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Abstract

This dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration schemes are heavily employed to solve these high dimensional integrals. One of the most important aspect of any numerical integration method is sampling. The way samples are distributed on an integration domain can greatly affect the final result. For example, in images, the effects of various sampling patterns appears in the form of either structural artifacts or completely unstructured noise. In many cases, we may get completely false (biased) results due to the sampling pattern used in integration.

The distribution of sampling patterns can be characterized using their Fourier power spectra. It is also possible to use the Fourier power spectrum as input, to generate the corresponding sample distribution. This further allows spectral control over the sample distributions. Since this spectral control allows tailoring new sampling patterns directly from the input Fourier power spectrum, it can be used to improve error in integration. However, a direct relation between the error in Monte Carlo integration and the sampling power spectrum is missing. In this work, we propose a variance formulation, that establishes a direct link between the variance in Monte Carlo integration and the power spectra of both the sampling pattern and the integrand involved.

Chapter 1

Introduction

From elementary mathematics, we have learnt how to compute the integration of simple (e.g., sin, cos) and complicated mathematical functions. To compute similar integrals using computers is not that straight forward. In computers, we cannot compute any continous function directly. To perform this computation, it is required to discretize the function with points (samples) followed by performing weighted average of these sample values, that gives the final value of the function at given coordinates. In a mathematical sense, this process is termed as numerical integration or numerical quadrature.

How we sample the domain of integration is of paramount importance to numerical integration techniques. From computational physics, computational chemistry to computation finance and computer generated imagery, in all fields, numerical integration plays a key role. For low dimensional integrals, many efficient quadrature rules exist. However, for very high dimensional problems, it is not possible to use these efficient quadrature rules as these rules can have very high time and space complexity. Monte Carlo and Quasi-Monte Carlo integration rules are the best in computing high-dimensional integrals.

Numerical integration techniques are used in various fields. In this dissertation, we focus our attention to the field of computer graphics, and more specifically to image synthesis. In images, a pixel is considered as the basic building block of computer generated imagery. Even though, to a common eye, an image can be seen as continous, it is composed of discrete pixels. To obtain an image, each pixel needs to be further discretized (sampled) using a set of points (samples). A color corresponding to each point can be computed by using the state-of-the-art algorithms (e.g., ray tracing), then a weighted average of these samples (reconstruction) is stored in a pixel as a color value.

Computation of a "real" life-like image requires more sophisticated algorithms.

One of the many ways to add realism to an image is via computing proper global illumination in a scene. Evaluation of global illumination requires computing scattering directions of light at each point inside a virtual scene. If the point where we compute the scattering direction is a surface, then we can assume a hemisphere around this point and consider that the light scatters away from the surface from this hemisphere. In case, we have a scene with fog or mist, at each point where we compute the scattering direction, light is arriving from all the directions. Therefore, for a scene with fog, we assume a sphere around each point inside a scene and consider that the light scatters away from this point in all the directions.

Contributions

The central theme of this dissertation is to study the distribution of samples on the surface of a unit sphere and hemisphere. Even though, in global illumination algorithms spherical and hemispherical sampling have been well exploited, the frequency content of the spherical and hemispherical sampling patterns and its effect in the variance during integration, is not thoroughly studied. In this dissertation, first we perform a spectral analysis of various state-of-the-art sampling methods on the sphere and the hemisphere. We use the notion of homogeneous sample distributions, which has been extensively studied in physics and spatial statistics [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Daley | An introduction to the theory of point processes: volume I: elementary Theory and Methods[END_REF][START_REF] Daley | An introduction to the theory of point processes: volume II: general theory and structure[END_REF]. Homogeneous sample points have same statistical properties over the domain. We use the notion of homogeneous sampling to express error in Monte Carlo integration only in terms of variance. This complete work has been successfully published by Pilleboue, Singh and colleagues [START_REF] Pilleboue | Variance analysis for Monte Carlo integration[END_REF].

We analyze the effects of various spherical and hemispherical sampling methods on the variance for Monte Carlo integration of high dimensional global illumination integrals. We propose a theoretical framework that relates the frequency content (power spectrum) of the sampling pattern and the integrand involved with the variance in Monte Carlo integration. Thanks to this framework, we are able to derive the variance convergence rate of various samplers with the increase in number of samples. We propose a set of quintessential design principles that can be used to tailor new sampling patterns based on the integrand under study, resulting in improved numerical integration of the underlying integrand.

Publications

The theoretical framework that we discuss in this dissertation has been success- 

fully

Overview

To give a brief overview of this dissertation, there are eight chapters in this dissertation including this one. We have already introduced our intutive ideas on which our theoretical framework has been developed in this dissertation. We give a not-too-long survey (Chapter 2) of various sampling methods proposed in the literature. Our literature survey shows that there is not enough work done to study the frequency content of various stochastic samplers on the sphere and especially on the hemisphere. Therefore, we have devoted a complete chapter (Chapter 4) to study the spectral properties of various sampling patterns (stochastic and deterministic) on the sphere and hemisphere.

In Chapter 4, we also introduce the notion of homogeneous sample distributions on the sphere. Later on, we use this notion of homogeneity in Chapter 5, to derive our closed-form variance expression that relates the variance in Monte Carlo integration with the power spectra of the sampling pattern and the integrand involved. In our derivation, we use the representation theory to formally express the effects of rotation on the spherical harmonic coefficients. We give a brief background on spherical harmonics and the representation theory in Chapter 3.

We also provide a background on group theory and vector spaces which are prerequisites for the representation theory.

In Chapter 6, we use our mathematical model to derive variance convergence rates of various sampling patterns for a given class of functions. We also provide tools to bound the sampling power spectra and lay down some design principles for future samplers. At the end, we show our experiments and results in Chapter 7

and conclude our thesis in Chapter 8.

Chapter 2

State of the Art

In this chapter, we do a survey on various state-of-the-art sampling methods developed for image synthesis. Regular sampling is the simplest to generate.

However, it is not recommended to use regular sampling methods for numerical integration. We study the problems caused by regular sampling patterns and discuss various solutions proposed by researchers to avoid the artifacts caused by regular samples in Monte Carlo numerical integration schemes. Arguably the best approach to algorithmically generate point distributions is to find a good balance between density control and spatial irregularity. There are many Monte Carlo (MC) and Quasi-Monte Carlo (QMC) based [START_REF] Niederreiter | Random Number Generation and Quasi-Monte-Carlo Methods[END_REF][START_REF] Lemieux | Monte Carlo and Quasi Monte Carlo Sampling[END_REF][START_REF] Keller | Advanced (quasi) Monte Carlo methods for image synthesis[END_REF] sampling patterns proposed in the literature to find this balance between density control and spatial irregularity.

We classify various sampling methods in two classes: deterministic and nondeterministic methods. Samplers which generate a same sequence or point sets at each initialization falls into the category of deterministic samplers, whereas, sam-plers that are completely stochastic, i.e., which generate new set of samples with assigned characteristics at each initialzation, falls into the non-deterministic class.

We further divide these classes into subclasses, based on the approaches used to generate the samples. We subdivide non-deterministic samplers into relaxation There are some tile-based approaches that can be used to generate samples that mimic the non-deterministic behaviour. Tile-based methods were originally introduce to overcome the time complexity of relaxation and dart throwing based algorithms. In computer graphics community two tile-based approaches are well known: First approach uses a set of precomputed tiles, with each tile composed of multiple samples, and later use these tiles, in a sohisticated way, to pave the sampling domain. Second approach employed tiles with one sample per tile and uses some relaxation-based schemes, with look-up tables, to improve the over all quality of samples.

Recently, researchers have noticed the importance of having a spectral control on sampling methods. The idea behind having a sampler with spectral control is to be able to generate samples from the pre-assigned Fourier characteristics.

Consequently, the samples can spatially arrange themselves according to the characteristics assigned in the spectral domain [START_REF] Zhou | Point sampling with general noise spectrum[END_REF]. Our contribution in this dissertation is inspired from the work on spectral control. In Chapter 5, we derive a closed-form expression that relates the variance in MC integration with the spectral characteristics of the sampling pattern and the integrand involved. In the following sections, we start our discussion with the sampling methods in the Euclidean domain (Section 2.1). We introduce blue noise characteristics and study their importance in image synthesis. Then, we discuss various sampling methods that are employed to achieve blue noise characteristics, which includes: relaxation based, dart throwing based and/or tiling based methods. In Section 2.2, we discuss sampling on the sphere. The problem of distributing a large number of points uniformly over the surface of a sphere has been intensively studied by many mathematical researchers, biologists, chemists and physicists. We focus our attention on various spherical sampling algorithms proposed in computer graphics community to improve the image quality. At the end, in Section 2.3, we briefly overview various quality criteria proposed in the literature to estimate the quality of various sampling patterns.

Sampling in Euclidean domain

To improve the quality of image synthesis, various sampling methods have been developed. Since the early ages of electronic imagery [START_REF] Zworykin | Televison: The Electronics of Image Transmission in Color and Monochrome[END_REF], the error due to regular sampling patterns, called aliasing, is one of the major issues in image synthesis. Spatial aliasing error is often manifested in the form of staircasing along the edges in an image. In the moving objects, regular patterns in temporal sampling can cause Strobing effects, or the jerky motion of an object in an image.

Defects from sampling can arise in other aspects of the displayed image, such as color. By increasing the sampling rate higher and higher frequencies can be represented. However, any regular sampling rate has an associated frequency limit above which aliasing still occurs. Crow [START_REF] Crow | The aliasing problem in computer-generated shaded images[END_REF] proposed prefilitering as a recognized cure to aliasing. Dippé and Wold [START_REF] Dippé | Antialiasing through stochastic sampling[END_REF] proposed non-uniform sampling followed The motivation to introduce stochastic sampling method comes from a careful study of the human visual system. Studies have shown that the human visual system is more sensitive to noise in the intermediate frequencies [START_REF] Sakrison | On the role of the observer and a distortion measure in image transmission[END_REF]. Since the human visual system is less sensitive of high frequency noise, reducing low and mid-frequency noise while increasing high frequency noise can produce perctually better pictures. Yellot [START_REF] Yellott | Spectral consequences of photoreceptor sampling in the rhesus retina[END_REF] studied the distribution of cones in an extrafoveal region of the eye of a rhesus monkey, which has a photoreceptor distribution similar to that in the humam eye. Yellot took the optical Fourier transform of this distribution, which is called a Poisson Disk distribution. An illustration is shown In the following year, Mitchell [START_REF] Mitchell | Generating antialiased images at low sampling densities[END_REF] proposed an algorithm for fast generation of adaptive nonuniform sampling patterns. Mitchell used the knowledge of how the human eye perceives noise as a function of contrast and color to guide the adaptive sampling algorithm. Finally, to generate the digital picture, Mitchell proposed a nonuniform reconstruction from samples and advocates resampling at the display pixel rate to solve the problem of noise filtering efficiently.

Blue Noise

Even though Dippe and Wold, Cook and Mitchell clearly indicated the importance of no low frequency content in the sampling patterns' Fourier spectra, an optimal sampling Fourier spectrum was still missing. Ulichney [START_REF] Ulichney | Digital Halftoning[END_REF], in 1987, was the first to provide qualitative characterization of a good sampling pattern, which he called Blue Noise. Before going further, we briefly discuss the naming convention for different kinds of noise.

Color of noise

The nature of the spectral distribution property of various types of noise is mainly described by a color name. The most common example is white noise, so named because its power spectrum is flat across all frequencies with equal energy distributed in all frequency bands, much like the visible frequencies in the white light. Pink noise has the power spectrum such that the power spectral density is inversly proportional to the frequency. Green noise, as its name suggests, consists of primarily mid-range frequencies. Ulichney also mentioned the curious case of brown noise, named for the spectrum associated with the Brownian motion [START_REF] Gardner | White and brown music, fractal curves and one-over-f fluctuation[END_REF]. He introduced blue noise, the high frequency complement of the pink noise. Pink noise occurs very frequently in nature and thus is used for physical simulation and biological distribution. 

Characteristics of Blue noise

Ulichney performed a careful study of rectangular and hexagonal regular grid patterns to improve the quality of digital halftones.

He estimated the power spectrum of various grid patterns using the Bartlett's method [START_REF] Bartlett | An Introduction to Stochastic Processes, with Special Reference to Methods and Applications[END_REF] of averaging periodograms. He mentioned that a desirable attribute of a well-produced halftone of a gray level is radial symmetry. Therefore, he investivated a radially averaged power spectra of various patterns (Fig. 2.2(a)).

Ulichney advocated three important features for an ideal radial power spectrum;

First, its peak should be at the principal frequency. Second, the principal frequency marks a sharp transition level below which little or no energy exists. And finally, the uncorrelated high-frequency fluctuations are characterized by high-frequency white noise. In Fig. 2.2(b), taken from Ulichney's article, all these three regions are marked. The radial power spectrum with above featurs is called the blue noise power spectrum. In the following subsections, we discuss various methods used to generate sampling patterns with blue noise characteristics.

Poisson Disk distributions

Yellott [START_REF] Yellott | Spectral consequences of photoreceptor sampling in the rhesus retina[END_REF] have shown that a rhesus monkey has a Poisson Disk distribution.

On the basis of his study, he proposed that the least conspicuous form of aliasing would be produced if the spectrum of the sampling pattern had two properties;

First, the spectrum should be noisy and lack any concentrated spikes of energy.

Secondly, the spectrum should have a deficiency of low-frequency energy. This causes aliasing noise to be concentrated in higher, less conspicuous frequencies.

Since the blue noise spectrum proposed by Ulichney [START_REF] Ulichney | Digital Halftoning[END_REF][START_REF] Ulichney | Dithering with blue noise[END_REF] is is in accordance with Yellot's findings, many algorithms have been proposed for efficient generation of Poisson Disk distributions. Most of the algorithms proposed are dart throwing and relaxation based and the other techniques are more or less derived from or based on these two main approaches.

As Ripley [START_REF] Ripley | Modelling spatial patterns[END_REF] mentioned, several point processes could be referred to as "Poisson-disk", but by strict definition, a true Poisson-disk process is realized by generating complete patterns with Poisson statistics until one is found that meets the minimum-distance constraint. Cook [START_REF] Cook | Stochastic sampling in computer graphics[END_REF] proposed the first dart throwing algorithm for generating Poisson Disk distributed point sets. Random samples are continually tested and only those that satisfy the minimum distance constraint relative to samples already in the distribution are accepted. The main source of inefficiency of the dart throwing method is a rejection sampling mechanism where a large number of samples is attempted but only a small percentage of them is inserted into the distribution. This algorithm cannot guarantee that a maximal distribution can be generated. As the allowable area for new insertions gradually shrinks, the probability that attempted samples will fall inside this area becomes progressively smaller. This also means that the algorithm does not have a guaranteed termination.

Mitchell [START_REF] Mitchell | Generating antialiased images at low sampling densities[END_REF] discovered that Poisson disk distribution can be generated cheaply on the fly by an algorithm inspired by the Floyd-Steinberg halftoning algorithm [START_REF] Floyd | An adaptive algorithm for spatial gray scale[END_REF]. Later, Mitchell [START_REF] Mitchell | Spectrally optimal sampling for distributed ray tracing[END_REF] proposed an algorithm which is known as the best candidate algorithm. The best candidate algorithm works by trying m × k samples when placing the k-th new sample, where m is a supplied parameter.

From all m × k samples attempted, the one that is farther away from all previous k -1 samples is chosen. The algorithm does its best to place samples well away from each other but it does not enforce any particular distribution radius r.

There is the probability, however small, that a sequence of unfavourable sampling outcomes will make the best candidate sample be arbitrarily close to some other previous sample.

McCool and Fiume [START_REF] Mccool | Hierarchical poisson disk sampling distributions[END_REF] Jones [START_REF] Jones | Efficient generation of Poisson-disk sampling patterns[END_REF] proposed the first spatially guided method for Poisson disk sample generation. The method uses a Voronoi tessellation as the spatial data structure with the samples at the centroid of the Voronoi cells. The Voronoi cell of a sample is randomly selected and a new sample is inserted in the available area of the cell that falls outside a circle of radius 2r with the original sample at the centre. A weighted binary tree helps in the selection of samples, with the Voronoi cells as the leaves and with the available areas of the Voronoi cells as the weights. This ensures that sample placement is done with a uniform probability distribution -the tree is randomly traversed top to bottom, with the area weights giving the probability of selecting the left or right child of each tree node. The placement of a new sample requires the computation of the intersection between the Voronoi cell (a polygon) and the circle of radius 2r, which can be reduced on case basis. A rejection sampling method cannot be avoided but the probability of a new sample being accepted is much larger than the probability of it being rejected. Although

Voronoi tesselations can be extended to three dimensions, placing a new sample in the available area of a three-dimensional Voronoi cell requires the computation of the intersection between the cell (a polytope) and a sphere of radius 2r. This is a more complex procedure than its two-dimensional equivalent and cannot be reduced to a small number of simple cases.

Dunbar and Humphrey [START_REF] Dunbar | A Spatial Data Structure for Fast Poissondisk Sample Generation[END_REF] with the distance between every pair of samples being equal to or greater than a specified distance 2r, where r is the distribution radius. The algorithm also generates maximal distributions, in the sense that no new samples can be further inserted in D without violating the minimum distance constraint relative to other samples. Exceptions occur when there is a point x ∈ D that is at an almost equal distance of 2r to three or more samples. Depending on the maximum subdivision level of the tree, the algorithm may fail to place an additional valid sample at x.

In the worst case, if x is at a distance of exactly 2r to three or more samples, the algorithm will fail to place a sample at x irrespective of the maximum subdivision level. This algorithm is easily extendable on surfaces (e.g., sphere).

Ebeida and colleagues [START_REF] Ebeida | Efficient Maximal Poisson-disk Sampling[END_REF] addressed the problem of generating a uniform

Poisson disk sampling and proposed an alogirthm that is both maximal and unbiased over bounded non-convex domains. The authors proposed the first provably correct algorithm with time and space dependent only on the number of points produced. The algorithm works in two phases, both based on classical dart throwing. The first phase uses a background grid of square cells to rapidly create an unbiased, near-maximal covering of the domain. The second phase completes the maximal covering by calculating the connected components of the remaining uncovered voids, and by using their geometry to efficiently place unbiased samples that cover them. This second phase converges quickly, overcoming a common difficulty in dart throwing methods. The deterministic memory requirements for this algorithm is O (N ) and the expected running time is O (N logN ), where N is the output size, the number of points in the final point set.

