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Abstract

This dissertation introduces a theoretical framework to study different

sampling patterns in the spherical domain and their effects in the evaluation

of global illumination integrals. Evaluating illumination (light transport)

is one of the most essential aspect in image synthesis to achieve realism

which involves solving multi-dimensional space integrals. Monte Carlo

based numerical integration schemes are heavily employed to solve these

high dimensional integrals. One of the most important aspect of any nu-

merical integration method is sampling. The way samples are distributed

on an integration domain can greatly affect the final result. For example,

in images, the effects of various sampling patterns appears in the form of

either structural artifacts or completely unstructured noise. In many cases,

we may get completely false (biased) results due to the sampling pattern

used in integration.

The distribution of sampling patterns can be characterized using their

Fourier power spectra. It is also possible to use the Fourier power spectrum as

input, to generate the corresponding sample distribution. This further allows

spectral control over the sample distributions. Since this spectral control

allows tailoring new sampling patterns directly from the input Fourier power

spectrum, it can be used to improve error in integration. However, a direct

relation between the error in Monte Carlo integration and the sampling power

spectrum is missing. In this work, we propose a variance formulation, that

establishes a direct link between the variance in Monte Carlo integration and

the power spectra of both the sampling pattern and the integrand involved.



To derive our closed-form variance formulation, we use the notion of

homogeneous sample distributions that allows expression of error in Monte

Carlo integration, only in the form of variance. Based on our variance

formulation, we develop an analysis tool that can be used to derive theoretical

variance convergence rates of various state-of-the-art sampling patterns. Our

analysis give insights to design principles that can be used to tailor new

sampling patterns based on the integrand.



Chapter 1

Introduction

From elementary mathematics, we have learnt how to compute the integration

of simple (e.g., sin, cos) and complicated mathematical functions. To compute

similar integrals using computers is not that straight forward. In computers, we

cannot compute any continous function directly. To perform this computation, it

is required to discretize the function with points (samples) followed by performing

weighted average of these sample values, that gives the final value of the function

at given coordinates. In a mathematical sense, this process is termed as numerical

integration or numerical quadrature.

How we sample the domain of integration is of paramount importance to

numerical integration techniques. From computational physics, computational

chemistry to computation finance and computer generated imagery, in all fields,

numerical integration plays a key role. For low dimensional integrals, many

efficient quadrature rules exist. However, for very high dimensional problems, it

is not possible to use these efficient quadrature rules as these rules can have very



high time and space complexity. Monte Carlo and Quasi-Monte Carlo integration

rules are the best in computing high-dimensional integrals.

Numerical integration techniques are used in various fields. In this dissertation,

we focus our attention to the field of computer graphics, and more specifically

to image synthesis. In images, a pixel is considered as the basic building block

of computer generated imagery. Even though, to a common eye, an image can

be seen as continous, it is composed of discrete pixels. To obtain an image, each

pixel needs to be further discretized (sampled) using a set of points (samples). A

color corresponding to each point can be computed by using the state-of-the-art

algorithms (e.g., ray tracing), then a weighted average of these samples (recon-

struction) is stored in a pixel as a color value.

Computation of a “real” life-like image requires more sophisticated algorithms.

One of the many ways to add realism to an image is via computing proper global

illumination in a scene. Evaluation of global illumination requires computing

scattering directions of light at each point inside a virtual scene. If the point

where we compute the scattering direction is a surface, then we can assume a

hemisphere around this point and consider that the light scatters away from the

surface from this hemisphere. In case, we have a scene with fog or mist, at each

point where we compute the scattering direction, light is arriving from all the

directions. Therefore, for a scene with fog, we assume a sphere around each point

inside a scene and consider that the light scatters away from this point in all the

directions.



1.1 Contributions

The central theme of this dissertation is to study the distribution of samples on

the surface of a unit sphere and hemisphere. Even though, in global illumination

algorithms spherical and hemispherical sampling have been well exploited, the

frequency content of the spherical and hemispherical sampling patterns and its

effect in the variance during integration, is not thoroughly studied. In this disser-

tation, first we perform a spectral analysis of various state-of-the-art sampling

methods on the sphere and the hemisphere. We use the notion of homogeneous

sample distributions, which has been extensively studied in physics and spatial

statistics [40, 20, 21]. Homogeneous sample points have same statistical prop-

erties over the domain. We use the notion of homogeneous sampling to express

error in Monte Carlo integration only in terms of variance. This complete work

has been successfully published by Pilleboue, Singh and colleagues [79].

We analyze the effects of various spherical and hemispherical sampling meth-

ods on the variance for Monte Carlo integration of high dimensional global illu-

mination integrals. We propose a theoretical framework that relates the frequency

content (power spectrum) of the sampling pattern and the integrand involved with

the variance in Monte Carlo integration. Thanks to this framework, we are able

to derive the variance convergence rate of various samplers with the increase in

number of samples. We propose a set of quintessential design principles that

can be used to tailor new sampling patterns based on the integrand under study,

resulting in improved numerical integration of the underlying integrand.



1.1.1 Publications

The theoretical framework that we discuss in this dissertation has been success-

fully published in SIGGRAPH 2015 as: “Variance Analysis for Monte Carlo

Integration”

with authors: Adrien Pilleboue†, Gurprit Singh†, David Couerjolly, Michael

Kazhdan, Victor Ostromoukhov.

† Adrien Pilleboue and Gurprit Singh are joint first authors of this publication.

In the published work on Variance Analysis for Monte Carlo Integration, we build

a theoretical framework in both the Euclidean and spherical domains that relates

the power spectrum of the sampler and integrand involved, with the variance in

Monte Carlo integration. Here, the Euclidean domain analysis is performed by

Adrien Pilleboue [78] whereas a similar spherical domain analysis is performed

by Gurprit Singh, the author of this dissertation, in this thesis work.

Previously, I also co-authored a research paper that was published in SIG-

GRAPH 2014 as: “Fast Tile-based Adaptive Sampling with User-Specified Fourier

Spectra”.

with authors: Florent Watchel, Adrien Pilleboue, David Couerjolly, Katherine

Breeden, Gurprit Singh, Gaël Cathelin, Fernando De Goes, Mathieu Desbrun,

Victor Ostromoukhov.

Although, Florent Wachtel has been the main investigator of this very large project

which lasted three years, many other people substantially contributed in conceptual

clarification of the key issues, implementation, tests, improvements, presentation

of the work. It has been a team work, in which I fully participated. That project



can be seen as a preliminary case study, which stressed the importance of the

frequency content of the sampler, and ultimately led to the present analysis work.

This publication is not included as a contribution in this dissertation. However, we

give details of this publication in Section 2.1.7 while discussing the state-of-the-art

work in Chapter 2.

1.2 Overview

To give a brief overview of this dissertation, there are eight chapters in this

dissertation including this one. We have already introduced our intutive ideas

on which our theoretical framework has been developed in this dissertation. We

give a not-too-long survey (Chapter 2) of various sampling methods proposed

in the literature. Our literature survey shows that there is not enough work done

to study the frequency content of various stochastic samplers on the sphere and

especially on the hemisphere. Therefore, we have devoted a complete chapter

(Chapter 4) to study the spectral properties of various sampling patterns (stochastic

and deterministic) on the sphere and hemisphere.

In Chapter 4, we also introduce the notion of homogeneous sample distribu-

tions on the sphere. Later on, we use this notion of homogeneity in Chapter 5,

to derive our closed-form variance expression that relates the variance in Monte

Carlo integration with the power spectra of the sampling pattern and the integrand

involved. In our derivation, we use the representation theory to formally express

the effects of rotation on the spherical harmonic coefficients. We give a brief



background on spherical harmonics and the representation theory in Chapter 3.

We also provide a background on group theory and vector spaces which are

prerequisites for the representation theory.

In Chapter 6, we use our mathematical model to derive variance convergence

rates of various sampling patterns for a given class of functions. We also provide

tools to bound the sampling power spectra and lay down some design principles

for future samplers. At the end, we show our experiments and results in Chapter 7

and conclude our thesis in Chapter 8.



Chapter 2

State of the Art

In this chapter, we do a survey on various state-of-the-art sampling methods

developed for image synthesis. Regular sampling is the simplest to generate.

However, it is not recommended to use regular sampling methods for numerical

integration. We study the problems caused by regular sampling patterns and

discuss various solutions proposed by researchers to avoid the artifacts caused

by regular samples in Monte Carlo numerical integration schemes. Arguably the

best approach to algorithmically generate point distributions is to find a good

balance between density control and spatial irregularity. There are many Monte

Carlo (MC) and Quasi-Monte Carlo (QMC) based [71, 55, 49] sampling patterns

proposed in the literature to find this balance between density control and spatial

irregularity.

We classify various sampling methods in two classes: deterministic and non-

deterministic methods. Samplers which generate a same sequence or point sets at

each initialization falls into the category of deterministic samplers, whereas, sam-



plers that are completely stochastic, i.e., which generate new set of samples with

assigned characteristics at each initialzation, falls into the non-deterministic class.

We further divide these classes into subclasses, based on the approaches used to

generate the samples. We subdivide non-deterministic samplers into relaxation

(optimization) and dart throwing based approaches. Most of the non-deterministic

samplers are relaxation and dart throwing based, others can be considered as

an extension of these two. To generate purely deterministic samplers, Number

theory (radical inverse function) based approaches are heavily employed. Most

of the radical inverse based samplers are mainly categorized as low discrepancy

samplers and they are the core of the QMC integration schemes.

There are some tile-based approaches that can be used to generate samples

that mimic the non-deterministic behaviour. Tile-based methods were originally

introduce to overcome the time complexity of relaxation and dart throwing based

algorithms. In computer graphics community two tile-based approaches are well

known: First approach uses a set of precomputed tiles, with each tile composed

of multiple samples, and later use these tiles, in a sohisticated way, to pave the

sampling domain. Second approach employed tiles with one sample per tile and

uses some relaxation-based schemes, with look-up tables, to improve the over all

quality of samples.

Recently, researchers have noticed the importance of having a spectral control

on sampling methods. The idea behind having a sampler with spectral control

is to be able to generate samples from the pre-assigned Fourier characteristics.

Consequently, the samples can spatially arrange themselves according to the



characteristics assigned in the spectral domain [110]. Our contribution in this

dissertation is inspired from the work on spectral control. In Chapter 5, we derive

a closed-form expression that relates the variance in MC integration with the

spectral characteristics of the sampling pattern and the integrand involved. In

the following sections, we start our discussion with the sampling methods in the

Euclidean domain (Section 2.1). We introduce blue noise characteristics and

study their importance in image synthesis. Then, we discuss various sampling

methods that are employed to achieve blue noise characteristics, which includes:

relaxation based, dart throwing based and/or tiling based methods. In Section 2.2,

we discuss sampling on the sphere. The problem of distributing a large number

of points uniformly over the surface of a sphere has been intensively studied by

many mathematical researchers, biologists, chemists and physicists. We focus

our attention on various spherical sampling algorithms proposed in computer

graphics community to improve the image quality. At the end, in Section 2.3, we

briefly overview various quality criteria proposed in the literature to estimate the

quality of various sampling patterns.

2.1 Sampling in Euclidean domain

To improve the quality of image synthesis, various sampling methods have been

developed. Since the early ages of electronic imagery [111], the error due to

regular sampling patterns, called aliasing, is one of the major issues in image

synthesis. Spatial aliasing error is often manifested in the form of staircasing



along the edges in an image. In the moving objects, regular patterns in temporal

sampling can cause Strobing effects, or the jerky motion of an object in an image.

Defects from sampling can arise in other aspects of the displayed image, such

as color. By increasing the sampling rate higher and higher frequencies can be

represented. However, any regular sampling rate has an associated frequency limit

above which aliasing still occurs. Crow [18] proposed prefilitering as a recognized

cure to aliasing. Dippé and Wold [25] proposed non-uniform sampling followed

by filtering to avoid aliasing effects in images. Usage of irregular or stochastic

sampling patterns convert high frequency defects (like aliasing or false patterns)

into featureless noise. The type of randomness used in the sampling process

controls the spectral characteristics of the noise. Dippé and Wold analyzed in

particular, Poisson and jittered sampling using purely randomized samples, which

can be generalized to a minimum distance Poisson process where the randomly

distributed samples are separated by a minimum distance criteria.

The motivation to introduce stochastic sampling method comes from a careful

study of the human visual system. Studies have shown that the human visual

system is more sensitive to noise in the intermediate frequencies [84]. Since the

human visual system is less sensitive of high frequency noise, reducing low and

mid-frequency noise while increasing high frequency noise can produce perctually

better pictures. Yellot [108] studied the distribution of cones in an extrafoveal

region of the eye of a rhesus monkey, which has a photoreceptor distribution

similar to that in the humam eye. Yellot took the optical Fourier transform of this

distribution, which is called a Poisson Disk distribution. An illustration is shown



Figure 2.1: Left: Micro structures of cones Center: Monkey eye photoreceptor
(cones) distribution Right: Optical transform of monkey eye. Image Courtesy, J.
I. Yellot [108]

in Fig. 2.1.

Motivated from the work by Yellot, Cook [16] performed a careful Fourier

analysis of white noise, Poisson Disk and jittered sampling patterns. He advocated

the use of sampling patterns that lacks low frequency content. Although, Cook in

his theoretical analysis mentioned that the Fourier transform of Poisson Disk has

no low frequency content, Dippé and Wold have correctly shown an offset in the

low frequency zone of the spectrum of Poisson Disk using the flat field response

noise spectrum.

Dippé and Wold, and Cook also suggested adaptive and importance based

stochastic sampling techniques to improve the quality of distributed ray tracing.

In the following year, Mitchell [68] proposed an algorithm for fast generation

of adaptive nonuniform sampling patterns. Mitchell used the knowledge of how

the human eye perceives noise as a function of contrast and color to guide the



adaptive sampling algorithm. Finally, to generate the digital picture, Mitchell

proposed a nonuniform reconstruction from samples and advocates resampling at

the display pixel rate to solve the problem of noise filtering efficiently.

2.1.1 Blue Noise

Even though Dippe and Wold, Cook and Mitchell clearly indicated the importance

of no low frequency content in the sampling patterns’ Fourier spectra, an optimal

sampling Fourier spectrum was still missing. Ulichney [96], in 1987, was the first

to provide qualitative characterization of a good sampling pattern, which he called

Blue Noise. Before going further, we briefly discuss the naming convention for

different kinds of noise.

Color of noise The nature of the spectral distribution property of various types

of noise is mainly described by a color name. The most common example is white

noise, so named because its power spectrum is flat across all frequencies with

equal energy distributed in all frequency bands, much like the visible frequencies

in the white light. Pink noise has the power spectrum such that the power spectral

density is inversly proportional to the frequency. Green noise, as its name suggests,

consists of primarily mid-range frequencies. Ulichney also mentioned the curious

case of brown noise, named for the spectrum associated with the Brownian mo-

tion [36]. He introduced blue noise, the high frequency complement of the pink

noise. Pink noise occurs very frequently in nature and thus is used for physical

simulation and biological distribution.



Frequency

Power

(a) Radial averaging (b) Blue noise

Figure 2.2: Illustration of how to compute the radially averaged power spectrum
from the power spectrum of the signal in (a). Each circle represents one particular
frequency. In (b) a radially averaged power spectrum of ideal blue noise is shown
which is computed by taking the radial average over different values over the radial
circle at each frequency. Images inspired from Ulichney [97]
.

Characteristics of Blue noise Ulichney performed a careful study of rectangu-

lar and hexagonal regular grid patterns to improve the quality of digital halftones.

He estimated the power spectrum of various grid patterns using the Bartlett’s

method [7] of averaging periodograms. He mentioned that a desirable attribute

of a well-produced halftone of a gray level is radial symmetry. Therefore, he

investivated a radially averaged power spectra of various patterns (Fig. 2.2(a)).

Ulichney advocated three important features for an ideal radial power spectrum;

First, its peak should be at the principal frequency. Second, the principal frequency

marks a sharp transition level below which little or no energy exists. And finally,

the uncorrelated high-frequency fluctuations are characterized by high-frequency

white noise. In Fig. 2.2(b), taken from Ulichney’s article, all these three regions

are marked. The radial power spectrum with above featurs is called the blue noise



power spectrum. In the following subsections, we discuss various methods used

to generate sampling patterns with blue noise characteristics.

2.1.2 Poisson Disk distributions

Yellott [108] have shown that a rhesus monkey has a Poisson Disk distribution.

On the basis of his study, he proposed that the least conspicuous form of aliasing

would be produced if the spectrum of the sampling pattern had two properties;

First, the spectrum should be noisy and lack any concentrated spikes of energy.

Secondly, the spectrum should have a deficiency of low-frequency energy. This

causes aliasing noise to be concentrated in higher, less conspicuous frequencies.

Since the blue noise spectrum proposed by Ulichney [96, 97] is is in accordance

with Yellot’s findings, many algorithms have been proposed for efficient generation

of Poisson Disk distributions. Most of the algorithms proposed are dart throwing

and relaxation based and the other techniques are more or less derived from or

based on these two main approaches.

As Ripley [82] mentioned, several point processes could be referred to as

“Poisson-disk”, but by strict definition, a true Poisson-disk process is realized by

generating complete patterns with Poisson statistics until one is found that meets

the minimum-distance constraint. Cook [16] proposed the first dart throwing

algorithm for generating Poisson Disk distributed point sets. Random samples

are continually tested and only those that satisfy the minimum distance constraint

relative to samples already in the distribution are accepted. The main source

of inefficiency of the dart throwing method is a rejection sampling mechanism



where a large number of samples is attempted but only a small percentage of

them is inserted into the distribution. This algorithm cannot guarantee that a

maximal distribution can be generated. As the allowable area for new insertions

gradually shrinks, the probability that attempted samples will fall inside this area

becomes progressively smaller. This also means that the algorithm does not have

a guaranteed termination.

Mitchell [68] discovered that Poisson disk distribution can be generated

cheaply on the fly by an algorithm inspired by the Floyd-Steinberg halftoning

algorithm [32]. Later, Mitchell [69] proposed an algorithm which is known as the

best candidate algorithm. The best candidate algorithm works by trying m× k

samples when placing the k-th new sample, where m is a supplied parameter.

From all m × k samples attempted, the one that is farther away from all previ-

ous k − 1 samples is chosen. The algorithm does its best to place samples well

away from each other but it does not enforce any particular distribution radius r.

There is the probability, however small, that a sequence of unfavourable sampling

outcomes will make the best candidate sample be arbitrarily close to some other

previous sample.

McCool and Fiume [66] describe a more practical variant of dart throwing,

where the dart radius is gradually decreased as more samples are placed. They

used Lloyd’s algorithm [60, 61]—for the first time in the computer graphics

community—for the generation of sampling point sets. Their algorithm slowly

decreases the radius of the distribution at each iteration until the final desired radius

is reached or a desired number of samples is generated. For each intermediate



radius, it makes a finite number of attempts to place new samples, proportional to

the iteration number, before proceeding to the next smaller radius. What makes

the decreasing radius algorithm an approximate Poisson-disk sampling method is

that it uses radii that are larger than r for most of the iterations.

For many years, dart-throwing was the only available method for accurate

Poisson-disk sampling. Its inefficiency led to the development of approximate

Poisson Disk sampling algorithms. The situation changed with the development

of efficient dart-throwing methods. These new methods take advantage of a

spatial data structure to guide in the placement of samples. The data structure

encodes the regions of space where the insertion of samples is allowed. This

avoids to a great extent the expensive procedure of having to blindly test new

samples by trial and error. Every time a sample is inserted in the distribution, the

spatial data structure is updated to remove the portion of space occupied by the

new sample. The spatially guided methods, used in Computer Graphics, were

developed specifically for two-dimensional sample distributions and do not extend

well to higher dimensions.

Jones [47] proposed the first spatially guided method for Poisson disk sample

generation. The method uses a Voronoi tessellation as the spatial data structure

with the samples at the centroid of the Voronoi cells. The Voronoi cell of a sample

is randomly selected and a new sample is inserted in the available area of the cell

that falls outside a circle of radius 2r with the original sample at the centre. A

weighted binary tree helps in the selection of samples, with the Voronoi cells as

the leaves and with the available areas of the Voronoi cells as the weights. This



ensures that sample placement is done with a uniform probability distribution

– the tree is randomly traversed top to bottom, with the area weights giving the

probability of selecting the left or right child of each tree node. The placement of

a new sample requires the computation of the intersection between the Voronoi

cell (a polygon) and the circle of radius 2r, which can be reduced on case basis. A

rejection sampling method cannot be avoided but the probability of a new sample

being accepted is much larger than the probability of it being rejected. Although

Voronoi tesselations can be extended to three dimensions, placing a new sample

in the available area of a three-dimensional Voronoi cell requires the computation

of the intersection between the cell (a polytope) and a sphere of radius 2r. This

is a more complex procedure than its two-dimensional equivalent and cannot be

reduced to a small number of simple cases.

