Nine of those pages are served by third-party CPs but one of them is served by the SE
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Table 3 CTR values used in the simulations of Section 5

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

0.364 0.125 0.095 0.079 0.061 0.041 0.038 0.035 0.03 0.022

directly. Perhaps renumbering CPs, we have that α1 = 1, and α2 = . . . = α10 = 0. In addition to

the revenue coming from Page 1, the SE also receives an expected revenue of β = 1 per request

from sponsored links. For i= 1, ...,10, Ri and Gi are all independent random variables uniformly

distributed over [0,1], and CTR(i) = θi as specified in Table 3. Those numbers were taken from the

first table in Dejarnette (2012), which contains the observed relative numbers of clicks according to

the position: the actual CTRs should therefore be proportional to those numbers, and the value of

the multiplicative constant has no impact on our derivations (hence we take it equal to 1). Finally,

we set λ(r) = r, and ψ to be the unit function.

The M pages are ranked by the SE by decreasing value of R̃i + ρG̃i, for the correct constant

ρ≥ 0. Note that for i > 1, G̃i = 0 because αi = 0. To illustrate the dependence on ρ, Figure 4 shows

the SE revenue USE(ρ), as ρ varies, as well as the relevance r(ρ), the revenue and the visit rate for

CP 1 and for third-party CPs. All revenues are expressed as values per time unit. As discussed

earlier, the more ρ increases, the more the SE favors CP 1, decreasing the overall relevance and

increasing the visit rate to CP 1. The trade-off between short-term revenue and number of visits

tells the SE to choose ρ∗ ≈ 0.55. Note that the bias affects only CP 1 and that the relative positions

of all other CPs remain the same as in the neutral ranking. Consequently, the relevance r(ρ) is

only marginally affected by ρ in this case. If R1 was stochastically much smaller than the other

Ri’s (e.g., uniform over [0, ε] for a small ε), then the impact of ρ would be larger. When ρ→∞,

CP 1 is always ranked first, so the relevance r(ρ) becomes

r(∞) =

(
θ1

2
+

9∑

i=1

θi+1E[U(10−i)]

)
=
θ1

2
+

9∑

i=1

θi+1

(10− i)
10

≈ 0.517,

where U(1), . . . ,U(9) are independent random variables uniformly distributed over [0,1] sorted by

increasing order (the order statistics), and the CP 1 visit rate is θ1r(∞)≈ 0.188.

To assess the sensitivity of the SE strategy to advertising, we now examine how results change

for different values of β, i.e., depending on the level of advertisement revenues. This shows the

tradeoff that the SE faces for different types of requests. For search keywords related to, e.g., airline

tickets, hotel reservations, or retailer products, the SE may expect to make more profit by showing

its own content among organic links than through sponsored search because requests of this kind

may produce conversions, whereas for keywords that are appealing in the sponsored search market

the SE may try to make the search as relevant as possible to boost that revenue stream. Figure 5(a)

plots ρ∗ as β varies while Figure 5(b) plots the ensuing revenue for CP 1 and for each third-party
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Figure 4 Performance measures as a function of ρ (simulation results)

CP. The curves shown in the figures were estimated by simulation, using the iterative fixed-point

method for ρ∗, with a fixed sample size of n= 107 at each step. When β grows, ρ∗ tends to zero,

because the revenue from sponsored links dominates, making it rewarding for the SE to improve

quality to attract more users. In conclusion, the impact of non-neutrality is small because biasing

the ranking only attracts limited additional revenue. Instead, when β is small, sponsored links do

not pay off and it becomes worthwhile for the SE to sacrifice relevance to some extent to boost

revenue from gains of CP 1. In the extreme case when β = 0, we have ρ∗ =∞, so CP 1 is always

placed at the top regardless and the other CPs are sorted by decreasing order of relevance. This

gives an average revenue of 0.09619 for CP 1 and 0.01695 for any other CP (even though all CPs

have the same relevance and gain distributions). Although not shown in the figure, we remark

that USE tends to grow linearly with β, which means that the increasing revenues of sponsored

search dominate the possible revenue coming from CP 1. To illustrate the impact of non-neutrality,

Table 4 reports the variations of the most relevant performance metrics when ρ= ρ∗ is used instead

of ρ = 0 (neutral ranking), for different values of β. The table illustrates that while the impact

on the perceived quality (relevance) remains small (around 10%), the impact on the visibility and

the revenues of the SE-owned CP is substantial: by being non-neutral, the SE can multiply the

revenues of its CP by a factor 2.8 and its visit rate by more than a factor of 3. On the other hand,

the other CPs see their revenues and visit rates reduced by 14% to 32%, a significant loss that is

likely to affect their possibilities of being profitable in the long term.

