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Abstract

Security in embedded systems such as smartphones requires protection of private data
manipulated by third-party applications. These applications can provoke the leakage
of private information without user authorization. Many security mechanisms use
dynamic taint analysis techniques for tracking information flow and protecting sensitive
data in the smartphone system.

But these techniques cannot detect control flows that use conditionals to implicitly
transfer information from objects to other objects. This can cause an under taint-
ing problem i.e. that some values should be marked as tainted, but are not. The
under-tainting problem can be the cause of a failure to detect a leakage of sensitive
information. In particular, malicious applications can bypass Android system and get
privacy sensitive information through control flows.

In this thesis, we provide a security mechanism to control the manipulation of
private data by third-party apps that exploit control flows to leak sensitive information.
We aim at overcoming the limitations of the existing approaches based on dynamic taint
analysis.

We propose an enhancement of dynamic taint analysis that propagates taint along
control dependencies in the Android system embedded on smartphones. We use a
hybrid approach that combines and benefits from the advantages of static and dynamic
analyses to track control flows. We formally specify the under-tainting problem and
we provide an algorithm to solve it based on a set of formally defined rules describing
the taint propagation. We prove the completeness of these rules and the correctness
and completeness of the algorithm.

Our proposed approach can resist to code obfuscation attacks based on control
dependencies that exploit taint propagation to leak sensitive information in the Android
system. To detect these obfuscated code attacks, we use the defined propagation
rules. Our approach is implemented and tested on the Android system embedded on
smartphones. By using this new approach, it becomes possible to protect sensitive
information and detect control flow attacks without reporting too many false positives.





Résumé

La sécurité dans les systèmes embarqués tels que les smartphones exige une protection
des données privées manipulées par les applications tierces. Ces applications peuvent
provoquer la fuite des informations confidentielles sans l’autorisation de l’utilisateur.
Certains mécanismes utilisent des techniques d’analyse dynamique basées sur le “data-
tainting” pour suivre les flux d’informations et pour protéger les données sensibles dans
les smartphones. Mais ces techniques ne propagent pas la teinte à travers les flux de
contrôles qui utilisent des instructions conditionnelles pour transférer implicitement
les informations. Cela peut provoquer un problème d’under tainting : le processus
de teintage tel que défini engendre des faux négatifs. En particulier, les applications
malveillantes peuvent contourner le système Android et obtenir des informations sen-
sibles à travers les flux de contrôle en exploitant le problème d’under tainting.

Dans cette thèse, nous fournissons un mécanisme de sécurité pour contrôler la ma-
nipulation des données privées par les applications tierces qui exploitent les flux de
contrôle pour obtenir des informations sensibles. Nous visons à surmonter les limita-
tions des approches existantes basées sur l’analyse dynamique.

Nous proposons une amélioration de l’analyse dynamique qui propage la teinte tout
au long des dépendances de contrôle dans les systèmes Android embarqués sur les
smartphones. Nous utilisons une approche hybride qui combine et bénéficie des avan-
tages de l’analyse statique et de l’analyse dynamique pour suivre les flux de contrôle.
Nous spécifions formellement le problème d’under tainting et nous fournissons un algo-
rithme pour le résoudre reposant sur un ensemble de règles formellement définies qui
décrivent la propagation de la teinte. Nous prouvons la complétude de ces règles ainsi
que celle de l’algorithme.

Notre approche proposée résiste aux attaques d’obfuscation de code reposant sur
les dépendances de contrôle qui exploitent la propagation de la teinte pour obtenir des
informations sensibles dans le système Android. Pour détecter ces attaques par obfus-
cation de code, nous utilisons les règles de propagation de la teinte. Notre approche est
implémentée et testée dans le système Android embarqué sur les smartphones. Grâce
à cette nouvelle approche, il est possible de protéger les informations sensibles et de
détecter les attaques de flux de contrôle sans engendrer trop de faux positifs.
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CHAPTER

1 Introduction

1.1 Motivation

Embedded systems such as mobile devices are increasingly used in our daily lives.
According to a recent Gartner report [1], 455.6 million of worldwide mobile phones were
sold in the third quarter of 2013, which corresponds to 5.7 percent increase from the
same period last year. Sales of smartphones accounted for 55 percent of overall mobile
phone sales in the third quarter of 2013. Smartphones operating systems are used
to store and handle sensitive information like phone identity, user contacts, pictures,
locations, etc. The leakage of these data by an attacker or advertising servers causes a
real risk for privacy.

To satisfy smartphones user’s requirements, the development of smartphone appli-
cations have been growing at a high rate. In May 2013, 48 billion apps have been
installed from the Google Play store [2]. Most of these applications are available to
users without any code review or test and are often used to capture, store, manipulate,
and access to data of a sensitive nature. An attacker can exploit these applications
and launch control flow attacks to compromise confidentiality of the smartphone system
and can leak private information without user authorization.

Android surpassed 80 percent market share in the third quarter of 2013 [1] and it is
the most targeted system by cyber criminals [3]. In a study presented in the Black Hat
conference, Daswani [4] analyzed the live behavior of 10,000 Android applications and
showed that more than 800 were found to be leaking personal data to an unauthorized
server.

Many mechanisms are used to protect the Android system against attacks, such
as the dynamic taint analysis that is implemented in TaintDroid [5]. The principle of
dynamic taint analysis is to “taint" some of the data in a system and then propagate
the taint to data for tracking the information flow in the program. The dynamic
taint analysis mechanism is used primarily for vulnerability detection and protection of
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sensitive data. To detect the exploitation of vulnerabilities, the sensitive transactions
must be monitored to ensure that they are not tainted by outside data. But this
technique does not detect control flows which can cause an under tainting problem i.e.
that some values should be marked as tainted, but are not. This can cause a failure to
detect a leakage of sensitive information. Thus, malicious applications can bypass the
Android system and get privacy sensitive information through control flows. Therefore,
it is important to provide adequate security mechanisms to control the manipulation of
private data by third-party apps that exploit control flows to leak sensitive information.
It is the aim of this thesis to define such security mechanism. In this context, many
challenges need to be addressed such as limited resources smartphones, unavailable
application source codes and diversity of sensitive data.

1.2 Contributions

We propose an enhancement of dynamic taint analysis that propagates taint along
control dependencies to track control flows in embedded systems such as the Google
Android operating system. We use a hybrid approach that combines and benefits from
the advantages of static and dynamic analyses [6].

We give a formal specification of the under tainting problem that can cause a failure
to detect a leakage of sensitive information in Android system. Then, we specify a set
of formally defined rules that describe the taint propagation to solve it. We prove
the completeness of these rules. Our approach is based on a taint algorithm to solve
the under tainting problem using these rules. Afterwards, we analyse some important
properties of our algorithm such as Correctness and Completeness [7].

We show that our approach can resist to code obfuscation attacks in control flow
statements that exploit taint propagation to leak sensitive information in the Android
system. To detect these obfuscated code attacks based on control dependencies, we
use the propagation rules [8].

Finally, we implement our approach in the TaintDroid System that cannot detect
control flows. We have enhanced the TaintDroid approach by tracking control flow in
the Android system to solve the under-tainting problem. We have tested our approch
on the Android system embedded on smartphones. We show that our approach is
effective to detect control flow attacks and solve the under-tainting problem.
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1.3 Thesis Outline

In chapter 2, we study features, benefits and limitations of different smartphone oper-
ating systems. Thereafter, we propose a table of comparison between platforms.

In chapter 3, we provide an analytical overview on secure private data in smart-
phones and more specifically in Android based mobile phones. We discuss some existing
approaches based on information flow tracking to secure embedded systems. We de-
scribe in more detail works based on data tainting. We study related works on securing
the Android system. We note that these works cannot detect the control flow attacks
that can cause an under tainting problem (false negatives). This problem can cause
a leakage of sensitive data. We present solutions based on data tainting mechanism
combining dynamic and static analysis to solve this problem.

In chapter 4, we formally specify the under-tainting problem and we provide an
algorithm to solve it based on a set of formally defined rules describing the taint prop-
agation. We prove the completeness of those rules and the correctness and completeness
of the algorithm.

In chapter 5, we present some code obfuscation attacks based on control dependen-
cies that TaintDroid cannot detect. We show that our approach can resist to this type
of attacks in the Android system using the taint propagation rules.

In chapter 6, we present concrete implementation, taint propagation tests and per-
formance evaluation of our approach. The overhead generated by our approach is
acceptable in comparison to the one obtained by TaintDroid.

Finally, chapter 7 concludes the manuscript and provides our perspectives for future
work.





CHAPTER

2 Smartphones

Nowadays smartphones simplify communication and offer many services through down-
loaded applications. These devices make managing contacts easier using phone, con-
tact, mail and the SMS/MMS messaging application. In addition, they provide leisure
services by application for taking, viewing and managing pictures and videos stored in
the device, as well as game applications and media players. These intelligent phones al-
low fast access to nearly every information needed in everyday life using a web browser,
a maps application and access to news or weather. As a consequence they are often
used by a lot of people. In this chapter, we study features, benefits and limitations
of different smartphone operating systems. We also present a comparison between the
existing platforms.

This chapter is organized as follows. In Section 2.1, we present the hardware and
software characteristics of smartphones. In Section 2.2, we study the smartphones
sales rate and usage. In Section 2.3, we describe security problems of smartphones. In
Section 2.4, we compare different smartphone operating systems. Finally, we present
some concluding remarks in Section 2.5.

2.1 Characteristics

Smartphones have more advanced computing capability and connectivity than mobile
phones. They include web browser, high resolution screens, media software and GPS
navigation. Smartphones are similar to classic computers because they provide the
opportunity to the user to install and run applications not determined by the man-
ufacturer. But, they differ from computers because they are a specialized unit with
limited and optimized resources and they include out of the box feature of various
communication technologies.

We present in the following the hardware and software characteristics of smart-
phones.
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Figure 2.1: Smartphone architecture [9]

2.1.1 Hardware Characteristics

As shown in Figure 2.1, smartphones are based on the ARM (Advanced RISC Ma-
chines) architecture.

This architecture is composed of several components to support various function-
alities. These components are classified into two categories: the core component and
the attached components. The core component allows the management of all parts of
the smartphone.

The basic element in the core component is the processor. The smartphones benefit
from powerful processor at about 1.5 GHz. Recent smartphones are based on Dual-core
and even Quad-core processors that ensure higher order execution time.

Attached components handle data, battery, external memory, sensors, user
interface, audio, cameras and wireless connections. Smartphones allow the user to
save photos, videos and other kinds of data, which requires large amounts of memory.
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Smartphone memory is ranging from 8 GB to 32 GB.
There are two types of screens in smartphones: the touch screen and the regular LCD
with a keypad. The first type allows using a bigger screen for viewing movies, photos
etc. But, they are expensive and must be used carefully. The second type of screens
uses physical keypads that have longer life. Screens on smartphones vary largely in
both display size and display resolution. The most common screen sizes range from
3 inches to over 5 inches and the display resolutions vary from 240 × 320 pixels to
1080× 1920.
Another important hardware feature of smartphones is the battery life time because
a smartphone cannot function without enough battery life. Longer is the life time
of the battery better the functionality of the smartphone. The iPhone smartphones
have usually the better performance with battery life ranging from 5-12 hours in
comparison to 5-6 hours for BlackBerry and HTC have.
Furthermore, camera is another important feature for smartphones to take pictures
and videos. BlackBerry and iPhone camera capabilities are ranging from 2.0 mp to
3.2 mp. whereas, the HTC smartphones have a better camera ranging from 2.0 mp to
5.0 mp.

We note that smartphones have limited storage and computing capacities which
does not encourage the implementation of effective security mechanisms. In this the-
sis, we implement our work in the Dalvik virtual machine which is optimized for low
memory and processing requirements. Also, we use spatial locality (the use of data ele-
ments within relatively close storage locations) to store taint tags adjacent to variables
in memory to address performance and memory overhead challenges.

The smartphone is identified using identifiers such as the phone number, the Interna-
tional Mobile Subscriber Identity (IMSI) which is used to identify the GSM subscriber,
the Integrated Circuit Card IDentifier which is a unique SIM card serial (ICC-ID),
and the International Mobile Equipment Identity (IMEI) that identifies a specific cell
phone on a network.

In this thesis, we consider as sensitive data, the location, the address book, the
microphone input, the phone number, the GPS location, the last known location, the
camera, the accelerometer, the SMS, the IMEI, IMSI, ICCID and the device serial
number.

Smartphones provide wireless connections using different techniques:

• The GSM techniques for voice calls and services like SMS,
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• The GPRS in combination with 2G techniques to provide voice and packet data,

• The Wireless LAN and Bluetooth techniques to use an Internet browser and to
play multi-player games.