Dunbar and Humphrey [27] proposed two variants; an approximate O (N)

and an accurate O (N logN) method, that results from collapsing their scalloped

sector data structure into a single arc of a circle with radius 2r. With this transfor-

mation, every new sample is always placed at a distance of exactly 2r from some

other previous sample. The “scalloped sector” spatial data structure, proposed

by the authors, is bounded by two arcs of circles of different radii and centred at

distinct points. The available area around each sample can be represented as the

disjoint union of several scalloped sectors. Similar to the method by Jones [47], a

weighted binary tree is used to select a scalloped sector for the placement of a

new sample, resulting in a spatial uniform probability distribution. A rejection

sampling strategy is avoided as sampling inside a scalloped sector is always guar-



anteed to generate a valid Poisson-disk sample. It is not known how the scalloped

sector data structure can be extended to three dimensions.

Yet another spatially guided method in two dimensions was proposed by

White and colleagues [103]. The authors used a quadtree is used to signal the

allowable sample insertion space. An auxiliary uniform grid stores neighbouring

information about samples and is used to check for minimum distance conflicts

for every new sample. The cells in the grid have lateral size 2r and all the possibly

conflicting samples of a newly inserted sample are found by looking in the grid

cell where the new sample falls plus the eight surrounding cells. This method can

easily be generalised to higher dimensions but it does not scale well due to the

need for a uniform grid. The memory size of the grid is O
(
r−d
)

for d dimensions

and this can become intractable for small r.

Bridson [11] proposed a Poisson disk generation algorithm in arbitrary dimen-

sions, similar to White and colleagues [103]. Bridson used a simple d-dimensional

grid to evaluate samples at an optimal distance from neighboring samples based on

local rejection. An active list of samples is kept. At each iteration, a sample from

the active list is randomly chosen and several dart throwing attempts try to insert

a new sample inside a hypersphere of radius 4r centred on the chosen sample.

The new sample is added to the grid and to the active list while the previously

chosen sample is removed from the list if dart throwing did not succeed after some

number k of attempts. The method does not distribute samples uniformly because

every new sample is always placed inside a hyperspherical neighbourhood of

some previous sample. The time cpmplexity of Bridson’s algorithm is of the order



O (N).

Wei [100] proposed a parallel sampling method that can run on a GPU. The

method uses a multi-resolution strategy where uniform subdivisions of the domain

with increasing resolution are considered one at a time. The cells in each resolution

level are then arranged into distinct cell groups in such a way that the insertion of

new samples inside each group cell can proceed independently from the insertion

of samples in the other cells of the same group. This allows sample insertion to

be parallelised for each of the groups of any resolution level. Sample insertion

is done by making k dart-throwing attempts inside every group cell. Although

the sampling inside each group is random, the sequence of groups visited for

every resolution level follows a pre-determined order. This violates the uniform

sampling condition because samples inside a group cannot be placed until all

previous groups at the same resolution level have been sampled. For a more

comprehensive summary of Poisson sampling methods developed till the year

2008, we refer the interested readers to the survey by Lagae and Dutre [52].

To overcome shortcomings of all previously proposed Poisson Disk algorithms,

Gamito and Maddock [35] presented an algorithm in d-dimensions where samples

are generated inside the canonical domain D = [0, 1]d, such that the samples can

be subsequently modified by the application of any Euclidean transform without

changing the Poisson Disk nature of the distribution. Their algorithm generates

Poisson Disk distributions with the samples being uniformly distributed in D and

with the distance between every pair of samples being equal to or greater than

a specified distance 2r, where r is the distribution radius. The algorithm also



generates maximal distributions, in the sense that no new samples can be further

inserted in D without violating the minimum distance constraint relative to other

samples. Exceptions occur when there is a point x ∈ D that is at an almost equal

distance of 2r to three or more samples. Depending on the maximum subdivision

level of the tree, the algorithm may fail to place an additional valid sample at x.

In the worst case, if x is at a distance of exactly 2r to three or more samples, the

algorithm will fail to place a sample at x irrespective of the maximum subdivision

level. This algorithm is easily extendable on surfaces (e.g., sphere).

Ebeida and colleagues [29] addressed the problem of generating a uniform

Poisson disk sampling and proposed an alogirthm that is both maximal and

unbiased over bounded non-convex domains. The authors proposed the first

provably correct algorithm with time and space dependent only on the number of

points produced. The algorithm works in two phases, both based on classical dart

throwing. The first phase uses a background grid of square cells to rapidly create

an unbiased, near-maximal covering of the domain. The second phase completes

the maximal covering by calculating the connected components of the remaining

uncovered voids, and by using their geometry to efficiently place unbiased samples

that cover them. This second phase converges quickly, overcoming a common

difficulty in dart throwing methods. The deterministic memory requirements for

this algorithm is O (N) and the expected running time is O (N logN), where N

is the output size, the number of points in the final point set.



2.1.3 Relaxation based methods

Researchers have also proposed many relaxation based methods for the generation

of blue noise sample distributions. The early algorithms proposed were inspired

from the traditional artistic technique of stippling, which involves placing small

dots of ink onto paper such that their density give the impression of tone. The

artist tightly controls the relative placement of the stipples on the paper to produce

even tones and avoid artifacts, leading to long creation times for the drawings.

Deussen and colleagues [23] proposed an approach for stippling that computes

an initial dot distribution by a specialized halftoning technique, given a reference

image. Otherwise the user creates an initial distribution manually. After the initial

point distribution is obtained, the points are moved by an iteration scheme known

as Lloyd’s method [60, 61]. In the first step, Deussen and colleagues compute the

Voronoi diagram [72] of the points. This assigns a Voronoi region to each point.

The boundaries of these regions are (possibly open) polygons. In the second step,

boundaries of the region to be stippled, are intersected with the Voronoi regions.

And finally, each point is moved to the center of the Vornoi region. This dot set

is modified automatically or semi automatically to generate a final distribution

similar to a stipple drawing. Deussen and colleagues used points of different size

and shape to resemble manual drawing.

Secord [87] proposed another iterative method which is a direct descendant of

the one described by Deussen and colleagues [23]. Central to Secord’s approach

is the use of centroidal Voronoi diagrams to produce good distributions of points.

A centroidal Voronoi diagram has the interesting property that each generating



point lies exactly on the centroid of its Voronoi region. Secord also incorporate

the idea of a density function which weights the centroid calculation. Regions

with higher densities pack generating samples (points) closer than regions with

lower density values.

Deussen et al. and Secord uses iterative method by Lloyd [60, 61] which is a

powerful and flexible technique that is commonly used to enhance the spectral

properties of existing distributions of points or similar entities. However, the

results from Lloyd’s method are satisfactory only to a limited extent. First, if

the method is not stopped at a suitable iteration step, the resulting point distribu-

tions will develop regularity artifacts. A reliable universal termination criterion

to prevent this behavior is unknown. Second, the adaptation to given heteroge-

nous density functions is suboptimal, requiring additional application-dependent

optimizations to improve the results.

Balzer and colleagues [6] present a variant of Lloyd’s method, termed capacity

constrained Voronoi tessellation (CCVT), which reliably converges towards dis-

tributions that exhibit no regularity artifacts and precisely adapt to given density

functions. Like Lloyd’s method it can be used to optimize arbitrary input point

sets to increase their spectral properties while avoiding its drawbacks. They apply

the so called capacity constraint that enforces each point in a distribution to have

the same capacity. Intuitively, the capacity can be understood as the area of the

point’s corresponding Voronoi region weighted with the given density function.

By demanding that each point’s capacity is the same, Balzer et al. ensure that

each point obtains equal importance in the resulting distribution. This is a direct



approach to generating uniform distributions, whereas Lloyd’s method achieves

such distributions only indirectly by relocating the sites into the corresponding

centroids. Based on this capacity constraint, an iterative optimization process is

performed following the algorithm proposed by Balzer and Heck [5]. The compu-

tational complexity per iteration of the CCVT algorithm is O
(
N2 +Nm logm

N

)
,

where N gives the number of samples (sites) and m is the capacity of each site.

Capacity of a site is a number of points assigned to each site.

CCVT has superior quality than Lloyd relaxation, but its time complexity

is very high. It could run orders of magnitude slower with the increase in the

demand of samples. To address this performance issue, Li and colleagues [58]

present a fast CCVT algorithm. Li and colleagues proposed many algorithmic

innovations that removes several performance bottlenecks of the original CCVT

algorithm. They proposed median site swap to improve the swapping of points

within sites in the original CCVT. They also mentioned that by performing a

coherent initialization for the input distribution to CCVT algorithm the time

complexity can be noticeably improved.

DeGoes and colleagues [22] proposed a novel approach to improve the CCVT

algorithm by treating the concept of capacity constrained Voronoi tessellation

as an optimal transport problem. This insight leads to a continuous formulation

that enables to enforce the capacity constraints exactly, unlike Balzer et al [6]. de

Goes and colleagues exploit the variational nature of this formulation to design an

efficient optimization technique of point distributions via constrained minimization

in the space of power diagrams. This approach leads to a high-quality blue noise



point sets with improved spectral and spatial properties with a computational

complexity of O (N logN).

Chen and colleagues [12] present another approach to address the capacity-

constrained Voronoi tessellation (CCVT) algorithm in the continous setting, by

casting the blue noise sampling generation as a variational problem. This varia-

tional framework allows generation of high-quality blue noise characteristics while

precisely adapting to given density functions. Based on an accurate evaluation of

the gradient of an energy function, an efficient optimization is developed which

delivers significantly faster performance than the previous optimization-based

methods. This framework can be easily extended to generating blue noise point

samples on manifold surfaces and for multi-class sampling. The optimization for-

mulation also allows to naturally deal with dynamic domains, such as deformable

surfaces, and to yield blue noise samplings with temporal coherence.

Schlömer and colleagues [85] describes an optimization procedure to obtain

blue noise samples. Their algorithm iteratively enlarges the minimum distance

between points and thereby improves the blue noise characteristics of the point

set. The basic algorithm is as follows: each step takes a single point from a set

of points X and attempts to move it to a new position that is as far away from

the remaining points as possible, i.e., the farthest point. Therefore, they call

this optimization procedure, farthest point optimization (FPO). One full iteration

consists of moving each point in X once. This iteration scheme converges, and

each full iteration increases the average minimum distance. In general, the farthest

point of a set of points is the center of the largest circle that can be placed in



the domain under consideration without covering any of the points. This largest

empty circle can be computed efficiently using the Delaunay triangulation which

corresponds to the largest circumcircle of the triangles. The algorithm moves

each point in such a way that the point spacing increases monotonically until

convergence. The computational complexity of FPO is O (N logN).

Schmaltz and colleagues [86] introduced a new approach inspired by the phys-

ical principals of electrostatics. They used the idea of repelling forces between

equally charged particles. These forces create a homogeneous distribution in flat

regions, while attracting forces from the image brightness values ensure a high

approximation quality. Their model is transparent and uses only two parameters:

One steers the granularity of their halftoning approach, and the other its regularity.

They evaluate both a discrete and continous version of their algorithm. Their

algorithm is global in the sense that it can be used for image dithering, stippling,

screening and sampling.

Fattal [30] propose a new approach for generating stochastic blue-noise point

distributions that formulates the problem as sampling a statistical mechanics

interacting particle model. In this model a radially-symmetric kernel function

is placed around every point to produce an approximate density function. The

difference between this approximation and the given target point density function

assigns an energy value to the points configuration. Rather than minimizing

this energy, the algorithm use it to define a Boltzmann-Gibbs statistical model

that introduces randomness. Thus, this framework unifies randomness with the

requirement for uniform point spacing that achieves the enhanced blue noise



spectral properties.

2.1.4 Anisotropic Blue Noise

Previously mentioned samples generate isotropic blue noise samples. There are

many applicaitons including stippling, visualization, surface texturing, and object

distribution that requires anisotropic blue noise sample distribution. Feng and

colleagues [31] present a practical approach to generate stochastic anisotropic

samples with Poisson-disk characteristic over a two-dimensional domain. In con-

trast to isotropic samples, Feng and colleagues developed anisotropic samples as

non-overlapping ellipses whose size and density match a given anisotropic metric.

To generate these samples with the desired properties a set of non-overlapping

ellipses is constructed whose distribution closely matches the underlying metric.

This set of samples is used as input for a generalized anisotropic Lloyd relax-

ation [60] to distribute noise samples more evenly. Instead of computing the

Voronoi tessellation explicitly, they introduce a discrete approach which combines

the Voronoi cell and centroid computation in one step. The algorithm supports

automatic packing of the elliptical samples, resulting in textures similar to those

generated by anisotropic reaction-diffusion methods. For quality measurement of

uniformly distributed samples the authors use Fourier analysis tools. The result-

ing samples have nice blue noise property where low frequencies in the power

spectrum are reduced to a minimum.

Li and colleagues [59] also proposed an algorithm to generate anisotropic

blue noise sample. They also extends the Fourier spectrum analysis, which is for



uniform samples, to evaluate quality of anisotropic and adaptive sampling methods.

To generate anisotropic sampling, Li and colleagues extend dart throwing and

relaxation—the two classical methods for isotropic blue noise sampling—for

the anisotropic setting, while ensuring both high-quality results and efficient

computation. On the verification side, Li and colleagues introduce approaches

based on warping and sphere sampling that extend Fourier spectrum analysis for

adaptive and/or anisotropic samples.

2.1.5 Multi Class Blue Noise

Sampling methods discussed in previous sections so far has been mainly focused

on blue noise sampling with a single class of samples. This could be insufficient

for common natural as well as man-made phenomena requiring multiple classes of

samples, such as object placement, imaging sensors, and color stippling patterns.

Wei [101] extends blue noise sampling to multiple classes where each indi-

vidual class as well as their unions exhibit blue noise characteristics. Wei propose

two flavors of algorithms to generate such multi-class blue noise samples, one ex-

tended from traditional Poisson hard disk sampling for explicit control of sample

spacing, and another based on his soft disk sampling for explicit control of sample

count. A hard disk, centered on each sample, can neither deform nor intersect

another, while a soft disk can intersect another, but subject to an energy penalty

which, when minimized, produces uniform distribution. Both hard and soft disk

algorithms support uniform and adaptive sampling, and are applicable to both

discrete and continuous sample space in arbitrary dimensions.



Oztireli and Gross [75] introduce another set of methods for analysis and

synthesis of general multi-class point distributions based on the statistical mea-

sure pair correlation function (PCF). To explore the nature of this measure, they

introduce an analysis based on the interpretation of a measure as a mean in a high

dimensional vector space that they call the pair correlation space (PCS). The

vector for a given point in the PCS simply measures the distribution of its distance

to all other points. This analysis propose an irregularity measure and allows to ex-

plain distributions and existing synthesis algorithms in a unified way. It also show

that the PCF provides a compact representation for the characteristics. Following

this analysis, Oztireli and Gross propose two general synthesis algorithms. The

first one is a generalization of dart-throwing for arbitrary PCFs and the other is a

gradient descent based fitting of the PCFs. The output of the first algorithm is

used as the input for the second to facilitate convergence. These algorithms can

generate point distributions with desired characteristics extracted from example

distributions or it can be synthesized. The example point sets and generated point

sets can be of different dimensions and sizes, contain multiple classes, and reside

on non-Euclidean domains. The proposed algorithms have the computational

complexity of order O (N), where N is the number of output points.

2.1.6 Spectral control

Most construction algorithms work in the spatial domain, even though the blue

noise property itself is defined in the Fourier domain. Parker and colleagues [76]

proposed an algorithm for manipulating the power spectra of blue noise halftone



patterns. A blue noise spectrum defined by a step function is used as input to

influence the sample distributions.

Zhou and colleagues [110] construct point sets matching a Fourier power

spectrum function by performing a gradient descent optimization on an energy

derived from the autocorrelation function. Such a Fourier power spectrum function

can be either obtained from a known sampling method, or completely constructed

by the user. The key idea is to convert the Fourier spectrum function into a

differential distribution function that describes the samples’ local spatial statistics.

The algorithm then use a gradient descent solver to iteratively compute a sample set

that matches the target differential distribution function. It can be easily modified

to achieve adaptive sampling, and is extendable to GPU.

Heck and colleagues [41] also studied directly the Fourier properties of sam-

pling patterns to perform analysis of blue noise sampling. They started their

analysis from the observation that oscillations in the power spectrum of a sam-

pling pattern can cause aliasing artifacts in the resulting images. They synthesize

two new types of blue noise patterns: step blue noise with a power spectrum in the

form of a step function and single-peak blue noise with a wide zero-region and

no oscillations except for a single peak. They study the mathematical relationship

of the radial power spectrum to a spatial statistic known as the radial distribu-

tion function to determine which power spectra can actually be realized and to

construct the corresponding point sets. The method discussed in Section 2.1.5

by Oztireli and Gross [75] also offers spectral control on top of multi-class blue

noise distributions.



2.1.7 Tile-based Blue Noise Sampling

Researchers also proposed many tile-based methods to overcome the computa-

tional complexity of dart-throwing and/or relaxation based approaches in gener-

ating blue noise sampling patterns. The first tile-based Poisson Disk sampling

methods used Wang tiles and was proposed by Hiller and colleagues [44]. This

Wang tile-based approach was later extended by Cohen and colleagues [15] for

image and texture generation. Wang tiles have colours assigned to their edges

in specific ways. A Wang tile can only be placed next to another if they share

the same colour along the common edge. This allows non-periodic tilings of the

plane to be created. The generation of Poisson-disk samples inside each tile must

respect the minimum distance constraint across the edges of the tile relative to

all other tiles that share the same edge colour. The authors achieve this by using

several steps of Voronoi relaxation [61].

In the initial Wang tile methods, the tiling had to be computed in advance

inside some finite region of space. Lagae and Dutré [53] introduced procedural

tiling rules that allow a Wang tile to be assigned on the fly in a consistent way to any

arbitrary point in space. This leads to the creation of infinite non-periodic tilings

of Poisson- disk samples. Later, Lagae and Dutré [54] introduced procedural

tiling rules for corner tiles. Corner tiles have colors associated to their corners

instead of their edges. They can enforce the minimum distance constraint across

tiles that share a common corner. The same authors also extended corner tiles to

three-dimensions, creating corner cubes [51].

Methods for non-uniform Poisson-disk sampling have been proposed based



on tile distributions. Kopf and colleagues [50] apply subdivision rules to Wang

tiles in order to create sample distributions with varying density across space.

Their technique utilizes a set of carefully constructed progressive and recursive

blue noise Wang tiles. The use of Wang tiles enables the generation of infinite

non-periodic tilings. The progressive point sets inside each tile are able to produce

spatially varying point densities. Recursion allows to adaptively subdivide tiles

only where high density is required, and makes it possible to zoom into point sets

by an arbitrary amount, while maintaining a constant apparent density.

Ostromoukhov and colleagues [74] use Penrose tiling and perform hierarchical

subdivision to create a sufficiently large number of sample points. Each Penrose

tile has a single sample inside, which is subject to a Voronoi relaxation together

with the samples from other tiles to reduce sampling artifacts. These points are

numbered with structural indices using the Fibonacci number system, and these

numbers are used to threshold the samples against the local value of the importance

density. Pre-computed correction vectors, obtained using relaxation, are used to

improve the spectral characteristics of the sampling pattern. The technique is fast

(O (N)), deterministic and can be used for importance sampling.

Later, Ostromoukhov [73] present another fast hierarchical importance sam-

pling method with blue-noise properties. This approach is based on self-similar

tiling of the plane or the surface of a sphere with rectifiable polyominoes. Sam-

pling points are associated with polyominoes, one point per polyomino. Each

polyomino is recursively subdivided until the desired local density of samples is

reached. A numerical code generated during the subdivision process is used for



thresholding to accept or reject the sample. The exact position of the sampling

point within the polyomino is determined according to a structural index, which in-

dicates the polyomino’s local neighborhood. The variety of structural indices and

associated sampling point positions are computed during the off-line optimization

process, and tabulated. Consequently, the sampling itself is extremely fast. The

method allows both deterministic and pseudo-non-deterministic sampling.