Relaxation based methods

Researchers have also proposed many relaxation based methods for the generation of blue noise sample distributions. The early algorithms proposed were inspired from the traditional artistic technique of stippling, which involves placing small dots of ink onto paper such that their density give the impression of tone. The artist tightly controls the relative placement of the stipples on the paper to produce even tones and avoid artifacts, leading to long creation times for the drawings.

Deussen and colleagues [START_REF] Deussen | Floating points: A method for computing stipple drawings[END_REF] proposed an approach for stippling that computes an initial dot distribution by a specialized halftoning technique, given a reference image. Otherwise the user creates an initial distribution manually. After the initial point distribution is obtained, the points are moved by an iteration scheme known as Lloyd's method [START_REF] Lloyd | Least squares quantization in PCM. Information Theory[END_REF][START_REF] Lloyd | An optimization approach to relaxation labelling algorithms[END_REF]. In the first step, Deussen and colleagues compute the Voronoi diagram [START_REF] Okabe | Spatial Tessellations: Concepts and Applications of Voronoi Diagrams[END_REF] of the points. This assigns a Voronoi region to each point.

The boundaries of these regions are (possibly open) polygons. In the second step, boundaries of the region to be stippled, are intersected with the Voronoi regions.

And finally, each point is moved to the center of the Vornoi region. This dot set is modified automatically or semi automatically to generate a final distribution similar to a stipple drawing. Deussen and colleagues used points of different size and shape to resemble manual drawing.

Secord [START_REF] Secord | Weighted Voronoi Stippling[END_REF] proposed another iterative method which is a direct descendant of the one described by Deussen and colleagues [START_REF] Deussen | Floating points: A method for computing stipple drawings[END_REF]. Central to Secord's approach is the use of centroidal Voronoi diagrams to produce good distributions of points.

A Capacity of a site is a number of points assigned to each site.

CCVT has superior quality than Lloyd relaxation, but its time complexity is very high. It could run orders of magnitude slower with the increase in the demand of samples. To address this performance issue, Li and colleagues [START_REF] Li | Fast capacity constrained Voronoi tessellation[END_REF] present a fast CCVT algorithm. Li and colleagues proposed many algorithmic innovations that removes several performance bottlenecks of the original CCVT algorithm. They proposed median site swap to improve the swapping of points within sites in the original CCVT. They also mentioned that by performing a coherent initialization for the input distribution to CCVT algorithm the time complexity can be noticeably improved. DeGoes and colleagues [START_REF] De Goes | Blue noise through optimal transport[END_REF] proposed a novel approach to improve the CCVT algorithm by treating the concept of capacity constrained Voronoi tessellation as an optimal transport problem. This insight leads to a continuous formulation that enables to enforce the capacity constraints exactly, unlike Balzer et al [START_REF] Balzer | Capacity-constrained point distributions: A variant of Lloyd's method[END_REF]. de Goes and colleagues exploit the variational nature of this formulation to design an efficient optimization technique of point distributions via constrained minimization in the space of power diagrams. This approach leads to a high-quality blue noise point sets with improved spectral and spatial properties with a computational complexity of O (N logN ).

Chen and colleagues [START_REF] Chen | Variational blue noise sampling[END_REF] present another approach to address the capacityconstrained Voronoi tessellation (CCVT) algorithm in the continous setting, by casting the blue noise sampling generation as a variational problem. This variational framework allows generation of high-quality blue noise characteristics while precisely adapting to given density functions. Based on an accurate evaluation of the gradient of an energy function, an efficient optimization is developed which delivers significantly faster performance than the previous optimization-based methods. This framework can be easily extended to generating blue noise point samples on manifold surfaces and for multi-class sampling. The optimization formulation also allows to naturally deal with dynamic domains, such as deformable surfaces, and to yield blue noise samplings with temporal coherence. Schlömer and colleagues [START_REF] Schlömer | Farthest-point optimized point sets with maximized minimum distance[END_REF] describes an optimization procedure to obtain blue noise samples. Their algorithm iteratively enlarges the minimum distance between points and thereby improves the blue noise characteristics of the point set. The basic algorithm is as follows: each step takes a single point from a set of points X and attempts to move it to a new position that is as far away from the remaining points as possible, i.e., the farthest point. Therefore, they call this optimization procedure, farthest point optimization (FPO). One full iteration consists of moving each point in X once. This iteration scheme converges, and each full iteration increases the average minimum distance. In general, the farthest point of a set of points is the center of the largest circle that can be placed in the domain under consideration without covering any of the points. This largest empty circle can be computed efficiently using the Delaunay triangulation which corresponds to the largest circumcircle of the triangles. The algorithm moves each point in such a way that the point spacing increases monotonically until convergence. The computational complexity of FPO is O (N logN ). [START_REF] Schmaltz | Electrostatic halftoning[END_REF] introduced a new approach inspired by the physical principals of electrostatics. They used the idea of repelling forces between equally charged particles. These forces create a homogeneous distribution in flat regions, while attracting forces from the image brightness values ensure a high approximation quality. Their model is transparent and uses only two parameters:

Schmaltz and colleagues

One steers the granularity of their halftoning approach, and the other its regularity.

They evaluate both a discrete and continous version of their algorithm. Their algorithm is global in the sense that it can be used for image dithering, stippling, screening and sampling.

Fattal [START_REF]Blue-noise point sampling using kernel density model[END_REF] propose a new approach for generating stochastic blue-noise point distributions that formulates the problem as sampling a statistical mechanics interacting particle model. In this model a radially-symmetric kernel function is placed around every point to produce an approximate density function. The difference between this approximation and the given target point density function assigns an energy value to the points configuration. Rather than minimizing this energy, the algorithm use it to define a Boltzmann-Gibbs statistical model that introduces randomness. Thus, this framework unifies randomness with the requirement for uniform point spacing that achieves the enhanced blue noise spectral properties.

Anisotropic Blue Noise

Previously mentioned samples generate isotropic blue noise samples. There are many applicaitons including stippling, visualization, surface texturing, and object distribution that requires anisotropic blue noise sample distribution. Feng and colleagues [START_REF] Feng | Anisotropic noise samples[END_REF] present a practical approach to generate stochastic anisotropic samples with Poisson-disk characteristic over a two-dimensional domain. In contrast to isotropic samples, Feng and colleagues developed anisotropic samples as non-overlapping ellipses whose size and density match a given anisotropic metric.

To generate these samples with the desired properties a set of non-overlapping ellipses is constructed whose distribution closely matches the underlying metric. This set of samples is used as input for a generalized anisotropic Lloyd relaxation [START_REF] Lloyd | Least squares quantization in PCM. Information Theory[END_REF] to distribute noise samples more evenly. Instead of computing the Voronoi tessellation explicitly, they introduce a discrete approach which combines the Voronoi cell and centroid computation in one step. The algorithm supports automatic packing of the elliptical samples, resulting in textures similar to those generated by anisotropic reaction-diffusion methods. For quality measurement of uniformly distributed samples the authors use Fourier analysis tools. The resulting samples have nice blue noise property where low frequencies in the power spectrum are reduced to a minimum.

Li and colleagues [START_REF] Li | Anisotropic blue noise sampling[END_REF] also proposed an algorithm to generate anisotropic blue noise sample. They also extends the Fourier spectrum analysis, which is for uniform samples, to evaluate quality of anisotropic and adaptive sampling methods.

To generate anisotropic sampling, Li and colleagues extend dart throwing and relaxation-the two classical methods for isotropic blue noise sampling-for the anisotropic setting, while ensuring both high-quality results and efficient computation. On the verification side, Li and colleagues introduce approaches based on warping and sphere sampling that extend Fourier spectrum analysis for adaptive and/or anisotropic samples.

Multi Class Blue Noise

Sampling methods discussed in previous sections so far has been mainly focused on blue noise sampling with a single class of samples. This could be insufficient for common natural as well as man-made phenomena requiring multiple classes of samples, such as object placement, imaging sensors, and color stippling patterns.

Wei [START_REF] Wei | Multi-class blue noise sampling[END_REF] Oztireli and Gross [START_REF] Öztireli | Analysis and synthesis of point distributions based on pair correlation[END_REF] introduce another set of methods for analysis and synthesis of general multi-class point distributions based on the statistical measure pair correlation function (PCF). To explore the nature of this measure, they introduce an analysis based on the interpretation of a measure as a mean in a high dimensional vector space that they call the pair correlation space (PCS). The vector for a given point in the PCS simply measures the distribution of its distance to all other points. This analysis propose an irregularity measure and allows to explain distributions and existing synthesis algorithms in a unified way. It also show that the PCF provides a compact representation for the characteristics. Following this analysis, Oztireli and Gross propose two general synthesis algorithms. The first one is a generalization of dart-throwing for arbitrary PCFs and the other is a gradient descent based fitting of the PCFs. The output of the first algorithm is used as the input for the second to facilitate convergence. These algorithms can generate point distributions with desired characteristics extracted from example distributions or it can be synthesized. The example point sets and generated point sets can be of different dimensions and sizes, contain multiple classes, and reside on non-Euclidean domains. The proposed algorithms have the computational complexity of order O (N ), where N is the number of output points.

Spectral control

Most construction algorithms work in the spatial domain, even though the blue noise property itself is defined in the Fourier domain. Parker and colleagues [START_REF] Parker | A new algorithm for manipulating the power spectrum of halftone patterns[END_REF] proposed an algorithm for manipulating the power spectra of blue noise halftone patterns. A blue noise spectrum defined by a step function is used as input to influence the sample distributions.

Zhou and colleagues [START_REF] Zhou | Point sampling with general noise spectrum[END_REF] construct point sets matching a Fourier power spectrum function by performing a gradient descent optimization on an energy derived from the autocorrelation function. Such a Fourier power spectrum function can be either obtained from a known sampling method, or completely constructed by the user. The key idea is to convert the Fourier spectrum function into a differential distribution function that describes the samples' local spatial statistics.

The algorithm then use a gradient descent solver to iteratively compute a sample set that matches the target differential distribution function. It can be easily modified to achieve adaptive sampling, and is extendable to GPU.

Heck and colleagues [START_REF] Heck | Blue noise sampling with controlled aliasing[END_REF] also studied directly the Fourier properties of sampling patterns to perform analysis of blue noise sampling. They started their analysis from the observation that oscillations in the power spectrum of a sampling pattern can cause aliasing artifacts in the resulting images. They synthesize two new types of blue noise patterns: step blue noise with a power spectrum in the form of a step function and single-peak blue noise with a wide zero-region and no oscillations except for a single peak. They study the mathematical relationship of the radial power spectrum to a spatial statistic known as the radial distribution function to determine which power spectra can actually be realized and to construct the corresponding point sets. The method discussed in Section 2.1.5 by Oztireli and Gross [START_REF] Öztireli | Analysis and synthesis of point distributions based on pair correlation[END_REF] also offers spectral control on top of multi-class blue noise distributions.

Tile-based Blue Noise Sampling

Researchers also proposed many tile-based methods to overcome the computational complexity of dart-throwing and/or relaxation based approaches in generating blue noise sampling patterns. The first tile-based Poisson Disk sampling methods used Wang tiles and was proposed by Hiller and colleagues [START_REF] Hiller | Tiled blue noise samples[END_REF]. This Wang tile-based approach was later extended by Cohen and colleagues [START_REF] Cohen | Wang tiles for image and texture generation[END_REF] for image and texture generation. Wang tiles have colours assigned to their edges in specific ways. A Wang tile can only be placed next to another if they share the same colour along the common edge. This allows non-periodic tilings of the plane to be created. The generation of Poisson-disk samples inside each tile must respect the minimum distance constraint across the edges of the tile relative to all other tiles that share the same edge colour. The authors achieve this by using several steps of Voronoi relaxation [START_REF] Lloyd | An optimization approach to relaxation labelling algorithms[END_REF].

In the initial Wang tile methods, the tiling had to be computed in advance inside some finite region of space. Lagae and Dutré [START_REF] Lagae | A Procedural Object Distribution Function[END_REF] introduced procedural tiling rules that allow a Wang tile to be assigned on the fly in a consistent way to any arbitrary point in space. This leads to the creation of infinite non-periodic tilings of Poisson-disk samples. Later, Lagae and Dutré [START_REF] Lagae | An Alternative for Wang Tiles: Colored Edges Versus Colored Corners[END_REF] introduced procedural tiling rules for corner tiles. Corner tiles have colors associated to their corners instead of their edges. They can enforce the minimum distance constraint across tiles that share a common corner. The same authors also extended corner tiles to three-dimensions, creating corner cubes [START_REF] Lagae | Poisson Sphere Distributions[END_REF].

Methods for non-uniform Poisson-disk sampling have been proposed based on tile distributions. Kopf and colleagues [START_REF] Kopf | Recursive wang tiles for real-time blue noise[END_REF] apply subdivision rules to Wang tiles in order to create sample distributions with varying density across space.

Their technique utilizes a set of carefully constructed progressive and recursive blue noise Wang tiles. The use of Wang tiles enables the generation of infinite non-periodic tilings. The progressive point sets inside each tile are able to produce spatially varying point densities. Recursion allows to adaptively subdivide tiles only where high density is required, and makes it possible to zoom into point sets by an arbitrary amount, while maintaining a constant apparent density.

Ostromoukhov and colleagues [START_REF] Ostromoukhov | Fast hierarchical importance sampling with blue noise properties[END_REF] use Penrose tiling and perform hierarchical subdivision to create a sufficiently large number of sample points. Each Penrose tile has a single sample inside, which is subject to a Voronoi relaxation together with the samples from other tiles to reduce sampling artifacts. These points are numbered with structural indices using the Fibonacci number system, and these numbers are used to threshold the samples against the local value of the importance density. Pre-computed correction vectors, obtained using relaxation, are used to improve the spectral characteristics of the sampling pattern. The technique is fast (O (N )), deterministic and can be used for importance sampling.

Later, Ostromoukhov [START_REF] Ostromoukhov | Sampling with polyominoes[END_REF] present another fast hierarchical importance sampling method with blue-noise properties. This approach is based on self-similar tiling of the plane or the surface of a sphere with rectifiable polyominoes. Sampling points are associated with polyominoes, one point per polyomino. Each polyomino is recursively subdivided until the desired local density of samples is reached. A numerical code generated during the subdivision process is used for thresholding to accept or reject the sample. The exact position of the sampling point within the polyomino is determined according to a structural index, which indicates the polyomino's local neighborhood. The variety of structural indices and associated sampling point positions are computed during the off-line optimization process, and tabulated. Consequently, the sampling itself is extremely fast. The method allows both deterministic and pseudo-non-deterministic sampling.

Wachtel and colleagues [START_REF] Wachtel | Fast Tile-based Adaptive Sampling with User-specified Fourier Spectra[END_REF] introduce a first tile-based method for adaptive two-dimensional sampling with user-specified spectral properties. They selected hexagons as the building blocks of their tiling due to their additional symmetry axis, better intrinsic spectral properties, and only one adjacency relationship between neighboring blocks [START_REF] Grünbaum | Tilings and Patterns[END_REF]. Wachtel and colleagues build a hierarchical and deterministic subdivision process based on trihexes (i.e., connected agglomerates of three hexagons) as prototiles to break the symmetries of the regular hexagonal lattice-much like polyominoes were unions of squares introduced to create more complex tiling structures on a square lattice. By simply using barycenters of these trihexes as sample points, the Fourier spectrum of the underlying sampling pattern appears to be lack of spurious high energy Fourier peaks. To remove the remaining frequency peaks in the resulting Fourier spectrum they devised a hierarchical, deterministic, and area-preserving border shuffling procedure that mimics a stochastic process. By combining these features, they create non-overlapping tiles whose barycenters form a high quality blue noise distribution. A lookup table of sample points, computed offline using any existing procedure that optimizes point sets to shape their Fourier spectrum, is then used to populate the tiles.

The resultant method gives a linear-time, adaptive, and high-quality sampling of arbitrary density functions that conforms to the desired spectral distribution.

Tile based methods can be used, for example, to overcome the defaults of Poisson disk sampling which enforces it's radial power spectrum to have an offset in the low frequency zone. By using the tile-based approach, user can enforce a proper subdivision of the sampling domain D which can be later sampled with Poisson disk. The resulting Poisson disk sampling results in a radial power spectrum with no low frequency content. Recently, Yan and colleagues [START_REF] Yan | A survey of blue-noise sampling and its applications[END_REF] published a complete survey on blue noise sampling techniques. We refer interested readers to Yan and colleagues survey for sampling methods that might not have been covered in this chapter.

Sampling in Spherical domain

In image synthesis, spherical and hemispherical domain plays a crucial role in the evaluation of global illumination integrals. Many algorithms are proposed to perform sampling on the sphere and hemisphere. Researchers have studied various 3D surface sampling techniques that can be used directly for sampling on a sphere. However, since the 2D spherical domain is very simple, these surface sampling algorithms can be considered burdensome in their general settings for sphere sampling. Therefore, researchers proposed many simple algorithms, to sample the sphere directly or indirectly using a mapping function. Many deterministic sampling methods are also proposed for sphere sampling in the Quasi-Monte Carlo numerical integration literature. In this section, we look at these approaches one by one.

Sampling 3D surfaces

In the geometry remeshing literature, many algorithms are propose that can be used directly to generate samples on a unit sphere. To give an example, for surface sampling, Alliez and colleagues [START_REF] Alliez | Isotropic surface remeshing[END_REF] generate seed points by error diffusion on a triangle mesh to generate an isotropic surface remeshing. This algorithm can be used to sample a sphere. However, to keep our focus on only sphere sampling, we do not cover the literature work on surface geometry remeshing in this dissertation and refer interested readers-for an early work on remeshing-to a complete survey by Alliez and colleagues [START_REF] Alliez | Recent advances in remeshing of surfaces[END_REF].

Algorithms based on dart throwing for surface sampling are also proposed in the literature. Bowers and colleagues [START_REF] Bowers | Parallel Poisson disk sampling with spectrum analysis on surfaces[END_REF] proposed a parallel dart throwing algorithm for efficient Poisson disk sampling on arbitrary manifold surfaces.

