
HAL Id: tel-01214985
https://hal.science/tel-01214985v1

Submitted on 13 Oct 2015 (v1), last revised 21 Oct 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precise and Adaptable Worst-Case Execution Time
Estimation in Hard Real-Time Systems

Vladimir-Alexandru Paun

To cite this version:
Vladimir-Alexandru Paun. Precise and Adaptable Worst-Case Execution Time Estimation in Hard
Real-Time Systems. Computation and Language [cs.CL]. Ecole Doctorale Polytechnique, 2014. En-
glish. �NNT : �. �tel-01214985v1�

https://hal.science/tel-01214985v1
https://hal.archives-ouvertes.fr

Precise and Adaptable Worst-Case Execution Time
Estimation in Hard Real-Time Systems

A dissertation presented

by

Vladimir-Alexandru PAUN

to

The Department of UIIS, ENSTA ParisTech

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Ecole Polytechnique

Palaiseau, France

December 2014

c©2014 - Vladimir-Alexandru PAUN

All rights reserved.

PhD thesis defended the 18th of December 2014 in front of the examining committee:

Prof. Liliana Cucu-Grosjean Referee

INRIA Researcher

Dr. Renaud Sirdey Referee

CEA Director of Research

Prof. Bruno Monsuez Co-Supervisor

ENSTA ParisTech

Prof. Michel Mauny Co-Supervisor

ENSTA ParisTech

Mr. Philippe Baufreton Examiner

Sagem Senior Scientist

Dr. Franck Vedrine Examiner

CEA Research Engineer

Prof. Kamel Barkaoui Examiner

CNAM, VESPA Research Team Leader

Prof. Florin Popentiu Examiner

UPB, City University London, UNESCO Chair

Thesis advisors Author

Prof. Bruno Monsuez

Prof. Michel Mauny Vladimir-Alexandru PAUN

Precise and Adaptable Worst-Case Execution Time
Estimation in Hard Real-Time Systems

Abstract
Nowadays real-time systems are omnipresent and embedded systems thrive in a variety of

application fields. When they are integrated into safety-critical systems, the verification of

their properties becomes a crucial part. Dependability is a primary design goal in environ-

ments that use hard real-time systems, whereas general-use microprocessors were designed

with a high performance goal. The average-throughput maximization design choice is in-

trinsically opposed to design goals such as dependability that benefit mostly from highly

deterministic architectures without local optimizations.

Besides the growth in complexity of the embedded systems, platforms are getting more

and more heterogeneous. With regard to the respect of the timing constraints, real-time

systems are classified in two categories: hard real-time systems (the non respect of a dead-

line can lead to catastrophic consequences) and soft real-time systems (missing a deadline

can cause performance degradation and material loss). We analyze hard real-time systems

that need precise and safe determination of the worst-case execution time bounds in order

to be certified. The validation of their non-functional properties is a complex and resource

consuming task. One of the main reasons is that currently available solutions focus on

delivering precise estimations through tools that are highly dependent on the underlying

platform (in order to provide precise and safe results, the architecture of the system must

be taken into account).

In this thesis we address the above issues by introducing a timing analysis method that

maintains a good level of precision while being applicable to a variety of platforms. This

adaptability is achieved through separating as much as possible the worst-case execution

time (WCET) estimation from the model of the hardware. Our approach consists in the

introduction of a new formal modeling language that captures the complex behaviour of

modern hardware and is guided by the timing analysis in order to achieve the needed pre-

vii

viii Abstract

cision to scalability tradeoff. The analysis drives a conjoint symbolic execution of the

program’s binary and the processor model using a dynamic prediction module that decides

what states to merge in order to limit the state space explosion. Several state merging

algorithms are introduced and applied that can also give an estimation of the introduced

precision loss.

Keywords: real-time systems, worst-case execution time, timing analysis.

Directeur de Thèse Auteur

Prof. Bruno Monsuez

Prof. Michel Mauny Vladimir-Alexandru PAUN

Détermination des Pire-temps d’Exécution
des Systèmes Temps Réels Durs

Abstract

La détermination précise de pires temps d’exécution (WCET) est un sujet de grand intérêt

pour les systèmes embarqués critiques. Le sujet de la Thèse adresse des problèmes qui

ne sont pas résolus dans la littérature notamment l’inertie notable dans le changement

de plateformes cibles des analyseurs existants et la perte de précision lors du passage à

l’échelle. Nos travaux se concentrent justement sur une souplesse au changement du pro-

cesseur à analyser et la maitrise de la perte de précision à l’aide d’un nouvel langage de

modélisation du matériel qui se trouve en étroit lien avec l’analyseur même.Une estima-

tion sûre du WCET nécessite la prise en compte du matériel sur lequel le programme est

exécuté. Les processeurs embarqués dans les systèmes critiques présentent des composants

qui ont été conçus non pas pour faciliter leur analyse mais pour maximiser les performances

moyennes, introduisant une variabilité temporelle significative. Le temps d’exécution est

donc dépendent, entre autres des valeurs effectives de données mais aussi de l’historique

d’exécution. Le but étant d’estimer le pire temps d’exécution, l’option de supposer qu’à

chaque fois l’optimisation ne se produit pas et que le pire temps possible est nécessaire

conduit à une surestimation trop importante. A ce problème se rajoute aussi le fait que

nous ne pouvons pas supposer qu’un pire temps local (par exemple le nombre de cycles

pendant une micro-opération du pipeline) contribuera au vrai pire temps global à cause

des anomalies temporelles des processeurs. Tous les chemins d’exécution, engendrés par

la totalité des entrées possibles doivent donc être analysés. Le fait de devoir gérer cette

explosion combinatoire, nous a guidé dans les choix de conception du modèle utilisé pour

simuler le processeur. Nous avons conçu une méthode de spécification et d’analyse de

systèmes, basée sur la méthode des abstract state machines (ASM). L’extension HiTAsm

ix

x Abstract

consiste en l’incorporation des notions de hiérarchie et de temporalité, pour pouvoir gérer

l’explosion combinatoire en choisissant une définition d’un composant parmi plusieurs

niveaux d’abstraction possibles et pour pouvoir estimer le temps écoulé entre chaque tran-

sition des états du système. Cela permet l’estimation de la consommation temporelle et

la variation dynamique du niveau d’abstraction du système analysé, afin d’analyser un

grand nombre d’états, tout en minimisant la perte de précision. Le modèle du processeur

et l’analyseur sont complètement séparés, ce qui est nécessaire pour rendre l’outil adapt-

able aux changements de plateforme. L’analyseur est basé sur une exécution symbolique

conjointe du binaire et du modèle de processeur spécifié avec HiTAsm. En partant des

valeurs symboliques, toutes les entrées possibles du binaire sont analysées, en utilisant des

sur-approximations uniquement quand c’est nécessaire de manière à minimiser la perte de

précision et fournir le pire-temps d’exécution du programme le plus proche de la valeur

théorique.

Mots-clés: pire-temps d’exécution, analyse statique, temps réel, sûreté, certification.

Contents

Title Page . i
Abstract . vii
Abstract français . ix
Table of Contents . xi
List of Figures . xvii
List of Tables . xix
Citations to Previously Published Work . xxi
Acknowledgments . xxiii
Dedication . xxv

1 Introduction 1
1.1 WCET and hard real-time systems . 2

1.1.1 Real-time systems . 2
1.1.2 Worst-case execution time . 7

1.1.2.1 Estimation of Execution Time 9
1.1.2.2 The Use of WCET Estimates 11
1.1.2.3 Calculation of WCET Estimates 12
1.1.2.4 On the Characterization of Estimations 14

1.1.3 Hardware Considerations in WCET Estimation 18
1.1.4 Certification . 18

1.2 Problem definition . 19
1.3 Research goal . 21
1.4 Contributions . 22
1.5 Organization of the thesis . 24

2 Related Work 27
2.1 Dynamic methods . 28

2.1.1 The choice of the measuring method 28
2.1.2 Stopwatch method . 29
2.1.3 Date and time OS commands . 30
2.1.4 Prof and Gprof (UNIX) . 30
2.1.5 Timer and Counter . 32

xi

xii Contents

2.1.6 Software Analyzer . 33
2.1.7 Logic Analyzer . 34
2.1.8 Summary of execution time measurement measures 34
2.1.9 Advantages and weaknesses of dynamic methods 35

2.2 Static methods . 36
2.2.1 AbsInt Advance Analyzer . 37
2.2.2 OTAWA . 40
2.2.3 SWEET . 41
2.2.4 CHRONOS . 43
2.2.5 BoundT . 44
2.2.6 Advantages and weaknesses of static methods 45

2.3 Hybrid methods . 46
2.3.1 FORTAS . 48
2.3.2 Heptane . 48
2.3.3 Probabilistic worst-case execution time 50
2.3.4 RapiTime . 53
2.3.5 Advantages and weaknesses of hybrid methods 54

2.4 Comparison of existing methods . 55
2.5 Conclusions . 57

3 HiTAsm Formal Framework 59
3.1 Abstraction and Computer Science . 61
3.2 Related Work . 62
3.3 Motivation . 63
3.4 Notational preamble . 64
3.5 Abstract State Machine . 65

3.5.1 ASMs in a nutshell . 66
3.5.1.1 Turing Machines . 68

3.5.2 ASMs and hardware modelling 69
3.5.3 ASMs and hardware abstraction 70
3.5.4 Stepwise Refinement of ASMs . 73

3.6 Time and Abstract State Machines . 73
3.6.1 Adding time in basic ASMs . 75

3.6.1.1 No timed updates . 76
3.6.1.2 Single timed updates . 77
3.6.1.3 Mixed updates . 77
3.6.1.4 Detailed definition . 79
3.6.1.5 States and Update Sets 81
3.6.1.6 Transition rules and runs of the HiTAsm 85

3.6.2 Equivalence with the basic ASM 89
3.6.3 Timed ASM defined by a set of Axioms 89

3.7 Hierarchical TASM foundation . 94

Contents xiii

3.7.1 Preambule . 94
3.7.2 Hierarchical ASMs . 95
3.7.3 Cycle-accurate vs time-accurate model 97
3.7.4 Extension of the ASM postulate 98
3.7.5 Mathematical foundation of HiTAsm 100
3.7.6 Correctness proof outline . 102
3.7.7 Abstract processor execution . 104
3.7.8 Dynamic choice of ASM refinements (the Oracle) 105

3.8 Conclusions . 107

4 HiTAsm at Work 109
4.1 On the hierarchical levels of abstraction 109

4.1.1 HiTAsm semantic level . 111
4.2 Timing Anomalies . 113

4.2.1 Handling Timing Anomalies . 115
4.3 HiTAsm for WCET estimation in a nutshell 119

4.3.1 Timing anomalies remarks . 120
4.4 Conclusions . 122

5 The HiTAsm Language Definition 123
5.1 Syntax of the language . 123
5.2 Semantic essence of HiTAsmL . 124

5.2.1 HiTAsmL-s the core of the HiTAsm Language 126
5.2.2 Preambule . 127
5.2.3 Assignments . 128
5.2.4 Firing updates . 129

5.2.4.1 Module abstraction . 130
5.2.5 HiTAsmL semantics . 131
5.2.6 A HiTAsmL graphical syntax . 132

5.2.6.1 HiTAsm Module . 132
5.2.6.2 HiTAsm Abstract Module 132
5.2.6.3 HiTAsm Hierarchic Module 133
5.2.6.4 HiTAsm Function . 133
5.2.6.5 HiTAsm Rule . 134
5.2.6.6 HiTAsm abstractions 134

5.3 Implementation . 137
5.4 Conclusions . 137

6 The Hardware Model 139
6.0.1 Global algorithm . 139

6.1 Modeling a Processor . 141

xiv Contents

6.1.1 Inherent analysis problems to the use of microprocessors in hard
real-time systems . 141

6.2 Hardware and its influence on temporal analysis 142
6.2.1 Pipeline . 142
6.2.2 Branch Prediction Unit (BPU) . 143
6.2.3 Floating Point Unit (FPU) . 144
6.2.4 Level 1 Cache . 144
6.2.5 Scratchpad . 146
6.2.6 Memory Management Unit (MMU) and Translation Lookaside Buffer146
6.2.7 BUS . 147
6.2.8 Direct Memory Access (DMA) 148
6.2.9 Level 2 cache . 149
6.2.10 Timing Anomalies remarks . 149

6.3 The RISC processor Family . 149
6.4 Case study - Motorola MPC555 Processor 150

6.4.1 PowerPC ISA . 151
6.4.1.1 Instruction formats . 152

6.4.2 Global architecture of the MPC555 153
6.4.3 Instruction Sequencer . 155
6.4.4 Execution Units . 157
6.4.5 Integer Unit (IU) . 159
6.4.6 Load/Store Unit (LSU) . 160
6.4.7 Floating-Point Unit (FPU) . 161
6.4.8 External Bus Interface . 162
6.4.9 The RCPU HiTAsmL model . 162

6.4.9.1 Memory model . 164
6.4.9.2 The Fetcher . 170
6.4.9.3 MPC555 pipeline implementation 170
6.4.9.4 Instruction Issue . 172
6.4.9.5 Pipeline stalls and forwarding 173
6.4.9.6 Data Hazards . 173
6.4.9.7 Instruction Dispatch/Decode (ID) 174
6.4.9.8 Execution units . 175
6.4.9.9 Burst Buffer Unit . 177
6.4.9.10 Instruction Memory Protection Unit 180
6.4.9.11 Execute PC . 180
6.4.9.12 Write Back . 181

6.5 Conclusions . 183

Contents xv

7 The WCET Analysis 185
7.1 Structure of the method . 185
7.2 Value Analysis . 186

7.2.1 Implementation . 188
7.2.2 Syntax . 189

7.3 Conjoint Symbolic Execution . 192
7.3.1 Symbolic Execution . 192
7.3.2 The global SE implementation . 195
7.3.3 SE-HiTAsm . 195

7.3.3.1 Symbolic Logic . 196
7.4 States and HiTAsms . 203

7.4.1 Similar states identification . 203
7.4.2 Order on HiTAsm states . 204
7.4.3 State Merging . 211

7.5 Prediction Module (PM) . 213
7.5.1 Prediction Module search strategies 214

7.5.1.1 Product domain search 215
7.5.1.2 Relational domain search 216

7.6 Equivalence Classes . 216
7.6.1 Mathematical foundation . 217

7.6.1.1 Complexity study . 217
7.6.2 A Formal View on State Partitioning 218

7.6.2.1 Processor dependent equivalence relation 220
7.7 Implementation . 222

7.7.1 Global algorithm . 222
7.7.2 Analysis termination . 224

7.8 Conclusions . 224

8 Conclusions 227
8.1 Original research (at a glance) . 227
8.2 Industrial Applications and Future Research 228
8.3 Outlook . 228

A Code listing 231

Bibliography 233

List of Figures

1.1 Major and minor cycle (frame) in a Cyclic Scheduler 5
1.2 Schedule Table for Cyclic Scheduler . 6
1.3 A Full Frame exists between the Arrival and Deadline of the Task 6
1.4 Execution time of a task . 7
1.5 Distribution of execution times . 10
1.6 Global structure of our WCET estimation method 25

2.1 Global structure of the aiT tool . 38
2.2 Global structure of the OTAWA tool . 42
2.3 Global structure of the Chronos tool . 44
2.4 Global structure of the Heptane tool . 49
2.5 Global structure of the RapiTime Tool . 54

3.1 The interpretation of the Asm n-ary function f (t1, ..., tn) := t 67
3.2 The interpretation of the Asm 0-ary function f1 := t, ~t�A = v1 67
3.3 Binary function application on two isomorphic states 72
3.4 Determining the update with the minimal duration 88
3.5 Selecting the update set corresponding to the minimal duration 88
3.6 Applying the update set and updating the remaining durations 88
3.7 Selecting the new minimum delay from the remaining update sets 89
3.8 Time-accurate ASM as a refinement scheme 98
3.9 Dynamic HiTAsm abstraction level switch 100
3.10 HiTAsm refinement . 104
3.11 HiTAsm abstract execution . 105
3.12 The oracle and the fetcher modules . 107
3.13 Different definitions of the fetcher . 108

4.1 Timing anomalie example . 118
4.2 Timing anomalies partitioning . 119
4.3 Timing anomalies identified paths through relations between locations . . . 120
4.4 Global architecture of the WCET estimation tool 121

xvii

xviii List of Figures

5.1 HiTAsmL module . 132
5.2 HiTAsmL abstract module . 133
5.3 HiTAsmL abstract module . 133
5.4 HiTAsmL nullary function . 134
5.5 HiTAsmL rule . 135
5.6 HiTAsmL htasm . 135
5.7 HiTAsmL hmodule . 136
5.8 Lower level of abstraction . 136
5.9 Higher level of abstraction . 136

6.1 Global architecture of the WCET estimation tool 140
6.2 Logical Processing Mode . 152
6.3 Motorola MPC555 view from the user manual 154
6.4 RCPU Block Diagram from the user manual 156
6.5 Sequencer Data Path from the manual . 158
6.6 Pipelined execution of addition and multiplication intructions 160
6.7 Micro-pipelineing of the multiplication instructions by the IMUL-IDIV unit 160
6.8 IMUL-IDIV micro-pipelineing stall . 160
6.9 LSU access latencies . 161
6.10 RCPU Programming Model - User Model UISA 162
6.11 MPC555 htasm . 163
6.12 MPC555 hmodule . 164
6.13 Abstract rule definition . 164
6.14 HiTAsmL RCPU hmodel . 165
6.15 HiTAsmL RCPU model . 166
6.16 HiTAsmL RCPU registers . 168
6.17 HiTAsmL RCPU registers . 169
6.18 HiTAsmL RCPU memory model . 169
6.19 Refined HiTAsmL RCPU model . 171

7.1 Global architecture of the WCET estimation tool 186
7.2 Value Analysis . 187
7.3 Interpretation of the 0x100003dc instruction 188
7.4 Interpretation of the 0x100003dc instruction from the RCPU manual . . . 189
7.5 The graph of the decompiled binary . 190
7.6 Symbolic execution of a program . 194
7.7 WCET analysis overview . 202
7.8 The Dynamic Fusion - snapshot of the Prediction Module 213
7.9 Global architecture of the WCET estimation tool 223

List of Tables

2.1 Summary of measurement measures . 35
2.2 WCET estimation methods overview . 55
2.3 WCET estimation methods summary . 57

3.1 Inductive deduction of the semantics of HiTAsm rules 87

7.1 Inductive deduction of the semantics of Symbolic HiTAsm 201

xix

Citations to Previously Published Work

Large portions of Chapter 3 have appeared in the following two papers:

V.-A. Paun, B. Monsuez, P. Baufreton, Hierarchical Timed Abstract State
Machines for Hard Real-Time Embedded Processors,
Verification and Evaluation of Computer and Communication Systems (VE-
CoS), 2013.

V.-A. Paun, B. Monsuez, P. Baufreton, Hierarchical Timed Symbolic Abstract
State Machines for precise WCET estimation,
WiP Session of the 19th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2013.

Parts of Chapter 6 and 7 have appeared in the paper:

V.-A. Paun, B. Monsuez, P. Baufreton, On the Determinism of Multicore Pro-
cessors,
French Singaporean Workshop on Formal Methods and Applications (FSFMA),
2013.

V.-A. Paun, B. Monsuez, P. Baufreton, Adaptable and Precise Worst Case
Execution Time Estimation Tool,
WiP Session of Languages, Compilers, Tools and Theory for Embedded Sys-
tems (LCTES), 2012.

A publication on the material presented in Chapter 3 (together with B. Monsuez, P. Baufre-
ton) has been accepted for publication and will be published in the first issue of the follow-
ing journal:

International Journal of Critical Computer-Based Systems (IJCCBS).

xxi

Acknowledgments

First of all, I would like to thank Professor Bruno Monsuez for his continuous scientific

and technical support offered throughout the course of the PhD thesis. He provided me

with enough freedom for approaching my goals and guidance to complete this thesis. I ap-

preciated the excellent opportunity to work in his research group, an elevated professional

environment and an enthusiastic creative ambiance.

I wish to thank Professor Michel Mauny, my thesis co-supervisor, for the critical construc-

tive discussions designed to improve the quality of this thesis.

It is my pleasure to thank Professor Liliana Cucu-Grosjean, and Dr. Renaud Sirdey, for ac-

cepting to review my PhD thesis as well for their valuable remarks and subtle suggestions.

I extend my thanks to the other members of the jury, Dr. Franck Vedrine and Professor

Kamel Barkaoui.

The PhD thesis work was carried out in the CIFRE framework of a project supported and

funded by the Association Nationale de la Recherche et de la Technologie (ANRT), with an

industrial partner (Sagem - SAFRAN Electronics). I thank the Research Program Manager,

Mr. Philippe Baufreton, from Sagem for the interest, good collaboration and expert advices

that offered me a thorough and valuable industrial insight which completed my vision and

knowledge of the subject.

In addition I would like to thank Mrs. Christine Ferret for her help since my enrolment to

the Ecole Doctorale Polytechnique to the present. Also, I thank Mrs. Catherine Le Golvan

and Mr. Thierry Pouliquen, for their kind help in various administrative situations over the

years as well as for their great human qualities.

Also, a friendly consideration goes to my colleagues whose names were not explicitly men-

tioned. Sincerely I confess that they occupy the same central place in my memories as the

other.

Not least, I mention here the opportunity offered to do a PhD thesis at ENSTA ParisTech,

an university with international prestige and high scientific level. I consider it an extraordi-

nary experience.

Finally, I express my entire gratitude to my family. My parents, my sister and my grand-

parents have been really supportive all the time and they represent a wonderful team.

xxiii

Dedicated to my father Viorel,

my mother Jenica,

and my sister Maria.

xxv

Chapter 1

Introduction

With regard to the respect of the timing constraints, real-time systems are classified

in two categories namely hard real-time systems (the non respect of a deadline can lead

to catastrophic consequences) and soft real-time systems (missing a deadline can cause

performance degradation and material loss). We hereby analyze hard real-time systems

that need precise and safe determination of the worst case execution time (WCET) bounds

that are crucial in the certification process. Two approaches exist for the timing analysis,

namely dynamic and static methods, [WEE+08]. We propose a static method in order to

deliver safe estimations for modern processors that contain, for example, pipelines or cache

memories that make the analysis challenging.

In order to give a safe estimation of the WCET, all the interactions and reachable states of

the system must be considered or over approximated, hence the need of an analysis that

takes into account the exact underlying architecture. We also focus on the separation, as

much as possible, of the system model from the analysis part in order to achieve the flexi-

bility needed to adapt to new hardware.

In our approach we start from the system’s model and the binary that will be executed on

the final platform. An extension of the Symbolic Execution (SE), [LS99a], the conjoint SE,

will generate all the reachable states of the processor, under the supervision of a prediction

module that will fusion identical and similar states in order to contain the state space ex-

plosion and give details regarding the global precision loss of the WCET estimation.

In the following we first take a look into the state of the art concerning timing analysis and

1

2 Chapter 1: Introduction

we continue with the description of the high level architecture of our tool. Subsequently

we take a closer look into the formal model used to simulate the hardware that gives us

the edge in the adaptability of our tool followed by a presentation of the WCET estimation

steps and the transformations needed to contain the combinatorial explosion.

1.1 WCET and hard real-time systems

1.1.1 Real-time systems

The increased use of computers to control safety-critical real-time functions in the past

decade has made their study the focus of numerous research. A real-time system can be

seen as an information processing system which must respond to external inputs within a

finite and specified period, [You82]. The concept of time is essential in real-time application

systems, and since such systems involve sharing resources among various processes, the

concept of scheduling is equally important.

Definition 1 (Real-time systems) The computer systems where the correctness of a com-

putation is dependent on both the logical results of the computation and the time at which

these results will be produced are called real-time systems.

A real-time system usually consists of a number of real-time tasks that generate jobs in a

predictable manner. These tasks and jobs have upper bounds upon their worst-case execu-

tion requirements, and associated deadlines, by which all execution must be completed. As

we already pointed out, the consequences of a task missing its time bounds may vary from

task to task and are often expressed as the criticality of the task.

Definition 2 (Real-time task) A real-time task is a task with real-time constraints associ-

ated with it.

Definition 3 (Jobs) Let j = (ta, e, td) be a real-time job, characterized by the three parame-

ters - arrival time ta, execution requirement e, and a deadline td, with the interpretation that

the job consumes e execution units over the interval [ta, td) and let J be a finite or infinite

collection of jobs with J = { j1, j2, · · · }.

Chapter 1: Introduction 3

A number of different types of deadlines can be associated with real-time systems:

• a hard deadline is critical to the operation of the system as a whole - missing one can

result in failure;

• a firm deadline must be met, and failure to do so will render the result of execution

useless therefore wasting resources;

• a soft deadline is less stringent, a late result will not be as valuable but may still be

useful.

Based on the classification of deadlines, we can distinguish between real-time systems:

• hard real-time system - systems with safety-critical constraints - missed deadlines

may be catastrophic;

• soft real-time system - missed deadlines reduce the value of the system.

Hard real-time systems span many application areas like space, nuclear, avionics, auto-

motives, process control, robot systems, just to mention a few. The logical and timing

correctness must be explored or proven if possible during the design implementation and

test passes and additionally actions must be taken to handle run-time that may occur from

transient or permanent hardware errors. A dependability requirement of the hard real-time

system imposes that the system be kept in a safe state.

Definition 4 (Dependability). Dependability is a measure of a system’s availability, relia-

bility, and its maintainability.

The dependability states that a system should remain fully operational even after a perma-

nent hardware fault occurs and remain in a safe state even if a second fault occurs. The

probability of failure of a dependable system must be tolerable.

Hard real-time systems must undergo a certification process that will assign further safety

insurance levels to each function of the system based on the gravity of the consequences of

a deadline miss.

4 Chapter 1: Introduction

Failure in hard real-time systems has unacceptable consequences, therefore the task must

execute correctly and usually their deadline cannot be exceeded without resultant failure.

Scheduling has as its aim the correct allocation of temporal computational resources be-

tween competing tasks in a system so that each task will perform its computational over-

head within a deadline. The confirmation that this is possible means that the system is

schedulable, otherwise not.

Definition 5 (Schedule) Let S be a schedule for any collection of jobs J defined as:

S : R × J → {0, 1},

a mapping from the cartesian product of the real numbers and the collection of jobs to

{0, 1}, where S (t, j) equal to one if schedule S assigns the processor to job j at time-instant

t, and zero otherwise.

Real-time task scheduling essentially refers to determining the order in which the various

tasks are to be executed by the operating system. Operating systems rely on one or more

schedules to prepare the execution schedule of various tasks that it needs to run.

A schedulability analysis must be performed in order to assess certain properties of the

tasks and their behaviour in the system. This implies that the execution time of the in-

dividual tasks of the system must be determined. In order to consider the worst possible

combination of features that can take place, the guarantees must be pessimistic. Therefore,

if the worst-case occurs there will be enough time in the schedule to ensure completion of

all tasks.

Schedulers are characterized by the scheduling algorithm they use. A popular scheme clas-

sifies the real-time task scheduling algorithms based on the definition of the scheduling

points:

1. Clock Driven:

• Table-driven

• Cyclic

2. Event Driven:

Chapter 1: Introduction 5

• Simple priority-based

• Rate Monotonic Analysis

• Earliest Deadline First

3. Hybrid

• Round-robin

An example of a highly used scheduler in the industry is the cyclic scheduler. It gets its

popularity thanks to its simplicity, efficiency and the programming ease.

Cyclic scheduling is static, computed offline and stored in a table, therefore it repeats a

precomputed schedule that is stored for only one major cycle. Each task in the task set J to

be scheduled repeats identically in every major cycle that is divided into minor cycles also

called frames, Figure. 1.1.

f1 f2 f3 f4

Minor
cycle

Major Cycle Major Cycle

f4n f4n+1 f4n+2 f4n+3

Version 2 CSE, IIT Kharagpur

Figure 1.1: Major and minor cycle (frame) in a Cyclic Scheduler

The frame boundaries are defined through interrupts generated by a periodic timer, a

frame being assigned to run in one or more frames following a schedule table as shown in

table 1.2.

An important design parameter of the scheduler is the size of the frame that needs to be

carefully chosen in order to satisfy the following three constraints:

• Minimum context switching. Ensures that a minimum number of context switches

occur during the task execution. This means that the task instance must complete

execution within its assigned frame. We can formally express this constraint as:

max({ei}) ≤ F where ei is the execution time of the task Ti, and F is the frame size.

• Minimization of table size. Requires that the number of entries should be minimal

in order to minimize the storage requirements of the schedule table.

6 Chapter 1: Introduction

• Satisfaction of task deadline. This constraint is necessary to ensure the task meets

its deadline. It imposes that between the arrival and the deadline of the task at least

one full frame must be available.

Task Number Frame Number

T3 F1

T1 F2

T3 F3

T4 F2

Figure 1.2: Schedule Table for Cyclic Scheduler

0 kF (k+1)F (k+2)F

t d

∆t

Task arrival
Deadline

Task arrival

0

t d

∆t

(k+1)F

Deadline

kF (k+2)F

Version 2 CSE, IIT Kharagpur

0 kF (k+1)F (k+2)F

t d

∆t

Task arrival
Deadline

Task arrival

0

t d

∆t

(k+1)F

Deadline

kF (k+2)F

Version 2 CSE, IIT Kharagpur

Figure 1.3: A Full Frame exists between the Arrival and Deadline of the Task

Chapter 1: Introduction 7

As we can see in the scheduler example above, the execution time of a task (expressed as

e, the execution requirement in Definition 3) is crucial in order to ensure that the deadline is

expected and to design a valid schedule of the task collection. In the following we introduce

the execution time and timing analysis of real-time systems.

1.1.2 Worst-case execution time

The execution time (ET) of a task is the amount of computation time required to obtain

its result. For simplicity, the original scheduling techniques assumed that ET did not vary

- considered to be fixed for each executing task. Since this is a severe restriction there is

an obvious way to extend this model. By assuming that a task with variable ET has at

least a finite maximum which it can take we can therefore use the value of this worst-case

execution time (WCET) in the analysis instead of a constant execution time.

actual
BCET

actual
WCET

safe BCET estimates safe WCET estimates

tighter tighter

possible execution times

time
0

Figure 1.4: Execution time of a task

Definition 6 (WCET) The worst-case execution time is an upper bound on the greatest

time that a task will take to perform its execution when it has sole access to all computa-

tional resources and under the complete set of all possible environmental conditions.

When the WCET value is used and the time frame in the scheduler is chosen accordingly,

no task will exceed this value and the deadlines will be met. The obvious drawback is that

computational resources will be wasted whenever the task will take less than the WCET.

Moreover, as we will show in the following, WCET can only be estimated and not com-

puted because of the nature of the underlying hardware in the real-time system.

The execution time of a task is no longer a constant value since the introduction in em-

bedded systems of processors featuring modern architectural units. These units were con-

ceived to improve the average execution time with little to no regard to the worst-case.

8 Chapter 1: Introduction

The heuristics employed take advantage of data locality and benefit from certain hardware

configurations in order to gain processing time by using either best effort techniques in

pipelining resources or complex cache replacement policies, [Rei09; HLTW03].

The value of the WCET estimation is of great importance in real-time systems having mul-

tiple uses:

• Temporal validation

• Schedulability analysis schedulability guarantees (worst-case)

• System dimensioning Hardware selection

• Optimization of application code

• Early in application design lifecycle

Another useful concept in real-time systems is the worst-case response time employed, for

example, to determine whether a system model is schedulable.

Definition 7 (Worst-case response time). The worst-case response time is defined as an

upper bound on the greatest time duration starting from the occurrence of the event gener-

ating the task (task arrival time) until the time the task produces its results.

Let S be a system defined by the collection of tasks
n⋃

i=1
Ti. For a given task Ti if RT < td

meaning that the response time is less than its deadline then Ti is schedulable. If all of the

tasks in a system are schedulable, Ti is schedulable ∀i ∈ [0 · · · n], then the system S is said

to have a schedulability guarantee [LL73b].

The link between the WCRT and the WCET and its importance in the case of the scheduling

analysis can be seen in the following equation which gives the WCRT ri of a task i through

a worst-case number of interrupts by all higher-priority task j ∈ hp(i):

ri = Ci +
∑
∀ j∈hp(i)

n j(τi) ×C j, (1.1)

where n j(τi) is the maximum number of activated events for the task j during ri and Ci, C j

are the WCET (therefore assuming no interrupts of task i and j. We generally compute ri

Chapter 1: Introduction 9

iteratively, as shown in the following algorithm, [JHE04].

Algorithm 1: Iterative WCRT computation algorithm
Data: Tlow

Result: tnewResp, the new response time and the worst-case response time, ri

1 tnewResp ←− Tlow.WCET ;

2 while tnewResp > toldResp do

3 toldResp ←− tnewResp;

4 for i← 0 to ThighList.size do

5 Thigh ←− HighPriorTaskList.get(i);

6 MaxActivations←−max number of activations of Thigh during toldResp;

7 Tinterr ←− MaxActivations ∗ Thigh.WCET ;

8 tnewResp ←− tnewResp + Tinterr;

1.1.2.1 Estimation of Execution Time

Several types of execution time measures can be used in order to describe the timing

behaviour of a system as shown in Figure 1.5.

10 Chapter 1: Introduction

time [ms]

ex
ec

ut
io

n
tim

e
di

st
rib

ut
io

n

0
measures

program actual execution times

timing estimations

BCET WCET

reference program

another program

WCETm WCETe

BCET = best-case execution time

WCET = worst-case execution time

WCETm

WCETe

= measured WCET

= estimated WCET

accuracy

worst-case guarantee

Figure 1.5: Distribution of execution times

The worst-case execution time is the longest possible execution time of the program

when it runs in its production environment. At the opposite spectrum, the best-case exe-

cution time (BCET) is the shortest execution time that a program takes to execute. BCET

can sometimes be estimated with the same methods as the WCET just by changing the

goal function in the optimisation problem of the path analysis. Besides giving an idea of

the minimum computational requirement of a system, the BCET can be used in reducing

the pessimism of the schedulability analysis by reducing the estimation of jitter in the ac-

tivation times of tasks and messages for certain scheduling algorithms. The average-case

execution time (ACET) lies somewhere in-between the WCET and the BCET, and depends

on the execution time distribution of the program. A low ACET would indicate that the

algorithm generally incurs low computation overheads. This measure is more important in

embedded systems with weaker timing constraints with soft real-time applications, since

they quantify the achievable sustained throughput (number of processed images/detected

Chapter 1: Introduction 11

objects per second by an image-processing system, number of requests handled by a server

per time unit, etc.).

Modern processors introduce more and more heuristic methods in order to improve the

ACET. This means that in order to determine the WCET or the BCET, one must take into

account the interactions between the software and hardware meaning between all the pos-

sible program states and all the possible hardware states (configurations) for all possible

inputs.

Exploring all reachable system’s states leads to a combinatorial problem through the inher-

ent state space explosion. The problem of determining the WCET is twofold. On one hand

measurements will not provide the guarantee of an ET over-approximation, because it will

simply consist in giving one of the different possible times from the distribution shown in

Figure 1.5 and on the other hand exploring all reachable states in order to determine the

worst-case is impossible.

Therefore timing analysis aims to provide estimates of both WCET and BCET. One of the

essential constraints imposed to the estimate is for it to be safe which means for the worst-

case that an upper bound should be determined and a lower one for the best-case. Any other

estimates are unsafe, for example an underestimation of the WCET will lead to an unsafe

scheduler that will take into account a deadline inferior to the worst-case might stop the

task before the outputs are obtained. Therefore subsequently scheduled tasks that use that

result as an input will be executed with outdated values and produce incoherent outputs.

The safety provided by the overestimation is crucial in designing hard real-time system,

however in order for an estimate to be useful it must also have a low degree of pessimism,

and be as tight as possible. In other words the upper-bound must be as close as possible to

the actual value, which will guarantee the efficient use of, often scarce, resources ensuring

the greatest utilization of computation possible.

1.1.2.2 The Use of WCET Estimates

As previously stated the role of the WCET is of great importance for schedulability

analysis and scheduling [LL73a; ABD+95; CRTM98] however WCET estimates have a

much broader application domain, mainly whenever timing is important.

12 Chapter 1: Introduction

The WCET estimation can be used to identify which are the most resource consuming tasks

and to focus the development effort in order to reduce the computational overhead. Tools

for modeling and verifying systems represented as timed automata, like Uppaal [LPY97]

can benefit from the WCET estimates in order to obtain timing values from the real imple-

mentation of a system [BPPS00].

The WCET estimation is also used in the feasibility test of the project and in selecting the

appropriate hardware to embed in the final system. Making sure that the hardware platform

is not under-dimensioned ensures that the feasibility test will pass. On the other hand, en-

suring that the system is not too over-dimensioned can be of a great financial importance.

Based on the WCET estimation the system can also be tuned, like for example adjusting

the clock frequency of the selected processor.

1.1.2.3 Calculation of WCET Estimates

As inferred in the above sections, a key feature of the real-time system is the value of

the WCET that is used in the construction and analysis of a schedule. The schedulability

of a system depends on all variables of the system, where deadline and period are usually

fixed in the specification. The calculation of computation time is more challenging, mainly

due to two assumptions that are made to obtain its value, over-approximation and tight

estimation.

Traditionally, methods from two main families are used namely dynamic methods and static

methods. The justification behind the use of dynamic methods revolves around facts like

- the best model of the system is the actual system itself and that the worst possible input

configuration will lead to the worst possible outcome. Therefore timing measurements can

be performed, with the use of different techniques, in order to obtain the execution time

while keeping track of the worst encountered value (technique called high-water marking).

Indeed, running the program with the worst-case input may select the worst-case path in the

program’s execution, however finding them requires expert-level knowledge of the system

and the actual executed code. Identifying these particular inputs could also be made through

an exhaustive exploration of the refined input state space. Nowadays, this kind of approach

is becoming hard to implement as the input set is probably infinite and the complexity of the

Chapter 1: Introduction 13

code increases. However one of the most important drawbacks is that hardware has evolved

in such a way that the WCET value is highly dependent on the hardware architecture, and

execution history, therefore the same code executed for the same input values may generate

different execution times.

Statement 1 The execution time is history-sensitive, depends on the execution state and

cannot be determined in isolation.

The architectural hardware features that introduce heuristics in the execution time deter-

mination will be introduced in the next sections and throughly analyzed throughout the

following chapters. Dynamic methods try to eliminate some of the difficulties by usually

adding a safety margin to the worst measured execution time in order to hopefully capture

the real WCET. Nevertheless, no guarantee that the real WCET will be found can be given,

measurements can only produce statistical evidence regarding the WCET, with no complete

certainty, [Gan01].

In order to obtain a safe estimations of the WCET, mathematically founded method like

the static analysis should be used. Safety is achieved through the analysis of all possible

program behaviors. As opposed to the dynamic methods, the program is not executed but

analyzed and the inferred properties characterize all possible outcomes. A hardware model

is generally used in order to precisely take into account the software-hardware interactions.

The main technique in order to achieve safe results and formulate answers about the pro-

gram properties is through the use of abstractions. Therefore we will no longer consider

only reachable architectural states but broaden the exploration set also with unfeasible

paths. The advantage is that we search to transpose the problem into a space where the

properties will be computable. In the widening of the exploration space lies the expla-

nation of the safety and also of the precision loss. Indeed new paths are added, however

none of the existing feasible paths are disconsidered and they will all be analyzed. As only

the greatest value of the execution time is retained, only a possible over-approximation

can be made. The difference between the real WCET and the computed value gives the

imprecision of the method.

14 Chapter 1: Introduction

1.1.2.4 On the Characterization of Estimations

In order to evaluate the quality of the WCET estimation or measure we employ the

terms safeness and tightness.

The tightness is a well known concept in the theory of measures, defined for different types

of measures like the regular one. In mathematics, a regular measure on a topological space

is a measure for which every measurable set can be approximated from above by open

measurable sets and from below by compact measurable sets, [Bil99].

Definition 8 (Measure (regular).) Let (X,T) be a topological space and let Σ be aσ-algebra

on X. Let µ be a measure on (X,Σ). A measurable subset A of X is said to be inner regular

if

µ(A) = sup
{
µ(F) | F ⊂ A, F compact and measurable

}
and said to be outer regular if

µ(A) = inf
{
µ(G) | G ⊃ A,G open and measurable

}
We therefore define the tightness of measure as follows, [Bil95]:

Definition 9 (Tightness of measures.) Let (X,T) be a topological space, and let Σ be a σ-

algebra on X that contains the topology T . (Thus, every open subset of X is a measurable

set.) Let M be a collection of measures defined on Σ. The collection M is called tight if,

for any ε > 0, there is a compact subset Kε of X such that, for all measures µ in M,

|µ| (X \ Kε) < ε,

where |µ| is the total variation measure of µ.

The safeness of a WCET estimation demands that the result of the analysis be over-approximations

so that no possible execution time will be greater than the estimation. We therefore define

the upper bound of an ordered set in the following:

Definition 10 (Upper bound.) An upper bound of a subset S of some partially ordered set

(K,≤) is an element of K which is greater than or equal to every element of S . Let u ∈ K

such that ∀x ∈ S ⊂ K.x ≤ u, then u is called the upper bound of the subset K.

Chapter 1: Introduction 15

Properties By transitivity, any element e ∈ K.e ≥ u is again an upper bound of S . This

leads to the consideration of least upper bounds (or suprema).

The bounds of a subset S of a partially ordered set K may or may not be elements of S

itself. If S contains an upper bound then that upper bound is unique and is called the

greatest element of S . The greatest element of S (if it exists) is also the least upper bound

of the set S .

For introductory purposes we choose to define the timed program state in a general form.

We throughly define later our interpretation of delayed transition in chapter 3.

Definition 11 (Timed Program State.) Let the tuple st = (s, δ) be the timed program state

where δ ∈ T is the time that state st takes to finalize its execution and T be the associated

time set.

We introduce a special function called time that will return the execution time of a program

state, defined by:

time : S t → T, (1.2)

where S t is the set of timed states:

time
(
s(i)

t

)
= δi. (1.3)

Definition 12 (Timed Program Run.) Let us define the run of a program as the union of all

program states that will execute during that run, ρt =
⋃

i
s(i)

t = {st, s′t , s
′′
t , · · ·}, starting with

the initial state s at time t. If the set is finite, we say that the run terminates and a final state

s f
t exists.

We only analyze programs for which we have a proof of termination, therefore we always

reach a final state s f
t =

(
s f , δ f

)
. We now want to characterize a program as the union of all

possible paths that can ever be taken.

The program execution is parametrized by a context run C =
{
c | c is an execution context

}
defined by the unit of all possible execution under all the possible input combination,

C =
⋃

i

ci.

16 Chapter 1: Introduction

Given the fact that the run is finite, we can calculate its total execution time in a program

context c ∈ C represented by the value of the inputs:

ext (ρt, c) =

n∑
i=0

time
(
s(i)

t

)
. (1.4)

Definition 13 (Program Paths.) Let us define the program paths as the set of all possible

runs of program P

P =

f⋃
i=0

ρ(i)
t . (1.5)

For the program paths P we can define the WCET as:

wcet(P) = max
f⋃

i=0

ext
(
ρ(i)

t ,C
)
. (1.6)

As presented in section 1.1.2.3, the methods used to determine the WCET come from two

main families: dynamic and static methods. The first one is a measurement-based method.

The program will be run with many different inputs determined through code review and

expertise and the greatest value of the execution time is kept.

Let Md be the union of measures corresponding to the value of every measured program

run,

Md =

δi ∈ T.i ∈ (1 . . . n) | δi ∈

f⋃
i=0

ρ(i)
t (ci).

 , (1.7)

where n is the number of measures and ci a contexts from the tested execution contexts Cd.

Definition 14 (WCETdynamic). Let WCETdynamic be the WCET of a program computed

using dynamic methods.

WCETdynamic = max
(
Md

)
(1.8)

The safety issues of dynamic methods Only trivial or program under serious constrains

have a finite or a decent number of elements in the input set. We must therefore suppose

that the cardinality of the measurement set, |Md| = n < |C|, therefore

∃ci ∈ C.∀c j ∈ Cm, ext
(
ρt, ci

)
> ext

(
ρt, c j

)
, (1.9)

Chapter 1: Introduction 17

where Cm is the set of contexts of the measured runs.

We can therefore state that the dynamic methods are not safe. The industrial practice is

however based on this kind of methods. De facto the value of the WCET is used only after

a safety margin is added to the measured value:

WCETd = WCETdynamic + δsa f ety. (1.10)

It is obvious that it is still impossible to give strong guaranties that this new value is a safe

bound. However if sufficient constrains are applied to the software and the hardware, if the

processor in simple enough and other internal specific practices are used the bound will be

accepted in the certification process.

Nevertheless as the hardware is becoming more complex, the difficulty of measuring a

value that is close enough to the WCET and also the choice of the safety margin is increas-

ing. Therefore static methods are getting the spotlight having the safety property ensured

by construction. These methods estimate the WCET value through an upper bound approx-

imation defined as follows:

Definition 15 (WCET upper bound approximation). Let WCET ≤ C + ε.∀ε > 0. Then we

can say that WCET ≤ C, where WCET is the theoretical worst-case execution time of the

program and C is the estimated value, with precision ε.

Proof 1 The proof by contradiction is trivial. We will assume that WCET > C.

• There is a δ > 0 such that WCET > C + δ. For example, let δ = (WCET −C)/2.

• As given, WCET ≤ C + ε for all ε, so in particular WCET ≤ C + δ.

We therefore have a contradiction, because WCET ≤ C + δ and WCET > C + δ cannot

both be true simultaneously.

By definition, static methods can only be imprecise on the safe side, [KF12], the accumu-

lation of imprecision is additive, therefore ε ≥ 0.