Wachtel and colleagues [99] introduce a first tile-based method for adaptive

two-dimensional sampling with user-specified spectral properties. They selected

hexagons as the building blocks of their tiling due to their additional symmetry

axis, better intrinsic spectral properties, and only one adjacency relationship be-

tween neighboring blocks [39]. Wachtel and colleagues build a hierarchical and

deterministic subdivision process based on trihexes (i.e., connected agglomerates

of three hexagons) as prototiles to break the symmetries of the regular hexagonal

lattice—much like polyominoes were unions of squares introduced to create more

complex tiling structures on a square lattice. By simply using barycenters of

these trihexes as sample points, the Fourier spectrum of the underlying sampling

pattern appears to be lack of spurious high energy Fourier peaks. To remove the

remaining frequency peaks in the resulting Fourier spectrum they devised a hierar-

chical, deterministic, and area-preserving border shuffling procedure that mimics

a stochastic process. By combining these features, they create non-overlapping

tiles whose barycenters form a high quality blue noise distribution. A lookup

table of sample points, computed offline using any existing procedure that opti-

mizes point sets to shape their Fourier spectrum, is then used to populate the tiles.



The resultant method gives a linear-time, adaptive, and high-quality sampling of

arbitrary density functions that conforms to the desired spectral distribution.

Tile based methods can be used, for example, to overcome the defaults of Pois-

son disk sampling which enforces it’s radial power spectrum to have an offset in the

low frequency zone. By using the tile-based approach, user can enforce a proper

subdivision of the sampling domain D which can be later sampled with Poisson

disk. The resulting Poisson disk sampling results in a radial power spectrum

with no low frequency content. Recently, Yan and colleagues [107] published a

complete survey on blue noise sampling techniques. We refer interested readers to

Yan and colleagues survey for sampling methods that might not have been covered

in this chapter.

2.2 Sampling in Spherical domain

In image synthesis, spherical and hemispherical domain plays a crucial role in

the evaluation of global illumination integrals. Many algorithms are proposed to

perform sampling on the sphere and hemisphere. Researchers have studied various

3D surface sampling techniques that can be used directly for sampling on a sphere.

However, since the 2D spherical domain is very simple, these surface sampling

algorithms can be considered burdensome in their general settings for sphere

sampling. Therefore, researchers proposed many simple algorithms, to sample

the sphere directly or indirectly using a mapping function. Many deterministic

sampling methods are also proposed for sphere sampling in the Quasi-Monte



Carlo numerical integration literature. In this section, we look at these approaches

one by one.

2.2.1 Sampling 3D surfaces

In the geometry remeshing literature, many algorithms are propose that can be

used directly to generate samples on a unit sphere. To give an example, for surface

sampling, Alliez and colleagues [2] generate seed points by error diffusion on a

triangle mesh to generate an isotropic surface remeshing. This algorithm can be

used to sample a sphere. However, to keep our focus on only sphere sampling, we

do not cover the literature work on surface geometry remeshing in this dissertation

and refer interested readers—for an early work on remeshing—to a complete

survey by Alliez and colleagues [1].

Algorithms based on dart throwing for surface sampling are also proposed

in the literature. Bowers and colleagues [8] proposed a parallel dart throwing

algorithm for efficient Poisson disk sampling on arbitrary manifold surfaces.

The authors extend the parallel grid cell sampling approach by Wei [100] from

Euclidean to geodesic distance metric. Since the geodesic distance cannot be

smaller than the Euclidean distance, their algorithm can draw samples directly

on surfaces without any parameterization. To account for geodesic distance, they

propose a fast approximation that is easy to compute and accurate for close-by

sample points.

Cline and colleagues [14] present dart throwing algorithms to generate maxi-

mal Poisson disk point sets directly on 3D surfaces. They optimize dart throwing



by efficiently excluding areas of the domain that are already covered by existing

darts. In the case of triangle meshes, the algorithm shows dramatic speed im-

provement over comparable sampling methods. They demonstrated the ability to

directly handle several surface types, including triangle meshes, spheres, Bezier

patches, subdivision surfaces and implicits. Their algorithm can also be used to

handle non-uniform densities, ellipsoid placement, and point sets spaced accord-

ing to geodesic distance. Optimized dart throwing is quite fast in the uniform

case, but it can run much more slowly when producing non-uniform distributions

because of the acceleration grid.

Peyrot and colleagues [77] proposed an algorithm to perform direct Poisson

disk sampling for surface meshes. Their algorithm is focused on sampling triangu-

lar meshes, while satisfying good blue noise properties, they also preserve features.

The algorithm starts by initializing a list of vertices available for the sampling (the

so-called candidate vertices) with all the vertices of a densely sampled meshMsub.

After each valid dart throwing giving a valid sample s, the candidate vertices

located into the sphere relative to s (depending on its radius R) are removed from

the set of available vertices. If a dart throwing fails for a sample s, this latter is

removed from available vertices to avoid a useless second test at this location. To

efficiently evaluate the region of the mesh relative to a given sphere associated

to a sample s, their Dijkstra-based algorithm is able to stop its region growing

process under given conditions.

Turk [95] proposed a relaxation based algorithm which uses a variant of Lloyd

relaxation defined for polygon meshes. The method starts by placing points



randomly on the surface. The points then repel each-other, eventually reaching

a uniform distribution. However, it is difficult to choose the proper number of

iterations to achieve the right balance between uniformity and randomness, as too

few iterations might produce insufficient uniformity whereas too many iterations

might produce a highly regular result.

Xu and colleagues [106] proposed a blue noise sampling technique for surfaces

that is motivated from the CCVT algorithm. The core idea behind the method is to

compute a Capacity-Constrained Delaunay Triangulation (CCDT), namely, given

a simple polygon P in the plane, and the desired number of points N , compute a

Delaunay triangulation of the interior of P with N Steiner points, whose triangles

have areas which are as uniform as possible. This is computed iteratively by

alternating update of the point geometry and triangulation connectivity. The vertex

set of the CCDT is shown to have good blue noise characteristics, comparable in

quality to those of state-of-the-art methods, achieved at a fraction of the runtime.

The CCDT method may be applied also to an arbitrary density function to produce

non-uniform point distributions.

Xu and colleagues [105] proposed a more generalized approach to generate

blue noise samples on surfaces. It is based on the concept of Capacity-Constrained

Surface Triangulation (CCST), which approximates the underlying continuous

surface as a well-formed triangle mesh with uniform triangle areas. The algorithm

takes a triangle mesh and the number of sample points as input, and iteratively

alternates between optimization of the geometry (positions) of the points and

optimization of their topology (connectivity) until convergence. Since the method



is relaxation-based, it allows precise control over the number of sample points. The

algorithm alternates between a geometry optimization phase, which minimizes

the variance of triangle capacities, and an edge-flipping based retriangulation

phase, until convergence. When applied to a uniform distribution, the result has

been shown to possess superior blue noise characteristics.

As relaxation-based sampling methods, both CCST and CCDT could be

regarded as the dual versions of CCVT method. CCVT operates on Voronoi

diagrams while CCST/CCDT generates the dual Delaunay triangulations. All of

these three methods start with some random initializations and converge to some

local minima of area variance that possess spatial uniformity of points after several

alternations between geometry and topology phases. These local minima also

avoid regularity artifacts that are caused by global minima, namely all the triangles/

cells that are equilateral, thus achieving blue noise characteristics. The iterative

algorithm of CCVT could be categorized into Llyod’s relaxation method, typically

requiring about 100 alternations between geometry and topology phases. In

contrast, CCST/CCDT method aims at directly minimizing variance of Delaunay

triangle areas, leading the algorithm converges in less than 10 alternations between

geometry and topology phases, thus is much faster than CCVT method. The CCST

algorithm can also be regarded as the generalization of the CCDT method for

planar surfaces to curved surfaces.

There are some tile-based methods proposed in the literature for surface sam-

pling. As discussed in Section 2.1.7, Ostromoukhov [73] proposed a polyomino’s

based tiling method that can be easily extended on the surface of a sphere. Li and



colleagues [57] generalize the concept of Wang tiles to surfaces. Once computed,

the tiling can be used to quickly distribute points evenly over the surface, but

how this method can be used for non-uniform densities was not demonstrated. To

overcome distortion in the tiling, Lloyd’s method is applied to the initial point

distribution made by the tiling.

All the methods discussed in this section are for 3D surfaces which can be

used to sample a sphere.

2.2.2 Sampling on the sphere

Researchers have also proposed many algorithms to directly sample the surface of

a sphere. Rakhmanov and colleagues [80] invesitgated the energy of arrangements

of N points on the surface of the sphere in R3, by interacting through a power

law potential. They proposed an area-regular sphere partitioning scheme for the

purpose of obtaining bounds for the extremal (equillibrium) energy for such points.

They devise a scheme to distribute points over a nearly regular spherical hexagonal

net, which they called the generalized spiral points.

Saff and Kuijlaars [83] studied the fundamental nature of distributing many

points on the sphere. They noticed that the general pattern for optimal configu-

ration of the points on the sphere is the same. For large number of points, they

observed experimentally that on partitioning the sphere into Dirichlet (Voronoi)

cells, all points but exactly 12 of the Voronoi cells for an optimal configuration

are hexagonal. That is, with large enough N , points appear to arrange themselves

according to a hexagonal pattern that is slightly perturbed in order to fit on the



sphere.

Cui and Freeden [19] proposed a concept of generalized discrepancy, which

involves pseudo differential operators to give a criterion of equidistributed point

sets on the sphere. Cui and Freeden extend the famous Koksma-Hlawka inequal-

ity of Numerical Analysis from the unit hypercube to the sphere, and evaluate

the uniformity properties of some deterministic sequences on the sphere. Re-

cently, Choirat and Seri [13] derive the properties of this new class of statistics,

called the generalized discrepancies introduced by Cui and Freeden, for testing

equidistribution on the sphere and to investigate their computational aspects.

Yershova and LaValle [109] studied deterministic sampling method on the

sphere. The authors proposed a general framework for performing deterministic

uniform sampling over spheres and the three- dimension rotation group SO(3).

They developed and implemented a particular sequence which extends the lay-

ered Sukharev grid sequence [93] designed for the unit cube. They tested the

performance of the sequence in PRM-like motion planning algorithms, which

demonstrated that this sequence is a useful alternative to a random sampling. This

is in addition to the advantages that this sequence has over random sampling,

such as deterministic resolution completeness guarantees and the regular lattice

structure. For a complete survey of recent developments in the context of spherical

designs and minimal energy point configurations on sphere, we encourage readers

to see the compilation by Brauchart and Grabner [10].

Another very promising sphere surface sampling was proposed by Gorski and

colleagues [37], called HEALPix. The inherent data structure contains an equal



area quadrangulation of the sphere. It was originally developed to address the

data processing and analysis needs of the present generation of cosmic microwave

background (CMB) experiments. HEALPix with an associated library is used for

large area surveys in the form of discretized spherical maps. HEALPix possesses

the following three essential properties; First, the sphere is hierarchically tessel-

lated into curvilinear quadrilaterals with the lowest resolution partition comprised

of 12 base “pixels”. Resolution of the tessellation increases by division of each

“pixel” into four new ones. Second, areas of all “pixels” at a given resolution are

identical and, Thirdly, all “pixels” are distributed on lines of constant latitude.

This property is essential for all harmonic analysis applications involving spherical

harmonics. But the spherical harmonic pixelization on the sphere presented in

HEALPix is inexact, and do not lead to a sampling theorem on the sphere.

2.2.3 Sampling theorem on the sphere

Sampling theorem on the sphere state that all of the information contained in a

band-limited signal may be represented by a finite set of samples in the spatial

domain. On the sphere, unlike Euclidean space, the number of samples required

in the harmonic and spatial domains differ, with different sampling theorems on

the sphere requiring a different number of samples in the spatial domain.

The fundamental property of any sampling theorem is the number of samples

required to represent a band-limited signal. To represent exactly a signal on the

sphere band-limited at degree L, all sampling theorems on the sphere require

O (L2) samples. There are several sampling theorems proposed on the sphere.



For an equiangular sampling of the sphere, the Driscoll and Healy (DH)

sampling theorem [26] has become the standard. It requires approximately 4L2

samples on the sphere. The complexity of DH sampling theorem and the corre-

sponding algorithms to compute fast spherical harmonic transforms is O (L3). It

also require a precomputation or otherwise restricted use of Wigner recursions.

In Gauss-Legendre sampling theorem, sample positions are given by the roots

of Legendre functions. It requires approximately 2L2 samples on the sphere.

A simple separation of variables gives algorithm with the complexity O (L3).

Similar to DH sampling theorem, Gauss-Legendre sampling theorem also require

a precomputation or otherwise restricted use of Wigner recursions.

McEwen and Wiaux [67] recently developed a sampling theorem and the

correponding fast algorithms by factoring of rotations and then associating the

sphere with the torus through a periodic extension. MW sampling theorem requires

less than half the number of samples of other equiangular sampling theorems

on the sphere and an asymptotically identical, but smaller, number of samples

than the Gauss-Legendre sampling theorem. The complexity of their algorithms

scale as O (L3), however, the continual use of fast Fourier transforms reduces the

constant prefactor associated with the asymptotic scaling considerably, resulting

in algorithms that are fast.

An in-depth study of the above mentioned sampling theorems is out of the

scope of this dissertation. However, we have given brief description in this

subsection for completeness of our survey.



2.2.4 Sphere sampling for illumination integrals

As mentioned earlier, in the evaluation of global illumination integrals hemipsher-

ical and spherical sampling plays a crucial role in deciding the scatter direction

of incoming and/or outgoing rays. Shirley [90] proposed a low distortion map

between disk and square that can be directly used to map samples from a square

domain on to the hemisphere. Arvo [3, 4] proposed a spherical triangle sampling

technique that reduces the noise level in illumination evaluation upto a greater

extent.

Shao and Badler [89] proposed a novel spherical sampling technique based on

the Archimedes’ Theorem. Archimedes’ theorem states that; Globally, the area of

a sphere equals the area of every right circular cylinder circumscribed about the

sphere excluding the bases. Locally, the axial projection of any measurable region

on a sphere on the right circular cylinder circumscribed about the sphere preserves

area. The proposed algorithm based on these axioms is simple and efficient for

generating uniformly distributed samples on the unit sphere. The implementation

is straightforward and may be easily extended to include stratified sampling for

variance reduction.

Dimov and colleagues [24] address the problem for generation of uniformly

distributed random samples over hemisphere and sphere and study the parallel

sampling scheme for hemisphere and sphere. First they apply the symmetry

property for partitioning of hemisphere and sphere. The domain of solid angle

subtended by a hemisphere is divided into a number of equal sub-domains. Each

sub-domain represents solid angle subtended by orthogonal spherical triangle with



fixed vertices and computable parameters. Dimov and colleagues introduce two

new algorithms for sampling of orthogonal spherical triangles. The first sampling

algorithm generates a sample by mapping of the unit square onto orthogonal

spherical triangle. The second algorithm directly compute the unit radius vector

of a sampling point inside to the orthogonal spherical triangle.

Ureña and colleagues [98] proposed an area preserving spherical rectangle

parametrization to reduce variance in scattering computation from planar rect-

angular emitters. Marques and colleagues [65] introduced spherical Fibonacci

lattices to improve QMC sampling in the hemispherical domain. Marques and

colleagues also studied the worst-case error for spherical Fibonacci point sets for

illumination integrals.

2.3 Quality criteria for sample distributions

As discussed before, Fourier analysis has been extensively used to study the

frequency content of the sampling patterns. Fourier spectrum obtained by averag-

ing the periodograms [7] and the corresponding radially averaged spectrum can

be considered as a good measure for quality for uniform sampling patterns. Li

and colleagues [59] introduce adaptive and anisotropic sampling analysis based

on warping and sphere sampling to extend the Fourier spectrum analysis from

uniform to non-uniform sample distributions.

Bowers and colleagues [8] proposed an algorithm for analyzing the spectral

distribution quality of surface samples. In planar sampling, the distribution quality



is typically measured in terms of the radial means and anisotropy of the Fourier

power spectrum [52]. Bowers and colleagues extend these concepts to arbitrary

manifold surfaces by employing spectral mesh basis functions, derived as the

eigenfunctions of the discrete mesh Laplacian operator [56]. These functions

define a Fourier-style basis set that exists on the mesh surface, and hence can

be used to evaluate the power spectrum of samples distributed over the mesh.

Because the spectral mesh basis obeys surface geodesic distance and does not

require any mesh parametrization, it provides a convenient way to study and

compare the quality of different surface sampling algorithms.

Wei and Wang [102] proposed a more robust method for analyzing non-

uniform sample distributions. The key insight of their algorithm is that standard

Fourier analysis, which depends on samples’ spatial locations, can be reformulated

into an equivalent form that depends only on the distribution of their location

differentials. They call this differential domain analysis. The main benefit of this

reformulation is that it bridges the fundamental connection between the samples’

spatial statistics and their spectral properties. In addition, it allows to generalize

their method with different computation kernels and differential measurements.

Using this analysis, they can quantitatively measure the spatial and spectral proper-

ties of various non-uniform sample distributions, including adaptive, anisotropic,

and non- Euclidean domains.

Shirley [91] introduced the notion of discrepancy to the computer graphics

community to compute the quality of sampling patterns. Even though, Fourier

analysis tools can be used to study the behaviour of various uniformly distributed



sampling distributions but this approach only provides a quantitative information

in the form of two-dimensional frequency spectrum. Computation of discrepancy

allows assigning a single quality number, the discrepancy, to the point set. This

allows to order point sets according to their discrepancy and compare which one

is the best.

The quality criteria derived from the discrepancy of sample positions is related

to the Koksma- Hlawka inequality. The Koksma-Hlawka inequality is a tight error

bound on the approximation of an integral by the sample average of integrand

values: ∣∣∣∣∣ 1

N

N∑
j=1

F (xj)−
∫ 1

0

F (x)dx

∣∣∣∣∣ ≤ D(xj)V(F ) . (2.1)

In this inequality D(xj) is the discrepancy of the points 0 ≤ xj ≤ 1 and V(F ) is

the total variation of the function F ,

D(xj) = sup0≤t≤1

{∣∣∣∣ 1

N
χ[0,t](xj) − t

∣∣∣∣} , (2.2)

V(F ) = sup
0=y0<y1<...<yn=1

{
n∑
k=1

|F (yk)− F (yk−1)|

}
, (2.3)

where χ[a,b] is a characteristic function which non-zero only in the range [a, b]

and 1 otherwise. Hickernell [43] gives a detailed overview of this inequality and

mentions that although the Koksma-Hlawka inequality originally derived for a

particular integration domain D, and a particular space of integrands, F , the name

may be applied to similar inequalities that have been derived for other D and F .

In these inequalities the integration error is bounded by a product of two terms,

the discrepancy of the sample points, and the variation of the integrand.



In other words, the Koksma-Hlawka inequality splits the error into the part due

to the quality of the sample points and the part due to the roughness of the integrand.

When F is a reproducing kernel Hilbert space, the Koksma-Hlawka inequality is

straightforward to derive, and there is a simple formula for the discrepancy. This

discrepancy also has several other useful interpretations, including, (i) how the

proportion of sample points in a box deviates from the volume of the box, (ii)

the average-case integration error, and (iii) a goodness-of-fit statistic. Integration

lattices and digital sequences are two popular families of low discrepancy sample

points. These sets typically give better convergence rates for the discrepancy than

a simple random sample. The Koksma-Hlawka inequality plays a key role in the

development of quasi-Monte Carlo methods. It has also influenced the study of

experimental design and led to the creation of uniform designs.

2.4 Discussion

In this chapter, we discussed various sampling methods to generate blue noise

samples. We also studied various sampling methods that can offer good spectral

control. The benefit of having a good spectral control over samples is that we

can design a Fourier profile according to the integrand and can generate samples

with respect to that profile. This can be very beneficial to reduce the integration

error in Monte Carlo integration of the integrand involved. However, there is a

missing connection between the error in Monte Carlo integration and the Fourier

spectrum of sampling patterns.