The authors extend the parallel grid cell sampling approach by Wei [START_REF] Wei | Parallel Poisson Disk sampling[END_REF] from Euclidean to geodesic distance metric. Since the geodesic distance cannot be smaller than the Euclidean distance, their algorithm can draw samples directly on surfaces without any parameterization. To account for geodesic distance, they propose a fast approximation that is easy to compute and accurate for close-by sample points.

Cline and colleagues [START_REF] Cline | Dart throwing on surfaces[END_REF] present dart throwing algorithms to generate maximal Poisson disk point sets directly on 3D surfaces. They optimize dart throwing by efficiently excluding areas of the domain that are already covered by existing darts. In the case of triangle meshes, the algorithm shows dramatic speed improvement over comparable sampling methods. They demonstrated the ability to directly handle several surface types, including triangle meshes, spheres, Bezier patches, subdivision surfaces and implicits. Their algorithm can also be used to handle non-uniform densities, ellipsoid placement, and point sets spaced according to geodesic distance. Optimized dart throwing is quite fast in the uniform case, but it can run much more slowly when producing non-uniform distributions because of the acceleration grid.

Peyrot and colleagues [START_REF] Peyrot | Feature-preserving direct blue noise sampling for surface meshes[END_REF] proposed an algorithm to perform direct Poisson disk sampling for surface meshes. Their algorithm is focused on sampling triangular meshes, while satisfying good blue noise properties, they also preserve features.

The algorithm starts by initializing a list of vertices available for the sampling (the so-called candidate vertices) with all the vertices of a densely sampled mesh M sub .

After each valid dart throwing giving a valid sample s, the candidate vertices located into the sphere relative to s (depending on its radius R) are removed from the set of available vertices. If a dart throwing fails for a sample s, this latter is removed from available vertices to avoid a useless second test at this location. To efficiently evaluate the region of the mesh relative to a given sphere associated to a sample s, their Dijkstra-based algorithm is able to stop its region growing process under given conditions.

Turk [START_REF] Turk | Re-tiling polygonal surfaces[END_REF] proposed a relaxation based algorithm which uses a variant of Lloyd relaxation defined for polygon meshes. The method starts by placing points randomly on the surface. The points then repel each-other, eventually reaching a uniform distribution. However, it is difficult to choose the proper number of iterations to achieve the right balance between uniformity and randomness, as too few iterations might produce insufficient uniformity whereas too many iterations might produce a highly regular result.

Xu and colleagues [START_REF] Xu | Capacity-constrained Delaunay triangulation for point distributions[END_REF] proposed a blue noise sampling technique for surfaces that is motivated from the CCVT algorithm. The core idea behind the method is to compute a Capacity-Constrained Delaunay Triangulation (CCDT), namely, given a simple polygon P in the plane, and the desired number of points N , compute a Delaunay triangulation of the interior of P with N Steiner points, whose triangles have areas which are as uniform as possible. This is computed iteratively by alternating update of the point geometry and triangulation connectivity. The vertex set of the CCDT is shown to have good blue noise characteristics, comparable in quality to those of state-of-the-art methods, achieved at a fraction of the runtime.

The CCDT method may be applied also to an arbitrary density function to produce non-uniform point distributions.

Xu and colleagues [START_REF] Xu | Blue noise sampling of surfaces[END_REF] proposed a more generalized approach to generate blue noise samples on surfaces. It is based on the concept of Capacity-Constrained Surface Triangulation (CCST), which approximates the underlying continuous surface as a well-formed triangle mesh with uniform triangle areas. The algorithm takes a triangle mesh and the number of sample points as input, and iteratively alternates between optimization of the geometry (positions) of the points and optimization of their topology (connectivity) until convergence. Since the method is relaxation-based, it allows precise control over the number of sample points. The algorithm alternates between a geometry optimization phase, which minimizes the variance of triangle capacities, and an edge-flipping based retriangulation phase, until convergence. When applied to a uniform distribution, the result has been shown to possess superior blue noise characteristics.

As relaxation-based sampling methods, both CCST and CCDT could be regarded as the dual versions of CCVT method. CCVT operates on Voronoi diagrams while CCST/CCDT generates the dual Delaunay triangulations. All of these three methods start with some random initializations and converge to some local minima of area variance that possess spatial uniformity of points after several alternations between geometry and topology phases. These local minima also avoid regularity artifacts that are caused by global minima, namely all the triangles/ cells that are equilateral, thus achieving blue noise characteristics. The iterative algorithm of CCVT could be categorized into Llyod's relaxation method, typically requiring about 100 alternations between geometry and topology phases. In contrast, CCST/CCDT method aims at directly minimizing variance of Delaunay triangle areas, leading the algorithm converges in less than 10 alternations between geometry and topology phases, thus is much faster than CCVT method. The CCST algorithm can also be regarded as the generalization of the CCDT method for planar surfaces to curved surfaces.

There are some tile-based methods proposed in the literature for surface sampling. As discussed in Section 2.1.7, Ostromoukhov [START_REF] Ostromoukhov | Sampling with polyominoes[END_REF] proposed a polyomino's based tiling method that can be easily extended on the surface of a sphere. Li and colleagues [START_REF] Li | Dual Poisson-Disk Tiling: An Efficient Method for Distributing Features on Arbitrary Surfaces[END_REF] generalize the concept of Wang tiles to surfaces. Once computed, the tiling can be used to quickly distribute points evenly over the surface, but how this method can be used for non-uniform densities was not demonstrated. To overcome distortion in the tiling, Lloyd's method is applied to the initial point distribution made by the tiling.

All the methods discussed in this section are for 3D surfaces which can be used to sample a sphere.

Sampling on the sphere

Researchers have also proposed many algorithms to directly sample the surface of a sphere. Rakhmanov and colleagues [START_REF] Rakhmanov | Minimal discrete energy on the sphere[END_REF] invesitgated the energy of arrangements of N points on the surface of the sphere in R 3 , by interacting through a power law potential. They proposed an area-regular sphere partitioning scheme for the purpose of obtaining bounds for the extremal (equillibrium) energy for such points.

They devise a scheme to distribute points over a nearly regular spherical hexagonal net, which they called the generalized spiral points. [START_REF] Saff | Distributing many points on a sphere[END_REF] studied the fundamental nature of distributing many points on the sphere. They noticed that the general pattern for optimal configuration of the points on the sphere is the same. For large number of points, they observed experimentally that on partitioning the sphere into Dirichlet (Voronoi) cells, all points but exactly 12 of the Voronoi cells for an optimal configuration are hexagonal. That is, with large enough N , points appear to arrange themselves according to a hexagonal pattern that is slightly perturbed in order to fit on the sphere.

Saff and Kuijlaars

Cui and Freeden [START_REF] Cui | Equidistribution on the sphere[END_REF] proposed a concept of generalized discrepancy, which involves pseudo differential operators to give a criterion of equidistributed point sets on the sphere. Cui and Freeden extend the famous Koksma-Hlawka inequality of Numerical Analysis from the unit hypercube to the sphere, and evaluate the uniformity properties of some deterministic sequences on the sphere. Recently, Choirat and Seri [START_REF] Choirat | Computational aspects of Cui-Freeden statistics for equidistribution on the sphere[END_REF] derive the properties of this new class of statistics, called the generalized discrepancies introduced by Cui and Freeden, for testing equidistribution on the sphere and to investigate their computational aspects.

Yershova and LaValle [START_REF] Yershova | Deterministic sampling methods for spheres and SO(3)[END_REF] studied deterministic sampling method on the sphere. The authors proposed a general framework for performing deterministic uniform sampling over spheres and the three-dimension rotation group SO(3).

They developed and implemented a particular sequence which extends the layered Sukharev grid sequence [START_REF] Sukharev | Optimal strategies of the search for an extremum[END_REF] designed for the unit cube. They tested the performance of the sequence in PRM-like motion planning algorithms, which demonstrated that this sequence is a useful alternative to a random sampling. This is in addition to the advantages that this sequence has over random sampling, such as deterministic resolution completeness guarantees and the regular lattice structure. For a complete survey of recent developments in the context of spherical designs and minimal energy point configurations on sphere, we encourage readers to see the compilation by Brauchart and Grabner [START_REF] Brauchart | Distributing many points on spheres: minimal energy and designs[END_REF].

Another very promising sphere surface sampling was proposed by Gorski and colleagues [START_REF] Górski | HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere[END_REF], called HEALPix. The inherent data structure contains an equal area quadrangulation of the sphere. It was originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background (CMB) experiments. HEALPix with an associated library is used for large area surveys in the form of discretized spherical maps. HEALPix possesses the following three essential properties; First, the sphere is hierarchically tessellated into curvilinear quadrilaterals with the lowest resolution partition comprised of 12 base "pixels". Resolution of the tessellation increases by division of each "pixel" into four new ones. Second, areas of all "pixels" at a given resolution are identical and, Thirdly, all "pixels" are distributed on lines of constant latitude. This property is essential for all harmonic analysis applications involving spherical harmonics. But the spherical harmonic pixelization on the sphere presented in HEALPix is inexact, and do not lead to a sampling theorem on the sphere.

Sampling theorem on the sphere

Sampling theorem on the sphere state that all of the information contained in a band-limited signal may be represented by a finite set of samples in the spatial domain. On the sphere, unlike Euclidean space, the number of samples required in the harmonic and spatial domains differ, with different sampling theorems on the sphere requiring a different number of samples in the spatial domain.

The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at degree L, all sampling theorems on the sphere require O (L 2 ) samples. There are several sampling theorems proposed on the sphere.

For an equiangular sampling of the sphere, the Driscoll and Healy (DH) sampling theorem [START_REF] Driscoll | Computing Fourier Transforms and Convolutions on the 2-Sphere[END_REF] has become the standard. It requires approximately 4L 2 samples on the sphere. The complexity of DH sampling theorem and the corresponding algorithms to compute fast spherical harmonic transforms is O (L 3 ). It also require a precomputation or otherwise restricted use of Wigner recursions.

In Gauss-Legendre sampling theorem, sample positions are given by the roots of Legendre functions. It requires approximately 2L 2 samples on the sphere.

A simple separation of variables gives algorithm with the complexity O (L 3 ).

Similar to DH sampling theorem, Gauss-Legendre sampling theorem also require a precomputation or otherwise restricted use of Wigner recursions.

McEwen and Wiaux [START_REF] Mcewen | A novel sampling theorem on the sphere[END_REF] recently developed a sampling theorem and the correponding fast algorithms by factoring of rotations and then associating the sphere with the torus through a periodic extension. MW sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of their algorithms scale as O (L 3 ), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast.

An in-depth study of the above mentioned sampling theorems is out of the scope of this dissertation. However, we have given brief description in this subsection for completeness of our survey.

Sphere sampling for illumination integrals

As mentioned earlier, in the evaluation of global illumination integrals hemipsherical and spherical sampling plays a crucial role in deciding the scatter direction of incoming and/or outgoing rays. Shirley [START_REF] Shirley | A low distortion map between disk and square[END_REF] proposed a low distortion map between disk and square that can be directly used to map samples from a square domain on to the hemisphere. Arvo [START_REF] Arvo | Stratified sampling of spherical triangles[END_REF][START_REF] Arvo | Stratified sampling of 2-manifolds[END_REF] proposed a spherical triangle sampling technique that reduces the noise level in illumination evaluation upto a greater extent.

Shao and Badler [START_REF] Shao | Spherical sampling by Archimedes' Theorem[END_REF] proposed a novel spherical sampling technique based on the Archimedes' Theorem. Archimedes' theorem states that; Globally, the area of a sphere equals the area of every right circular cylinder circumscribed about the sphere excluding the bases. Locally, the axial projection of any measurable region on a sphere on the right circular cylinder circumscribed about the sphere preserves area. The proposed algorithm based on these axioms is simple and efficient for generating uniformly distributed samples on the unit sphere. The implementation is straightforward and may be easily extended to include stratified sampling for variance reduction.

Dimov and colleagues [START_REF] Dimov | Parallel Monte Carlo sampling scheme for sphere and hemisphere[END_REF] address the problem for generation of uniformly distributed random samples over hemisphere and sphere and study the parallel sampling scheme for hemisphere and sphere. First they apply the symmetry property for partitioning of hemisphere and sphere. The domain of solid angle subtended by a hemisphere is divided into a number of equal sub-domains. Each sub-domain represents solid angle subtended by orthogonal spherical triangle with fixed vertices and computable parameters. Dimov and colleagues introduce two new algorithms for sampling of orthogonal spherical triangles. The first sampling algorithm generates a sample by mapping of the unit square onto orthogonal spherical triangle. The second algorithm directly compute the unit radius vector of a sampling point inside to the orthogonal spherical triangle.

Ureña and colleagues [START_REF] Ureña | An area-preserving parametrization for spherical rectangles[END_REF] proposed an area preserving spherical rectangle parametrization to reduce variance in scattering computation from planar rectangular emitters. Marques and colleagues [START_REF] Marques | Spherical Fibonacci point sets for illumination integrals[END_REF] introduced spherical Fibonacci lattices to improve QMC sampling in the hemispherical domain. Marques and colleagues also studied the worst-case error for spherical Fibonacci point sets for illumination integrals.

Quality criteria for sample distributions

As discussed before, Fourier analysis has been extensively used to study the frequency content of the sampling patterns. Fourier spectrum obtained by averaging the periodograms [START_REF] Bartlett | An Introduction to Stochastic Processes, with Special Reference to Methods and Applications[END_REF] and the corresponding radially averaged spectrum can be considered as a good measure for quality for uniform sampling patterns. Li and colleagues [START_REF] Li | Anisotropic blue noise sampling[END_REF] introduce adaptive and anisotropic sampling analysis based on warping and sphere sampling to extend the Fourier spectrum analysis from uniform to non-uniform sample distributions.

Bowers and colleagues [START_REF] Bowers | Parallel Poisson disk sampling with spectrum analysis on surfaces[END_REF] proposed an algorithm for analyzing the spectral distribution quality of surface samples. In planar sampling, the distribution quality is typically measured in terms of the radial means and anisotropy of the Fourier power spectrum [START_REF] Lagae | A Comparison of Methods for Generating Poisson Disk Distributions[END_REF]. Bowers and colleagues extend these concepts to arbitrary manifold surfaces by employing spectral mesh basis functions, derived as the eigenfunctions of the discrete mesh Laplacian operator [START_REF] Levy | Laplace-Beltrami Eigenfunctions towards an Algorithm that "Understands" Geometry[END_REF]. These functions define a Fourier-style basis set that exists on the mesh surface, and hence can be used to evaluate the power spectrum of samples distributed over the mesh.

Because the spectral mesh basis obeys surface geodesic distance and does not require any mesh parametrization, it provides a convenient way to study and compare the quality of different surface sampling algorithms.

Wei and Wang [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] proposed a more robust method for analyzing nonuniform sample distributions. The key insight of their algorithm is that standard Fourier analysis, which depends on samples' spatial locations, can be reformulated into an equivalent form that depends only on the distribution of their location differentials. They call this differential domain analysis. The main benefit of this reformulation is that it bridges the fundamental connection between the samples' spatial statistics and their spectral properties. In addition, it allows to generalize their method with different computation kernels and differential measurements.

Using this analysis, they can quantitatively measure the spatial and spectral properties of various non-uniform sample distributions, including adaptive, anisotropic, and non-Euclidean domains.

Shirley [START_REF] Shirley | Discrepancy as a quality measure for sample distributions[END_REF] introduced the notion of discrepancy to the computer graphics community to compute the quality of sampling patterns. Even though, Fourier analysis tools can be used to study the behaviour of various uniformly distributed sampling distributions but this approach only provides a quantitative information in the form of two-dimensional frequency spectrum. Computation of discrepancy allows assigning a single quality number, the discrepancy, to the point set. This allows to order point sets according to their discrepancy and compare which one is the best.

The quality criteria derived from the discrepancy of sample positions is related to the Koksma-Hlawka inequality. The Koksma-Hlawka inequality is a tight error bound on the approximation of an integral by the sample average of integrand values:

1 N N j=1 F (x j ) - 1 0 F (x)dx ≤ D(x j )V(F ) .
(

In this inequality D(x j ) is the discrepancy of the points 0 ≤ x j ≤ 1 and V(F ) is the total variation of the function F ,

D(x j ) = sup 0≤t≤1 1 N χ [0,t](x j ) -t , (2.2) V(F ) = sup 0=y 0 <y 1 <...<yn=1 n k=1 |F (y k ) -F (y k-1 )| , ( 2.3) 
where χ [a,b] is a characteristic function which non-zero only in the range [a, b] and 1 otherwise. Hickernell [START_REF] Hickernell | Koksma-Hlawka Inequality[END_REF] gives a detailed overview of this inequality and mentions that although the Koksma-Hlawka inequality originally derived for a particular integration domain D, and a particular space of integrands, F , the name may be applied to similar inequalities that have been derived for other D and F .

In these inequalities the integration error is bounded by a product of two terms, the discrepancy of the sample points, and the variation of the integrand.

In other words, the Koksma-Hlawka inequality splits the error into the part due to the quality of the sample points and the part due to the roughness of the integrand.

When F is a reproducing kernel Hilbert space, the Koksma-Hlawka inequality is straightforward to derive, and there is a simple formula for the discrepancy. This 

Discussion

In this chapter, we discussed various sampling methods to generate blue noise samples. We also studied various sampling methods that can offer good spectral control. The benefit of having a good spectral control over samples is that we can design a Fourier profile according to the integrand and can generate samples with respect to that profile. This can be very beneficial to reduce the integration error in Monte Carlo integration of the integrand involved. However, there is a missing connection between the error in Monte Carlo integration and the Fourier spectrum of sampling patterns.

Recent work has conducted a comprehensive analysis of error in Monte Carlo integration. In particular, Durand [START_REF] Durand | A frequency analysis of Monte-Carlo and other numerical integration schemes[END_REF] investigated error in integration and relates error to the spectral properties of the associated sampling patterns. Ramamoorthi and colleagues [START_REF] Ramamoorthi | A theory of Monte Carlo visibility sampling[END_REF] focused specifically on visibility to assess error due to sampling patterns in soft shadow rendering. Subr and Kautz [START_REF] Subr | Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration[END_REF] proposed a mathematical formulation that relates the variance in Monte Carlo integration directly to the variance of sampling Fourier coefficients taken over multiple realizations. However, this is still not sufficient as the variance of sampling Fourier coefficients can not be characterized according to the requirements.

