
HAL Id: tel-01206920
https://hal.science/tel-01206920v1

Submitted on 29 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to multiagent planning for active
information gathering

Jennifer Renoux

To cite this version:
Jennifer Renoux. Contribution to multiagent planning for active information gathering. Artificial
Intelligence [cs.AI]. Normandie Université, 2015. English. �NNT : �. �tel-01206920�

https://hal.science/tel-01206920v1
https://hal.archives-ouvertes.fr

Université de Caen Basse-Normandie

Ecole doctorale : SIMEM

 Thèse de doctorat

présentée et soutenue le : 18/09/2015

par

Jennifer RENOUX

pour obtenir le

Doctorat de l’Université de Caen Basse-Normandie

Spécialité : Informatique et Applications

Contribution to multiagent planning for active
information gathering

Directeur de thèse : Abdel-Illah Mouaddib

Jury

Ouiddad Labbani-Igbida, Professeur, Université de Limoge (rapporteur)
Raja Chatila, Directeur de Recherche CNRS, ISIR Paris (rapporteur)
………..
Amal El Fallah Seghrouchni, Professeur, Université Pierre et Marie Curie
Laurent Jeanpierre, Maître de Conférence, Université de Caen Normandie
Stephan Brunessaux, Senior Expert, Airbus Defence and Space (invité)
Simon Le Gloannëc, Docteur, Airbus Defence and Space (encadrant)
Abdel-Illah Mouaddib, Professeur, Université de Caen Normandie (directeur
de thèse)

Mis en page avec la classe thesul.

Remerciements

Je tiens à adresser toute ma reconnaissance au Professeur Abdel-Illah Mouaddib et à Simon
Le Gloannëc pour m’avoir encadrée durant cette thèse. Leur patience, leurs encouragements et
leurs conseils m’ont permis de mener ce travail dans de très bonnes conditions. Merci à Stephan
Brunessaux de m’avoir accueillie dans son équipe et sans qui cette thèse n’aurait pas pu exister.
Merci également à Dafni et Sylvain pour l’intérêt qu’ils ont montré à mes travaux et pour leurs
conseils sur la réalisation de ma thèse. Un immense merci à Laurent pour toutes nos discussions
dans son bureau, pour toutes ses questions très pointues, parfois difficiles à entendre lorsqu’elles
ébranlent le modèle, mais toujours pertinentes et intéressantes. Tu pourras dire à Isabelle que
le jour où j’ai écrit ces lignes, j’avais un pull violet. Merci à Bruno Z. pour ses conseils et pour
ses mots d’encouragement. Un grand merci également à Arnaud pour les serveurs de calculs,
mais surtout pour sa précieuse aide sur les différents problèmes techniques que j’ai pu rencontrer.
Merci également à Esther pour toutes les relectures d’articles qu’elle a effectuée.

Je tiens à adresser tous mes remerciements à l’ensemble les membres de l’équipe IPCC pour
la bonne ambiance, les pauses croissants, les discussions et tout ce qui m’a permis de me sentir
à l’aise parmi vous pendant trois ans. Merci également aux membres de l’équipe de Caen pour
leur bonne humeur et leurs encouragements en toute occasion. Merci Esther, Guillaume, Arthur,
Clément, Arnaud, Simon pour les soirées jeux. Merci aux membres d’AS, à e-penser, Axolot,
Vsauce, LinksTheSun, au Joueur du Grenier et tous les autres pour les moments de détente. De
même, merci à Bastion, Journey, The Piano Guys et tous les autres pour les heures de musiques
qui m’ont accompagnée durant la rédaction de ce manuscrit.

Du fond du cœur, merci Guillaume pour ton soutien, ta patience, tes encouragements. Pour
avoir supporté ma mauvaise humeur et mes moments de doute. J’aurais pu dérailler mille fois si
tu n’avais pas été là pour me remettre sur les rails.

Merci Caro pour nos fous-rires, nos balades, nos discussions, nos joies, nos doutes. Merci
pour ces 25 ans d’amitié sincère, pour avoir toujours été là pour moi et pour avoir partagé avec
moi les bons comme les mauvais moments. Avec une grande majorité de bon, fort heureusement.
Merci Marion pour les week-end couture, pour les bons conseils et surtout pour être une frangine
fantastique. Merci Gaël pour les discussions de geek, pour les parties de Mario kart et surtout
pour être un frangin d’enfer.

Vielen Dank Uwe für deine Liebe. Danke, dass du mir gelehrt hasst, wie Go und Netrunner
spielen. Danke auch für alle unsere Abende, Dr. Who, Sherlock oder Hikaru anzusehen. Und
vor allem vielen Dank, dass du meine Leben schöner machst. Leider ist mein Deutsch nicht gut
genug, um dir zu sagen, alles was ich wünschte. Ich liebe dich mein Schkatz.

Pour finir, je tiens à remercier infiniment mes parents à qui je dédie cette thèse. Vous m’avez
toujours soutenue et encouragée quels que soient mes choix, vous avez toujours été là même dans
les moments les plus durs, vous avez parcouru des centaines de kilomètres pour être près de moi
quand j’avais besoin de vous. Vous m’avez appris à aimer ce que faisais et poussée à faire ce
que j’aimais. C’est grâce à cela que j’en suis là aujourd’hui. Pour ceci et pour tout le reste, un
immense merci à vous. Je vous aime.

i

ii

Shoot for the moon,
even if you miss

you’ll land among the stars
– Les Brown

iii

iv

Résumé

Dans cette thèse, nous considérons le problème de l’exploration d’événements. Nous définissons
l’exploration d’événements comme le processus d’explorer un environnement topologiquement
connu dans le but de récolter de l’information à propos d’événements se déroulant dans cet
environnement. Les systèmes multiagents sont habituellement utilisés dans les applications de
collecte d’informations, mais posent de nombreux problèmes tels que la coordination des agents
et les communications entre agents. Notre travail propose un nouveau modèle décentralisé de
planification multiagents pour la collecte d’informations. Dans ce modèle, appelé MAPING
(Multi-Agent Planning for INformation Gathering), les agents utilisent un état de croyance
étendu qui contient non seulement leurs propres croyances sur l’environnement, mais également
des approximations des croyances des autres agents du système. Cet état de croyance étendu
leur sert de base pour quantifier la pertinence d’une information, que ça soit pour eux ou pour un
autre agent du système. Ils peuvent ainsi décider d’explorer l’environnement ou de communiquer
une information à un autre agent en fonction de l’action qui apporte de plus d’information au
système dans sa globalité. L’inconvénient majeur de ce modèle est sa complexité. En effet, la
taille de l’espace des états de croyances augmente exponentiellement avec le nombre d’agents et la
taille de l’environnement. Pour pallier ce problème, nous proposons un algorithme de résolution
utilisant l’hypothèse classique et couramment adoptée de l’indépendance des variables.

Enfin, nous avons étudié le fait que l’exploration d’événements est un problème impliquant
une exploration théoriquement infinie. Les agents doivent réévaluer leurs croyances régulière-
ment même après avoir atteint un bon niveau de croyance. Pour résoudre ce problème, nous
proposons une fonction de lissage permettant aux agents d’oublier régulièrement les informa-
tions trop vieilles et pouvant être obsolètes.

Nous avons évalué notre approche sur différents scénarios s’inspirant de cas d’application
réels. Les expériences ont montré la capacité de MAPING à effectuer une exploration efficace
sous des contraintes de communication fortes.

Mots-clés: Planification décentralisée, Système multiagents, Pertinence de l’information

Abstract

In this thesis, we address the problem of performing event exploration. We define event
exploration as the process of exploring a topologically known environment to gather informa-
tion about dynamic events in this environment. Multiagent systems are commonly used for
information gathering applications, but bring important challenges such as coordination and
communication. This thesis proposes a new fully decentralized model of multiagent planning for
information gathering. In this model, called MAPING (Multi-Agent Planning for INformation
Gathering), the agents use an extended belief state that contains not only their own beliefs but
also approximations of other agents’ beliefs. With this extended belief state they are able to
quantify the relevance of a piece of information for themselves but also for others. They can then
decide to explore a specific area or to communicate a specific piece of information according to
the action that brings the most information to the system in its totality. The major drawback
of this model is its complexity: the size of the belief states space increases exponentially with
the number of agents and the size of the environment. To overcome this issue, we also suggest a
solving algorithm that uses the well-known adopted assumption of variable independence.

Finally we consider the fact that event exploration is usually an open-ended problem. There-
fore the agents need to check again their beliefs even after they reached a good belief state. We
suggest a smoothing function that enables the agents to forget gradually old observations that
can be obsolete.

We evaluated our model on different scenarios inspired by real-type applications. These
experiments show the ability of MAPING to tackle the event exploration problem with limited
communications.

Keywords: Decentralized planning, Multiagent systems, Information relevence

Contents

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la

perception active

1 Introduction . 2

1.1 Contributions de la thèse . 2

2 État de l’art . 3

2.1 Perception active . 3

2.2 Représenter l’incertitude et partager les connaissances 4

2.3 Planification sous incertitude . 6

3 Contributions . 8

3.1 Une théorie de la pertinence orientée agent 8

3.2 Le modèle MAPING . 11

4 Expériences et résultats . 17

5 Conclusion . 18

Preamble 19
6 Introduction . 21

7 Running example . 21

8 Overview of our approach . 22

9 Outline of the document . 24

Partie I Review of the Literature 25

Chapter 1

Active Sensing

1.1 Definition of Active Sensing . 28

1.2 Adversarial settings : the patrolling problem 29

1.2.1 What is "patrolling" ? . 29

vii

Contents

1.2.2 Single-agent patrolling . 29

1.2.3 Multi-agent patrolling . 30

1.3 Active Sensing in Map exploration . 33

1.3.1 Single agent map exploration . 33

1.3.2 Multi agent map exploration . 36

1.4 Other type of exploration . 37

1.5 Conclusion . 37

Chapter 2

Representing uncertainty and sharing knowledge

2.1 Knowledge Representation . 40

2.2 Representing uncertainty . 40

2.2.1 Probability measures . 41

2.2.2 Bayesian Networks . 42

2.2.3 Dempster-Shafer belief functions . 44

2.2.4 Possiblity measures . 45

2.2.5 Other methods . 46

2.3 Information relevance . 47

2.3.1 Relevance in Information Retrieval Systems 48

2.3.2 Toward a theory of relevance in multi-agent systems 49

2.4 Conclusion . 51

Chapter 3

Planning under uncertainty

3.1 Overview of planning . 54

3.1.1 Seven restrictive assumptions of planning 54

3.1.2 Classical planning . 54

3.1.3 Classical planning and uncertainty . 57

3.1.4 Probabilistic planning . 58

3.2 Probabilistic planning for single agent : Markov Decision Processes frameworks 59

3.2.1 Full-Observability . 59

3.2.2 Partial Observability . 64

3.3 Multi-agent concerns : coordination and cooperation 68

3.3.1 Decentralized POMDP and equivalent models 69

3.3.2 I-POMDP . 72

3.4 Decision models for event exploration . 74

3.5 Conclusion . 75

viii

Partie II Contributions 77

Chapter 4

Theory of relevance

4.1 What does it mean to be relevant? . 80

4.2 Agents observe and believe . 80

4.2.1 Environment and states . 80

4.2.2 Agent’s beliefs . 81

4.3 How much relevant is this observation? The degree of relevance 82

4.3.1 Measuring novelty: the Hellinger Distance 83

4.3.2 Measuring the precision: the Shannon entropy 85

4.3.3 An agent-based degree of relevance . 86

4.4 Conclusion . 87

Chapter 5

The MAPING Model

5.1 The MAPING framework: general overview 90

5.2 Estimating what others know and need . 91

5.3 Observing the system and assessing the mission 91

5.3.1 What can be seen and done: states, observations and actions 92

5.3.2 The dynamic of the system: transition and observation functions . . . 93

5.3.3 Stay informed: maintaining a belief state 95

5.3.4 What is the goal ? The reward function 97

5.4 Planning algorithm of MAPING . 99

5.4.1 General case . 99

5.4.2 Discretized solving . 100

5.5 Online belief update: forgetting information if it is too old 103

5.6 The MAPING framework for heterogeneous agents 107

Chapter 6

Conclusion of part II

Partie III Experiments 111

Chapter 7

Protocol description

7.1 Scenario description . 114

ix

Contents

7.2 Environments description . 114

7.3 System modeling and implementation parameters 117

7.4 Evaluation criteria . 122

Chapter 8

Low communication cost

8.1 Simple configuration: the house environment 125

8.1.1 Evaluating the exploration efficiency 125

8.1.2 Evaluating the communication . 129

8.1.3 Evaluating the homogeneity of the beliefs 130

8.1.4 Evaluating the paths . 130

8.1.5 Analysis . 132

8.2 Constraints in the navigation: the one-way environment 132

8.2.1 Evaluating the exploration efficiency 132

8.2.2 Evaluating the communication . 134

8.2.3 Evaluating the homogeneity of the beliefs 136

8.2.4 Evaluating the paths . 136

8.2.5 Analysis . 138

8.3 Costly transitions: the outdoor environment 139

8.3.1 Evaluating the exploration efficiency 139

8.3.2 Evaluating the communication . 139

8.3.3 Evaluating the paths . 141

8.3.4 Analysis . 144

8.4 Scalability: the Élysée Palace environment 145

8.4.1 Evaluating the exploration efficiency 145

8.4.2 Evaluating the communication . 148

8.4.3 Evaluating the homogeneity of the beliefs 149

8.4.4 Evaluating the paths . 149

8.4.5 Analysis . 149

8.5 Global analysis and conclusion . 152

8.5.1 Analysis of the exploration efficiency 152

8.5.2 Analysis of the communication policy 152

8.5.3 Analysis of the path traveled . 152

8.5.4 Conclusion . 152

x

Chapter 9

Medium communication cost

9.1 Simple configuration: the house environment 156

9.1.1 Evaluating the exploration efficiency 156

9.1.2 Evaluating the communication . 156

9.1.3 Evaluating the homogeneity of the beliefs 160

9.1.4 Analysis . 160

9.2 Constraints in the navigation: the one-way environment 162

9.2.1 Evaluating the exploration efficiency 162

9.2.2 Evaluating the communication . 162

9.2.3 Analysis . 164

9.3 Costly transitions: the outdoor environment 165

9.3.1 Evaluating the exploration efficiency 165

9.3.2 Evaluating the communication . 165

9.3.3 Analysis . 167

9.4 Scalability: the Élysée Palace environment 167

9.4.1 Evaluating the exploration efficiency 167

9.4.2 Evaluating the communication . 167

9.4.3 Analysis . 171

9.5 Global analysis and conclusion . 171

Chapter 10

High communication cost

10.1 Simple configuration: the house environment 174

10.1.1 Evaluating the exploration efficiency 174

10.1.2 Evaluating the communication . 174

10.1.3 Evaluating the homogeneity of the beliefs 176

10.1.4 Analysis . 177

10.2 Constraints in the navigation: the one-way environment 177

10.2.1 Evaluating the exploration efficiency 177

10.2.2 Evaluating the communication . 177

10.2.3 Analysis . 179

10.3 Costly transitions: the outdoor environment 179

10.3.1 Evaluating the exploration efficiency 179

10.3.2 Evaluating the communication . 179

10.3.3 Analysis . 180

xi

Contents

10.4 Scalability: the Élysée Palace environment 180

10.4.1 Evaluating the exploration efficiency 180

10.4.2 Evaluating the communication . 182

10.4.3 Analysis . 184

10.5 Global analysis and conclusion . 185

Chapter 11

Conclusion of part III

Partie IV Conclusion and perspectives 189

Chapter 12

Synthesis

12.1 Agent-based relevance . 192

12.2 Multiagent planning for information gathering 192

12.3 Possible range of applications . 192

Chapter 13

Perspectives

13.1 Short-term perspectives . 194

13.2 Mid-term perspectives . 194

13.3 Long-term perspectives . 194

Bibliography 197

xii

Résumé étendu : Vers un modèle
décentralisé d’agents autonomes pour la

perception active

1

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

1 Introduction

Les systèmes multi-agents sont de plus en plus utilisés dans divers domaines et tout particulière-
ment en exploration et perception active. Durant cette thèse, nous nous sommes intéressés à la
perception active dans des environnements dynamiques et avec communication restreinte. Dans
tout type de mission, l’agent est intéressé par certaines caractéristiques de l’environnement, que
nous nommons points d’intérêt. Nous considérons le problème de l’exploration d’événements,
qui nous définissons comme le processus de parcourir un environnement topologiquement connu
de manière à détecter tout événement se produisant dans cet environnement. Un événement
est décrit comme la modification des caractéristiques d’un point d’intérêt. Par exemple, si l’ont
considère comme point d’intérêt la position d’une cible, tout déplacement de cette cible sera un
événement. L’exploration d’événements peut considérer de nombreuses applications réelles telle
que des applications de surveillance, de maintenance industrielle ou encore des applications de
recherche et sauvetage.

L’utilisation de systèmes multi-agents pour automatiser l’exploration d’événement semble
intuitive, mais pose différents types de problèmes tels que la communication entre agents et la
coordination d’agents hétérogènes. De nombreux systèmes multi-agents ont été développés pour
de nombreuses applications. Beaucoup de ces systèmes partagent un point commun : ils ne
considèrent pas la communication entre les agents comme un problème. Or la communication
peut devenir un problème dans certains cas, par exemple lorsqu’un ennemi peut intercepter la
communication ou dans des zones sinistrées où la bande passante est limitée. Durant nos travaux,
nous avons développé un système multi-agents totalement décentralisé capable de fonctionner et
de se coordonner tout en limitant ses communications au maximum. Le second problème concerne
l’hétérogénéité des agents. Les capacités de perception des robots peuvent être très différentes et
affectent grandement la façon dont les robots vont explorer et coopérer. Cependant, d’un point de
vue du système, les données provenant des différents robots doivent être fusionnées pour obtenir
une représentation complète et précise. Il est également possible pour les robots de préciser leurs
connaissances et de vérifier des détections effectuées par d’autres robots du système. Nous nous
sommes donc intéressés durant cette thèse au problème de la fusion de données hétérogènes dans
un système de perception active.

1.1 Contributions de la thèse

Cette thèse a contribué à progresser dans le domaine de la perception active multi-agents et de
la planification sous incertitude. Nos contributions majeures sont :

• la définition d’un degré de pertinence orienté agent afin de quantifier l’intérêt d’une infor-
mation pour un agent donné sans que celui-ci n’exprime de requête

• MAPING (Multi-Agent Planning for INformation Gathering), un modèle de planifica-
tion décentralisée multi-agents pour l’exploration d’événements. MAPING fonctionne sans
agent central et chaque agent calcule sa propre politique d’exploration et de communication
indépendamment des autres agents.

2

2. État de l’art

2 État de l’art

2.1 Perception active

La perception active a été définie par [Bajcsy, 1988] comme le problème d’optimiser les stratégies
appliquées à l’acquisition de données, qui dépend de l’état courant du système et de la tâche à
effectuer. Différents aspects font de la perception active un problème très complexe, notamment
le fait que la solution dépend d’un critère multi-objectifs incluant le gain d’information et le coût
des actions. Un autre problème majeur est que, par définition, l’environnement est partiellement
observable et le robot fait face à de nombreuses incertitudes, tant dans son modèle et celui de
l’environnement, mais également dans les données collectées par ses capteurs.

Dans le cas de la perception active multiagents, les robots doivent coopérer pour effectuer le
plus efficacement leur mission. La stratégie utilisée dépend alors du type de mission posé. Deux
cas de figure sont principalement étudiés dans la littérature :

1. le cas antagoniste : il s’agit typiquement les applications de patrouilles. Le système est
confronté à un ou plusieurs ennemis et doit collecter de l’information afin de contrer ces
ennemis. Dans le cas l’environnement est topologiquement connu et c’est le comportement
des ennemis qui est exploré. C’est un cas d’exploration d’événement.

2. l’exploration de carte : dans ce cas l’environnement est topologiquement inconnu et le
système doit en construire une carte.

Les problèmes de patrouille

Le cas de la patrouille, mono-agent comme multi-agents, a été grandement étudiée dans la
littérature. Certaines études ne considèrent pas de modèle pour l’ennemi et ne font qu’optimiser
la patrouille de manière à ce que le laps de temps entre deux explorations d’une même région
soit aussi court que possible [Machado et al., 2003, Elmaliach et al., 2009]. Selon Agmon et
al. [Agmon et al., 2008b,Agmon et al., 2011], ce type de stratégie n’est pas suffisant puisqu’un
ennemi ayant connaissance de la trajectoire des robots ou la possibilité d’observer le système
avant d’intervenir pourrait alors agir de façon à éviter les robots et ainsi tromper la patrouille. La
recherche sur la théorie des jeux pour les problèmes de type patrouille est très active, notamment
les jeux de Stackleberg [Fudenberg and Tirole, 1991]. Dans un jeu de Stackleberg, un leader, ici
un patrouilleur, optimise sa stratégie en premier. Les followers, ici les adversaires, optimisent
ensuite leurs propres stratégies en fonction de celle du leader. Ce type de solution a été considéré
notamment par Basilico et al. [Basilico et al., 2009] qui définirent récemment un nouveau type de
jeu nommé Patrolling Security Games (PSG) [Basilico et al., 2012], pour faire face spécifiquement
aux problèmes de patrouille.

L’aspect multi-agents de la patrouille a également été soulevé assez tôt dans la littérature.
Dans [Machado et al., 2003], Machado et al. a proposé plusieurs architectures pour des patrouilles
multi-agents, qu’ils classent en fonction du type des agents (réactifs ou cognitifs), de la présence
ou non de communication et de la stratégie de coordination (émergente ou centrale). Plus
récemment, les POMDPs ont gagné en attention notamment dans les travaux de Paruchuri et
al. [Paruchuri et al., 2006].

La cartographie

Le problème de la cartographie assez peu étudié comme un problème à part, mais énormément
considéré en association avec la localisation dans le cadre du problème de cartographie et localisa-

3

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

tion simultanées. L’étude principale concernant la cartographie elle-même est celle de Yamauchi
sur l’exploration fondée sur les frontières [Yamauchi, 1997]. Une frontière correspond à la limite
entre une partie connue de la carte et une partie inconnue. L’idée de cette étude est que ce sont
les frontières qui fournissent le plus d’information au système. Ces travaux ont été grandement
étudiés dans le cadre de l’exploration multi-agents où le problème devient celui d’un allocation
de tâche pour répartir l’ensemble des robots sur les frontières. Yamauchi a lui-même proposé
une version multi-agents de son algorithme dans [Yamauchi, 1998]. De nombreuses études con-
sidèrent qu’un agent central distribue les cibles aux agents du système en fonction du coût
nécessaire pour rejoindre la cible et du gain espéré [Simmons et al., 2000,Burgard et al., 2002].
Certaines études se sont également intéressées à la répartition des cibles de manière décentral-
isées. Dans [Bautin et al., 2011], la coordination est implicite et chaque agent choisit sa cible
en fonction du gain espéré et du nombre de robots à proximité de la cible et donc susceptibles
de la choisir. L’inconvénient est évidemment que plusieurs robots peuvent choisir la même cible.
La plannification probabiliste a été suggérée, notamment dans [Matignon et al., 2012] ou un
Dec-MDP est utilisé afin de calculer une stratégie qui minimise les interactions entre les robots
et maximise la couverture de l’environnement par le système. Les filtres de Kalman et leurs
extensions ont également été grandement utilisés pour la cartographie, à la fois dans le cadre
mono et multi-agents [Kontitsis et al., 2013].

Autres types d’exploration

L’exploration est la découverte des caractéristiques inconnues d’un environnement et ne se limite
donc pas à l’exploration de cartes. D’autres types de caractéristiques peuvent être explorés,
comme la présence ou non de gaz et sa source [Loutfi et al., 2009] ou la détection de cibles
multiples en mouvement [Chanel et al., 2013].

2.2 Représenter l’incertitude et partager les connaissances

Représenter l’incertitude

[Dubois, 2007] a défini trois types d’incertitude : 1. l’incertitude aléatoire, qui résulte de la vari-
abilité du monde 2. l’incertitude épistémique, qui résulte d’une ignorance ou d’une incomplétude
des connaissances 3. l’incertitude inconsistante, qui résulte d’un conflit entre différentes sources
d’information Ces trois types d’incertitude sont par nature présente dans le monde réel. Ainsi,
pour pouvoir y agir, un agent a besoin d’être doté d’une représentation de l’incertitude sur laque-
lle il va pouvoir appuyer son raisonnement. Différents modèles mathématiques de représentation
de l’incertitude ont été développés, parmi lesquels les mesures de probabilités, les fonctions de
croyance de Dempster-Shafer et les mesures de possibilité. Dans ce résumé nous ne présenterons
que le modèle utilisé durant la thèse à savoir les mesures de probabilité. Le chapitre 2 détaille
les trois modèles nommés ainsi que quelques autres moins utilisés.

Si l’on nommeW = {w1, . . . , wn} l’ensemble des mondes possibles, une mesure de probabilité
assigne à chaque monde wi ∈W un nombre – la probabilité – qui décrit la vraisemblance que ce
monde soit le monde courant. Une mesure de probabilité respecte les contraintes suivantes :

∀wi ∈W,P (wi) ∈ [0, 1] (1)
∀wi, wj ∈W,wi 6= wj , P (wi ∪ wj) = P (wi) + P (wj) (2)∑
wi∈W

P (wi) = 1 (3)

4

2. État de l’art

L’état de croyance d’un agent est défini par la mesure de probabilité que cet agent associe à
l’ensemble des mondes possibles. L’état de croyance est la base du raisonnement d’un agent et
doit être mis à jour à chaque fois qu’une nouvelle information arrive à l’agent. La méthode de
mise à jour la plus utilisée est d’utiliser la règle de Bayes [Bayes, 1763] : P (wi|E) = P (E|wi)·P (wi)

P (E) ,
où

• wi est le monde considéré dont la probabilité peut être affectée par l’arrivée de la nouvelle
information

• E est la nouvelle information considérée

• P (wi) est la probabilité a priori, c’est à dire la probabilité de wi avant de connaître E

• P (wi|E) est la probabilité a posteriori, c’est à dire la probabilité de wi sachant E

• P (E|wi) est la vraisemblance de E, c’est à dire la compatibilité entre l’évidence E et le
monde wi

• P (E) est la vraisemblance marginale

À l’initialisation de l’état de croyance, le principe d’indifférence est souvent considéré. Ce
principe stipule qu’en l’absence de toute information sur le monde courant, il n’y a aucune raison
de considérer un monde plus probable que les autres et que l’on devrait associer à chaque monde
la probabilité 1

n , n étant le nombre de mondes possibles n = |W |.
Dans de nombreuses applications, l’environnement peut être décrit en terme de variables,

représentant les points d’intérêt de cet environnement. Chaque variable possède un ensemble
de valeurs possible et un monde possible est une instanciation donnée de toutes les variables
représentant le monde. L’ensemble des mondes possibles est donc l’ensemble de toutes les in-
stanciations possibles des variables. Dans cette représentation factorisée, il est généralement
impossible – et même non souhaitable – d’affecter une probabilité à chaque monde possible. Une
méthode plus intuitive est d’affecter une probabilité à chaque valeur possible pour chaque vari-
able. L’état de croyance représente donc l’ensemble des probabilités associées à chaque valeur
possible pour chaque variable. Cependant, la mise à jour de l’état de croyance devient plus
compliquée puisque la probabilité qu’une variable X ait pour valeur x peut dépendre des valeurs
d’un ensemble Y d’autres variables. Les réseaux Bayesiens [Pearl, 1988,Neapolitan, 1990] perme-
ttent de représenter de façon pratique les dépendances entre des variables aléatoires. Un réseau
Bayesien est un graphe acyclique orienté dont les nœuds sont labellisés avec les variables aléa-
toires et dont les arcs représentent une influence causale. Un réseau Bayesien spécifie également
une unique distribution de probabilité sur l’ensemble de ses variables. À partir de cette représen-
tation, différents algorithmes sont possibles pour inférer de nouvelles connaissances à partir d’une
nouvelle information, c’est à dire de modifier la distribution de probabilité du réseau Bayesien à
partir de l’évidence reçue [Chavira and Darwiche, 2005,Yedidia et al., 2005].

Pertinence de l’information

La pertinence d’une information est un concept que les humains manipulent tous les jours intu-
itivement. Il s’agit de sélectionner l’information à communiquer en fonction de son intérêt pour
la personne qui la reçoit. La pertinence de l’information est étudiée dans le cadre de la prag-
matique [Moeschler, 2007] et Grice a proposé dans ce cadre un principe de coopération que tout
groupe d’agent souhaitant coopérer devrait appliquer afin d’échanger de l’information pertinente.
Ce principe se décompose en quatre catégorie :

5

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

1. la quantité : la communication doit être aussi informative qu’il est nécessaire mais pas
plus.

2. la qualité : ne doit pas être communiquée toute information que l’on sait fausse ou qui
manque de preuves

3. la relation : l’information communiquée doit être en relation avec le sujet considéré

4. la méthode : la communication doit être simple à comprendre

Le principe de coopération a été réutilisé depuis afin de développer une théorie de la pertinence
[Wilson and Sperber, 2002]. Néanmoins l’ensemble de ces considérations restent philosophiques
et difficiles à appliquer dans des systèmes intelligents. Cependant de nombreuses études autour
des systèmes de recherche d’information ont étudié la pertinence de l’information d’un point
de vue computationnel afin de créer des systèmes plus performants. Borlund [Borlund, 2003]
a notamment défini deux classes de pertinences pour la recherche d’information : la pertinence
orientée système, qui analyse le nombre de correspondances entre la recherche effectuée et les
documents du corpus, et la pertinence orientée utilisateur, qui est déterminée par un utilisateur
en fonction de ses besoins, exprimés ou non.

Dans l’ensemble des études sur la pertinence en recherche d’information, une partie au moins
des besoins de l’utilisateur sont exprimés en tant que requêtes à un système. Cependant, dans des
systèmes multi-agents, les agents ne peuvent pas la plupart du temps exprimer leurs besoins en
terme de requête. L’information doit simplement être échangée de façon à améliorer l’efficacité du
système. Une autre théorie de la pertinence doit alors être envisagée pour permettre d’incorporer
l’échange d’informations pertinente dans les systèmes multi-agents. Roussel et Cholvy [Roussel
and Cholvy, 2009,Roussel, 2010] ont étudié ce type de pertinence, qu’elles nomment la pertinence
orientée agent, pour des agents de type BDI (Belief-Desire-Intention). Elles notent en effet que
la pertinence d’une information est souvent considérée par rapport à l’agent qui reçoit cette
information mais rarement par rapport à l’agent qui doit évaluer a priori cette pertinence. Elles
proposent donc un modèle basé sur la logique modale pour qu’un agent soit capable d’évaluer la
pertinence d’une information par rapport à un autre agent.

2.3 Planification sous incertitude

La planification classique est historiquement la première forme de planification étudiée. Elle con-
cerne les systèmes de transition d’états restreints [Ghallab et al., 2004], c’est à dire des systèmes
à nombre d’états fini, complètement observables, déterministes, statiques, à buts restreints, et
admettant des plans séquentiels comme solutions. Ce type de systèmes considèrent également le
temps de manière implicite – les actions n’ont pas de durée – et ne considère aucun changement
qui pourrait arriver dans l’environnement lors de l’exécution du plan. De nombreux planeurs
ont été développés tels que les très connus General Problem Solver (GPS) [Newell et al., 1959]
et STRIPS [Fikes and Nilsson, 1972]. La limite de ces planeurs a été très vite atteinte, à savoir
qu’ils ne peuvent fonctionner que dans des mondes fermés et très codés. En effet l’ensemble des
hypothèses décrites ci-dessus ne peut être considéré dès lors que l’on s’intéresse au monde réel.

L’incertitude a été introduite dans la planification par le développement de nouvelles logiques
telle que la logique épistémique [Wright, 1951,Hintikka, 1962], la logique floue [Zadeh, 1988] et
la logique multi-valuée [Béziau, 1997]. Les planeurs ont par la suite été modifié pour prendre
en compte les contraintes d’incertitude. C’est notamment le cas de PKS [Petrick and Bacchus,
2002] capable de produire des plans conditionnels, adaptables à des connaissances incomplètes.

6

2. État de l’art

Néanmoins, la technique la plus couramment utilisée lorsqu’il s’agit de traiter de environnements
incertains est la planification probabiliste.

La planification probabiliste permet de s’affranchir des contraintes de déterminisme, de plan
séquentiels et de buts restreints. Le plus utilisés des modèles de planification probabiliste est le
Processus Décisionnel de Markov (MDP) [Puterman, 1994]. Un MDP est un tuple 〈S,A, H, T,R〉
avec

• S l’ensemble fini d’états possibles

• A l’ensemble fini d’actions possibles

• H l’ensemble des pas de décision

• T : S,A,S → [0, 1] la fonction de transition, avec T (s, a, s′) = P (s′|s, a)

• R : S,A → R la fonction de récompense

Dans ce tuple sont ainsi décrits l’environnement et sa possible évolution (ensemble des états
et fonction de transition), les capacités de l’agent du système (l’ensemble d’actions) et le but
à atteindre (la fonction de récompense). Le modèle a été étendu afin de traiter les environ-
nements partiellement observables. Un Processus Décisionnel de Markov Partiellement Observ-
able (POMDP) [Sondik, 1978] est un tuple 〈S,A,Ω, H, T ,O,R, b0〉 avec,

• S, A, H, T : S ×A× S → [0, 1], R : S,A → R identiques à ceux d’un MDP

• Ω l’ensemble fini d’observations

• O : Ω× S ×A → [0, 1] la fonction d’observation, où O(ω, s, a) = P (ω|s, a)

• b0 est l’état de croyance initial.

Dans un POMDP, l’agent possède un état de croyance similaire à celui décrit dans la section
0.2.2 : à chaque état s ∈ S, l’agent associe une probabilité qui représente sa croyance sur le
fait que l’état s soit l’état courant. L’état de croyance est mis à jour lorsque l’agent reçoit une
observation – qui correspond ici à l’évidence mentionnée section 0.2.2 – en utilisant la mise à
jour Bayesienne [Cassandra et al., 1994] :

bao(s
′) =

O(ω, s′, a)
∑

s∈S T (s, a, s′)b(s)∑
s′∈S O(ω, s′, a)

∑
s∈S T (s, a, s′)b(s)

=
O(ω, s′, a)

∑
s∈S T (s, a, s′)b(s)

P (ω|b, a)

Les MDPs, tout comme les POMDPs, sont adaptés à des systèmes mono-agent. Le passage
au multi-agents apporte de nouveau un certain nombre de contraintes dépendant de la nature
des relations entre les agents du système. Deux types extrêmes ont été définis dans [Poole and
Mackworth, 2010]. Les agents sont dit entièrement coopératifs s’ils partagent la même fonction
d’utilité et travaillent en coopération pour atteindre un but défini sur l’ensemble du système. Les
agents sont dit entièrement compétitifs si l’un des agents ne peut gagner que si un autre perd.
Toutes les variantes entre ces deux extrêmes peuvent être rencontrées. Dans la problématique de
recherche d’information, nous nous intéressons uniquement au cas où les agents sont entièrement
coopératifs.

7

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

Un Processus Décisionnel de Markov Partiellement Observable Décentralisé (Dec-POMDP)
[Bernstein et al., 2002] est un modèle permettant de faire de planification sous incertitude avec
un système multi-agents dont les agents sont entièrement coopératifs. Dans un Dec-POMDP,
un agent central calcule la politique jointe du système et la distribue parmi les agents. Les
agents exécutent ensuite leur propre politique et reçoivent leurs propres observations. Aucune
communication explicite n’est effectuée. Néanmoins, les Dec-POMDPs permettent de gérer une
forme de communication en passant par l’état de l’environnement, en considérant par exemple des
actions permettant de modifier un paramètre de l’environnement et des observations rapportant
cette modification. Les Dec-POMDPs ont été étendu en Dec-POMDP avec Communication (Dec-
POMDP-COM) [Goldman and Zilberstein, 2003] afin de prendre en compte de manière explicite
la communication. Dans un Dec-POMDP-COM, deux politiques sont calculées : une politique
d’action et une politique de communication. Goldman et Zilberstein ont également montré qu’il
était possible de transformer n’importe quel Dec-POMDP-COM en un Dec-POMDP équivalent.

Les POMDPs Interactifs (I-POMDP) [Gmytrasiewicz and Doshi, 2005] étendent les POMDPs
en considérant que chaque agent possède des croyances sur l’environnement mais également des
croyances sur les autres agents du système. Ces croyances sur les autres agents incluent non
seulement leur propre état de croyance mais également leur modélisation complète (leurs actions,
leurs états possibles, leur fonction de transition...). Doshi et al. ont proposé une représentation
graphique pour les I-POMDPs, appelée Diagramme d’Influence Interactif (I-ID) afin de simplifier
leur résolution [Doshi et al., 2009]. Néanmoins, et malgré les récentes études sur des techniques de
résolution approchée [Rathnasabapathy et al., 2006,Doshi and Gmytrasiewicz, 2009], la résolution
d’un I-POMDP reste très complexe et difficile à passer à l’échelle.

D’autre modèles de planification sous incertitude ont été développés spécialement pour le
problème de collecte d’information. C’est par exemple le cas du modèle ρPOMDP décrit par
Araya-Lopez et al. [Araya-Lopez et al., 2010], qui est une extension du modèle POMDP dans le
but de permettre des fonctions de récompense définies sur les états de croyances et non unique-
ment sur les états du système. La plupart des modèles pour la recherche d’information utilise
l’entropie négative de Shannon comme mesure de précision d’un état de croyance.

3 Contributions

3.1 Une théorie de la pertinence orientée agent

La pertinence d’un information correspond généralement à l’adéquation entre cette information
et une requête. Mais quand il n’y a pas de requête exprimée, il peut être plus compliqué de
quantifier cette pertinence. Il est dans ce cas indispensable de prendre en compte ce que l’agent
sait déjà et ce que cette information lui apportera en plus. Durant cette thèse nous avons
rassemblé certaines propriétés qu’une information doit présenter afin de pouvoir être considérée
comme pertinente pour un agent donné.
Premièrement, une information doit être correcte pour être pertinente. Une information cor-
recte est une information qui reflète l’état réel du système. En effet une information incorrecte
entraînerait une dégradation des connaissances de l’agent qui la reçoit et ne peut donc pas être
considérée comme pertinente pour cet agent.
Deuxièmement, la pertinence d’une information dépend de l’agent qui la reçoit et du mo-
ment où il la reçoit. En effet, la pertinence d’une information dépend des connaissances a
priori d’un agent. Un autre agent avec d’autres connaissances n’aura donc pas le même intérêt
pour cette information. De même, les connaissances d’un agent évoluant au cours du temps, une
information pertinente à un instant donné pourra ne plus l’être quelques minutes plus tard.

8

3. Contributions

Troisièmement, une information est pertinente si elle est nouvelle pour l’agent qui la reçoit. En
effet, il est inutile de communiquer à un agent une information qu’il connaît déjà.
Enfin, une information est pertinente si elle améliore les connaissances de l’agent qui la reçoit.
Dans la suite de cette thèse, nous appelons ce type d’information une information précisante,
par analogie avec information nouvelles.

Les deux dernières propriétés peuvent paraître contradictoires. Si un agent dispose d’une
connaissance a priori et qu’il reçoit une information qui vient contredire cette connaissance,
cette information est considérée comme nouvelle mais remet en doute les connaissances de l’agent.
Cependant, elle doit être considérée comme pertinente. En effet, une information est intéressante
dans deux cas : si elle permet d’inférer de nouvelles connaissances et/ou si elle permet de
confirmer des connaissances qui était incertaines.

En se basant sur ces propriétés, il est possible de définir un modèle mathématique de la
pertinence orientée agent. Pour cela, il faut définir mathématiquement les connaissances d’un
agent.

Un agent observe et croit

On considère que l’environnement est modélisé comme un ensemble de points d’intérêts. Chaque
point d’intérêt est décrit comme une variable Xk dont les valeurs possibles appartiennent à
DOM(Xk).

E =
⊗
∀k

Xk

DOM(E) est l’ensemble de toutes les valeurs possibles pour tous Xk ∈ E .

DOM(E) = 〈DOM(Xk)〉∀Xk∈E

Un agent possède des croyances à propos des point d’intérêt, notées BEi .

BEi,t =
⊗
∀Xk∈E

bki,t

où bki,t est une distribution de probabilité sur la variable Xk à l’instant t qui représente les
croyances de l’agent i à propos de la variable Xk.

bki,t =
⊗

∀xp∈DOM(Xk)

P (Xk = xp)

Deux propriétés sont prises en compte pour la définition d’un degré de pertinence : sa nou-
veauté et à quelle point elle est précisante. Nous considérons dans cette partie que toute informa-
tion pour laquelle nous calculons un degré de pertinence est correcte. Certifier si une information
est correcte ou non est un problème qui sera considéré dans la section 0.3.2.

Le terme information est ambigu quant à son utilisation : il est généralement associé à une
grandeur indénombrable, mais souvent utilisé comme une entité dénombrable. Afin de résoudre
cette ambiguïté, nous appellerons par la suite observation tout atome d’information qu’un agent
peut envoyer ou recevoir et le terme information sera réservé à l’ensemble indénombrable des
faits et éléments d’intérêt.

9

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

Cette observation est-elle nouvelle ?

On considère un agent i possédant à un instant t des croyances Bi,t et recevant une observation
o. Les croyances de l’agent sont mises à jour et deviennent Bi,t+1. L’observation o est considérée
comme nouvelle pour l’agent i si elle modifie de façon significative les croyances de l’agent, c’est à
dire si Bi,t et Bi,t+1 sont significativement éloignés l’un de l’autre. Pour mesurer l’éloignement de
deux distributions de probabilité, nous utilisons la distance de Hellinger [Nikulin, 2015], donnée
par la formule

DH(P,Q) =
1√
2

√√√√ n∑
j=1

(√
P (j)−

√
Q(j)

)2
(4)

À partir de la distance de Hellinger, nous définissons le degré de nouveauté d’une observation de
la façon suivante :

Définition 0.1 (Degré de nouveauté). Le degré de nouveauté d’une observation o reçue par
un agent i à l’instant t est définie par

novi,t(o) = DH(BEi,t||BEi,t+1)

=
∑
Xk∈E

DH(bki,t||bki,t+1)

=
∑
Xk∈E

1√
2

√√√√ ∑
xp∈DOM(Xk)

(√
bki,t(xp)−

√
bki,t+1(xp)

)2

(5)

avec BEi,t+1 = update(BEi,t, o) l’état de croyance de l’agent i après la mise à jour avec
l’observation o, bki,t est la distribution de probabilité de l’agent i concernant Xk, et bki,t(xp)
est la probabilité dans la distribution précédente que Xk = xp.

Cette observation est-elle précisante ?

De même que précédemment, on considère un agent i possédant à un instant t des croyances
Bi,t et recevant une observation o. Ses croyances sont mises à jour et deviennent Bi,t+1. Une
observation est dite précisante si elle permet à l’agent d’améliorer son état de croyances, c’est
à dire si Bi,t+1 est plus précis que Bi,t. L’état de croyance d’un agent étant un vecteur de
distributions de probabilité, pour mesurer sa précision il faut mesurer la précision de chaque
distribution le composant. La mesure de précision d’une distribution de probabilité la plus
connue et utilisée est l’entropie de Shannon, donnée par :

Hb(X) = −
n∑
j=1

P (j) logb P (j) (6)

où X est une variable aléatoire possédant n valeurs possibles et P la distribution de probabilité
associée à cette variable. À partir de l’entropie de Shannon, nous pouvons définir le degré de
précision d’une observation pour un agent selon la définition 0.2.

Définition 0.2 (Degré de précision). Soit un agent i possédant un état de croyance BEi,t à
l’instant t, et une observation o reçue par cet agent i. Le degré de précision de l’observation

10

3. Contributions

o pour l’agent i est donné par :

soundi,t(o) = H(BEi,t)−H(BEi,t+1) (7)

où BEi,t+1 = update(BEi,t, o) est l’état de croyance de l’agent i après mise à jour avec l’observation
o, et H(BEi,t) est l’entropie de l’état de croyance BEi,t donné par la formule :

H(BEi,t) =
∑
Xk∈E

H(bki,t) (8)

Un degré de pertinence orienté agent

À partir du degré de nouveauté et du degré de précision définis précédemment, nous pouvons
définir un degré de pertinence orienté agent.

Définition 0.3 (Degré de pertinence). Le degré de pertinence d’une observation o pour un
agent i, noté reli(o), est donné par

reli,t(o) = (1− δ)novi,t(o)
|E|

+ δ
soundi,t(o)

Hmax
(9)

où novi,t(o) - respectivement soundi,t(o) - est le degré de nouveauté - respectivement degré
de précision - de l’observation o, δ ∈ [0, 1] est un poids permettant de modéliser la dynamique
de l’environnement, et Hmax =

∑
Xk∈E log(|DOM(Xk)|) est l’entropie maximum de l’état

de croyance, atteinte lorsque toutes les variables suivent une distribution uniforme.

|E| et Hmax sont utilisées pour normaliser le degré de pertinence. Le paramètre δ dépend de
l’application considérée et de la dynamique de l’environnement. Dans des environnements très
dynamiques, δ sera proche de 0 tandis que dans des environnements plus statiques il sera proche
de 1. δ est directement relié à la probabilité qu’un changement se produise dans le système :
δ = 1− ProbabilityOfChange.

3.2 Le modèle MAPING

Le modèle Multi-Agent Planning for INformation Gathering (MAPING) permet l’exploration
d’événements avec un système multi-agents tout en limitant le nombre de communications. Il
est composé d’une partie hors-ligne et d’une partie en-ligne. La partie hors-ligne correspond
au modèle de décision décentralisé basé sur les POMDPs et permet la création d’une politique
d’exploration et de communication. La partie en-ligne est constituée du module d’exécution de
la politique et du module de mise à jour de l’état de croyance de l’agent. Cette mise à jour inclut
un mécanisme d’oubli des connaissances anciennes. En effet, l’exploration d’événements est un
problème théoriquement infini et les agents doivent sans cesse remettre à jour leurs croyances.
Pour ce faire, ils doivent oublier leur connaissances les plus anciennes afin d’explorer de nouveau
les différents points d’intérêt de l’environnement.

Dans MAPING , chaque agent dispose de croyances sur l’environnement mais également de
croyances sur les croyances des autres agents. Nous utilisons un état de croyance étendu défini
par :

Bi,t = 〈BEi,t,B
j,E
i,t 〉 (10)

11

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

où BEi,t = 〈bi,ki,t 〉∀Xk∈E est l’état de croyance de l’agent i sur l’environnement E , et Bj,Ei,t =

〈bj,ki,t 〉∀Xk∈E représente les croyances de l’agent i sur les croyances des autres agents du système
sur l’environnement. Notons que ces dernières sont des approximations des croyances réelles des
autres agents sur l’environnement.