Recent work has conducted a comprehensive analysis of error in Monte Carlo

integration. In particular, Durand [28] investigated error in integration and relates

error to the spectral properties of the associated sampling patterns. Ramamoor-

thi and colleagues [81] focused specifically on visibility to assess error due to

sampling patterns in soft shadow rendering. Subr and Kautz [92] proposed a

mathematical formulation that relates the variance in Monte Carlo integration

directly to the variance of sampling Fourier coefficients taken over multiple real-

izations. However, this is still not sufficient as the variance of sampling Fourier

coefficients can not be characterized according to the requirements.

In this dissertation, we establish a direct connection between the error in

integration and the power spectrum of a sampling pattern in the spherical domain.

We use the notion of homogeneous sample distributions in the spherical domain,

which has been extensively studied in physics and spatial statistics [40, 20, 21].

Homogeneous samples have same properties over the whole domain. Thanks to

the homogeneous sampling, the error in MC integration can be expressed in the

form of variance only. In Chapter 5, we develop a direct relation between the

variance in MC integration and the power spectra of both the sampling pattern and

the integrand involved in the spherical domain. This work has been successfully

published by Pilleboue, Singh and colleagues [79].





Chapter 3

Mathematical Background

In this chapter, we discuss some basic mathematical tools that we use to lay down

the platform of our work on variance analysis for Monte Carlo integration (Chap-

ter 5). Our mathematical model proposed in Chapter 5 uses the core ideas from

representation theory. Therefore, in this chapter, we introduce the background

on representation theory in a step-by-step manner while providing all prerequi-

sites that are needed to get a grasp on this theory. We keep our discussion to

the point by directly introducing definitions of various entities without going in

depth details. We encourage interested readers to refer to an introductory text by

Herstein [42] and Hoffmann and Kunze [46] to brush up their linear and abstract

algebra, respectively.

We first introduce briefly a light background on vector spaces and group theory

which is essential to understand the representation theory. We later discuss the

results which are used to derive our variance formulation in a compact manner.

Later, we discuss spherical harmonics which has been heavily employed in this



work to understand the frequency content of various sampling patterns on the

sphere and the hemisphere. We assume that the reader is familiar with the ele-

mentary algebra of real and complex numbers and with the basic ideas from set

theory and topology.

3.1 Preliminaries

Before we dig into our mathematical introduction we give some preliminary

definitions and introduce the notion of mapping.

3.1.1 Mapping

Let A and B be sets; a mapping or function f from A to B is a rule that associate

each element in A to a maximum one element in B. That is, a function never has

one element from A associated to more than one element in B. We denote that f

is a mapping from A to B by f : A→ B.

Definition 3.1.1. The mapping f : A → B is one-to-one (written as 1-1) or

injective if each element in A is associated to only one element of B.

Definition 3.1.2. The mapping f : A→ B is many-to-one or onto or surjective

if and only if, for a given element of B there exists an element in A.

Definition 3.1.3. The mapping f : A → B is said to be a bijection or 1-1

correspondence if f is both 1-1 and onto.



Definition 3.1.4. If f : A → B and g : B → C, then the composition (or

[product), denoted by f ◦g, is the mapping f ◦g : A→ C defined by (f ◦g)(a) =

f(g(a)) for every a ∈ A.

In abstract algebra, there exist structure-preserving mappings between alge-

braic strucutures. We describle various algebraic mathematical properties that

holds for all structures like rings, groups, algebras.

Definition 3.1.5. A homomorphism is a structure preserving map between alge-

braic structures.

Homomorphism exists for different structures like rings, groups, algebras.

Later in this chapter, we define homomorphism for structures, like groups and

inner product spaces which is more suited to our context.

Definition 3.1.6. A isomorphism between two algebraic structures is a homo-

morphism whose inverse is also a homomorphism.

An isomorphism thus defines an equivalence between two structures that

enables to perform all operations on the first structure also with the second one,

and then relate the result back to the first.

3.2 Vector Spaces

In this section, we give a brief background on vector space. We start with the

definition of a field;



Definition 3.2.1. A setA, together with some operations on the objects in that set

which behave like ordinary addition, subtraction, multiplication, and division of

numbers in the sense that they obey the rules of elmentary algebra, constitutes a

field.

To give an example, the complex space C is a field.

Definition 3.2.2. A vector space (or linear space) consists of the following:

(a) a field Υ of scalars;

(b) a set V of objects, called vectors;

(c) a rule (or operation), called vector addition, which associates with each pair

of vectors ~v1, ~v2 in V a vector ~v1 + ~v2 in V, called the sum of ~v1 and ~v2, in

such a way that:

(i) addition is commutative, ~v1 + ~v2 = ~v2 + ~v1

(ii) addition is associative, ~v1 + (~v2 + ~v3) = (~v1 + ~v2) + ~v3

(iii) there is a unique vector 0 in V, called the zero vector, such that~v+0 = ~v

for all ~v in V.

(iv) for each vector~v in V there is a unique vector~v in V such that~v+(−~v) =

0;

(d) a rule (or operation), called scalar multiplication, which associates with

each scalar c in Υ and vector ~v in V a vector c~v in V, called the product

of c and ~v, in such a way that:

(i) 1~v = ~v for every ~v in V;



(ii) (c1c2)~v − c1(c2~v);

(iii) c(~v1 + ~v2) = c~v1 + c~v2;

(iv) (c1 + c2)~v = c1~v + c2)~v;

It is important to observe that a vector space is a composite object consisting

of a field, a set of ‘vectors’, and two operations with certain special properties.

Definition 3.2.3. Let V be a vector space over the field Υ. A subspace of V is

a subset W which is itself a vector space over Υ with the opertions of vector

addition and scalar multiplication on V.

Definition 3.2.4. The direct sum V
⊕

W of two linear space V andW consists of

order pairs (~v, ~w) for ~v ∈ V and ~w ∈ W, with addition and scalar multiplication

defined componentwise.

Definition 3.2.5. Let V1 and V2 be vector spaces over the field Υ. A linear trans-

formation from V1 into V2 is a function T from V1 into V2 such that:

T(c~v1 + ~v2) = c(T~v1) + T~v2

for all ~v1 and ~v2 in V and all scalars c in Υ.

Linear Transformations preserves the operations of addition and multiplica-

tions.

Definition 3.2.6. If V is a vector space over the field Υ, a linear transformation

f from V into the scalar field Υ is called a linear functional on V.



If we start from scratch, this means that f is a function from V into Υ such

that:

f(c~v1 + ~v2) = cf(~v1) + f(~v2)

for all vectors ~v1 and ~v2 in V and all scalars c in Υ. The concept of linear func-

tional is important in the study of finite-dimensional spaces because it helps to

organize and clarify the discussion of subspaces linear equations, and coordinates.

Interested readers are encouraged to read more concise text from Hoffmann and

Kunze [46].

Example 3.2.1. Here is an important example of a linear functional. Let n be a

positive integer and Υ a field. IfM is an n×nmatrix with entries in Υ, the trace

(Tr) of M is the scalar:

Tr(M) = M11 +M22 + · · ·+Mnn .

Definition 3.2.7. Let Υ be the field of real numbers or the field of complex num-

bers, and V a vector space over Υ. An inner product on V is a function which

assigns to each ordered pair of vectors ~v1, ~v2 in ~v a scalar 〈~v1, ~v2〉 in Υ in such a

way that for all ~v1, ~v2, ~v3 in ~v and all scalars c:

1. 〈~v1 + ~v2, ~v3〉 = 〈~v1, ~v2〉+ 〈~v2, ~v3〉

2. 〈c~v1, ~v2〉 = c 〈~v1, ~v2〉

3. 〈~v2, ~v1〉 = 〈~v1, ~v2〉, the bar denoting complex conjugation;

4. 〈~v,~v〉 > 0 if ~v 6= 0.

Definition 3.2.8. An inner product space is a real or complex vector space, to-

gether with a specified inner product on that space.



3.2.1 Unitary Operators

In this section, we consider the concept of an isomorphism between two inner

product spaces. If V1 and V2 are vector spaces, an isomorphism of V1 onto V2 is a

one-one linear transformation from V1 onto V2, i.e., a 1-1 correspondence between

the elements of V1 and those of V2, which ‘preserves’ the vector space operations.

Now an inner product space consists of a vector space and a specified inner product

on that space. Thus, when V1 and V2 are inner product spaces, we shall require an

isomorphism from V1 onto V2 not only to presrve the linear operations, but aso to

preserve inner products. An isomorphism of an inner product space onto itself is

called a unitary operator on that space.

Definition 3.2.9. Let V1 and V2 be inner product spaces over the same field,

and let T be a linear transformation from V1 into V2. We say that T preserves

inner products if 〈T~v1, T~v2〉 = 〈~v1, ~v2〉 for all ~v1 and ~v2 in V1. In this case, T is

called the unitary transformation. An isomorphism V1 onto V2 is a vector space

isomorphism T of V1 onto V2 which also preserves inner products.

3.3 Group Theory

We first discuss what a group really composed of and we also see the axioms which

makes a set, a group. Group theory has a vast back ground, and in this section we

focus on only the properties and groups we need to present our background on

representation theory in Section 3.4.



3.3.1 Groups

To understand the notion of Groups, we start with a collection of objects A and

endow this collection with an algebraic structure by assuming that we can combine,

in different ways, these elements to obtain, once more, elements of this set A.

These ways of combining elements of A we call operations on A. Now, we can

try to regulate the nature of A by imposing some constraints or rules on how

these operations behave on A. These rules are usually called the axioms defining

the particular structure on A. Groups are one of the basic axiomatic algebraic

systems that allows us to work with a collection without ending up in a nonsensical

contradiction computing within the framework. That is, Groups are designed

with such axioms that would always be well-behaved and would end up with a

consistent expression. Fields and Rings are also some examples of such basic

axiomatic algebraic systems. In this section, we focus only on Groups.

Definition 3.3.1. A nonempty set H is said to be a group if in H there is defined

an operation ∗ such that:

(a) Closed: h1 , h2 ∈ H implies that h1 ∗ h2 ∈ H . This property is described by

saying that H is closed under ∗.

(b) Associativity: Given h1 , h2 , h3 ∈ H then h1 ∗ (h2 ∗ h3) = (h1 ∗ h2) ∗ h3.

That is, associative law holds in H .

(c) There exists a special element e ∈ H such that h ∗ e = e ∗ h = h for all

h ∈ H .



(d) For every h1 ∈ H there exists an element h2 ∈ H such that h1 ∗ h2 =

h2 ∗ h1 = e. We write this element h2 as h−1
1 and call it the inverse of h1 in

H .

These are the four defining postulates of a group which are called group

axioms.

Definition 3.3.2. A group H is said to be a finite group if it has a finite number

of elements. The number of elements inH is called the order ofH and is denoted

by |H |.

Definition 3.3.3. A group H is said to be abelian if h1 ∗ h2 = h2 ∗ h1 for all

h1 , h2 ∈ H .

Definition 3.3.4. A relation≡ on a setA is called an equivalence relation if, for

all a1, a2, a3 ∈ A, it satisfies:

(a) a1 ≡ a1 (reflexivity)

(b) a1 ≡ a2 implies that a2 ≡ a1 (symmetry)

(c) a1 ≡ a2, a2 ≡ a3 implies that a1 ≡ a3 (transitivity).

Remark Of course, equality =, is an equivalence relation, so the general notion

of equivalence relation is a generalization of that of equality. In a sense, an

equvivalence relation measures equality with regard to some attribute.

Definition 3.3.5. If ≡ is an equivalence relation on set A, then [a], the class of

a, is defined by [a] = {b ∈ A | b ≡ a}.



Definition 3.3.6. Let H,H ′ be two groups; then the mapping ϕ : H → H
′ is a

homomorphism if ϕ(h1 ∗ h2) = ϕ(h1) ∗ ϕ(h2) for all h1 , h2 ∈ H .

Definition 3.3.7. The homomorphismϕ : H → H
′ is called monomorphism ifϕ

is 1-1. A monomorphism that is onto is called an isomorphism. An isomorphism

from H to H itself is called an automorphism.

Definition 3.3.8. If V is a vector space over the field Υ, the general linear group

of V, written GL(V ) is the group of all automorphisms of V, i.e. the set of all

bijective linear transformations V → V, together with functional composition as

group operation.

3.3.2 Lie Groups

Groups provide the modern language to characterize symmetries: the invariance

of a system under reversible changes. For example, permutations preserve the

number and labels of elements while they allow to describe all different orderings

and how to transition between them. Lie groups, which have the additional

structure of a smooth manifold, enable to describe continuous symmetries, where

the group elements are indexed using a continuous variable. A Lie group is a

group with a smooth structure provided by an underlying manifold.

Definition 3.3.9. A Lie group G is a manifold that has a group structure so that

multiplication and inverse operations in the group structure are smooth as an

operation on a manifold.



Lie groups form a very nice class of topological groups, and the compact Lie

groups have a particularly well-developed theory. Basic examples of compact Lie

groups—that we study in our work—are:

1. circle group T and the torus groups T n,

2. the special orthogonal group SO(n)

Definition 3.3.10. The circle group, denoted by T , is the multiplicative group

of all complex numbers with absolute value 1, i.e., the unit circle in the complex

plane.

Definition 3.3.11. The torus group, denoted by T n is an n-dimensional torus or

an n-dimensional compact manifold.

Example 3.3.1. The 1-torus is just the circle: T 1 = S1.

Definition 3.3.12. The orthogonal group of dimensionn, is the group of distance-

preserving transformations of a Euclidean space of dimension n that preserve a

fixed point, where the group operation is given by composing transformations.

Equivalently, it is a group of n× n orthogonal matrices.

Definition 3.3.13. The special orthogonal group SO(n) is an important sub-

group of the orthogonal group with all orthogonal matrices having determinant

equal to 1 or -1. The SO(n) is also called a rotation group and has been studied

extensively in lower dimensions as SO(2) and SO(3) in two and three dimen-

sions.



3.4 Representation Theory

Group theory has been factored into two parts; First, there is the study of the

structure of abstract groups. Second, is the companion question: given a groupH ,

how can we describe all the ways in which H may be embedded in (or mapped

to) a linear group GL(V). This is the subject matter of representation theory. In

this section, we briefly review some aspects of the Representation theory.

In this work, we use the representaion theory language to express the changes

in the Fourier coefficients of a signal when it is transformed by the elements of a

group (e.g., rotation). We review some basic concepts from this theory, before

deriving the lemmas that lead to a closed-form expression that we would use to

derive the variance expression for Monte Carlo integration in Chapter 5.

Definition 3.4.1. Given a complex inner-product space (V, 〈·, ·〉) and compact

group H , we say that the map ρ : H → U(V ) (with U(V ) the group of unitary

transformations on V ) is a representation if:

ρ(h0 · h) = ρ(h0) ◦ ρ(h), ∀h0, h ∈ H. (3.1)

Notation Given a representation ρ : H → U(V ), h ∈ H , and v ∈ V , we will

write:

h(v) ≡ ρ(h)(v). (3.2)

Definition 3.4.2. Given a representation ρ : H → U(V ) and a subspace W ⊂

V , we say that W is a sub-representation if h(w) ∈ W for all w ∈ W and all

h ∈ H .



Definition 3.4.3. Given a representation ρ : H → U(V ) we say that V is an

irreducible representation if the only sub-representations are the trivial ones,

W = {0} and W = V .

Lemma 1 (Schur’s Lemma). If V and W are irreducible representations of H

and ρ : V → W is a H -module homomorphism, then

1. Either ρ is an isomorphism, or ρ = 0.

2. If V = W , then ρ = λ · I for some λ ∈ C, where I is the identity.

Now, we give the closed-form expressions for the average:

Proposition 2. Given an irreducible representation ρ : h → U(V ), for any

x, y, v, w ∈ V , we have:∫
H

〈x, h(y)〉 〈v, h(w)〉 dh =
µ(H )

dim(V )
〈x, v〉 〈y, w〉 . (3.3)

where 〈 , 〉 represents an inner product operator.

Proof Fixing y, w ∈ V , let By,w : V × V → C be the map:

By,w(x, v) =

∫
h∈H
〈x, h(y)〉 〈v, h(w)〉 dh. (3.4)

It is not hard to show that this map is linear in the first argument, conjugate-

linear in the second, and H -equivariant. (That is, for any h0 ∈ H we have

Bv,w (h0(x), h0(y)) = Bv,w(x, y)). Thus, by Schur’s Lemma [88, 33], By,w is a

scalar multiple of the inner-product on V :

By,w(x, v) = λy,w 〈x, v〉 . (3.5)



Noting that this satisfies By,w(x, v) = Bx,v(y, w), it follows that:

By,w(x, v) = λ 〈x, y〉 〈v, w〉 , (3.6)

for some constantλ ∈ C that is independent of v andw. Finally, letting {v1, . . . , vn}

be an orthonormal basis for V , we can express the integral of the square norm of

the trace of ρ(h) as:∫
H

‖Tr (ρ(h))‖2 dh =

∫
H

∥∥∥∥∥
n∑
i=1

〈h(vi), vi〉

∥∥∥∥∥
2

dh

=
n∑

i,j=1

Bvj ,vi(vj, vi)

= dim(V ) · λ.

Since the trace is the character of the representation, it follows by the orthogonality

of characters [88, 33] that
∫
H
‖Tr (ρ(h))‖2 dh = µ(H ), which gives:

λ =
µ(H )

dim(V )
. (3.7)

Thus, we get:∫
H

〈x, h(y)〉 〈v, h(w)〉 dh =
µ(H )

dim(V )
〈x, v〉 〈y, w〉 . (3.8)

�

Proposition 3. Leveraging Schur’s Lemma in a similar manner, it follows that if

ρ1 : h → U(V1) and ρ2 : h → U(V2) are two irreducible representations that

are not isomoprhic, then for any v1, w1 ∈ V1 and v2, w2 ∈ V2:∫
H

〈v1, h(w1)〉 〈v2, h(w2)〉 dh = 0. (3.9)

We use Propositions 2 and 3 in Chapter 5 to derive the variance closed-form

expression in the spherical domain.
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Figure 3.1: Spherical harmonics basis functions (real part).

3.5 Spherical Harmonics

On the sphere, the most commonly used tool for spectral analysis is the spherical

harmonics (SH) [38, 104], which is the Fourier analog on the sphere, and is given

by:

Y m
l (θ, φ) :=

√
(2− δ0m)

(2l + 1)

µ(S2)

(l −m)!

(l +m)!
Pm
l (cos θ) exp(imφ) . (3.10)

Here, δij is the Kronecker delta function, µ(S2) = 4π, is the Lebesgue measure

of a unit sphere, Y m
l (θ, φ) is the spherical harmonic basis function of degree

l and order m and Pm
l (x) denotes the asssociated Legendre Polynomials, for

x ∈ [−1, 1]. SH (Y m
l ) are orthonormal basis functions, such that, any integrable

function G on S2 can be decomposed into SH components. as:

G(x) =
∞∑
l=0

l∑
m=−l

SG(l,m)Y m
l (x) , (3.11)

where SG(l,m) are the (complex) spectral coefficients of G(x). It can be easily

shown that: ∫
S2
||G(x)||2dω =

∞∑
l=0

l∑
m=−l

||SG(l,m)||2 . (3.12)



which is the Parseval’s theorem on the sphere. Analogously, the inner product

between any two arbitrary functions, G(x) and F (x) defined over a unit sphere,

is related to their corresponding spectral coefficients by:∫
S2

G(x) F(x) dx =
∞∑
l=0

l∑
m=−l

SG(l,m) · SF (l,m) , (3.13)

where SG(l,m) = 〈G, Y m
l 〉 is the (l,m)-th spherical harmonic coefficients of

G(x). The angular mean power spectrum at a frequency band l is defined as the

average energy distributed over different m for a given l, as follows:

P̆G(l) :=
1

2l + 1

l∑
m=−l

‖SG(l,m)‖2 . (3.14)

The mean angular power spectrum P̆G(l) is invariant under a rotation of the

coordinate system ([48, 64]), as they contain a sum over all orders m. A spherical

harmonic power spectrum can be defined with or without the averaging factor. In

our formulation, we prefer to work with the average power per degree, or power

spectral density, P̆G(l), as this ensures that the spectral coefficients of a spherical

Dirac delta function are constant and independent of degree l ([45]).

3.6 Hemispherical analysis using SH

In the hemispherical domain, we can apply the mathematical procedure developed

on the sphere, using spherical harmonics. This is possible due to the fact that the

sphere is a Riemannian double-cover of projective 2-space and all local geometric

calculations in the spherical domain are applicable on hemispherical functions if



we associate the hemisphere to the projective 2-space. Here we use the fact that,

any function on projective 2-space can be extended to an even function on the

sphere.

