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w.r.t. with respect to

MATHEMATICS, MODELLING & IDENTIFICATION

a variable
a vector
A matrix
TAĀ transformation matrix from frame Ā to frame A

M model structure
t time variable
x state vector
x0 initial value of the state vector
y output vector
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p = [x0,pa] parameter vector
p∗ true value of parameter vector
p1 a priori identifiable parameter vector
p2 a posteriori identifiable parameter vector
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nx number of state variables
ny number of outputs
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I inertia matrix
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V translational velocity vector
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Introduction

Tout mettre en œuvre pour atteindre un objectif, dans tous les sens du terme. Parvenir à un
but précis, un projectile qui touche une cible, une sonde spatiale mise en orbite ou qui atterrit
sur une surface désirée, par exemple une planète, pour étudier un nouvel environnement en est le
dénouement souhaité. Cette finalité est dépendante de l’objet lancé et ainsi, la connaissance du
comportement en vol de ce dernier reste indispensable à cette réussite. Ce projet aspire, à travers
l’identification des coefficients aérodynamiques, à déterminer les caractéristiques aérodynamiques
d’un véhicule en vol qu’il soit, un corps de rentrée dans l’atmosphère, un drone ou une munition.
L’estimation de ces paramètres est basée sur des données mesurées en vol libre au moyen de
différentes techniques de mesure. Ce sujet de recherche a été proposé par l’Institut franco allemand
de recherches de Saint-Louis (ISL), plus particulièrement, par le groupe d’Aérodynamique et de
Balistique eXtérieure (ABX), s’associant le concours d’un laboratoire universitaire spécialisé dans
le domaine de l’identification qu’est le Centre de Recherche en Automatique de Nancy (CRAN).
Ainsi, la collaboration avec l’équipe-projet iModel du département CID (Contrôle, Identification
et Diagnostic) traitant l’identification et la modélisation de systèmes dynamiques, a créé une
complémentarité des compétences avec les aptitudes de l’ISL.

La balistique est la science qui a pour objet d’étudier l’ensemble des phénomènes auxquels est
soumis un projectile, du départ du coup jusqu’à la fin de son interaction avec une cible. Elle peut
être divisée en 4 catégories : intérieure, intermédiaire, extérieure et terminale [Dorrzapft (2010)] :

− la balistique intérieure est dédiée aux études des phénomènes se produisant à l’intérieur du
canon, dans le but par exemple, d’améliorer l’efficacité des systèmes de lancement ;

− la balistique intermédiaire concerne l’étude des phénomènes liés entre autres aux interactions
externes sur l’objet en sortie du canon telles que les gaz de combustion, le saut aérodynamique
ou les interférences produites par les sabots maintenant l’objet dans le lanceur. Ce domaine
est souvent fusionné avec celui de la balistique extérieure ;

− la balistique extérieure est la phase comprise entre le moment où l’objet en vol n’est plus
perturbé par les turbulences de la bouche du canon et/ou par les interactions externes comme
la séparation des sabots jusqu’à l’impact ;

− en dernier lieu, la balistique terminale traite des études liées à l’interaction de l’objet avec la
cible.

La présente étude s’inscrit dans le cadre de la balistique extérieure. En fonction des forces agissant
sur le véhicule, deux branches de la balistique extérieure se distinguent. D’une part, la balis-
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tique du vide qui ne considère que la force gravitationnelle comme force agissant sur le véhicule.
D’autre part, la balistique dans le milieu atmosphérique qui étudie l’attitude en vol caractérisée
par l’ensemble des forces et moments qui s’appliquent sur le véhicule. Ces derniers sont directe-
ment reliés aux coefficients aérodynamiques. Ils représentent une contribution essentielle à la
modélisation de nombreux phénomènes et englobent principalement les aspects de résistance, de
portance, mais également de stabilité. Deux types de stabilité peuvent être définis et suscitent un
grand nombre d’études, particulièrement en aérodynamique, où on distingue la stabilité statique
et la stabilité dynamique. La stabilité statique décrit la capacité d’un objet à retrouver sa position
d’équilibre après en avoir été écartée alors que la stabilité dynamique considère la tendance du
mouvement pour retrouver une position d’équilibre.

En balistique extérieure, l’utilisation des coefficients aérodynamiques pour caractériser le com-
portement d’un objet en vol demeure un sujet de recherche parmi les plus complexes et les plus
étudiés. Durant ces dernières décennies, les avancées techniques ont mené au développement de
méthodes expérimentales et théoriques permettant de quantifier les propriétés aérodynamiques.
Plusieurs outils existent et peuvent être utilisés, à savoir :

− les codes numériques ;

− les essais en soufflerie ;

− les essais en champ de tir.

Chaque technique présente des avantages et inconvénients mais elles peuvent être employées de
façon complémentaire, sous forme d’exploration triangulaire, comme présentée dans la Figure 1.

Vol libre 

Soufflerie Simulation 

(pression, vitesse, forces et moments) (numérique, balistique, …) 

(position, attitude, coefficients aérodynamiques statiques et dynamiques) 

Figure 1: Différentes possibilités pour quantifier les coefficients aérodynamiques

Les outils empiriques et/ou semi-empiriques, tels que PRODAS (PROjectile Design/Analysis Sys-
tem), Missile Datcom ou AeroPrediction, sont des codes généralement adaptés et utilisés dans le
cadre d’avant-projet, utile par exemple pour la définition et l’optimisation d’un nouveau concept ou
d’une nouvelle architecture. Il faut noter que ces codes s’appuient sur des modèles théoriques et/ou
sur des bases de données aérodynamiques, obtenues à partir de résultats de simulation numérique,
d’essais en soufflerie ou en tunnel de tir. Ils ont l’avantage d’être applicables à un large éventail
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de configurations et permettent d’obtenir rapidement des résultats. Cependant, la détermination
des propriétés aérodynamiques à partir de ces codes est dépendante de la qualité de la base de
données répertoriée. Afin d’obtenir des estimations suffisamment précises, la configuration étudiée
doit être proche de celle qui a permis de peupler la base de données.
La simulation numérique, au moyen de codes de calcul CFD (Computational Fluid Dynamics),
permet la prédiction et la compréhension de la structure tridimensionnelle des écoulements autour
d’une configuration, par la résolution numérique des équations fondamentales de la dynamique
des fluides. Des codes tels que CFX ou Fluent s’appuient sur la résolution des équations de
Navier-Stokes et demeurent des outils très puissants. La détermination des coefficients peut être
menée sous forme paramétrique pour des nombres de Mach et des incidences fixés. Cependant, les
simulations requises pour couvrir l’ensemble de la plage de variation représentative du vol peuvent
être très coûteuses en termes de temps de calcul. D’autre part, certains phénomènes, tels que
l’amortissement en tangage et/ou en lacet, restent particulièrement complexes à déterminer, en
utilisant des prédictions CFD.

Les essais en soufflerie permettent d’effectuer des mesures en maintenant l’objet à étudier dans
une veine d’essai au moyen d’un support. L’avantage principal est de pouvoir facilement étudier
différents nombres de Mach et incidences par simple déplacement de l’objet au moyen d’un système
de mise en incidence. Les essais en soufflerie sont utilisés, par exemple, pour la visualisation de
la structure des écoulements, du champ des vitesses, de la distribution des pressions ainsi que
des forces et moments pour la détermination des coefficients de stabilité statique. L’inconvénient
majeur de cet outil est essentiellement lié à l’interaction entre l’écoulement et le dard permettant
de maintenir la maquette, ce qui peut fausser la détermination exacte de certains coefficients.
D’autre part, la détermination des coefficients de stabilité dynamique est très limitée par la faible
variation des oscillations libres ou forcées de l’objet dans la veine.

La dernière technique de quantification de coefficients aérodynamiques consiste à les déterminer
à partir de données de vol libre obtenues lors d’essais en champ de tir. Ces essais permettent
d’étudier le comportement en vol dans des conditions expérimentales réelles. Les caractéristiques
aérodynamiques n’étant généralement pas directement mesurées, elles sont déterminées à partir
de grandeurs mesurées durant le vol au moyen de différentes techniques de mesure. Néanmoins, la
précision de leur détermination est souvent influencée par l’expertise et l’appréciation du chercheur
en charge du traitement des données.
Les essais en vol libre peuvent être considérés comme référence et sont incontournables pour l’étude
du comportement d’un objet en vol et la détermination des coefficients aérodynamiques. La possi-
bilité d’identifier les propriétés aérodynamiques reste tributaire des moyens de mesure disponibles.
L’ISL possède de nombreuses compétences en aérodynamique qui s’étendent à la réalisation de
prototypes et d’instrumentations permettant les mesures en vol. De plus, l’institut possède son
propre champ de tir où des tests en vol libre peuvent être réalisés. Ainsi, l’infrastructure et les
techniques disponibles ont permis de mener les travaux liés à ce projet de thèse, qui traite de
l’identification des coefficients aérodynamiques à partir de données de vol libre.

Deux cas d’application ont été traités pendant ces travaux de recherche : un corps de rentrée dans
l’atmosphère et un projectile stabilisé par empennage. Ce choix, d’analyser deux architectures
différentes, est justifié par leurs comportements très distincts en vol.
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La première application concerne l’étude d’un corps de rentrée dans l’atmosphère qui s’inscrit dans
un programme proposé par l’Agence Spatiale Européenne (ESA) à destination de la planète Mars
dont la vocation principale est l’étude de l’environnement martien, son atmosphère et la composi-
tion de son sol. La rentrée atmosphérique est une phase délicate et essentielle et par conséquent
nécessite une très bonne connaissance du comportement en vol de la sonde, plus particulièrement
pendant la phase de descente et d’atterrissage sur Mars. Lors de la descente, la capsule doit
être conçue pour ralentir rapidement, de la vitesse hypersonique à quelques centaines de mètres
par seconde. Durant la phase de décélération, des études [Sammonds (1970), Winchenbach et al.
(2002)] ont démontré que les corps de rentrée dans l’atmosphère sont fréquemment dynamique-
ment instables pour des nombres de Mach inférieurs à 2,4 et pour des incidences inférieures à 6
degrés. Le cas échéant, des effets indésirables peuvent se manifester, tels que des mouvements de
“tumbling” 1 ou des oscillations angulaires trop élevées. Si ces mouvements sont trop importants,
cela peut avoir de graves conséquences sur les effets terminaux, comme par exemple le processus de
déploiement du parachute ou des angles d’impacts beaucoup trop grands, qui pourraient nuire au
succès de la mission. Par conséquent, ces phénomènes peuvent être évités par l’optimisation de la
géométrie du corps et par un positionnent correct de son centre de gravité. Des essais en vol libre
avec des modèles à échelle réduite ont d’ores et déjà fait leurs preuves, comme étant une méthode
efficace pour déterminer les caractéristiques de stabilité dynamique [Schoenenberger et al. (2005)],
sous condition de respecter et de tenir compte des effets d’échelle de certains paramètres.
Quant au comportement en vol du projectile stabilisé par empennage, nommé Basic Finner, il a déjà
fait l’objet de nombreuses études, menées notamment par le Centre de Recherche et Développement
pour la Défense Canada (RDDC) de Valcartier, en vol libre et en soufflerie [Dupuis and Hathaway
(1997), Dupuis (2002)]. Des résultats issus de codes de prédictions aérodynamiques tels que PRO-
DAS, Missile Datcom ou AeroPrediction [Shantz and Groves (1960), Dunn (1989), Dupuis (2002),
Bhagwandin and Sahu (2013)] ont mené à des conclusions bien établies, particulièrement en termes
de stabilité. Statiquement et dynamiquement stable, l’étude de ce projectile vise à comparer et à
valider nos résultats et les techniques d’identification utilisées dans le cadre de cette thèse.

Dans la littérature, le sujet de l’identification de systèmes aéronautiques est largement exploré, par-
ticulièrement en avionique. Dans ce domaine, l’identification des coefficients aérodynamiques à par-
tir de données en vol a été réalisée avec succès par l’intermède de modèles physiques [Jategaonkar
(2006), Klein and Morelli (2006)]. Cependant, pour les applications balistiques, la détermination
des coefficients aérodynamiques à partir de mesures en vol libre et des techniques d’identification
de systèmes demeure une tâche complexe et ambitieuse. Ceci est particulièrement dû à la structure
non linéaire du modèle mathématique décrivant le comportement de l’objet en vol, l’absence de
signal d’entrée, les conditions initiales des variables d’état inconnues 2, la dépendance non linéaire
des coefficients aérodynamiques en plusieurs variables d’état ou encore les contraintes imposées
par les conditions expérimentales. Dans ces conditions, l’estimation de paramètres doit être menée
avec rigueur. De plus, la nuance réside dans le comportement en vol caractérisé par des degrés
de liberté 3 bien plus variables. Ainsi, une linéarisation des équations d’état autour de points de

1. Le mouvement de “tumbling”, de l’anglais to tumble signifiant “culbuter”, est un phénomène typique des
pendulaires qui caractérise un mouvement de bascule de l’objet.

2. Dans le cadre de la balistique extérieure, le temps initial considéré pour le vol libre est différent du temps
initial du tir, c’est pourquoi les conditions initiales des variables d’état sont inconnues et doivent être estimées.

3. Les degrés de liberté, nommés en anglais “Degrees Of Freedom” (DOF), expriment la possibilité de mouvement
dans l’espace.
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fonctionnement ne peut être envisagée comme dans le cas de l’aéronautique.
En raison de la complexité du problème, l’ensemble des connaissances a priori du système et de
son fonctionnement représente une source d’informations essentielle. Ces connaissances peuvent
être issues de la littérature, des résultats de soufflerie, des prédictions CFD et/ou des codes semi-
empiriques. Dans ce sens, dû à l’importance d’intégrer des connaissances a priori du système et
d’avoir une interprétation physique des coefficients aérodynamiques déterminés à partir de données
expérimentales, l’utilisation d’un modèle bôıte grise est retenue.

L’identification d’un modèle bôıte grise d’un véhicule en vol libre peut être définie comme la
détermination d’une structure de modèle et l’estimation des paramètres inconnus contenus dans
le modèle sélectionné, en intégrant des connaissances a priori à différents niveaux de la procédure
d’identification [Bohlin (2006)]. Nous sommes confrontés à un problème inverse qui, dû à la
complexité du système et aux contraintes imposées par les mesures d’entrées/sorties, peut être
impossible à résoudre s’il est mal posé ou difficile à résoudre s’il est mal conditionné [Hadamard
(1902)]. Ces deux problèmes inverses - choix de la structure du modèle et estimation de paramètres
- correspondent respectivement à deux concepts distincts : la discernabilité et l’identifiabilité. La
structure globale du modèle considéré est fixée à partir des principes de la Physique. Néanmoins,
une description des coefficients aérodynamiques, judicieusement sélectionnée et adaptée à chaque
application traitée, est à intégrer au modèle. Le problème est ainsi réduit à une procédure
d’identification des paramètres décrivant les coefficients aérodynamiques.

Ce projet vise à modéliser et développer des techniques d’identification de paramètres les
plus adaptées au problème qu’est la détermination des coefficients aérodynamiques à partir de
données de vol libre. L’approche du problème est proposée à travers une “fusion” des notions
d’aérodynamique et des techniques d’identification, peu explorée mais abordée dans le cas de
corps de rentrée [Vitale and Corraro (2012), de Divitiis and Vitale (2010)]. L’objectif est donc
une juste conciliation adaptée au contexte expérimental et aux outils et méthodes d’identification
spécifiques à ce problème. Le travail de thèse a permis de développer une procédure d’identification
adaptée à ce cas d’étude, composée de plusieurs étapes :

− développer un modèle d’état non linéaire à temps continu caractérisant le comportement
d’un véhicule en vol libre, par intégration d’une description complète des coefficients
aérodynamiques sous forme polynomiale en fonction du nombre de Mach et de l’incidence ;

− évaluer la faisabilité de l’estimation à travers des études d’identifiabilité a priori et a poste-
riori des coefficients aérodynamiques et conditions initiales à déterminer ;

− améliorer les résultats d’estimation en considérant le problème à travers une stratégie “multi-
ple fit”. Cette approche permet d’estimer les coefficients aérodynamiques à partir de plusieurs
séries de mesures analysées simultanément, afin de décrire le spectre le plus complet du mou-
vement de l’objet.

Actuellement, deux codes développés à l’ISL permettent l’étude d’objets en vol : un code direct
et un code inverse. Le code direct permet de calculer des trajectoires à partir de l’intégration
des équations du mouvement, pour des modèles à 6 et 7 degrés de liberté 4. Ce programme de

4. Le modèle à 7 degrés de liberté (7DOF) permet l’étude de corps composés de deux parties coaxiales découplées
en roulis [Wey (2014)].
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simulation de trajectoires suppose les conditions initiales, les caractéristiques aérodynamiques et
mécaniques connues. A contrario, le code inverse suppose les conditions de tir connues et vise
à déterminer les coefficients aérodynamiques à partir de données de vol libre, pour des structures
de modèles à 6 degrés de liberté [Fleck (1998)]. Nos études préliminaires ont été menées à partir
du code inverse puisque sa fonction est similaire à notre objectif. Néanmoins, il présente à ce jour
certaines limitations. Par exemple, le modèle qui décrit le comportement en vol d’un objet est
linéarisé et est basé sur l’approximation de Gauss, également appelée approximation des petits
angles. De plus, il ne permet pas une estimation des coefficients autres que de manière tabulaire,
pour des valeurs fixes du nombre de Mach ou de l’incidence. Afin de palier ces restrictions et visant
à améliorer l’outil existant, la contribution majeure de ce travail a consisté à développer un nouveau
code inverse à 6 degrés de liberté, Inv6DoF, avec intégration de techniques d’identification. En
particulier, par l’implantation de modèles mathématiques plus complets permettant d’estimer et
de maximiser le niveau de confiance des paramètres aérodynamiques obtenus à partir d’un (“single
fit”) ou de plusieurs (“multiple fit”) essais en vol libre. Cet outil a été testé et validé pour les
deux applications, un corps de rentrée dans l’atmosphère et un projectile stabilisé par empennage
appelé “Basic Finner”.

Ce manuscrit relate divers aspects d’ordre expérimental et méthodologique et s’articule autour de
quatre chapitres.

Le Chapitre 1 présente le contexte expérimental. Nos choix d’étude concernant la procédure
d’identification furent principalement orientés par le cadre expérimental et les données disponibles
mesurées en vol libre. Il est essentiel de prendre conscience de l’importance du bon déroulement
des essais pour obtenir des données exploitables. Deux types de véhicules ont été étudiés : une
sonde spatiale et un projectile de référence. L’optimisation et la conception des maquettes ainsi
que des sabots utilisés pour le lancement du modèle étudié au moyen d’un canon seront également
détaillées. Pour l’obtention de données en vol libre, les véhicules sont instrumentés de disposi-
tifs électroniques adaptés à chaque application. Indépendamment de la technique utilisée pour
l’acquisition de données, les mesures des capteurs embarqués sont de même nature pour les deux
cas et sont essentiellement issues des capteurs magnétiques. En plus des données mesurées par les
capteurs, deux techniques de mesure complémentaires permettent d’obtenir des informations sur
le comportement de l’objet en vol et seront présentées dans ce chapitre. Ainsi, plusieurs essais en
vol libre ont été réalisés pour les deux cas d’étude et ont permis l’acquisition de données en vol,
indispensable à l’étape d’identification des paramètres aérodynamiques.

Le chapitre 2 est dédié à la première étape de la procédure d’identification qu’est la modélisation
mathématique issue des lois de la Physique. Le comportement d’un véhicule en vol libre est décrit
par un modèle d’état non linéaire composé de 12 variables d’état. Ces équations différentielles
sont directement reliées aux coefficients aérodynamiques à estimer. Une description des coeffi-
cients aérodynamiques pour chacune des deux applications traitées est nécessaire pour compléter
le modèle aérodynamique. Ces travaux tentent d’améliorer la représentation de ces coefficients
dans le code existant. Ainsi, les descriptions proposées ont été judicieusement adaptées à partir de
celles existantes dans la littérature et de connaissances a priori du système et se formulent en fonc-
tion du nombre de Mach et de l’incidence. Le comportement d’un objet en vol libre est caractérisé
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par l’absence d’un signal d’entrée mais également par les conditions initiales des variables d’état
inconnues, qui sont également à déterminer en plus des coefficients aérodynamiques. Concernant
les équations de sortie, elles décrivent les données mesurées durant les essais en vol libre et sont
au nombre de quatre, soit la vitesse de l’objet obtenue par le radar Doppler et les trois équations
décrivant les signaux des magnétomètres.

Le chapitre 3 introduit la procédure d’identification des coefficients aérodynamiques et détaille
l’ensemble des étapes menées. A partir des équations d’évolution et d’observation caractérisant le
comportement d’un objet en vol libre et des données disponibles, l’estimation paramétrique peut
être réalisée mais reste néanmoins un problème inverse difficile à résoudre. Les paramètres sont
identifiés à partir d’un modèle bôıte grise dans lequel les coefficients aérodynamiques sont décrits
par des fonctions paramétriques interprétables physiquement. Plusieurs analyses sont considérées
dans la procédure d’identification pour guider l’estimation des paramètres, en particulier, les anal-
yses liées à la faisabilité de l’estimation. Elles sont menées à travers des études d’identifiabilité a
priori et a posteriori, qui évaluent à différents degrés la possibilité d’estimer les paramètres, à par-
tir de la structure du modèle considéré et/ou des grandeurs mesurées. Des études d’identifiabilité
sont effectuées pour le cas de la sonde spatiale. Les résultats obtenus mettent en évidence la
complexité des analyses d’identifiabilité des paramètres en présence de dépendances non linéaires
entre les variables, mais également l’augmentation du nombre de paramètres identifiables lorsque
plusieurs essais sont considérés simultanément. Ce dernier point est révélateur de l’amélioration
de l’estimation à partir de plusieurs séries de données analysées simultanément. Par conséquent,
l’estimation est proposée à travers deux étapes. Dans un premier temps, les conditions initiales
et les paramètres décrivant les coefficients aérodynamiques sont estimés de manière indépendante
pour chaque essai en vol libre. Dans un second temps, les paramètres sont ré-affinés à travers une
stratégie “multiple fit”.

Le chapitre 4 présente les résultats des principales caractéristiques de chacune des deux appli-
cations, la sonde spatiale et le projectile. Guidé par les résultats issus des analyses composant
la procédure d’identification, les conditions initiales et les paramètres décrivant les coefficients
aérodynamiques peuvent être estimés à partir de données de vol libre. L’estimation est menée à
partir du code inverse développé, comprenant l’ensemble du modèle à 6 degrés de liberté décrivant
le comportement d’un objet en vol libre, les descriptions des coefficients aérodynamiques spécifiques
à chaque application traitée, ainsi que les équations de sorties associées à la vitesse obtenues à partir
du radar Doppler et aux signaux du magnétomètre tridimensionnel. Différents résultats sont ainsi
exposés, tels que les signaux mesurés, l’évolution des variables caractérisant le comportement en
vol d’un objet et les coefficients aérodynamiques estimés à travers une stratégie “single” ou “mul-
tiple fit”. De plus, dans le cas du projectile, les résultats obtenus à partir de différentes techniques
de mesure sont comparés. Suite à l’analyse des caractéristiques aérodynamiques, une comparai-
son entre les deux cas d’application est effectuée, ce qui permet de justifier et de différencier le
comportement en vol de chaque véhicule.
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Chapter 1

Aerodynamic testing

The purpose of this project is the identification of the aerodynamic coefficients from free flight data.
In exterior ballistic domain, these coefficients are used for the characterization of the behaviour
of an object in flight. Their determination is directly dependent of the quality and quantity of
available measurements obtained during free flight tests. In this sense, the experimental set-up
must be handled as a priority and is detailed in the present chapter.
The free flight tests were conducted at the ISL’s open range test site with two instrumented archi-
tectures: an Earth re-entry vehicle and a Basic Finner projectile. Despite the differences between
these two architectures, the experimental procedure is similar. From the vehicle/sabot package con-
ception to the integration of the electronics, several analysis and measures must be done in order
to validate the entire model 1. This chapter specifies the requirements needed for each experimental
step. The available measurement techniques at the ISL to collect free flight data are presented as
well as the different data acquisition approaches. Finally, the test conditions and the test cases
selected for the undertaken studies are introduced.