Le POMDP de MAPING

Le cœur du module hors-ligne de MAPING est le processus de décision dont dispose chaque
agent : un Processus Décisionnel de Markov Partiellement Observable. Un POMDP est un tuple
〈S,A,O, T ,Ω,R, b0〉 où S est l’ensemble d’états possibles, A l’ensemble des actions possibles, O
l’ensemble des observations possibles, T la fonction de transition, Ω la fonction d’observation, R
la fonction de récompense et b0 l’état de croyance initial.

L’ensemble des états correspond à l’ensemble des instanciations jointes des variables Xk ∈ E .
Deux types d’actions sont considérés : les agents peuvent soit explorer leur environnement, soit
communiquer une observation à un autre agent. À ces deux types s’ajoute une action Idle, qui
correspond à ne rien faire. L’exploration d’un agent consiste à percevoir la valeur courant de
l’une des variables Xk. Après cette perception, l’agent reçoit une observation qui le renseigne sur
la valeur courante de cette variable. Pour des raisons de simplicité, nous ne considérons dans nos
travaux que la communication d’une unique observation à un unique agent, bien que le modèle
soit généralisable.

A =AExplore ∪ ACommunicate ∪ {Idle}
A ={Explore(Xk), ∀Xk ∈ E} ∪ {Communicate(o, ag), ∀o ∈ O, ∀ag ∈ AG} ∪ {Idle}

La fonction de transition décrit la dynamique du système et la fonction d’observation décrit
les observations qu’un agent peut recevoir et la fiabilité de ses capteurs. Ces deux fonctions
dépendent de l’application et des capacités des agents considérés.

À chaque fois qu’une action est effectuée, l’agent doit mettre à jour son état de croyance
étendu. Dans MAPING , celui-ci est mis à jour dans trois cas : 1. lorsque l’agent explore
une variable 2. lorsque l’agent communique une observation à un autre agent 3. lorsque l’agent
reçoit une communication d’un autre agent. Dans le premier cas, l’agent met à jour ses propres
croyances sur l’environnement – Bi,Ei,t . Dans le second cas, l’agent met à jour uniquement ses
croyances sur les croyances de l’agent a qui il communique – Bj,Ei,t . En effet, l’agent qui reçoit
la communication va mettre à jour ses croyances en utilisant l’observation reçue. Afin que
l’expéditeur de l’observation conserve une approximation correcte des croyances du récepteur,
il doit la mettre à jour comme le fera le récepteur. Dans le troisième cas, l’agent met à jour
à la fois ses propres croyances et celles de l’agent qui lui a envoyé la communication. En effet,
l’observation est nouvelle pour l’agent qui la reçoit et il doit donc la prendre en compte. Il
peut également supposer que l’agent qui lui a envoyé la communication a déjà pris en compte
cette observation dans son état de croyance et doit donc mettre à jour l’approximation qu’il a
de l’agent expéditeur.

Lorsque l’agent reçoit une observation, il doit mettre à jour ses croyances en tenant compte
des caractéristiques de l’expéditeur et non de ses propres caractéristiques – fonction de croyance
et de transition. Dans le cadre d’agents homogènes, les caractéristiques sont identiques pour tous
les agents et le problème ne se pose pas. Cependant, dans le cas où les agents sont hétérogènes
les fonctions de transition et d’observation sont propres à chaque agent et doivent être partagées.
Ce problème a été résolu en pratique mais reste ouvert théoriquement. Nous discutons plus en
détails du cas des agents hétérogènes dans la partie 5.6.

12

3. Contributions

La fonction de récompense est le cœur du POMDP. Elle permet de définir les buts de l’agent.
Dans notre cas, l’agent doit être récompensé s’il explore des variables qui peuvent lui donner des
observations pertinentes et s’il envoie des observations pertinentes aux autres agents. La fonction
de récompense se base donc sur les états de croyance et non sur les états réels du système.
Étant donné que trois types d’actions sont possibles, la fonction est divisées en trois parties :
R(Bi,t, Idle), R(Bi,t, Explore(Xk)) and R(Bi,t, Communicate(o, j)). Le cas R(Bi,t, Idle) est le
plus simple : puisque l’agent ne fait rien, il ne reçoit aucune récompense et R(Bi,t, Idle) = 0.
Pour les deux autres cas, l’agent doit déterminer la pertinence de l’observation qu’il souhaite
recevoir ou envoyer. Comme évoqué dans la section 0.3.1, une observation doit être correcte
pour être pertinente. Or, l’agent n’ayant par définition pas de vue complète du système, il ne
peut définir avec certitude si une observation est correcte ou non. Il ne peut que croire en son
exactitude. Pour cela nous définissons un degré de croyance qui représente la certitude qu’un
agent a concernant l’exactitude d’une observation.

Définition 0.4 (Degré de croyance). Le degré de croyance d’un agent i concernant une
observation o à un instant t est défini par

beli,t(o) =
∑
s∈S

∑
α∈AExplore

Bi,t(s)Ω(o, s, α)

où Bi,t(s) est la croyance de l’agent i que s soit l’état courant du système.

En utilisant ce degré de croyance, on peut définir une fonction de récompense pour les actions
de type exploration et les actions de type communication.

R(Bi,t, Explore(Xk)) =
∑
o∈O

beli,α,t(o)reli(o)− CExplore(Xk) (11)

où CExplore(Xk) est le coût associé à l’exploration.

R(Bi,t, Communicate(o, j)) =beli,t(o)reli(o) + (DH(BEi,t||B
j,E
i,t)−DH(BEi,t+1||B

j,E
i,t+1))

− CCommunicate(o,j)
(12)

où CCommunicate(o,j) est le coût de communication de l’observation o à l’agent j et Bj,Ei,t+1 =

update(Bj,Ei,t , o) est l’état de croyances de l’agent i mis à jour avec l’observation o.

Résoudre le POMDP

La fonction de récompense de MAPING étant définie sur les états de croyances et non sur les
états réels, le POMDP ne peut pas être résolu à l’aide des techniques habituelles de résolution. De
plus, la fonction de récompense n’est pas prouvée complexe. Il est donc impossible d’utiliser les
techniques du ρPOMDP présenté dans [Araya-Lopez et al., 2010]. Cependant, il est possible de
transformer le POMDP en un Belief-MDP équivalent et de résoudre ce Belief-MDP pour obtenir
une politique basée sur les états de croyance. Le Belief-MDP obtenu est un tuple < ∆,A, τ >
où :

• ∆ est l’ensemble d’états de croyance, correspondant dans le POMDP à Bi,t

• A est l’ensemble d’actions, identique à celui du POMDP

13

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

• τ : ∆×A → R est la fonction de transition

La fonction de transition τ peut être directement obtenue à partir de la fonction de transition T
et de la fonction d’observation Ω du POMDP :

τ(Bi,t, α,Bi,t+1) =

{ ∑
s∈S

∑
o∈Ut

Ω(o, s, α)Bi,t(s) if Ut 6= ∅

0 otherwise

où Ut = {o ∈ O tel que Bi,t+1 = update(Bi,t, o)} est l’ensemble des observations permettant la
transition depuis l’état Bi,t vers l’état Bi,t+1 et où Bi,t(s) est la croyance de l’agent i que l’état
courant du système est s. On peut résoudre ce Belief-MDP en discrétisant l’ensemble des états
de croyance et en utilisant les algorithmes classiques de résolution. Cependant cette méthode de
résolution n’est pas passable à l’échelle étant donné que la taille de l’espace des états de croyance
augmente exponentiellement avec le nombre d’agents et le nombre de variables. Pour permettre
la résolution de plus grands modèles, nous proposons donc d’utiliser une technique de séparation
des variables indépendantes. Pour cela, nous définissons deux types d’indépendance :

1. L’indépendance des variables : la valeur d’une variable donnée ne dépend que des valeurs
d’un sous groupe – possiblement vide – d’autres variables. Mathématiquement, on note
cette hypothèse ∀X,Y ∈ P(E), X 6= Y , X et Y sont indépendants, P(E) étant une partition
de l’ensemble de variables E

2. L’indépendance des observations : la probabilité de recevoir une observations donnée après
avoir exécuté une action donnée ne dépend que des valeurs d’un sous-groupe de variables
du système. Mathématiquement, on note cette hypothèse ∀O ∈ P(O), il existe un unique
ensemble X ∈ P(E) tel que ∀o ∈ O,P (o|s, a) = P (o|X, a).

Ces deux hypothèses permettent de décomposer le POMDP initial en un groupe de sous-POMDP
où chaque sous-POMDP est un tuple 〈S`,A,O`, T`, ω`,R`, b`,0〉 où

• S` est l’ensemble des instanciations jointes des variables X` ∈ P(E)

• A est le même espace d’actions que celui du POMDP global

• O` ∈ P(O) est l’ensemble des observations dépendant des variables X`, selon la propriété
d’indépendance des observations

• T` est la fonction de transition appliquée aux variablesX` selon la propriété d’indépendance
des variables

• ω` est la fonction d’observation appliquée aux variables X`

• R` est la fonction de récompense appliquée aux variables X`

• b`,0 est l’état de croyance initial

Chaque sous-POMDP peut être résolu indépendamment des autres en le transformant en un
Belief-MDP tel que décrit précédemment. En plus de la politique optimale, les algorithmes de
résolution devront stocker la fonction de valeur optimale V ∗(B`,i,t) pour chaque sous-POMDP.
Lors de l’exécution, l’agent pourra calculer l’action à effectuer avec l’algorithme 0.1. Dans
cet algorithme, l’agent compare le gain espéré pour chaque action de chaque sous-POMDP. Ce
gain est la somme du gain obtenu en effectuant cette action de ce sous-POMDP à cet instant et
des gains obtenus en n’effectuant rien sur les autres sous-POMDPs. L’agent choisit ensuite une
action au hasard parmi celle ayant le gain espéré le plus grand.

14

3. Contributions

Data: sous politiques π` et fonctions de valeur associées Vπ` , état de croyance courrant
Bi,t

Result: action à exécuter αopt
1 Vmax = −Infinity;
2 αopt = null;
3 gainEspere = 0 ;
4 listeActionsOptimales = {};
5 foreach B`,i,t composant Bi,t do
6 gainEspere = Vπ`(B`,i,t);
7 foreach B`′,i,t, `′ 6= ` do
8 gainEspere = gainEspere+ VIdle(B`′,i,t);
9 end

10 Calculer le coût d’exécuter l’action π`(B`,i,t), noté Cπ`(B`,i,t) ;
11 gainEspere = gainEspere− Cπ`(B`,i,t) ;
12 if gainEspere > Vmax then
13 empty(listeActionsOptimales) ;
14 listeActionsOptimales = {π`(B`,i,t)} ;
15 Vmax = gainEspere ;
16 end
17 if gainEspere == Vmax then
18 listeActionsOptimales = listeActionsOptimales ∪ {π`(B`,i,t)} ;
19 end
20 end
21 αopt = choisirAleatoirementDepuis(listeActionsOptimales) ;
22 return αopt ;

Algorithm 0.1: Choisir l’action à effectuer depuis l’ensemble des sous-politiques

15

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

Oublier les anciennes connaissances

Lorsqu’un agent explore un environnement dynamique, les observations qu’il reçoit peuvent
être rapidement contredites par des changements dans l’environnement. Il est donc important
qu’il révise ses croyances régulièrement en ré-explorant des variables déjà connues pour détecter
d’éventuels changements. Pour cela nous avons mis en place un mécanisme d’oubli de croyance
basé sur une application contractante. Après l’avoir mis à jour, un agent applique cette applica-
tion contractante sur certaines distribution de son état de croyance afin de les rapprocher d’une
distribution uniforme. Les distributions sur lesquelles est appliquée l’application contractante
sont choisies en fonction de la fonction de transition. En effet, les variables dont la probabilité
de changement est la plus forte sont contractées plus souvent. Ainsi, à chaque mise à jour de
l’état de croyance, chaque variable a une probabilité d’être contractée égale à sa probabilité de
changement. Nous appelons cette étape lissage. Toute fonction de lissage de MAPING respecte
la définition 0.5.

Définition 0.5 (Fonction de lissage). Une fonction f : [0, 1]→ [0, 1] est appelée fonction de
lissage pour une variable Xk qui a pour domaine DOM(Xk) si elle satisfait l’ensemble des
contraintes suivantes :

f(bj,ki,t (xp)) ≥ 0,∀xp ∈ DOM(Xk) (13)∑
xp∈DOM(Xk)

f(bj,ki,t (xp)) = 1 (14)

f(
1

nk
) =

1

nk
(15)∣∣∣∣f(bj,ki,t (xp))−

1

nk

∣∣∣∣ ≤ ∣∣∣∣bj,ki,t (xp)−
1

nk

∣∣∣∣ ,∀xp ∈ DOM(Xk) (16)

(bj,ki,t (xp)−
1

nk
)(f(bj,ki,t (xp))−

1

nk
) ≥ 0,∀xp ∈ DOM(Xk) (17)

où nk correspond à |DOM(Xk)| et bj,ki,t (xp) est la probabilité que la variable Xk prenne la
valeur xp dans l’état de croyance de l’agent.

Le choix de la fonction de lissage dépend de l’application considérée, mais une fonction linéaire
correspond pour la plupart des applications. Nous ne considérons donc que ce cas dans cette
thèse.

Théorème 0.1. Soit Xk une variable du POMDP et nk = |DOM(Xk)| le nombre de valeurs
possibles de Xk. Soit Pk l’ensemble de toutes les distributions de probabilité possibles sur
Xk. Soit (fXk

)Xk∈X une famille de fonction linéaires. Chaque fXk
est une fonction de lissage

si et seulement si ∃ak ∈ [0, 1] tel que :

fXk
: Pk → Pk

p 7→ ak × p+
1− ak
nk

Dans MAPING , lorsque l’agent met à jour son état de croyance, il commence par utiliser
l’observation reçue ou envoyée puis utilise sa fonction de lissage tel que présenté dans l’algorithme
0.2.

16

4. Expériences et résultats

Data: Croyances de l’agent i, notées Bi,t, observation o, ensemble de fonctions de lissage
{fXk

∀Xk ∈ E}
Result: croyances de l’agent i, notées Bi,t+1

1 foreach Xk ∈ E do
2 Bki,t+1 =

〈
update(bj,ki,t , o)

〉
j∈AG

;

3 probabiliteDeChangement =
∑

xi,xj∈DOM(Xk),xi 6=xj
TXk

(xi,t, xj,t+1) ;

4 nombreAleatoire = choisirNombreAleatoire() ;
5 if nombreAleatoire < probabiliteDeChangement then
6 Bki,t+1 =

〈
fXk

(bj,ki,t+1)
〉
j∈AG

;

7 end
8 end

Algorithm 0.2: Mise à jour et lissage des croyances

4 Expériences et résultats

Nous avons validé notre modèle à l’aide de diverses simulations, toutes basées sur un scénario
commun mais faisant varier les environnements. Nous avons considéré quatre environnements,
chacun divisé en n zones. Dans chaque zone, deux événements peuvent se produire : la zone peut
être vide ou non, et la zone peut être en feu ou non. Le système contient trois robots : un robot
capable de détecter les visages, un robot capable de détecter les couleurs et un robot capable de
détecter les températures. Pour chaque environnement, deux simulations ont été réalisées. La
première simulation présente un environnement statique : les zones vides et en feu sont décidées
au lancement de la simulation et ne varient pas. Dans la deuxième simulation, les zones vides et
en feu sont décidées au lancement de l’application mais peuvent varier au cours du temps, selon
la fonction de transition du système. Enfin, trois séries de simulations ont été faites : la première
avec un coût de communication faible, la deuxième avec un coût de communication moyen et la
troisième avec un fort coût de communication.

Les quatre environnements considérés sont :

• une maison : la carte a été basée sur une carte réelle de maison de plain-pied.

• un bâtiment dont certaines transitions entre les zones ne peuvent être réalisées que dans
un sens (cas de portes coupe-feu par exemple)

• un environnement extérieur, où les transitions d’une zone à l’autre peuvent être très coû-
teuse en fonction de la topographie du lie

• le Palais de l’Élysée, qui permet de tester le passage à l’échelle du système

Nous avons défini quatre mesures d’évaluation pour tester l’efficacité de notre modèle. La pre-
mière mesure est le nombre de croyances correctes. Ceci nous permet de vérifier que le système
parvient à détecter les événements. La deuxième mesure est la distance entre les états de croy-
ance des agents et un état de croyance dit parfait, dans lequel la croyance représentant la valeur
courante de la variable est à 1 et toutes les autres sont à 0. Cette mesure nous permet de nous
assurer que le système est capable d’avoir des croyances précises. La troisième mesure est le
nombre de communications envoyées par agent. En effet, le but de notre système est d’explorer
efficacement tout en réduisant le nombre de ses communications. Enfin, notre quatrième mesure

17

Résumé étendu : Vers un modèle décentralisé d’agents autonomes pour la perception active

est la différence entre les approximations qu’un agent a des croyances des autres agents et les
croyances réelles de ces autres agents. Cette mesure nous permet de nous assurer que notre
système de mise à jour des approximations est efficace et que chaque agent peut calculer la
pertinence d’une information à partir de bases correctes.

Les expériences ont montrées que notre modèle était capable d’effectuer une exploration effi-
cace tout en limitant ses communications dans le cas où la communication est moyenne ou forte.
Cependant, dans le cas d’une faible communication, le système a tendance à communiquer tout
ce qu’il reçoit y compris des observations incorrectes dues à des erreurs de détection. Ces erreurs
de détection ont donc tendance à se répandre dans le système et à dégrader ses performances
globales. L’une des grosses limitations du système semble être son passage à l’échelle. En effet,
dans le Palais de l’Élysée, le système composé de seulement trois agent ne parvient pas à obtenir
des états de croyances satisfaisants dus à la taille de l’environnement. Cependant, il ne nous
a pas été possible de tester le système avec plus d’agents dans la mesure où le nombre d’états
augmente exponentiellement avec le nombre d’agents et que les POMDPs pour des systèmes à 4
ou 5 agents étaient impossibles à résoudre dans un temps raisonnable avec notre algorithme et
nos ressources.

5 Conclusion

Nous présentons dans cette thèse un modèle de planification multi-agents décentralisé pour
l’exploration d’événements. Ce modèle est basé sur le modèle des Processus de Markov Par-
tiellement Observables et utilise un degré de pertinence orienté agent que nous avons défini.
Dans la version complète du manuscrit (rédigé en anglais), nous présentons dans une première
partie les travaux effectués dans le domaine de la perception active, de la représentation de
l’incertitude et de la planification sous incertitude. La seconde partie présente l’ensemble de nos
contributions et la troisième partie présente les expériences effectuées et les résultats obtenus. Le
manuscrit se termine par une conclusion sur les travaux effectués et sur de possibles évolutions
et travaux futurs.

18

Preamble

19

6. Introduction

6 Introduction

Multi-robot systems have been proven useful in more and more applications, and especially in
active sensing problems. In this specific kind of problems, information gathering is not only a
means to reach a goal, but the goal itself. In this thesis, we are interested in multi-agent active
sensing in dynamic environments under strong communication constraints. We consider that in
any type of mission, an agent - human or robot - is interested to gather information about certain
features of the environment, such as the presence of a foe, the moves of a target, the state of a
pipe, etc. We call these features features of interest. We formally define event exploration as the
process of travelling across a topologically known environment with the goal of detecting events
happening in this environment. An event is defined as a change affecting the environment’s
features of interest. To refer to previous examples, changes could be an intrusion in a building,
the move of a target or a pipe suddenly breaking. The concept of event exploration is not
expressed in the literature, even if it can be related to the perception and the understanding
parts of the Situation Assessment, as defined by Endsley in [Endsley, 1995, and, 2000]. The
perception part tries to answer to the question "What are the facts ?" while the understanding
part tries to answer to the question "What is going on ?". For both, active sensing is a major
tool. A system performing active sensing acts in a way to optimize its input and collect as much
interesting information as possible. Using multi-robot systems is an intuitive way to automatise
efficiently the event exploration process. However, some problems remain open. During this
work, we studied two open problems: (1) the problem of decentralized coordination under
constrained communication (2) the problem of efficient active sensing with heterogeneous robots

Various multi-agent systems have been developed for various applications. Most of those
systems have in common the fact that they do not consider the communication as a problem.
However, in a lot of real application, the communication is not free and can be extremely con-
strained. This is for instance the case during exploration near enemy borders where the commu-
nication can be intercepted, or in crisis situations where the bandwidth is reduced. Considering
constrained communication is therefore essential to be able to coordinate the robots in these
kind of situations. During this thesis, we focused on developing a fully-decentralized system able
to perform event exploration with a limited amount of communications.

The second problem we tackled in this work is the the problem of efficient event exploration
with heterogeneous robots. The sensing capabilities of each robot affect a lot the way they will
explore and their efficiency. However, from the system point of view, it is important that all the
data collected are fused together in order to get a complete and accurate view of the environment.
This problem is illustrated in the example described in the next session. In this work, we also
addressed the problem of heterogeneous data fusion in an active sensing system.

7 Running example

Along this manuscript, we will refer to a single example to illustrate the concepts. We consider
a problem of event exploration in an office building. A building is made up of 5 rooms. All the
workers in this building need to leave before 8 : 00pm. After this time, a system of heterogeneous
robots1 travels among the environment to ensure that all the rooms are empty and that there is
no start of fire in the rooms. We consider three types of robots:

• face-detection robots: these robots are equipped with a camera and a face detection module.
They are able to detect a face in a room with a probability pf to be right.

1That is no say robots with different sensing capabilities

21

• color-detection robots: these robots are equipped with a camera and a color detection
module. They are able to detect the colors corresponding to a fire with a probability pc to
be right.

• temperature-detection robots: these robots are equipped with a thermometer and a temper-
ature detection module. They are able to detect any hotspot in a room with a probability
pt to be right. We assume that these robots can only detect if there are objects with a
temperature higher than a given threshold without being able to detect the shape or the
exact temperature of the object.

We can intuitively see that these robots need to work together and to fuse their information
to be able to detect humans or fire. Indeed, the face-detection robot alone cannot detect fire
and cannot make the difference between a real human and a picture of a human. Similarly, the
color-detection robot alone cannot detect human and cannot make the difference between a real
fire and a picture of a fire. The temperature-detection robot can make the difference between real
human/fire and pictures of a human/fire thanks to their temperature, but, due to the assumption
we made, it cannot discriminate between a human, a fire, a heater or a computer. However, fusing
information from the different robots can create higher-level interesting information. If a face-
detection robot detects a face in a room, a color-detection robot detects no fire color in the same
room and a temperature-detection robot detects a hotspot in the same room, the system can
globally concludes that a human is probably in the room. This conclusion could not be made
without information fusion from heterogeneous robots.

The main advantage of this example is that it is rather simple while presenting all the aspects
we wish to explore in this thesis: dynamics of the environment, heterogeneous agents, information
fusion and uncertainty. It is obvious that the assumption made for the temperature-detection
robots is not realistic at all, but it enables us to keep the system simple for the examples and the
experimentation. In real-case applications, the robots will obviously be more sophisticated and
able to infer more information, but the principle remains identical: several sensing capabilities
can be combined to obtain higher-level and more accurate information.

8 Overview of our approach

Global overview

This dissertation proposes a framework called MAPING , for Multi-Agent Planning for INfor-
mation Gathering . This framework is made up of two parts: one offline and one online, both
presented on Figure 1.

The offline part is the solver of MAPING . It takes a POMDP as input, which describes the
dynamics of the environment and the capacities of the agents. From this POMDP, the solver
produces a policy file, which describe the behavior of the agent. Details about the POMDP and
policy can be found in Chapter 5. As indicated by its name, the offline part of the MAPING is
performed before the start of the mission and the file produced remains untouched during the
execution of the mission.

The online part is the execution module of MAPING . Each agent in the system is provided
with one execution module, which is the same for all agents, regardless of their capacities. Given
a policy file produced by the solver, the agent computes its next action. If the action involve
some communication, the agent generates a message from the action and send this message to
the agent dictated by the action. Then the agent get some information from its environment,
if any, and updates its beliefs. If it received a message from another agent, this message is also

22

8. Overview of our approach

(a) Offline part:
the solver (b) Online part: the execution

Figure 1: The offline and online part of the MAPING framework

considered during the beliefs update step. This process is then repeated again until the end of
the mission.

Innovative aspects

This thesis contributed to advances in the fields of multiagent active sensing and multiagent
planning under uncertainty. Principally, our main contributions are:

• the definition of a degree of relevance that quantifies the relevance of a given piece of
information for a given agent. This degree of relevance is based on the agent’s beliefs,
expressed as probability distributions. This degree gives the opportunity to order different
pieces of information regarding their relevance for a given agent at a given time.

• the Multi-Agent Planning for INformation Gathering framework (MAPING), a theoretical
framework to perform fully decentralized multiagent event exploration. In MAPING , no
central agent is assumed and all the agents compute their policy independently. MAPING
enables the agents to compute a communication and an exploration strategy to explore
efficiently their environment.

This work also led to implementations:

• a generic and reusable Java solver for MAPING POMDPs. The solver used in the ex-
periments has been developed to be as generic as possible and can be re-used for various
applications of the MAPING framework.

• a generic C++ ROS node to control the agents in MAPING applications. As for the solver,
the ROS node used in the experiment has been developed to be as generic as possible. It
takes the files outputted by the Java solver as inputs and can be re-used for all kinds of
robots. Only the interface between the ROS node and the robot low-level control needs to
be re-done, as it is specific to the robot.

23

Dissemination

The major points of our approach have been published in various national and international
conferences:

• Renoux, J., Mouaddib, A.-I., and Le Gloannec, S. A distributed decision-theoretic model
for multiagent active information gathering. Multi-agent Sequential Decision Making under
Uncertainty 2014 (MSDM’14).

• Renoux, J., Mouaddib, A.-I., and Le Gloannec, S. A distributed decision-theoretic model for
multiagent active information gathering. In Modeling Decisions for Artificial Intelligence
(MDAI) 2014. Springer.

• Renoux, J., Mouaddib, A.-I., and Le Gloannec, S. A distributed decision-theoretic model
for multiagent active information gathering. Workshop on Multi-Agent Coordination in
Robotic Exploration (MACOREX’14).

• Renoux, J., Mouaddib, A.-I., and Le Gloannec, S. Un modèle de décision distribué pour
la collecte d’information active multiagents. In Actes de la conférence RFIA 2014, France.

• Renoux, J., Mouaddib, A.-I., and Le Gloannec, S. A decision-theoretic planning approach
for multi-robot exploration and event search. In International Conference on Intelligent
Robots and Systems (IROS’15), Hamburg.

and an international patent:

• Renoux, J., Mouaddib, A.-I., and Le Gloannec, S. Method for obtaining a system for active,
decentralized multi-agent situation control. International Patent, WO-2015-079191-A2.

9 Outline of the document

The remaining of the thesis will be organized as follows. Part I presents a review of the literature
concerning the fields of interest, that is to say active sensing (chapter 1), information theory
(chapter 2) and planning under uncertainty (chapter 3).

After this review, part II presents the core theoretical contributions of this thesis. It is divided
in two chapters. The first one presents a study of quantitative relevance and a formalization of
a degree of relevance (chapter 4). The second chapter focuses on planning under uncertainty
in multiagent information gathering and presents MAPING , a framework for fully-distributed
multiagent planning for information gathering.

Part III is devoted to the practical implementation of MAPING and its evaluation through
various experiments. The experiments implemented are based on the example described in section
0.7.

Part IV concludes this document with a review of the contributions, a summary of the open
issues and suggestion for future research.

24

Part I

Review of the Literature

25

Chapter 1

Active Sensing

Contents
1.1 Definition of Active Sensing . 28
1.2 Adversarial settings : the patrolling problem 29

1.2.1 What is "patrolling" ? . 29
1.2.2 Single-agent patrolling . 29
1.2.3 Multi-agent patrolling . 30

1.3 Active Sensing in Map exploration 33
1.3.1 Single agent map exploration . 33
1.3.2 Multi agent map exploration . 36

1.4 Other type of exploration . 37
1.5 Conclusion . 37

To be able to perform any mission, an agent needs to collect information about its envi-
ronment. Environments becoming more and more complex, an agent cannot settle for sensing
everything neither randomly. It needs to control its sensing in order to collect the most relevant
information. This behavior is called active sensing2. Active sensing is currently studied in two
major problems: patrolling and map-building. Both problems are useful in many application
types such as search and rescue, intrusion detection, industrial maintenance... This chapter
presents an overview of the studies existing for active sensing in patrolling and map-building.

2Also called sometimes active perception

27

Chapter 1. Active Sensing

1.1 Definition of Active Sensing

[Bajcsy, 1988] defined active sensing as a "problem of controlling strategies applied to the data
acquisition process which will depend on the current state of the data interpretation and the goal
or the task of the process". Then the active sensing problem have been deeply studied [Floreano
and Mondada, 1994,Weyns et al., 2004] and applied to various domain such as surveillance and
exploration.

Formally, [Mihaylova et al., 2002] defined active sensing as "the process of determining the
inputs by optimizing a criterion, function of both costs and utilities" and formulated as following
:

xk+1 = f(xk, uk, ηk) (1.1)

zk+1 = h(xk+1, sk+1, ξk+1) (1.2)

where x is the system state vector, f and h are nonlinear system and measurement functions, z
is the measurement vector, η and ξ are respectively system and measurement noises. u stands
for the input vector of the state function, s stands for a sensor parameter vector as input of the
measurement function. The subscripts k and k+ 1 stand for steps. Based on this definition, the
active sensing problem is markovian: the state at step k+ 1 only depends on the state at step k
and not on the history {0..k−1}. The system’s states are influenced by the input u (an example
of input is the action taken by the agent) and the system’s noises η (modeling for instance the
possible failure of the action taken by the agent). The measurements depend on the system’s
states x, the parameters of the measurement function s (for instance a camera’s focal length)
and the measurement’s noises ξ (modeling for instance the precision of the sensors).

The active sensing problem is very challenging for various reasons [Mihaylova et al., 2002] :

1. The robot and sensor models are nonlinear, and even if some methods linearize the models,
all problems cannot be treated that way.

2. The task solution depends on an optimality criterion which is a multi-objective function
weighting the information gain to some other utilities and costs. Multi-objective opti-
mization is a challenging problem that often leads to computational explosion in time and
number of operations.

3. Uncertainties in the robot model, the environment model and the sensor data need to be
dealt with.

4. The system is often partially observable, that is to say that the sensors give information
about some variables but not all.

In multi-agent active sensing, sensors in the system may be heterogeneous and need to cooper-
ate to achieve the best active sensing possible. This kind of application raises new challenges such
as robustness, communication complexity and performance requirements [Chung et al., 2004]. In
the following section, we will explore the literature in different cases. Section 1.2 presents the
patrolling problem. Section 1.3 presents a very well studied problem in which active sensing is
capital : map exploration. Finally section 1.4 presents other less studied types of exploration in
which active sensing is also used through different forms.

28

1.2. Adversarial settings : the patrolling problem

1.2 Adversarial settings : the patrolling problem

1.2.1 What is "patrolling" ?

Literally, to patrol is "keep watch over (an area) by regularly walking or traveling around or
through it" [Oxford,]. Basilico et al. defined the patrolling task as a task in which an agent
needs to perceive portions of a known environment in order to detect intrusion [Basilico et al.,
2010].

Machado et al. described in [Machado et al., 2003] the patrolling problem in term of move-
ment in a discrete graph, in which the nodes represent the zones to visit. In the case of continuous
terrains, techniques such as skeletonization [Russell and Norvig, 2009] or Voronoi diagrams [Au-
renhammer, 1991] are suggested to build a representing graph. Given this graph, the patrolling
task consists in continuously visiting all the graph nodes so as to minimize the time lag between
two visits. The authors also claimed that the patrolling task can exhibit slightly different charac-
teristics according to the nature of the environment and the domain of application. For instance,
for an environment containing mobile obstacles, the edges of the graph may change among time.
Edges with different weights or nodes with different priorities can be considered to model a path
more of less difficult and to visit more often some sensitive nodes. However, they focused their
study on graphs with static and uniform weighted edges, and without nodes priority. Guo and
Qu presented in [Guo and Qu, 2004] a mathematical formulation of the patrolling problem, in
which the patrolling problem is considered as a problem of path planning.

Both representation (graphical and path-planning) have been widely reused and studied.
However, and since path planning is not our main concern here, we will focus more on studies
that adopt a decision-theoretic approach and so represent the patrolling problem as visiting all
the nodes in a graph. Two major settings are usually considered in patrolling : non-adversarial
setting, in which the patrolling agents need to visit the nodes and report changes, and adversarial
settings, where the patrolling agents face a rational intruder that they have to detect.

A lot of algorithms have been suggested in the literature to find good patrolling strategies.
However, the problem of evaluating a patrolling strategy is not straightforward since it may
depend on the considered application. Given a discrete graph as described in their work [Machado
et al., 2003], Machado et al. introduced three measures of patrolling quality : idleness, worst
idleness and exploration time. The idleness of a graph is the average number of time steps between
visits to all vertices. The worst idleness is the highest number of time steps that occurs during a
simulation. The exploration time is the number of time steps necessary for an agent to visit at
least once each node in the graph. These criteria, and particularly the idleness criterion, has been
reused and adapted in more recent works. For instance, Elmaliah et al. suggested in [Elmaliach
et al., 2009] three new criteria built on idleness and taking into account the frequency in which
points in the area are visited.

Some studies [Agmon et al., 2008b,Agmon et al., 2011,Sak et al., 2008], argued that minimiz-
ing the time-lag between each visit of a node was not sufficient in adversarial settings. Indeed,
the optimal deterministic patrolling path will fail miserably against an opponent that has knowl-
edge about this path (for instance able to observe the patrolling agent for a while). Therefore
it is mandatory to introduce some unpredictability in the patrolling and build non-deterministic
patrolling strategies.

1.2.2 Single-agent patrolling

Studies about non-adversarial setting does not take into account a model for the intruders. They
only try to optimize the patrolling path to reduce the time between each visit. In [Martins-Filho

29

Chapter 1. Active Sensing

and Macau, 2007], Martins et al. considers patrolling on arbitrary graphs, but the goal is to
patrol edges3 with the same frequency. They also introduced chaotic motion behavior through
the use of an area-preserving chaotic map to ensure a high unpredictability of robot’s trajectories
and give the impression of erratic motion from an observer’s point of view. In [Ruan et al., 2005],
the authors considered a graph in which nodes have different priorities, based on incident rates,
and a patrolling scheme that visits the node depending on their importance. The solution is
generated thanks to a learning algorithm designed under a Markov Decision Process (MDP).

In adversarial settings, in which a model of the intruder is considered, Games Theory has
gained a lot of interest recently, its main advantage being the possibility to take into account a
model of the intruder in developing a patrolling strategy. Bayesian Games are commonly used
to model scenarios in adversarial settings. In a Bayesian Game each agent may belong to one or
more type, that determines its possible actions and payoffs. Usually, these games are analyzed
in order to find a Bayesian equilibrium4 [Fudenberg and Tirole, 1991]. However, this requires
that all the players choose their strategy simultaneously. This assumption is not possible in
many applications, for instance when the intruder have time to observe the patrolling agent
and to adapt its strategy. For these cases, Stackleberg Games [Fudenberg and Tirole, 1991] are
more appropriate. In a Stackleberg Game a leader, the patrolling agent, commits its strategy
first and then a group of followers, the adversaries, optimize their own strategy considering the
action chosen by the leader. The problem of choosing an optimal strategy for the leader in a
Stackleberg Game has been proven to be NP-hard [Conitzer and Sandholm, 2006]. Paruchuri
et al. proposed a heuristic to find exact solutions in such problems [Paruchuri et al., 2007] and
an efficient algorithm to solve Stackleberg Games [Paruchuri et al., 2008]. However, in [Gatti,
2008], Gatti pointed out some inconsistencies in Paruchuri et al.’s work and suggested another
model, consistent with game-theory, and an algorithm to solve it. Basilico et al. also considered
the leader-followers strategies [Basilico et al., 2009] but applied it to infinite-horizon problems.
They also defined the notion of Patrolling Security Games (PSG) [Basilico et al., 2012] to address
this specific type of problems. A PSG is defined as a two-player game played by a patroller and
a intruder on a graph-represented environment. The game is organized in turns during which
the players act simultaneously. They theoretically studied this subclass of security games and
provided algorithms to solve large instances with a single patroller and single intruder.

Randomization has been introduced in single-agent patrolling strategies to avoid predictabil-
ity, for instance in [Lewis et al., 2004,Carroll et al., 2005]. However, no specific algorithm has
been presented for the generation of randomized policies. Paruchuri et al. provided such an
algorithm by using randomization in Fully Observable and Partially Observable Markov De-
cision Processes [Paruchuri et al., 2006, Paruchuri et al., 2009] and in Bayesian Stackleberg
games [Paruchuri et al., 2009].

1.2.3 Multi-agent patrolling

Multiagent patrolling adds new challenges to the patrolling task. Indeed, the agents need to
coordinate their decision-making with the purpose of achieving optimal group performance. One
of the first work in this field is described in [Machado et al., 2003] where several architecture of
multi-agent patrolling were presented and evaluated. The authors considered mainly homoge-
neous groups of agents, that is to say all the agents share the same architecture. Some parameters
have been considered, presented in Table 1.1. This table presents only the architectures that have
been chosen by the authors as the most appropriate to the task by combining all the features.

3Unlike the usual patrolling problem which considers patrolling vertices
4The extension of Nash equilibrium for Bayesian Games

30

1.2. Adversarial settings : the patrolling problem

Architecture Name Basic
Type

Communication Next node choice Coordination
strategy

Random reactive
reactive none locally random

emergentConscientious reactive locally individual
idleness

Reactive with flags flags locally shared idle-
ness

Conscientious cognitive

cognitive

none globally individual
idleness

Blackboard cognitive blackboard globally shared idle-
ness

Random Coordinator messages globally random centralIdleness Coordinator globally shared idle-
ness

Table 1.1: Resume of the main features of the agents. From [Machado et al., 2003]
.

The first parameter considered is the type of agent : reactive or cognitive. Reactive agents can
only perceive adjacent nods while cognitive agents can perceive a depth d > 1 of the graph, al-
lowing them to plan paths. In their study, [Machado et al., 2003] considered a global perception
: cognitive agents have a complete view of the graph. Different types of communication have
been considered : in the flags type, agents put flags in their environment ; in the blackboard
type, agents share a common database ; in the messages type, agents exchange messages with a
coordinator. The decision-making part, or how to chose the next node to visit, takes into account
the type of agents (local perception or global perception) and the criteria chosen to to evaluate
the patrolling. Finally the last feature is the mean of coordinating the agents : a centralized co-
ordination where a coordinator chooses the goal for each agent, or a decentralized coordination,
that emerges from the interactions between the agents. The experiments conducted in [Machado
et al., 2003] enabled to see three groups of architecture emerging : the random group, the non-
coordinated group and the top group. Table 1.2 shows how the architectures are divided into the
groups.

Groups Agents

Random Group Random Reactive Agent
Random Coordinator

Non-coordinated Group Reactive Agent with Flags
Blackboard Cognitive Agent

Top Group
Conscientious Reactive Agent
Conscientious Cognitive Agent

Idleness Coordinator

Table 1.2: MAS architecture groups. From [Machado et al., 2003]

The Random Group performed unsurprisingly the worst with small population, while the
Top Group performed better. However, when increasing the size of the population, the results of
the Random Group tended to be equivalent to those of the Top Group. This can be explained by
the highly unpredictable behavior of the agents in the Random Group. For the Non-coordinated

31

Chapter 1. Active Sensing

Group, all the agents tended to go to the same place at the same moment. This study, even
though being an important piece of work in the beginning of multi-agent patrolling, presents
several weaknesses already pointed out by [Portugal and Rocha., 2011], the most important
being that the edges are unweighted, which means that the agents travel from a vertex to another
regardless of the distance between them.

In [Chevaleyre, 2004], Chevaleyre proved that the patrolling problem could be solved with
a Travelling Salesman approach and extended this approach to more than one agent. This
multi-agent approach is called cyclic strategies. They compared this approach to partitioning
strategies, in which the area to patrol is separated in different zones, then distributed among the
agent. The cyclic strategies are showed to be better suited in highly connected graphs while the
partitioning strategies show better performances in environment with long corridors separating
the zones. Other partitioning methods have been developed after Chevaleyre’s study, as [Portugal
and Rocha, 2010]. In [Elmaliach et al., 2009], the authors suggested an algorithm for patrolling
inside a closed area that guarantees to visit each point in the graph with an optimal frequency.
This algorithm is robust by ensuring the optimality as soon as one robot works properly. Finally,
they suggested an algorithm to handle events, that is to say changes in the environment that
requires treatment from the robot, while maintaining the patrolling path. Still in the frequency-
based techniques, Elmaliah et al. extended the state of the art by suggesting a realistic model of
motion that considers velocity uncertainties [Elmaliach et al., 2008]. Those works are centralized,
as the optimal path and zone partitioning is computed globally for all agents.

In [Glad et al., 2008], Glad et al. used the ant paradigm to coordinate the agents in a
decentralized way. Each agent can only mark and move according to its local perception of
the environment. This work is based on the EVAP algorithm [Chu et al., 2007], that enables
patrolling even in unknown environments. The agents drops pheromone when they move to a cell,
and this pheromone evaporates according to a certain rate. Sensing the remaining pheromone
enable the agents to decide where to go next. The authors proved theoretically that the patrolling
task is achieved with this setting. In [Menezes et al., 2006] and [Hwang et al., 2009], auction
mechanisms are proposed to determine the patrolling area for each agent. With this mechanism,
the agents need no pre-computed path.

All the work presented so far deals with non-adversarial setting. As for single-agent, non-
deterministic strategies are widely used to solve the problem of multi-agent patrolling in ad-
versarial setting. For instance, in [Agmon et al., 2008a], several robots are patrolling around a
closed area with randomized movements. The authors suggested a polynomial-time algorithm
such that the minimal probability of penetration detection is maximized. They assumed a strong
adversarial model in which the adversary knows the position of the robots and the patrol scheme.
In [Agmon, 2010], Agmon extended the patrolling state of the art by considering that the agents
should be granted different reward depending on when they detect an intrusion5. He also con-
sidered that an intrusion can be detected from distance, the probability of detection depending
both on the distance from the robot and the state of the intrusion. His algorithm incorpo-
rates Markovian assumptions in dynamic programming inspired algorithms. The work presented
in [Paruchuri et al., 2006] for single agent also been carried out for multi-agent setting in the
same study, using distributed POMDPs.

5For instance, a intrusion detected very lately will be less rewarded that an intrusion detected as soon as the
intruder penetrates the area

32

1.3. Active Sensing in Map exploration

1.3 Active Sensing in Map exploration

Robotic exploration can be defined as a process that discovers unknown features in an envi-
ronment by means of mobile robots [Amigoni et al., 2012]. In the case of Map Exploration,
the unknown feature is the map of the environment itself. The problem of map-building have
not been much addressed as a standalone problem but widely explored under the problem of
Simultaneous Localization And Mapping (SLAM).

1.3.1 Single agent map exploration

The major piece of work concerning map-building as a single-agent standalone problem has been
produced by Yamauchi, in [Yamauchi, 1997]. Yamauchi introduced the frontier-based exploration,
based on the idea that the borders between known and unknown world are the places one that
provides the most new information. Frontiers are regions at this boundary and when robots
reach these frontiers, they can see unexplored areas and expand the map territory, pushing back
the boundary. To detect the boundary, Yamauchi used evidence grids, that are made up of cells
that stores the probability that the corresponding region is occupied [Moravec and Elfes, 1985].
This work has been widely reused in multi-agent map exploration, but very little in single-agent
setting. Recently, Bachrach et al. suggested in [Bachrach et al., 2009] an exploration planner
that used a modified frontier-based strategy to determine the best frontier to reach and optimize
the map-building.

Simultaneous Localization And Mapping (SLAM) is the problem of building a map of the
environment while simultaneously determining the location of the robot within this map [Aulinas
et al., 2008]. At the beginning, both the map and the robot’s location are unknown, but the
robot has known kinematic model. The SLAM problem is usually addressed in several steps :

1. Initialization : Define the robot’s initial position or work with some pre-existing features
with high uncertainty on the robot’s position

2. Prediction : When the robot moves, the motion model provides new estimates of its new
position with the associated uncertainty

3. Measurement : New features are added to the map and previously added features are
re-measured

4. Loop : repeat step 2 and 3

In addition to map-building related difficulties, Step 3 raises the issue of data association : due
to uncertainty and sensors’ error, the same feature may be sensed several times and give slightly
different measures. It is important that the SLAM algorithm can detect that those measures
are produced by the same feature. This data association problem is very hard to solve and a
key in SLAM problems. However, this more related to data fusion and object recognition than
map exploration. That’s why we will not detail this problem in this thesis. However, a survey
of techniques used for data association can be found in [Aulinas et al., 2008].

The SLAM problem is characterized by uncertainty and sensor noise, and it is not surprising
that probabilistic techniques have naturally gain popularity to solve it, the dominant techniques
being filter-based. Extensions of Kalman Filter (Extended Kalman Filter, Unscented Kalman
Filter) have been successfully used in SLAM algorithms. Indeed, the Kalman Filter can only
be applied to linear systems, which is obviously not the case in real-world. The Extended
Kalman Filter, used for instance in [Davison and Murray, 2002, Jensfelt et al., 2006], deals

33

Chapter 1. Active Sensing

with nonlinearities by linearizing the dynamic equations. This can be viewed as a first-order
approximation of the nonlinear system. The propagation during the update step is also conducted
through the approximated equations, which can introduce large error and can lead sometimes to
the divergence of the filter. The Unscented Kalman Filter is an improvement of the Extended
Kalman Filter, as it can capture mean and covariance up to the second order and propagates
through the true non-linear system. The Unscented Kalman Filter has also been widely used to
solve the SLAM problem [Sunderhauf et al., 2007,Holmes et al., 2009]. Other types of Kalman
Filters have been used (Information Filter, Compressed Extended Kalman Filter), each with
advantages and drawbacks. Particles Filters are other type of filter used for SLAM, that can
handle highly nonlinear sensors. However, it involves a growth in computational complexity and
are not suitable for real-time applications [Montemerlo et al., 2002]. They are therefore used
only for the localization part of the SLAM, but not for map-building, in combination with other
techniques, as in [Montemerlo and Thrun, 2007].

Another technique used in SLAM, but not filter-based, is the Expectation Maximization, as
in [Burgard et al., 1999]. Expectation Maximization is a statistical algorithm that is able to
build a map when the robot’s pose is known. The algorithm iterates two steps : an Expectation
step where the posterior over robot poses is calculated for a given map, and a Maximization
step where the most likely map is calculated given these pose expectations. The accuracy of the
computed map increases during the execution of the algorithm, but the need to process the same
data several times makes it inefficient as a complete framework and not suitable for real-time
applications. However, it is often used in combination with Particle Filter, which can evaluation
the robot’s pose and so reduce or even suppress the expectation step [Cappé, 2009,Corff et al.,
2011].

The Table 1.3, from [Aulinas et al., 2008], summarizes the different techniques as well as
their pros and cons.