Projective 2-space (P2) is defined to be the set of points on the sphere, modded

out by the relation that for all x ∈ P2, x and −x belongs to the same equivalence

class. Then given a function on the projective 2-space, G ∈ L2(P2) , it can be

turned into a function on the sphere by setting the value at the points x and −x

to be the value of G on the equivalence class {x,−x}. In particular, this means

that the space of functions on projective 2-space is the same as the space of even

functions on the sphere. Thus, rotation can be defined on L2(P2) by treating the

function as an even function on the sphere, rotating the even function (which

remains even after rotation) and then considering the corresponding function on

projective 2-space. In that case, all the results derived in the spherical domain

follow, including the homogeneous property. The space of even functions on the

sphere is precisely the space of functions spanned by spherical harmonic basis

functions of even degree, Y l
m with l even. The only assumption here is that we

restrict our analysis to functions on the hemisphere with G(x) = G(−x) for all

points on the equator.





Chapter 4

Spectral Analysis of Sampling Patterns

Computer Graphics, with pixels being spatially discrete, inherently deals with

sampling. Monte Carlo integration schemes are normally employed to evaluate

the color of each pixel. The error in Monte Carlo integration is directly associated

to the sampling patterns used to sample the integrand involved. In image synthesis,

regular sampling patterns can cause structural artifacts, whereas, purely random

samples can produce very high noisy appearance in the images. An illustration

is shown in Fig. 4.1 for euclidean-space samplers. In Fig. 4.1, we render a sim-

ple function: sin(x2 + y2), which is also termed as the zone-plate. Reference

image (Fig. 4.1(a)) is computed using nine samples per pixel followed by recon-

struction filtering by Mitchell-Netravalli filter [70]. For Fig. 4.1(b) and 4.1(c) we

use one sample per pixel with box filtering. Regular sampling (Fig. 4.1(b)) shows

number of structural artifacts, whereas jittered sampling (Fig. 4.1(c)) turns these

artifacts into noise. This can be explained from the power spectra of regular and

jittered sampling.



(a) Reference image (b) Regular (c) Jittered

Figure 4.1: Zone plate test to show the aliasing (structural-artifacts) due to the
Fourier peaks in the regular sampling patterns (b), which turns into noise on
simple jittering (c)

The power spectrum of regular sampling pattern contains high energy peaks

(Fig. 4.2(b)), whereas in case of jittered sampling pattern the power spectrum

(Fig. 4.2(a)) has no visible high energy peaks. This implies that sampling power

spectra with high energy Fourier peaks can cause structural aliasing. This ob-

servation emphasizes a careful study of the spectral characteristics of various

sampling patterns. Various tools have been designed to understand the inherent

properties of different sampling patterns. For example, statistics such as Ripley’s

K and L statistics [82] are commonly used to model point distributions, while tools

such as the variogram and autocorrelation are used for assessing distributions.

In computer graphics, methods such as frequency domain analysis [25, 16, 69]

are extensively used to better understand the characteristics of various sampling

patterns.

In this chapter, we first look (Section 4.1) at how spectral (frequency) analysis

is performed in the Euclidean domain. Later, we perform similar analysis in the

spherical domain (Section 4.2) using spherical harmonics. There exist another
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Figure 4.2: Illustration of jittered (a) and regular (c) sampling patterns with their
corresponding power spectra in (b) and (d), respectively. The high energy peaks
of regular sampling patterns are surrounded by circular (orange) rings in (d) for
illustration purposes. In a similar manner, the DC peak in (b) is surrounded by a
circular (orange) ring.



tool developed by Wei and colleagues [102] that can be used to perform analysis of

sampling patterns in the differential domain. The advantage of differential domain

analysis over frequency analysis, is that, the differential domain analysis can be

performed for uniform and adaptive sampling methods in both the Euclidean as

well as non-euclidean domains. However, as we focus only on uniform (non-

adaptive) sampling patterns in the Euclidean and spherical domains, we restrict

ourselves to the Fourier and spherical harmonics tools, respectively, to analyze

the characteristics of various sampling patterns.

Based on our spectral analysis of sampling patterns over the sphere and the

hemisphere, we introduce the notion of homogeneous sample distributions in

spherical domain. We show that over multiple realizations (point sets) of a sam-

pling pattern, any non-homogeneous sampling pattern can be made homogeneous

by performing uniform and random rotations on each of its realization. We also

show that by performing uniform and random rotations on a point set, the energy

in each frequency band, l, of an angular power spectrum, gets equally distributed

over each of its components. Consequently, the structural artifacts turns into

structural noise (Fig. 4.13). A theoretical justification of this operation is given

in Section 3.4 using representation theory.

4.1 Spectral Analysis in Euclidean domain

Fourier tools are extensively used to study the frequency content of sampling

patterns in the Euclidean domain. To perform frequency analysis of samples, we



first compute the Fourier transform of a sampling pattern S. Then we compute

a 2D power spectrum of S which represents the amplitude squared values of

the Fourier transform coeffiicients of a sampling distribution, normalized by the

number of samplesN . An example is shown in Fig. 4.3. In mathematical notation,

power spectrum can be written as:

|| 1
N

N−1∑
i=0

FS(δ(x− xi))||2 , (4.1)

where, FS denotes the Fourier transform on S.

Sample generation In the Euclidean domain, we generate samples on a square

domain [0, 1]× [0, 1] to study their spectral characteristics. Here, we study only

four state-of-the-art sampling patterns namely: White noise, jittered, Poisson Disk

(or dart throwing) and regular. White noise is generated using a purely random

generators. The resulting distribution can have many voids and clusters. Jittered

samples are generated by first subdividing the domain into strata, followed by

generating one sample in each of the stratum. Poisson Disk sampling is generated

by following the dart throwing algorithm. The resulting distribution can be seen as

close to blue noise distribution. And finally, regular sampling can be obtained by

simply placing samples at regular intervals along the axes of the square domain.

Wrapped vs unwrapped distances While generating sampling patterns with

the underlying characteristics, it is quintessential to make sure that the characteris-

tics of the sampling pattern are also obeyed across the boundaries. For example, to

generate Poisson Disk samples a minimum distance criteria is enforced between
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Figure 4.3: Illustration of Top row: non-Toroidal (unwrapped) vs Bottom Row:
Toroidal (wrapped) Poisson Disk samples with corresponding power spectra and
the zoom-in of the low frequency region around the DC peak of the respective
power spectra.

each pair of neighboring samples. However, if this minimum distance criteria is

not respected across the boundaries of the domain, the corresponding sampling

power spectrum can get some harmful high energy peaks in the low frequency

region around the DC peak. We can easily get rid of these high energy peaks by

making sure that the Poisson disk samples obey the minimum distance criteria

across the boundaries by using wrapped around distances. In literature, these

samples corresponds to the toroidal domain (T 2) sampling patterns.

As illustrated in Fig. 4.3, if we do not enforce minimum distance criteria while

generating Poisson disk distribution, we obtain Poisson Disk distribution with



samples near the boundaries of the domain. As shown in Fig. 4.3(a), if we look

with an hawk-eye, there are samples close to the left and right borders of the

domain. These samples appear to be far off from each other, as they are on the

opposite sides of the domain. However, if we fold this square sampling domain to

make a torus shaped surface, we observe that these border samples are too close

to each other and therefore, does not obey the minimium distance criteria any

more. Similar observation can be made for Top and Bottom borders as well as

the samples at the four corners of this square domain. The downside of having

samples too close to the boundaries on the opposite sides is that, if we try to use

this sample set as a tile and start tiling a plane with these tiles, the samples at the

boundaries of two tiles would be too too close to each other and the Poisson Disk

property of minimum distance between the samples would not be valid anymore.

As a result, not all the samples we get on a tiling plane using these tiles, would be

respecting the minimum distance criteria.

To overcome this issue, samples are generated with a wrapped around distance,

i.e. in the toroidal domain. The idea is to make sure that samples at the boundaries

of the domain are placed such that the minimum distance criteria is also preserved

across the boundaries of the domain. As shown in Fig. 4.3(c), by placing samples

in T 2, samples on the Right border are far from the boundary with respect to the

samples at the exact opposite Left border of the domain. Similarly, samples at the

four corners are placed such that no sample in a corner has an overlapping sample

in its assigned radius across the corners (boundaries).

The result of placing samples in the toroidal and non-toroidal domains are



(a) Multiple realizations (b) Multiple Power spectra

Figure 4.4: Illustration of multiple realizations of Poisson Disk samples (a) with
corresponding Fourier power spectra with respect to each realization.

clearly visible in the Fourier domain. As we can see in Fig. 4.3(b) and 4.3(d), the

effects of placing samples in a non-toroidal manner shows up in the power spectrum

as a set of large magnitude peaks ( Fig. 4.3(b)) visible in the low frequency zone

(black region around the DC peak) as a horizontal line. To see the DC peak,

zoom-in towards the center of the square power spectra images (only possible

on the electronic version). However, when the samples are placed in the toroidal

manner, we see no such peaks in the low frequency region of the Fourier spectra

(Fig. 4.3(d)) of the corresponding sampling pattern. For illustration purposes, we

show 1024 Poisson Disk samples in Fig. 4.3(a) and 4.3(b) but the corresponding

power spectrum is generated using 4096 samples in both Fig. 4.3(b) and 4.3(d).

Mean Power Spectrum The power spectra shown in Fig. 4.3(b) and 4.3(d)

appears pretty noisy. To obtain a neat power spectrum of a sampling pattern we



generate multiple sample sets (realizations), followed by taking average of the

amplitude squared values of the Fourier transform of each realization, as shown

in Fig. 4.4. In Fig. 4.5, we show square power spectrum of various sampling

patterns with the corresponding heatmap to emphasize values in each of the low-,

mid- and high-frequency regions. The zero frequency is the DC peak which is

located at the center (of the image) of all the power spectra. The power spectrum

of the Poisson Disk sampling pattern (Fig. 4.5(h)) appears to have zero value

around the DC peak in the low frequency region. However, the corresponding

heatmap of Poisson Disk (shown in blue, Fig. 4.5(i)) reveals that the power value

is not zero or tending towards zero value, near the DC peak in the low frequency

region. Consequently, we can observe a non-zero values with almost same power

over the whole low frequency region around the DC peak. For jittered sampling

the low frequency region around the DC peak appears to be zero for frequencies

(ω → 0) going to zero (Fig. 4.5(f)). For regular sampling patterns, we see a set of

high energy peaks in the power spectrum. The peaks are not visible on a printed

paper however, a zoom-in look (electronic version) would show the peaks.

We have already illustrated (Fig. 4.1) the effects of these high energy peaks in

the regular sampling pattern power spectrum which appears as artifacts where we

render a zone plate function: sin(x2 + y2). Since the jittered sampler power spec-

trum distributes the Fourier energy of samples all over the spectrum, the resulting

rendered image using jittered samples shows noise, which is less objectionable to

human eye.
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Figure 4.5: Illustration of sampling patterns in the Left column, with their cor-
responding power spectra in the Center column. In the Right column we show
a heatmap of each power spectrum to emphasize their characteristics in the low
frequency region around the DC peak, surrounded by a circle (orange) in (b), (e)
and (h), located at the center of the power spectra images, in the Center and Right
columns ). Each peak in the regular pattern power spectrum (k) is also surrounded
by circles (in orange) for illustration purposes.
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Figure 4.6: Illustration of the radial mean power spectra of whitenoise (b) and
jittered sampling (d) from the corresponding power spectra in (a) and (c), respec-
tively. Radial mean power is computed by averaging the power spectra values
along the circular rings, in blue, for a given frequency ρ.

Radial Mean Power Spectrum We can also study the characteristics of a sam-

pling pattern from its radial mean of the square power spectrum. To compute the

radial mean of the powe spectrum, we first consider the DC peak as the center of

the circle with radius ρ frequency, such that all coefficients surrounding the DC

peak at frequency ρ are averaged to compute the radial mean at frequency ρ.

Intuitively, the procedure can be understood as taking average of all the Fourier

coefficients that are at a same distance from the DC peak on the square power



spectrum. An illustration is shown in Fig. 4.6. For whitenoise, as the square power

spectrum is flat, the energy is spread all over the frequencies. Consequently, the

corresponding radial mean of the White noise is also flat (Fig. 4.6(b)). For jittered

sampling, we observe a region with power values close to zero near DC peak (at

the center of the image) and as we go towards mid- to high-frequencies the power

values increases (Fig. 4.6(d)). After a characteristic frequency, the radial mean

spectrum of a jittered sampling pattern appears to be flat, like whitenoise.

4.1.1 Low Discrepancy Samplers

We also study the frequency content of some of the Quasi-Monte Carlo based

sampling patterns for which discrepancy parameter is used as the quality criteria

(please refer to Section 2.3 for more details). The idea behind low discrepancy

samplers is to generate samples such that the proportion of points in the sequence

falling into an arbitrary set B is close to the measure of B. That is, each sample

shall have approximately the same sub-area assigned to it in the sampling domain

D. Even though, this condition do impose uniformity, it cannot avoid regular

structures in the sampling pattern. As a result a lot of high frequency peaks can

be seen in the corresponding sampling power specrtra. To better understand this

behaviour, we study some well known low discrepancy samplers, namely: Halton,

Hammerslay and Fibonacci lattice point sets.

In Fig. 4.7, we show the Halton, Hammerslay and Fibonacci lattice point

sets. In Halton’s point set, worm-like structures are very visible although, no

regular structure seems to be present. As a result, the corresponding Fourier power
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Figure 4.7: Illustration of sampling patterns in the Left column, with their cor-
responding power spectra in the Center column. In the Right column we show
a heatmap of each power spectrum to emphasize their characteristics in the low
frequency region around the DC peak which is located at the center of the power
spectra images, in the Center and Right columns ).



(a) Halton (b) Hammerslay (c) Fibonacci lattice

Figure 4.8: Illustration of the effects of high energy Fourier peaks in rendering a
simple zone plate function.

spectrum energy of Halton point set is more spread out. However, some noisy

regions are captured by the heatmap (Fig. 4.7(c)) of the Halton power spectrum. In

case of Hammerslay (Fig. 4.7(d)), the spatial distribution of the point set is looking

uniform. However, there are some unavoidable close points in the distribution.

The overall structure when analyzed with Fourier spectrum has shown a number

of high energy Fourier peaks, making an interesting pattern (Fig. 4.7(e,f)). We

also study the Fibonacci lattice point set (Fig. 4.7(g)), which seems very similar

to the rotated version of a regular sampling pattern. The corresponding power

spectrum has a sea of high energy peaks (Fig. 4.7(h,i)).

The effects of these high energy peaks is shown in Fig. 4.8 where we render a

zone plate function: sin(x2 + y2). Fibonacci lattice Fig. 4.8(c) shows structural

artifacts, with less noise. These structural artifacts can be explained from its

sampling power spectrum Fig. 4.7(h) which is full of peaks, whereas less noise

in Fig. 4.8(c) is due to the regular structure of Fibonacci lattice point set. Halton

appears more noisy and shows less artifacts Fig. 4.8(a) than Hammerslay and



Fibonacci lattice. This is because the power spectrum of Halton sequence dis-

tributes most of its Fourier energy all over the frequencies. The reference zone

plate function is shown in Fig. 4.1(a). A detailed analysis of various samplers

in the Euclidean space is performed by Pilleboue [78] in his thesis work. In this

dissertation, we keep our focus in the (hemi-)spherical domain.

4.2 Spectral Analysis in Spherical domain

In the spherical domain, we perform a similar frequency analysis of different

sampling patterns using spherical harmonics [38]. We follow our discussion

from Section 3.5, where we introduce spherical harmonics. As we have shown

in Fig. 3.1, the frequencies in spherical harmonic basis functions (Y l
m) are dis-

tributed in an angular manner, with |m| ≤ l ,∀ l ∈ Z ∪ 0. Therefore, it is not

possible to directly generate a square power spectrum similar to the euclidean case.

However, for illustration purposes, later in this section, we show a square-shaped

angular power spectra of some of the sampling patterns. To generate the square-

shaped angular power spectra, we first compute the ||SG(l,m)||2 values for a

given range of l with |m| ≤ l, where SG(l,m) is the (l,m)-th spherical harmonic

coefficient of a function G(x). This results in an angular power spectrum as shown

in Fig. 4.9, with the DC peak (l = 0,m = 0) at the center of the image, frequecy

bands l increases down the vertical axis and the corresponding m components are

spreading along the horizontal axis.

We then generate the square-shaped angular power spectrum (Fig. 4.9(b))



s

?

l

-
m−m�

(a) (b)

Figure 4.9: Illustration of angular power spectrum of a white noise distribution
in (a) with the same power spectrum shown in a square-shape (b).

by repetitively using the angular power spectrum (Fig. 4.9(a)) in the missing

quadrants. Note that, this square-shaped angular power spectrum is generated

just for illustration purposes. The corresponding mean angular power spectrum

can be obtained by simply averaging the ||SG(l,m)||2 values for all m in a given

frequency band l, as follows:

P̆G(l) :=
1

2l + 1

l∑
m=−l

‖SG(l,m)‖2 . (4.2)

The resulting P̆G(l) is called the mean angular power spectrum which can be

considered equivalent to the radial power spectrum we studied in the Euclidean

case (Section 4.1).



4.2.1 Deterministic sampling on the sphere

All the sampling patterns we are studying on the sphere or hemisphere, in this

dissertation, are computed directly on the sphere. No warping or mapping of any

kind is used to compute these samples on the sphere. We give more details on the

implementation of our spherical samplers in Chapter 7. To generate regular and

jittered sampling patterns on the sphere we use the Healpix data structure [37]. To

analyze a QMC (deterministic) sampler on the sphere and hemisphere, we choose

(hemi-)spherical Fibonacci lattice point sets which has been recently introduced

to the computer graphics community by Marques and colleagues [65]. This is the

first QMC sampler that can be directly generated on the sphere or hemisphere.

As shown in Fig. 4.10, both Healpix regular and spherical Fibonacci sample

distributions look very similar on the sphere. Therefore, we compared the spectral

properties of spherical Fibonacci point sets with the Healpix regular point sets.

Their mean angular power spectrum is showing a zero-value low -frequency region

followed by high energy peaks. The corresponding square-shaped angular power

spectrum is shown in Fig. 4.11(a,b,c) for Healpix regular, and in Fig. 4.12(a,b,c)

for spherical fibonacci lattice point sets with their respective heatmap to visualize

the high energy region.

Random rotations We perform a simple test on both Healpix regular and spher-

ical Fibonacci lattice point sets. We perform uniform and random rotation on

each of the point sets and average the respective (square-shaped) angular power

spectrum over multiple rotations. We observed that with increase in the number



(a) Healpix Regular (b) spherical Fibonacci lattice

Figure 4.10: Illustration of healpix regular (a) and spherical Fibonacci lattice (b)
point sets with respective mean angular power spectra.

of rotations, the high energy peaks in both the Healpix regular and spherical Fi-

bonacci lattice, are getting distributed over the frequency band l. Each frequency

band l of the spherical harmonics has 2l + 1 rotational components, which are

indexed with m. Therefore, in each frequency band l, the energy gets distributed

over all (2l + 1) rotational components. Consequently, the corresponding power

of all the (2l + 1) components in a frequency band l, becomes equal.

We experimentally observe this behaviour in Fig. 4.11 and 4.12 for Healpix

regular and spherical Fibonacci lattice respectively. We perform a number of

rotations of a point set and average it over all the rotations. The effects are

shown in the square-shaped angular power spectra, over multiple rotations. The

corresponding heatmaps shows that with the increase in the number of rotations,

the high Energy peaks in the angular power spectrum starts getting uniformly

distributed over different m, for a given l. However, the mean angular power

spectrum do not change. Note that, the energy within the frequency band l

remains the same, it only gets equally distributed within the (2l + 1) components
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Figure 4.11: Illustration of square-shaped angular power spectrum of Healpix
regular (left) with heatmaps of power (center) and square-root of power values
(right).
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Figure 4.12: Illustration of square-shaped angular power spectrum of spherical
Fibonacci (left) with heatmaps of power (center) and square-root of power values
(right).



corresponding to that l.

To illustrate this effect on a real scene, we use a simple lighting setup, as

shown in Fig. 4.13, where we compute direct lighting scene by first (Fig. 4.13(b))

using same regular hemispherical sampling pattern for secondary rays all over the

scene. The resultant image is full of structural artifacts due to high correlation

between different pixels. A simple perturbation of samples at each hitpoint, of

these regular hemispherical patterns turns these artifacts into noise (Fig. 4.13(c)).