Finally, we explore the sensitivity of outcomes to the number of available results. Figure 6(a)

plots ρ∗ as a function of M while Figure 6(b) plots revenues as a function of the number of matching

pages M . We include curves for both the neutral (ρ = 0) and non-neutral (ρ = ρ∗) regimes to

compare both situations. As before, we estimate these values using the fixed-point algorithm with
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Figure 5 Optimal ρ factor to use for the ranking, and corresponding CP revenues per time unit as a function of

β (simulation results)

Table 4 Impacts of a non-neutral ranking for the scenario of Section 5.1

CP 1 other CP CP 1 other CP
Relevance revenue revenue visit rate visit rate

Neutral, ρ= 0
(reference case
optimal for β =∞)

0.635 0.028 0.0283 0.057 0.057

Non-neutral, ρ= 0.559 0.618 0.066 0.0243 0.112 0.049
(optimal for β = 1) (-3%) (+136%) (-14%) (+96%) (-14%)
Non-neutral, ρ= 0.924 0.592 0.084 0.0215 0.140 0.043
(optimal for β = .5) (-7%) (+200%) (-24%) (+146%) (-25%)
Non-neutral, ρ= 1.374 0.568 0.093 0.0193 0.158 0.039
(optimal for β = .25) (-11%) (+232%) (-32%) (+177%) (-32%)

n= 107 at each step. As M increases, ρ∗ increases too: The SE can give more weight to CP 1 and

increase its revenue while making less damage to the relevance, because placing CP 1 higher has

less impact on the overall relevance when M is larger. As a result, the revenue of CP 1 when ρ= ρ∗

increases with M , and so does the advantage of CP 1 over the other CPs. The loss of revenue of

the other CPs seems close to constant as a function of M .

5.2. Vertical Integration and Investment

Example 8. Continuing with the example of vertical integration, we now assume that one of the

nine third-party CPs, say CP 2, invests in quality and manages to improve the relevance distribu-

tion. More specifically, we assume that when it invests z > 0, the relevance of CP becomes uniformly

distributed over [0,1 + 20z] (instead of over [0,1]). The other parameters and distributions, includ-

ing the distribution of its gain G2, are unchanged. Figures 7(a) and 7(b) show simulation results
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Figure 6 Optimal ρ factor to use for the ranking, and corresponding CP revenues per time unit as a function of

M (simulation results)

when the SE ranks CPs according to R̃i + ρG̃i, for varying values of ρ, and when z = 2. For a

neutral ranking (ρ= 0), CP 2 logically makes more revenue than the other CPs, since it regularly

gets higher ranking. However, when ρ increases and exceeds about 0.8, CP 1 becomes the one with

highest revenue, despite its (stochastically) lower relevance.
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Figure 7 Average relevance, revenues and number of visits per time unit for the case of vertical integration with

investment

We now take the perspective of CP 2, and compute its optimal decision. CP 2 invests z in

quality to modify its relevance distribution to [0,1+20z], anticipating that the SE is going to rank
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requests according to ρ∗. (We assume that the SE can learn the distribution of relevance of all

CPs quickly.) Therefore, CP 2’s profit equals the revenue from the search market minus z. To find

the optimal value of z we simulated the outcomes for z ∈ [0,0.45]. Figures 8(a) and 8(b) plot the

resulting curves. In both figures, we see that differences between neutral and non-neutral revenues

are small, except for CP 1. This is particularly true for CP 2. This means that, at least in this

case, non-neutrality does not deter innovation. Actually, the optimal investment level under both

regimes coincide and is equal to z∗ = 0.025. Optimal profits, though, vary. They are 0.037 for the

neutral case and 0.0296 for the non-neutral one; see Figure 9 where we show CP 2 profits as a

function of the investment z.

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

z

(a) CP revenues

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

z

(b) Visit rates

CP 1 (neutral case) CP 2 (neutral case) Other CPs (neutral case)

CP 1 (non-neutral case) CP 2 (non-neutral case) Other CPs (non-neutral case)

Figure 8 Revenues and visit rates to various CPs as a function of CP 2 investment

6. Conclusion

We have introduced a new modeling framework that allows online platforms to rank items account-

ing for both short-term and long-term revenues. The long-term impact is captured by the arrival

rate of requests, which is an increasing function of the average relevance of displayed results. Under

appropriate regularity conditions, we proved that although we have to choose an ordering among

an exponential number of possibilities and the objective function is nonlinear, the task reduces to

computing a linear combination between relevance and short-term profits for each item and then

sorting items with respect to those numbers. Henceforth, the whole problem reduces to finding

the appropriate constant used in the linear combination. We have also provided algorithms to find

such constant.
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Figure 9 Profit per time unit as a function of CP 2 investment

Our results might prove useful to platform owners (search engines, classified ads websites, online

retailers) to navigate the tradeoff between short-term and long-term effects when defining their

ranking strategies. They can also be of interest to regulators, seeking to understand the behavior

of revenue-oriented platforms and to anticipate the impact of regulatory interventions, which is of

particular importance with regard to the current search neutrality debate.

Future work will take several directions. In particular, we plan to (i) work on the design of

optimal randomized policies as highlighted in the case of discrete distributions of requests; this will

also allow us to relax Assumption A in the case of a continuous distribution for requests; (ii) gather

real data and providing a practical case study; (iii) perform a profound study of the implications of

profit-maximizing platforms on the online economy to shed light on the search-neutrality debate.
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