In this dissertation, we establish a direct connection between the error in integration and the power spectrum of a sampling pattern in the spherical domain.

We use the notion of homogeneous sample distributions in the spherical domain, which has been extensively studied in physics and spatial statistics [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Daley | An introduction to the theory of point processes: volume I: elementary Theory and Methods[END_REF][START_REF] Daley | An introduction to the theory of point processes: volume II: general theory and structure[END_REF].

Homogeneous samples have same properties over the whole domain. Thanks to the homogeneous sampling, the error in MC integration can be expressed in the form of variance only. In Chapter 5, we develop a direct relation between the variance in MC integration and the power spectra of both the sampling pattern and the integrand involved in the spherical domain. This work has been successfully published by Pilleboue, Singh and colleagues [START_REF] Pilleboue | Variance analysis for Monte Carlo integration[END_REF].

Chapter 3

Mathematical Background

In this chapter, we discuss some basic mathematical tools that we use to lay down the platform of our work on variance analysis for Monte Carlo integration (Chapter 5). Our mathematical model proposed in Chapter 5 uses the core ideas from representation theory. Therefore, in this chapter, we introduce the background on representation theory in a step-by-step manner while providing all prerequisites that are needed to get a grasp on this theory. We keep our discussion to the point by directly introducing definitions of various entities without going in depth details. We encourage interested readers to refer to an introductory text by Herstein [START_REF] Herstein | Abstract Algebra[END_REF] and Hoffmann and Kunze [START_REF] Hoffman | Linear Algebra. Prentice-Hall mathematics series[END_REF] to brush up their linear and abstract algebra, respectively.

We first introduce briefly a light background on vector spaces and group theory which is essential to understand the representation theory. We later discuss the results which are used to derive our variance formulation in a compact manner.

Later, we discuss spherical harmonics which has been heavily employed in this work to understand the frequency content of various sampling patterns on the sphere and the hemisphere. We assume that the reader is familiar with the elementary algebra of real and complex numbers and with the basic ideas from set theory and topology.

Preliminaries

Before we dig into our mathematical introduction we give some preliminary definitions and introduce the notion of mapping.

Mapping

Let A and B be sets; a mapping or function f from A to B is a rule that associate 

[product), denoted by f • g, is the mapping f • g : A → C defined by (f • g)(a) = f (g(a)
) for every a ∈ A.

In abstract algebra, there exist structure-preserving mappings between algebraic strucutures. We describle various algebraic mathematical properties that holds for all structures like rings, groups, algebras.

Definition 3.1.5. A homomorphism is a structure preserving map between algebraic structures.

Homomorphism exists for different structures like rings, groups, algebras.

Later in this chapter, we define homomorphism for structures, like groups and inner product spaces which is more suited to our context. Definition 3.1.6. A isomorphism between two algebraic structures is a homomorphism whose inverse is also a homomorphism.

An isomorphism thus defines an equivalence between two structures that enables to perform all operations on the first structure also with the second one, and then relate the result back to the first.

Vector Spaces

In this section, we give a brief background on vector space. We start with the definition of a field; Definition 3.2.1. A set A, together with some operations on the objects in that set which behave like ordinary addition, subtraction, multiplication, and division of numbers in the sense that they obey the rules of elmentary algebra, constitutes a field.

To give an example, the complex space C is a field. Definition 3.2.2. A vector space (or linear space) consists of the following:

(a) a field Υ of scalars;

(b) a set V of objects, called vectors;

(c) a rule (or operation), called vector addition, which associates with each pair

of vectors v 1 , v 2 in V a vector v 1 + v 2 in V, called the sum of v 1 and v 2 , in
such a way that:

(i) addition is commutative, v 1 + v 2 = v 2 + v 1 (ii) addition is associative, v 1 + ( v 2 + v 3 ) = ( v 1 + v 2 ) + v 3
(iii) there is a unique vector 0 in V, called the zero vector, such that v+0 = v for all v in V.

(iv) for each vector v in V there is a unique vector v in V such that v+(-v) = 0;

(d) a rule (or operation), called scalar multiplication, which associates with each scalar c in Υ and vector v in V a vector c v in V, called the product of c and v, in such a way that:

(i) 1 v = v for every v in V; (ii) (c 1 c 2 ) v -c 1 (c 2 v); (iii) c( v 1 + v 2 ) = c v 1 + c v 2 ; (iv) (c 1 + c 2 ) v = c 1 v + c 2 ) v;
It is important to observe that a vector space is a composite object consisting of a field, a set of 'vectors', and two operations with certain special properties.

Definition 3.2.3. Let V be a vector space over the field Υ. A subspace of V is a subset W which is itself a vector space over Υ with the opertions of vector addition and scalar multiplication on V. 

formation from V 1 into V 2 is a function T from V 1 into V 2 such that: T(c v 1 + v 2 ) = c(T v 1 ) + T v 2
for all v 1 and v 2 in V and all scalars c in Υ.

Linear Transformations preserves the operations of addition and multiplications.

Definition 3.2.6. If V is a vector space over the field Υ, a linear transformation f from V into the scalar field Υ is called a linear functional on V.

If we start from scratch, this means that f is a function from V into Υ such that:

f (c v 1 + v 2 ) = cf ( v 1 ) + f ( v 2 )
for all vectors v 1 and v 2 in V and all scalars c in Υ. The concept of linear functional is important in the study of finite-dimensional spaces because it helps to organize and clarify the discussion of subspaces linear equations, and coordinates.

Interested readers are encouraged to read more concise text from Hoffmann and Kunze [START_REF] Hoffman | Linear Algebra. Prentice-Hall mathematics series[END_REF]. 

Tr(M) = M 11 + M 22 + • • • + M nn .
Definition 3.2.7. Let Υ be the field of real numbers or the field of complex numbers, and V a vector space over Υ. An inner product on V is a function which assigns to each ordered pair of vectors

v 1 , v 2 in v a scalar v 1 , v 2 in Υ in such a
way that for all v 1 , v 2 , v 3 in v and all scalars c:

1. v 1 + v 2 , v 3 = v 1 , v 2 + v 2 , v 3 2. c v 1 , v 2 = c v 1 , v 2 3. v 2 , v 1 = v 1 , v 2 , the bar denoting complex conjugation; 4. v, v > 0 if v = 0.
Definition 3.2.8. An inner product space is a real or complex vector space, together with a specified inner product on that space.

Unitary Operators

In this section, we consider the concept of an isomorphism between two inner product spaces. If V 1 and V 2 are vector spaces, an isomorphism of V 1 onto V 2 is a one-one linear transformation from V 1 onto V 2 , i.e., a 1-1 correspondence between the elements of V 1 and those of V 2 , which 'preserves' the vector space operations. Now an inner product space consists of a vector space and a specified inner product on that space. Thus, when V 1 and V 2 are inner product spaces, we shall require an isomorphism from V 1 onto V 2 not only to presrve the linear operations, but aso to preserve inner products. An isomorphism of an inner product space onto itself is called a unitary operator on that space. Definition 3.2.9. Let V 1 and V 2 be inner product spaces over the same field, and let T be a linear transformation from V 1 into V 2 . We say that T preserves

inner products if T v 1 , T v 2 = v 1 , v 2 for all v 1 and v 2 in V 1 . In this case, T is called the unitary transformation. An isomorphism V 1 onto V 2 is a vector space isomorphism T of V 1 onto V 2
which also preserves inner products.

Group Theory

We first discuss what a group really composed of and we also see the axioms which makes a set, a group. Group theory has a vast back ground, and in this section we focus on only the properties and groups we need to present our background on representation theory in Section 3.4.

Groups

To understand the notion of Groups, we start with a collection of objects A and endow this collection with an algebraic structure by assuming that we can combine, in different ways, these elements to obtain, once more, elements of this set A. 

These ways of combining elements of

(b) Associativity: Given h 1 , h 2 , h 3 ∈ H then h 1 * (h 2 * h 3 ) = (h 1 * h 2 ) * h 3 .
That 

(a) a 1 ≡ a 1 (reflexivity) (b) a 1 ≡ a 2 implies that a 2 ≡ a 1 (symmetry) (c) a 1 ≡ a 2 , a 2 ≡ a 3 implies that a 1 ≡ a 3 (transitivity).
Remark Of course, equality =, is an equivalence relation, so the general notion of equivalence relation is a generalization of that of equality. In a sense, an equvivalence relation measures equality with regard to some attribute. 

homomorphism if ϕ(h 1 * h 2 ) = ϕ(h 1 ) * ϕ(h 2 ) for all h 1 , h 2 ∈ H . Definition 3.3.7. The homomorphism ϕ : H → H is called monomorphism if ϕ is 1-1. A monomorphism that is onto is called an isomorphism. An isomorphism from H to H itself is called an automorphism.
Definition 3.3.8. If V is a vector space over the field Υ, the general linear group of V, written GL(V ) is the group of all automorphisms of V, i.e. the set of all bijective linear transformations V → V, together with functional composition as group operation.

Lie Groups

Groups provide the modern language to characterize symmetries: the invariance of a system under reversible changes. For example, permutations preserve the number and labels of elements while they allow to describe all different orderings and how to transition between them. Lie groups, which have the additional structure of a smooth manifold, enable to describe continuous symmetries, where the group elements are indexed using a continuous variable. A Lie group is a group with a smooth structure provided by an underlying manifold. Definition 3.3.12. The orthogonal group of dimension n, is the group of distancepreserving transformations of a Euclidean space of dimension n that preserve a fixed point, where the group operation is given by composing transformations.

Equivalently, it is a group of n × n orthogonal matrices.

Definition 3.3.13. The special orthogonal group SO(n) is an important subgroup of the orthogonal group with all orthogonal matrices having determinant equal to 1 or -1. The SO(n) is also called a rotation group and has been studied

extensively in lower dimensions as SO [START_REF] Alliez | Isotropic surface remeshing[END_REF] and SO(3) in two and three dimensions.

Representation Theory

Group theory has been factored into two parts; First, there is the study of the structure of abstract groups. Second, is the companion question: given a group H , how can we describe all the ways in which H may be embedded in (or mapped to) a linear group GL(V). This is the subject matter of representation theory. In this section, we briefly review some aspects of the Representation theory.

In this work, we use the representaion theory language to express the changes in the Fourier coefficients of a signal when it is transformed by the elements of a group (e.g., rotation). We review some basic concepts from this theory, before deriving the lemmas that lead to a closed-form expression that we would use to derive the variance expression for Monte Carlo integration in Chapter 5. The full derivation is courtesy to Prof. Michael Kazhdan. Definition 3.4.1. Given a complex inner-product space (V, •, • ) and compact group H , we say that the map ρ : H → U (V ) (with U (V ) the group of unitary transformations on V ) is a representation if:

ρ(h 0 • h) = ρ(h 0 ) • ρ(h), ∀h 0 , h ∈ H . (3.1)
Notation Given a representation ρ : H → U (V ), h ∈ H , and v ∈ V , we will write: x, y, v, w ∈ V , we have:

h(v) ≡ ρ(h)(v). ( 3 
H x, h(y) v, h(w) dh = μ(H ) dim(V ) x, v y, w . (3.3)
where , represents an inner product operator.

Proof Fixing y, w ∈ V , let B y,w : V × V → C be the map:

B y,w (x, v) = h∈H x, h(y) v, h(w) dh. (3.4) 
It is not hard to show that this map is linear in the first argument, conjugatelinear in the second, and H -equivariant. (That is, for any h 0 ∈ H we have

B v,w (h 0 (x), h 0 (y)) = B v,w (x, y))
. Thus, by Schur's Lemma [START_REF] Serre | Linear representations of finite groups[END_REF][START_REF] Fulton | Representation Theory: A First Course[END_REF], B y,w is a scalar multiple of the inner-product on V :

B y,w (x, v) = λ y,w x, v . (3.5)
Noting that this satisfies B y,w (x, v) = B x,v (y, w), it follows that:

B y,w (x, v) = λ x, y v, w , (3.6) 
for some constant λ ∈ C that is independent of v and w. Finally, letting {v 1 , . . . , v n } be an orthonormal basis for V , we can express the integral of the square norm of the trace of ρ(h) as:

H Tr (ρ(h)) 2 dh = H n i=1 h(v i ), v i 2 dh = n i,j=1 B v j ,v i (v j , v i ) = dim(V ) • λ.
Since the trace is the character of the representation, it follows by the orthogonality of characters [START_REF] Serre | Linear representations of finite groups[END_REF][START_REF] Fulton | Representation Theory: A First Course[END_REF] that H Tr (ρ(h)) 2 dh = μ(H ), which gives:

λ = μ(H ) dim(V ) . (3.7)
Thus, we get:

H x, h(y) v, h(w) dh = μ(H ) dim(V )
x, v y, w .

(3.8) Proposition 3. Leveraging Schur's Lemma in a similar manner, it follows that if 

ρ 1 : h → U (V 1 ) and ρ 2 : h → U (V 2 ) are two irreducible representations that are not isomoprhic, then for any v 1 , w 1 ∈ V 1 and v 2 , w 2 ∈ V 2 : H v 1 , h(w 1 ) v 2 , h(w 2 ) dh = 0. ( 3 

Spherical Harmonics

On the sphere, the most commonly used tool for spectral analysis is the spherical harmonics (SH) [START_REF] Groemer | Geometric Applications of Fourier Series and Spherical Harmonics[END_REF][START_REF] Wieczorek | Localized spectral analysis on the sphere[END_REF], which is the Fourier analog on the sphere, and is given by:

Y m l (θ, φ) := (2 -δ 0m ) (2l + 1) μ(S 2 ) (l -m)! (l + m)! P m l (cos θ) exp(imφ) . (3.10)
Here, δ ij is the Kronecker delta function, μ(S 2 ) = 4π, is the Lebesgue measure of a unit sphere, Y m l (θ, φ) is the spherical harmonic basis function of degree l and order m and P m l (x) denotes the asssociated Legendre Polynomials, for

x ∈ [-1, 1]. SH (Y m l ) are orthonormal basis functions, such that, any integrable function G on S 2 can be decomposed into SH components. as:

G(x) = ∞ l=0 l m=-l S G (l, m) Y m l (x) , ( 3.11) 
where S G (l, m) are the (complex) spectral coefficients of G(x). It can be easily

shown that:

S 2 ||G(x)|| 2 dω = ∞ l=0 l m=-l ||S G (l, m)|| 2 . (3.12)
which is the Parseval's theorem on the sphere. Analogously, the inner product between any two arbitrary functions, G(x) and F (x) defined over a unit sphere, is related to their corresponding spectral coefficients by:

S 2 G(x) F(x) dx = ∞ l=0 l m=-l S G (l, m) • S F (l, m) , ( 3.13) 
where

S G (l, m) = G, Y m l
is the (l, m)-th spherical harmonic coefficients of G(x). The angular mean power spectrum at a frequency band l is defined as the average energy distributed over different m for a given l, as follows:

PG (l) := 1 2l + 1 l m=-l S G (l, m) 2 .
(

The mean angular power spectrum PG (l) is invariant under a rotation of the coordinate system ( [START_REF] Kaula | Theory of statistical analysis of data distributed over a sphere[END_REF][START_REF] Lowes | Spatial power spectrum of the main geomagnetic field, and extrapolation to the core[END_REF]), as they contain a sum over all orders m. A spherical harmonic power spectrum can be defined with or without the averaging factor. In our formulation, we prefer to work with the average power per degree, or power spectral density, PG (l), as this ensures that the spectral coefficients of a spherical Dirac delta function are constant and independent of degree l ([45]).

Hemispherical analysis using SH

In the hemispherical domain, we can apply the mathematical procedure developed on the sphere, using spherical harmonics. This is possible due to the fact that the sphere is a Riemannian double-cover of projective 2-space and all local geometric calculations in the spherical domain are applicable on hemispherical functions if we associate the hemisphere to the projective 2-space. Here we use the fact that, any function on projective 2-space can be extended to an even function on the sphere.

Projective 2-space (P 2 ) is defined to be the set of points on the sphere, modded out by the relation that for all x ∈ P 2 , x and -x belongs to the same equivalence class. Then given a function on the projective 2-space, G ∈ L 2 (P 2 ) , it can be turned into a function on the sphere by setting the value at the points x and -x to be the value of G on the equivalence class {x, -x}. In particular, this means that the space of functions on projective 2-space is the same as the space of even functions on the sphere. Thus, rotation can be defined on L 2 (P 2 ) by treating the function as an even function on the sphere, rotating the even function (which remains even after rotation) and then considering the corresponding function on projective 2-space. In that case, all the results derived in the spherical domain follow, including the homogeneous property. The space of even functions on the sphere is precisely the space of functions spanned by spherical harmonic basis functions of even degree, Y l m with l even. The only assumption here is that we restrict our analysis to functions on the hemisphere with G(x) = G(-x) for all points on the equator.

Chapter 4

Spectral Analysis of Sampling Patterns

Computer Graphics, with pixels being spatially discrete, inherently deals with In computer graphics, methods such as frequency domain analysis [START_REF] Dippé | Antialiasing through stochastic sampling[END_REF][START_REF] Cook | Stochastic sampling in computer graphics[END_REF][START_REF] Mitchell | Spectrally optimal sampling for distributed ray tracing[END_REF] are extensively used to better understand the characteristics of various sampling patterns.

In this chapter, we first look (Section 4.1) at how spectral (frequency) analysis is performed in the Euclidean domain. Later, we perform similar analysis in the spherical domain (Section 4. tool developed by Wei and colleagues [START_REF] Wei | Differential domain analysis for non-uniform sampling[END_REF] that can be used to perform analysis of sampling patterns in the differential domain. The advantage of differential domain analysis over frequency analysis, is that, the differential domain analysis can be performed for uniform and adaptive sampling methods in both the Euclidean as well as non-euclidean domains. However, as we focus only on uniform (nonadaptive) sampling patterns in the Euclidean and spherical domains, we restrict ourselves to the Fourier and spherical harmonics tools, respectively, to analyze the characteristics of various sampling patterns.