In Chapter 5, we introduce a theoretical framework that exploits the conse-

quences of uniformly and randomly rotating the samples, for the Monte Carlo

integration of spherical functions. We use the representation theory to formulate

this operation of random rotation as a SO(3) group operator (more details are

given in Section 3.4).

4.2.2 Non-deterministic sampling on the sphere

We study four different irregular samplers on the sphere namely: white noise,

jittered, Poisson Disk and CCVT [6]. All samplers are generated directly on the

sphere with no warping at all. The implementation details of these samplers is

given in Chapter 7. All the mean angular power spectra are plotted along Power

vs. ω, where ω = α
√
N . Here, N is the number of samples and α is used to

quantify the range of energy-free frequency with respect to the mean frequency.

In Fig. 4.14, we show the mean angular power spectrum of these sampling

patterns on the sphere. The corresponding sample distributions are shown as insets.

As we can see, the sampling patterns behaves similar to the Euclidean domain.



(a) Reference Image

(b) No Rotation

(c) With Rotations

Figure 4.13: Ilustratin direct lighting evaluation with (b) or without (c) random
perturbation of secondary rays. Image courtesy: Dr. Jean-Claude Iehl.



The computation of spherical harmonics is very time consuming. Therefore, we

generate the radial angular power spectrum of spherical samples upto a restricted

frequency. However, for hemispherical samples, in the next section, we are able to

go to a reasonably high frequencies to compute the corresponding radial angular

power spectrum. Note that, since the spherical domain is closed, it is naturally

“toroidal” in nature.

4.3 Spectral Analysis in Hemispherical domain

To perform spectral analysis of hemispherical sampling patterns, we again used

spherical harmonics. However, spherical harmonics cannot be directly employed

on a hemispherical domain. This is because the spherical harmonics are no longer

orthogonal on the hemisphere. Since the hemispherical domain is not closed, if

we perform spectral analysis of hemispherical sampling patterns using spherical

harmonics, we obtain a set of high energy peaks within the low frequency region.

This is illustrated in Fig. 4.15 for white noise, jittered and hemispherical Fibonacci

lattice point sets with the corresponding spatial distributions shown as an inset.

We compute their square-shaped and mean angular power spectra using spherical

harmonics. The high energy peaks can be seen in the low-frequency region near

the l = 0 frequency.

The best way to compute spectral content of hemispherical sampling patterns

using spherical harmonics is by first mapping the hemispherical samples to a

projective 2-space such that the sampling pattern acts as an even function on
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(a) Whitenoise (b) Jittered

Figure 4.14: Comparison of the mean angular power spectra of various state of
the art sampling patterns in the spherical (left) and hemispherical (right) domain.
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Figure 4.15: Illustration of the high energy peaks in the low frequency region
of square-shaped and radial angular power spectra of whitenoise, jittered and
hemispherical fibonacci lattice point sets, respectively.



the sphere, more details are given in Section 3.6. This allows computation of

angular power spectra of various hemspherical samplers directly using spherical

harmonics.

Hemispherical sample generation We generate white noise and Fibonacci

lattice points directly on the hemisphere whereas for jittered samples, we first

generate jittered sampling pattern on a unit sphere and then consider only the

upper hemisphere of that unit sphere. A similar procedure is also adopted for

CCVT, Healpix regular and Poisson Disk sampling patterns. All hemispherical

samplers are shown as insets in Fig. 4.14, with their corresponding mean angular

power spectra.

Random rotations We perform a similar operation of uniform and random

rotations on the hemispherical sampling patterns. To illustrate the effects of

random rotation on the characteristic spectral properties of a sampling pattern,

we use hemispherical Fibonacci lattice point set. As shown in Fig. 4.16, we

observe a very similar behaviour as in the spherical domain (Fig. 4.12), on the

hemisphere. Hemispherical Fibonacci point sets have a number of high energy

peak in the spectrum. However, just after one rotation, the energy peaks within

different (2l + 1) rotational components of a frequency band l starts distributing

their energy among all (2l + 1) components of l. After a number of rotations, all

the (2l + 1) components appears to have equal energy in a given frequency band

l.
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Figure 4.16: Illustration of square-shaped angular power spectrum of hemispher-
ical Fibonacci (left) with heatmaps of power (center) and square-root of power
values (right).



4.4 Homogeneous sampling patterns

In both, the spherical and hemispherical domains, we observed that after perform-

ing a finite number of rotations, the spectral power of the spherical harmonic

coefficients gets distributed within the (2l + 1) components of a frequency band

l. In global illumination evaluation, Cranley-Patterson [17] rotation is used to

add perturbations by simply adding a random shift vector to each point modulo 1,

over the Euclidean domain, which converts structural artifacts into noise. We in-

stead, perform direct rotation of hemispherical samples on the (hemi-)sphere. The

operation of rotation results in, what we call, homogeneous sample distributions.

First, we define the idea of homogeneous sample distributions in a general

setting. A homogeneous sample distribution has statistical properties invariant to

translation over the domain D. The notion of homogeneous distribution of points

is commonly used in physics [40] for compound gases. In the computer graphics

community, this notion is similar to the “widesense stationary process” described

by Dippé and Wold [25] which is discussed only for Poisson sampling. However,

in our mathematical formulation (Chapter 5), we extend the domain of application

of this widesense stationary notion by making any kind of sampling pattern

translation invariant, that is, homogeneous. In MC integration, the consequence

is that a homogeneous sampling pattern produces no bias, so that error only arises

from the variance. For more details, please refer to Appendix B. Given this

property, we can restrict our error analysis to variance only.

Many state-of-the-art sampling methods such as White noise, Poisson Disk,



and all optimization-based methods starting from a white noise distribution (e.g.,

the methods of Schlömer et al. [85] and de Goes et al. [22]) are homogeneous. Sur-

prisingly, jittered sampling and Latin hypercube sampling are non-homogeneous.

This can be explained by the fact that both methods rely on a subdivision of

the sampling domain that is fixed over all realizations. However, any sampling

method can be transformed into a homogeneous sampling by uniformly and ran-

domly translating each realization of the sampling pattern. Analogously, sampling

patterns on the unit sphere (S2) can be made homogeneous by uniformly and

randomly rotating the distribution.

Spectral properties of homogeneous sampling As we observed in the case of

spherical and hemispherical samples, uniform and random rotations of a point

set can result in equvi-distribution of energy within (2l + 1) components of a

frequency band l. We also observe that the the distribution of a spherical harmonic

coefficient (SS(l,m)) of a sampling pattern, taken over multiple rotations of a sam-

pler, results in a radial distribution of this coefficient values in the complex plane.

An illustration is shown, in Fig. 4.17, for whitenoise, jittered, Healpix regular and

spherical Fibonacci lattice point sets. This implies some interesting characteristics

of the coefficients SS(l,m) of the sampling pattern: First, the expected values of

SS(l,m), i.e. 〈SS(l,m)〉, is zero. Second, the phase of coefficients is uniformly

distributed over [0, 2π].

Since, the sample distributions are made homogeneous after performing uni-

form and random rotations of point sets, the above properties are associated to



(a) Whitenoise (b) Jittered

(c) Healpix Regular (d) Fibonacci lattice

Figure 4.17: Illustration of the distribution of a spherical harmonic coefficient
(l = 4,m = 3) computed using 1024 samples over 8192 realizations in the
complex plane.



the homogeneous sample distributions. In the Euclidean space, Subr and col-

leagues [92] have shown that an unbiased estimator can be obtained if the mean

of the Fourier spectrum of the sampling pattern is zero everywhere, except at

frequency zero (DC). By definition, homogeneous sampling patterns exhibits this

property and therefore can be considered unbiased. As a result, homogeneous

patterns manifest error only in terms of noise (variance).

4.5 Discussion

To summarize the contribution of this chapter we outline the conclusions drawn

from our spectral analysis of various sampling patterns. We focus our spectral

analysis mainly in the spherical and hemispherical domain. To our knowledge, this

is the first time such a careful spectral analysis of various sampling patterns have

been performed in the spherical and hemispherical domain. In image synthesis,

spherical and hemispherical samples play a crucial role in the evaluation of global

illumination integrals. In practice, for global illumination problems, samples

are first generated on a square domain and then a low distortion mapping [90] is

performed to project these square samples on to the sphere or a hemisphere. For

our analysis, we generate samples directly on the sphere. To obtain samples on a

hemisphere we consider an upper hemisphere of spherical samples.

We perform random rotations on the spherical and hemispherical samples

that distributes the high energy peaks over the respective frequency bands l. This

property can explain why the structural artifacts turns into noisy signals if we start



randomly rotating regular or QMC samplers while evaluating global illumination

integrals.

We also lay down the basic platform to perform variance analaysis for Monte

Carlo integration. We develop the notion of homogeneous sampling patterns on the

sphere which express error in integration only in terms of variance. Homogeneous

sample distributions are the direct consequence of uniform and random rotations

of spherical and hemispherical samples.



Chapter 5

Variance analysis of Monte Carlo

Integration

In this chapter, we develop our mathematical framework that relates the variance

in Monte Carlo (MC) integration directly with the power spectra of both the

sampling pattern and the integrand involved. We use the notion of homogeneous

sampling to propagate the error in MC integration into variance. This framework

has been developed on the spherical domain which is easily extendable to the

hemispherical domain.

5.1 Monte Carlo estimator

Monte Carlo integration is a numerical integration method to estimate the integral

I of a function F . The MC estimator IN averages over N stochastic samples

taken over the integrand in a given sampling domain D. We consider samples



{s1, ..., sN} as a set of equally weighted random variables. The resultant MC

estimator IN of an integrand F is defined as:

IN :=
µ(D)

N

N∑
k=1

F (sk) . (5.1)

A sampling pattern can be written as a random variable S made up of N Dirac

functions located at sample positions:

S(x) =
N∑
k=1

δ(x− sk) , (5.2)

which can be represented as an inner product [28] given by:

IN =
µ(D)

N

∫
D

S(x)F (x)dx . (5.3)

Depending on the sampling strategy, different weights (wi) can be assigned to

each sample. On the spherical domain (D = S2), MC estimator can be formulated

as:

IN :=
µ(S2)

N

∫
S2
S(x)F (x) dx , (5.4)

where µ(S2) = 4π, denotes the Lebesgue measure of a unit sphere with x = (θ, φ)

for θ ∈ [0, π] and φ ∈ [0, 2π], and dx = sin θ dθ dφ. To relate variance of IN with

the frequency content of F and S, we first obtain the spectral form of the estimator

IN using spherical harmonics. Before going further, we quickly discuss a brief

background on spherical harmonics and the corresponding properties which we

need to derive the variance relation.



5.2 Background on SH

In Section 3.5, we introduce spherical harmonics, which are the Fourier analog on

the sphere. Since the Fourier transform cannot be directly applied on the sphere,

spherical harmonics were designed to study the spectral properties of spherical

signals directly on the sphere. For any integrable function, G(x), it can be easily

shown that: ∫
S2
||G(x)||2dω =

∞∑
l=0

l∑
m=−l

||SG(l,m)||2 . (5.5)

where SG(l,m) are the (complex) spectral coefficients of G(x), which is the

Parseval’s theorm on the sphere. Analogously, the inner product between any two

arbitrary functions, G(x) and F (x) defined over a unit sphere, is related to their

corresponding spectral coefficients by:∫
S2

G(x) F(x) dx =
∞∑
l=0

l∑
m=−l

SG(l,m) · SF (l,m) , (5.6)

where SG(l,m) = 〈G, Y m
l 〉 is the (l,m)-th spherical harmonic coefficients of

G(x). The angular mean power spectrum at a frequency band l is defined as the

average energy distributed over different m for a given l, as follows:

P̆G(l) :=
1

2l + 1

l∑
m=−l

‖SG(l,m)‖2 . (5.7)

5.3 Variance in spectral form

With this background, we are now ready to represent the Monte Carlo estimator

from Eq. (5.4) in its spectral form. By using Eq. (5.6) in Eq. (5.4) we obtain the



estimator in terms of the spherical harmonic coefficients:

IN =
µ(S2)

N

∞∑
l=0

l∑
m=−l

SS(l,m) · SF (l,m) . (5.8)

where SS(l,m) and SF (l,m) are the complex harmonic coefficients of S and

F . Following the definition of Variance for a complex variable X, Var (X) =

〈||X||2〉 − || 〈X〉 ||2, and using Eq. (5.8), we obtain variance of the Monte Carlo

estimator IN as:

Var (IN) =
〈
||IN ||2

〉
− || 〈IN〉 ||2

=
µ(S2)

2

N2

∞∑
l=0

l∑
m=−l

〈
||SS(l,m) · SF (l,m)||2

〉
− ||

〈
SS(l,m) · SF (l,m)

〉
||2 .

(5.9)

Here, we can easily show that the harmonic coefficients with (l = 0,m = 0) do

not contribute to the variance in Eq. (5.9). We provide a step-by-step derivation

of the same in Appendix A. As a result, we can rewrite the Eq. (5.9) as follows:

Var (IN) =
µ(S2)

2

N2

∞∑
l=1

l∑
m=−l

〈
||SS(l,m) · SF (l,m)||2

〉
− ||

〈
SS(l,m) · SF (l,m)

〉
||2 ,

(5.10)

where the degree l starts from 1 rather than zero. From hereafter, we con-

sider only homogeneous sampling patterns in our mathematical derivation. This

makes the estimator IN unbiased as a result of which the subtracting factor

||
〈
SS(l,m) · SF (l,m)

〉
||2 in Eq. (5.10) becomes zero at all non-zero frequencies

(l 6= 0). We show a simple proof of this statement in Appendix A. Finally, the non-

zero part ||
〈
SS(0, 0) · SF (0, 0)

〉
||2 gets cancelled out for DC frequency l = 0.



This results in further simplification of our variance relation given in Eq. (5.10):

Var (IN) =
µ(S2)

2

N2

∞∑
l=1

l∑
m=−l

〈
||SS(l,m) · SF (l,m)||2

〉
. (5.11)

We rewrite above Eq. (5.11) by expanding the norm square term, which gives:

Var (IN) =
µ(S2)

2

N2

∞∑
l,l′=1

〈SS,F (l, l′)〉 (5.12)

In Eq. (5.12), SS,F (l, l′) is given by:

SS,F (l, l′) =

l,l′∑
m=−l
m′=−l′

SS(l,m) · SF (l,m) · SS(l′,m′) · SF (l′,m′) . (5.13)

Since the homogeneous sampling patterns, mentioned in Section ??, have sta-

tistical properties that are invariant to rotation on the sphere, it is equivalent to

study the variance generated by the rotated version of each realization, with the

average taken over all rotations. Formally, this is equivalent to taking average over

the group of rotations (SO(3)), with τ(S) denotes the rotation of S by an element

τ ∈ SSO(3). Then, averaging equation Eq. (5.13) over all translations of S, we get:

Var (IN) =
µ(S2)

2

N2

1

µ(SSO(3))

∞∑
l,l′=0

〈∫
SO(3)

Sτ(S),F (l, l′)dτ

〉
, (5.14)

To simplify the integral part in Eq. (5.14) we employ the representation the-

ory which has been briefly explained in Section 3.4. By using the fact that the

span of the l-th frequency spherical harmonics, V l = Span{Y −ll , · · · , Y l
l }, is a

(2l+ 1)-dimensional irreducible representation for the SO(3) group and applying

Propositions 2 and 3 from Chapter 3, we get:∫
SO(3)

〈τ(G), Y m′

l′ 〉 · 〈Y m
l , τ(G)〉dτ = δll′ δmm′ µ(SSO(3)) P̆G(l) , (5.15)



for any function G(x) ∈ S2. Here, P̆G(l)is the angular mean power spectrum of

the l-th spherical frequency of F as defined in Eq. (5.5). By plugging the angular

mean power spectrum (5.5) in Eq. (5.15) and combining it with Eq. (5.14), we

get:

Var (IN) =
µ(S2)

2

N2

∞∑
l,l′=0

〈
P̆S(l)

(
l∑

m=−l

SF (l,m) · SF (l,m)

)〉
(5.16)

=
µ(S2)

2

N2

∞∑
l=0

〈
P̆S(l)

〉( l∑
m=−l

||SF (l,m)||2
)
. (5.17)

Here we normalize the angular mean power spectrum P̆S(l) by N/µ(S2) to make

sure that the angular mean power spectrum of any sampling pattern converges to

value 1. This normalization ensures comparison within different sampling patterns

with different N . At last, using the angular mean power spectrum definition

from Eq. (5.5) with the normalization factor discussed in Eq. (5.16), we obtain:

Var (IN) =
µ(S2)

N

∞∑
l=0

(2l + 1)PS(l)P̆F (l) (5.18)

which gives the final expression for the variance in terms of the angular mean

power spectra of both the sampling pattern S and the integrand F . Here, PS(l) =〈
P̆S(l)

〉
which represents the averaged angular mean power spectrum—over

multiple realizations (point sets)—of a sampling pattern.

Variance in spectral form on H2 We can use the same mathematical model

derived in Eq. (5.18) in the hemispherical domain. As discussed in Section 3.6,

we can map all hemispherical signals as even functions on the sphere. After that,



we can perform hemispherical signal analysis directly on the sphere while using

only even l frequency bands of the spherical harmonics.

5.4 Discussion

In this chapter, we have derived a direct relation (Eq. (5.18)) between the variance

in Monte Carlo integration with the power spectra of both the sampling pattern S

and integrand F involved. By looking at Eq. (5.18), we observe that variance is a

sum of the product of the mean angular power of S and F over all frequencies

l. Consequently, to have a low variance in integration, at least one of P̆S(l) or

P̆F (l) should have minimal possible energy in the low frequency region of its

corresponding power spectra.

To give an illustration, we plot both the P̆S(·) and P̆F (·) on the same axis for

a given number of samples N , as shown in Fig. 5.1(a). We assume the shape

of the integrand’s power specrtum, P̆F (·), (in orange) such thate the energy of

the spectrum is mostly concentrated in the low frequency zone and as we move

towards mid to high frequencies the energy diminishes. This is a valid assumption

since from a practical point of view, almost all display devices have a low pass

filter that is applied to a signal (F ) to avoid unusual artifacts, which means that

we can display a signal only upto a particular bandwidth. That implies that most

of the information, of the signals, which can be displayed on display devices is

concentrated towards low- to mid-frequency regions.

Since the variance in integration (Eq. (5.18)) depends on the product of the



(a) For a given N (b) Increasing number of samples

(c) (d)

Figure 5.1: (a) Illustration of the power spectra of a sampler and an integrand on
the same axis. (b) With increase in number of samples, sampler’s power spectra
scales along the frequency axis. In (c) and (d), we show the corresponding product
of sampler and integrand power spectra.

power spectra of both the sampler and the integrand involved, the variance can be

reduced by choosing a sampling pattern that has minimal possible energy in the

low- to mid-frequency regions.

Now an obvious question that one can ask is, why the variance goes down as

we increase the number of samples? This can be explained from the fact that as we

increase the number of samples, the power spectrum of a sampler (in blue) scales

along the frequency, as shown in Fig. 5.1(b). As a result, the low frequency part

of a sampling power spectrum, where the energy is negligible, becomes more and



more dominating in the domain (low to mid frequency region) of the integrand.

Consequently, the corresponding product of the sampler and integrand power

spectra, in Fig. 5.1(c), diminishes with the increase in number of samples, as

shown in Fig. 5.1(d).

With this illustration in Fig. 5.1, we have shown that as we increase the number

of samples, the variance convergence rate—i.e., the rate at which the variance

diminishes with the increase in the number of samples—of a sampler depends on

the low frequency region of the sampling power spectra. In Chapter 6, we focus

our attention to analyze the low-frequency region of various sampling patterns.

We classify the low-frequency region of various sampling patterns, and obtain

bounds on the corresponding angular mean power spectra in the low-frequency

region using simple shapes (profiles). These profiles are later used to derive the

corresponding variance convergence rates in terms of the number of samples

involved.





Chapter 6

Theoretical Convergence analysis

Using the framework derived in the spherical (Chapter 5) domain, we have shown

that the variance in MC integration is related to the power spectra of the integrand

and the sampling pattern. This implies that if we know the sampling and integrand

power spectra then we can predict the variance and the corresponding variance

convergence rate, as a function of the number of samples N , in MC integration.