As it was already noted in the Introduction part, there exist several possibilities to quantify the
aerodynamic coefficients of vehicles. In terms of experimental methods, one can count wind tunnel
and free flight tests. In order to study the behaviour of an object in flight, free flight tests,
considered as reference, are conducted to reveal the real aerodynamics of a vehicle. For the free
flight trials, several facilities exist:

• ballistic spark range facility, such as that of the Defence Research and Development Canada
(DRDC) of Valcartier, was initially employed to characterize the aerodynamics of ammuni-
tions [Murphy (1954, 1963), Dupuis and Hathaway (1997)]. In the last decades, the investiga-
tion was extended to space vehicle configurations [Schoenenberger et al. (2009), Winchenbach
et al. (2002)];

• ballistic proving grounds, generally used for military purposes, allow to experiment proto-
types. Examples of such facilities are that of DGA Techniques Terrestres located at Bourges
or that of the army proving ground WTD91 in Meppen, Germany, where tests can be per-
formed on distances up to 30 km. The free flight tests can be carried out with instrumented
or non-instrumented models and different experimental conditions. For example, these facil-

1. In this chapter, the term model is employed to make reference to the flying vehicle type and not the mathe-
matical model
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ities enable to study trajectories at different elevations, over different distances, initial yaws,
or velocities.

Before going further, it is important to introduce the notion of the Mach number, often used in
the field of exterior ballistic to express the velocity. It is a dimensionless quantity defined as the
ratio of the velocity V to the speed of sound a, as follows:

M = V/a (1.1)

There are many ways to classify flow regimes according to the flow structure, its physical situation
or its configuration. The flow regimes can essentially be divided in four groups: subsonic, transonic,
supersonic and hypersonic, as presented in Table 1.1. If the velocity is small (M < 0.8), the density
variations are also small and the flow is said to be either subsonic incompressible (M < 0.3) or
either subsonic compressible (0.3 < M < 0.8). For Mach number values higher than the speed
of sound (1.2 < M < 5.0), shock waves are present and flow regimes are said to be supersonic.
For Mach numbers ranging between 0.8 and 1.2, the flow is called transonic and refers to flight
conditions where shock waves start to appear, shows unsteadiness and contains both subsonic and
supersonic regions mixed together. For regimes approaching or exceeding M = 5.0, dissociation
and ionization of airflow will occur and the flow is considered hypersonic. In the present studies,
only the transonic and the supersonic flow regimes were considered.

Regime Mach range
Subsonic M < 0.8
Transonic 0.8 <M< 1.2
Supersonic 1.2 <M< 5.0
Hypersonic M > 5.0

Table 1.1: Classification of the main flow regimes as a function of the Mach range

1.1 Architectures

In the frame of the present study, several flight experiments were carried out with two types of
vehicles and for different initial experimental conditions, i.e. initial launch Mach numbers M0 and
initial angles of attack α0. The considered architectures consist of an Earth re-entry space vehicle
and a fin stabilized reference projectile.
The physical properties (mass m, center of gravity position Xcg and moments of inertia Ix, Iy and
Iz) were measured by means of Space Electronics’ state-of-the-art equipment. In both applications,
models are assumed to be axisymmetric with a center of gravity located along the axial direction
of the vehicle. In order to respect the location of the center of gravity and to facilitate the
integration of the electronic package, models were manufactured in several parts by use of different
non magnetic materials.

1.1.1 Space probe

In the space probe application case, preliminary flight experiments with full size vehicles are not
possible due to the tremendous high costs in terms of design, launching and time consumption.
For these reasons, the most reliable solution is to consider sub-scale models and to conduct exper-
iments by duplicating as well as possible the dynamic scaling between a full size and the reduced
scaled model. For dynamic stability investigations of re-entry space vehicles, the key dynamic flow
parameters to take into account are:
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• the Reynolds number: it is believed that similarity in terms of flow regime must be achieved,
but once a turbulent flow regime is established, the Reynolds number dependency are believed
to be minimal for such blunt bodies [Winchenbach et al. (2002)];

• the Mach number M : this parameter, easy to duplicate, is much more important since blunt
bodies experience dynamic instabilities at a limited range of Mach number between 0.9 and
3.0;

• the reduced spin rate : ω̃x = ωxd/2V , where ωx is the spin rate and d the vehicle diameter;

• the relative density parameter: m/ρd3, and the relative mass moment of inertia : md2/It,
where ρ is the air density and It the transversal moment of inertia when the postulate of
Iy = Iz is made. These two ratios are contained in the non-dimensionalized equations of
motion for a decelerating vehicle [Berner et al. (2012)];

• the reduced frequency parameter f̃ (RFP): this parameter involves the oscillation frequency
f which represents the ratio of a characteristic length of the model to the wave-length of the
oscillation [Berner et al. (2009), Dobre et al. (2015)].

Consequently, the optimization of the parameters that allows duplicating flow and dynamic scaling,
for characterizing the real vehicle in free flight, consists in:

• reducing model diameter to duplicate the Reynolds number,

• reducing the model diameter and increasing the model mass to duplicate the relative density
parameter,

• maximizing the transverse inertia moment to improve the reduced frequency, or increase the
density. This last solution is not very convenient on ground facilities.

The sub-scale space probe consists of a blunt forebody with an half-angle of 70◦ and a spherical
nose (R20), linked to the afterbody by a shoulder radius (R2) as shown in Figure 1.1. The base
geometry consists of a conical afterbody with an half-angle of 47◦ and three cavities ended by
a radome. The reduced scale of the model was 1/30 compared to the real space configuration,
resulting in a nominal model diameter d of 80 mm with a length L of 45.69 mm. The model design
was bounded by three main criteria: the integration of the electronic package, the center of gravity
location and the need for access to the transducers.
The measured physical properties of the space probe models to be fired and selected for this study
are summarized in Table 1.2.
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Figure 1.1: Schematic of a space probe configuration
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Model d L m Xcg/nose Xcg/d Ix Iy Iz

# (mm) (mm) (g) (mm) (%) (kg.m2) (kg.m2) (kg.m2)
A1 80.02 45.74 1246.9 21.22 26.52 7.6918 · 10−4 4.8267 · 10−4 4.8206 · 10−4

B1 80.07 45.75 1246 21.21 26.49 7.7057 · 10−4 4.8367 · 10−4 4.8311 · 10−4

C1 80.01 45.71 1243.9 21.24 26.55 7.6810 · 10−4 4.8121 · 10−4 4.8121 · 10−4

D1 80.00 45.8 1233.3 21.13 26.41 7.6269 · 10−4 4.7398 · 10−4 4.7377 · 10−4

Table 1.2: Measured properties of space probe models

1.1.2 Projectile

The configuration considered in this study was a fin stabilized reference projectile called Basic
Finner. It was chosen due to its large collection of data published in the literature, obtained
through Computational Fluid Dynamics (CFD) predictions, wind tunnel and/or free flight tests
[Dupuis and Hathaway (1997), Dupuis (2002)]. The projectile consists of a 20◦ nose cone on a
cylindrical body equipped with four rectangular fins. The nominal caliber d of the projectile is
28 mm for a total length L/d of 10.0. Fin dimensions are equal to 1 caliber x 1 caliber and have
a conical shape with a thickness of 0.08 calibers at the base. A schematic of the projectile is
presented in Figure 1.2 where all the dimensions are given in caliber. Fins were canted at δ = 0◦
and δ = 2◦ to produce the desired roll motion, and two center of gravity positions Xcg1 and Xcg2
were studied.
The measured physical properties of four cases characterizing each studied projectile, i.e. δ = 0◦
or 2◦ and the center of gravity position with Xcg1/L ' 60% or Xcg2/L ' 65%, are summarized in
Table 1.3.
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Figure 1.2: Schematic of the Basic Finner projectile

Model d L δ m Xcg/nose Xcg/L Ix Iy Iz

# (mm) (mm) (◦) (g) (mm) (%) (kg.m2) (kg.m2) (kg.m2)
A2 28 280.3 0 345.6 169.15 60.35 4.14 · 10−5 1.76 · 10−3 1.76 · 10−3

B2 28 280.3 0 413.4 182.7 65.18 4.366 · 10−5 2.141 · 10−3 2.141 · 10−3

C2 28 279.1 2 345.2 168.18 60.26 4.167 · 10−5 1.756 · 10−3 1.757 · 10−3

D2 28 280.1 2 413.2 182.7 65.23 4.322 · 10−5 2.131 · 10−3 2.126 · 10−3

Table 1.3: Measured properties of projectiles
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1.2 Sabot design

Since the sub caliber models have to be launched from a smooth bore powdered gun, special sabots
were designed at different initial angles of attack α0. The initial angle of attack characterizes the
orientation of the model into the sabot before firing 2. For the sabot separation without high
initial disturbances, the main aspects to consider for the sabot design are the model geometry,
the total mass, the muzzle velocity and the gun acceleration. Some of the aspects like separation,
acceleration and velocity have to be consistent from one trial to another.

1.2.1 Space probe

For this test campaign, two types of sabots, one with three and one with four petals, were designed
to launch the space probe models. All sabots were manufactured with initial angles of attack of 0, 3
and 6◦. For non-spinning models, preliminary sabot/model integrity trials have shown that a four-
piece petal sabot made in polypropylene separates well within a distance of 5 meters, regardless of
the initial angle of attack and Mach number. Figure 1.3a shows an example of a four-piece petal
sabot separation. For spinning models, initial disturbances were observed during separation with
the four-piece petal sabot. Therefore, a three-piece type petal sabot, also made in polypropylene,
was designed, as shown in Figure 1.3b. With this last design, the sabot separation is done without
disturbing the model in flight. Furthermore, to induce an initial spin to the model, three driving
pins adjusted to the location of each cavity were added into the sabot, as it can be observed on
the left of Figure 1.3b. Gas leakage through the sabot body is prevented by use of some gasket
located at the end of the sabot. With this design, no pusher plate or base pad seal located at the
aft end of the sabot was necessary. The diameter of the sabot is 91 mm with a skirt at the aft end
of 97 mm in diameter for a total length of 85.2 mm.

(a) Four-piece petal sabot separation

 

(b) Space probe model mounted into a three-piece petal
sabot for α0 = 0◦

Figure 1.3: Sabot for a space probe model

1.2.2 Projectile

For the Basic Finner projectiles, sabots were designed to launch the models at initial angles of
attack of 0 and 4◦. The sabots consist of a four-piece petal type made of polypropylene. A
photograph of the model/sabot package for an initial angle of attack of 4◦ is presented in Figure
1.4a. The projectile sabot design needs additionally a base pad seal to prevent gas leakage through
the sabot body made in aluminium and a pusher plate located at the aft end of the sabot visible in
Figure 1.4a. The external diameter of the sabot is 91 mm with a skirt at the aft end of 95 mm in

2. The initial angle of attack α0 considered here is different than the initial condition of the angle of attack α0
introduced in the next chapter.
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diameter for a total length of 96 mm. Trials have shown that the four-piece petal sabot separates
well within a distance ranging between 8 to 10 meters depending on the initial Mach number, as
shown in Figure 1.4b.

 

(a) Projectile mounted into the sabot for α0 = 4◦ (b) Sabot separation

Figure 1.4: Sabot for a projectile

1.3 Model instrumentation and data acquisition

Aerodynamic characteristics, such as angular motion and aerodynamic coefficients, can be deter-
mined from observed motions on photographs obtained from spark-shadowgraph stations [Schoe-
nenberger et al. (2009), Hathaway (1976), Winchenbach (1997)]. This method is accurate but is
limited in terms of numbers of measurement instants (equal to the number of spark-shadowgraph
stations) and in range. The attitude determination can only be done at each station location. In-
deed, a large number of stations is required to increase the result precision and to observe angular
motion as continuous as possible. In the last decades, ISL has developed a technique, unique in
Europe, for their determination from on-board instrumented vehicles [Fleck (2000)]. Indeed, the
three-axis magnetometer embedded in the vehicle measures the projection of the Earth magnetic
field on the sensor axes. The reference direction used is the orientation of the Earth magnetic
field considered constant and the sensor is aligned with the vehicle’s body axes. This allows the
determination of the angular position during the flight with an accuracy better than 5 mrad. More
recently, embedded accelerometers 3 were employed that could be used for the determination of
the forces acting on the vehicle. In this sense, the components of the electronic package equipping
both models consist of 3D magnetic sensor, 2D or 3D accelerometer, a power supply and a trigger
system.
For the integration into the models, the electronic package requires to have units as small as possible
due to the space limitation. In order to prevent damage due to the high launch accelerations and/or
impact shocks, each electronic package is potted into the model with resin and is g-hardened.
Special attention was paid to the calibration of the sensors represented by the offsets, sensitivities
and misalignment angles. Measurement methods developed at ISL are applied before each trial to
obtain the calibration factors relative to a perfect orthogonal orientation thanks to a 3D-Helmholtz
coil facility [Bieber et al. (2014)].
Unfortunately, access to the measured data is one major problem. Generally, two different ap-
proaches can be applied for measurement acquisition:

1. on-board data recording and soft recovery of the vehicle after flight;

2. on-line data transmission via conventional telemetry techniques.
3. These sensors were integrated into the models but accelerometer data will not be processed in this report.
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1.3.1 Space probe

Data acquisition for space probes was done through on-board data recording. Due to high velocity
decrease during the flight, models were softly recovered without suffering heavy damage of the
sensors. This technique allows to proceed to multiple tests with the same model. The space probe
electronic package is shown in Figure 1.5a. The additional electronic components that equipped
space probe models consist in a flight recorder and a USB interface, as shown in Figure 1.5b. Thus,
the communication with a computer can be done via the USB port after the soft model recovery
to have access to the data.

(a) Embedded electronics (b) USB interface

Figure 1.5: Electronic package of the space probe model

1.3.2 Projectile

In the case of the projectile, the velocity decay in flight is small and therefore, the impact velocities
at the target remain important. The recording of the sensor data during flight was obtained by
telemetry. This procedure has the great advantage that no soft recovery of the model is necessary,
and data timing has microsecond accuracy relative to the flight path data. To collect data with this
method, a transmitter and an antenna, located in the projectile nose, are added to the electronic
package. The full projectile electronic package is presented in Figure 1.6.

Figure 1.6: Electronic package of the Basic Finner projectile
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1.4 Open range test facility and measurement techniques

Free flight experiments performed in the frame of this study were conducted at the open range
facility of the ISL proving ground located in Baldersheim about 25km north of Saint-Louis. This
range is tailored to meet a wide variety of inert free flight models. Experiments can be carried
out over firing distances up to 1000 meters with rifled or smooth bore powder guns with calibers
ranging between 20 and 105 mm. Velocity regimes, as a function of the studied configurations, are
ranging between Mach 0.6 and 6.0. A top-view of the open range test site including the available
measurement techniques is presented in Figure 1.7, in which each device is denoted by a letter.
In both cases, models were fired from a classical 91 mm smooth bore gun (a) at atmospheric
conditions over a flight distance of 235 meters on average and with rectilinear trajectories. Models
are launched at known initial velocities and fixed initial angles of attack. After exiting the gun
muzzle, sabots separate from the models at a certain distance depending on the initial velocity
and the total mass to be fired. Therefore, models can be considered to be in free flight only after
a distance (from 5 to 8 meters) where the sabot petals do not interact anymore with the model.
Velocities of the models are measured with a continuous Doppler radar (b) with a frequency range
of 10.52 GHz, located next to the gun barrel. Radar data are reduced and processed by means of
a FFT (Fast Fourier Transform) analyzer.
For the qualitative observation of the model behaviour during flight and the impact at the target,
a high speed video trajectory tracker (c - position A) from Specialized Imaging Ltd. was used,
composed of a motorized mirror to follow the vehicle during the flight.
None of these above mentioned measurement techniques allow the determination of the position in
space. In free flight, the determination of the position is only possible with tracking radars that are
usually used to follow projectiles over a few kilometers. In our case, the acquisition of such a piece
of equipment would be a non-sense for distances less than 1000 meters. Therefore, the external
instrumentation has been improved with a second high speed trajectory tracker (c - position B)
located at the other side of the fireline. The 3D high-speed video trajectory tracker system was
designed to determine the 3D position and the attitude of the vehicle along the flight path, and
allows to compare the results to those obtained from on-board 3D magnetic sensor technique. The
principle is to simultaneously capture sequences of images from both trackers, treated afterwards
by image processing [Portier (2014)].
In order to properly follow the models, two sky screens (d) were used for the correction of the
motorized mirror scanning speed of the trajectory trackers. Triggering of the experiments was
obtained by means of a flash muzzle detector (e).
In the case of the space probe models, multiple soft recovery units (f), composed of recycled rugs
and/or hemp, were placed at the end of the trajectory to softly recover the models without suffering
heavy damage of the sensors. In the case of projectile, as data are collected by telemetry, no soft
recovery is necessary and models end into the sand bay (g). Further details about the open range
test site, experimental set-up and test conditions are given in [Berner et al. (2012)].
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1.5 Test conditions

Free flight experiments were carried out for electronically instrumented configurations. Only two
criteria define the constraints imposed by the experimental conditions, the initial Mach number
M0 and initial angle of attack α0.

1.5.1 Space probe

Within the context of a third party contract with ESA (European Space Agency), two test cam-
paigns were conducted with a space probe at different initial Mach numbers M0 ranging between
2.0 and 3.0, for initial angles of attack α0 of 0, 3 and 6◦ and for two different center of gravity
positions Xcg1 and Xcg2. For this study, five non-contractual spinning free flight tests having the
same center of gravity position Xcg1 were selected and are summarized in Table 1.4. The corre-
sponding models used for each test case are specified in the test matrix. Due to the soft recovery,
the model #B1 was fired twice which explains why the same model was used for test cases 2 and
3.

M0 = 2.0 M0 = 3.0
test case 1 (model #A1) test case 4 (model #C1)

α0 = 0◦
test case 2 (model #B1) test case 5 (model #D1)

α0 = 3◦ test case 3 (model #B1)

Table 1.4: Test matrix for the space probe models

Spinning of the model was obtained by fixing a special rifled adapter at the gun muzzle as shown
in Figure 1.8a. It consists of an adapter made of steel with a length of 240 mm and twelve straight
grooves of 1 mm thick canted at an angle of 0.6◦ and manufactured by EDM (Electrical Discharge
Machining). A close view of the adapter is presented in Figure 1.8b.

(a) (b)

Figure 1.8: Spin adapter
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1.5.2 Projectile

A total of 16 free flight tests were conducted with instrumented configurations at different initial
conditions as summarized in Table 1.5. Models with two center of gravity positions Xcg1 and Xcg2
were launched for initial Mach numbers of 1.3, 1.8 and 2.6, for initial angles of attack α0 of 0
and 4◦ and for two fin cant angles δ of 0 and 2◦. However for a small number of tests, and due
to unexplained electronic failures, signals were only transmitted and registered over a few percent
of the full trajectory. This makes, of course, the parameter estimation impossible. Therefore,
only the most relevant tests in terms of data quantity and quality were selected to proceed to the
parameter estimation step. The four selected models characterizing each projectile configuration
(models #A2,#B2, #C2 and #D2) are specified in the test matrix.

M0 = 1.3 M0 = 1.8 M0 = 2.6
δ = 0◦ δ = 2◦ δ = 0◦ δ = 2◦ δ = 0◦ δ = 2◦

Xcg1 (model #A2) (model #C2)
δ = 0◦ δ = 2◦ δ = 0◦ δ = 2◦ δ = 0◦ δ = 2◦

Xcg2 (model #B2) (model #D2)

Table 1.5: Test matrix for the Basic Finner projectiles

1.6 Concluding remarks

Several steps are needed to proceed to free flight experiments such as the model/sabot conception,
the integration of the electronic package, the calibration of the sensors, the experimental design,
and the free flight data acquisition from embedded sensors and ground measurement techniques.
Each aspect of the experiment must be perfectly mastered by the experts in charge of these works.
However, these technical steps are highly sensitive and can have irremediable consequences on
the quality and quantity of collected data. For both applications, free flight measurements were
obtained from two measurement techniques: Doppler radar and 3D magnetometer. From these
data, the aerodynamic parameters can be now estimated. However, in order to proceed to their
determination, the behaviour of a vehicle in free flight must be modelled, where the obtained
measurements are described by the observation equations. This is the aim of the next chapter.
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Chapter 2

Modelling of a vehicle in free flight

Experiments make it possible to access the data obtained by means of different measurement tech-
niques. This data is essential to conduct parameter estimation. In order to reach this objective,
an identification procedure composed of several steps must be defined. This chapter presents the
first step of the proposed aerodynamic coefficient identification procedure, the physical modelling,
namely the construction of mathematical models of dynamical systems. To have a physical in-
terpretation of the state variables, the model describing the behaviour of a vehicle in free flight is
constructed based on Newton’s and Euler’s laws. This mathematical model includes both the vehicle
equations of motion and the aerodynamic coefficient descriptions. The state equations are formu-
lated as ordinary differential equations and observation equations for the measured outputs. It is a
nonlinear state-space model composed of 12 state equations and 4 output measurement equations.
The equations of motion are valid for several types of vehicle in flight like space probes, Unmanned
Aerial Vehicles, ammunition or airplane, and depend on the considered coordinate frame. Further-
more, it is assumed that the vehicle is a rigid body. The proposed aerodynamic coefficient model
equations are described using polynomials and polynomial splines with time-invariant parameters,
which are precisely the parameters to be estimated, and depend on several state variables. The
presented aerodynamic model is valid only for space probe and ammunition architectures.

2.1 Coordinate systems

Before developing the vehicle equations of motion, a description of the coordinate systems and
sign conventions is mandatory. All these reference frames are right handed and have orthogonal
axes. Generally, three main frames are taken into account:

• Earth frame OxE ,yE ,zE , commonly used to determine the vehicle motion with respect to
(w.r.t.) fixed axes, is defined about the Earth. Its origin is an arbitrary point on the Earth
surface, where the positive OxE axis points toward the geographic North, the positive OyE
axis points to the East, and the positive OzE axis points to the center of the Earth.

• Body frame Ox,y,z is fixed w.r.t. the studied vehicle and is moving with it. The origin
of this reference frame is situated at the vehicle center of gravity, with positive Ox pointing
downrange through the vehicle nose, positive Oy axis in the horizontal plane and pointing
to the right looking downrange, and positive Oz axis pointing down w.r.t. the body. In this
study it can be assumed that Oxz plane is a plane of symmetry of the vehicle.

• Wind frame OxW ,yW ,zW , also called aerodynamic or stability frame, is relative to the vehicle
trajectory through the air. Its origin is located at the vehicle center of gravity, with positive
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OxW axis aligned with the velocity vector, positive OyW axis pointing out the right side, and
positive OzW axis pointing down.