18 Chapter 1: Introduction

1.1.3 Hardware Considerations in WCET Estimation

Hard real time systems are evolving in order to respond to the increasing demand in

complex functionalities while taking advantage of newer hardware. Software development

for safety critical systems has to comply with strict requirements that will facilitate the

certification process. During this process, each part of the system is evaluated, requiring a

certain level of assurance in order to provide confidence in the product. In particular there

must be a level of confidence that the system behaves deterministically that may be based

on functionality, resources and time. The success of system verification depends greatly

on the capacity to determine its exact behavior. Nonetheless, hardware evolved in order

to maximize the average computation power throughput, therefore modern architectural

features of processors, like pipelines, cache memories and co-processors, make it hard to

verify that all the needed properties are respected. Some of the units that generate behaviors

that are hard to take into account can be deactivated, but it is not always easy to predict the

impact on the performance. Nevertheless the features that cannot be disabled (such as the

out of order execution or some nondeterministic crossbar access policies) must be analyzed

and taken into account in the processor model and the timing estimation.

The hardware platform is a central point when analyzing a system. Therefore it is essential

to dispose of a precise model of the processor in order to determine its effective behavior.

Most of the available processors were not especially designed for the hard real-time sys-

tems. Data communication and synchronization between the different units are optimized

for maximum throughput of executed instructions. Therefore multiple execution paths can

be taken depending on the execution history, the current state of the processor or even local

choices based on random decisions.

1.1.4 Certification

The use of complex computers in safety-critical systems creates the need to ensure that

the embedded systems act in the way they are supposed to and that consequences of a

malfunction are completely handled in a safe manner. Different standards apply according

to the danger level of the system failure. These standards are presented in a collection of

guidelines to follow in order to empower the system with a necessary confidence level. The

Chapter 1: Introduction 19

respect of these recommendations determine the success of the certification process neces-

sary for the software approval.

The WCET estimation method presented in this thesis WCET was developed baering in

mind the avionics standards of software certification. For the assurance of commercial

avionics systems a document called ”Software Considerations in Airborne Systems and

Equipment Certification” is used. Bearing the name DO-178B [Rad] in the US and ED-

12B in Europe, it describes the objectives of software life-cycle processes, process activi-

ties and the evidence of compliance required at different software levels. Safety standards

like DO-178B and IEC-61508 [Int10] explicitly call for the identification of functional and

non-functional hazards and for software compliance with the relevant safety goals. In these

standards three important non-functional software characteristics related to safety are men-

tioned: absence of run-time errors, execution time and memory consumption.

The IEC-61508 has a great impact on the hardware selection as it requires the absence of

unpredictable timing-related interferences which might affect real-time functions. Never-

theless, this type of interferences are quite common and must be dealt with.

The WCET estimation consists of two main steps, namely the control-flow analysis that

determines the feasible paths in a program, and the processor-behavior analysis based on

low-level analysis, therefor we need to throughly determine the hardware behavior. The

choice of a hardware platform is therefore greatly influenced by the visibility on the device

internal structure as precise architectural implementation details are proprietary data often

undisclosed.

Identifying the processors that are to hard to analyze or which are the part that can greatly

impact the analysis performance, will greatly influence the precision of the estimation.

Section 6.1.1 acts as a guideline, exposing the inherent problems of each processor’s com-

ponent.

1.2 Problem definition

The quality of an embedded system does not only rely on the quality of the hardware

architecture and the integrated software but also in the capability to thoroughly and hope-

20 Chapter 1: Introduction

fully simply prove functional and non-functional properties. Hard real-time systems, like

the ones used in the avionic field, are subject to various certification constraints, such as the

DO-178 standard for the software and the DO-254 for the hardware. The timing analysis

has an important place in the embedded project development, for example the DO-178,

clearly states that a Worst-Case Execution Time (WCET) analysis is required for every

task. The quality of execution time estimates for the software is very important in deter-

mining the timing behavior of a system before it is deployed.

Hard real-time systems are used in a variety of industry branches, housing specific project

design practices and heterogenous certification procedures even for similar criticality lev-

els. This also implies the use of different types of hardware systems, namely processors,

depending on the project type, application branch, etc. However they all demand and ben-

efit from precise WCET estimations. Therefore it is very important for a tool or model that

aims to be used in real life to be efficiently retargetable so that it can be adapted to different

types of processors with a reasonable effort.

The safety property is crucial for the usability of the method in such systems and is pro-

vided by the use of static methods that will take into account all the achievable states of the

system and provide an over-approximation of the WCET estimates.

The adaptability, as previously stated is an important factor for the usability of the method,

saving time and resources as the underlying platform can evolve and change even during

the same project’s development cycle.

The precision is a well known term in different sciences and fields. The precision of static

methods in the estimation of the WCET relates to the difference between the obtained over-

approximation and the theoretical WCET value. Since the exact value of the WCET is often

impossible to determine it is also impossible the compute the exact value of the difference.

The quantification of this difference is however important in order to characterize the qual-

ity of the WCET estimation method. Tight bounds ensure a good resource use and allow

for the selection of cheaper processors and on the contrary loose bounds render the result

useless.

Chapter 1: Introduction 21

1.3 Research goal

The research effort of this thesis revolves around WCET estimation through a novel

approach that will be usable in an industrial context covering most of the necessary steps

of a static method and giving all the building blocks needed for the implementation.

Our aim is to define a safe, adaptable and precise WCET analysis of processors embedded

in systems with hard real-time constraints.

The method must be safe therefore it will provide an over-approximation of the WCET

through the use of a formal model in the processor definition. As it was shown in the in-

troductory part, in order to completely characterize the behavior of the system and to take

into account all the possible temporal outcomes of the software we must consider the in-

teraction with the hardware, for all possible inputs. Our intuition was that the choice of

the modelling language for the processor is key for the rest of the analysis. The analysis of

all execution paths of the processor executing the target program generates a combinatorial

explosion, therefore it is impossible to look into each individual state. Safe abstractions of

the hardware model must be possible in order to be able to deal with large systems. The

compositionality of the WCET analysis is compromised for modern processors because of

the presence of timing anomalies. A good processor model has to be able to naturally take

into account this behavior with minimum effort.

Regarding the program to analyze it is important to start with the actual binary that will be

deployed in the actual system in order to make sure that its precise execution behavior is

taken into account because the compiler used to generate it has an impact on its WCET.

A value analysis is to be performed on the program’s binary as to give a first information

about the value domains of the variables and the loop counters.

The generation and analysis of all the reachable states of the processor is ensured through

a conjoint symbolic execution of the binary and the processor model.

The WCET analyser will guide the flow analysis through the hardware model parametrized

by the binary and will decide what level of abstraction is best suited along the way. The

separation of the model from the WCET analysis will allow for a smooth transition to an-

other platform, hence the aimed adaptability.

State merges will be performed whenever needed. Whenever a state merging will be per-

22 Chapter 1: Introduction

formed, a precision loss is introduced. A threshold will be used in order to determine if the

precision loss is acceptable and by storing all the cumulated imprecision, estimates will be

given regarding the precision loss of the method.

1.4 Contributions

We propose a novel approach for the WCET estimation and we revisit most of the steps

of the analysis.

The centrepiece of our work is the extension of the abstract state machine (ASM) formal

method. This framework was throughly formalised and all the crucial aspects for the timing

estimations were defined and conceived with regard to this model.

We start by acknowledging that even though the presented method is a complete and de-

tailed static timing analysis approach the purpose of this work was not to fully implement,

in the sense of coding, the timing analyser, which is the object of an undergoing effort, but

rather to introduce a novel formal language and dedicated WCET estimation framework.

Throughout the numerous definitions and the clear semantics of all the parts of the model

and framework, we disambigously define our approach and plug-in novel methods to en-

able the safe and scalable timing analysis. Some existing state of the art analysis techniques

are also discussed and applied using the defined framework being revisited and extended

whenever needed, like some of the techniques in the timing anomalies section.

One of the original extensions and redefinition of existing techniques is the abstract state

merging. The intuition behind state merging is that each instruction constrains the pro-

cessor in certain state. An instruction sequence will generate a conjunction of constrains,

further refining the processor configuration. Giving the finite set of possible configuration

on a processor, we can suppose that the processor will recurrently find itself in identical

and mostly similar states.

Original contributions of the thesis:

• Extension of the ASM model with temporal and hierarchical features - HiTAsm. The

advantages of the ASM framework are manifold and defended in the next chapters.

Chapter 1: Introduction 23

We enrich the framework with some key features and provide seamless and correct

integration into the formalism. The features are custom tailored for the timing anal-

ysis of large and complex systems.

• Extension of the ASM framework with symbolic terms and symbolic runs for the

symbolic execution of HiTAsm. We present a seamless integration of the symbolic

execution into the ASM framework and give the inductive definition of the semantics

of Symbolic HiTAsm.

• Integration of an ASM based hardware model in the WCET analysis. ASM usage

spans across a multitude of real-time domains and applications. We take it forward

by using the HiTAsms for timing analysis.

• Definition of the syntax and semantics of a HiTAsm Language (HiTAsmL).

• Definition of a graphical UML-style syntax for the HiTAsmL.

• Implementation of a HiTAsmL interpreter.

• Implementation of an interpreter for the binary value analysis results. We interpret

the results of an external value analysis of the binary and create a CFG with nodes as

basic blocks of linear assembler instructions, their addresses and values.

• Modelling of a full RISC processor featuring modern components. We provide a test-

case for our model by the implementation of the Motorola MPC555 processor using

our HiTAsmL language.

• Definition of an Oracle that is capable to dynamically change the abstraction level

of the processor model. The framework used to model the processor enables hierar-

chical abstraction levels that can adapt to the execution context. This adaptability is

governed by an Oracle that has a few fixed, possibly processor-dependent, strategies

aimed at reducing the state-space explosion. This strategies can be broadened and

updated at in a simple way.

• Definition of an WCET analysis based on the WCET model and the conjoint symbolic

execution of the binary and the processor model. In a nutshell, our analysis technique

24 Chapter 1: Introduction

consists in the generation of all reachable processor states for a program through

their conjoint symbolic execution. This analysis controls the state abstraction levels

through the Oracle and identifies, on the fly, similar states to be merged using the

Prediction Module.

• Definition of ad-hoc state merging strategies based on the HiTAsm component defi-

nition. State merging is another technique that we use in order to constrain the state

space explosion of the analysis. Based on our formal framework we define the state

merge and also methods of merge validation.

• Equivalence classes for the analysis state-space partition Because the state space

that must be analyzed is so vast, reducing the number of state comparisons needed

in order to merge them is crucial. We therefore partition the space using equivalence

classes defined using the HiTAsm formalism.

• Timing anomalies identification and safe window definition Again, using the HiTAsm

model we define portions of code where compositionally of the analysis or use state

of the art algorithms applied to our model to determine a safe time difference to add

as a penalty in case of local worst-case assumptions.

• Dynamic state merging (fusion) and Prediction Module based on the HiTAsm model.

Once again, the HiTAsm framework is used to formally define research strategies that

not only identify state that have better merging success probability but are also able

to validate them. Additionally, validated state merges will become starting points for

other predictions.

1.5 Organization of the thesis

This work is structured into 7 chapters, including the introduction and is organized as

follows.

Chapter 2 follows the introduction of the thesis and presents the state of the art in the of

the worst-case execution time analysis. A in-depth view of the methods and practices used

Chapter 1: Introduction 25

Source Code

PowerPC compiler
Program binary

.elf

Program to analyse

Verbose Version

Essential Version

Value Analysis

Value Analysis Parser

Parse Tree

Program binary instructions

(opcode, operands)

Instruction addresses

MPC555 Manual

HiTAsmL modeling
HiTAsmL code

Processor to analyse

Parsing

HiTAsmL Parse Tree

+ interpretation

Conjoint Symbolic Execution

Prediction Module

State Fusion

Oracle

WCET Estimation

Figure 1.6: Global structure of our WCET estimation method

is given before presenting actual tools either academic or industrials.

Chapter 3 starts with a fundamental introduction of the ASM formal framework that we

used as a starting point and defines the extensions.

Chapter 5 gives the definition and implementation of the language created to support the

introduced formal model.

Chapter 6 gives the processor model used in the timing analysis, defined in the HiTAsmL

language. We choose to describe and implement the Motorola MPC555 processor, featur-

ing a RISC architecture with a five stage pipeline, out of order execution, branch prediction

unit, etc. therefore complex enough to show the full strength and flexibility of the method.

Chapter 7 presents the WCET estimation method based on the formal framework previ-

ously introduced. A global view is presented in figure 1.6 It uses the hierarchical abstrac-

tion of the processor definition in order to selected the best adapted component definition

for the actual context. The Prediction Module is detailed, and state merging as a method to

reduce the state space explosion is introduced.

26 Chapter 1: Introduction

Chapter 8 summarizes the achievements of this thesis and gives an intro to the future per-

spectives of this work.

Chapter 2

Related Work

Many embedded systems require hard or soft real-time execution that must meet rigid

timing constraints. As we focus on hard real-time systems, we must ensure that these con-

straints are always respected. Two main approaches exist for the timing analysis, namely

dynamic and static methods, [WEE+08]. At the crossroad of both static and dynamic ap-

proach we find the hybrid method, presented in the last part of this chapter.

Regarding the dynamic methods, the choice of the measuring technique is very impor-

tant, and impacts the quality of the timing result. We present a variety of techniques, that

we classify based on pertinent attributes like the resolution, accuracy, granularity of their

measure and the difficulty to use them in practice. The presentation order is given in ascend-

ing order based on the mean of these attributes. Measurements provided by the dynamic

methods can be used as the basis for real-time scheduling analysis, for identifying timing

problems, or to know what code needs to be optimized. However the safety of their result

is often subject to questioning.

As opposed to the dynamic approach, the static methods ensure by construction the safe-

ness of their results. However, most of them are too dependent on the underlying hardware

making it difficult to adapt to new processors. Many of the available time analysis tools

show a list of compatible hardware and present each new platform taken into account as a

new feature. One of existing methods, OTAWA, [ERT06], differentiates itself by making

a first step towards adaptability as it uses a basic parametric model of a generic platform

that can address a variety of architectures. AbsInt, one of the leading WCET analyzers and

27

28 Chapter 2: Related Work

overall solutions for timing analysis, also takes a step towards adaptability by looking to

use an HDL processor description in order to generate an abstract processor model.

2.1 Dynamic methods

Dynamic methods rely on run-time information in order to estimate what is generally

an under-approximation of the WCET. However, input at both functional and hardware lev-

els that leads to worst-case execution path of a task is unknown and impossible to find in

any case. The method performs timing measures of individual tasks, and establishes the

overall real-time performance of the system. Only a sub-set of possible executions of the

program are covered and the instance corresponding to the worst observed case is retained.

Depending on the type of tools used to measure the execution time, the dynamic meth-

ods can be either hardware or software. The industry employs a variety of measurement

tools, including emulators, time-accurate simulators, logic analyzers, oscilloscopes, timer

readings inserted into the software, software profiling tools, time functions provided by

the operating system or third party time measurement tools [Ive98]. Some of the avail-

able functions are suited for interactive programs and can even give finer granularity than a

function for example execution time of a code segment or a loop. However, in order to call

these functions, additional lines of code must be added that are against the principle test

what you fly and fly what you test. This section presents a variety of representative dynamic

methods, featuring measurement techniques at both coarse-grain and fine-grain levels.

2.1.1 The choice of the measuring method

The system designer is presented with a variety of choices regarding the methods and

technologies to use in order to measure the WCET. The methods differentiate themselves

based on the following attributes:

• Resolution - concerns the limitations of the timing hardware. Measurement resolu-

tions vary from a 0.01 sec resolution in the case of the stop watch, to 50 nsec in the

case of a logic analyzer;

Chapter 2: Related Work 29

• Accuracy - the difference of the closeness measured value using a given method

of measuring, and the actual time obtained with an ideal measure. When repeated

several times, measures undergo an amount of error.

• Granularity - the part of the code that can be measured:

– coarse-grain - measure execution time on a per-process, per-procedure, or per-

function basis.

– fine-grain - can be used to measure execution time of a loop, small code seg-

ments or even a single instruction.

• Difficulty - the effort to obtain measurements, defined subjectively. Usually, software-

only methods are easier, however they only provide coarse-grain results. Hardware-

assisted methods are considered hard, and yield fine-grain results of high accuracy.

Like the ease of setup, the granularity of the measure and the time needed for the result, all

subject to cost-efficiency metrics. Therefore, depending on the project type, the project’s

lifecycle stage, system configuration or criticality of the application we can choose the most

adapted measure method.

2.1.2 Stopwatch method

The simplest and most obvious time measuring method is the so called stopwatch

method, that we present in order to have a complete referential regarding the granularity

and precision of the method. It consists, as stated by its name, in the use of a chronometer

that will be started concomitantly with the program execution and stopped when the pro-

gram terminates. It can be used in a preliminary phase to obtain an order of magnitude of

the execution time.

The disadvantages of this method are manifolds. For instance it is impossible to ensure

that no delays introduced by interruptions were counted into the measure. It is therefore

recommended to be used only on systems without interruptions, preemptions and with a

single and very simplified processing unit.

30 Chapter 2: Related Work

2.1.3 Date and time OS commands

This method can be used on any system featuring an operating system that implements

the date and time system commands, like UNIX systems. A script is generally written

with a loop of a program call surrounded by two date instructions and make a mean of the

results. Similarly, we can directly use the time system instruction. In listing 2.1 we can see

the use of the two functions on a binary called progBinToMeasure.elf that simply prints a

message on the standard output.

Listing 2.1: Measures with date and time in the UNIX shell

1 mpc555board: paun$ date

2 Thu Oct 23 15:05:24 CEST 2014

3 mpc555board: paun$./progBinaryToMeasure.elf

4 Hello WCET world

5 mpc555board: paun$ date

6 Thu Oct 23 15:05:51 CEST 2014

7 mpc555board: paun$

8 mpc555board: paun$

9 mpc555board: paun$ time progBinaryToMeasure.elf

10

11 real 0m0.005s

12 user 0m0.002s

13 sys 0m0.003s

Once again, preemptions and interruptions are not taken into account, therefore the method

can only be used to get a rough estimation of the execution time.

2.1.4 Prof and Gprof (UNIX)

The prof and gpro f methods measure execution on a per function basis, a finer granu-

larity than the already presented methods. Available in UNIX system, the methods provide

a set of timing measurements for all the code with clock resolution (10−2s).

Chapter 2: Related Work 31

These methods are intrusive meaning that the measured execution time will be greater than

the real execution time of the program when it is not being profiled.

As listed in 2.2 the prof method is applied by using the compile options -p with the plat-

form’s compiler and running the program followed by a few other commands. The binary

file mon.out is generated automatically and contains the timing data by function for the

program. It can be viewed with the integrated prof command.

Listing 2.2: Using prof

mpc555board : paun$ gcc p o progToMeasure progToMeasure . c

mpc555board : paun$. / progToMeasure

mpc555board : paun$ l s

mon . o u t

progToMeasure

progToMeasure . c

mpc555board : paun$ p r o f progToMeasure > progToMeasure . p r o f

mpc555board : paun$ c a t progToMeasure . p r o f

F u n c t i o n l i s t , i n d e s c e n d i n g o r d e r by t ime

[i n d e x] s e c s % cum.% samples f u n c t i o n (dso : f i l e , l i n e)

[1] 1 0 2 0 . 1 8 0 43.6% 43.6% 102018 pow (l ibm . so : pow . c , 198)

[2] 7 2 1 . 5 7 0 30.8% 74.4% 72157 log (l ibm . so : l o g . c , 139)

[3] 3 5 8 . 1 0 0 15.3% 89.7% 35810 exp (l ibm . so : exp . c , 102)

[4] 2 3 5 . 8 2 0 10.1% 99.8% 23582 a s a (asa run : a s a . c , 59)

[5] 1 . 3 1 0 0.1% 99.9% 131 w r l s t b s t (asa run : g e t p d . c , 5 6 6)

[6] 0 .990 0.0% 99.9% 99 l o a d l i s t s (asa run : g e t p d . c , 172)

[7] 0 .960 0.0% 99.9% 96 c o s t d e r (asa run : a s a . c , 2 2 2 9)

[8] 0 .540 0.0% 100.0% 54 p r i n t s t a t e (asa run : a s a . c , 2762)

[9] 0 .210 0.0% 100.0% 21 f ree (l i b c . so . 1 : m a l lo c . c , 903)

[1 0] 0 .100 0.0% 100.0% 10 wr prf (asa run : g e t p d . c , 6 2 9)

32 Chapter 2: Related Work

2.1.5 Timer and Counter

This method consists in measuring small segments of code by programming the sys-

tem’s counters or times. To provide greater precision for timing measurements, we must

use a timer that operates at the clock cycle level. This timer is actually a special register

that gets incremented every single clock cycle. Therefore the processor must implement

the functionality in order for this method to be applcable. Special machine instructions can

be used to read the value of the counter.

The method consists on calling the function timer:

timer → ClockT icks (2.1)

before and after the code segment. The obtained results τi and τ f correspond to the total

number of elapsed clock cycles since the system startup. After we compute the difference

of the two values we obtain the total amount of cycles elapsed between the initial timer

launch and the final one. In order to get the elapsed time we must divide by the frequency

of the processor, f , the number of clocks per second.

∆t =
τ f − τi

f
(2.2)

The Pentium processor features a cycle counter, the IA32, accessed with the rdtsc

instruction. This instruction sets register edx to the high-order 32 bits of the counter and

register eax to the low-order 32 bits. The obtained cycle counter stored on 64 bits can store

enough values that it only cycles around once every 570 years.

For the ease of use, we generally want to be able to access these values directly from the

C code. Therefore we must provide a C program interface, by encapsulate this instruction

within a procedure like the one defined in listing 2.3.

Listing 2.3: Implementation of the counter read interface

1 void read_counter(unsigned *hi, unsigned *lo)

2 {

3 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"//Read counter

4 : "=r" (*hi), "=r" (*lo) //move results to

Chapter 2: Related Work 33

5 : // No input

6 : "%edx", "%eax"); //the 2 outputs

7 }

8 void start_counter()

9 {

10 read_counter(&cyc_hi, &cyc_lo);

11 }

Listing 2.4: Using the clock counter

1 double time_cold()

2 {

3 progSourceToMeasure(); /* Warm up instruction cache */

4 clear_cache(); /* Clear data cache */

5 start_counter();

6 progSourceToMeasure();

7 return get_counter();

8 }

The function presented in listing 2.4 measures the execution time of the function:

progSourceToMeasure(). It starts by running the program once in order to warm up the

cache and proceeds to a data cache content clear through different data writings. Once no

more program data is in the cache, the timer in started and the function run once again,

followed by the return of the counter corresponding to the program end. The execution

time found this way roughly corresponds to the worst-case.

In order to obtain a best-case execution time, the clear cache() routine is removed.

2.1.6 Software Analyzer

RTOS and tool vendors propose a series of software tools designed specifically for mea-

suring execution time entitled software analyzers like CodeTest [cod11], TimeTrace [Tim],

and WindView [Win].

34 Chapter 2: Related Work

Software analyzer can be based on the system clock (resolution of the order of a millisec-

ond) or some other hardware-based method, such as using an onboard timer/counter chip

(resolution might be in the microseconds range).

The software analyzers can sometimes provide a timing trace that shows precisely what

process is executing and at what time. If the timing trace is also correlated to the source

code, then the tool can identify what part of code is responsible for extended periods of

execution.

A main drawback of software analyzers is the used resources as they may slow down the

code. Most part of the analyzers needs a lot of memory to work, a problem in embedded

system that already fully use the available memory.

2.1.7 Logic Analyzer

Among the hardware methods, the logic analyzers provide a good tool while being

non-intrusive. It can obtain data in two modes, which are called state mode and timing

mode. The timing mode gives a better resolution in the signal. However, the timing mode

requires more memory to store a larger number of information that is sampled. The logic

analyzer dose not give access to the internal state of the processors, nevertheless it gives

a good view of the externally visible signals. The result obtained by this method is not

a temporal bound but merely a measure that corresponds to the observed execution time

for the executed inputs, one path at a time. Therefore the difficulty relies in finding the

worst-case input, which is impossible in the general case, especially without any program

flow information.

2.1.8 Summary of execution time measurement measures

In table 2.1 we summarize the methods and attributes of each presented measurement

method with estimative and sometimes subjective values.

Chapter 2: Related Work 35

Table 2.1: Summary of measurement measures

Method name Resolution Accuracy Granularity Difficulty

Stop watch 10−2s 5 · 10−1s program easy

Date/Time 2 · 10−2s 2 · 10−1s program easy

prof and gprof 10−2s 2 · 10−2s subroutines moderate

Time/Counter 5 − 40 · 10−6s 1 − 8 · 10−6s statement very hard

Software Ana-

lyzer

10 · 10−6s 20 · 10−6s sub-routine moderate

Logic Analyzer 50 · 10−9s 5 · 10−7s statement hard

2.1.9 Advantages and weaknesses of dynamic methods

The downsides of dynamic methods, and timing measuring in general, became obvi-

ous through the presentation of the different measuring methods in the previous sections.

However, they still found their way in numerous industrial projects, at any criticality level.

This is explained through the good-enough performance when used in conjunction with

best practices, coding restrictions, hardware restriction, human expertise, safety margins

and other additions that provide sufficient guarantees for use in projects up to hard-real

time system.

These methods align, nevertheless, undeniable qualities through the fact that the best hard-

ware ”simulator” is the actual system itself. Measures are taken directly on the hardware

that will be embedded in the final system, on the same binary that will run on the end

project. Indeed, the system in occurrence must physically exist in order to be able to per-

form any measures, even though experimental configuration on development versions can

be made.

Even though the call for a future transition to static methods is clearly stated by the certifi-

cation guidelines, and therefore needed by the industry, dynamic methods are still pervasive

in application and the de facto choice for system certification. This might end even sooner,

36 Chapter 2: Related Work

as, besides the certifiability concern, the intrinsic nature of the application field makes cost-

efficiency a clear goal and dynamic methods on modern platforms require more and more

testing efforts and time. It must be also stated though, that the success of such methods

is often tributary to such product- and company-dependent efforts that no real adaptability

can be defended. Moreover, an increasing number of dynamic methods are evolving into

so called hybrid, semi-dynamic methods where a part of the job is done using static meth-

ods, helping the tester identify critical paths that can pin-point a better input set for the

measures. Hybrid methods are further detailed in section 2.3.

2.2 Static methods

The respect of deadlines is important in safety-critical systems. Therefore the WCET

must be either exact, which is impossible in the general case, or an over-approximation of

that value in order to ensure the safety of the system. The majority of the current embedded

systems use hardware components that have a data or history dependent execution time. In

order to estimate the WCET, a direct measure is no longer possible because local optimiza-

tions are used in order to maximize the platformÕs maximum throughput.

Static methods are conceived to take into account not only the program but also the platform

and possible hardware interactions. In order to obtain a safe WCET estimation we must

analyze the time generated by every possible program execution path for every possible

values. This is impossible to realize for non-trivial cases because of the state space ex-

plosion. Therefore a common feature of static analyzers is to use approximations that will

ensure the computability of the result by providing an over-approximation of the WCET.

The safety of the static analysis is a given whereas the precision of the result is an evalua-

tion of the performance of the method. Another evaluation criteria is the scalability of the

method, feature usually in tradeoff with the precision of the estimation. The adaptability

is also a good feature, as the computation part of methods tends to be overly dependent on

the architectural model.

These methods consists of several steps that will start from the program/task itself, usually

the actual binary that will run on the final platform, compute all the possible control flow

Chapter 2: Related Work 37

paths through the program (associated with the high-level analysis), combine them eventu-

ally with information from the value analysis and use them on a hardware model, usually

abstract, in order to generate all the possible states that will lead to an approximation of the

WCET.

Among the modern features that harden the WCET estimation are the pipeline, out-of-order

execution, cache memory, branch prediction unit and others. One of the problems that they

generate are the timing anomalies that violate an intuitive, but incorrect, assumption that

whenever presented a choice, choosing the transition that takes the longest time, will lead

to the Worst-case execution time. In other words, the monotonicity assumption is compro-

mised for processors sporting modern features.

The static methods offer great expectations, nevertheless the practice shows that it is hard

to achieve a completely automatic method. Annotations are often required and can become

an issue. The dependency with the analyzed platform is another problem as the platform

choices in the embedded world are quite heterogeneous.

The downsides of the method get amplified in the case of multicores as new problem arise

among which even the determinism can be questioned.

Static methods are going through a transition in order to achieve maturity but show promis-

ing results and offer crucial features like the safeness of the estimated results. Some repre-

sentative examples of the static methods are presented below.

2.2.1 AbsInt Advance Analyzer

An example of a great success story of a static analyzer is AbsInt Advance AnalyzerTM

(a3TM), [a3it].

The wrapper application a3 integrates a number of static program analysis tools like:

• aiT for worst-case execution time analysis

• StackAnalyzer for stack usage analysis

• ValueAnalyzer for value analysis

• TimingExplorer for ECU-level architecture exploration

38 Chapter 2: Related Work

• Custom-built products (e.g. TimeWeaver)

In the following we will focus on the presentation of aiT, a modular WCET analyzer, as

described in [FH08] and depicted in figure 2.1.

Program Source

Binary executable

CFG Builder

Estimated WCET

Compiler

Value Anayzer

Cache Analyzer

Pipeline Analyzer

Evaluation

Cycle Contexts
Loop Bounds

ILP Generator

LP Solver

Evaluation

Static Analysis

Path Analysis

Program Source

Figure 2.1: Global structure of the aiT tool

CFG During the control-flow reconstruction the analysis creates the control flow graph,

CFG of the program’s binary file. Information like: operations, instructions, basic blocks

Chapter 2: Related Work 39

and routines is organised hierarchically. A basic block contains instructions that execute

linearly, meaning that no branching instruction can be contained except for the last line. To

simplify the cache analysis, the size of the basic block is chosen so that it can be contained

on a single cache line, therefore every CFG node is associated to a single memory reference.

Value analysis A value analysis is then performed that will produce an over-approximation

of the accessed memory locations. The subsequent cache analysis needs to know the ad-

dresses of the program’s data, [WW08]. Given the fact that precise addressees will only

be known during the execution, an interval analysis is made, [CC77], that computes the

possible addresses of registers.

The value analysis provides access information to data-cache/pipeline analysis and detects

unfeasible paths through interval analysis - lower and upper bounds calculation for the

values occurring in the machine program addresses, register contents, local and global

variables).

Loop analysis A static loop analysis is further performed on the code. The first purpose

is to identify, using a pattern matching mechanism, the presence of loops in the code and

the second is to perform a data flow analysis, interpreting the machine instructions inside

the loops in order to infer the loop bound value, [Cul06]. Not all loops can be bounded by

the analyzer, therefore the user must manually annotate the rest.

Component abstraction Based on this result, the cache analysis classifies the memory

references into the following categories:

• always hit - the block is always present in the cache;

• always miss - the block is never present in the cache;

• persistant - the referenced memory block is loaded once at most;

• unreachable - the code cannot be reached.

40 Chapter 2: Related Work

• not classified - the memory reference couldnÕt be classified in any of the above

categories

Cache/Pipeline analysis uses the register values ranges computed by the value analy-

sis and tries to statically determine in advance all the possible cache content. Through

the must/may analysis memory references are classified into cache hits and potential cache

misses.

The pipeline analysis uses an abstract model to simulate the behavior of the pipeline,

[The04]. The pipeline is considered as a finite state machine (FSM) and the analysis is

defined as a calculation of sets of states of FSM [59]. The efficiency of the approach is

streightened through the use of the binary decision diagram (BDD) representation of the

FSM.

Path Analysis is used to determine upper bounds for the program’s execution time based

on the IPET approach that uses ILP on the previous CFG as well as results from the

cache/pipeline analysis.

a3 targets a vast array of platforms: Am486, ARM, C16x/ST10, C28x, C33, ERC32, HC11,

HCS12, i386DX, LEON2, LEON3, M68020, PowerPC 5xx, e200 (55xx, 56xx, 57xx), e300

(603e, 82xx, 83xx), 7448, 7448s, 750, 755, 755s, TriCore, V850E.

The tool has however some limitations:

• no support for dynamic allocation (malloc and such)

• setjmpg/longjmp not supported

• code must follow standard ABI calling conventions

• code must be generated by restricted subset of ANSI C;

• function return addresses must no be modifed

2.2.2 OTAWA

OTAWA (Open Tool for Adaptive WCET Analysis), is a framework of C++ classes

dedicated to static analyzes of programs in machine code and to the computation of WCET.

Chapter 2: Related Work 41

OTAWA emerged from the Traces Research group on Architectures and Compilers for Em-

bedded Systems at IRIT (Institut de Recherche en Informatique de Toulouse).

With its modular architecture, OTAWA is adaptable to various WCET calculating tech-

niques. It is based on a set of analyzers that can perform various tasks, from the con-

struction of the CFG from the binary to the final calculation of the WCET. An proprietary

annotation system stores information like the data entry, intermediate or final results, on

the analyzed program. For the effective WCET estimation, the tool uses an off the shelf

ILP solver called lp solve.

The tool is structured in three main steps:

• identifying infeasible paths and bounding loops through the flow analysis

• low-level analysis: determining the global effects of the processor on execution times

and at deriving the worst-case execution times of code snippets;

• the flow and low-level analyzes are used to estimate the WCET.

One of the main advantages of this tool is the adaptability to new architectures, taking

full advantage of the modularization and separating the WCET estimation part from the

processor model. The characteristics of the processor are provided in the form of an XML

file. However the analysis does not fully take into account all the processor characteristics

and component interactions, therefore the over-approximation is quite important.

2.2.3 SWEET

SWEET (SWEdish Execution Time Analysis) is a research prototype tool focused on

flow analysis, developed at Uppsala and Malardalen University since 2001, [Lis14]. The

tool computes BCET and WCET estimations. SWEET is divided into three major parts, as

fallows:

• detection of program flow constraints through a flow analysis, which is the main

function that tries to calculate flow information as automatically as possible;

• a low-level analysis - pipeline analysis is limited to in-order pipelines and does not

consider timing anomalies;

42 Chapter 2: Related Work

Hardware description

Program to Analyze

Flow Facts

ISA support

Architecture Abstraction

Program Representation

Annotations

WCET

Analyses

Output

Figure 2.2: Global structure of the OTAWA tool

• WCET calculation.

The flow analysis part of SWEET analyzes intermediate code produced by a research com-

piler of a general intermediate program language called Artist Flow Analysis language

(ALF) as it is coupled to a research compiler which is only able to process a subset of

ANSI C. SWEET offers:

• powerful loop bound analysis;

• infeasible paths identification;

• derives the explicit WCET and BCET execution paths through the program,

using three different WCET calculation methods:

• a fast path-based method;

Chapter 2: Related Work 43

• a global IPET method;

• a hybrid clustered method.

Target architectures include: ARM9 and NEC V850E processor.

2.2.4 CHRONOS

Chronos is an open source, academic software developed at National University of

Singapore (NUS) which performs timing analysis of embedded software through static

analysis, [LLMR07], [CR09]. The tool is divided into five main steps, visible in figure 2.3:

• Binary generation from the program source using the GCC compiler from the Sim-

pleScalar toolset.

• CFG reconstruction and control flow analysis. Paths are represented as linear con-

straints called flow constraints. The user can also introduce annotations through a

GUI taken into account in the user constraints.

• The tool uses a processor model configured by the user via a GUI and generates tim-

ing information for basic blocks in execution contexts and constraints on the occur-

rences of execution contexts (architectural state). Together with the flow contraints

this data contributes to a ILP problem solved in the next step.

• The ILP problem is solved using either CPLEX or lp solver and thus the WCET

estimation is calculated.

• An observed WCET is also calculated using sim-outorder simulator in the Sim-

pleScalar toolset.

44 Chapter 2: Related Work

GCC (Simple Scalar)

Binary Code

Analyze / PA

CFG

Simple Scalar Simulator

Observed WCET

Processor Configuration

C Source

User Cons Flow Cons

Analyze / MM

ILP Problem

CPLEX/lp_solve

Estimated WCET

Figure 2.3: Global structure of the Chronos tool

The tool shows the following limitations:

• doesn’t support any real HW platform;

• doesn’t analyze data caches.

• deployment difficulties (building issues and difficulties)

2.2.5 BoundT

The Bound-T is a WCET Analysis Tool working on machine code, [bou]. Relying on

Presburger arithmetic using the Omega Calculator [Pug91], the tool performs:

Chapter 2: Related Work 45

• Determination of loop bounds (identifies loop-counter variables and computes a bound

on loop iterations from the counterÕs initial value) - can be replaced by user asser-

tions;

• Dynamic jumps resolution.

The worst-case path is determined with IPET using the lp solve program.

We identified some of the following limitations for Bound-T:

• no cache analysis

• task must not be recursive

• CFG must be reducible

• dynamic calls analysis only if an unique target address found

• weak aliasing analysis

• bounds of an inner loop cannot depend on the index of outer loop

• loop-bound analysis doesn’t cover multiplication, division, bitwise ops

• task must use standard calling conventions

2.2.6 Advantages and weaknesses of static methods

Static methods will soon become industrial standard for product certification. The

strong guaranty on the safety of the WCET estimation makes them an ideal candidate in

systems that must comply with rigorous safety-related constrains.

However all the existing methods share at least one of the following drawbacks:

• lack of accuracy;

• total or partial adaptability issues to new hardware models;

• lack of support for multi-core architectures;

• prohibitive costs;

46 Chapter 2: Related Work

• scalability issues;

• lack of processor support;

• few fully automatic, push-button results.

2.3 Hybrid methods

Hybrid methods are at the crossroad of dynamic and static approaches, presented in sec-

tions 2.1 and 2.2. Given the hybrid nature, two genders of approaches fall into this method

namely the dynamic methods that incorporate static analysis and, symmetrically, the static

methods that evolved by integrating some dynamic features or timing measurements.

These methods witnessed the most natural genealogy and evolution. Measure-based ap-

proaches have always been around since the early days of embedded systems. Real-time

systems evolved, in pair with the hardware modernization, making it more difficult to cap-

ture all the temporal behaviors of intricate interactions and increasing the testing effort

needed to achieve an equivalent level on insurance as before. As a direct consequence,

more advanced techniques of program and hardware analysis were progressively intro-

duced in order to more easily take into account the platform’s complexity. Ideally a total

code coverage would be needed through input sets that generate an all the path control flow

graph transversal. Given the fact that it has become impossible to achieve, a less complete

execution path coverage can still be of great help in order to guide, improve and reduce the

coding efforts. Let us take a closer look on this approach.

Hybrid approaches identify the program paths consisting of a sequence of basic blocks

where the execution is invariant to input data, [WSE02]. To find these paths starting from

the source code level, symbolic analysis on abstract syntax trees can be used. After this

analysis, the execution time of the path is measured on real hardware or by cycle-accurate

simulators. Branches that are dependent on the input need input data for a complete branch

coverage. Finally, techniques from the static approaches are used in order to determine the

longest path and to estimate the WCET.

The behavior of a program can be represented by a control flow graph, where the nodes are

Chapter 2: Related Work 47

the programÕs instructions and the arcs represent program flow information. Code analy-

sis is used to produce inputs that will generate the different program paths. The values for

each variable can be split in different sets for each path, grouping inputs that generate the

same path. However, we do not always have the guarantee that all the values of a variable

from the same set (that generate the same path) will lead to exactly the same functional or

non-functional behavior. For the functional part, certain values may lead to an overfull er-

ror, for example, and most of them not, hence it is important to ensure the absence of such

cases. The timing behavior is highly dependent on the architecture. Hence, even if a value

generates the same path, the timing will depend on the presence in the cache memory, or

on the possibility to pipeline other instructions (for example a test that can be validated by

an integer or a float value which changes the timing because of the floating point unit).

This type of method is safe only if all the inputs of the program can be tested or if com-

plete path coverage of the control flow graph (CFG) is made. Furthermore, the previous

assumption holds only for a certain type of hardware architecture, excluding most of the

processorÕs modern features. Moreover, complete path coverage of the CFG is impossible

to compute for complex programs.

Program flow information together with the timing of basic blocs can be translated into a

linear programming problem. Integer linear programming (ILP) is used in approaches as

IPET (implicit path enumeration technique) to bound calculations. However ILP is a NP-

hard problem so it should only be used in subproblems of timing analysis.

The extraction of control flow information from the program code and the automatic gen-

eration of test data are the challenges of this method, as both cannot be fully automated

for any program code. Approximations are used and human intervention is needed. Based

on its code expertise, the contributor can reduce the number of paths that must be covered.

Human expert analysis is also required in order to estimate a temporal safety margin that

will over-approximate the eventual omissions of the estimation. An additional problem is

that it is increasingly difficult to foresee the impact of the overseen cases and to estimate

the impact of pathological cases in a large program or on processors with modern features.

A few representative examples of the hybrid methods are presented in the following.

48 Chapter 2: Related Work

2.3.1 FORTAS

FORTAS (FORmal Timing Analysis Suite) is measurement-based tool for timing anal-

ysis of embedded real-time software and is a joint effort of the Real Time Systems group at

Vienna University of Technology and the Formal Methods in Systems Engineering group

at Technische Universitat Darmstadt, [vHHL+11; ZBK11; BK08].

The tool, that targets C code, fills the gap between ad hoc testing, and classical static anal-

ysis, which requires detailed knowledge of the target hardware architecture and significant

human effort.

FORTAS will use abstraction methods (model checking) to extract abstract models of the

software from which test data can be derived automatically and independently of the target

hardware. Timing data is gathered to obtain a timing model as an annotated state machine

by executing tests on the target hardware and the process reiterated.

2.3.2 Heptane

Heptane (Hades Embedded Processor Timing ANalyzEr), developed by IRISA is an

academic, open-source static WCET analysis tool targeted at a fairly recent processor: the

IntelTM PentiumTM. Heptane implements an Implicit Path Enumeration Technique (IPET)

and includes cache analysis techniques for many cache architectures. Heptane also in-

tegrates a branch prediction analysis. A study on the effect of the branch prediction on

WCET evaluation is presented in [CP01]. The number of timing penalties introduced by

branch target miss-prediction is statically bounded by collecting informations on branch

target buffer.

Chapter 2: Related Work 49

Cache Memory Simulation

 Results of cache simulation

Branch Prediction Simulation

Results of BP simulation

Pipeline Simulation

 Results of pipeline sim.

 WCET estimation

Figure 2.4: Global structure of the Heptane tool

Structure of the tool, as depicted in figure2.4:

• Program representation In the first step, the assembly code of the program is divided

in basic block. Thus these basic blocks are used in conjunction with information

collected during program compilation to generate two representations of source code:

– a syntactic tree,

– a CFG.

• Loop analysis The presented method defines a hierarchical data structure. This gives

it the ability to identify each loop of the program and its level of nesting.

• Cache analysis A static cache analysis is performed, [Mue94]. Instructions are clas-

sified based on their behaviour related to the cache. This ranking is based on the

presence (lack) of probable instruction in the cache when they are required by the

processor, as well as the impact of the behavior of this instruction on probable pres-

ence/absence of other instructions. Thus, the purpose of this classification is to iden-

tify instructions that may cause a conflict causing a cache miss.

50 Chapter 2: Related Work

• Branch analysis A technique similar to the one used during the cache analysis is also

used to categorized the conditional branch instructions. It identifies the directions

in which the branching unit does not already dispose of a history for the branching

instruction in treatment.

• Pipeline analysis The results obtained from the analysis of cache memories and

branch instructions are used by the pipeline simulator that will finaly provide an

estimate of the WCET.

The WCET can be computed either at source code level (tree-based approach) or via an

ILP-based method that operates on a CFG extracted from the binary. Target architecture

includes fairly simple processors as: StrongARM 1110 or Hitachi H8/300.

2.3.3 Probabilistic worst-case execution time

The probabilistic methods are gaining a lot of focus given the fact that hardware is in-

creasing in complexity and still having to comply with safety-critical constraints. A good

example is the multi-core processors where the actual hardware is not completely deter-

ministic, [PMB13c], therefore a concrete model and a classic timing analysis would fail.

This type of methods also aim at reducing the cost of obtaining knowledge about the WCET

estimation, which is a major drawback on applying the timing analysis on a larger scale.

Measurements offer an exact image of the underlying hardware, therefore in this context

the software is the major actor dictating the execution time. A series of reasoning is made

to ensure that the wright type and amount of measures are conducted thus, in conjunction

with the right probabilistic model, safe temporal bounds can be extracted. The reduced

amount of necessary runs of the application increase the applicability of the method and

contribute to the cost reduction.

The work presented [LNBCG11] describes the tool support for a framework for perform-

ing statistical WCET analysis based on a sound measurement-based probabilistic timing

analysis technique based on Extreme Value Theory. This method reduces the dependence

of the execution history on the execution time using a combination of time-randomisation

introduced to architectural features, [BG11], and the novel Probabilistic Timing Analysis

Chapter 2: Related Work 51

(PTA) techniques [CGSH+12]

The effect of dependences (relating system elements and their concurrent execution) on the

task execution time using probabilistic models extracted from measures and the observa-

tion of the system in general, are explored in [MNS13]. A methodology in order to ensure

the safety of probabilistic WCET (pWCET) estimation is also described.

Intuition In order to compute a safe estimation of the probabilistic WCET, we must be

able to estimate the impact and inter-dependency of each unit.

Through measurements we obtain a distribution of the execution times. As we cannot make

exhaustive measurements, we must find a series that over-approximates the WCET. Again,

as we cannot have an infinite series we can approximate the result with an exceedence

probability using the Rare Events. In order to use this theory, the events must have certain

properties. Events associated with the components of a processor do not generally have

these properties. Therefore another approximation is introduced, which represents a part of

the goal of the method. The time series is shifted with a difference that represent the cost

needed to create that independence.

Let Ci be a distribution of execution times for a task τi as a discrete random variable and

fCi the probabilistic representation of Ci through probabilistic distribution function (pdf),

[MNS13] defines the pWCET as:

Definition 16 (probabilistic Worst-Case Execution Time C∗i) The pWCET C∗i of a task τi

is defined as the least upper-bound on all the distributions C j
i of the execution time of τi,

where C j
i is generated for every possible combination j of the input data to the program

running an infinite number of times. Thus ∀ j,C∗i >= C j
i .