The usual SLAM problem is passive : the influence of the robot on the SLAM algorithm
performance is ignored. In active SLAM, the robot needs to optimize an objective function
related to the SLAM algorithm. Usually, it means planning efficient paths to perform SLAM
efficiently. Active SLAM has first been tackled in [Feder et al., 1999], with a greedy approach
where the next action is chosen to maximize the information gain in the next measurement. This
approach is myopic and no long-horizon planning is achieved. Active SLAM has then been studied
by number of authors, with one problem being to chose a correct objective function, and so a good
optimality criterion. This optimality criterion should reflect the uncertainty of the system about
its state. Two kind of criteria are usually considered, both introduced in [Fedorov, 1972], the
A-optimality criterion and the D-optimality criterion. Both are based on the covariance matrix
of the probability distribution of a state. Some studies, such as [Mihaylova et al., 2003] and [Sim
and Roy, 2005], argued that the A-optimality criterion performed better than the D-optimality
criterion and is a meaningful metric for active SLAM. However, recent studies, such as [Carillo
et al., 2012], claimed that computing the D-optimality criterion as in the previous studies leads
to wrong results and proved that, by computing the D-optimality criterion as in [Kiefer, 1974],
this criterion produced results as good as the A-optimality criterion, and even better in some
cases. Other uncertainty measures have been proposed, such as the entropy or change in entropy
of the probability distribution [Stachniss et al., 2005] and the Kullback-Leibler distance [Carlone
et al., 2010].

Based on an optimality criterion, different algorithms have been suggested to compute efficient
exploration policies. In [Leung et al., 2006], Leung et al. suggested to use local planning
strategies as Model Predictive Control [Morari et al., 2014]. In [Kollar and Roy, 2008], the
authors framed the problem as a constrained optimization and solved it using the Policy Search

34

1.3. Active Sensing in Map exploration

Pros Cons
Kalman Filter and Extended KF (KF/EKF)
- high convergence - Gaussian assumption
- handle uncertainty - slow in high dimensional maps
Compressed Extended KF (CEKF)
- reduced uncertainty - require very robust features
- reduction of memory usage - data association problem
- handle large areas - require multiple map merging
- increase map consistency
Information Filter (IF)
- stable and simple - data association problem
- accurate - max need to recover a state estimates
- fast for high dimensional maps - in high-D is computationally expensive
Particle Filter (PF)
- handle nonlinearities - growth in complexity
- handle non-Gaussian noise
Expectation Maximization (EM)
- optimal to map building - inefficient, cost growth
- solve data association - unstable for large scenarios

- only successful in map building

Table 1.3: List of advantages and disadvantages of filtering approaches applied into the SLAM
framework. From [Aulinas et al., 2008]

35

Chapter 1. Active Sensing

Dynamic Programming algorithm suggested in [Bagnell et al., 2003]. Rao-Blackwellized Particle
Filters have also been explored [Stachniss et al., 2005,Carlone et al., 2014].

1.3.2 Multi agent map exploration

Using several robots for map exploration has a lot of advantages : faster exploration, redundancy
that implies a better fault tolerance and better accuracy. However, it also raises new issues, two
major being (1) coordinate the agents so that they explore simultaneously different regions
of the environment and (2) merging the maps built by each agent. A lot of studies are based
on [Yamauchi, 1997], and focus on splitting the frontier regions between the robots. Yamauchi
himself suggested in [Yamauchi, 1998] a multi-robot exploration in which the robots share the
gathered information to build the map and the list of frontiers. Each robot then moves to
its closest frontier. Here, the coordination is implicit and performed by sharing information.
More recent studies also assume implicit coordination, as in [Bautin et al., 2011], in which the
robots choose their target location by reasoning on positions instead of distances : each robot
will choose the frontier having less robots closer than it. Both algorithms share a common
drawback which is that the several robots can choose the same frontier. To overcome this issue,
an explicit coordination is usually needed. This coordination can be centralized - one coordination
component affects the frontier to the robots - or decentralized - the robots communicate with
each others to decide how they affect the frontiers.

Most of centralized approaches suggested to use a trade-off between the cost to reach a given
target location and the utility of reaching this target location. In [Simmons et al., 2000], the
robots send a bid to a central executive containing their cost of reaching different location and
their estimated information gain. Then, the central executive uses a greedy algorithm to assign
the locations by maximizing the team utility, expressed as the information gain minus the cost.
In [Burgard et al., 2002], Burgard et al. the utility is expressed in a different way since it
depends on the probability that the target location was visible from target locations affected to
other robots. In both studies, the local robots’ maps are sent to a central server that combines
them to a global map and robots’ initial positions are also assumed approximately known. Ko
et al. were the first to tackle the problem of map merging with completely unknown initial
location [Ko et al., 2003] by using particle filters. In this approach, a robot tried to localize itself
in another robot’s map to confirm their relative position before merging maps. This map-merging
problem has also been studied in [Zhou and Roumeliotis, 2006] using landmarks and [Wang et al.,
2007] using meeting points.

Despite their efficiency in coordinating the robots, centralized algorithms encounter several
problems, such as :

1. a computational cost that increases dramatically with the number of robots

2. a communication problem : the robots all need to be in communication range with the
central server

To overcome these issues, decentralized algorithms have quickly been studied. In [Zlot et al.,
2002], Zlot et al. extended the utility method by using approach based on Market Economy.
The robots bid on their target and then negotiate to affect the target locations. In this work, the
robots communicate only with other robots that are in communication range and their relative
initial positions are known. Burgard et al. also considered the problem of limited communication
in [Burgard et al., 2005]. They extended their previous work [Burgard et al., 2002] and applied
the target selection algorithm to each sub-team of robots that can communicate with each others.

36

1.4. Other type of exploration

Some studies considered other ways, not frontier based, for map-building. In [Wurm et al.,
2008], the authors considered instead the notion of segment and used the Hungarian [Kuhn, 1955]
method to assign to each robot a segment to explore. In [Matignon et al., 2012], the authors
suggested a decision-theoretic approach based on a Decentralized Markov Decision Process (Dec-
MDP) in which each robot computes locally a strategy that minimizes the interactions between
the robots and maximizes the coverage of the team. In [Kontitsis et al., 2013], Kontitsis et al.
based their work on motion planning and used Extended Kalman Filter and Relative Entropy
optimization to compute efficient paths.

1.4 Other type of exploration

Since exploration considers all type of unknown features, it can be applied to other problems
than map exploration. In several studies, Lilienthal et al. applied exploration strategies to Gas
Distribution Mapping [Lilienthal et al., 2007, Loutfi et al., 2009]. In this problem, the purpose
is to explore the environment and to combine heterogeneous information from different sources
(gas detection, wind detection...) to find the source of a gas emission or to build a map of the
gas distribution. This kind of work is also referred as robot olfaction. Chanel et al. applied in
several studies POMDP-based techniques for multi-target detection [Chanel et al., 2012,Chanel
et al., 2013]. In [Singh et al., 2009], Singh et al. defined Multi-robot Informative Path Problem,
in which robots have to optimize their path in order to gather as much information possible
about some dynamics phenomena.

1.5 Conclusion

Active sensing is acting in order to maximize the information gain. In this chapter, we presented
different contexts in which active sensing is a key. We first presented the patrolling problem, in
which agents explore their environment indefinitely to detect any intrusion and/or abnormalities.
Then, we presented the map-building problem, in which the agents need to coordinate in order
to create an accurate map of their environment.

Both problems share the need of exploring unknown features, and as does the event explo-
ration problem. However, the nature of the features to be explored and the mission to perform is
very different and need adapted frameworks. The patrolling and event exploration problem both
concern dynamic environments, topologically known, in which events need to be detected. The
main different between both remains in the type of solutions required. The patrolling problem
requires to find an optimal path to detect intrusions. The behavior of the robots after the in-
trusion is detected is rarely discussed in the literature. In the event exploration problem, we are
interested in finding adaptable long-term strategies, not only to detect events but also to main-
tain a good knowledge about those event among time. Moreover the event exploration problem
shares with the map-building problem the fact that it needs to take uncertainty into account.
In the event exploration problem, this uncertainty is due to the robots’ sensors but also to the
dynamicity of the system.

We face then the issue of representing the agents’ knowledge and the uncertainty about this
knowledge. The next chapter will present some basis of knowledge representation and the most
common ways to deal with uncertainty.

37

Chapter 1. Active Sensing

38

Chapter 2

Representing uncertainty and sharing
knowledge

Contents
2.1 Knowledge Representation . 40
2.2 Representing uncertainty . 40

2.2.1 Probability measures . 41
2.2.2 Bayesian Networks . 42
2.2.3 Dempster-Shafer belief functions . 44
2.2.4 Possiblity measures . 45
2.2.5 Other methods . 46

2.3 Information relevance . 47
2.3.1 Relevance in Information Retrieval Systems 48
2.3.2 Toward a theory of relevance in multi-agent systems 49

2.4 Conclusion . 51

To reason and to perform some tasks, an agent need a good representation of the world
surrounding it. By nature, the real world is uncertain in different ways. Therefore a good
uncertainty representation is a key for operating in the real world. In addition, several agents
that cooperate in the same world need to exchange their information. This chapter focuses on
ways to represent uncertainty in an agent and on a crucial concept when sharing information :
the relevance.

39

Chapter 2. Representing uncertainty and sharing knowledge

2.1 Knowledge Representation

Knowledge Representation is the kernel of all intelligent systems : without knowledge, a system
is not able to reason and to perform any task. A good representation is a key for good reasoning
and decision-making, and depends on the application considered. Logics are a common and
useful way to represent knowledge and were studied far before the computer’s extend. Frege
defined the purpose of logic as "to express a content through written signs in a more precise and
clear way than it is possible to do through words" [Heijenoort, 1967]. The basic logic used in
computer programming is the propositional logic. Propositional logic manipulates atoms, which
can be interpreted as the base vocabulary of the logic, and formulas, which are made up of
atoms and some operators. Each formula can be interpreted as true or false. This logic has been
widely used and advanced to express more and more complicate things. The predicate logics use
variables and quantifiers (∃ "there exists" and ∀ "for all") to manipulate wider concepts. The
modal logic introduces operators such as � "it is possible" and � "it is necessary". Epistemic
logic manipulates knowledge by using operators as B "I believe that" and K "I know that. All
those logics (and a lot of others not listed here) are monotonic : adding a new formula never
reduces the set of consequences: learning a new piece of knowledge will not reduce what is
already known. However, those logics cannot deal with belief revision, that is to say when a
new knowledge contradicts what is already known. Non-monotonic logic has been introduced to
solve this problem, and to enable other kind of reasoning such as reasoning by default. Other
formalisms have been introduced to represent knowledge and make inference such and Bayesian
networks, that will be introduce in Section 2.2.2.

2.2 Representing uncertainty

As soon as one need to reason about the real world, uncertainty is unavoidable. In [Dubois,
2007], the authors distinguishes three different types of uncertainty arising from different origins
: aleatory uncertainty, epistemic uncertainty and inconsistent uncertainty (Figure 2.1).

	
Figure 2.1: Origins of Aleatory, Epistemic, Inconsistent Uncertainty. From [Bellenger, 2013]

Aleatory uncertainty is due to the outcomes of random experiments, as throwing a dice, and

40

2.2. Representing uncertainty

to the variability of phenomena, like weather forecast. Aleatory uncertainty can be estimated
objectively through statistical data. Epistemic uncertainty is due to a lack of knowledge. Unlike
aleatory uncertainty, epistemic uncertainty cannot be estimated through statistics. An example
given in [Dubois, 2007] is the knowledge of the Brazilian President’s birth date: knowing the
birth date of other presidents will not help to figure out the birth date of the Brazilian President.
Inconsistent uncertainty is due to conflicting reports from different sources. The more sources,
the more likely the inconsistency.

To deal with uncertainty of any kind, an agent need a formal representation of this uncer-
tainty. Almost all uncertainty representations are based on a set of possible worlds, also called
possible states. These are the worlds or the outcomes that an agent considers possible. The prob-
lem of dealing with uncertainty is to select the possible worlds. The more worlds are considered
possible, the more uncertain is the agent.

In the following we will present different ways to represent uncertainty. We will focus on
numeric representations and finite set of possible worlds. The first and the most obvious is the
probability measures (Section 2.2.1), which will be used in this thesis. Related to probabilities,
we introduce the Bayesian Networks to represent dependencies between variables (Section 2.2.2).
Then, for a sake of completeness, we also present the Dempster-Shafer theory of evidence (Section
2.2.3) and the possibility measures (Section 2.2.4). We will finally give an overview of some other
less common methods (Section 2.2.5).

2.2.1 Probability measures

Let us consider the set of possible worlds W = {w1, . . . , wn}. A probability measure assigns to
each world wi ∈ W a number - the probability - that described the likelihood that this world
is the actual world. A probability measure on possible worlds shall respect some properties,
including:

∀wi ∈W,P (wi) ∈ [0, 1] (2.1)
∀wi, wj ∈W,wi 6= wj , P (wi ∪ wj) = P (wi) + P (wj) (2.2)∑
wi∈W

P (wi) = 1 (2.3)

The Principle of Indifference states that, in absence of specific information, there is no reason
to consider one possible world more likely that another. So, if we consider n possible worlds,
the probability associated to each world would be 1

n . Then, statistical studies allow to attribute
probabilities to the possible worlds. As an example, let us consider the patients of a doctor.
There is three possible worlds : w1 = the next patient is over 60 and w2 = the next patient is
between 20 and 60 and w3 = the next patient is under 20. If we know that 60 percent of these
patients are over 60, we can conclude that P (w1) = 0.6 and P (w2 ∪ w3) = 0.4. However we
cannot conclude about P (w2) and P (w3). The matter on how statistics are created is beyond
the scope of this thesis.

We call the belief state of an agent 6 the probability measure an agent associates to the set
of possible worlds. This belief state is a basis for reasoning and should be updated each time the
agent receives new information. The most straightforward and common way to update agent’s
beliefs is the Bayes’ rule [Bayes, 1763] : P (wi|E) = P (E|wi)·P (wi)

P (E) , where

• wi is the possible world considered, whose probability may be affected by new information
6Sometimes shortened as agent’s beliefs

41

Chapter 2. Representing uncertainty and sharing knowledge

• E is an evidence, that is to say new information that may affect the probability of the
possible world considered

• P (wi) is the prior probability, the probability of wi before E is observed

• P (wi|E) is the posterior probability, the probability of wi knowing E

• P (E|wi) is the likelihood of E, that is to say the compatibility of the evidence given the
possible world considered

• P (E) is the marginal likelihood

This update, also called conditioning, is a very useful tool but also suffers from some problems
when dealing with possible worlds with probability 0. In that case, P (wi|E) is undefined. This
leads to some philosophical questions regarding worlds with probability 0 : are they really
impossible ? How unlikely should they be before being assigned probability 0 ? In practice,
this kind of case usually occurs when the probability distributions are discretized and so to
approximations. Theoretically, according to the principle of Indifference and in absence of other
information, the initial probability distribution should be the uniform distribution. If the Bayes
rule is applied from this distribution, the exact values of probabilities could never be 0. If some
prior information states that a world in truly impossible, then it seems reasonable to assume
that this world should not be represented as a possible world. Therefore, the case of probability
equal to 0 due to discretization should be handled when designing the system, with solutions
depending on the problem.

2.2.2 Bayesian Networks

Bayesian network, introduced by Pearl in [Pearl, 1988] and Neapolitan in [Neapolitan, 1990],
is a practical way to represent dependencies between random variables. A Bayesian network is
a directed acyclic graph (DAG) whose nodes are labeled by random variables and whose edges
represent causal influence. Let us consider as an exemple the following situation. Two events can
cause some grass to be wet : rain or use of sprinkler. It is common knowledge that it usually rains
more in winter, and that sprinklers are usually not useful in winter. We consider in addition that
rain provokes slippery roads. This situation is represented in Figure 2.2 as a Bayesian network.

The nodes of the graph are labeled with the variables considered in the situation and the
edges represent the causal dependency. Each variable has two possible values : true or false.
A table is associated with each node in the network, containing conditional probabilities of that
node given its parents. For instance, we can see that the probability of Rain being true while
Winter is true is 0.8, and the probability of Wet Grass while Sprinkler is true and Rain is
true is 0.95.

A Bayesian network over variables X specifies a unique probability distribution over its
variables, defined as follows [Pearl, 1988]:

P (X = x) :=
∏

θx|u:xu∼x
θx|u

where θx|u is the conditional probability of x given an instantiation u of its parents and xu ∼ x
means that instantiations xu and x agree on the values of their common variables.

Bayesian networks enables to make inference and answer to two fundamental queries :

42

2.2. Representing uncertainty

Figure 2.2: A bayesian network over five propositional variables. From [Harmelen et al., 2008].

43

Chapter 2. Representing uncertainty and sharing knowledge

Most Probable Explanation (MPE) : What’s the most likely instantiation of network variables
X given some evidence e ? MPE(e) = argmax

x
P (x|e).

Probability of Evidence (PR) : What’s the probability of evidence e P (e) ?

Those problems are difficult, since finding the Most Probable Explanation has been proven to be
NP-hard [Cooper, 1990] and finding the Probability of an Evidence has been proven to be PP-
hard [Littman et al., 2001]. Exact and approximate algorithms have been developed to answer
these questions.

Exact algorithms are based on the network topology and use variable elimination (as in
[Dechter, 1999]), joint trees (as in [Shenoy and Shafer, 1986,Lauritzen and Spiegelhalter, 1988,
Jensen et al., 1990]), or recursive conditioning (as in [Darwiche, 2001]). Those algorithms have
been refined to exploit the parametric structure of a Bayesian network, for instance by adopting
non-tabular representation of the conditional probabilities (as in [Poole and Zhang, 2003,Larkin
and Dechter, 2003]) or local structures (as in [Allen and Darwiche, 2002,Chavira and Darwiche,
2005]). Approximate algorithms are based on the idea that the best answer may be too hard
to compute, but it may be sufficient to compute a good answer. Unlike exact algorithms, ap-
proximate algorithms are generally not sensitive to tree width. The main techniques used in
approximate algorithms are stochastic sampling (as in [Shachter and Peot., 1989, Cheng and
Druzdzel, 2000]), belief propagation (as in [Yedidia et al., 2005]) and variational methods (as
in [Jordan et al., 1999]). Most of the approximate algorithms in the literature have bounded
errors.

2.2.3 Dempster-Shafer belief functions

The Dempster-Shafer theory of evidence has been introduced by Arthur Dempster [Dempster,
1967] and developed by Glenn Shafer [Shafer, 1976]. It allows the combination of distinct evidence
from different sources in order to calculate a global amount of belief for a given hypothesis.
Given the set W of possible worlds, to each subset U ⊆ W is associated a belief function and a
plausibility function.

The belief function, denoted Bel(U) associates to each U a number in the interval [0, 1]
corresponding to the belief in U . This belief function must satisfy the following properties :

1. Bel(∅) = 0

2. Bel(W) = 1

3. Bel(
⋃n
i=1 Ui) ≥

∑n
i=1

∑
I⊆{1,...,n}(−1)|I|+1Bel(

⋂
j∈I Uj)

Property 3 is a general formulation of the well known inclusion-exclusion principle [van Lint and
Wilson, 2001], but with the = replaced by a ≥. We can note that any probability measure defined
on the power set P(W)7 is a belief function, but the converse does not hold. For instance, if
W = {w1, w2}, Bel(w1) = 0.5, Bel(w2) = 0, Bel(W) = 1 and Bel(∅) = 0, then Bel is a belief
function but not a probability measure. A second important difference between belief functions
and probability measures is that probability measures are entirely characterized by their behavior
on the singleton sets, which is not the case for belief functions.

The plausibility function is defined as Plaus(U) = 1 − Bel(Ū) and satisfies the following
properties :

7That is to say the set of all subsets of W

44

2.2. Representing uncertainty

4. Plaus(∅) = 0

5. Plaus(W) = 1

6. Plaus(
⋂n
i=1 Ui) ≥

∑n
i=1

∑
I⊆{1,...,n}(−1)|I|+1Plaus(Uj∈IUj)

It is easy to derive from property 3 of the belief functions that Bel(U) < Plaus(U). For an event
U , the interval [Bel(U), P laus(U)] can be viewed as describing the range of possible values of
the likelihood of U .

The beliefs are supported by evidences to a certain degree. Let us take the following example,
explained in [Halpern, 2003a]. A bag contains 100 marbles. 30 are known to be red and the
remainder are known to be either blue or yellow. We are interested in the color of a marble taken
out of the bag. The information that there is 30 red marbles provides support in degree 0.3 for
red. The information that there is 70 blue and yellow marbles does not provide any support for
either blue or yellow, but does provide support in degree 0.7 for the set {blue, yellow}.

As for probabilistic belief states, the belief functions need to be updated when a new evidence
arrives. This update is made as follows [Halpern, 2003a]:

Bel(V |U) =
Bel(V ∪ Ū)−Bel(Ū)

1−Bel(Ū)

Plaus(V |U) =
Plaus(V ∩ U)

Plaus(U)

It has been pointed out, for instance in [Halpern, 2003a] that updating belief functions can
give counter-intuitive results on some applications. This problem stresses out the need to be
extremely careful about the underlying interpretation of a belief function when trying to take
into account new information.

2.2.4 Possiblity measures

Possibility theory, introduced in [Zadeh, 1999], is a generalization of the fuzzy logic. Rather
than defining a degree of belief or verity, the possibility theory models the credit an agent has
for a given hypothesis. Let us consider once again the set W of all possible worlds. A possibility
measure Poss associates to each subset of W a number in [0, 1] and satisfies the following
properties [Halpern, 2003a] :

9. Poss(∅) = 0

10. Poss(W) = 1

11. Poss(U ∪ V) = max(Poss(U), Poss(V)) ∀ U, V ⊂W , U and V disjoint

Like the probability measure, the possibility measure can be determined by its behavior on
singletons : Poss(U) = maxw∈U Poss(w), ∀U ⊂ W . The dual of possibility is called necessity
and is defined as Nec(U) = 1−Poss(Ū). There are four extreme cases of necessity and possibility
to understand the relation between them.

• Nec(U) = 1 means that U is necessary, and so certainly true. It implies Poss(U) = 1

• Poss(U) = 0 means that U is impossible, and so certainly false. It implies Nec(U) = 0

45

Chapter 2. Representing uncertainty and sharing knowledge

• Poss(U) = 1 means that U is completely possible, and so it would not be surprising if U
occurs. But it leaves Nec(U) unconstrained

• Nec(U) = 0 means that U is unnecessary, and so it would not be surprising if U doesn’t
occur. But it leaves Poss(U) unconstrained

Once more, possibilistic beliefs need to be updated with new evidence. There are two ap-
proaches in the literature for updating beliefs based on possiblity measures [Halpern, 2003a].
The first one, but not the most common, considers possibility measure as a special case of
Dempster-Shafer’s plausibility function and so defines the update as :

Poss(V |U) =
Poss(V ∩ U)

Poss(U)

The second and most common definition considers that the operation min should play the same
role for possibility measures than the multiplication does for probability measures. In this case,
the update is performed as follows:

Poss(V |U) =

{
Poss(V ∩ U) if Poss(V ∩ U) < Poss(U)

1 if Poss(V ∩ U) = Poss(U)

These two approaches may be useful in different context. In [Dubois and Prade, 1998], Dubois
and Prade suggested that in infinite spaces and for numeric representations of uncertainty it
may be more appropriate to use the first approach, while the second one is more appropriate for
qualitative, nonnumeric representations.

2.2.5 Other methods

A bunch of other methods have been developed to represent uncertainty. Ranking functions
[Spohn, 1988], sharing the same intuition than possibility measures, associates a natural number
(or infinity) to an subset U ⊂ W . This number described the degree of surprise, that is to say
how surprised an agent would be if the actual world was in U . The 0 denotes unsurprising
and the higher the number, the more surprising. The infinity denotes "so surprising as to be
impossible". A ranking function is characterized by its behavior on singletons and follows the
following properties :

1. κ(∅) =∞

2. κ(W) = 0

3. κ(U ∪ V) = min(κ(U), κ(V)), ∀ U, V ⊂W , U, V disjoint

The last approach we will consider is a generalization of all the approaches mentioned so
far: plausibility measures8 [Friedman and Halpern, 1995, Friedman and Halpern, 2001]. As a
probability measure maps sets in an algebra F over a set W of worlds to [0, 1], a plausibility
measure maps sets in F to some arbitrary partially ordered set. For any U, V ⊂ W , having
Pl(U) ≤ Pl(V) means that V is at least as plausible as U . Formally, a plausibility space is a
tuple S = 〈W,F , P l〉, where W is a set of possible worlds, F is an algebra over W and Pl maps
sets in F to some set D of plausibility values, partially ordered by a reflexive, transitive and
antisymmetric relation ≤D. D is also assumed to contain two special elements >D and ⊥D, such
as ∀d ∈ D, ⊥D ≤D d ≤D >D. A plausibility measure respects the following properties :

8Not to be confused with the plausibility functions of the Dempster-Shafer theory

46

2.3. Information relevance

1. Pl(∅) = ⊥

2. Pl(W) = >

3. If U ⊂ V , then Pl(U) ≤ Pl(V)

Probability measures, Dempster-Shafer belief and plausibility functions, and possibility and ne-
cessity measures are instances of plausibility measures where D = [0, 1], ⊥ = 0, > = 1 and ≤D is
the standard ordering on reals. Ranking functions are instances of plausibility measures where
D = N∗, ⊥ =∞, > = 0 and ≤D is the opposite of the standard ordering on N∗.

The same belief updates steps exist for these different representations. An overview can be
found in [Halpern, 2003b]

2.3 Information relevance

The relevance of information is a concept that we, as humans, intuitively manipulate in our
everyday communications and interactions with others. Communicating relevant information
and knowing that somebody else is communicating relevant information is a key to recognition,
understanding and knowledge inference. Studying relevance is part of the pragmatics, defined
by Moeschler as the study of language use: its object is "meaning in use" [Moeschler, 2007].
In this field, Grice suggested a Cooperation Principle [Grice, 1975] that all cooperative agents
engaged in a conversational interaction should respect. This principle can be decomposed in four
categories. The first one is the category of Quantity, which relates to the quantity of information
to be provided, contains two maxims :

1. Make your contribution as informative as is required (for the current purpose of the ex-
change)

2. Do not make your contribution more informative that is required

Grice argued that the second maxim in disputable since being overinformative is not really
a transgression of cooperation, but mostly a waste of time. However, in the case of costly
communication, being overinformative is costly and so this maxim is of prior importance.
The second category is the category of Quality. The main message of this category is to try to
make a contribution that is true. Two maxims are set by Grice :

1. Do not say what you believe to be false

2. Do not say that for which you lack adequate evidence

The third category is the category of Relation, in which only one maxim holds : Be relevant.
Grice admits himself that this terse formulation includes a high number of problems about the
different kinds and focuses of relevance, their impact in the conversation and so on. The fourth
and last category is the category of Manner, which states that the contribution should be easy
to understand.

Following this Cooperation principle, Sperber and Wilson developed a Theory of Relevance
[Wilson and Sperber, 2002], sharing the intuition of a need for relevance but following a different
approach. For Sperber and Wilson, intuitively, a contribution is relevant for a given agent if and
only if it produces positive cognitive effects, that is to say if it implies a correct modification
of the mental state of the person which receives the information. Therefore, false contribution
cannot be considered as relevant. They also state that different contributions can have different

47

Chapter 2. Representing uncertainty and sharing knowledge

relevance level. The more positive cognitive effects a contribution brings to an agent, the more
relevant it is for it. However, the harder a contribution is to understand for an agent, the less
relevant it is for it. Therefore, relevance is seen as a combination between its informative value
and the difficulty to integrate it in a mental state. For a better understanding, let’s take an
example given in [Wilson and Sperber, 2002]. Mary, who dislikes most meat and is allergic to
chicken, rings her dinner party host to find out what is the menu. He could tell her any of three
things :

1. We are serving meat

2. We are serving chicken

3. Either we are serving chicken or (72 − 3) is not 46

The three utterances are true, and all would be relevant to Mary. However, 2 would be more
relevant to Mary than 1 and 3. Indeed, 2 is more informative that 1 and so implies more positive
effects to Mary. 3 implies the same positive effects to Mary than 2, but it requires an additional
effort to understand.

These philosophical considerations of relevance can be easily reused to design intelligent
systems dealing with relevance. We will consider in this section two type of intelligent systems
using relevance : the Information Retrieval Systems and Multi-agent systems.

2.3.1 Relevance in Information Retrieval Systems

The main purpose of Information Retrieval (IR) is to retrieve all the documents relevant to a
request and as few of the non-relevant as possible [van Rijsbergen, 1979]. This relates to Grice’s
Quantity category : to be interesting, a contribution should only contain the useful information
and no more. However, the multidimensional aspect of relevance already stressed out by Grice
makes this concept very different dependent on the problem and the user, and explains why it
is so hard to reach a consensus. First of all, relevance in intelligent systems is usually used with
a wider meaning. In the Grice’s category of Relation, the term relevant can be interpreted in its
first meaning : related to a subject. In intelligent systems usually, the term relevant means not
only "related to a subject", but also "interesting, useful for the receiver".

In [Borlund, 2003], Borlund defined two classes of relevance : the objective, or system-
based relevance, and the subjective, or user-based relevance. Borlund also classified the different
types of relevance highlighted by Sarajevic [Saracevic, 1996] in these classes. On one hand, the
system-based relevance is computed using different criteria and contains Sarajevic’s algorithmic
relevance, which analyzes the number of matches between the query and the documents in the
corpus to be searched in. On the other hand, the user-based relevance is assessed by a user,
depending on its need and its current beliefs. The main types of relevance belonging to this class
are :

• the topical-like relevance : the user assesses the match between the provided documents
and its request. This kind of relevance uses the term relevant with its basic meaning.

• the cognitive relevance : the document is relevant is it answers a cognitive need from the
user.

• the situational relevance : the document is relevant if it contains information useful for the
user to perform a task.

48

2.3. Information relevance

2.3.2 Toward a theory of relevance in multi-agent systems

The concept of relevance as described and studied for Information retrieval is unfortunately
not suitable for information exchange in multiagent systems. Indeed, most of the time, agents
don’t express any specific request but information should be exchanged to improve the quality of
agents’ knowledge. It can be related to Borlund’s user-based relevance as the relevance of some
information depends on an agent’s need and beliefs. Floridi suggested in [Floridi, 2008] a base
of epistemic relevance. He defined epistemic relevance as a relevance that takes into account the
agent to whom the information is sent. He defined the degree of relevance as being a function of
the accuracy of some semantic information i understood as an answer to a question q, given the
probability that q might be asked by the agent a receiving information i. There is in Floridi’s
work several concepts already encountered in the pragmatic definition of relevance:

• Information is relevant if it meets a need, the question q, but it may not meet it completely.
That’s why Floridi defined several degree’s of relevance.

• False information cannot be relevant. This corresponds to Grice’s category of Quality.

• Information is relevant according to a context. This corresponds to Grice’s category of
Relation.

In addition, some elements more related to information exchange between agents are developed,
such as the need of the agent receiving the information. To model this need, Floridi considers
the probability that the agent a receiving the information answering the question q may actually
ask it. This underlines the fact that the agents may not be aware of all their needs and that
questions may arise or disappear according to their beliefs’ evolution. Even if Floridi’s work is
much more formal than those presented in 2.3, no concrete element is suggested on how to define
these probabilities and they seem very hard to evaluate and manipulate in real-type applications.

In several studies, Roussel and Cholvy deepened Floridi’s work to propose a formal definition
of relevance based on BDI (Belief-Desire-Intention) agents architecture. Roussel first noticed
in [Roussel, 2010] that the agent that will communicate the relevant information is hardly ever
taken into account. However this agent needs to evaluate the relevance of the information for
the agent who will receive it. Roussel extracted some characteristics an information should have
to be relevant, in the sense of useful :

• Relevant information for an agent is connected to a need of this agent. The more the
information meets the need, the more relevant it is.

• Relevant information is true.

• The more some information is easy to understand, the more relevant it is.

• Relevance of information for a given agent depends on this agent’s beliefs. The relevance
of an information may change among time if the agent’s beliefs are modified.

From these characteristics, Roussel extracted also characteristics of cooperative agents when
dealing with information exchange :

• An agent is cooperative if it considers that information it communicates meets a need of
the agent receiving it.

• An agent is cooperative if it communicates information that it considers true.

49

Chapter 2. Representing uncertainty and sharing knowledge

• An agent is cooperative if it anticipates other agent’s needs.

• An agent is even more cooperative if it communicates information easy to process.

We notice that an agent is cooperative depending on what it estimates about the other agent, even
if this estimation is false. It matches the way we intuitively manage cooperation as human : we
can never be certain of the needs of the person we are communicating with, except if they express
them directly. Otherwise, we need to guess those needs depending on what we know about the
other and the current situation. The problem is the same in multiagent systems, where agents
need to model somehow the beliefs of the other agents to be able to decide if some information
may be relevant for them and if it should be communicated. From those characteristics, they used
BDI logic define the relevance9 of some information, modeled as formulas, as follows [Roussel
and Cholvy, 2009]:

Definition 2.1 (Relevance). Let a be some agent of A, φ a formula and Q a request. φ is
said to be relevant (or useful) for agent a concerning request Q iff the following formula is
true :

IaBifaQ ∧ (Ba(φ→ Q)⊗Ba(φ→ ¬Q)) ∧ φ

where Ia describes the intention of agent a, BifaQ holds for "agent a wants to know if Q is
true or ¬Q is true", and Ba(X) describes the fact that a believes that X is true.

This definition includes three elements :

• Agent’s information need IaBifaQ : The agent’s information need is modeled in a
simple way: "agent a wants to know if Q or ¬Q".

• Agent’s beliefs (Ba(φ→ Q)⊗ Ba(φ→ ¬Q)) : Using its current beliefs and the piece of
information φ, the agent must be able to answer its request and so to determine if Q or
¬Q.

• The piece of information’s truth value φ : A false piece of information is considered
not relevant.

Therefore, the previous definition can be naturally explained by : a piece of information is
relevant for an agent if it is true and enables the agent to answer a request it previously had.
Roussel then introduced the notion of potential utility [Roussel, 2010], which corresponds to
the previous relevant definition, minus the truth value. Indeed, even if it’s acknowledged in the
literature that false information cannot be relevant, it may be useful in some specific cases to
assess the relevance of some specific piece of information for a given agent, without knowing if
this piece of information is true or not.

To our knowledge this work presents the first formal theory of relevance. Despite very in-
teresting models and progresses to manipulate relevance in agent, this work presents some flaws
and limitations which renders it unusable in the field of event exploration. The most important
of these limitations, already risen by the authors in [Roussel, 2010], is the fact that the model
does not consider incorrect beliefs : an agent’s beliefs are always considered as true and an agent
never need to check if what it already knows is correct. However, checking if an agent’s beliefs are
true is key in event exploration. The authors suggested to introduce graded beliefs as suggested
by Laverny in [Laverny and Lang, 2005a,Laverny and Lang, 2005b]. However, to our knowledge,
this step has not been done yet.

9Also called utility in some of their work

50

2.4. Conclusion

2.4 Conclusion

We presented in this chapter different way to model uncertainty and to update an agent’s beliefs.
Each model presents advantages and drawbacks, and choosing to use one or the other depends
mostly on the application one wants to deal with. Belief functions are proven useful as a model
of evidence, while possibility measures and ranking functions deal well with default reasoning
and counterfactual reasoning. Plausibility measures, as a general approach, is appropriate for
proving general results about representing uncertainty but not for being applied in real problems.
Probability is a very powerful tool, very well studied and many technical results have been proven
that makes it easy to use. Many justifications for probability can be found in the literature, and
particularly in [Mises, 1957], and more recently in [van Lambalgen, 1987]. Some arguments, for
instance in [Savage, 1972], claimed that probability is the only way to represent uncertainty for
a rational agent. Savage defined an agent as rational according to some axioms, and showed that
this agent can be viewed as acting as if its beliefs were characterized by probability measures.
The relation between probabilities and statistics makes probability the measure the most adapted
for real applications, where frequency of events’ occurrences can be objectively measured. For
those reasons, we chose to model uncertainty in agent’s beliefs with probabilities.

We also presented the existing frameworks to deal with relevance in several contexts. Rel-
evance is still a new concept in multi-agent systems, and the framework presented can only be
applied to modal logic. However, we believe that modal logic is not easily applicable in the
context of event exploration in dynamic systems. Indeed, modal logic can not express degrees of
belief and how those beliefs changes according to new and relevant information. An agent can
only believe or not believe. However, in dynamic systems and when dealing with uncertainty,
an agents’ beliefs need to be quantified (for instance depending on the world’s change rate, the
robots’ sensors’ precision, etc.). A formal definition of a relevance degree based on quantified
beliefs is still missing in the literature.

Reasoning about uncertainty is important in the context of event exploration, but not enough.
As already mentioned, we need to build long-term strategies in order to maintain a good knowl-
edge. Such strategies can only been built through task planning. The next chapter will present
the different frameworks for task planning, while keeping in mind the importance of dealing with
uncertainty is the planning process.

51

Chapter 2. Representing uncertainty and sharing knowledge

52

Chapter 3

Planning under uncertainty

Contents
3.1 Overview of planning . 54

3.1.1 Seven restrictive assumptions of planning 54
3.1.2 Classical planning . 54
3.1.3 Classical planning and uncertainty 57
3.1.4 Probabilistic planning . 58

3.2 Probabilistic planning for single agent : Markov Decision Pro-
cesses frameworks . 59

3.2.1 Full-Observability . 59
3.2.2 Partial Observability . 64

3.3 Multi-agent concerns : coordination and cooperation 68
3.3.1 Decentralized POMDP and equivalent models 69
3.3.2 I-POMDP . 72

3.4 Decision models for event exploration 74
3.5 Conclusion . 75

We can define intuitively planning as the process of deciding how to perform a task before
really performing it. In an agent-based frame of mind, it is the process of finding a way to go
from an initial state to a goal state. By planning, an agent can decide what is the best way to
reach a goal or fulfill a task and anticipate and prevent negative outcomes. To do so, the agent
needs to know at least partially the results of its actions and the way they impact the system10.
Thanks to this knowledge, the agent simulate internally the evolution of the system until it
finds a satisfying plan - that is to say a succession of actions - to reach its goal. This chapter
presents fundamental concept for agent-planning, focusing on how to deal with uncertainty while
planning. In this chapter and later in this thesis, we only consider planning as task planning.
Path and motion planning are beyond our concern.

10the system being defined by the environment and the agents in it, including the planning agent

53

Chapter 3. Planning under uncertainty

3.1 Overview of planning

3.1.1 Seven restrictive assumptions of planning

In [Ghallab et al., 2004], Ghallab et al. defined seven assumptions to distinguish different types
of planning. The more assumptions are released, the more complex is the problem. Those
assumptions are :

1. (Finite system) The system has a finite set of states.

2. (Fully Observable system) The system is fully observable, i.e. the agent has complete
knowledge about the current state of the system.

3. (Deterministic system) The system is deterministic, i.e. for every state and every action,
there exists at most one successor of the state through the action.

4. (Static system) The system is static, i.e. no event can occur. The system keeps the same
state until the controller applies some actions.

5. (Restricted goals) The goals handled by the planner correspond to goal states to reach.
The planner doesn’t handle goals such as states to be avoided, constraints, utility function
etc.

6. (Sequential plans) A solution plan to a planning problem is a linearly ordered finite sequence
of actions.

7. (Implicit time) Actions and events have no duration; they are instantaneous state transi-
tions.

8. (Offline planning) The planner is not concerned with any change that may occur in the
system while it is planning: it plans for the given initial and goal states, regardless of the
current dynamic, if any.

A system considering all the assumption is called a restricted model and is the main subject
of Classical Planning (Section 3.1.2). Probabilistic planning (Section 3.1.4) usually releases
the assumptions 3 and 5. Some techniques of probabilistic planning also consider planning in
partially observable environment, releasing the assumption 2.

3.1.2 Classical planning

Classical planning deals with restricted state-transition systems, i.e. ones that meet the 7 as-
sumptions. In [Ghallab et al., 2004], Ghallab et al. defined formally the classical planning
problem for a system as follows : given a system Σ = (S,A, γ), S being the set of states, A being
the set of actions (also called operators) and γ being the progression function (that gives the
state produced by applying an action a to a state s) ; a planning problem is a triple P = (Σ, s0, g)
where s0 is an initial state and g a set of goal states. A solution to P is a sequence of actions
(a1, a2, ..., ak) such as s1 = γ(s0, a1), ..., sk = γ(sk+1, ak). The purpose of planning is to find the
optimal solution to a planning problem P, that is to say to minimize the sequence of actions.

The General Problem Solver (GPS) [Newell et al., 1959] was one of the first and the most well
known automatic planner for restricted state-transition systems. It can solve simple problems
as the well known Tower of Hanoï (Figure 3.1) but is very limited to solve higher problems due
to combinatorial explosion. Indeed, GPS uses a means-end search process (Figure 3.2) : the

54

3.1. Overview of planning

solver determines what is to change in the environment to get closer to the goals, and chooses
an operator to perform this change. This operator can contain another sub-goal to achieve in its
preconditions. The solver chooses another operator to achieve this sub-goal and so on.

Figure 3.1: A solution to the 3-disk Tower of Hanoï puzzle. In the Tower of Hanoï puzzle, the
player must move a set of disk from an initial peg to a final one, adhering to three basic rules :
1/ Move only one disk at a time. 2/ A larger disk may not be placed on top of a smaller disk.
3/ All disks, except the one being moved, must be on a peg. [Smyth, 2014]

The STRIPS planner [Fikes and Nilsson, 1972] is the second important planner to be devel-
oped, also using means-end analysis. STRIPS works under the closed world assumption which
states that a statement that is true is also known to be true, or in other words anything that
is not explicitly stated is considered false. As the General Problem Solver, STRIPS is a linear
planner, which means that it tries to satisfy one goal completely before working on another goal
and cannot undo a satisfied goal. This technique assumes that the sub-goals to be solved are
independent and that the solver cannot change the plan made for a sub-goal later. Sussman
showed in [Sussman, 1974] that there exists simple problems where this type of planning can
not provide a solution, as illustrated on Figure 3.3. Three blocks are placed on a table with the
configuration depicted on Figure 3.3a. An agent must move the blocks to place them as depicted
on Figure 3.3b. The agent can move only one block at a time. Linear planners will decompose
the goal into two subgoals:

1. Place block A on top of block B

2. Place block B on top of block C

Suppose that the planner starts by satisfying the sub-goal 1, it will move block C out of the way,
then move block A on top of block B, as depicted on Figure 3.3c. According to the principles
of linear planning, the sub-goal 1 is satisfied and cannot be undone. However, to satisfy the
sub-goal 2, the agent needs to remove block A from block B, undoing the sub-goal 1. If the
planner decide to start by satisfying the sub-goal 2, it will place block B on top of block C, as
depicted on Figure 3.3d. Once again, the agent is not able to satisfy the sub-goal 1 without
undoing the sub-goal 2.

Partial order planners [Sacerdoti, 1975, Chapman, 1987, Penberthy and Weld, 1992] have
been developed to overcome this issue. Partial order planners are based on the principle of

55

Chapter 3. Planning under uncertainty

Figure 3.2: Executive Organization of GPS. [Newell et al., 1959]

(a) Initial state (b) Goal state

(c) Satisfying sub-goal 1 (d) Satisfying sub-goal 2

Figure 3.3: Sussman Anomaly

56

3.1. Overview of planning

least commitment, which states that decision should be deferred as long as possible before being
taken, so that when they are taken the probability of their correctness is maximized [Stefik, 1981].
Partial order planners are still concerned with the restricted state-transition systems. However all
those hypotheses are impossible to assume as soon as we consider a real-like application. Indeed,
as we already mentioned, real applications are characterized by the presence of uncertainty. It
is so mandatory that a planner is able to deal with uncertainty.

3.1.3 Classical planning and uncertainty

Several logics have been developed to deal with uncertainty. According to [Halpern, 2003a], three
criteria can influence the choice of a logic: (1) the underlying representation of uncertainty
(2) the degree of significance of quantitative reasoning (do we need to talk about the probability
of events or could we only rank these events by order of likelihood) (3) the notions being reasoned
about.

Epistemic modal logic, introduced in [Wright, 1951] and [Hintikka, 1962], provides a way to
reason about Epistemic uncertainty11. Epistemic logic has been widely studied, and extends the
propositional logic with several new operators [Fagin et al., 1995] :

• Kaφ, read "agent a knows that φ"

• EGφ, read "every agent in group G knows that φ"

• CGφ, read "it is common knowledge to every agent in G that φ"

• DGφ, read "it is distributed knowledge to every agent in G that φ"

Common knowledge is defined as : φ is a common knowledge in a group of agents G if all the
agents in G know that they know φ, all the agents in G know that they all know that they know
φ, and so ad infinitum. Distributed knowledge is defined as : φ is a distributed knowledge in a
group of agents G if an agent which knows everything that each member of G knows knows φ.

Multi-valued logic [Béziau, 1997], and more precisely fuzzy logic [Zadeh, 1988] are another
way to deal with Epistemic uncertainty. In multi-valued logic, variables have more than two
truth values. In fuzzy logic, the truth value is a degree between 0 and 1. It is so possible to
represent notions as "old" and "young", instead of "25 years old".

In addition to the logics, several planners have also been developed to handle uncertainty.
In [Petrick and Bacchus, 2002], Petrick and Bacchus introduced PKS, a planner that reasons
at the knowledge level and is able to produce conditional plans in the presence of incomplete
knowledge. In this planner, based on STRIPS, the agent’s knowledge is represented by a set of
databases and actions are represented as updates to these databases. Thus, actions are defined
at a knowledge level instead of a state level. The authors extended this model in [Petrick and
Bacchus, 2004] with new mechanisms. This type of knowledge-level reasoning has been reused
in more recent works [Pistore et al., 2005,Palacios and Geffner, 2009].

Some studies also focused on uncertainty in the result of actions and so dealt with Aleatory
uncertainty. In [Smith and Weld, 1998], Smith and Weld extended the planner Graphplan [Blum
and Furst, 1997] to handle uncertainty in the initial state and in action effects. It assumes that
no information at all is available at run-time. The resulting plan chooses robust actions that
cover all eventualities. In [Bertoli et al., 2001], Bertoli et al. considered environment with partial
observability and suggested an algorithm that generates plans guaranteed to achieve the goal
despite of the uncertainty in the initial condition and the effects of actions.

11As presented in Chapter 2, Figure 2.1

57

Chapter 3. Planning under uncertainty

However, due to the uncertainty in the results of actions, a plan12 doesn’t always exist and
a policy13 may be preferred. For such cases, probabilistic planning may be preferred to classical
planning.

3.1.4 Probabilistic planning

In a non-deterministic system, an action may succeed, fail totally or fail partially. This uncer-
tainty involves that the plan we need to compute may not be a linearly ordered sequence of
actions but a function that gives the action to perform given a input. On top of that, in non-
deterministic systems, the goals specification should take into account this non-determinism and
cannot be restricted to goal states. Therefore, we consider in this section systems that release
the hypothesis of Deterministic systems 3, Sequential plans 6 and Restricted goals 5. In the
following, we will refer the set environment + agents situated in this environment as system. If
an event is described as affecting the system, it can affects the environment or/and the agents.
In this section, we will introduce the basic concepts of probabilistic planning for one agent. The
multi-agent case will be considered in section 3.3.