These reference frames are illustrated in Figure 2.1 and their descriptions are summarized in Table
2.1, more details can be found in [Zipfel (2000), Klein and Morelli (2006), Cook (2012)].

x

zy

xWyW

zW

xE

yE

-zE

trajec
tory

Figure 2.1: Earth, body and wind frames

Earth Frame OxE ,yE ,zE
Origin: arbitrary point on the Earth surface

OxE OyE OzE
toward geographic North toward geographic East toward the center of the Earth

Body Frame Ox,y,z
Origin: vehicle center of gravity

Ox Oy Oz
downrange through the vehicle nose out the right side down

Wind Frame OxW ,yW ,zW

Origin: vehicle center of gravity
OxW OyW OzW

aligned with the velocity vector out the right side down

Table 2.1: Reference frames

2.2 General structure of the model

Mathematical modelling is the process aiming at developing an adequate mathematical representa-
tion of certain physical systems. Generally, to reveal most of the observed phenomena, a dynamic
model is preferred. Such models appear under multiple representation forms: linear or nonlinear
models described as differential or difference equations, in a state-space or input-output form, in
continuous or discrete time, considered as deterministic or stochastic, see e.g. [Ljung and Glad
(1994)].
The mathematical model describing the behaviour of a vehicle in free flight, based on Newton’s
and Euler’s laws of a rigid-body motion, is represented by a continuous-time nonlinear state-space
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model [Fleck (1998), Zipfel (2000)]. Knowing that in our case the input signal u(t) = 0, it has the
following general structure

M :
{

ẋ(t) = f(x(t),C(x(t),pa)) x(0) = x0
y(t) = g(x(t)) (2.1)

where t ∈ T ⊂ R+ is the time variable and the vectors x ⊂ Rnx , x0 ⊂ Rnx and y ⊂ Rny denote the
state variables, their initial conditions and the output variables, respectively. The aerodynamic
coefficients C depend of the state variables and the vector pa ∈ P ⊂ Rnp , composed of model
parameters describing the aerodynamic coefficients. The system dynamics are governed by f and
g, which are nonlinear functions of the state variables and model parameters. To simplify the
notations, the time dependence of the variables is omitted in the following sections.

2.3 State equations

2.3.1 Force and moment equations

For the development of the equations of motion of a vehicle in free flight, several assumptions are
usually made:

• the vehicle is a rigid body with constant mass and fixed mass distribution;

• the air is considered at rest, relative to the Earth;

• the Earth is fixed in inertial space;

• the Earth surface can be approximated as flat;

• the gravity is uniform.

Force and moment equations represent the dynamic motion governing the behaviour of a vehicle in
free flight and are directly relied to the aerodynamic coefficients. By definition, the force changes
the translational motion of a vehicle whereas a moment reflects the aptitude of a force to make
an object rotate about a vector or a point. Under the rigid body assumption, the behaviour of a
vehicle in flight is described by Newton’s second law of motion in translational and in rotational
forms:

F = d

dt
(mV) (2.2)

M = d

dt
(Iω) (2.3)

where the quantities represent the applied force F, the mass m, the translational velocity V, the
applied moment about the center of gravity M, the angular velocity ω and the inertia matrix
I. Equations (2.2) and (2.3) describe the translational and rotational equations of motion, where
each vector is composed of three equations w.r.t. body axes. The vehicle motion is then described
by six equations for six degrees of freedom. These vectors are given as follows

F =

FxFy
Fz

 , M =

Mx

My

Mz

 (2.4)

The translational and angular velocity vectors V and ω respectively are defined by

V = [ vx vy vz ]T (2.5)
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ω = [ ωx ωy ωz ]T (2.6)

and their components are represented in Figure 2.2 in body axes.

α

β

V

ωx x

z

y

ωy

ωz

αt

vx

vz
vy

Figure 2.2: Representation of state variables of a space probe model

An assumption often used is that the inertia matrix I is considered to be diagonal 1. The considered
inertia matrix is then

I =

Ix 0 0
0 Iy 0
0 0 Iz

 (2.7)

where Ix, Iy and Iz are the longitudinal and lateral moments of inertia.
Equations (2.2) and (2.3) are valid in an Earth reference frame. However, it is generally recom-
mended to express the variables of both previous equations in a body reference frame, which will
translate and rotate relative to the Earth frame. For rotating body axes system, the derivative
operator considered the rate of change of the vector components expressed in the body frame and
the axis system rotation, formulate by the following equation:

d

dt
(.) = δ

δt
(.) + ω × (.) (2.8)

By considering equations (2.2), (2.3) and (2.8), the force and moment equations in body axes are
described by

F = mV̇ + ω ×mV (2.9)

M = Iω̇ + ω × Iω (2.10)

The applied forces and moments contain aerodynamic, thrust and gravity components. In this
application, the absence of propulsion allows to set the thrust force and moment to zero. Moreover,
due to the rigid-body assumption made on the uniformity of the gravity applied through the vehicle
center of gravity, there is no gravity moment acting on the vehicle. Consequently, the forces and
moments equations can be written as

FA + FG = mV̇ + ω ×mV (2.11)

MA = Iω̇ + ω × Iω (2.12)

1. For the model description with the complete inertia matrix, see e.g. [Klein and Morelli (2006)].
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where FA and FG represent the aerodynamic and gravity forces respectively, and MA the aerody-
namic moment. These vectors are defined as

FA = q̄S

 CX
CY
CZ


B

, FG = m

 −g sin θ
g sinφ cos θ
g cosφ cos θ


B

(2.13)

MA = q̄Sd

 Cl
Cm
Cn


B

(2.14)

where the physical properties are the reference diameter d, the reference surface area S = (πd2)/4
and the dynamic pressure q̄ = 1

2ρV
2, where ρ represents the air density. The global force and

moment aerodynamic coefficients w.r.t. body axes are CX , CY , CZ and Cl, Cm, Cn, respectively,
as illustrated in Figure 2.3. The gravity force vector is generally defined in the Earth frame.
Herein, it is expressed in a body frame in relation to Euler angles (φ, θ), and its transformation
from Earth to body axes is detailed in Appendix A.1 (subsection A.1.1).

xW

Wind frame

Body frame

V

CD CL

CX

Cm

x

y

CZ

CY

Cl
Cn

z

Figure 2.3: Global aerodynamic coefficients relied to forces and moments acting on a projectile

Thus, based on equation (2.11), the velocity vectors in (2.5-2.6) and the forces acting on the vehicle
in (2.13), the body-axes force equations are expressed as

v̇x = (ωzvy − ωyvz)− g sin θ + q̄S

m
CX (2.15a)

v̇y = (ωxvz − ωzvx) + g sinφ cos θ + q̄S

m
CY (2.15b)

v̇z = (ωyvx − ωxvy) + g cosφ cos θ + q̄S

m
CZ (2.15c)

Generally, the nondimensional aerodynamic force and moment coefficients are characterized as
function of the velocity V , the angle of attack α and the angle of sideslip β, illustrated in Figure
2.2 [Klein and Morelli (2006)]. Therefore, it is often useful to write the force equations in terms
of V , α and β instead of vx, vy and vz. Their relations are defined as follows

vx = V cosα cosβ; vy = V sin β; vz = V sinα cosβ (2.16)
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and the reverse transformations

V =
√
v2
x + v2

y + v2
z ; α = arctan(vz/vx); β = arcsin(vy/V ) (2.17)

The wind axis force equations are obtained by differentiating w.r.t. time the equations (2.17)

V̇ = vxv̇x + vyv̇y + vz v̇z
V

(2.18a)

α̇ = vxv̇z − vz v̇x
v2
x + v2

z

(2.18b)

β̇ = −vxvyv̇x + (v2
x + v2

z)v̇y − vyvz v̇z
V 2
√
v2
x + v2

z

(2.18c)

The above equations can be transformed, by replacing vx, vy, vz by the relations in (2.16) and
v̇x, v̇y, v̇z by the body force equations in (2.15). The force equations in wind axes are finally
described as

V̇ = − q̄S

m
CD + g(cos θ cosφ sinα cosβ + cos θ sinφ sin β − sin θ cosα cosβ) (2.19a)

α̇ = − q̄S

mV cosβCL + ωy − tan β(ωx cosα+ ωz sinα) + g

V cosβ (cos θ cosφ cosα+ sin θ sinα)

(2.19b)

β̇ = q̄S

mV
CY w + ωx sinα− ωz cosα+ g

V
(cos θ sinφ cosβ + sin θ cosα sin β − cosφ cos θ sinα sin β)

(2.19c)

where

CD =−CX cosα cosβ − CY sin β − CZ sinα cosβ (2.20a)
CL = CX sinα− CZ cosα (2.20b)
CY w=−CX cosα sin β + CY cosβ − CZ sinα sin β (2.20c)

represent the drag, the lift and the sideforce coefficients along the wind axes, respectively. The
drag and the lift coefficients acting on a projectile are represented in Figure 2.3.
In an equivalent manner, based on equation (2.12), on the angular velocity vector in (2.6), on
the aerodynamic moment vector in (2.14) and on the inertia matrix defined in (2.7), the moment
equations are expressed as

ω̇x= 1
Ix

(q̄SdCl − ωyωz(Iz − Iy)) (2.21a)

ω̇y= 1
Iy

(q̄SdCm − ωxωz(Ix − Iz)) (2.21b)

ω̇z= 1
Iz

(q̄SdCn − ωxωy(Iy − Ix)) (2.21c)

The force and moment equations depend on several physical properties like the mass of the vehicle
m, the reference diameter d, the reference surface area S, the longitudinal and lateral moments
of inertia Ix, Iy and Iz and the gravitational acceleration g. These quantities are measured with
good accuracy before the experiment.
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2.3.2 Kinematic equations

The attitude of a vehicle in flight is defined as the angular orientation of the body w.r.t. Earth
fixed axes. There exist several approaches to characterize the attitude, for example Euler angles
(φ, θ, ψ), represented in Figure 2.4 [Cook (2012)], or quaternions. As in our case we deal with nearly
rectilinear or parabolic trajectories, it is reasonable to express the kinematic equations using Euler
angles. The rotational kinematic equations express the link between the Euler angle rates (time
derivative of Euler angles) and the angular velocity of the vehicle. The detailed relationships of
this transformation are presented in Appendix A.2 and have led to the following equations

φ̇ =ωx + tan θ(ωy sinφ+ ωz cosφ) (2.22a)
θ̇ =ωy cosφ− ωz sinφ (2.22b)

ψ̇= ωy sinφ+ ωz cosφ
cos θ (2.22c)

In some cases, employing the quaternions instead of Euler angles is more appropriate 2. The
relationships between the Euler angles and quaternions are presented in Appendix A.3.

O

q

y

f

xE

x1

x2 , x
yE

y1 , y2

y

z
z2

zE , z1

 

q

f

y

Figure 2.4: Euler angles

Let (xE , yE , zE) be the coordinates of the center of gravity position of the vehicle w.r.t. Earth
axes, where −zE represents the altitude hE (height above the ground) and [ẋE ẏE żE ]TE be the
corresponding velocity vector.
A direction cosine matrix TEB defines the transformation of the velocity vector from body to
Earth axes, parametrized by the attitude angles and given as

TEB(φ, θ, ψ) =

 cos θ cosψ sinφ sin θ cosψ − sinψ cosφ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 (2.23)

Further information about the construction of the direction cosine matrix can be found in Appendix
A.1. Based on this transformation matrix and by writing the translational velocities in body axes

2. The quaternions are used in order to avoid the singularity of the solution. Singularities arise generally when
vehicles are fired vertically, which is not the case in the present study.
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as in equations (2.16), the translational kinematic equations can be written as ẋE
ẏE
żE


E

= TEB(ψ, θ, φ) ·

 V cosα cosβ
V sin β

V sinα cosβ


B

and the resulting equations are,

ẋE =V cosα cosβ cos θ cosψ + V sin β(sinφ sin θ cosψ − cosφ sinψ)+
V sinα cosβ(cosφ sin θ cosψ + sinφ sinψ) (2.24a)

ẏE =V cosα cosβ cos θ sinψ + V sin β(sinφ sin θ sinψ + cosφ cosψ)+
V sinα cosβ(cosφ sin θ sinψ − sinφ cosψ) (2.24b)

żE = − V cosα cosβ sin θ + V sin β sinφ cos θ + V sinα cosβ cosφ cos θ (2.24c)

2.4 Aerodynamic coefficients

In the case of a vehicle in flight, its behaviour is directly influenced by initial and exterior con-
ditions, such as temperature, pressure, presence of wind, as well as the physical properties of the
body (in terms of mass, center of gravity and inertia). All these conditions have an effect on
the aerodynamic coefficients. The importance of estimating them lies in the representation of
aerodynamic characteristics of a vehicle. Aerodynamic coefficients are the parameters describing
and connecting forces and moments acting on the vehicle to angles (α, β) and velocities (V and
ω). Generally, they depend of the flight condition variables such as the velocity, incidence angles,
angular rates or accelerations. The incidence angles α and β can be defined as function of the
total angle of attack αt, represented in Figure 2.2, given by

αt(α, β) = arccos(cosα cosβ) (2.25)

It is also important to represent the aerodynamic phenomena as adimensional coefficients. This
facilitates the comparison of aerodynamic data between distinct vehicle configurations and allows
to interpret its values independently of the vehicle’s architecture or experimental conditions. In
that respect, the global coefficients for rigid vehicles in flight can be characterized as a function of
nondimensional quantities as follows

Ci(M,α, β,ω, ...)

where i = X,Y, Z, l,m, n in body frame and i = D,Y w,L, l,m, n in wind frame.
These global aerodynamic coefficients are nonlinear functions of the Mach number, the incidence
angles and angular velocities. They also depend on stability derivatives, representing the change
in forces and moments w.r.t. a variable variation. They are divided in three groups [Klein and
Morelli (2006)], associated to velocity quantities (V , α or β), to angular velocities (ωx, ωy or ωz)
and unsteady dynamics. In this study, the first two groups are considered and are commonly
named the static and dynamic stability derivatives, respectively. Furthermore, in our case, the
stability derivatives are assumed to be dependent of the Mach number and the incidence angles.

2.4.1 Force coefficients

The decomposition of the force coefficients depends on the context and on the chosen reference
frame. In a wind related reference frame, generally employed in ballistic studies, the drag coefficient
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CD, the lift coefficient CL and the Magnus force coefficient slope Cypα are considered 3. The force
coefficients relative to a body reference frame are the axial force CX , the sideforce CY and the
normal force CN = −CZ coefficients.
The wind coordinates in ballistic, also named aeroballistic wind coordinates, are different than for
aircraft. Since the equations are expressed in the body frame, a transformation matrix dependent
on the angle of attack α and the angle of sideslip β from the aeroballistic wind coordinate system to
the body coordinate system is used as defined in [Zipfel (2000)] and allows to obtain the following
relations:

CX(M,α, β) =− CD(M,α, β) cosα cosβ + CLα(M,α, β) (1− cos2 α cos2 β) (2.26a)
CY (M,α, β) =− CD(M,α, β) sin β − CLα(M,α, β) cosα cosβ sin β (2.26b)
CN (M,α, β) = CD(M,α, β) sinα cosβ + CLα(M,α, β) cosα sinα cos2 β (2.26c)

where CLα = CL
sinα corresponds to the lift force coefficient slope.

A brief description of two of the main force coefficients can be given as follows [McCoy (1999),
Fleck (1998), Stengel (2004)]:

• the drag coefficient CD corresponds to the aerodynamic resistance and is relied to the
force which is opposed to the body motion in a fluid. Mathematically, it is the component
along the tangent to the trajectory in the opposite direction of the relative body velocity
w.r.t. the fluid.

• the lift coefficient CL is representative of the force perpendicular to the trajectory induced
by the pressure distribution around the vehicle when the angle of attack α is different of
zero. In that respect, it is more common to quantify the lift force coefficient slope CLα
representing the derivative of the lift force coefficient w.r.t. the angle of attack α.

2.4.2 Moment coefficients

The vehicle external moment MA given in (2.14) can be represented as the sum of the aerodynamic
relative to the body (B), the fins (F) and the damping effect (D), as follows 4

MA = MB + MF + MD (2.27)

This implies that the global moment coefficients, more precisely the roll, pitch and yaw moment
coefficients Cl, Cm and Cn in (2.21) can be further developed as function of stability derivatives
as  Cl

Cm
Cn

 =

 0
Cmα sinα cosβ
Cnβ sin β

+

 Clδ δ
0
0

+ d

2V

 Clp ωx
Cmq ωy
Cnr ωz

 (2.28)

and can be expressed as

Cl (M,α, β, ωx) = d

2V Clp(M,α, β) ωx + Clδ(M,α, β) δ (2.29a)

Cm (M,α, β, ωy) = Cmα(M,α, β) sinα cosβ + d

2V Cmq(M,α, β) ωy (2.29b)

Cn (M,α, β, ωz) = Cnβ(M,α, β) sin β + d

2V Cnr(M,α, β) ωz (2.29c)

3. The Magnus force coefficient slope Cypα characterizes the transversal force induced by frictional forces between
the flow and the boundary layer produced by unequal pressures on opposite sides of a spinning vehicle under incidence.
In these application cases, it can be neglected and the full model is presented in [Theodoulis et al. (2013)].

4. In this study case, only the non negligible aerodynamic coefficients are considered. The global moment de-
scriptions with all the aerodynamic coefficients, such as the Magnus moment coefficient slope Cnpα, are detailed in
[Winchenbach et al. (1998)].
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In the case of axisymmetric bodies, the following equalities can be applied in a fixed plane coor-
dinate system [Winchenbach (1997)]:

Cnβ(M,α, β) = −Cmα(M,α, β)
Cnr(M,α, β) = Cmq(M,α, β)

(2.30)

The main static and dynamic stability derivatives describing the global moment coefficients are
defined below.

• the roll damping coefficient Clp can be characterized by a motion generated by frictional
or viscosity forces which damps the rotation of a vehicle around its longitudinal axis.

• In the case of a finned vehicle, a rolling moment can be induced if the fin cant angle is not
null. In the case of canted fins, the roll moment coefficient due to fin cant Clδ produces
an increasing spin whereas the roll damping coefficient Clp tends to reduced it. The model
characterized by the absence of fins, such as the space probes, it is reasonable to consider
that Clδ is null in this case.

• the pitch moment coefficient slope Cmα or overturning coefficient is the aerodynamic
moment coefficient associated with the lift or normal force coefficient. It is representative of
the static stability of a vehicle in flight: positive values indicate a statically unstable vehicle
while negative values imply a statically stable vehicle.

• the pitch damping coefficient Cmq arises with the projectile motion damping around a
transversal axis. It gives an indication on the dynamic stability of a vehicle in flight: positive
values indicate a dynamically unstable vehicle while negative values imply a dynamically
stable vehicle. In the present studies, Cmq is the pitch damping coefficient sum of two
damping moments Cmq and Cmα̇, that produce moments due to transverse angular velocity
and due to angular rate of angle of attack α̇, respectively. For nearly rectilinear trajectories,
the angular rate α̇ and ωy will be equal and the moments can be simplified by combining
Cmq and Cmα̇ into a single coefficient sum [McCoy (1999)].

Further details about the static and dynamic stability and their relation with the stability of an
automatic control system are given in Appendix B.

2.4.3 Aerodynamic coefficient assumptions

As it was observed, the mathematical model described in equations (2.19, 2.21, 2.22, 2.24) depends
on six global aerodynamic coefficients: the drag coefficient CD, the lift coefficient CL, the sideforce
coefficient CY w, the roll, pitch and yaw moment coefficients Cl, Cm and Cn.
This model is valid for both applications: an Earth re-entry space probe and a fin stabilized
projectile. These global coefficients can be described as function of stability derivatives, as seen in
equations (2.26) and (2.29). For the present study, we deal with rectilinear and short flight paths,
this implies that some simplifying hypotheses can be applied, as :

• in both applications, the sideforce coefficient CY w is fixed to zero due to its negligible effects,
and the relations defined in (2.30) are considered;

• in the frame of the studied Earth re-entry space vehicle, based on previous studies [Schoenen-
berger et al. (2009), Winchenbach et al. (2002)], it is well-known that the global coefficients
CL and Cl can be neglected, and therefore, also their stability derivatives.
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By taking these assumptions into account, the remaining aerodynamic coefficient vector to be
considered for the Earth re-entry space vehicle case (denoted by the superscript {sv}) can be
defined as

C{sv} = [CD, Cmα, Cmq]T (2.31)
In the case of the second application concerning the fin stabilized projectile, all the remaining
aerodynamic coefficients will be considered. Therefore, the parameter vector for the Basic Finner
projectile (denoted with the superscript {bf}) can be defined as

C{bf} = [CD, CLα, Clp, Clδ, Cmα, Cmq]T (2.32)

2.4.4 Descriptions of aerodynamic coefficients

The use of aerodynamic coefficients for the characterization of the behaviour of an object in flight
remains one of the oldest and most emergent research project in the fields of exterior ballistic and
flight mechanics. Identifying and quantifying these coefficients is a complex and challenging task in
the frame of aerodynamic modelling. To be able to estimate all the parameters, the complexity of
their descriptions must be coherent with the application but also with the available data. In that
respect and depending on the studied vehicle, several aerodynamic model descriptions have been
proposed. Some are quite complex, with coupled or decoupled dependencies in variables (Mach
number and total angle of attack). However, one must choose the adequate description for each
coefficient by considering several constraints:

• the time-invariant parameters describing the coefficient must be of limited number and have
a physical interpretation;

• the appropriate use of a priori knowledge, coming from the literature, from wind tunnel
measurements, aerodynamic predictions codes or a combinaison of these.

The focus lies in the aerodynamic coefficient model.The descriptions must be simple enough for the
use but also complete and thus complex to reveal enough information about the system behaviour.
For this reason, a balance must be found to obtain a physically interpretable and exploitable
model. Thus, the grey box approach is entirely adapted to overcome the limitations of the white
and black-box modelling. Grey-box models are established on physical first principles depending
on parameters to estimate from measured data [Worden et al. (2007)].

2.4.4.1 Space probe

In the literature, recent studies investigated the aerodynamic coefficient determination of a re-entry
space vehicle and by applying system identification techniques [de Divitiis and Vitale (2010), Vitale
and Corraro (2012)]. However, the proposed aerodynamic model - described by nonlinear functions
of several variables - is valid only for a specific vehicle database obtained by means of wind tunnel
tests and CFD predictions. Examples of such descriptions are as follows

Cj =
8∑
i=1

Ci(M,psubi ,psupi )gi(α, β,ω)

with j = D,Y w,L, l,m, n, and depend on multiple stability derivatives Ci. These deriva-
tives are functions of the Mach number and constant aerodynamic parameters psubi =
[Ksub

i ,mi, εi, h1i, h2i, ξi] and psupi = [Ksup
i , ai, bi, di, ei] which represent the parameters to deter-

mine in subsonic and supersonic regimes respectively. Their structure was defined as

Ci(M,psubi ,psupi ) = Ksub
i Hsub(M)

√
mi+εi(1+h1iM2+h2iM3)√

εi+mi|1−Mξi |2
+Ksup

i Hsup(M)1+aiMdi

1+biMei (2.33)
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where
Hsub(M) = tanh 50(1−M) + 1

2 ; Hsup(M) = tanh 50(M − 1) + 1
2

As it can be noted, the stability derivatives Ci are only functions of the Mach number and without
any physical interpretation of the model parameters. Moreover, the aerodynamic model expressed
in the previous equation is too complex to be estimated based on free flight data 5.
For these reasons, in the case of a space probe, description of the aerodynamic coefficients was
obtained by use of polynomials and polynomial splines, as proposed below.

• The drag coefficient CD can be represented as a function of the Mach number and the
incidence angles (α, β) as follows

CD (M,α, β) = CD0 + CD1 M + CD2 M
2 + CD3 sin2 αt + CD4 sin4 αt+

CD5 M sinαt
(2.34)

where αt is defined in equation (2.25).
This description was constructed based on an equation existing in the literature [Dutta et al.
(2008), Winchenbach et al. (1998)] and by adapting the model to the considered application.
Indeed, the last term, CD5 M sinαt, in equation (2.34) was added in order to respect the a
priori knowledge of the drag coefficient, obtained through CFD predictions.

As it can be noted in equations (2.29b-2.29c), the coefficients Cmα and Cmq can be represented as
a function of the Mach number and the incidence angles (α and β).

• The pitch moment coefficient slope Cmα can be given as

Cmα (M,α, β) = Cmα0 + Cmα1 M + Cmα2 M
2 + Cmα3 sin2 αt + Cmα4 sin4 αt (2.35)

• The description of the pitch damping coefficient Cmq can be expressed as [Schoenenberger
et al. (2009)]

Cmq (M,α, β) = Cmq0 + Cmq1 M
∗ + Cmq2 M

∗2 + Cmq3 sin2 αt + Cmq4 sin4 αt (2.36)

where M∗ = M −Mref with Mref = 2.5 a constant representing a reference Mach number.