Overall approach The methodology of the approach can be summarized as following:

1. Define the temporal behavior of a task in terms of probabilities→ use a probabilistic

representation through probabilistic distribution function.

2. The Execution Time Profile (ETP), based on the distribution of execution times, uses

exhaustive measurement of the task’s execution time. The Cumulative Distribution

52 Chapter 2: Related Work

Function (CDF) is introduced.

From this point the pWCET is extracted.

3. The pWCET is defined as a least upper-bound for all the distribution of execution

time (generated for every possible input combination after an infinite run). Therefore

it is impossible to obtain.

The rare events theory is introduced in order to safely approximate this pWCET. In

order to explain this, a series of theoretical elements are introduced: independent

random variables, a partial order on these random variables, rare events).

4. EVTs are used in order to approximate the pWCET (the partial order is used to give

an upper bound on the pWCET).

Apparently the glue behind this is that the rare events theory is used to estimate

exceedence probabilities of 10−n. This should mean that the approximation’s safety

degree is of the order of 10−n.

5. EVTs need certain hypothesis in order to ensure safe pWCET approximation:

• independence (i.)

• identical distribution (i.d.)

This forms the i.i.d criteria.

6. The dependence and independence of CDF are defined.

7. We can directly apply the above theory if a task runs on a system O described as a set

of events O = {O1, · · · ,Oi} under the in-dependence assumption. This is not the case

in reality, therefore the notion of copulas is redefined to introduce a distance that will

help find a new time distribution with a CDF that bounds the original and offers the

in-dependence.

In other words we admit that we do not have independent events and through mea-

surements we identify the difference between Oi and O j by computing the shift of

their time distributions. This distance is regarded as the cost required in order to

create independence between the time series of the event i and the event j.

Chapter 2: Related Work 53

pWCET remarks Analyzing high-complexity hardware, like multi-core processor for

example, in the classical manner is a difficult or impossible task. The probabilistic ap-

proach is suited for such systems where we cannot reason in therms of deterministic be-

havior and moreover in systems where the cost of the analysis is a crucial factor. We think

that the success of the method is in tight relation with the ability to identify safe proba-

bilistic models for highly complex interactions between units and to separate the measured

times series of the different interacting components (before and after activation). Another

challenge might be the system decomposition unit by unit, as even though all components

are activated, they might not participate in all measure series.

2.3.4 RapiTime

Available either as a stand alone tool or as part of Rapita Verification SuiteTM (RVS),

RapiTimeTM is an on-target timing verification and optimization tool for aerospace/au-

tomotive from RAPITA Systems ltd. The tool collects execution traces to provide code

coverage metrics and execution time measurement statistics in a cost-efficient solution. It

also integrates probabilistic methods presented in section 2.3.3 through the integration of

the pWCET method, [BCP03; pWC].

The main features of the tool, depicted in figure 2.5 are as following:

• Execution Time Measurement - execute fewer time measurements that classic dy-

namic methods to highlights potential problem areas;

• Worst-case Calculation - identifies worst-case hotspots in the code that contribute to

the global WCET;

• Performance Optimization - assistance in the code optimization based on the identi-

fication of the hot-spots identified in the previous part;

• Code coverage and debugging.

54 Chapter 2: Related Work

Source Code Build

Instrument

Executable

Structural Model

Analyze

Result database
Report
Viewer

Test Cases

Run

Traces

Host Target

Figure 2.5: Global structure of the RapiTime Tool

2.3.5 Advantages and weaknesses of hybrid methods

The hybrid methods were introduced in order to compensate the lack of complete cov-

erage of dynamic methods and the combinatorial explosion of some complicated static

features. One of their main advantages is that they do not use complex abstract models of

the hardware architecture, one of the main challenges of static methods and also a source

of accuracy loss. Being at the crossroad of the two main method families they also in-

herit numerous disadvantages from both sides. A majors disadvantage is the lack of strong

guarantees regarding the safeness of the assumed worst-case behavior that is covered by

measures for which worst-case inputs can not be assumed in all cases. Another drawback

is the need, in most cases, of code annotations. Besides the obvious added difficulty, code

Chapter 2: Related Work 55

annotations may interfere with some temporal analysis requirements as they may not be

allowed in some particular certification scenarios.

2.4 Comparison of existing methods

In this section we present a brief schematic overview of the most important methods

and tools, introduced in the previous part.

Table 2.2: WCET estimation methods overview

Method name Type Entries License Key features

Stopwatch d test entry set

Date/Time d test entry set needs OS support

prof and gprof d test entry set needs OS support

Time/Counter d test entry set needs processor with

internal counter

Software Ana-

lyzer

d test entry set commercial version dependent accuracy

Logic Analyzer d test entry set

aiT s binary commercial most complete, might need

loop counters, processor

dependent version

BoundT s source code licensed IPET, lp solve

Chronos s source code academic ILP, processor model,

binary computes an additional

observed WCET value.

OTAWA s binary & partial academic easy architectural

architectural description (XML file)

description

SWEET s ALF academic focused on flow analysis

intermediate (as fast as possible),

56 Chapter 2: Related Work

Table 2.2 – continued from previous page

Method name Type Entries License Key features

language

FORTAS h source code academic Model Checking, time

annotated state machine.

HEPTANE h binary commercial Has a simulator; ILP.

RapiTime h source code commercial measurements, fast,

test entry set probabilistic model,

code optimization

probabilistic h source code improves the test entry set,

alternative for hardware model

of complex systems.

Table 2.2 gives an overview comparaison of the presented methods and table 2.3 sum-

marizes their capabilities and limitations in a check list form. This table shows the proper-

ties discussed above for each family method. Namely that the dynamic methods naturally

take into account all the processor features because the model used is the actual physical

processor. The check list has an asterisk to make the difference from other methods that

statically take into account the full extent of the hardware component effect. The methods

earn their accuracy check in comparison with the static methods, thanks to the fact that

in practice, good results can be achieved in controlled environments featuring a series of

restrictions. Static methods are mainly safe but lack accuracy with the exception of aiT

which is one of the most mature and complete timing analysis solutions. Hybrid methods

can also use the actual hardware as a hardware model which earns them a starred check on

the first part. Probabilisitic methods show good result and might be the only solution to

take into account less deterministic hardware like multi-cores.

Chapter 2: Related Work 57

Table 2.3: WCET estimation methods summary - the * stands for a partial fulfillment or a

certain difference compared to the general interpretation of validation.

Method name Loop Pipeline Hardware

Model

Adapt. Accuracy Safety

Stopwatch 3* 3* 7 3 7 7

Date/Time 3* 3* 7 3 7 7

prof and gprof 3* 3* 7 3 3 7

Time/Counter 3* 3* 7 3 3 7

Software Ana-

lyzer

3* 3* 7 3 3 7

Logic Analyzer 3* 3* 7 3 3 7

aiT 3 3 3 3 3* 3

BoundT 3 7 7 7 7 7

Chronos 3 3 3 7 7 3

OTAWA 3 3 3 3 7 3

SWEET 3 3 3 7 7 3

FORTAS 3* 3* 7 3 7 7

HEPTANE 3* 3* 7 7 7 3

RapiTime 3* 3* 3* 7 7 3*

probabilistic 3* 3* 3* 7 7 3*

2.5 Conclusions

The state of the art presented in this chapter shows a variety of approaches to determine

the WCET of embedded systems from two main families of methods. Even though the

dynamic methods represent still the industrial reality of the WCET estimation, static meth-

ods are emerging as a solution to the growing complexity of embedded processors, where

measurement based methods are showing their limitations.

58 Chapter 2: Related Work

The most successful static methods use advanced models of hardware in order to finely

take into account the software - hardware dependency for execution time estimation. Tech-

niques as abstract interpretation are used to create abstract hardware models ensuring the

calculability of the timing result with a certain precision. Some steps are also made to

facilitate the modeling of the processor and enable the method to easily take into account

additional processor, like the use of parametric processor models (xml, etc.).

The graal of the WCET estimation is precision and adaptability. The following chapter

introduces a novel method centred on a formal framework for processor definition that will

take a step forward in the adaptability of the precise worst-case analysis.

Chapter 3

HiTAsm Formal Framework

Certification standards, like the ones that can be found in avionics, give precise rec-

ommendation regarding the confidence level that functional and non-functional properties

must provide. Regarding the non-functional aspects, distinct focus is granted to the bound-

ing of resource consumption. Of particular interest is the timing aspect or the ability to es-

timate a tight worst-case execution time (WCET) of tasks on a given system. Nevertheless,

modern processors have evolved in order to improve the maximum performance throughput

with little to no regard to the determinism of their components. Such modern features in-

fluence the instruction timings that can be context or history dependent. Therefore the local

worst case no longer suffices in the estimation of the global worst case execution time. In

order to safely and precisely estimate the WCET of a processor we need a versatile model

that can take into account all the possible component interactions and offer the means to

confine and control the inherent state space explosion of exploring all the execution scenar-

ios.

In this chapter we introduce a novel extension of the Abstract State Machines, which has a

number of interesting features and will be used in our timing estimation analyzer:

• adaptability of the analysis, given by the separation of the processor model and the

analysis;

• ease of use;

• preservation of the formal background of the model extensions;

59

60 Chapter 3: HiTAsm Formal Framework

• adaptability to imprecise value analysis;

• state space explosion confinement techniques through hierarchical abstractions and

fusions;

• built-in capturing of timing anomalies;

which make our model suitable for the WCET estimation.

Abstract State Machines (ASMs) have been used with success in processor modelling and

verification [HC97], and are a good candidate to describe the underlying architecture for

system analysis and worst-case execution time estimation. Despite the formal background

which makes it suited for proofs, the ASM model can be seen as a simple language and

used accordingly with a minimum time to take in hand. The ASM method bridges the

gap between the two ends of system development: human understanding of problems and

deployment of their solutions by code executing machines. In this sense, ASM is human

readable and machine executable which makes it even more suited for system design and

analysis. Many approaches exist for integrating time into ASMs, however they are either

focused on the verification of the correctness of the specification or on the flexibility of de-

sign of embedded systems. Based on the richness of ASMs, we create a model better suited

for the analysis of large systems, where a permanent tradeoff between precision and state

space explosion can to be made through the selection of component abstraction levels. Our

approach is different from others as we use the time information in conjunction with the

notion of dynamic turbo-jumps that can vary the duration of the transition from one state

to the next one. Furthermore, the temporal model serves as a base to introduce hierarchical

levels, similar to refinements however extended to run-time, dynamically controlled by the

language in order to optimize the aforementioned tradeoff.

We choose to represent the delay as a semantic information that increments a special lo-

cation used to store the current time associated to a state. As for the hierarchical part,

we introduce a special oracle-based transition semantics that dynamically selects the most

appropriate definition between several levels of component abstraction. We focused on sim-

plicity and specialisation as we only target a subset of real-time systems, like processors

and closely connected parts of the environment. Special attention is given to preserving the

Chapter 3: HiTAsm Formal Framework 61

mathematical foundation of the original basic ASM model.

3.1 Abstraction and Computer Science

Some of the most interesting properties in computer science are undecidable problems.

Some of the problems of theoretical computer science can be descriebed briefly as follows:

Language and Problems: any problem can be restated as a language recognition prob-

lem;

Undecidability: undecidable languages that cannot be decided by any Turing Machine

(TM);

Rice’s Theorem: all nontrivial properties about the language of a TM are undecidable;

Church-Turing Thesis: any mechanical computation can be done by some TM.

We can therefore state that any nontrivial property about general mechanical computations

cannot be decided.

A useful technique to infer properties about programs or systems is through abstractions.

Abstraction in the general sense implies simplification, the replacement of a complex and

detailed real-world situation by an understandable model within which we can solve a

problem. Finding a good abstraction is not obvious because we are forced to confront the

fundamental limitations on the tasks computers can perform and the computation speed of

those computers.

Abstraction allows to scale and model all possible runs of a system, however they must:

• be conservative

• try to balance precision and scalability - Flow-sensitive, context-sensitive, path-sensitive.

On the other hand static analysis abstractions do not cleanly match developer abstractions.

In order to analyze safety-critical systems, we need to prove that certain properties are

respected for all possible executions of the program on the given platform. Often, the

62 Chapter 3: HiTAsm Formal Framework

solution to those problems is quite simple to find, however it may require computational

resources that are unavailable or might never be.

To address this computability problem, abstractions can be used in order to simplify the

computations. For example, one could choose to use abstractions that despite the fact they

model an extended research space, will eventually enable a most efficient property valida-

tion.

Any abstraction leads to information loss. Let us take the example of semantics, where

all answers based on the abstract semantics are always correct with regard to the concrete

semantics. Termination of a program can be proven using the relational semantics for ex-

ample. However, on the account of the information loss, not all questions can be answered

using abstract semantics.

Choosing the right abstraction technique or abstract domain is very important in capturing

the needed behavior of the program, in a flexible, adaptable and computable way.

In this chapter we introduce a novel way of hardware abstraction using a temporal abstract

state machine representation featuring hierarchical abstraction levels that can dynamically

change the definition of the processor depending on the needed precision level and on the

richness of information on the manipulated values.

3.2 Related Work

Numerous approaches to integrate time into the ASMs exist in the literature, all for a

relatively different purpose. The main directions in the related works are focused around

the notion of time as a durative action or as an instantaneous action. Timed ASM with

instantaneous actions were first introduced in [GH96]. Both paradigms are further devel-

oped in [BS02], [CS08] and [OL08] with semantics oriented on verification. In [OL08] the

Timed ASM is presented as the moves of agents, synchronised using a system clock. Their

concurrency semantics is based on synchronous multi-agent ASMs. Moves can take time

and are associated to durative actions. Time is used to specify the duration of a step and it

is chosen non-deterministically from the specified interval. The parallel with the analysis

of the system design for worst-case and best-case behavior, such WCET is also made. A

Chapter 3: HiTAsm Formal Framework 63

detailed presentation of the use of ASMs for precise WCET computation can be found in

[BM09b]. The works in [AMMS10] deal with continuos and discrete time, introduce time

constraints as linear inequalities, instantaneous actions and delayed actions with the delay

chosen non-deterministically. The model is tailored in order to enable first order timed

logic (FOTL) to automatically describe runs of ASM. This is achieved mainly for instanta-

neous actions in a form apt for formal analysis like model checking.

The previous approaches deal with time as an information needed primarily for system

verification which imposes certain choices regarding the semantics of the ASM. The ap-

proach presented in this work incorporates concepts from previous approaches from the

ASM community however it represents the time in the simplest useful manner, close to the

basic ASM but on the other hand adapted to generate runs that can reduce the number of

processed information. The model is intended to give a clear vision of semantics of timed

algorithms and enables easy abstraction of external or internal components.

Regarding the hierarchical aspect of our model, no other attempts were made to integrate a

dynamically adaptable level of abstraction of the ASM, to the best of our knowledge.

3.3 Motivation

The model presented in this work is conceived in order to facilitate the abstraction

of components rather than to ease the stepwise refinement for system design. We do not

choose a dense time domain as we are not interested in arbitrary action refinement (making

more internal steps visible). The ability to insert, between any two moves, an intermedi-

ate move, at an intermediate time point is an useful feature from the design point of view.

However we focus less on the ease of conception as our model will be less used to conceive

the target system but rather for refinements as abstractions from a more detailed definition

to a more abstract one. Nonetheless, our framework is still able to refine a processor model

down to a unitary interval that can by associated to a cycle which is sufficient for our pur-

pose.

The ability to model a processor in basic ASMs as a straightforward step was proven in

[Gau95] and besides, as we stay close to this model semantically and syntactically, we can

64 Chapter 3: HiTAsm Formal Framework

always start the modelling of the processor without the timing information, following the

classic stepwise refinement technique if ever needed.

Even though not presented explicitly in this paper, composition mechanisms that enable

partitioning and the reuse of components, like the ones presented in [Anl00] and [OL08]

are possible through the use of the update set composition presented in definition 25.

Based on the compositional operation we can also generate different runs of the model

corresponding to abstract traces. Every time a certain imprecision in the value analysis of

the code introduces an interval delay, the execution is split into different runs according to

the information on the timing anomalies occurrence. A list of locations that can generate

timing anomalies is used in order to trigger the parallel execution only for those values of

the interval that can cause problems. For all the other locations the monotonic assumption

on the execution time is safe, therefore we can take the maximum of the delay interval,

avoiding unnecessary runs. Whenever the execution is split, we can accumulate the update

sets generated by each parallel consecutive state without applying it to the splitting state. If

we do not have any guarantee on the global timing influence of local times we verify all the

options and after a certain number of steps (related to the particular architecture and mostly

to the pipeline’s depth), when we identify the right trace, we can rollback to the initial state.

The mathematical foundation of the timed ASM states as algebras will also ease the iden-

tification of relations between components and states. In this manner the equivalent or the

less time consuming states are merged by default.

3.4 Notational preamble

In the following chapter we used an unified notational system to give the semantics of

our framework, mainly inspired by the reference book in abstract state machines, [BS03].

The set of states (ASM, Timed ASM, HiTAsm) will be described using A,B,C, . . . , pre-

cisions will be made about the precise type of state. States from these sets are denoted by

A′,A′′, . . .A(i) where A′ not
= A(1).

We will use P,Q,R to denote rules, U,V for update sets freshly generated by rules in a

given state andU,V for delayed update rules sets that accumulate all the previous not yet

Chapter 3: HiTAsm Formal Framework 65

fired updates. The interpretation of a rule R in state A:

~R�A def
= UAR (3.1)

yields a new state A′ with:

A
′ = A + UAR . (3.2)

When it will be obvious in which state the update set was generated, we will omit A from

UAR .

The semantics will further be described using:

further interpretations

things to interpret, in which state, under what constraints
condition (3.3)

For example, the interpretation of rule skip in state A will generate the update set φ:

yields (skip,A, φ)
(3.4)

The interpretation of the sequential ASM rule, P seq Q, generating the update sets U and

V respectively under the variable assignment ζ and the consistency condition is written:

yields (P,A, ζ,U) yields (Q,A + U, ζ,V)

yields (P seq Q,A, ζ,U � V)
U and V consistent (3.5)

meaning that we must first interpret the P rule that yields the update set U and then interpret

rule Q in state A + U.

3.5 Abstract State Machine

The ASM thesis was introduced by Yuri Gurevich as a reaction to the Turing thesis,

[Gur95b]. One of the most general notions of states and dynamic state changes modern

mathematics can offer is (static) algebras as states and guarded destructive assignments for

abstract functions as basic dynamic operations.

Gurevich thought of computation as the evolution of a state. It can also be seen as a finite

state machine where states are Tarski structures. Static algebras are first-order structures

with purely functional vocabulary. Therefore the notion of Tarski’s structures was tweaked

66 Chapter 3: HiTAsm Formal Framework

by adding the Boolean values and using the boolean functions to represent relations.

In the science of universal algebra, first-order structures with only functional vocabularies

are called algebras. An algebra is a Tarski structure without the relations. It is known from

the vast mathematical logic experience that any static mathematic reality can be faithfully

represented by a first-order structure.

3.5.1 ASMs in a nutshell

Abstract State Machines are a computational model based on mathematical structures.

The choice for the mathematical structure is static algebra which can be seen as a state.

The model of the run are groups of finite updates that make transition from one state to

another. The run proceeds either until a final state is reached or for an infinite number of

steps. The evolution of states is achieved through the notion of dynamic algebras by the use

of dynamic functions that change the content at certain locations. All the function names

form a set called the vocabulary. A special function defined on this set is in charge with

the interpretation of function names. For example, every vocabulary has the Boolean set

Bool = {true, f alse} as well as the natural boolean relation names as static functions. The

interpretation of static functions is fixed throughout the run, and translates for the Boolean

set as the natural boolean interpretation. Locations can be defined as functions applied to

the argument. The interpretation of the functions is the content of the locations. Changing

(or defining, if there is none) the value location (represented by the functions at the given

parameters)

f (t1, ..., tn) := t (3.6)

is done through updates. The interpretation of a function f = functionName is depicted in

figure 3.1 where vi is the interpretation of the term ti.

The 0-ary function has therefore the following interpretation: The ASM is a finite set of

guarded updates:

1 if Condition

2 then Update

Chapter 3: HiTAsm Formal Framework 67

functionName

v

v1

v2

vn

Figure 3.1: The interpretation of the Asm n-ary function f (t1, ..., tn) := t

f1

v1

T

Figure 3.2: The interpretation of the Asm 0-ary function f1 := t, ~t�A = v1

ASMs can describe algorithms at their appropriate abstraction level. System design can

be performed incrementally with the help of simultaneous updates which help avoiding an

explicit description of the intermediate storage.

An example of an ASM code of swapping the values of two functions is presented in Listing

3.1.

Listing 3.1: ASM example of instantaneous updates - variable value swap

1 rule valueSwap = {

2 a := b

3 b := a

4 }

The interpretation of the update rule involves an update set. Therefore, prior to their execu-

tion, all known updates are collected and stored into an update set and fired simultaneously.

The firing of updates modifies the interpretation of nullary functions a and b.

Therefore there is no need for the explicit description of a memory container c storing

68 Chapter 3: HiTAsm Formal Framework

the intermediate value of a. We say that ASMs abstract the memory interpretation of the

system.

3.5.1.1 Turing Machines

As we stated at the begining of the chapter, the ASMs were introduced as a reaction to

the Turing thesis, so let us have a look on how to use the ASMs to model a state of a Turing

machine.

The base set of the structure: Control ∪ Alphabet ∪ Tape which is disjoint from

{true, f alse, unde f }.

• Control is the set of states of the finite control. Each element of Control has a func-

tion name in the vocabulary. In addition, there is a dynamic distinguished element

CurrentControl in Control.

• Alphabet is the tape alphabet. One of these elements is called Blank.

• Tape is the set of integers representing tape cells. It has the unary operations S ucc

and Pred. There is also a dynamic function Head that takes values in Tape (which

is considered infinite).

Finally, we have a unary function

Content : Tape =⇒ Alphabet (3.7)

which assigns Blank to all but finitely many cells (and which assigns unde f to every ele-

ment outside of Tape). The following self-explanatory rule reflects a Turing instruction:

Listing 3.2: ASM example of instantaneous updates - variable value swap

1 if CurrentControl = q1 and Content(Head) = s1 then

2 doInParallel

3 CurrentControl := q2

Chapter 3: HiTAsm Formal Framework 69

4 Content(Head) := s2

5 Head := Successor(Head)

The whole program of a Turing machine can be written as a do − in − parallel block of

rules like that.

3.5.2 ASMs and hardware modelling

Abstract State Machines were first introduced under the name of evolving algebras. In-

deed, algorithms, in the general meaning, are seen as computation steps applied to states,

as algebras, that change the interpretation of functions names at the specified locations.

Moves from one state to another consist in the simultaneous evaluation and execution of

all the update rules that are applied in parallel, in the same time, changing locations in the

previous state.

A signature, Σ, is a finite collection of function names. Signatures are also called vocabu-

laries. Each function name has an arity, a non-negative integer.

n-arry functions


if n = 0 , variable, value of a memory address;

if n = 1 , content of a memory address, of a register;

if n > 1 , memory mappings.

(3.8)

All function interpretations are an element from the domain or universe of the function,

f : Xn =⇒ X. ASM functions are total, however partial functions can be represented

through the use of predefined value undef. In order to do that, values where the function is

not defined will return unde f .

Relations are represented as functions interpreted in the Bool universe, f : Xn =⇒ Bool,

where Bool = {true, f alse} is a predefined ASM universe. The universe of a relation f is

defined by {∀x ∈ Rn| f (x) = true}. A location is defined as the tuple l = (f , t̄), where f is

a function name from the vocabulary and t̄ the argument of the function. An ASM moves

from one state to another through the evaluation of rules and the application of the update

rule. An update, u = (l, v), changes the interpretation of a function at the specified location

l with the value v. Functions can be static or dynamic and are further differentiated into

internal, external, controlled, monitored, etc. Static functions can be seen as constants,

70 Chapter 3: HiTAsm Formal Framework

their interpretation does not change throughout the ASM’s run. On the other hand dynamic

functions can have their interpretation changed through updates.

3.5.3 ASMs and hardware abstraction

The ASM theory states that the internal structure of the superuniverse is not important.

In the following we present such a case, which develops the example introduced in [?].

The example consists in the implementation of logical functions through ASM functions.

Let ΣBool be the vocabulary of our boolean algebra with ΣBool = {And,Or,Not, Equal} and

Bit the its univers, Bit = {0, 1}.

True =⇒ Bit

False =⇒ Bit

And : Bit × Bit =⇒ Bit

Or : Bit × Bit =⇒ Bit

Equal : Bit × Bit =⇒ Bit

Not : Bit =⇒ Bit

(3.9)

with the following interpretations for the state A:

TrueA := 1

FalseA := 0

AndA(0, 0) := 0

AndA(1, 1) := 1

· · ·

NotA(0) := 1

NotA(1) := 0

(3.10)

Let B be a new state with the superuniverse |B|, the power set of the set of binary values.

ΣBool = B = {{}, {0}, {1}, {0, 1}} Our function names have now the following interpretations:

TrueB := {0, 1}

FalseB := {}
(3.11)

Chapter 3: HiTAsm Formal Framework 71

Let NOT (t) be all the elements of the superuniverse except t. We can define Not formally

as:

NotB(t) = B \ t = {n ∈ B|n , t}

AndB(t1, t2) = t1 ∩ t2 = {∀n ∈ B|n ∈ t1 ∧ n ∈ t2}

AndB({}, {}) := {}

AndB({}, {0}) := {}

AndB({1}, {0}) := {}

AndB({1}, {1}) := {1}

· · ·

AndB({0, 1}, {0, 1}) := {0, 1}

OrB(t1, t2) = t1 ∪ t2 = {∀n ∈ B|n = t1 ∨ n = t2}

EqualB(t1, t2) = {∀n ∈ t1|n ∈ t2}

Let’s now introduce a function α : |B| =⇒ |A|, for a subset X ⊂ |B| we define

α(X) =

 1 , if X = {0, 1};

0 , otherwise.
(3.12)

We say that α is a homomorphism from |B| to |A| if α (B(l)) = A(α(l)) for each location l

in B, where B(l) represents the value at the location l. We need to extend the function α to

locations, or more precisely to function names. Let l = (f , (b0, · · · , bn)) be a location of B,

where f is a function name and ai are elements of |B|. The content of the location l in B is

fB(b0, · · · , bn) therefore we define

α(lB) = α(fB(b0, · · · , bn)) = f A(α(b0), · · · , α(bn)) = f A(a0, · · · , an). (3.13)

For 0 − ary functions f , α
(

f A
)

= fB, which actually means that we get the corresponding

function in the other state.

The figure 3.3 illustrates the ASM principle of information hiding, stating that the inner

structure of the state it’s not important. The operations that can be performed on the ele-

ments of the state are what matters. We can also see in the figure that the superuniverses of

72 Chapter 3: HiTAsm Formal Framework

1

0

{}

{0}

{1}

{0,1}

1

0

{}

{0}

{1}

{0,1}

A

B

Figure 3.3: Binary function application on two isomorphic states

the two abstract states can be mapped to each other and the interpretations of the functions

agree on corresponding elements.

α(B(l)) = α
(
B((AndB, ({0, 1}, {0, 1})))

)
= α((AndB(({0, 1}, {0, 1})) = α({0, 1}) = 1

(3.14)

We must now compute A(α(l)) where

α(l) = α((AndB(({0, 1}, {0, 1})) = α((AndB, ({0, 1}, {0, 1}))) =

= (α(AndB), (α({0, 1}), α({0, 1})))) = (AndA, (1, 1))
(3.15)

therefore

A(α(l)) = A(AndA, (1, 1)) = 1. (3.16)

From equations 3.14 and 3.16 we obtain α(B(l)) = A(α(l)), that can be verified for all the

locations.

In our HiTAsm method we extend the information hiding principle to dynamic refinements

of ASMs and exploit it to model hardware at different abstraction levels in a processor’s

analysis that guides the needed precision level of the hardware component. For more details

on our HiTAsm method, please refer to [PMB13a].

Chapter 3: HiTAsm Formal Framework 73

3.5.4 Stepwise Refinement of ASMs

The ASM method enables stepwise refinement abstract operational modeling that bridges

the gap between virtually all the system design steps, [Bor03].

The starting point is the contract with the costumer, modeled in the human readable lan-

guage of ASMs that doesn’t require specifics of the inner math foundation of the model.

The process ends with the generated code from the detailed, refined specification or even

the ASM as an executable model.

The method starts thus with the ground model, a correct and complete task formulation de-

rived from the application-domain understanding through the requirements analysis. The

model is easy to understand and can be validated by the costumer and will constitute the

starting base for the system designer.

The ground model follows a series of steps corresponding to the incremental refinements.

These transformations can be proven correct at every iteration. The final model will be

linked to the generated code that will run on the target device. By proving that every trans-

formation step is equivalent to the previous, validated model, it is shown that the end model

correctly solves the problem formulated in the ground model.

3.6 Time and Abstract State Machines

The notion of time is important to model real-time systems. Hard real-time systems

emphasize the notion of safety with regard to the respect of deadlines. Determining the

WCET is essential for this kind of systems and therefore the notion of time in the hardware

model used for the estimation. Several approaches can be taken to integrate time in the

ASMs.

As a function in the Basic ASM The most natural extension is to start from the basic

ASM, expanding the notion of instantaneous updates that generate update sets in parallel

with simultaneous effect, if they are consistent. The effect of the updates is to change the

interpretation of the updated functions at the specified location. The consistency of the

updates implies that parallel updates do not affect the interpretation of the same function at

74 Chapter 3: HiTAsm Formal Framework

the same location and must be ensured by the user.

The time is a function with predefined interpretation that is updated in every new state,

giving the current time. The semantics of the time update can take several forms.

• A simple increment corresponding to the time of the longest update. At every fixed

time interval ∆t actions occur like in a processor where the clock signal activates

events. Nevertheless a time-accurate model can also be easily extended by adding

condition for firing updates only if the next state is different (with regards to the

Superuniverse or a monitored subset). In this case we have a ∆ti associated to every

state Bi.

The next choice is to either use the time function inequalities in guards or not. Dis-

regarding the time function in guards enables us to keep the same design paradigm

as in basic ASMs, which was successfully used to model several processors. Adding

them will change the processor modelling as we can have events triggered at a certain

time.

• Through the notion of submachines in the Sequential Turbo ASMs, by adding time

information to each submachine.

A parallel can be made between the two approaches. If we disregard the hierarchical

composition of submachines, the two models are equivalent. The time for each transition is

given by the update that takes the maximum amount of time. The use of sub machines is a

way to voluntarily hide away internal updates. The resulting time is the time of the parent

or, if not present, the maximum time of the children submachines. Certain constraints apply

to the update sets, namely in order to be consistent, the updates of the submachines must

not interfere with locations exterior to the parent. Therefore the sequential ASM approach

can be regarded as a more compact basic ASM. A state of the compact ASM represents

several states of the sequential one where only certain rules were activated and the rest of

the locations were left unchanged.

Chapter 3: HiTAsm Formal Framework 75

3.6.1 Adding time in basic ASMs

ASM is a state-based model, characterized by an explicit notion of state as static alge-

bras. The state is a first class citizen while the events are secondary level citizens in the

form of moves between states. The run of basic ASMs consists in a succession of moves.

A move applies the update set generated by all the update rules with valid guards in that

particular state. All updates are instantaneous and applied in parallel. This influences the

way the system is designed, in our case the processor. In order to describe its exact be-

haviour, we must give a step by step definition of all the interacting components.

Even though there is no explicit notion of time in the basic ASM, there is a clear notion of

sequentiality that can be very easily applied to the model of a processor where all changes

are governed by a central clock and applied in the same time after a clock tick. Therefore

the basic ASM model can be seen as a transition system that gives a picture of the state

before and after the clock tick. By adding a simple counter we can represent the notion of

clock tick.

We introduce a simple way to abstract certain components that take several basic ASM

moves to complete by adding the time information to the final group of updates. Therefore

we introduce delayed updates that model a whole set of rules in a blackbox style. The

execution of delayed rules implies the use of a global time scale that will be discussed in

the following.

We use the notation δ to refer to the update delay, that is semantically connected to the

basic ASM through a special location, a 0-ary function CT , holding a term that evaluates

to a value defined on T . Let (l, v, δ) ∈ U be an delayed update, l ∈ L a location of the

HiTAsm state A where δ is the value of the delay after which the location l will take the

value v. We can now introduce the delay : U × L =⇒ T function that applies to the

update set associated to an update rule in U and extracts the time information of that rule.

If the rule has no delay information, then it returns 1.

delay(U, l) =

 δ , if ∃(l, v, δ) ∈ U, with δ = ~t�Aζ ∈ T ;

1 , otherwise.
(3.17)

76 Chapter 3: HiTAsm Formal Framework

Note that in this case t has the normal interpretation of terms in the state A, given by ζ and

can be any term that evaluates to a time value in T . From the system design point of view,

interpreting durations in this way has the advantage of enabling the scheduling of a certain

location’s update depending on the update of another. For example, let us consider two

location updates u1 = (l1, v1, δ1) and u2 = (l2, v2, δ2) with u2 depending on the result of the

u1 update. We can therefore define δ2 = delay(U, l1) + to f f set, with to f f set > 0 ensuring that

l2 will be updated after the location l1.

For example, it could be used to express pipeline stalls in order to avoid data hazards

in a pipelined implementation of a processor. Let us consider the consecutive pipeline

stages instruction decode, IF/ID and instruction execution ID/Ex stages and their pipeline

registers. A data hazard situation could be an add instruction whose operands are dependent

of a load instruction that takes multiple cycles to execute. In this case, data forwarding

can not avoid the addition instruction’s stall. Normally a scoreboarding mechanism is

implemented for the dynamic pipeline scheduling. However if we write the add’s delay

for the updates in the ID/Ex stage depending on the delays of correspondent load updates

(for the forward registers or write back stage) we no longer need to explicitly give the

definition of the scorebording unit.

Time also enables the notion of time-accurate transitions. The idea is to compact the run

by only making moves that change the locations of the state besides the current time. In

this case we obtain a conjunction of update sets that makes a move to an equivalent state

(the first that is different) with the same equivalent duration δ =
∑
δi.

If every rule can have an associated duration, then we can have in the same state update

sets associated to different durations and the following scenarios.

Let A0,A1 = A0 + U0, . . . ,Ai+1 = Ai + Ui, . . . be a run. The next state Ai+1 is obtained by

firing all the updates from the update set Ui in state Ai. Depending on the delay information

found in the update set, we can have the following scenarios:

3.6.1.1 No timed updates

The run is therefore equivalent to the one of a cycle-accurate model.

B0,B1 = B0 + U0, . . . ,Bi+1 = Bi + Ui, . . . (3.18)

Chapter 3: HiTAsm Formal Framework 77

U j∈[0,i] = (l, v)i.e.δ = 0. (3.19)

If no time update functions are present, the CT function is by default incremented by 1

after all the updates are effective.

3.6.1.2 Single timed updates

Only one timed update occurs in the update set U j∈[0,i] = {(l, v, δ)}, equivalent of a time

accurate run, as we make the move directly to a state that has significant updates.

B0,B1 = B0 + U0, . . . ,Bi+1 = Bi + Ui (3.20)

with U j∈[0,i] = (l, v, δ).

3.6.1.3 Mixed updates

Both timed and untimed updates, or timed updates with different durations are specified,

Ui = {(li, vi, δi), (l′i , u
′
i , δ
′
i), , . . .},with δ(m)

i , δ
(n)
0 . (3.21)

In this case we first apply the update set associated with the smallest δmin = min(δi) and

subtract δmin from all the other durations. After each update, a move is made to a new state,

meaning that all the rules are evaluated again and new updates are added to the update set.

This is a way to encapsulate rules in a single black-box rule or in other words to replace a

rule definition with a less refined version that hides the inner actions. When all the updates

in a state take one cycle, we can say that we have a precise definition of all the units.

Updates that take several cycles hide away some inner updates and use less detailed defini-

tions of the respective unit.

When all the updates in a state take the minimal amount of time (that exists according to

the temporal properties of the model, listed below), one cycle for example, we can say that

we have a precise definition of all the units. Updates that take several cycles can conceal

some inner updates and look like less detailed definitions of the respective unit. Certain

constraints apply to the use of such delayed versions, like the absence of critical locations

with regards to update sets that must be applied earlier.

78 Chapter 3: HiTAsm Formal Framework

In order to make a valid delayed move, we must have by conception disjoint sets between

the delayed update set and the update sets that will be applied before it. This check can

be automated. Given the fact that we only have a limited number of rules that describe the

processor, we can create dependency lists of rules sharing locations.

For a delayed rule two types of dependencies exist: on intermediate and on final loca-

tions. If a dependency on the intermediate locations exists, the use of the delayed rule is

forbidden. If only dependencies on the final locations exists, the execution is natural as

the updates of the depending rules will be delayed by their updates. After the delayed up-

date takes place, the rule guards are evaluated and that will either validate or invalidate the

guards of the depending rule.

1 if not(delayedActions) then

2 forall u in U

3 forall l in u

4 l := v

5 endforall

6 endforall

7 CT := now + 1

8 else

9 let u = min(updateSets) in

10 forall l in u

11 l := v

12 endforall

13 CT := now + dur(u)

14 forall v in U-u

15 delay(v):=delay(v)-delay(u)

16 endforall

17 endlet

18 endif

Adding delays to update sets generates the following run cases:

1. all delays are equal to one (clock cycle)

Chapter 3: HiTAsm Formal Framework 79

2. one component has a n-cycle delay and no dependencies with other locations

3. several components have a delay superior to one

For the first case we can even eliminate the delay information as the minimum and basic

delay would be one. Concerning the semantics of the run, all update sets are applied at

every move except for those who have a non-unitary delay associated to their update set.

Their delay is a multiple of a clock cycle and gets decremented by the number of clocks

that the move takes.

The second case can be used to simulate a time accurate model, making a move directly to

the state that brings a significant update. The whole interest of this model is to have a more

compact run, eliminating useless states.

Therefore the model needs to know when to automatically make a larger move and advance

the execution with the respective number of cycles.

Our semantics is simpler and closer to the basic ASMs as we see the delayed rules as a

black box rule and not as a sequential composition of the potentially hierarchic subma-

chines, performing sub-computations on locations accessible by the other rules like in the

Turbo ASM presented in [?].

One way to automatically make the turbo-transitions is to check the update set. The update

set is the union of all the locations updates and their associated delays, as we can see in the

detailed definition. If no other one cycle update exists but only a n-cycle delayed update

set (for two consecutive cycles) then we can make the move directly after n-cycles.

We first give the detailed mathematical definition of our model and then prove some tem-

poral properties of the timed state transit system.

3.6.1.4 Detailed definition

The semantics of the delayed updates can be completely simulated with basic ASMs

constructs and the introduction of the pre-interpreted sort Time and the external pre-interpreted

function CT that gives the time associated to the current state.

1 executedStatus := true

2 ...

80 Chapter 3: HiTAsm Formal Framework

3 if C then

4 if executedStatus = true then

5 CD := CT + delay

6 executedStatus := undef

7 endif

8 if CT = CD then

9 delayedUpdateRule

10 endif

11 endif

The semantics in the above listing imposes that the guard C remains valid throughout the

whole delay period, which might be a necessary constraint. Otherwise, we can use a defini-

tion similar to the control state ASMs to simulate the delayed application of the rule like in

the listing below, where new(CTD(ruleName)) is a function that generates a new location

to store a delay for the rule ruleName.

1 if Cr then

2 if ctl_state = 1 then

3 CTD(ruleName) := CT + delay

4 ctl_state := 0

5 endif

6 endif

7 if CT = new(CTD(ruleName)) then

8 delayedUpdateRule

9 ctl_state := 1

10 endif

Other than the verbosity of this approach it would be furthermore difficult to express the

delay as an interval, where the delay can take all the values from the set {δmin, . . . , δmax}.

One of the natural constraints of consistency regarding the updates is that we cannot have

multiple updates for the same location (in the same time i.e more than one value for the

same location in the same update set). Adding a delay to the update raises the question of

Chapter 3: HiTAsm Formal Framework 81

allowing updates during that delay period or not. Forbidding the firing of the same rule

until the previous delay has elapsed, eliminates the possibility to pipeline the delayed rule

from the design point of view.

3.6.1.5 States and Update Sets

For a processor modelling, a discrete interpretation of time is sufficient as all time infor-

mations of the description are multiples of a cycle. Therefore we can only react to external

actions after the next cycle tick, which we consider sufficient in our WCET estimation con-

text.

We extend the definition of the signature from [?], Section 2.4, in order to handle time.

Definition 17 (Signature): A signature Σ is a finite collection of function names. Each

function name f has an arity, a non-negative integer. Every ASM signature contains the

static constants undef, true, false and also the external dynamic pre-interpreted function

CT that gives the value of the current time from the pre-interpreted sort of time, denoted

by T ∈ X.

The definitions of the state and location remain unchanged and are presented like in [?]

from which we also adopt some of the notations.

Definition 18 (State). A state A for the signature Σ is a non-empty set X, the superuniverse

of A, denoted by |A|, together with interpretations of the function names of Σ.

Definition 19 (Location). A location of A is a pair (f , (a1, . . . , an)), where f is an n-ary

function name and a1, . . . an are elements of |A|. The value f A(a1, . . . , an) is called the

content of the location in A.

We use a special location called the current time, CT ∈ Σ, to store the time progress of

the run by adding all the delays δ associated to updates. In cycle accurate models, we can

obtain the current time solely from the number of elapsed clock ticks. However the ticks

are no longer constant in our case.

We write A(l) for the content of the location l in A and also A(δ) = ~δ�A for the value

(interpretation) of the delay in the state A. Depending on the interpretation of the duration

82 Chapter 3: HiTAsm Formal Framework

δ that we allow, we can introduce a first order temporal logic in our model. This can be

accomplished by allowing the delays to be terms and associate the same formulas like for

the other locations.

The definition of updated set is modified in order to allow delayed updates.

Definition 20 (Timed update and update set). A timed update for A is a pair (l, v, δ), where

l is a location of A, v is an element of |A|, the value of l after the delay δ with regards to

the current time, CT . An update set groups all updates that are scheduled to be fired with

regard to the current state.

The delay δ cannot be infinitely small and is multiple of a smallest time interval, that can

be associated to a system clock tick, for example. The location l keeps its old value until

the delay δ has elapsed with regards to the current time when the update was scheduled to

be fired. The update is trivial, if v is the content of l in A.

Different delays for updates imply that the update set of a state is not always empty after the

move to the next state. However adding the notion of update set more closely in the state

would modify too much the basic ASM structure. We prefer to consider that the update set

is partially consumed in the current state and the rest is passed to the next one. In other

words, the next state can already have a non-empty update set before starting the evaluation

of its rules. Therefore we distinguish two kinds of update sets.

• UA - yielded by the machine’s main rule, in state A;

• U - updates inherited from the last move that did not fire, with their delay decre-

mented by the minimum delay δmin cf. definition 22.

Due to the parallelism of the updates, we must avoid the update clash, when a function is

updated at the same arguments in the same time. We therefore modify the definition of the

consistent update set.

Definition 21 (Consistent update set). An update set U is called consistent, if it has no

clashing updates, i.e. if for any location l, and elements v1, v2, δ1, δ2 it is true that if

(l, v1, δ1) ∈ U and (l, v2, δ2) ∈ U ∪ U, if δ1 = δ2 then v1 = v2. If the delays are differ-

ent, δ1 , δ2, they are no constraints on the location’s update value, in other words, the

Chapter 3: HiTAsm Formal Framework 83

update set accumulate scheduled updates for locations.

The consistency of an update set UA generated in state A, must be checked against locations

in U = UA +U.

If an update set U is consistent in a given state, then it can be fired. In the generated new

state the dynamic functions, that had associated updates with delay values equal to the time

step of the move, are changed according to U. All the other delays from the update set are

decremented by δmin.

Definition 22 (Minimum delay) Using the delay function we can define the minimum de-

lay δmin of an update set U = UA ∪ U for the state A which is the value of the duration

needed to make a move from that state to the next state A + U:

δmin ∈ {δi = delay(U, li) | delay(U, li) ≤ delay(U, l),∀l ∈ |A|}.

Definition 23 (Firing of updates). The result of firing a consistent update set U in a state

A is a new state A + U with the same superuniverse as A such that for every location l of

state A:

(A + U)(l) =



v , if (l, t, δ) ∈ U.δ = δmin, ~t�Aζ = v

vt , if l = CT, ~t�Aζ + ~δmin�
A
ζ = vt

A(l) , if (l, v, δ) ∈ U.δ > δmin

A(l) , otherwise.

The state A + U is called the sequel of A with respect to U, therefore (A + U)(l) is the

content of the location l after firing the updates in U. Since U is consistent, the state A+ U

is still determined in a unique way, and some locations will have a new content in A + U

with respect to A. If we do not have an immediate update (i.e. δ = 1), the locations having

δ = δmin will be updated directly after the minimum delay.

The state difference is defined as the unique set of non-trivial updates that can be fired to

reach one state from another state with the same signature and the same superuniverse.

Definition 24 (State difference). Let A and B be two states with the same superuniverse.

Their difference is defined by B − A = {(l,B(l), δAB) | B(l) , A(l)} ∪ {(CT,A(CT) + δAB)},

84 Chapter 3: HiTAsm Formal Framework

where δAB = ~δmin�
A is the duration value of the move from A to B, therefore the minimum

delay of A.

The original ASM lemma still holds,

A + (B − A) = B. (3.22)

Through the difference operator, −state, applied to the two states, we obtain an update set

containing all the redefinitions of locations that will occur in the new state, in other words

all the locations that are scheduled for update with the minimum delay δmin and therefore

also the redefinition of the curent time after the minimum delay increment.