State

A state describes a possible situation of the system. It is usually made up of a certain number
of descriptors whose values can change among time. In most of the applications, the system is
closed, which means that all the possible states are described in a set of states. It is not possible
for the system to end in a state which is not in this set. On the contrary, an open system can
be in a state which is not included in the initial description.

Actions

The actions describe how the agent can influence the system. Some actions have direct effect on
the system (provoking a change of states) and some actions only influence the agent’s internal
representation. Those latest are called epistemic actions.

Transition function

The transition function is a function that takes as input a starting state, a final state and an action
and give as an output the probability for the system to reach the final state from the starting state
when the agent acts with the given action. It describes the way the system can evolve through the
actions of the agent. The uncertainty on the actions’ result is modeled in the transition function.
An action is said deterministic if it always leads to the same final state given the starting state.
In other word, the probability associated to the tuple < startingstate, action, finalstate > is
1 for one final state and 0 for all others. A transition function is called stationary if does not
depend on the time.

Observability

A system can be totally observable or partially observable. In totally observable systems, the
agent has a perfect knowledge of the state of the system at each time step. In partially observable
systems, the agent receives observations providing indications about the current state of the

12That is to say a sequence of actions that guarantees the goal achievement
13That is to say a function that outputs the action to perform given some input

58

3.2. Probabilistic planning for single agent : Markov Decision Processes frameworks

system. The agent needs to maintain an internal representation of the possible states and their
likelihood. This internal representation is called the agent’s belief state. The observation function
gives the probability for an agent to receive a specific observation when doing a given action in
a given state.

Belief state

The belief state of the agent is used when the system is partially observable. It describes the
agent’s internal representation of the current state of the system. This belief state is updated
each time an observation is received. The most common way to manipulate an agent’s beliefs is
to use a probability distribution over the space of states. However other measures are possible
like the Dempster-Shafer theory and the Possibility measures presented in Section 2.2

Policy

A policy describes the strategy the agent follows to behave. It is a function that gives the action
to process given a certain input. This input can be the current state of the system, the current
belief state of the agent, a sequence of observations or events... The purpose of the planning
problem is to find the optimal policy given a set of states, a set of actions, a transition function,
a belief state and observability properties.

3.2 Probabilistic planning for single agent : Markov Decision
Processes frameworks

3.2.1 Full-Observability

Markov Decision Processes (MDP) [Puterman, 1994] are the most common framework to deal
with decision making under uncertainty in fully observable domains. A Markov Decision Process
is defined as a controlled stochastic process satisfying the Markov porperty and assigning reward
values to state transitions [Sigaud and Buffet, 2010]. The Markov property [Markov, 1960]
assumes that the probability to reach a state st+1 from a state st after performing an action at
depends neither on the previous states s0 . . . st−1 nor on the previous actions a0...at−1. More
formally, for each n ≥ 0 and for each sequence of states (s0 . . . sn−1), the Markov property states
that

P (sn+1|s0, a0, s1, a1, . . . sn, an) = P (sn+1|sn, an)

Definition 3.1 (MDP). AMarkov Decision Process (MDP) is defined as a tuple 〈S,A, H, T,R〉
where,

• S is a finite set of possible states

• A is a finite set of possible actions

• H is a set of time steps where decisions need to be made.

• T : S,A,S → [0, 1] is the transition function with T (s, a, s′) = P (s′|s, a)

• R : S,A → R is the reward function

59

Chapter 3. Planning under uncertainty

The set H is the horizon of the MDP. It is discrete but can be either finite or infinite. In
some cases, the process should run until a goal state14 is reached. In that case, the horizon is
said to be indefinite: the number of steps is finite but unknown. The reward function gives for
each couple state-action 〈s, a〉 the reward earned by the agent if it performs action a while being
in state s. In a lot of cases, this reward function is simplified in R : S → R and gives the reward
of an agent being in a given state, as illustrated in figure 3.4.

Figure 3.4: An example of an environment with a reward function defined on states

Policies and optimality

A policy π : S → A is a function that maps the set of states S with the set of actions A and gives
for each s ∈ S the action a ∈ A to perform. A policy is said stationary if it does not depend on
time.

The purpose of planning in an MDP is to find the policy π∗ that gives the maximum expected
reward within the horizon H. To do so, an optimality criterion needs to be defined. Four criteria
are usually considered depending on the problem [Sigaud and Buffet, 2010] :

1. the finite criterion: E[r0 + r1 + . . .+ rN−1|s0].

A prior assumption linked to this criterion implies that the agent has to control the system
withing N steps, N being finite.

2. the γ-discounted criterion: E[r0 + γr1 + γ2r2 + . . .+ γtrt + . . . |s0].

This criterion is the most commonly used in the infinite horizon problems. γ represents
the difference of important between immediate rewards and future rewards.

3. the total-reward criterion: E[r0 + r1 + . . .+ rt + . . . |s0].

This criterion corresponds to the γ-discounted criterion with γ = 1, which is meaningful
in some specific cases.

4. the average-reward criterion: lim
n→∞

1
nE[r0 + r1 + . . .+ rn−1|s0].

14also called terminal state

60

3.2. Probabilistic planning for single agent : Markov Decision Processes frameworks

This criterion is usually used when decisions have to be made frequently with a discount
factor close to one or when it appears impossible to value directly the rewards.

Based on the chosen optimality criterion, a value function V π : S → R can be defined, which
gives for each s ∈ S the expected gain when starting from state s and applying policy π. The
value functions for the usual criteria are :

1. the finite criterion: ∀s ∈ S V π
N (s) = E

[
N−1∑
t=0

rt|s0 = s, π

]

2. the γ-discounted criterion: ∀s ∈ S V π
N (s) = E

[∞∑
t=0

γtrt|s0 = s, π

]

3. the total-reward criterion: ∀s ∈ S V π
N (s) = E

[∞∑
t=0

rt|s0 = s, π

]

4. the average-reward criterion: ∀s ∈ S V π
N (s) = lim

n→∞
E
[

1
n

n−1∑
t=0

rt|s0 = s, π

]
In the following we will only consider the γ-discounted criterion, which is the most used for
infinite horizon. An optimal value function V π∗ is a value function such as ∀π ∈ Π ∀s ∈ S
V π(s) ≤ V π∗(s), where Π is the set of all possible policies. Therefore, optimal policies π∗ are
those which maximize the value function : π∗ ∈ argmax

π∈Π
V π. Dynamic programming enable to

compute an optimal policy for a given MDP. Different algorithms exist in the literature. In this
section, we will detail the two basis algorithms : Value Iteration and Policy Iteration. Both relies
on the Bellman equation.

Bellman equation

Bellman and Dreyfus showed in [Bellman and Dreyfus, 1962] that a dynamic optimization prob-
lem in discrete time can be stated in a recursive step-by-step form. This involves to express
the relationship between the value function at one time step and the value function at the next
time step. This relationship is called the Bellman equation. The Bellman equation for the value
function associated to the γ-discounted criterion is :

∀s ∈ S, Vt(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)Vt−1(s′)

]

Given γ ∈ [0, 1[, the optimal value function is the unique solution of the Bellman equation.

Compute the optimal policy : Value Iteration

The Value Iteration algorithm [Bellman, 1957] computes the optimal value function V ∗ thanks
to backward induction. It is detailed on algorithm 3.1. The algorithm starts with an arbitrarily
defined value function (line 1), and then compute for each time step, for each possible state, the
best value over all the possible actions (lines 3 to 8). For an infinite horizon, this refinement
of the value function will never ends. Therefore an threshold ε is used to determine when the
value function is good enough (Line 8). Finally, the policy is computed based on the optimal
value function and returned (lines 9 to 12). The Value Iteration algorithm has been proved to
converge in [Puterman, 1994] and its complexity is O(|S2||A|).

61

Chapter 3. Planning under uncertainty

Input: S,A, T ,R, ε
Result: the optimal policy π∗

1 Assign V0 arbitrarily for all s ∈ S;
2 k ← 0;
3 repeat
4 k ← k + 1;
5 foreach state s ∈ S do

6 Vk(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈A

T (s, a, s′)× Vk−1(s′)

]
7 end
8 until max

s∈S
(|Vk(s)− Vk−1(s)|) < ε ;

9 foreach state s ∈ S do

10 π ∗ (s) = argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)× Vk(s′)
]

11 end
12 return π∗
Algorithm 3.1: The Value Iteration algorithm. In this version, only the value function
V (s) is stored. Other versions store the functionQ(s, a) = R(s)+γ

∑
s′∈A T (s, a, s′)×V (s′).

In these versions, the storage needs increases, but it is then easier to build the optimal policy.

Compute the optimal policy : Policy Iteration

The Policy Iteration algorithm [Howard, 1960] starts with an arbitrarily defined policy and
iteratively improves it. To do so, the algorithm relies on the value function V πi , expressed as a
set of |S| linear equations in |S| unknown variables. The unknown variables are the values of
V πi(s). Three steps are followed to improve the policy :

1. Policy evaluation : determine V πi(s). The linear equations can be solved iteratively or
by a linear equation solution method such as Gaussian elimination. This step is often
time-consuming.

2. Policy improvement : choose πi+1(s) = argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V πi(s′)

]
3. Test the stopping condition : compare the updated policy πi+1 to the previous πi. The

algorithm stops if ∀s ∈ S, πi+1(s) = πi(s).

The policy iteration is detailed on algorithm 3.2. The Policy Iteration algorithm always halts, is
has also been proved to converge in [Puterman, 1994], and its complexity is O(|S2||A|).

Factored MDP

The MDP as described previously doesn’t use structured representation and requires the enu-
meration of all the possible states in the problem. The complexity of this enumeration grows
exponentially with the number of features to be considered in the problem, involving a big issue
to solve large problems. Factored Markov Decision Processes (FMDP), proposed by Boutilier et
al. [Boutilier et al., 1995, Boutilier et al., 1999] are extensions to MDP that exploits problems
structures to represent the transition and reward functions compactly. In FMDPs, the envi-
ronment is described as a set of features of interest, each feature being described by a random

62

3.2. Probabilistic planning for single agent : Markov Decision Processes frameworks

Input: S,A, T ,R
Result: the optimal policy π∗

1 repeat
2 noChange← true ;
3 Solve V (s) = R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)× V (s′) ;

4 foreach s ∈ S do
5 QBest = V (s) ;
6 foreach a ∈ A do
7 Qsa = R(s) + γ

∑
s′∈S

T (s, a, s′)× V (s′) ;

8 if Qsa > QBest then
9 π(s)← a ;

10 QBest← Qsa ;
11 noChange← false ;
12 end
13 end
14 end
15 until noChange;
16 return π

Algorithm 3.2: The Policy Iteration algorithm

variable Xi which can take values in its domain DOM(Xi). X = (X1, . . . , Xn) is the multivariate
variable describing a state. Then, a possible state is an instantiation of each random variable Xk

and can be written as a vector x = (x1, . . . , xn), such as ∀1 ≥ i ≤ n, xi ∈ DOM(Xi). DOM(X)
is the set of all possible instantiations for the multivariate variable X. Therefore, the state space
S is defined by S = DOM(X).

In real problems, the transition of a variable often depends on a small number of other
variables. FMDPs exploit this dependence properties to represent the transition function as
a Dynamic Bayesian Network (DBN) [Dean and Kanazawa, 1989], where the nodes are the
variables Xi and the edges the dependencies between variables. Therefore, the transition from a
state x to another state x′ is written :

P (x′|x) =
∏
i

P (x′i|Parents(x′i))

with x′i being the value of the variable X ′i in state x′, and Parents(x′i) being the values of the
variables that are parents of X ′i in the DBN.

A similar representation can be used for the reward function: the reward function can be
factored additively into a set of localized reward functions, each of which only depending on a
small set of variables. Let W1 . . .Wp, ∀i, Wi ⊂ {X1, . . . , Xn} be a set of clusters of variables.
Let R1 . . . Rp be a set of reward functions with ∀i, Ri : DOM(Wi) → R. The reward function
associated to a state x and an action a is defined as

R(x, a) =

p∑
i=1

Ri(x[Wi], a)

with x[Wi] being the instantiation of the variables of the cluster Wi in the state x.

63

Chapter 3. Planning under uncertainty

Several techniques enable to solve FMDP efficiently, such as the Structured Value Iteration
and Structured Policy Iteration algorithms [Boutilier et al., 2000] that used decision trees to
represent the different functions of the problem (transition, reward, policy and value functions).
Linear programming has also been suggested in [Koller and Parr, 2000] to solve FMDP, but
their scalability is limited in large problems. In [Guestrin et al., 2003], Guestrin et al. used
approximation algorithms and function-specific independence to decompose the constraints of
the initial problem into a set of constraints with a complexity depending on the structure of the
problem rather than on its size.

3.2.2 Partial Observability

The Markov Decision Processes rely on the very strong hypothesis that the agent has a perfect
knowledge of the current state of the system at each time step. Unfortunately, this assumption
is not real in a lot of problems and particularly while dealing with event exploration where, by
definition, the state of the system is not known and need to be explored. Partially Observable
Markov Decision Processes, introduced in [Sondik, 1978], are an extension of MDPs to deal with
the the incomplete information on the state of the system. A classic example of POMDP is the
Tiger Problem, depicted in Figure 3.5. One agent is in front of two doors. Behind one door is a
great reward, behind the other door is a tiger which will attack the agent if the door is opened.
The agent can open one door or listen to hear some noise and gain information about the position
of the tiger. However, listening is not a fully reliable action and can sometimes produce incorrect
outputs like not hearing a noise from the left door even if the tiger is behind.

Figure 3.5: The Tiger Problem

Definition 3.2 (POMDP). A Partially Observable Markov Decision Process (POMDP) is
a tuple 〈S,A,Ω, H, T ,O,R, b0〉 where,

• S is a finite set of possible states

• A is a finite set of possible actions

• Ω is a finite set of possible observations

• H is a set of time steps where decisions need to be made

• T : S ×A× S → [0, 1] is the transition function with T (s, a, s′) = P (s′|s, a)

• O : Ω× S ×A → [0, 1] is the observation function with O(ω, s, a) = P (ω|s, a)

64

3.2. Probabilistic planning for single agent : Markov Decision Processes frameworks

• R : S,A → R is the reward function

• b0 is the initial belief state

The set of states S, the set of actions A, the set of time steps H, the transition function T and
the reward function R are defined as in MDPs. In the Tiger Problem, the set of state would be
{tiger−left, tiger−right} and the set of actions {listen−left, listen−right, open−left, open−
right}. The reward is highly positive if the action open − left (respectively open − right) is
executed in the state tiger − right (respectively tiger − left) and highly negative otherwise.

In a POMDP, the agent doesn’t know the exact state of the system but receives observations
which give it information about the current state of the system, as illustrated on Figure 3.6. In

Figure 3.6: A POMDP as a dynamic decision network. From [Poole and Mackworth, 2010]

general, an observation can correspond to more than one states which creates ambiguity in the
possible current state. The set Ω represents all the possible observations an agent can receive.
The observation function O gives the probability to receive a specific observation ω ∈ Ω when a
certain action at is done in a certain state st. In the Tiger Problem, the possible observations are
noise and no−noise. The observation noise is very likely if the action listen− left (respectively
listen−right) is executed in the state tiger−left (respectively tiger−right) and the observation
no− noise is very likely in the other configurations.

Belief states

Since the agent doesn’t know the exact state of the system, it needs to act according to the
available information. This available information is summed up in the agent’s belief state. A
belief state is a probability distribution on the state space. The set of all belief states is written
B. The agent’s belief state b is updated after each transition, that is to say after executing the
action a and receiving the observation o. The most used mechanism is the Bayesian update, in
which the new belief state becomes bao(s′) = P (s′|b, a, o), which can be developed as [Cassandra
et al., 1997]:

65

Chapter 3. Planning under uncertainty

bao(s
′) =

O(ω, s′, a)
∑

s∈S T (s, a, s′)b(s)∑
s′∈S O(ω, s′, a)

∑
s∈S T (s, a, s′)b(s)

=
O(ω, s′, a)

∑
s∈S T (s, a, s′)b(s)

P (ω|b, a)

Other types of belief updates have been suggested to improve the efficiency of the POMDP is
some cases. For instance Izadi and Precup considered in [Izadi and Precup, 2005] that obtaining
a reward can be a useful information to distinguish the current state and suggested a belief
update step that uses this reward. In [Seymour and Peterson., 2009], Seymour and Peterson
included trust mechanisms to improve the performance of Interactive-POMDPs15

Finding policies in POMDP

Due to partial observability, it is not possible to define a policy on the state space for POMDPs.
The agent has only access to the observations it received. However, policies based on the last
observation received have been proved to be non-optimal [Littman, 1994a]. Therefore the agent
needs to consider the history of observations received, which breaks the Markov Property. To
overcome this issue, it is possible to base the policy on the belief states, that sum up all infor-
mation received from the observations until the current decision step. Therefore a policy in a
POMDP is a function which maps the belief space to the action space : πPOMDP : B → A. The
belief state being Markovian, it is possible to transform a POMDP into a belief-MDP, which is
an MDP where the states are the belief states. The belief-MDP is defined as a tuple 〈B,A, τ, r〉
where :

• B is the set of belief states of the POMDP

• A is the same finite state of actions as for the POMDP

• τ : B ×A× B → [0, 1] is the new transition function defined on the belief state space

• r : B ×A → R is the new reward function defined on the belief state space

The new functions τ and r can be easily derived from the old functions T and R. Indeed,

τ(b, a, b′) =
∑
ω∈Ω

P (b′|b, a, o)
∑
s∈S

O(ω, s, a)b(s)

were

P (b′|b, a, o) =

{
1 if the update of the belief state b with action a and observation o is b′

0 otherwise

r can be written r(b, a) =
∑
s∈S

b(s)R(s, a)

The Bellman equation applied to this belief-MDP is :

Vt(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
ω∈Ω

P (ω|b, a)Vt−1(bao)

]
15I-POMDPs will be dealt more precisely in section 3.3.2.

66

3.2. Probabilistic planning for single agent : Markov Decision Processes frameworks

where bao is the updated belief state, obtained by updating b with the observation o and the
action a. And so, the optimal policy is defined for each b as

πt ∗ (b) = argmax
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
ω∈Ω

P (ω|b, a)Vt−1(bao)

]
The value function of a POMDP has been proved to be piecewise linear and convex for finite
horizons [Sondik, 1978] and so V ∗ corresponds to the upper surface of a set of value functions
for the all the possible policies, that is to say hyperplanes through the belief-space, as depicted
on Figure 3.7. Those hyperplane also defined a partition through the belief state space. Each
hyperplane is represented by a |S|-dimensional vector, called α-vector, which contains the coef-
ficients of the equation of the hyperplane. Therefore, a value function for a finite horizon can be
represented as a set of α-vectors. [Smallwood and Sondik, 1973] proved that there is an optimal
action for each partition.

b

Vt

Figure 3.7: The value function for a POMDP with 2 states and its associated belief partition.
In that case, the belief state space is one-dimensional since b(s1) = 1− b(s2). The optimal value
function V ∗ corresponds to the upper surface of all the possible value functions.

Exact Value Iteration algorithm [Sondik, 1978,Cassandra et al., 1997] exploits the α vectors
representation to solve a POMDP optimally. It rewrites the steps of the Value Iteration for MDP
using the α-vectors. The new value function is computed as follows:

V ′ =
⋃
a∈A

V a

V a =
⊕
ω∈Ω

V a,o

V a,o =

{
1

|Ω|
Ra + αa,o : α ∈ V

}
αa,o(s) =

∑
s′∈S

O(o, s′, a)T (s, a, s′)α(s′)

67

Chapter 3. Planning under uncertainty

with Ra is the vector representation of the reward function, Ra(s) = R(s, a). The complexity of
this algorithm is O(|V |× |A|× |Ω|× |S|2 + |A|× |S|× |V ||Ω|) [Shani et al., 2013]. Therefore, it is
only scalable to small domains. In [Littman, 1994b], Littman presented Witness, an algorithm
to solve efficiently POMDPs. Witness uses Q-values to generate the elements of the optimal
value function directly. The Q-value Qat (b) is the value of taking action a from belief state b
and then following the optimal (t − 1)-step policy. This algorithm is still exponential in the
worst case, but polynomial for almost all realistic sample problems. Improvements have been
made to exact algorithms by using gradient-based techniques [Meuleau et al., 1999], dynamic
programming [Poupart and Boutilier, 2003], or constrained linear programs [Amato et al., 2006].
Even if those algorithms scale better, they are still not applicable to large problems.

A important breakthrough has been made by [Lovejoy, 1991] which proposed to use point-
based method to make a good approximation of the value function by discretizing the belief state
space. Then the value function can be maintained on the subset of selected points thanks the
linear program below:

Minimize
|V̄ |∑
i=1

wi · vi

Subject to b =
|V̄ |∑
i=1

wi · bi

|V̄ |∑
i=1

wi = 1

wi ∈ [0, 1]

Hauskrecht improved in [Hauskrecht, 2000] the method by selecting for the discretization
only belief states that can be reached from the initial state. From that point, different fast and
efficient algorithms have been suggested to solve approximately POMDPs like PBVI [Pineau
et al., 2003], PERSEUS [Spaan and Vlassis, 2005], SARSOP [Kurniawati et al., 2008] or GarMin
[Poupart et al., 2011]. Other approximate methods have been developed to solve POMDPs like
a combination between the Bellman equation and shortest path algorithms [Geffner and Bonet,
1998], online algorithms [Ross and Chaib-Draa, 2007] and Monte Carlo planning [Silver and
Veness, 2010,Bai et al., 2011].

3.3 Multi-agent concerns : coordination and cooperation

Dealing with multi-agent settings brings a lot of new challenges, depending on the relations
between the agents in the system. Pool and Mackworth defined two extreme type of relations
[Poole and Mackworth, 2010]:

• fully-cooperative: the agents share the same utility function and so work for a system-goal

• fully-competitive: an agent can only win when another loses.

Between those two extrema, intermediate systems can be created, when agents’ share some goals
but also have some personal objectives.

In information gathering and event exploration, agents are usually considered fully-cooperative
: the team’s goal is to gain as much information as possible about the environment. Therefore
coordination has to be taken into account so that the exploration is efficient.

68

3.3. Multi-agent concerns : coordination and cooperation

3.3.1 Decentralized POMDP and equivalent models

Without explicit communication

Decentralized POMDP [Bernstein et al., 2002] is a model able to deal with multiagent decision
making which principle is depicted on figure 3.8. In a Dec-POMDP, the planning is made offline
and so is completely centralized : a single computer computes the joint plan and distributes it
to the agents. The online execution is completely decentralized : each agent executes its own
plan and receives its own observations.

Figure 3.8: Execution of a decentralized POMDP : At each stage, the agents independently take
an action. The environment undergoes a state transition and generates a reward depending on
the state and the actions of both agents. Finally each agent receives an individual observation
of the new state. From [Oliehoek, 2012]

Definition 3.3 (Dec-POMDP). A Decentralized Partially Observable Markov Decision Pro-
cess (Dec-POMDP) is defined as a tuple 〈D,S,A, T,R,Ω,O, h〉 where

• D = {1 . . . n} is a set of n agents

• S is a finite set of states s

• A = ×i∈DAi is a finite set of joint actions, each Ai being a set of actions available to
agent i

• T : S ×A× S → [0, 1] is the transition function

• R : S ×A → R is the reward function

• Ω = ×i∈DOi is a finite set of joint observations, each Oi being a set of observations
available to agent i

• O : Ω× S ×A → [0, 1] is the observation function

• h is the horizon of the problem

During execution, the agents are assumed to act based on their own individual actions and
no explicit communication is assumed. However, the Dec-POMDP model can deal with commu-

69

Chapter 3. Planning under uncertainty

nication through the state of environment, for instance with an action modifying something in
the environment and an observation reporting this modification.

Planning in Dec-POMDP means computing a joint-policy π = ×i∈Dπi, each πi being the
policy for agent i. Since the agents only have access to their own actions and observations
during the execution, and the transition and observation functions are defined with joint actions
and joint observations, it is impossible in a Dec-POMDP to maintain an individual belief state
as in POMDP. Therefore, the policies πi cannot be defined on a Markovian signal as is the belief
state in POMDP. It means that planning in a Dec-POMDP requires to match individual histories
to actions. The most complete history an agent can maintain is the action-observation history,
that is to say the sequence of actions taken by and observations received. However, when dealing
with deterministic policies16, it is sufficient to consider only the observation history.

Definition 3.4 (Observation history [Oliehoek, 2012]). The observation history (OH) for
agent i, written ω̄i, is defined as the sequence of observations an agent has received. At a
specific time step t, this is :

ω̄it =
(
ωi1, . . . , ω

i
t

)
The joint observation history is the OH for all agents ω̄t =

〈
ω̄1
t , . . . , ω̄

n
t

〉
. The set of ob-

servation histories for agent i at time t is denoted Ω̄i
t. The set of all possible observations

histories for an agent i is written Ω̄i and the set of all possible joint observation histories is
written Ω̄.

Therefore, the individual policies are defined as πi : Ω̄i → Ai and the joint policy is defined as
π : Ω̄→ A. The value function of a Dec-POMDP is given by :

V π(st, ω̄t) =

R(st, π(ω̄t)) for the last stage t = h− 1

R(st, π(ω̄t)) +
∑

st+1∈S

∑
ω∈Ω

P (st+1, ω|st, π(ōt))V
π(st+1, ω̄t+1) for t 6= h− 1

Generating a joint policy for a Dec-POMDP is NEXP-complete [Bernstein et al., 2002].
However, a Dec-POMDP can be reduced to a single agent MDP if a free-communication is
assumed, that is to say agents are able to communicate at every timestep during execution.
In that case, the policy can be computed in polynomial time [Pynadath, 2002]. Though this
assumption is extremely strong and cannot hold in most of real cases.

The Multiagent Team Decision Problem (MTDP) [Pynadath, 2002] is another framework for
decision-making in multiagent teams, very similar to Dec-POMDPs. Both models have been
proved to be equivalent, that is to say that their corresponding decision problems are complete
for the same complexity class. For a complete description of the models and proof of their
equivalence, see [Seuken and Zilberstein, 2008].

With explicit communication

The Decentralized Partially Observable Markov Decision Process with Communication (Dec-
POMDP-COM) framework [Goldman and Zilberstein, 2003] is an extension of the Dec-POMDP
that allows explicit communication between the agents.

16That is to say policies that associate a single action to an input signal. Those are the only policies we consider
in this thesis.

70

3.3. Multi-agent concerns : coordination and cooperation

Definition 3.5 (Dec-POMDP-COM). A Dec-POMDP-COM is a tuple
〈D,S,A, T,Ω,O,Σ, CΣ, RA, R, h〉 where

• D,S,A, T,Ω,O, h are defined as in Dec-POMDPs

• Σ is an alphabet of communication messages. σi ∈ Σ is an atomic message sent by
agent i and ~σ = 〈σ1, . . . , σn〉 is a joint message, that is to say a tuple of all messages
sent by the agents in one time step. The set of all possible joint messages is written
~Σ.

• CΣ : Σ → R is the message cost function. CΣ(σi) is the cost for transmitting atomic
message σi

• RA : S × A → R is the reward function, identical to the reward function in Dec-
POMDPs

• R : S × A × ~Σ → R is the total reward function, defined as R(s′, a, ~σ) = R(s′, a) −∑
i∈D CΣ(σi)

In Dec-POMDP-COM, two types of policies are computed : an action policy and a commu-
nication policy. A local action policy for an agent i, written πAi , is a mapping from local histories
of observations and histories of messages received to control actions : πAi : Ωi× ~Σ→ A〉. A local
communication policy for an agent i, written πΣ

i , is a mapping from local histories of observations
and histories of messages received to communication actions : πΣ

i : Ωi × ~Σ→ Σ. A joint policy
for a Dec-POMDP-COM π = 〈π1, . . . , πn〉 is a tuple of local policies where each πi is composed
of the communication and action policies for agent i. It has been shown that it is possible to
transform any Dec-POMDP-COM into an equivalent Dec-POMDP [Goldman and Zilberstein,
2004].

The COM-MTDP [Pynadath, 2002] is an extension to MTDP including explicit commu-
nication, as Dec-POMDP-COM is for Dec-POMDP. The principles are very similar to those
explained for Dec-POMDP-COM : a joint policy has to be computed, which is composed of a
communication policy and an action policy. As for Dec-POMDP and MTDP, Dec-POMDP-COM
and COM-MTDP have been proved to be equivalent [Seuken and Zilberstein, 2008]. Since any
Dec-POMDP-COM can be transformed into an equivalent Dec-POMDP, the four models (Dec-
POMDP, Dec-POMDP-COM, MTDP and COM-MTDP) are equivalent [Seuken and Zilberstein,
2008].

Several extensions of Dec-MDP and Dec-POMDP have been suggested to overcome the com-
plexity of resolution, each of them assuming different hypothesis. In [Beynier and Mouaddib,
2005], Beynier and Mouaddib considered the case where the agents in the system have limited
interactions. Each agent is given a task to perform and temporal constraints are defined between
the tasks. They suggested a polynomial algorithm to solve this problem. In [Becker, 2004],
Becker suggested an algorithm to solve transition-independent Dec-MDPs. This class of problem
is characterized by two or more cooperative agents solving (mostly) independent local problems.
The actions taken by one agent cannot affect any other agents’ observation or local state. Obser-
vation independence and more generally locality of interaction [Oliehoek et al., 2008] have also
been used to solve Dec-MDP and Dec-POMDP.

71

Chapter 3. Planning under uncertainty

3.3.2 I-POMDP

The Interactive POMDP framework [Gmytrasiewicz and Doshi, 2005] considers extending the
POMDP network by considering not only the belief over the underlying system state but also
the belief over the other agents. To do so, Gmytrasiewicz and Doshi defined the frame, the type
and the model of an agent.

Definition 3.6 (Agent’s frame). A frame of an agent i is θ̂i = 〈Ai,Ωi, Ti, Oi, Ri, OCi〉 where
:

• Ai is a set of actions agent i can execute

• Ωi is a set of observations the agent i can receive

• Ti : S ×Ai × S → [0, 1] is a transition function

• Oi : Ω× S ×Ai → [0, 1] is an observation function

• Ri : S ×Ai → R is a reward function

• OCi is the agent’s optimality criterion that specifies how rewards acquired over time
are handled.

Definition 3.7 (Agent’s type). A type of an agent i is θi =
〈
bi, θ̂i

〉
where :

• bi is agent i’s state of belief

• θ̂i is agent i’s frame

Definition 3.8 (Model of an agent). An agent’s model mj ∈ Mj is a triple 〈hj , fj , Oj〉
where

• hj ∈ Hj is a possible history of agent j’s observations

• fj : Hj → ∆(Aj) is agent j’s function, assumed computable, which maps possible
histories of j’s observation to distribution over its actions

• Oj is a function describing the way the environment supplies the agent j with its input
(function related to the observation function of the POMDPs)

Based on these new notions, an I-POMDP is defined as follows [Gmytrasiewicz and Doshi,
2005] .

Definition 3.9 (I-POMDP). An Interactive Partially Observable Markov Decision Process
(I-POMDP) is a tuple 〈ISi,A, Ti,Ωi,Oi, Ri〉 where

• ISi is a set of interactive states defined as ISi = S ×n−1
j=1 Mj , where S is the set of

states of the physical environment and Mj is the set of possible models of agent j

72

3.3. Multi-agent concerns : coordination and cooperation

• A = Ai ×Aj is a set of joint actions of all agents

• Ti is a transition function. An assumption called Model non manipulability assumption
is made, stating that agents’ actions do not change the other agents’ model directly.
Given this assumption, the transition function is defined as Ti : S ×A× S → [0, 1]

• Ωi is a set of agent i’s possible observations

• Oi is an observation function. An assumption called Model non observability is made,
stating that agents cannot observe other’s model directly. Given this assumption, the
observation function is defined as Oi : Ωi × S ×A → [0, 1]

• Ri : ISi×A → R is a reward function. Usually, this function is simplified by considering
only physical states and so defined as Ri : S ×A → R

Under the Model Non Manipulability and the Model Non Observability assumptions, the
belief update function for an I-POMDP given the interactive state ist =

〈
st,mt

j

〉
is:

bti(is
t) = β

∑
ist−1:

ˆ
mt−1

j =θ̂tj

bt−1
i (ist−1)

∑
at−1
j

P (at−1
j |θ

t−1
j)Oi(ωti , st, at−1)

·Ti(st−1, at−1, st)
∑
ωt
j

τθtj (b
t−1
j , at−1

j , ωtj , b
t
j)Oj(st, at−1, ωtj)

where:

• β is a normalizing constant

•
∑

ist−1:
ˆ

mt−1
j =θ̂tj

is the summation over all interactive states where agent j’s frame is θ̂tj

• bt−1
j and btj are the belief elements of agent j’s type θt−1

j and θtj

• P (at−1
j |θ

t−1
j) is the probability that action aj was taken by agent j during the last time

step, given its type.

• Oj is agent j’s observation function in mt
j

• τθtj (b
t−1
j , at−1

j , ωtj , b
t
j) represents the update of agent j’s belief

As in POMDP, each belief state in an I-POMDP has an associated value reflecting the
maximum payoff an agent can expect in that belief state:

U(θi) = max
ai∈Ai

∑
is

ERi(is, ai)bi(is) + γ
∑
ωi∈Ωi

P (ωi|ai, bi) · U
(〈
SEθi(bi, ai, ωi), θ̂i

〉)
where ERi(is, ai) =

∑
aj
Ri(is, ai, aj)P (aj |mj) is the expected reward for state is taking action

ai.
In I-POMDPs, an agent i’s belief state includes beliefs over another agent j’s belief state.

However, this agent j’s belief state includes also belief over agent i’s belief state. Therefore, the
update of agent i’s beliefs includes the update of agent j’s beliefs, which in turn includes the
update of agent i’s beliefs and so on. This nested belief update is an obvious issue for computing

73

Chapter 3. Planning under uncertainty

the optimal solution. To deal with that infinite nesting, Gmytrasiewicz and Doshi suggested to
use a strategy level l, which enables to terminate the recursion when computing the belief update
and the value function. However, Seuken and Zilberstein noticed that it is doubtful that the
finitely nested I-POMDP model allows for approximate optimality and this problem remains an
open research question [Seuken and Zilberstein, 2008].

In [Doshi et al., 2009] Doshi et al. proposed a graphical representation for I-POMDPs, called
Interactive Influence Diagram (I-ID) and Interactive Dynamic Influence Diagram (I-DID), which
generalize the Influence Diagrams (ID) and Dynamic Influence Diagrams (DID) representations
for POMDP, introduced in [Boutilier and Poole, 1996], to multiagent settings.

The I-POMDP model is more expressive than the Dec-POMDP model since it allows non-
cooperative systems. However, to our knowledge, there is no optimal algorithm for solving
infinitely nested I-POMDP. Moreover, even if some approximations and algorithms have been
suggested to solve finitely-nested I-POMDP [Rathnasabapathy et al., 2006, Doshi and Perez,
2008, Doshi and Gmytrasiewicz, 2009], this task remains extremely challenging and hard to
scale.

3.4 Decision models for event exploration

Event exploration is a subtype of active sensing problems : agents need to act in order to gather
information about their environment, to improve their beliefs. The goal of the system is to
optimize the information gathering. Some kind of active sensing problems can be modeled using
POMDP by rewarding, if successful, a final action consisting in expressing the system’s best
guess of classification. In [Guo, 2003] Guo described a POMDP framework in which the actions
are using a specific sensor or outputting a classification label. The agent is rewarded only if
the classification label is correct, and penalized otherwise. This reward system force the agent
to wait until enough information has been collected so that the agent can be sure of the label
it outputs. By using rewards on states and not on belief states, the authors also remain in
the standard POMDP framework. In [Ji and Carin, 2007], Ji and Carin used a similar system,
but coupled it with the training of a Hidden Markov Model. Later, in [Spaan et al., 2010],
Spaan et al. applied this classifying approach to multi-agent settings in order to perform active
cooperative perception using classifying actions. In this model, the cooperative perception lies
in the observation model, as the false positive and false negative rates are different depending on
the position and characteristics of sensors. The agents are rewarded the first time they correctly
classified an event as interesting, and penalized the first time they don’t classify it correctly.

However, all active sensing problems cannot be defined using classifying actions and in some
applications, the objective needs to be explicitly described as reducing the uncertainty about the
state. In those cases, the standard POMDP framework is not adapted, since the reward func-
tion needs to be expressed on the belief states instead of system states. In [Spaan, 2008], Spaan
presented the problem of rewards based on belief states, raised some relevant issues both on mod-
eling the problem as well as solving the underlying POMDP. This study discussed the first steps
toward a decision-theoretic approach to cooperative perception, but without providing general
solution. The paper also focuses on a single decision-maker and the problem of cooperation and
coordination between the agents is not really addressed. In [Eidenberger and Scharinger, 2010],
Eidenberger and Scharinger presented an active perception POMDP-based framework where a
single agent has to modify the position of its sensors to recognize objects. In this study, the
reward function is based on the expected belief state after applying the action, balanced with
the cost of doing this action. This POMDP is not solved using literature algorithm since the

74

3.5. Conclusion

value function is not piecewise linear. The resolution technique suggested provides a myopic
strategy. In [Araya-Lopez et al., 2010] Araya-Lopez et al. introduced the ρPOMDP, which is
an extension of the POMDP in which the reward function ρ can be defined on the belief states.
They showed that the ρPOMDP’s value function keeps its convexity property if the reward func-
tion ρ is convex. They also showed that algorithms from the literature can be easily adapted to
ρPOMDPs if the reward function is piecewise linear, and that all convex reward functions can be
approximated by a piecewise linear convex function. In [Satsangi et al., 2015] (extended version
in [Satsangi et al., 2014]), Satsangi et al. suggested a POMDP-based framework and a new
point-based method for dynamic sensor selection. Using theoretical results from [Araya-Lopez
et al., 2010] and the negative belief entropy reward, they demonstrated the submodularity of
value functions and bounded the error of greedy maximization. However, this work considered
a single decision-maker to select the sensors.

3.5 Conclusion

Planning consists in reasoning before acting. In this chapter, we presented the two major sub-
field of planning : classical planning and probabilistic planning. Classical planning usually deals
with restricted models and produces a plan, that is to say a sequence of actions that guarantees
the correct output. However when considering uncertainty on actions’ result and external events,
a plan may not exist. In such cases, policies are usually more adapted. Probabilistic planning,
and more specifically Markov Decision Processes and extensions, is an appropriate framework
to produce policies in different settings. However, the classical (PO)MDP framework is not
suitable to solve active sensing problems due to the reward function which is based on real
states. Extensions have been suggested to enable a reward function on belief states, usually
based on Entropy measures. However, those extensions address the problem of active sensing in
single-agent settings and the multi-agent case remains opened.

In this thesis, we propose a complete decentralized decision-theoretic framework for multi-
agent active sensing. In this framework, each agent will need to quantify its uncertainty about
the state of the world and the state of other agents, and to plan actions in order to reduce this
uncertainty. However, since we are concerned with dynamic systems, the agent need to check and
revise its beliefs among time, by exploring again features it already discovered. All the agents
in the system also need to coordinate themselves in a decentralize way, and so to exchange their
information. Since exchanging all information would be counter-productive, they will need to
select relevant information to communicate.

75

Chapter 3. Planning under uncertainty

76

Part II

Contributions

77

Chapter 4

Theory of relevance

Contents
4.1 What does it mean to be relevant? 80
4.2 Agents observe and believe . 80

4.2.1 Environment and states . 80
4.2.2 Agent’s beliefs . 81

4.3 How much relevant is this observation? The degree of relevance 82
4.3.1 Measuring novelty: the Hellinger Distance 83
4.3.2 Measuring the precision: the Shannon entropy 85
4.3.3 An agent-based degree of relevance 86

4.4 Conclusion . 87

An agent evolving in an environment perceives this environment through its sensors and
acquire partial information. The agent must then gather all information it receives into a internal
representation, that is usually referred as the agent’s knowledge. When several agents cooperate
in a single environment, they must exchange information they gathered to be efficient. However
exchanging all information all the time is not possible in some real applications because of
many reasons such as limited resources of communication and performance. The agents must
communicate only interesting information to the other agents. In this chapter, we consider the
notion of information relevance to assess its usefulness. Then we define a degree of relevance to
quantify the relevance that a piece of information has for a given agent.

79

Chapter 4. Theory of relevance

4.1 What does it mean to be relevant?

As seen in section 2.3, the relevance of some information for a given agent is usually defined as
how much this information answers the agent’s request. But how to characterize relevance when
the agents don’t express their requests explicitly? In these cases, the need for information has
to be inferred based on the agent’s current knowledge.

In this section we gathered some important properties that a piece of information should
satisfy to be considered as relevant for a given agent.

Property 4.1. Relevant information is correct.

In this thesis’ context, information being correct means that it reflects the real state of the
environment. Since the environment is dynamic, correct information may become incorrect
later. However, to be considered relevant it is important that at the information is correct at
the moment it is considered. Indeed, as already mentioned in section 2.3, incorrect information
would degrade agent’s knowledge and so cannot be considered as useful for the agent.

Property 4.2. Information is relevant for a specific agent at a specific time.

Since agents in a system may have different states of knowledge about the environment, informa-
tion that is relevant for a given agent may be less relevant for another one with a different state
of knowledge, for instance if the second agent already knows the information. This property
states that the relevance of information should only be considered regarding the agent which re-
ceives the information. In addition the environment and the knowledge of the agent are modified
among time. Therefore, some information, relevant for a given agent at a certain time, may not
be relevant anymore later. Indeed, the agent may have got the information in between or the
information may not be true anymore.

Property 4.3. Relevant information is new.

"New" means here that the agent didn’t know this information previously. The goal of agents
in event exploration is to detect events, that is to say changes in the environment. Therefore,
any new information is relevant since it corresponds to an event. Similarly to Property 4.2,
information is new only for a given agent.

Property 4.4. Relevant information improves the precision of agent’s knowledge.

Sometimes, information may not be new for a given agent, but may confirms what an agent
already believed. Indeed passing time and sensors’ precision affect the quality of information an
agent had received. Therefore information that confirms previously acquired uncertain knowledge
is relevant since it improves the agent’s knowledge’s precision. In the remaining of this thesis we
will call this kind of information precising information (by analogy with new information).

4.2 Agents observe and believe

4.2.1 Environment and states

In this section we describe the framework we used to model the environment and the agent’s
knowledge. Let us assume an agent i situated in an environment E . The environment is modeled

80

4.2. Agents observe and believe

as a set of features of interest. Each feature is described using a discrete variable Xk which takes
values in its domain DOM(Xk).

E =
⊗
∀k

Xk

Let DOM(E) be the set of all possible values for all Xk ∈ E .

DOM(E) = 〈DOM(Xk)〉∀Xk∈E

Example 4.1 (Patrol in a working building) Using the running example defined in section
0.7, we consider two variables per room: RoomEmpty and RoomOnFire. Each variable
has two possible values: true or false . Considering the 5 rooms of the example, we have:

E =〈〈RoomEmpty,RoomOnFire〉1
〈RoomEmpty,RoomOnFire〉2,
〈RoomEmpty,RoomOnFire〉3,
〈RoomEmpty,RoomOnFire〉4
〈RoomEmpty,RoomOnFire〉5〉

and
DOM(E) = {true, false}

4.2.2 Agent’s beliefs

Agent i has some beliefs BEi concerning the features of interest modeled as probability distribu-
tions over the Xk ∈ E .

BEi,t =
⊗
∀Xk∈E

bki,t

with bki,t being a probability distribution over the variable Xk at time t, representing agent i’s
knowledge about the variable Xk.

bki,t =
⊗

∀xp∈DOM(Xk)

P (Xk = xp)

For the sake of readability the beliefs of agent i can also be represented by a vector:

BEi,t =

b1i,t
...
bki,t
...
b
|E|
i,t

In most applications the agents have no prior knowledge about the system. All distributions in
its belief state follow the uniform distribution in which all the possible values are equiprobable,

81

Chapter 4. Theory of relevance

that is to say

BEi,0 =

1
|X1|
...
1
|Xk|
...
1

|X|E||

Example 4.2 (Patrol in a working building) The initial belief state for each agent in the
system is:

BEa,0 =

(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)
(0.5, 0.5)

%RoomEmpty1

%RoomOnFire1

%RoomEmpty2

%RoomOnFire2

%RoomEmpty3

%RoomOnFire3

%RoomEmpty4

%RoomOnFire4

%RoomEmpty5

%RoomOnFire5

Information is an uncountable concept which is not possible to manipulate as it is in a multi-
agent system and in belief update mechanisms. We need to consider atomic pieces of information
that we call observations.

Definition 4.1 (Observation). An observation is a high-level piece of information, that the
agent receives and that gives an indication about the state of the environment, that is to
say about the current values of variables Xk. An observation shall be related to at least one
variable.

Example 4.3 (Patrol in working building) Room 1 is empty, Room 3 is not empty,
4 rooms are empty are three different examples of observations.

By receiving new observations, the agents in the system will update their belief state by
modifying the probabilities associated to each value. The way to do this modification depends
on the application. Bayesian networks and Bayes conditioning are often used [Darwiche, 2008].
If some observation o is received and does not have a probability of 0 according to the current
beliefs, then the beliefs are updated as follows:

∀Xk ∈ E ,∀x ∈ DOM(Xk), P (Xk = x|o) =
P (Xk = x ∧ o)

P (o)

4.3 How much relevant is this observation? The degree of rele-
vance

In event-exploration, the agents need to communicate the most relevant observations to each
others. To allow relevance comparison, we need to define an agent-based degree of relevance

82

4.3. How much relevant is this observation? The degree of relevance

which quantifies the relevance of a specific observation at a time t, given an agent receiving it
and its belief state at that time t.

In this section, we will assume that the observation considered is correct. Indeed, and as said
previously, we assume that an observation cannot be relevant if it is incorrect. It is therefore
useless to compute the degree of relevance of an incorrect observation. The problem of assessing
the correctness of an observation in the decision making process will be discussed in Chapter 5,
Section 5.3.4.

To define a degree of relevance, we need to formalize the novelty of an observation (Section
4.3.1) and how much this observation is sound (Section 4.3.2). Then we combine those measures
in an agent-based degree of relevance (Section 4.3.3).

4.3.1 Measuring novelty: the Hellinger Distance

Let us consider an agent i at time t, with a belief state BEi,t. This agent receives an observation o
and updates its belief state, which becomes BEi,t+1. Intuitively, we consider that the observation
is new for agent i if it modifies significantly its belief state. To quantify this modification, we
need to compare BEi,t and BEi,t+1, which are two vectors of probability distributions over all the
variables Xk. Therefore we need to compare pairs of probability distributions for each variable
Xk, that is to say bki,t and b

k
i,t+1.