Based on our spectral analysis of sampling patterns over the sphere and the hemisphere, we introduce the notion of homogeneous sample distributions in spherical domain. We show that over multiple realizations (point sets) of a sampling pattern, any non-homogeneous sampling pattern can be made homogeneous by performing uniform and random rotations on each of its realization. We also show that by performing uniform and random rotations on a point set, the energy in each frequency band, l, of an angular power spectrum, gets equally distributed over each of its components. Consequently, the structural artifacts turns into structural noise (Fig. 4.13). A theoretical justification of this operation is given in Section 3.4 using representation theory. power spectrum can be written as:

Spectral Analysis in Euclidean domain

|| 1 N N -1 i=0 F S (δ(x -x i ))|| 2 , ( 4.1) 
where, F S denotes the Fourier transform on S. with an hawk-eye, there are samples close to the left and right borders of the domain. These samples appear to be far off from each other, as they are on the opposite sides of the domain. However, if we fold this square sampling domain to make a torus shaped surface, we observe that these border samples are too close to each other and therefore, does not obey the minimium distance criteria any more. Similar observation can be made for Top and Bottom borders as well as the samples at the four corners of this square domain. The downside of having samples too close to the boundaries on the opposite sides is that, if we try to use this sample set as a tile and start tiling a plane with these tiles, the samples at the boundaries of two tiles would be too too close to each other and the Poisson Disk property of minimum distance between the samples would not be valid anymore.

Sample generation

As a result, not all the samples we get on a tiling plane using these tiles, would be respecting the minimum distance criteria.

To overcome this issue, samples are generated with a wrapped around distance,

i.e. in the toroidal domain. The idea is to make sure that samples at the boundaries of the domain are placed such that the minimum distance criteria is also preserved across the boundaries of the domain. As shown in Fig We have already illustrated (Fig. 4.1) the effects of these high energy peaks in the regular sampling pattern power spectrum which appears as artifacts where we render a zone plate function: sin(x 2 + y 2 ). Since the jittered sampler power spectrum distributes the Fourier energy of samples all over the spectrum, the resulting rendered image using jittered samples shows noise, which is less objectionable to human eye.

Sample distribution
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Radial Mean Power Spectrum

We can also study the characteristics of a sampling pattern from its radial mean of the square power spectrum. To compute the radial mean of the powe spectrum, we first consider the DC peak as the center of the circle with radius ρ frequency, such that all coefficients surrounding the DC peak at frequency ρ are averaged to compute the radial mean at frequency ρ.

Intuitively, the procedure can be understood as taking average of all the Fourier coefficients that are at a same distance from the DC peak on the square power spectrum. An illustration is shown in Fig. 4.6. For whitenoise, as the square power spectrum is flat, the energy is spread all over the frequencies. Consequently, the corresponding radial mean of the White noise is also flat (Fig. 4.6(b)). For jittered sampling, we observe a region with power values close to zero near DC peak (at the center of the image) and as we go towards mid-to high-frequencies the power values increases (Fig. 4.6(d)). After a characteristic frequency, the radial mean spectrum of a jittered sampling pattern appears to be flat, like whitenoise.

Low Discrepancy Samplers

We also study the frequency content of some of the Quasi-Monte Carlo based sampling patterns for which discrepancy parameter is used as the quality criteria Fibonacci lattice. This is because the power spectrum of Halton sequence distributes most of its Fourier energy all over the frequencies. The reference zone plate function is shown in Fig. 4.1(a). A detailed analysis of various samplers in the Euclidean space is performed by Pilleboue [START_REF] Pilleboue | Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo[END_REF] in his thesis work. In this dissertation, we keep our focus in the (hemi-)spherical domain.

Spectral Analysis in Spherical domain

In the spherical domain, we perform a similar frequency analysis of different sampling patterns using spherical harmonics [START_REF] Groemer | Geometric Applications of Fourier Series and Spherical Harmonics[END_REF]. We follow our discussion from Section 3.5, where we introduce spherical harmonics. As we have shown in Fig. 3.1, the frequencies in spherical harmonic basis functions (Y l m ) are distributed in an angular manner, with |m| ≤ l , ∀ l ∈ Z ∪ 0. Therefore, it is not possible to directly generate a square power spectrum similar to the euclidean case.

However, for illustration purposes, later in this section, we show a square-shaped angular power spectra of some of the sampling patterns. To generate the square- by repetitively using the angular power spectrum (Fig. 4.9(a)) in the missing quadrants. Note that, this square-shaped angular power spectrum is generated just for illustration purposes. The corresponding mean angular power spectrum can be obtained by simply averaging the ||S G (l, m)|| 2 values for all m in a given frequency band l, as follows:

shaped
PG (l) := 1 2l + 1 l m=-l S G (l, m) 2 . (4.2)
The resulting PG (l) is called the mean angular power spectrum which can be considered equivalent to the radial power spectrum we studied in the Euclidean case (Section 4.1).

Deterministic sampling on the sphere

All the sampling patterns we are studying on the sphere or hemisphere, in this dissertation, are computed directly on the sphere. No warping or mapping of any kind is used to compute these samples on the sphere. We give more details on the implementation of our spherical samplers in Chapter 7. To generate regular and jittered sampling patterns on the sphere we use the Healpix data structure [START_REF] Górski | HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere[END_REF]. To analyze a QMC (deterministic) sampler on the sphere and hemisphere, we choose (hemi-)spherical Fibonacci lattice point sets which has been recently introduced to the computer graphics community by Marques and colleagues [START_REF] Marques | Spherical Fibonacci point sets for illumination integrals[END_REF]. This is the first QMC sampler that can be directly generated on the sphere or hemisphere.

As shown in Fig. 4.10, both Healpix regular and spherical Fibonacci sample distributions look very similar on the sphere. Therefore, we compared the spectral properties of spherical Fibonacci point sets with the Healpix regular point sets.

Their mean angular power spectrum is showing a zero-value low -frequency region followed by high energy peaks. The corresponding square-shaped angular power spectrum is shown in Fig. 4.11(a,b,c) for Healpix regular, and in Fig. 4.12(a,b,c) for spherical fibonacci lattice point sets with their respective heatmap to visualize the high energy region.

Random rotations

We perform a simple test on both Healpix regular and spherical Fibonacci lattice point sets. We perform uniform and random rotation on each of the point sets and average the respective (square-shaped) angular power spectrum over multiple rotations. We observed that with increase in the number corresponding to that l.

To illustrate this effect on a real scene, we use a simple lighting setup, as shown in Fig. 4.13, where we compute direct lighting scene by first (Fig. 4.13(b))

using same regular hemispherical sampling pattern for secondary rays all over the scene. The resultant image is full of structural artifacts due to high correlation between different pixels. A simple perturbation of samples at each hitpoint, of these regular hemispherical patterns turns these artifacts into noise (Fig. 4.13(c)).

In Chapter 5, we introduce a theoretical framework that exploits the consequences of uniformly and randomly rotating the samples, for the Monte Carlo integration of spherical functions. We use the representation theory to formulate this operation of random rotation as a SO(3) group operator (more details are given in Section 3.4).

Non-deterministic sampling on the sphere

We study four different irregular samplers on the sphere namely: white noise, jittered, Poisson Disk and CCVT [START_REF] Balzer | Capacity-constrained point distributions: A variant of Lloyd's method[END_REF]. All samplers are generated directly on the sphere with no warping at all. The implementation details of these samplers is given in Chapter 7. All the mean angular power spectra are plotted along Power vs. ω, where ω = α √ N . Here, N is the number of samples and α is used to quantify the range of energy-free frequency with respect to the mean frequency.

In Fig. 4.14, we show the mean angular power spectrum of these sampling patterns on the sphere. The corresponding sample distributions are shown as insets.

As we can see, the sampling patterns behaves similar to the Euclidean domain. The computation of spherical harmonics is very time consuming. Therefore, we generate the radial angular power spectrum of spherical samples upto a restricted frequency. However, for hemispherical samples, in the next section, we are able to go to a reasonably high frequencies to compute the corresponding radial angular power spectrum. Note that, since the spherical domain is closed, it is naturally "toroidal" in nature.

Spectral Analysis in Hemispherical domain

To perform spectral analysis of hemispherical sampling patterns, we again used spherical harmonics. However, spherical harmonics cannot be directly employed on a hemispherical domain. This is because the spherical harmonics are no longer orthogonal on the hemisphere. Since the hemispherical domain is not closed, if we perform spectral analysis of hemispherical sampling patterns using spherical harmonics, we obtain a set of high energy peaks within the low frequency region. This is illustrated in Fig. 4.15 for white noise, jittered and hemispherical Fibonacci lattice point sets with the corresponding spatial distributions shown as an inset.

We compute their square-shaped and mean angular power spectra using spherical harmonics. The high energy peaks can be seen in the low-frequency region near the l = 0 frequency.

The best way to compute spectral content of hemispherical sampling patterns using spherical harmonics is by first mapping the hemispherical samples to a projective 2-space such that the sampling pattern acts as an even function on the sphere, more details are given in Section 3.6. This allows computation of angular power spectra of various hemspherical samplers directly using spherical harmonics.

Hemispherical sample generation

We generate white noise and Fibonacci lattice points directly on the hemisphere whereas for jittered samples, we first generate jittered sampling pattern on a unit sphere and then consider only the upper hemisphere of that unit sphere. A similar procedure is also adopted for CCVT, Healpix regular and Poisson Disk sampling patterns. All hemispherical samplers are shown as insets in Fig. 4.14, with their corresponding mean angular power spectra.

Random rotations

We perform a similar operation of uniform and random rotations on the hemispherical sampling patterns. To illustrate the effects of random rotation on the characteristic spectral properties of a sampling pattern, we use hemispherical Fibonacci lattice point set. As shown in Fig. 4.16, we observe a very similar behaviour as in the spherical domain (Fig. 4.12), on the hemisphere. Hemispherical Fibonacci point sets have a number of high energy peak in the spectrum. However, just after one rotation, the energy peaks within different (2l + 1) rotational components of a frequency band l starts distributing their energy among all (2l + 1) components of l. After a number of rotations, all the (2l + 1) components appears to have equal energy in a given frequency band l.
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Homogeneous sampling patterns

In both, the spherical and hemispherical domains, we observed that after performing a finite number of rotations, the spectral power of the spherical harmonic coefficients gets distributed within the (2l + 1) components of a frequency band l. In global illumination evaluation, Cranley-Patterson [START_REF] Cranley | Randomization of number theoretic methods for multiple integration[END_REF] rotation is used to add perturbations by simply adding a random shift vector to each point modulo 1, over the Euclidean domain, which converts structural artifacts into noise. We instead, perform direct rotation of hemispherical samples on the (hemi-)sphere. The operation of rotation results in, what we call, homogeneous sample distributions.

First, we define the idea of homogeneous sample distributions in a general setting. A homogeneous sample distribution has statistical properties invariant to translation over the domain D. The notion of homogeneous distribution of points is commonly used in physics [START_REF] Hansen | Theory of simple liquids[END_REF] for compound gases. In the computer graphics community, this notion is similar to the "widesense stationary process" described by Dippé and Wold [START_REF] Dippé | Antialiasing through stochastic sampling[END_REF] which is discussed only for Poisson sampling. However, in our mathematical formulation (Chapter 5), we extend the domain of application of this widesense stationary notion by making any kind of sampling pattern translation invariant, that is, homogeneous. In MC integration, the consequence is that a homogeneous sampling pattern produces no bias, so that error only arises from the variance. For more details, please refer to Appendix B. Given this property, we can restrict our error analysis to variance only.

Many state-of-the-art sampling methods such as White noise, Poisson Disk, and all optimization-based methods starting from a white noise distribution (e.g., the methods of Schlömer et al. [START_REF] Schlömer | Farthest-point optimized point sets with maximized minimum distance[END_REF] and de Goes et al. [START_REF] De Goes | Blue noise through optimal transport[END_REF]) are homogeneous. Surprisingly, jittered sampling and Latin hypercube sampling are non-homogeneous.

This can be explained by the fact that both methods rely on a subdivision of the sampling domain that is fixed over all realizations. However, any sampling method can be transformed into a homogeneous sampling by uniformly and randomly translating each realization of the sampling pattern. Analogously, sampling patterns on the unit sphere (S 2 ) can be made homogeneous by uniformly and randomly rotating the distribution.

Spectral properties of homogeneous sampling

As we observed in the case of spherical and hemispherical samples, uniform and random rotations of a point set can result in equvi-distribution of energy within (2l + 1) components of a frequency band l. We also observe that the the distribution of a spherical harmonic coefficient (S S (l, m)) of a sampling pattern, taken over multiple rotations of a sampler, results in a radial distribution of this coefficient values in the complex plane.

An illustration is shown, in Fig. 4.17, for whitenoise, jittered, Healpix regular and spherical Fibonacci lattice point sets. This implies some interesting characteristics of the coefficients S S (l, m) of the sampling pattern: First, the expected values of S S (l, m), i.e. S S (l, m) , is zero. Second, the phase of coefficients is uniformly

distributed over [0, 2π].
Since, the sample distributions are made homogeneous after performing uniform and random rotations of point sets, the above properties are associated to the homogeneous sample distributions. In the Euclidean space, Subr and colleagues [START_REF] Subr | Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration[END_REF] have shown that an unbiased estimator can be obtained if the mean of the Fourier spectrum of the sampling pattern is zero everywhere, except at frequency zero (DC). By definition, homogeneous sampling patterns exhibits this property and therefore can be considered unbiased. As a result, homogeneous patterns manifest error only in terms of noise (variance).

Discussion

To summarize the contribution of this chapter we outline the conclusions drawn from our spectral analysis of various sampling patterns. We focus our spectral analysis mainly in the spherical and hemispherical domain. To our knowledge, this is the first time such a careful spectral analysis of various sampling patterns have been performed in the spherical and hemispherical domain. In image synthesis, spherical and hemispherical samples play a crucial role in the evaluation of global illumination integrals. In practice, for global illumination problems, samples are first generated on a square domain and then a low distortion mapping [START_REF] Shirley | A low distortion map between disk and square[END_REF] is performed to project these square samples on to the sphere or a hemisphere. For our analysis, we generate samples directly on the sphere. To obtain samples on a hemisphere we consider an upper hemisphere of spherical samples.

We perform random rotations on the spherical and hemispherical samples that distributes the high energy peaks over the respective frequency bands l. This property can explain why the structural artifacts turns into noisy signals if we start randomly rotating regular or QMC samplers while evaluating global illumination integrals.

We also lay down the basic platform to perform variance analaysis for Monte Carlo integration. We develop the notion of homogeneous sampling patterns on the sphere which express error in integration only in terms of variance. Homogeneous sample distributions are the direct consequence of uniform and random rotations of spherical and hemispherical samples.

Chapter 5

Variance analysis of Monte Carlo Integration

In this chapter, we develop our mathematical framework that relates the variance in Monte Carlo (MC) integration directly with the power spectra of both the sampling pattern and the integrand involved. We use the notion of homogeneous sampling to propagate the error in MC integration into variance. This framework has been developed on the spherical domain which is easily extendable to the hemispherical domain.

Monte Carlo estimator

Monte Carlo integration is a numerical integration method to estimate the integral I of a function F . The MC estimator I N averages over N stochastic samples taken over the integrand in a given sampling domain D. We consider samples {s 1 , ..., s N } as a set of equally weighted random variables. The resultant MC estimator I N of an integrand F is defined as:

I N := μ(D) N N k=1 F (s k ) . ( 5.1) 
A sampling pattern can be written as a random variable S made up of N Dirac functions located at sample positions:

S(x) = N k=1 δ(x -s k ) , (5.2) 
which can be represented as an inner product [START_REF] Durand | A frequency analysis of Monte-Carlo and other numerical integration schemes[END_REF] given by:

I N = μ(D) N D S(x)F (x)dx . ( 5.3) 
Depending on the sampling strategy, different weights (w i ) can be assigned to each sample. On the spherical domain (D = S 2 ), MC estimator can be formulated as:

I N := μ(S 2 ) N S 2 S(x) F (x) dx , ( 5.4) 
where μ(S 2 ) = 4π, denotes the Lebesgue measure of a unit sphere with x = (θ, φ)

for θ ∈ [0, π] and φ ∈ [0, 2π], and dx = sin θ dθ dφ. To relate variance of I N with the frequency content of F and S, we first obtain the spectral form of the estimator I N using spherical harmonics. Before going further, we quickly discuss a brief background on spherical harmonics and the corresponding properties which we need to derive the variance relation.