In our work, we need to identify when sensitive data is transmitted outside the
smartphone system. Thus, we place the taint sink in the network interface. To make
wireless connections techniques operational, smartphones include a growing number
of sensors. These sensors are classified in two category: Low-bandwidth Sensors and
High-bandwidth Sensors.

Low-bandwidth Sensors: Examples of these type of sensors are GPS to determine
location and accelerometer to measure proper acceleration with high precision. These
sensors are used to acquire privacy sensitive information that changes frequently and
is used by multiple applications at the same time. Thus, all smartphone operating
systems use a manager to multiplex access to low-bandwidth sensors. In our work,
we place a taint source hook in sensor manager to taint input privacy sensitive data
acquired by low-bandwidth sensors.

High-bandwidth Sensors: Examples of these type of sensors are camera and micro-
phone. These sensors generate a large amount of data. Unlike low-bandwidth sensors,
these data are only used by one application at the same time. To share these sensor
information, the smartphone operating system uses buffers and files. In our work, we
place taint source hooks in data buffers and files for tracking shared microphone and
camera information.

2.1.2 Software characteristics

In this section, we introduce the most common smartphone operating systems. We
present their characteristics, advantages and weaknesses as well as their corresponding
applications development.

BlackBerry

BlackBerry is a closed source and proprietary operating system developed by the Cana-
dian company Research In Motion (RIM). Since April 2010, BlackBerry becomes based
on QNX operating system. The QNX OS is used essentially in industrial computers
and car computers [10].
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BlackBerry provides an email service for companies using BlackBerry Enterprise
Server. Its email service is safer and better than the other platforms and it supports
many types of attachments files. Current BlackBerry smartphones can offer other
services such as the multimedia functionality for consumers. Note that for an easy use
of Android applications, BlackBerry 10 offers an Android runtime layer.

Blackberry OS is the best operating system in terms of security, it is particularly
suitable to professionals. Data can be encrypted and compressed very fast using the
BlackBerry platform. On the other hand, Smartphones developed by RIM have the
advantage to consume three times less energy than an iPhone but also to have a high
quality network.

One of the weaknesses of the Blackberry OS is that it is not open source which
limits the applications that can be developed. In addition, the BlackBerry platform
does not support full native applications. This does not allow developers to interact
with the system. Therefore, there is no much research work performed on this system.

Symbian

Symbian is an open operating system. It was founded in 1996 by Symbian Ltd. with
a partnership of the company mother PSION with Nokia, Ericsson, Motorola and
Matsushita2. Symbian OS has many specific APIs for mobile voice and data communi-
cations and uses standard network communication protocols. It provides the essential
features of an operating system, including a kernel (named EKA2 in the latest version),
as well as a common API and a reference user interface.

As common technical features, Symbian OS can run on several hardware platforms
with very small memory footprint and low power consumption. Symbian has the same
features as Windows Mobile (see the paragraph below) and BlackBerry. It provides a
flexible platform that allows easily adding new technologies. Furthermore, it is sup-
ported by several manufacturers in the industry. Symbian is an optimized, multitasking
and asynchronous operating system. Thus, developers can write and install third party
applications independently from the device manufacturers.

The problem is that the multiple versions of Symbian OS makes development
costlier. In addition, Symbian has failed to keep up with the multi-touch, web ori-
ented requirements of modern handsets, and new releases have been slow to arrive.
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Windows Mobile

Windows Mobile operating system is developed by Microsoft for smartphones and
Pocket PCs. So, it is only compatible with Windows software. It allows running the
Microsoft Office or Windows Live Messenger applications on the mobile device. It also
offers the possibility to receive emails in real time and this makes Windows Mobile a
direct competitor to BlackBerry [11]. It provides a multitasking feature and an ability
to navigate a file system.

Native applications of Windows Mobile are developped using Microsoft Visual Stu-
dio after adding the Software Development Kit (SDK) corresponding to the specific
version of the Windows Mobile. Windows Mobile applications can also be developed
with WinDev Mobile [12]. Note that Windows Mobile supports third party software
for implementing mobile applications.

One of the weaknesses of the Windows Mobile OS is the lack of applications available
on Windows Phone store. Also, Windows Mobile is not compatible with flash player
and it does not support multitasking. Thus, the older versions of Windows Mobile
OS do not have support for copy and paste. This problem was fixed via a software
update in 2011. Another weakness is that before any application can be added to the
smartphone, via Marketplace, it must be approved by Microsoft.

IPhone

The iPhone Operating System (iOS) is the mobile operating system developed by Apple
for the iPhone, iPod touch and iPad. The iOS kernel is closed proprietary source and
is based on Darwin OS and derived from OS X, of which it shares the foundations (the
hybrid kernel XNU based on the Mach micro-kernel, Unix and Cocoa services, etc...).
The iOS has four abstraction layers, similar to Mac OS X: a ”Core OS” layer, a ”Core
Services” layer, a ”Media” layer and a ”Cocoa” [13]. The maximum part device total
memory of the iOS is 3 Gb and it depends on the device.

The application support used on the iPhone and iPod is based on the ARM ar-
chitecture. However, all native applications are re-developed specifically for the ARM
architecture of the iOS.

The iPhone operating system has twenty applications available by default, all de-
veloped by Apple. Their number may vary slightly depending on the mobile device.
Most native applications can intelligently communicate with each others. In addition,
iPhone operating system provides an access, via an internet connection, to the App
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Store download platform, which allows adding applications developed by third parties
and validated by Apple.

The main disadvantages of iPhone OS are the single vendor hardware/software
availability (Apple Inc), the lack of external memory extension and easy battery re-
placement, and the restricted multi tasking functionality.

Android

Android, an operating system based on the Linux kernel, is developed by Android, Inc.
As defined in the developer’s guide, Android is a stack of software designed to provide
a solution to use mobiles, smartphones and tablets [14]. This stack has an operating
system (including a Linux kernel), applications such as web browser, phone and address
book as well as a middle software between the operating system and the applications
[14]. Android includes a virtual machine (VM) called Dalvik to run programs designed
for the Java platform. This VM is designed especially for the mobile devices and it
has limited computing power and memory [14]. The majority of the applications is
executed by the Dalvik VM [15].

Android is distributed as open source under the Apache license. The license allows
manufacturers, who integrate Android into their devices, to make changes according
to their needs [16].

In addition, Android has an application to access to Google Play online store which
was launched in October 2008 as Android Market. The Google play store offers to
the users the access to various third-party free and paid apps that can be bought,
downloaded and installed in Android. Each application has its specific settings that
allows or not the user to enable or disable the use of network connections, change the
volume and ringing melody, uninstall applications, format the memory card change,
etc. [17].

Android is an open source platform whose permissive licensing allows the software
to be freely modified and distributed by device manufacturers, wireless carriers and
enthusiast developers. Additionally, Android has a large community of developers
writing applications that extend the functionality of devices.

The most important weakness of the Android system is that the downloaded ap-
plications are not validated in most marketplaces. Also, some device manufacturers
reduce OS consistency by adding alternative UI front-ends. More information about
smartphone characteristics is given in Appendix B
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2.2 Usage

The Gartner company [18] has published in 2011 a study about the mobile phone sales
rate where it declares that 417 million of worldwide mobile phones were sold in the
third quarter of 2010, which corresponds to a 35% increase from the third quarter of
2009. In 2011, total smartphone sales reached 472 million units and accounted for 31%
of all mobile devices sales, up 58% from 2010 [19]. According to the Gartner report
published in 2014 [20], worldwide sales of smartphones become 968 million units in
2013 corresponding to an increase of 42.3% from 2012 and 53.6% of overall mobile
phone sales.

Figure 2.2: Worldwide Smartphone Sales to End Users by Operating System

Table 2.2 presents the worldwide smartphone sales to end users per operating sys-
tem. Based on an estimation realized by Research Company Canalys [21], the Android
part of the worldwide smartphone shipment in the second quarter of 2009 was 2.8%. It
becomes the top smartphone platform selling with 33% in the fourth quarter of 2010
overtaking Symbian [22]. A Gartner estimation ensures that 52.5% of the worldwide
smartphone sales are Android in the third quarter of 2011 [18]. This percentage grew
in the third quarter of 2012 to 72% [23] with 750 million devices activated in total and
1.5 million activations per day [24]. In the smartphone operating system (OS) market
(see Table 2.2), Android surpassed 80% market share in the third quarter of 2013 [1].

Figure 2.2 presents the Android devices activated by year. As announced by Google
company in May 2011, more than 100 million Android devices have been activated
around the world, [25] (400,000 per day). These numbers increased in September 2012
with 500 million activations (1.3 million activations per day) [25], [26]. According to
most recent announcement of Sundar Pichai, there are 900 million activated devices in
May 2013 [27]. In September 2013, 1 billion Android devices have been activated [28].

Therefore, we note that smartphones are increasingly used (968 million units sales
in 2013). Also, we observe that Android is the top smartphone platform selling (more
than 80% in the third quarter of 2013).
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Figure 2.3: Android devices activated (by million)

2.3 Security

A group of researchers at the University of California at Santa Barbara and the In-
ternational Security Systems Lab analysis [29] have analyzed 825 applications down-
loaded from Apple App Store and 526 applications accessible through BigBoss that is
the largest repository of unauthorized apps available to users through the Cydia app
market for jailbroken iPhones and iPads.

Figure 2.4: Private data leakage from iOS apps

Their analysis shows that 20% of the free applications in Apple App Store sent
private user data. In addition, they also discovered that programs in Cydia leak private
data but less frequently than Apple’s approved apps. They find that 21% of official App
Store apps leaked personal data such as the user’s Unique Device Identifier (UDID),
4% of jailbroken apps leaked device’s location and 0.5% leaked the user’s contact list
(see Table 2.4). In the case of the unauthorized Cydia apps, 4% leaked the user’s UDID
and 0.2% leaked location or contact data.
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Since Android is one of the top most mobile devices operating system in the world,
it is the most targeted OS by the cyber criminals with more than 98% of malware
applications (see Figure 2.5).

Figure 2.5: Percentage of attacks in smartphones OS [3]

This is due to the prevalence of third party app stores (48 billion apps have been
installed from the Google Play store in May 2013 [2]) and the open app store of Android
contrary to Apple iTunes store. Apple’s AppStore applications have been tested for
attacks, while the Android Market applications are available to users without any code
review.

Figure 2.6: Percentage of different types of attacks [3]

Most of these malicious applications are SMS trojans (36%) and backdoor malwares
(26%) (see Figure 2.6). As declared by Kaspersky [3], 10 million dubious apps were
classified as cybercriminals. These malicious codes target the financial information
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of the Android’s users. One example of these vulnerable codes is the Carberb trojan
mobile version created in Russia that spies the user’s confidential data sent to the bank
server. These apps can also send spam to snoop on passwords stored in the mobile
phone.

Figure 2.7: Malware infected applications [30]

According to a report published by Lookout Mobile Security (LMS), the number of
malware is strongly growing on mobile devices [30]. LMS takes Android as an example
of mobile platform which had 80 malicious applications in January 2011. This number
has increased five times in June 2011. LMS estimates that nearly 500.000 people using
Android have been victims of malware in the first half of 2011.

A research published by Trend Micro [31] affirms that the abuse of premium services
is the most common type of malware in Android. This malware consists in sending a
text message from the infected device to premium telephone numbers without knowing
the sender. Other malware sends personal information to unauthorised third parties.
In the study presented in the Black Hat conference, Daswani [4] analyzed the live
behavior of 10, 000 Android applications and showed that more than 800 were found
to be leaking personal data to an unauthorized server.

As mentioned by the broader 2013 mass surveillance, several organisations, such as
the American and British intelligence agencies, the National Security Agency (NSA)
and Government Communications Headquarters (GCHQ) respectively, have access to
private data on iPhone and Android mobile devices and they were able to read SMS,
emails and location [32]. An additional report published in January 2014 shows that the
intelligence agencies could control personal information, transmitted by social networks
or/and other apps, through the internet [33].

The Windows Mobile operating system is more secure than Android and iPhone.
But, it is also vulnerable. Lumia phones based on Windows Mobile operating system do
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not ensure the user’s privacy. These phones leaked the user’s private data to Microsoft
in the United States [34]. Telfort, a counterfeit application published in the windows
phone store leaked customers’ personal data [35].

According to a report in [36], BlackBerrys are best secure followed by Windows
devices. The iPhone operating system is in the last rank according to Security. Black-
Berrys and Symbian have always been known to have a high degree of data security.
Thus, we note that these smartphone operating systems are not targeted by malicious
applications that leak private data.

2.4 Smartphones features comparison: Summary

In this section, we discuss hardware and software features of smartphones using different
operating systems. Characteristics on which we are based to make this comparison are
summarized in Table 2.1.