In practice however, the power spectrum of an integrand is unknown. Therefore,

we restrict our analysis to a particular class of functions. We follow the work by

Brandolini and colleagues [9], and restrict our analysis to integrable functions of

the form F (x)χΩ(x) with F (x) smooth and Ω a bounded domain with smooth

boundary (where, χΩ(x) is the characteristic function of Ω). We consider a best-

case function and a worst-case function, both from this class of functions to derive

the best- and worst-case variance convergence rate, as the number of samples N

increases.

Conversely, analytical models for the sampling power spectra are often avail-



able [34] in the Euclidean space. We show that these power spectra can be used

in our framework to predict the variance of an integrand. We bound the variance

convergence rate of these samplers—with known power spectra—by simply im-

posing bounds on the sampling power spectra in MC integration. For sampling

power spectra with no analytical formulations, we provide tools for bounding the

power spectra in Sec. 6.2, which have been developed a priori in the Euclidean

domain by Pilleboue [78]. In this chapter, we extend these analysis tools on the

sphere.

6.1 Best and worst case variance

First, we derive theoretical convergence rates of the variance for the best- and

the worst-case functions from a given class of functions. We define our best-case

integrand directly in the spectral domain with an angular power spectrum P̆F (l),

which is a constant aF for (l < l0) and zero elsewhere. An illustration is shown

in Fig. 6.1(a). The corresponding variance can be obtained using Eq. (5.18):

Var (IN) ≤ aF µ(S2)
2

N

l0∑
l=1

PS(l) , (6.1)

where aF is a non-zero positive constant, that can be derived by plugging in the

best-case angular power spectrum.

From the class of functions provided by Brandolini and colleagues [9], we

define our worst-case integrand to be a sum of zonal harmonics, SF (l,m) =

0 ∀m 6= 0, with spectral amplitude square zonal coefficients ‖SF (l, 0)‖2 exhibiting

a decay rate of order O (l−2) for l > l0. The corresponding worst-case power
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Figure 6.1: Illustration of the mean angular power spectra vs frequency (ω =
l/α
√
N ) of signals that can be considered as best (a) and worst (b) cases in

numerical integration with respect to any sampling power spectrum.

spectrum PS of S has a decay rate of orderO (l−3), as illustrated in Fig. 6.1(b). By

substituting this worst-case decay rate in Eq. (5.18) to obtain the corresponding

worst-case variance as follows:

Var (IN) ≤ µ(S2)
2
a′F

N

∞∑
l=1

P̆S(l)

l2
, (6.2)

where a′F is a non-zero positive constant that can be derived by plugging in

the worst-case angular power spectrum. For our experiments, we consider a

spherical cap function as our worst-case integrand as it falls into the given class

of functions. The power spectrum of a spherical cap function exhibits a decay

rate of orderO (l−3), whose derivation is given in our Appendix C.

6.2 Convergence rate analysis

To study the variance convergence rate analysis we have restricted our variance

model Eq. (5.18) to a given class of functions and define the corresponding best-

and worst-case (integrand) power spectra in this class. We then obtain the best-



case (Eq. (6.1) and worst-case (6.2)) variance, as a function of the sampling power

spectrum P̆S(·).

In this section, we study the effects of different shapes of P̆S(·) on the variance

in MC integration for both the best- and worst-case (integrands). We use simple

shape profiles (quadratic, polynomial, step) for P̆S(·) and derive the variance

convergence rate associated to each of these power spectra profiles. Then, we

classify the existing state-of-the-art sampling power spectra—with respect to the

shape of the low frequency zone of these power spectra—in terms of these profiles.

We also obtain corresponding upper and lower bounds on the sampling power

spectra in terms of these profiles.

As mentioned by Pilleboue, Singh and colleagues [79], to analyze the variance

convergence rate of a sampling pattern we first identify, which part of our variance

formulation (Eq. (6.1) and (6.2)) depends onN . Since the distribution of distances

in a sampling pattern gets affected by the sampling density, the mean neighborhood

distance between samples can be approximated as the d-dimensional root of the

representative area of each sample. In the Fourier domain, the corresponding

frequency of this mean distance is d
√
N , which corresponds to the first peak in

the power spectrum of a regular grid pattern, and also, approximatively, to the

first bump of the typical blue-noise spectrum. As N increases, the low frequency

region of the sampling power spectrum becomes more and more significant with

respect to the integrand power spectrum. This explains the noticeable variance

reduction observed for sampling patterns exhibiting no low-frequency content.

Mathematically, this means that the radial mean of a power spectrum is dependent



on a factor d
√
N . In the following subsection, we use this factor ( d

√
N ), for the

spherical domain (d = 2), to derive variance convergence rates.

6.2.1 Convergence analysis in Spherical domain

To start our analysis, the mean power spectrum produced by the sampler must

be known, or at least estimated. Therefore, we cover only the classical stochastic

samplers, from the simplest one (White noise) to the most sophisticated ones,

e.g., CCVT [6], for which the radial power spectra can be estimated. We classify

different sampling patterns with respect to the shape of their corresponding radial

power spectra in the low-frequency zone. We study three shapes of the power

spectra, given as follows:

Constant power spectra Here, P̆S(l) :=γ, where γ is a constant value. As the

radial power spectrum P̆S(l) is independent of N , by simply plugging P̆S(l) = γ

in Eq. (6.1) and Eq. (6.2), we can deduce the best- and worst-case variance

convergence rates, which is given of order O (N−1).

Step power spectra The step profile corresponds to a constant power spectrum
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Figure 6.2: Step

with zero low-frequency part (Fig. 6.2), i.e., from

l = 0 to α
√
N , for a given α ∈ R+/{0}, where

α is used to quantify the range of energy-free

frequency with respect to the mean frequency.



The resultant step profile is given by:

P̆S(l) :=


0, if l < α

√
N

γ, otherwise .
(6.3)

For N > l2/α2, the variance of MC integration of the best-case F is zero. We

normalize the l term with α
√
N , where α is a positive constant and N represents

the number of samples. This allows us to bring all power spectra with different

N , to the same scale for all N . The expression for the variance, Var (IN), due to

step power spectrum in the worst-case can be approximated by plugging Eq. (6.3)

in Eq. (6.2):

Var (IN) ≤ µ(S2)
2
a′F

N

∞∑
l=dα

√
Ne

1

l2
. (6.4)

where a′F is a hidden constant from O(l−2). The summation term in Eq. (6.4)

can be symbolically solved to deduce the worst-case variance convergence rate of

sampling patterns with a step power spectra, which is of order O(N−1.5).

Quadratic power spectra A more general radial power spectrum can be con-

structed by considering a polynomial ramp of degree b from the frequency zero

to α d
√
N . After the frequency α d

√
N , the radial power spectrum is a constant

function of γ, which is similar to the Constant and Step profiles. More formally,

the polynomial ramp can be written as:

P̆S(l) :=


γlb

αb d
√
N
b

if l < α d
√
N

γ otherwise.
(6.5)



When we plug Eq. (6.5) directly in the best Eq. (6.1) or worst-case Eq. (6.2)

variance formulation, we were not able to obtain a general variance expression

for the best-case and the worst-case. This is because, the general polynomial

profile Eq. (6.5) expression cannot be symbolically solved for an unknown degree b.
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Figure 6.3: Quadratic (b=2)

Therefore, we study the polynomial profile de-

fined in Eq. (6.5), for a given polynomial de-

gree, in our case for (b = 2), which gives a

quadratic profile (Fig. 6.3). Using this quadratic

profile, the power spectrum in the best-case vari-

ance Eq. (6.1) can be obtained as follows:

Var (IN) ≤ µ(S2)
2

N

l0∑
l=1

γ aF l
2

(α
√
N)2

(6.6)

= O
(
N−2

)
. (6.7)

Using the quadratic profile power spectrum for the worst-case variance Eq. (6.2),

we obtain:

Var (IN) ≤ µ(S2)
2

N

bα√Nc∑
l=1

γ aF (l/(α
√
N))2

l2
+

∞∑
l=dα

√
Ne

γa′F
l2

 , (6.8)

which can be symbolically solved to obtain a convergence rate of order O (N−1.5).

Now, we have the variance convergence rates of various simple radial power

spectral profiles. The inspiration behind studying these simple profiles (constant,

step, quadratic) is the following: First, since we do not know the exact analytical

expression of the radial power spectra of various sampling patterns, we can

approximate these radial power spectra using these simple profiles. Second, if we



can bound the sampler’s radial power spectrum using any one of these profiles,

it would give us the variance convergence rate of that sampler, which is derived

using the profile used to bound the radial power spectra.

6.2.2 Discussion

We have proposed a classification of radial power spectra of various sampling

paterns with respect to the shape of their radial power spectra in the low-frequency

zone. We can use this classification as a theoretical tool to bound arbitrary radial

power spectra using these simple profiles (e.g., linear, quadratic, etc.). Thus, the

corresponding variance convergence rate of the sampling patterns can be deduced

from the bounds of their respective profiles. For some sampling patterns, the

corresponding analytical formulation is known. For example:

White noise The radial power spectrum of white noise has a constant profile

with γ = 1 exhibiting a variance convergencerate of order O (N−1), which is well

known in literature.

Poisson Disk For Poisson Disk distributions, Torquato and colleagues [94]

observed that for a sufficiently large N , the minima of the normalized mean

power spectrum can be asymptotically seen near the DC peak, with a value of

0.05. Torquato and colleagues made this observation while studying Poisson

Disk samples in the Euclidean domain. We observed that a similar offset 0.055

is obtained for the mean angular power spectrum of Poisson Disk samples in the



spherical domain. Following our theoretical analysis, the power spectrum of the

Poisson disk distribution is lower bounded by a constant profile with γ = 1/20 for

both Euclidean and spherical domains. Consequently, the variance convergence

rate of the Poisson Disk sampling patterns is similar to the convergence rate of

the white noise sampler, which can also be bounded by the constant profile. The

variance convergence rates of white noise and Poisson Disk samples is of order

O (N−1).

In the case of jittered, regular and CCVT samplers, we have seen an improved

varianc econvergence rates, compared to Poisson Disk. One of the similarity

between jittered, regular and CCVT samplers is that all of them have mean

angular power spectra tending to zero as the frequency parameter (ω) goes to zero.

On top of that, in case, of regular and CCVT sampling there is a low-frequency

region with no energy. All these power spectra are shown in Fig. 4.14 with

regular sampling power spectra shown in Fig. 4.10. This implies that the ideal

mean angular power spectrum of a sampler must have zero-valued power in the

low-frequency zone. Poisson Disk sampling patterns is always categorized as

blue noise due to the resemblance of it’s power spectrum shape with blue noise.

However, it falls behind even jittered sampling patterns due to the offset in the

low-frequency zone of its power spectra. Therefore, it would be desirable to have

sampling patterns with mean angular power spectra tending towards zero as the

frequencies tends to zero with no energy in the low-frequency zone.

In Chapter 7, we perform experiments on other sampling patterns and bound

their radial power spectra with the profiles discussed in this chapter. An illustration



of the variance convergence rates of various samplers is shown in Fig. 7.4 with

other results.



Chapter 7

Experiments and Results

The theoretical framework proposed in this dissertation is based on the observa-

tions we made while performing spectral analysis (Chapter 4) of various sampling

patterns. Based on this theoretical frameork proposed in Chapter 5 we develop

some analytical tools in Chapter 6 to derive theoretical variance convergence rates

of various sampling patterns. In this chapter, we use our framework to peform

experiments on the state-of-the-art sampling patterns on the sphere.

We first, give implementation details on how various sampling patterns are

obtained on the sphere. We then use these spherical samplers to study the bounds

on the variance convergence rates of these samplers. We also evaluate some

ambient occlusion integrals to show that the observations made while deriving

variance convergence rates can also be generalized when the underlying integrand

is not known.



(a) Healpix subdivision (b) Regular Sampling (c) Jittered Sampling

Figure 7.1: Illustration of spherical sampling methods.

7.1 Implementation details

We first look at the implementation details of our spherical samplers. We present

several experiments by comparing existing sampling methods: white noise, jittered

sampling, Poisson Disk and capacity constraint methods. The underlying data

structure used to perform sampling on the sphere for some samplers is the Healpix

data structure [37] which is an equal area quadrangulation of the sphere.

White noise or purely random samples are generated on the sphere by simply

using the drand48 C programming language built-in function from the stdlib.h

header. To implement reguar sampling on a sphere, we perform sampling directly

on the sphere using the Healpix data structure [37] which is an equal area quad-

rangulation of the sphere. To implement jittered sampling, we use the Healpix

quads as strata and randomly place samples in each stratum. An illustration of

regular and jittered sampling with the corresponding healpix stratas are shown

in Fig. 7.1.



Figure 7.2: Poisson Disk

Poisson Disk Sampling For Poisson Disk sam-

pling, there exist many algorithms in the litera-

ture that mimic the dart throwing approach on

the surface of the sphere [14, 77, 35]. In our

implementation, we first generate a dense set of

samples on the sphere, as in the work of Li and

colleagues [59], and then reject samples that are too close, as in the work of

Bridson [11]. We achieve a distribution close to the boundary sampling described

in the work of Dunbar and Humphreys [27].

Figure 7.3: CCVT

CCVT We also implement a spherical ver-

sion of the CCVT algorithm by Balzer and col-

leagues [6] using the geodesic distance on the

sphere. An illustration is shown on the right side.

All sphere samplers are generated on a multi-

processor machine, with an Intel Core i7 CPU

980@3.3g GHz processor.

To plot the radial power spectra of various

sampling patterns (shown in Fig. 7.4(a,d,g,j)), we compute the average power

spectrum over 1000 realizations of a point set, as suggested by Schlömer and

colleagues [85]. We plot power spectra for N = 4096 in the spherical domain.

Later, we use these power spectra to estimate lower and upper bounds on the

variance of our test integrands in the spherical (Fig. 7.4) domain.



7.2 Case studies

In Chapter 6, we propose an analysis tool that can be used to bound the radial power

spectra of various sampling patterns using simple profiles (constant, quadratic,

etc.). We also propose a best-case and worst-case variance convergence rates

for the respective profiles. In this section, we experimently test our tools and

bound various state-of-the-art sampling (radial) power spectra on the sphere. As

mentioned in Chapter 6, we consider a class of integrable (smooth) functions

with bounded domain and smooth boundaries [9]. From this class of functions

we choose a spherical harmonic Y m
l (l = 4,m = 0) basis function for best-case

study since it is smooth and bandwidth-limited. For our worst-case study, we

choose a spherical cap function, with spherical cap size θ0 = 60 degrees, in the

spherical domain.

To perform variance analysis we compute the variance of our test (best- and

worst-case) integrands using different sampling patterns. The variance is com-

puted over 1000 trials for cases where the samplers (white noise and jittered)

are not prohibitively slow. For spherical CCVT and Poisson Disk, we keep the

number of trials between 200 to 1000, depending on the speed of the sampler.

As the spectral profile of these test integrands is known, our variance prediction

model can be used to estimate the bounds on the variance in integration of each

function by simply using the bounds derived from the corresponding sampling

power spectra.

First, we look at our test integrands which we chose for our best-case and



worst-case variance convergence analysis:

Spherical harmonic basis function (Y m
l ) In the spherical domain, we chose a

SH basis function Y m
l with (l = 4,m = 0), as a best-case which is a band limited

function. Y 4
0 is a smooth function with compact support and can be considered as

a best-case for the class of functions discussed in the paper. The power spectral

profile of any SH basis function, Y l
m, is given by:

PF (l) =
µ(S2)

(2l + 1)
, (7.1)

since ||Y m
l ||2 = µ(S2).

Spherical cap function Spherical cap function is our worst-case test integrand

for a given class of functions. We compute the angular power spectrum, in Ap-

pendix C, of spherical cap function with size θ0 = 60 which is given by:

PF (l) = 4π2

(
|P 0
l−1(cos(θ0)− P 0

l+1(cos θ0)|2

(2l + 1)2

)
, (7.2)

where P 0
l (cos(θ0) is the Legendre Polynomial function. We numerically compute

the above expression for the power spectrum of spherical cap and use it in our

variance formulation (Eq. (5.18)), to obtain the variance with respect to a given

sampler.

To obtain the bounds on the variance of these test integrands, we first bound the

mean angular power spectra (PS(l)) of various sampling patterns using the simple

profiles discussed in Section 6.2. To start with, we first compute the bounds

on the white noise mean angular power spectrum (PS(l)). Since, PS(l) = γ
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Figure 7.4: Bounds on the mean angular power spectra of samplers and on the
variance convergence rates of our test integrands. Log-Log plots are shown in
the Center and Right columns. Left: mean angular power spectra of different
sampling patterns (blue), bounded by a theoretical spectral profile (green). On the
frequency axis, units corresponds to the frequency α

√
N . Center: The variance

curve of a spherical harmonic basis function with l = 4,m = 0, (blue), with
bounds (green) computed using the bounds of the corresponding mean angular
power spectrum. Right: The variance in integration of a spherical cap, using the
same visualization.



for whitenoise, it can be upper and lower bounded by any constant profile. For

white noise, we normalize the mean angular power spectrum such that γ = 1.

Consequently, the parameters (α, γ) of the upper bound are αu = 1.0, γu = 1.3,

and for the lower bound are αl = 1.0, γl = 0.7. Note that, for γ = 1 both the

upper and lower variance bounds overlaps with the variance convergence rate of a

given integrand.

By substituting PS(l) = 1 and the mean angular power spectrum expression of

our Y 0
4 from Eq. (7.1) in the variance formulation Eq. (5.18) we can directly predict

the variance of spherical basis function using white noise. Similarly, by using

the mean angular power spectrum of spherical cap test integrand from Eq. (C.12)

with PS(l) = 1 in the variance formulation we can directly predict the variance

of spherical cap function. The corresponding bounds on Y 0
4 and spherical cap

functions can be obtained by simply usingPS(l) = γu = 1.3 andPS(l) = γl = 0.7

in the variance formulation. All bounds in the case of white noise, are shown

in Fig. 7.4(a,b,c).

In a similar way, constant profiles are used to bound the mean angular power

spectrum of Poisson Disk sampling pattern. The parameters used to bound the

power spectrum are: αu =
√

2.75, γu = 1.8, αl =
√

2.75, γl = 0.055. The

bounds on our test integrands, spherical cap and Y 4
0 are similarly as explained in

the case of white noise. For jittered sampling and CCVT sampler we use quadratic

profile to bound their mean angular power spectra. The parameters used in the

case of jittered sampler are: αu = 0.2, γu = 1.0, αl =
√

0.6, γl = 0.4. For CCVT

the quadratic (b = 2) profile parameters used to bound the mean angular power



spectrum are given by: (j) αu =
√

0.05, γu = 2.0, αl =
√

2.85, γl = 0.05.

We illustrate the variance computed via our framework in Fig. 7.4. Our

experimental results are consistent with our variance predictive model (Chapter 6),

and the variance is correctly bounded in the spherical domain.

As shown in Fig. 7.4, we observe that tighter bounds on the sampling power

spectra can result in tighter bounds on the variance. For example, the lower bound

on the jittered sampling power spectrum is tighter than the upper bound which

results in a tighter lower bound on the associated variance. For Poisson Disk

sampling, the spectral profile is bounded by a constant profile and consequently, the

convergence rate of the variance is similar to white noise. Also, as the lower bound

on the Poisson Disk sampling is tighter than the upper bound, the corresponding

variance achieves a tight lower bound. In Fig. 7.4 for the sphere, all the power

spectral profiles are plotted as (PF vs ω) with ω = l/(α
√
N). Note that, we

only bound the variance convergence rate. This is why the variance values are

normalized (with the variance value for N = 1) for all of our test integrands.

7.3 Rendering Results

We also implement ambient occlusion in a Cornell box scene to study the be-

havior of various state-of-the-art sampling patterns (Fig. 7.5 and 7.6). As most

state-of-the-art samplers are not directly extendable to the hemisphere, we sam-

ple a complete sphere and consider samples only from the visible part. We

designed the Cornell box scene to enhance the noise level in the whole box.
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Figure 7.5: Cornell box rendered with ambient occlusion. Mean squared error
(MSE) values are computed w.r.t a reference image (shown in Fig. 7.7, for White
noise (Left), Jittered sampling (Center) and Poisson Disk (Right) for a given
number of shading rays used to sample directions on the visible hemisphere at
each hitpoint in the scene.
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Figure 7.6: Cornell box rendered with ambient occlusion. Mean squared error
(MSE) values are computed w.r.t a reference image (shown in Fig. 7.7, for White
noise (Left), CCVT (Center) and Regular Healpix (Right) sampling for a given
number of shading rays used to sample directions on the visible hemisphere at
each hitpoint in the scene.