However, the polynomial description of the pitch damping coefficient in (2.36) was better
adapted for total angles of attack αt less than 10 degrees. In the case of larger αt, it has
been noticed that this coefficient was highly nonlinear and a polynomial representation was
not suitable enough. To avoid this drawback, the following description of the pitch damping
coefficient is proposed:

Cmq (M,α, β) = Cmq0 + Cmq1 M
∗ + Cmq2 M

∗2 + Cmq3 sin2 αt + Cmq4 sin4 αt

+Dα (αt − ᾱt)2
+

(2.37)

where
(αt − ᾱt)2

+ =
{

(αt − ᾱt)2 αt ≥ ᾱt
0 αt < ᾱt

.

The last term in (2.37) represents the inclusion of a spline function defined for total angles
of attack superior to ᾱt = 10 degrees and Dα is a constant parameter quantifying the spline
contribution [Klein and Morelli (2006)]. Indeed, spline functions are expressed as piecewise
polynomials of a given degree defined only on selected intervals.

5. In the mentioned papers, the model parameters were quantified by means of CFD predictions and wind tunnel
tests. It is well-known in exterior ballistic domain, that it is very difficult to characterize the dynamic stability, for
example, through these tools.
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2.4.4.2 Projectile

The aerodynamic coefficient descriptions must be chosen carefully as it depends on the vehicle
architecture, the velocity regime, etc. For the projectile, the descriptions existing in the literature
seem less complex than in the case of re-entry space vehicle. Indeed, they are usually represented
by second degree polynomials as a function of incidence angles [Hathaway (1976), McCoy (1999)]
or only as a function of the Mach number [Dutta et al. (2008)]. Complete descriptions, as functions
of Mach number and incidence angles, can be found in [Winchenbach et al. (1998)] and expressed
as

CD(M,α, β) = CD0 + CD1 M + CD2 M
2 + CD3 sin2 αt + CD4 sin4 αt (2.38)

CLα(M,α, β) = CLα0 + CLα1 M + CLα3 sin2 αt + CLα4 sin4 αt (2.39)
Clp(M,α, β) = Clp0 + Clp1 M + Clp3 sin2 αt (2.40)
Clδ(M,α, β) = Clδ0 + Clδ1 M + Clδ3 sin2 αt (2.41)
Cmα(M,α, β) = Cmα0 + Cmα1 M + Cmα2 M

2 + Cmα3 sin2 αt + Cmα4 sin4 αt (2.42)
Cmq(M,α, β) = Cmq0 + Cmq1 M + Cmq3 sin2 αt + Cmq4 sin4 αt (2.43)

2.5 Output equations

The output variables considered herein correspond to measurements obtained during a free flight
test and more precisely to radar and 3D magnetometer data, as mentioned in Chapter 1. The
first output variable corresponds to the velocity of the vehicle in flight, directly obtained from the
Doppler radar.
Concerning the magnetometers, the three-axis sensor measures the projection of the Earth mag-
netic field on the sensor axes. The output equations relative to the 3D magnetometer signals are
given as follows [Titterton (2004)]

Hm = S ·D ·TBE(φ, θ, ψ) ·HE + offset (2.44)

where

S =

 Sx 0 0
0 Sy 0
0 0 Sz

, D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

, offset =

 offx
offy
offz

 (2.45)

As it can be observed, equation (2.44) is given in a sensor relative reference frame which can be
non-orthogonal. Indeed, the transformation between the sensor related frame to the orthogonal
body reference frame is accomplished through the use of the matrices S and D, and the offset
vector. These matrices and vector represent the sensor calibration factors, measured before each
free flight test. As this can be considered as known quantities and for simplification reasons, we
will express the magnetometer measurements in the body reference frame as follows

Hbody = TBE(φ, θ, ψ) ·HE (2.46)

with
Hbody = (S ·D)−1 · (Hm − offset) (2.47)

The transformation matrix TBE from Earth to body axes is the inverse matrix of TEB defined
in (2.23). The three-dimensional vector HE =

(
HE
x , H

E
y , H

E
z

)
, expressed in an Earth reference

frame, corresponds to the Earth magnetic field values, supposed herein to be known and constant,



34 Chapter 2. Modelling of a vehicle in free flight

at the experimental test location. Therefore, the magnetometer measurements in body axes are
given by

Hx,body(tk) = cos θk cosψk HE
x + cos θk sinψk HE

y − sin θk HE
z + v2(tk) (2.48a)

Hy,body(tk) =(sinφk sin θk cosψk − cosφk sinψk) HE
x + (sinφk sin θk sinψk+

cosφk cosψk) HE
y + sinφk cos θk HE

z + v3(tk) (2.48b)
Hz,body(tk) =(cosφk sin θk cosψk + sinφk sinψk) HE

x + (cosφk sin θk sinψk−
sinφk cosψk) HE

y + cosφk cos θk HE
z + v4(tk) (2.48c)

where φk, θk, and ψk represent the values of the Euler angles at the measurement time tk, with
k ∈ 1..., N , and the measurement noises vj(tk), j = 1, . . . , 4.

2.6 Concluding remarks

In this study, the behaviour of a vehicle in flight can be expressed through twelve nonlinear
differential equations, while the system output equations correspond to radar and magnetometer
measurements recorded during a free flight test. The state and output equations are summarized
below.

Wind axes force equations:

V̇ = − q̄S

m
CD + g(cos θ cosφ sinα cosβ + cos θ sinφ sin β − sin θ cosα cosβ) (2.49a)

α̇ = − q̄S

mV cosβCL + ωy − tan β(ωx cosα+ ωz sinα) + g

V cosβ (cos θ cosφ cosα+ sin θ sinα)

(2.49b)

β̇ = q̄S

mV
CY w + ωx sinα− ωz cosα+ g

V
(cos θ sinφ cosβ + sin θ cosα sin β − cosφ cos θ sinα sin β)

(2.49c)

Moment equations:

ω̇x = 1
Ix

(q̄SdCl − ωyωz(Iz − Iy)) (2.50a)

ω̇y = 1
Iy

(q̄SdCm − ωxωz(Ix − Iz)) (2.50b)

ω̇z = 1
Iz

(q̄SdCn − ωxωy(Iy − Ix)) (2.50c)

Rotational kinematic equations:

φ̇ =ωx + tan θ(ωy sinφ+ ωz cosφ) (2.51a)
θ̇ =ωy cosφ− ωz sinφ (2.51b)

ψ̇= ωy sinφ+ ωz cosφ
cos θ (2.51c)

Translational kinematic equations:

ẋE =V cosα cosβ cos θ cosψ + V sin β(sinφ sin θ cosψ − cosφ sinψ)+
V sinα cosβ(cosφ sin θ cosψ + sinφ sinψ) (2.52a)

ẏE =V cosα cosβ cos θ sinψ + V sin β(sinφ sin θ sinψ + cosφ cosψ)+
V sinα cosβ(cosφ sin θ sinψ − sinφ cosψ) (2.52b)

żE = − V cosα cosβ sin θ + V sin β sinφ cos θ + V sinα cosβ cosφ cos θ (2.52c)
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Radar output equation:

y1(tk) = V (tk) + v1(tk) (2.53)

Body axes 3D magnetometer equations:

y2(tk) =Hx,body(tk) = cos θk cosψk HE
x + cos θk sinψk HE

y − sin θk HE
z + v2(tk) (2.54a)

y3(tk) =Hy,body(tk) =(sinφk sin θk cosψk − cosφk sinψk) HE
x + (sinφk sin θk sinψk+

cosφk cosψk) HE
y + sinφk cos θk HE

z + v3(tk) (2.54b)
y4(tk) =Hz,body(tk) =(cosφk sin θk cosψk + sinφk sinψk) HE

x + (cosφk sin θk sinψk−
sinφk cosψk) HE

y + cosφk cos θk HE
z + v4(tk) (2.54c)

Let us suppose that we have access to a series of free flight measurements iy, i = 1, ..., ns, with
ns the number of experimental tests. Based on this data, we intend to estimate the aerodynamic
coefficients. As already seen in equations (2.34, 2.35, 2.37) or (2.38-2.43), these coefficients are
dependent on several unknown parameters. The parameter sets to be estimated, p{sv} and p{bf}
for the space vehicle and the Basic Finner projectile cases respectively, are defined as

p{sv} =


x0,
pD,
pmα,
pmq

 =


V0, α0, β0, ωx0, ωy0, ωz0, φ0, θ0, ψ0,
CD0, CD1, CD2, CD3, CD4, CD5,
Cmα0, Cmα1, Cmα2, Cmα3, Cmα4,
Cmq0, Cmq1, Cmq2, Cmq3, Cmq4, Dα

 (2.55)

where pD, pmα and pmq correspond to the unknown parameter vectors for the proposed drag,
overturning and pitch damping coefficient descriptions of the space probe model in equations
(2.34, 2.35, 2.37) respectively, and

p{bf} =



x0,
pD,
pLα
plp
plδ
pmα
pmq


=



V0, α0, β0, ωx0, ωy0, ωz0, φ0, θ0, ψ0,
CD0, CD1, CD2, CD3, CD4,
CLα0, CLα1, CLα3, CLα4,

Clp0, Clp1, Clp3,
Clδ0, Clδ1, Clδ3,

Cmα0, Cmα1, Cmα2, Cmα3, Cmα4,
Cmq0, Cmq1, Cmq3, Cmq4


(2.56)

where pD, pLα, plp, plδ, pmα and pmq correspond to the unknown parameter vectors for the
proposed aerodynamic coefficient descriptions of the projectile in equations (2.38-2.43) respectively.

The vehicle is considered in free flight only at the position or time where the model is flying without
anymore interaction with the sabot petals. For this reason and with the exception of the center
of gravity positions, the initial conditions of the state variables x0 are considered to be unknown
and must be equally estimated. Indeed, xE0 is determined from radar data and yE0 = zE0 are
fixed to zero due to the nearly rectilinear trajectory hypothesis. Figure 2.5 shows an example of
the velocity and magnetometer signals evolution of a spinning projectile and indicates the initial
time to consider for assuming that the vehicle is in free flight.

Table 2.2 summarizes the main components of the mathematical model, i.e. the time-dependent
state and output variables, as well as the considered aerodynamic coefficients and parameters to
estimate.
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Figure 2.5: Free-flight measurements of a spinning projectile (M0 = 2.63, α0 = 4◦, δ = 2◦)

state variables x(t) V, α, β, ωx, ωy, ωz, φ, θ, ψ, xE , yE , zE

initial state variables to estimate x0 V0, α0, β0, ωx0, ωy0, ωz0, φ0, θ0, ψ0

output variables y(t) V,Hx,body, Hy,body, Hz,body

aerodynamic coefficients C(x(t),pa) CD, Cmα, Cmq CD, CLα, Clp, Clδ, Cmα, Cmq

parameters to be estimated p x0,pD,pmα,pmq x0,pD,pLα,plp,plδ,pmα,pmq
Space probe Projectile

Table 2.2: Considered variables and parameters in the mathematical model

The system identification problem is challenging mainly due to the followings aspects:

• the nonlinear model structure describing the behaviour of the vehicle in flight and expressed
in (2.49-2.54);

• the nonlinear dependency of the aerodynamic coefficients on several state variables (V , α,
β) as seen in equations (2.34, 2.35, 2.37) or (2.38-2.43);

• the constraints imposed by the experimental conditions in terms of initial Mach number M0
and initial angle of attack α0, as it was observed in Chapter 1;

• the additional estimation of the initial state variables x0, along with the aerodynamic coef-
ficient parameters;

• the applications presented herein are characterized by the absence of an input signal (u(t) =
0) and then, the identification has to be performed without any signal excitation.

Under all these conditions, the parameter estimation step must be processed with caution.
In the present study, the model structure describing the behaviour of a vehicle in free flight is
defined by Newton’s and Euler’s laws and can be compared to a knowledge-based model. It is
based on flight mechanic equations and contains aerodynamic coefficients with a physical meaning.
These latter are described in polynomial forms depending on state variables and aerodynamic
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parameters. Aerodynamic coefficient descriptions are available in the literature, however from
the expertise in the field and after testing different descriptions, a modified model structure was
proposed.
These representations were adapted from existing descriptions in the literature and a priori knowl-
edge of the system. With the integration of parametrized functions of the aerodynamic coefficients,
which must be determined from free flight measurements, it is more convenient to considered the
model as a semi-physical model [Sjöberg et al. (1995), Oussar and Dreyfus (2001)]. The model
was then obtained via a grey-box model approach. Because grey-box approach can be used for
different objectives, like for diagnostic or control [Defranoux (2001)], the study to be undertaken
concerned the improvement of the physical parameters knowledge of the system.
To estimate the unknown parameters from free flight data, an identification procedure adapted
to the study case was proposed and presented in the following chapter. This problem is then
associated to an inverse problem and as it remains difficult to solve, the defined procedure is
composed of several analysis to guide the estimation step, particularly identifiability analysis to
evaluate the feasibility of the estimation.
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Chapter 3

Aerodynamic parameter identification

The determination of the aerodynamic coefficients from free flight data can be formulated as a
system identification problem. It is an inverse problem which depends on the chosen model struc-
ture, but equally on the quantity and quality of the measured data. Thus, taking into account the
proposed model structure, presented in Chapter 2, the question is whether or not the measured data
is sufficient for the estimation of the unknown model parameters. The underlying question is then
the identifiability of these parameters.
The identification procedure, employed in this research project, is composed of several steps from
the construction of the mathematical model to the estimation of the unknown parameters. An in-
termediary step is the identifiability analysis and covers the a priori and a posteriori identifiability
analyses of the parameters. The current chapter presents the main details about the identification
procedure, the a priori knowledge integrated into the study, the implementation of the mathemati-
cal model in a simulation environment. Afterwards it focuses on the identifiability of the unknown
parameter set. As mentioned previously, the unknown parameter set is composed herein of the time-
invariant model parameters describing the aerodynamic coefficients and the initial conditions of the
state variables. The estimation process employed for the aerodynamic parameter determination is
composed of several steps and is detailed at the end of the chapter.

3.1 Inverse problem

The notion of inverse problem appears when unknown physical parameters p cannot be directly
measured. For this reason, it is generally convenient to proceed to the measurement of other
variables linked to the unknown parameters, y = f(p). The complexity of the inverse problem
depends thus on the model structure, but also on the quantity and quality of the measured data.
In practice, the mathematical resolution of such problems can be difficult and requests a rigorous
analysis, as they may be ill-posed [Hadamard (1902)]. By definition, the problem y = f(p) is
well-posed, in the Hadamard sense, if it satisfies the following three conditions:

• Existence of the solution: there exists a solution p ∈ P for each y ∈ Rny ;

• Uniqueness of the solution: the solution is unique in P;

• Continuity of the solution: the dependency of p with respect to y is continuous, i.e.
when the observation error δy tends toward zero, the induced solution error δp also tends
toward zero.
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The first condition expresses the consistency of the mathematical model, while the second condition
formulates a coherent context characterising the system. Indeed, if this latter condition is not
satisfied, it means that several parameter sets can reproduce the same observations. Concerning
the third condition, it corresponds to a necessary but not sufficient condition to obtain the stability
of the solution. It is important to mention the conditions of a well-posed inverse problem, as these
conditions are directly related to the identifiability analyses.
Grey-box model identification of a vehicle in free flight can be defined as the determination of a
model structure and the estimation of the unknown parameters contained in the chosen model
structure by integrating at different levels of the identification procedure a priori knowledge of the
system [Bohlin (2006)]. In both steps, we deal with an inverse problem which, due to the system
complexity and the constraints imposed by the input/output measurements, can be impossible to
solve if it is ill-posed or difficult to solve if it is ill-conditioned. These two inverse problems – choice
of model structure and parameter estimation – correspond respectively to two distinct concepts:
distinguishability and identifiability [Walter and Pronzato (1997)]. As herein the model structure
is derived from basic physical principles and assumed known, the problem is then reduced to the
parameter identification of a grey-box model.

3.2 Identification procedure

The grey-box identification procedure proposed herein and presented in Figure 3.1 was adapted
from [Franceschini and Macchietto (2008), Bohlin (2006), Walter and Pronzato (1997), Dobre et al.
(2008)] and intends the determination of the unknown parameter set. This procedure is composed
of several steps introduced below:

1. Defining the model structure and assessing its theoretical or a priori identifiability [Walter
and Pronzato (1997)] deals with the possibility to give a unique value to each parameter of the
chosen model structure. This analysis investigates the question of existence and uniqueness
of a solution to the parameter estimation problem, in an idealized framework, where the
system and model have identical structure (no characterization error), data are noise-free,
and input signals and measurement times can be chosen at will. This is only a necessary
condition which cannot guarantee successful parameter estimation from real data, but allows
to define a new parameter set p1 including the locally theoretically identifiable parameters.

2. A prior analysis, generally based on literature, must be carried out in order to provide initial
guess of the model parameters p1.

3. Model implementation into a simulation environment.

4. When the model is found to be a priori identifiable, an admissible experiment has to be
selected in order to collect the experimental data. In that direction, optimal input design al-
gorithms can be applied in order to choose the best input signal for the parameter estimation
step.

5. The a posteriori identifiability is a particular case of output distinguishability for a finite
collection of noise-free observations and a given input signal. Taking into account experi-
mental conditions, the sensitivity of output variables with respect to each parameter in the
parameter set p1 is computed. Based on the sensitivity of the output variables and numerical
properties of the empirical Fisher Information matrix, we can select a posteriori identifiable
parameter subset p2.
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6. The last step deals with the parameter estimation. The estimation criterion, defined for the
selected data series i, is given as follows:

Ji(p2) =
Ni∑
k=1

ny∑
j=1

ei,j(tk,p2)T · ei,j(tk,p2) (3.1)

with ei,j(tk,p2) the output error defined as

ei,j(tk,p2) = yi,j(tk)− ŷi,j(tk,p2) (3.2)

where tk is a specific measurement time-instant, with k ∈ 1, ..., N , yi,j(tk), i = 1, ..., ns and
j = 1, ...ny, represents the data measured during the ith free flight experiment, ŷi,j(tk,p2)
the corresponding simulated model output signals and ei,j(tk,p2)|k = 1, ..., N , is the output
error.

3.3 Prior knowledge and model implementation

The use of knowledge about the process makes it possible to improve the identification of the
unknown parameter set. Depending on the nature of the available knowledge, this information can
be integrated into several steps of the system identification procedure. Three types of knowledge
can be distinguished and are explained herein, and more widely detailed in the literature, see e.g.
[Defranoux (2001)]:

• the structural knowledge, based on physical laws describing the behaviour of the vehicle in
flight, namely the Newton’s and Euler’s laws to construct the mathematical model.

• the behavioural knowledge, which is related to the vehicle behaviour such as the spin rate,
the position of vehicle in space and the vehicle stability. Examples of such knowledge are
the rectilinear trajectories in the projectile case (meaning that the coordinates of the center
of gravity of the vehicle yE and zE will be close to zero) or the roll motion of the projectile
induced by the fin cant angle. Of course, this information is dependent on the studied vehicle
and is linked to the expertise in the ballistic/aerodynamic domains.

• the parametric knowledge, reflecting the possibility to give an initial guess to the unknown
parameter set of the considered model. The parameter initialisation of the aerodynamic
coefficient models can be crucial. It is based on literature results, CFD predictions, empir-
ical or semi-empirical codes and/or wind tunnel tests or a combination of these. All these
studies can give preliminary information in terms of order of magnitude and tendency of the
aerodynamic coefficients.

While the structural knowledge is mainly involved in the first step of the identification procedure,
the parametric knowledge gives an initialisation of the model parameters and will thus be utilized
in all the other steps (from step two to six) of the above mentioned procedure. The behavioural
knowledge allows to check if the simulated evolution of the state variables (through the use of the
mathematical model implemented into a simulation environment) is coherent with the knowledge
of the system, and is exploited in the last three steps of the identification procedure.

The mathematical model describing the behaviour of a vehicle in free flight defined in Chapter 2 was
implemented into a simulation environment, more precisely under Matlab/Simulink c© 1. The kernel

1. Simulink builds upon Matlab c©, MathWorks, Inc
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Figure 3.1: Identification procedure



3.4. Identifiability analysis 43

of the developed code is the 6 Degrees of Freedom (6DOF) model presented in equations (2.49-
2.52), integrating equally the aerodynamic coefficient descriptions w.r.t. the studied vehicles. The
model output variables correspond to free flight measurement signals, as defined in equations (2.53)
and (2.54). The Matlab/Simulink block diagram is presented in Figure 3.2 and the description of
each block is detailed in Table 3.1. The selected start and stop times in the simulator, as well as
time-instants are equivalent to those of the magnetometer measurements.

Model_Outputs

1

Model_Output_SelectionForce_Moment_Descriptions State_Output_Equations
Aerodynamics

States Aerodynamics Aerodynamics

States Forces

Moments

Forces

Moments

States

Magnetometers Magnetometers

Velocity

Model_Outputs

Figure 3.2: Matlab/ Simulink block diagram

Blocks Functions Equations

Aerodynamics - Define the state variables (V, α, β, ωx, ωy, ωz, φ, θ, ψ, xE , yE , zE)
- Calculate the main physical variables (M , αt) (1.1, 2.25)
- Describe the aerodynamic coefficients as functions of the M and αt for:

∗ the space vehicle model (2.34, 2.35, 2.37)
or

∗ the Basic Finner projectile (2.38-2.43)
Force Moment - Express the global force and moment coefficients (2.26, 2.29)
Descriptions
State Output - Describe the state equations (2.49-2.52)
Equations - Write the magnetometer equations (2.54)
Model Output - Selection of the considered model outputs:
Selection ∗ velocity (2.53)

∗ 3D magnetometer (2.54)

Table 3.1: Functions associated to Simulink blocks

3.4 Identifiability analysis

In many applications, model parameters are not directly measurable and can only be evaluated by
means of their influences on the measured data. A prerequisite of the parameter identification from
measured data is to know if the unknown parameters can be estimated from the defined model
structure and observations. This question can be evaluated at different levels through parameter
identifiability analysis. In the literature, several classifications of identifiability exist, having often
similar terminologies with different definitions as indexed in [Thomassin (2005), Dobre (2010)].
We refer herein to three classes as described in Figure 3.3: a priori identifiability, a posteriori
identifiability and practical identifiability.
Depending on the model structure, one can have local or global results 2 [Walter and Pronzato
(1997)]. Furthermore, a priori identifiability is defined in a qualitative manner, by knowing if
the model structure is identifiable or not, while a posteriori and practical identifiabilities allow to

2. Local and global analyses are defined w.r.t. the parameter space.



44 Chapter 3. Aerodynamic parameter identification

quantify it with a degree of identifiability [Bastogne (2008)]. For the present study, two classes are
analyzed, namely the a priori and a posteriori identifiability. The last class, practical identifiability,
takes into account the noise factor but is generally established for a given estimation criterion
[Dochain et al. (1995), Vanrolleghem et al. (1995)]. For that reason, this class of identifiability
is often linked to the theory of optimization in mathematics. More details about identifiability
analysis can be found in [Dobre (2010)].

Id
en
ti
fi
ab
il
it
y

Local
Global

a priori

identifiability
a posteriori

identifiability
practical

identifiability

Choice of the
model structure

M

Experimental
conditions:
u, tk

Experimental
conditions:
u, tk, vk

Figure 3.3: Classification of identifiability definitions, where M denotes the model structure, u
the input signals, tk the measurement times and vk the output noise

3.4.1 A priori identifiability analysis

The first identifiability class, also known as the theoretical or structural identifiability of model
parameters, analyzes the model structure M in an idealized framework where:

1. the system and model have identical structure (no characterization error);

2. data are noise-free;

3. input signals and measurement times can be chosen at will.