We note that most smartphones based on different operating systems have roughly
the same hardware resources capacity. We reported that devices running Windows,
iPhone and Android operating systems have more memory and computing capacity
than the others. In addition, we remark that most smartphones use the ARM instruc-
tion set. In this thesis, our proposed security mechanism is performed at the ARM
instruction level.

As BlackBerry and iPhone are proprietary platforms, their detailed architecture
characteristics are not available. The common programming language of most smart-
phones operationg system is Java. BlackBerry runs Java applications in a sandboxed
environment. For Android, Java applications are translated to Dex code that will be
run by the Dalvik virtual machine. The iPhone OS programming language is Objective
C but bridges exist from Java, C#, etc. The Windows Phone OS is based on Windows
CE, a modern and efficient real-time microkernel OS. The corresponding Shell is a
native application that runs .NET applications [37].

Android and iPhone provide a large number of applications, unlike BlackBerry
and Windows Phone where the number of available applications is limited. Android
applications are not validated in most marketplaces. On the contrary, iPhone and
Windows applications must be approved by Apple and by Microsoft respectively.

Android encourages the development of applications: it provides free developer
tools, without restrictions on applications and is easy to debug. Likewise, Windows
Phone offers excellent development tools, with free versions available to students. How-
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Mobile OS BlackBerry Symbian Windows Mobile iPhone Android

Open
Source

No Yes Yes No Yes

Features Multitasking,
Integration with
other platforms,
Easy deployment,
Easy manage-
ment, Long
battery lifetime,
High security,
Based upon
ARM7 or ARM9
processors, 624
Mhz processor,
1Gb of flash
memory, 256 Mb
of RAM

Multitasking,
Resilient power
management,
Run on sev-
eral hardware
platforms, Very
small memory
footprint, Op-
timized and
asynchronous,
Robust, Supports
ARM v5TE, 150
MHz processor,
100 Mb of flash
memory, 80 Mb
of RAM

Multitask:
robust, Run
Windows soft-
wares, Ability to
navigate a file
system, Supports
ARMv7, 1 GHz
processor, 8GB
of flash memory,
256MB RAM

Multitasking,
Excellent and
Consistent UI,
Mac-based Simu-
lator, Inter-app
Messaging, Free
OS updates,
Applications
are validated,
ARM Cortex A8
processor,1 GHz
processor, 16Gb
flash memory,
512 Mb DRAM

Multi-tasking,
Excellent UI,
Multiple hard-
ware partners,
Multi-touch,
Mobile storage,
Applications are
not validated,
Platform based
on Linux 2.6.25
for ARM,1 GHz
processor, 16 Gb
flash memory,
512 Mb RAM

SDK Avail-
able

Yes Yes Yes Yes Yes

SDK
Language

Java C++, OPL,
Python, Visual
Basic, Simkin,
and Perl

.NET framework
(Visual C++,
C#,...)

COCOA (Objec-
tive C)

Android (JAVA
derivative)

IDE
Options

RIM’s JDE,
RIM’s JDE
Plugin for Eclipse
,Netbeans with
the Mobility Pack

Eclipse, NS Basic,
Borland, Xcode

MS Visual Studio XCode Eclipse, Other
JDE

3rd Party
Multitask-
ing

Yes Yes Yes No Yes

Third Party
Apps

Limited number
of applications
available, Appli-
cations tend to
be more costly

Enabling third
party devel-
opers to write
and install
applications

Lack Of appli-
cations available
on Windows
Phone store,
Applications
must be approved
by Microsoft

Third party ap-
plications only in-
stalled from the
Apple store

Many 3rd party
apps, Can install
third party appli-
cations

Security
mecha-
nisms

Personal Appli-
cation Controls,
Certification,
Authentication,
Encryption

Authentication
methods, Digital
Sign, Data
Caging, Separa-
tion of privilege,
Control access

Run applications
in an sandbox, A
testing and certi-
fication program,
Data caging, Ap-
plication signing
and deployment

code signa-
ture checks,
cryptography,
Authentication,
App Sandboxing,
Control access

Robust security
at the OS level,
Mandatory
application
sandbox, Secure
interprocess
communication,
Application sign-
ing, Application-
defined and
user-granted
permissions

Table 2.1: Smartphones features comparison
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ever, Apple and BlackBerry tools and applications tend to be more costly. In addition,
BlackBerry application development is more complex than other OSes [38].

As for Symbian OS, it is microkernel-based real-time OS. Its high performance is its
major advantage. It also supports multitasking and has a built-in application installer
with security measures and performs a verification of the application certificate before
installation. The Windows Phone and Symbian have identical security models [39].
Both systems’ applications run in a Sandbox (isolated running apps in a separate
area). Each platform defines mechanisms for applications communications. Symbian
provides message queues, client-server, publish and subcribe and sockets mechanisms.
Windows Phone is much more restrictive than Symbian. It imposes many conditions for
applications interaction. Also, Windows Phone applications are able to communicate
only through Microsoft’s cloud services. Both systems define protect storing data
techniques such as isolated storage for Windows Phone and data caging (areas of the
file system accessible only by the applications and the users) for Symbian. Symbian
applications can access shared areas, while Windows Phone applications can only access
their own private area. Symbian and Windows Phone both test and sign applications
before they can be running in the devices to ensure that they are trusted. Nevertheless,
Windows Phone benefits from a single distribution portal while Symbian provides more
distribution options.

The iPhone OS security features are presented in Figure 2.8. They include the
iPhone sandbox, cryptography mechanisms, secure storage (The iPhone KeyChain,
shared KeyChains, adding certificates to the store, code signing), secure communication
and permission model. Android is based on Linux kernel. Thus, it benefits from
robust security at the OS level [40]. In addition, Android offers application signing and
secure interprocess communication. More security techniques to protect private data in
Android systems are presented in Section 3.5 of Chapter 3. All smartphone operating
systems provide certification, authentication and encryption security mechanisms.

The security techniques implemented in smartphone operating systems cannot track
information flow. Thus, they cannot give an overview of the propagation of sensitive
data in the system. Therefore, these mechanisms cannot detect leakage of sensitive
data outside the system.

2.5 Conclusion

In this chapter, we have presented the hardware and software characteristics of smart-
phones. We observed that various smartphone operating systems are developed with
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Figure 2.8: Security architecture diagram of iOS provides a visual overview of the
different technologies

different features to address the growing demand for such devices. We note that the
leakage of sensitive data is a real risk for privacy according to most smartphone op-
erating systems. Attackers exploit third party applications to compromise the confi-
dentiality of the smartphone system and to leak private information without user au-
thorization. Unfortunately, the security mechanisms implemented in the smartphone
operating systems are unable to avoid leakage of sensitive data.

The Google Android operating system is one of the top most popular used mobile
operating system. In addition, according to Google which is the major distributor,
Android is a new powerful, modern, safe and open platform. The open source feature
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provides developers the permission to integrate, extend and replace existing compo-
nents. Also, Android is based on Linux kernel. Then, there are several advantages
such as the large memory, the process management, the security model, the support of
shared libraries, etc. Finally, the Android SDK offers APIs for developing applications
on Android. However, security threats on Android are reportedly growing exponen-
tially. It is the most targeted by cyber criminals caused by the major number of non
proved third party applications dowloaded by Andoid users. For all these reasons, we
focus, in this thesis, on security of the Android system.



CHAPTER

3 Tracking Information
Flow

3.1 Introduction

In this chapter, we provide an analytical overview on secure private data in smartphones
and more specifically in Android based mobile phones. We propose some solutions to
protect sensitive data against information flow attacks launched by third-party apps in
Android systems. We begin by presenting, in section 3.2, different types of information
flow. Then, we discuss about existing approaches based on information flow tracking
to secure embedded systems in section 3.3. As the data tainting mechanism is used
to track information flow and to protect sensitive information, we describe in section
3.4 in more detail works based on data tainting. We study related works on securing
the Android system in section 3.5. We note that these works cannot detect the control
flow attacks that can cause an under tainting problem (false negative). This problem
can cause a leakage of sensitive data. We present in section 3.6 solutions based on
data tainting mechanism combining dynamic and static analysis to solve this problem.
Finally, we present concluding remarks in section 3.7.

3.2 Information Flow

Information flow is the transfer of information between objects in a given process. It
can cause sensitive information leakage. Therefore, not all flows are permitted. The
information flows occur in different forms (channels). Two types of flows are defined:
explicit and implicit flows [41].
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3.2.1 Explicit Flows

Explicit information flow is the simplest form of information flow that arises when data
is explicitly assigned to memory locations or variables. Here is an example that shows
an explicit transfer of a value from y to x.

1.int x;
2.int y;;
3.x:=y

Figure 3.1: Explicit flow example.

Unlike implicit flows, explicit flows are easy to detect because we must just track
and reason about explicit assignments.

3.2.2 Implicit Flows

Implicit flows occur in the control flow structure of the program. When a conditional
branch instruction is executed, information about the condition is propagated into
each branch. In the implicit flows (control flows) shown in Figure 3.2, there is no
direct transfer of value from x to y. But, when the code is executed, y will contain the
value of x.

1.boolean x;
2.boolean y;
3.if ( x== true)
4. y = true;
5. else
6. y = false;
7.return(y);

Figure 3.2: Implicit flow example.

Function calls, goto, loop, switch instructions and exceptions represent other control
mechanisms. The most important covert channel is the implicit flow but there are other
covert channels that we will present in the following.
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3.2.3 Covert Channels

The covert channels [42] include:

• Timing channels that leak information through the time at which an event occurs;

• Termination channels that leak information through the nontermination of com-
putation;

• Resource exhaustion channels that leak information through exhaustion of a lim-
ited resource;

• Power consumption channels that leak information through power consumption;

• Processor frequency channels that leak information through frequency’s changes;

• Free space on filesystem channels that leak information about the file system usage
of the other applications by querying the number of free blocks;

• Probabilistic channels that leak information through changing probability distri-
bution of observable data

In this thesis, we will be interested only in the most important types of channels:
direct and control flows. We will not take into account the covert channels such as tim-
ing, power channels, probabilistic channels, etc. We assume that all tested applications
terminate to avoid data leakage due to termination channels.

3.3 Tracking information flows in embedded sys-
tems

Embedded systems manipulate and access to data of a sensitive nature. These systems
connected to the internet that can cause massive security breaches. CodeRed and
CodeRedII worms are capable of spreading to thousands of victims within minutes [43].
An attacker can launch overwrite attacks to exploit vulnerable software such as worms,
Trojan horse, injection attacks and flow controls attacks. These threats can compromise
confidentiality and integrity of embedded systems and can cause important financial
damage within hours or even minutes [43, 44]. Attacks exploiting these vulnerabilities
can be easily avoided with information flow tracking.
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Many works related to tracking information flows in embedded systems exist in the
literature. They are based on certification applications, static flow analysis, process-
level information flow models, automatic black-box testing and combining hardware
and software information flow analyses.

The first category of work is applications certification oriented. In order to pro-
tect confidential data manipulated by a small open embedded system, Ghindici [45]
proposes a verifier that certifies Java applications typed with signatures describing pos-
sible information flows. The verification process is based on two steps that take into
account limited resources of open systems: (1) an external analysis, performed offline,
which computes a flow signature and proof elements shipped with the code, and (2)
an embedded analysis, which certifies the flow signature at load time, using the proof-
carrying-code techniques [46]. Ghindici’s analysis is modular and generic but is based
on certification that requires specific analysis tools to detect the possible vulnerabilities
in the program.

The second category of research work is based on static flow analysis. Gustafsson
et al. [47] present an approach to automate static flow analysis on embedded C pro-
grams using abstract interpretation [48] and a formal program analysis technique. This
approach is time consuming and requires an increased spatial complexity.

Several process-level information flow models have been defined like Flume [49] and
Asbestos [50], this is the third category of work related to tracking information flows.
The resulting coarse-grained models are used to secure enterprise machines and they
are not implemented in embedded systems. Abdellatif et al. [51] extend the Think
component-based Framework [52] with an information flow control technique, defined in
the Flume system, to secure embedded systems. They introduce the Labels (security
level of a process) and Capabilities (process’s ability to add or remove its tags) in
Think to specify the security level of components, data and exchanged messages. The
capabilities associated with the components allow the control of the Label modification.
Also, they add a set of security components to ensure that the dependency rules are
respected.

The fourth category of research work makes use of automatic black-box testing and
combines hardware and software information flow analyses. Fidge and Corney [53]
implement the Sifa tool that uses this kind of combined analysis approach to identify
illegal information flow pathways in embedded systems. This approach allows dataflow
analysis of basic digital circuitry, but it cannot analyze data flow through micropro-
cessors embedded within the circuit. To solve this problem, Mills et al. [54] develop a
static analysis tool that produces Sifa-compatible dataflow graphs from embedded mi-
crocontroller programs written in C. Francillon et al. [55] present an effective hardware
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protection against control flow attacks such as stack overflows in low-cost embedded
systems. They propose to isolate the control flow stack from the data stack to protect
it from malicious modification. This hardware protection is defeatable by a variant of
return oriented programming that uses no return instructions [56].