Let A, B and C be states such that A+ U = B and B+ V = C. We define two subsets of the

update set such that U = Ul + UCT , which separates the timed update of locations from the

update of the current time location.

The composition of update sets, which corresponds to the sequential application of the up-

dates, is defined in the following way for basic ASMs:

U ⊕ V = V ∪ {(l, v) | there is no w with (l,w) ∈ V}. (3.23)

In other words, the composition of the update sets is the set of all the updates in V , some

that override locations in U, others that are generated by U and all the updates unique to U

and V .

The composition of delayed update sets U and V is the set U ⊕ V and follows a similar

principle, containing:

• the updates that should have fired in U and are not overridden in V at the next state,

therefore after a ~δmin�
A+V delay;

• all the updates that are unique to V , with the delay incremented by ~δmin�
A+U .

Definition 25 (Composition of timed update sets).

U ⊕ V = {(l, v1, δ1) ∈ U | (l, v2, δ2) < V} ∪ {(l, v, δ + ~δmin�
U) | (l, v, δ) ∈ V}.

We define by ~δmin�
U the value of the minimum delay when applying the update set U

which is different from the minimum delay in the update set U because we must also

Chapter 3: HiTAsm Formal Framework 85

consider the inherited update set U. Therefore ~δmin�
V will be the minimum delay from

the new inherited set (that has elements from the update set U also) and the update set V .

All updates from V were incremented with ~δmin�
U in order to maintain the consistency of

the count time function CT , that has to be equal after the firing of the two rules to the sum

of their minimum delays.

Lemma 1 Let U,V and W be update sets.

1. (U ⊕ V) ⊕W = U ⊕ (V ⊕W) The equality is obvious because of the associativity of

the union operation on sets and the associativity of addition on the time domain.

2. If U and V are consistent, then U⊕V is consistent. The consistency of the composition

is ensured by definition and it verifies the definition 21.

3. If U and V are consistent, then A + (U ⊕ V) = (A + U) + V.

A move of an ASM consists of firing the updates produced by the main rule of the machine

and by the update set inherited from the previous state, if they do not clash.

3.6.1.6 Transition rules and runs of the HiTAsm

States in computer science are dynamic, evolving through updates during the compu-

tation. The updates performed on an ASM state will change the interpretation of some

functions from the underlying signature. A set of rules describes how these updates are

performed (under what assumptions, in what order, how many times).

In the definition of our extension we kept most of the ASM rules, adding the timed update

rule and, as presented in the following sections, a hierarchical composition together with

their operations.

Timed update rule

f (s1, . . . , sn) := t, δ (3.24)

Syntactic condition f is an n-ary dynamic function name of Σ, t can be any term and δ a

positive integer (and as it will be introduced later, an interval of positive integers).

86 Chapter 3: HiTAsm Formal Framework

Meaning Change the value of f at arguments (s1, . . . , sn) to the term t after the delay δ,

si, t, δ being interpreted in the current state.

Semantics The semantics of the timed update rule are given in the following semantic

equation, where A, ζ,U, l, v and δ are introduced in definition 26:

yields(f (s1, . . . , sn) := t.δ,A, ζ,U, {(l, v, d)})
, where l = (f , (~s1�

A
ζ , . . . , ~sn�

A
ζ)),

v = ~t�Aζ and d = ~δ�Aζ
(3.25)

In equation 3.26 we give the execution semantics of a rule featuring delayed updates, where∑
⊕ is the composition-sum of update sets. It shows the behavior of timed updates, meaning

that update setsUi−1 with smaller delays δi−1 will be applied before update sets with larger

delays.

yields(R1,A, ζ,U1) . . . yields(Rn,A ⊕
∑
⊕

n−1
i Ui, ζ,Un)

yields(Rδ,A, ζ,
⋃

iUi)
, ∀u = (l, v, δ) | ui ∈ Ri,

ui−1 ∈ Ri−1 =⇒ δA
(i)

i > δA
(i−1)

i−1
(3.26)

Definition 26 (TAsm). A timed abstract state machine T M = {A = (Σ, X, ζ),R,U} con-

sists of a signature Σ, a set of initial states for Σ, a set of rule declarations, including the

main rule name of the machine and a possibly empty set of scheduled updatesU, accumu-

lated between the runs.

Definition 27 (Move of an TAsm). We say that a TAsm T M makes a move from a state

A to another state B (written A
M

=⇒ B) when the main rule yields a consistent update set

U = Ui + Us in state A, B = A + Ui, Us ⊆ UB and B(CT) = A(CT) + ~δmin�
A.

Interpretation of delayed update sets A visual interpretation of the delayed update se-

mantics is given in Figures 3.4 - 3.7. In the left side, in black we have function names

whose interpretation will change to the values of the yi terms after the δi delay. The red

Chapter 3: HiTAsm Formal Framework 87

Table 3.1: Inductive deduction of the semantics of HiTAsm rules

yields (skip,A, ζ, φ)
no time progression

yields (skip,A + {(l, v, δ)} , ζ, φ)

yields (skip,A, ζ, {(l, v, δ)})

yields
(
skip,A +

|U|⋃
i=1
{(li, vi, δmax)} , ζ,U \

|U|⋃
i=1
{(li, vi, δmax)}

)
yields (f (s1, . . . , sn) := t.δ,A, ζ,U ⊕ {(l, v, d)})

l = (f , (~s1�
A
ζ , . . . , ~sn�

A
ζ)),

v = ~t�Aζ and d = ~δ�Aζ

yields (P,A, ζ,U)

yields (if ϕ then P else Q,A, ζ,U)
~ϕ�Aζ[x 7→a] = true.

yields (Q,A, ζ,V)

yields (if ϕ then P else Q,A, ζ,V)
~ϕ�Aζ[x 7→a] = false.

yields (P,A, ζ,U) yields (Q,A, ζ,V)

yields (P par Q,A, ζ,U
⋃
V)

yields (P,A, ζ,U) yields
(
Q,A + ~P�Aρ , ζ,V

)
yields

(
P seq Q,A, ζ,U

⋃
ρV

) UA+~P�Aρ = φ

yields (P,A, ζ,U) yields (Q,A, ζ,V)

yields (P abs Q,A, ζ,U
⋃
V)

U = U � V

V = U � V

yields (P,A, ζ[x 7→ a],Ua)

yields
(
forall x with ϕ do P,A, ζ,U =

⋃
a∈I Ua ∪U =

⋃
b∈J Ub

)
if ∃xϕ : a ∈ XSE, ~ϕ�Aζ[x 7→a].

88 Chapter 3: HiTAsm Formal Framework

bounding boxes are a quantitative representation of the delay. We first identify the update

sets with the minimal delay and then fire all updates from the set. The delays of unfired

updates ∪δi.δi , δmin is then diminished by the minimal delay δmin as depicted in figure 3.6.

Once all the updates corresponding to the minimal duration have been fired, the process

f0

fn

x0

xn

+

...

...

...

δ1=δminy1,δ1x1

y0,δ0

yn,δn

Figure 3.4: Determining the update with the minimal duration

f0

fn

x0

xn

+

...

...

...

δ1=δminy1,δ1x1

y0,δ0

yn,δn

Figure 3.5: Selecting the update set corresponding to the minimal duration

f0

fn

x0

xn

+

...

...

...

y1

y0,δ0-δmin

yn,δn-δmin

CT:=CT+δmin

Figure 3.6: Applying the update set and updating the remaining durations

continues, figure 3.7.

Chapter 3: HiTAsm Formal Framework 89

δn=δmin

f0

fn

x0

xn

+

...

...

...

y1

y0,δ0

yn,δn

Figure 3.7: Selecting the new minimum delay from the remaining update sets

3.6.2 Equivalence with the basic ASM

Adding the delay δ to the updates, (l, v, δ) can be explained through classical locations.

If we introduce a mapping function ζδ : Σδ =⇒ Σ \ Σδ where δ : T are location names

from a subset of the ASM vocabulary Σ we can associate to any location from Σ \ Σδ a

duration δ. In order to represent the advancement of the current time we can use a rule that

will be fired at each step that computes the minimal delay δmin and adds it to the controlled

function CT .

3.6.3 Timed ASM defined by a set of Axioms

In this section we prove the respect of the time properties presented in [GP07]. Let

when : M =⇒ T be a function that gives the time of a move for every move of the ASM.

A move takes place at the moment when at least one guard of a rule is satisfied and the

associated delay is equal to δmin. Therefore the value of the function when is the current

time after the move to the new state, which is the current time plus the minimum delay of

the updates from the start state.

Property 1 The move from a state to another takes place at a point in time defined by the

function when:

when : M =⇒ Time.

Let A0
m1

=⇒ A1 be a move from state A0 to A1, we have

when(m1) = A1(CT) = A0(CT) + A0(δmin).

90 Chapter 3: HiTAsm Formal Framework

Property 2 Global Time: all time stamps of a run are totally ordered, i.e. the partial order

of the moves is extended to a total preorder for their occurrence times,

∀m1,m2 ∈ M.when(m1) < when(m2) ∨ when(m2) < when(m1)

Obviously true, from the definitions: if A0
m1

=⇒ A1
m2

=⇒ A2 then when(m1) = A1(CT)

and when(m2) = A1(CT) + A0(δmin), with A0(δmin) ≥ 1 since all time progress is positive

and non-null, therefore when(m1) < when(m2). Same reasoning if the moves occur in the

opposite order.

Property 3 Strict time progress along causal chains: whenever two moves are causally

ordered, their occurrence times are strictly ordered, i.e.

∀m1,m2 ∈ M.m1 < m2 =⇒ when(m1) < when(m2).

According to definition 24, a move takes at least one unit of time, therefore the property

above is trivial.

Property 4 Timed order is not stronger than causal order: causally non related events are

not comparable in the timed order, i.e.

∀m1,m2 ∈ M.m1 ≤ m2 ⇐⇒ when(m1) ≤ when(m2).

For the time being, we forbid conditions on the delays, therefore the time order is

induced only by the casual order.

Property 5 Absence of Zeno computations: In any infinite run, there is no upper bound of

the time values attached with moves, i.e.

∀RisIn f inite(R) =⇒ ∀t ∈ Time∃m ∈ R.when(m) > t.

The Property 5 is satisfied because if the number of moves is infinite we will always

have a new move with the current time, when(m) superior at least with one time unit than

the previous one.

Chapter 3: HiTAsm Formal Framework 91

Property 6 Minimal time distance: There is a lower bound of the time differences between

non-simultaneous causally ordered moves, i.e.

∃δ ∈ Duration,∀R,∀m1,m2 ∈ R.m1 < m2 =⇒ when(m2) − when(m1) > δ.

The minimal duration allowed in our update semantics is one, therefore such a δ exists.

Property 7 Events at discrete steps: Any two moves occur either at the same instant or

the time differences between their occurrence times are a multiple of a given value,

∃δ ∈ Duration∀R∀m1,m2 ∈ R∃k ∈ N.when(m1) − when(m2) = k ∗ δ.

According to our definition, the value of the minimal delay is 1. The value of the other

delays δmin is a multiple of the minimal delay hence k = 1.

Property 8 Local urgency: The time of each state change of each run is minimal.

Property 9 Global Urgency: The earliest state change amongst all distributed agents is

taken.

Updates sets are composed of updates and different associated delays. According to defi-

nition 24, the time progress is defined as the minimal delay in the updates list.

Time The time is an integrated part in the ASM. We associate time to an update set in

the following way. If no time information is present, the time associated to the update set

is equal to one as in one cycle. We can hide away details of the implementation of a rule by

associating to an update set a time superior to one. We use the term timed rule or update

to distinguish the last one from the regular one-cycle case. The interpretation is that we

see the more complex rule that would have executed in several cycles as a turbo rule where

the only thing that matters is the result, or the final update set. Several conditions must

be satisfied in order to be able to use a timed rule. From the refinement point of view, the

one-cycle update corresponds to the most refined version of the ASM which is sufficient in

our case to model the processor behavior. We will now take a look at the timing properties

of our state transition system.

92 Chapter 3: HiTAsm Formal Framework

Delay as interval Our notion of duration interval is different from the one presented in

[AMMS10] where the delay is chosen non-deterministically from the specified interval.

We use the notion of interval in order to simulate traces of abstract runs. When such a

delay interval is associated to an update, the pipelined model of the processor will generate

different execution time results for different delays in the interval.

A known problem for the computability of the WCET estimation, on certain architectures,

is that the analysis is not compositional, because the local worst case might not correspond

to the global worst case. This is encountered in processors featuring timing anomalies, that

can generate unobvious results such as a cache miss being more optimistic than a cache hit

with regards to the execution time.

Interval Value Domain for the Delayed Updates In order to represent abstract states

of the hardware in a timing model, the timing information is also extended. For concrete

definitions of the hardware, a single delay information is enough to represent the time

needed for the transition to be made. We introduce a natural extension of the natural value

domain of time to the interval domain where the delay of an abstract component can take

any values inside an interval.

Definition 28 (Interval domain). Let us define the domain of non-empty natural intervals

I, on the totally ordered set (N,≤), with the property that any natural number that lies be-

tween two numbers in the set is also included in the set where

I = {[a, b]|a ∈ N, b ∈ N ∪ {+∞}, a < b}. (3.27)

We can also define the interval of naturals with regard to the natural set as all the natural

elements between a lower and a upper bound:

I = {x ∈ N|a ≤ x ≤ b}. (3.28)

The interval set I is totally ordered by vI defined as:

[a1, b1] vI [a2, b2]⇔ a2 ≤ a1 ∧ b1 ≤ b2. (3.29)

Chapter 3: HiTAsm Formal Framework 93

The least upper bound and the greatest lowest bound are defined as follows:

[a1, b1] tI [a2, b2] = [min(a1, a2),max(b1, b2)], (3.30)

[a1, b1] uI [a2, b2] = [max(a1, a2),min(b1, b2)], et max(a1, a2) ≤ min(b1, b2) (3.31)

Being able to use imprecise intervals for a certain action comes in hand when using the

model in pair with a value analyzer that gives imprecise information. In this case a parallel

execution of all the different scenarios must be made.

Whenever parallel executions, for different data flows, are needed, we proceed until a merg-

ing point is reached, where it would be safe to return to a single execution flow that will

generate the highest global execution time.

We introduce the stores and parallel stores in order to handle the multiple generated runs,

each time such an interval is encountered. The problem with this type of execution is the

inherent state-space explosion. We therefore introduce the notion of reference store and at

every execution point that deals with a duration interval we keep a history of all the updates

that must be applied in order to get into that respective state of that particular run. This is

equivalent to keeping a list of all the locations that have been modified since the splitting

point if we merge all the updates. The merging consists of keeping only the final value for

the same location. To further compact the update sets, we can compare the locations to the

ones from the original store and eliminate the redundant information.

After several parallel executions the complementary update set will become:

• empty, meaning that except for the count time, we arrive in the same state as the one

where the execution has split. In this case we can fusion it with the original run,

keeping the last count time.

• identical to the one of another run, we can thus fusion and eliminate it, preserving

the maximal count time.

• similar to one of another run. The notion of similarity is to be further discussed. The

intuition is that we can reach two states that have differences only in non-interfering

locations, so the two can be merged.

94 Chapter 3: HiTAsm Formal Framework

States of ASMs are static algebras, therefore we can use this fact to create equivalence

classes between different states of the parallel runs in order to reduce the state space explo-

sion when searching for similar states.

3.7 Hierarchical TASM foundation

In this section we formally introduce the concept of HiTAsm abstraction hierarchy. We

start by a comparaison with the ASM step-wise refinements system engineering technique

that implies the equivalence through homomorphism of the different ASMs. After giving

the intuition and justification for the introduction of this new feature into the ASM frame-

work we proceed to the rigorous definition of the hierarchical levels, and the Oracle that

chooses between them, in the same formalism used to define the temporal feature. The last

sections are dedicated to the use of HiTAsm, introduces an order on states and provides a

formal definition for the state merging.

3.7.1 Preambule

The hierarchical notion of ASMs in already present in the ASM literature as a basis for

the incremental design by refinements. Besides the compactness and good readability of

specifications, ASMs offer a homogenous formalism for all abstraction levels. We believe

that the concept can be further exploited as the level of abstraction of ASM is fixed at the

beginning of the modelling phase. We therefore introduce the dynamic choice of the re-

finement granularity in what we call Hierarchical Timed ASM (HiTAsm). Therefore, the

model itself, is able to chose on the fly the appropriate abstraction level for a given rule

among several, user-defined, definitions. This can be particularly useful in the case of a

processor design as the precision on the values of manipulated data, given by a value ana-

lyzer for example, is not always on pair with the level of detail of the processor model. The

main idea is to adapt the level of abstraction of the processor description to the precision

given by the value analysis in order to master or reduce the state-space explosion inherent

to the WCET analysis.

Chapter 3: HiTAsm Formal Framework 95

3.7.2 Hierarchical ASMs

ASMs have the nice property of being able to describe any algorithm at its right ab-

straction level. One major difference in the concept of ASMs with regards to other state

transition systems is that the values of the support set remain the same while the transfer

functions change after an update.

The relation between functions and data is reversed, instead of having mutable data struc-

tures with immutable functions, we have immutable data which is operated on by mutable

and immutable functions. A data selector can be seen as a single argument function over

the selected data domain and the other way around. The assignment of an expression to a

variable field f of a record x can be re-interpreted as an update of the mutable function f

at the position x.

In other words instead of changing values, the interpretation of functions, for the right ar-

guments gets changed, associating the function name at the respective arguments to a new

value from the superuniverse. We have thus only immutable data serving as index struc-

tures for possibly mutable functions. The abstract state machines approach leads naturally

to components which are adaptable.

As an extension to this logic, we introduce HiTAsms not only as transition systems that

change the interpretation of functions according to the rules but also the interpretation of

the interpretation of functions. This is achieved through the extension of the model, with

an oracle that will modify the interpretation of function names, making them depend on

different set of rules.

The decisions of the Oracle can be modelled either based on the internal state of the Hi-

TAsm (watching certain locations can trigger a decision to use a more abstract state when

suited - for example when no timing anomalies can occur) or on external, monitored loca-

tions (for example when we have insufficient precision on certain values we can switch to

a definition of an unit that can work with the larger - more imprecise - domain).

Correctness of the hierarchical ASM A HiTAsm can have multiple definitions for a

same (rule, module) name that corresponds to different levels of refinement that we call ab-

stractions. During a same run either of the available hierarchy levels can be selected, there-

96 Chapter 3: HiTAsm Formal Framework

fore we must ensure that the run is correct with regard to the semantics of the processor and

also with regards to the time estimation. Informally, the correctness of the model is granted

by ensuring all the hierarchical level of the sub-ASM have the same input and output inter-

faces, that their initial and final states are equivalent and the intermediate runs produce also

equivalent states, in the same order. The creation of the different hierarchy levels along

with the functions that determine their choice is an important part in our WCET-centric

HiTAsm model. Inspired by the stepwise refinement technique of the ASM, we introduce

an additional workflow for the refinement generation. The ASM method starts with the

a fairly abstract definition of the system, called the ground model, and advance towards

a more concrete one up to the implementation of the executable model. This is a natural

incremental design that is well suited for system engineering. Following this method might

be sufficient to obtain the wanted levels of abstractions, whose properties we will describe

in the following. Nevertheless fine-tuning them in order to achieve the appropriate level

of abstraction might be necessary, hence the bottom-up approach, not to mention that the

processor might be easier in some cases to describe directly at a level that approaches the

executable one.

The bottom-up refinement approach

1. The starting point of the abstraction refinement is the final, concrete model of the

processor, unit by unit.

2. Each functional unit will be refined to an equivalent more abstract one. The latter

must do the same changes (eventually in a different number of steps) to the target

locations (important algorithm-wise, in other words locations that are used by other

sub-ASMs) until the final (equivalent) state is reached. The model itself doesn’t need

the guarantee to be finite under all inputs, running a finite program guarantees the

finiteness of the run.

3. In the final step we must ensure that the eventual interference of the additional states

will not affect the semantics of the processor execution and that the generated time is

an over-approximation of the more concrete one.

Chapter 3: HiTAsm Formal Framework 97

The bottom-up approach is best adapted when a HDL version of the processor is already

available, in which case an automated translation can be made. When starting with a top-

down design, the model ends with the concrete version and the design can go back at any

moment in order to give other abstract definition, most adapted to the context.

The top-down refinement approach

3.7.3 Cycle-accurate vs time-accurate model

Definition 29 (Cycle-accurate model) is an accurate description of the state of the model

on each clock cycle. The cycle-accurate model is the pair (S , =⇒) that associates a set

of states S to another set of states S ′ at every rising clock edge, by applying the binary

relation over S (of transitions) =⇒ ⊆ S × S .

Definition 30 Time-accurate model is a tuple (S ,T , =⇒) that associates a set of states

S to another set of states S ′ and the necessary time t ∈ T , to arrive in the new state, by

applying the binary relation over S (of transitions) =⇒ ⊆ S × S .

If p, q ∈ S and t ∈ T , then (p, t, q) ∈ =⇒ is written as

p
t
−→ q

Statement 2 Let A be a state and R a rule in state A. The normal semantics of HiTAsm

will generate the following transition:

A
δmin

−−−−−−−−−−−−−→⋃
i

ui |delta(ui)=δmin
A + ui

where ui is the update set generated by the interpretation of the rule R in state A.

The aim of the ASM extensions is to facilitate the timing analysis. A major problem in the

WCET estimation is the inherent state-space explosion. In order to compute the WCET

we would need to generate all reachable states and identify the branch corresponding to

the worst case. This remains computationally impossible therefore abstractions are made

that lead to approximations of the WCET. The analyzer that uses the processor model

98 Chapter 3: HiTAsm Formal Framework

makes constant attempts to reduce the state space exploration with minimum impacts on

the precision. For example the history of states can be used in order to identify identical

program points that will enable fusions as detailed in [PB12]. Therefore a cycle-accurate

model will only clutter the analysis with otherwise useless information, as there is no need

to keep track of consecutively identical states.

Using a time-accurate model eliminates unnecessary states with regard to the timing of

the system. In other words if we have the knowledge about the time needed to get into

a new state we can directly move the execution into that state. We use the definition of

ASM-moves in order to control the run. We also need to show that the pseudo-steps made

during that time will take into account the interactions of all the units. The time-accurate

ASM can be seen as a simple case of ”hierarchy” as the refinement is correct by definition

because in the (m, 1) refinement all the intermediate states are identical (the reason to use

the time-accurate model in the first place). The top edge of the commutative diagram in

State S

State S ∗ S ∗′

S ′

m steps of M︷ ︸︸ ︷
τ1...τm

≡≡

σ1

Figure 3.8: Time-accurate ASM as a refinement scheme

figure 3.8 represents the cycle-accurate model and the bottom part the time-accurate model.

The equivalence notion ≡ between locations of interest in corresponding states is trivial to

prove and follows from the definition of the time-accurate model. Except for the time

function, the pair of start and end states are identical so we have S = S ∗ and S ′ = S ∗′.

3.7.4 Extension of the ASM postulate

Definition 31 (Dynamic state changes) Static algebras as states and guarded destructive

assignments for abstract functions as basic dynamic operations.

Chapter 3: HiTAsm Formal Framework 99

From the ground model to the code an uniform algorithmic view is maintained based upon

an abstract notion of run.

Precise WCET estimation is dependent on the precision of the hardware model. However

generating all the exact states of the processor at every step of the run triggers a state-space

explosion. Therefore we should introduce a notion of abstract state runs that approximate

an upper-bound on the execution time, while reducing the state-space explosion.

Our idea consists in handling a part of the abstraction notion directly in the model. The

analysis that uses the processor model can thus use directly more abstract notions of state

whenever needed.

The original sequential ASM thesis states that every sequential algorithm can be step-for-

step simulated by an appropriate sequential ASM. It also implies that the level of abstrac-

tion for a given model should be fixed from the start. We modify the statement by confining

the applications domain to certain systems and allowing the dynamic change of the abstrac-

tion level.

Definition 32 (HiTAsm postulate) A processor can be simulated by an appropriate Hi-

TAsm at various abstraction levels generating conservative timed runs.

We introduce the notion of conservativeness with regard to time. By replacing an ASM

with a more abstract one, at every step of the execution, the time taken by the more abstract

ASM will be superior or equal to the less abstract one.

The postulate that we introduce is more conservative than the original one. We do not state

that it applies to a processor for every abstraction level in all contexts. The correctness of

the run of our model is based on some constraints applied to the choice and construction

of the different ASM component definitions similarly to the notion of consistent updates of

ASMs. The advantage of using such a model for the WCET estimation is two-fold. On the

first hand we need a model that helps confining the state-explosion and on the other hand

we need to prove that the processor model corresponds to the real processor.

By using the step-wise refinement technique inherited from the original ASM model, we

can start the description of the processor from a very abstract form that can be directly

inferred from the user manual of that processor and proof-read by experts. This represents

the ground model that will de refined into the final HiTAsm as an executable model. This

100 Chapter 3: HiTAsm Formal Framework

means that we can prove that the executable model of the processor, used in the WCET

estimation, corresponds to the initial, correct description.

3.7.5 Mathematical foundation of HiTAsm

According to the abstract-state postulate an algorithm does not distinguish among iso-

morphic types. A state is just a certain implementation of its isomorphism type. Looking

at the way elements of the base set are accessed, allows us to identify a good manner to

introduce multiple views of the same operation. Base set elements are accessed through

ground terms that contain functions from the vocabulary of the state. By allowing multiple

definitions for a function we access different ground terms leading to an equivalent opera-

tion with regarding to the semantics of the processor and its temporality for example.

The classic ASM refinement techniques provides us with the ability to build an abstract

model with an equivalence notion between data in locations of interest in corresponding

states. We want to be able to use multiple refinements levels during the same execution of

the algorithm that ensure a correct result with regard to the target property.

Contrary to the refinement concept we want to make moves in both senses, from the refined

version to the more abstract and vice-versa. This would not be possible in the general case,

nevertheless thanks to the target property (the temporal over-approximation) we can make

jumps in both ways. We hereby extend definition 18 of the state to take into account the

A(n−1)

A(n)

Ω

A

Figure 3.9: Dynamic HiTAsm abstraction level switch

Chapter 3: HiTAsm Formal Framework 101

different levels of abstraction.

Definition 33 (HiTAsm State). A state A for the signature Σ is a non-empty domain X =

XS et ∪ Xα, the superuniverse of A, together with interpretations of the function names of Σ

in one of the domains of A.

For each rule name we can give a definition for each universe of X. The values of terms,

functions and their arguments, can be imprecise.

Definition 34 (Critical rule). A rule is called critical if it changes the interpretation of

terms used in the guard of another rule, hence a rule dependency exists.

Definition 35 (Critical location). A location is called critical if it is involved in a critical

rule.

Let ri be a non trivial update rule (li, v) at location li = (f , (a1, . . . , an)) and let R be a

guarded update if ϕ then r where ϕ is a function formula depending on a location l. If l = li

then l is a critical location.

cloc(r,A) =
{
li ∈ U : ∃l j ∈ ϕ.li = l j

}
(3.32)

To describe the behaviour of a precision guided HiTAsm abstraction level choice, we now

introduce the abs-construct which combines simultaneous atomic updates of basic TASMs

in a global state with a choice of rules to apply.

We denote the abstraction level choice of two HiTAsm rules P, Q by P abs Q and define

its semantics as the effect either executing P in the given state A or Q in the same state A,

depending on which domain critical locations belong to, where U is the set ~P�A of updates

produced by P in A.

Definition 36 (Rule abstraction) Let P and Q be HiTAsm rules.

~PabsQ�A = ~P�A � ~Q�A (3.33)

U � V =

 {(l, t) | (l, t) ∈ U} , if g ∈ guard(P,A) =⇒ Dom(t) ∈ Dom(g);

V , otherwise.
(3.34)

102 Chapter 3: HiTAsm Formal Framework

where guard(P,A) denotes the function that returns the last values of the locations used

in the guards of P and Dom(t) the functions that returns the type of domain of the super

universe of t.

Abstract rule choice

P abs Q (3.35)

Syntactic condition Both P and Q must be defined as implementations of hmodules.

Meaning Depending on the execution context, the oracle decides which HiTAsm defini-

tion to choose for a certain rule.

Semantics The semantics of the abstract rule choice are given in the following semantic

equation, where A, ζ,U, l, v and δ are introduced in definition 26 and the �-operator is

formalized in definition 36.

yields(P,A, ζ,U)

yields(P abs Q,A, ζ,U)
, whereU = U � V (3.36)

yields(P,A, ζ,V)

yields(P abs Q,A, ζ,V)
, whereV = U � V (3.37)

3.7.6 Correctness proof outline

Safety-critical systems require a certain level of confidence regarding the respect of

some constraints. In order to ensure a level of confidence to the system, tools are used

to verify the respect of functional and non-functional properties. One of the advantages

of using a formal model for the processor description is the foundation to build proofs of

correctness. We provide in the following the intuition on how this can be achieved.

We distinguish two cases that both benefit from the formal support of the model. Firstly, we

need to prove that the processor model is correct with regards to the real processor that will

be used in the actual system and secondly that all the abstraction levels of the processor are

correct refinements of HiTAsms. ASMs provide a stepwise refinement method that allows

Chapter 3: HiTAsm Formal Framework 103

the designer of the system to start with a high-level description of the system that is refined

step by step into the final version which can be proven correct with regard to the initial one.

If a processor SystemC description is available, we can automatically generate a correct

HiTAsm model using techniques described in [MRR04] with minor modifications because

all the additions to our language preserve the nice properties of ASMs.

In order to prove that the different abstraction levels of the HiTAsm are correct we can

use similar techniques used to prove the correctness of compilers, [GZ00]. Program trans-

formation used in compilers consists in transforming the control and data-flow graphs. In

other words, the observable behaviour of the program must be preserved. In our case, we

use as an input for the processor model the compiled code of the program. The transforma-

tion consists in two steps: data mapping and operation mapping. When compiling a source

code, the initial graph depends on values that are known only at compilation time, and the

stack and heap are being mapped into the internal register system of the target processor.

Similarly we have a high level vision of the architecture in the form of the binary (after

the value analysis step which provides information about loop counter, variable interval

values, addresses, etc.) based on instructions from the ISA of the processor and a low level

vision based on microcode operations that describe the exact behaviour at byte level of a

particular ISA implementation (the actual processor). In figure 3.10, the top graph rep-

resents the most abstract model (the binary code) and the bottom one the most concrete

model (the processor). Proving the correctness of the two models comes to independently

prove the correctness of the data mapping and conditional graph rewrite rules. The data

mapping assigns a new semantics (by means of an HiTAsm A′µP) to the binary code using

the concepts of the data part of the target language. The behavioural part is kept, therefore

the corectenns of the mapping can be shown by proving that A′µP 1-1-refines AµP.

ASMs are transition systems which transfer static algebras. The abstract state machines

make use of the following abstraction principle, while limited to the notion of evolving

algebras:

104 Chapter 3: HiTAsm Formal Framework

AµP

A
(n)
µP

Figure 3.10: HiTAsm refinement

3.7.7 Abstract processor execution

Analyzing all reachable states of a processor makes the WCET estimation safe. Nev-

ertheless, because of the state space explosion we must eliminate as much individual state

handling as possible.

The HiTAsm model is custom tailored to confine the state space explosion of the under-

going analysis. After a number of safe, abstract steps the analysis goes back to a concrete

state that corresponds to the global worst case. If the information regarding that state is lost

or it is decided to be computationally expensive, the state is safely over-approximated by

choosing a more pessimistic one.

We provide in the following a schematic view of the use of the model in the WCET esti-

mation.

1. Complete the value analysis of the binary. We obtain information on the CFG, in-

structions, loop counters, register values, addresses, etc.

2. Start the conjoint symbolic execution (SE) on the HiTAsm model of the processor.

Chapter 3: HiTAsm Formal Framework 105

3. (a) If the value is exact =⇒ use the concrete HiTAsm A(0)
µP.

(b) If the value is imprecise (set, interval, etc.) =⇒ use abstract HiTAsm A(i)
µP. We

deal with symbolic values =⇒ all or some if the parameters of the functions

(locations of the units functions) are intervals.

What is the type of dependency?

• unit type

• functional (an instruction needs or depends on a certain value) =⇒ split

the domain set (the universe of the HiTAsm) in different sub-domains that

satisfy the constraint.

A''

x''

y''

z''

x

y

z

f A

gA

A A'

fB

gB

A'

X

Y

Z

x'

y'

z'

B'

f A

gA

fA(x)fA(x)

gA
(y,z)

fB(X)

gA
(y,z)

gB(Y,Z)

fA''(x)

gA''(y,z)

X

Y

Z

B

fB(X)

gB(Y,Z)

A''
�x X Choose

Figure 3.11: HiTAsm abstract execution

3.7.8 Dynamic choice of ASM refinements (the Oracle)

Possessing a precise and versatile model of the processor is very important. Neverthe-

less having access to an usable HDL code, is rarely the case for platforms used in hard

106 Chapter 3: HiTAsm Formal Framework

real-time systems, that are fairly outdated, and even if it exists, there is no common, unified

description language. Ideally we should use the description of the processor as an input

and generate an usable model for the analysis. As the lack of availability and standardiza-

tion makes the task impossible, the need to create a model for each platform is mandatory.

This is one of the bottlenecks in the adaptability of current tools, and we consider that the

modeling part should be therefore a separated straightforward engineering task that can be

made on the fly and without disposing of precise knowledge with regard to the rest of the

tool. Therefore we chose to use the abstract state machine, a method that bridges the gap

between human understanding and formulation of real-world problems and the deployment

of their algorithmic solutions, in our case, the modeling of the processor, that showed its

efficiency as a specification method in numerous practical applications (e.g. see [Mic],

[BS03]).

Using a human readable and machine executable language makes the difference when it

comes to speeding up the process of the hardware description. However some important

features were not included in the original version of the ASMs [Gur95a] like the timing

aspects hence updates are considered immediate. Ouimet et al. [OL07] introduced the con-

cept of durative actions by adding delays directly in the syntax; our approach is similar.

In [SV07] a prototype of a simulator for reactive timed ASMs that verifies the respect of

requirements specifications is introduced. Besides the timing aspects we enrich the origi-

nal model with hierarchical feature that enables us to give different definitions on several

abstraction levels of the same processor component.

The goal of hierarchical ASMs is to provide at any time during the analysis, the right

level of abstraction in order to prevent the combinatorial explosion. We know that we do

not always dispose of precise information during the analysis (e.g. data memory address,

availability in the cache, etc.) therefore using the most precise description of the fetching

mechanism, for example, would be useless, on the other hand, a less precise, more abstract,

definition could help reduce the number of generated states.

The hierarchical definition of components integrates seamlessly into the ASM formalism.

Basically, the oracle is an ASM module that imports all the needed function definitions

and exports the needed functions or rules. Each hierarchical module is defined as a control

state ASM (cf. [BS03]) using in its condition the result from the oracle that decides which

Chapter 3: HiTAsm Formal Framework 107

implementation is appropriate for the current context.

selected(Fetch1)

and

FetchOK

Fetch1 rule

selected(Fetch1)

and

FetchOK

Fetch2 rule

forall fetch in FETCHER

forall comp in uP

Select(DECODE) rule

Select(FETCH) rule

...

Figure 3.12: The oracle and the fetcher modules

FETCH =

forall fetch ∈ FETCHER do FETCH1(fetch), FETCH2(fetch)

In figure 3.13 we have two definition of the Fetch stage, the first one corresponding to

the more abstract version that will typically be chosen if we have no precise information

on the exact fetch address. Generally we have a family of abstraction for each component

of the processor, αCi =
m⋃

j=0
α j so that Ci

α j
=⇒ Cα j

i . Let T(Cα j

i) be the contribution of the

abstract component to the global execution time. We must have T(Cα j

i) w T(Ci).

3.8 Conclusions

We have proposed an extension of the ASM model that handles time and dynamic ab-

straction in a simple manner. The possibility to make delayed transition is presented as a

support for abstracting the processor components in order to achieve a more compact sim-

108 Chapter 3: HiTAsm Formal Framework

FETCH

if FetchOK then

 FetchQueue:=getNextInstr()

 t:+=[t_min, t_max]

endif

if FetchOK then

 FetchAddr:=getExactFetchAddr()

 howMany:=FetchAddr MOD 4

 FetchQueue:=BurstAccess(

 FetchAddr,howMany)

 t:+=[t_BurstFetch]

endif

Figure 3.13: Different definitions of the fetcher

ulation.

Some temporal properties of the system were enumerated and discussed. We have also

introduced a model that can dynamically refine the components of the processor, preparing

a framework where run-time abstraction can be made in both ways between the concrete

and the more abstract definition.

The adaptability of the analysis, given by the separation of the processor model and the

analysis, the ease of use, the preservation of the formal background of the model exten-

sions, the adaptability to imprecise value analysis, the state space explosion confinement

techniques through hierarchical abstractions and fusions make our model suitable for the

WCET estimation.

Chapter 4

HiTAsm at Work

In this section we present some additional application contexts of the HiTAsm that we

further detail in chapter 7. We start by showing the handling of timing anomalies and

continue with an overview of the HiTAsm integration into the timing analyzer.

4.1 On the hierarchical levels of abstraction

The execution semantics of delayed updates of abstract HiTAsms is based on timed

moves corresponding to the updates that have the smallest associated delay, δmin. This

means that the full result of the execution of a rule might be visible in several steps.

Definition 37 (Finished Rule). Let UR be the update set generated by the interpretation

of the rule R, we say that the interpretation of R in state A has finished if all the delayed

updates of UR were fired.

Definition 38 (Rule Finish Time). Let UR be the update set generated by the interpretation

of the rule R, we say that ∆R is the finish time of R in state A if:

δ~R�A
not
=

|UR |∑
i=1

δi | (li, vi, δi) ∈ UR.

Starting from definition 38 we can define the HiTAsm rule semantics.

109

110 Chapter 4: HiTAsm at Work

Definition 39 (HiTAsm rule semantics). Let UR be the update set generated by the inter-

pretation of the rule R, we say that R is interpreted in state A with the rule semantics and

denote with ~R�Aρ , if:
yields

(
skip,A f , ζ, φ

)
yields (R,A, ζ,UR)

ρ

In other words, an execution step leads directly to a new state in which all the direct timed

updates generated by that rule, namely UR, are fired (all the delayed modifications stipu-

lated in UR are consumed).

The rule semantics from definition 39 can be easily extended to block-rule semantics.

Definition 40 (HiTAsm block-rule semantics). Let
n∑
⊕

i=0
URi be the composition of the update

sets generated by the interpretation of the set of rules R0 . . .Rn, we say that the block of rules

are interpreted in state A with the rule semantics and denote with ~R�Aρ , if:

yields
(
R0,A, ζ,UR0

)
yields

(
R1, . . . ,RnA, ζ,

n∑
⊕

i=1
URi

)
yields

(
R0, . . . ,RnA, ζ,

n∑
⊕

i=0
URi

) ρ

Based on the above notations we can now give a new definition for the rule finish time:

δ~R�A = time(Ae) − time(A), (4.1)

where time(A) = ~lCT�
A.

Definition 41 (HiTAsm state transition system). Let A be a set of HiTAsm states, =⇒ a

set of state transitions labeled by the set of abstraction levels L and TL a time domain for

the level of abstraction, we say that (A,TL,L, =⇒) is a HiTAsm state transition system.

The fact that (As, t, l,Ae) ∈ =⇒ is written as:

As
t
−→
l

l Ae.

We can therefore also note, as a shortcut, the interpretation of rule R in the state A in the

rule semantics, and the interpretation of the block rule respectively:

Chapter 4: HiTAsm at Work 111

A
δ~R�A
−−−−→

R
ρ Ae (4.2)

A

n∑
i=0
δ~Ri�

Ai

−−−−−−−→
R0,...Rn

ρ Ae (4.3)

4.1.1 HiTAsm semantic level

In definition 39 we introduce a big step semantics based on the abstract HiTAsm model.

Depending on the granularity of effects visible after a transition occurs, we can define

several types of HiTAsm semantics like the cycle-level, δ-level (time accurate), rule-level,

instruction level, block level, etc.

Cycle level Systems modeled in our framework can be as precise as needed, therefore we

can model a processor cycle level, register transfer level (RTL) or even net-list level.

Definition 42 (Cycle Level). Let As,Ae ∈ A be two HiTAsm states of Acl together with the

superuniverse X ⊃ Tcycle and =⇒ cycle the previously introduced transition rule, we have

As
δ=1cycle
−−−−−→

R
cycle Ae.

representing a move from the start state As to the finish state Ae after a delay of one cycle,

1cycle.

Please note that depending on the vocabulary of the state Acl and the abstraction level of

the rule implementation,

Theorem 1 In a cycle-accurate semantics of the HiTAsm, two consecutive states are dif-

ferent iff that state generates or the delayed update set contains a delayed update with the

delay on one cycle.

∀As,Ae ∈ Acl.As , Ae ⇔ ∃(li, vi, δi) ∈ UAs | δi = 1cycle

112 Chapter 4: HiTAsm at Work

Delta level A delta-level model of the processor can capture the state modification that

occurred in a lapse of time δ.

Definition 43 (Delta-accurate Level). Let As,Ae ∈ A be two HiTAsm states of Aδ together

with the superuniverse X ⊃ Tδ and =⇒ δ the transition, we have

As
δ
−→
R

cycle Ae.

representing a move from the start state As to the finish state Ae after a certain delay, δ.

Please note that depending on the vocabulary of the state Aδ and the abstraction level of the

rule implementation,

Theorem 2 In a delta-accurate semantics of the HiTAsm, two consecutive states are dif-

ferent iff that state generates or the delayed update set contains a delayed update with the

delay δ.

∀As,Ae ∈ Aδ.As , Ae ⇔ ∃(li, vi, δi) ∈ UAs | δi = δ

Statement 3 (Time accurate model). The default semantics of our HiTAsm framework is

a specialization of the more general delta-accurate semantics where a transition is made

only if it generates un update in the new state and the time of that transition is the minimum

delay necessary to fire a delayed update.

Instruction level The instruction level semantics captures the effects of the complete

execution of an instruction on a processor state.

Definition 44 (Instruction Level). Let As,Ae ∈ A be two HiTAsm states of AI together

with the superuniverse X ⊃ TI and =⇒ I the transition rule, we have

As
δI
−→

I
instr Ae.

representing a move from the start state As to the finish state Ae after the complete interpre-

tation of the instruction I.

Chapter 4: HiTAsm at Work 113

Instruction Block level The instruction level semantics can be naturally extended to a

whole set of instructions.

Definition 45 (Instruction Block Level). Let As,Ae ∈ A be two HiTAsm states of AB

together with the superuniverse X ⊃ TB and =⇒ B the transition rule, we have

As
δB
−−−−→
I0,...In

B Ae.

representing a move from the start state As to the finish state Ae after the complete interpre-

tation of the instructions I0, . . . In.

Abstract model remarks Please note that if the initial state in the transition is an abstract

state (like above), several transitions and therefore several successor states may exist. We

can therefore define the notion of worst case transition.

Definition 46 (Local worst case time).

maxδ (A,R) not
= max

(
δ~R�A

∣∣∣∣∣A δ~R�A
−−−−→

R
ρ Ae

)
representing the maximum time taken by a move from the start state As to the finish state

Ae after the complete interpretation of the rule R.

4.2 Timing Anomalies

The evolution of processor architecture has made the timing analysis more complicated.

Among the consequences of modern processor features, timing anomalies (TA) have an im-

portant impact on the WCET estimation, by breaking the compositionality of the analysis.

Timing anomalies in the context of WCET analysis were first described by [LS99b]. Hard-

ware acceleration mechanism produce interferences that lead to timing anomalies, i.e., a

local timing change causes an either larger or inverse change of the global timing.

The abstract execution problem comes to:

• being able to handle many potential states;

114 Chapter 4: HiTAsm at Work

• at any moment either we have precise information about values =⇒ next step or we

don’t and we must identify the worst case. If we don’t know if the worst case can

occur, we must suppose that it will.

Usually, the WCET analysis is confronted, at each execution step, to either a great overes-

timation of the WCET or a complex analysis of the precise worst case path.

We will now define the timing anomalies using the HiTAsm framework and the pream-

ble in section 4.1 on page 109. The TA identification method is based on the definition

from [RS09].

Definition 47 (Timing Anomaly). A HiTAsm semantics has a timing anomaly if it exists

an instruction sequence I0, I1, . . . In, with their associated update sets UIi such that for an

abstract state A

∃A′,A′′ ∈ A.As
δ1
−→
I0

I A
′,As

δ2
−→
I0

I A
′′ | δ1 < δ2 =⇒

=⇒ δ1 + maxδ
(
A
′, I1, . . . In

)
> δ2 + maxδ

(
A
′′, I1, . . . In

)
Every semantics that is characterized by definition 47 will not allow a safe compositional

timing analysis. This means that local worst-case paths can not discard all others paths

because they will not always lead to the global worst-case. In the following we extend the

modeling of timing anomalies from [RS09].

Definition 48 (Local worst-case). Let A(1), . . . ,A(n) ∈ A be the possible successor states of

As after the interpretation of instruction I0 such that

As
δi
−→
I0

I A
(i)

we define the local worst-case transition by:

lwcδ (As, I0) def
=

((
As,A

(k)
)
∈
δi
−→
I0

∣∣∣∣∣ δk > δi∀k, i ∈ 1, . . . n
)

Definition 49 (Global worst-case path). Let A(i)
i be a path from that start state, under the

interpretation of instructions I1, . . . , In denoted by (A(i), I1, . . . , In)such that

A
(i) δi
−−−−→
I1,...,In

I Ae

Chapter 4: HiTAsm at Work 115

we define the local worst-case transition by:

gwcδ
(
A

(i), I1, . . . , In

)
def
=

(A(i),A(0), . . . ,A(n)
) ∣∣∣∣∣∣∣max

t
∣∣∣∣∣∣∣t =

n∑
i=0

δi.As
δi
−−−−→
I1,...In

I A
(n)

 .
TA-prone candidate validation As previously stated, TA characterization is given through

necessary but not sufficient conditions, therefore, a search algorithm must identify TA-

prone paths.We introduce a novel algorithm based on our framework that reduces the com-

putation requirements to identify potential TA paths. The technique consists in validating

a TA candidate as soon as the temporal gain is reduced meaning that the time of the path

starts growing, even if it is not superior to the initial time difference.