It examines the question of existence of the solution to the parameter estimation problem [Walter
and Pronzato (1997)], notion directly related to the first condition of a Hadamard well-posed
inverse problem. However, this is only a necessary condition which cannot guarantee successful
parameter estimation based on real data.
The a priori identifiability condition is defined as follows: given a model structureM, a parameter
pl is a priori globally identifiable in p∗ ∈ P if ∃(u,x0) ∈ U×Rnx satisfying [Walter and Pronzato
(1997)]:

yM (tk,p,u) = yM (tk,p∗,u) ∀tk ∈ T =⇒ pl = p∗l (3.3)

with l ∈ 1, . . . , np and for all p∗ ∈ P ⊂ Rnp .
Respectively, the local a priori identifiability tests this condition in a neighbourhood of p∗ for
p∗ ∈ V (p∗) ⊂ Rnp . As the a priori identifiability is analyzed before experiment, no quantitative
values can be associated to p∗, and it is then studied for all the possible values p∗ in P.

Several methods for linear or nonlinear model structures exist to analyze the a priori or theoretical
identifiability of model parameters and/or initial conditions [Perasso (2009)]. They are based on
analytical of algebraic approaches such as state isomorphisms [Peeters and Hanzon (2005)], power
series expansions [Walter and Pronzato (1997)] or differential algebra [Audoly et al. (2001), Ljung
and Glad (1994), Saccomani et al. (2003)]. By considering that the parameters p of the model
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are a special kind of state variables satisfying ṗ = 0, the local theoretical identifiability problem is
defined as a particular case of observability. In this sense, Sedoglavic has developed an algorithm
for testing local observability, relied on the differential algebra and it is based on the existence of
algebraic relations between state variables and successive derivations of the inputs and the outputs
[Sedoglavic (2002)]. It was implemented under the symbolic computation software MAPLE and
returns the number of non-identifiable parameters and that means that the remaining parameters
p1 are locally theoretically identifiable. A description of this tool as well as an example of the
observability test is presented in Appendix C.

3.4.2 A posteriori identifiability analysis

The input design and experimental conditions are often subject to technical and/or economical
constraints. In such restrictive experimental frameworks, even if a parameter is a priori identifiable,
it may not be so in practice, due to a lack of information in the available observations. The existence
of the solution must then be verified from available data. The second class of identifiability, namely
the a posteriori identifiability is a particular case of the output distinguishability for a finite
collection of noise-free observations and given time instants, input signals and initial conditions,
imposed by the experiments. The working assumptions are then defined as:

1. the system and model have identical structure (no characterization error);

2. data are noise-free;

3. input signals, initial conditions and measurement times are imposed by the experimental
conditions.

The a posteriori identifiability condition can be stated in a general manner as follows: given
a model structure M with given input signals u and initial conditions x0, a parameter pl is a
posteriori identifiable, if the following condition is satisfied [Walter and Pronzato (1997)]:

yM (tk,p,u) = yM (tk,p∗,u) ∀tk ∈ T =⇒ pl = p∗l (3.4)

with l ∈ 1, . . . , np and for almost all p∗ ∈ P ⊂ Rnp . In other words, the objective is to know
whether this identical input-output behaviour implies that the parameters p of the model equal
those of the physical process p∗. For nonlinear models, this a posteriori identifiability condition is
valid only locally in a neighborhood V (p∗) of the true parameter values. The previous condition
can also be expressed as

np∑
l=1

∂y (tk,p,u)
∂pl

∣∣∣∣
p∗︸ ︷︷ ︸

sy/pl (tk,p
∗,u)

·dpl = 0 =⇒ dp = 0 (3.5)

where sy/pl (tk,p∗,u) is the sensitivity function of the output variable y (tk,p∗,u) w.r.t. the
parameter pl, for fixed input signals u and at a specific time instant tk. The difference is denoted
by dp = p − p0, where p0 is the nominal value vector. As this application is characterized by
the absence of an input signal, for simplification reasons, the variables u will be omitted in the
following equations.
The sensitivity analysis is an approach commonly used to assess the identifiability of the parameters
from experimental conditions. It is employed in order to define if data contain enough information
to identify the parameters. As the sensitivity functions are defined by partial derivatives, dependent
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of the time range or the nominal parameter values for example, sensitivity results will be local
only.

The parameters and output variables may have different measurement units and/or orders of
magnitude. Generally, it is recommended to normalize the sensitivity functions sy/pl(tk,p

∗) w.r.t.
the parameters, the outputs, or both variables. In the present study, it is normalized w.r.t. both
variables defined as

s̃y/pl(tk,p
∗) = sy/pl(tk,p

∗) · p∗l
|y (tk,p∗) |1

(3.6)

with |.|1 the L1 norm.
Taking into account the two previous equations, the parameters p2 are considered to be locally a
posteriori identifiable if the empirical Fisher Information Matrix F is full rank, where F is defined
as

F = S̃y (p∗)T · S̃y (p∗) (3.7)
with S̃y (p∗) ∈ RN×np the sensitivity matrix defined as

S̃y (p∗) =


s̃y/p1 (t1,p∗) s̃

y/p2
(t1,p∗) . . . s̃y/pnp (t1,p∗)

s̃y/p1 (t2,p∗) s̃y/p2 (t2,p∗) . . . s̃y/pnp (t2,p∗)
...

... . . . ...
s̃y/p1 (tN ,p∗) s̃y/p2 (tN ,p∗) . . . s̃y/pnp (tN ,p∗)

 (3.8)

For multiple system outputs, the matrix F is computed based on a global sensitivity matrix S̃y
given by

S̃y =
[

S̃y1(p∗) S̃y2(p∗) . . . S̃yny (p∗)
]T (3.9)

where S̃yj (p∗) represents the normalised sensitivity matrix of the output variable yj , j = 1, · · · , ny,
w.r.t. the parameters p∗ and ny corresponds to the number of output variables.
However, if the rank of the empirical Fisher Information Matrix F is not full, one must select the
a posteriori identifiable parameters. In that direction, several procedures exist in the literature
[Weijers and Vanrolleghem (1997), Yao et al. (2003), Banks et al. (2013)] and are based on two
conditions that must be satisfied:

(C1) the output variables have to be sufficiently sensitive to individual changes in each parameter
of p2;

(C2) the sensitivity functions must be linearly independent, as changes in the model output due
to a parameter variation may be compensated by appropriate changes in other parameters.

Several sensitivity measures allow to quantify the condition C1 [Brun et al. (2002), Li et al. (2004)],
as for example:

δmsqrl =
√

1
N

s̃Ty/pl s̃y/pl = 1√
N
· |̃sy/pl |2 (3.10)

δmabsl = 1
N

N∑
k=1
|s̃y/pl(tk,p

∗)| = 1
N
· |̃sy/pl |1 (3.11)

δmeanl = 1
N

N∑
k=1

s̃y(tk, pl) (3.12)

δmaxl = max
k

s̃y(tk, pl) (3.13)

δminl = min
k
s̃y(tk, pl) (3.14)
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As this first condition takes into consideration only the individual change of a parameter on
the output variables, the identifiability analysis must be completed with the evaluation of the
collinearity effects between sensitivity functions. The second condition C2 corresponds to a hybrid
classification criterion by considering a collinearity index γK , computed for all the parameter
subsets. The classification can be based on the minimisation of the JE criterion (also known as
the Modified E criterion), defined as

JE(K) = cond (F) = cond(S̃y (pK)T · S̃y (pK)) (3.15)

where cond(F) represents the condition number of the Fisher Information Matrix. The condition
number evaluates the dependency of the solutions w.r.t. observations. An important condition
number reveals a sensitivity of the solution to measurement uncertainties. In this case, the problem
can be well-posed but ill-conditioned, that makes the problem resolution more complex. In an
equivalent manner, the collinearity index γK can be defined as the condition number of the global
sensitivity matrix instead of the Fisher Information matrix, as follows

γK = cond
(
S̃y (pK)

)
(3.16)

This index is computed for all possible parameter subsets pK with K ≤ np, and it characterizes
the degree of linear dependency between the sensitivity functions of the output variables w.r.t. the
parameters in pK .
The parameter set pK is considered to be a posteriori identifiable if it presents low to moderate
collinearity index γK and indicative thresholds are given below [Belsley et al. (2005)]:

5 ≤ γK < 10 low collinearity
30 ≤ γK ≤ 100 moderate collinearity
γK ≥ 100 strong collinearity

(3.17)

The individual and global sensitivity matrices, expressed respectively in equations (3.8) and (3.9),
can be computed w.r.t. model parameters pa and/or initial conditions of the state variables x0. For
sufficiently simple models, the a posteriori identifiability analysis can combine model parameters
pa and initial conditions x0. However, for complex models, it is recommended [Banks et al. (2007)]
to split the investigation in two stages:

1. the analysis of the output sensitivity w.r.t. initial conditions x0, for fixed model parameters;

2. the analysis of the output sensitivity w.r.t. the model parameters pa, for fixed initial condi-
tions.

The second step investigates only the identifiability of the model parameters pa. Compared with
the initial conditions x0 which are specific for each trial, model parameters must be representative
of all the experimental cases. The experimental conditions are however different from one test to
another, and then, the relevance of model parameters can vary, depending on the selected case.
Therefore, identifiability of pa can be performed by considering several experimental cases together
to increase the number of identifiable parameters [Yao et al. (2003)]. The main advantage of the
proposed approach is to reveal the parameter sensitivity on a larger envelope of the experimental
conditions. In this case, the global sensitivity matrix is defined as

ns S̃y =
[

1S̃y1(p∗
a) 1S̃y2(p∗

a) . . . 1S̃yny
(p∗
a) 2S̃y1(p∗

a) . . . 2S̃yny
(p∗
a) . . . ns S̃yny

(p∗
a)
]T

(3.18)

where i., i =, ..., ns, represents a selected free flight test case.
In practice, a second approach can be used as mentioned in [Yao et al. (2003)], based on a priori
knowledge of the system. The goal is to work with pre-selected parameters, defined as key pa-
rameters to be estimated from an output. However, we should ensure that the parameters can be
determined from the data.
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3.4.3 Identifiability analysis - application to space probe models

This section is dedicated to the local identifiability evaluated at p0 of the model structure de-
scribing the behaviour of a re-entry space vehicle in free flight, presented in Chapter 2, through
the techniques introduced in Section 3.4. Three aerodynamic coefficients are considered, the drag
coefficient CD, the pitch moment coefficient slope Cmα and the pitch damping coefficient Cmq.
The pitch moment coefficient slope Cmα was not studied in the present work, however it can be
obtained through CFD predictions.
As a reminder, the proposed drag and the pitch damping coefficient descriptions, presented in
Section 2.4.4.1, are functions of the Mach number and the total angle of attack αt, as

CD (M,αt) = CD0 + CD1 M + CD2 M
2 + CD3 sin2 αt + CD4 sin4 αt + CD5 M sinαt (3.19)

Cmq (M,αt) = Cmq0 +Cmq1 M
∗+Cmq2 M

∗2 +Cmq3 sin2 αt+Cmq4 sin4 αt+Dα (αt− ᾱt)2
+ (3.20)

The parameter set to identify is then

p = p{sv}/pmα =

 x0,
pD,
pmq

 =

 V0, α0, β0, ωx0, ωy0, ωz0, φ0, θ0, ψ0,
CD0, CD1, CD2, CD3, CD4, CD5,
Cmq0, Cmq1, Cmq2, Cmq3, Cmq4, Dα

 (3.21)

and is composed of the initial conditions of the state variables x0 and the model parameters
pa = [pD,pmq] describing the drag and the pitch damping coefficients.

For example, it is well-known that the drag coefficient can be directly obtained from the Doppler
radar data due to its strong dependency on the velocity [Lieske and al. (1972), Chen et al. (1997)].
In this sense, it is mainly determined for fixed Mach numbers or as a function of the Mach number
only [Dutta et al. (2008)]. However, in studies where the incidence angles can reach high values
during the flight, their effects on aerodynamic coefficients are no longer negligible. In such cases,
all the influential variables must be considered to describe the coefficients for obtaining accurate
and interpretable values. Moreover, it has been noticed that the estimation of the pitch damping
coefficient Cmq, characterizing the dynamic stability of a flying vehicle, encounters difficulties.
Indeed, several studies illustrate the shortcomings of the CFD simulation and/or wind tunnel
experimental results in determining this coefficient [Murman and Aftosmis (2007), Gülhan et al.
(2011)], generally possible only for small angles of attack. Previous studies on the determination of
Cmq based on experimental data and using two existing parameter identification codes ARFDAS
and CADRA (Comprehensive Automated Data Reduction and Analysis) have shown disagreements
[Schoenenberger et al. (2009)]. Thus, the pitch damping coefficient identification from free flight
data is a challenging problem to solve.
For these reasons, identifiability studies must be carefully investigated before applying the estima-
tion step.

The four considered output variables yj(tk), j = 1, . . . , 4, correspond to radar and 3D magnetome-
ter signals described in equations (2.53) and (2.54), respectively.

3.4.3.1 A priori identifiability results

By considering the mathematical model, namely the state equations (2.49-2.52), the output equa-
tions (2.53-2.54) and the aerodynamic coefficient descriptions recalled in (3.19) and (3.20), we
applied the Sedoglavic’s algorithm for testing local a priori identifiability [Sedoglavic (2002)]. It
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returns the number of non-identifiable parameters which, in this case, was null. This means that
all the considered parameters p are locally theoretically identifiable and thus,

p1 = p =
[

x0, pD, pmq
]

(3.22)

3.4.3.2 A posteriori identifiability results

Let us detail now the a posteriori identifiability results obtained for the space probe application
case. As already mentioned, this analysis allows to take into account the experimental conditions
and is able to quantify the identifiability of the unknown parameters. The local sensitivity functions
of the output variables w.r.t. the parameters p1 were symbolically computed and further integrated
in the Simulink model. For the computation of the individual and global sensitivity matrices, the
five free flight experimental conditions presented in Table 1.4 have been used. As seen in equation
(3.22), the parameter set p1 is composed of the model parameters pa = [pD,pmq] and initial
conditions of the state variables x0.
The computation of the empirical Fisher Information Matrix (for individual and global sensitivity
matrices) concluded in a rank-deficient matrix. For example, for test case 5, considering a combined
(model parameters and initial conditions) analysis leads to a condition number of the F matrix
varying from 8.66 ·1014 to 2.21 ·1034 for the Fi matrices, with i = 1, · · · , 4, while the global matrix
has a condition number of 1.31 · 1013. This means that all the parameters included in p1 cannot
be estimated at the same time. In the next sub-sections, the analysis will consider separately the
sensitivity w.r.t. model parameters and initial conditions.

Sensitivity analysis w.r.t. initial conditions

In order to check the a posteriori identifiability of the initial conditions x0, the model parameters
have to be considered fixed, and were initialized based on literature and aerodynamic coefficient
database existing at ISL. As a reminder, the initial condition vector is defined as

x0 = [V0, α0, β0, ωx0, ωy0, ωz0, φ0, θ0, ψ0] (3.23)

Testing the a posteriori identifiability for nonlinear model is not an easy task, hence the require-
ment of having a physical representation of the behaviour of a vehicle in free flight and a priori
knowledge. Such information allows to know nonlinear functional relations between parameters,
to impose initial guess of the parameters and interpret the obtain results. We have computed the
sensitivity measure δmsqrl expressed in equation (3.10) for each output variable yi, i = 1, · · · , 4 and
w.r.t. the unknown initial conditions x0. However, in the case of nonlinear models, the obtained
results for the condition C1 must be carefully interpreted. This is due to the nonlinear relations
between parameters which affect also the sensitivity functions and thus, the results of the condition
C1 analysis. Based on a priori knowledge, the main comments are the following:

• the most influential parameter on the radar output is the initial velocity V0;

• the radial magnetometer signals, Hy,body and Hz,body, are mainly sensitive to the initial roll
rate ωx0 and roll angle φ0.

Distinct approaches can be used to determine the identifiability of initial conditions x0 from
condition C2, and results are given for test case 5 as an example:

• without a priori knowledge: by considering four output variables expressed in equa-
tions (2.53-2.54), the initial conditions x0 and the identifiability condition C2 pre-
sented in the previous section, we have concluded to six linearly independent parameters
[V0, α0, ωx0, ωy0, ωz0, φ0] with a collinearity index γK equal to 124. To increase the number of
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identifiable parameters, additional outputs were considered. One can note that by using the
3D high speed trajectory tracker system, the lateral positions yE and zE can be determined.
By considering yE as additional output, we obtain seven linearly independent parameters
[V0, α0, β0, ωx0, ωy0, ωz0, φ0], giving one parameter more, with a collinearity index γK of 158.
The remaining initial conditions θ0 and ψ0 are determined using the nearly rectilinear tra-
jectory hypothesis. Indeed, the translational kinematic equations ẏE and żE are considered
equal to zero. By resolving these equations at the initial time, θ and ψ can be described
w.r.t. the incidence angles α, β and the roll angle φ [Stengel (2004), Cook (2012)] and then,
a relationship between their initial conditions can also be defined.

• with a priori knowledge: by considering the a priori knowledge of the system to analyze
condition C2, we considered in a first step only the radar and the radial magnetometer
signals V , Hy,body and Hz,body, as outputs. With pre-selected parameters, three linearly
independent parameters [V0, ωx0, φ0] can be defined with a collinearity index γK of 50. These
parameters are considered known and the remaining initial conditions are analyzed in a
second step by considering the four outputs. We concluded to six linearly independent
parameters [α0, β0, ωy0, ωz0, θ0, ψ0] with a collinearity index γK of 18.

Sensitivity analysis w.r.t. model parameters

Concerning the identifiability of model parameters, condition C1 was analyzed and here again
concluded to coherent results with the a priori knowledge in the domain. It was detected that the
parameter pD describing the drag coefficient CD are mainly influencing the first output signal y1,
namely the radar signal, whereas the pitch damping parameters pmq have a most relevant effect
on the output signals y2, y3, y4, namely the magnetometer signals. One of our previous study on
the pitch damping coefficient [Albisser et al. (2013)] has shown that the term in sin4 αt related to
the parameter Cmq4 is not identifiable from magnetometer signals, and the same conclusion was
made for the drag coefficient parameter CD4 on the radar signal.

The individual radar sensitivity matrix have been computed w.r.t. the model parameter pD
describing the drag coefficient CD. Depending on the considered test case, the collinearity index of
the output variable y1 w.r.t. model parameters pD varies from 1.29 ·104 to 7.53 ·104. Furthermore,
it was noticed that the condition number is improved by considering several experimental tests.
Figures 3.4 illustrate the collinearity index γK of the velocity signal for each dimension of subsets
contained in pD in a logarithm (log10) scale, by considering the five test cases in Figure 3.4a and
by considering only the test case 3 as an example in Figure 3.4b. The minimal γK is represented
by square markers and the dotted lines represent the thresholds defined in (3.17). One can note
that the condition number, calculated based on the global sensitivity matrix in equation (3.18),
is smaller by taking into account multiple tests for evaluating the sensitivity function collinearity.
This study concludes that the largest a posteriori identifiable subset from radar data is composed
of [CD0, CD1, CD2] with a collinearity index of 158 by taking into account all the experimental
conditions.

The global magnetometer sensitivity matrices have been computed w.r.t. the model parameter
pmq describing the pitch damping coefficient Cmq. Depending on the considered test case, the
collinearity index is varying between 1.70 · 103 and 4.83 · 103.
For the same reasons as previously, multiple data series were considered for the sensitivity analysis
and thus, the global sensitivity matrix in equation (3.18) was employed to calculate the collinearity
index. Figures 3.5 illustrate the collinearity index γK of the magnetometer signals for each dimen-
sion of subsets contained in pmq in a logarithm (log10) scale, by considering the five test cases in
Figure 3.5a and by considering only the test case 3 in Figure 3.5b. The minimal γK is represented
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(b) Test case 3

Figure 3.4: Classification of parameters based on the γK collinearity index of the velocity output
variable w.r.t. drag coefficient parameters pD subsets

by square markers and the dotted lines represent the thresholds defined in (3.17). Here again, it
can be observed that the collinearity index is smaller by taking into account multiple tests. It
led to the outcome that all the remaining parameters describing Cmq are a posteriori identifiable
from magnetometer signals, with a collinearity index equivalent to 185 by considering all the ex-
perimental conditions. This remark is confirmed by considering the parameter Dα describing the
spline contribution in the pitch damping coefficient description. This parameter is considered only
when αt is greater than 10◦ and due to the experimental conditions of some test cases, this value
is not always reached on the flight path. In that case, sensitivity analysis will concluded that Dα

is not or less identifiable whereas it is just not defined on the flight envelope of these test cases.
However, this parameter can be identified from additional tests with total angle of attack values
greater than 10◦. As this analysis takes into account experimental conditions, it is more convenient
to cover a larger flight envelope, especially in terms of Mach number and total angle of attack.
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Figure 3.5: Classification of parameters based on the γK collinearity index of the magnetometer
output variables w.r.t. pitch damping coefficient parameters pmq subsets

The identifiability analysis gives the parameters pa,2 as identifiable based on the outputs with

pa,2 = [pD,2,pmq,2] = [CD0, CD1, CD2, Cmq0, Cmq1, Cmq2, Cmq3, Dα] (3.24)
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Therefore, identifiability analysis leads to the following main conclusions:

• the a priori identifiability analysis showed that all the parameters can be considered as
locally identifiable. This implies that the model structure is well posed in the Hadamard
sense;

• as the empirical Fisher Information Matrix was found to be rank deficient, two classification
criteria were further used in order to select the a posteriori identifiable parameters and the
initial conditions x0 and the model parameters were analyzed separately;

• with the integration of a priori knowledge, we obtain sensitivity functions w.r.t. x0 which
are linearly independent and thus, all the initial conditions can be identified;

• all the model parameters, except the parameters CD4 and Cmq4, are sufficiently sensitive to
influence at least one output variable and eight of them can be considered as being linearly
independent;

• the sensitivity matrix computed based on multiple data series showed a better condition
number and therefore improves the identifiability of the parameters;

• the identifiability results are coherent with a priori knowledge in the domain.

3.5 Estimation of aerodynamic parameters

This section details the employed strategy for the aerodynamic parameter estimation. A 6DOF
code already exists at ISL for the aerodynamic coefficient determination but presents several
limitations, especially concerning the aerodynamic coefficient representations. They are described
in a tabular form, for fixed values of Mach numbers or total angles of attack αt. For this reason
and in order to improve the accuracy and the understanding of the estimated coefficients, a new
inverse 6DOF code included several improvements was developed.

The parameter estimation is achieved through the use of the developed code, denoted as Inv6DoF,
implemented under Matlab/ Simulink. The model implementation was presented in Section 3.3 and
a Matlab code was developed and integrated into the tool to proceed to the aerodynamic parameter
estimation from a single and/or a multiple fit strategy. The parameters are estimated by using
a traditional iterative nonlinear Least Squares method. The a posteriori identifiability is meant
to guide the estimation process. The identifiability analyses proposed to check the identifiability
of the initial conditions x0 and the model parameters pa in two stages. For the same reasons, an
estimation procedure composed of two distinct steps and illustrated in Figure 3.1 was applied:

1. the first step, defined as a single fit estimation strategy, aims at determining the initial con-
ditions x0,2 and the aerodynamic coefficients C[x] for each data series i, with i = 1, · · · , ns.
This step is considered as an intermediate phase to mainly determine the initial conditions
of each trial. To obtain preliminary aerodynamic values, the coefficients C[x] are estimated
in a tabular form, for fixed Mach number or total angle of attack values.