Figure 7.7: Reference image

For rendering, we chose a regular sampling pat-

tern on the image plane to keep the aliasing co-

herent throughout all samplers. This is why our

reference image, shown as an inset in Fig. 7.9(c),

shows some structural artifacts. The reference

Cornell box image is computed by shooting one

ray from the center of each pixel followed by shooting 32k secondary rays from

each primary hit point. The secondary ray directions were sampled via a jittered

sampling pattern. A similar process was adopted to generate the Cornell box im-

ages using other samplers. This is done to compare the variance coming through

the hemispherical sampling patterns from each primary ray hit point.

In Fig. 7.8, we also compare the regular patterns of Spherical Fibonacci (SF)

and Healpix point sets on a cornell box scene. Regular patterns on the sphere

can be obtained using different ways. In this dissertation, we use SF lattice and

the Healpix data structure to obtain regular sample points on the sphere. This

comparison (Fig. 7.8) shows that the structural artifacts due to SF lattice pointset

are way more visible than the Healpix point set. Although, after rotation the

structural artifacts turns into noise.

7.4 Discussions

To provide a side by side comparison of the variance convergence rate of different

samplers, we plot the convergence rate curves in Fig. 7.9. As predicted by our



no Rotation with Rotation Healpix (no rotation)
6

Ra
ys
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Figure 7.8: Cornell box rendered with ambient occlusion. Left: Spherical Fi-
bonacci (SF) point set is used at each hitpoint. Centre: SF point set is used with
uniform and random rotation at each hitpoint. Right: Healpix regular point set
is used at each hit point with no rotation. Mean squared error (MSE) values are
computed w.r.t a reference image (shown in Fig. 7.7



(a) (b)

(c)

Figure 7.9: Comparison of the variance in MC integration for different integrand
signals. Here we use experimental data from 7.4 in (a) and (b). Here we present
comparisons in the (hemi-)spherical domain : (a) a spherical harmonic basis
function (Y 0

4 ). Inset illustrates the gray scale of the absolute values of the function,
(b) a spherical cap function (θ0 = 60), where the white shade in the inset represents
non-zero constant value region (c) a Cornell box scene with all corresponding
rendered images shown in Fig. 7.5 and 7.6.



model, in the Euclidean domain, we can see that the asymptotic behavior of

CCVT [6], Healpix regular and jittered sampling is better than both the Poisson

Disk and the white noise sampling methods The jittered sampling convergence

rate overtakes the Poisson Disk sampling convergence rate just after 300 samples

(as shown in Fig. 7.9). Similar observations can also be made in the variance

convergence rates of a Cornell box scene. Even though jittered sampling pattern

shows higher variance compared to Poisson Disk samples when the number of

samples are low, after 294 samples variance due to Poisson Disk becomes higher

than jittered sampling pattern.

One of the interesting observation that comes into limelight is regarding the

Poisson Disk (dart throwing based) sampling pattern, which is always categorized

as blue noise in the literature. In this work, we have shown—both mathemati-

cally and experimentally—that the convergence rate of Poisson Disk sampling

patterns is no better than white noise. This is due to an offset in the low-frequency

region (ω ∈]0, 0.5[) of the mean angular power spectrum of Poisson Disk, shown

in Fig. 7.10(c). However, Poisson Disk samples obtained using tile based ap-

proaches can help get rid of this offset in the low-frequency region, resulting in

an improved variance convergence rate. We also observe that jittered sampling

patterns are as good as blue noise samples (e.g., CCVT) when it comes to the

variance convergence rate, though the variance is higher. This is due to the reason

that the angular mean power spectrum of jittered samples approaches to zero as

the frequency (ω) tends to zero ( Fig. 7.10(d)).



(a) (b)

(c) (d)

Figure 7.10: Comparison between the power spectra at the low frequency region
between (a) Poisson Disk and (b) jittered samplers. In (c) and (d) we show the
zoom-in of the low frequency region (ω ∈]0, 1[) for the Poisson Disk and the
jittered samplers respectively.

Summary: We have shown that the variance in MC integration can be upper

and lower bounded if we have some knowledge of the samplers’ mean angular

power spectra. We test our theory on number of state-of-the-art samplers with

different integrands. We are also able to predict the variance in MC integration if

we know exactly the power spectrum of the integrand involved.

Among various spherical samplers discussed in this dissertation (homoge-

nized) jittered sampler is recommended for rendering purposes (or other numerical

integrations) over Poisson Disk samplers, even when the number of samples re-

quired are not too high. This is because the convergence rate of Poisson Disk

samples is the same as the purely random samples (white noise). Homogenized



regular samples seems to give good results in the cornell box scenes (Fig. 7.5

and Fig. 7.6 ) due to the fairly low frequency content of the scene. For a scene

with highly complex material properties regular patterns can give aliasing artifacts

(false signals) due to the presence of peaks in its power spectra.



Chapter 8

Conclusions

In this work, we develop a framework to analyze the effects of various spherical

sampling patterns on the variance of MC integration. We also propose a mathe-

matical background to study hemispherical signals and samplers using spherical

harmonics by simply mapping hemispherical signals in the projective space. In

the evaluation of global illumination integrals, we use the notion of homogeneous

sample distributions on the sphere that allows manifestation of error only in terms

of variance during MC integration. We show that the variance is directly related

to the sampling and integrand power spectra. We also show that for a given class

of functions, we obtain the worst-case variance convergence rates.

One of the limitations of our framework is that it is designed for only stochastic

samplers and assumes some knowledge of the power spectrum of the sampling

pattern under study. Therefore, sampling patterns with varying power spectra (e.g.

Sobol), that is, which depend on the number of samples, cannot be handled by

our framework. We would like to explore this issue in future. Another promising



direction for future research is to develop a similar framework for deterministic

sampling methods like, Sobol or other low-discrepancy sequences that can be

generated directly on the sphere.

Additionally, our framework can be used to study the effects of various sam-

pling patterns with known and/or unknown closed-form power spectral formu-

lation. We show that by using simple shapes (quadratic, constant, etc.) for the

mean angular power spectra, exisiting state-of-the-art sampling power spectra

can be easily bounded. This also results in bounding the associated variance

for MC integration. We use our framework to theoretically derive best- and

worst-case variance convergence rates—for a given class of functions—of various

state-of-the-art sampling methods.

8.1 Design principles

In our theoretical framework (Sec. 6.2), we propose some principles to design

new sampling patterns. We also advocate the importance of the low frequency

zone of the corresponding sampling power spectra. We emphasize the fact that an

ideal sampling power spectrum must attain zero value as the frequency parameter

tends to zero. This property ensures that the distribution is sufficiently uniform.

In addition, the shape of the power spectrum near the zero frequency zone is also

very important. Moreover, the flatter the shape of the power spectral profile in

this low frequency zone, the faster the variance converges in MC integration for

favorable integrands. Ideally, the power spectrum must contain a range of low



frequencies that are perfectly zero.

Our experimental results in the Euclidean and spherical domains show that

no existing methods fulfill these design principles. Sampling methods based

on packing and hard local conditions like Poisson Disk and [85], do not have a

power spectrum converging to zero near zero frequency. This can be explained

by the lack of uniformity in the distribution which can be corrected using proper

subdivison of the domain through tile-based methods. For example, the tiled

version of Poisson Disk sampling in Wachtel et al. [99] has power spectrum

converging to zero towards zero frequency. Similarly, all methods based on the

capacity constraint [6] seem to guarantee a power spectrum that converges to zero.

However, these methods still have residual energy spread along low frequencies

which can be improved.

8.2 Quadrature rules on the sphere

In our framework, we perform Monte Carlo integration—instead of using optimal

adaptive quadrature rules—on the spherical and hemispherical domains despite

their low dimensional nature. We do this for a couple of reasons: First, our

present framework is designed only for non-adaptive sampling patterns. Adaptive

or importance-based sampling do not support the homogeneity of the sampling

patterns, and designing a variance analysis framework in such a case needs further

research; Second, as most production renderers are Monte Carlo based, our frame-

work provides an analysis tool that can be employed in the production pipeline



for choosing a sampling pattern that reduces the overall variance in integration of

(hemi-)spherical signals. New sampling patterns can also be designed using our

framework.

8.3 Future directions

Generating a sampling pattern with absolutely no energy in the low frequency

range seems to be a very challenging problem. We expect to use the theoretical

results and tools developed in this paper to help design such sampling patterns.

Another important avenue of research is to develop sampling methods with spec-

tral control directly in the spherical domain. Finally, taking into account more

sophisticated sampling strategies, such as adaptive (or importance) sampling and

filtering, could be an interesting avenue for future work.



Appendix A

Simplified variance equation

A.1 Contribution of DC peak in Variance

As shown in Eq. (5.9), we have the general closed-form expression of variance

given by:

Var (IN) =
〈
||IN ||2

〉
− || 〈IN〉 ||2

=
µ(S2)

2

N2

(
∞∑
l=0

l∑
m=−l

〈
||SS(l,m) · SF (l,m)||2

〉
− ||

〈
SS(l,m) · SF (l,m)

〉
||2
)
.

(A.1)

In this appendix, we show that the DC peak contribution is zero. Let us introduce

a temporary notation Var (IN , l,m) that represents the contribution of the (l,m)-

th component in the variance Var (IN) given in Eq. (A.1). We compute the



contribution of the DC peak (l = 0,m = 0) component in the variance as follows:

Var (IN , 0, 0) =
〈
||SS(0, 0) · SF (0, 0)||2

〉
− ||

〈
SS(0, 0) · SF (0, 0)

〉
||2 (A.2)

=
〈
SS(0, 0)2 · SF (0, 0)2

〉
− 〈SS(0, 0) · SF (0, 0)〉2 (A.3)

=
〈
SS(0, 0)2

〉
· SF (0, 0)2 − 〈SS(0, 0)〉2 · SF (0, 0)2 (A.4)

=
(〈
SS(0, 0)2

〉
− 〈SS(0, 0)〉2

)
· SF (0, 0)2 (A.5)

Here,
(
〈SS(0, 0)2〉 − 〈SS(0, 0)〉2

)
can be seen as the variance of the spherical

harmonic basis function Y m
l with l = 0,m = 0. Since, Y 0

0 is a constant function,

the corresponding variance would be zero resulting in the Var (IN , 0, 0) = 0.

This makes the Var (IN , 0, 0) = 0, showing that DC peak component does not

contribute to the variance of MC integration in the spherical domain.

A.2 Contribution of second term

In ||
〈
SS(l,m) · SF (l,m)

〉
||2, as only S is a random variable, we can simplify

this term as follows:

||
〈
SS(l,m) · SF (l,m)

〉
||2 = || 〈SS(l,m)〉 · SF (l,m)||2 .

For homogeneous sampling patterns 〈SS(l,m)〉 = 0 for all l 6= 0 ,m 6= 0.

Consequently, for DC peak (l = 0,m = 0), we get:

|| 〈SS(l,m)〉 · SF (l,m)||2 = 0

for all l 6= 0 ,m 6= 0.



Appendix B

Unbiased homogeneous sampling

In this appendix, we mathematically illustrate that the homogeneous sampling

patterns are unbiased in nature. For this, we show that the expected value of the

Monte Carlo estimator is equal to the integration of F . The expected value of the

MC estimator can be written as:

〈IN〉 =
µ(D)

N

〈∫
D

S(x)F (x)dx

〉
=
µ(D)

N

∫
D
〈S(x)〉F (x)dx . (B.1)

To make S homogeneous, we perform averaging over the group of motions, H

(translations for the torus and rotations for the sphere) over the whole domain,

this gives us:

〈IN〉 =
µ(D)

N

∫
D

1

µ(H)

〈∫
H

[τ(S)](x)dτ

〉
F (x)dx . (B.2)

To simplify the inner integral, we use the fact that H acts transitively on D, as

a result, the average of [τ(S)](x) over all τ ∈ H is the average of S(x) over all

x ∈ D:
1

µ(H)

∫
H

[τ(S)](x)dτ =
1

µ(D)

∫
D

S(x)dx . (B.3)



Plugging Eq. (B.3) back into Eq. (B.2) (with a change of variable), we get:

〈IN〉 =
µ(D)

N

∫
D

〈
1

µ(D)

∫
D

S(y)dy

〉
F (x)dx (B.4)

=
1

N

∫
D
〈S(y)〉 dy

∫
D
F (x)dx . (B.5)

In particular, when S(y) =
∑
δ(y − sk) for k = 1 : N , we get:

〈IN〉 =

∫
D
F (x)dx . (B.6)



Appendix C

Spectral Analysis of spherical cap

C.1 Spherical cap function in SH terms

In Chapter 6, we mentioned that a spherical cap function can be considered as

our worst-case integrand for a given class of functions [9]. We use spherical cap

function to perform our experiments in Chapter 7. In this section, we compute

an analytical expression for the power spectrum of a spherical cap function. For

simplicity sake, we define spherical cap function, Fθ0(θ), as a circularly symmetric

spherical cap centered at the north pole as a function of the colatitude θ ∈ [0, π]:

Fθ0(θ) =

 1 if θ ≤ θ0

0 otherwise
, (C.1)

where, ε < θ0 < π − ε, is a constant that controls the size of the spherical cap,

for ε > 0. Since Fθ0 is circularly symmetric, we can consider only the zonal

(m = 0) harmonic basis functions. Hereafter, we drop the subscript θ0 from Fθ0

to denote spherical cap function and express it as F . To obtain spectral coefficients



(SF (l, 0)) of the spherical cap function, we simply take its inner product—denoted

by 〈·, ·〉—with the zonal components of the spherical harmonics:

SF (l, 0) = 〈Fθ0(θ), Yl(θ, φ)〉 (C.2)

=

∫ π

θ=0

∫ 2π

φ=0

Fθ0(θ)Yl(θ, φ) sin θdφdθ (C.3)

=

∫ θ0

θ=0

∫ 2π

φ=0

Yl(θ, φ) sin θdφdθ (C.4)

=
√

2l + 1

∫ θ0

θ=0

∫ 2π

φ=0

P 0
l (θ, φ) sin θdφdθ (C.5)

=
√

2l + 1

∫ θ0

θ=0

∫ 2π

φ=0

P 0
l (cos θ) sin θdφdθ (C.6)

=
√

2l + 1

∫ θ0

θ=0

(∫ 2π

φ=0

dφ

)
P 0
l (cos θ) sin θdθ (C.7)

=
√

2l + 1

∫ θ0

θ=0

2πP 0
l (cos θ) sin θdθ (C.8)

= 2π
√

2l + 1

∫ θ0

θ=0

P 0
l (cos θ) sin θdθ . (C.9)

Legendre polynomials satisfy:

(2l + 1)P 0
l (x) =

d

dx

[
P 0
l+1(x)− P 0

l−1(x)
]
. (C.10)

Substituting Eq. (C.10) in Eq. (C.9), we get:

SF (l, 0) = 2π

(
P 0
l−1(cos(θ0)− P 0

l+1(cos θ0)
√

2l + 1

)
, (C.11)

which is the expression for the spherical cap harmonic coefficients SF (l, 0) in

terms of l and θ0. As we have shown in Chapter 5, the variance in numerical

integration for MC integration is directly related to the ||SF (l, 0)||2 of the integrand.



Here, our integrand is a spherical cap function and the corresponding ||SF (l, 0)||2

is given by:

||SF (l, 0)||2 = 4π2

(
|P 0
l−1(cos(θ0)− P 0

l+1(cos θ0)|2

2l + 1

)
, (C.12)

We use Eq. (C.12) in the angular power spectrum definition to numerically

compute the bounds on the associated variance of the spherical cap for vari-

ous state-of-the-art sampling patterns discussed in this dissertation. We would

like to set an upper bound on ||SF (l, 0)||2 given in Eq. (C.12). This expression con-

tains the shifted copies (with respect to l) of the associated Legendre Polynomial

Pl(x) :=P 0
l (x). We can first upper bound the term |Pl−1(cos θ0)− Pl+1(cos θ0)|.

Several sharp estimations can be found in the literature for the Legendre polyno-

mial Pl(x). A classical result for x ∈ ]−1, 1[ and l ∈ N, is the improved version

of Bernstein’s inequality, [62, 63], given by:

|Pl(x)| <

√
2

π(l + 1/2))

1

(1− x2)
1
4

. (C.13)

For x = cos θ0, this inequality becomes:

|Pl(cos θ0)| <

√
2

π(l + 1/2))

1√
sin θ0

=
2√

(2l + 1)π sin θ0

. (C.14)

We treat l = 0 as a special case. For l > 0, using the above inequality in Eq. (C.14)

we can derive:

|Pl−1(cos θ0)| < 2√
(2l − 1)π sin θ0

, (C.15)

and,

|Pl+1(cos θ0)| < 2√
(2l + 3)π sin θ0

<
2√

(2l − 1)π sin θ0

, (C.16)



without any loss of generality. From triangular inequality, we get:

|Pl−1(cos θ0)− Pl+1(cos θ0)| < |Pl−1(cos θ0)|+ |Pl+1(cos θ0)| . (C.17)

Using Eq. (C.15) and Eq. (C.16) in the above expression, gives us:

|Pl−1(cos θ0)− Pl+1(cos θ0)| < 4√
(2l − 1)π sin θ0

. (C.18)

For l > 0, both left and right hand side of Eq. (C.18) are positive. Therefore,

squaring followed by a division with 2l + 1 ≥ 1 on both sides, would not affect

the inequality:

|Pl−1(cos θ0)− Pl+1(cos θ0)|2

2l + 1
<

16

(2l + 1)(2l − 1)π sin θ0

. (C.19)

Plugging this in Eq. (C.12), gives us the upper bound on the power spectrum of

the spherical cap function for any θ0 and l > 0, which can be written as:

||SF (l, 0)||2 < 64π

sin θ0

(
1

(2l + 1)(2l − 1)

)
. (C.20)

For l = 0: Associated Legendre polynomials have a property according to

which P−1(x) = P0(x), that gives:

|Pl−1(cos θ0)| = |P−1(cos θ0)| = |P0(cos θ0)| < 2√
π sin θ0

, (C.21)

|Pl+1(cos θ0)| = |P1(cos θ0)| < 2√
3π sin θ0

<
2√

π sin θ0

, (C.22)

|P0(cos θ0)− P1(cos θ0)| < 4√
π sin θ0

, (C.23)
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Figure C.1: We illustrate the power profile (Power vs l) of a spherical cap function
(in blue) for θ0 = 60 with the corresponding bound (in orange). We show three
plots of the same power spectrum (a), with different zoom-in plots, (b) and (c), to
better see the upper bound and to show that the power of the spherical cap is well
bounded by the upper bound we derived in Sec. C.2.

|P0(cos θ0)− P1(cos θ0)|2 < 16

π sin θ0

, (C.24)

using the above inequality in Eq. (C.12), for l = 0, gives us the upper bound on:

||SF (0, 0)||2 < 64π

sin θ0

. (C.25)

The inequality in Eq. (C.20) does not gaurantee a (very) tight bound on the power

of the spherical cap coefficients. However, for our analysis we found that this

bound can still be used to conjecture the rate of convergence for the worst-case

error in integration.

C.2 Spherical cap power spectrum

To study the worst-case, we are looking for a function with squared-norm zonal

spectral coefficients, ||SF (l, 0)||2, exhibiting a decay rate of order O(l−2), as

derived by Brandolini in [9]. We have shown in the previous subsection C.1, that a

spherical cap function has this behaviour (Eq. (C.20)). The corresponding angular



power spectrum decay rate can be obtained using Eq. (C.20) in the definition

of the angular power spectrum. The resulting decay rate of the angular power

spectrum for a spherical cap is given by:

PF (l) <
C0

(2l + 1)2(2l − 1)
, (C.26)

where C0 = 64π/(sin θ0). In Fig. C.1, we show an illustration of this upper

bound on a spherical cap function of size θ0 = 60. We can derive a correspoding

worst-case variance convergence rate using Eq. (C.26) given by:

Var (IN) <
µ(S2)

2
C0

N

∞∑
l=0

P̆S(l)

(2l + 1)(2l − 1)
. (C.27)

This variance bound can be used to study different shapes of the sampling power

spectra (P̆S(l)) to derive their convergence rate with respect to the number of

samples N .
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