TA identification Another contribution to the brute force algorithm presented in [RS09]

is the use of our framework to identify transitions or paths that locations from units that are

TA-susceptible and automatically labelling them as unsafe for compositional analysis.

4.2.1 Handling Timing Anomalies

Safely discard states The same work in [RS09] defines a temporal state difference func-

tion for each transition based on all possible executions of the instruction sequences.

Let us also define a similar delta function ∆A : A×A =⇒ TR∪> that will be used to bound

the maximal worst-case timing difference between two states on any possible instruction

sequence that will follow. Please not that no constant can bound transitions that generate

a domino effect, hence the supremum > element is added in order to take this fact into

account.

Definition 50 (∆A function). A function ∆A : A × A =⇒ TR ∪ > that bounds the worst

case transition time towards two successor states is defined by:

∆A
(
A
′,A′′

)
≥ maxδ

(
A
′, I1. . . . , In

)
−T maxδ

(
A
′′, I1. . . . , In

)
where the maxδ function is defined in definition 46 on page 113 and −T is the subtraction

operation defined on the time domain T of A. In the following we suppose that the time

domain is the positive integers set with their natural operations.

116 Chapter 4: HiTAsm at Work

Using the ∆A function Let us suppose that a ∆A function was computed for every state

pair (A(1),A(2)) following an abstract execution split, where a choice on the worst-case path

must be taken. We want to discard as many states A(i) and pursue the execution on as few

paths as possible.

Theorem 3 (Safe state discard). Let A(1),A(2) ∈ A be two states and δ1, δ2 be the execution

time needed to reach state A(1) and A(2) respectively, it is safe to discard the path induced

by the state A(2) if:

δ1 − δ2 ≥ ∆A
(
A

(1),A(2)
)

Proof 2 (sketch) The proof is obvious, by supposing that it is not safe to discard A(2). This

means that A(2) can generate a path such that:

∃δi.A
′ δi
−−−−→
I1,...,In

I Ae|δi < ∆A
(
A
′,A′′

) cf. def 46, 50
========⇒ δi > max

(
δ j

∣∣∣∣∣A′ δ j
−−−−→
I1,...,In

Ae

)
which is a contradiction. Therefore it is safe to discard state A(2) �.

Discarding the state A(2) means that we can take the path induced by A(1) by using the

transition time:

δ′1 = δ1 + ∆A
(
A
′,A′′

)
. (4.4)

HiTAsm optimization techniques The computation of the ∆A function for a pair of states

is quite complex. We introduce several optimizations by defining safe windows and also

by determining a likeliness factor of potentially timing anomalous states. We start from

the observation that we do not need to compute the execution time of all the instructions

sequence starting from that point. We can stop as soon as the path execution time is greater

than the difference of time between the two compared states. We introduce the concept

of unsafe window, as a sequence of rules during which it is not safe to assume the local

worst-case was the global worst-case. We refer only to instructions in the present example

but it can be easily extended to any atomic rule.

Definition 51 (Unsafe step). An unsafe execution step is a transition that produces a timing

anomaly in other words, a transition starting in a step where we cannot suppose that the

Chapter 4: HiTAsm at Work 117

longest temporal transition will lead to the longest execution path:

δ′ > δ′′ 6=⇒ max
(
δi

∣∣∣∣∣A′ δi
−−−−→
I1,...,In

Ae

)
> max

(
δ j

∣∣∣∣∣A′′ δ j
−−−−→
I1,...,In

Ae

)
Definition 52 (Unsafe execution window). An unsafe execution window is an abstract

path starting in an abstract state As and ending after kT A abstract transitions, as soon as a

timing anomaly is produced:

kT A
not
= min(k|k ∈ 1, . . . , n)|δ′ > δ′′ 6=⇒ maxδ

(
A
′, I1, . . . , Ik

)
> maxδ

(
A
′′, I1, . . . , Ik

)
Analogously we can define the safe step and execution window.

Definition 53 (Safe execution step). A safe execution step is a transition that occurs after

a timing anomaly occurred and before a another timing anomaly can occur.

Definition 54 (Safe execution window). We define the safe execution window as a subset

of the run composed only of safe steps.

Property 10 During a safe execution window the compositionally of the timing analysis is

ensured.

Based on the above definitions we can now introduce a heuristics that will cathegorize two

states as timing anomalous with a certain probability, without computing all the kT A steps

needed to determine if a TA can occur. This will be useful when several path are being

evaluated in the same time, in order to decide which one to traverse in priority.

Intuition The idea is to used the monotonicity of the time function and associate and

increasing degree in the difference time function to a timing anomaly likeliness.

Safeness The only risk of this assumption is that we detect false positives, which will

contribute to an over-approximation of the WCET estimation and introduce an imprecision.

Therefore the estimation will remain safe.

118 Chapter 4: HiTAsm at Work

δ1 = 1 δ2 = 3

1

2

2

1

4

2

1

1

unsafe step

timing anomaly

safe window

A

A′′A′

A′′
δ j
−−−−→
I1,...,I4

A′′e

δ j = 6

A′
δi
−−−−→
I1,...,I4

A′e

δi = 8A′e A′′e

δ1 < δ2

δi > δ j

Figure 4.1: Timing anomalie example

Definition 55 (TA likeliness). After ekT A abstract transitions we can decide that two states

might produce a timing anomaly with a factor of p:

ekT A
not
= min(k|k ∈ 2, . . . , n)|maxδ

(
A
′, I1, . . . , Ik

)
− maxδ

(
A
′′, I1, . . . , Ik

)
>

(
maxδ

(
A
′, I1, . . . , Ik−1

)
− maxδ

(
A
′′, I1, . . . , Ik−1

))
+ p · (δ′ − δ′′)

where p ∈ [0, 1] gives an proportional information about the additive likeliness used to

categorize the states.

An additional idea is to use the timing anomalies identification techniques, presented

in [WKPR05b] and [EPB+06], to partition the analysis space in several categories corre-

Chapter 4: HiTAsm at Work 119

sponding to the presence or absence of the TA.

[WKPR05b] also proposes a criterion that provides a necessary but not sufficient condi-

tion for timing anomalies to occur. Our model is based on relation between locations that

are stored in functions and guarded updates, capturing by definition the timing anomalies.

These relations are exploited to identify the necessary condition for the TA to occur. We

can safely assume that if the necessary conditions are not satisfied, TA will not occur and

we can use the divide and conquer analysis approach.

Therefore we create functions that evaluate the timing anomalies that can occur, obtaining

the following cases:

• no TA are possible =⇒ choose the worst case;

• some TA might occur =⇒ analyze all the cases or use abstraction techniques.

1
2
3
4
5

TA

Figure 4.2: Timing anomalies partitioning

In the category where no TA can occur, we have an order on the states defined by a distance

on abstract states based on the temporal impact and further relations on locations. This

can also be used for defining similarities between states and perform merging based on

techniques presented in [BM09b].

4.3 HiTAsm for WCET estimation in a nutshell

The HiTAsm method was introduced in order to facilitate the WCET estimation. The

timed execution and the hierarchical abstraction levels of hardware components make this

120 Chapter 4: HiTAsm at Work

Abstraction Levels

Figure 4.3: Timing anomalies identified paths through relations between locations

framework suited for timing analysis. In this section we give a few justifications and pin-

point some methods on how to use the HiTAsmL language in order to limit the state space

explosion problem, inherent to industrial-size system analysis. This concepts will be de-

tailed later in chapter 7.

The global structure of the WCET estimation tool is depicted in figure 4.4. The analysis

consist in a conjoint symbolic execution of the program binary and the processor’s HiTAsm

model. The classical symbolic execution application is extended from the program level

to a processors running a program. After the binary analysis, the CFG of the program will

contain instruction block in each node. Each instruction that operates with unknown regis-

ter values will receive symbolic values instead. The symbolic instruction are the entry for

the processor model, generating all reachable states of the processor P under the program

P. State space explosion is handled through state merging, performed on similar symbolic

processor. In order to identify additional similar state, a feature called the Prediction Mod-

ule is used backtracking from known identical states in order to further reduce the analyzed

state space, [PB12]. Merging can be set to allow non-identical state merging which con-

sequently introduces a precision loss. By systematically keeping track of the introduced

imprecision, the method can approximate the accuracy of the estimation.

4.3.1 Timing anomalies remarks

The above section not only proves that our framework can naturally capture timing

anomalies but also that it is capable of taking into account state of the art TA identification

Chapter 4: HiTAsm at Work 121

Processor

Hierarchical

ASM Model

Program

Value

Analysis

CFG

instr order

instr address

Symbolic inputs

State

Fusion
WCET

Prediction Module

Conjoint

 Symbolic

Execution

C1

C1

ASM1

C1

ASMm

Cn

Cn

ASM1

Cn

ASMp

...

...

...

Oracle
choose train

Figure 4.4: Global architecture of the WCET estimation tool

122 Chapter 4: HiTAsm at Work

and discarding techniques but also improve them at least in the computational complexity.

4.4 Conclusions

In this chapter we have depicted the advantages and versatility of our HiTAsm formal

framework. After a closer look into the hierarchical levels of abstraction, a HiTAsm state

transition system is introduced that can adapt to multiple semantic levels. These semantic

levels are also used to depict the way in which the timing anomalies are naturally captured

and an approach to handle them based on state of the art timing anomalies capturing algo-

rithm. Optimization techniques based on the HiTAsm framework are also introduced that

further prove the suitability of our model for the WCET estimation.

Chapter 5

The HiTAsm Language Definition

The HiTASmL language implementation functions as a wrapper towards the main target

language, C# used for the analyzer implementation. The abstract syntax tree of the parsed

processor HiTAsmL code is further used by the analyzer to perform a conjoint symbolic

execution of the program and hardware.

After an overview of the language syntax, the semantics of the language are introduced

and code snipets of the Motorola MPC555 processor presented as example and discussion

support.

5.1 Syntax of the language

In this section we present the main syntactical elements of our HiTAsmL language. We

chose to remain as close as possible to the original ASM framework syntax in order to ease

the adoption of the language.

The delay information, δ that will generate the timed update (l, v, δ) is simply specified

after each delayed construct, separated by a comma. Hierarchical levels of abstraction are

defined in a syntax similar to the object-oriented program class hierarchy constructs.
〈program〉 ::= (’htasm’ | ’module’) 〈ident〉 [’:’ 〈ident〉] 〈header〉 [〈body〉]

〈ident〉 ::= ’a..z, ’ { ’a..z, ,0..9,unicode character over 00C0’ }

〈header〉 ::= {’import’ 〈ident〉} {’export’ (〈ident〉 | ’*’) } ’signature’ ’:’ 〈signature〉

123

124 Chapter 5: The HiTAsm Language Definition

〈signature〉 ::= (’static’ | ’dynamic’) 〈ident〉 ’:’ 〈varType〉 { ’*’ 〈varType〉 } ’->’

〈varType〉

〈varType〉 ::= ’Int’ | ’Bool’ | ’RuleRef’

〈body〉 ::= ’definition’ ’:’ (〈function〉 | 〈rule〉)

〈function〉 ::= ’function’ 〈ident〉 ’:’ 〈domains〉 ’->’ 〈varType〉 〈functionBody〉

〈functionBody〉 ::= ’initial’ ’{’ 〈functionInit〉 {’,’ 〈functionInit〉} ’}’

〈functionInit〉 ::= ’[’ 〈expr〉 ’,’ 〈expr〉 ’]’ ’->’ 〈expr〉

〈ruleDecl〉 ::= ’rule’ 〈ident〉 ’(’ [〈ident〉 ’:’ 〈varType〉] {’,’ 〈ident〉 ’:’ 〈varType〉 } ’)’

’::=’ 〈block〉

〈block〉 ::= ’{’ 〈updateRule〉 | (’call’ 〈ident〉) ’}’

〈rule〉 ::= 〈ifRule〉 | 〈updateRule〉

〈ifRule〉 :: ’if’ ’(’〈expr〉 ’)’ 〈rule〉 [’else’ 〈rule〉]

〈updateRule〉 ::= 〈ruleNameCall〉 ’:=’ (〈ruleNameCall〉 | 〈expr〉)

〈ruleNameCall〉 ::= 〈ident〉 [’(’ argList ’)’]

〈argList〉 ::= [(〈argList〉 ’,’ 〈expr〉) | 〈expr〉]

〈expr〉 ::= term | Unexpr | Binexpr

〈term〉 ::= number

HiTAsmL syntax

5.2 Semantic essence of HiTAsmL

This section serves the purpose of illustrating, through a series of examples and expla-

nations, the syntax and behaviour of the language. HiTAsmL was conceived with hardware

modelling in mind, although it can be used for modelling the surrounding system as well,

therefore it was unburden of unuseful language constructions. There is no notion of objects

in HiTAsmL, even if the abstract definitions of components can be seen as class specialisa-

Chapter 5: The HiTAsm Language Definition 125

tion and inheritance or implementation of highly abstract interfaces. HiTAsmL is organised

in hitasms and modules. The main difference between the two is that a hitasm contains a

main rule that serves as a starting point for the program, dealing with the definition of the

initial state and the termination of the execution. For example when an inconsistent update

is generated or no more updates are generated during a state and the update set is empty,

the program terminates. One of the advantages of the ASM programming model is the

separation between the generation of new values and the committal of those values into the

persistent state. This synchronous parallelism, allowing the performing of a collection of

parametrized actions in parallel, gives rise to a cleaner programming style than it is possi-

ble in standard imperative languages.

Modules provide a mean to syntactically structure large HiTAsms. Like their ASM counter-

parts, they are defined by a signature, containing the function names in use, which defines

the internal state of the module, and import and export clauses that interface with external

environment. The transitive closure of the import clause is not allowed to be cyclic. Only

identifiers defined inside or imported are allowed to be used in a module.

Modules are also used to provide syntactical representation of the hierarchical levels. Sev-

eral option arise in expressing the hierarchy of the module’s abstraction levels. We could

of use a concept similar to class inheritance with a base module being more abstract than

the derived one.

Listing 5.1: One way of expressing the abstraction levels

1 module unitA
2 import unitB, unitC
3 export instr
4 module unitA1 : unitA
5 module unitA2 : unitA1
6 module unitA3 : unitA2

We chose a different approach in order to easily impose a partial order relation on the ab-

stract modules that provides information to the analyzer (the Oracle dynamically chooses

the definition in order to adapt to the needed precision). The programmer specifies which

are the modules that will be abstracted, by enumerating the names, and then defines ab-

stractions by specifying the base module and also the order with regard to another existing

abstract definition (module).

126 Chapter 5: The HiTAsm Language Definition

Listing 5.2: HiTAsmL syntax for abstraction level definition

1 htasm component
2 hmodules unitA, unitB //...
3 import unitC
4 hmodule unitA
5 module unitA1 : unitA > unitA
6 module unitA2 : unitA > unitA1
7 module unitA0 : unitA < unitA

The module’s inheritance defines a hierarchy for abstraction levels. The higher in the hier-

archy the module is, the more abstract its definition will be. It also allows to define modules

that are on the same hierarchical level and thus constructing dependency chains.

Mbase → mch1 → mch2 → mch3

Mbase → mch1 → mch2b → mch3b

Both syntax could be used to express the above hierarchy, however it would become com-

plicated to express the following:

Mnewbase → Mbase → mch1 → mch2 → mch3

In other words, the refinement can go in both directions with minimal syntactical changes

in the rest of the code.

During this chapter, for the ease of presentation, we deal only with one way abstractions,

corresponding with the classical ASM refinement method. The HiTAsm model is though

capable of both ways refinements. This design method is sufficient for defining the pro-

cessor as it is natural to start with a hight-level vision of components and further refine by

adding new locations and update rules.

5.2.1 HiTAsmL-s the core of the HiTAsm Language

In order to illustrate our language concepts, we first implemented HiTAsmL-S, a sim-

pler version of HiTAsmL.

Listing 5.3: HiTAsmL-S implementation of the Oracle

1 rule oracle(forceAbstraction : Int, noVAdata : Int) =
2 if (forceAbstraction or noVAdata)

Chapter 5: The HiTAsm Language Definition 127

3 call (AbsLevelChoice(0))
4 elif (not forceAbstraction or noVAdata)
5 call (AbsLevelChoice(1))
6 rule AbsLevelChoice(level : Int) =
7 case level {
8 0 -> call LevelZeroAbsPipeline()
9 1 -> call LevelOneAbsPipeline()

10 }
11 rule LevelZeroAbsPipeline() =
12 call FetchZero()
13 call DecodeZero()
14 rule LevelOneAbsPipeline() =
15 call FetchOne()
16 call DecodeOne()

The main difference between the two languages is that some features like module ab-

stractions and the oracle implementation are not fully included in the language seman-

tics. Therefore a part of the semantics of HiTAsmL is directly implemented in HiTAsmL-S

which actually eases the presentation of the concepts.

5.2.2 Preambule

The only types present in the language are Int and Bool as Enums are pre-evaluated to

Int values. The set of typed literals, Literals, contains values such as 1, true or unde f .

HiTAsmL-S uses expressions as a syntactic mean to write the executable specifications.

Let e be an expression without free variables and v a literal, then e
v
−→ 3 is the evaluation of

e to the value 3. Therefore the evaluation of simple expressions is: 0 + 1 −→ v1

1 if true then 1 else 0
v
−→ 1

let x = 1 in x + x
v
−→ 2

128 Chapter 5: The HiTAsm Language Definition

Let us define some sets of interest.

Value =Id ∪ Literal

TypeMap =Id → Type

Location =Id × Args

Content =Location→ Value

U pdate =(Location × Value) × Delay

U pdateS et =S etO f (U pdate)

(5.1)

The states of a computation are represented by stores. The store is defined as the triple

s = (θ, ω, u), where θ is a type map, ω is a content map and u is an update set.

5.2.3 Assignments

Assignments can be done through updates or function initialisation. HiTAsmL features

timed updates that assign a delay δ to a location update.

signature : x→ Int definition : function init() = x := 2; 1
ω,u
−→ φ, {(x, 2, 19)}

Initially the store ω is empty, represented by the symbol φ. An update in the form (l, v, δ),

in our case (x, 2, 19), is added to the update set that was initially empty.

The initialisation of the function is made in the definition part with the initially construct.

signature : MEM : Int→ Int

definition : function MEM(addr : Int) = initially {0→ 1}
ω,u
−→ {(MEM, 0) 7→ 1)}, φ.

An example of a HiTAsmL code of swapping the values of two functions is presented

in Listing 3.1.

Listing 5.4: ASM example of instantaneous updates - variable value swap

1 function a : -> Int
2 function b : -> Int
3

Chapter 5: The HiTAsm Language Definition 129

4 rule valueSwap = {
5 a := b
6 b := a
7 }

Algorithm 2: Interpretation of valueSwap rule

1 Initial State←− {a = 0, b = 1};

2 Update Set←− {(a, 1), (b, 0)};

3 New State←− {a = 1, b = 0};

The interpretation of the update rule involves an update set. Therefore, prior to their execu-

tion, all known updates are collected and stored into an update set and fired simultaneously.

In listing 2 we can see the interpretation of updates and the valueSwap rule that modifies

the interpretation of nullary functions a and b.

5.2.4 Firing updates

Firing updates in ASMs consists of putting the value v at location l, u = (l, v). HiTAsm

features timed updates, u = (l, v, δ), that are fully described in [PMB13a].

If u is a consistent update and s = (θ, ω, u) is a store, we note by ω(lid) the value associated

with the location defined by the identifier lid in the content map ω, and we define by

ŝ = (θ, ω̂, û) the new store, where ω̂ and û have the following semantics

ω̂(lid) =

 v if (lid, v, δ) ∈ u and δ = δmin

ω(lid) if (lid, v, δ) ∈ u and δ > δmin

(5.2)

û(lid) =

 φ if (lid, v, δ) ∈ u and δ = δmin

(lid, v, δ − δmin) if (lid, v, δ) ∈ u and δ > δmin

(5.3)

Listing 5.5: Firing of timed updates

1 function rA : -> Int
2 function rB : -> Int
3 function rD : -> Int

130 Chapter 5: The HiTAsm Language Definition

4 function intr: -> Int
5
6 rule ALU_add = {
7 rA := mem(getFirstOpAddr(intr)), 2
8 rB := mem(getSndOpAddr(intr)), 2
9 rD := mem(getDestAddr(intr)), 2

10
11 mem(rD) := mem(rA) + mem(rB), 4
12 }

Interpretation of the ALU add rule.

1. Initial State←− {mem(1) = 3,mem(2) = 7,CT = 0, . . . }

2. Timed Update Set 1←− {(rA, 1, 2), (rB, 2, 2), (rD, 3, 2),

(mem([rD]),mem([rA]) + mem([rB]), 4), (CT, 0)}

3. State1 ←− {rA = 1, rB = 2, rD = 3,mem(1) = 3,mem(2) = 7,CT = 2, . . . }

4. Timed Update Set 2←− {(mem(3),mem(1) + mem(2), 2), (CT, 2)}

5. State2 ←− {rA = 1, rB = 2, rD = 3,mem(3) = 10,CT = 4, . . . }

5.2.4.1 Module abstraction

We now introduce the semantics of module abstraction. A simple shifting example is

presented that adds a value (10 in our example) to a specified address, addr. The abstract

of modules inherits the signature of the extended modules. Let us consider a shifting unit

called ALUBFU that has a rA function in its signature.

hmodules : ALUBFU
θ,ω,u
−→ {(7→ ALUBFU)}, φ, φ

module ALUBFU

signature : rA : Int
θ,ω,u
−→ {(aluId0 7→ ALUBFU)}, {(aluId0, rA)}, φ

Let ALUBFU1 be an extension of the ALUBFU module that defines a rAux function. We

can see that it also inherits the function name rA from the ALUBFU’s signature.

module ALUBFU1 : ALUBFU

signature : rAUX : Int
θ,ω,u
−→ {(aluId1 7→ ALUBFU)}, {(aluId1, rA), (aluId1, rAUX)}, φ

Chapter 5: The HiTAsm Language Definition 131

Modules also inherit rule names. We define the shi f t(addr : Int) function in the ALUBFU

module and shi f tC(addr : Int) in the ALUBFU1 module.

module ALUBFU

definition : rule shift(addr : Int) rA := addr + 10, 7
θ,ω,u
−→ {(aluId0 7→ ALUBFU)}, φ, {(aluId0, add)}

module ALUBFU1 : ALUBFU

definition : rule shiftC(addr : Int)
θ,ω,u
−→ {(aluId1 7→ ALUBFU)}, φ, {(aluId0, add), (aluId1, addic)}

But most importantly they can override existing rule names. Let shi f t(addr : Int) be a

function redefinition in the ALUBFU1 module.

module ALUBFU1 : ALUBFU

definition : rule shift(addr : Int) rAUX := 10, 2 rA := addr + rAUX, 5
θ,ω,u
−→ {(aluId1 7→ ALUBFU)}, φ, {(aluId1, add)}

The effect of the rule name override is shown in the following through the call rule with

the following semantics.

call add(11)

ρ,ω,u
−→



{(aluId0, shi f t)}, {(aluId0, addr) 7→ 11}, {(rA, 21, 7)} if oracle(alu) = 0,

{(aluId1, shi f t)}, {(aluId1, addr) 7→ 11}, {(rAUX, 10, 2), (rA, 21, 5)}
ω̂,û
−→ {(aluId1, addr) 7→ 11, (aluId1, rAUX) 7→ 10}, {(rA, 21, 3)}

if oracle(alu) = 1.
(5.4)

5.2.5 HiTAsmL semantics

In the following we define our language using a structural operational semantics (SOS),

[Plo04],

• Simultaneous updates

< U1,A >→ A
′

< U1; U2,A >→< U2,A >
Loc(U1) , Loc(U1) (5.5)

132 Chapter 5: The HiTAsm Language Definition

or
〈U1,A〉 → A

′, 〈U2,A〉 → A
′

〈U1; U2,A〉 → A′
(5.6)

• Timed updates
< t̄i,A >⇒ x̄i, < ūi,A >⇒ ȳi, < CT,A >⇒ CT + δi, < δ j,A >⇒ δ j − δi

< (f1(t̄1) := u0, δ0); . . . ; (fn(t̄n) := un, δn),A >→< A
⊎

(fi(x̄i) 7→ yi) >
δi = min(δi), j = 0 . . . n

5.2.6 A HiTAsmL graphical syntax

In order to facilitate the processor definition and the code reuse using our framework,

we integrated a UML-style graphical syntax for the HiTAsmL language. It will be later

used in practice for the modeling of the MPC555 processor in chapter 6 on page 139.

5.2.6.1 HiTAsm Module

The module regroups several language elements under the same namespace. It is de-

picted by a box with the label of the modules’s name, a set of elliptic boxes with a rule name

label and optionally, the delay corresponding to the execution of its set of rules. FIgure 5.1

shows the graphical interpretation of the HiTAsmL code in listing 5.6.

Listing 5.6: HiTAsmL module

1 module moduleName
2 definition:
3 rule ruleName(reg : Int) =
4 if reg = ALUdestReg then
5 dependency := true

moduleName

ruleName

delay

Figure 5.1: HiTAsmL module

5.2.6.2 HiTAsm Abstract Module

An abstract module is depicted as a module but labeled with the abstract module’s name

in italic font.

Chapter 5: The HiTAsm Language Definition 133

Listing 5.7: HiTAsm Abstract Module

1 hmodules abstractModule

abstractModule

Figure 5.2: HiTAsmL abstract module

5.2.6.3 HiTAsm Hierarchic Module

A hierarchic module is depicted as a module but labeled with the abstract module’s

name, a colon and the name of the base or abstract module.

Listing 5.8: HiTAsm Hierarchic Module

1 hmodule absModuleName : moduleName > moduleName

absModuleName: moduleName

ruleName

delay

Figure 5.3: HiTAsmL abstract module

5.2.6.4 HiTAsm Function

A HiTAsmL rule can be depicted as a map between the HiTAsmL values. As a conven-

tion, the locations to the left are the signature of the function (inputs locations) and to the

right, the result location.

Listing 5.9: HiTAsmL function

1 hmodule module1
2 signature:
3 static f1 : -> Int

134 Chapter 5: The HiTAsm Language Definition

4 static f2 : Int -> Int
5 definition:
6 function f1() =
7 -> v1
8 function f2(v : Int) =
9 v1 -> v2

f1

T

v1

v1

f2

v2

module1

Figure 5.4: HiTAsmL nullary function

5.2.6.5 HiTAsm Rule

A HiTAsmL rule can be depicted as a map between the HiTAsmL locations. As a

convention, locationsTo the left, the signature of the function and to the right, the result

location.

Listing 5.10: HiTAsmL rule

1 hmodule module1
2 definition:
3 rule rule1(l1 : Int, l2 : Int, ln : Int) =
4 ld := l1 + l2 + ln, delay

5.2.6.6 HiTAsm abstractions

As we already stated, the HiTAsm framework enables incremental design through step-

wise refinements.

Chapter 5: The HiTAsm Language Definition 135

l1

rule1
delay

ln

module1

ld

Figure 5.5: HiTAsmL rule

The first step will be the definition of a main module with a main rule, figure 5.7. This cor-

responds to the highest abstraction level in the model’s hierarchy. Therefore the temporal

label is depicted by top, > meaning that we have no delay information.

Listing 5.11: HiTAsmL rule

1 htasm hName
2 hmodules: absModule

absModule

hName

Figure 5.6: HiTAsmL htasm

Listing 5.12: HiTAsmL rule

1 htasm hName
2 hmodule mainModule : absModule
3 definition:
4 rule mainRule () , T

The model can be further refined with the delay information corresponding to the longest

execution step of the processor between all the possible configurations. The squared head

arrow represents a concretization of the definition.

136 Chapter 5: The HiTAsm Language Definition

mainModule

mainRule

T

hName

Figure 5.7: HiTAsmL hmodule

Listing 5.13: HiTAsmL rule
1
2 module mainModule#1 :mainModule > mainModule#1
3 definition:
4 rule mainRule () , maxdelay

mainModule

mainRule

T

mainModule#1

mainRule

delay

Figure 5.8: Lower level of abstraction

Listing 5.14: HiTAsmL rule
1
2 module mainModule#2 :mainModule < mainModule#2
3 definition:
4 rule mainRule () , maxdelay

mainModule

mainRule

mainModule#2

mainRule

delay1delay1

Figure 5.9: Higher level of abstraction

Chapter 5: The HiTAsm Language Definition 137

5.3 Implementation

The HiTAsm Language is implemented using a compiler of compilers based on the .Net

technology called Irony [Iro]. As opposed to most existing yacc/lex-style solutions Irony

does not use any scanner or parser code generation from grammar specifications written in

a specialized meta-language. We choose to implement the analyzer in the .Net technology

because of its versatility and especially because the coding times are quite short. The

selected platform also justified the choice of Irony whose target language grammar is coded

directly in C# using operator overloading to express grammar constructs. This means that

defining the program syntax can be really short, for example:

• Mini-Python - 140 lines;

• Java - 130 lines;

• Scheme - 200 lines;

• JSON - 39 lines.

Besides the compactness of the defined syntax, the good integration into .Net proved as a

real time saver with relatively no execution time penalty.

5.4 Conclusions

The HiTAsmL will provide a clear and easy to use language for the processor specifier.

Its independence of the analyzer represents a forward step in the adaptability of the WCET

estimation method. The migration to new hardware platform is also eased by the relatively

short modeling times. HiTAsmL is an easy to use and learn language, with a simple syn-

tax for program constructs and time annotations. The hierarchical abstraction levels of the

hardware components can be easily defined in an object oriented style that reminds of class

inheritance.

In the next chapter we present the aspects of a full processor implementation. The chosen

processor features modern hardware units that provide a good use-case of the modelling

language, as well as the analysis.

138 Chapter 5: The HiTAsm Language Definition

In terms of size the full processor implementation has under 1000 lines of code for the

concrete definition and can go as low as 500 for an usable abstract definition. This is an

advantage for the adaptability of the method, and proves that with relatively few implemen-

tation effort, new hardware can be quickly take into consideration by our analysis.

Chapter 6

The Hardware Model

In this chapter we present the implementation of the Motorola MPC555 processor in

the HiTAsmL language. This processor is widely used in safety-critical embedded systems,

and represents a good case study as it features most of the complex hardware components

a WCET analysis should take into account.

The choice of the language, an extension of the ASM formalism, is intended to enrich the

design with verification capabilities, [HC97], ease of use, a human readable, machine exe-

cutable syntax and hierarchical timed abstractions to ease the WCET estimation performed

by the analyzer. We can add to these features the advantage of an incremental design

through definition refinements that eases the design or modeling stage of the processor.

After a brief introduction to processor modeling, we provide an analysis of the hardware

architecture influence on the WCET estimation, predictability and analysis as a whole in

section 6.1.1.

6.0.1 Global algorithm

The processor model will be of great importance in our timing analysis method. Its fea-

tures and definitions, with their correspondent level of abstraction will be used throughout

all the modules of the analyzer. Figure 6.1 repositions the processor model into the global

approach of our method.

139

140 Chapter 6: The Hardware Model

PowerPC binary

Value Analysis

Instruction order
Program CFG
Instruction Addreses

*.elf

Processor

HTASM

MPC 555

Processor model

Conjoint Symbolic execution

concrete timed model
 +
abstract component
 model pool

Oracle

Prediction Module

Dynamic Fusions

WCET

Figure 6.1: Global architecture of the WCET estimation tool

Chapter 6: The Hardware Model 141

6.1 Modeling a Processor

A good processor model will make the difference in the timing analysis of modern

hardware. Some key aspects that will prove to be important for this model are the following:

• perform lower level simulation than the instruction-level (cycle or time-acurate);

• capture all the timing properties of the hardware;

• capture the timing anomalies of the out-of-order execution;

• enable abstractions;

• clear and simple syntax.

6.1.1 Inherent analysis problems to the use of microprocessors in hard

real-time systems

The hardware platform is a central point when analyzing a system. Therefore it is es-

sential to dispose of a precise model of the processor in order to determine its effective

behavior. The available information comes mainly in reference manuals and application

notes that present the processor’s architecture, how to interface it with the environment

and how to configure its different function modes. Nevertheless, information present in the

user manual is not intended for testing or verification purposes. Furthermore information

relevant to the design method and the verification methodology are only briefly discussed,

if not at all in these documents, mainly from the integrator point of view. Another issue is

the questionable validity of the information presented in the reference document altogether

as contradictory information is sometimes provided in different document.

The behavior of a microprocessor is challenging or even impossible to characterize. This

is either due to the uncertainty of the effectively calculated result or the uncertainty on the

actual time of the effective calculation. De facto, these two aspects are directly related to

the notion of data availability.

The main consequence of the difficulty in architectural optimization is an interdependence

142 Chapter 6: The Hardware Model

between the data and the instructions of a same task. In the context of multitask appli-

cations, an interdependence between various tasks coming from the commutation of the

environments during the passing from one task to another, is introduced.

6.2 Hardware and its influence on temporal analysis

The majority of available processors was not especially designed for the real-time sys-

tems with safety-critical constraints, predictability coming after power consumption and

mean-performance. Data communication and synchronization between the different units

are optimized for maximum throughput of executed instructions. Therefore multiple exe-

cution paths can be taken depending on the execution history, the current state of units or

even local choices based on random decisions. A natural way of analyzing the hardware

components that influence the determinism would be to first look at those who give a local

impact and proceed to components that have a global impact. One can also start by looking

into local predictability effects and then into global effects. However, as shaped by this

section, there is a thin frontier between the two as even classical, predictable units have

a certain impact through interactions with more complex units. Therefore the analysis of

such components can not be made isolated from the others.

6.2.1 Pipeline

Present in all modern processors, the pipeline was introduced in order to increase the

average performance by ensuring that, whenever possible, an available hardware resource

will be occupied. Nevertheless, different events can introduce pipeline stalls such as struc-

tural hazards, data hazards and control hazards.

Out of order execution (OoOE), a feature introduced in order to avoid pipeline stalls by

decoupling the issue/dispatch and the execution/completion stages, allows an execution not

following the instructions program order. A fetched instruction will be executed when the

input operands and needed resources are available with no regard to whether it is the next

in order instruction. The interaction between the cache memory and instruction scheduling

influences the precision of the timing estimation.

Chapter 6: The Hardware Model 143

Pipeline impact on the predictability

The impact of the pipeline varies from local influence with local monotonic optimiza-

tions to global influences with timing anomalies that cancel the monotonicity and compo-

sitionality. The size of the pipeline has an influence on the predictability of the WCET.

A wrong branch prediction causes n cycles penalty, where n is the pipeline depth. The

pipeline depth can further influence the predictability potentially generating more hazards

as more instructions are being treated at the same time.

Besides intrinsic impacts on the predictability, the pipeline, in conjunction with other units,

can lead to precision loss or nondeterminism. For example, in case of a L2 cache miss, the

number of pipeline stages influences the memory access time [DSW95].

6.2.2 Branch Prediction Unit (BPU)

Through the BPU, processor attempts an early resolve of a branching instruction, before

its time, by applying a strategy in order to anticipate the result. The BPU strategy can be

either static or based on complex algorithms, un-deterministic in some cases. Based on

this estimation, a speculative execution is initiated that will lead eventually to a significant

time gain in the case the result is correct. The influence on the cache memory content is

non negligible as a miss-prediction is not generally followed by a cache reorganization,

therefore the cache configuration is polluted with information from the untaken path.

BPU impact on the predictability

The BPU can make incorrect branch predictions or incorrect branch target address

lookup. It is systematically active and directly impacts the temporality of the instruction

change. Furthermore, this unit relies on a set of data protection tables stored in tables. The

impact is high because of the general unpredictable success rate of the early branching tar-

get resolution. It can be largely avoided in the case of statically resolved loops or branches

that are not data dependent. Tailoring the condition of the jump taking into account the

branching strategy in order to help it succeed in the majority of cases is also a solution as

long as the WCET analyzer can take it into account. In this case, most techniques of adding

144 Chapter 6: The Hardware Model

watermarks in the code with information that help or enable the prediction can be useful.

6.2.3 Floating Point Unit (FPU)

Floating point computation timing can also be hard to accurately estimate because of

their implementation. A micro-pipelined unit takes advantage of consecutive instructions

that can be pipelined. Units can have either a part of the FPU instructions pipelined or all

of them. Therefore consecutive pipelined and non-pipelined instructions can cause stalls,

making the timing difficult to compute especially in the case of the out of order execution.

Floating-point data formats and instruction set generally conform to the IEEE Standard for

Binary Floating-point Arithmetic, ANSI/IEEE Standard 754-1985.

FPU impact on the predictability

The impact of the FPU depends on its implementation. Instructions can take either a

single cycle to execute or several cycles but they can also be pipelined. A combination of

either way in parallel is also possible. In conjunction with the instruction rescheduling and

thus with the change of data, cascade effects can occur and lead to pathological effects like

it can be seen in some PowerPC architectures.

6.2.4 Level 1 Cache

Memories for instructions and data are implemented in order to make the most common

case fast, benefiting from a program’s spatial locality and temporal locality. Not taking

this fact into account in the WCET estimation gives highly pessimistic timing estimations.

Cache memory is usually organized in different levels, some local to the core and others

situated outside the core. Different cache replacement strategies must be implemented in

order to optimize the performance because a strategy that can fit all the possible cases is

impossible to find. Therefore the average case performance is optimized. Commonly used

strategies are LRU, pseudo LRU, FIFO or round robin and MRU each having a different

impact on the predictability of the system.

Chapter 6: The Hardware Model 145

The analysis of the Level 1 cache must be made in conjunction with the other units and is

discussed within the timing anomalies in the following.

Impact on the predictability

Worst-case analysis on cache memories is a challenging problem, mainly because they

are conceived in order to maximize the average performance. Achieving good results for

data cache analysis, for example, is still an open problem, as they are difficult to stati-

cally analyze. An approach that enables time-predictable caching, is to lock cache blocks.

Combining cache locking with cache partitioning for multiple tasks in the case of task pre-

emption can improve the predictability in some cases [VLX03].

Unknown abstract cache states during the analysis generate loose WCET bounds. For ex-

ample, unified cache for instruction and data can break down all the information on abstract

cache states. After accessing n unknown addresses in an n-way set-associative cache all the

cache lines will be unclassified in the analysis. Therefore, separation between the instruc-

tion and data cache memories should be chosen whenever possible (the problem still holds

for shared caches and is discussed in the Level 2 cache section). For this reason Harvard

architectures, with physically separate signal pathways for instructions and data, should be

privileged despite of the von Neumann architecture. Context switch or cache misses can

lead to a relatively high global impact due to timing anomalies or Translation Lookaside

Buffer (TLB) strategies. In order to improve the performances of the cache memory, in-

struction and data locality could be increased using compiler techniques for example (code

reposition, loop permutation, tiling [WL91] etc.). When performing the WCET analysis,

the most problematic features to analyze are the replacement policies for set-associative

caches [?]. Pseudo-round-robin and the 4-way associative cache is also a difficult com-

bination in the Motorola ColdFire 5307 [Sch09]. In order to ensure the time-predictability

of processors, locally deterministic update strategies for caches should be used. Accord-

ing to [RGBW07] the LRU strategy performs best in terms of predictability, far ahead of

pseudo-LRU and FIFO.

146 Chapter 6: The Hardware Model

6.2.5 Scratchpad

Scratchpad memories (SPMs) are used to guarantee a unit can work without main mem-

ory contention in a system employing multiple processors. As the memory access latencies

are predictable, scratchpad memories have become popular for real-time embedded sys-

tems. However, the difficulty of allocating code/data to scratchpad memory lies now with

the compiler. Scratchpad memory works like a local store and acts like ”software caches”

therefore the strategy is implemented in software and the interactions in the global hard-

ware must be analyzed. Timing anomalies with regard to the replacement strategy should

be integrated into the hardware model. The most convenient approach to manage the SPM

is using static allocation [?] but dynamic SPM allocation is more efficient (it can use

profile-based optimization but multiple strategies exist). Analyzing dynamic strategies is

challenging, especially the software implemented ones that give optimal allocation for the

average execution time. Some WCET-centric techniques exist but they do not handle all

architectures.

6.2.6 Memory Management Unit (MMU) and Translation Lookaside

Buffer

The TLB is a cache that MMU uses to improve virtual addresses translation speeds.

The time needed to determine the physical address depends on the number of performed

operations. TLB time access is variable. In order to enforce the predictability, the MMU

can be deactivated (however the performance loss is significant) or by reducing the size and

thus complexity of the TLB (the TLB main entries can be blocked in order to ensure their

persistence).

A solution is to increase the TLB size so that we only have hits but we still have the prob-

lem of an error in the translation that is detected late and takes an undefined (even if still

reasonable) time to be corrected.

Typical user manuals [Aer12] give upper bounds in the TLB miss case. Timing anoma-

lies invalidate the monotonicity assumption in the general case [WKPR05a], which means

that we cannot directly use the upper-bound information as the worst-case scenario. There-

Chapter 6: The Hardware Model 147

fore, without precise information on the exact behavior all possible cases must be analyzed,

leading to a potential state space explosion. In order to reduce the potential temporal vari-

ability, the MMU should be disabled. Nevertheless due to the consequences on the global

performances it is not recommendable.

In general, virtual memory raises predictability issues at two levels. First at the level of ad-

dress translation that provides mapping between virtual to physical pages requires a TLB

lookup. If the mapping is absent from the TLB a page table lookup is performed. The

duration of address translation is hard-to-predict, because not all mappings can be stored in

the limited capacity of the TLB or because the TLB might be shared between concurrent

processes. Second at the level of paging activity as knowing whether or not a reference to

a virtual page will result in a page fault. This is hard to predict because physical memory

is shared between concurrent processes.

Impact on the predictability

Translation of virtual addresses to physical addresses is a large source of execution time

variance. In large software systems virtual addressing is used by the applications to allow

the object code to be relocatable.

Interrupts make the behavior of the TLB even more complicated to predict. When an inter-

rupt occurs, there is an initial penalty for executing the service routine because none of its

references hit in the TLB therefore all the references must be translated, [WD95].

It is the probabilistic nature of the TLB that adds significant uncertainty to the execution

time of an application because such delays must be accounted for on every memory refer-

ence. For a hard real-time deadline, a worst case of three memory reference times must be

assumed for every access because it is nearly impossible to predict whether an entry will

be in the TLB when it is needed.

6.2.7 BUS

As competition for resources grows, the natural solution was to use techniques that en-

able the access from master to slave, and utilization of shared resources in general. Through

the use of switching mechanism, permission is granted to one master or the other, which

148 Chapter 6: The Hardware Model

introduces the need of a bus arbiter. Therefore a controller is usually implemented follow-

ing different strategies that are more or less straightforward. The first difficulty comes from

the implementation of the aforementioned strategies.

Impact on the predictability Because the main role is to grant access to different par-

ticipants to the shared resources, certain properties must be ensured (fairness, deadlocks

prevention) while still being able to ensure good average performances and timing pre-

dictability. Therefore when choosing a particular architecture for the hard real-time sys-

tems, certain bus architectures and arbitration algorithms should be privileged.

Nevertheless, the maximum length of a burst for each peripheral connected to the bus influ-

ences the maximum delay induced by bus contention. This may lead to high maximum de-

lay bounds and may not be enough to provide firm real time guarantees for heavily loaded

systems. Furthermore, having variable burst lengths, combined with the ability to pause

them (split transfers), influences the predictability of the WCET. Bus contention can be

avoided by using the TDMA bus arbitration with the cost of wasting bus band when the

bus load is low. By manipulating the TDMA time slots, the maximum delay bound on

transactions is controllable by the designer.

6.2.8 Direct Memory Access (DMA)

DMA allows access to the system memory independently from the CPU. Therefore the

processor can proceed with its computations while waiting for relatively slow input/output

data transfer.

Error handling

The DMA controller does not generally detect deadlocks in its communication chan-

nels, so it is up to the system to manually abort the DMA transfer. The DMA unit can be

disabled not without a strong impact on the performances of certain class of applications.

Chapter 6: The Hardware Model 149

6.2.9 Level 2 cache

Level 2 cache memory can be either private to each core or shared among cores. Timing

anomalies render the result hard to predict like in the case when a cache miss from a core

can reconfigure the memory in a state that is, timing wise, beneficial to the other. This also

applies in other cache related scenarios. The problems that can occur in the analysis of the

interactions with the pipeline are detailed in the timing anomalies part.

Level 2 cache impact on the predictability

The impact of the shared cache is high and global and gets amplified in the context

switch case. Modeling the behavior of shared caches between cores is practically impos-

sible because of the possible interactions between concurrent threads running on different

cores [Sch09]. Under the assumption that the bus strategy can be statically analyzed, the

second level of cache can be made predictable by partitioning the L2 cache for each core

[SHP12].

6.2.10 Timing Anomalies remarks

Several types of timing anomalies exist. Some are inherent to instruction execution or-

der and are generally caused by greedy scheduler that will change the instruction execution

order causing inversion or amplification of the execution time difference. Others are caused

by parallel decomposition and divide et impera approaches to WCET estimations. As the

first ones cannot be avoided, the others may prove essential for the possibility to construct

an efficient processor behaviour analysis that does not need to search the whole state space

for the whole program at once.

6.3 The RISC processor Family

Introduced in the late 70s, the Reduced Instruction Set Computer (RISC) is a type of

microprocessor architecture that utilizes a small, highly-optimized set of instructions, as

150 Chapter 6: The Hardware Model

opposed to a specialized set of instructions often found in other types of architectures.