Several measures exists to compare probability distributions, the most well-known and used
being the Kullback-Leibler divergence [Kullback and Leibler, 1951], shortened KL divergence.
Let us consider two probability distribution P and Q over a discrete random variable X which
can take n values. The KL divergence, denoted DKL(P ||Q), measures the information lost when
Q is used to approximate P and is defined as follows:

DKL(P ||Q) =
n∑
j=1

P (j) ln
P (j)

Q(j)
. (4.1)

The KL divergence has some interesting properties: it is non negative, additive for independent
distributions and admits an upper bound [Sayyareh, 2011]. These properties and its popularity
encouraged us to consider the KL divergence as our novelty measure. We defined the degree
of novelty of a given observation received by a given agent as the KL divergence between its
belief state before receiving the observation and its belief state after update with the received
observation. The KL divergence between two belief states is defined as the sum of the KL
divergences of the probability distributions in these belief states.

DKL(BEi,t1 ||B
E
i,t2) =

∑
Xk∈E

n∑
p=1

bki,t1(xp) ln
bki,t1(xp)

bki,t2(xp)
(4.2)

The degree of novelty of an observation o received by an agent a is so defined as follows:

novi(o) = DKL(BEi,t||BEi,t+1) (4.3)

where BEi,t+1 = update(BEi,t, o) is agent i’s belief state after update with the observation o. As a
sum of convex non negative function, this degree of novelty is still convex non negative.

Despite its interesting properties, the KL divergence is not symmetric: the KL divergence
between P andQ is generally not equal to theKL divergence betweenQ and P . This involves that
the KL divergence is not a metric, which is a major drawback to its use as a measure of novelty.
Indeed, our degree of novelty aims at measuring how different two probability distributions are.

83

Chapter 4. Theory of relevance

It is important that the difference between Bki,t and Bki,t+1 is the same as the difference between
Bki,t+1 and Bki,t.

Another measure of divergence can be considered, presenting the same interesting properties
as the KL divergence, but being symmetric: the Hellinger distance [Nikulin, 2015]. Given two
probability distributions P and Q over a discrete random variable which can take n values, the
Hellinger distance is defined as follows:

DH(P,Q) =
1√
2

√√√√ n∑
j=1

(√
P (j)−

√
Q(j)

)2
(4.4)

As the KL divergence, the Hellinger distance is convex, non negative and bounded: 0 ≤
DH(P,Q) ≤ 1. Its symmetry also ensure that the distance between Bki,t and Bki,t+1 is the same
as the distance between Bki,t+1 and Bki,t.

Similarly to what we did with the KL divergence, we can define the degree of novelty for a
given observation received by a given agent using the Hellinger distance, as presented in Definition
4.2.

Definition 4.2 (Degree of novelty). The degree of novelty of an observation o received by
an agent i at time t is defined by

novi,t(o) = DH(BEi,t||BEi,t+1)

=
∑
Xk∈E

DH(bki,t||bki,t+1)

=
∑
Xk∈E

1√
2

√√√√ ∑
xp∈DOM(Xk)

(√
bki,t(xp)−

√
bki,t+1(xp)

)2

(4.5)

where BEi,t+1 = update(BEi,t, o) is agent i’s belief state after update with the observation o,
bki,t is the probability distribution representing the belief of agent i concerning the variable
Xk, bki,t(xp) is the single probability in this distribution corresponding to Xk = xp.

Property 4.5. The degree of novelty is convex.

Proof. The Hellinger Distance is convex, so DH(bki,t||bki,t+1) is convex. The degree of novelty
being the sum of convex function is also convex.

Property 4.6. The degree of novelty is bounded: ∀i,∀t

0 ≤ DH(BEi,t||BEi,t+1) ≤ |E|

Proof. The Hellinger distance is bounded, 0 ≤ DH(bki,t||bii, t+ 1k) ≤ 1 By summing over all the
variables Xk ∈ E , we obtain 0 ≤ DH(BEi,t||BEi,t+1) ≤ |E|

84

4.3. How much relevant is this observation? The degree of relevance

4.3.2 Measuring the precision: the Shannon entropy

As previously, we consider an agent i at a time t with a belief state BEi,t receiving an observation
o. We stated in property 4.4 that an observation is relevant if it improves the precision of
agent i’s belief state. A very common way to measure precision is to use the Shannon entropy.
Initially, the Shannon entropy measure the information contained in a source. This source is
represented by a discrete random variable X which has n possible values and which is associated
to a probability distribution P . The Shannon entropy is defined as follows:

Hb(X) = −
n∑
j=1

P (j) logb P (j) (4.6)

where b is the base of the logarithm used. In this thesis, we consider only b = 10 and simplify
the notation as H(X) = −

∑n
j=1 P (j) logP (j).

The Shannon entropy is continuous, symmetric and concave. It is also bounded: 0 ≤ Hb(X) ≤
logb(n), the maximum being reached when all the possible values are equiprobable.

Using the Shannon entropy, we define the entropy of a belief state as presented in definition
4.3.

Definition 4.3 (Entropy of a belief state). Given an agent i and its belief state at time t
BEi,t, the entropy of the belief state of agent i is given by:

H(BEi,t) =
∑
Xk∈E

H(bki,t)

= −
∑
Xk∈E

∑
xp∈DOM(Xk)

bki,t(xp)log(bki,t(xp))
(4.7)

where bki,t is the probability distribution representing the belief of agent i concerning the
variable Xk and bki,t(xp) is the single probability in this distribution corresponding to Xk =
xp.

Using this definition we can assess how precising an observation o is for an agent i by compar-
ing the entropy of agent i’s belief state before receiving the observation H(BEi,t) with the entropy
of agent i’s belief state after update with the observation H(BEi,t).

Definition 4.4 (Degree of soundness). Given an agent i and its belief state at time t BEi,t
and an observation o received by agent i, the degree of soundness of the observation o for
the agent i, describing how much the observation is sound, is given by:

soundi,t(o) = H(BEi,t)−H(BEi,t+1) (4.8)

where BEi,t+1 = update(BEi,t, o) is agent i’s belief state after update with the observation o.

85

Chapter 4. Theory of relevance

Property 4.7. The degree of soundness is bounded: ∀i,∀t

−
∑
Xk∈E

log(|DOM(Xk)|) ≤ soundi,t(o) ≤
∑
Xk∈E

log(|DOM(Xk)|)

Proof. The Shannon entropy is bounded: ∀Xk, 0 ≤ H(Xk) ≤ log(|DOM(Xk)|). Therefore, we
have

0 ≤ H(BEi,t) ≤
∑
Xk∈E

log(|DOM(Xk)|)

and
0 ≤ H(BEi,t+1) ≤

∑
Xk∈E

log(|DOM(Xk)|)

so
−
∑
Xk∈E

log(|DOM(Xk)|) ≤ −H(BEi,t+1) ≤ 0

We can conclude

−
∑
Xk∈E

log(|DOM(Xk)|) ≤ H(BEi,t)−H(BEi,t+1) ≤
∑
Xk∈E

log(|DOM(Xk)|)

Unfortunately, we can not conclude about the concavity property of the degree of sound-
ness. Indeed, the Shannon entropy is concave, so H(BEi,t) and H(BEi,t+1) are concave. Therefore
−H(BEi,t+1) is convex and it is difficult to conclude anything about the convexity of the sum.

4.3.3 An agent-based degree of relevance

The relevance degree of an observation is a combination between the novelty of this observations
and soundness. In some cases both can be satisfied17, but in some other cases a compromise
need to be found. For instance, an observation which results from a change in the environment
concerning a feature that has already been detected is new - and so very relevant - but degrades
agent’s beliefs.

We defined the degree of relevance of an observation for an agent as follows:

Definition 4.5 (Degree of relevance). The degree of relevance of an observation o for an
agent i, noted reli(o), is given by

reli,t(o) = (1− δ)novi,t(o)
|E|

+ δ
soundi,t(o)

Hmax
(4.9)

where novi,t(o) - respectively soundi,t(o) - is the degree of novelty - respectively soundness -
of the observation o received by the agent i, δ ∈ [0, 1] is a weight to model how dynamic the
environment is, and Hmax =

∑
Xk∈E log(|DOM(Xk)|) is the maximum belief state’s entropy

- reached when all variables follow the uniform distribution.

17which is the case when the agent has no knowledge about a variable: the received observation is both new
and precising

86

4.4. Conclusion

The values |E| and Hmax are used to normalize the degree of relevance. The parameter δ depends
on the application considered and enables to tune the degree of relevance. Indeed, in highly
dynamic systems - δ close to 0 - the values of the variables Xk may often change. In this case,
it is important that novelty is strongly rewarded so that the agent updates its beliefs to the new
values frequently. In the opposite case - static system and δ close to 1 - each variable Xk is
likely to keep its value among time and novelty is not crucial. It is however important that the
agent reaches a very accurate belief state, and so a reduction of entropy is strongly rewarded. δ
is directly related to a physical parameter which is the probability that a change occurs in the
system: δ = 1− ProbabilityOfChange.

Property 4.8. The degree of relevance is bounded: ∀i,∀o

−δ ≤ reli,t(o) ≤ 1

Proof. From property 4.7, we know that ∀i,∀o:

−Hmax ≤ soundi,t(o) ≤ Hmax

Since Hmax > 0,
−1 ≤ soundi,t(o)

Hmax
≤ 1

Since δ ≥ 0,
−δ ≤ δ

soundi,t(o)
Hmax

≤ δ (4.10)

From property 4.6, we know that ∀i,∀o:

0 ≤ novi,t(o) ≤ |E|
0 ≤ novi,t(o)

|E| ≤ 1

Since 0 ≤ δ ≤ 1, we know 1− δ ≥ 0,

0 ≤ (1− δ)novi,t(o)|E| ≤ 1− δ (4.11)

From inequalities 4.10 and 4.11, we can conclude that

−δ ≤ reli(o) ≤ 1

Since the degree of soundness soundi,t(o) is not proved to be either convex or concave, we
can unfortunately not conclude concerning the convexity of the degree of relevance.

4.4 Conclusion

Assessing the relevance of information is very important for efficient communication. In this
chapter, we studied some properties that information should have to be relevant. It appeared that
relevance includes novelty and soundness of information. Those two properties are concurrent
and a compromise must be found. Based on this analysis, we defined a degree of relevance
that combines a degree of novelty and a degree of soundness. The degree of novelty uses the
Hellinger distance to measure the difference between the agent’s beliefs before and after receiving

87

Chapter 4. Theory of relevance

an observation. The degree of soundness uses the Shannon entropy to measure the accuracy of
the agent’s beliefs. The degree of relevance defined is bounded. A parameter δ can be tuned to
adapt the degree to different types of application. δ models the dynamicity of the environment.
In highly dynamic environments, the novelty should be favored over the soundness since the
information is likely to change. However, in little dynamic environments, information should be
sounder since it is less likely to change.

88

Chapter 5

The MAPING Model

Contents
5.1 The MAPING framework: general overview 90
5.2 Estimating what others know and need 91
5.3 Observing the system and assessing the mission 91

5.3.1 What can be seen and done: states, observations and actions 92
5.3.2 The dynamic of the system: transition and observation functions . 93
5.3.3 Stay informed: maintaining a belief state 95
5.3.4 What is the goal ? The reward function 97

5.4 Planning algorithm of MAPING 99
5.4.1 General case . 99
5.4.2 Discretized solving . 100

5.5 Online belief update: forgetting information if it is too old . . . 103
5.6 The MAPING framework for heterogeneous agents 107

A team work cannot be efficient without cooperation, coordination and communication. In
critical scenarios such as military conflicts, search and rescue missions, border or protected
area surveillance, etc., the communication may be limited for safety or technical reasons. In
those situations, it is also unsafe to rely on only one agent to separate the missions among
other agents. A fully decentralized decision framework is necessary. In this chapter we define a
complete offline-online framework to enable a team of agents to perform fully decentralized event
exploration under limited communication constraints.

89

Chapter 5. The MAPING Model

5.1 The MAPING framework: general overview

In multiagent event exploration problems, the agents of the system should coordinate their
activities in order accomplish efficiently their mission. The coordination can be centralized or
decentralized. In centralized coordination, a central decision process distributes the goals among
the agents and ensure a good coordination. In these systems, the communication between the
agents is usually not considered as a problem and is reduced to the goals distribution and
observations report to the central agent. In decentralized systems, each agent uses a policy -
often computed offline - to decide internally its next action. The most well-known framework
for decentralized coordination is the Dec-POMDP framework, presented in section 3.3, in which
the communication is usually considered free and full. Both cases include a major drawback:
the reliability of the system depends on the communication to the central agent or on the full
and free communication assumption. However, in real applications and specifically in crisis
situations, relying on only one central agent is unsafe and the communication is neither full nor
free. It is therefore important to develop decentralized techniques that are able to reduce their
communication to send only the necessary information.

In this thesis, we consider a set of fully cooperative agents with heterogeneous sensors. All
the agents in the system share the same goal, but they are able to collect different types of
information.

Example 5.1 (Patrol in a working building) We consider three different types of robots:
(1) robots equipped with a camera and a face detection module (2) robots equipped with
a camera and a color detection module (3) robots equipped with a thermo-camera and
temperature detection module. The robots of type 1 and 3 can detect the presence of
humans in a room. The robots of type 2 and 3 can detect the presence of a fire.

All the robots share the same representation of the environment and their belief states
cover the same variables Xk.

The Multi-Agent Planning for INformation Gathering (MAPING) framework we propose in
this thesis is a framework for multi-agent event exploration with reduced communications that
includes an offline part and an online part. It used an extended belief state, presented in section
5.2, that contains agent’s beliefs about the environment but also about other agents’ beliefs.
The offline part is made up of the decision-theoretic model based on a Partially Observable
Markov Decision Process (POMDP), presented in section 5.3. This POMDP can be solved using
a technique that we present in section 5.4.

The online part of the framework includes the execution module, which executes actions
and receives the observations, and a belief update module, which updates the agents’ belief
with the received observation. This belief update module also include a new step to implement
a forgetting mechanism in the framework. Indeed, event exploration aims, by definition, at
detecting dynamic events and is theoretically an open-ended problem. The more time passes
after an agent discovered a feature’s value, the more probable it is that this value has changed.
Therefore the agents need to modify their belief state to take this raising uncertainty into account,
and forget gradually what they have learned. The belief update module is presented in section
5.5.

90

5.2. Estimating what others know and need

5.2 Estimating what others know and need

Each agent has beliefs about the environment which are model, as in Chapter 4, as a set of
probability distributions over the variables Xk. During their mission, they acquire knowledge
and collect observations about these variables. To coordinate themselves and select the relevant
piece of information they should communicate, they need to know about the belief state of the
other agents. However it is impossible for an agent to know exactly at each decision step the
belief state of other agents, as it is unreasonable to ask for this belief state wherever the agent
needs it. As humans for instance, we don’t know the exact beliefs of our fellow humans and we
don’t ask for their belief each time we want to tell them something. We decide internally if the
information we want to communicate may be relevant for them according to what we believe
they believe. This decision is sometimes accurate - if our beliefs about their beliefs are accurate
- sometimes not - if our beliefs about their beliefs are outdated or wrong - but in any case it
limits the amount of communication that could is necessary. We formalize this principle in the
MAPING framework. To do so, we use an extended belief state, which includes not only the
agent’s own beliefs concerning the environment but also the agent’s belief about other agent’s
beliefs. The formal description is given in definition 5.1.

Definition 5.1 (Extended belief state). The extended belief state of the agent i at time t is
defined as

Bi,t = 〈BEi,t,B
j,E
i,t 〉 (5.1)

with BEi,t = 〈bi,ki,t 〉∀Xk∈E being the beliefs of agent i concerning the environment E and Bj,Ei,t =

〈bj,ki,t 〉∀Xk∈E being the beliefs of agent i concerning the environment beliefs of agent j.

Let us note that Bj,Ei,t is an approximation of BEj,t. We can also use a matrix representation,
in which rows represent the different random variables describing the environment and columns
represent agent i’s beliefs on each agent’s beliefs, including itself :

Bi,t =

b1,1i,t . . . bj,1i,t . . . bi,1i,t . . . b
|AG|,1
i,t

...
...

...
...

b1,ki,t . . . bj,ki,t . . . bi,ki,t . . . b
|AG|,k
i,t

...
...

...
...

b
1,|E|
i,t . . . b

j,|E|
i,t . . . b

i,|E|
i,t . . . b

|AG|,|E|
i,t

(5.2)

In this extended belief state, each agent has approximate beliefs about the beliefs of other
agents and can decide if a piece of information is relevant for another agent. It is clear that
each agent needs to update its extended belief state to keep not only an accurate belief on the
variables but also an accurate belief on the other agents’ beliefs. The way this belief state is
updated is described in section 5.3.3.

5.3 Observing the system and assessing the mission

The core of the offline decision module is the Partially Observable Markov Decision Process
(POMDP) used to compute each agent’s policy. A POMDP is a tuple 〈S,A,O, T ,Ω,R, b0〉
where

91

Chapter 5. The MAPING Model

• S is the set of states

• A is the set of epistemic actions

• O is the set of observations

• T : S ×A× S → R is the transition function

• Ω : O × S ×A → R is the observation function

• R : S ×A× S → R is the reward function

• b0 is the initial belief state

In this section we describe the elements making up the POMDP and specific to MAPING .

5.3.1 What can be seen and done: states, observations and actions

The set of states consists of all the joint instantiations of the variables Xk ∈ E . The size of the
set of states is

|S| =
∏
Xk∈E

nk

nk being the number of possible values for variable Xk.
As in chapter 4, we consider that observations are an atomic piece of information an agent

may receive after it performed an action, that is to say a feedback of the environment. Those
observations give an indication about the current state of the system and are used by the agents
to update their belief states. The set of observations fully depends on the application considered.
The most general case involves that an observation can be related to several variables, as the
observation 4 rooms are empty in example 4.3. However, in our case we consider that the
robots explore the different areas in order to collect observation about the area it explored.
Therefore, each observation is related to one area, and so one variable.

We consider in MAPING only epistemic actions, which means actions that don’t imply a
change in the environment and don’t modify the current state of the POMDP but only the
agent’s internal belief state. We define two types of actions : look for the value of a particu-
lar random variable (Explore-type actions) and communicate a set of observations to a set of
agents (Communicate-type actions). To these types, we add another action named Idle, which
corresponds to doing nothing. The set of actions is so:

A =AExplore ∪ ACommunicate ∪ {Idle}
A ={Explore(Xk), ∀Xk ∈ E} ∪ {Communicate(O,Ag), ∀O ⊂ O,∀Ag ⊂ AG} ∪ {Idle}

The size of the action set is :

|A| = |AExplore|+ |ACommunicate|+ 1

There is as many Explore-type actions as the number of variables, so |AExplore| = |E|. Each
agent can communicate any subset of observations except the empty set, that is to say 2|O| − 1
possible subsets. The agent can communicate to any subset of agents except subsets that includes
itself, that is to say (2|AG|−1) possible subsets. So the size of the action set is:

|A| = |E|+ (2|O| − 1)× (2|AG|−1) + 1 (5.3)

92

5.3. Observing the system and assessing the mission

It is obvious that the size of the set of states and the size of set of actions increase exponentially
with the number of variables and create a combinatorial explosion even with small systems, and
makes the policy impossible to compute. It is nevertheless possible to reduce this size with two
reasonable hypothesis. Let us consider first the set of states. The most general case requires
to consider possible that the variables may have different and possibly high numbers of possible
values. However, in event exploration we are interested in knowing if an event happened or not.
In a lot of cases it is then possible to assume that each variable represents a event that can
occur and has only two possible values: true or false, if the event occurred or not. With this
assumption, the size of the set of states is reduced to 2|E|.

Second we may assume that, instead of communicating any subset of observations to any
subset of agents, each agent can communicate one observation to one agent. In that case, the
agent can communicate only |O| observations to |AG|−1 agents and the size of the set of actions
becomes |A| = |E|+ |O| × (|AG| − 1) + 1.

In the remainder of this thesis we will consider both assumptions. However let us note that
the model is still valid if the hypotheses need to be relaxed.

Example 5.2 (Patrol in a working building) Let us consider an instantiation of the the
patrolling example with 5 rooms and 3 agents, one of each type. There are 10 variables in
E corresponding to the state of the rooms:

{RoomEmptyRk
, RoomOnFireRk

|∀Rk ∈ ListOfRooms}

Each variable has two possible values: true or false. The possible observations describe
what the robots may receive, depending on their sensors. The robots equipped with a face
detection module can receive the observations

{HumanInRoomRk
, NoHumanInRoomKRk

|∀Rk ∈ ListOfRooms}

The robots equipped with a color detection module can receive the observations

{FireColorInRoomRk
, NoF ireColorInRoomRk

|∀Rk ∈ ListOfRooms}

And finally the robots with a thermocamera can receive the observations

{HotSpotInRoomRk
, NoHotSpotInRoomRk

|∀Rk ∈ ListOfRooms}

We consider that the agents never receive an observation after sending a message.
The corresponding POMDP has 1024 states, 30 possible observations and 101 possible

actions if we consider the simplifying assumption, 4294967303 otherwise.

5.3.2 The dynamic of the system: transition and observation functions

The transition function describes the dynamic of the system. The transition T (s′, α, s) is the
probability that the system makes a transition from the state s to the state s′ when action α
is performed: T (s, α, s′) = P (s′|α, s). We only consider epistemic actions, that is to say actions
that only affect the agents’ belief states and not the environment. Therefore the evolution of the
environment is completely independent from the agents, which can be modeled by: T (s, α, s′) =
T (s, s′) = P (s′|s).

The observation function describes the reliability of the sensors. It is the probability to

93

Chapter 5. The MAPING Model

receive an observation o after action α has been performed in state s: Ω(o, s, α) = P (o|s, α). In
this case, the observation function remains action-dependent since the actions considered aim at
gathering information. When an agent executes an Explore-type action, it explores the value of
a variable and receives an observation corresponding to this variable. When the agent executes
a Communicate-type action, it may receive an observation concerning the status of the sent
message - if it has been sent and/or received properly - or no observation at all. When the agent
performs Idle, it doesn’t receive any observation.

Example 5.3 (Patrol in a working building) In the patrolling example there are two types
of events: the presence of a human in the room and the presence of a start of fire in a room.
The transition function should so emphasize these two types. We consider that the presence
of a human and the presence of a start of fire in a room are completely independent. We also
consider that the presence of a human in room is independent of the presence of a human in
other rooms. However, we can consider that the probability to find a start of fire in a room
is 0.9 if there is a start of fire in the room next to it, and 0.1 otherwise.

The observation function should reflect the capacities of the robot and the precision of its
sensors. The probability to receive each observation defined in example 5.2 strictly depends
on the room explored by the robot and the sensors it possesses. Robot equipped with a face
detection module will have an observation function shaped as follows:

Ω(HumanInRoomRk
, RoomEmptyRk

= true,Explore(RoomEmptyRk
)) = 0.1

Ω(HumanInRoomRk
, RoomEmptyRk

= false, Explore(RoomEmptyRk
) = 0.9

Ω(NoHumanInRoomRk
, RoomEmptyRk

= true,Explore(RoomEmptyRk
) = 0.9

Ω(NoHumanInRoomRk
, RoomEmptyRk

= false, Explore(RoomEmptyRk
)) = 0.1

All the other combinations of observation - state - action have a probability equals to 0.
Indeed, the robot will never be able to receive an observation FireInRoomXk

since it’s not
equipped with the right sensors, and will never receive an observation HumanInRoomXk

if
it is not performing an action Explore(Xk). Since the presence of a start of fire in the room
does not influence the probability to receive the observation HumanInRoomRk

, the state of
the variable RoomOnFireRk

does not appear in the observation function. Similarly, robot
equipped with a color detection module will have an observation function shaped as follows:

Ω(FireColorInRoomRk
, RoomOnFireRk

= true,Explore(RoomOnFireRk
)) = 0.9

Ω(FireColorInRoomRk
, RoomOnFireRk = false, Explore(RoomOnFireRk

)) = 0.1

Ω(NoFireColorInRoomRk
, RoomOnFireRk

= true,Explore(RoomOnFireRk
)) = 0.1

Ω(NoFireColorInRoomRk
, RoomOnFireRk

= false, Explore(RoomOnFireRk
)) = 0.9

For robot equipped with a thermocamera the observation function is a bit more complicated
since both events can trigger the observation HotSpotInRoomRk

. Therefore both variables

94

5.3. Observing the system and assessing the mission

need to be taken into account in the observation function.

Ω(HotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= true,

Explore(RoomEmptyRk
)) = 0.8

Ω(HotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= true,

Explore(RoomOnFireRk
)) = 0.8

Ω(HotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= false,

Explore(RoomEmptyRk
)) = 0.05

Ω(HotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= false,

Explore(RoomOnFireRk
)) = 0.05

Ω(HotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= true,

Explore(RoomEmptyRk
)) = 0.95

Ω(HotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= true,

Explore(RoomOnFireRk
)) = 0.95

Ω(HotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= false,

Explore(RoomEmptyRk
)) = 0.7

Ω(HotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= false,

Explore(RoomOnFireRk
)) = 0.7

Ω(NoHotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= true,

Explore(RoomEmptyRk
)) = 0.2

Ω(NoHotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= true,

Explore(RoomOnFireRk
)) = 0.2

Ω(NoHotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= false,

Explore(RoomEmptyRk
)) = 0.95

Ω(NoHotSpotInRoomRk
, RoomEmpty = true ∩RoomOnFireRk

= false,

Explore(RoomOnFireRk
)) = 0.95

Ω(NoHotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= true,

Explore(RoomEmptyRk
)) = 0.05

Ω(NoHotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= true,

Explore(RoomOnFireRk
)) = 0.05

Ω(NoHotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= false,

Explore(RoomEmptyRk
)) = 0.3

Ω(NoHotSpotInRoomRk
, RoomEmpty = false ∩RoomOnFireRk

= false,

Explore(RoomOnFireRk
)) = 0.3

5.3.3 Stay informed: maintaining a belief state

To keep an accurate representation of the current state of the system an agent has to update its
beliefs regularly. An update will occur in three cases :

1. the agent receives a new observation from its sensors after an Explore-type action. It

95

Chapter 5. The MAPING Model

updates its own beliefs concerning the environment : BEi,t+1, or in the matrix representation:

Bi,t+1 =

b1,1i,t . . . bj,1i,t . . . bi,1
i,t+1 . . . b

|AG|,1
i,t

...
...

...
...

b1,ki,t . . . bj,ki,t . . . bi,k
i,t+1 . . . b

|AG|,k
i,t

...
...

...
...

b
1,|E|
i,t . . . b

j,|E|
i,t . . . bi,|E|

i,t+1 . . . b
|AG|,|E|
i,t

2. the agent receives a new observation from agent j. It updates its own beliefs BEi,t+1. It

also consider that agent j updated its own beliefs with this observation before sending it,
so agent i also updates its beliefs concerning agent j to reflect agent j’s latest belief state:
Bj,Ei,t+1. In the matrix representation, it updates:

Bi,t+1 =

b1,1i,t . . . bj,1
i,t+1 . . . bi,1

i,t+1 . . . b
|AG|,1
i,t

...
...

...
...

b1,ki,t . . . bj,k
i,t+1 . . . bi,k

i,t+1 . . . b
|AG|,k
i,t

...
...

...
...

b
1,|E|
i,t . . . bj,|E|

i,t+1 . . . bi,|E|
i,t+1 . . . b

|AG|,|E|
i,t

3. the agent sends an observation to agent j with a Communicate-type action. We consider

that agent i already updated its own beliefs with the observation when it has received
it. Since agent j has the same update policy, it will update its own beliefs when it will
receive the observation, so agent i only updates its beliefs concerning agent j : Bj,Ei,t+1,
which updates the matrix representation as follows:

Bi,t+1 =

b1,1i,t . . . bj,1
i,t+1 . . . bi,1i,t . . . b

|AG|,1
i,t

...
...

...
...

b1,ki,t . . . bj,k
i,t+1 . . . bi,ki,t . . . b

|AG|,k
i,t

...
...

...
...

b
1,|E|
i,t . . . bj,|E|

i,t+1 . . . b
i,|E|
i,t . . . b

|AG|,|E|
i,t

In all cases, bj,ki,t+1 = update(bj,ki,t , o) is the update of the previous probability distribution with
the observation o and Bj,Ei,t+1 = update(Bj,Ei,t) = {bj,ki,t+1,∀Xk ∈ E}

For exploring and sending an observation, the update is made as usual in Partially Observable
Markov Decision Processes :

bj,ki,t+1(s′) =
Ω(o, s′, α)

∑
s∈S p(s

′|s, α)Bi,t(s)∑
s∈S

∑
s′′∈S Ω(o, s′′, α)p(s′′|s, α)bj,ki,t

(5.4)

where α is the action, Bi,t(s) is the probability that the state s is true, and Ω is the current
agent’s observation function.

The case of the agent receiving an observation is a bit more complex. In the first steps of our
models, all the agents had the same sensors and so the same observation function. Therefore we

96

5.3. Observing the system and assessing the mission

processed the Bayesian update by using this observation function when receiving an observation.
However with heterogeneous robots, each type of robot has its own observation function and the
one used in the update should be the one of the agent sending the observation. Practically, we
solved it during the system initialization. When the system is initialized, all the agents send
their observation function to all other agents. Then each agent store in its internal memory the
observation function of all the other agents. The case of heterogeneous agents will be discussed
more in details in section 5.6.

5.3.4 What is the goal ? The reward function

The reward function usually defines the reward an agent may receive by performing action α in
state s. However in event exploration we are not interested in bringing the system to a specific
state but in improving the accuracy of the agents’ belief states. Agents should be rewarded
when they improve their belief state and when they help others to improve theirs as well, and so
when they collect and communicate relevant observations for them and the others. The reward
function of MAPING is not defined on the states as usually but on the belief states of the agent:
R : B×A → R. The reward function is split into three parts: R(Bi,t, Idle), R(Bi,t, Explore(Xk))
and R(Bi,t, Communicate(o, j)). The case R(Bi,t, Idle) is the easiest, since the agent does
nothing. Therefore it receives no reward: R(Bi,t, Idle) = 0.

As stated in Chapter 4, a relevant observation is correct. However the agents can observe the
state of the world only partially and have only beliefs about it. They cannot state with certainty
if an observation is true or not. They should rely on their beliefs to decide if a given observation
is likely to be true or if it is likely to be false.

Definition 5.2 (Degree of belief). The degree of belief an agent i has concerning an obser-
vation o at a time t is given by:

beli,t(o) =
∑
s∈S

∑
α∈AExplore

Bi,t(s)Ω(o, s, α)

where Bi,t(s) is the probability that s is the current state.

A special case of this degree of belief is the action dependent degree of belief.

Definition 5.3 (Action dependent degree of belief). The action dependent degree of belief
an agent i has concerning an observation o when performing an action α is given by:

beli,α,t(o) =
∑
s∈S
Bi,t(s)Ω(o, s, α)

where Bi,t(s) is the probability that s is the current state.

The degree of beliefs represents the probability an agent would have to receive the observation if
it explored all the variables in a state s, considering the belief of the agent that s is the current
state. The actions-dependent degree of belief limits the degree of belief to a single action.

When performing an Explore-type action, the agent is rewarded if it explores a variable that
can provide it with relevant observations. Therefore the agent chooses among all observations the
one which would be the most relevant and the variable it needs to explore to get this observation.

97

Chapter 5. The MAPING Model

However exploring has a cost which must be taken into account. This cost may represent battery
loss, distance to travel, etc. The reward function for an Explore-type action is:

R(Bi,t, Explore(Xk)) =
∑
o∈O

beli,α,t(o)reli(o)− CExplore(Xk) (5.5)

where CExplore(Xk) is the cost associated to the exploration.

When performing a Communicate-type action, the agent is rewarded if it communicates
an observation which is relevant for the agent to which it communicates. In addition to this,
the agents should try to get homogeneous belief states, which means belief states close to each
others. This is also due to the fact that the agents only have beliefs about the environment and,
by definition, cannot state if those beliefs are correct. Once again, this is inspired by our human
way of thinking. If all of my colleagues and I think that the meeting is at 2:00pm, this belief is
likely to be true. If I am the only one thinking it is at 4:00pm, I am likely to be wrong and I
should check again. If after checking I am still convinced that the meeting is at 4:00pm, I should
tell my colleagues so that they can check in turn, in case a change occurred in the meeting time.
If we all have different times in mind for the meeting, we should all check to get the right time.
We assume that agents have the same behavior in the system: if all of them have close beliefs,
those are likely to be close to the truth. However if there is one agent which think differently or if
all agents have different beliefs, it means that at least one agent is wrong. This fault may result
to a sensor failure or a change in the environment. For this reason, we include in the reward
function for Communicate-type action a term to encourage the agents to communicate relevant
observation that reduces the difference between their beliefs and the approximation they have
about other agents’ beliefs. The reward function for a Communicate-type action is thus defined
as follows:

R(Bi,t, Communicate(o, j)) =beli,t(o)reli(o) + (DH(BEi,t||B
j,E
i,t)−DH(BEi,t+1||B

j,E
i,t+1))

− CCommunicate(o,j)
(5.6)

where CCommunicate(o,j) is the cost of communicating observation o to agent j and Bj,Ei,t+1 =

update(Bj,Ei,t , o) is the belief state of agent i updated with the observation o.

For the sake of simplicity, we considered in the first part of our work that CExplore(Xk) and
CCommunicate(o,j) were constant. However in real applications the cost of exploring varies with
the position of the robot and the cost of communicating varies with the size of the message to
send. Considering varying costs when computing the policy implies that the model includes the
parameters that makes the costs vary such as the position of the robots, causing the model grows
dramatically. In section 5.4 we present a technique to compute a satisfactory policy taking into
account the variation of the costs.

The reward function being defined on the belief states instead of the system state, it is im-
possible to use literature techniques mentioned in section 3.1.4. Moreover the degree of relevance
being not convex, the reward function is not convex either, which makes impossible the use of the
ρPOMDP suggested by Araya-Lopez et al. [Araya-Lopez et al., 2010]. The next section presents
a technique we used to solve the MAPING POMDP.

98

5.4. Planning algorithm of MAPING

5.4 Planning algorithm of MAPING

5.4.1 General case

As explained in the previous section, the MAPING model cannot be solved by using classical
literature techniques. However, the fact that we consider only epistemic actions makes it possible
to solve it by transforming it into a Belief-MDP and rely on classic MDP algorithms. A Belief-
MDP is defined as a tuple < ∆,A, τ > where :

• ∆ is the set of states

• A is the set of actions

• τ : ∆×A → R is the transition function

The state space of the Belief-MDP corresponds directly to the belief states space in the MAPING
POMDP: ∆ = Bi,t. Considering only epistemic actions, the set of actions in MAPING only affects
the Belief states. Therefore, the set of actions in the Belief-MDP is the same as the set of actions
in the MAPING POMDP. The transition function τ can be obtained from the transition and
observation T and Ω functions of the MAPING POMDP and is defined as follows:

τ(Bi,t, α,Bi,t+1) =

{ ∑
s∈S

∑
o∈Ut

Ω(o, s, α)Bi,t(s) if Ut 6= ∅

0 otherwise

where Ut = {o ∈ O, such as, Bi,t+1 = update(Bi,t, o)} is the set of all observations enabling the
transition from state Bi,t to state Bi,t+1 and Bi,t(s) is the belief of agent i that the current state
is s.

Proof. If there is no observation such as Bi,t+1 = update(Bi,t, o)} - that is to say Ut = ∅ - it is not
possible to transfer from belief state Bi,t to belief state Bi,t+1. Therefore, τ(Bi,t, a,Bi,t+1) = 0.
If there exists at least one observation o such as Bi,t+1 = update(Bi,t, o)} - that is to say Ut 6= ∅
- we have the following equations :

τ(Bi,t, α,Bi,t+1) = P (Bi,t+1|Bi,t, α)
=
∑
o∈Ut

P (o|Bi,t, α)

=
∑
s∈S

∑
o∈Ut

P (o|s, α)Bi,t(s)

=
∑
s∈S

∑
o∈Ut

Ω(o, s, α)Bi,t(s)

The value function corresponding to this Belief MDP is defined as follows:

V (Bi,t) = R(Bi,t) + max
α∈A

∫
Bi,t+1

τ(Bi,t, α,Bi,t+1)V (Bi,t+1) (5.7)

99

Chapter 5. The MAPING Model

5 elements 11 elements
2 agents 3 agents 2 agents 3 agents

2 variables 625 7776 14641 1771561

3 variables 7776 1953125 1771561 2.36× 109

4 variables 390625 2.44× 108 2.14× 107 3.14× 1012

5 variables 9765625 3.05× 1010 2.59× 1010 4.18× 1015

6 variables 2.44× 108 3.81× 1012 3.14× 1012 5.56× 1018

Table 5.1: Number of states with 2 possible values for each variable

5.4.2 Discretized solving

Equation 5.7 corresponds to continuous model. Using discretization techniques18 we may trans-
form equation 5.7 in :

V (Bi,t) = R(Bi,t) + max
α∈A

∑
Bi,t+1∈Samples

τ(Bi,t, α,Bi,t+1)V (Bi,t+1) (5.8)

where Samples is the set of belief states in the discretized space. Then, any technique from the
literature may be used to solve the Belief-MDP.

This technique faces a huge computational problem since the size of the belief states space
grows exponentially in the number of variables and agents, which leads to major difficulties for
solving the model for real cases. Tables 1 presents the number of states obtained for different
numbers of variables - all with two possible values - and different numbers of agents, using two
different sizes of discretization. We considered a naive discretization in which the probability
distributions that make up the belief states are set finite, and the set of all probability distri-
butions can have 5 or 11 elements. The set with 5 elements is: ((0, 1) ; (0.2, 0.8) ; (0.5, 0.5) ;
(0.8, 0.2) ; (1, 0)). The set with 11 elements is: ((0, 1) ; (0.1, 0.9) ; (0.2, 0.8) ; (0.3, 0.7) ; (0.4, 0.6)
; (0.5, 0.5) ; (0.6, 0.4) ; (0.7, 0.3) ; (0.8, 0.2) ; (1, 0)). It is obvious that even the best algorithms
cannot solve such large MDPs. That’s why we need to find a way to reduce the number of states.

To do so, we considered two independence assumptions:

• Variable independence : the value of a given random variable does not depend on all the
other variables in the system but only on a subset of variables.

• Observation independence : the probability of receiving a given observation when perform-
ing a given action depends only on the values of a given subset of random variables.

Example 5.4 (Patrol in a working building) In example 5.3, we stated that the probability
that a human is present in the room is independent of the probability that a human is present
in another room. All the variables RoomEmptyRk

are independent from each others. We
could make extend the assumption to the variables RoomOnFireRk

. Both assumptions are
simplification of the reality, but the loss involved by this simplification is balanced by the
possibility to compute a satisfactory policy. This is the variable independence assumption.

We also stated in example 5.3 that the probability for an agent to receive an observation
about a variable HumanInRoomRk

, FireColorInRoomRk
or HotSpotInRoomRk

only de-

18For instance by discretizing the probability distributions

100

5.4. Planning algorithm of MAPING

pends on the value of variables about Rk - that is to say RoomEmptyRk
and RoomOnFireRk

- and not on the other variables. For instance the probability of receiving the observation
HumanInRoomR1 does not depend on the value of RoomEmptyR3 . This is the observation
independence assumption.

Using those two assumptions, we suggest to split the initial very large POMDP into a set of
smaller independent POMDPs that can be solved in a reasonable time. To explain how to split
the POMDP, we first need to define the independence of sets.

Definition 5.4 (Independence of sets). Two sets A and B are called independent if and
only if :

∀a ∈ A, ∀b ∈ B,P (a, b) = P (a)× P (b)

Then, we denote as usual E the set of all the random variables describing the environment
and O the set of all the observations. We assume a partition of the set E , written P(E), and a
partition of the set O, written P(O) which respect the variable independence and the observation
independence assumption:

1. (variable Independence) ∀X,Y ∈ P(E), X 6= Y , X and Y are independent.

2. (observation Independence) ∀O ∈ P(O), there is a unique set X ∈ P(E) so that ∀o ∈
O,P (o|s, a) = P (o|X, a).

Such a decomposition is guaranteed to exist, take P(E) = X and P(O) = O, and should be as
fine as possible for the decomposition to be efficient. The variable independence enables us to
rewrite the transition function:

T (s, α, s′) =
∏

X∈P(E)

T (X,α,X ′)

The observation independence enables us to rewrite the observation function:

Ω(o, s, α) = P (o|s, α) = P (o|Xo, α)

with Xo being the set of variables that influences the probability of receiving observation o.
Using these partitions, we can build a set of |P(E)| sub-POMDPs, each sub-POMDP being

a tuple 〈S`,A,O`, T`, ω`,R`, b`,0〉 where

• S` is all the possible joint instantiations of the variables X` ∈ P(E)

• A is the same set of actions as in the global POMDP

• O` ∈ P(O) being the set of observations depending on the set X`, as defined previously

• T` is the transition function applied to variables X`

• ω` is the observation function applied to variables of X`

• R` is the reward function applied to variables of X`

• b`,0 is the initial belief state

Each belief state used in the sub-POMDPs, written B`,i,t, is one part of the belief state of the
global POMDP : Bi,t = 〈B`,i,t〉∀`.

101

Chapter 5. The MAPING Model

Example 5.5 (Patrolling in a working building) The matrix notation of one of the agent’s
belief state is:

B1,t =

b1,11,t b2,11,t b3,11,t
...

...
...

b1,k1,t b2,k1,t b3,k1,t
...

...
...

b1,10
1,t b2,10

1,t b3,10
1,t

As stated in Example 5.3, all the variables are independent from each others. Therefore we
can build 10 sub-POMDPs, each corresponding to one variable. The belief state of the agent
in the sub-POMDP ` will be a single row on the variable `:

B1,t =
(
b1,`1,t b2,`1,t b3,`1,t

)

Then each of these sub-POMDPs can be solved independently by transforming it into a
Belief-MDP as explained previously. Techniques using state-space discretization can be applied
since the state space is less complex and so the number of cells is tractable. While solving the
belief-MDPs, we store the optimal value function V ∗(B`,i,t) for each sub-POMDP in addition
to the optimal policy π∗` . The agent is provided with the sub-policies π∗` instead of the global
one and with the associated value functions Vπ` . It can retrieve the action to perform during
execution by following algorithm 5.1.In this algorithm the agent compares the expected value of
each locally optimal action π` for each sub-belief state making up the current belief state and
select the action that gives with the best expecetd value. This comparison is possible since the
rewards of the sub-POMDP are commensurable, which implies that the computed values are also
commensurable.

Data: sub-policies π` and associated value functions Vπ` , current belief state Bi,t
Result: action to execute αopt

1 Vmax = −Infinity;
2 αopt = null;
3 foreach B`,i,t composing Bi,t do
4 if Vπ`(B`,i,t) ≥ Vmax then
5 Vmax = Vπj (B`,i,t) ;
6 αopt = π`(B`,i,t) ;
7 end
8 end
9 return αopt ;

Algorithm 5.1: Getting the action to execute from local optimal policies

This algorithm presents two drawbacks, which makes the action computed not optimal and
hard to use in real-type applications: 1. the sub-policies π` are optimal and computed with
infinite horizon, but the global action is taken considering only the next step 2. the cost of the
actions is still considered constant and contained in the sub-POMDP’s reward functions. To
improve the first point slightly, we considered that the agent should take into account the fact
that choosing one locally optimal actions at a time t - and so one subset of variables - means

102

5.5. Online belief update: forgetting information if it is too old

not doing anything on the other subsets of variables, that is to say performing the action Idle
on the other subsets. To deal with the second drawback, we suggest to remove the cost from the
reward function and consider it while choosing the global action. This makes it possible to use
costs that depends on physical parameters, such as the position of the robot, without including
those parameters in the POMDP.

The updated algorithm is presented in algorithm 5.2. The agent compares the expected value
of the locally optimal action π` corresponding to the current subset of variables plus the expected
value of the Idle action for all other subsets of variables. This modification does still not provide

Data: sub-policies π` and associated value functions Vπ` , current belief state Bi,t
Result: action to execute αopt

1 Vmax = −Infinity;
2 αopt = null;
3 expectedV alue = 0 ;
4 foreach B`,i,t composing Bi,t do
5 expectedV alue = Vπ`(B`,i,t);
6 foreach B`′,i,t, `′ 6= ` do
7 expectedV alue = expectedV alue+ VIdle(B`′,i,t);
8 end
9 Compute the cost of performing action π`(B`,i,t), noted Cπ`(B`,i,t) ;

10 expectedV alue = expectedV alue− Cπ`(B`,i,t) ;
11 if expectedV alue > Vmax then
12 Vmax = expectedV alue ;
13 αopt = π`(B`,i,t) ;
14 end
15 end
16 return αopt ;
Algorithm 5.2: Getting the action to execute from local optimal policies – version 1

optimal actions but enables to plan one step ahead. When several actions have the same value,
algorithm 5.2 will always return the first one. This could affect the behavior of the system. It
would so be preferable to chose randomly an action among those with the highest value. To do
so, algorithm 5.2 should be modified. Modifications are presented in algorithm 5.3

5.5 Online belief update: forgetting information if it is too old

When exploring a dynamic environment, agents’ beliefs can be quickly contradicted by changes
in the values of the features they have to explore. Therefore belief revision is key to maintaining
a correct knowledge about the world. Agents need to check the values of the features repeatedly
even if they don’t receive any information that contradict their beliefs. To do so, they need
to gradually forget what they learned and take the right action to verify the features. To
our knowledge, there is currently no work investigating this kind of forgetting mechanism in
POMDPs.

In this section we describe a transformation which is applied online, after the usual belief
update step and which aims at bringing the probability distributions in the agent’s belief state
close to the uniform distribution. We call this operation smoothing. To smooth an agent’s belief

103

Chapter 5. The MAPING Model

Data: sub-policies π` and associated value functions Vπ` , current belief state Bi,t
Result: action to execute αopt

1 Vmax = −Infinity;
2 αopt = null;
3 expectedV alue = 0 ;
4 listOfBestActions = {};
5 foreach B`,i,t composing Bi,t do
6 expectedV alue = Vπ`(B`,i,t);
7 foreach B`′,i,t, `′ 6= ` do
8 expectedV alue = expectedV alue+ VIdle(B`′,i,t);
9 end

10 Compute the cost of performing action π`(B`,i,t), noted Cπ`(B`,i,t) ;
11 expectedV alue = expectedV alue− Cπ`(B`,i,t) ;
12 if expectedV alue > Vmax then
13 empty(listOfBestActions) ;
14 listOfBestActions = {π`(B`,i,t)} ;
15 Vmax = expectedV alue ;
16 end
17 if expectedV alue == Vmax then
18 listOfBestActions = listOfBestActions ∪ {π`(B`,i,t)} ;
19 end
20 end
21 αopt = chooseRandomFrom(listOfBestActions) ;
22 return αopt ;
Algorithm 5.3: Getting the action to execute from local optimal policies – version 2

104

5.5. Online belief update: forgetting information if it is too old

state, we need to apply a transformation f to all the probabilities of the probability distributions
in the belief state.