Background on SH

In Section 3.5, we introduce spherical harmonics, which are the Fourier analog on the sphere. Since the Fourier transform cannot be directly applied on the sphere, spherical harmonics were designed to study the spectral properties of spherical signals directly on the sphere. For any integrable function, G(x), it can be easily shown that:

S 2 ||G(x)|| 2 dω = ∞ l=0 l m=-l ||S G (l, m)|| 2 . ( 5.5) 
where S G (l, m) are the (complex) spectral coefficients of G(x), which is the Parseval's theorm on the sphere. Analogously, the inner product between any two arbitrary functions, G(x) and F (x) defined over a unit sphere, is related to their corresponding spectral coefficients by:

S 2 G(x) F(x) dx = ∞ l=0 l m=-l S G (l, m) • S F (l, m) , (5.6) 
where

S G (l, m) = G, Y m l
is the (l, m)-th spherical harmonic coefficients of G(x). The angular mean power spectrum at a frequency band l is defined as the average energy distributed over different m for a given l, as follows:

PG (l) := 1 2l + 1 l m=-l S G (l, m) 2 .
(5.7)

Variance in spectral form

With this background, we are now ready to represent the Monte Carlo estimator from Eq. (5.4) in its spectral form. By using Eq. (5.6) in Eq. (5.4) we obtain the estimator in terms of the spherical harmonic coefficients:

I N = μ(S 2 ) N ∞ l=0 l m=-l S S (l, m) • S F (l, m) . ( 5.8) 
where S S (l, m) and S F (l, m) are the complex harmonic coefficients of S and F . Following the definition of Variance for a complex variable X, Var (X) = ||X|| 2 -|| X || 2 , and using Eq. (5.8), we obtain variance of the Monte Carlo estimator I N as:

Var (I N ) = ||I N || 2 -|| I N || 2 = μ(S 2 ) 2 N 2 ∞ l=0 l m=-l ||S S (l, m) • S F (l, m)|| 2 -|| S S (l, m) • S F (l, m) || 2 .
(

Here, we can easily show that the harmonic coefficients with (l = 0, m = 0) do not contribute to the variance in Eq. (5.9). We provide a step-by-step derivation of the same in Appendix A. As a result, we can rewrite the Eq. (5.9) as follows:

Var (I N ) = μ(S 2 ) 2 N 2 ∞ l=1 l m=-l ||S S (l, m) • S F (l, m)|| 2 -|| S S (l, m) • S F (l, m) || 2 , ( 5.10) 
where the degree l starts from 1 rather than zero. From hereafter, we consider only homogeneous sampling patterns in our mathematical derivation. This This results in further simplification of our variance relation given in Eq. (5.10):

Var (I N ) = μ(S 2 ) 2 N 2 ∞ l=1 l m=-l ||S S (l, m) • S F (l, m)|| 2 .
(5.11)

We rewrite above Eq. (5.11) by expanding the norm square term, which gives:

Var (I N ) = μ(S 2 ) 2 N 2 ∞ l,l =1
S S,F (l, l ) (5.12)

In Eq. (5.12), S S,F (l, l ) is given by:

S S,F (l, l ) = l,l m=-l m =-l S S (l, m) • S F (l, m) • S S (l , m ) • S F (l , m ) . (5.13)
Since the homogeneous sampling patterns, mentioned in Section ??, have statistical properties that are invariant to rotation on the sphere, it is equivalent to study the variance generated by the rotated version of each realization, with the average taken over all rotations. Formally, this is equivalent to taking average over the group of rotations (SO(3)), with τ (S) denotes the rotation of S by an element τ ∈ S SO(3) . Then, averaging equation Eq. (5.13) over all translations of S, we get:

Var (I N ) = μ(S 2 ) 2 N 2 1 μ(S SO(3) ) ∞ l,l =0 SO(3)
S τ (S),F (l, l )dτ , (

To simplify the integral part in Eq. (5.14) we employ the representation theory which has been briefly explained in Section 3.4. By using the fact that the span of the l-th frequency spherical harmonics,

V l = Span{Y -l l , • • • , Y l l }
, is a (2l + 1)-dimensional irreducible representation for the SO(3) group and applying Propositions 2 and 3 from Chapter 3, we get: (3) ) PG (l) , (5.15) for any function G(x) ∈ S 2 . Here, PG (l)is the angular mean power spectrum of the l-th spherical frequency of F as defined in Eq. (5.5). By plugging the angular mean power spectrum (5.5) in Eq. (5.15) and combining it with Eq. (5.14), we get:

SO(3) τ (G), Y m l • Y m l , τ(G) dτ = δ ll δ mm μ(S SO
Var (I N ) = μ(S 2 ) 2 N 2 ∞ l,l =0 PS (l) l m=-l S F (l, m) • S F (l, m) (5.16) = μ(S 2 ) 2 N 2 ∞ l=0 PS (l) l m=-l ||S F (l, m)|| 2 .
(5.17)

Here we normalize the angular mean power spectrum PS (l) by N/μ(S 2 ) to make sure that the angular mean power spectrum of any sampling pattern converges to value 1. This normalization ensures comparison within different sampling patterns with different N . At last, using the angular mean power spectrum definition from Eq. (5.5) with the normalization factor discussed in Eq. (5.16), we obtain:

Var (I N ) = μ(S 2 ) N ∞ l=0
(2l + 1)P S (l) PF (l) (5.18) which gives the final expression for the variance in terms of the angular mean power spectra of both the sampling pattern S and the integrand F . Here, P S (l) = PS (l) which represents the averaged angular mean power spectrum-over multiple realizations (point sets)-of a sampling pattern.

Variance in spectral form on H 2 We can use the same mathematical model derived in Eq. (5.18) in the hemispherical domain. As discussed in Section 3.6, we can map all hemispherical signals as even functions on the sphere. After that, we can perform hemispherical signal analysis directly on the sphere while using only even l frequency bands of the spherical harmonics.

Discussion

In this chapter, we have derived a direct relation (Eq. (5.18)) between the variance in Monte Carlo integration with the power spectra of both the sampling pattern S and integrand F involved. By looking at Eq. ( 5.18), we observe that variance is a sum of the product of the mean angular power of S and F over all frequencies l. Consequently, to have a low variance in integration, at least one of PS (l) or PF (l) should have minimal possible energy in the low frequency region of its corresponding power spectra.

To give an illustration, we plot both the PS (•) and PF (•) on the same axis for a given number of samples N , as shown in Fig. 5.1(a). We assume the shape of the integrand's power specrtum, PF (•), (in orange) such thate the energy of the spectrum is mostly concentrated in the low frequency zone and as we move towards mid to high frequencies the energy diminishes. This is a valid assumption since from a practical point of view, almost all display devices have a low pass filter that is applied to a signal (F ) to avoid unusual artifacts, which means that we can display a signal only upto a particular bandwidth. That implies that most of the information, of the signals, which can be displayed on display devices is concentrated towards low-to mid-frequency regions.

Since the variance in integration (Eq. (5.18)) depends on the product of the power spectra of both the sampler and the integrand involved, the variance can be reduced by choosing a sampling pattern that has minimal possible energy in the low-to mid-frequency regions. Now an obvious question that one can ask is, why the variance goes down as we increase the number of samples? This can be explained from the fact that as we increase the number of samples, the power spectrum of a sampler (in blue) scales along the frequency, as shown in Fig. 5.1(b). As a result, the low frequency part of a sampling power spectrum, where the energy is negligible, becomes more and more dominating in the domain (low to mid frequency region) of the integrand.

Consequently, the corresponding product of the sampler and integrand power spectra, in Fig. 5.1(c), diminishes with the increase in number of samples, as shown in Fig. 5. 1(d).

With this illustration in Fig. 5.1, we have shown that as we increase the number of samples, the variance convergence rate-i.e., the rate at which the variance diminishes with the increase in the number of samples-of a sampler depends on the low frequency region of the sampling power spectra. In Chapter 6, we focus our attention to analyze the low-frequency region of various sampling patterns.

We classify the low-frequency region of various sampling patterns, and obtain bounds on the corresponding angular mean power spectra in the low-frequency region using simple shapes (profiles). These profiles are later used to derive the corresponding variance convergence rates in terms of the number of samples involved.

Chapter 6

Theoretical Convergence analysis

Using the framework derived in the spherical (Chapter 5) domain, we have shown that the variance in MC integration is related to the power spectra of the integrand and the sampling pattern. This implies that if we know the sampling and integrand power spectra then we can predict the variance and the corresponding variance convergence rate, as a function of the number of samples N , in MC integration.

In practice however, the power spectrum of an integrand is unknown. Therefore, we restrict our analysis to a particular class of functions. We follow the work by Brandolini and colleagues [START_REF] Brandolini | Mean square decay of Fourier transforms in Euclidean and non Euclidean spaces[END_REF], and restrict our analysis to integrable functions of the form F (x)χ Ω (x) with F (x) smooth and Ω a bounded domain with smooth boundary (where, χ Ω (x) is the characteristic function of Ω). We consider a bestcase function and a worst-case function, both from this class of functions to derive the best-and worst-case variance convergence rate, as the number of samples N increases.

Conversely, analytical models for the sampling power spectra are often avail-able [START_REF] Gabrielli | Voronoi and void statistics for superhomogeneous point processes[END_REF] in the Euclidean space. We show that these power spectra can be used in our framework to predict the variance of an integrand. We bound the variance convergence rate of these samplers-with known power spectra-by simply imposing bounds on the sampling power spectra in MC integration. For sampling power spectra with no analytical formulations, we provide tools for bounding the power spectra in Sec. 6.2, which have been developed a priori in the Euclidean domain by Pilleboue [START_REF] Pilleboue | Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo[END_REF]. In this chapter, we extend these analysis tools on the sphere.

Best and worst case variance

First, we derive theoretical convergence rates of the variance for the best-and the worst-case functions from a given class of functions. We define our best-case integrand directly in the spectral domain with an angular power spectrum PF (l),

which is a constant a F for (l < l 0 ) and zero elsewhere. An illustration is shown in Fig. 6.1(a). The corresponding variance can be obtained using Eq. (5.18):

Var (I N ) ≤ a F μ(S 2 ) 2 N l 0 l=1 P S (l) , ( 6.1) 
where a F is a non-zero positive constant, that can be derived by plugging in the best-case angular power spectrum.

From the class of functions provided by Brandolini and colleagues [START_REF] Brandolini | Mean square decay of Fourier transforms in Euclidean and non Euclidean spaces[END_REF], we define our worst-case integrand to be a sum of zonal harmonics, S F (l, m) = 0 ∀m = 0, with spectral amplitude square zonal coefficients S F (l, 0) 2 exhibiting a decay rate of order O (l -2 ) for l > l 0 . The corresponding worst-case power spectrum P S of S has a decay rate of order O (l -3 ), as illustrated in Fig. 6.1(b). By substituting this worst-case decay rate in Eq. (5.18) to obtain the corresponding worst-case variance as follows:

Var (I N ) ≤ μ(S 2 ) 2 a F N ∞ l=1 PS (l) l 2 , (6.2)
where a F is a non-zero positive constant that can be derived by plugging in the worst-case angular power spectrum. For our experiments, we consider a spherical cap function as our worst-case integrand as it falls into the given class of functions. The power spectrum of a spherical cap function exhibits a decay rate of orderO (l -3 ), whose derivation is given in our Appendix C.

Convergence rate analysis

To study the variance convergence rate analysis we have restricted our variance model Eq. (5.18) to a given class of functions and define the corresponding bestand worst-case (integrand) power spectra in this class. We then obtain the best-case (Eq. ( 6.1) and worst-case (6.2)) variance, as a function of the sampling power spectrum PS (•).

In this section, we study the effects of different shapes of PS (•) on the variance in MC integration for both the best-and worst-case (integrands). We use simple shape profiles (quadratic, polynomial, step) for PS (•) and derive the variance convergence rate associated to each of these power spectra profiles. Then, we classify the existing state-of-the-art sampling power spectra-with respect to the shape of the low frequency zone of these power spectra-in terms of these profiles.

We also obtain corresponding upper and lower bounds on the sampling power spectra in terms of these profiles.

As mentioned by Pilleboue, Singh and colleagues [START_REF] Pilleboue | Variance analysis for Monte Carlo integration[END_REF], to analyze the variance convergence rate of a sampling pattern we first identify, which part of our variance formulation (Eq. (6.1) and (6.2)) depends on N . Since the distribution of distances in a sampling pattern gets affected by the sampling density, the mean neighborhood distance between samples can be approximated as the d-dimensional root of the representative area of each sample. In the Fourier domain, the corresponding frequency of this mean distance is d √ N , which corresponds to the first peak in the power spectrum of a regular grid pattern, and also, approximatively, to the first bump of the typical blue-noise spectrum. As N increases, the low frequency region of the sampling power spectrum becomes more and more significant with respect to the integrand power spectrum. This explains the noticeable variance reduction observed for sampling patterns exhibiting no low-frequency content.

Mathematically, this means that the radial mean of a power spectrum is dependent on a factor d √ N . In the following subsection, we use this factor ( d √ N ), for the spherical domain (d = 2), to derive variance convergence rates.

Convergence analysis in Spherical domain

To start our analysis, the mean power spectrum produced by the sampler must be known, or at least estimated. Therefore, we cover only the classical stochastic samplers, from the simplest one (White noise) to the most sophisticated ones, e.g., CCVT [START_REF] Balzer | Capacity-constrained point distributions: A variant of Lloyd's method[END_REF], for which the radial power spectra can be estimated. We classify different sampling patterns with respect to the shape of their corresponding radial power spectra in the low-frequency zone. We study three shapes of the power spectra, given as follows:

Constant power spectra Here, PS (l) := γ, where γ is a constant value. As the radial power spectrum PS (l) is independent of N , by simply plugging PS (l) = γ in Eq. (6.1) and Eq. ( 6.2), we can deduce the best-and worst-case variance convergence rates, which is given of order O (N -1 ).

Step power spectra The step profile corresponds to a constant power spectrum The resultant step profile is given by:

PS (l) := ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0, if l < α √ N γ, otherwise . (6.3)
For N > l 2 /α 2 , the variance of MC integration of the best-case F is zero. We normalize the l term with α √ N , where α is a positive constant and N represents the number of samples. This allows us to bring all power spectra with different N , to the same scale for all N . The expression for the variance, Var (I N ), due to step power spectrum in the worst-case can be approximated by plugging Eq. ( 6.3) in Eq. ( 6.2):

Var (I N ) ≤ μ(S 2 ) 2 a F N ∞ l= α √ N 1 l 2 . (6.4)
where a F is a hidden constant from O(l -2 ). The summation term in Eq. (6.4) can be symbolically solved to deduce the worst-case variance convergence rate of sampling patterns with a step power spectra, which is of order O(N -1.5 ).

Quadratic power spectra A more general radial power spectrum can be constructed by considering a polynomial ramp of degree b from the frequency zero to α d √ N . After the frequency α d √ N , the radial power spectrum is a constant function of γ, which is similar to the Constant and Step profiles. More formally, the polynomial ramp can be written as:

PS (l) := ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ γl b α b d √ N b if l < α d √ N γ otherwise. (6.5)
When we plug Eq. (6.5) directly in the best Eq. (6.1) or worst-case Eq. (6.2)

variance formulation, we were not able to obtain a general variance expression for the best-case and the worst-case. This is because, the general polynomial profile Eq. (6.5) expression cannot be symbolically solved for an unknown degree b. Therefore, we study the polynomial profile defined in Eq. (6.5), for a given polynomial degree, in our case for (b = 2), which gives a quadratic profile (Fig. 6.3). Using this quadratic profile, the power spectrum in the best-case variance Eq. ( 6.1) can be obtained as follows:

Var (I N ) ≤ μ(S 2 ) 2 N l 0 l=1 γ a F l 2 (α √ N ) 2 (6.6) 
= O N -2 . (6.7)

Using the quadratic profile power spectrum for the worst-case variance Eq. (6.2), we obtain:

Var (I N ) ≤ μ(S 2 ) 2 N ⎛ ⎝ α √ N l=1 γ a F (l/(α √ N )) 2 l 2 + ∞ l= α √ N γa F l 2 ⎞ ⎠ , ( 6.8) 
which can be symbolically solved to obtain a convergence rate of order O (N - 1.5 ).

Now, we have the variance convergence rates of various simple radial power spectral profiles. The inspiration behind studying these simple profiles (constant, step, quadratic) is the following: First, since we do not know the exact analytical expression of the radial power spectra of various sampling patterns, we can approximate these radial power spectra using these simple profiles. Second, if we can bound the sampler's radial power spectrum using any one of these profiles, it would give us the variance convergence rate of that sampler, which is derived using the profile used to bound the radial power spectra.

Discussion

We have proposed a classification of radial power spectra of various sampling paterns with respect to the shape of their radial power spectra in the low-frequency zone. We can use this classification as a theoretical tool to bound arbitrary radial power spectra using these simple profiles (e.g., linear, quadratic, etc.). Thus, the corresponding variance convergence rate of the sampling patterns can be deduced from the bounds of their respective profiles. For some sampling patterns, the corresponding analytical formulation is known. For example:

White noise

The radial power spectrum of white noise has a constant profile with γ = 1 exhibiting a variance convergencerate of order O (N -1 ), which is well known in literature.

Poisson Disk For Poisson Disk distributions, Torquato and colleagues [START_REF] Torquato | Random sequential addition of hard spheres in high euclidean dimensions[END_REF] observed that for a sufficiently large N , the minima of the normalized mean power spectrum can be asymptotically seen near the DC peak, with a value of 0.05. 

O (N -1 ).
In the case of jittered, regular and CCVT samplers, we have seen an improved varianc econvergence rates, compared to Poisson Disk. One of the similarity between jittered, regular and CCVT samplers is that all of them have mean angular power spectra tending to zero as the frequency parameter (ω) goes to zero.

On top of that, in case, of regular and CCVT sampling there is a low-frequency region with no energy. All these power spectra are shown in Fig. 4.14 with regular sampling power spectra shown in Fig. 4.10. This implies that the ideal mean angular power spectrum of a sampler must have zero-valued power in the low-frequency zone. Poisson Disk sampling patterns is always categorized as blue noise due to the resemblance of it's power spectrum shape with blue noise.

However, it falls behind even jittered sampling patterns due to the offset in the low-frequency zone of its power spectra. Therefore, it would be desirable to have sampling patterns with mean angular power spectra tending towards zero as the frequencies tends to zero with no energy in the low-frequency zone.

In Chapter 7, we perform experiments on other sampling patterns and bound their radial power spectra with the profiles discussed in this chapter. An illustration of the variance convergence rates of various samplers is shown in Fig. 7.4 with other results.

Chapter 7

Experiments and Results

The theoretical framework proposed in this dissertation is based on the observations we made while performing spectral analysis (Chapter 4) of various sampling patterns. Based on this theoretical frameork proposed in Chapter 5 we develop some analytical tools in Chapter 6 to derive theoretical variance convergence rates of various sampling patterns. In this chapter, we use our framework to peform experiments on the state-of-the-art sampling patterns on the sphere.

We first, give implementation details on how various sampling patterns are obtained on the sphere. We then use these spherical samplers to study the bounds on the variance convergence rates of these samplers. We also evaluate some ambient occlusion integrals to show that the observations made while deriving variance convergence rates can also be generalized when the underlying integrand is not known. 

Implementation details

We first look at the implementation details of our spherical samplers. We present several experiments by comparing existing sampling methods: white noise, jittered sampling, Poisson Disk and capacity constraint methods. The underlying data structure used to perform sampling on the sphere for some samplers is the Healpix data structure [START_REF] Górski | HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere[END_REF] which is an equal area quadrangulation of the sphere.

White noise or purely random samples are generated on the sphere by simply using the drand48 C programming language built-in function from the stdlib.h header. To implement reguar sampling on a sphere, we perform sampling directly on the sphere using the Healpix data structure [START_REF] Górski | HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere[END_REF] which is an equal area quadrangulation of the sphere. To implement jittered sampling, we use the Healpix All sphere samplers are generated on a multiprocessor machine, with an Intel Core i7 CPU 980@3.3g GHz processor.

To plot the radial power spectra of various sampling patterns (shown in Fig. 7.4(a,d,g,j)), we compute the average power spectrum over 1000 realizations of a point set, as suggested by Schlömer and colleagues [START_REF] Schlömer | Farthest-point optimized point sets with maximized minimum distance[END_REF]. We plot power spectra for N = 4096 in the spherical domain.

Later, we use these power spectra to estimate lower and upper bounds on the variance of our test integrands in the spherical (Fig. 7.4) domain.