The last category of research work is data tainting which is a basic mechanism
usually used for tracking the information flow in the system and preventing leakage of
sensitive data. We present in the following, in more details, the different approaches
based on data tainting. These approaches can be classified into four categories: in-
terpreter approach, architecture-based approach, static taint analysis approach and
dynamic taint analysis approach.

3.4 Data tainting

An attacker can launch overwrite attacks to leak sensitive data and to gain the control
of the embedded system. Data tainting technique can track manipulation of sensitive
data in the embedded systems and prevent overwrite attacks.

Data tainting is a mechanism to trace how data is propagated in a system. The
principle of this mechanism is to "color” (tag) some of the data in a program and then
spread the colors to other related objects to this data according to the execution of
the program. It is used primarily for vulnerability detection, protection of sensitive
data, and more recently, for analysis of binary malware. To detect vulnerabilities,
the sensitive transactions must be monitored to ensure that they are not tainted from
outside data. The three operations considered sensitive are the execution of a com-
mand, reading or writing to a file and modification of the flow of control. Monitoring
the implementation of a program is necessary to propagate data coloration and detect
vulnerabilities.

Methods to ensure this follow-up include static analysis during compilation and
dynamic analysis during execution. Data tainting is implemented in interpreters and
in system simulators to analyze sensitive data.

3.4.1 Interpreter approach

One of the most well-known works on data tainting is Perl’s taint mode [57]. Perl
is an interpreted language which explicitly marks as tainted any outside data and
prevents it from being used in sensitive functions that affect the local system - such as
running local commands, creating and writing files and sending data over the network.
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The Ruby programming language [58] presents a taint checking mechanism but with
finer-grained taint levels than Perl. It has five safety levels ranging from 0 to 4. At
each level, different security checks are performed. Vogt et al. [59] implement a data
tainting mechanism in a Javascript interpreter to detect and prevent cross site scripting
vulnerabilities. RESIN [60] tracks data application developed by a runtime language,
such as the Python or PHP interpreter to prevent Web application attacks. Xu et
al. [61] implement a fine grained taint analysis in the PHP interpreter to detect SQL
injection attacks.

One of the limits of interpreter based tainting approaches is that they can protect
only against vulnerabilities in language-specific source code.

3.4.2 Architecture-based approach

Chow et al. [62] develop a tool based on whole-system simulation called TaintBochs
for measuring data lifetime. TaintBochs tracks propagation of sensitive data using the
tainting mechanism at the hardware level. The authors run a simulation in which sensi-
tive data is identified as tainted. Then, the simulation data is analyzed by the analysis
framework. Minos [63] proposes a hardware extension that modifies the architecture
and the operating system to track the integrity of data. It adds an integrity bit to word
at the physical memory level. This bit is set when data is written by the kernel into
a user process’ memory space. Minos implements Biba’s [64] low water-mark integrity
policy to protect control flow when a program moves data and uses it for operations.
Suh et al. [65] modify the processor core by implementing dynamic information track-
ing and security tag checking. They taint inputs from potentially malicious channels
and track the spurious information flows to prevent malicious software attacks. RIFLE
[66] translates a binary program into a binary running, on a processor architecture,
that supports information flow security. The binary translation converts all implicit
flows to explicit flows for tracking all information flows by dynamic mechanisms. The
operating system uses the labels defined by the RIFLE architecture to ensure that no
illegal flow occurs.

The limit of these architecture-based approaches is that they need hardware modi-
fications and thus cannot be used directly with current embedded systems.

3.4.3 Static taint analysis

The static taint analysis allows analyzing code without executing it. This analysis
reviews program code and searches application coding flaws. Generally it is used to
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find bugs, back doors, or other malicious code. In most cases this analysis requires
source code which is not always available. Also, it is not sufficient for scanning. The
recent static analysis tool scans binary code instead of source code to make the software
test more effectively and comprehensively.

Static taint analysis is used in Evans’ Splint static analyzer [67] and Cqual [68] to de-
tect bugs in C programs. The input data are annotated with "tainted” and "untainted”
annotations to find security vulnerabilities such as string format vulnerabilities and
buffer overflows. Shankar et al. [69] use Cqual to detect format string bugs in C pro-
grams at compile-time. The major disadvantage of the static analysis based approach
of Splint and Cqual is that they require access to the source code. Denning [41, 70]
defines a certification mechanism using a lattice model at the static analysis phase of
compilation. The Denning certification mechanism determines consistency of the data
flow with the security classes flow relation specified by the programmer. JFlow [71] is
an extension to the Java language. It implements statically-checked information flow
annotations to prevent information leaks through storage channels.

The static analysis approaches have some limitations due to undecidability problems
[72]: they can never know if the execution of a specific program for a given input will
terminate. Another limitation of static analysis tools is the fact that they report
problems that are not really bugs in the code [73] i.e. they identify error behaviors
that cannot really occur in any run of the program (false positives).

3.4.4 Dynamic taint analysis

In contrast to static taint analysis, the dynamic taint analysis is performed at run time.
It allows testing and evaluation of a program by executing code. The objective of this
analysis is the detection of potential security vulnerabilities. It does not require an
access to the source code, it traces a binary code to understand the system behavior.
Many dynamic taint analysis tools are based on bytecode instrumentation to determine
how information flows in the program.

TaintCheck [74] uses Valgrind [75] tool to instrument the code and to perform dy-
namic taint analysis at binary level. TaintCheck associates taint to input data from an
untrusted source. Then, it tracks the manipulation of data in instructions to propa-
gate the taint to the result. TaintCheck allows the detection of overwrite attacks such
as jump targets that include return addresses, function pointers, or function pointer
offsets and format strings attacks. To detect jump targets attacks, TaintCheck checks
whether tainted data is used as a jump target before each UCode jump instruction.
TaintCheck also checks whether tainted data is used as a format string argument to
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the printf family of standard library functions to detect format strings attacks. Taint-
Trace [76] protects systems against security exploits such as format string and buffer
overflow. It uses code instrumentation to dynamically trace the propagation of taint
data. TaintTrace is more efficient than TaintCheck because it implements a number
of optimizations to keep the overhead low. LIFT [77] is a software information flow
tracking system that reduces the overhead by using optimizations and dynamic binary
instrumentation. LIFT allows detecting security attacks that corrupt control-data,
like return address and function pointer. Haldar et al. [78] use bytecode instrumen-
tation to implement taint propagation in the Java Virtual Machine. They instrument
Java classes to define untrustworthy sources and sensitive sinks. They mark strings as
tainted and propagate taintedness of strings. An exception is raised when a tainted
string is used in a sink method. Yin et al. [79] propose an end-to-end prototype
called Panorama for malware detection and analysis. They run a series of automated
tests to generate events that introduce sensitive information into the guest system.
To monitor how the sensitive information propagates within the system, they perform
whole-system fine-grained information flow tracking. They generate a taint graph that
is used to define various policies specifying the characteristic behavior of different types
of malware.

Hauser et al. [80] extended Blare, an information flow monitor at the operating
system level, to implement an approach for detecting confidentiality violations. They
define a confidentiality policy based on dynamic data tainting [81]. They associate
labels to sensitive information and define information that can leave the local system
through network exchanges.

The previous dynamic taint analysis approaches instrument application code to
trace and maintain information about the propagation. Thus they suffer from signifi-
cant performance overhead that does not encourage their use in real-time applications.
The major limitation of all dynamic taint analysis approaches is that they do not detect
control flow [82].

We focus in the following on security of Android system and we study the different
mechanisms used to protect user’s private data.

3.5 Protecting private data in Android systems

According to recent statistics from AndroidLib, the Android Marketplace saw 9,331
new mobile applications added to its app store during the month of March, 2010 [83].
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Third-party smartphone applications have access to sensitive data and can compromise
confidentiality and integrity of smartphones.

Several works have been proposed to secure mobile operating systems. We present
first approaches that allow controlling data access and we then focus on approaches
using information flow tracking mechanism to prevent private data leakage.

3.5.1 Access Control Approach

According to Android Police, any app installed on HTC phones that connects to the In-
ternet can access to email addresses, GPS locations, phone numbers, and other private
information [84]. The Android applications can use excessive permissions to access
to the user data. AhnLab analyzed 178 Android apps using AhnLab Mobile Smart
Defense. The analysis shows that 42.6% of all apps examined are requiring exces-
sive permissions for device information access. 39.3% of apps are asking for excessive
permissions for location information access, followed by personal information access
permission at 33.1%, and service charging at 8.4% [85]. The excessive permissions to
access to the user data can provoke the leakage of the victim’s private information.

We present in the following the approaches based on rule-driven policies to control
data access and the works defending against privilege escalation attacks.

Rule Driven Policy Approach

Many works based on new policy languages are proposed to enhance protection of
smartphone systems. The Kirin security service for Android [86] performs lightweight
certification of applications to assure security service for Android at install time. The
Kirin certification is based on security rules matching undesirable properties in security
configuration bundled with applications. The Kirin policies control the permissions of
applications by verifying consistency of the permissions requested by applications and
system policy. Kirin cannot make decision about local security enforcements made by
applications, thus it suffers from false positives. As Kirin does not consider run-time
policies, the Secure Application INTeraction (Saint) framework [87] extends the existing
Android security architecture with an install-time policy that defines the assignment
of permissions to applications and a runtime policy that controls the interaction of
software components within Android middleware framework. Saint policy is defined
by application developers; this can result in failing to consider all security threats.
Furthermore, Saint cannot control data flow of inter-process communication. Nauman
et al. [88] present Apex, an extension of the Android permission framework, which
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restricts the usage of phone resources by applications. It allows user to grant and deny
permissions to applications by imposing runtime constraints on the usage of sensitive
resources. Nauman et al. model is significantly different from Kirin [86] since it is
user-centric. It allows users to grant permissions on their device rather than automat-
ing the decisions based on the policies of remote owners. Conti et al. [89] include
the concept of context-related access control in smartphones. They implement CrePE
(Context-Related Policy Enforcing) that enforces fine-grained context based policies.
The context depends on the status of some variables and the interaction between the
user and the smartphone. CrePE allows the user and trusted third parties to de-
fine and activate policies at run time. It proposes a solution, based on environmental
contraints, to restrict the permissions of an application by enabling/disabling function-
alities. But, it does not address privilege escalation attacks because it does not focus on
the transitive permission usage across different applications. Backes et al. [90] extend
Android’s permission system to prevent malicious behaviors. They propose AppGuard
that enforces fine-grained security policies. AppGuard prevents vulnerabilities in the
operating system and third-party apps. It allows revoking dynamically permissions at-
tributes to malicious apps to protect Android from real-world attacks. Aurasium [91]
controls the execution of applications to protect private data. It repackages untrusted
applications to manage user-level sandboxing and policy enforcement. The concept of
security-by-contract (SxC) [92] is used to secure untrusted mobile applications. It con-
sists in defining a security contract for the application and matching these contracts
with device policies. This allows verifying that the application will not violate the
contractual policy.

The rule driven policy approach requires definition and maintenance of policy rules.
The application developers define these policy rules; this can result in failing to consider
all security threats. Apex [88] is another solution that allows users to specify policies to
protect themselves from malicious applications. But, creating useful and usable policy
is difficult.

Privilege Escalation Prevention Approach

The privilege escalation prevention approach is defined at application level and in
the Android kernel level to defend the Android system against privilege escalation
attacks. The IPC Inspection [93] is an operating system mechanism that protects
Android system applications from the risk of permission re-delegation introduced by
inter-application communication. To defend against permission re-delegation, Felt et
al. [93] reduce the privileges of an application after it receives communication from a
less privileged application. This allows permission system to prevent a privileged API
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call from the deputy when influenced application has insufficient permission. But the
IPC Inspection cannot prevent collusion attacks launched by malicious developer and
attacks through covert channels. Furthermore, the IPC Inspection cannot determine
the context of the call provenance. To address this, QUIRE [94] provides security
to local and remote apps communicating by IPC (Inter-Process Communication) and
RPC (Remote Procedure Call) respectively. This security is based on the call-chain
and data provenance of requests. It allows app to observe the full call chain associ-
ated with the request by annotated IPCs and to choose the diminished privileges of its
callers. Fragkaki et al. [95] implement Sorbet, an enforcement system that allows spec-
ification of privacy and integrity policies. Sorbet improves existing Android permission
systems by implementing coarse-grained mechanisms to protect applications against
privilege escalation and undesired information flows. To address flaws of Android im-
plementation of permission delegation, Sorbet offers to developers the ability to specify
constraints that limit the lifespan and re-delegation scope of the delegated permissions.
Bugiel et al. [96] propose XManDroid to detect and prevent application-level privilege
escalation attacks at runtime. They dynamically analyze communication links among
Android applications to verify if they respect security rules imposed by system policy.
The major hurdle for this approach is that it cannot detect subset of covert channels
such as Timing Channel, Processor Frequency and Free Space on Filesystem. Also, it
reports false-positive results when two non malicious applications try to share legiti-
mate data. The privilege escalation approach is implemented in the Android kernel.
Shabtai et al.[97] reconfigure and deploy an Android kernel that supports SELinux
to protect the system from privilege escalation attacks. SELinux, enforces low-level
access control on critical Linux processes that run under privileged users. SELinux
presents a complex policy that makes it harder to be administrator on a mobile device.
Furthermore, it lacks a coordination mechanism between the Linux kernel and the An-
droid middleware. L4Android [98] assures kernel integrity when a device is rooted by
encapsulating the smartphone operating system in a virtual machine. This provides an
isolated environment for securely running applications. Since L4Android and SELinux
operate at the kernel level, they cannot prevent privilege escalation attacks at the
application level.