2. the second step is dedicated to the estimation of the aerodynamic coefficients, described as
polynomial functions dependent of the state variables and model parameters pa, based on
several data series. To increase the probability that the coefficients define the vehicle’s aero-
dynamics over the entire range of test conditions and to improve the accuracy of the estimated
coefficients, a multiple fit strategy was considered. As all the free flight tests are conducted
with the same vehicle, this strategy attempts to obtain meaningful aerodynamic coefficients
evolution as a function of the Mach number and the total angle of attack which should be
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valid for all test cases. Moreover, it allows to cover a larger envelope of variation of both
variables and provides a common set of aerodynamic coefficients that are determined from
multiple data series simultaneously analyzed, that gives a more complete spectrum of the
vehicle’s motion. As identifiability analysis based on a combination of data sets improves the
number of identifiable parameters, this strategy will also improve the parameter estimation.
The combination of multiple data series was already used to provide a better representa-
tion of the flight envelope and improve the estimated aerodynamic coefficients [Dupuis and
Hathaway (1997)] but only in a tabular form for constant Mach numbers. Several techniques
were presented in the literature [Leith et al. (1993)] by using superposition, concatenation or
multiple cost approaches. The last one is the most adapted to the case of nonlinear systems
and allows to preserve all the information revealed through single fit identification.
The multiple cost function approach was applied and the estimation criterion for the second
step is then defined as follows:

J̄(pa,2) =
ns∑
i=1

Ji(pa,2) (3.25)

where pa,2 are the a posteriori identifiable parameters describing aerodynamic coefficients.

3.6 Concluding remarks

In this chapter, the proposed grey-box model identification procedure for the aerodynamic pa-
rameter estimation has been presented. It is composed of six main steps, from the definition of
the model structure to the parameter estimation issue. The intermediate steps are the model
implementation and the identifiability analysis. The implemented model represents the kernel
of the inverse 6DOF code developed in the frame of this study. As the structure of the model
is nonlinear, the identifiability results are only local. Nevertheless, if the identifiability results
are carefully interpreted, they allow to guide the estimation process. They brought to light the
complexity of the analysis when initial conditions and model parameters are considered and when
nonlinear dependency between parameters is observed. It was also shown that using multiple data
sets for the sensitivity analysis allowed to increase the number of identifiable parameters. In this
sense, the same strategy was used for the parametric estimation of the aerodynamic coefficients.
The multiple fit strategy presents many advantages as covering a larger flight envelope, in terms
of Mach numbers and total angles of attack, and obtaining meaningful aerodynamic coefficients
valid for several test cases.
Even if the identifiability analyses were performed only for the space probe case, similar conclusions
can be made for the projectile concerning the initial conditions. For the projectile aerodynamic
coefficients, simplified descriptions were used due to the limited number of trials to validate poly-
nomial descriptions. This is more widely explained in the next chapter dedicated to the application
results for space probe and projectile cases.
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Chapter 4

Application results and discussions

Free flight tests were performed for two different applications: an Earth re-entry space vehicle and
a projectile. Guided by identifiability results, parameters describing the aerodynamic coefficients as
well as the state variable initial conditions can be estimated based on free flight data. Application
results that highlight the key features of both configurations are presented in this chapter. They
mainly include the comparison between the measured and the simulated magnetometer signals,
the evolutions of the simulated attitude angles and total angle of attack, as well as the estimated
aerodynamic coefficients. The latter were at first determined for each single flight then improved
by using a multiple fit strategy. Furthermore, in the case of the projectile, the axial position and
the pitch angle obtained from radar data and on-board sensor technique respectively, are compared
to those determined from images extracted from high speed video systems. Results are analyzed
and discussed to compare the relevant variables influencing the behaviour in free flight of the space
probe with the projectile. Aerodynamic coefficients determined during these studies are in good
agreement with literature data.

During the different test campaigns, the measured data consist in the velocity obtained from a
Doppler radar and the signals obtained from 3D magnetometer sensor. These signals are used for
the parameter estimation by means of the Inv6DoF code, developed during this thesis.

4.1 Space probe

Several free flight tests were conducted at the ISL open range test site with re-entry space models,
as summarized in Table 1.4. Initial launch Mach numbers were equal to 2.0 and 3.0 with initial
angles of attack 1 of 0◦ and 3◦ . An example of typical measured signals are presented in Figure 4.1.
Figure 4.1a presents raw signal data as a function of time obtained from the three magnetometers
in combination with the velocity profile obtained from the radar data. Position A indicates the
location of the muzzle exit and position B the location of the recovery system. An enlarged view
of the magnetic signals between 40 and 160 ms is shown in Figure 4.1b in which very small pertur-
bations of the signals can be observed as indicated by positions C and D. These discontinuities are
due to the presence - along the fireline - of two sky screens, disturbing the Earth magnetic field in
their vicinities. They are necessary for the corrections of the rotation velocities of the trajectory
tracker mirrors. These perturbations of the magnetometer signals can be considered as negligible
as they have very low amplitude and cover a time range of about 4 ms.

1. As a reminder, this initial angle of attack, denoted by α0, corresponds to the incidence angle into the sabot.
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Figure 4.1: Measured signals for the space probe at M0 = 2.0 and α0 = 3◦

As mentioned previously, the vehicle will be considered in free flight only when the model is flying
without anymore interaction with the sabots petals. Moreover, magnetic signals can be disturbed
by the magnetic effects in the vicinity of the gun platform and the gun tube. It is therefore more
convenient to process data after a position of about 10 meters of the flight path. In this sense,
signals are considered from an initial time t0 different from ignition time.
For illustrative purposes, only two test cases are presented in Figures 4.2 and 4.3. They consist of:

• test case 2: a spinning model with an initial Mach number of 2.0 and an initial angle of
attack of 0◦;

• test case 4: a spinning model with an initial Mach number of 3.0 and an initial angle of
attack of 0◦;

Figures 4.2 and 4.3 show the evolution of the velocity as well as the amplitude and frequency of
the axial and the two radial magnetometer signals as a function of time for test case 2 and test
case 4, respectively. In both cases, measurements were considered for model identification after
t = 30 ms corresponding to the time-instant where the models are considered to be in free flight.
The range of variation of the signal amplitude corresponds to supply voltage varying from 0 to 3.3
volts.
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Figure 4.2: Evolution of magnetometer and radar signals of a spinning case at M0 = 2.0, α0 = 0◦
(test case 2)
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Figure 4.3: Evolution of magnetometer and radar signals of a spinning case at M0 = 3.0, α0 = 0◦
(test case 4)

The velocity evolution shows a significant speed decrease of about 650 m/s to 310 m/s for test
case 2 and of about 953 m/s to 430 m/s for test case 4. This decrease is due to the high vehicle
drag generated by blunt bodies. The difference in flight time between the two test cases over an
equal flight distance is due to the lower initial Mach number for test case 2. The axial magnetic
signal gives the projection of the angle of attack in a plane defined by the flight direction and the
orientation of the Earth magnetic field. The radial signals give primary an indication of the roll
position and therefore of the spin rate. The curved shapes of the radial signals indicate that the
model is spinning on at least one complete rotation as seen in Figure 4.2 whereas two complete
rotations can be observed in Figure 4.3. The corresponding spin rate can be quantified by rotation
per minute (rpm), deduced from the radial signals are equal to 143 rpm and 384 rpm, respectively.

4.1.1 Model’s ability to reproduce the measured output signals

Based on the measured data and guided by the identifiability results, as explained in the previous
chapter, the model parameters were estimated. The estimated parameters are then simulated
in the full nonlinear model, presented in Section 3.3. The model outputs are compared to the
measured outputs.
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A comparison between the velocity model output and the radar measurement is presented in
Figure 4.4 for test case 2. Radar data is mainly influenced by the initial velocity V0 and the drag
coefficient. In this sense, the simulated velocity is compared to the radar measurement after the
estimation of the initial velocity for each trial and of the drag coefficient parameters based on a
multiple fit strategy. To compare the performance, it is more relevant to present the cost function
values than to plot the output residual 2 shown on top of Figure 4.4. As the velocity values have
an order of magnitude of a few hundreds, the sum of output residuals at each time-instant can
increase very quickly. Thus, the estimation criterion defined for the second step of the estimation
stage is adapted from equation (3.25) and described as

J̄N (pD) =
ns∑
i=1

Ji(pD)
Ni

(4.1)

After the estimation of the parameters describing the drag coefficient by considering the five
test cases, J̄N (pD) is equal to 0.497. The cost function value for each test case are presented in
Table 4.1. These errors between the measured and simulated velocities are considered as acceptable
compared to the order of magnitude of the velocity.
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Figure 4.4: Simulated and measured velocity of a spinning case at M0 = 2.0, α0 = 0◦ (test case 2)
and the associated output residual

test case 1 test case 2 test case 3 test case 4 test case 5
Ji(pD)/Ni 0.158 0.108 0.119 0.031 0.081

Table 4.1: Cost function between simulated and measured velocity of the five test cases

The pitch damping coefficient was estimated based on a multiple fit strategy from magnetometer
data. The comparison between the measured and the simulated magnetometer signals for test case
2, denoted y2, y3, y4 in the previous chapters, is presented in Figure 4.5a for the axial signal and
in Figure 4.5b for the first (solid line) and second (dashed line) radial ones.

2. In this chapter, the output residual is always drawn in terms of percentage error by which differs the simulated
signal from the measured signal.
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The same comparison between the measured and the simulated magnetometer signals, for test case
4 is presented in Figures 4.6. For both cases, their associated output residuals are shown on the
top of these figures. The fit between the measured and the simulated signals can be considered as
very good as shown by the output residuals between the two curves. This difference is small and
quite sufficient for the determination of the angular motion history.
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Figure 4.5: Simulated and measured magnetometer signals of a spinning case at M0 = 2.0, α0 = 0◦
(test case 2) and the associated output residuals
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Figure 4.6: Simulated and measured magnetometer signals of a spinning case at M0 = 3.0, α0 = 0◦
(test case 4) and the associated output residuals
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4.1.2 Evolution of the state variables

4.1.2.1 Total angle of attack and Mach number

The evolution of the total angle of attack αt and the Mach number profile as a function of time are
illustrated for test case 2 and test case 4 in Figures 4.7 and 4.8, respectively. As the Mach number
and the incidence angles correspond to the variables of the aerodynamic coefficient descriptions,
their variations during flight are significant of the vehicle behaviour.

One can observe that Mach numbers decrease from the supersonic regime at M = 1.97 to the
transonic regime at M = 0.94 for test case 2 and from M = 2.87 to M = 1.3 for test case 4.

Concerning the total angle of attack, one can see an increase from αt = 2.8◦ to αt = 17.9◦ for
test case 2 and from αt = 1.6◦ to αt = 14.6◦ for test case 4. This behaviour is representative of a
statically stable model with an undamped linear motion or divergent oscillatory incidence motion
that could be dynamically unstable. For the same initial angle of attack α0 = 0◦, the higher angle
of attack between test case 2 and for test case 4 is due to the different initial velocities.
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Figure 4.7: Evolution of the total angle of attack and the Mach number of a spinning case at
M0 = 2.0, α0 = 0◦ (test case 2)
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Figure 4.8: Evolution of the total angle of attack and the Mach number of a spinning case at
M0 = 3.0, α0 = 0◦ (test case 4)
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4.1.2.2 Polar motion

Figures 4.9 and 4.10 show, in black, the three dimensional plots of the angular motion as a function
of axial position xE for test case 2 and test case 4, respectively. These motions can be compared
to the motions observed from the movies obtained by the high speed video system. The attitude
components, i.e. pitch and yaw angles, are shown by the blue and green lines, respectively. When
moving downrange, the model exhibits a rapid growth of the pitch and yaw angles in both direction.
This behaviour is confirmed by the two dimensional projection of the pitch and yaw, known as
polar motion or polar diagram, is drawn in red.

-21

-14

-7

0

7

14

21

0
50

100
150

200
250

-21

-14

-7

0

7

14

21

ya
w a

ngle
 (°

)

axial position (m)

p
itc

h
 a

n
g

le
 (

°)

pitch angle

yaw angle

polar diagram

Figure 4.9: Evolution of Euler angles of a spinning case at M0 = 2.0, α0 = 0◦ (test case 2)
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Figure 4.10: Evolution of Euler angles of a spinning case at M0 = 3.0, α0 = 0◦ (test case 4)
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For test case 2, the model starts to oscillate from small angles equal to about 3 degrees to larger
angles equal to about 15 degrees at the end of the flight. The shape of the polar diagram can be
compared to an undamped linear epicycles with loops over the origin that looks like an epitrochoid.
For test case 4, the model seems to behave the same way as for test case 2, starting from small to
large angles but more randomly. In this case the polar diagram looks more like an hypotrochoid.
Usually, hypotrochoid motions are more representative of fin stabilized shells while spin stabilized
shells behave more like epitrochoids.

4.1.3 Parametric estimation of the aerodynamic coefficients

As mentioned in Chapter 3 Section 3.4.3, the a posteriori identifiable vector p2 is composed of
seven or nine initial conditions, depending on the used approach by integrating or not the a priori
knowledge, and eight model parameters describing the drag and pitch damping coefficients, given
as follows

pa,2 = [pD,2,pmq,2] = [CD0, CD1, CD2, Cmq0, Cmq1, Cmq2, Cmq3, Dα] (4.2)

One of the main objective of the present study was to identify of the aerodynamic coefficients
based on multiple data series. Therefore, only the second step of the estimation task discussed in
Section 3.5 will be presented and concerns the parametric estimation of the aerodynamic coefficients
obtained through the multiple fit strategy. The aerodynamic characteristics are determined from
five different experimental tests presented in Table 1.4 for a Mach number ranging between 0.9
and 3.0 with initial angles of attack α0 of 0◦ and 3◦. The measurements obtained during these
five trials have been used to estimate the a posteriori identifiable parameters pa,2 and validate the
proposed polynomial descriptions of the aerodynamic coefficients.

4.1.3.1 Drag coefficient

The model parameters pD describing the drag coefficient CD in equation (2.34) can be estimated
based on radar data. As a reminder of identifiability results, the parameter CD4 is not sensi-
tive enough to influence the radar data and is fixed to zero. However, only the parameter set
[CD0, CD1, CD2] verifies the second condition of the identifiability analysis and can be simultane-
ously estimated. As the radar data is also sensitive to the remaining parameters [CD3, CD5], an
iterative estimation was used to identify also parameters depending on the total angle of attack.
That allows to refine the tendency of the drag coefficient w.r.t. the influential variable αt.
The evolution of the drag coefficient CD is represented in Figures 4.11. The estimated drag
coefficient values, plotted in full lines, varying between 1.3 and 1.55, can be explained by the large
velocity decrease during the flight as already observed in Figures 4.2 and 4.3. In Figure 4.11a, the
drag coefficient is presented as a function of the Mach number, for constant total angles of attack.
As expected, the drag coefficient is maximum for αt = 0◦ and tends to decrease with increasing
total angle of attack. For each constant αt, one can observe that CD is roughly constant over
the studied flow regimes with a maximum around M=2.0. The obtained results are compared to
CFD predictions, displayed in dotted lines. One can see that CFD predictions indicate a shift at
M = 1.5 whereas the estimated coefficient shows a variation in tendency at M = 1.5 but also
around M = 2.0. Indeed, this can be explained by the fact that among all the test cases used
for the multiple fit estimation only two test cases with an initial Mach number of 3.0 influence
the drag coefficient in the Mach range between 2.0 and 3.0. Figure 4.11b represents the drag
coefficient as a function of the total angle of attack for constant Mach numbers. The estimated
drag coefficient is decreasing with increasing total angle of attack and the maximum drag values
is observed for M=2.0. Despite a small difference in magnitude between CFD and the current
results, the estimated coefficient has a similar tendency and results are consistent with a priori
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knowledge. This means that the polynomial description of the drag coefficient is representative
enough of the expected values.
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Figure 4.11: Estimated drag coefficient CD based on multiple data series compared to CFD
predictions

4.1.3.2 Pitch damping coefficient

The model parameters pmq describing the pitch damping coefficient Cmq in equation (2.37) can be
estimated based on the 3D magnetometer data. As a reminder of identifiability results, Cmq4 can be
fixed to zero due to its negligible influence on the magnetometers as already explained in Chapter 3
Section 3.4.3.2. The remaining pitch damping coefficient parameters [Cmq0, Cmq1, Cmq2, Cmq3, Dα]
are considered a posteriori identifiable from magnetometer data.
The estimated values of the pitch damping coefficient Cmq are represented in Figures 4.12. Such
a representation of the pitch damping coefficient gives an indication on the dynamic stability of a
vehicle in flight. Positive Cmq values indicate a dynamically unstable vehicle while negative values
imply a dynamically stable vehicle.
It has to be noted that to estimate the pitch damping coefficient Cmq, several constraints were
imposed on the values of the parameters pmq. This constraint envelope, displayed in dotted lines,
is illustrated in Figures 4.12 and are considered sufficiently reasonable and representative of the
expected values without being too restrictive. In Figure 4.12b, it may be noted a change in the
envelope tendency at M = 2.5, mainly due to the variable M∗ = M −Mref in the Cmq description
in equation (2.37) that depends of the constant term Mref = 2.5.
The evolution of the pitch damping coefficient Cmq shows that the dynamic instabilities are a
complex function of Mach number and incidence. Indeed, in Figure 4.12a that shows the pitch
damping coefficient plotted as a function of the total angle of attack for constant Mach numbers,
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Figure 4.12: Estimated pitch damping coefficient Cmq based on multiple data series and the lower
and upper curves of the constraint envelope

one can note that models are dynamically unstable at M=1.0 and for all angles of attack. With
increasing the Mach number, dynamic stability is increasing and become neutrally or completely
stable for M=2.5 and M=3.0. These results are confirmed in Figure 4.12b where the Cmq coefficient
is plotted as a function of the Mach number for constant total angles of attack. Models stay
dynamically unstable for Mach numbers smaller than 2.0 and for αt less than 10 degrees. For
αt = 20◦, models are dynamically or neutrally stable except for M ≤ 1.15. This behaviour is
consistent with the expected tendency already observed during previous studies on the dynamic
stability performed for different blunt atmospheric re-entry configurations [Schoenenberger et al.
(2009), Winchenbach et al. (2002)].
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4.2 Projectile

Several free flight tests were carried out at the ISL open range test site with the Basic Finner
projectile, as summarized in Table 1.5. Initial Mach numbers were equal to 1.3, 1.8 and 2.6, with
initial angles of attack α0 of 0◦ and 4◦, fin cant angles of 0◦ and 2◦ and two different center of
gravity positions Xcg1 and Xcg2. The following results are presented in a similar manner than for
the space probe. Five test cases were selected:

• test case 1: a non spinning projectile with M0 = 2.6, α0 = 4◦, δ = 0◦ and Xcg2;

• test case 2: a spinning projectile with M0 = 2.6, α0 = 0◦, δ = 2◦ and Xcg1;

• test case 3: a spinning projectile with M0 = 2.6, α0 = 4◦, δ = 2◦ and Xcg1;

• test case 4: a spinning projectile with M0 = 1.8, α0 = 4◦, δ = 2◦ and Xcg1;

• test case 5: a spinning projectile with M0 = 1.8, α0 = 4◦, δ = 2◦ and Xcg2;

Two examples of measured signals are presented. Figures 4.13 and 4.14 show the evolution of the
velocity as well as the axial and two radial magnetometers signals as a function of time for test
case 1 and test case 4, respectively. The range of variation of the signal amplitude corresponds to
supply voltage varying from 0 to 3.3 volts in Figure 4.13 and from 0 to 5 volts in Figure 4.14.
In both cases, it can be observed that the velocity decrease is very small on the flight path time,
and is of 93 m/s for test case 1 and of 95 m/s for test case 4. This decrease is due to the low drag
that exhibits projectiles. The difference in flight time between the two test cases over an equal
flight distance is due to the lower initial Mach number for test case 4.
The magnetic signals give exactly the same information as for the space probe. Figure 4.13
represents magnetometer signals of a non spinning projectile having a fin cant angle δ = 0◦. The
small slope of the radial signals indicates that the model is rotating but at a very slow spin rate
of about 143 rpm that could be induced by disturbances occurring during the phase of sabot
separation. Figure 4.14 shows the magnetometer signals for a spinning case with fins canted at
δ = 2◦. In this case, rotation of 6684 rpm is well indicated by the high frequency of the attitude
of the radial output signals.
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Figure 4.13: Evolution of magnetometer and radar signals of a non spinning projectile at M0 = 2.6,
α0 = 4◦, δ = 0◦, Xcg2 (test case 1)
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Figure 4.14: Evolution of magnetometer and radar signals of a spinning projectile at M0 = 1.8,
α0 = 4◦, δ = 2◦, Xcg1 (test case 4)

4.2.1 Model’s ability to reproduce the measured output signals

Based on the measured data, the estimated parameters are simulated in the nonlinear model and
the model outputs are compared to the measured outputs.
Radar data is mainly influenced by the initial velocity V0 and the drag coefficient. In this sense,
the simulated velocity is compared to the radar measurement after the estimation of the initial
velocity for each trial and of the drag coefficient parameters based on a multiple fit strategy. For
illustrative purposes, a comparison between the velocity model output and the radar measurement
is presented in Figure 4.15 for test case 2 with the associated output residual.
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Figure 4.15: Simulated and measured velocity of a spinning case at M0 = 2.6, α0 = 0◦, δ = 2◦,
Xcg1 (test case 2) and the associated output residual

By considering equation (4.1) and the four test cases with a fin cant angle of 2◦ (test cases 2 to 5),
J̄N (pD) is equal to 0.045. The cost function values for each test case are presented in Table 4.2.
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These errors between the measured and simulated velocity are very small compared to the order
of magnitude of the velocity.

test case 2 test case 3 test case 4 test case 5
Ji(pD)/Ni 0.0035 0.0081 0.0151 0.0188

Table 4.2: Cost function between simulated and measured velocity of the four test cases

The comparison between the measured and the simulated magnetometer signals for test case 1 is
presented as a function of time in Figure 4.16a for the axial magnetometer, in Figure 4.16b for
the first radial magnetometer and in Figure 4.16c for the second radial magnetometer. The same
comparison between the measured and the simulated magnetometer signals, for test cases 2 and
5 are presented in Figures 4.17 and 4.18, respectively. For the three test cases, their associated
output residuals are shown on the top of these figures.
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Figure 4.16: Simulated and measured magnetometer signals of a non spinning case at M0 = 2.6,
α0 = 4◦, δ = 0◦, Xcg2 (test case 1) and the associated output residuals
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For the non spinning test case 1, the fit between the measured and the simulated axial signals in
Figure 4.16a is very good except at the time where the measured signals are slightly disturbed by
the presence of the sky screens and represented by small peaks. The output residuals between the
measured and the simulated magnetometer signals are higher for the radial magnetometers than
for the axial magnetometer, as observed in Figures 4.16b and 4.16c. Despite this difference, the
agreement between the measured and the simulated radial magnetometers can be considered as
very good.

For the spinning test case 2 shown in Figures 4.17, output residuals are a bit larger at the beginning
of the flight. However, for all magnetometers the differences between measured and simulated
signals remain very small, and the fits can also be considered as very good.