Definition 5.5 (Smoothing function). A function f : [0, 1] → [0, 1] is called a smoothing
function for a variable Xk with domain DOM(Xk) if it satisfies the following constraints:

f(bj,ki,t (xp)) ≥ 0, ∀xp ∈ DOM(Xk) (5.9)∑
xp∈DOM(Xk)

f(bj,ki,t (xp)) = 1 (5.10)

f(
1

nk
) =

1

nk
(5.11)∣∣∣∣f(bj,ki,t (xp))−

1

nk

∣∣∣∣ ≤ ∣∣∣∣bj,ki,t (xp)−
1

nk

∣∣∣∣ , ∀xp ∈ DOM(Xk) (5.12)

(bj,ki,t (xp)−
1

nk
)(f(bj,ki,t (xp))−

1

nk
) ≥ 0, ∀xp ∈ DOM(Xk) (5.13)

where nk denotes |DOM(Xk)| and bj,ki,t (xp) is the probability that variable Xk takes the
value xp in the agent’s belief state.

Constraints 5.9 and 5.10 define the fact that the result of the transformation must be a
probability distribution, which means each term is positive and the sum of all terms equals 1.

Constraints 5.11 and 5.12 represent the fact that we want to smooth the probability distri-

bution until a fixed point, which is the uniform distribution with each probability equals
1

nk
.

Those two constraints describe a contraction mapping admitting
1

nk
as a fixed point.

Finally, Constraint 5.13 formalizes that the transformation must keep the shape of the beliefs,

that is to say that if a probability is greater than
1

nk
, the result of the transformation should

still be greater than or equal to
1

nk
.

The choice of the shape of the smoothing function (linear, logarithmic, etc) depends on the
problem considered and the type of belief update one wants to implement. In most cases however,
beliefs should be revised linearly at each time step. Except in some very specific applications,
we believe that there is no reason for the agent to forget quickly something it just learned and
then to slow down, or on the contrary to keep beliefs almost unchanged at the beginning and
then to suddenly forget about them. Therefore, we think that in most of the applications a
linear function should be the most simple and efficient smoothing function to implement. That’s
why we will focus on this type of function in the remainder of the paper. The method to find
a smoothing function based on another function shape remains similar to the one presented in
this section.

Theorem 5.1. Let Xk be a random variables of the POMDP and nk = |DOM(Xk)| the
number of possible values for Xk. Let Pk be the set of all the possible probability distribu-
tions over Xk. Let (fXk

)Xk∈X be an indexed family of linear functions. Then each fXk
is a

105

Chapter 5. The MAPING Model

smoothing function if and only if ∃ak ∈ [0, 1] such that:

fXk
: Pk → Pk

p 7→ ak × p+
1− ak
nk

Proof. Let us consider a linear function defined by fXk
(p) = a×p+b. Let us note pi = p(Xk = xi).

The constraints system can be written :

a pi + b ≥ 0, ∀p ∈ Pk,∀xi ∈ DOM(Xk) (5.14)∑
xi∈DOM(Xk)

(
a pi + b

)
= 1, ∀p ∈ Pk (5.15)

a
1

nk
+ b =

1

nk
(5.16)∣∣∣∣a pi + b− 1

nk

∣∣∣∣ ≤ ∣∣∣∣pi − 1

nk

∣∣∣∣ , ∀p ∈ Pk,∀xi ∈ DOM(Xk) (5.17)(
a pi + b− 1

nk

)(
pi − 1

nk

)
≥ 0,∀p ∈ Pk, ∀xi ∈ DOM(Xk) (5.18)

Constraint 5.16 enables the derivation b =
1− a
nk

. Therefore we can replace it in the other

constraints.
Constraints 5.15 becomes ∑

xi∈DOM(Xk)

(
a pi +

1− a
nk

)
= 1,∀p ∈ Pk

⇔
∑

xi∈DOM(Xk)

(
a pi
)

+ 1− a = 1,∀p ∈ Pk

⇔ a

[∑
xi∈DOM(Xk)

(
pi
)
− 1

]
+ 1 = 1, ∀p ∈ Pk

p being a probability distribution,
∑

xi∈DOM(Xk)

(
pi
)

= 1. Therefore this constraint is true
whatever the value of a.
Constraint 5.17 becomes∣∣∣∣a pi +

1− a
nk
− 1

nk

∣∣∣∣ ≤ ∣∣∣∣pi − 1

nk

∣∣∣∣ ,∀p ∈ Pk, ∀xi ∈ DOM(Xk)

⇔
∣∣∣∣a(pi − 1

nk

)∣∣∣∣ ≤ ∣∣∣∣pi − 1

nk

∣∣∣∣ , ∀p ∈ Pk,∀xi ∈ DOM(Xk)

⇔ |a|
∣∣∣∣pi − 1

nk

∣∣∣∣ ≤ ∣∣∣∣pi − 1

nk

∣∣∣∣ , ∀p ∈ Pk,∀xi ∈ DOM(Xk)

⇔ |a| ≤ 1∀p ∈ Pk,∀xi ∈ DOM(Xk)

Constraint 5.18 becomes(
a pi +

1− a
nk
− 1

nk

) (
pi − 1

nk

)
≥ 0, ∀p ∈ Pk,∀xi ∈ DOM(Xk)

⇔ a

(
pi − 1

nk

) (
pi − 1

nk

)
≥ 0,∀p ∈ Pk, ∀xi ∈ DOM(Xk)

⇔ a

(
pi − 1

nk

)2

≥ 0, ∀p ∈ Pk,∀xi ∈ DOM(Xk)

⇔ a ≥ 0∀p ∈ Pk,∀xi ∈ DOM(Xk)

106

5.6. The MAPING framework for heterogeneous agents

Therefore we obtain a ∈ [0, 1].

Constraint 5.14 becomes a pi +
1− a
nk

≥ 0. Knowing that a ∈ [0, 1], then
1− a
nk

≥ 0. Since pi is

a probability, pi ≥ 0. We conclude that Constraint is true for a ∈ [0, 1].
We can conclude that any fXk

respecting the previous constraints is written : fXk
(p) = a× p−

1− a
nk

, a ∈ [0, 1]

In the MAPING framework, when an agent receives a new observation, it first updates its
belief states as usual using a Bayesian update. Second, it applies the smoothing function on
all the elements of the probability distributions composing its belief state, depending on the
transition function. Indeed, it seems reasonable that the beliefs concerning variables are likely
to change are smoothed more frequently than beliefs concerning variables that are known to be
rather stable. Therefore each variable has a probability to be smoothed equals to its probability
of change. The complete belief update step is described in algorithm 5.4, where TXk

(xi,t, xj,t+1)
is the probability that the variable Xk has value xi at decision step t and value xj at decision
step t+ 1.

Data: agent i’s beliefs Bi,t, observation o, set of smoothing functions {fXk
∀Xk ∈ E}

Result: agent i’s beliefs Bi,t+1

1 foreach Xk ∈ E do
2 Bki,t+1 =

〈
update(bj,ki,t , o)

〉
j∈AG

;

3 probabilityOfChange =
∑

xi,xj∈DOM(Xk),xi 6=xj
TXk

(xi,t, xj,t+1) ;

4 randomNumber = chooseRandomNumber() ;
5 if randomNumber < probabilityOfChange then
6 Bki,t+1 =

〈
fXk

(bj,ki,t+1)
〉
j∈AG

;

7 end
8 end

Algorithm 5.4: Belief update step with smoothing

Bi,t+1 =
〈
fXk

(update(bj,ki,t , o))
〉
j∈AG,Xk∈E

where update(bj,ki,t , o) is the result of the updating process of the belief over the variable Xk with
observation o and fXk

is the smoothing function.

5.6 The MAPING framework for heterogeneous agents

In this thesis, our purpose is to combine mobile agents with different capabilities, called hetero-
geneous agents, to perform an efficient exploration, as we did in the running example with the
three agent types. This way, agents can complete each others and fuse their results to obtain
more complete information. In the example, if the color-detection agent detects a fire color in
a room and the temperature-detection agent detects a high temperature in the same room, the
information provided by both agents is fused to increase the belief that this room is on fire. This
could not be possible only color-detection agents or only temperature-detection agents. In the
first case, a picture of a fire could be responsible for the fire color, in the second the presence of

107

Chapter 5. The MAPING Model

a human or a heater could be responsible for the high temperature. By combining agents with
different sensing capabilities, we are able to increase the amount of information we get from the
environment. This is the basis of data fusion.

For simplicity reason, we developed MAPING and performed the first experiments with
homogeneous agents. With homogeneous agents, all the agents share the same observation
function. The update after receiving an observation, presented in section 5.5, is easy since
the agent can use its own observation function to update its beliefs. However, in the case of
heterogeneous agents, each agent has its own observation function, depending on its capabilities.
The agent which receives the observation should therefore know the observation function of the
emitter to be able to update correctly its beliefs. Though it is not desirable that the agent
sends its observation function with the observation since it would increase needed dramatically
the size of the messages and so the communication resources. During the thesis, we didn’t
manage to find a good theoretical solution to this problem. We solved it practically by giving
all the observations functions to all agents at the system initialization. This enables to apply
MAPING to heterogeneous agents. Nevertheless the problem of updating the agents’ beliefs after
a communication with heterogeneous agents remains open.

108

Chapter 6

Conclusion of part II

Agents working as a group with a common goal needs to cooperate, to coordinate, and to ex-
change information about what they find and what they know. When the communication is
limited, agents need to select the information to send in order to limit the exchange to the min-
imum required to complete their mission. The purpose of this part was to present a complete
framework enabling a multiagent system to perform event exploration in a completely decen-
tralized way while limiting its communication. We first presented in Chapter 4 a degree of
relevance which quantifies the relevance of an observation for a given agent. This relevance is
assessed regarding the beliefs the agent has about the environment. If the observation is correct
and can improve the agent’s beliefs by giving new information or by rendering it more precise,
then the observation is considered relevant. To our knowledge, this is the first piece of work
in the literature suggesting such a degree. Previous works presented in Chapter 2 investigated
the agent-based relevance problem. Most of the studies explore the properties of agent-based
relevance, Floridi’s work especially [Floridi, 2008]. Roussel and Cholvy [Roussel and Cholvy,
2009] suggested a definition of relevance for BDI architecture. Their work lays the foundations
for an agent-based theory of relevance, but is limited to epistemic logic. In addition, it does not
make it possible to compare the relevance of two observations for a given agent, what our degree
of relevance does.

Based on this degree of relevance, we presented in chapter 5 a offline-online framework named
MAPING (Multi-Agent Planning for INformation Gathering) that performs event exploration
in a complete decentralized way. This framework includes a decision-theoretic model, based on
POMDPs, in which each agent has beliefs about the environment but also about other agents’
beliefs. Using those beliefs, each agent is able to assess the relevance of an observation for another
agent. In MAPING , the agents are not rewarded when they reach a specific state but when
they gather and exchange relevant observations. The reward function not being convex has been
considered as a problem, casting doubt on our degree of relevance. Indeed, in [Araya-Lopez et al.,
2010], Araya-Lopez et al. states that convexity is a natural property for uncertainty measures
since the purpose is to assign higher rewards to beliefs that give higher probabilities of being in
a certain state. However our degree of relevance does not contain only uncertainty measures.
Indeed, the main task of our agent is to collect observations that give information about the
system to reach quickly a satisfactory belief state and send observations to other agents - which
will render their belief state even more precise. Therefore instead of being only interested in
reaching a very precise belief state, we are more interested in collecting informative observations.
This is the purpose of the degree of soundness soundi,t(o), which is not proved to be convex or
concave.

109

Chapter 6. Conclusion of part II

The idea of representing other agents’ knowledge in a decision process has also been used
in [Gmytrasiewicz and Doshi, 2005] by Gmytrasiewicz and Doshi with the Interactive-POMDP
(I-POMDP). The I-POMDP extends the classic POMDP framework by including new beliefs
about other agents, such as their state or policy. The I-POMDP model is more expressive than
MAPING since it includes more information about other agents and can deal with cooperative
and non-cooperative settings. However, as classical POMDPs, its reward function is based on
the system states and the mechanisms used seem hard to adapt to belief states based reward
function. In addition, its expressiveness renders it complex to manipulate and to solve. Since
the event exploration problem is more restrictive - fully cooperative agents, epistemic actions,
etc. - it seemed more interesting to us to consider a less expressive model but simpler to use in
real type applications.

To overcome the scalability problem of solving this POMDP of MAPING , we suggested a
resolution technique based on variable and observation independence. The POMDP is split into
a set of smaller sub-POMDP which are solved offline independently. Then, during execution, the
agent compare the value functions of the sub-POMDPs to choose the next action to perform. This
technique does not provide optimal policies, but the results presented in the next part tends to
show that the policies are satisfactory. The online part of the framework also includes a smoothing
module, which is applied after the beliefs update step. This module aims at smoothing gradually
the beliefs of the agent. This is motivated by the fact that we consider dynamic environments
and that the probability of a change - and so of previous beliefs becoming incorrect - increases
among time.

Part III present experimental protocol and results to validate the MAPING model.

110

Part III

Experiments

111

Chapter 7

Protocol description

Contents
7.1 Scenario description . 114
7.2 Environments description . 114
7.3 System modeling and implementation parameters 117
7.4 Evaluation criteria . 122

In this chapter, we describe the scenario and the environments used for the evaluation, the
way we implemented the model and the measures we used to evaluate our system. We were very
careful to choose environments that reflects real life applications and real life problems. Four
environments are considered: three to present different configurations and problems that can
occur in real-like scenarios, and one on a bigger environment to evaluate the scalability of the
model.

113

Chapter 7. Protocol description

7.1 Scenario description

The scenario we used for evaluation is an instantiation of the scenario described in the preamble.
We considered indoor and outdoor locations, divided in n different areas. For each area, two
events are explored: the area can be empty or not, and the area can be on fire or not. The system
is made up of robots from three different types: 1. a face-detection type, equipped with a camera
and able to detect faces 2. a color-detection type, equipped with a camera and able to detect
3. a temperature-detection type, equipped with a thermocamera and able to detect hotspots.
The face-detection and the temperature-detection robots can obtain information about the event
empty. The color-detection and the temperature-detection robots can obtain information about
the event on fire.

First we evaluate our model with a static scenario: the events, in each room, are assigned
at the beginning and doesn’t change in time. This is done to evaluate the ability of the system
to actually explore an environment and build correct beliefs about it. Second we evaluate our
model with a dynamic scenario: the events, in each room, are assigned at the beginning but may
change during the simulation according to the transition function described in Section 7.3.

7.2 Environments description

We consider four different environments reflecting real cases and problems that may arise in such
environments:

• a house environment

• a one-way transition environment

• an outdoor environment

• an Élysée Palace environment.

TThe home environment uses the map of a one-storey house. The maps of those two environments
are presented on Figures 7.1. Those environments don’t present any specific difficulty as all
openings between rooms can be used in both directions and moving from a room to another
adjacent one presents no specific cost. The one-way transition environment presents the case
when some transitions between areas can only be done in one-way. This can be the case for
instance with firedoors that can be used only to exit a room, or with some kind of doors that
the robot can only cross in one way for technical reasons (for instance if the robot may push the
door but not pull it). The map of this environment is presented on Figure 7.2a. The outdoor
environment represents a case where the transition between different areas is costly due to a hill,
a muddy ground, etc. We based our map on the topographic map of a mountain location at
the border between France and Switzerland and the map is presented on figure 7.2b. In these
scenarios we considered that all robots have the same difficulties to move through one-way doors
or across costly grounds. It is nevertheless perfectly possible to adapt the costs for each robot
according to its capacities. The four environments described previously are divided into 10 areas.
Though they are inspired from real applications, they are small. The Élysée Palace environment
is used to demonstrate the scalability of our model on medium-size environments. Figure 7.3
presents the map of the first floor of the Élysée Palace and figure 7.3 presents the division we
made in 28 areas. For simplicity reasons, we considered only one transition between two rooms,
even if the map shows that several openings are present. We also considered no specific costs for
transitions despite the stairs.

114

7.2. Environments description

0 1 2 3

4

5
6 7

8

9

Figure 7.1: The house environment

0
1 2

3

4

5 6

7 8
9

(a) The one-way transitions environment

0
1

2

3

4

5
6

7
8

9

(b) The outdoor environment

Figure 7.2: The costly environments

115

Chapter 7. Protocol description

0
1 2 3

4

56

7
8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3 2
4

2
5

2
6

2
7

F
ig
ur
e
7.
3:

T
he

É
ly
sé
e
P
al
ac
e
en
vi
ro
nm

en
t

116

7.3. System modeling and implementation parameters

7.3 System modeling and implementation parameters

Model of the POMDP

The topology of the environment is represented by a directed weighted graph, in which the nodes
represent the areas. A node A is connected to a node B if the robot can move from the area A to
the area B. The weight associated to the edges represents the cost of moving from the area A to
the area B. Figures 7.4, 7.5 and 7.6 present the directed graphs for the four environments. For
the sake of readability, the graph of the Élysée Palace environment has been simplified: all the
edges are bi-directional and their weight is 1. Using these graphs, the cost of an Explore-type

0 1 2 3

4

58

9

6 7

1

1

1

1

1

1

1

1

1

Figure 7.4: Weighted directed graph of the house environment

action is computed thanks a classic A∗ algorithm between the current position of the robot and
the area to explore. The cost of a Communicate-type action is constant. We experimented with
two communication costs: a cost of 2 and a cost of 3, which means that communicating is as
expensive as moving among a path with a cost of 2 (respectively 3). The robots’ starting points
are defined randomly when launching the system.

Since we are considering three types of robots (face-detection, color-detection and temperature-
detection) that has different sensing capabilities, we need to model and to solve three different
POMDPs. Those POMDPs will share the same set of states, the same set of actions, and the
same transition and reward functions. However, they differ by their set of observations and their
observation function, which depends on the capabilities of the robot considered. The variables
of all POMDP for the small environments are:

E = {RoomEmptyk, RoomOnFirek, ∀k ∈ [1, n]}

117

Chapter 7. Protocol description

0 1 2 3

4

5 6

7 8

9

1

1 1 1

1 1

1

1
1

1

1

1

(a) One way environment

0 1

3

2

4

5 6

7 8

9

2

1 2 1

3 1

2

1

3

1

2

2

2

1 1

(b) Outdoor environment

Figure 7.5: The weighted directed graphs of the costly environments

0 1

2

4 5

6

7 8 9

10

3

11

17

13

20 21

18

12

19

14 15

16 23

22

24

25

26

27

Figure 7.6: Weighted directed graph of the Élysée Palace environment

118

7.3. System modeling and implementation parameters

n being the number of rooms (n = 10 for the small environments and n = 28 for the Élysée
Palace environment). Each variable has two possible values: true or false.

Each robot can receive two observations which depend on the robot’s type. The face-detection
robots can receive the observations

Oface = {FaceDetected, noFaceDetected}

The color-detection robots can receive the observations

Ocolor = {FireColorDetected,NoFireColorDetected}

The temperature-detection robots can receive the observations

Otemperature = {HotSpotDetected,NoHotSpotDetected}

Since our main purpose is neither the localization nor the sensor data processing, we assumed
that the robots’ position are exactly known, and we implemented a noisy simulator that sends
directly the high-level observations described previously, depending on the robot’s position and
type. We considered that the simulator will send the correct observation 98% of the time.

We considered that the transition for each variable is independent from other variables, that
is to say P (RoomEmptyRk,t+1 = true|st) = P (RoomEmptyRk,t+1 = true|RoomEmptyRk,t), and
similarly P (RoomOnFireRk,t+1 = true|st) = P (RoomOnFireRk,t+1 = true|RoomOnFireRk,t).
Therefore the transition function is based on the following probabilities:

P (RoomEmptyRk,t+1 = true|RoomEmptyRk,t = true) = 0.9

P (RoomEmptyRk,t+1 = false|RoomEmptyRk,t = true) = 0.1

P (RoomEmptyRk,t+1 = true|RoomEmptyRk,t = false) = 0.7

P (RoomEmptyRk,t+1 = false|RoomEmptyRk,t = false) = 0.3

P (RoomOnFireRk,t+1 = true|RoomOnFireRk,t = true) = 0.99

P (RoomOnFireRk,t+1 = false|RoomOnFireRk,t = true) = 0.01

P (RoomOnFireRk,t+1 = true|RoomOnFireRk,t = false) = 0.1

P (RoomOnFireRk,t+1 = false|RoomOnFireRk,t = false) = 0.9

Then the transition function is computed using the joint instantiation of the variables. For
instance, if

st = {RoomEmpty1 = true,RoomOnFire1 = false

RoomEmpty2 = true,RoomOnFire2 = false

RoomEmpty3 = true,RoomOnFire3 = false

RoomEmpty4 = false,RoomOnFire4 = false

RoomEmpty5 = true,RoomOnFire5 = false

RoomEmpty6 = false,RoomOnFire6 = false

RoomEmpty7 = true,RoomOnFire7 = false}

119

Chapter 7. Protocol description

and
st+1 = {RoomEmpty1 = true,RoomOnFire1 = false

RoomEmpty2 = false,RoomOnFire2 = false

RoomEmpty3 = true,RoomOnFire3 = false

RoomEmpty4 = true,RoomOnFire4 = false

RoomEmpty5 = true,RoomOnFire5 = false

RoomEmpty6 = false,RoomOnFire6 = false

RoomEmpty7 = true,RoomOnFire7 = false}

we have

T (st, st+1) = 0.9 ∗ 0.1 ∗ 0.9 ∗ 0.7 ∗ 0.9 ∗ 0.3 ∗ (7 ∗ 0.9) ' 0.096

To determine the value of δ, we know that δ = 1− ProbabilityOfChange. But

ProbabilityOfChange = 1−
∑
si∈S

P (si,t+1|si,t)× P (si,t)

where si,t is an instantiation of all the variables Xk ∈ E and S is the set of all possible instanti-
ations of the variables Xk ∈ E . Therefore,

δ =
∑
si∈S

P (si,t+1|si,t)× P (si,t)

However, since P (si,t) depends on P (si,t−1), and so on until s0, the value of δ would change
at each time step and so become a variable of the POMDP, which is not desirable. To deal with
this issue, we used for δ the average probability that a state remains the same:

δ =

∑
si∈S P (si,t+1|si,t)

|S|

By considering the transition function described previously, delta ' 0.602.
The observation function is dependent on the robot’s type. Robot face-detection robots will

have an observation function shaped as follows:

Ω(FaceDetected,RoomEmptyRk
= true,Explore(RoomEmptyRk

)) = 0.2

Ω(FaceDetected,RoomEmptyRk
= false, Explore(RoomEmptyRk

) = 0.8

Ω(NoFaceDetected,RoomEmptyRk
= true,Explore(RoomEmptyRk

) = 0.8

Ω(NoFaceDetected,RoomEmptyRk
= false, Explore(RoomEmptyRk

)) = 0.2

Color-detection robots will have an observation function shaped as follows:

Ω(FireColorDetected,RoomOnFireRk
= true,Explore(RoomOnFireRk

)) = 0.9

Ω(FireColorDetected,RoomOnFireRk = false, Explore(RoomOnFireRk
)) = 0.1

Ω(NoFireColorDetected,RoomOnFireRk
= true,Explore(RoomOnFireRk

)) = 0.1

Ω(NoFireColorDetected,RoomOnFireRk
= false, Explore(RoomOnFireRk

)) = 0.9

120

7.3. System modeling and implementation parameters

Temperature-detection robots will have an observation function shaped as follows:

Ω(HotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= true,

Explore(RoomEmptyRk
)) = 0.2

Ω(HotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= false,

Explore(RoomEmptyRk
)) = 0.05

Ω(HotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= true,

Explore(RoomEmptyRk
)) = 0.6

Ω(HotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= false,

Explore(RoomEmptyRk
)) = 0.15

Ω(HotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= true,

Explore(RoomOnFireRk
)) = 0.25

Ω(HotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= false,

Explore(RoomOnFireRk
)) = 0.05

Ω(HotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= true,

Explore(RoomOnFireRk
)) = 0.6

Ω(HotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= false,

Explore(RoomOnFireRk
)) = 0.1

Ω(NoHotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= true,

Explore(RoomEmptyRk
)) = 0.25

Ω(NoHotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= false,

Explore(RoomEmptyRk
)) = 0.6

Ω(NoHotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= true,

Explore(RoomEmptyRk
)) = 0.05

Ω(NoHotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= false,

Explore(RoomEmptyRk
)) = 0.1

Ω(NoHotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= true,

Explore(RoomOnFireRk
)) = 0.2

Ω(NoHotSpotDetected,RoomEmpty = true ∩RoomOnFireRk
= false,

Explore(RoomOnFireRk
)) = 0.6

Ω(NoHotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= true,

Explore(RoomOnFireRk
)) = 0.05

Ω(NoHotSpotDetected,RoomEmpty = false ∩RoomOnFireRk
= false,

Explore(RoomOnFireRk
)) = 0.15

The discretization of the belief state is the one described in Section 5.4. We discretized the
probability distributions by making distributions with 11 elements:

bki,t ∈ {(0.1, 0.9); (0.2, 0.8); (0.3, 0.7); (0.4, 0.6); (0.5, 0.5); (0.6, 0.4); (0.7, 0.3); (0.8, 0.2); (0.9, 0.1)}

121

Chapter 7. Protocol description

Separation into sub-POMDPs

As explained in the previous section, we consider transition independence: P (RoomEmptyRk,t+1 =
true|st) = P (RoomEmptyRk,t+1 = true|RoomEmptyRk,t) and P (RoomOnFireRk,t+1 = true|st) =
P (RoomOnFireRk,t+1 = true|RoomOnFireRk,t). We can build n independent sets of variables,
n being the number of areas.

X` = {RoomEmptyR`
, RoomOnFireR`

}, ` ∈ [0, n]

The observation set stays unchanged and includes 2 elements depending on the type of
the robot. Based on those sets of variables and observations, we can divide each of the three
POMDPs into n sub-POMDPs as described in Section 5.4 and solve them independently. Since
the Explore actions set is build upon the variables of the POMDP, it is also possible to consider
only a reduced set of actions:

A` = {Explore(X`)∀` ∈ [0, n]} ∪ {Communicate(o, i)∀o ∈ O, ∀i ∈ AG}

On top of that, all sub-POMDP for an agent are similar: their variables represent the two possible
states of a given room. It is so possible to solve only one sub-POMDP and combine n times this
sub-POMDP to obtain the global policy. Therefore, we only have 3 sub-POMDP to solve. The
solving has been made using a simple Value Iteration algorithm.

7.4 Evaluation criteria

In this section we describe the criteria we used to evaluate the efficiency of our system. The main
purpose of the system is to reach quickly an correct and accurate belief state and to maintain it
among time.

To measure the correctness and accuracy of the agents’ belief states, we considered a perfect
belief state, which is the one associating 1 to the true state and 0 to the others, and we recorded
the evolution of the Hellinger distance between the agents’ belief states and this perfect belief
state. Though it is included in the Hellinger distance, we also recorded a score for each agent
related to the number of incorrect and correct beliefs. An agent is considering having incorrect
belief if it’s belief concerning a variable is inverted compared to the perfect belief state. For
instance, if the perfect belief state for a variable Xk is given by (0, 1) and the agent has the belief
state (0.7, 0.3) for the same variable, it is considered as being wrong. To compute this score,
we compare the belief of the agent for each variable. Each correct belief is worth 1 point, each
incorrect belief is worth −1 point and each undefined belief (which means a belief (0.5, 0.5)) is
worth 0 point.

The second purpose of our system is to perform efficient event exploration while reducing the
number of messages sent. Therefore we tracked the number of message send for each scenario
by each agent. Since the communication makes it possible for the agents to approximate the
beliefs of other agents, we will also evaluate the quality of this approximation by computing
the Hellinger distance between the real belief of an agent and the approximation another agents
made of this belief. In parallel, we recorded the path followed by the agents and the average
distance traveled by the agent at each decision step. This is done to ensure that the agents are
following reasonable paths to explore their environment and that they are not jumping between
rooms far from each others.

122

Chapter 8

Low communication cost

Contents
8.1 Simple configuration: the house environment 125

8.1.1 Evaluating the exploration efficiency 125
8.1.2 Evaluating the communication . 129
8.1.3 Evaluating the homogeneity of the beliefs 130
8.1.4 Evaluating the paths . 130
8.1.5 Analysis . 132

8.2 Constraints in the navigation: the one-way environment 132
8.2.1 Evaluating the exploration efficiency 132
8.2.2 Evaluating the communication . 134
8.2.3 Evaluating the homogeneity of the beliefs 136
8.2.4 Evaluating the paths . 136
8.2.5 Analysis . 138

8.3 Costly transitions: the outdoor environment 139
8.3.1 Evaluating the exploration efficiency 139
8.3.2 Evaluating the communication . 139
8.3.3 Evaluating the paths . 141
8.3.4 Analysis . 144

8.4 Scalability: the Élysée Palace environment 145
8.4.1 Evaluating the exploration efficiency 145
8.4.2 Evaluating the communication . 148
8.4.3 Evaluating the homogeneity of the beliefs 149
8.4.4 Evaluating the paths . 149
8.4.5 Analysis . 149

8.5 Global analysis and conclusion . 152
8.5.1 Analysis of the exploration efficiency 152
8.5.2 Analysis of the communication policy 152
8.5.3 Analysis of the path traveled . 152
8.5.4 Conclusion . 152

123

Chapter 8. Low communication cost

In this chapter we present the results of the experiments developed with a low communication
cost. We will expose the results for each environment. We so evaluate the efficiency of the
exploration by assessing that the system is able to maintain a correct and accurate belief state.
Then we evaluate the communication strategy by tracking the number of communications sent
an the quality of the belief approximation of each agent. Finally, we evaluate the quality of the
paths travelled by the agents and the average cost they pay for each explore action. We will
expose in details the results in the house environment for both static and dynamic cases. For the
other environments, we will only expose the dynamic case and describe briefly the graphics when
there is nothing special to mention and when the behavior is similar to those observed in the
house environment. We will stress out the points of difference and interest. As a conclusion we
will analyze the differences between the environments and conclude about the global efficiency
of MAPING under medium communication constraints.

124

8.1. Simple configuration: the house environment

8.1 Simple configuration: the house environment

The house environment is a classic indoor configuration corresponding to real-type application.
It is used to evaluate the efficiency of the system without special constraints.

8.1.1 Evaluating the exploration efficiency

The system is considered efficient in exploring the environment if it manages to maintain a
correct and accurate belief states among time, despite the environment changes. To measure
the correctness of the belief state, we tracked the number of correct beliefs and incorrect beliefs
among time. A belief is considered correct if it matches the shape of the perfect belief.

Example 8.1 If we consider only one room of the environment, which is empty and not on
fire, the perfect belief state represented the environment’s state is

B∗,E =

(
(1, 0)
(0, 1)

)
%RoomEmpty = true
%RoomOnFire = false

If we consider the agent a which has the following belief state:

BEa =

(
(0.2, 0.8)
(0.3, 0.7)

)
Then its belief concerning the variable RoomEmpty is incorrect and its belief concerning
the variable RoomOnFire is correct.

Figure 8.1 presents the results of this tracking in the static and the dynamic case. The
blue plain curve shows evolution the average number of correct beliefs. Since the environment
contains 10 rooms and 20 variables, the maximum number of correct or incorrect states is 20.
The yellow dotted curve shows the number of variables that changed value at this decision step.
The probability of changes in the environment follows the transition function described in section
7.3 and is implemented with algorithm 8.1 Using this algorithm, the bigger the environment is,

1 foreach decision step do
2 foreach Xk ∈ E do
3 select a random number ;
4 if Xk,t = true & randomNumber < P (Xk,t+1 = false|Xk,t = true) then
5 Xk,t+1 = false ;
6 end
7 if Xk,t = false & randomNumber < P (Xk,t+1 = true|Xk,t = false) then
8 Xk,t+1 = true ;
9 end

10 end
11 end

Algorithm 8.1: Performing the changes in the environments

the most probable is the change. That is why in our environments, at almost every time step,
one or more variables change. The red dots shows the number of incorrect observations sent
to all agents at each decision step. When an agent perform an explore-type action, it asks the

125

Chapter 8. Low communication cost

simulator for an observation corresponding to its type and its position. The simulator sends the
correct observation 98% of the time. We implemented this to model the margin of error of real
sensors and detection algorithms.

We can see in the static case from figure 8.1a that the maximum number of correct beliefs
is quickly reached (around 150 decision steps), which means that all agents in the system reach
quickly a correct belief state. We also notice that, as expected, the average number of correct
beliefs varies only when incorrect observations are sent by the simulator. However, the system
is able to correct itself quickly. In the dynamic case, the curve varies much more, as expected.
Indeed, each time the state of the environment changes all the correct beliefs become incorrect.
However the system manages to keep an average number of correct beliefs around 14, which
means that in average the agents are correct about 70% of the environment. We notice between
decision steps 300 and 350 a big decrease in the number of correct beliefs states. This is obviously
due to the 2 incorrect observations send at iteration 301 and associated to big changes. However
in less than 50 decision steps the system is able to reach again its average number of correct
beliefs.

Those results confirm that the system is able to keep a correct representation of the envi-
ronment, but doesn’t show the accuracy of this representation. Indeed, in this tracking beliefs
(0.6, 0.4) and (0.9, 0.1) are treated equally, though in reality they show a very different knowl-
edge. In the first case, the agent could be considered as "having an idea" about the current
state of the environment while in the second case the agent is pretty sure about the current state
of the environment. To evaluate the accuracy of the belief state, we tracked the evolution of
the Hellinger distance between the current belief state of the agents and the perfect belief state
representing the environment. Results are presented on figure 8.2.

In this experiment, we used as reference four levels of belief states. For each level, we
computed the Hellinger distance between this belief state and the perfect belief state and plotted
it to evaluate the accuracy of the agents’ belief state. The level 1 is the less precise belief state.
It corresponds to a belief state where all beliefs are (0.6, 0.4) or (0.4, 0.6). This is the agent
"having an idea" mentioned previously. In the level 2, all beliefs in the belief states are (0.7, 0.3)
or (0.3, 0.7). Though this belief is still not completely precise, it is more reliable than level 1
beliefs. In the level 3, all beliefs are (0.8, 0.2) or (0.2, 0.8). In this case we consider that the
belief state is rather precise and refers it as an acceptable precision. Finally, the level 4 is the
most precise and all the beliefs are (0.9, 0.1) or (0.1, 0.9). It is obvious that an agent will rarely
have a belief state in which all beliefs belong to a same level, but those levels give an indication
about the average knowledge of the agents.

We first notice from figure 8.2a that, in the static case, the Hellinger distance varies even if
no incorrect observation is sent. This behavior is counter-intuitive. Indeed, we would expect the
Hellinger distance to decrease as the agents confirm their beliefs about the environment. The
explanation to this variation is the smoothing step that has been implemented also for the static
cases. Indeed, for both static and dynamic cases we used the same transition model and the
same smoothing step. The idea behind was to consider that the system doesn’t know that the
environment is static and to observe its behavior in this situation. This situation may happen
is real application. Let us consider for instance that the inhabitants of a house decide to go on
vacation for several days. The environment is very likely to become static. It seems reasonable
not to re-program the system if this one is able to deal with this new situation using the same
model.

In the static case, the system manages to keep the belief states varying between level 2 and
level 4 beliefs most of the time, which is very satisfactory. In the dynamic case the performance
of the system are worse since the beliefs vary between level 1 and level 2 beliefs. We can clearly

126

8.1. Simple configuration: the house environment

(a) Static case

(b) Dynamic case

Figure 8.1: Average number of correct beliefs for the house environment

127

Chapter 8. Low communication cost

(a) Static case

(b) Dynamic case

Figure 8.2: Average Hellinger distance to the perfect belief state for the house environment

128

8.1. Simple configuration: the house environment

see that the quality of the beliefs decreases significantly after big changes (for instance around
decision steps 240) and big amount of incorrect observations (for instance around decision step
300). We are not completely satisfied by the behavior of the system in the dynamic case for
the house environment. Indeed, level 1 beliefs are discriminated beliefs (that is to say beliefs
different that (0.5, 0.5)) but not discriminated enough to be reliable.

8.1.2 Evaluating the communication

The second purpose of the system is to be able to perform this mission while limiting its number
of communications. In this section we evaluate the communication of the system. In MAPING ,
the role of the communication is to inform the other agents about received observations in order
to overcome sensors limitations and to reduce the uncertainty in the system. If the agent in the
system didn’t communicate, the color-detection robots would have very good information about
the RoomOnFire variables but would be completely ignorant about the RoomEmpty variable
(and the opposite for the face-detection robots). The temperature-detection would be able to
induce believes about both kind of variables but would be incapable of discriminating between
them.

To evaluate the communication in the system, we recorded the number of communications
performed by each agent and for each other agent. Results are presented on figure 8.3.

Figure 8.3: Number of communications per robot for the house environment

In the static case, the agents used the communication action 728 times, that is to say 243
times in average per agent. In the dynamic case, they used the communication action 685 times,
that is to say 228 time in average per agent. This number are summarized in table 8.1. It is
very surprising to see that the agents communicate more in the static case than in the dynamic
case. We would expect the agents to communicate less in the static case. Indeed, the agents
communicate to inform other agents that don’t have discriminated beliefs or when their beliefs are
incoherent with other agents’ beliefs. The second case can only happen if an incorrect observation

129

Chapter 8. Low communication cost

Static Dynamic
Total Average Total Average

House environment 728 243 685 228

Table 8.1: Total and average number of communication in the house environment in static and
dynamic cases

is received or when the simulator changed. Since there is no change in the static case, the agents
only have incoherent beliefs when they received an incorrect observation. It seems reasonable to
assume that agents would communicate less in the static case than in the dynamic case. However
in most of the environments, the difference between the amount of communications in the static
and dynamic cases is not big enough to be significant and confirms this scenario.

We also notice that, in the dynamic case, the color-detection agent communicates significantly
more than the two others This behavior has been encountered in all environments.

8.1.3 Evaluating the homogeneity of the beliefs

As mentioned in section 5.3.4, agents cannot know by definition if their belief states are correct
regarding the state of the system. However if all agents share the same shape of belief state,
it is more likely that they are correct. Since the system is fully decentralized, the agents don’t
know the exact belief state of other agents but have approximate representation of them that
they update when they send and receive observations. It is therefore important that these
representations are accurate so that the system can work properly. To measure the accuracy of
the approximation, we used once more the Hellinger distance. For each pair of agents < a1, a2 >
we computed the Hellinger distance between agent a1’s approximation of agent a2’s beliefs and
agent a2’s real beliefs and we tracked this measure among time. The results are presented in
figure 8.4. To evaluate the accuracy of the approximation, we used the same system of level as
in section 8.1.1. An approximation of level 4 is an approximation that differs by only 0.1 from
the real belief.

Example 8.2 If we consider an agent that has the following belief

bka2 =
(
(0.7, 0.3)

)
Then the belief

ba2,ka1 =
(
(0.8, 0.2)

)
is a level 4 approximation of bka2

Figure 8.4 shows that the approximation of others’ beliefs is very good. Indeed in both static
and dynamic cases, the approximation remains under a level 4 approximation. This means that
most of the approximations of the agents are equals to the real belief.

8.1.4 Evaluating the paths

The last criteria we want to evaluate is the path the agents use to explore the environment. A
really efficient exploration should be able to travel across the environment in an organized way
and no jump from a room to another room far away. Figure 8.5 presents the actions made by

130

8.1. Simple configuration: the house environment

(a) Static case

(b) Dynamic case

Figure 8.4: Average Hellinger distance to the real belief states for the house environment

131

Chapter 8. Low communication cost

each agent during the 15 first decisions steps and the room they were in. We added the graph
of the environment as reminder.

From a general point of view, the agents travel among the environment following a reasonable
path and don’t jump between distant rooms. This expectation is confirmed by the average cost
of the used path, that we recorded during the simulation. The color detection robot has an
average cost of 2.11 per exploration action, the face detection has an average cost of 2.13 and
the temperature detection has an average cost of 2.31.

8.1.5 Analysis

In this section we evaluated the performance of the system in the house environment. The
results show that the system is able to explore its environment and gather correct beliefs while
limiting the number of communications. However, the beliefs reached in the dynamic cases are
not accurate enough to be completely reliable. The very high number of communications in both
static and dynamic cases could be partially responsible for this lack of reliability. Indeed, since
the communication is cheap, the agents communicate each time they notice what they believe
is a change, without waiting for their beliefs to be more reliable. Therefore, changes are spread
very quickly, but incorrect observations are also spread quickly, which leads to a decrease in the
accuracy of the beliefs.

The approximations made by each agent about other agents’ beliefs are very accurate, which
gives some guarantee about the correctness of all the belief states and force the agents to explore
or communicate again when the accuracy decreases. The paths explored showed interesting
behaviors and strategies to cover the whole area. In the next sections, we present the same
evaluations for the other environments. We will briefly comment the parts that are similar to
what we observed in the house environment and stress out the differences.

8.2 Constraints in the navigation: the one-way environment

The one-way environment presents a particular topology, in which some transitions between
rooms can only be done in one way. This constrained environment can be encounter in building
with fire doors or with some doors that a robot can push but not pull. This constrained environ-
ment is expected to make the exploration more complex and is used to evaluate the adaptability
of MAPING .

8.2.1 Evaluating the exploration efficiency

Figure 8.8 presents the evolution of the number of correct states and figure 8.7 presents the
evolution of the Hellinger distance between the agents’ belief states and the perfect belief state
in the dynamic case.

The results obtained are better than those obtained in the house environment since number
of correct belief states in the dynanic case is around 75%, which is extremely satisfactory.

The variation of the Hellinger distance to the perfect belief state is also better than in the
house environment: in the dynamic case, beliefs vary between level 1 and level 3 and are level 2
in averadge, that is to say (0.7, 0.3) or (0.3, 0.7). Level 2 beliefs, though not the best, are reliable
enough to be considered satisfactory.

132

8.2. Constraints in the navigation: the one-way environment

0 1 2 3

4

58

9

6 7

1

1

1

1

1

1

1

1

1

7 7
explores room 7, roomOnFire

6

explores room 6, roomOnFire

explores room 1, roomOnFire

1

1 6

5

explores room 5, roomOnFire

9

9 9

99
communicates NoFireColorDetected in room 9
to temperature-detection

8

explores room 8, roomOnFire

8
explores room 8, roomOnFire

54

explores room 1, roomOnFire

explores room 6, roomOnFire

explores room 9 roomOnFire

communicates NoFireColorDetected in room 1
to temperature-detection

communicates NoFireColorDetected in room 6
to face-detection

communicates NoFireColorDetected in room 5
to temperature-detection

explores room 5, roomOnFire

explores room 4, roomOnFire

(a) Color detection

6 6
explores room 6, roomEmpty

2

explores room 2, roomEmpty

explores room 3, roomEmpty

3

communicates NoFaceDetected in room 3
to color-detection

3 3

33

3 2

6

explores room 6, roomEmpty

5

9 9
communicates NoFaceDetected in room 9
to temperature-detection

99

explores room 2, roomEmpty

communicates NoFaceDetected in room 5
to temperature-detection

communicates NoFaceDetected in room 2
to color-detection

communicates NoFaceDetected in room 6
to color-detection

communicates NoFaceDetected in room 3
to temperature-detection

explores room 3, roomEmpty

explores room 5, roomEmpty

explores room 9, roomEmpty

communicates NoFaceDetected in room 2
to color-detection

(b) Face detection

8 8
explores room 8; roomOnFire

5

explores room 5, roomOnFire

explores room 9, roomOnFire

9

explores room 6, roomOnFire

6
explores room 7, roomOnFire

7

1

explores room 1, roomOnFire

explores room 2, roomOnFire

2

2
explores room 6, roomOnFire

6

5

explores room 5, roomOnFire

4
explores room 4, roomOnFire

0

explores room 0, roomOnFire

0
explores room 0; roomOnFire

explores room 2, roomOnFire

6

explores room 8, roomEmpty

7
communicates NoHotSpotDetected in room 6
to face-detection

(c) Temperature detection

Figure 8.5: Actions performed and path traveled by the three robots during the 15 first iterations
in the house environment

133

Chapter 8. Low communication cost

Figure 8.6: Average number of correct beliefs for the one-way environment in the dynamic case

Static Dynamic
Total Average Total Average

House environment 728 243 685 228

One-way environment 582 194 664 221

Table 8.2: Total and average number of communication in different environments in static and
dynamic cases

8.2.2 Evaluating the communication

Figure 8.8 shows the number of communications sent for each pair emitter-receiver. In total,
the agents used a communicate action 582 times in the static case and 664 time in the dynamic
case. In average, each agent communicated 194 times in the static case and 221 in the dynamic
case. These numbers are summarized and compared to previous environments in table 8.2. The
agents communicated less in this environment than they did in the house environment. With
this lower communication, the results are better than in the house environment. This tends to
strengthen our hypothesis that too much communication is detrimental for the system. Once
again, the color-detection robots communicated much more than the other agents. It even spent
most of its decision steps to communicate.

134

8.2. Constraints in the navigation: the one-way environment

Figure 8.7: Average Hellinger distance to the perfect belief state for the one-way environment in
the dynamic case

Figure 8.8: Number of communications per robot for the one-way environment

135

Chapter 8. Low communication cost

8.2.3 Evaluating the homogeneity of the beliefs

Figure 8.9 presents the evolution of the approximations of agents about other agents’ beliefs.
Once more, the approximation is usually better than a level 4 approximation, which means that

Figure 8.9: Average Hellinger distance to the real belief states for the one-way environment in
the dynamic case

the agents approximations are mostly equals to the real beliefs.