These access control approaches though implementing permission systems and
strong isolation between applications, they have in practice proved insufficiency. They
control access to sensitive information but do not ensure end to end security because
they do not track propagation of input data in the application. The approaches based
on faking sensitive information, static analysis and dynamic analysis have addressed
these weaknesses from various perspectives, including tracking information flows and
developing tools to prevent data leakage.
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3.5.2 Preventing Private Data Leakage Approach

Third-party applications can disseminate private information without Smartphone
users authorization. The Duke University, Pennsylvania State University and Intel
Labs research show that half of 30 popular free applications from the Android Market
send sensitive information to advertisers, including the GPS-tracked location of the
user and their telephone number [99]. Also, in the study presented in the Black Hat
conference, Daswani analyzed the live behavior of 10,000 Android applications and
showed that 80% of the scanned apps leaked an IMEI number [100]. Cole and Waugh
[101] affirm that many of the top 50 free apps leak data such as contacts lists to adver-
tisers. We present in the following works based on faking sensitive information, static
analysis and dynamic analysis to prevent sensitive data leakage.

Faking sensitive information

One solution to solve smartphone data application leakage security problem is to pro-
vide fake or "mock" information to applications. This mechanism is achieved by sub-
stituting private data by fake information in the data flow. TISSA [102] implements
a new privacy mode to protect user private data from malicious Android apps. This
privacy mode allows user to install untrusted application but control their access to dif-
ferent types of private information. The TISSA tool includes three main components:
the privacy setting content provider (Policy Decision Point), the privacy setting man-
ager (the Policy Administration Point) and the privacy-aware components (the Policy
Enforcement Points). The application sends an access request to private data to a con-
tent provider component that makes a query to the privacy setting content provider to
check the current privacy settings for the app. If the application access is not permit-
ted the privacy setting returns an empty result (The empty option) or an anonymized
information (anonymized option) or fake result (bogus option). AppFence [103] limits
the access of Android application to sensitive data. It retrofits the Android runtime
environment to implement two privacy controls: (1) substituting shadow data (fake
data) in place of sensitive data that the user does not want applications have an access
to and (2) blocking network communications tainted by sensitive data. MockDroid
[104] revokes access of applications to particular resources. It allows user to provide
fake data to applications. It reduces the functionalities of applications by requesting
empty or unavailable resources.

The faking sensitive information approaches provide "mock" information to applica-
tions instead of private data. These techniques successfully prevent private information
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leakage by untrusted Android applications. But, giving bogus private information can
disrupt execution of applications.

Static Analysis of Android applications

Static analysis is used on smartphone applications to detect leakage of sensitive data
and dangerous behavior. Chin et al. [105] present ComDroid, a tool that can be used
by developers to statically analyze DEX code (Dalvik Executable files before installa-
tion on a device) of third party applications in Android. They disassemble application
DEX files and parse the disassembled output to log potential component and Intent
vulnerabilities. ComDroid detects inter-application communication vulnerabilities such
as Broadcast theft, Activity and Service hijacking and Broadcast injection. One limita-
tion of ComDroid is that it does not distinguish between paths through if and switch
statements. This can lead to false negatives. SCANDROID [106] allows automated
security certification of Android applications. It statically analyzes data flows in Java
code for Android applications. Based on such flows, SCANDROID checks compliance
of required accesses with security specifications and enforces access control. One limi-
tation of this analysis approach is that it cannot be immediately applied to packaged
applications on Android devices. Enck et al. [107] designed and implemented the
Dalvik decompiler “ded", dedicated to retrieving and analyzing the Java source of an
Android Market application. The decompiler extraction occurs in three stages: retar-
geting, optimization, and decompilation. They identify class and method constants
and variables in the retargeting phase. Then, they make bytecode optimization and
decompile the retargeted .class files. Their analysis is based on automated tests and
manual inspection. A slight current limitation of ded decompiler is that it requires
the Java source code to be available to detect potential vulnerabilities. FLOWDROID
[108] is a static taint analysis tool that automatically scans Android applications for
privacy-sensitive data leakage. FlowDroid is effective for tracking explicit data flows
through assignments and method calls. Also, FlowDroid allows the detection of leakage
through control-flow dependencies.

The static analysis approaches implemented in smartphones allow detecting data
leakage but they cannot capture all runtime configurations and inputs.

Dynamic Analysis of Android applications

Many works based on dynamic analysis are implemented in smartphones for detecting
and preventing private data leakage.
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TaintDroid [5] improves the Android mobile phone to control the use of privacy
sensitive data by third-party applications. It monitors application behavior to deter-
mine when privacy sensitive information leaves the phone. It implements dynamic
taint analysis to track information dependencies. First, it defines a sensitive source.
Each input data is tainted with its source taint. Then, TaintDroid tracks propaga-
tion of tainted data at the instruction level. The taint propagation is performed by
running the native code without instrumentation. To minimize IPC (Inter-Process
Communication) overhead, it implements message-level tracking between applications
and file-level tracking. Finally, vulnerabilities can be detected when tainted data are
used in taint sink (network interface). To be practical, TaintDroid addresses different
challenges specific to mobile phones like the resource limitations. Taint tags are stored
adjacent to the corresponding variables on the internal execution stack and one taint
tag per array is defined to minimize overhead.

TaintDroid is used by MockDroid [104] and TISSA [102] to evaluate their effective-
ness. AppFence extends TaintDroid to implement enforcement policies.

The dynamic analysis approach defined in smartphones like TaintDroid and
AppFence track the information flow in real-time and control the handling of private
data. But, they do not propagate taint along control dependencies. This can cause an
under-tainting problem i.e. that some values should be marked as tainted, but are not.
This problem causes a failure to detect a leakage of sensitive information.

Figure 3.3: Attack using indirect control dependency.

Let us consider the attack shown in Figure 3.3, the variables x and y are both
initialized to false. On Line 4, the attacker tests the user’s input for a specific value.
Let us assume that the attacker was lucky and the test was positive. In this case,
Line 5 is executed, setting x to true and x is not tainted because TaintDroid does
not propagate taint along control dependencies. Variable y keeps its false value, since
the assignment on Line 7 is not executed and y is not tainted. As x and y are not
tainted, they are leaked to the network without being detected. Since y has not been
modified, it informs the attacker about the value of the user private contact. We have
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a similar effect when x is leaked. Thus, an attacker can circumvent an Android system
through the control flows. We aim to enhance the TaintDroid approach by tracking
control flows in the Android system to solve the under-tainting problem. We study in
the following existing approaches that allow handling control flows. These approaches
propose solutions to solve the under-tainting problem.

3.6 Detecting control flow

Static and dynamic analyses both have advantages and disadvantages. Static analysis
presents limitations due to undecidability problems but it allows tracking all execution
branches of a program. In the case of dynamic analysis, it is not possible to detect
all information flows because dynamic tainting occurs only along the branch that is
actually executed. This can cause an under tainting problem. This problem can be
solved by using a hybrid approach that combines and benefits from the advantages of
static and dynamic analyses.

We present in the following the technical and the formal approaches that allow
detecting control flow and solving the under-tainting problem.

3.6.1 Technical control flow approaches

Many works exist in the literature to track information flows. Dytan [109] allows per-
forming data-flow and control-flow based tainting. To track control flows, Dytan anal-
yses the binary code and builds the CFG to detect the control dependencies. Based on
the CFG, Dytan taints variables in the conditional structure. To track data flows, Dy-
tan identifies the source and destination operands based on the instruction mnemonic.
Then, it combines the taint markings associated with the source operands and asso-
ciates them with the destination operands. The main limitation of this approach is
that it generates many false positives. BitBlaze [110] implements a hybrid approach
combining static and dynamic taint analysis techniques to track implicit and explicit
flow. DTA++ [111], based on the Bitblaze approach, enhances dynamic taint analy-
sis to limit the under-tainting problem. The DTA++ approach is performed in two
phases: First, an offline phase which looks for branches that cause under tainting and
generates DTA++ propagation rules. Then, an online phase performs taint propaga-
tion using these rules to enhance dynamic taint analysis and to solve under tainting in
culprit branches. The DTA++ approach selects more branches than Dytan to reduce
over-tainting. However DTA++ is evaluated only on benign applications but malicious
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programs in which an adversary uses implicit flows to circumvent analysis are not ad-
dressed. Furthermore, DTA++ is not implemented in embedded applications. Trishul
[112] is an information flow control system. It is implemented in a Java virtual machine
to secure execution of Java applications by tracking data flow within the environment.
It does not require a change to the operating system kernel because it analyzes the
bytecode of an application being executed. Trishul is based on the hybrid approach to
correctly handle implicit flows using the compiled program rather than the source code
at load-time. Trishul correctly identifies implicit flow of information to detect a leakage
of sensitive information. It solves the under-tainting problem by updating the taint of
condition and maintaining a list of assignments in a basic block of control flow graph
to handle not executed branches. Aforementioned approaches allow handling control
flow but they have not been yet adapted and implemented in Android systems. Gilbert
et al. [113] present a vision for implementing a dynamic approach to control the use of
sensitive information by an app and to check for suspicious behavior. Their solution
is based on mixed-execution approach that combines symbolic and concrete execution
to explore diverse paths of a specific third-party app. To analyze apps, they proposed
AppInspector, a security validation service that allows tracking actions, explicit and
implicit flows.

We drew on these prior works and we propose a solution based on a hybrid approach
that combines static and dynamic analysis to detect control flow and to solve the under
tainting problem in Android systems.

We present in the following a formal approaches based on a formal model to detect
control flows.

3.6.2 Formal control flow approaches

The Data Mark Machine [114] is an abstract model proposed by Fenton to handle
control flows. Fenton associates a security class p to a program counter p and defines
an interaction matrix to track data in the system. The class combining operator “⊕"
specifies the class result of any binary function on values from the operand classes.
For each object y, y defines security class that is assigned to y. A flow relation “→"
between a pair of security classes A and B means that “information in class A is
permitted to flow into class B". When a statement S is conditioned on the value of k
condition variables c1, . . . , ck then p is set to p = c1 ⊕ . . .⊕ ck to illustrate the control
information flow. Fenton tracks also the explicit flow: if S represents an explicit flow
from objects a1, . . . , an to an object b, the instruction execution mechanism verifies that
a1⊕. . .⊕an⊕p→ b. Fenton proves the correctness of his model in terms of information
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flow. Fenton [115] asserts that his mechanism ensures security of all implicit flows. But,
the Data Mark Machine does not take into account the implicit flow when the branch
is not executed because it is based on a runtime mechanism.

Figure 3.4: Implicit flow example.

The implicit flow example shown in Figure 3.4 proposed by Fenton [114] presents
an under-tainting problem. The first branch is not followed (a = true) but it contains
information which is then leaked using the next if. Thus, at the end of the execution, b
attains the value of a whereas b <> a. Many solutions are proposed to solve the under
tainting problem. Fenton [115] and Gat and Saal [116] propose a solution that restores
the value and class of objects changed during the execution of conditional structure to
the value and security class it has before entering the branch. But, existing application
code in practice does not modify control structures to consider information flow leakage.
Furthermore, Gat and Saal’s approach is based on specialized hardware architecture to
control information flow and it is difficult to implement. Also, Fenton’s approach was
never implemented. Aries [117] proposes a solution that disallowed the writing to a
particular location within a branch when the security class associated with that location
is equal or less restrictive than the security class of p. Considering the example shown
in Figure 3.4, the program cannot write to c because the security class of c (Low) is
less than or equal to the security class of p (Low <= p). Aries’s approach is restricted
because it is based only on high and low security classes and would preclude many
applications from executing correctly [118].

The Bell-LaPadula model [119] defines multilevel security. It associates security
level to subjects and objects to indicate their sensitivity or clearance. It considers as
illegal information flow from a high security classification to a lower security classifica-
tion.