For the spinning test case 5 shown in Figures 4.18, the amplitude variations are larger than for
test cases 1 and 2 due, in this case, to the maximum power supply voltage set at 5 volts. As
for the previous test cases, output residuals are again very small and the fit is sufficient for the
determination of the angular motion history.
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Figure 4.17: Simulated and measured magnetometer signals of a spinning case at M0 = 2.6,
α0 = 0◦, δ = 2◦, Xcg1 (test case 2) and the associated output residuals
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Figure 4.18: Simulated and measured magnetometer signals of a spinning case at M0 = 1.8,
α0 = 4◦, δ = 2◦, Xcg2 (test case 5) and the associated output residuals

4.2.2 Evolution of the state variables

4.2.2.1 Total angle of attack and Mach number

The evolution of the total angle of attack αt and the Mach number profile as a function of time
are illustrated for test cases 1, 2 and 5 in Figures 4.19, 4.20 and 4.21, respectively. For all three
cases, one can observe a linear velocity decrease with a very small difference in Mach number that
is equal in average to about 0.25.
By comparison of the three figures, evolution of the total angles of attack αt indicates a fast
damping and is decreasing along the flight path, from αt = 6.71◦ to αt = 0.38◦ for test case 1,
from 1.35◦ to 0.03◦ for test case 2 and from 11.04◦ to 0.4◦ for test case 5.
These evolutions represent a behaviour of statically stable projectiles. The difference in the total
angle of attack amplitude at the beginning of the flight between test case 1 and test case 2 is
due to the initial angle of attack α0. The difference between test case 1 and test case 5 is due to
the higher initial disturbances occurring at lower Mach numbers. Despite the different flight time
between all cases, one can note that the frequency of the angle of attack is equivalent between the
non spinning case and the spinning cases.
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Figure 4.19: Evolution of the total angle of attack and the Mach number of a non spinning case
at M0 = 2.6, α0 = 4◦, δ = 0◦, Xcg2 (test case 1)
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Figure 4.20: Evolution of the total angle of attack and the Mach number of a spinning case
at M0 = 2.6, α0 = 0◦, δ = 2◦, Xcg1 (test case 2)
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Figure 4.21: Evolution of the total angle of attack and the Mach number of a spinning case
at M0 = 1.8, α0 = 4◦, δ = 2◦, Xcg2 (test case 5)
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4.2.2.2 Polar motion

Figures 4.22, 4.23 and 4.24 show, in black, the three dimensional plots of the angular motion as
a function of axial position xE for test cases 1, 2 and 5, respectively. The attitude components,
i.e. pitch and yaw angles, are displayed in blue and green lines, respectively. The two dimensional
projection, known as polar motion or polar diagram, is shown in red.
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Figure 4.22: Evolution of Euler angles of a non spinning case at M0 = 2.6, α0 = 4◦, δ = 0◦, Xcg2
(test case 1)
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Figure 4.23: Evolution of Euler angles of a spinning case at M0 = 2.6, α0 = 0◦, δ = 2◦, Xcg1
(test case 2)
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Figure 4.24: Evolution of Euler angles of a spinning case at M0 = 1.8, α0 = 4◦, δ = 2◦, Xcg2
(test case 5)

For the three test cases, the range of variation of the pitch and yaw angles are equivalent to their
respective total angles of attack evolution. The polar motion is representative of a stable projectile
with a fast damped circular conical motion around the origin of the Earth coordinate system. The
same trend is observed for non spinning and spinning cases.

4.2.2.3 Comparison with complementary methods

For the projectile studies, the 3D high speed video system, presented in sub-section 1.4, was used.
This system was designed and developed not only to determine the attitude but also the 3D
position of the vehicle along the flight path. The principle is to simultaneously capture sequences
of images from both trackers, analyzed afterwards by image processing. In this sense, the position
and the attitude, i.e. Euler angles θ and ψ, of the projectile in free flight can be determined. This
complementary knowledge about the projectile behaviour in flight makes it possible to validate the
results obtained from the on-board sensor technique. By extracting the position, the flight path
γ and heading ξ angles can be determined. Relations between these angles with incidence and
Euler angles can be formulated as α = θ− γ and β = ξ−ψ [Stengel (2004)]. This simplification is
valid only when no rotation is observed and then, φ near of zero. In this sense, the comparison is
done for the non spinning case 1. Figure 4.25 shows snapshots of the sabot separation extracted
from the two trajectory trackers and Figures 4.26 present an example of a picture extracted from a
high speed video tracker, in Figure 4.26a before image processing and in Figure 4.26b after image
processing. Details of the image processing procedure used for this application are given in [Portier
(2014)].

Figures 4.27 show the axial position xE obtained by image processing from the 3D high speed
videos analysis and from radar signal. In Figure 4.27a, the axial position as a function of time is
represented on the complete flight path while in Figure 4.27b, an enlarged view of the left bottom
corner of Figure 4.27a is shown, indicated by the little square. A very good agreement is observed
between the measured and determined position and the position determined from the two cameras
can be considered as satisfactory.
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Figure 4.25: Snapshots of sabot separation obtained from the two trajectory trackers

(a) Before image processing (b) After image processing

Figure 4.26: Example of a picture extracted from a high speed video tracker
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Figure 4.27: Comparison of the axial position determined by image processing and from radar
signal
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Figure 4.28 presents the comparison between the simulated pitch angle θ based on 3D magnetome-
ter data and the results obtained by image processing of the 3D high speed videos. A small shift
can be observed, mainly due to the difficulty to exactly synchronize the initial time of the cameras
and the sensor signals. However, these results are coherent in phase and magnitude and confirm
for the future that the two techniques are complementary.
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Figure 4.28: Comparison of the pitch angle determined by image processing and simulated from
sensor data

4.2.3 Parametric estimation of the aerodynamic coefficients

The first results of aerodynamic coefficient estimation were presented in [Albisser et al. (2014)],
based on the free flight data set available at the time. During the last year, additional trials,
presented in Table 1.5, were carried out at the ISL open range test site to complete the test
matrix and used for the aerodynamic coefficient estimation. Estimation results for projectiles
with fins canted at 2◦ will only be presented in this sub-section.
The aerodynamic coefficients are described in a polynomial form as a function of the Mach number
and the total angle of attack, as presented in equations (2.38-2.43). However, two main elements
can be pointed out to query the use of a polynomial description and a multiple fit strategy for
the aerodynamic coefficient estimation, based on the available test cases. Due to the very low
velocity decrease already observed in Figures 4.13 and 4.14 on the flight path, a large amount
of experiments for different initial Mach numbers should be conducted to increase the covered
Mach number range and precisely determined the aerodynamic coefficients from a multiple fit
estimation, especially in the transonic phase. In free flight it is well known that the transonic
flow regime is characterized by highly nonlinear aerodynamic coefficients that can exhibit special
features in the range of Mach numbers between 0.8 and 1.2. Therefore and in order to detect
accurately some of the transonic phenomenon, if existing, multiple trials need to be performed in
a domain as large as possible that covers the transonic Mach numbers. However, in the frame of
this study, only experiments with three different initial Mach numbers of 1.3, 1.8, 2.6 were carried
out and thus, the available test cases do not cover enough Mach number values to represent with
enough accuracy the transonic phase. Moreover, as observed in Figures 4.19 to 4.21, the total
angle of attack decreases quickly along the flight path and due to its small values, the impact of
the terms dependent of this variable in the polynomial description can be neglected compared to
those dependent on the Mach number.
Even if no identifiability studies were performed for the projectile case, the same conclusions as
for the space probe can be done in terms of influential parameters, namely V0 and CD mainly
influence the radar signal and the magnetometer signals are sensitive to the moment coefficients.
Therefore, to analyze if the available data is sufficient for a multiple fit estimation based on a
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polynomial description of the aerodynamic coefficients, it was in a first time tested and applied
to the drag coefficient estimation from the radar data of test cases with δ = 2◦.

The other aerodynamic coefficients were estimated from the magnetometer data by considering
each trial independently. Several free flight tests at M0 = 1.3, 1.8 and 2.6 and δ = 2◦ were
considered for the aerodynamic coefficient estimation. Each coefficient was determined in a tabular
form for fixed Mach numbers. As the Mach number decrease is very small over the full flight time,
estimated coefficients of each free flight test case are given only for an averaged Mach number,
representative enough of the entire flight. These results are presented in Table 4.3 and illustrated
in Sections 4.2.3.2 to 4.2.3.5. A distinction is made between the estimated coefficients from test
cases with a center of gravity position Xcg1 defined by yellow markers and those with a center
of gravity position Xcg2 defined by blue markers. Comparisons are also made with previous free
flight (FF) tests results from single and multiple fit [Dupuis and Hathaway (1997), Dupuis (2002)],
wind tunnel tests (WT) [Dupuis (2002)], PRODAS and CFD predictions.

Averaged
Mach number

Clp Clδ Cmα Cmq

1.25 -23.69 10.40 -36.70 -432.31
Test cases with 1.77 -22.37 11.06 -24.93 -417.87
a c.g. position 1.79 -23.09 11.26 -23.40 -382.20
Xcg1 ( ) 2.59 -14.52 7.38 -11.98 -368.69

2.61 -15.30 7.38 -12.12 -382.67
1.27 -24.54 10.91 -34.88 -316.25

Test cases with 1.76 -22.70 11.43 -19.50 -303.36
a c.g. position 1.80 -21.61 10.83 -20.61 -211.32
Xcg2 ( ) 2.47 -18.29 8.69 -7.51 -239.20

2.54 -14.43 7.62 -8.26 -313.30

Table 4.3: Estimation results of the moment aerodynamic coefficients

4.2.3.1 Drag coefficient

The drag coefficient was the subject of an estimation investigation based on a multiple fit strategy.
As mentioned previously, the velocity decay is very small over the total flight time. Due to the
lack of information in the transonic flow regime to accurately characterize the evolution of the
drag coefficient from multiple free flight data, only test cases with initial Mach numbers of 1.8 and
2.6 were considered.
Therefore, to estimate and validate the proposed polynomial description of the drag coefficient,
CD was determined from four experimental tests, corresponding to test case 2 to test case 5, for
Mach numbers ranging between 1.52 and 2.6, with initial angles of attack of 0◦ and 4◦ and with
fin cant angles of 2◦.
The drag coefficient parameters pD in equation (2.38) are estimated from the radar data. One
can note that the estimated parameter relative to sin4 αt is negligible compared to the other
parameters, and thus, was fixed to zero.
In Figure 4.29a, the drag coefficient is expressed as a function of the Mach number, for constant
angles of attack. For all αt, the estimated values are decreasing between 1.0 and 0.5 with increasing
Mach number. As expected and in contrast to the space probe application, the lowest drag was
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Figure 4.29: Estimated drag coefficient CD based on multiple data series compared to CFD
predictions

obtained for αt = 0◦. Results present a good agreement in tendency and only small differences
in values can be observed compared to CFD predictions, especially for M = 2.6 and αt = 0◦ and
3◦. Indeed, all the theoretical cases cannot be experimented and these combinations are never
represented in the experimental context.
In Figure 4.11b, the evolution of the drag coefficient is presented as a function of the total angle
of attack for constant Mach numbers. For all constant M and as expected, the drag is increasing
with increasing total angle of attack. For the same reasons as mentioned previously and despite
a small difference in amplitude observed for M=2.62 and for αt smaller than 5◦, the comparison
with the CFD predictions shows a similar tendency and a good coherence. For the selected test
cases to proceed to the drag coefficient estimation based on a multiple fit strategy, the polynomial
description in equation (2.38) is representative enough of the expected values in the supersonic
regime.

4.2.3.2 Roll moment coefficient

The estimated roll damping coefficient Clp is given in Figure 4.30 as a function of the Mach number.
As expected, this coefficient is not sensitive to the center of gravity position. As already mentioned,
the estimation from the free flight tests performed during this study cannot reveal the tendency
described by PRODAS predictions in the transonic regime. Despite a bit of scattering around
M=2.6, the present estimated values are coherent with PRODAS predictions and the single and
multiple fit free flight (FF) data [Dupuis (2002)].
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Figure 4.30: Roll damping coefficient Clp

Figure 4.31 illustrates the roll moment coefficient due to fin cant Clδ as a function of the Mach
number. To compare the estimated results for different cant angles, Clδ is given per radian. As
for the roll damping coefficient, this coefficient is not sensitive to the center of gravity position. It
was well determined and shows a very good agreement with results obtained from free flight and
wind tunnel tests.
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Figure 4.31: Roll moment due to fin cant Clδ

4.2.3.3 Pitch moment coefficient slope

The evolution of the estimated pitch moment coefficient slope Cmα w.r.t. the center of gravity
positions Xcg1 and Xcg2 as a function of the Mach number is illustrated in Figure 4.32. This
coefficient is representative of the static stability. Positive values reveal a statically unstable
projectile while negative values imply a statically stable projectile. As expected, static stability
is decreasing with increasing Mach number. This is an indication that fins become less effective
for the higher Mach numbers. As it is known, this coefficient is very dependent on the center of
gravity position. Indeed, a decreased stability is seen with moving the center of gravity position
from 60%, corresponding to Xcg1, towards 65%, relative to Xcg2, from the nose. It is for this
reason that the obtained results must be compared in values to previous one for the same center
of gravity position. The available results already published in the literature are given for a center
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of gravity position different of both considered in this study, and correspond to the red markers.
However, they could be useful for a comparison in terms of tendency. The estimated Cmα for
both center of gravity positions are coherent with PRODAS results predicted for the same center
of gravity position and presents a good agreement in tendency compared to free flight and CFD
results for a different center of gravity position. Differences in Cmα are well estimated and as
expected decreased stability is seen with moving the c.g. position from Xcg1 to Xcg2. The negative
values confirm, as expected, that the projectile is statically stable for all Mach numbers.
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Figure 4.32: Pitch moment coefficient slope Ccgmα

4.2.3.4 Normal force coefficient

In exterior ballistic studies, it is more common to present the normal force coefficient slope, CNα =
CN

sinα than the lift coefficient slope CLα. This is mainly due to the possibility to compare directly
the results with the measured normal force from wind tunnels. For the determination of the normal
force coefficient slope, two distinct methods can be used. The first one supposes its estimation
based on the measurements of the forces acting on the body and that can be obtained by means
of accelerometers. The second method is based on the pitching moment difference obtained from
projectiles with two different center of gravity positions. As the accelerometer data were not
processed in this study, the second approach was employed. In this sense, CNα can be obtained
for either rotating and/or non-rotating bodies based on the following equation

L

d
· CNα = (Ccg1mα − Ccg2mα)

(Xcg1
L
− Xcg2

L
)

(4.3)

where L represents the model length and d the model diameter.

Table 4.4 summarizes the normal force coefficient values determined with this method and Figure
4.33 shows the evolution of this coefficient as a function of the Mach number. As expected CNα
is decreasing with increasing Mach number. This tendency is due to the fins which become less
effective when the Mach number increases. The scattering in the results at all velocities is very
small and the determined coefficients agree very well with previous results obtained from free flight
and wind tunnel tests, CFD and PRODAS predictions.
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Mach number 1.1 1.59 1.72 2.45 2.5
CNα 21.04 13.03 11.13 9.01 10.17

Table 4.4: Determined normal force coefficient slope
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Figure 4.33: Normal force coefficient slope CNα determined from Ccg1mα and Ccg2mα

4.2.3.5 Pitch damping coefficient

Figure 4.34 presents the estimated pitch damping coefficient Cmq as a function of the Mach number.
For this coefficient, dispersions are higher than for the other coefficients. This is mainly due to
the fact that it is the most difficult coefficient to estimate due to its poor sensitivity to outputs.
This coefficient is representative of the dynamic stability: a large negative value indicates that the
projectile behaves as dynamically stable. Despite the higher scattering, the general trend can be
observed. Projectiles are dynamically less stable with increasing the Mach number. As for Cmα,
the effect of the center of gravity position is not negligible. Indeed, projectiles are dynamically less
stable when the center of gravity position is moving from 60% towards 65% from the nose. Here
again, present results are consistent and agree well with already published results.
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4.3 Discussions

In this chapter, several results have been described for a space probe and a projectile. Comparisons
between simulated and measured signals, parameter estimation results, as well as the evolution of
state variables have been presented. The aerodynamic characteristics for the space probe and the
projectile present several differences. Both architectures have their own behaviour in flight that
can be highlighted:

• velocity and drag coefficient: the space vehicle velocity decreases very quickly along the flight
path while the projectile velocity decay is very small. These results reveals higher drag values
for the space probe than for the projectile, as seen in Sections 4.1.3.1 and 4.2.3.1. Indeed,
the order of magnitude of the drag coefficient for the space probe is almost two to three
times higher than for the projectile. Also for the space probe, the drag is decreasing with
increasing total angle of attack while it is increasing for projectile;

• total angle of attack: for the space vehicle, the total angle of attack αt is usually increasing
along the flight path whereas αt is decreasing for the projectile. For the first model, this
variable can reach angles higher than 20◦ depending on the test case. For the second model,
the order of magnitude of αt is equivalent to the initial angle of attack α0 and it tends to
decrease during the flight until values close to zero. These evolutions can be representative
of the stability of both models;

• dynamic stability: the dynamic stability, represented by negative values of the pitch damping
coefficient Cmq, is satisfied only for specific Mach numbers and total angles of attack as
seen in Section 4.1.3.2. For projectiles, it is well-known that this model is perfectly stable
dynamically and this was confirmed by the results shown in Figure 4.34.

• spin rate: for equivalent velocities, even if a spin is induced for the space probe, the roll rate
is clearly not comparable to the projectile with canted fins;

The obtained results are perfectly coherent with a priori knowledge in the exterior ballistic do-
main and already published results in the literature, from wind tunnel measurements and/or
aerodynamic predictions codes. Therefore, the developed code for the aerodynamic coefficient de-
termination takes into account enough relevant effects to be representative of the real behaviour
in flight and can be used for both architectures.
The proposed multiple fit strategy for the parameter estimation has improved the physical inter-
pretability of the coefficients depending on Mach numbers and total angles of attack. The identified
coefficients were validated for both architectures over a large range of variation of M and αt. The
aerodynamic coefficient estimation results based on a multiple fit strategy presented herein are
consistent with the ones obtained previously for similar configurations. For the space probe, they
essentially show that the drag coefficient is represented by a function of the Mach number and the
total angle of attack with a coupling term in both variables. The pitch damping coefficient is a
complex function not only of the total angle of attack, but also of the Mach number.
For the projectile, only the drag coefficient was the subject of a multiple fit strategy and CD is
mainly described as a function of the Mach number and slightly influenced by a term in αt. For
the remaining aerodynamic coefficients, a dependence only w.r.t. Mach numbers is representative
enough of the coefficient evolution.
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The work presented in this thesis is associated to the exterior ballistic framework. This domain
aims at studying and understanding the behaviour of a vehicle in flight through the aerodynamic
coefficients characterizing it. Several complementary tools can be used to quantify the aerody-
namic parameters. However, free flight tests are considered as reference because they allow to
study the vehicle behaviour in flight under real conditions. This research subject deals with the
identification of aerodynamic coefficients from free flight data. To bring this project to a successful
end, the proposed approach consisted in a wise merging between the experimental context and the
identification techniques. Thus, an identification procedure was defined to guide the aerodynamic
parameter estimation, composed of several steps, from the modelling of the behaviour of a vehicle
in free flight to the aerodynamic parameter estimation.

The determination of aerodynamic characteristics remains dependent of the quality and quantity
of the data obtained experimentally. Therefore, the study choices are mainly guided by the ex-
perimental conditions and the available data. Chapter 1 described the experimental context from
the design and conception of the two different model configurations, an Earth re-entry space ve-
hicle and a fin-stabilized projectile, to the free flight tests. In terms of experimental conditions,
only the initial Mach number and initial angle of attack can be defined. With the support of the
skills at ISL, the expertise necessary for the experimental part is essential to obtain free flight
data by means of different measurement techniques. In the present study, they are precisely the
radar and three-axis magnetometer measurements, collected by using two different data acquisition
approaches, depending on the studied vehicle.

The proposed identification procedure allows to define a guideline of the studies to manage. Chap-
ter 2 presented the first step of the identification procedure that consists in the physical modelling.
The behaviour of a vehicle in flight is expressed as a six degrees of freedom nonlinear state-space
representation. The general model structure is obtained from flight mechanics laws. Our interest
was mainly focused on the descriptions of the aerodynamic coefficients integrated in the model
and adapted to each application. Some descriptions already exist in the literature and in order to
keep a physical meaning of the parameters, polynomial descriptions as function of Mach numbers
and total angles of attack were selected. However after multiple preliminary identification tests,
we concluded that they do not reveal enough information of the aerodynamic coefficient evolution.
With the purpose of keeping a physical meaning of the parameters, a modified aerodynamic coeffi-
cient model was suggested with coupled dependency in state variables and spline functions. In this
sense, the model was constructed from a grey-box approach with the integration of parametrized
functions describing the aerodynamic coefficients, where the parameters must be estimated from
free flight data. The chosen model structure was implemented in the developed inverse 6DOF
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code, where initial conditions of the state variables and parameters describing the aerodynamic
coefficients can be estimated from free flight data.

The determination of aerodynamic parameters based on measured data is an inverse problem
which can be impossible to solve if it is ill posed or difficult to solve if it is ill conditioned. That
involves several identifiability tests of a unknown parameter set composed of the initial conditions
and the model parameters, to ensure that they can be estimated from the chosen model structure
and the available data. These studies correspond to the a priori and a posteriori identifiability
analyses, respectively. They represent a major step of the identification procedure presented in
Chapter 3. These analyses were performed for the space vehicle case and a priori identifiability
concluded to a well-posed model structure. A posteriori identifiability analysis managed through
sensitivity analysis allows to guide the parameter estimation, and mainly highlights the most rel-
evant parameters which can be determined from free flight data. This task is not easy in the case
of nonlinear models, where only local results can be obtained, hence the requirement of having a
physical representation of the behaviour of a vehicle in free flight and a priori knowledge. Such
information allows to know nonlinear functional relations between parameters, to impose initial
guess of the parameters and interpret the obtain results. It was shown that using a priori knowl-
edge of the system increases the number of identifiable initial conditions of the state variables.
Concerning the a posteriori identifiability of the parameters describing the aerodynamic coeffi-
cients, it revealed that the number of identifiable parameters increases when several free flight
tests are considered. This conclusion is coherent with the a priori knowledge, as free flight tests
were managed for different initial experimental conditions in order to have distinct behaviours in
flight, mainly in terms of total angle of attack evolution. Taking into account the identifiability
results, the estimation was divided in two steps: the first one meant to determine essentially the
state variable initial conditions for each test separately, while the second step proposed to estimate
the aerodynamic coefficients through a multiple fit strategy. This approach, successfully applied
to both applications, enabled to characterize the coefficients on a larger range of flight conditions.

Chapter 4 presented and discussed the main results of aerodynamic coefficient estimation based
on single and/or multiple fit strategy, as well as the evolution of the output signals and the state
variables. For the space probe case, the drag and pitch damping coefficients were described in a
polynomial form as function of the Mach number and the total angle of attack. Guided by the
identifiability analysis, the model parameters were estimated from a multiple fit strategy. For
the projectile, the experimental conditions and available data are limited in terms of range of
variation of the Mach number and the total angle of attack. Therefore, this makes it difficult to
describe the aerodynamic coefficients in a polynomial form, analyze the identifiability and estimate
the model parameters from multiple fit strategy. For this reason and as preliminary testing,
only the drag coefficient was described as a function of the Mach number and the total angle
of attack. The parameters were determined from a multiple fit strategy only in the supersonic
flow regime. The other aerodynamic coefficients were estimated in a tabular form for constant
Mach numbers and by considering each trial independently. For both applications, estimation
results compare well with the results obtained previously for similar configurations. Moreover,
simulated and measured output signals present a very good agreement after state variable initial
conditions and aerodynamic coefficient estimation, that reinforces the employed procedure for the
parameter identification and the ability of the model to reproduce the measured output signals. For
projectiles, very good agreement is observed for results obtained from the different measurements
techniques, namely the axial position and the pitch angle from radar data and on-board sensor
technique, respectively, compared to high speed trajectory tracker system. This complementary
measurement technique allows to validate our results by comparison with those obtained by image
processing on 3D high speed videos. To justify the difference of behaviour in flight of these two
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vehicles, a comparison between the Earth re-entry space vehicle and projectile was done, in terms
of aerodynamic characteristics and their variable evolutions.

The different studies in the frame of this thesis mainly led to scientific contributions in the ex-
terior ballistic domain through the development of an identification procedure. This allowed the
implementation of a new inverse 6DOF code, Inv6DoF, to identify aerodynamic characteristics
from free flight data, including:

• a model structure characterizing precisely the behaviour of a vehicle in free flight;

• a complete descriptions of the aerodynamic coefficients as a function of the Mach number and
the total angle of attack, especially for the space probe where the drag and the pitch damping
coefficients are described with coupled state variables and spline functions, respectively;

• the sensitivity functions to evaluate the parameter identifiability from single or multiple data
series;

• an estimation code to determine the aerodynamic coefficients from a single or a multiple fit
strategy.

Perspectives

In the continuity of the present investigations, future works can be suggested.

It could be useful to extend the works dealing with the identification procedure, so far only tested
for two configurations. It could also be adapted to other architectures, such as gyro-stabilised
projectiles.