Processors from the RISC family generally share the following three features:

• one cycle execution time: RISC processors have a CPI (clock per instruction) of one

cycle;

• pipelining: a technique that allows for simultaneous execution of parts, or stages, of

instructions to more efficiently process instructions;

• large number of registers: the RISC design philosophy generally incorporates a larger

number of registers to prevent in large amounts of interactions with memory

As opposed to the CISC processor family, which emphasis the use of complex instructions

in order to complete a task in as few lines of assembly as possible, RISC processors only

use simple instructions that can be executed within one clock cycle.

RISC processors do not operate directly on the computer’s memory banks, like CISC pro-

cessors do, and requires the programmer to explicitly call loading and storing functions.

Definition 56 (The Performance Equation). In order to express a computer’s performance

ability the following equation is generally used:

time
program

=
time
cycle

×
cycles

instruction
×

instructions
program

(6.1)

The CISC focuses on minimising the number of instructions per program, sacrificing the

number of cycles per instruction. The RISC approach does the contrary, reducing the cycles

per instruction at the cost of the number of instructions per program.

6.4 Case study - Motorola MPC555 Processor

The PowerPC-based RISC processor (RCPU) used in the MPC500 family of microcon-

trollers integrates five independent execution units: an integer unit (IU), a load/ store unit

(LSU), and a branch processing unit (BPU), floating-point unit (FPU) and integer multiplier

divider (IMD), [Fre00]. MPC555 fully implements the PPC Instruction Set Architecture.

Chapter 6: The Hardware Model 151

6.4.1 PowerPC ISA

PowerPC is an acronym for Performance Optimization With Enhanced RISC - Perfor-

mance Computing, (also abbreviated as PPC) created by the 1991 Apple-IBM-Motorola

alliance, known as AIM.

The PowerPC is designed along RISC principles, and allows for a superscalar implemen-

tation. Versions of the design exist in both 32-bit and 64-bit implementations.

The processor implements the instruction set, the storage model, and other facilities defined

in this document. Instructions that the processor can execute fall into three classes:

• branch instructions

• fixed-point instructions

• floating-point instructions

Instructions used in the PowerPC Architecture are four bytes long and word-aligned.

The architecture provides for byte, halfword, word, and doubleword operand fetches and

stores between storage and a set of 32 General Purpose Registers (GPRs). It also pro-

vides for word and doubleword operand fetches and stores between storage and a set of

32 Floating-Point Registers (FPRs). Signed integers are represented in two’s complement

form.

No computational instructions modifies the storage, [IBM05]. The contents of the storage

operand must be loaded into a register, modified, and then stored back to the target location

in order to use a storage operand in a computation and then modify the same or another

storage location. figure 6.2 shows a logical representation of instruction processing.

152 Chapter 6: The Hardware Model

Version 2.02

6 PowerPC User Instruction Set Architecture

1.6 Processor Overview
The processor implements the instruction set, the stor-
age model, and other facilities defined in this docu-
ment. Instructions that the processor can execute fall
into three classes:
! branch instructions
! fixed-point instructions
! floating-point instructions

Branch instructions are described in Section 2.4,
“Branch Processor Instructions” on page 20.
Fixed-point instructions are described in Section 3.3,
“Fixed-Point Processor Instructions” on page 33. Float-
ing-point instructions are described in Section 4.6,
“Floating-Point Processor Instructions” on page 103.

Fixed-point instructions operate on byte, halfword,
word, and doubleword operands. Floating-point
instructions operate on single-precision and dou-
ble-precision floating-point operands. The PowerPC
Architecture uses instructions that are four bytes long
and word-aligned. It provides for byte, halfword, word,
and doubleword operand fetches and stores between
storage and a set of 32 General Purpose Registers
(GPRs). It also provides for word and doubleword
operand fetches and stores between storage and a set
of 32 Floating-Point Registers (FPRs).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage location,
the contents of the storage operand must be loaded
into a register, modified, and then stored back to the
target location. Figure 1 is a logical representation of
instruction processing. Figure 2 shows the registers of
the PowerPC User Instruction Set Architecture.

Figure 1. Logical processing mode

Branch
Processing

Storage

Float-Pt
Processing

Fixed-Pt
Processing

Fixed-Point and
Floating-Point
Instructions

Data to/from
Storage

Instructions
from Storage

Figure 6.2: Logical Processing Mode

6.4.1.1 Instruction formats

All instructions are four bytes long and word-aligned. The opcode is systematically

specified on bits 0:5 (OPCD). Many instructions feature an extended opcode (XO). The

remaining bits of the instruction contain one or more fields with different operands or other

parameters.

Some of the defined instructions have preferred forms that will execute in an efficient man-

ner, but any other form may take significantly longer to execute than the preferred form.

Instructions having preferred forms are:

• the Condition Register Logical instructions

• the Load/Store Multiple instructions

• the Load/Store String instructions

• the Or Immediate instruction (preferred form of no-op)

Chapter 6: The Hardware Model 153

• the Move To Condition Register Fields instruction

Some instructions use virtual addressing therefore an effective address must be calculated.

6.4.2 Global architecture of the MPC555

The MPC555 is an out-of-order, single-issue, Harvard architecture design. A single in-

struction is issued per cycle to one of the five independent execution units that can execute

out-of-order. The branch prediction unit ensures a high instruction throughput through by

means of branch prediction. Updates of the processor registers are recorded in program

order in the history queue. Most integer instructions execute in one clock cycle. Instruc-

tions can complete out of order for increased performance; however, the processor makes

execution appear sequential through the use of the completion unit. Here are some general

features of the processor:

• PowerPC core with floating-point unit

• 26 Kbytes fast RAM and 6 Kbytes TPU microcode RAM

• 448 Kbytes flash EEPROM with 5-V programming

• 5-V I/O system

• Serial system: queued serial multi-channel module (QSMCM), dual CAN 2.0B con-

troller modules (TouCANTM)

• 50-channel timer system: dual time processor units (TPU3), modular I/O system

(MIOS1)

• 32 analog inputs: dual queued analog-to-digital converters (QADC64)

• Submicron HCMOS (CDR1) technology

• 272-pin plastic ball grid array (PBGA) packaging

• 40-MHz operation, -40¡ C to 125¡ C with dual supply (3.3 V, 5 V)

154 Chapter 6: The Hardware Model

MPC555 / MPC556 OVERVIEW MOTOROLA
USER’S MANUAL Rev. 15 October 2000 1-2

Figure 1-1 MPC555 / MPC556 Block Diagram

1.2 MPC555 / MPC556 Features
Features of each module on the MPC555 / MPC556 are listed below.

1.2.1 RISC MCU Central Processing Unit (RCPU)
• 32-bit PowerPC architecture (compliant with PowerPC Architecture Book 1)
• Core performance measured at 52.7 Kmips (Dhrystone 2.1) @ 40 MHz.

NOTE
This assumes the RCPU core is running in “normal” mode and show
cycles is turned off (ISCT_SER of the ICTRL register is set to 111).
See Table 21-21.

• Fully static, low power operation
• Integrated floating-point unit
• Precise exception model
• Extensive system development support

— On-chip watchpoints and breakpoints
— Program flow tracking

USIU
RCPU

Burst
Interface

256 Kbytes
Flash

192 Kbytes
Flash

16 Kbytes
SRAM

10 Kbytes
SRAM

L2U

E-bus

UIMB
QADC QADC QSMCM TouCAN

TPU3 DPTRAM TPU3 TouCAN MIOS1

L-bus

IMB3

U-bus

Fr
ee

sc
al

e
S

em
ic

on
du

ct
or

, I

Freescale Semiconductor, Inc.

For More Information On This Product ,
Go to: w w w .freescale.com

nc
...

Figure 6.3: Motorola MPC555 view from the user manual

• MPC556 supports code compression to increase code density.

Major features of the RCPU include the following:

• High-performance microprocessor - Single clock-cycle execution for many instruc-

tions

• Five independent execution units and two register files

– Independent LSU for load and store operations

– BPU featuring static branch prediction

– A 32-bit IU

– Fully IEEE 754-compliant FPU for both single- and double-precision opera-

tions

Chapter 6: The Hardware Model 155

– Thirty-two general-purpose registers (GPRs) for integer operands

– Thirty-two floating-point registers (FPRs) for single- or double-precision operands

• Facilities for enhanced system performance

– Programmable big-and little-endian byte ordering

– Atomic memory references

• In-system testability and debugging features

• High instruction and data throughput

– Condition register (CR) look-ahead operations performed by BPU

– Branch-folding capability during execution (zero-cycle branch execution time)

– Programmable static branch prediction on unresolved conditional branches

– A pre-fetch queue that can hold up to four instructions, providing look-ahead

capability

– Interlocked pipelines with feed-forwarding that control data dependencies in

hardware

6.4.3 Instruction Sequencer

The instruction sequencer (IS) implements the pipeline behavior, controlling the flow

from the memory to the execution units and the other way around. As we can notice in

figure 6.5, the fetch initiated by the IS gets instructions, through the instruction data path,

from the Instruction Memory System and stores them in the Instruction Buffer. What we

will see shortly is that MPC555 implements a Burst Buffer, therefore all access to the

instruction data path are burstable.

Depending on the nature of the instruction in the Instruction Buffer one of the following

three actions in performed:

• the instruction is stored in the Instruction Pre-fetch Queue (IPFQ);

156 Chapter 6: The Hardware Model

MPC555 / MPC556 CENTRAL PROCESSING UNIT MOTOROLA
USER’S MANUAL Rev. 15 October 2000 3-2

3.2 RCPU Block Diagram
Figure 3-1 provides a block diagram of the RCPU.

Figure 3-1 RCPU Block Diagram

C
O

N
TR

O
L

B
U

S

FPU

FPR
HISTORY

FPR
(32 X 64)

LOAD/STORE
FLOATING DATA

LOAD/

INTEGER
STORE

DATA

LOAD/

ADDRESS
STORE

ALU/
BFU

IMUL/
IDIV

GPR
HISTORY

GPR
(32 X 32)

CONTROL
REGS

NEXT ADDRESS
GENERATION

BRANCH

UNIT
PROCESSOR

INSTRUCTION

QUEUE
PRE-FETCH

INSTRUCTION

SEQUENCER

RCPU

L-DATA

L-ADDR

S
O

U
R

C
E

 B
U

S
E

S

(4
 S

L
O

T
S

/C
L

O
C

K
)

I-DATA

I-ADDR

WRITE BACK BUS
2 SLOTS/CLOCK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Figure 6.4: RCPU Block Diagram from the user manual

• the instruction is a branch instructions (the opcode gets verified) therefore the BPU

gets activated and performs a Branch Condition Evaluation - in order to attempt an

early resolve of the branching;

• in both cases the address of the next program instruction to be fetched must be de-

Chapter 6: The Hardware Model 157

termined, therefore in case of a normal instruction, a simple shift is performed to

the ”PC” in order to get the next linear instruction or, with the help of the branch

prediction a new address is generated. The BPU tries to resolve the jump condition

and the jump address. Depending on the result of the condition, on branch of the ex-

ecution or the other will be performed. The BPU, based on a bit parity check decides

what branch to take and therefore informs the IS to fetch addresses from the address

corresponding to the presumed case.

Once an instruction arrives in the IPFQ, it is sequenced to the appropriate execution unit.

The link between the Instruction Address Generator and the Execution Units and Register

Files area is explained by the fact that this unit uses arithmetic operation from the arith-

metic unit and register to compute the effective jump address. This is not the case of the

BPU who uses special, dedicated registers for its operations (LR, CTR and CR), therefore

being able to execute branch instructions separately.

The CC Unit is also involved in the sequence data path and ensures that instructions issued

beyond a predicted (therefore potentially incorrect) branch will not get completed (Com-

pletion Unit) until the branch is fully resolved. This mechanism is followed by a behavior

that is very important for the timing analysis. If the prediction of the BPU is erroneous,

all the instructions issued, and therefore executed, on that predicted branch will get flushed

(therefore never completed, and therefore the results not written in the result locations) and

the new fetch address (of the other branch) will be communicated.

If the branch folding succeeded, meaning that the prediction was correct, the the jump can

be done automatically and some instructions are already executed and ready to be com-

pleted, which represents a non-negligible temporal gain compared to the case of a miss-

prediction. Therefore the processor model and the timing analysis must take into account

this behavior.

6.4.4 Execution Units

The MPC555 features independent execution units making it possible to implement

advanced features such as look-ahead operations. Each unit decodes the dispatched in-

struction, by looking at its opcode, in order to immediately start the execution.

158 Chapter 6: The Hardware Model

MPC555 / MPC556 CENTRAL PROCESSING UNIT MOTOROLA
USER’S MANUAL Rev. 15 October 2000 3-4

Figure 3-2 Sequencer Data Path

3.4 Independent Execution Units
The PowerPC architecture supports independent floating-point, integer, load/store,
and branch processing execution units, making it possible to implement advanced fea-
tures such as look-ahead operations. For example, since branch instructions do not
depend on GPRs, branches can often be resolved early, eliminating stalls caused by
taken branches.

Table 3-1 summarizes the RCPU execution units.

INSTRUCTION ADDRESS GENERATOR

CC UNIT

32

32

R
E

A
D

 W
R

IT
E

 B
U

S
E

S

BRANCH

INSTRUCTION BUFFER

32

INSTRUCTION MEMORY SYSTEM

EXECUTION UNITS AND REGISTERS FILES

CONDITION
EVALUATION

INSTRUCTION
PRE-FETCH

QUEUE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Figure 6.5: Sequencer Data Path from the manual

Branch Processing Unit (BPU) As we already presented in the previous section, the

BPU is located in the Instruction Sequencer and looks for branch instructions in the In-

struction Buffer. Once it identifies a branch instruction and in the case it is an unresolved

conditional branch it informs the fetcher to prefetch instruction from the branch predicted

using a bit in the instruction encoding. The goal is to achieve zero-cycle branching, ensur-

ing a tangible speed-up.

The BPU integrates, besides a calculation feature to compute branch target addresses, three

special-purpose registers:

• the link register (LR), used to store the calculated return pointer for subroutine calls

and also the branch target address for the branch conditional to link register (bclrx)

instruction,

• the count register (CTR), that contains the branch target address for the branch con-

Chapter 6: The Hardware Model 159

ditional to count register (bcctrx) instruction,

• the condition register (CR).

6.4.5 Integer Unit (IU)

The IU executes the integer instructions except for the load and store instructions which

are handled by the dedicated LSU unit (that handles also the floating-point load/store in-

structions).

The particularity of the unit is that it features two separate units:

• one for the addition/subtraction called ALU-BFU,

• another for the multiplication/division called IMUL-IDIV.

Regarding the timing of the instruction execution, ALU-BFU takes a single clock and

IMUL-IDIV instructions require multiple clock cycles. Another key feature is that the

ALU-BFU unit is pipelined but only for the multiplication instructions. This means that if

a division instruction is intercalated with additions or multiplications, a stall is introduced

in the pipeline, like we can see in the example in listing ??.

Listing 6.1: No stall IU instructions

1 addic r1, r2, 1
2 mulli r6, r4, 3
3 subf r3, r5, r3

The execution of the first example in listing 6.1 is shown in figure 6.6. As we can see, even

though the write back of the multiplication instruction is delayed, there is no bubble in the

execution stream.

Listing 6.2: No stall IU instructions

1 addic r1, r2, 1
2 mulli r6, r4, 3
3 mulli r1, r2, 4

Listing 6.3: Stall IU instructions

1 addic r1, r2, 1
2 divw r6, r4, r3
3 mulli r1, r2, 4

160 Chapter 6: The Hardware Model

Internal
CLOCK

FETCH

DECODE

READ & EXECUTE

WRITE BACK

ADDIC MULLI SUBF

ADDIC MULLI SUBF

ADDIC

ADDIC

MULLI MULL/SUBF

SUBF MULLI

X Y

Figure 6.6: Pipelined execution of addition and multiplication intructions

Internal
CLOCK

FETCH

DECODE

READ & EXECUTE

WRITE BACK

ADDIC MULLI

ADDIC MULLI

ADDIC

ADDIC

MULLI

MULLI

X YMULLI

MULLI

MULLI

MULLI

Figure 6.7: Micro-pipelineing of the multiplication instructions by the IMUL-IDIV unit

Internal
CLOCK

FETCH

DECODE

READ & EXECUTE

WRITE BACK

ADDIC MULLI

ADDIC MULLI

ADDIC

ADDIC

MULLI

MULLI

X YDIVW

DIVW

DIVW

DIVW

Figure 6.8: IMUL-IDIV micro-pipelineing stall

6.4.6 Load/Store Unit (LSU)

The LSU is in charge with the data transfer between the GPRs and the internal load/store

bus (L-bus) through a 32 bits wide datapath. The unit is pipelined therefore stalls in the

Chapter 6: The Hardware Model 161

memory pipeline do not cause the master instruction pipeline to stall (unless there is a data

dependency).

Our model will exploit the timing information in table 6.9 that shows the LSU access

latencies.

listing 6.4 shows the computation of the LSU addressing.

Acces size Clock Cycle Latency No of accesses per transfer

Single-word 2 1

Double-word 3 2

Figure 6.9: LSU access latencies

Listing 6.4: LSU address format

1 if imm(instr) then
2 addr := rA + immAddr(intr)
3 else
4 addr := rA + mem(rB)

6.4.7 Floating-Point Unit (FPU)

The Floating-Point Unit is organized in three major parts as follows:

• a double-precision multiply-add array - efficiently implement floating-point opera-

tions such as multiply, multiply-add, and divide,

• the floating-point status and control register (FPSCR),

• the FPRs.

One of the most important issues in the determination of the timing behavior of this units

is with regards to the implementation of the IEEE floating-point specification. MPC555

depends on a software envelope to ensure the full implementation of the specification.

However, this software envelope should never be activated in critical real-time systems

because of the poor timing deterministic behavior. Instead, MPC555 can be forced to

162 Chapter 6: The Hardware Model

deliver results in hardware, treating as legitimate denormalized numbers, NaNs, and IEEE

invalid operations instead of raising floating-point assist exceptions.

FPR0

FPR1

FPR30

FPR31

0 63

GPR0

GPR1

GPR30

GPR31

0 31

CR

FPSCR
0 31

0 31

Condition Register

Floating-Point
Status and

Condition Register

...

...

LR

CTR

0 31

XER

User-Level SPRs

Integer Exception Register

Link Register

Count Register

Floating-Point Registers

Figure 6.10: RCPU Programming Model - User Model UISA

6.4.8 External Bus Interface

The MPC555 bus is a synchronous, burstable bus. The MPC555 architecture supports

byte, half-word, and word operands.

6.4.9 The RCPU HiTAsmL model

In the next sections we will use the following UML-style graphical syntax for the Hi-

TAsmL constructs.

MPC555 HiTAsm main rule Let us now model the MPC555 RCPU. As we already

stated, the HiTAsm framework enables incremental design through step-wise refinements.

Chapter 6: The Hardware Model 163

The first step will be the creation of a new htasm and the definition of an abstract hmodule

name, figure 6.11.

Listing 6.5: HiTAsmL rule

1 htasm MPC555
2 hmodules: MPC555module

MPC555module

MPC555

Figure 6.11: MPC555 htasm

The main abstract module is then refined in listing 6.6 and a concrete main module with a

main rule is created as we can see in figure 6.12. This corresponds to the highest abstraction

level of the processor model.

Listing 6.6: HiTAsmL rule

1 htasm MPC555
2 hmodule MPC555module
3 definition:
4 rule mainRule () , T

The model can be further refined with the delay information corresponding to the longest

execution step of the processor between all the possible configurations. The squared head

arrow represents a concretization of the definition.

Listing 6.7: HiTAsmL rule

1 module MPC555module#1 : MPC555module > MPC555module#1
2 definition:
3 rule mainRule () , maxdelay

We further refine the main module with the definition of seven abstract hmodule interface

that correspond to the five execution units, the prefetch queue and the history buffer.

164 Chapter 6: The Hardware Model

MPC555module

mainRule

T

MPC555

Figure 6.12: MPC555 hmodule

MPC555module

mainRule

T

MPC555module#1

mainRule

maxDelay

Figure 6.13: Abstract rule definition

Listing 6.8: HiTAsmL RCPU hmodules

1 htasm RCPU
2 hmodules: BPU, IPFQ, ALU, FPU, IMDU, LSU, HQ

Several refinement steps later, each of the defined interfaces is implemented following the

instruction sequencer defined in section 6.4.3 on page 155. At this step each execution

unit has a fairly high level design, featuring only generic rule names like Execute for each

identified functionality. However we can already distinguish the instruction sequencer logic

and the data path. Information like the buffer size or the number of history buffer entries

are also visible in figure 6.15.

6.4.9.1 Memory model

We can notice in the current HiTAsmL implementation that we do not specify, at any

moment, the underlying memory model. In the following we define the memory interpre-

tation based on fundamental HiTAsm framework constructs. Let us consider the RCPU

register presented in figure 6.10 on page 162.

Chapter 6: The Hardware Model 165

BPU

RCPU

Execute

IMDU

Execute

ALU

Execute

FPU

Execute

IPFQ

Execute

HQ

Execute

LSU

Execute

Figure 6.14: HiTAsmL RCPU hmodel

Listing 6.9: HiTAsmL RCPU hmodules

1 module GlobalMemory
2 signature :
3 IR -> Int
4 PC -> Int
5 GPR: Int -> Int //32 registers
6 FPR: Int -> Int //32 registers
7 CR -> Int //used by the BPU for look-ahead operations (BPU)
8 FPSCR :-> Int //floating-point status and control register
9 RAM: Int -> Int

10 IPFQ: Int -> Int //can hold up to 4 instr,
11 //provides look-ahead capability
12 //user-level Special Purpose Registers
13 CTR -> Int //count register (BPU - bcctrx instr)
14 LR -> Int //link register (BPU - bclrx instr)
15 XER -> Int //integer exception register (IU)
16 MSR -> Int
17
18 //BBU operation modes
19 enum BPUopMode =
20 {NO, // Normal Operation
21 SO, // Slave Operation
22 RO, // Reset Operation

166 Chapter 6: The Hardware Model

ADDR

BPU IPFQ

ALU

Execute

EU_choice

IMDU

Execute

FPU

Execute
YES

YES

Execute

LSU

Execute

Execute

HB

Execute5

Execute0

RCPU

D
A
TA

Execute Execute3

Execute0

Figure 6.15: HiTAsmL RCPU model

Chapter 6: The Hardware Model 167

23 DMO, //Debug Mode Operation
24 SMO, //Standby Mode Operation
25 Bo, //Burst Operation
26 ErrO //Error Detection
27 }
28 //IMPU variables
29 impuCancelRequest -> Int
30 MI_GRA -> Int // Global Region Attribute Register
31 BBCMCR -> Int //BBC Module Configuration Register
32 BE -> Int //Burst Enabled
33
34 //MPC55 Instruction Set
35 enum ISA = {add, addi, mulli, subh, ...}
36 //auxiliary functions to get the unit type (handle WB)
37 enum IUNIT = {ALUBFU, IMULIDIV, FPU, LSID, LSFD,LSADDR}
38 function ALUBFUinstr : Int -> IUNIT
39
40 //maps an opcode to a IS name
41 function RCPU_ISA : Int -> IS
42 //the instruction fields name
43 enum IF = {IF_AA, IF_crbA, IF_crbB, IF_BD,
44 IF_crbD, IF_crfS, IF_BI, IF_BO, ..., IF_rA,
45 IF_rB, IF_Rc, IF_rS, IF_rD, IF_SH, IF_SIMM}
46 //decoded instruction arguments
47 IARG : Int * IF -> Int
48
49 //auxiliary pipeline register
50 ALUexecResReg -> Int
51 FPUexecResReg -> Int
52 MULexecResReg -> Int
53 MEMResReg -> Int

Let us examine the GPR and the memory access to those registers whose HiTAsmL imple-

mentation is shown in listing 6.10. We use the function names GPR0-GPR31 to distinguish

the 32 GPRs and store their particular addresses in the MPC555’s memory (UISA area).

From a practical point of view we choose to refine this HiTAsmL function to a static unary

function GPR: Int -> Int that will map the number of the register with its address. This

function is static because the addresses of the registers are fixed in the processor’s architec-

ture.

In order to implement write and read accesses on memory content, we define a function

called MEM : Int -> Int that maps memory addresses to their value. This function is

obviously dynamic and can also have an initial state. As a memory use example we defined

the rule writeToGPR0(data: Int) that will write the value data to GPR0 in one clock

cycle, δ = 1.

168 Chapter 6: The Hardware Model

Listing 6.10: HiTAsmL RCPU hmodules

1 module GlobalMemory
2 signature :
3 static GPR: Int -> Int //32 registers
4 dynamic MEM : Int -> Int
5 definition :
6 function GPR(r : Int) =
7 initiall{
8 [0] -> 0x2F C000
9 [1] -> 0x2F C001

10 ...
11 [31] -> 0x2F C020
12 }
13 function MEM(gpr : Int) =
14 initial{
15 [GPR(gpr)] -> 0x0000
16 ...
17 }
18 rule writeToGPR0(data : Int) =
19 MEM(GPR(0)) := data, 1

GPR0

GPR1

GPR30

GPR31

0 31

...

1

2

3

4

5

0x0000

0x0001

0x0002

0x0003

0x0004

Figure 6.16: HiTAsmL RCPU registers

In figure 6.19 we refine the RCPU model based on the following informations:

1. the IPFQ is a buffer that stores a maximum of four instructions that are accessed in a

FIFO manner;

2. the IPFQ dispatches an instruction per cycle to available units;

3. each execution units decodes the dispatched instruction and executes it - therefore

each model of the execution units are refined to test the issued instruction;

4. if the instruction is not a valid PPC ISA instruction an exception is raised.

Chapter 6: The Hardware Model 169

GPR0

GPR1

GPR30

GPR31

0 31

...

1

2

3

4

5

0x0000

0x0001

0x0002

0x0003

0x0004

GPR0

T

...

MEM

MEM

GPR4

Figure 6.17: HiTAsmL RCPU registers

GPR0
T

0x0000

MEM

1

GPR0

T

0x0001

MEM

2

GPR4

T

0x0004

MEM

5

Figure 6.18: HiTAsmL RCPU memory model

In listing 6.11 we give the definition of the refinement with some extra support funcitons.

Listing 6.11: Refined HiTAsmL RCPU hmodules

170 Chapter 6: The Hardware Model

1 htasm RCPU
2 hmodules: BPU, IPFQ, ALU, FPU, IMDU, LSU, HQ
3 hmodule BPU
4 import FIFOwriteIPFQ
5 rule Execute(instr : Int)
6 FIFOwriteIPFQ(instr)
7 hmodule IPFQ
8 signature:
9 Q: Int -> Int

10 rule Execute(intr : Int)
11 FIFOwriteIPFQ(instr) =
12 rule FIFOwriteIPFQ(instr) =
13 Q[3] : = instr
14 Q[0:2] : = Q[1:3]
15 hmodule ALU
16 rule Execute()
17 rule decode(instr: Int) =
18 if opcode(instr) then
19 Execute()
20 hmodule FPU
21 ...

6.4.9.2 The Fetcher

Listing 6.12: HiTAsmL syntax for abstraction level definition

1 htasm MPC555
2 hmodules IPFQ, Fetch, Decode, Execute, WriteBack //...
3 import Fetcher1
4 hmodule Fetch
5 module Fetcher1 : Fetch > Fetch
6 module Fetcher2 : Fetch > Fetcher1
7 module Fetch0 : Fetch < Fetch

6.4.9.3 MPC555 pipeline implementation

When implementing a pipelined processor, several design methods are available for the

HiTAsmL user. One could divide the code according to the instruction name. Besides

specifying the instruction being currently treated, each function could have a stage param-

eter that would specify the current pipeline stage of the instruction and have treatments

depending on it.

Listing 6.13: HiTAsmL example of the MPC555 processor

1 enum PipelineStage = {ID, EX, MEM, WB}

Chapter 6: The Hardware Model 171

ADDR

BPU IPFQ

Qeue[3]

Queu[0]

Queu[1]

Queu[2]

ALU?

ALU

Execute
YES

NO

IMDU

Execute

Execute

HB

Write5

Write0

InstrException

RCPU

D
A
TA

Fetch

IMDU?
YES

NO

FPU?

FPU

Execute
YES

NO

LSU

Access1

Access1

LSU?
YES

NO

Figure 6.19: Refined HiTAsmL RCPU model

172 Chapter 6: The Hardware Model

2 rule add(instr: int, stage : PipelineStage) =
3 if stage = ID then
4 ...
5 if stage = EX then
6 ...

Instead one could group all the treatments related to the instruction pipelineing into differ-

ent stages rules.

6.4.9.4 Instruction Issue

The RISC Central Processing Unit implemented in the MPC555 processor attempts to

issue a sequential instruction on each clock if possible. The conditions necessary for an

instruction to be issued specifies that

• the execution unit must be available

• the required source data must be available

• no other instruction still in execution targets the same destination register

The particularity of the processor is that after the sequencer broadcasts the presence of

the instruction on the instruction bus, each execution unit decodes the instruction. The

execution unit is also responsible for the determining of the aforementioned dependencies.

Listing 6.14: HiTAsmL example of the Intruction Sequencer

1 module IntructionSequencer
2 import GlobalMemory
3
4 definition :
5 rule IS() =
6 //fetch instructions from the memory system
7 //fetches instructions from the BBC into the IPFQ
8 //BPU extract from IPFQ
9 //issues instr to available execution units

10 //maintain state history
11 //writeback -
12 //retirement stage - up to 6 instr per clock
13

Chapter 6: The Hardware Model 173

6.4.9.5 Pipeline stalls and forwarding

Instructions hold either the register value for the operand or the immediate value. Some

operands are computed using the register value, with indirect addressing for example, how-

ever this step occurs in the execution step. Therefore all an instruction needs to know in

order to execute is the register address of its operands. The result will be written in the

destination register also present in the instruction.

We need to model the eventual stalls or operand forwarding the processor handles. If a

result is available before the WB stage (for example the result of an addition that will be

written in register rD can be forwarded to another instruction, an addition for example, that

uses the destination register rD as an operand, rA or rB).

We chose to implement this mechanism using auxiliary local pipeline stage locations that

hold the register number of the operands and of the result. Several execution units perform

in parallel, therefore before getting the operator indicated by the register number obtained

in the decode stage, the unit will first perform a register number search in the destination

register number of all the execution units. If the same register number is found, and the

result is available, the operand value is replaced with this auxiliary location value.

Once an instruction gets decoded, the value of its fields are stored in a map called IARG,

instruction arguments, composed of the instruction itself and the instruction field, IF as a

key and the register address or the immediate value of the instruction field as the value.

The value stored in IARG can therefore be either a register address or an immediate value.

It is during the execution phase that the distinction will be made as it is intrinsically depen-

dent of the instruction type.

6.4.9.6 Data Hazards

Data hazards can occur between the ALU/BFU and the IMUL/IDIV execution units

as they share the same GPR register set. Function must be implemented to check if the

register used by a unit is the result register of another. In this case it should wait for the

instruction’s Write Back stage to complete.

174 Chapter 6: The Hardware Model

6.4.9.7 Instruction Dispatch/Decode (ID)

The Instruction Decode receives an instruction from the current PC and decodes the

instruction fields according to the instruction opcode. The field’s values are stored in a map

according to the instruction and the field type.

When a decoded instruction that depends on a result register that has not yet been calcu-

lated (write back or before), the ID is stalled until the value of that register is known.

Scoreboard information regarding the data dependencies is broadcast to all execution units.

The instruction is then dispatched to all the execution units in the same time. Each execu-

tion unit decodes the instruction. If the instruction is not implemented, a program exception

is taken.

In HiTAsmL code this translates to the fact that for an instruction sequence

opcode1 r1, r2 r3

opcode2 r3, r1, r4,

the r1 operand of the opcode2 instruction will only be accessed through rA = GPR(r1)

only after the value of the destination register from the opcode1 instruction is calculated.

Listing 6.15: HiTAsmL example of ID

1 module ID
2 signature :
3 dependency -> Bool
4 IDstall -> Bool
5 definition:
6 rule dependencyCheckID(reg : Int) =
7 if reg = ALUdestReg then
8 dependency := true
9 ALUOP1 := undef

10 ALUOP2 := undef
11 ALUresReg := undef
12 elif reg = ALUresReg then
13 ALUOP1 := undef
14 ALUOP2 := undef
15 ALUresDest := undef
16
17 rule dependencyCheckID(reg : Int) =
18 if reg = ALUdestReg then
19 dependency := true
20 elif reg = ALUresReg then
21 dependency := ALUres
22 elif reg = LSUdestReg then
23 dependency := true
24 elif reg = EADDRdestReg then

Chapter 6: The Hardware Model 175

25 dependency := true
26 if reg = LOADWBdestReg then
27 dependency := true
28 //check all dependencies
29
30 rule ID(instr : Int) =
31 let op = opcode(instr) in
32 case op =
33 add or addc or adde :
34 IARG(instr, IF_rD) := instr[6:10]
35 IARG(instr, IF_rA) := instr[11:15]
36 IARG(instr, IF_rB) := instr[16:20]
37 IARG(instr, IF_OE) := instr[21]
38 IARG(instr, IF_Rc) := instr[31]
39 addi :
40 IARG(instr, IF_rD) := instr[6:10]
41 IARG(instr, IF_rA) := instr[11:15]
42 IARG(instr, IF_SIMM) := instr[16:31]
43 //verify data hazards
44 //

6.4.9.8 Execution units

Listing 6.16: HiTAsmL example of the Execution unit

1 module EX
2 signature :
3 enum opId = {OP1, OP2, R}
4 ALUop : opId -> Int
5
6 //in
7 ALUOP1 -> Int
8 ALUOP2 -> Int
9 ALUdestReg -> Int

10 ALUres -> Int
11 ALUresReg -> Int
12 definition:
13 rule read_op1(reg : Int, id : opId) =
14 if reg = ALUexecResReg then
15 ALUop(id) := ALUexecResReg //immediate update - just forward
16 elif reg = MULexecResReg
17 ALUop(id) := MULexecResReg
18 elif reg = MEMResReg
19 ALUop(id) := MEMResReg
20 else
21 ALUop(id) := GPR(reg)
22
23 rule read_op2(reg : Int) =
24 if reg = ALUexecResReg then
25 ALUop2 := ALUexecResReg
26

176 Chapter 6: The Hardware Model

27 rule EX_IMUL_IDIV(intr : Int) =
28 let op = opcode(instr) in
29 case op =
30 mulli :
31
32 rule EX_BFU(instr :Int) //might be integrated with EX_ALU
33
34 //rule to be defined using a function that stores result
35 rule overflow(val : Int) =
36
37 rule EX_ALU(instr : Int) =
38 let op = opcode(instr) in
39 case RCPU_ISA(op) =
40 add :
41 let rA = IARG(instr, IF_rA) in
42 let rB = IARG(instr, IF_rB) in
43 let rD = IARG(instr, IF_rD) in
44 call(read_operand(rA, OP1))
45 call(read_operand(rB, OP2))
46
47 let res = ALUop(OP1) + ALUop(OP2) in
48 if overflow(res) then
49 XER[0] := 1
50 XER[1] := 1
51 if res < 0 then
52 CR[0] := 1
53 elif res > 0 then
54 CR[1] := 1
55 else
56 CR[2] := 1
57 CR[3] := XER[0]
58 if instr[22:30] = 0x8A then
59 let CA = 3 in
60 if carryout(res) then
61 XER[CA] = 1
62 else
63 XER[CA] = 0
64 ALUres := res + XER[CA]
65 else
66 ALUres := res
67 if instr[22:30] = 0xA then
68 if carryout(res) then
69 XER[CA] = 1
70 else
71 XER[CA] = 0
72 module Execute1 : Execute > Execute
73 import Decode
74 signature :
75 dynamic rA: -> Int
76 //rA got from the decode stage in final version
77 dynamic rB: -> Int
78 dynamic rD: -> Int
79 definition :

Chapter 6: The Hardware Model 177

80 rule multiu(rA : Int, rB : Int, rD : Int) =
81 GPR(rD) := GPR(rA) * GPR(rB), 10
82
83
84 module Execute2 : Execute > Execute1
85 import Decode
86 signature :
87 dynamic rA: -> Int
88 dynamic rB: -> Int
89 dynamic rD: -> Int
90 //rD got from the decode stage in final version
91 definition :
92 rule multiu(rA : Int, rB : Int, rD : Int) =
93 call(write_reg)(rt, BVmult_result(32, GPR(rs),
94 BVSignExtend(imm, 16, 32)))
95 rule exec() =
96 if (PMEM(pipeline(Ex)) = MULTIU) then
97 call multiu(DecodedRa, DecodedRb, DecodedRd)

6.4.9.9 Burst Buffer Unit

Listing 6.17: HiTAsmL example of the BBU

1 module BBC
2 import GlobalMemory
3
4 definition :
5 rule bbc() =
6 BE := BBCMCR[18] ; 1

The detailed definition of the Fetcher using the concrete BBU module.

Listing 6.18: HiTAsmL example of the BBU

1 module Fetch
2 signature:
3 dynamic QueueSize subsetof Integer
4 dynamic controlled IPFQsize : QueueSize
5 dynamic IPFQfull : Boolean
6 static fqueueFull: -> Boolean
7
8 default init inititalFetchState:
9 function IPFQfull = false

10 function IPFQsize = 0
11
12 definitions:
13 domain IPFQsize = {1, 2, 3, 4}
14
15 rule fqueueNotFull() =
16 par

178 Chapter 6: The Hardware Model

17 if IPFQsize = 4
18 then
19 IPFQfull := true
20 endpar
21
22 function fqueueFull() =
23 par
24 if IPFQsize = 4
25 then
26 true
27 else
28 false
29 endpar
30
31 rule Fetch() =
32 par
33 fqueueNotFull()
34 if IPFQfull and BusIdle
35 then
36 par
37 if BurstMode="Normal"
38 and ImmediateAcces=true and Mem(BE)=1
39 then
40 par
41 Mem(BR) = requestBus(Mem(BR))
42 if receiveBusGrant(BG)
43 and NoOtherMasterIsDriving then
44 Mem(BB) := assert(BB)
45 TS := assert(TS)
46 ADDRESS := drive(ADDRESS)
47 ATTRIBUTE := drive(ATTRIBUTE)
48 BURST := driveAsserted(BURST)
49 IPFQ := mem(ADDR) \\receiveAddress
50 returnData
51 switch (ADDR[28:29] mod 4)
52 case 0:
53 par
54 BDIP <- assert(BDIP)
55 IPFQsize := IPFQsize + 1
56 endpar
57 case 1:
58 par
59 IPFQ <- mem(ADDR) \\receiveAddress
60 IPFQsize := IPFQsize + 2
61 BDIP <- assert(BDIP)
62 endpar
63 case 2:
64 par
65 IPFQ <- mem(ADDR) \\receiveAddress
66 IPFQsize := IPFQsize + 3
67 BDIP <- assert(BDIP)
68 endpar
69 case 3:
70 IPFQ <- mem(ADDR) \\receiveAddress

Chapter 6: The Hardware Model 179

71 IPFQsize := IPFQsize + 4
72 endswitch
73 endif
74 endpar
75 endpar
76 endpar
77 endpar
78
79 //Valid is the set of valid PowerPC instructions
80
81 module ExecutePC
82 import Global *
83 signature:
84 WritePC : instr -> Bool
85 definition:
86 //1-ary function that detects if the current i
87 //nstruction modifies the normal flow.
88 function WritePC($i instr) =
89 par
90
91 endpar
92
93 rule ExecutePC =
94 if ExecuteOK then
95 par
96 if not WritePC(instr) then
97 PC := NextPC(PC)
98 endpar
99

100 rule NextPC =
101 if not Branch(instr) and not Jump(instr) then
102 if LittleEndian then
103 reg(PC) := reg(PC) XOR 0b100
104 else
105 reg(PC) := reg(PC) + 1[word]
106
107 else
108 if Branch(instr) then
109 if (LK = 1) then
110 reg(PC) := reg(LR)
111 \\gets the next instruction from the Link Register
112 else
113 reg(PC) := BTA
114 \\the branch taget address calculatd by the BPU
115 endif
116 endif
117 endif
118
119
120 module InstrOpcode
121 import Global *
122 signature:
123 enum domain IUopcode = { ... } //int instructions opcode
124 static IUinstr: Instr -> Boolean

180 Chapter 6: The Hardware Model

125 static Opcode: Instr -> opcodebites
126 static Truncate: Word -> ?
127
128 definitions:
129 function Truncate($d in Integer,
130 $st in Integer, $end in Integer) =
131 //concatenation of
132
133 function Opcode($i in Instr) =
134 Truncate($i, 0, 5) //type conversion should be made
135
136 function IUinstr($i in Instr) =
137 if opcode($i) in IUopcode then
138 true
139 else
140 false
141
142

6.4.9.10 Instruction Memory Protection Unit

Listing 6.19: HiTAsmL example of the IMPU

1 module IMPU
2 import GlobalMemory
3 definition :
4 rule detectAccessViolation(addr : Int) =
5 call compareAddr(addr)
6 rule compareAddr(addr : Int) =
7 if (addr = OK) then
8 impuCancelRequest := 0
9 else

10 impuCancelRequest := 1
11 ;1

6.4.9.11 Execute PC

Listing 6.20: HiTAsmL example of the WB

1 module ExecutePC
2 import Global *
3 signature:
4 WritePC : instr -> Bool
5 definition:
6 //1-ary function that detects if the current i
7 //nstruction modifies the normal flow.
8 function WritePC($i instr) =
9 par

Chapter 6: The Hardware Model 181

10
11 endpar
12
13 rule ExecutePC =
14 if ExecuteOK then
15 par
16 if not WritePC(instr) then
17 PC := NextPC(PC)
18 endpar
19
20 rule NextPC =
21 if not Branch(instr) and not Jump(instr) then
22 if LittleEndian then
23 reg(PC) := reg(PC) XOR 0b100
24 else
25 reg(PC) := reg(PC) + 1[word]
26
27 else
28 if Branch(instr) then
29 if (LK = 1) then
30 reg(PC) := reg(LR)
31 \\gets the next instruction from the Link Register
32 else
33 reg(PC) := BTA
34 \\the branch taget address calculatd by the BPU
35 endif
36 endif
37 endif
38

6.4.9.12 Write Back

MPC555’s Write Back Bus has 2 slots. Separate Execution (ALU/BFU, IMUL/IDIV,

FPU) and Load/Store units for integer and floating point instructions allow parallel Write

Backs on the two dedicated register sets GPR and FPR. Functions that handle the data

hazards between load/store and arithmetic instructions must be implemented for both types.

The ALU/BFU, IMUL/IDIV instructions operate on the same register set (GPR) therefore

a priority is assigned to write back operations.

For example, the single cycle instruction subf has priority on the write back bus over the

mulli. Therefore even if the mulli instruction is issued first, the mulli write back is delayed

one clock and causes a bubble in the execution stream.

[]

Listing 6.21: HiTAsmL example of the WB

182 Chapter 6: The Hardware Model

1 module WB
2 signatures :
3 //the execution unit’s results and dest reg
4 //are transferred from the exec stage
5 WBALUBFUresReg -> Int
6 WBALUBFUreg -> Int
7 WBIMULIDIVresReg -> Int
8 WBIMULIDIVres -> Int
9 LOADWBresReg -> Int

10 definition:
11 //check if it is architecturally correct
12 rule WB_arbitration(reg : Int) =
13 if
14
15 rule WB(instr : Int) =
16 let op = opcode(instr) in
17 if ALUBFUinstr(op) = ALUBFU then
18 writeReg(WBALUBFUresReg, WBALUBFUres)
19 if ALUBFUinstr(op) = IMULIDIV then
20 writeReg(WBIMULIDIVresReg, WBIMULIDIVres)
21 addToHistoryBuffer(instr)
22
23 rule LOADWB(instr : Int) =
24 let op = opcode(instr) in
25
26 addToHistoryBuffer(instr)

Listing 6.22: HiTAsmL example of the MPC555 processor

1 htasm MPC555
2 hmodules IPFQ, Fetch, Decode, Execute, WriteBack //...
3 import Fetcher1
4 signature :
5 dynamic function GPR : Int -> Int
6
7 definition:
8 rule opcode(addr : Int) =
9 addr[0:5]

10 //the evaluation returns the first 6 bits of the address
11 function RCPU_ISA(Int opcode) =
12 initially {
13 31 -> add,
14 37 -> stwu
15 }
16
17 //transaction with the main memory
18 //load and store instr will enter this stage

The purpose of the multiple implementations for a single module is to allow the definition

of multiple abstraction levels for a given component. From the designers point of view

Chapter 6: The Hardware Model 183

an option to define these levels would be to modify the transactional part in order to do

more or less modifications of needed locations, depending on the needed level of precision

the analyzer needs. As the language enables the assignment of a delay to transactions, the

system will detail more or less transitions by variation of the step size (this can be seen as

a big step, small step variation).

6.5 Conclusions

In this chapter we presented the construction of the MPC555 processor model using the

HiTAsmL language introduced in the previous sections. The pertinence of the choice of

this use case is ensured through the vast utilization of this processor in numerous embed-

ded applications, in avionics for example, but also through its architectural features that are

complex enough to provide a good exemplification of the modeling and analysis features

of our method.

The framework used to describe the processor proved efficient across the refinement paradigm

and also able to naturally capture the timing anomalies of the processor. The model of the

processor was completely extracted from its manuals and other technical documents de-

picting the inner functioning of the PowerPC RISC processor family.

During the laborious process of understanding the exact behavior of each component, we

could confirm the importance of a clear, explicit and detailed material in the understanding

of a processor and the creation of its model.

We can now also reply to an important question regarding the time needed to model the

processor (or to take into account a new one in the analysis). The most part of the time was

spent understanding precise behaviors and inferring temporal information for instructions

or units from the manuals, and once the processor architecture was mastered, the effective

coding time was limited. Given the simple syntax and the familiar look of the modeling

language, we can state that similar results can be achieved by any adopter of the method.