Denning [120] enhances the run time mechanism used by Fenton with a compile time
mechanism to solve the under-tainting problem. Denning proposes to insert updating
instructions at compile time whether the branch is taken or not. Considering the
example shown in Figure 3.4, an instruction is added at the end of the if (!a)c = true

code block to update c to p (= a). Denning’s solution reflects exactly the information
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flow. But, this solution is based on informal argument for the soundness of the compile
time mechanism [70]. We draw our inspiration from the Denning approach, but we
perform the required class update when Java methods are invoked, as we track Java
applications, instead of performing the update at compile time. We define a set of
formally correct and complete propagation rules to solve the under-tainting problem.

These previous works present technical and formal solutions to detect the control
flow and to solve the under tainting solution. But, there are not implemented in em-
bedded systems like smartphones. Thus, to secure a running process of a smartphone,
we propose to prevent the execution of the malicious code by monitoring transfers of
control in a program. Then we show that this approach is effective to detect control
flow attacks and solve the under-tainting problem.

3.7 Conclusion and Highlights

Embedded systems often use data of a sensitive nature. Many mechanisms are defined
to control access and manipulation of private information. We present an overview
and analysis of current approaches, techniques and mechanisms used to ensure security
properties in embedded systems. We observe that embedded system security is an
area of growing interest and research work. We note that third-party applications
are responsible of most attacks in smartphone operating systems. These applications
use excessive permissions, privilege escalation and advertisement libraries to access
to private data. The access control approaches define policy rules. But, creating
useful and usable policies is difficult. Thus, future research must balance between
security and usability. These approaches control access to sensitive information but
do not ensure end to end security because they do not track propagation of input
data in the application. But, third-party applications exploit information flow for
leaking private data. The faking sensitive information approach gives bogus private
information. This can disrupt execution of applications. One possible enhancement
is to provide more contextual information to justify the need for the access and to
help users to make the decision. The static and dynamic taint analysis approaches
implemented in embedded systems allow detecting data leakage. These techniques are
useful but have limitations. The dynamic taint analysis approaches like TaintDroid
and AppFence track the information flow in real-time and control the handling of
private data. But, they cannot detect control flows. In the following, we propose
our approach that enhances dynamic taint analysis by propagating taint along control
dependencies. We use the static analysis to guide the dynamic analysis in embedded
systems such as smartphone operating systems. By implementing our hybrid approach
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in Android systems, we can protect sensitive information and detect most types of
software exploits caused by control flows. Also, we reduce the gap between the utility
of running third-party mobile applications and the privacy risks they provide.





CHAPTER

4 Formal Characterization
of Illegal Control Flow

4.1 Introduction

In this chapter, we give a formal specification of the under-tainting problem. We
provide an algorithm to solve it based on a set of formally defined rules describing the
taint propagation. We prove the completeness of those rules and the correctness and
completeness of the algorithm.

This chapter is organized as follows. In Section 4.2, we give an overview of our
approach. In Section 4.3, we present some definitions and theorems that are used
in other sections. Section 4.4 describes our formal specification of the under-tainting
problem. In section 4.5, we specify an algorithm based on a set of formally defined
rules describing the taint propagation policy that we use to solve the under-tainting
problem. Finally, we present concluding remarks in section A.8.

4.2 Approach Overview

Static and dynamic analysis both have advantages and disadvantages. The static analy-
sis presents limitations due to undecidability problems. In the case of dynamic analysis,
it is not possible to detect all information flows [42] because dynamic tainting occurs
only along the branch that is actually executed. This can cause an under-tainting prob-
lem. The under-tainting problem can be the cause of a failure to detect a leakage of
sensitive information (see the example in section 3.5.2). Static analysis can give more
complete results as it covers different execution paths. We use a hybrid approach that
combines and benefits from the advantages of static and dynamic analyses to solve the
under-tainting problem. We propose an enhancement of dynamic taint analysis that
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propagates taint along control dependencies to track implicit flows. We use a set of
formal rules that describe the taint propagation to solve the under-tainting problem.

Figure 4.1: Our hybrid approach.

We prove completeness of the propagation rules and we provide a correct and com-
plete taint algorithm based on these rules. Our algorithm is based on static and
dynamic analyses. We use static analysis to detect control dependencies. This analysis
is based on the control flow graphs [121, 122] which will be analyzed to determine
branches in the conditional structure. A basic block is assigned to each control flow
branch. Then, we detect the flow of the condition-dependencies from blocks in the
graph. Also, we detect variable assignment in a basic block of the control flow graph
to handle not executed branches. The dynamic analysis uses information provided by
the static analysis and allows tainting variables to which a value is assigned in the
conditional instruction. To taint these variables, we create an array of context taints
that includes all condition taints. We use the context taints array and the condition-
dependencies from block in the graph to set the context taint of each basic block.
Finally, we apply the propagation rules to taint variables to which a value is assigned
whether the branch is taken or not. Our process is summarized in Figure 4.1. We
present, in the following, some definitions and theorems that are used in the formal
characterization of illegal control flow.

4.3 Notations, Definitions and Theorems

Definition 1. Directed graph
A directed graph G = (V,E) consists of a finite set V of vertices and a set E of ordered
pairs (v, w) of distinct vertices, called edges. If (v, w) is an edge, w is a successor of v



4.3. NOTATIONS, DEFINITIONS AND THEOREMS 43

and v is a predecessor of w.

Definition 2. Complete directed graph
A complete directed graph is a simple directed graph G = (V,E) such that every
pair of distinct vertices in G are connected by exactly one edge. So, for each pair of
distinct vertices, either (x, y) or (y, x) (but not both) is in E.

Definition 3. Control flow graph
A control flow graph G = (V,E, r) is a directed graph (V,E) with a distinguished Exit
vertex and start vertex r, such that for any vertex v ∈ V there is a path from r to
v. The nodes of the control flow graph represent basic blocks and the edges represent
control flow paths.

The concept of post-dominator and dominator tree are used to determine depen-
dencies of blocks in the control flow graph.

Definition 4. Dominator
A vertex v dominates another vertex w 6= v in G if every path from r to w contains v.

Definition 5. Post-Dominator
A node v is post-dominated by a node w in G if every path from v to Exit (not
including v) contains w.

Theorem 1. Every vertex of a flow graph G = (V,E, r) except r has a unique
immediate dominator. The edges {(idom(w), w)|w ∈ V − {r}} form a directed tree
rooted at r, called the dominator tree of G, such that v dominates w if and only if v
is a proper ancestor of w in the dominator tree[123, 124].

Computing post-dominators in the control flow graph is equivalent to computing
dominators [121] in the reverse control flow graph. Dominators in the reverse graph
can be computed quickly by using the Fast Algorithm [125] or a linear-time dominators
algorithm [126] to construct the dominator tree. Using these algorithms, we can
determine the post-dominator tree of a graph.
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Definition 6. Control Dependency Let G be a control flow graph. Let X and Y be
nodes in G. Y is control dependent on X noted Dependency(X, Y ) if:

1. There exists a directed path P from X to Y with any Z in P (excluding X and
Y ) post-dominated by Y and

2. X is not post-dominated by Y .

Given the post-dominator tree, Ferrante et al. [127] determine control depen-
dencies by examining certain control flow graph edges and annotating nodes on the
corresponding tree paths.

Definition 7. Context_Taint
Let G be a control flow graph. Let X and Y be basic blocks in G. If Y is control
dependent on X that contains Condition then we assign to Y a Context_Taint with
Context_Taint(Y ) = Taint(Condition).

We use the completeness theorem to prove the completeness of the taint propaga-
tion rules in section 4.5.1. We use the soundness theorem to prove this completeness
from left to right and the compactness theorem and theorem 2 to prove from right to
left. These theorems are given below (see [128] for the proof).
Completeness Theorem. For any sentence G and set of sentences F , F |= G if and
only if F ` G.

Soundness Theorem. For any formula G and set of formulas F , if F ` G, then
F |= G.

Compactness Theorem. Let F be a set of formulas. F is unsatisfiable if and only
if some finite subset of F is unsatisfiable.

Definition 8. CNF formula
A formula F is in conjunctive normal form (CNF) if it is a conjunction of disjunctions
of literals. That is,
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F =
n∧

i=1
(

m∨
j=1

Li,j)

where each Li,j is either atomic or a negated atomic formula.

Theorem 2. Let F and G be formulas of first-order logic. Let H be the CNF formula
obtained by applying the CNF algorithm [128] to the formula F ∧ ¬G. Let Res∗(H)
be the set of all clauses that can be derived from H using resolvents. The following
are equivalent:

1. F |= G

2. F ` G

3. ∅ ∈ Res∗(H)

4.4 The under-tainting Problem

In this section we formally specify the under-tainting problem based on Denning’s
information flow model. Denning [41] defined an information flow model as:

FM =< N,P, SC,⊕,→> .

N is a set of logical storage objects (files, program variables, ...). P is a set of
processes that are executed by the active agents responsible for all information flow.
SC is a set of security classes that are assigned to the objects in N . SC is finite and has
a lower bound L attached to objects in N by default. The class combining operator
“⊕" specifies the class result of any binary function having operand classes. A flow
relation “→" between pairs of security classes A and B means that “information in
class A is permitted to flow into class B". A flow model FM is secure if and only if
execution of a sequence of operations cannot produce a flow that violates the relation
“→".

We draw our inspiration from the Denning information flow model to formally spec-
ify under-tainting. However, we assign taint to the objects instead of assigning security
classes. Thus, the class combining operator “⊕" is used in our formal specification to
combine taints of objects.
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Syntactic definition of connectors {⇒,→,←,⊕}:
We use the following syntax to formally specify under-tainting: A and B are two logical
formulas and x and y are two variables.

• A⇒ B : If A then B

• x→ y : Information flow from object x to object y

• x← y : the value of y is assigned to x

• Taint(x)⊕ Taint(y) : specifies the taint result of combined taints.

Semantic definition of connectors {→,←,⊕}:

• The → connector is reflexive: If x is a variable then x→ x.

• The→ connector is transitive: x, y and z are three variables, if (x→ y)∧ (y → z)
then x→ z.

• The ← connector is reflexive: If x is a variable then x← x.

• The← connector is transitive: x, y and z are three variables, if (x← y)∧ (y ← z)
then x← z.

• The → and ← connectors are not symmetric.

• The ⊕ relation is commutative: Taint(x)⊕ Taint(y) = Taint(y)⊕ Taint(x)

• The ⊕ relation is associative: Taint(x) ⊕ (Taint(y) ⊕ Taint(z)) = (Taint(x) ⊕
Taint(y))⊕ Taint(z)

Definition 9. Under-Tainting
We have a situation of under-tainting when x depends on a condition, the value of x
is assigned in the conditional branch and condition is tainted but x is not tainted.

Formally, an under-tainting occurs when there is a variable x and a formula
condition such that:

IsAssigned(x, y) ∧Dependency(x, condition)
∧Tainted(condition) ∧ ¬Tainted(x)

(4.1)

where:

• IsAssigned(x, y) associates with x the value of y.

IsAssigned(x, y) def
≡ (x← y)
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• Dependency(x, condition) defines an information flow from condition to x when
x depends on the condition.

Dependency(x, condition) def
≡ (condition→ x)

4.5 The under-tainting Solution

In this section, we specify a set of formally defined rules that describe the taint prop-
agation. We prove the completeness of these rules. Then, we provide an algorithm to
solve the under-tainting problem based on these rules. Afterwards, we analyse some
important properties of our algorithm such as Correctness and Completeness.

4.5.1 The taint propagation rules

Let us consider the following axioms:

(x→ y)⇒ (Taint(y)← Taint(x)) (4.2)

(x← y)⇒ (y → x) (4.3)

(Taint(x)← Taint(y)) ∧ (Taint(x)← Taint(z))
⇒ (Taint(x)← Taint(y)⊕ Taint(z))

(4.4)

Theorem 3. We consider that Context_Taint is the taint of the condition. To solve
the under-tainting problem, we use the two rules that specify the propagation taint
policy:

• Rule 1: if the value of x is modified and x depends on the condition and the
branch is taken, we will apply the following rule to taint x.

Is modified(x) ∧Dependency(x, condition) ∧BranchTaken(br, conditionalstatement)
Taint(x)← Context_Taint⊕ Taint(explicitf lowstatement)

where: The predicate BranchTaken(br, conditionalstatement) specifies that branch
br in the conditionalstatement is executed. So, an explicit flow which contains x is
executed.
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IsModified (x, explicitflowstatement) associates with x the result of an explicit flow
statement (assignment statement).

Is modified(x) def
≡ Is assigned(x, explicitflowstatement)

• Rule 2: if the value of y is assigned to x and x depends on the condition and the
branch br in the conditional statement is not taken (x depends only on implicit
flow and does not depend on explicit flow), we will apply the following rule to
taint x.