An interesting area of study would be the analysis of the behaviour of a vehicle in flight in the
transonic flow regimes, especially for the Basic Finner projectile. It is characterized by highly
nonlinear aerodynamic coefficients that can exhibit special features in the range of Mach numbers
between 0.8 and 1.2. Moreover, the assumption of negligible aerodynamic coefficients, for example
the Magnus moment coefficient slope, is generally no longer valid in transonic regime and these
coefficients should be integrated in the modelling step.

Concerning the measurement techniques, the use of accelerometers will enable to have access to
information about the forces acting on the vehicle. In addition, the promising results obtained
by image processing from 3D high speed video encourage us to continue our studies, especially in
terms of lateral position and yaw angle determination.

The longer term objective of this work is to combine the identification techniques with control
tools. In that respect, we are currently exploring several descriptions of the nonlinear dynamics
system of a vehicle in flight such as a Linear Parameter Varying (LPV) model [Marcos (2001),
Fujimori and Ljung (2006), Tóth (2010), Theodoulis et al. (2010)]. This choice of modelling is
motivated by the fact that the use of LPV design techniques could ease the integration of LPV
controller in the case of guided vehicle. Taking into account that the parameters have a physical
interpretation, it would be interesting to use an LPV state-space representation.This would require
the use of more complex identification method [Mercère (2012), Laroche et al. (2011), Wills and
Ninness (2011), Verdult et al. (2004)] but several issues are still open.
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Appendix A

Modelling - complementary
information

This appendix provides basic background for transformation matrices from a frame to another,
rotational kinematic equations development or vehicle attitude representations. These following
details complete the modelling part, presented in Chapter 2.

A.1 Transformation matrices

The most common method to proceed to a transformation from a frame to another is the applica-
tion of a sequence of attitude angle rotations. From Earth to body axes, the purpose is to bring
OxE ,yE ,zE into coincidence with Ox,y,z. Attitude angles are a particular application of Euler angles,
by considering rotations about each axis through φ, θ and ψ successively, as described in Figure
A.1. This procedure is composed of the following steps [Cook (2012)]:
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Figure A.1: Euler angles
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The first movement is a roll angle rotation φ about Ox axis, as

Ox = Ox2

Oy = Oy2 cosφ+Oz2 sinφ
Oz = − Oy2 sinφ+Oz2 cosφ

where Ox2,y2,z2 represents an intermediate frame. In a matrix form, these equations are written Ox
Oy
Oz

 =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 Ox2

Oy2

Oz3

 (A.1)

In the same way as previously, a pitch angle rotation θ about Oy2 axis is performed Ox2

Oy2

Oz2

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 Ox1

Oy1

Oz1

 (A.2)

where Ox1,y1,z1 is a second intermediate frame.
The sequence is completed by a yaw angle rotation ψ about Oz1 axis Ox1

Oy1

Oz1

 =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 OxE
OyE
OzE

 (A.3)

By successive substitutions of equations (A.1), (A.2) and (A.3), the transformation from Earth to
body axis components is given by Ox

Oy
Oz

 =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


︸ ︷︷ ︸

R1(φ)

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


︸ ︷︷ ︸

R2(θ)

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


︸ ︷︷ ︸

R3(ψ)

 OxE
OyE
OzE

 (A.4)

and can be noted

Ox,y,z = R1(φ)R2(θ)R3(ψ)OxE ,yE ,zE (A.5)

The sequence R1(φ)R2(θ)R3(ψ) is often used and is named a ”3-2-1” sequence due to the order
of the successive rotations.
A matrix TBE is then defined to describe the transformation from Earth to body axes,
parametrized by the attitude angles, and given by

TBE(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ)

=

 cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ

 (A.6)

By inverting the matrix in (A.6), the matrix transformation from body to Earth axes is obtained
and is defined by

TEB(φ, θ, ψ) =

 cos θ cosψ sinφ sin θ cosψ − sinψ cosφ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ
− sin θ sinφ cos θ cosφ cos θ

 (A.7)
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A.1.1 Gravity vector in body axes

The gravity acting along OzE is assumed constant in Earth axes. The gravity vector in Earth
frame is then defined by  gx

gy
gz


E

=

 0
0
g


E

(A.8)

However, the components of the gravity vector in body axes are not considered constant anymore
because it takes into account the vehicle orientation w.r.t. the Earth axes. By using the trans-
formation matrix from Earth to body axes TBE in (A.6), the gravity vector in body axes can be
written as  gx

gy
gz


B

= TBE

 0
0
g


E

=

 −g sin θ
g sinφ cos θ
g cosφ cos θ


B

(A.9)

Consequently, the gravity force in body axes is

FG = m

 gx
gy
gz


B

= m

 −g sin θ
g sinφ cos θ
g cosφ cos θ


B

(A.10)

A.2 Rotational kinematic equations

The rotational kinematic equations relate the rate of change of the Euler angles to the body axis
components of angular velocity. For easier understanding, extracted from [Hall (2003)], some
notations are introduced. Let ωI,JK be the angular velocity of the I frame w.r.t. the J frame
expressed in the K frame, where I, J,K are equivalent to B, 1, 2 or E representing the body
frame, both intermediate frames, defined in Appendix A.1, and the Earth frame, respectively.
The angular velocity can then be defined by considering the Euler angle sequence ”3-2-1” in
Appendix A.1 that lead to

ω1,E
1 = ω1,E

E = [0 0 ψ̇]T (A.11a)
ω2,1

2 = ω2,1
1 = [0 θ̇ 0]T (A.11b)

ωB,2B = ωB,22 = [φ̇ 0 0]T (A.11c)

The angular velocity of the body frame w.r.t. Earth frame is the sum of the angular velocity of
the body frame w.r.t. the intermediate frame Ox2,y2,z2 , the angular velocity of Ox2,y2,z2 w.r.t. the
second intermediate frame Ox1,y1,z1 and the angular velocity of Ox1,y1,z1 w.r.t. the Earth frame,
noted by

ωB,E = ωB,2 + ω2,1 + ω1,E (A.12)

However, all the vectors in (A.11) are defined in different frames. In order to apply the equation
(A.12), all the vectors must be transformed to the same frame, in this case, the body frame.
For the equation (A.11c), the angular velocity is already expressed in the body frame. For equations
(A.11a-A.11b), the transformation matrices defined in (A.4) are used to convert these vectors to
the body frame. In this sense, they can be written

ω2,1
B = TB2ω2,1

2 = R1(φ)ω2,1
2 =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 0
θ̇
0

 (A.13)
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and

ω1,E
B = TB1ω1,E

1 = R1(φ)R2(θ)ω1,E
1 =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 0

0
ψ̇

 (A.14)

Consequently, the relation (A.12) can be developed as ωx
ωy
ωz

 =

 φ̇
0
0

+

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 0
θ̇
0

+

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ


 0

0
ψ̇


which leads to  ωx

ωy
ωz

 =

 1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ


 φ̇

θ̇

ψ̇


Inverting the last relationship gives differential equations for the Euler angles, which describe the
rotational kinematics expressed in equations (2.22).

A.3 Attitude representations

Several approaches exist to characterize the attitude. Euler angles are often employed to represent
the attitude of an object, due to their simplicity of use. Nevertheless, to overcome the problem
of singularities of the solution arising from gimbal lock [Diebel (2006)], the rotational kinematic
equations can also be expressed thanks to four quaternions instead of three Euler angles. The
quaternions, also named Euler parameters, are related to Euler angles thanks to the relations

q0= cos(ψ/2) · cos(θ/2) · cos(φ/2) + sin(ψ/2) · sin(θ/2) · sin(φ/2) (A.15a)
q1= cos(ψ/2) · cos(θ/2) · sin(φ/2)− sin(ψ/2) · sin(θ/2) · cos(φ/2) (A.15b)
q2= cos(ψ/2) · sin(θ/2) · cos(φ/2) + sin(ψ/2) · cos(θ/2) · sin(φ/2) (A.15c)
q3= sin(ψ/2) · cos(θ/2) · cos(φ/2)− cos(ψ/2) · sin(θ/2) · sin(φ/2) (A.15d)



Appendix B

Static and dynamic stability

This appendix defines the static and dynamic stability in an aeroballistic sense in order to link
these notions to the stability as defined in automatic control.

The static and dynamic stability are defined as follows:
Static stability refers to whether the initial tendency of the vehicle response to a perturbation is
toward a restoration of equilibrium. For example, if the response to an infinitesimal increase in an-
gle of attack α generates a pitching moment Cm that reduces the angle of attack, the configuration
is said to be statically stable to such perturbations. Without static stability, a small perturbation
from the trimmed (steady state) angle of attack would continue to increase in magnitude and
could induce the tumbling of the vehicle [Strickland (2010)]. The static stability is associated to
the pitch moment coefficient slope Cmα = ∂Cm/∂α. This derivative describes the rate of change of
the pitching moment coefficient with angle of attack and static stability is ensured with negative
values of Cmα.

Dynamic stability refers to whether the vehicle ultimately returns to the initial equilibrium state
after some infinitesimal perturbations. Consideration of dynamic stability makes sense only for
vehicles that are statically stable. But a vehicle can be statically stable and dynamically unstable
(for example, if the initial tendency to return toward equilibrium leads to an overshoot, it is
possible to have a oscillatory divergence of continuously increasing amplitude) [Caughey (2011)].
The dynamic stability is associated to the pitch damping coefficient Cmq = ∂Cm/∂(ωyd2V ). This
derivatives represents the rate of change of the pitching moment coefficient with angular velocity
in pitch ωy with constant angle of attack and dynamic stability is ensured with negative values of
Cmq. More precisely, the pitch damping coefficient has been treated as the sum of two individual
coefficients, Cmq and Cmα̇, that produce an aerodynamic moment proportional to the angular rate
associated with the angle of attack. In fact, these two individual coefficients represent moments
proportional to two different angular rates, α̇ and ωy, that are associated with the angle of attack
α and the the angular displacement of the longitudinal axis of the body w.r.t. the Earth-fixed axis
system denoted by θ, respectively. For many nonmaneuvering flight trajectories, including those
flown in ballistic aerodynamic ranges and for rectilinear flight path, the angular rates α̇ and ωy are
equal and the moment expansion can be simplified by combining the two damping coefficient into
a single coefficient sum, which is proportional to a single angular rate [Weinacht (1998), McCoy
(1999)].

To investigate the stability of a vehicle, the linearisation of the equations of motion allows to
take advantage of linear stability criteria. Supposing the following linearized flight dynamic model
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ẋ = Ax obtained from equations (2.19b) and (2.21b), where A represents the stability matrix:[
α̇
ω̇y

]
=
[
−Fα 1
Mα Mq

]
︸ ︷︷ ︸

A

[
α
ωy

]
(B.1)

where Fα is a function of the force coefficients dependent of the angle of attack α, Mα and Mq

are functions of the aerodynamic coefficients Cmα and Cmq, respectively. In the present case, Fα
is fixed to zero.
To define the stability for a linear automatic control system described by ordinary differential
equations, it is necessary and sufficient that all the poles of the transfer function have negative
real parts. Thus, it can be evaluated through the determination of the roots of the system’s
characteristic equation defined as:

det[s · I2 −A] = 0⇒ s2 −Mq · s−Mα = 0 (B.2)

where s are the pole locations (natural frequencies) of the system and I2 is the identity matrix of
size 2. The stability is dependent of the sign of the root real part, directly relied to Mα and Mq

values. The pole locations are conveniently parametrized in terms of the natural frequency ωn and
damping ratio ζ [Trumper and Dubowsky (2005)] 1. Let us consider the characteristic equation

ms2 + bs+ k = 0 (B.3)

with the assumption that m and k are greater than zero to maintain the system order. The natural
frequency and the damping ratio are defined by

ωn = k

m
(B.4)

and
ζ = b

2
√
km

(B.5)

The natural frequency ωn is the frequency at which the system would oscillate if the damping b
were zero. In this case, k = −Mα, with Mα < 0 to satisfy the previous made assumption. Then
we suppose that the system is statically stable in an aeroballistic sense. However, to satisfy the
stability of an automatic control system, both static and dynamic stability are required.
The damping ratio ζ is the ratio of the actual damping b to the critical damping bc = 2

√
km. In

this case, b = −Mq.
In terms of these parameters, the equation (B.2) takes the form

s2 + 2ζωn · s+ ω2
n = 0 (B.6)

Let us study the pole location possibilities:

• if 2ζωn = 0⇒Mq = 0 (system dynamically unstable), it corresponds to ζ = 0 and is referred
to as the undamped case.
The discriminant is equal to 4Mα. The system is statically stable if Mα < 0 and the poles
are equal to s1,2 = ±j

√
|Mα| and contain no real part.

Otherwise, if Mα > 0, the system would be statically unstable and the poles s1,2 = ±
√
Mα

cannot have both negative real parts. Thus, the system is unstable.

1. The following explanations are extracted from [Trumper and Dubowsky (2005)].
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• if the discriminant 4ζ2ω2
n − 4ω2

n = 4ω2
n(ζ2 − 1) < 0 ⇒ M2

q + 4Mα < 0, it corresponds to
0 < ζ < 1 and is referred to as the underdamped case. The system is statically stable and
the poles are equal to

s1,2 = −ζωn ± (ωn
√

1− ζ2)j (B.7)
−v ± ωdj (B.8)

where v is the attenuation and ωd the damped natural frequency. The system is stable if
Re{s1,2} < 0⇒ −v < 0⇒Mq < 0. This implies the dynamic stability of the system.

• if the discriminant 4ω2
n(ζ2−1) = 0⇒M2

q + 4Mα = 0, it corresponds to ζ = 1 and is referred
to as the critically damped case. The system is statically stable and the double real pole is
equal to

s1 = −ζωn = Mq/2 (B.9)

The system is stable if Re{s1} < 0 ⇒ Mq < 0. This implies the dynamic stability of the
system.

• if the discriminant 4ω2
n(ζ2−1) > 0⇒M2

q + 4Mα > 0, it corresponds to ζ > 1 and is referred
to as the overdamped case. The poles are equal to

s1,2 = −(ζ ±
√
ζ2 − 1)ωn =

Mq ±
√
M2
q + 4Mα

2 (B.10)

The system is stable if Re{s1,2} < 0⇒ s1,2 < 0.
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Appendix C

Sedoglavic algorithm

Sedoglavic has developed an algorithm for testing local observability, relied on the differential algebra
and based on the existence of algebraic relations between state variables and successive derivations
of the inputs and the outputs [Sedoglavic (2002)]. By considering that the parameters p of the model
are a special kind of state variables satisfying ṗ = 0, the local theoretical identifiability problem is
defined as a particular case of observability. It was implemented under the symbolic computation
software MAPLE and can be downloaded on the personal page of Alexandre Sedoglavic 1.
This appendix, extracted from Sedoglavic personal page, presents a brief description of this tool,
as well as a simple example to illustrate the observability test to determine observable variables
(observability) and model parameters (theoretical or a priori identifiability).

C.1 Algorithm description

Calling Sequence: observabilityTest(F,X,G,Theta,U)
where F - a list of algebraic expressions representing a vector field

X - a list of names such that diff(X[i],t) = F[i]

G - a list of algebraic expressions representing outputs
Theta - a list of the names of the parameters
U - a list of the names of the inputs

This procedure returns a list composed of:

1. the dimension of the non observable variables and parameters;

2. the list of non observable variables and parameters;

3. the list of observable variables and parameters;

4. an integer representing the least number of row in the Jacobian matrix necessary to determine
its kernel.

The model is of the following kind:

diff(Theta,t) = 0 ,

diff( X ,t) = F(X,Theta,U) ,

Y = G(X,Theta,U) .

where F and G are rational expressions.

1. Available at www.lifl.fr/vsedoglav.
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C.2 Example

> # Considered system is x’=x (a - b x) - c x, a’=b’=c’=0 and x is measured
> F := x*(a-b*x)-c*x ;

F := x (a - b x) - c x

> Y := x ;

Y := x

> infolevel[observabilityTest] := 1; % for printing details

infolevelobservabilityTest:=1

> observabilityTest([F],[x],[Y],[a,b,c],[]) ;
observabilityTest: Modular computation with version 0.0

observabilityTest: Some informations about the system

observabilityTest: Nb Inputs U : 0

observabilityTest: Nb Outputs Y : 1

observabilityTest: Nb Variables X : 1

observabilityTest: Nb Parameters Theta: 3

observabilityTest: The computation are done modulo the following prime number

10000000000037

observabilityTest: System treatment

observabilityTest: End of system treatment .39e-1

observabilityTest: Power series expansion at order 4

observabilityTest: − > Order 2

observabilityTest: − > Computation time .30e-1

observabilityTest: − > Order 4

observabilityTest: − > Computation time .49e-1

observabilityTest: End of integration

observabilityTest: Evaluation of output system

observabilityTest: End of evaluation of output system

ObservabilityAnalysis: The transcendence degree of k(U,Y) --> k(U,Y,X,Theta) is

1

ObservabilityAnalysis: [a, c] are not observable.

ObservabilityAnalysis: least number of equations needed to determine the group

of symetries 2

observabilityTest: Total used time .109

[1, [a, c], [b, x], 2]

As listed in Section C.1, the outputs represent respectively the least number of row in the Ja-
cobian matrix necessary to determine its kernel (equal to 1), the non observable parameters and
variables (the parameters a and c are a priori not identifiable knowing x), the observable param-
eters and variables (the parameter b is a priori identifiable and the variable x is observable) and
the dimension of the non-observable parameters and variables (dim([a, c]) equal to 2).
In fact, the one-parameter group of translation
a − > a + lambda

c − > c + lambda

are composed of symmetries of the considered model letting its inputs and outputs invariant.
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Figure 1 Différentes possibilités pour quantifier les coefficients aérodynamiques . . 2
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L’utilisation des coefficients aérodynamiques pour caractériser le comportement d’un objet en vol libre de-
meure un sujet de recherche parmi les plus complexes et les plus étudiés dans le domaine de la balistique
extérieure. Actuellement, plusieurs méthodes expérimentales ou théoriques permettent de quantifier les coef-
ficients aérodynamiques d’objets. La présente étude analyse l’identification des coefficients aérodynamiques
à partir de données obtenues lors d’essais en vol libre.
La détermination des coefficients aérodynamiques basée sur des mesures de vol libre et des techniques
d’identification de systèmes demeure une tâche complexe et ambitieuse pour des objets en vol tels que des
corps de rentrée dans l’atmosphère, des drones ou des munitions. Ceci est principalement causé par la struc-
ture non linéaire du modèle mathématique décrivant le comportement de l’objet en vol, l’absence de signal
d’entrée, les conditions initiales des variables d’état inconnues et la dépendance non linéaire des coefficients
aérodynamiques en plusieurs variables d’état. Dans ces conditions, l’estimation de paramètres doit être
menée avec rigueur. Cette étude vise à modéliser, définir ainsi que mâıtriser les techniques d’identification
de paramètres les plus adaptées au problème qu’est la détermination des coefficients aérodynamiques.
Le travail de thèse a été dédié au développement d’une procédure d’identification pour la détermination des
coefficients aérodynamiques à partir de mesures de vol libre et a été testée pour deux cas d’application :
un corps de rentrée dans l’atmosphère et un projectile stabilisé par empennage. Cette procédure nécessite
plusieurs étapes telles que la description du comportement d’un objet en vol libre sous la forme d’un modèle
non linéaire en représentation d’état, la description polynomiale des coefficients aérodynamiques en fonc-
tion du nombre de Mach et de l’incidence, les analyses d’identifiabilité a priori et a posteriori suivies de
l’estimation des paramètres. De plus, dans le but d’augmenter la probabilité que les coefficients caractérisent
l’aérodynamique de l’objet pour l’ensemble des conditions d’essais et d’améliorer la précision des coefficients
estimés, une stratégie “multiple fit” a été appliquée. Cette approche fournit une base de données de coeffi-
cients aérodynamiques, qui sont déterminés à partir de plusieurs séries de mesures analysées simultanément,
afin de décrire le spectre le plus complet du mouvement de l’objet.

Mots-clés : Coefficients aérodynamiques, données de vol libre, modèle non linéaire, identification, identi-
fiabilité, stratégie “multiple fit”

The use of aerodynamic coefficients for the characterization of the behaviour of an object in flight remains
one of the oldest and most emergent research project in the field of exterior ballistic. Currently, there exist
several methods able to quantify the aerodynamic coefficients of vehicles. The present study investigates
the identification of the aerodynamic coefficients based on measured data, gathered during free flight tests
from different measurement techniques.
The determination of the aerodynamic coefficients from free flight measurements and system identification
techniques remains a complex and challenging task for vehicles in flight like Earth re-entry space vehicles,
Unmanned Aerial Vehicles or ammunition. This is mainly due to the nonlinear structure of the mathematical
model describing the behaviour of the vehicle in flight, the absence of an input signal, the unknown initial
conditions of the state variables and the nonlinear dependence of the aerodynamic coefficients on several
state variables. In these conditions, the parameter estimation stage must be processed with caution. This
project deals with topics as modelling, defining and mastering parameter identification techniques best
suited to the problem of the aerodynamic coefficients determination.
In the frame of this study, an identification procedure was developed for the aerodynamic coefficients
determination based on free flight measurements and was tested for two application cases: a re-entry
space vehicle and a fin stabilized reference projectile. This procedure requires several steps such as the
description of the behaviour of the vehicle in free flight as a nonlinear state-space model representation, the
polynomial descriptions of the aerodynamic coefficients as function of Mach number and incidence, the a
priori and a posteriori identifiability analyses, followed by the estimation of the parameters from free flight
measurements. Moreover, to increase the probability that the coefficients define the vehicle’s aerodynamics
over the entire range of test conditions and to improve the accuracy of the estimated coefficients, a multiple
fit strategy was considered. This approach provides a common set of aerodynamic coefficients that are
determined from multiple data series simultaneously analyzed, and gives a more complete spectrum of the
vehicle’s motion.

Keywords: Aerodynamic coefficients, free flight data, nonlinear model, identification, identifiability, mul-
tiple fit strategy


	Contents
	Notations
	Conferences and publications
	Introduction
	Aerodynamic testing
	Architectures
	Space probe
	Projectile

	Sabot design
	Space probe
	Projectile

	Model instrumentation and data acquisition
	Space probe
	Projectile

	Open range test facility and measurement techniques
	Test conditions
	Space probe
	Projectile

	Concluding remarks

	Modelling of a vehicle in free flight
	Coordinate systems
	General structure of the model
	State equations
	Force and moment equations
	Kinematic equations

	Aerodynamic coefficients
	Force coefficients
	Moment coefficients
	Aerodynamic coefficient assumptions
	Descriptions of aerodynamic coefficients
	Space probe
	Projectile


	Output equations
	Concluding remarks

	Aerodynamic parameter identification
	Inverse problem
	Identification procedure
	Prior knowledge and model implementation
	Identifiability analysis
	A priori identifiability analysis
	A posteriori identifiability analysis
	Identifiability analysis - application to space probe models
	A priori identifiability results
	A posteriori identifiability results


	Estimation of aerodynamic parameters
	Concluding remarks

	Application results and discussions
	Space probe
	Model's ability to reproduce the measured output signals
	Evolution of the state variables
	Total angle of attack and Mach number
	Polar motion

	Parametric estimation of the aerodynamic coefficients
	Drag coefficient
	Pitch damping coefficient


	Projectile
	Model's ability to reproduce the measured output signals
	Evolution of the state variables
	Total angle of attack and Mach number
	Polar motion
	Comparison with complementary methods

	Parametric estimation of the aerodynamic coefficients
	Drag coefficient
	Roll moment coefficient
	Pitch moment coefficient slope
	Normal force coefficient
	Pitch damping coefficient


	Discussions

	Conclusions and perspectives
	Appendix
	Modelling - complementary information
	Transformation matrices
	Gravity vector in body axes

	Rotational kinematic equations
	Attitude representations

	Static and dynamic stability
	Sedoglavic algorithm
	Algorithm description
	Example

	List of Figures
	List of Tables
	References