Case studies

In Chapter 6, we propose an analysis tool that can be used to bound the radial power spectra of various sampling patterns using simple profiles (constant, quadratic, etc.). We also propose a best-case and worst-case variance convergence rates for the respective profiles. In this section, we experimently test our tools and bound various state-of-the-art sampling (radial) power spectra on the sphere. As mentioned in Chapter 6, we consider a class of integrable (smooth) functions with bounded domain and smooth boundaries [START_REF] Brandolini | Mean square decay of Fourier transforms in Euclidean and non Euclidean spaces[END_REF]. From this class of functions we choose a spherical harmonic Y m l (l = 4, m = 0) basis function for best-case study since it is smooth and bandwidth-limited. For our worst-case study, we choose a spherical cap function, with spherical cap size θ 0 = 60 degrees, in the spherical domain.

To perform variance analysis we compute the variance of our test (best-and worst-case) integrands using different sampling patterns. The variance is computed over 1000 trials for cases where the samplers (white noise and jittered)

are not prohibitively slow. For spherical CCVT and Poisson Disk, we keep the number of trials between 200 to 1000, depending on the speed of the sampler.

As the spectral profile of these test integrands is known, our variance prediction model can be used to estimate the bounds on the variance in integration of each function by simply using the bounds derived from the corresponding sampling power spectra.

First, we look at our test integrands which we chose for our best-case and worst-case variance convergence analysis: 

P F (l) = μ(S 2 ) (2l + 1) , (7.1) since ||Y m l || 2 = μ(S 2 ).

Spherical cap function Spherical cap function is our worst-case test integrand

for a given class of functions. We compute the angular power spectrum, in Appendix C, of spherical cap function with size θ 0 = 60 which is given by:

P F (l) = 4π 2 |P 0 l-1 (cos(θ 0 ) -P 0 l+1 (cos θ 0 )| 2 (2l + 1) 2 , ( 7.2) 
where P 0 l (cos(θ 0 ) is the Legendre Polynomial function. We numerically compute the above expression for the power spectrum of spherical cap and use it in our variance formulation (Eq. (5.18)), to obtain the variance with respect to a given sampler.

To obtain the bounds on the variance of these test integrands, we first bound the mean angular power spectra (P S (l)) of various sampling patterns using the simple profiles discussed in Section 6.2. To start with, we first compute the bounds on the white noise mean angular power spectrum (P S (l)). We illustrate the variance computed via our framework in Fig. 7.4. Our experimental results are consistent with our variance predictive model (Chapter 6), and the variance is correctly bounded in the spherical domain.

As shown in Fig. 7.4, we observe that tighter bounds on the sampling power spectra can result in tighter bounds on the variance. For example, the lower bound on the jittered sampling power spectrum is tighter than the upper bound which results in a tighter lower bound on the associated variance. For Poisson Disk sampling, the spectral profile is bounded by a constant profile and consequently, the convergence rate of the variance is similar to white noise. Also, as the lower bound on the Poisson Disk sampling is tighter than the upper bound, the corresponding variance achieves a tight lower bound. In Fig. 7.4 for the sphere, all the power spectral profiles are plotted as (P F vs ω) with ω = l/(α √ N ). Note that, we only bound the variance convergence rate. This is why the variance values are normalized (with the variance value for N = 1) for all of our test integrands.

Rendering Results

We also implement ambient occlusion in a Cornell box scene to study the behavior of various state-of-the-art sampling patterns (Fig. 7.5 and 7.6). As most state-of-the-art samplers are not directly extendable to the hemisphere, we sample a complete sphere and consider samples only from the visible part. We 

Discussions

To provide a side by side comparison of the variance convergence rate of different samplers, we plot the convergence rate curves in Fig. patterns is no better than white noise. This is due to an offset in the low-frequency region (ω ∈]0, 0.5[) of the mean angular power spectrum of Poisson Disk, shown in Fig. 7.10(c). However, Poisson Disk samples obtained using tile based approaches can help get rid of this offset in the low-frequency region, resulting in an improved variance convergence rate. We also observe that jittered sampling patterns are as good as blue noise samples (e.g., CCVT) when it comes to the variance convergence rate, though the variance is higher. This is due to the reason that the angular mean power spectrum of jittered samples approaches to zero as the frequency (ω) tends to zero ( Fig. 7.10(d)). 

Summary:

We have shown that the variance in MC integration can be upper and lower bounded if we have some knowledge of the samplers' mean angular power spectra. We test our theory on number of state-of-the-art samplers with different integrands. We are also able to predict the variance in MC integration if we know exactly the power spectrum of the integrand involved.

Among various spherical samplers discussed in this dissertation (homogenized) jittered sampler is recommended for rendering purposes (or other numerical integrations) over Poisson Disk samplers, even when the number of samples required are not too high. This is because the convergence rate of Poisson Disk samples is the same as the purely random samples (white noise). Homogenized regular samples seems to give good results in the cornell box scenes (Fig. 7.5

and Fig. 7.6 ) due to the fairly low frequency content of the scene. For a scene with highly complex material properties regular patterns can give aliasing artifacts (false signals) due to the presence of peaks in its power spectra.

Chapter 8

Conclusions

In this work, we develop a framework to analyze the effects of various spherical sampling patterns on the variance of MC integration. We also propose a mathematical background to study hemispherical signals and samplers using spherical harmonics by simply mapping hemispherical signals in the projective space. In the evaluation of global illumination integrals, we use the notion of homogeneous sample distributions on the sphere that allows manifestation of error only in terms of variance during MC integration. We show that the variance is directly related to the sampling and integrand power spectra. We also show that for a given class of functions, we obtain the worst-case variance convergence rates.

One of the limitations of our framework is that it is designed for only stochastic samplers and assumes some knowledge of the power spectrum of the sampling pattern under study. Therefore, sampling patterns with varying power spectra (e.g. Sobol), that is, which depend on the number of samples, cannot be handled by our framework. We would like to explore this issue in future. Another promising direction for future research is to develop a similar framework for deterministic sampling methods like, Sobol or other low-discrepancy sequences that can be generated directly on the sphere.

Additionally, our framework can be used to study the effects of various sampling patterns with known and/or unknown closed-form power spectral formulation. We show that by using simple shapes (quadratic, constant, etc.) for the mean angular power spectra, exisiting state-of-the-art sampling power spectra can be easily bounded. This also results in bounding the associated variance for MC integration. We use our framework to theoretically derive best-and worst-case variance convergence rates-for a given class of functions-of various state-of-the-art sampling methods.

Design principles

In our theoretical framework (Sec. 6.2), we propose some principles to design new sampling patterns. We also advocate the importance of the low frequency zone of the corresponding sampling power spectra. We emphasize the fact that an ideal sampling power spectrum must attain zero value as the frequency parameter tends to zero. This property ensures that the distribution is sufficiently uniform.

In addition, the shape of the power spectrum near the zero frequency zone is also very important. Moreover, the flatter the shape of the power spectral profile in this low frequency zone, the faster the variance converges in MC integration for favorable integrands. Ideally, the power spectrum must contain a range of low frequencies that are perfectly zero.

Our experimental results in the Euclidean and spherical domains show that no existing methods fulfill these design principles. Sampling methods based on packing and hard local conditions like Poisson Disk and [START_REF] Schlömer | Farthest-point optimized point sets with maximized minimum distance[END_REF], do not have a power spectrum converging to zero near zero frequency. This can be explained by the lack of uniformity in the distribution which can be corrected using proper subdivison of the domain through tile-based methods. For example, the tiled version of Poisson Disk sampling in Wachtel et al. [START_REF] Wachtel | Fast Tile-based Adaptive Sampling with User-specified Fourier Spectra[END_REF] has power spectrum converging to zero towards zero frequency. Similarly, all methods based on the capacity constraint [START_REF] Balzer | Capacity-constrained point distributions: A variant of Lloyd's method[END_REF] seem to guarantee a power spectrum that converges to zero.

However, these methods still have residual energy spread along low frequencies which can be improved.

Quadrature rules on the sphere

In our framework, we perform Monte Carlo integration-instead of using optimal adaptive quadrature rules-on the spherical and hemispherical domains despite their low dimensional nature. We do this for a couple of reasons: First, our present framework is designed only for non-adaptive sampling patterns. Adaptive or importance-based sampling do not support the homogeneity of the sampling patterns, and designing a variance analysis framework in such a case needs further research; Second, as most production renderers are Monte Carlo based, our framework provides an analysis tool that can be employed in the production pipeline for choosing a sampling pattern that reduces the overall variance in integration of (hemi-)spherical signals. New sampling patterns can also be designed using our framework.

Future directions

Generating a sampling pattern with absolutely no energy in the low frequency range seems to be a very challenging problem. We expect to use the theoretical which is the expression for the spherical cap harmonic coefficients S F (l, 0) in terms of l and θ 0 . As we have shown in Chapter 5, the variance in numerical integration for MC integration is directly related to the ||S F (l, 0)|| 2 of the integrand.

Here, our integrand is a spherical cap function and the corresponding ||S F (l, 0)|| 2 is given by: ||S F (l, 0)|| 2 = 4π 2 |P 0 l-1 (cos(θ 0 ) -P 0 l+1 (cos θ 0 )| 2 2l + 1 , (C.12)

We use Eq. (C.12) in the angular power spectrum definition to numerically compute the bounds on the associated variance of the spherical cap for various state-of-the-art sampling patterns discussed in this dissertation. We would like to set an upper bound on ||S F (l, 0)|| 2 given in Eq. (C.12). This expression contains the shifted copies (with respect to l) of the associated Legendre Polynomial P l (x) := P 0 l (x). We can first upper bound the term |P l-1 (cos θ 0 ) -P l+1 (cos θ 0 )|.

Several sharp estimations can be found in the literature for the Legendre polynomial P l (x). A classical result for x ∈ ]-1, 1[ and l ∈ N, is the improved version of Bernstein's inequality, [START_REF] Lohöfer | Inequalities for the associated Legendre functions[END_REF][START_REF] Lorch | Alternative proof of a sharpened form of Bernstein's' inequality for Legendre polynomials[END_REF], given by: We treat l = 0 as a special case. For l > 0, using the above inequality in Eq. (C. [START_REF] Cline | Dart throwing on surfaces[END_REF] we can derive: The inequality in Eq. (C.20) does not gaurantee a (very) tight bound on the power of the spherical cap coefficients. However, for our analysis we found that this bound can still be used to conjecture the rate of convergence for the worst-case error in integration.

|P l (x)| < 2 π(l + 1/2)) 1 (1 -x 2

C.2 Spherical cap power spectrum

To study the worst-case, we are looking for a function with squared-norm zonal 
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 1 Left: Micro structures of cones Center: Monkey eye photoreceptor (cones) distribution Right: Optical transform of monkey eye. Image Courtesy, J. I. Yellot [108] . . . . . . . . . . . . . . . . . . . . . . 2.2 Illustration of how to compute the radially averaged power spectrum from the power spectrum of the signal in (a). Each circle represents one particular frequency. In (b) a radially averaged power spectrum of ideal blue noise is shown which is computed by taking the radial average over different values over the radial circle at each frequency. Images inspired from Ulichney [97] . . . . . . . . . . . . . . . . . 3.1 Spherical harmonics basis functions (real part). . . . . . . . . . . . 4.1 Zone plate test to show the aliasing (structural-artifacts) due to the Fourier peaks in the regular sampling patterns (b), which turns into noise on simple jittering (c) . . . . . . . . . . . . . . . . . . . . . . 4.2 Illustration of jittered (a) and regular (c) sampling patterns with their corresponding power spectra in (b) and (d), respectively. The high energy peaks of regular sampling patterns are surrounded by circular (orange) rings in (d) for illustration purposes. In a similar manner, the DC peak in (b) is surrounded by a circular (orange) ring. . . . . 4.3 Illustration of Top row: non-Toroidal (unwrapped) vs Bottom Row: Toroidal (wrapped) Poisson Disk samples with corresponding power spectra and the zoom-in of the low frequency region around the DC peak of the respective power spectra. . . . . . . . . . . . . . . . . . 4.4 Illustration of multiple realizations of Poisson Disk samples (a) with corresponding Fourier power spectra with respect to each realization. 4.5 Illustration of sampling patterns in the Left column, with their corresponding power spectra in the Center column. In the Right column we show a heatmap of each power spectrum to emphasize their characteristics in the low frequency region around the DC peak, surrounded by a circle (orange) in (b), (e) and (h), located at the center of the power spectra images, in the Center and Right columns ). Each peak in the regular pattern power spectrum (k) is also surrounded by circles (in orange) for illustration purposes. . . . . . . . . . . . . . . . . . 4.6 Illustration of the radial mean power spectra of whitenoise (b) and jittered sampling (d) from the corresponding power spectra in (a) and (c), respectively. Radial mean power is computed by averaging the power spectra values along the circular rings, in blue, for a given frequency ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Illustration of sampling patterns in the Left column, with their corresponding power spectra in the Center column. In the Right column we show a heatmap of each power spectrum to emphasize their characteristics in the low frequency region around the DC peak which is located at the center of the power spectra images, in the Center and Right columns ). . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Illustration of the effects of high energy Fourier peaks in rendering a simple zone plate function. . . . . . . . . . . . . . . . . . . . . . . 4.9 Illustration of angular power spectrum of a white noise distribution in (a) with the same power spectrum shown in a square-shape (b). . 4.10 Illustration of healpix regular (a) and spherical Fibonacci lattice (b) point sets with respective mean angular power spectra. . . . . . . . 4.11 Illustration of square-shaped angular power spectrum of Healpix regular (left) with heatmaps of power (center) and square-root of power values (right). . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Illustration of square-shaped angular power spectrum of spherical Fibonacci (left) with heatmaps of power (center) and square-root of power values (right). . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 Ilustratin direct lighting evaluation with (b) or without (c) random perturbation of secondary rays. Image courtesy: Dr. Jean-Claude Iehl. 4.14 Comparison of the mean angular power spectra of various state of the art sampling patterns in the spherical (left) and hemispherical (right) domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15 Illustration of the high energy peaks in the low frequency region of square-shaped and radial angular power spectra of whitenoise, jittered and hemispherical fibonacci lattice point sets, respectively. . 4.16 Illustration of square-shaped angular power spectrum of hemispherical Fibonacci (left) with heatmaps of power (center) and square-root of power values (right). . . . . . . . . . . . . . . . . . . . . . . . . 4.17 Illustration of the distribution of a spherical harmonic coefficient (l = 4, m = 3) computed using 1024 samples over 8192 realizations in the complex plane. . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 (a) Illustration of the power spectra of a sampler and an integrand on the same axis. (b) With increase in number of samples, sampler's power spectra scales along the frequency axis. In (c) and (d), we show the corresponding product of sampler and integrand power spectra. 6.1 Illustration of the mean angular power spectra vs frequency (ω = l/α √ N ) of signals that can be considered as best (a) and worst (b) cases in numerical integration with respect to any sampling power spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Quadratic (b=2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Illustration of spherical sampling methods. . . . . . . . . . . . . . 7.2 Poisson Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 CCVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Bounds on the mean angular power spectra of samplers and on the variance convergence rates of our test integrands. Log-Log plots are shown in the Center and Right columns.
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 5 Cornell box rendered with ambient occlusion. Mean squared error (MSE) values are computed w.r.t a reference image (shown in Fig. 7.7, for White noise (Left), Jittered sampling (Center) and Poisson Disk (Right) for a given number of shading rays used to sample directions on the visible hemisphere at each hitpoint in the scene. . . . . . . . 7.6 Cornell box rendered with ambient occlusion. Mean squared error (MSE) values are computed w.r.t a reference image (shown in Fig. 7.7, for White noise (Left), CCVT (Center) and Regular Healpix (Right) sampling for a given number of shading rays used to sample directions on the visible hemisphere at each hitpoint in the scene. . . . . . . . 7.7 Reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.8 Cornell box rendered with ambient occlusion. Left: Spherical Fibonacci (SF) point set is used at each hitpoint. Centre: SF point set is used with uniform and random rotation at each hitpoint. Right: Healpix regular point set is used at each hit point with no rotation. Mean squared error (MSE) values are computed w.r.t a reference image (shown inFig. 7.7 . . . . . . . . . . . . . . . . . . . . . . . 7.9 Comparison of the variance in MC integration for different integrand signals. Here we use experimental data from 7.4 in (a) and (b). Here we present comparisons in the (hemi-)spherical domain : (a) a spherical harmonic basis function (Y 0 4 ). Inset illustrates the gray scale of the absolute values of the function, (b) a spherical cap function (θ 0 = 60), where the white shade in the inset represents non-zero constant value region (c) a Cornell box scene with all corresponding rendered images shown in Fig. 7.5 and 7.6. . . . . . . . . . . . . . 7.10 Comparison between the power spectra at the low frequency region between (a) Poisson Disk and (b) jittered samplers. In (c) and (d) we show the zoom-in of the low frequency region (ω ∈]0, 1[) for the Poisson Disk and the jittered samplers respectively. . . . . . . . . . C.1 We illustrate the power profile (Power vs l) of a spherical cap function (in blue) for θ 0 = 60 with the corresponding bound (in orange). We show three plots of the same power spectrum (a), with different zoomin plots, (b) and (c), to better see the upper bound and to show that the power of the spherical cap is well bounded by the upper bound we derived in Sec. C.2. . . . . . . . . . . . . . . . . . . . . . . . .
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  optimization) and dart throwing based approaches. Most of the non-deterministic samplers are relaxation and dart throwing based, others can be considered as an extension of these two. To generate purely deterministic samplers, Number theory (radical inverse function) based approaches are heavily employed. Most of the radical inverse based samplers are mainly categorized as low discrepancy samplers and they are the core of the QMC integration schemes.

  by filtering to avoid aliasing effects in images. Usage of irregular or stochastic sampling patterns convert high frequency defects (like aliasing or false patterns) into featureless noise. The type of randomness used in the sampling process controls the spectral characteristics of the noise. Dippé and Wold analyzed in particular, Poisson and jittered sampling using purely randomized samples, which can be generalized to a minimum distance Poisson process where the randomly distributed samples are separated by a minimum distance criteria.
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 21 Figure 2.1: Left: Micro structures of cones Center: Monkey eye photoreceptor (cones) distribution Right: Optical transform of monkey eye. Image Courtesy, J. I. Yellot [108]

Figure 2 . 2 :

 22 Figure 2.2: Illustration of how to compute the radially averaged power spectrum from the power spectrum of the signal in (a). Each circle represents one particular frequency. In (b) a radially averaged power spectrum of ideal blue noise is shown which is computed by taking the radial average over different values over the radial circle at each frequency. Images inspired from Ulichney [97] .

  extends blue noise sampling to multiple classes where each individual class as well as their unions exhibit blue noise characteristics. Wei propose two flavors of algorithms to generate such multi-class blue noise samples, one extended from traditional Poisson hard disk sampling for explicit control of sample spacing, and another based on his soft disk sampling for explicit control of sample count. A hard disk, centered on each sample, can neither deform nor intersect another, while a soft disk can intersect another, but subject to an energy penalty which, when minimized, produces uniform distribution. Both hard and soft disk algorithms support uniform and adaptive sampling, and are applicable to both discrete and continuous sample space in arbitrary dimensions.

  discrepancy also has several other useful interpretations, including, (i) how the proportion of sample points in a box deviates from the volume of the box, (ii) the average-case integration error, and (iii) a goodness-of-fit statistic. Integration lattices and digital sequences are two popular families of low discrepancy sample points. These sets typically give better convergence rates for the discrepancy than a simple random sample. The Koksma-Hlawka inequality plays a key role in the development of quasi-Monte Carlo methods. It has also influenced the study of experimental design and led to the creation of uniform designs.