Is assigned(x, y) ∧Dependency(x, condition) ∧ ¬BranchTaken(br, conditionalstatement)
Taint(x)← Taint(x)⊕ Context_Taint

Proof of taint propagation rules

To prove completeness of propagation taint rules, we use the basic rules cited in
Table 4.1 for derivations.

Premise Conclusion Name
G is in F F ` G Assumption
F ` G and F ⊂ F ′ F ′ ` G Monotonicity
F ` F ,F ` G F ` (F ∧G) ∧-Introduction
F ` (F ∧G) F ` (G ∧ F ) ∧-Symmetry

Table 4.1: Basic rules for derivations

We start by proving completeness of the first rule.

We suppose that F = {IsModified(x, explicitf lowstatement),
Dependency(x, condition),
BranchTaken(br, conditionalstatement)} and G = Taint(x) ← Context_Taint ⊕
Taint(explicitf lowstatement).

We prove soundness, left to right, by induction. If F ` G, then there is a formal
proof concluding with F ` G (see Table 4.2). Let M be an arbitrary model of F , we
will demonstrate that M |= G. G is deduced by Modus ponens of Gj, Gj → G then
by induction, M |= Gj and M |= Gj → G and it follows M |= G.
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Statement Justification
1. (condition→ x) ` (Taint(x)← Taint(condition)) Axiom (2)
2. (condition→ x) ` (Taint(x)← Context_Taint) Taint(condition) =

Context_Taint
3. F ` (Taint(x)← ContextTaint) Monotonicity

applied to 2
4. (x← explicitf lowstatement) ` Axiom (3)
(explicitf lowstatement→ x)
5. (x← explicitf lowstatement) ` Axiom (2)
(Taint(x)← Taint(explicitf lowstatement))
6. F ` (Taint(x)← Taint(explicitf lowstatement)) Monotonicity

applied to 5
7. F ` ((Taint(x)← Context_Taint)∧ ∧-Introduction
(Taint(x)← Taint(explicitf lowstatement))) applied to 3 and 6
8.F ` G Modus ponens

Table 4.2: Formal proof of the first rule

Conversely, suppose that F |= G, then F ∪ ¬G is unsatisfiable. By compactness,
some finite subset of F ∪¬G is unsatisfiable. So there exists a finite F0 ⊂ F such that
F0 ∪ ¬G is unsatisfiable and, equivalently, F0 |= G. Since F0 is finite, we can apply
Theorem 2 to get F0 ` G. Finally, F ` G by Monotonicity. �

We will now prove completeness of the second rule.

We assume again that F = {IsAssigned(x, y), Dependency(x, condition),
¬BranchTaken(br, conditionalstatement)} and G = Taint(x) ← Taint(x) ⊕
Context_Taint.

Similarly to the first rule, we prove soundness by induction. If F ` G, then there
is a formal proof concluding with F ` G (see Table 4.3).

Let M be an arbitrary model of F , we will demonstrate that M |= G. G is deduced
by Modus ponens of Gj, Gj → G then by induction, M |= Gj and M |= Gj → G and
it follows M |= G.

Conversely, suppose that F |= G. Then F ∪ ¬G is unsatisfiable. By compactness,
some finite subset of F ∪¬G is unsatisfiable. So there exists a finite F0 ⊂ F such that



50
CHAPTER 4. FORMAL CHARACTERIZATION OF ILLEGAL CONTROL

FLOW

Statement Justification

1. (condition→ x) ` (Taint(x)← Taint(condition)) Axiom (2)

2. (condition→ x) ` (Taint(x)← Context_Taint) Taint(condition) =
Context_Taint

3. F ` (Taint(x)← Context_Taint) Monotonicity
applied to 2

4. x ` (x← x) The relation ← is
reflexive

5. F ` (x← x) Monotonicity
applied to 3

6. (x← x) ` (Taint(x)← Taint(x)) Axiom (2)

7. F ` (Taint(x)← Taint(x)) Modus ponens
applied to 5 and 6

8. F ` ((Taint(x)← Context_Taint)∧ ∧-Introduction
(Taint(x)← Taint(x))) applied to 3 and 7
9. F ` ((Taint(x)← Taint(x))∧ ∧-Symmetry
(Taint(x)← Context_Taint)) applied to 8
10.F ` G Modus ponens

Table 4.3: Formal proof of the second rule

F0 ∪ ¬G is unsatisfiable and, equivalently, F0 |= G. Since F0 is finite, we can apply
Theorem 2 to get F0 ` G. Finally, F ` G by Monotonicity. �

4.5.2 The algorithm

The tainting algorithm that we propose, Taint_Algorithm, allows solving the under-
tainting problem. It takes as input a control flow graph of a binary program.
In this graph, nodes represent a set of instructions corresponding to basic blocks.
Firstly, it determines the control dependency of the different blocks in the graph using
Dependency_Algorithm [127]. Afterwards, we parse the Dependency_List generated
by Dependency_Algorithm and we set the context taint of blocks to include the taint
of the condition that depends on whether the branch is taken or not. Finally, using
the context taint and the two propagation rules, we taint all variables to which a value
is assigned in the conditional branch.
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Algorithm 1 Taint_Algorithm (Control flow graph G)
Input: G = (V,E, r) is a control flow graph of a binary program
Output: Tainted_V ariables_List is the list of variables that are tainted.

x ∈ V
y ∈ V
Dependency_List← Dependency_Algorithm(G)
while (x, y) ∈ Dependency_List do
Set_Context_Taint(y, List_Context_Taint)
Tainted_V ariables_List← Taint_Assigned_V ariable(y)

end while

4.5.3 Running example

We analyze the control flow graph G = (V,E, r) (see Figure 4.4) of the bytecode given
in Figure 4.3 to illustrate the operation of the Taint_Algorithm. The source code
is given in Figure 4.2. The Taint_Algorithm takes as input the control flow graph
G = (V,E, r) where :

Figure 4.2: Source code example Figure 4.3: Bytecode example

• V = {BB(1), BB(2), BB(3), BB(4)}

• E = {(BB(1), BB(2)), (BB(1), BB(3)),
(BB(2), BB(4)), (BB(3), BB(4))}

• r = {BB(1)}

The Dependency_Algorithm checks the dependency of the blocks in the control
flow graph. It generates a Dependency_List = {(BB(1), BB(2)); (BB(1), BB(3))}.
As, BB(2) depends on BB(1) and BB(3) depends on BB(1), the Taint_Algorithm
sets context_taint of BB(2) and context_taint of BB(3) to condition taint in BB(1).
If x = true, the first branch is executed but the second is not. The first rule
is used to taint the modified variable y in BB(2) : Taint(y) = ContextTaint ⊕
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Taint(explicitf lowstatement). The second rule is used to taint the variable y in
BB(3) : Taint(y) = ContextTaint ⊕ Taint(y). So, all variables that depend on the
condition will be tainted and stored in Tainted_V ariables_List whether the branch
is taken or not and we do not have an under-tainting problem.

Figure 4.4: Control flow graph corresponding to the example given in Figure 4.2.

4.5.4 Properties of the algorithm

First, we prove the correctness of the Taint_Algorithm and then we prove its
completeness.

Correctness

We want to prove the correctness of the Taint_Algorithm. Let us assume that the
control flow graph is correct [129]. The proof consists of three steps: first prove that
Dependency_Algorithm is correct, then prove that Set_Context_Taint is correct,
and finally prove that Taint_Assigned_V ariable is correct. Each step relies on the
result from the previous step.

Correctness proof for Dependency_Algorithm
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The Dependency_Algorithm is defined by Ferrante et al. [127] to determine depen-
dency of blocks in the graph. This algorithm takes as input the post-dominator tree for
an augmented control flow graph (ACFG). Ferrante et al. add to the control flow graph
a special predicate node ENTRY that has one edge labeled ‘T’ going to START node
and another edge labeled ‘F’ going to STOP node. ENTRY corresponds to whatever
external condition causes the program to begin execution. The post-dominator tree of
ACFG can be created using the algorithms defined in [125, 126]. These algorithms are
proven to be correct.

Basic steps in the Dependency_Algorithm:

Given the post-dominator tree, Ferrante et al. [127] determine control dependencies
as following:

• Find S, a set of all the edges (A,B) in the ACFG such that B is not an ancestor
of A in the post-dominator tree (i.e., B does not postdominate A).

• For each edge (A,B) in S, find L, the least common ancestor of A and B in the
post-dominator tree.

CLAIM: Either L is A or L is the parent of A in the post-dominator tree.

Ferrante et al. consider these two cases for L, and show that one method of
marking the post-dominator tree with the appropriate control dependencies ac-
commodates both cases.

– Case 1. L = parent of A. All nodes in the post-dominator tree on the path
from L to B, including B but not L, should be made control dependent on
A.

– Case 2. L = A. All nodes in the post-dominator tree on the path from A to
B, including A and B, should be made control dependent on A.

• Given (A,B) in S and its corresponding L, the algorithm given by Ferrante et
al. traverses backwards from B in the post-dominator tree until they reach L and
mark all nodes visited; mark L only if L = A.

• Statements representing all marked nodes are control dependent on A with the
label that is on edge (A,B).

They prove that the correctness of the construction follows directly from the defi-
nition of control dependency (see section 4.3).



54
CHAPTER 4. FORMAL CHARACTERIZATION OF ILLEGAL CONTROL

FLOW

Referring back to this definition, for any nodeM on the path in the post-dominator
tree from (but not including) L to B, (1) there is a path from A toM in the control flow
graph that consists of nodes post-dominated by M , and (2) A is not post-dominated
by M . Condition (1) is true because the edge (A,B) gives us a path to B, and B is
post-dominated by M . Condition (2) is true because A is either L, in which case it
post-dominates M , or A is a child of L not on the path from L to B.

We can therefore conclude that Dependency_Algorithm is correct.

Correctness proof for Set_Context_Taint

We include the taint of the condition in the context taint of the dependent blocks.
As the condition taint is valid thus the inclusion operation is valid. We can conclude
that Set_Context_Taint is correct.

Correctness proof for Taint_Assigned_V ariable

We use the two propagation rules to taint variables to which a value is assigned.
We proved the completeness of the two propagation rules in section 4.5.1, thus we can
conclude that Taint_Assigned_V ariable is complete. Therefore, we can conclude
the completeness of the Taint_Algorithm.

Completeness

Let us assume that the control flow graph is complete (see Definition 2). To
prove the completeness of the Taint_Algorithm, we will prove the completeness of
Dependency_Algorithm and Taint_Assigned_V ariable.

The Dependency_Algorithm takes as input the post-dominator tree of the control
flow graph. The post-dominator tree can be constructed using the complete algorithm
defined in [126]. The Dependency_Algorithm is based on the set of the least common
ancestor (L) of A and B in the post-dominator tree for each edge (A,B) in S. According
to the value of L, Ferrante et al. define two cases to determine the control dependency.
To prove the completeness of the Dependency_Algorithm, we show that Ferrante et
al. prove that there does not exist another value of L (either A′s parent or A itself) to
consider.

Proof: Let us assume that X is the parent of A in the post-dominator tree. So, X is
not B because B is not an ancestor of A in the post-dominator tree (by construction
of S). Ferrante et al. perform a proof reductio ad absurdum to demonstrate that X
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post-dominates B, and suppose it does not. Thus, there would be a path from B to
STOP that does not contain X. But, by adding edge (A,B) to this path, a path
from A to STOP does not pass through X (since, by construction, X is not B). This
contradicts the fact that X post-dominates A. Thus, X post-dominates B and it must
be an ancestor of B in the post-dominator tree. If X, immediate post-dominator of A,
post-dominates B, then the least common ancestor of A and B in the post-dominator
tree must be either X or A itself. �

As only two values of L exist, there does not exist another case to compute the
control dependency. The Case 2 captures loop dependency and all other dependencies
are determined according to Case 1. Thus, Dependency_Algorithm is complete.

We proved the completeness of the two propagation rules in section 4.5.1 thus we
can conclude that Taint_Assigned_V ariable is complete. Therefore, we can conclude
the completeness of the Taint_Algorithm.

4.5.5 Time complexity of the algorithm

TheDependency_Algorithm performs with a time complexity of at most O(N2) where
N is the number of nodes in the control flow graph. Linear time algorithm to calculate
control dependencies have been proposed in [130] but no proof of correctness of this
algorithm was given. For each (X, Y) examined in the Dependency_List, setting
context taint and tainting variables can be done in constant time O(N). Thus, the
Taint_Algorithm requires linear time using algorithm defined in [130] and at most
O(N2) using Ferrante et al. algorithm.

4.6 Conclusion

In this chapter, we propose a formal approach to detect control flow and to solve
the under-tainting problem. We formally specify the under-tainting problem. As a
solution, we provide an algorithm based on a set of formally defined rules that describe
the taint propagation. We prove the completeness of those rules and the correctness
and completeness of the algorithm. In the next chapter, we show that our approach
resists to code obfuscation attacks based on control dependencies.