184 Chapter 6: The Hardware Model

Chapter 7

The WCET Analysis

7.1 Structure of the method

The two main entries of our method are the processor model and the program binary, as

depicted in Figure 7.1. The processor is regarded as the union of its components µP =
n⋃

i=0
Ci

and modeled as a hierarchical timed abstract state machine, that enables multiple definitions

for a same component Ci. A supervisor that we call the Oracle decides what abstraction

level is best suited for the current context in order to optimize the precision to state explo-

sion ratio. An external value analyzer is used to obtain information regarding the instruc-

tion order, their addresses and the control flow graph of the program. Symbolic execution

is used to symbolically execute each instruction of the program, meaning that each vari-

able has initially a symbolic value (as we generally do not posses exact information on its

value) that gets refined by accumulating all the information and decisions taken during exe-

cution. One of the advantages of this method is that it manages to simulate the interactions

inside the processor in detail, for example capturing by construction the timing anomalies

[RWT+06]. The SE generates all reachable states of the processor, meaning that we have

to manage a rapidly increasing state space. Our fusion stage consists in merging as much

states as possible without affecting too much the precision of the estimation. We achieve

this by using the prediction module that will first identify the states that are good candi-

dates for merging and then estimate the impact of the fusion on the global analysis. After

browsing and evaluating the processor’s states, the time corresponding to the worst path is

185

186 Chapter 7: The WCET Analysis

selected.

Processor

Hierarchical

ASM Model

Program

Value

Analysis

CFG

instr order

instr address

Symbolic inputs

State

Fusion
WCET

Prediction Module

Conjoint

 Symbolic

Execution

C1

C1

ASM1

C1

ASMm

Cn

Cn

ASM1

Cn

ASMp

...

...

...

Oracle
choose train

Figure 7.1: Global architecture of the WCET estimation tool

7.2 Value Analysis

In our method we use an abstract interpretation based value analysis that we launch,

prior to our analysis, on the program’s binary. Once the source code gets compiled in the

.el f binary file, the value analysis is performed and we obtain a formatted output file, as

depicted in figure 7.2.

Chapter 7: The WCET Analysis 187

0101010110101001001
10101010...

program
-> 9595024
i 0x100003dc : 0x9421ffe0
w c 0x00ffffe0
i 0x100003e0 : 0x93e1001c
w c 0x00fffffc
i 0x100003e4 : 0x7c3f0b78
i 0x100003e8 : 0x801f000c
r c 0x00ffffec
i 0x100003ec : 0x2f80000a
 goto -> 9660368
vertices
 9595024
 9660368
 9694064

edges
 9595024 -> 9660368
 9660368 -> 9694064
 9660368 -> 9695088

 #define LAST 10

 int main()
 {
 int i, sum = 0;

 for (i = 1; i <= LAST; i++) {
 sum += i;
 } /*-for-*/
 printf("sum = %d\n", sum);

 return 0;
 }

block id

instruction (hex)

address

goto block id

source/destination block id

control flow information

Program source code

Results of the value analysis

Program binary (*.elf)
Compilation

Value Analysis

Figure 7.2: Value Analysis

188 Chapter 7: The WCET Analysis

7.2.1 Implementation

The Value Analyzer generates an output with the CFG of the program, the instructions

of the program and their values. As we can see in Listing 7.1, the output gives the label

of the nodes, 9595024, their content, i 0x100003dc : 0x9421ffe0 and the relation

between nodes edges 9595024 -> 9660368. The i means that we have an instruc-

tion 0x100003dc at address 0x9421ffe0 given in hexadecimal. The equivalent of the

instruction in binary is instr = 10010100001000011111111111100000 which means

according to the opcode of the instruction, the first 6 bits of the instruction, 100101, that is

a stwu instruction, as we can see in Figure 7.3.

opcode S A d

Binary 100101 0000 10000 111111111111000

Hex 0x25 0 10 7FF8

Decimal 37 0 16 32760

stwu

Figure 7.3: Interpretation of the 0x100003dc instruction

The exact effect of the stwu instruction is given in the PowerPC manual and listed in

Figure 7.4. The value analyzer receives as input the program in its binary form and outputs

a formatted output with the result of the analysis. Listing 7.1 shows the source code of the

analysed binary, and listing 7.1 shows the result for that code and the figure 7.5 the CFG of

the decompiled binary, labeled with the program’s instructions and their addresses.

Listing 7.1: Value Analysis result on a C code
1
2 program
3 -> 9595024
4 i 0x100003dc : 0x9421ffe0
5 w c 0x00ffffe0
6 i 0x100003e0 : 0x93e1001c
7 w c 0x00fffffc
8 i 0x100003e4 : 0x7c3f0b78
9 i 0x100003e8 : 0x801f000c

10 r c 0x00ffffec
11 i 0x100003ec : 0x2f80000a

Chapter 7: The WCET Analysis 189

RCPU INSTRUCTION SET MOTOROLA
REFERENCE MANUAL Revised 1 February 1999 9-171

stwux stwux
Store Word with Update Indexed Load/Store Unit

stwux rS,rA,rB

EA← (rA) + (rB)
MEM(EA, 4)←rS
rA←EA

EA is the sum (rA|0)+(rB).

The contents of rS are stored into the word in memory addressed by EA.

EA is placed into rA.

If rA=0, the instruction form is invalid.

Other registers altered:

• None

This instruction is defined by the PowerPC UISA.

Reserved

0 5 6 10 11 15 16 20 21 30 31

0x1F S A B 0xB7 0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Figure 7.4: Interpretation of the 0x100003dc instruction from the RCPU manual

12 goto -> 9660368
13 -> 9660368
14 i 0x100003f0 : 0x409d0014
15 else -> 9694064
16 then -> 9695088
17 ...
18
19 vertices
20 9595024
21 9660368
22 ...
23 edges
24 9595024 -> 9660368
25 9660368 -> 9694064
26 ...

7.2.2 Syntax

As previously stated the WCET estimation uses an offline value analysis performed on

the binary of the program. The analysis provides the CFG of the program, the instruction

190 Chapter 7: The WCET Analysis

main

instructions [0x1000059c, 0x100005b4]

if 0x100005b8

else then

instructions [0x100005e4, 0x100005e8]

goto

instructions [0x100005bc, 0x100005e0]

instructions

label [0x100005ec, 0x10000614]

goto

if 0x10000618

else then

instructions [0x10000684, 0x10000688]

goto

instructions [0x1000061c, 0x10000640]

switch 0x10000644

label [0x1000068c, 0x10000698]

goto

goto

goto

instructions [0x10000648, 0x10000650]

instructions [0x1000066c, 0x10000674]

instructions [0x10000678, 0x10000680]

goto

if 0x1000069c

instructions

instructions instructions

goto

label

label

goto

goto

goto

Figure 7.5: The graph of the decompiled binary

and their addresses. We developed a program that parses the output of the value analysis,

presented in listing 7.1. In listing 7.2 we present the syntax of the Value Analyser parser in

EBNF form and in listing 7.3 its syntax diagram.

Listing 7.2: The EBNF grammar of the value analysis output parser

〈program〉 ::= ’program’ 〈codeLine〉 ’vertices’ { 〈number〉 } ’edges’ { 〈number〉 ’->’

〈number〉}

Chapter 7: The WCET Analysis 191

〈codeLine〉 ::= { 〈instruction〉 | 〈label〉 | 〈branch〉 | 〈memAccess〉 }

〈instruction〉 ::= ’i’ 〈number〉 ’:’ 〈number〉

〈label〉 ::= ’->’ 〈number〉

〈branch〉 ::= (’goto’ | ’then’ | ’else’) ’->’ 〈number〉

〈memAccess〉 ::= (’r’ | ’w’) [’c’] 〈number〉

〈edge〉 ::= { 〈number〉 ’->’ 〈number〉}

Listing 7.3 gives a more visual representation of the syntax used in the value analysis

output parser, using rail syntax diagrams.

Listing 7.3: The syntax diagram of the value analysis output parser

〈program〉 ::=-- ’program’ 〈codeLine〉 ’vertices’

� 〈number〉 �� �’edges’ 〈edge〉 -�

〈codeLine〉 ::=-- � 〈instruction〉� 〈label〉 �� 〈branch〉 �� 〈memAccess〉 �

� -�

〈instruction〉 ::=-- ’i’ 〈number〉 ’:’ 〈number〉 -�

〈label〉 ::=-- ’->’ 〈number〉 -�

〈branch〉 ::=-- �’goto’�’then’ ��’else’ �
�’->’ 〈number〉 -�

〈memAccess〉 ::=-- � ’r’�’w’ �� ��’c’ �� 〈number〉 -�

〈edge〉 ::=--

� 〈number〉 ’->’ 〈number〉 �� � -�

192 Chapter 7: The WCET Analysis

7.3 Conjoint Symbolic Execution

The use of symbolic execution (SE) in timing analysis as a way to capture the intra-

processor interactions has been employed with good results in [Lun02]. However the pre-

sented method suffers from the lack of a precise hardware model and inaccurate merging

strategies. These factors lead to important overestimations, rendering the method unpracti-

cal for industrial large-size applications.

Based on the intuition presented in [BMV08] we further extend the conjoint symbolic exe-

cution of a precise hardware model featuring delayed updates and a hierarchy of abstraction

levels. We also redefine the state merging and present novel merging techniques.

7.3.1 Symbolic Execution

Motivation The symbolic execution can be seen as a generalization of testing. It allows

unknown symbolic variables in evaluation:

x=α; assert(f(x) == 2*x*x)

and if the execution depends on unknown, the SE forks the program execution.

Insight In a symbolic execution, each execution represents many concrete program runs.

The number of included runs in the symbolic execution is given by the set of runs whose

concrete values satisfy the path condition. Therefore it can cover a greater subset of the

execution space than simple testing can.

Remarks Even though SE can cover a great number of concrete runs there are still a

lot of possible program paths. In order to decide which paths are feasible and validate

assertions, it needs many query solver calls. However, computers are much faster than the

time when SE was introduced. Moreover, powerful Satisfiability Modulo Theories (SMT)

solvers are available nowadays that can solve very large instances, very quickly (assertion

Chapter 7: The WCET Analysis 193

check, prune infeasible paths). (we have considered Z3, STP, and Yices)

Symbolic execution is a static program analysis approach originally introduced in [Kin76].

Its goal is to provide an analysis of all reachable program states, therefore under all possible

inputs. To this end, SE reasons about symbolic values rather than concrete ones, therefore:

• it gives assurance about any execution, prior to deployment;

• it is the root of a number of interesting static analysis ideas and tools.

The main idea behind symbolic execution is to use symbolic values, instead of actual data,

as input values. In this way it can reason with multiple values in the same time. Output

values will therefore be represented as a symbolic function of the input symbolic values.

The symbolic state retains the mapping between variables and their current values, repre-

sented as symbolic expressions, together with a path condition. The PC is a quantifier free

first order expression that accumulates all the constraints on the symbolic variable values

corresponding to a particular path in the program. The interpretation of the assignment rule

is straightforward.

A special treatment is applied to conditional statements, if cond then block1 else block2.

If the truth value can not be determined in the current state, using all the constrains in the

PC, the execution forks and both branches will be explored. This is equivalent to verifying

if either PC ⊃ ¬cond or PC ⊃ ¬cond. Each PC of the taken branch is updated with the

corresponding validated condition: PCtrue = PC ∪ cond and PC f alse = PC ∪ ¬cond. The

execution continues on a given path until the PC becomes unsatisfiable. The satisfiability

is checked with an off-the-shelf constraint solver.

In figure 7.6 on page 194 we show an example of the symbolic execution of the program

presented in listing 7.4.

Listing 7.4: SE example program

1 int x, y, z;
2 int a = -1;
3 if (x > 0)
4 {
5 y = a*x;
6 }
7 if (y >= 0)

194 Chapter 7: The WCET Analysis

8 {
9 z = z + y;

10 }
11 else
12 {
13 z = z - y;
14 }

x = α, y = β, z = γ

a = −1

α > 0

y = −α y = β

y ≥ 0

z = γ − βz = γ + β

y ≥ 0

z = γ + α

pc : α > 0 ∧ −α ≥ 0 pc : α ≤ 0 ∧ −α ≥ 0 pc : α ≤ 0 ∧ β ≥ 0 pc : α ≤ 0 ∧ β < 0

FALSE !

pc ∧ α > 0 pc ∧ α ≤ 0

pc = true

pc = true

t f

t f t f

Figure 7.6: Symbolic execution of a program

Chapter 7: The WCET Analysis 195

7.3.2 The global SE implementation

Algorithm 3: Symbolic Execution high level view
input :

A - a state

Ainit - the initial state,

Vector < A > ES - execution state vector

1 ES.add (Ainit);

2 while (ES.size () > 0 ∧ ¬Ttimeout) do

3 Ai = selectState ();

4 while (ES.ruleType () ¬ IF) do
/* normal linear execution */

5 nonForkInterpretation ();

6 Ai = nextState ();

7 if ¬ finalState (Ai) then

8 ES.add (Ai);

9 if (ES.ruleType () = FORK then
/* if-then-else execution - implemented in the following algorithms */

10 AT ,math f rakAF = forkInterpretation ();

11 if ¬ finalState (AT) ∧¬ finalState (AF) then

12 ES.add (AT);

13 ES.add (AF);

7.3.3 SE-HiTAsm

Definition 57 (Symbolic HiTAsm). A symbolic hierarchical timed abstract state machine

consists of a signature Σ, a set of initial states for Σ , a set of rule declarations and a

distinguished rule name of arity zero called main rule name of the machine.

196 Chapter 7: The WCET Analysis

The state of the Symbolic HiTAsm contains a sequence of states formed by the set of all

the states that satisfy the path condition.

Definition 58 (Symbolic HiTAsm State). A symbolic state A for the signature Σ is a non-

empty domain X that includes the set of symbols, XSE, X = XHiT Asm∪XSE, the superuniverse

of A, together with interpretations of the function names of Σ in one of the domains of A

and the formula Ψpc called the path condition that accumulates constraints on the symbolic

function names,MSE =
(
A,

⋃
Ainit,Σ, X,R,U,Ψpc

)
.

The symbolic update rule

f := α, δ = δmin l = (f , φ), u = (l, α, δ),Ψpc = Ψpc ∧ l = α. (7.1)

f := α, δ l = (f , φ), u = (l, α, δ). (7.2)

7.3.3.1 Symbolic Logic

In this section we extend the mathematical logic associated to basic ASM found in

[BS03] to include symbols for the symbolic execution.

Definition 59 (Symbolic Term). Let Σ be a signature of the symbolic state A, the symbolic

terms of Σ are syntactic expressions generated as follows:

1. Variables x, y, z, . . . are terms.

2. Constant c of Σ are terms.

3. Symbols α1, α2, . . . of Σ and XSE are terms.

4. If f ∈ Σ is a function names and t1, . . . tn are terms, then f (t1, . . . tn) are terms.

The variable assignment does not change a lot from the definition in [BS03]. We present

it anyway for clarity. Please note that even if the definition of the variable assignment map

ζ is almost unchanged, the variables can take values from |A|, therefore symbolic values

from XSE.

Chapter 7: The WCET Analysis 197

Definition 60 (Variable assignment). Let A be a symbolic state. A variable assignment for

A is a finite function ζα which assigns elements of the super-universe |A| ⊇ XSE to a finite

number of variables. We write ζ[x 7→ a] for the assignments of element a ∈ |A| to x in ζ

such that:

ζ[x 7→ a](y) =

 a , if y = x;

ζ(y) , otherwise.

Definition 61 (Interpretation of symbolic terms). Let Σ be a signature of the symbolic state

A, the symbolic terms of Σ are syntactic expressions generated as follows:

1. ~x�Aζ = ζ(x)

2. ~c�Aζ = cA

3. ~α�Aζ = αA

4. ~ f (t1, . . . tn)�Aζ =

 f A(~t1�
A
ζ , . . . , ~tn�

A
ζ) , if l ∈ A;

A
[
l f 7→ α f

]
, otherwise,

where l f = (f A, ~t1�
A
ζ , . . . , ~tn�

A
ζ).

As it was already stated before, it is notationally convenient and intuitively correct to view

state A as sets of pairs (l, v) of locations l and their values v. Thus we write A [l 7→ v] for

the extension of the state A by the new location l with the value v.

Implementation note Please note that we apply the same reasoning to free variables and

identify them with 0-ary functions symbols so that their interpretation is incorporated into

A instead of being kept in a distinct environment function ζ.

When a symbolic term is interpreted (for example, when it is used in the right hand side of

an update) a function lookup is performed because the function memoization is a standard

feature of ASMs. If the location of that function in the current state its not defined, then a

new symbol is attributed to that location, through an immediate symbolic update.

The generation of formulas definition 62 and the range definition 63 are the same as in

[BS03]. We present them for completeness.

Definition 62 (Formula). Let Σ be a signature. The formulas of Σ are generated as follows:

198 Chapter 7: The WCET Analysis

1. s = t is a formula, if s and t are terms.

2. ϕ is a formula =⇒ ¬ϕ is a formula.

3. (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ =⇒ ψ) are formulas if ϕ and ψ are formulas..

4. (∀xϕ) and (∃xϕ) are formulas if ϕ is a formula and x a variable.

Definition 63 (Range of a formula). The range of the formula ϕ with respect to x is the set

of all elements of A that make the formula true under ζ:

range (x, ϕ,A, ζ) =
{
a ∈ |A| : ~ϕ�Aζ[x 7→a] = true.

}
Formulas may be used to express properties of functions of an abstract state. The path

condition is a special formula that expresses properties of the symbolic values of the current

state. It is used to refine the value of the symbolic terms by accumulating all the control

flow’s constraints.

Definition 64 (HiTAsm Path Condition). Let A be a state we say that the formula Ψpc is a

path condition of the state A if it is modeled by the state A and write A |= Ψpc meaning that

~Ψpc�
A
ζ = true for all symbolic variable assignments ζ for ϕ.

A |= Ψpc =⇒ ~Ψpc�
A
ζ[x 7→a] = true | ∀x ∈ Ψpc.

We can use definition 64 to express the relation between the Symbolic HiTAsm state and

the HiTAsm state:

Definition 65 (Symbolic states).

MSE =
⋃
Mi | ∀A ∈ Mi =⇒ A |= Ψpc.

After each update, all the values in the store depending on that updated value are also up-

dated. For example if a symbolic location will be updated to a value, then all other locations

will also be updated, and the path condition modified.

Chapter 7: The WCET Analysis 199

Boolean-valued expression A formula is either true or false in a state and is also called

Boolean-valued expression.

However in the case of symbolic execution, the value of the formula can not always be

determined. In order to maintain the above property, the execution is split and two successor

states are generated, one in which the formula holds and another in which its negation

holds.

This behavior is applied in the case of the if-then-else rule if the guard of the rule is a

symbolic formula, as we can see in table 7.1:

if Cs then Rt else R f .

The implementation of the if-then-else rule is also given in algorithm 4.

The same reasoning is applied to the forall-with-do expression:

forall x with ϕ do P

that has the meaning of executing P in parallel for all the x satisfying ϕ.

Introducing the analyzer state The work presented in [BM09a] brings the prove that

the processor can generate identical states regardless of the execution history. This fact is

partially due to the finite and considerably small number of processor states compared to

the numbers of states generated by the analysis of the program on that processor.

The conjoint symbolic execution explores all the reachable states of the processor running

the analyzed program. Merging identical or similar states is crucial in order to achieve

scalability. Similar states can be strongly or weakly similar, meaning that the impact of

the fusion will be acceptable or not. This leads to a dynamically approach included in our

Prediction Module. Its goal is to evaluate the impact in the future of a fusion by unrolling

the execution tree for several steps (generally equal to the pipeline depth), continuing the

execution in parallel starting either from the merged states or the un-merged and comparing

the result, [BM09a]. The first step of our conjoint SE deals with the program’s CFG that is

regarded as an input for the processor’s model SE, as shown in figure 7.7.

200 Chapter 7: The WCET Analysis

Algorithm 4: Implementation of the symbolic if-then-else rule interpretation
input : CS - the condition of the guard, Rt,R f - blocks of the true and false branch

output: nextStates

1 a symbolic term is detected in the guard of an if rule;

2 if symbolic(CS) = True then

3 if ΨPC ⊃ CS then
/* the condition is True so continue with the True branch */

4 U = U + URt ;

5 At = yields
(
Rt,A, ζ,U,Ψpc

)
;

6 nextStates←− {At};

7 else if ΨPC ⊃ ¬CS then
/* the condition is False so continue with the False branch */

8 U = U + UR f ;

9 At = yields
(
R f ,A, ζ,U,Ψpc

)
;

10 nextStates←− {A f } ;

11 else
/* neither ΨPC ⊃ CS or ΨPC ⊃ ¬CS are theorems so fork the execution */

12 U = U + URt ;

13 V = U + UR f ;

14 At = yields
(
Rt,A, conζ,U,Ψpc ∧CS

)
;

15 A f = yields
(
RF ,A, ζ,V,Ψpc ∧ ¬CS

)
;

16 nextStates←− {At,A f };

17 else
/* normal execution - does not imply the Ψpc lookup of the condition */

18 if CS = True then

19 Anext = yields
(
Rt,A, ζ,U + URt ,Ψpc

)
;

20 else

21 Anext = yields
(
R f ,A, ζ,U + UR f ,Ψpc

)
;

22 nextStates←− {Anext};

Chapter 7: The WCET Analysis 201

Table 7.1: Inductive deduction of the semantics of Symbolic HiTAsm

yields
(
skip,A, ζ, φ,Ψpc

)
yields

(
skip,A + {(l, v, δ)} , ζ, φ,Ψpc

)
yields

(
skip,A, ζ, {(l, v, δ)} ,Ψpc

)

yields
(

f (s1, . . . , sn) := t.δ,A, ζ,U ⊕ {(l, α, d)},Ψpc

) l = (f , (~s1�
A
ζ , . . . , ~sn�

A
ζ)),

α = ~t�Aζ and d = ~δ�Aζ

yields
(
P,A, ζ,U,Ψpc ∧ ϕ

)
yields

(
Q,A, ζ,V,Ψpc ∧ ¬ϕ

)
yields

(
if ϕ then P else Q,A, ζ,U ∪V,Ψpc

) if ∃xϕ : a ∈ XSE, ~ϕ�Aζ[x 7→a].

yields
(
P,A, ζ,U,Ψpc

)
yields

(
if ϕ then P else Q,A, ζ,U,Ψpc

) if ∀x ∈ ϕ : a < XSE,

~ϕ�Aζ[x 7→a] = true.

yields
(
Q,A, ζ,V,Ψpc

)
yields

(
if ϕ then P else Q,A, ζ,V,Ψpc

) if ∀x ∈ ϕ : a < XSE,

~ϕ�Aζ[x 7→a] = false.

yields
(
P,A, ζ[x 7→ a],Ua,Ψpc ∧ ϕ

)
yields

(
P,A, ζ[x 7→ b],Ub,Ψpc ∧ ϕ

)
yields

(
forall x with ϕ do P,A, ζ,U =

⋃
a∈I Ua ∪U =

⋃
b∈J UbΨpc

)
if ∃xϕ : a ∈ XSE, ~ϕ�Aζ[x 7→a].

202 Chapter 7: The WCET Analysis

program.elf

Instruction order

Instruction Addreses

Program CFG

PowerPC binary

Value Analysis

MPC 555

Processor

HTASM

Processor model

concrete timed model

abstract component
 model pool

Conjoint Symbolic execution

Oracle

Predition Module

WCET

Analysis result

Dynamic Fusions

Symbolic inputs

merge train

precision

decrease hierarchical
abstraction level

use definition

dincrease hierarchical
abstraction level

Figure 7.7: WCET analysis overview

Chapter 7: The WCET Analysis 203

7.4 States and HiTAsms

A HiTAsm Machine state can be defined by a store

Mi
not
=

(
ω(n)

i , u(n)
i

)
(7.3)

where ω(n)
i maps the content of HiTAsm locations at the execution step n for the trace i and

u(n)
i is the update set, such that

ω(n)
i + u(n)

i = ω(n+1)
i , (7.4)

where + is the operator that applies an update state to a HiTAsm state introduced in defini-

tion 23.

We say that a machine has reached its final state for the path i iff:

u(n)
i = u f

i = φ (7.5)

meaning that no new updates were produced in that state and all the previous delayed

updates were fired.

7.4.1 Similar states identification

The next step is the identification of these similar or identical states in a computational

efficient way, with the help of the similarity relation ∼t,(
ω(i), u(i)

)
∼t

(
ω(j), u(j)

)
(7.6)

without looking into the whole state space and comparing all the P (S) states in store set

S . The t stands for similarity with regards to the execution time, meaning that two states

are similar even if they have a different execution current time.

We take into account the fact that ω(n) gives the photo of the pipeline’s content at step n

followed by the identification of the cost function sim(ω) that will be used to create a hash

map 
sim(ω(i), u(i)) :

⋃
i

(
ω(i), u(i)

)
 , (7.7)

with the similarity value as the key and the different ∼t −similar stores as the value.

A hint on how to construct this function lays in the evaluation of
(
ω(i), u(i)

)
through the

HiTAsm relations.

204 Chapter 7: The WCET Analysis

Intuition We consider, for example, the fact that some instructions are quite similar like

the MPC555 add instruction for example, addi, addic, addic., adis, which have the same

operand syntax, rD, rA, SIMM, but most of all that differences between certain
(
ω(i), u(i)

)
pipeline stages are not very important. Moreover, we can identify the importance of the

pipeline stages difference through the HiTAsm code itself by looking at the locations that

the different pipeline states have in common.

Example Let us consider a pipelined processor that has no dependency between the

READ AND EXECUTE stage and the L ADDRESS DRIVE, like the MPC555, or more

general two stages, s1 and s2, that for certain instruction group types, Ti1 and Ti2 , s2 has to

wait for s1 completion in order to access a certain operand value and for other instruction

families Ti3 and Ti4 does not have to. The HiTAsm of the processor will help us identify

which are the dependencies between instruction families Tii just by applying the functions

and seeing which guards are validated.

We can therefore create groups of pipeline instructions, ordered by their degree of sim-

ilarity. The chosen cost criteria will be given by the distance defined through HiTAsm

relations. Other criteria can be found dynamically, for example, by systematically test-

ing the merging of certain stores and keeping track of the features that lead to arriving in

identical or similar states. This can be achieved with the use of the prediction module.

7.4.2 Order on HiTAsm states

In [Ben11] a proof of existence of equivalent states is sketched.

Lemma 2 In a processor, different execution histories can lead to equivalent processor

states.

Proof 3 (sketch) Let M be the HiTAsm processor model. We note by M(I) the model

executing the instructionM:

M(I) =⇒ P ∈ SI

Chapter 7: The WCET Analysis 205

where P is a processor state and SI the set of all execution environments allowing the

execution of instruction I.

Let CI be the set of contrains associated to the execution environment SI, that allow the

execution of intruction I. We extend this notion to the set of contraints C allowing the

execution of an instruction flow {I1,I2, . . . ,Ik} we can thus define C = CI1 ∧CI2 ∧ . . .CIk

as the conjonction of the contraint sets associated to each instruction.

The processor’s state P must therefore be in the restricted execution environment:

P ∈ SI1 ∩ SI2 · · · ∩ SIk .

Execution constraints reduce the total processor states, therefore possible equivalent pro-

cessor behaviors are possible for similar classes of instruction during the execution.

We extend this intuition with regard to abstraction and the nature of our framework.

Lemma 3 A processors abstraction hierarchical level is proportional with the number of

possible equivalent processor states.

Proof 4 (sketch) Abstractions limit the total number of system’s state by grouping a greater

number of possible states into a single abstract state.

The extreme abstraction of the processor, using our ASM abstraction techniques is a single

module with a single function in the vocabulary named Processor. Having a single function

means a single abstract state (the most abstract) therefore, all these states can be merged.

Definition 66 (Identical states) Let Ai and A j be two HiTAsm states, we say that state i is

identical to the state j, and we note with:

A
i =δ A

j ⇔ ∀li ∈ A
i ∧ ∀l j ∈ A

j.li , l j =⇒ li = CTi ∧ l j = CT j.

In other words two states are identical if and only if the only locations from those states

that are not equal are the current time location, which obviously translate into the following

property:

Property 11 All locations from two identical states are equal except for the current time.

∀li ∈ A
i \CTi ∧ ∀l j ∈ A

j \CTi =⇒ li = l j.

206 Chapter 7: The WCET Analysis

Identical states are very useful in order to reduce the analysis state space. If two identical

states from two different paths can be identified, this means that in the execution history

there was a point where two states were similar and lead to those particular identical states.

Starting from the identical state definition we can generalize the concept of similarity.

Lemma 2 states that different histories may lead to identical states, which also means that

starting from two different states we can arrive in identical states. We would like to identify

those states. To limit the search space, we use the HiTAsm framework to extract some

properties that states should respect making them more likely to generate identical state.

Statement 4 The number of different locations between two states is inversely proportional

with their chances of becoming identical in the near future.

Or more formally:

Lemma 4 Let Ai and A j be two HiTAsm states and let Di j be their difference:

Di j = Ai \ A j,

we introduce the similarity probability, based on the evolution of states, P(S) which is

inversely proportional with the number of different locations between the two states:

P (S) =
1
|D|

therefore

P
(
Si j

)
·
(
A

i \ A j
)

= ct.

Statement 4 and lemma 4 simply acknowledge that if we want to identify states that are

likely to become identical, we will have a higher probability of success if we start by

looking into the less different states. These assumptions serve as a starting point for the

similar HiTAsm machine state search criteria. In the following section, the identification

will also take into account the update sets of each machine state. If timed updates are set

for those same locations that are different, the probability of similarity will increase.

Chapter 7: The WCET Analysis 207

Definition 67 (Delta-similar states) Let Ai and A j be two HiTAsm states, we say that state

i is similar or delta-similar to the state j, and we note by using the delta-similarity operator

∼δ:

A
i ∼∆ A

j ⇔ ∃li ∈ A
i \ lCT | ∀i ∈ {1 . . .∆}.li , l j ∧ ∀i < {1 . . .∆}.li = l j

where ∆ = |D| .

In other words

A
i ∼∆ A

j ⇔ ∆ =
∣∣∣Ai \ A j

∣∣∣ . (7.8)

Example The ∼1,∼2,∼3, . . . delta-similarity relations will form the equivalence classes

of the HiTAsm states having 1, 2, 3, . . . locations of different values.

Theorem 4 The delta-similarity is not an R-equivalence relation.

The notions of R-equivalence relation and equivalence relation in general are formally

defined in section 7.6 on page 216.

Intuition The fact introduce by theorem 4 is obvious because the delta-similarity is de-

fined using an inequality, therefore it is not reflexive, a necessary property of equivalence

relations as stated in definition 72 on page 217. In practice this means that the classes of

elements from A, created with the delta-similarity relation, would not form a partition of

A. The idea behind the definition of this relation is however useful. If we want to iden-

tify similar states, we have better chances starting with the states that are the less different

which lead to the concept of minimal state difference and then set difference.

Relaxation For our analysis, the fact that the relation is not reflexive and therefore unable

to partition the state space might only be translated in performance loss. In order to perform

the merges we need good candidates. If the classes created by a certain relation are good

candidates, it will enable to apply more state merges. We therefore do not only search to

define equivalence relations.

208 Chapter 7: The WCET Analysis

Plan In the following we extend the delta-similarity to equivalence relations.

Proof 5 (delta-similarity is not an R-equivalence relation). The proof is very simple, as

listed below. In order to prove that the delta-similarity is not an R-equivalence relation, we

must prove that it fails to respects the reflexivity, symmetry or transitivity properties.

• reflexivity: We must prove that ∀Ai ∈ A =⇒ Ai /∆ Ai.

Let us suppose that

∃Ai ∈ A | Ai ∼∆ Ai ⇔ ∃Ai ∈ A | ∆ =
∣∣∣Ai \ Ai

∣∣∣ .
implicitly ∀∆ which is obviously false as

∣∣∣Ai \ Ai
∣∣∣ = 0, therefore we have a contradic-

tion =⇒⇐, therefore

∀Ai ∈ A =⇒ Ai /∆ Ai.�

• symmetry: However, the relation is symmetric. We must prove that ∀Ai,A j ∈ A.Ai ∼∆

A j =⇒ A j ∼∆ Ai.

Let us suppose that:

∃Ai,A j ∈ A.Ai ∼∆ A j =⇒ A j /∆ Ai ⇔ ∃Ai,A j ∈ A.Ai \ A j , A j \ Ai

which is a contradiction =⇒⇐ on behalf of the set difference symmetry, therefore

∀Ai,A j ∈ A.Ai ∼∆ A j =⇒ A j ∼∆ Ai.�

• transitivity: obvious, following the same reasoning as above.

We use the concept of delta-similarity to further distinguish state relations ofM, using the

delay δ into the following sub-categories:

• weak similarity,

• strong similarity.

Chapter 7: The WCET Analysis 209

Statement 5 Besides the quantitative definition that we are about to formulate, the distinc-

tion between weak and strong similarity can also be made by model-dependant qualitative

approach. The discrimination will be made amongst locations that will have a bigger

impact on the state difference (for example locations that store the pipeline content and

locations storing the data memory content).

Definition 68 (Strong similarity.) Let Ai and A j be two delta-similar states, Ai ∼δ A
j, we

say that they are strongly similar and we note:

A
i 'δ A

j ⇔ ∆ ≤ ε∆,

where ε∆ is the tolerated difference coefficient that might be platform dependant.

Theorem 5 The strong similarity is an R-equivalence relation.

Proof 6 (Strong similarity is an R-equivalence relation). The proof follows the same rea-

soning as above. In order to prove that the strong similarity is an R-equivalence relation,

we must prove that it respects the reflexivity, symmetry and transitivity properties.

• reflexivity: We must prove that ∀Ai ∈ A =⇒ Ai '∆ Ai.

Let us suppose that

∃Ai ∈ A | Ai ;∆ Ai ⇔ ∃Ai ∈ A | ∆ >
∣∣∣Ai \ A j

∣∣∣ .
implicitly ∀∆ which is obviously false as

∣∣∣Ai \ A j
∣∣∣ = 0, therefore we have a contra-

diction =⇒⇐, therefore

∀Ai ∈ A =⇒ Ai '∆ Ai.�

• symmetry: We must prove that ∀Ai,A j ∈ A.Ai '∆ A j =⇒ A j '∆ Ai.

Let us suppose that:

∃Ai,A j ∈ A.Ai '∆ A j =⇒ A j ;∆ Ai ⇔ ∃Ai,A j ∈ A.Ai \ A j , A j \ Ai

which is a contradiction =⇒⇐ on behalf of the set difference symmetry, therefore

∀Ai,A j ∈ A.Ai '∆ A j =⇒ A j '∆ Ai.�

210 Chapter 7: The WCET Analysis

• transitivity: obvious, following the same reasoning as above.

Symmetrically, the week similarity definition is:

Definition 69 (Weak similarity.) Let Ai and A j be two delta-similar states, Ai ∼δ A
j, we

say that they are weakly similar and we note:

A
i ≈δ A

j ⇔ ∆ > ε∆,

where ε∆ is the tolerated difference coefficient that might be platform dependant.

Statement 6 In practice we will use the reflexive closure of the weak similarity relation

A
i ≈δ A

j ⇔ ∆ ≥ ε∆ + 1, (7.9)

Theorem 6 The strong similarity is an R-equivalence relation.

Proof 7 (The reflexive closure of the weak similarity relation is an R-equivalence relation).

See proof 6.

In the following we will always refer to the reflexive closure of the weak similarity as the

weak similarity.

Theorem 7 (Congruence on the HiTAsm algebras) The δ-similarity R-equivalence relation

is a congruence on the algebra A of the HiTAsm.

Statement 7 (Existence of identical states) At a certain moment of the analysis, regard-

less of the execution history,
⋃

i
(ω(i), u(i)), we can arrive in an identical or similar context

(ω(j), u(j))

Statement 8 (Existence of similar states) The existence of identical states implies that

their has been a common point in the execution time where non-identical state, called

similar states, lead to an identical context (ω(j), u(j)), regardless of the execution history,⋃
i

(ω(i), u(i)).

Chapter 7: The WCET Analysis 211

Statement 9 (Identification of similar states) A timed HiTAsm machine holds not only a

(location =⇒ value) mapping set but also the set of delayed updates
n⋃
i

ui that are pro-

grammed to be fired after the delay δi. Therefore it is obvious that some timed updates that

have not yet been fired might bring two different paths of the machine in an identical or

similar state.

The importance of statement 9 is crucial for the convergence of the analysis in the context

of the state space explosion. It not only says that we can find similar states to merge but it

implies that we can identify similar states even before they are actual computed i.e. before

the timed update sets would be applied to the state in order to generate the new, and there-

fore similar, state. The advantages are twofold, less states to analyze in the future, as paths

will be merged and also less computations of the next states.

7.4.3 State Merging

The major advantage of the symbolic execution is that it naturally generates every fea-

sible path. This can also be a drawback for an industrial real-life program as it generates a

combinatorial explosion. Handling this explosion with sufficient accuracy still remains

challenging today. The existing techniques range from efficient representation to state

merging algorithms. We choose to revisit the merging techniques, developing and extend

them to our processor model.

State merging refers to the actual fusion of two execution states and eliminates all the suc-

cessors of one state therefore whole execution paths. The state merging building blocks fall

into the following categories:

• state merging definition;

• merge candidates identification;

• merge candidates validation.

In order to perform merges, a notion of state must be defined, a certain metric associated

and an order or pre-order defined. The order on states will enable their comparison. Based

212 Chapter 7: The WCET Analysis

on this comparison criteria for states categorization can be defined.

We can compare the state merging with the execution of an if-then-else statement:

• the generated traces lead to different states. The merging is forbidden and the execu-

tion continues along the two paths.

• the generated traces lead to strongly similar states. The merging is authorised without

affecting the accuracy. This case arises when states from the two generated branches

are not dependent of the state split and are similar.

• the generated traces lead to weakly similar states. In order to validate the merge, a

parallel execution is started (in our case, the Prediction Module is activated) for a few

steps and results thereafter compared. If only a location or a short number of location

values are different and their impact is judged insignificant for the global execution,

then the merge is authorised.

Our merging method is implemented in such a nature to identify, during execution, the

states on which the generated tree is likely to fold (highly similar statements). This implies

that at some point, the analysis must stop so that the merger method traverses the symbolic

tree. The algorithms backtracks starting with the most recent states in the history and

searches for similar states that would be validated for the merge.

In the following we show that our model provides some advantages that are beneficial to

state merging identification and validation.

The merging of two similar states can be informally defined as the regroupment of state

elements into a single state. Multiple mergings can be defined according to the different

merging categories.

Definition 70 (State merging.) Let mi and m j be two states of the HiTAsm machineM we

define the merge state:

mi j
def
= mi] m j.

Chapter 7: The WCET Analysis 213

7.5 Prediction Module (PM)

Analyzing all the reachable states of the processor through the conjoint symbolic execu-

tion of the hardware model and the program leads to a state space explosion. The prediction

module, depicted in figure 7.8, is a feature aimed at reducing the explored paths by means

of state merging.

Figure 7.8: The Dynamic Fusion - snapshot of the Prediction Module

This module dynamically searches through the execution traces either the states to be

merged or good candidates that will be validated through a specific process. In the follow-

ing we present the main steps of the PM:

1. Forward lookup - consists in doing merge prediction through the execution of a few

steps starting from the current states.

• The starting point is two state candidates for merging. The algorithm analyzes

the impact of a merge on the future execution. The impact is quantified through

a parallel execution. After a few parallel steps the difference of the timed states

214 Chapter 7: The WCET Analysis

prior to the merge and after the merge is evaluated. Given the result is satis-

factory, the merge prediction is validated and the states merged, otherwise it is

discarded. Please note that this decision will also be used to train state com-

parison patterns by raising or lowering their grades based on the prediction

result.

2. Backward lookup - consists in searching the analysis history in order to identify the

earliest possible merging point starting from a state merge. This strategy requires to

keep track of a few previous execution steps.

• One of the starting points of the PM is the merging point of two identical states

Ai =δ A
j. These two identical states have a different execution history, which

means that they were generted by two non-identical states. The PM will try

to identify two common ancestors, as high in the history as possible, that are

similar and merge them.

• Another starting point of the PM is the merging point of two strongly similar

states Ai 'δ A
j. Examining their execution history might lead to identifying

strongly similar states and an earlier merge. The prediction can further continue

by applying the previous algorithm.

Merge identification goal Early identification of merge points is of great importance for

the state space reduction. States split potentially at every analysis step because of unknown

values or conditional constraints, generating new analysis paths. If the states that generated

them were identical to begin with, the path will be too, and the analyzer has no way of

knowing it. Therefore an early merge reduces exponentially many states compared to a

later merge.

7.5.1 Prediction Module search strategies

The PM deals with the merging of states. In order to proceed to the merge, states must

respect a certain criteria defined in section 7.4.2. The identification of states that respect

that criteria is another important step in the analysis.

Chapter 7: The WCET Analysis 215

7.5.1.1 Product domain search

One of the simplest search routine is to start by assuming all states can potentially be

merged. Based on this assumption, we therefore proceed to merging any two states Ai and

A j of the machine M. The idea is to determine, after a few execution steps, if the states

were really good merge candidates. The number of execution steps is dependent on the

pipeline depth and other processor characteristics. In order to validate the prediction, we

simulate a parallel execution of the machine without the merged states, M and with the

merged states,M# starting from the current execution point i. After a bounded number of

execution steps, p, the prediction is verified by comparing the similarity of the two machine

states. If the states are strongly-similar, the prediction is validated, the states merged and

the execution resumed from the validation point i + p with the machineM# otherwise with

the machineM whose evolutions were already computed.

We acknowledge that the nature of this strategy is quite costly, however the intuition is that

more and more machine states will be similar as the execution advances and creates similar

state constraints.

If the prediction was successful, we can further backtrack the execution history in search

of the most general common similar states that lead to those strongly similar states. Early

identification and merge of states has a great interest because execution is rarely linear but

branch depending on various conditions. Therefore all those paths can be eliminated by the

merge prior to their creation.

Theorem 8 (State comparisons complexity) The complexity of the state merging algorithm

of a HiTAsm machineM with n states, where n = |S| and S is the number of states is of the

order of O(n2).

Proof 8 Let S be the set of states of the HiTAsm machineM to be explored, S = {s ∈ M},

mtest be the merge decision function:

mtest :M×M −→ {0, 1}

and Rm be the set with the all results of mtest onM:

Rm =
{
mtest(si, s j) | ∀si, s j ∈ S

}

216 Chapter 7: The WCET Analysis

then we have |Rm| = |S|
2.

Product domain search - improvement The Prediction Module can decide to keep ex-

ecution snippets leading to the merging of (strongly similar) states. This execution history

will be used to generate state or path patterns having a great prediction success likeli-

hood. During the execution states will be matched against those patterns in order to di-

rectly choose more suitable candidates. This actually translates in promoting the similarity

concept form states to traces. In other words, combination of instruction and their order

can lead to identical states which is very plausible.

7.5.1.2 Relational domain search

The HiTAsm functions and relations can be used to systematically partition state spaces

into similarity categories called equivalence classes. A distance is defined that will guide

the search only between elements of two different equivalence classes.

The set of equivalence classes
⋃

i Ei holds all the state of the machineM and group in the

same set, states at a distanceD.

7.6 Equivalence Classes

The conjoint symbolic execution generates all the reachable states of a processor run-

ning a certain program for all possible inputs. This means it generates a great number

of state. When analyzing the outcome of all possible states, computational resources will

come short very fast. We previously introduced the concept of state merging. This implies

a search through all the state space.

Based on the definition of similarity we can identify if two states can be merged or not:

s1 'δ s2 =⇒ s1] s2

which means that we must first verify if the states are similar, s1 'δ s2 prior to the merge

operation s1] s2.

Chapter 7: The WCET Analysis 217

7.6.1 Mathematical foundation

Definition 71 (Equivalence class) Let X be a set and ∼ an equivalence relation on X, the

equivalence class of an element e in X is the subset of all elements in X which are equivalent

to e with regard to the equivalence relation ∼.

Let us now formally define the equivalence class through its properties and introduce the

equivalence class notation:

Definition 72 (Equivalence class) The equivalence class is defined by the binary relation

∼, called the equivalence relation, that satisfies the following properties:

• reflexivity: ∀e ∈ X =⇒ e ∼ e;

• symmetry: ∀ei, e j ∈ X.ei ∼ e j =⇒ e j ∼ ei;

• transitivity: ∀ei, e j, ek ∈ Xei ∼ e j, e j ∼ ek =⇒ ei ∼ ek.

We denote the equivalence class of an element e by [e] defined as the set:

[e] not
= {x ∈ X | e ∼ x}

of elements that are related to e by the binary relation ∼.

Definition 73 (R-equivalence class) Let us define the R-equivalence class, as en equiva-

lence class defined by the properties in definition 72 and by the R-equivalence relation ∼R.

We denoted it by [e]R defined as the set:

[e]R
not
= {x ∈ X | e ∼R x} .

7.6.1.1 Complexity study

In order to scale and speed up our algorithm, highly discriminating equivalence rela-

tions will have a plus in determining the state partitionment using the equivalence classes.

If we manage to partition the space in k equivalence classes, we can write the total number

of states as |S| = |S1| . . . |Sk| and the total number of state merge identification opera-

tions decreases from n2 to n2
1 + . . . n2

k , where ni is the cardinal of the set Si, ni = |Si| and

n =
∑k

i=1 ni. However, they are many possible equivalence classes as they form the power

set of the state set S.

218 Chapter 7: The WCET Analysis

Theorem 9 (Equivalence class determination). The complexity of the equivalence classes

determination of a HiTAsm machineM with n states, where n = |S| and S is the number of

states is of the order of O(2n).

In order to limit this huge number of comparisons, we introduce a way, based on the

HiTAsm definition, to pinpoint comparisons that are more likely to result in a merge.