Definition 3 . 1 . 1 .Definition 3 . 1 . 2 .Definition 3 . 1 . 3 .Definition 3 . 1 . 4 .

 311312313314 each element in A to a maximum one element in B. That is, a function never has one element from A associated to more than one element in B. We denote that f is a mapping from A to B by f : A → B. The mapping f : A → B is one-to-one (written as 1-1) or injective if each element in A is associated to only one element of B. The mapping f : A → B is many-to-one or onto or surjective if and only if, for a given element of B there exists an element in A. The mapping f : A → B is said to be a bijection or 1-1 correspondence if f is both 1-1 and onto. If f : A → B and g : B → C, then the composition (or
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 324325 The direct sum V W of two linear space V and W consists of order pairs ( v, w) for v ∈ V and w ∈ W, with addition and scalar multiplication defined componentwise. Let V 1 and V 2 be vector spaces over the field Υ. A linear trans-
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 321 Here is an important example of a linear functional. Let n be a positive integer and Υ a field. If M is an n × n matrix with entries in Υ, the trace (Tr) of M is the scalar:
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 335336 If ≡ is an equivalence relation on set A, then [a], the class of a, is defined by [a] = {b ∈ A | b ≡ a}. Let H , H be two groups; then the mapping ϕ : H → H is a
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 3393311331 A Lie group G is a manifold that has a group structure so that multiplication and inverse operations in the group structure are smooth as an operation on a manifold. Lie groups form a very nice class of topological groups, and the compact Lie groups have a particularly well-developed theory. Basic examples of compact Lie groups-that we study in our work-are: 1. circle group T and the torus groups T n , 2. the special orthogonal group SO(n) Definition 3.3.10. The circle group, denoted by T , is the multiplicative group of all complex numbers with absolute value 1, i.e., the unit circle in the complex plane. The torus group, denoted by T n is an n-dimensional torus or an n-dimensional compact manifold. The 1-torus is just the circle: T 1 = S 1 .
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 234234312 Definition Given a representation ρ : H → U (V ) and a subspace W ⊂ V , we say that W is a sub-representation if h(w) ∈ W for all w ∈ W and all h ∈ H . Given a representation ρ : H → U (V ) we say that V is an irreducible representation if the only sub-representations are the trivial ones, W = {0} and W = V . Schur's Lemma). If V and W are irreducible representations of H and ρ : V → W is a H -module homomorphism, then 1. Either ρ is an isomorphism, or ρ = 0.2. If V = W , then ρ = λ • I for some λ ∈ C, where I is the identity. Now, we give the closed-form expressions for the average: Given an irreducible representation ρ : h → U (V ), for any

. 9 )Figure 3 . 1 :

 931 Figure 3.1: Spherical harmonics basis functions (real part).

  sampling. Monte Carlo integration schemes are normally employed to evaluate the color of each pixel. The error in Monte Carlo integration is directly associated to the sampling patterns used to sample the integrand involved. In image synthesis, regular sampling patterns can cause structural artifacts, whereas, purely random samples can produce very high noisy appearance in the images. An illustration is shown in Fig.4.1 for euclidean-space samplers. In Fig.4.1, we render a simple function: sin(x 2 + y 2 ), which is also termed as the zone-plate. Reference image (Fig.4.1(a)) is computed using nine samples per pixel followed by reconstruction filtering by Mitchell-Netravalli filter[START_REF] Mitchell | Reconstruction filters in computergraphics[END_REF]. For Fig. 4.1(b) and 4.1(c) we use one sample per pixel with box filtering. Regular sampling (Fig. 4.1(b)) shows number of structural artifacts, whereas jittered sampling (Fig. 4.1(c)) turns these artifacts into noise. This can be explained from the power spectra of regular and
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 41 Figure 4.1: Zone plate test to show the aliasing (structural-artifacts) due to the Fourier peaks in the regular sampling patterns (b), which turns into noise on simple jittering (c)

Figure 4 . 2 :

 42 Figure 4.2: Illustration of jittered (a) and regular (c) sampling patterns with their corresponding power spectra in (b) and (d), respectively. The high energy peaks of regular sampling patterns are surrounded by circular (orange) rings in (d) for illustration purposes. In a similar manner, the DC peak in (b) is surrounded by a circular (orange) ring.

Fourier tools are extensively

  used to study the frequency content of sampling patterns in the Euclidean domain. To perform frequency analysis of samples, we first compute the Fourier transform of a sampling pattern S. Then we compute a 2D power spectrum of S which represents the amplitude squared values of the Fourier transform coeffiicients of a sampling distribution, normalized by the number of samples N . An example is shown in Fig. 4.3. In mathematical notation,
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 43 Figure 4.3: Illustration of Top row: non-Toroidal (unwrapped) vs Bottom Row: Toroidal (wrapped) Poisson Disk samples with corresponding power spectra and the zoom-in of the low frequency region around the DC peak of the respective power spectra.
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 44 Figure 4.4: Illustration of multiple realizations of Poisson Disk samples (a) with corresponding Fourier power spectra with respect to each realization.
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 4546 Figure 4.5: Illustration of sampling patterns in the Left column, with their corresponding power spectra in the Center column. In the Right column we show a heatmap of each power spectrum to emphasize their characteristics in the low frequency region around the DC peak, surrounded by a circle (orange) in (b), (e) and (h), located at the center of the power spectra images, in the Center and Right columns ). Each peak in the regular pattern power spectrum (k) is also surrounded by circles (in orange) for illustration purposes.
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 47 Figure 4.7: Illustration of sampling patterns in the Left column, with their corresponding power spectra in the Center column. In the Right column we show a heatmap of each power spectrum to emphasize their characteristics in the low frequency region around the DC peak which is located at the center of the power spectra images, in the Center and Right columns ).
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 48 Figure 4.8: Illustration of the effects of high energy Fourier peaks in rendering a simple zone plate function.
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 49 Figure 4.9: Illustration of angular power spectrum of a white noise distribution in (a) with the same power spectrum shown in a square-shape (b).
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 410411412 Figure 4.10: Illustration of healpix regular (a) and spherical Fibonacci lattice (b) point sets with respective mean angular power spectra.
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 413 Figure 4.13: Ilustratin direct lighting evaluation with (b) or without (c) random perturbation of secondary rays. Image courtesy: Dr. Jean-Claude Iehl.
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 414415 Figure 4.14: Comparison of the mean angular power spectra of various state of the art sampling patterns in the spherical (left) and hemispherical (right) domain.
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 416 Figure 4.16: Illustration of square-shaped angular power spectrum of hemispherical Fibonacci (left) with heatmaps of power (center) and square-root of power values (right).

Figure 4 . 17 :

 417 Figure 4.17: Illustration of the distribution of a spherical harmonic coefficient (l = 4, m = 3) computed using 1024 samples over 8192 realizations in the complex plane.

  makes the estimator I N unbiased as a result of which the subtracting factor || S S (l, m) • S F (l, m) || 2 in Eq. (5.10) becomes zero at all non-zero frequencies (l = 0). We show a simple proof of this statement in Appendix A. Finally, the nonzero part || S S (0, 0) • S F (0, 0) || 2 gets cancelled out for DC frequency l = 0.
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 51 Figure 5.1: (a) Illustration of the power spectra of a sampler and an integrand on the same axis. (b) With increase in number of samples, sampler's power spectra scales along the frequency axis. In (c) and (d), we show the corresponding product of sampler and integrand power spectra.
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 61 Figure 6.1: Illustration of the mean angular power spectra vs frequency (ω = l/α √ N ) of signals that can be considered as best (a) and worst (b) cases in numerical integration with respect to any sampling power spectrum.

Figure 6 . 2 :

 62 Figure 6.2: Step
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 63 Figure 6.3: Quadratic (b=2)
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 71 Figure 7.1: Illustration of spherical sampling methods.

  quads as strata and randomly place samples in each stratum. An illustration of regular and jittered sampling with the corresponding healpix stratas are shown in Fig.7.1.
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 72 Figure 7.2: Poisson Disk

Figure 7 .

 7 Figure 7.3: CCVT

Spherical harmonic basis function (Y m l )

 l In the spherical domain, we chose a SH basis function Y m l with (l = 4, m = 0), as a best-case which is a band limited function. Y 4 0 is a smooth function with compact support and can be considered as a best-case for the class of functions discussed in the paper. The power spectral profile of any SH basis function, Y l m , is given by:

Figure 7 . 4 :

 74 Figure 7.4: Bounds on the mean angular power spectra of samplers and on the variance convergence rates of our test integrands. Log-Log plots are shown in the Center and Right columns. Left: mean angular power spectra of different sampling patterns (blue), bounded by a theoretical spectral profile (green). On the frequency axis, units corresponds to the frequency α √ N . Center:The variance curve of a spherical harmonic basis function with l = 4, m = 0, (blue), with bounds (green) computed using the bounds of the corresponding mean angular power spectrum. Right: The variance in integration of a spherical cap, using the same visualization.
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 475476 Figure 7.5: Cornell box rendered with ambient occlusion. Mean squared error (MSE) values are computed w.r.t a reference image (shown in Fig. 7.7, for White noise (Left), Jittered sampling (Center) and Poisson Disk (Right) for a given number of shading rays used to sample directions on the visible hemisphere at each hitpoint in the scene.
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 77 Figure 7.7: Reference image

4 Figure 7 . 8 :Figure 7 . 9 :

 47879 Figure 7.8: Cornell box rendered with ambient occlusion. Left: Spherical Fibonacci (SF) point set is used at each hitpoint. Centre: SF point set is used with uniform and random rotation at each hitpoint. Right: Healpix regular point set is used at each hit point with no rotation. Mean squared error (MSE) values are computed w.r.t a reference image (shown in Fig.7.7
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 710 Figure 7.10: Comparison between the power spectra at the low frequency region between (a) Poisson Disk and (b) jittered samplers. In (c) and (d) we show the zoom-in of the low frequency region (ω ∈]0, 1[) for the Poisson Disk and the jittered samplers respectively.

F

  results and tools developed in this paper to help design such sampling patterns.Another important avenue of research is to develop sampling methods with spectral control directly in the spherical domain. Finally, taking into account more sophisticated sampling strategies, such as adaptive (or importance) sampling and filtering, could be an interesting avenue for future work.(S F (l, 0)) of the spherical cap function, we simply take its inner product-denoted by •, • -with the zonal components of the spherical harmonics:S F (l, 0) = F θ 0 (θ), Y l (θ, φ) θ 0 (θ) Y l (θ, φ) sin θdφdθ ((x) -P 0 l-1 (x) .(C.10) Substituting Eq. (C.10) in Eq. (C.9), we get:S F (l, 0) = 2π P 0 l-1 (cos(θ 0 ) -P 0 l+1 (cos θ 0 )

  )

1 4 . (C. 13 ) 1 √ sin θ 0 = 2 (

 141312 For x = cos θ 0 , this inequality becomes:|P l (cos θ 0 )| < 2 π(l + 1/2)) 2l + 1)π sin θ 0 . (C.14)

|P l- 1 (cos θ 0 )| < 2 (2l - 1 )π sin θ 0 , 4 ( 20 ) 2 √ π sin θ 0 , (C. 21 ) 2 √ 3π sin θ 0 < 2 √ π sin θ 0 , (C. 22 ) 4 √ π sin θ 0 ,Figure C. 1 :

 12104202212222401 Figure C.1: We illustrate the power profile (Power vs l) of a spherical cap function (in blue) for θ 0 = 60 with the corresponding bound (in orange). We show three plots of the same power spectrum (a), with different zoom-in plots, (b) and (c), to better see the upper bound and to show that the power of the spherical cap is well bounded by the upper bound we derived in Sec. C.2.

  spectral coefficients, ||S F (l, 0)|| 2 , exhibiting a decay rate of order O(l -2 ), as derived by Brandolini in[START_REF] Brandolini | Mean square decay of Fourier transforms in Euclidean and non Euclidean spaces[END_REF]. We have shown in the previous subsection C.1, that a spherical cap function has this behaviour (Eq. (C.20)). The corresponding angular power spectrum decay rate can be obtained using Eq. (C.20) in the definition of the angular power spectrum. The resulting decay rate of the angular power spectrum for a spherical cap is given by:P F (l) < C 0 (2l + 1) 2 (2l -1) , (C.26)where C 0 = 64π/(sin θ 0 ). In Fig.C.1, we show an illustration of this upper bound on a spherical cap function of size θ 0 = 60. We can derive a correspoding worst-case variance convergence rate using Eq. (C.26) given by:Var (I N ) < μ(S 2) can be used to study different shapes of the sampling power spectra ( PS (l)) to derive their convergence rate with respect to the number of samples N .

  published in SIGGRAPH 2015 as: "Variance Analysis for Monte Carlo
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  For every h 1 ∈ H there exists an element h 2 ∈ H such that h 1 * h 2 = h 2 * h 1 = e. We write this element h 2 as h -1 1 and call it the inverse of h 1 in H . A group H is said to be a finite group if it has a finite number of elements. The number of elements in H is called the order of H and is denoted by |H |.

	These are the four defining postulates of a group which are called group
	axioms.
	Definition 3.3.2.

is, associative law holds in H . (c) There exists a special element e ∈ H such that h * e = e * h = h for all h ∈ H . (d) Definition 3.3.3. A group H is said to be abelian if h 1 * h 2 = h 2 * h 1 for all h 1 , h 2 ∈ H . Definition 3.3.4. A relation ≡ on a set A is called an equivalence relation if, for all a 1 , a 2 , a 3 ∈ A, it satisfies:

  Torquato and colleagues made this observation while studying PoissonDisk samples in the Euclidean domain. We observed that a similar offset 0.055 is obtained for the mean angular power spectrum of Poisson Disk samples in the spherical domain. Following our theoretical analysis, the power spectrum of the Poisson disk distribution is lower bounded by a constant profile with γ = 1/20 for both Euclidean and spherical domains. Consequently, the variance convergence rate of the Poisson Disk sampling patterns is similar to the convergence rate of the white noise sampler, which can also be bounded by the constant profile. The variance convergence rates of white noise and Poisson Disk samples is of order
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Simplified variance equation

A.1 Contribution of DC peak in Variance

As shown in Eq. (5.9), we have the general closed-form expression of variance given by:

(A. [START_REF] Alliez | Recent advances in remeshing of surfaces[END_REF] In this appendix, we show that the DC peak contribution is zero. Let us introduce a temporary notation Var (I N , l, m) that represents the contribution of the (l, m)th component in the variance Var (I N ) given in Eq. (A.1). We compute the contribution of the DC peak (l = 0, m = 0) component in the variance as follows:

Here, S S (0, 0) 2 -S S (0, 0) 2 can be seen as the variance of the spherical harmonic basis function Y m l with l = 0, m = 0. Since, Y 0 0 is a constant function, the corresponding variance would be zero resulting in the Var (I N , 0, 0) = 0.

This makes the Var (I N , 0, 0) = 0, showing that DC peak component does not contribute to the variance of MC integration in the spherical domain.

A.2 Contribution of second term

In || S S (l, m) • S F (l, m) || 2 , as only S is a random variable, we can simplify this term as follows:

For homogeneous sampling patterns S S (l, m) = 0 for all l = 0 , m = 0.

Consequently, for DC peak (l = 0, m = 0), we get:

for all l = 0 , m = 0.

Appendix B

Unbiased homogeneous sampling

In this appendix, we mathematically illustrate that the homogeneous sampling patterns are unbiased in nature. For this, we show that the expected value of the Monte Carlo estimator is equal to the integration of F . The expected value of the MC estimator can be written as:

To make S homogeneous, we perform averaging over the group of motions, H (translations for the torus and rotations for the sphere) over the whole domain, this gives us:

To simplify the inner integral, we use the fact that H acts transitively on D, as a result, the average of [τ (S)](x) over all τ ∈ H is the average of S(x) over all

x ∈ D:

Plugging Eq. (B.3) back into Eq. (B.2) (with a change of variable), we get:

In particular, when S(y) = δ(ys k ) for k = 1 : N , we get:

Appendix C

Spectral Analysis of spherical cap

C.1 Spherical cap function in SH terms

In Chapter 6, we mentioned that a spherical cap function can be considered as our worst-case integrand for a given class of functions [START_REF] Brandolini | Mean square decay of Fourier transforms in Euclidean and non Euclidean spaces[END_REF]. We use spherical cap function to perform our experiments in Chapter 7. In this section, we compute an analytical expression for the power spectrum of a spherical cap function. For simplicity sake, we define spherical cap function, F θ 0 (θ), as a circularly symmetric spherical cap centered at the north pole as a function of the colatitude θ ∈ [0, π]:

where, < θ 0 < π -, is a constant that controls the size of the spherical cap, for > 0. Since F θ 0 is circularly symmetric, we can consider only the zonal (m = 0) harmonic basis functions. Hereafter, we drop the subscript θ 0 from F θ 0 to denote spherical cap function and express it as F . To obtain spectral coefficients