8.2.4 Evaluating the paths

Figure 8.10 presents the actions performed and the path travels by the three robot during the
15 first iterations. In this environment, the color detection robot has an average cost of 2.29 per
exploration action, the face detection has an average cost of 1.88 and the temperature detection
has an average cost of 1.73. Once again, the paths chose by the agents are coherent. We can also
observe a behavior in this environments that repeats several time in the simulation: the agents
seem to get stuck for several decision steps in a given rooms and performs several times the
explore action in this room. This happens for instance in room 5 for the temperature-detection
robot. This also happen in other parts of the simulation and in other environments. We identified
two reasons to this behavior, that can happen together. The first reason is the possibility to
receive contradictory observations, due to a sensor failure or a change in the environment. It is
not rare that an agent explores two times the same zone to have a very accurate belief state. If
the agent receives two different observations from its exploration, it will explore again and again
until it reaches an accurate belief. The second reason is the smoothing function. Let us remind
how the smoothing step is performed: after each decision step, each variable has a probability
to be smoothed depending on the transition function. This is done to ensure that variables that

136

8.2. Constraints in the navigation: the one-way environment

0 1 2 3

4

5 6

7 8

9

1

1 1 1

1 1

1

1
1

1

1

1

2 2
explores room 2, roomOnFire

1

explores room 1, roomOnFire

1

1 2

39

8 7

55

5

communicates NoFireColorDetected in room 8
to face-detection

5

5

explores room 1, roomOnFire

explores room 9, roomOnFire

explores room 8, roomOnFire

explores room 7, roomOnFire

communicates NoFireColorDetected in room 9
to face-detection

communicates NoFireColorDetected in room 1
to temperature-detection

explores room 2, roomOnFire

explores room 3, roomOnFire

explores room 5, roomOnFire

communicates NoFireColorDetected in room 7
to temperature-detection

communicates NoFireColorDetected in room 5
to face-detection

communicates NoFireColorDetected in room 3
to face-detection

5

(a) Color detection

2 2
explores room 2, roomEmpty

1

explores room 1, roomEmpty

communicates NoFaceDetected in room 2
to color-detection

1

1 6

87

4 0

0

communicates NoFaceDetected in room 0
to temperature-detection

0

4 7
explores room 7 roomEmpty

86

explores room 7, roomEmpty

explores room 4, roomEmpty

explores room 0, roomEmpty

explores room 6 roomEmpty

communicates NoFaceDetected in room 1
to color-detection

explores room 6, roomEmpty

explores room 8, roomEmpty

explores room 0, roomEmpty

explores room 4, roomEmpty

explores room 8, roomEmpty

(b) Face detection

2 2
explore room 2, roomOnFire

6

explores room 6, roomOnFire

explores room 8, roomOnFire

8

explores room 7, roomOnFire

7
explores room 4, roomOnFire

4

0

explores room 0, roomOnFire

explores room 5, roomOnFire

5

5
explores room 5, roomeOnFire

5

5

explores room 5, roomOnFire

7
explores room 7, roomOnFire

8

explores room 8, roomEmpty

9

explores room 5, roomOnFire

6

explores room 6, roomEmpty

4
explores room 4, roomOnFire

explores room 9, roomOnFire

(c) Temperature detection

Figure 8.10: Actions performed and path traveled by the three robots during the 15 first iterations
in the one-way environment

137

Chapter 8. Low communication cost

may change often are smoothed more often than variables that are almost static. A consequence
of this is that a variable can be smoothed just after the agent explored this variable. In this
case, the agent’s belief precision will not be improved enough to be satisfactory and the agent
will explore again the area. Both reasons can happen in any room. However, the behavior is
more often observed at the beginning of the simulation. This is due to the cost of travelling in
another room. This is explained in example 8.3.

Example 8.3 The temperature-detection robot travels from room 0 to room 5 and explores
room 5. It receives the observation NoHotSpotDetected. Its belief about room 5 is now
satisfactory: (0.7, 0.3)(0.3, 0.7). However, it has already explored room 7 previously and
received an observation about room 1 from the color-detection robot. Its beliefs about those
rooms are so satisfactory and the next interesting room to explore would be room 3, which
involves a cost of 3. The decision process states that it is more interesting to confirm the
beliefs in room 5 by exploring again than paying the cost and going in one of the other
rooms. The agent received contradictory observations from the simulator and so explored
again until it reaches a reliable beliefs. Then it can afford to pay a cost for going in room 3.

8.2.5 Analysis

The results in this environment are more satisfactory than in the previous environments. However
the communication rate is still very high and the color-detection robot spent most of its time
to communicate instead of exploring. This behavior can damage the quality of the beliefs and
should be compared to those obtained with higher communication costs.

The analysis of the paths traveled shows that the agents correctly explore the environment
and checks their exploration when they receives observations that contradict their current beliefs.

138

8.3. Costly transitions: the outdoor environment

8.3 Costly transitions: the outdoor environment

The outdoor environment is based on real topographic maps from the Alpes, near the city of
Chatel. This environment has been designed to observe the behavior of the system in areas where
moving from a "room" (in this case we still use the denomination room even if those rooms are
only virtual) to another can be very costly to the robots, due for instance to difficult ground.

8.3.1 Evaluating the exploration efficiency

Figure 8.11 presents the evolution of the number of correct states and figure 8.12 presents the
evolution of the Hellinger distance between the agents’ belief states and the perfect belief state
in the outdoor environment.

Figure 8.11: Average number of correct beliefs for the outdoor environment in the dynamic case

The system manages to keep around 70% of correct beliefs and an accuracy varying between
level 1 and level 3 beliefs. We notice than the three times the beliefs were worse than level
1 beliefs (around decision steps 180, 320 and 390) correspond to three sequences of incorrect
observations. But each time the system managed to improve its beliefs up to level 2 beliefs in
less than 30 decision steps. Therefore, even if those results are slightly less good than in the
one-way environment, they are still better than in the house environment and quite satisfactory.

8.3.2 Evaluating the communication

Figure 8.13 presents the number of communications sent by the agents in the static and dynamic
cases. In this environment, the agents communicated 751 times in the static case against 754
times in the dynamic case. The average number of communications for each agent is 250 in

139

Chapter 8. Low communication cost

Figure 8.12: Average Hellinger distance to the perfect belief state for the outdoor environment
in the dynamic case

Figure 8.13: Number of communications per robot for the outdoor environment

140

8.3. Costly transitions: the outdoor environment

Static Dynamic
Total Average Total Average

House environment 728 243 685 228

One-way environment 582 194 664 221

Outdoor environment 751 250 754 251

Table 8.3: Total and average number of communication in different environments in static and
dynamic cases

the static case and 251 in the dynamic case. These numbers are summarized and compared to
previous environments in table 8.3.

The agents communicate significantly more than in the previous environments. This can be
explained by the costly transitions: in this environment, communicating is usually as expensive,
even sometimes cheaper, than moving from a room to another. Then the decision processes con-
sider communication as a good alternative to spread beliefs and avoid unnecessary costs involved
by exploration. It seems that unlike in the house environment, this high level of communication
didn’t damage too much the quality of the beliefs. We noticed that in the outdoor environment,
the communication is slightly better distributed among the agents. In the home environment, the
color-detection robots communicated twice as much as the face-detection and 4 times as much
as the temperature-detection robot. Here, the color-detection communicates "only" 1.3 times
as much than the face-detection and 4 times as much as the temperature-detection robot. This
distribution may explain why the beliefs are not too much impacted by the high communication
rate.

Concerning the homogeneity of the beliefs, the homogeneity is also very good in this envi-
ronment, as shown on Figure 8.14.

8.3.3 Evaluating the paths

Figure 8.15 presents the actions performed and the path travelled by the three robot during the
15 first iterations. In this environment, the color detection robot has an average cost of 2.82 per
exploration action, the face detection has an average cost of 2.59 and the temperature detection
has an average cost of 3.05. Those average costs are unsurprisingly higher than in the previous
environment: the fact than more than half of the transitions have a cost greater than 1 is directly
responsible for this increase. We can notice that the paths with the lowest costs are preferred
at the beginning of the exploration: all areas can be explored and give a lot of information, it
is therefore more interesting to travel across low-cost paths since the ratio information gain /
cost is higher. The paths are again coherent with the environment. Only the transition of the
color-detection robot from zone 6 to zone 0 could seem incoherent since too expensive. However,
when analyzing the graph, we notice that there are only two transitions less expensive than going
to zone 0 which are going to zone 8 and going to zone 3. However both zones have been explored
previously by the color-detection robot. Therefore, the interesting zones to explore all have a
cost of 2, and the algorithm chose among the most interesting zones and selected 0 as the next
one to explore. We notice in this environment that the communications are grouped together.
We believe this is due to the same reason than the agents exploring again the same room.

141

Chapter 8. Low communication cost

Figure 8.14: Average Hellinger distance to the real belief states for the outdoor environment in
the dynamic case

142

8.3. Costly transitions: the outdoor environment

0 1

3

2

4

5 6

7 8

9

2

1 2 1

3 1

2

1

3

1

2

2

2

1 1

8 8
explores room 8, roomOnFire

8

explores room 8, roomOnFire

2

3 6

66

6 6

00
communicates NoFireColorDetected in room 0
to face-detection

1 1

11
communicates NoFireColorDetected in room 6
to face-detection

explores room 2, roomOnFire

explores room 3, roomOnFire

explores room 6, roomOnFire

communicates NoFireColorDetected in room 8
to temperature-detection

communicates NoFireColorDetected in room 3
to face-detection

communicates NoFireColorDetected in room 2
to face-detection

communicates NoFireColorDetected in room 6
to temperature-detection

explores room 0, roomOnFire

explores room 1, roomOnFire

communicates NoFireColorDetected in room 1
to face-detection

communicates NoFireColorDetected in room 1
to temperature-detection

(a) Color detection

5 5
explores room 5, roomEmpty

5
explores room 5, roomEmpty

5

4 4

44

3 2

8

explores room 8, roomEmpty

9

8 8
explores room 8 roomEmpty

66

explores room 6, roomEmpty

communicates NoFaceDetected in room 5
to temperature-detection

explores room 3, roomEmpty

explores room 9, roomEmpty

communicates NoFaceDetected in room 8
to temperature-detection

explores room 5, roomEmpty

explores room 4, roomEmpty

communicates NoFaceDetected in room 5
to color-detection

communicates NoFaceDetection in room 4
to color-detection

explores room 2, roomEmpty

explores room 8, roomEmpty

(b) Face detection

4 4
explores room 4, roomOnFire

4

explores room 4, roomEmpty

explores room 5, roomOnFire

5

explores room 6, roomOnFire

6
explores room 8, roomOnFire

8

2

explores room 2, roomOnFire

explores room 3, roomOnFire

3

0
explores room 1, roomeOnFire

1

1

communicate NoHotSpotDetected in room 4
to color-detection

1
communicates NoHotSpotDetected in room 4
to face-detection

1

communicates NoHotSpotDetected in room 2
to face-detection

1

explores room 0, roomOnFire

1

communicates NoHotSpotDetected in room 3
to color-detection

1
communicates NoHotSpotDetected in room 3
to face-detection

communicates NoHotSpotDetected in room 2
to color-detection

(c) Temperature detection

Figure 8.15: Actions performed and path traveled by the three robots during the 15 first iterations
in the outdoor environment

143

Chapter 8. Low communication cost

Example 8.4 The color-detection robot moves from room 3 to room 6 and explores room
6. Its beliefs about room 6 are now satisfactory. Since it already explored rooms 3 and 8,
the next interesting rooms would be 4 or 7 which both include a cost of 2. The decision
process states that it is more interesting to communicates to inform the other agents of the
previous exploration than to move to those rooms.

8.3.4 Analysis

We evaluated in this section the impact of a costly environment for our system. The results tend
to show that MAPING is able to adapt to this kind of situation by increasing the number of
communication to trade-off the costly exploration and maintain a good belief state. The very
high communication rate seems not to impact to much the quality of the beliefs as it did for the
house environment. This is probably due to the fact that the communication is slightly better
distributed among the agents.

144

8.4. Scalability: the Élysée Palace environment

8.4 Scalability: the Élysée Palace environment

The Élysée Palace environment has been chosen to prove the scalability of MAPING in a house-
like environment. In this section we will present again the static and the dynamic case. Indeed,
the increase of the number of rooms changes a bit the behavior of the system.

8.4.1 Evaluating the exploration efficiency

Figure 8.16 presents the evolution of the number of correct beliefs. We first notice that, as
expected, the system is slower to get correct beliefs, the size of the environment being much
bigger. Then, we notice that even in the static case, the system don’t manage to get all the
variables correct, that is to say 56 correct variables. However, the simulation logs show that the
robots explore all rooms at least once in less than 50 decision steps and have discriminated beliefs
(that is to say beliefs other than (0.5, 0.5)) for all variables in less than 100 decision steps thanks
to communications. We explain the fact that the maximum amount of correct variable is never
reached by the incorrect observations sent by the simulator. Since the environment is big, when
the simulator send an incorrect observation, the incorrect beliefs resulting from this incorrect
observation is kept for a long time before the variable is explored again or before another agent
send a contradictory observation. This is true especially at the beginning of the simulation since
incorrect observations cannot contradict prior beliefs and so the corresponding variable will not
be explored again by the robot.

Despite this non-optimal result in the static case, we observe that the results in the dynamic
case are quite interesting since the system manage to keep a good amount of correct beliefs
(about 60%). It is obvious that the problem of incorrect observations in this case may be traded
off by environment changes: an observation that was incorrect when it was sent can become
correct when the environment changes and the robot’s beliefs will be improved even if no new
and correct observation has been received. One could say that the system is maybe not that
efficient but the changes in the environment give the illusion that it is. However, one should
not forget that this impact is also true when an observation has been sent correct and becomes
incorrect following a change in this environment. In this case, the robot’s beliefs are degraded
until it received a new correct observation. This second case appears in average more often that
the first one because the simulator sends the correct observation 98% of the time. Therefore
we can conclude that the performance of the system are not illusory and that the system really
manage to keep a good amount of correct beliefs. The results obtained in the dynamic case are
so quite good, even if the system is less efficient than in smaller environments.

It would be interesting to evaluate the results of a bigger system (4, 5 or more agents) in this
environment. Unfortunately we were not able to do so due to computational issues. Indeed, the
size of the belief states space increase exponentially with the number of agents. For instance,
using our discretization with 11 elements, each sub-POMDP to solve would have 214358881 states
for 4 agents and 25937424601 for 5 agents. This was impossible to solve using our algorithm and
our computing resources.

Figure 8.17 presents the evolution of the Hellinger distance to the perfect belief state. Those
results are coherent with the results of figure 8.16: the beliefs varies mostly between level 1 and
level 2 in both cases, which means that the exploration is less efficient than in small environments.
However, the system still manage to get correct discriminated beliefs for most of the variables,
which is a encouraging result. We strongly believe that a system with more robots would be able
to maintain a better belief state.

145

Chapter 8. Low communication cost

(a) Static case

(b) Dynamic case

Figure 8.16: Average number of correct beliefs for the Élysée Palace environment in the dynamic
case

146

8.4. Scalability: the Élysée Palace environment

(a) Static case

(b) Dynamic case

Figure 8.17: Average Hellinger distance to the perfect belief state for the Élysée Palace environ-
ment

147

Chapter 8. Low communication cost

Static Dynamic
Total Average Total Average

House environment 728 243 685 228

One-way environment 582 194 664 221

Outdoor environment 751 250 754 251

Élysée Palace environment 487 162 496 165

Table 8.4: Total and average number of communication in different environments in static and
dynamic cases

8.4.2 Evaluating the communication

Figure 8.18 presents the number of communications sent by the agents in the static and dynamic
cases. In the static case, the agents used the communicate action 487 times, that is to say 162

Figure 8.18: Number of communications per robot for the Élysée Palace environment

times per agent in average. In the dynamic case, they used the communicate action 496 times,
that is to say 165 times per agent in average. Those numbered are summarized and compared
to previous environments in table 8.4

Those numbers are much lower than in any other environments. We believe this is due to the
size of the environment. Indeed, since the agents need to reach a certain level of belief for the
communication to be interesting and their beliefs are smoothed, they will spend more time to
explore the environment and will reach this level less often. Once again, it would be interesting
to compare this behavior with a system containing more agents.

148

8.4. Scalability: the Élysée Palace environment

8.4.3 Evaluating the homogeneity of the beliefs

Figure 8.19 presents the variation of the Hellinger distance between agents’ approximation of
beliefs and the real beliefs in the static and the dynamic cases. Due to the low rate of com-
munication, we could expect the approximations to be less good than in previous environment.
However this doesn’t seem to be the case since the Hellinger distance is still far lower to the
Hellinger distance obtained with level 4 approximations. We explain these results by the fact
that a given room is explored less often by the agents, and they will be more likely to keep the
same beliefs for a long time before changing them. Therefore, as soon as an agent a1 commu-
nicates once to an agent a2, agent a2 has a good approximation of agent a1’s beliefs and this
approximation will stay good until agent a1 explores again the room.

8.4.4 Evaluating the paths

Figure 8.20 presents the actions performed and the path travels by the three robot during the
14 first iterations. In this environment, the color detection robot has an average cost of 3.35 per
exploration action, the face detection has an average cost of 3.77 and the temperature detection
has an average cost of 3.73. Those costs are the highest observed among all environments. This
is not so surprising due to the size of the environment: the agents need to travel farther to find
a room that can give them interesting information.

The paths in the Élysée Palace environment show much more exploration than in previous
environments, which once again was expecting. Indeed, at the beginning of the simulation the
agents need to build their beliefs and so explore the environment. We also observe a very high
tendency for the agents to follow the same path. Though less obvious, this behavior was also
present in other environments and is explained in section 8.5.3.

8.4.5 Analysis

Our system with 3 agents is able to scale to bigger environments and is able to handle discrim-
inated beliefs for most of the variables. Though this discrimination is not high enough and the
accuracy of the belief state is not satisfactory. Tests with more agents would be mandatory
to analyze deeper the capacity of MAPING in big environment. We believe that more agents
would be able to maintain a satisfactory belief state. However it has been impossible for us
to compute the sub-policies with a higher number of agents. Indeed, increasing the number of
agents increases exponentially the number of belief states in the Beliefs-MDP used to solve the
MAPING decision process and our computing resources were not enough to handle this number.
A possible solution would have been to reduce the size of the discretization and to use only
5 elements instead of 11 (see table 5.1 in section 5.4). However we would need more time to
perform the experiments with this new parameters.

149

Chapter 8. Low communication cost

(a) Static case

(b) Dynamic case

Figure 8.19: Average Hellinger distance to the real belief states for the Élysée Palace environment

150

8.4. Scalability: the Élysée Palace environment

0 1

2

4 5

6

7 8 9

10

3

11

17

13

20 21

18

12

19

14 15

16 23

22

24

25

26

27

10 10
explores room 10, roomOnFire

6

explores room 6, roomOnFire

explores room 17, roomOnFire

17

17 12

1212

11 16

1519

21

explores room 21, roomOnFire

25

2727

explores room 12, roomOnFire

explores room 11, roomOnFire

explores room 16, roomOnFire

explores room 17, roomOnFire

explores room 12, roomOnFire

explores room 12, roomOnFire

explores room 15, roomOnFire

explore room 19, roomOnFire

explores room 25, roomOnFire

explores room 27, roomOnFire

explores room 27, roomOnFire

(a) Color detection

22 22
explores room 22, roomEmpty

11

explores room 11, roomEmpty

explores room 13, roomEmpty

13

12 12

126

9 9

9

explores room 9, roomEmpty

9

6 7
explore room 7 roomEmpty

77

explores room 6, roomEmpty

explores room 9, roomEmpty

explores room 9, roomEmpty

communicates NoFaceDetected in room 9
to color-detection

explores room 12, roomEmpty

explores room 12, roomEmpty

explores room 12, roomEmpty

explore room 9, roomEmpty

explore room 6, roomEmpty

communicates NoFaceDetected in room 6
to temperature-detection

(b) Face detection

9 9
explores room 9, roomOnFire

6

explores room 6, roomOnFire

explores room 8, roomOnFire

8

explores room 17, roomOnFire

17
explores room 12, roomOnFire

12

13

explores room 13, roomOnFire

explores room 14, roomOnFire

14

15
explores room 15, roomeOnFire

15

19

explores room 19, roomOnFire

19
explores room 19, roomEmpty

21

explores room 21, roomOnFire

25

explores room 15, roomOnFire

26

explores room 26, roomOnFire

26
explores room 26, roomOnFire

explores room 25, roomOnFire

(c) Temperature detection

Figure 8.20: Actions performed and path traveled by the three robots during the 14 first iterations
in the Élysée Palace environment

151

Chapter 8. Low communication cost

8.5 Global analysis and conclusion

8.5.1 Analysis of the exploration efficiency

The system seems to perform better in more difficult environments. Indeed, the beliefs obtained
for the house environment are not accurate enough to be reliable. In the outdoor and the
one-way environments though, the system manages to maintain reliable beliefs. In the Élysée
Palace environment, the accuracy is not very good, but this probably results from the small
amount of agents in the system regarding the size of the environment. We believe that the
low communication cost could damage the efficiency of the system. Indeed, with a small cost,
agents communicates more often, which leads to two impacts. First, agents use their decision
steps to communicate and not to explore. Therefore, they spread previous information instead
of collecting new information and checking that the previous one is still valid. Second, they
may spread more easily incorrect information resulting from incorrect observations sent by the
simulator. Next chapters will show if our hypothesis is right and if the results get better with a
higher communication cost.

8.5.2 Analysis of the communication policy

The results presented in this chapter regarding the communication shows that MAPING is
able to adapt the amount of communications to the situation. Thus when the exploration is
more expensive than the communication, the system increases the amount of communication
to be more efficient. In all environments, since the communication cost is very low, the agents
communicate a lot with the risk to spread incorrect beliefs among the system. We also noticed
that for all environments, the color-detection agent was the one which communicated the most,
spending sometimes more than 80% of its decision steps to communicate. However, the logs
show that all agents have equivalent quality in their beliefs among the simulation.

8.5.3 Analysis of the path traveled

All the experiments show that the agents are traveling in the environment in a intelligent way,
favoring paths with small costs. Agents are also able to organize their exploration and commu-
nication to spend the lowest possible cost. The communication actions are performed when the
exploration is too costly for the gain.

8.5.4 Conclusion

In this chapter we evaluated the MAPING framework in various environments with a low com-
munication costs. All the environments have been designed to reflect real-life situations and to
analyze the behavior of the system under different constraints. The house environment modeled
classic building, with no specific constraints. The one-way environment modeled a very specific
kind of building in which some transitions may be impossible due to the building design or the
capabilities of the robots. The outdoor environment modeled an environment where transitions
are possible but costly. This is the typical kind of environment a robot may have to deal with in
search-and-rescue applications. The system proved to be able to maintain a correct belief state
but the accuracy of this belief state is not completely reliable. The agents also have a very high
communication rate, which can decrease the efficiency of the system.

The Élysée Palace environment has been designed to test the scalability of the system. In
this environment, the performance of the system decreases compared to previous ones. More

152

8.5. Global analysis and conclusion

tests should be made with more agents to see how the number of agents affect the performance
of the system in big environments. Those tests could unfortunately not be performed due to our
limited computing resources.

We remind that in all these environments, the model used is the same (described in section
7.3) and only the graph of the environment changes. There is no change in the implementation
and no re-computation of the sub policies between environments. The same sub-policies have
been used in all cases and the computation of the best action depending on the environment is
made online. The whole system has been implemented in order to be as generic as possible. If
the user need to create new transition or observation functions, they only need to implement a
new POMDP class, the separation in sub-POMDP and the solving being done automatically. If
the user need to modify the topology of the environment and the cost of exploration, they only
need to create a new xml file containing the description of the new topology.

In the next chapter we will run the same experiments but with a medium communication cost.
Our purpose is to observe the changes induced in the system’s behavior when communication
is costly and to see if this could prevent the agents from communicating uncertain observations
and so spreading incorrect beliefs.

153

Chapter 8. Low communication cost

154

Chapter 9

Medium communication cost

Contents
9.1 Simple configuration: the house environment 156

9.1.1 Evaluating the exploration efficiency 156
9.1.2 Evaluating the communication . 156
9.1.3 Evaluating the homogeneity of the beliefs 160
9.1.4 Analysis . 160

9.2 Constraints in the navigation: the one-way environment 162
9.2.1 Evaluating the exploration efficiency 162
9.2.2 Evaluating the communication . 162
9.2.3 Analysis . 164

9.3 Costly transitions: the outdoor environment 165
9.3.1 Evaluating the exploration efficiency 165
9.3.2 Evaluating the communication . 165
9.3.3 Analysis . 167

9.4 Scalability: the Élysée Palace environment 167
9.4.1 Evaluating the exploration efficiency 167
9.4.2 Evaluating the communication . 167
9.4.3 Analysis . 171

9.5 Global analysis and conclusion . 171

In this chapter we present the results of the experiments realized with a medium communica-
tion cost, that is to say a communication cost equivalent to travelling among a path with a cost
3. This chapter mostly follows the same structure as chapter 8. We first evaluate the efficiency
of the exploration by assessing that the system is able to maintain a correct and accurate belief
state. Then we evaluate the communication strategy by tracking the number of communications
sent. However we will not present in details the approximation of the beliefs neither the paths
travelled and the average cost of an explore action since those results are really close to the one
obtained in the previous chapter. We will expose in details the results in the house environment
for both static and dynamic cases. For the other environments, we will only expose the dynamic
case and describe briefly the graphics when the behavior is similar to those observed in the house
environment. We will stress out the points of difference and interest. As a conclusion we will
analyze the differences between the environments and conclude about the global efficiency of
MAPING under medium communication constraints.

155

Chapter 9. Medium communication cost

9.1 Simple configuration: the house environment

9.1.1 Evaluating the exploration efficiency

Figure 9.1 presents the results of tracking the number of correct beliefs in the static and the
dynamic cases. The blue plain curve shows the evolution of the average number of correct
beliefs. Since the environment contains 10 rooms and 20 variables, the maximum number of
correct or incorrect states is 20. The yellow dotted curve shows the number of variables that
changed value at this decision step. The probability of changes in the environment follows the
transition function described in section 7.3.

The results are very similar to what has been observed with a medium communication cost
in the previous chapter. However we notice that when incorrect observations are received and
the number of correct beliefs decrease, the system is slower to correct itself and to reach the
maximum amount of correct beliefs again. This is obviously a direct consequence of the medium
communication costs: as following sections will show it, the agents communicate much less and
so are longer to realize that there has been a change, and so longer to check and to correct
their beliefs. In the dynamic case however the system seems to be as efficient as in the previous
chapter since it manages to keep correct beliefs for about 70% of the environment.

Figure 9.2 shows the evolution of the average Hellinger distance between the agent’s beliefs
and the perfect belief state representing the real state of the environment. The perfect belief
state is a belief state in which all probability distributions are either (0, 1) or (1, 0), 1 being the
probability associated to the value which is actually correct in the environment.

Example 9.1 If we consider only one room of the environment, which is empty and not on
fire, the perfect belief state represented the environment’s state is

B∗,E =

(
(1, 0)
(0, 1)

)
%RoomEmpty = true
%RoomOnFire = false

We observe that the accuracy of the beliefs is very good for static environment since the beliefs
vary between level 2 (that is to say (0.3, 0.7) or (0.7, 0.3)) and level 3 (that is to say (0.2, 0.8) or
(0.8, 0.2)). In the dynamic case, the beliefs are also good since they oscillate between level 1 (that
is to say (0.4, 0.6) or (0.6, 0.4)) and level 3. We also notice that the Hellinger distance increases
dramatically between decision steps 200 and 250, probably due to the high amount of changes
just before the decision step 200 and to the sequence of 3 incorrect observations that occurred at
the same time. A similar scenario, though less important, is observed around decision steps 350
and 400. In all cases the system manages to improve its beliefs of 1 level in less than 50 decision
steps.

9.1.2 Evaluating the communication

Figure 9.3 shows the number of communications sent by each agent during the simulation in the
house environment. It is surprising to see that the difference in the number of communication
actions with the low communication cost is very high in the static case, but very small in the
dynamic case. Indeed, the agents used a total of 325 communication actions in the static case
and 644 in the dynamic case. The average number of communication actions per robot is 108 in
the static case and 214 in the dynamic case.

156

9.1. Simple configuration: the house environment

(a) Static case

(b) Dynamic case

Figure 9.1: Average number of correct beliefs for the house environment

157

Chapter 9. Medium communication cost

(a) Static case

(b) Dynamic case

Figure 9.2: Average Hellinger distance to the perfect belief state for the house environment

158

9.1. Simple configuration: the house environment

Figure 9.3: Number of communications per robot for the house environment

Low communication cost Medium communication cost
Static Dynamic Static Dynamic

Total Average Total Average Total Average Total Average
House environment 728 243 685 228 325 108 644 214

Table 9.1: Total and average number of communication in static and dynamic cases, for low and
medium communication costs

159

Chapter 9. Medium communication cost

The robots communicate less with the medium communication cost than with the low com-
munication cost. However the difference is very small in the house environment in the dynamic
case. Nevertheless, the quality of the beliefs is much better in this chapter than they were in
with the low communication cost. It seems so that, even if the agents communicate as much,
their communication is more efficient.

9.1.3 Evaluating the homogeneity of the beliefs

Figure 9.4 presents the evolution of the quality of the agents’ approximations of other agents’
beliefs for the house environment. To measure this quality, we computed for each pair of agents
< a1, a2 > the Hellinger distance between agent a1’s approximation of agent a2’s beliefs and
agent a2’s real beliefs and we tracked this measure among time.

The quality of the approximation measure is less than the one obtained with the low commu-
nication cost. This was expected: since the agents communicate less, they have less opportunity
to update their beliefs about other agents. However, in the dynamic case this approximation
remains very good since it remains better than a level 4 approximation (that is to say an ap-
proximation which is separated from the real belief of 0.1).

Example 9.2 If we consider an agent that has the following belief

bka2 =
(
(0.7, 0.3)

)
Then the belief

ba2,ka1 =
(
(0.8, 0.2)

)
is a level 4 approximation of bka2

9.1.4 Analysis

As expected, the agents communicate less with this medium communication cost but still manage
to maintain satisfactory belief states, though the difference of communication is quite small in
the house environment. The quality of the belief states is enhanced compared to the previous
chapter, which strengthen the idea that too much communication spread incorrect beliefs. It also
seems that the agents take longer to detect that their beliefs are not coherent (due to the low
amount of communication), which involves that they take longer to detect and acknowledge a
change in the environment. The next sections will show if this behavior is enhanced by constraints
and if it is harmful for the efficiency of the system.

160

9.1. Simple configuration: the house environment

(a) Static case

(b) Dynamic case

Figure 9.4: Average Hellinger distance to the real belief states for the house environment

161

Chapter 9. Medium communication cost

9.2 Constraints in the navigation: the one-way environment

The one-way environment presents a particular topology, in which some transitions between
rooms can only be done in one way. This constrained environment can be encounter in building
with fire doors or with some doors that a robot can push but not pull.

9.2.1 Evaluating the exploration efficiency

Figure 9.5 presents the evolution of the number of correct states and figure 9.6 presents the
evolution of the Hellinger distance between the agents’ belief states and the perfect belief state
in the dynamic case.

Figure 9.5: Average number of correct beliefs for the one-way environment in the dynamic case

The results are similar to those obtained in the house environment. The agents manage to
maintain correct beliefs about 70% of the environment and a good accuracy since their beliefs
oscillate around level 2 and the quality remains quite constant.

9.2.2 Evaluating the communication

Figure 9.7 shows the number of communications sent for each pair emitter-receiver.
In total, the agents used a communicate action 353 times in the static case and 588 time in

the dynamic case. In average, each agent communicated 118 times in the static case and 196
in the dynamic case. This numbers are summarized and compared to previous environments in
table 9.2.

162

9.2. Constraints in the navigation: the one-way environment

Figure 9.6: Average Hellinger distance to the perfect belief state for the one-way environment in
the dynamic case

Figure 9.7: Number of communications per robot for the one-way environment

163

Chapter 9. Medium communication cost

Low communication cost Medium communication cost
Static Dynamic Static Dynamic

Total Average Total Average Total Average Total Average
House environment 728 243 685 228 325 108 644 214

One-way environment 582 194 664 221 353 118 588 196

Table 9.2: Total and average number of communication in different environments, in static and
dynamic cases, for low and medium communication costs

The number of communication actions is much lower than with the low communication cost.
But we observe that the color-detection agent communicated again much more than the two
others and spent most of its decision steps to communicate with others.

9.2.3 Analysis

It seems that the lower rate of communication doesn’t affect the efficiency of the system too much
in this environment: the agents still manage to maintain level 2 beliefs (that is to say (0.8, 0.2)
or (0.2, 0.8)). The quality of the beliefs state is once again better and more steady than with
the low communication cost. This strengthen again the idea that a restrained communication
is beneficial for the quality of the system since it prevents incorrect beliefs to be spread too
much. Changes and incorrect observations also doesn’t seem to degrade more the belief state
than previously in the dynamic case.

164

9.3. Costly transitions: the outdoor environment

9.3 Costly transitions: the outdoor environment

The outdoor environment is based on real topographic maps from the Alpes, near the city of
Chatel. This environment has been designed to observe the behavior of the system in areas where
moving from a "room" (in this case we still use the denomination room even if those rooms are
only virtual) to another can be very costly to the robots, due for instance to difficult ground.

9.3.1 Evaluating the exploration efficiency

Figure 9.8 presents the evolution of the number of correct states and figure 9.9 presents the
evolution of the Hellinger distance between the agents’ belief states and the perfect belief state
in the outdoor environment.

Figure 9.8: Average number of correct beliefs for the outdoor environment in the dynamic case

The system still manage to keep about 70% of correct beliefs and the accuracy oscillates
around level 2. We also notice that, as for the one-way environment, the quality of the beliefs
varies less frequently than with the low communication.

9.3.2 Evaluating the communication

Figure 9.10 presents the number of communications sent by the agents in the static and dynamic
cases. The agents have used a total of 446 communicate actions in the static case, that is to
say 149 communications per agent in average. In the dynamic case, the agents have used a total
of 562 communicate actions, that is to say 187 communications per agent in average. These
numbers are summarized and compared to previous environments in table 9.3. The difference
in the number of communication between the low and the medium communication cost is very

165

Chapter 9. Medium communication cost

Figure 9.9: Average Hellinger distance to the perfect belief state for the outdoor environment in
the dynamic case

Figure 9.10: Number of communications per robot for the outdoor environment

166

9.4. Scalability: the Élysée Palace environment

Low communication cost Medium communication cost
Static Dynamic Static Dynamic

Total Average Total Average Total Average Total Average
House environment 728 243 685 228 325 108 644 214

One-way environment 582 194 664 221 353 118 588 196

Outdoor environment 751 250 754 251 436 145 629 210

Table 9.3: Total and average number of communication in different environments, in static and
dynamic cases, for low and medium communication costs

important in this environment. Since transitions are very costly, a low communication cost could
be a replacement for exploration and possibly overused. With this medium communication
cost, communicating is as expensive as traveling a path of cost 4 and so more balanced with
the exploration cost. The communication is only dedicated to more accurate beliefs and bigger
divergence between the agents.

9.3.3 Analysis

The results for the outdoor environment are very satisfactory. The agents manage to keep a
good amount of correct beliefs and a good accuracy. The number of communications is reduced
regarding to the low communication cost, which involves less variation in the accuracy of the
beliefs during the simulation. The system seems to be able to adapt to costly environments very
well with this kind of communication. The color-detection agent used once again most of its
decision steps to communicate.

9.4 Scalability: the Élysée Palace environment

The Élysée Palace environment has been chosen to prove the scalability of MAPING in a house-
like environment. In this section we will present again the static and the dynamic case, as well
as the quality of agents’ approximations. Indeed, the increase of the number of rooms changes a
bit the behavior of the system.

9.4.1 Evaluating the exploration efficiency

Figure 9.11 presents the evolution of the number of correct beliefs. Figure 9.11 shows that
the system is slightly less efficient with the medium communication cost than with the low
communication cost in both static and dynamic cases.

Figure 9.12 confirms this decrease of efficiency since the beliefs are hardly discriminated in
the dynamic case. As previously, it would be interesting to see how a higher number of agents
in the system affect the exploration and the efficiency of the system.

9.4.2 Evaluating the communication

Figure 9.13 presents the number of communications sent by the agents in the static and dynamic
cases.

167

Chapter 9. Medium communication cost

(a) Static case

(b) Dynamic case

Figure 9.11: Average number of correct beliefs for the Élysée Palace environment

168

9.4. Scalability: the Élysée Palace environment

(a) Static case

(b) Dynamic case

Figure 9.12: Average Hellinger distance to the perfect belief state for the Élysée Palace environ-
ment

169

Chapter 9. Medium communication cost

Figure 9.13: Number of communications per robot for the Élysée Palace environment

In the static case, the agents used the communicate action 177 times, that is to say 55 times
per agent in average. In the dynamic case, they used the communicate action 305 times, that
is to say 102 times per agent in average. Those numbered are summarized and compared to
previous environments in table 8.4

Low communication cost Medium communication cost
Static Dynamic Static Dynamic

Total Average Total Average Total Average Total Average
House environment 728 243 685 228 325 108 644 214

One-way environment 582 194 664 221 353 118 588 196

Outdoor environment 751 250 754 251 436 145 629 210

Élysée environment 487 162 496 165 177 59 305 102

Table 9.4: Total and average number of communication in different environments, in static and
dynamic cases, for low and medium communication costs

The agents in the Élysée Palace environment have very low communication rate. It seems
obvious that the bad accuracy of the beliefs and this low communication rate are connected.
Since the communication is costly, the agents wait to reach a certain accuracy in their beliefs
before communicating, accuracy that they may not reach often due to the size of the environment.
On the other hand, since they are not communicating a lot, it is more difficult for them to cross
their beliefs and reach beliefs accurate enough. Once more, a system with more agents could
affect this behavior and presents better results.

170

9.5. Global analysis and conclusion

9.4.3 Analysis

As in the previous chapter, the results for the Élysée Palace environment are not very satisfactory.
The agents hardly manage to discriminate their beliefs in the dynamic case. Once again, more
agents in the system could help to obtain better results.

9.5 Global analysis and conclusion

In this chapter we evaluated the MAPING framework in various environments with a medium
communication cost. All the environments have been designed to illustrate real applications. The
efficiency of the exploration has been revealed slightly higher with the medium communication
cost than with the low communication cost. The agents manage to keep the same amount of
correct beliefs, but those beliefs are more accurate in this chapter than previously. The amount of
communications is also reduced. This strengthen the hypothesis that the communication should
be costly so that the agents only communicate important and verified observations.

We conclude from this chapter that MAPING shows promising results with higher commu-
nication cost. The next chapter will explore a high communication cost to see if those results
are confirmed.

171

Chapter 9. Medium communication cost

172

Chapter 10

High communication cost

Contents
10.1 Simple configuration: the house environment 174

10.1.1 Evaluating the exploration efficiency 174
10.1.2 Evaluating the communication . 174
10.1.3 Evaluating the homogeneity of the beliefs 176
10.1.4 Analysis . 177

10.2 Constraints in the navigation: the one-way environment 177
10.2.1 Evaluating the exploration efficiency 177
10.2.2 Evaluating the communication . 177
10.2.3 Analysis . 179

10.3 Costly transitions: the outdoor environment 179
10.3.1 Evaluating the exploration efficiency 179
10.3.2 Evaluating the communication . 179
10.3.3 Analysis . 180

10.4 Scalability: the Élysée Palace environment 180
10.4.1 Evaluating the exploration efficiency 180
10.4.2 Evaluating the communication . 182
10.4.3 Analysis . 184

10.5 Global analysis and conclusion . 185

In this chapter we present the results of the experiments accomplished with a high communi-
cation cost, that is to say a communication cost equivalent to travelling among a path with a cost
4. This cost has been designed to observe the behavior of the system under strong communica-
tion constraints. Indeed, for most of the environment used, a path with a cost of 4 already makes
it possible to travel across the whole environment. This chapter follows the same structure as
Chapter 9. We first evaluate the efficiency of the exploration by assessing that the system is able
to maintain a correct and accurate belief state. Then we evaluate the communication strategy
by tracking the number of communications sent. We will only expose the dynamic case for all
environments, since the static cases are very similar to those obtained in the previous chapter.
As a conclusion we will analyze the differences between the environments and conclude about
the global efficiency of MAPING under strong communication constraints.

173

Chapter 10. High communication cost

10.1 Simple configuration: the house environment

10.1.1 Evaluating the exploration efficiency

House environment

Figure 10.1 presents the results of tracking the number of correct beliefs in the dynamic case.
The blue plain curve shows the evolution of the average number of correct beliefs. Since the
environment contains 10 rooms and 20 variables, the maximum number of correct or incorrect
states is 20. The yellow dotted curve shows the number of variables that changed value at this
decision step. The probability of changes in the environment follows the transition function
described in section 7.3.

Figure 10.1: Average number of correct beliefs for the house environment

Figure 10.2 shows the evolution of the average Hellinger distance between the agent’s beliefs
and the perfect belief state representing the real state of the environment.

The results are very similar to those obtained in previous chapters: the system manages to
keep around 70% of correct beliefs in the dynamic case and beliefs varying around level 2. The
quality of the beliefs is slightly decreased just after decision step 300, but the system is still very
fast to detect the incoherence and to improve the beliefs again.

10.1.2 Evaluating the communication

Figure 10.3 shows the number of communications sent by each agents during the simulation in
the house environment. The agents communicated 644 times is total in the static case, that is to

174

10.1. Simple configuration: the house environment

Figure 10.2: Average Hellinger distance to the perfect belief state for the house environment

Figure 10.3: Number of communications per robot for the house environment

175

Chapter 10. High communication cost

say 214 in average per agent. In the dynamic case, they communicated 485 times in total, that
is to say 162 in average per agent.

Medium communication cost High communication cost
Total Average Total Average

House environment 644 214 485 162

Table 10.1: Total and average number of communication in static and dynamic cases, for medium
and high communication costs

Unsurprisingly, the agents communicated less with the high communication cost than with
the medium communication cost. The color detection agent is still the one that communicates
the most and the temperature-detection still the one that communicates the least.

10.1.3 Evaluating the homogeneity of the beliefs

Figure 10.4 and presents the evolution of the quality of the agents’ approximations of other
agents’ beliefs for the house environment.

Figure 10.4: Average Hellinger distance to the real belief states for the house environment

The quality of the approximation is less good in this chapter than with the medium com-
munication cost, due to the reduced number of communications. However, the approximation
remains good enough to consider that the computation of the relevance is accurate.

176

10.2. Constraints in the navigation: the one-way environment

10.1.4 Analysis

The efficiency of the system is slightly decreased in the house environment when the commu-
nication cost is high. However, the system is still able to get accurate and reliable beliefs and
to track changes in the environment. Their approximation of other agent’s beliefs remains very
good. In the next parts, we will not present the graph for the quality of the approximation since
they are extremely similar to what have been presented for the house environment.

10.2 Constraints in the navigation: the one-way environment

10.2.1 Evaluating the exploration efficiency

Figure 10.5 presents the evolution of the number of correct states and figure 10.6 presents the
evolution of the Hellinger distance between the agents’ belief states and the perfect belief state
in the dynamic case.

Figure 10.5: Average number of correct beliefs for the one-way environment in the dynamic case

As for previous environments, the system manages to maintain about 70% of correct beliefs
and the beliefs vary between level 1 and level 3, which is quite good.

10.2.2 Evaluating the communication

Figure 10.7 shows the number of communications sent for each pair emitter-receiver. The agents
communicated 574 times in total in the dynamic case, that is to say 191 in average per agent.
These numbers are summarized and compared to those obtained with the medium communication
cost in table 10.2.

177

Chapter 10. High communication cost

Figure 10.6: Average Hellinger distance to the perfect belief state for the one-way environment
in the dynamic case

Figure 10.7: Number of communications per robot for the one-way environment

178

10.3. Costly transitions: the outdoor environment

Medium communication cost High communication cost
Total Average Total Average

House environment 644 214 485 162

One-way environment 588 196 574 191

Table 10.2: Total and average number of communication in different environments, in static and
dynamic cases, for medium and high communication costs

The agents communicated slightly less with the high communication cost than with the
medium communication cost.

10.2.3 Analysis

It seems that this high communication cost doesn’t affect a lot the behavior of the system for
the one-way environment. The system is still able to adapt its number of communications to
the need by communicating more when the transitions are more difficult. The beliefs are still
correct and accurate. This tends to show the adaptability of the system to various environment
and various costs.

10.3 Costly transitions: the outdoor environment

10.3.1 Evaluating the exploration efficiency

Figure 10.8 presents the evolution of the number of correct states and figure 10.9 presents the
evolution of the Hellinger distance between the agents’ belief states and the perfect belief state
in the outdoor environment.

The system still manage to keep about 70% of correct beliefs and the accuracy oscillates
around level 2. Nothing special is to be noted about this simulation.

10.3.2 Evaluating the communication

Figure 10.10 presents the number of communications sent by the agents in the static and dynamic
cases. The agents have used a total 597 communicate actions, that is to say 199 communications
per agent in average. These numbers are summarized and compared to previous environments
in table 10.3.

Medium communication cost High communication cost
Total Average Total Average

House environment 644 214 485 162

One-way environment 588 196 574 191

Outdoor environment 629 210 597 199

Table 10.3: Total and average number of communication in different environments, in static and
dynamic cases, for medium and high communication costs

The agents communicate less with the high communication cost than with the medium com-
munication cost in the outdoor environment. The difference between the high and the medium

179

Chapter 10. High communication cost

Figure 10.8: Average number of correct beliefs for the outdoor environment in the dynamic case

costs is less important that the difference we observed between the medium and the low cost.

10.3.3 Analysis

It seems that the agents communicate almost as much with the high communication cost than
they did with the medium communication cost. The efficiency of the system remains so almost
unchanged. This strengthen the idea that the system is able to adapt itself to the need of the
environment.

10.4 Scalability: the Élysée Palace environment

10.4.1 Evaluating the exploration efficiency

Figure 10.11 presents the evolution of the number of correct beliefs.
Figure 10.12 presents the evolution of the Hellinger distance between the agents’ beliefs and

the perfect belief state. Both figures prove that the system is definitely less efficient in larger
environments. The number of correct beliefs hardly overcome half of the variables and the beliefs
themselves are not discriminated enough. The logs show that at the end of the simulation, all
the agents have almost all their beliefs discriminated. Therefore this lack of efficiency is not
due to the simulation being too short and will obviously not be solved by running the system
longer. Once again, we believe that more agents could make the system more efficient but this
hypothesis will be analyzed in future works

180

10.4. Scalability: the Élysée Palace environment

Figure 10.9: Average Hellinger distance to the perfect belief state for the outdoor environment
in the dynamic case

Figure 10.10: Number of communications per robot for the outdoor environment

181

Chapter 10. High communication cost

Figure 10.11: Average number of correct beliefs for the Élysée Palace environment

10.4.2 Evaluating the communication

Figure 10.13 presents the number of communications sent by the agents.

182

10.4. Scalability: the Élysée Palace environment

Figure 10.12: Average Hellinger distance to the perfect belief state for the Élysée Palace envi-
ronment

183

Chapter 10. High communication cost

Figure 10.13: Number of communications per robot for the Élysée Palace environment

The agents used the communicate action 233 times, that is to say 78 times per agent in
average. These numbers are compared to previous communication cost and environments in
table 10.4.

Medium communication cost High communication cost
Total Average Total Average

House environment 644 214 485 162

One-way environment 588 196 574 191

Outdoor environment 629 210 597 199

Élysée Palace environment 305 102 233 78

Table 10.4: Total and average number of communication in different environments, in static and
dynamic cases, for medium and high communication costs

Unsurprisingly, the agents have an extremely low communication rate in this environment.
Indeed, the structure of the environment allows easy and cheap exploration.

10.4.3 Analysis

This chapter confirms that the system is not efficient in large environments. A lot of beliefs are
incorrect, probably outdated. The agents don’t manage to correct them quickly enough, and
their beliefs are not precise. As we already mentioned, more experiments would be useful to
determine if, as we believe, more agents in the system could produce better results.

184

10.5. Global analysis and conclusion

10.5 Global analysis and conclusion

In this chapter we evaluated the MAPING framework in various environments with a large
communication cost. This experiment has been performed to analyze the impact of a highly
constrained communication on the system’s behavior and its efficiency. Results show that the
efficiency of the system are slightly damaged by the communication cost, but remains very
satisfactory and reliable for all the small environments. Even if the system communicates globally
less than with the medium communication cost, it has proved being able to adapt itself to the
need of the environment and to increase the amount of communications when needed. For
instance in the outdoor environment where the transitions are costly, the system communicates
almost as much as previously.