A state i of a HiTAsm machineM for the HiTAsm A is defined by the couple (A(i),UA
(i)

),

where UA
(i)

is the timed update set of A at state i. As it was defined in the previous chapters,

the timed update sets accumulate updates that are programmed later in the execution. Our

idea is to compare the update sets and identify if two independent states have the same or

similar update set. This means that in the update set, the same locations are programmed to

change at a certain point, potentially giving a similar state. This means that we no longer

treat states equally with regard to the state merging search, but we categorize states from

their generation in different comparable sets. The degree of difference gives as the distance

D used to partition the state space with minimum computational cost.

7.6.2 A Formal View on State Partitioning

The state partitioning is based on the notion of distance previously introduced that we

will formally define in the following. This section is an extension of the HiTAsm state

similarity to machine state similarity by comparing the updates sets additionally to the

HiTAsm states.

Definition 74 (Merge candidates) Let i, j be two states of the machineM = (A,UA), A(i) ,

A(j), we say that the two states are merge candidates if for :

∀lk ∈ UA
(i)
, ll ∈ UA

(j)
=⇒ lk = ll.

Based on this definition we can define the first class of states consisting in the most likely

merge candidates, ass the sets having the same locations programmed for update at the

same time:

Definition 75 (Level 0 merge candidates) Let i, j be two states of the machine M =

(A,UA), A(i) , A(j)we say that the two states are merge candidates if for :

∀lk ∈ UA
(i)
, ll ∈ UA

(j)
| δ(i)

k = δ
(j)
l =⇒ lk = ll.

Chapter 7: The WCET Analysis 219

We define the distance between two states with regard to the merging likeliness as a func-

tion dependent on the number of different locations in their associated timed update set at

a certain time:

Definition 76 (Distance Set) Let i, j be two states of the machineM = (A,UA), A(i) , A(j),

we define the distance set of the two states:

Di j
def
=

⋃
k

lk,

where

lk ∈ UA
(i)
, ll ∈ UA

(j)
| lk , ll, δ

(i)
k = δ

(j)
l .

In other words, Di j is the set of locations that will be updated in a state with a certain delay

δ and not in the other state.If the locations were equal in the two states prior to the update,

then they might become different.

Given the fact that the difference is commutative, it is trivial to demonstrate the following

property:

Property 12 (Distance Set Computativity) Di j = D ji.

The distance between two sets is based on definition 76.

Let us now define a measure for updates performed on the same locations in the same time.

Statement 4 introduces the probability of similarity of two states based on the number of

their different locations later defined in lemma 4.

Statement 10 Two states that will get updates in the same time of all the locations that are

different have the greatest probability of becoming identical or similar.

Definition 77 (Equivalence Set) Let i, j be two states of the machineM = (A,UA), A(i) ,

A(j), we define the equivalence set of the two states:

Ei j (δkl)
def
=

⋃
k

lk,

where

lk ∈ UA
(i)
, ll ∈ UA

(j)
| lk = ll, δ

(i)
k = δ

(j)
l .

220 Chapter 7: The WCET Analysis

In other words Ei j (δkl) is the set with all the common locations from state i and j that will

be updated in the same time, after the delay (δkl).

We can now revisit the definition 75:

Definition 78 (Best merge candidates) Let i, j be two states of the machineM = (A,UA),

A(i) , A(j) and Di j be their difference, we define the most likely merge candidates as:

Ei j (δkl) = Di j,

Definition 79 (Merge State Distance) LetD be the distance function between two machine

states of the machineM:

D :M×M −→ N

and Mi,M j two states of the machine M, we define the distance as the cardinal of the

distance set, Di j between the two states:

D(Mi,M j) =
∣∣∣Di j

∣∣∣ .
Finally, we can define the equivalence classes of the machineM:

Definition 80 (Merge Equivalence Class) An equivalence class is a set of states that are

equally distanced with regard to the state merging distanceD:

Cd(M) =

⋃
k

mk | ∀i, j ∈ {1, . . . , k}.D(mi,m j) = d

 ,
where Cd(M) is the merge equivalence class of states that are d-distanced.

In practice The nature of the state merging equivalence classes creates a hierarchical

search strategy based on the distance level. The search starts among the least distanced

states and proceed in the direction of the distance growth.

7.6.2.1 Processor dependent equivalence relation

As previously proved, the importance state partitioning through the identification of

good equivalence classes is very important for the scalability and performances of the al-

gorithm. Their success is tributary to the equivalence relation ∼R.

Chapter 7: The WCET Analysis 221

To this end we previously introduced the global δ-similarity relation ∼δ that partitions all

the state space depending on their location value differences and programmed δ-update

sets.

This is a very useful relation as it can be applied to any processor type and used as a general

and adaptable equivalence relation.

The same formalism can however allow us to define ad-hoc distances and R-equivalence

relations dependent of the processor’s particular architecture.

Functional Congruence We had a look into the functional congruence to create equiva-

lence classes for the Burst Buffer unit. The functional congruence is defined as a congru-

ence of the form

f (x) ≡ g(x)(mod n),

where f (x) and g(x) are both integer polynomials. The functioning of the Burst Buffer

implies that it can retrieve as many as four instructions and as less as one instruction per

cycle. The behaviour can be explained through frame retrieval composed of four consecu-

tive locations. The unit can retrieve a frame, however if the specified address is at the end

of the frame (i.e. on the forth position of the frame) it will only retrieve a singe data. If the

address corresponds to the second position, it will retrieve three, etc.

Therefore the Burst Buffer retrieves modulo 4 instructions depending on the value of the

specified fetch address. Processor units are implemented as functions, therefore the trans-

lation of the functional congruence is quite straightforward.

Imprecisions on value are common in static analysis. Let us take the example of an impre-

cise burst address. In this case our analysis will either split in four cases or use the def-

inition corresponding to a higher level of Burst Buffer component abstraction. The unit’s

behaviour affects the entire state.

In the case the analysis splits, we can use this functional congruence as the equivalence

relation to partition the space.

Function image Another intuition is to use the equivalence relation:

Has the same image under a function on the elements of the domains of a function.

222 Chapter 7: The WCET Analysis

For example we could use a time function that applies to states and creates classes of states

taking the same amount of time. Of even greater benefit would be to identify a time function

that identifies states that took the same time to execute, δn, after n execution steps, when

n is greater than the pipeline depth. Adding a certain order would enable us to fusion or

disregard certain states without the downsides of the non-compositionality of the analysis.

7.7 Implementation

In this section we provide an algorithm corresponding to a high-level pseudocode im-

plementation of the timing analyzer. Once again, the global architecture is depicted in

figure 7.9.

7.7.1 Global algorithm

1. Start from the initial state: where all the components have the unknown value and pc

is set to true

2. For every variable that we encounter and that we do not have the exact value, assign

a symbolic value

3. Activate the first ASM model and then add the guard condition g to the pc

4. Choose from the oracle the appropriate version of the ASM modules

5. Compute the update set of the current step

6. Apply the update set (taking into account that some terms will have symbolic values)

7. Add the result of the update set to the global system state

8. Add the generated states to the collection of next states to be executed

9. Add the duration of the transition to the global time

10. Repeat from point 2. until the collection of next states is empty

Chapter 7: The WCET Analysis 223

program.elf

Instruction order

Instruction Addreses

Program CFG

PowerPC binary

Value Analysis

MPC 555

Processor

HTASM

Processor model

concrete timed model

abstract component
 model pool

Conjoint Symbolic execution

Oracle

Predition Module

WCET

Analysis result

Dynamic Fusions

Symbolic inputs

merge train

precision

decrease hierarchical
abstraction level

use definition

dincrease hierarchical
abstraction level

Figure 7.9: Global architecture of the WCET estimation tool

224 Chapter 7: The WCET Analysis

In algorithm 5 we present a high level view of the global algorithm that starts in the initial

symbolic state and unfolds the execution path. At every new step, symbolic states will be

assigned in a certain equivalence class where merge candidates will be identified.

7.7.2 Analysis termination

The state merging is crucial in the analysis state space reduction. In the ideal case, only

identical states are merged which means that no accuracy loss is introduced. In most of

the cases, the activation of only these types of merges is not sufficient and merges with

accuracy loss must be introduced. Therefore strongly similar states will also be authorised

for merging. Unfortunately pathological cases may arrive limiting the identification perfor-

mance of such states. As the search proceeds, comparing additional states and exploring

the history deeper, the computing resources may show their limitations.

In order to ensure that the analysis terminates in all cases with an estimation of the WCET,

we can increase the weekly similar state merges threshold. This is achieved by gradually

authorising the introduction of more and more inaccuracy or directly merging states that

have a greater distance.

The algorithm evolves by relaxing at each step a similarity condition constraint until the

available memory proves sufficient for the analysis.

7.8 Conclusions

Software verification and quality assurance process of embedded systems with hard

real-time constraints are of great importance. Non-functional properties, such as timing,

are highly dependent on the underlying hardware platform. Nevertheless, there is a rising

demand to integrate more complex processors, such as the multi-cores, even though many

problems are yet to be solved in single-cores. Powerful industrial WCET estimation tools

available today can do nothing against the lack of information regarding the exact behavior

of the platform or the nondeterministic behavior of certain units. Therefore the choice of

the processor is crucial in ensuring the success of the system verification.

Chapter 7: The WCET Analysis 225

Algorithm 5: Dynamic Symbolic Execution Algorithm
input : initial location

1 Minit = (Ainit, φ, True); Push (WorkList,Minit);

2 while WorkList , φ do

3 Push (WorkList, Succ (Pop (WorkList)));

4 (Ai,Ui,ΨPC)←− Pop (WorkList);

/* The symbolic execution per se */

5 if (Rule (Ai) = SkipRule) ∨ (Rule (Ai) = UpdateRule) then

6 if (Ui , φ) then

7 CTAi ←− CTAi = δAi
min;

8 foreach ((l, v, δ) ∈ Ui|δ = δmin) do

9 Ui+1 ←− Ui \ (l, v, δ);

10 lAi+1 = eval(v,Ai);

11 if (Rule (Ai) = UpdateRule) then

12 Ui+1 ←− Ui
⋃
k

(Rule (Ai) (lk, vk, δk));

13 Push (WorkList, (Ai+1,Ui+1,ΨPC));

14 else if (Rule (Ai) = ConditionalRule) then

15 guard = eval(cond(Rule (Ai)), Ai);

/* guard is not a theorem */

16 if satisfiable (ΨPC ∧ guard) ∧ satisfiable (ΨPC ∧ ¬guard) then

17 A′i+1 = generate (Ai, guard);

18 A′′i+1 = generate (Ai,¬guard);

19 Push (WorkList,{
(A′i+1,U

′
i+1,ΨPC ∧ guard), (A′′i+1,U

′′
i+1,ΨPC ∧ ¬guard)

}
);

20 evaluate the True and False case and the other rule types

21 foreach s in Succ (cSE (A))) do

22 Cd ←− Categorieze (s)

23 foreach c in
⋃
Cd do

24 PredictionModule;

25 Merge symbolic states;

226 Chapter 7: The WCET Analysis

Chapter 8

Conclusions

The presented work establishes fundamental techniques for integrating ASMs and con-

joint symbolic execution efficiently into an adaptable and modular static WCET analysis.

We have presented the structure of a complete method for timing analysis with a control-

lable accuracy. Thanks to the conjoint symbolic execution, all the reachable states of the

processor, running the binary, are generated. The possibility to make delayed transition

is presented as a support for abstracting the processor components in order to achieve a

more compact simulation. We have also introduced a formal framework and a language

implementation that can be used to dynamically refine the components of the processor.

The framework enables, during the analysis, dynamic hierarchical abstraction that can be

made in both ways between the concrete and the more abstract definition. The use of novel

state merging techniques and the Prediction Model solves some important scalability prob-

lems. The tool is currently in the implementation phases, however prototypes of a previous

version, using state merging and a classical ASM processor model had given good results

regarding the precision of the estimation on benchmarking code examples.

8.1 Original research (at a glance)

We present a novel and complete approach for timing analysis that exploits an original

extension of the abstract state machines. The approach uses conjoint symbolic execution

using the HiTAsm framework to precisely model the processor.

227

228 Chapter 8: Conclusions

8.2 Industrial Applications and Future Research

The timing analysis method presented in this thesis makes the object of an ongoing

implementation that will respond to a real industrial need and integrates into a product cer-

tification workflow. The choice of the case study presented in chapter 6 is also related to

this industrial application, the Motorola MPC555 being used on several projects.

Through this choice we aim at providing a direct comparison with the results obtained not

only through the in-house ad-hoc dynamic methods but also with a licensed commercial

WCET tool that targets this platform.

The HiTAsm framework and its integration into the timing analysis provides modularized

ways of identifying state merge candidates and more fundamentally guide the hierarchical

level of abstraction. The first part can be achieved by implementing new techniques into

the Prediction Model. The second extension could be made in the implementation of new

Oracle strategies to better adapt dynamically to the symbolic execution context.

8.3 Outlook

In the WCET estimation of modern processors, taking into account the hardware in

the analysis and its interactions with the program code is crucial in order to safely and

precisely estimate the worst-case. The choice of the way the processor is modeled is also

very important. To this end we have studied another method before arriving to the HiTAsm

framework, [PHM11], approach based on timed SystemC waiting state automata (TWSA)

that are similarly, symbolically executed in conjunction with the binary of the program.

The TWSA model has the advantage of being able to serve in validating both functional and

non-functional properties of the hard real time systems as it guarantees both critical func-

tional properties about the interactions between concurrent processes and non-functional

properties especially the time constraints. Based on this model we also developped a

method which starts from a SystemC code and provides a tight execution time upper bound.

The fact that the same analysis method could be used with another, fundamentally differ-

Chapter 8: Conclusions 229

ent, processor modeling formalism proves that our approach is not only adaptable to other

processors to analyze but also to the use of different ways and languages to simulate the

processor’s behavior.

Appendix A

Code listing

Listing A.1: Value Analysis result on a C code
1
2 program
3 -> 9595024
4 i 0x100003dc : 0x9421ffe0
5 w c 0x00ffffe0
6 i 0x100003e0 : 0x93e1001c
7 w c 0x00fffffc
8 i 0x100003e4 : 0x7c3f0b78
9 i 0x100003e8 : 0x801f000c

10 r c 0x00ffffec
11 i 0x100003ec : 0x2f80000a
12 goto -> 9660368
13 -> 9660368
14 i 0x100003f0 : 0x409d0014
15 else -> 9694064
16 then -> 9695088
17 -> 9694064
18 i 0x100003f4 : 0x813f000c
19 r c 0x00ffffec
20 i 0x100003f8 : 0x38090001
21 i 0x100003fc : 0x901f000c
22 w 0x00ffffec
23 i 0x10000400 : 0x48000010
24 goto -> 9699712
25 -> 9695088
26 i 0x10000404 : 0x813f000c
27 r c 0x00ffffec
28 i 0x10000408 : 0x3809ffff
29 i 0x1000040c : 0x901f000c
30 w 0x00ffffec
31 goto -> 9699712
32 -> 9699712

231

232 Appendix A: Code listing

33 i 0x10000410 : 0x801f0008
34 r c 0x00ffffe8
35 i 0x10000414 : 0x2f800005
36 i 0x10000418 : 0x409d0014
37 else -> 9693568
38 then -> 9693248
39 -> 9693568
40 i 0x1000041c : 0x813f0008
41 r c 0x00ffffe8
42 i 0x10000420 : 0x38090001
43 i 0x10000424 : 0x901f0008
44 w c 0x00ffffe8
45 i 0x10000428 : 0x48000010
46 goto -> 9701984
47 -> 9693248
48 i 0x1000042c : 0x813f0008
49 r c 0x00ffffe8
50 i 0x10000430 : 0x3809ffff
51 i 0x10000434 : 0x901f0008
52 w c 0x00ffffe8
53 goto -> 9701984
54 -> 9701984
55 i 0x10000438 : 0x81610000
56 r c 0x00ffffe0
57 i 0x1000043c : 0x83ebfffc
58 r c 0x00fffffc
59 i 0x10000440 : 0x7d615b78
60 i 0x10000444 : 0x4e800020
61 goto -> 9706912
62 -> 9706912
63
64 vertices
65 9595024
66 9660368
67 9694064
68 9695088
69 9699712
70 9693568
71 9693248
72 9701984
73 9706912
74
75 edges
76 9595024 -> 9660368
77 9660368 -> 9694064
78 9660368 -> 9695088
79 9694064 -> 9699712
80 9695088 -> 9699712
81 9699712 -> 9693568
82 9699712 -> 9693248
83 9693568 -> 9701984
84 9693248 -> 9701984
85 9701984 -> 9706912

Bibliography

[a3it] Absint advance analyzer, http://www.absint.com/ait/.

[ABD+95] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings. Fixed priority
pre- emptive scheduling: an historical perspective. Journal of Real-Time
Systems, 8:129–154, 1995.

[Aer11] Aeroflex Gaisler AB. GR712RC - Dual-Core LEON3FT SPARC V8 Proces-
sor, User’s Manual, 2011.

[Aer12] Aeroflex. UT699 LEON 3FT/SPARCTM V8 MicroProcessor, Functional
Manual, 2012.

[AMMS10] Sergei N Artëmov, Yuri Matiyasevich, Grigori Mints, and Anatol Slissenko.
Simulation of Timed Abstract State Machines with Predicate Logic Model-
Checking. Ann. Pure Appl. Logic, 162(3):173–174, 2010.

[Anl00] Matthias Anlauff. XASM- An Extensible, Component-Based Abstract State
Machines Language. In Yuri Gurevich, PhilippW. Kutter, Martin Odersky,
and Lothar Thiele, editors, Abstract State Machines - Theory and Applica-
tions, volume 1912 of Lecture Notes in Computer Science, pages 69–90.
Springer Berlin Heidelberg, 2000.

[ARM99] ARM. AMBA Specification (Rev 2), 1999.

[BCP03] Guillem Bernat, Antoine Colin, and Stefan Petters. pwcet: A tool for prob-
abilistic worst-case execution time analysis of real-time systems. Technical
report, 2003.

[BCS00] Danièle Beauquier, Tristan Crolard, and Anatol Slissenko. A Predicate Logic
Framework for Mechanical Verification of Real-Time Abstract State State
Machines: A Case Study with PVS, 2000.

[Ben11] Bilel Benhamamouch. Calcul du pire temps d’execution - Methode formelle
s’adaptant a la sophistication croissante des architectures materielles. PhD
thesis, ENSTA PArisTEch, 2011.

233

234 Bibliography

[BG97] Andreas Blass and Yuri Gurevich. The linear time hierarchy theorems for
Abstract State Machines. J. Universal Computer Science, 3:247–278, 1997.

[BG11] A. Burns and D. Griffin. Predictability as an emergent behaviour. In Robert I.
Davis and Linh T.X. Phan, editors, 4th Workshop on Compositional Theory
and Technology for Real?Time Embedded Systems, pages 27–29, 2011.

[Bil95] Patrick Billingsley. Probability and Measure. NY John Wiley and Sons,
1995.

[Bil99] Patrick Billingsley. Convergence of Probability Measures. New York John
Wiley and Sons, Inc, 1999.

[BK08] Sven Bünte and Raimund Kirner. The acquaintance of hardware timing ef-
fects: A sine qua non to validate temporal requirements in embedded real
time systems. Junior Scientist Conference, Nov. 2008.

[BM09a] B. Benhamamouch and B. Monsuez. Computing worst-case execution time
(wcet) by symbolically executing a time-accurate hardware model. Interna-
tional Journal of Design, Analysis and Tools for Circuits and Systems, 1(1),
2009.

[BM09b] Bilel Benhamamouch and Bruno Monsuez. Computing worst case execution
time (WCET) by Symbolically Executing a time-accurate Hardware Model.
In International MultiConference of Engineers and Computer Scientists, vol-
ume II, pages 3–8, 2009.

[BMV08] Bilel Benhamamouch, Bruno Monsuez, and Franck Védrine. Computing
wcet using symbolic execution. In Proceedings of the Second International
Conference on Verification and Evaluation of Computer and Communication
Systems, VECoS’08, pages 128–139, Swinton, UK, UK, 2008. British Com-
puter Society.

[Bor03] E. Borger. The asm refinement method. Formal Asp. of Comput., 15(2-
3):237–257., 2003.

[bou] Bound-t time and stack analyser.

[BPPS00] Valerie Bertin, Michel Poize, Jacques Pulou, and Joseph Sifakis. Towards
validated real-time software. In In Proc. 12th Euromicro Conference of Real-
Time Systems. IEEE Computer Society Press, 2000.

[BS02] Danièle Beauquier and Anatol Slissenko. A First Order Logic for Specifica-
tion of Timed Algorithms: Basic Properties and a Decidable Class. Annals
of Pure and Applied Logic, 113(1–3):13–52, 2002.

Bibliography 235

[BS03] E. Borger and R. Stark. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag, 2003.

[BT08] Sven Bünte and Michael Tautschnig. A benchmarking suite for
measurement-based WCET analysis tools. In First International Conference
on Software Testing, Verification and Validation (ICST), Lillehammer, Nor-
way, April 2008. IEEE Computer Society Press.

[BZK11] Sven Bünte, Michael Zolda, and Raimund Kirner. Let’s get less optimistic in
measurement-based timing analysis. In Proc. 6th International Symposium
on Industrial Embedded Systems (SIES’11), Västerås, Sweden, June 2011.
IEEE.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages 238–252, New
York, NY, USA, 1977. ACM.

[CFG+10] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund,
Claire Maiza, Jan Reineke, Benoı̂t Triquet, and Reinhard Wilhelm. Pre-
dictability considerations in the design of multi-core embedded systems. In
Proceedings of Embedded Real Time Software and Systems, pages 36–42,
May 2010.

[CGSH+12] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kos-
midis, J. Abella, E. Mezzetti, E. Quinones, and F.J. Cazorla. Measurement-
based probabilistic timing analysis for multi-path programs. In Real-Time
Systems (ECRTS), 2012 24th Euromicro Conference on, pages 91–101, July
2012.

[cod11] Embedded software test, 2011.

[CP01] A. Colin and I. Puaut. A modular and retargetable framework for tree-based
wcet analysis. In In In Proc. of the 13th Euromicro Conference on Real-Time
Systems, pages 37–44., 2001.

[CR09] Sudipta Chattopadhyay and Abhik Roychoudhury. Unified cache modeling
for WCET analysis and layout optimizations. In Proceedings of the 30th
IEEE Real-Time Systems Symposium, RTSS 2009, Washington, DC, USA, 1-
4 December 2009, pages 47–56, 2009.

[CR11] Sudipta Chattopadhyay and Abhik Roychoudhury. Scalable and precise re-
finement of cache timing analysis via model checking. In Proceedings of the

236 Bibliography

2011 IEEE 32nd Real-Time Systems Symposium, RTSS ’11, pages 193–203,
Washington, DC, USA, 2011. IEEE Computer Society.

[CRM10] Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling
shared cache and bus in multi-cores for timing analysis. In Proceedings of
the 13th International Workshop on Software 38; Compilers for Embedded
Systems, SCOPES ’10, pages 6:1–6:10, New York, NY, USA, 2010. ACM.

[CRTM98] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg. Volcano – a revolu-
tion in on-board communications. Technical Report 1:9–19, Volvo Technol-
ogy Report, 1998.

[CS08] Joëlle Cohen and Anatol Slissenko. Implementation of Sturdy Real-Time
Abstract State Machines by Machines with Delays. In Proc. of the 6th In-
tern. Conf. on Computer Science and Information Technology (CSIT’2007),
September 24–28, 2007, Yerevan, Armenia. Organized by National Academy
of Science of Armenia in cooperation with Test Technology Technical Council
of IEEE Computer Society. National Academy of Science of Armenia, 2008.

[Cul06] C. Cullmann. Statische Berechnung sicherer Schleifengrenzen auf Maschi-
nencode. PhD thesis, Universität des Saarlandes, Saarbrücken, 2006.

[DSW95] Nathalie Drach, André Seznec, and Daniel Windheiser. Direct-mapped ver-
sus set-associative pipelined caches. In Proceedings of the IFIP WG10.3
working conference on Parallel architectures and compilation techniques,
PACT ’95, pages 79–88, Manchester, UK, UK, 1995. IFIP Working Group
on Algol.

[EPB+06] Jochen Eisinger, Ilia Polian, Bernd Becker, Alexander Metzner, Stephan
Thesing, and Reinhard Wilhelm. Automatic identification of timing anoma-
lies for cycle-accurate worst-case execution time analysis. In DDECS, pages
15–20. IEEE Computer Society, 2006.

[ERT06] ERTS. Otawa, A framework for experimenting WCET computations, 2006.

[FH08] C. Ferdinand and R. Heckmann. Worst-case execution time – a tool
provider’s perspective. In 11th IEEE International Symposium on
Object/component/service-oriented Real-time distributed Computing ISORC,
2008.

[Fre00] Freescale Semiconductors. MPC555 - MPC556 User’s Manual, 2000.

[Gan01] Jack Ganssle. Really real-time systems. In In Proc. Embedded Systems Con-
ference San Fransisco (ESC SF), 2001.

Bibliography 237

[Gau95] T. Gaul. An Abstract State Machine specification of the DEC-Alpha Proces-
sor Family. Technical report, University of Karlsruhe, 1995.

[GH96] Yuri Gurevich and JamesK. Huggins. The railroad crossing problem: An
experiment with instantaneous actions and immediate reactions. In Hans
Kleine Bning, editor, Computer Science Logic, volume 1092 of Lecture Notes
in Computer Science, pages 266–290. Springer Berlin Heidelberg, 1996.

[GP07] Susanne Graf and Andreas Prinz. Time in State Machines. Fundamenta
Informaticae, 77(1-2):143–174, May 2007.

[Gur95a] Y. Gurevich. Evolving Algebras 1993: Lipari Guide, Specification and Vali-
dation Methods. Oxford University Press, Inc., 1995.

[Gur95b] Yuri Gurevich. Evolving algebras 1993: Lipari guide. pages 9–36, September
1995.

[Gur00] Yuri Gurevich. Sequential abstract state machines capture sequential algo-
rithms. Technical report, Microsoft Research, 2000.

[GZ00] Gerhard Goos and Wolf Zimmermann. Verifying compilers and asms or asms
for uniform description of multistep transformations, 2000.

[HC97] James K Huggins and David Van Campenhout. Specification and Verification
of Pipelining in the ARM2 RISC Microprocessor. ACM Transactions on
Design Automation of Electronic Systems, 3:563–580, 1997.

[HJK+11] Andreas Holzer, Visar Januzaj, Stefan Kugele, Boris Langer, Christian
Schallhart, Michael Tautschnig, and Helmut Veith. Seamless testing for mod-
els and code. In FASE 2011, 2011.

[HLTW03] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The influence
of processor architecture on the design and the results of wcet tools. Pro-
ceedings of the IEEE, 91(7):1038–1054, July 2003.

[HP08] Damien Hardy and Isabelle Puaut. WCET analysis of multi-level non-
inclusive set-associative instruction caches. In Proceedings of the 2008 Real-
Time Systems Symposium, RTSS ’08, pages 456–466, Washington, DC, USA,
2008. IEEE Computer Society.

[HP09] Damien Hardy and Isabelle Puaut. Estimation of cache related migration
delays for multi-core processors with shared instruction caches. In Laurent
George and Maryline Chetto andMikael Sjodin, editors, 17th International
Conference on Real-Time and Network Systems, pages 45–54, Paris, France,
2009.

238 Bibliography

[HPP09] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten
WCET estimates for multi-core processors with shared instruction caches.
In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, RTSS
’09, pages 68–77, Washington, DC, USA, 2009. IEEE Computer Society.

[HSTV08] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
FShell: Systematic Test Case Generation for Dynamic Analysis and Mea-
surement. In Proceedings of the 20th International Conference on Computer
Aided Verification (CAV 2008), Lecture Notes in Computer Science, Prince-
ton, NJ, USA, July 2008. Springer.

[HSTV09] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
Query-driven program testing. In Neil D. Jones and Markus Müller-Olm,
editors, Proceedings of the Tenth International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2009), volume 5403
of Lecture Notes in Computer Science, pages 151–166, Savannah, GA, USA,
January 2009. Springer.

[HSTV10] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
How did you specify your test suite ? In Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2010),
pages 407–416, Antwerp, Belgium, September 2010. ACM.

[HSTV11] Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut Veith.
An introduction to test specification in FQL. In Sharon Barner, Daniel Kroen-
ing, and Orna Raz, editors, Proceedings of Haifa Verification Conference
(HVC 2010), volume 6504 of Lecture Notes in Computer Science, pages 9–
22. Springer, 2011.

[IBM05] IBM. PowerPC User Instruction Set Architecture - Book I, 2.02 edition, 2005.

[Int10] International Electrotechnical Commission. IEC 61508 Functional safety of
electrical/electronic/programmable electronic safety-related systems, 2010.

[Iro] Irony - .net language implementation kit.

[Ive98] Anders Ive. Runtime performance evaluation of embedded software. In In
Presented at the Eighth Nordic Workshop on Programming Environment Re-
search, 1998.

[JHE04] M. Jersak, R. Henia, and R. Ernst. Context-aware performance analysis of
efficient embedded system design. In Automation and Test in Europe Con-
ference (DATE), 2004.

Bibliography 239

[KF12] Daniel Kästner and Christian Ferdinand. Static verification of non-functional
software requirements in the ISO-26262. In Automotive - Safety & Secu-
rity 2012, Sicherheit und Zuverlässigkeit für automobile Informationstech-
nik, 14.-15. November 2012, Karlsruhe, Proceedings, pages 39–53, 2012.

[KFM+11] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Ab-
hik Roychoudhury. Bus-aware multicore WCET analysis through TDMA
offset bounds. In Proceedings of the 2011 23rd Euromicro Conference on
Real-Time Systems, ECRTS ’11, pages 3–12, Washington, DC, USA, 2011.
IEEE Computer Society.

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, July 1976.

[KKP10] Albrecht Kadlec, Raimund Kirner, and Peter Puschner. Avoiding timing
anomalies using code transformations. In Proc. 13th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Com-
puting, pages 123–132, May. 2010.

[KKPly] R. Kirner, A. Kadlec, and P. Puschner. Precise worst-case execution time
analysis for processors with timing anomalies. In Real-Time Systems, 2009.
ECRTS ’09. 21st Euromicro Conference on, pages 119–128, July.

[KZ11] Raimund Kirner and Michael Zolda. Compiler support for measurement-
based timing analysis. In Proc. 11th International Workshop on Worst-Case
Execution Time Analysis, Porto, Portugal, July 2011. OCG.

[LDM+12] Yun Liang, Huping Ding, Tulika Mitra, Abhik Roychoudhury, Yan Li, and
Vivy Suhendra. Timing analysis of concurrent programs running on shared
cache multi-cores. Real-Time Syst., 48(6):638–680, November 2012.

[Lis14] Bjorn Lisper. In Tiziana Margaria and Bernhard Steffen, editors, Leverag-
ing Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications, volume 8803 of Lecture Notes in Computer
Science, pages 482–485. Springer Berlin Heidelberg, 2014.

[LL73a] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM, 20:46–61, 1973.

[LL73b] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard- real-time environment. Journal of the ACM, 20:46–61, 1973.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos:
A timing analyzer for embedded software. In Science of Computer Program-
ming, 2007.

240 Bibliography

[LNBCG11] Yue Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A trace-based statistical
worst-case execution time analysis of component-based real-time embedded
systems. In Emerging Technologies Factory Automation (ETFA), 2011 IEEE
16th Conference on, pages 1–4, Sept 2011.

[LPY97] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[LS99a] T. Lundqvist and P. Stenstrom. An integrated path and timing analy-
sis method based on cycle-level symbolic execution. Real-Time Systems,
17(183-207), 1999.

[LS99b] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically
scheduled microprocessors. In Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium, RTSS ’99, pages 12–, Washington, DC, USA, 1999. IEEE
Computer Society.

[Lun02] T. Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with
Cache Memories. PhD thesis, Goteborg, 2002.

[Mic] University of michigan, asm homepage.

[MNS13] A. Melani, E. Noulard, and L. Santinelli. Learning from probabilities: De-
pendences within real-time systems. In 18th IEEE International Conference
on Emerging Technologies and Factory Automation, 2013.

[MRR04] Wolfgang Muller, Jurgen Ruf, and Wolfgang Rosenstiel. An asm based sys-
temc simulation semantics. In Wolfgang Muller, Wolfgang Rosenstiel, and
Jurgen Ruf, editors, SystemC, pages 97–126. Springer US, 2004.

[Mue94] F. Mueller. Static cache simulation and its applications. PhD thesis, Departe-
ment of computer Computer Sciences, Florida State University, 1994.

[OL07] M. Ouimet and K. Lundqvist. The timed abstract state machine language:
Abstract state machines for real-time system engineering. JUCS, 2007.

[OL08] Martin Ouimet and Kristina Lundqvist. The Timed Abstract State Ma-
chine Language: Abstract State Machines for Real-Time System Engineer-
ing. Journal of Universal Computer Science, 14(12):2007–2033, June 2008.

[PB12] V. A. Paun and Monsuez B. Adaptable and Precise Worst Case Execution
Time Estimation Tool. In LCTES WiP Session, page 4, 2012.

[PHM11] V. A. Paun, N. Harrath, and B. Monsuez. A WCET Estimation Workflow
Based on the TWSA Model of SystemC Designs. In The 32nd IEEE Real-
Time Systems Symposium, Vienna, Austria, November 2011.

Bibliography 241

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. J. Log.
Algebr. Program., 60-61:17–139, 2004.

[PMB13a] V. A. Paun, B. Monsuez, and P. Baufreton. Hierarchical Timed Abstract State
Machines for Hard Real-Time Embedded Processors. In VECoS, page 12,
2013.

[PMB13b] V. A. Paun, B. Monsuez, and P. Baufreton. Hierarchical Timed Symbolic Ab-
stract State Machines for precise WCET estimation. In RTCSA WiP, page 2,
2013.

[PMB13c] V. A. Paun, B. Monsuez, and P. Baufreton. On the Determinism of Multi-
core Processors. In Christine Choppy and Jun Sun, editors, 1st French Sin-
gaporean Workshop on Formal Methods and Applications (FSFMA 2013),
volume 31 of OpenAccess Series in Informatics (OASIcs), pages 32–46,
Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[PP07] Isabelle Puaut and Christophe Pais. Scratchpad memories vs locked caches in
hard real-time systems: a quantitative comparison. In Proceedings of the con-
ference on Design, automation and test in Europe, DATE ’07, pages 1484–
1489, San Jose, CA, USA, 2007. EDA Consortium.

[PQnC+09] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat,
and Mateo Valero. Hardware support for WCET analysis of hard real-time
multicore systems. SIGARCH Comput. Archit. News, 37(3):57–68, June
2009.

[Pug91] William Pugh. The omega test: A fast and practical integer programming al-
gorithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, Supercomputing ’91, pages 4–13, New
York, NY, USA, 1991. ACM.

[pWC] Probabilistic worst case execution time analysis.

[Rad] Radio Technical Commission for Aeronautics. DO-178B Software Consid-
erations in Airborne Systems and Equipment Certification.

[Rei09] Jan Reineke. Caches in WCET Analysis: Predictability - Competitiveness -
Sensitivity. PhD thesis, Saarland University, 2009.

[RGBW07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing
predictability of cache replacement policies. Real-Time Syst., 37(2):99–122,
November 2007.

242 Bibliography

[RS09] Jan Reineke and Rathijit Sen. Sound and Efficient WCET Analysis in the
Presence of Timing Anomalies. In Niklas Holsti, editor, 9th International
Workshop on Worst-Case Execution Time Analysis (WCET’09), volume 10 of
OpenAccess Series in Informatics (OASIcs), pages 1–11, Dagstuhl, Germany,
2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. also published in
print by Austrian Computer Society (OCG) with ISBN 978-3-85403-252-6.

[RWT+06] Jan Reineke, Björn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Po-
lian, Jochen Eisinger, and Bernd Becker. A definition and classification
of timing anomalies. In 6th Intl. Workshop on Worst-Case Execution Time
(WCET) Analysis, July 4, 2006, Dresden, Germany, 2006.

[Sch09] Martin Schoeberl. Time-predictable cache organization. In Proceedings of
the First International Workshop on Software Technologies for Future De-
pendable Distributed Systems (STFSSD 2009), pages 11–16. IEEE Computer
Society, 2009.

[SHP12] Martin Schoeberl, Benedikt Huber, and Wolfgang Puffitsch. Data cache
organization for accurate timing analysis. Real-Time Systems, DOI:
10.1007/s11241-012-9159-8:1–28, 2012. doi: 10.1007/s11241-012-9159-8.

[SPA92] SPARC International Inc. SPARC V8 architecture manual, Revision
SAV080SI9308, 1992.

[SV07] A. Slissenko and P. Vasilyev. Simulation of timed abstract state machines
with predicate logic model-checking. JUCS, 2007.

[The04] Stephan Thesing. Safe and Precise WCET Determination by Abstract Inter-
pretation of Pipeline Models. PhD thesis, Universitat des Saarlandes, Post-
fach 151141, 66041 Saarbrucken, 2004.

[Tim] Timesys embedded linux.

[U.S11] U.S. Department of Transportation Federal Aviation Administration. Micro-
processor Evaluations for Safety-Critical, Real-Time Applications: Authority
for Expenditure No. 43 Phase 5 Report, DOT/FAA/AR-11/5, 2011.

[vHHL+11] Reinhard von Hanxleden, Niklas Holsti, Björn Lisper, Erhard Ploed-
ereder, Reinhard Wilhelm, Armelle Bonenfant, Hugues Casse, Sven Bünte,
Wolfgang Fellger, Sebastian Gepperth, Jan Gustafsson, Benedikt Huber,
Nazrul Mohammad Islam, Daniel Kästner, Raimund Kirner, Laura Kovacs,
Felix Krause, Marianne de Michiel, Mads Christian Olesen, Adrian Prantl,
Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl, Simon Wegener,
Michael Zolda, and Jakob Zwirchmayr. WCET tool challenge 2011: Report.

Bibliography 243

In Proceedings of the 11th International Workshop on Worst-Case Execution
Time (WCET) Analysis, Porto, Portugal, July 2011.

[VLX03] Xavier Vera, Björn Lisper, and Jingling Xue. Data caches in multitasking
hard real-time systems. In Proceedings of the 24th IEEE International Real-
Time Systems Symposium, RTSS ’03, pages 154–, Washington, DC, USA,
2003. IEEE Computer Society.

[WD95] Chip Weems and Steve Dropsho. Real-time risc processing, 1995.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, D. Whalley S. Thesing,
G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller T. Mitra, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstrom. The worst-case execution time
problem - overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems (TECS), 7, 2008.

[Win] Embedded timing test.

[WKPR05a] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anoma-
lies in superscalar processors. In Quality Software, 2005. (QSIC 2005). Fifth
International Conference on, pages 295 – 303, sept. 2005.

[WKPR05b] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard Rieder.
Principles of timing anomalies in superscalar processors. In Proceedings
of the Fifth International Conference on Quality Software, QSIC ’05, pages
295–306, Washington, DC, USA, 2005. IEEE Computer Society.

[WL91] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.
In Proceedings of the ACM SIGPLAN 1991 conference on Programming lan-
guage design and implementation, PLDI ’91, pages 30–44, New York, NY,
USA, 1991. ACM.

[WSE02] Fabian Wolf, Jan Staschulat, and Rolf Ernst. Hybrid cache analysis in running
time verification of embedded software. Design Automation for Embedded
Systems, 7(3):271–295, 2002.

[WW08] Reinhard Wilhelm and Björn Wachter. Abstract interpretation with applica-
tions to timing validation. In Proceedings of the 20th International Confer-
ence on Computer Aided Verification, CAV ’08, pages 22–36, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[You82] S. Young. Real Time Languages: Design and Development. Elis Herwood,
1982.

244 Bibliography

[YZ07] Jun Yan and Wei Zhang. Hybrid multi-core architecture for boosting single-
threaded performance. SIGARCH Comput. Archit. News, 35(1):141–148,
March 2007.

[YZ08] Jun Yan and Wei Zhang. WCET analysis for multi-core processors with
shared L2 instruction caches. In Real-Time and Embedded Technology and
Applications Symposium, 2008. RTAS ’08. IEEE, pages 80 –89, april 2008.

[ZBK10] Michael Zolda, Sven Bünte, and Raimund Kirner. Context-sensitivity in
ipet for measurement-based timing analysis. 4th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA’10), October 2010.

[ZBK11] Michael Zolda, Sven Bünte, and Raimund Kirner. Context-sensitive
measurement-based worst-case execution time estimation. In 17th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’11), Toyama, Japan, August 2011. IEEE. Accepted.

[ZK08] Michael Zolda and Raimund Kirner. Divide and measure: Cfg segmentation
for the measurement-based analysis of resource consumption. In Junior Sci-
entist Conference 2008, pages 117–118, Vienna, Austria, November 2008.
Technische Universität Wien.

[Zol08] Michael Zolda. INFER: Interactive timing profiles based on bayesian net-
works. In Proc. 8th International Workshop on Worst-Case Execution Time
Analysis, Oct. 2008.

[ZY09] Wei Zhang and Jun Yan. Accurately estimating worst-case execution time for
multi-core processors with shared direct-mapped instruction caches. In Em-
bedded and Real-Time Computing Systems and Applications, 2009. RTCSA
’09. 15th IEEE International Conference on, pages 455 –463, aug. 2009.

	Title Page
	Abstract
	Abstract français
	Table of Contents
	List of Figures
	List of Tables
	Citations to Previously Published Work
	Acknowledgments
	Dedication
	Introduction
	WCET and hard real-time systems
	Real-time systems
	Worst-case execution time
	Estimation of Execution Time
	The Use of WCET Estimates
	Calculation of WCET Estimates
	On the Characterization of Estimations

	Hardware Considerations in WCET Estimation
	Certification

	Problem definition
	Research goal
	Contributions
	Organization of the thesis

	Related Work
	Dynamic methods
	The choice of the measuring method
	Stopwatch method
	Date and time OS commands
	Prof and Gprof (UNIX)
	Timer and Counter
	Software Analyzer
	Logic Analyzer
	Summary of execution time measurement measures
	Advantages and weaknesses of dynamic methods

	Static methods
	AbsInt Advance Analyzer
	OTAWA
	SWEET
	CHRONOS
	BoundT
	Advantages and weaknesses of static methods

	Hybrid methods
	FORTAS
	Heptane
	Probabilistic worst-case execution time
	RapiTime
	Advantages and weaknesses of hybrid methods

	Comparison of existing methods
	Conclusions

	HiTAsm Formal Framework
	Abstraction and Computer Science
	Related Work
	Motivation
	Notational preamble
	Abstract State Machine
	ASMs in a nutshell
	Turing Machines

	ASMs and hardware modelling
	ASMs and hardware abstraction
	Stepwise Refinement of ASMs

	Time and Abstract State Machines
	Adding time in basic ASMs
	No timed updates
	Single timed updates
	Mixed updates
	Detailed definition
	States and Update Sets
	Transition rules and runs of the HiTAsm

	Equivalence with the basic ASM
	Timed ASM defined by a set of Axioms

	Hierarchical TASM foundation
	Preambule
	Hierarchical ASMs
	Cycle-accurate vs time-accurate model
	Extension of the ASM postulate
	Mathematical foundation of HiTAsm
	Correctness proof outline
	Abstract processor execution
	Dynamic choice of ASM refinements (the Oracle)

	Conclusions

	HiTAsm at Work
	On the hierarchical levels of abstraction
	HiTAsm semantic level

	Timing Anomalies
	Handling Timing Anomalies

	HiTAsm for WCET estimation in a nutshell
	Timing anomalies remarks

	Conclusions

	The HiTAsm Language Definition
	Syntax of the language
	Semantic essence of HiTAsmL
	HiTAsmL-s the core of the HiTAsm Language
	Preambule
	Assignments
	Firing updates
	Module abstraction

	HiTAsmL semantics
	A HiTAsmL graphical syntax
	HiTAsm Module
	HiTAsm Abstract Module
	HiTAsm Hierarchic Module
	HiTAsm Function
	HiTAsm Rule
	HiTAsm abstractions

	Implementation
	Conclusions

	The Hardware Model
	Global algorithm
	Modeling a Processor
	Inherent analysis problems to the use of microprocessors in hard real-time systems

	Hardware and its influence on temporal analysis
	Pipeline
	Branch Prediction Unit (BPU)
	Floating Point Unit (FPU)
	Level 1 Cache
	Scratchpad
	Memory Management Unit (MMU) and Translation Lookaside Buffer
	BUS
	Direct Memory Access (DMA)
	Level 2 cache
	Timing Anomalies remarks

	The RISC processor Family
	Case study - Motorola MPC555 Processor
	PowerPC ISA
	Instruction formats

	Global architecture of the MPC555
	Instruction Sequencer
	Execution Units
	Integer Unit (IU)
	Load/Store Unit (LSU)
	Floating-Point Unit (FPU)
	External Bus Interface
	The RCPU HiTAsmL model
	Memory model
	The Fetcher
	MPC555 pipeline implementation
	Instruction Issue
	Pipeline stalls and forwarding
	Data Hazards
	Instruction Dispatch/Decode (ID)
	Execution units
	Burst Buffer Unit
	Instruction Memory Protection Unit
	Execute PC
	Write Back

	Conclusions

	The WCET Analysis
	Structure of the method
	Value Analysis
	Implementation
	Syntax

	Conjoint Symbolic Execution
	Symbolic Execution
	The global SE implementation
	SE-HiTAsm
	Symbolic Logic

	States and HiTAsms
	Similar states identification
	Order on HiTAsm states
	State Merging

	Prediction Module (PM)
	Prediction Module search strategies
	Product domain search
	Relational domain search

	Equivalence Classes
	Mathematical foundation
	Complexity study

	A Formal View on State Partitioning
	Processor dependent equivalence relation

	Implementation
	Global algorithm
	Analysis termination

	Conclusions

	Conclusions
	Original research (at a glance)
	Industrial Applications and Future Research
	Outlook

	Code listing
	Bibliography