This chapter, among with the two previous ones, confirm the work hypothesis that the
communication should be reduced for the system to be efficient. It also proves that MAPING is
able to be efficient under constrained communication and to maintain reliable beliefs states.

185

Chapter 10. High communication cost

186

Chapter 11

Conclusion of part III

In this part we evaluated the efficiency of the MAPING framework in various environments. All
the environments are based on real applications and have been designed to model real constraints.
The evaluation has been performed with three communication costs: a low, a medium and a high
communication cost. The system has not been very efficient with the low communication cost due
to the communication and the spreading of incorrect beliefs. We concluded that an almost-free
communication is not desirable for MAPING to work properly.

Otherwise, MAPINGmanaged to prove its efficiency in various environments with the medium
and high communication costs. It is able to reduce the amount of communication depending on
the needs: in environments where exploration is easy and cheap, the system reduces the num-
ber of communications. On the contrary, in environments where exploration is very costly, the
system communicates more to overcome this cost as in outdoor environments.

For all costs, the system had some limitations with big environment and should be re-
evaluated. More agents may solve the problem. However, with the current implementation,
it is very hard to solve the POMDP required for 4 or more agents. Some optimization in the
implementation may make it possible to raise the number of agents to 4 or 5, but probably no
more.

187

Chapter 11. Conclusion of part III

188

Part IV

Conclusion and perspectives

189

Chapter 12

Synthesis

Contents
12.1 Agent-based relevance . 192
12.2 Multiagent planning for information gathering 192
12.3 Possible range of applications . 192

In this thesis, we addressed the problem of information gathering with a multiagent system,
and more specifically event exploration. We defined the event exploration as the process of
traveling across a topologically known environment with the goal of detecting events happening
in this environment. An event is defined as a change in the environment’s features of interest. We
proposed a framework in which agents assess the relevance of information, estimate other agents’
beliefs and decide about the next action to perform. In this chapter we presents a summary of
our research and analyze the advantages and drawbacks of our approach.

191

Chapter 12. Synthesis

12.1 Agent-based relevance

Information relevance is a topic well studied in Information Retrieval systems. However, as we
figured out in chapter 2, techniques used in information retrieval systems cannot be applied to
multiagent systems. We proposed a framework to enable quantitative agent-based relevance by
suggesting a bounded degree of relevance. This degree of relevance is a compromise between
novelty and soundness of a piece of information.

This degree of relevance has been successfully used in our decision framework, but can be
easily applied to other models. We didn’t conclude about the convexity of the degree of relevance,
which could limit its use in some applications where convexity is required.

12.2 Multiagent planning for information gathering

Event exploration is a very specific kind of exploration in which the agents need to deal with dy-
namic environments. In this thesis we developed a framework, called MAPING (for Multi-Agent
Planning for INformation Gathering), which enables a team of heterogeneous agents to perform
efficient event exploration in a fully-decentralized way while limiting their communications. This
is to our knowledge the first attempt in the planning under uncertainty community to propose
a model that deal with this kind of exploration in a fully decentralized way and with limited
communications.

Our model rely on agent’s beliefs and the degree of relevance we defined to compute a commu-
nication and exploration policy. We also suggested a smoothing mechanism that uses a contrac-
tion mapping to artificially degrade the agents’ beliefs and force them to explore again features
already explored. In that way the system can deal with the dynamicity of the environment.

The MAPING framework has been proved to be efficient in diverse environments with no
modification of the offline computation and very few modifications of the online part. It has
proved its efficiency in cases where the communication is costly. However since the number
of belief states increases exponentially with the number of features and the number of agents,
MAPING is not scalable to systems with a high number of agents.

12.3 Possible range of applications

Contributions have led to the implementation of a Java solver for MAPING model and some
C++ ROS nodes for the execution. We used this implementation to solve surveillance-type
problems, but our approach can be used in various number of situations where information
gathering is involved. Instance industrial maintenance is another example of application that
require event exploration. Our framework could be for instance combined with the gas-detection
model developed by Loufti et al. in [Loutfi et al., 2009] to turn their monoagent system into a
multiagent one and detect gas leak in industrial infrastructures.

Autonomous systems are more and more studied for search and rescue applications, and our
model can also be proposed for such problems. Indeed, information gathering is a big part of the
search and rescue problem and using autonomous robots to explore and collect information could
make the work of the rescue workers much easier and safer. However, in this kind of applications,
the system will need to operate collaboratively with humans. This topic has not been considered
during this thesis and more research is necessary, as discussed in Chapter 13.

192

Chapter 13

Perspectives

Contents
13.1 Short-term perspectives . 194
13.2 Mid-term perspectives . 194
13.3 Long-term perspectives . 194

193

Chapter 13. Perspectives

13.1 Short-term perspectives

The main immediate drawback of our degree of relevance is the fact that it is not proved to be
convex. A deeper mathematical study could conclude on this specific point. The results of such
a study could guide new researches to solve more easily the MAPING POMDP.

In our implementation of MAPING , we used a single Value Iteration algorithm to perform the
offline resolution. We chose this algorithm due to its simple and fast implementation. However
this choice limited us to system with a maximum of 3 agents due to the computation time on
our resources. To perform the experiments with a higher number of agents, and so to evaluate
MAPING on bigger environments, bigger system should be considered. Then other techniques
should be considered. By using discretization, we transformed our POMDP into a discretized
MDP. A trail could be the studies of Poupart [Poupart, 2005] and Barry et al. [Barry et al., 2011]
about solving large MDPs.

13.2 Mid-term perspectives

In this thesis, we considered only Bayesian belief updates. An immediate conclusion of this
assumption is that the system is not fault-tolerant. If one or several robots present a failure
(typically a faulty sensor), the observations sent by this robot will be taken in the update as
observations sent by others. The beliefs of the system will be degraded due to this failure. To
limit the impact of such a situation, it could be interesting to study reputation systems, as those
presented in [Jøsang et al., 2007], and to integrate them in MAPING . By associating a trust
degree to the agents, agents that have sent incorrect observations would see their impact decrease
in the update, while trustworthy agents would see their impact increase.

Another evolution to the model would be to consider the gain of information during the travel
from a zone to another in addition to the gain of information at the targeted zone. Indeed, in
some cases the robots have to travel through some zones in order to reach their target. Since
sensing can also be performed while moving it seems logical to integrate informations gathered
on the way to the reward in order to improve the paths travelled along. However the robot would
not be dedicated to exploration while travelling and the data collected that way shouldn’t be
granted the same importance as data collected from complete exploration of a zone.

13.3 Long-term perspectives

The biggest issue remaining with our framework concerns heterogeneous agents. To update
their beliefs after receiving an observation from another agent, the agents need the observation
function of the emitter of the observation. For homogeneous agents we can safely assume that
all agents have the same observation function and can use their own. However this assumption
is not longer valid with heterogeneous agents, since the observation function depends on the
agent’s capacities. Therefore it is mandatory to transmit the observation function to the agent
that wants to update its beliefs. This issue remains open and deeper studies are needed to find
a solution and to integrate it in MAPING .

Different evolutions are possible to extend the MAPING framework. One that we find partic-
ularly interesting is to includes Human in the model. In our work, we only considered the system
as autonomous and fully detached on any human intervention. However, in a lot of applications
cited as possible uses, humans are actually in the system, and they cannot and should not be
replaced by robots. In search and rescue applications, rescue workers should be warned when

194

13.3. Long-term perspectives

a victim is found. In surveillance application a human operator should decide of the action to
perform is an intrusion or a fire is detected. In addition to this role of referent, humans can also
collaborate with robots in the exploration and exchange observations with the robots, as the
robots do. For all these situation, the way to incorporate humans in the loop need to be studied
and could lead to efficient, complete and very innovating systems.

Another evolution concerns the actions that the robots can perform. In our work, we consid-
ered only epistemic actions, that is to say actions that affect the belief states of the robots but
not the environment. This reduce the possibilities of exploration and the range of applications.
Indeed we considered that a robot cannot open a door itself, that it cannot extinguish a start
of fire, etc. Transforming the model to mix epistemic and non-epistemic actions would increase
the difficulty of solving it but could make it applicable to more situations.

Finally, research could be carried on to mix MAPING with semantic information fusion.
We only considered in this work that each robot has all the features in its belief state. But
we could complete the belief state with an probabilistic ontology and use this ontology to infer
higher information from the feature detected. This could also enable the robots to have different
low level features in their belief state and to combine all those features to different higher level
features, usable by another robot or a human operator.

195

Chapter 13. Perspectives

196

Bibliography

[Agmon, 2010] Agmon, N. (2010). On events in multi-robot patrol in adversarial environments.
In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

[Agmon et al., 2011] Agmon, N., Kaminka, G. A., and Kraus, S. (2011). Multi-robot adversarial
patrolling facing a full-knowledge opponent. Journal of Artificial Intelligence, pages 887–916.

[Agmon et al., 2008a] Agmon, N., Kraus, S., and Kaminka, G. A. (2008a). Multi-robot perimeter
patrol in adversarial settings. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA).

[Agmon et al., 2008b] Agmon, N., Sadov, V., Kaminka, G. A., and Kraus, S. (2008b). The im-
pact of adversarial knowledge on adversarial planning in perimeter patrol. In Proceedings of the
7th international joint conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Allen and Darwiche, 2002] Allen, D. and Darwiche, A. (2002). New advances in inference by
recursive conditioning. In Proceedings of the 19th conference on Uncertainty in Artificial
Intelligence.

[Amato et al., 2006] Amato, C., Bernstein, D. S., and Zilberstein, S. (2006). Solving pomdps
using quadratically constrained linear programs. In Proceedings of the 5th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS).

[Amigoni et al., 2012] Amigoni, F., Basilico, N., and Li, A. Q. (2012). How much worth is
coordination of mobile robots for exploration in search and rescue? In RoboCup 2012: Robot
Soccer World Cup XVI.

[and, 2000] and, M. R. E. (2000). Theoretical underpinnings of situation awareness: A critical
review. Situation awareness analysis and measurement, pages 3–32.

[Araya-Lopez et al., 2010] Araya-Lopez, M., Buffet, O., Thomas, V., and Charpillet, F. (2010).
A pomdp extension with belief-dependent rewards. In Advances in Neural Information Pro-
cessing Systems (NIPS).

[Aulinas et al., 2008] Aulinas, J., Petillot, Y., Salvi, J., and Lladó, X. (2008). The slam problem:
A survey. In Proceedings of the 11th International Conference of the Catalan Association for
Artificial Intelligence.

[Aurenhammer, 1991] Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental
geometric data structure. ACM Computing Surveys, pages 345–405.

197

Bibliography

[Bachrach et al., 2009] Bachrach, A., He, R., , and Roy, N. (2009). Autonomous flight in un-
known indoor environments. International Journal of Micro Air Vehicles, pages 217–228.

[Bagnell et al., 2003] Bagnell, J. A., Kakade, S. M., Schneider, J. G., and Ng, A. Y. (2003). Policy
search by dynamic programming. In Advances in neural information processing systems.

[Bai et al., 2011] Bai, H., Hsu, D., Lee, W. S., , and Ngo, V. A. (2011). Monte-carlo value
iteration for continuous-state pomdps. In Algorithmic foundations of robotics IX.

[Bajcsy, 1988] Bajcsy, R. (1988). Active perception. In Proceedings of the IEEE.

[Barry et al., 2011] Barry, J., Kaelbling, L. P., and Lozano-Pérez, T. (2011). Deth*: Approx-
imate hierarchical solution of large markov decision processes. In Proceedings of the 25th
Conference on Artificial intelligence (AAAI).

[Basilico et al., 2009] Basilico, N., Gatti, N., and Amigoni, F. (2009). Leader-follower strategies
for robotic patrolling in environments with arbitrary topologies. In Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Basilico et al., 2012] Basilico, N., Gatti, N., and Amigoni, F. (2012). Patrolling security games:
Definition and algorithms for solving large instances with single patroller and single intruder.
Artificial Intelligence, pages 78–123.

[Basilico et al., 2010] Basilico, N., Rossignoli, D., Gatti, N., and Amigoni, F. (2010). A game-
theoretical model applied to an active patrolling camera. In Proceedings of the International
Conference on Emerging Security Technologies (EST).

[Bautin et al., 2011] Bautin, A., Simonin, O., and Charpillet, F. (2011). Towards a commu-
nication free coordination for multi-robot exploration. In Proceedings of the 8th National
Conference on Control Architectures of Robots.

[Bayes, 1763] Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances.
Philosophical Transactions, pages 370–418.

[Becker, 2004] Becker, R. (2004). Solving transition independent decentralized markov decision
processes. Computer Science Department Faculty Publication Series, pages 423–455.

[Bellenger, 2013] Bellenger, A. (2013). Semantic Decision Support for Information Fusion Ap-
plications. PhD thesis, Institut National des Sciences Appliquées (INSA) de Rouen.

[Bellman, 1957] Bellman, R. (1957). A markovian decision process. Technical report, DTIC
Document.

[Bellman and Dreyfus, 1962] Bellman, R. and Dreyfus, S. (1962). Applied dynamic program-
ming. Technical report, RAND Corporation.

[Bernstein et al., 2002] Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002).
The complexity of decentralized control of markov decision processes. Mathematics of Opera-
tions Research, pages 819–840.

[Bertoli et al., 2001] Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001). Planning in
nondeterministic domains under partial observability via symbolic model checking. In Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI).

198

[Beynier and Mouaddib, 2005] Beynier, A. and Mouaddib, A.-I. (2005). A polynomial algorithm
for decentralized markov decision processes with temporal constraints. In Proceedings of the
4th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Blum and Furst, 1997] Blum, A. and Furst, M. (1997). Fast planning through planning graph
analysis. Artificial Intelligence, pages 281–300.

[Borlund, 2003] Borlund, P. (2003). The concept of relevance in ir. Journal of the American
Society for Information Science and Technology, pages 913–925.

[Boutilier et al., 1999] Boutilier, C., Dean, T., and Hanks, S. (1999). Decision-theoretic planning:
Structural assumptions and computational leverage. Journal of Artificial Intelligence Research,
pages 1–94.

[Boutilier et al., 1995] Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting struc-
ture in policy construction. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI).

[Boutilier et al., 2000] Boutilier, C., Dearden, R., and Goldszmidt, M. (2000). Stochastic dy-
namic programming with factored representations. Artificial Intelligence, pages 49–107.

[Boutilier and Poole, 1996] Boutilier, C. and Poole, D. (1996). Computing optimal policies for
partially observable decision processes using compact representations. In Proceedings of the
National Conference on Artificial Intelligence.

[Burgard et al., 1999] Burgard, W., Fox, D., Jans, H., Matenar, C., and Thrun, S. (1999). Sonar-
based mapping with mobile robots using em. In Proceedings of the International Conference
on Machine Learning.

[Burgard et al., 2002] Burgard, W., Moors, M., and Schneider, F. (2002). Collaborative ex-
ploration of unknown environments with teams of mobile robots. In Advances in plan-based
control of robotic agents.

[Burgard et al., 2005] Burgard, W., Moors, M., Stachniss, C., and Schneider, F. (2005). Coor-
dinated multi-robot exploration. IEEE Transactions on Robotics, pages 376–386.

[Béziau, 1997] Béziau, J.-Y. (1997). What is many-valued logic? In Proceedings of the 27th
International Symposium on Multiple-Valued Logic.

[Cappé, 2009] Cappé, O. (2009). Online sequential monte carlo em algorithm. In Proceedings of
the 15th Workshop on Statistical Signal Processing.

[Carillo et al., 2012] Carillo, H., Reid, I., and Castellanos, J. (2012). On the comparison of
uncertainty criteria for active slam. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA).

[Carlone et al., 2010] Carlone, L., Du, J., Ng, M. K., Bona, B., and Indri, M. (2010). An
application of kullback-leibler divergence to active slam and exploration with particle filters.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

[Carlone et al., 2014] Carlone, L., Du, J., Ng, M. K., Bona, B., and Indri, M. (2014). Active slam
and exploration with particle filters using kullback-leibler divergence. Journal of Intelligent
and Robotic Systems, pages 291–311.

199

Bibliography

[Carroll et al., 2005] Carroll, D., Nguyen, C., Everett, H., and Frederick, B. (2005). Development
and testing for physical security robots. In Proceedings of the International Society for Optics
and Photonics.

[Cassandra et al., 1997] Cassandra, A., Littman, M. L., and Zhang, N. (1997). Incremental
pruning: A simple, fast, exact method for partially observable markov decision processes. In
Proceedings of the 13th conference on Uncertainty in artificial intelligence.

[Cassandra et al., 1994] Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting
optimally in partially observable stochastic domains. In Proceedings of the 12th National
Conference on Artificial intelligence (AAAI).

[Chanel et al., 2012] Chanel, C. P. C., Teichteil-Königsbuch, F., and Lesire, C. (2012). Pomdp-
based online target detection and recognition for autonomous uavs. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI).

[Chanel et al., 2013] Chanel, C. P. C., Teichteil-Königsbuch, F., and Lesire., C. (2013). Multi-
target detection and recognition by uavs using online pomdps. In Proceedings of the 27th
Conference on Artificial intelligence (AAAI).

[Chapman, 1987] Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence,
pages 333–377.

[Chavira and Darwiche, 2005] Chavira, M. and Darwiche, A. (2005). Compiling bayesian net-
works with local structure. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI).

[Cheng and Druzdzel, 2000] Cheng, J. and Druzdzel, M. J. (2000). Ais-bn: An adaptive im-
portance sampling algorithm for evidential reasoning in large bayesian networks. Journal of
Artificial Intelligence Research, pages 155–188.

[Chevaleyre, 2004] Chevaleyre, Y. (2004). Theoretical analysis of the multi-agent patrolling
problem. In Proceedings of the International Conference on Intelligent Agent Technology (IAT).

[Chu et al., 2007] Chu, H.-N., Glad, A., Simonin, O., Sempe, F., Drogoul, A., and Charpillet, F.
(2007). Swarm approaches for the patrolling problem, information propagation vs. pheromone
evaporation. In Proceedings of the IEEE International Conference on Tools with Artificial
Intelligence.

[Chung et al., 2004] Chung, T. H., andJoel W. Burdick, V. G., and Murray, R. M. (2004). On a
decentralized active sensing strategy using mobile sensor platforms in a network. In Proceedings
of the 43rd IEEE Conference on Decision and Control (CDC).

[Conitzer and Sandholm, 2006] Conitzer, V. and Sandholm, T. (2006). Computing the optimal
strategy to commit to. In Proceedings of the 7th ACM conference on Electronic commerce.

[Cooper, 1990] Cooper, G. F. (1990). The computational complexity of probabilistic inference
using bayesian belief networks. Artificial Intelligence, pages 393–405.

[Corff et al., 2011] Corff, S. L., Fort, G., and Moulines, E. (2011). Online expectation maximiza-
tion algorithm to solve the slam problem. In Statistical Signal Processing Workshop (SSP).

[Darwiche, 2001] Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence, pages 5–41.

200

[Darwiche, 2008] Darwiche, A. (2008). Bayesian Networks, chapter 11, pages 467–509. Elsevier.

[Davison and Murray, 2002] Davison, A. J. and Murray, D. W. (2002). Simultaneous localization
and map-building using active vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 865–880.

[Dean and Kanazawa, 1989] Dean, T. and Kanazawa, K. (1989). A model for reasoning about
persistence and causation. Computational Intelligence, pages 142–150.

[Dechter, 1999] Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning.
Artificial Intelligence, pages 41–85.

[Dempster, 1967] Dempster, A. P. (1967). Upper and lower probabilities induced by a multival-
ued mapping. The annals of Mathematical statistics, pages 325–339.

[Doshi and Gmytrasiewicz, 2009] Doshi, P. and Gmytrasiewicz, P. J. (2009). Monte carlo sam-
pling methods for approximating interactive pomdps. Journal of Artificial Intelligence Re-
search, pages 297–337.

[Doshi and Perez, 2008] Doshi, P. and Perez, D. (2008). Generalized point based value iteration
for interactive pomdps. In Proceedings of the 23rd Conference on Artificial intelligence (AAAI).

[Doshi et al., 2009] Doshi, P., Zeng, Y., and Chen, Q. (2009). Graphical models for interactive
pomdps: representations and solutions. Autonomous Agents and Multi-Agent Systems, pages
376–416.

[Dubois, 2007] Dubois, D. (2007). Uncertainty theories: a unified view. In Proceedings of the
IEEE Cybernetic Systems Conference.

[Dubois and Prade, 1998] Dubois, D. and Prade, H. (1998). Possibility theory: qualitative and
quantitative aspects. Quantified representation of uncertainty and imprecision, pages 169–226.

[Eidenberger and Scharinger, 2010] Eidenberger, R. and Scharinger, J. (2010). Active perception
and scene modeling by planning with probabilistic 6d object poses. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[Elmaliach et al., 2009] Elmaliach, Y., Agmon, N., and Kaminka, G. A. (2009). Multi-robot area
patrol under frequency constraints. Annals of Mathematics and Artificial Intelligence, pages
293–320.

[Elmaliach et al., 2008] Elmaliach, Y., Shiloni, A., and Kaminka, G. A. (2008). A realistic model
of frequency-based multi-robot polyline patrolling. In Proceedings of the 7th international
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Endsley, 1995] Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic
systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, pages
32–64.

[Fagin et al., 1995] Fagin, R., Halpern, J. Y., Moses, Y., , and Vardi, M. Y. (1995). Reasoning
about knowledge. MIT Press Cambridge.

[Feder et al., 1999] Feder, H. J. S., Leonard, J. J., and Smith, C. M. (1999). Adaptive mobile
robot navigation and mapping. he International Journal of Robotics Research, pages 650–668.

201

Bibliography

[Fedorov, 1972] Fedorov, V. V. (1972). Theory of optimal experiments. Academic Press Inc.

[Fikes and Nilsson, 1972] Fikes, R. E. and Nilsson, N. J. (1972). Strips: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, pages 189–208.

[Floreano and Mondada, 1994] Floreano, D. and Mondada, F. (1994). Active perception, nav-
igation, homing, and grasping: an autonomous perspective. In From Perception to Action
Conference.

[Floridi, 2008] Floridi, L. (2008). Understanding epistemic relevance. Erkenntnis, pages 69–92.

[Friedman and Halpern, 1995] Friedman, N. and Halpern, J. Y. (1995). Plausibility measures:
a user’s guide. In Proceedings of the 11th conference on Uncertainty in artificial intelligence.

[Friedman and Halpern, 2001] Friedman, N. and Halpern, J. Y. (2001). Plausibility measures
and default reasoning. Journal of the ACM, pages 648–685.

[Fudenberg and Tirole, 1991] Fudenberg, D. and Tirole, J. (1991). Game Theory. The
MIT Press.

[Gatti, 2008] Gatti, N. (2008). Game theoretical insights in strategic patrolling: Model and algo-
rithm in normal-form. In Proceedings of the 18th European Conference on Artificial Intelligence
(ECAI).

[Geffner and Bonet, 1998] Geffner, H. and Bonet, B. (1998). Solving large pomdps using real
time dynamic programming. In Proceedings of the 15th AAAI Fall Symposium on POMDPs.

[Ghallab et al., 2004] Ghallab, M., Nau, D., and Traverso, P. (2004). Automated planning: theory
& practice. Elsevier.

[Glad et al., 2008] Glad, A., Simonin, O., Buffet, O., and Charpillet, F. (2008). Theoretical
study of ant-based algorithms for multi-agent patrolling. In Proceedings of the 18th European
Conference on Artificial Intelligence including Prestigious Applications of Intelligent Systems
(PAIS).

[Gmytrasiewicz and Doshi, 2005] Gmytrasiewicz, P. J. and Doshi, P. (2005). A framework for
sequential planning in multi-agent settings. Journal of Artificial Intelligence Research, pages
49–79.

[Goldman and Zilberstein, 2003] Goldman, C. V. and Zilberstein, S. (2003). Optimizing infor-
mation exchange in cooperative multi-agent systems. In Proceedings of the 2th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Goldman and Zilberstein, 2004] Goldman, C. V. and Zilberstein, S. (2004). Decentralized con-
trol of cooperative systems: Categorization and complexity analysis. Journal of Artificial
Intelligence Research, pages 143–174.

[Grice, 1975] Grice, H. P. (1975). Syntax and semantics, chapter Logic and Conversation, pages
41–58. New York: Academic Press.

[Guestrin et al., 2003] Guestrin, C., Koller, D., Parr, R., , and Venkataraman, S. (2003). Efficient
solution algorithms for factored mdps. Journal of Artificial Intelligence Research, pages 399–
468.

202

[Guo, 2003] Guo, A. (2003). Decision-theoretic active sensing for autonomous agents. In Pro-
ceedings of the 2th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS).

[Guo and Qu, 2004] Guo, Y. and Qu, Z. (2004). Coverage control for a mobile robot patrolling a
dynamic and uncertain environment. In Proceedings of the 5th World Congress on Intelligent
Control and Automation (WCICA).

[Halpern, 2003a] Halpern, J. Y. (2003a). Reasoning about Uncertainty. The MIT Press.

[Halpern, 2003b] Halpern, J. Y. (2003b). Reasoning about Uncertainty, chapter Belief Revision,
pages 97–104. The MIT Press.

[Harmelen et al., 2008] Harmelen, F. V., Lifschitz, V., and Porter, B. (2008). Handbook of
Knowledge Representation (Foundations of Artificial Intelligence). Elsevier Science.

[Hauskrecht, 2000] Hauskrecht, M. (2000). Value-function approximations for partially observ-
able markov decision processes. Journal of Artificial Intelligence Research, pages 33–94.

[Heijenoort, 1967] Heijenoort, J. V. (1967). From Frege to Gödel: a source book in mathematical
logic. Harvard University Press.

[Hintikka, 1962] Hintikka, J. (1962). Knowledge and belief. Cornell University Press.

[Holmes et al., 2009] Holmes, S. A., Klein, G., , and Murray, D. W. (2009). An o(n2) square root
unscented kalman filter for visual simultaneous localization and mapping. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1251–1263.

[Howard, 1960] Howard, R. A. (1960). Dynamic Programming and Markov Processes. The
MIT Press.

[Hwang et al., 2009] Hwang, K.-S., Lin, J.-L., and Huang, H.-L. (2009). Cooperative patrol
planning of multi-robot systems by a competitive auction system. In Proceedings of the Inter-
national Joint Conference ICCAS-SICE.

[Izadi and Precup, 2005] Izadi, M. T. and Precup, D. (2005). Using rewards for belief state
updates in partially observable markov decision processes. Lecture Notes in Computer Scienc,
Machine Learning: ECML 2005, 3720:593–600.

[Jensen et al., 1990] Jensen, F., Lauritzen, S., and Olsen, K. (1990). Bayesian updating in re-
cursive graphical models by local computation. Computational Statistics Quarterly, pages
269–282.

[Jensfelt et al., 2006] Jensfelt, P., Kragic, D., Folkesson, J., and Bjorkman, M. (2006). A frame-
work for vision based bearing only 3d slam. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA).

[Ji and Carin, 2007] Ji, S. and Carin, L. (2007). Cost-sensitive feature acquisition and classifi-
cation. Pattern Recognition, page 1474–1485.

[Jordan et al., 1999] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul., L. K. (1999). An
introduction to variational methods for graphical models. Machine learning, pages 183–233.

203

Bibliography

[Jøsang et al., 2007] Jøsang, A., Ismail, R., and Boyd, C. (2007). A survey of trust and reputa-
tion systems for online service provision. Decision support system, pages 618–644.

[Kiefer, 1974] Kiefer, J. (1974). General equivalence theory for optimum designs (approximate
theory). The annals of Statistics, pages 849–879.

[Ko et al., 2003] Ko, J., Stewart, B., Fox, D., Konolige, K., and Limketkai, B. (2003). A practical,
decision-theoretic approach to multi-robot mapping and exploration. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[Kollar and Roy, 2008] Kollar, T. and Roy, N. (2008). Trajectory optimization using reinforce-
ment learning for map exploration. The International Journal of Robotics Research, page
175–196.

[Koller and Parr, 2000] Koller, D. and Parr, R. (2000). Policy iteration for factored mdps. In
Proceedings of the 16th conference on Uncertainty in artificial intelligence.

[Kontitsis et al., 2013] Kontitsis, M., Theodorou, E. A., and Todorov, E. (2013). Multi-robot
active slam with relative entropy optimization. In American Control Conference (ACC).

[Kuhn, 1955] Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval
research logistics quarterly, page 83–97.

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information and suffi-
ciency. The annals of mathematical statistics, page 79–86.

[Kurniawati et al., 2008] Kurniawati, H., Hsu, D., and Lee, W. S. (2008). Sarsop: Efficient
point-based pomdp planning by approximating optimally reachable belief spaces. Robotics:
Science and Systems, pages 65–72.

[Larkin and Dechter, 2003] Larkin, D. and Dechter, R. (2003). Bayesian inference in the presence
of determinism. In Proceedings of the 9+th International Workshop on Artificial Intelligence
and Statistics.

[Lauritzen and Spiegelhalter, 1988] Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local com-
putations with probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, page 157–224.

[Laverny and Lang, 2005a] Laverny, N. and Lang, J. (2005a). From knowledge-based programs
to graded belief-based programs, part i: On-line reasoning*. Synthese, page 277–321.

[Laverny and Lang, 2005b] Laverny, N. and Lang, J. (2005b). From knowledge-based programs
to graded belief-based programs, part ii: off-line reasoning. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI).

[Leung et al., 2006] Leung, C., Huang, S., and Dissanayake, G. (2006). Active slam using model
predictive control and attractor based exploration. In IEEE/RJS International Conference on
Intelligent Robots and Systems.

[Lewis et al., 2004] Lewis, P. J., Torrie, M. R., and Omilon, P. M. (2004). Applications suitable
for unmanned and autonomous missions utilizing the tactical amphibious ground support
(tags) platform. Defense and Security, page 508–519.

204

[Lilienthal et al., 2007] Lilienthal, A. J., Loutfi, A., Blanco, J. L., Galindo, C., and Gonzalez, J.
(2007). A rao-blackwellisation approach to gdm-slam – integrating slam and gas distribution
mapping. In Proceedings of the European Conference on Mobile Robots (ECMR).

[Littman, 1994a] Littman, M. L. (1994a). Memoryless policies: Theoretical limitations and prac-
tical results. In From Animals to Animats 3: Proceedings of the third international conference
on simulation of adaptive behavior.

[Littman, 1994b] Littman, M. L. (1994b). The witness algorithm: Solving partially observable
markov decision processes. Technical report, Providence, RI, USA.

[Littman et al., 2001] Littman, M. L., Majercik, S. M., and Pitassi, T. (2001). Stochastic boolean
satisfiability. Journal of Automated Reasoning, page 251–296.

[Loutfi et al., 2009] Loutfi, A., Coradeschi, S., Lilienthal, A. J., and Gonzalez, J. (2009). Gas
distribution mapping of multiple odour sources using a mobile robot. Robotica, pages 311–319,.

[Lovejoy, 1991] Lovejoy, W. S. (1991). Computationally feasible bounds for partially observed
markov decision processes. Operations research, page 162–175.

[Machado et al., 2003] Machado, A., Ramalho, G., Zucker, J.-D., and Drogoul., A. (2003). Multi-
agent patrolling: An empirical analysis of alternative architectures. Multi-Agent-Based Simu-
lation II, pages 155–170.

[Markov, 1960] Markov, A. (1960). The Theory of Algorithms. American Mathematical Society
Translations.

[Martins-Filho and Macau, 2007] Martins-Filho, L. S. and Macau, E. E. (2007). Patrol mobile
robots and chaotic trajectories. Mathematical problems in engineering.

[Matignon et al., 2012] Matignon, L., Jeanpierre, L., , and Mouaddib, A.-I. (2012). Distributed
value functions for multi-robot exploration: a position paper. In Proceedings of the Multi-Agent
Sequential Decision Making in Uncertain Multi-Agent Domain Workshop (MSDM).

[Menezes et al., 2006] Menezes, T., Tedesco, P., and Ramalho., G. (2006). Negotiator agents for
the patrolling task. In Advances in Artificial Intelligence IBERAMIA-SBIA.

[Meuleau et al., 1999] Meuleau, N., Kim, K.-E., Kaelbling, L. P., , and Cassandra, A. R. (1999).
Solving pomdps by searching the space of finite policies. In Proceedings of the 15th conference
on Uncertainty in artificial intelligence.

[Mihaylova et al., 2003] Mihaylova, L., Lefebvre, T., Bruyninckx, H., Gadeyne, K., and Schutter,
J. D. (2003). A comparison of decision making criteria and optimization methods for active
robotic sensing. Numerical Methods and Applications, page 316–324.

[Mihaylova et al., 2002] Mihaylova, L., Lefebvre, T., Herman Bruyninckx, K. G., and Schutter.,
J. D. (2002). Active sensing for robotics - a survey. In Proceedings of the 5 th International
Conference On Numerical Methods and Applications.

[Mises, 1957] Mises, R. V. (1957). Probability, statistics, and truth. Courier Dover Publications.

[Moeschler, 2007] Moeschler, J. (2007). Language and Speech Engineering, chapter ntroduction
to pragmatics, pages 51–68. EPFL Press.

205

Bibliography

[Montemerlo and Thrun, 2007] Montemerlo, M. and Thrun, S. (2007). FastSLAM: A Scalable
Method for the Simultaneous Localization and Mapping Problem in Robotics. Springer Tracts
in Advanced Robotics.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). Fast-
slam: A factored solution to the simultaneous localization and mapping problem. In Proceed-
ings of the 18th National Conference on Artificial intelligence (AAAI).

[Morari et al., 2014] Morari, M., Garcia, C. E., and Prett, D. M. (2014). Model predictive
control: theory and practice. In Proceedings of the Workshop on Model Based Process Control.

[Moravec and Elfes, 1985] Moravec, H. P. and Elfes, A. (1985). High resolution maps from wide
angle sonar. In Proceedings of the IEEE International Conference on Robotics and Automation.

[Neapolitan, 1990] Neapolitan, R. E. (1990). Probabilistic Reasoning in Expert Systems: Theory
and Algorithms. Wiley-Interscience.

[Newell et al., 1959] Newell, A., Shaw, J. C., and Simon, H. A. (1959). Report on a general
problem-solving program. In IFIP Congress.

[Nikulin, 2015] Nikulin, M. S. (2015). Hellinger distance. Encyclopedia of Mathematics.

[Oliehoek, 2012] Oliehoek, F. A. (2012). Reinforcement Learning: State of the Art, chapter
Decentralized POMDPs, pages 471–503. Springer Berlin Heidelberg.

[Oliehoek et al., 2008] Oliehoek, F. A., Spaan, M. T., Whiteson, S., and Vlassis, N. (2008). Ex-
ploiting locality of interaction in factored dec-pomdps. In Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems.

[Oxford,] Oxford. Patrol. The Oxford online dictionary. Accessed: 2015-01-21.

[Palacios and Geffner, 2009] Palacios, H. and Geffner, H. (2009). Compiling uncertainty away in
conformant planning problems with bounded width. Journal of Artificial Intelligence Research,
pages 623–675.

[Paruchuri et al., 2008] Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordonez, F., and
Kraus., S. (2008). Playing games for security: an efficient exact algorithm for solving bayesian
stackelberg games. In Proceedings of the 7th International Conference on Autonomous Agents
and Multiagent Systems.

[Paruchuri et al., 2009] Paruchuri, P., Pearce, J. P., Marecki, J., Tambe, M., Ordónez, F., and
Kraus, S. (2009). Coordinating randomized policies for increasing security of agent systems.
Information Technology and Management, pages 67–79.

[Paruchuri et al., 2007] Paruchuri, P., Pearce, J. P., Tambe, M., Ordonez, F., and Kraus., S.
(2007). An efficient heuristic approach for security against multiple adversaries. In Proceedings
of the 6th International Conference on Autonomous Agents and Multiagent Systems.

[Paruchuri et al., 2006] Paruchuri, P., Tambe, M., Ordóñez, F., and Kraus., S. (2006). Secu-
rity in multiagent systems by policy randomization. In Proceedings of the 5th International
Conference on Autonomous Agents and Multiagent Systems,.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers Inc.

206

[Penberthy and Weld, 1992] Penberthy, J. S. and Weld, D. S. (1992). Ucpop: A sound, com-
plete, partial order planner for adl. In Proceedings of the 3rd International Conference on the
Principles of Knowledge Representation and Reasoning (KR).

[Petrick and Bacchus, 2002] Petrick, R. P. and Bacchus, F. (2002). A knowledge-based approach
to planning with incomplete information and sensing. In Artificial Intelligence Planning Sys-
tems.

[Petrick and Bacchus, 2004] Petrick, R. P. and Bacchus, F. (2004). Extending the knowledge-
based approach to planning with incomplete information and sensing. In Proceedings of the
9th International Conference on the Principles of Knowledge Representation and Reasoning
(KR).

[Pineau et al., 2003] Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based value iteration:
An anytime algorithm for pomdps. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI).

[Pistore et al., 2005] Pistore, M., Marconi, A., Bertoli, P., and Traverso., P. (2005). Automated
composition of web services by planning at the knowledge level. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI).

[Poole and Zhang, 2003] Poole, D. and Zhang, N. L. (2003). Exploiting contextual independence
in probabilistic inference. Journal of Artificial Intelligence Research, pages 263–313.

[Poole and Mackworth, 2010] Poole, D. L. and Mackworth, A. K. (2010). Artificial Intelligence:
foundations of computational agents. Cambridge University Press.

[Portugal and Rocha, 2010] Portugal, D. and Rocha, R. (2010). Msp algorithm: multi-robot
patrolling based on territory allocation using balanced graph partitioning. In Proceedings of
the ACM Symposium on Applied Computing.

[Portugal and Rocha., 2011] Portugal, D. and Rocha., R. (2011). A survey on multi-robot pa-
trolling algorithms. Technological Innovation for Sustainability, pages 139–146.

[Poupart, 2005] Poupart, P. (2005). Exploiting structure to efficiently solve large scale partially
observable Markov decision processes. PhD thesis, University of Toronto.

[Poupart and Boutilier, 2003] Poupart, P. and Boutilier, C. (2003). Bounded finite state con-
trollers. In Advances in Neural Information Processing Systems (NIPS).

[Poupart et al., 2011] Poupart, P., Kim, K.-E., and Kim, D. (2011). Closing the gap: Improved
bounds on optimal pomdpsolutions. In Proceedings of the 21st International Conference on
Automated Planning and Scheduling (ICAPS).

[Puterman, 1994] Puterman, M. L. (1994). Markov decision processes: discrete stochastic dy-
namic programming. Wiley.

[Pynadath, 2002] Pynadath, D. V. (2002). The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,
pages 389–423.

[Rathnasabapathy et al., 2006] Rathnasabapathy, B., Doshi, P., and Gmytrasiewicz., P. (2006).
Exact solutions of interactive pomdps using behavioral equivalence. in. In Proceedings of the
5th International Conference on Autonomous Agents and Multiagent Systems.

207

Bibliography

[Ross and Chaib-Draa, 2007] Ross, S. and Chaib-Draa, B. (2007). Aems: An anytime online
search algorithm for approximate policy refinement in large pomdps. In Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI).

[Roussel, 2010] Roussel, S. (2010). Apports de la logique mathématique pour la modélisation de
l’information échangée dans les systèmes multi-agents interactifs. PhD thesis, Université de
Toulouse.

[Roussel and Cholvy, 2009] Roussel, S. and Cholvy, L. (2009). Cooperative interpersonal com-
munication and relevant information. In Proceedings of the ESSLLI Workshop on Logical
Methods for Social Concepts.

[Ruan et al., 2005] Ruan, S., Meirina, C., Yu, F., Pattipati, K. R., and Popp, R. L. (2005).
Patrolling in a stochastic environment. Technical report, Connecticut University.

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern
Approach (Third Edition). Prentice-Hall.

[Sacerdoti, 1975] Sacerdoti, E. D. (1975). The nonlinear nature of plans. In Proceedings of the
4th International Joint Conference on Artificial Intelligence (IJCAI).

[Sak et al., 2008] Sak, T., Wainer, J., and Goldenstein, S. K. (2008). Probabilistic multiagent
patrolling. In Advances in Artificial Intelligence (SBIA).

[Saracevic, 1996] Saracevic, T. (1996). Relevance reconsidered. In Proceedings of the 2nd Con-
ference on Conceptions of Library and Information Science (CoLIS 2).

[Satsangi et al., 2014] Satsangi, Y., Whiteson, S., and Oliehoek, F. (2014). Exploiting submod-
ular value functions for faster dynamic sensor selection: Extended version. Technical report,
University of Amsterdam.

[Satsangi et al., 2015] Satsangi, Y., Whiteson, S., and Oliehoek, F. A. (2015). Exploiting sub-
modular value functions for faster dynamic sensor selection. In Proceedings of the 29th Con-
ference on Artificial intelligence (AAAI).

[Savage, 1972] Savage, L. J. (1972). The foundations of statistics. Courier Dover Publications.

[Sayyareh, 2011] Sayyareh, A. (2011). A new upper bound for kullback-leibler divergence. Ap-
plied Mathematical Sciences, page 3303–3317.

[Seuken and Zilberstein, 2008] Seuken, S. and Zilberstein, S. (2008). Formal models and algo-
rithms for decentralized decision making under uncertainty. In Proceedings of the 7th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[Seymour and Peterson., 2009] Seymour, R. and Peterson., G. L. (2009). A trust-based multi-
agent system. In Proceedings of the International Conference on Computational Science and
Engineering (CSE).

[Shachter and Peot., 1989] Shachter, R. D. and Peot., M. A. (1989). Simulation approaches to
general probabilistic inference on belief networks. In Proceedings of the 5th Annual Conference
on Uncertainty in Artificial Intelligence (UAI).

[Shafer, 1976] Shafer, G. (1976). A mathematical theory of evidence. Princeton university press.

208

[Shani et al., 2013] Shani, G., Pineau, J., and Kaplow, R. (2013). A survey of point-based
pomdp solvers. In Proceedings of the 12th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

[Shenoy and Shafer, 1986] Shenoy, P. P. and Shafer, G. (1986). Propagating belief functions
with local computations. IEEE Expert, pages 43–52.

[Sigaud and Buffet, 2010] Sigaud, O. and Buffet, O. (2010). Markov decision processes in arti-
ficial intelligence. Wiley.

[Silver and Veness, 2010] Silver, D. and Veness, J. (2010). Monte-carlo planning in large pomdps.
In Advances in Neural Information Processing Systems.

[Sim and Roy, 2005] Sim, R. and Roy, N. (2005). Global a-optimal robot exploration in slam.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

[Simmons et al., 2000] Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun,
S., and Younes., H. (2000). Coordination for multi-robot exploration and mapping. In Pro-
ceedings of the 17th National Conference on Artificial intelligence (AAAI).

[Singh et al., 2009] Singh, A., andl Carlos Guestrin, A. K., and Kaiser, W. (2009). Efficient
informative sensing using multiple robots. Journal of Artificial Intelligence Research, pages
707–755.

[Smallwood and Sondik, 1973] Smallwood, R. D. and Sondik, E. J. (1973). The optimal control
of partially observable markov processes over a finite horizon. Operations Research, pages
1071–1088.

[Smith and Weld, 1998] Smith, D. E. and Weld, D. S. (1998). Conformant graphplan. In Pro-
ceedings of the 15th National Conference on Artificial intelligence (AAAI).

[Smyth, 2014] Smyth, T. (2014). Rules for tower of hanoï. Accessed: 2014-10-15.

[Sondik, 1978] Sondik, E. J. (1978). The optimal control of partially observable markov processes
over the infinite horizon: Discounted costs. Operations Research, pages 282–304.

[Spaan, 2008] Spaan, M. T. (2008). Cooperative active perception using pomdps. In Proceedings
of the Workshop on advancements in POMDP solvers (Workshop of AAAI).

[Spaan et al., 2010] Spaan, M. T., Veiga, T. S., and Lima, P. U. (2010). Active cooperative per-
ception in network robot systems using pomdps. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

[Spaan and Vlassis, 2005] Spaan, M. T. and Vlassis, N. A. (2005). Perseus: Randomized point-
based value iteration for pomdps. Journal of Artificial Intelligence Research, pages 195–220.

[Spohn, 1988] Spohn, W. (1988). Ordinal conditional functions: A dynamic theory of epistemic
states. In Proceedings of the Irvine Conference on Probability and Causation.

[Stachniss et al., 2005] Stachniss, C., Grisetti, G., and Burgard, W. (2005). Information gain-
based exploration using rao-blackwellized particle filters. In Robotics: Science and Systems.

[Stefik, 1981] Stefik, M. (1981). Planning with constraints. Artificial Intelligence, pages 111–139.

209

Bibliography

[Sunderhauf et al., 2007] Sunderhauf, N., Lange, S., and Protzel, P. (2007). Using the unscented
kalman filter in mono-slam with inverse depth parametrization for autonomous airship control.
In IEEE International Workshop of Safety, Security and Rescue Robotics.

[Sussman, 1974] Sussman, G. J. (1974). The virtuous nature of bugs. Readings in Planning,
pages 111–117.

[van Lambalgen, 1987] van Lambalgen, M. (1987). Random Sequences. PhD thesis, University
of Amsterdam.

[van Lint and Wilson, 2001] van Lint, J. H. andWilson, R. M. (2001). A course in combinatorics.
Cambridge university press.

[van Rijsbergen, 1979] van Rijsbergen, C. K. (1979). Information Retrieval (2nd Edition).
Butterworth-Heinemann Newton.

[Wang et al., 2007] Wang, Z., Huang, S., and Dissanayake, G. (2007). Multi-robot simultaneous
localization and mapping using d-slam framework. In Proceedings of the 3rd International
Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP).

[Weyns et al., 2004] Weyns, D., Steegmans, E., and Holvoet, T. (2004). Towards active percep-
tion in situated multi-agent systems. Applied Artificial Intelligence, pages 867–883.

[Wilson and Sperber, 2002] Wilson, D. and Sperber, D. (2002). Handbook of pragmatics, chapter
Relevance theory, pages 606–632. Wiley.

[Wright, 1951] Wright, G. H. V. (1951). An essay in modal logic. North-Holland Pub Co.

[Wurm et al., 2008] Wurm, K. M., Stachniss, C., and Burgard, W. (2008). Coordinated multi-
robot exploration using a segmentation of the environment. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

[Yamauchi, 1997] Yamauchi, B. (1997). A frontier-based approach for autonomous exploration.
In Proceedings of the International Symposium on Computational Intelligence in Robotics and
Automation (CIRA).

[Yamauchi, 1998] Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In
Proceedings of the second international conference on Autonomous agents (AGENTS).

[Yedidia et al., 2005] Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free-
energy approximations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, pages 1182–2312.

[Zadeh, 1988] Zadeh, L. A. (1988). Fuzzy logic. Computer, pages 83–93.

[Zadeh, 1999] Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets
and Systems, pages 9–34.

[Zhou and Roumeliotis, 2006] Zhou, X. S. and Roumeliotis, S. I. (2006). Multi-robot slam with
unknown initial correspondence: The robot rendez-vous case. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems.

[Zlot et al., 2002] Zlot, R., Stentz, A., Dias, M. B., and Thayer, S. (2002). Multi-robot explo-
ration controlled by a market economy. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA).

210