CHAPTER

5 Protection against Code
Obfuscation Attacks

5.1 Introduction

In this chapter, we show how our approach can resist to code obfuscation attacks based
on control dependencies in the Android system. We use the rules that define the taint
propagation presented in Section 4.5 of Chapter 4 to avoid these code obfuscation
attacks.

The rest of this chapter is organized as follows: Section 5.2 gives some definitions
of the obfuscation process. We present types of program obfuscations in Section 5.3.
Section 5.4 describes the obfuscation techniques. We discuss, in Section 5.5, related
work about existing obfuscation code mechanisms in Android systems. Section 5.7
presents some code obfuscation attacks based on control dependencies that dynamic
taint analysis mechanism cannot detect. Section 5.8 describes how our approach can
resist to this type of attacks. The limitations of our work are discussed in Section 5.9.
Finally, we present concluding remarks in Section A.8.

5.2 Code obfuscation Definition

In general, the obfuscation consists in making something more difficult to understand.
Collberg et al. [131, 132] define the obfuscation process as a transformation of a
computer program into a program that has the same behavior but is much harder to
understand.

Definition 1 (Obfuscating Transformation).
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Let Γ(P ) be a program, obtained by transformation of program P . Γ is an obfus-
cating transformation, if Γ(P ) has the same observable behavior as P . In addition Γ
must enforce the two following conditions:

• if program P fails to terminate or terminates with an error condition, then Γ(P )
may or may not terminate,

• otherwise P terminates and Γ(P ) must terminate and produce the same output as
P .

Definition 2 (Complexity formulas).

If program P and Γ(P ) are identical except that Γ(P ) contains more of property q
than P , then Γ(P ) is more complex than P .

According to Definition 2, an obfuscating transformation adds more of the q prop-
erty to the initial program to increase its obscurity.

5.3 Types of program obfuscations

The Obfuscation transformations can be classified into four categories and can affect
many parts of a program [131]:

• Source and/or binary structure

• control obfuscation (control flow structure)

• data obfuscation (local and global data structures)

• preventive obfuscation that is used to protect from decompilators and debuggers.

The program obfuscations can be performed at different levels:

• Layout obfuscation that transforms a source code into another source code un-
readable by human,

• intermediate-level obfuscation that transforms a program at intermediate repre-
sentation (IR) level,

• binary obfuscation which is performed at binary level to obfuscate the layout and
control flow of binary code.

In this thesis, we focus only on binary obfuscation.
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5.4 Obfuscation techniques

There is a lot of specific techniques used to obfuscate a program described with more
detail in [133]:

• Storage and encoding obfuscations that modify the representation of variables:
split variables, promote scalars to objects, convert static data to procedure, change
encoding, change a local variable to global variable.

• Aggregation obfuscation that merges independent data and splits dependent data:
merge scalar variables, modify inheritance relations, split or merge arrays.

• Ordering obfuscation: reorder variables, reorder methods, reorder arrays.

There are three groups of control obfuscation methods [133]:

• Computation obfuscation methods that modify the structure of control flow. For
example, extending the loop condition (like addition of conditions that do not
change the behavior of a program)

• Aggregation obfuscation methods which split and merge fragments of code. For
example, inline methods that consist in inserting the complete code of the function
when the function is called, rather than generating a function call.

• Ordering obfuscation methods that reorder blocks, loops and expressions, with
preservation of dependencies.

We describe in Section 5.2 our obfuscation attack model based on storage and
encoding obfuscation techniques and computation obfuscation methods.

5.5 Code obfuscation in Android System

Obfuscation techniques are used in the Android platform to protect applications against
reverse engineering [134]. In order to achieve this protection, the obfuscation methods
such as identifier mangling and string obfuscation modify the bytecode during run-
time and reduce meta information within the applications. The obtained code is hard
to analyze and makes it difficult to have information about the application and its
functionalities. Identifiers are names for packages, classes, methods, and fields. The
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identifier mangling is the act to replace any identifier with a meaningless string rep-
resentation while maintaining consistency (the semantics of the source code). These
strings do not contain any information about the object or its behavior. The string
obfuscation method consists in transforming an arbitrary string into another string
using injective invertible function (xor function or encryption). This method reduces
the amount of extractable meta information. But, it is defeated by dynamic analysis.

ProGuard [135], an open source tool, is integrated in the Android build system. It is
applied to obfuscate Android application code by removing unused code and renaming
methods, fields, and classes. The resulting code is much harder to reverse engineer.

Allatori [136] is a Java obfuscator developed by the Russian company Smardec. It
is used to protect Android applications and to make impossible reverse engineering of
the code. Allatori offers protection methods like flow obfuscation, name obfuscation,
debug information obfuscation and string encryption. And finally, Allatori does not
just obfuscate, it is also designed to reduce size and processing time of Android appli-
cations. It is more powerful than ProGuards but it does not prevent an analyst from
disassembling an Android application.

Cavallaro et al. [137] argue that code obfuscation can be employed by malware
developers to avoid detection. Cavallaro et al. [138] describe dynamic anti-taint tech-
niques that can be used to obfuscate code and to leak sensitive data.

We study, in the following, the obfuscation techniques used in malware context that
can easily defeat dynamic information flow analysis to evade detection of private data
leakage in the Android system.

5.6 Attack model

The dynamic taint analysis process is summarized in Figure 5.1. First, the dynamic
taint tracking system like TaintDroid (See Section 3.5.2 in Chapter 3) assigns taint to
sensitive data (Device id, contacts, SMS/MMS) (2).

Then, it tracks propagation of tainted data (3). Finally, it issues warning reports
when the tainted data are leaked by malicious applications. This, can be detected
when sensitive data are used in a taint sink (network interface)(6).

Consider the attack model presented in Figure 5.2. The third-party application is
installed by the smartphone user (1). Then, it will be running under a dynamic taint
tracking system to detect the transmission of private data to the network. Sensitive
data are tainted by the dynamic taint tracking system (2). The developer of malicious
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Figure 5.1: The dynamic taint analysis process without obfuscation attack

application exploits the limitation of the dynamic taint tracking system that it cannot
propagate taint in the control flows. He interferes in the taint propagation level and
uses obfuscation techniques (adding control flows and code encoding) to deceive the
taint mechanism. He removes taint of sensitive data that should be tainted (4). Thus,
leakage of these data is not detected (5).

Figure 5.2: The Attack model against dynamic taint analysis

Next, we present different examples of code obfuscation attacks based on control
flows that a dynamic taint tracking system such as TaintDroid cannot detect.
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5.7 Code obfuscation attacks

Sarwar et al.[139] introduce the control dependence class of attacks against taint-based
data leak protection. They evaluate experimentally the success rates for these attacks
to circumvent taint tracking with TaintDroid. We present in this section examples of
these obfuscated code attacks based on control dependencies that TaintDroid cannot
detect. The taint is not propagated in the control flow statements. The attacker
exploits untainted variables that should be tainted to leak private data.

Algorithm 2 Code obfuscation attacks 1
X ← Private_Data
for each x ∈ X do
for each s ∈ AsciiTable do
if (s == x) then
Y ← Y + s

end if
end for

end for
Send_Network_Data(Y )

Algorithm 2 presents the first attack. The variable X contains the private data.
The attacker obfuscates the code and tries to get each character of X by comparing
it with symbols s in AsciiTable. He stores the right character founded in Y . At
the end of the loop, the attacker succeeds in knowing the correct value of the
Private_Data stored in Y . The variable Y is not tainted because TaintDroid does not
propagate taint in the control flows. Thus, Y is leaked through the network connection.

Algorithm 3 Code obfuscation attacks 2
X ← Private_Data
for each x ∈ X do
n← CharToInt(x)
y ← 0
for i = 0 to n do
y ← y + 1

end for
Y ← Y + IntToChar(y)

end for
Send_Network_Data(Y )
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Algorithm 3 presents the second attack. The attacker saves the private data in
variable X. Then, he reads each character of X and converts it to integer. In the
next loop, he tries to find the value of the integer by incrementing y. He converts the
integer to character and concatenates all characters in Y to find the value of X. Thus,
Y contains the Private_Data value but it is not tainted because TaintDroid does
not track control flow. Therefore, the attacker succeeds in leaking the Private_Data
value without any warning reports.

Algorithm 4 Code obfuscation attacks 3
X ← Private_Data
for each x ∈ X do
n← CharToInt(x)
y ← 0
while y < n do
Try{
Throw_New_Exception()}
Catch(Exception e){
Y ← Y + 1}

end while
Y ← Y + IntToChar(y)

end for
Send_Network_Data(Y )

Algorithm 4 presents an obfuscated code attacks based on an exception. The vari-
able n contains an integer value that corresponds to the conversion of a character in
private data. The attacker raises an exception n times in the try bloc. He handles
the thrown exception in the catch bloc by incrementing y to achieve the correct value
of each character in Private_Data. By concatenating the characters, Y contains the
value of private data and Y is not tainted because TaintDroid does not detect excep-
tions used in control flow. Thus, an attacker can successfully leak sensitive information
by throwing exceptions to control flow. We show, in the following, how our approach
can successfully detect these obfuscated code attacks.

5.8 Detection of code obfuscation attacks

To launch code obfuscation attacks, the attacker exploits untainted variables that
should be tainted. Thus, there is an under-tainting problem which is defined in Section
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4.4 of Chapter 4. We use rules that describe the taint propagation presented in Section
4.5 of Chapter 4 to solve it and to detect the obfuscated code attacks based on control
dependencies. By using these rules, all variables to which a value is assigned in the
conditional branch are tainted whether the branch is taken or not. The taint of these
variables reflects the dependency on a condition.

Let us consider the first obfuscated code attack. The variable x is tainted because
it belongs to the tainted character string X. Thus, the condition (x == TabAsc[j]) is
tainted. Our system allows propagating the taint in the control flow. Using the first
rule, Y is tainted and Taint(Y ) = Taint(x == TabAsc[j]) ⊕ Taint(Y + TabAsc[j]).
Thus, the leakage of Y that contains the value of private data is detected using our
approach.

In the second obfuscated code attack, the attacker tries to get secret information
X. The variable x is tainted because it belongs to the character string X that is
tainted. The result n of converting x to integer is tainted. Thus, the condition (j = 0
to n) is tainted. Using the first rule, y is tainted and Taint(y) = Taint(j = 0 to

n)⊕ Taint(y+ 1). In the first loop, the condition x ∈ X is tainted. We apply the first
rule, Y is tainted and Taint(Y ) = Taint(x ∈ X) ⊕ Taint(Y + (char)y). Thus, the
attacker cannot succeed in this obfuscated code attack detected using our approach.

In the third obfuscated code attack, the attacker exploits exception to launch ob-
fuscated code attacks and to leak sensitive data. The exception is tainted and its taint
depends on the while condition y < n. Also, the while condition (y < n) is tainted
because the variable n that corresponds to the conversion of a character in private
data is tainted. Then, we propagate exception’s taint in the catch block. We apply the
first rule to taint y. We obtain Taint(y) = Taint(exception)⊕ Taint(y + 1). Finally,
the string Y which contains the private data is tainted and Taint(Y ) = Taint(x ∈
X) ⊕ Taint(Y + (char)y). Thus, an attacker cannot leak sensitive information by
throwing exceptions to control flow.

5.9 Discussion

Side Channels

Our approach makes it possible to detect obfuscated code attacks applied in
the control flow statement (if, loop, while, exception...) in order to leak sensitive
information. But, it cannot detect all obfuscated code attacks.
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Algorithm 5 Timing Attack
X ← Private_Data
n← CharToInt(X)
StartT ime← ReadSystemTime()
Wait(n)
StopT ime← ReadSystemTime()
y ← (StopT ime− StartT ime)
Y ← Y + IntToChar(y)
Send_Network_Data(Y )

The condition of the control flow statement includes a character of the private
data. Most presented attacks need to be applied in a loop to leak one character at
a time. A side channel attack is another category of attacks that can be used to
obfuscate code and to leak private information. It is based on information (timing
information, power consumption,...) gained from a medium and used to extract the
secret data. It is difficult to detect this category of attacks. Let us consider the timing
attack presented in Algorithm 5. It is a side channel attack in which the attacker
attempts to get private data by analyzing the difference in time readings before and
after a waiting period. The sleep period duration is the value of the private variable.

Algorithm 6 Timing Attack 2
X ← Private_Data
for each x ∈ X do
n← CharToInt(x)
StartT ime← ReadSystemTime()
Wait(n)
StopT ime← ReadSystemTime()
y ← (StopT ime− StartT ime)
Y ← Y + IntToChar(y)

end for
Send_Network_Data(Y )

The difference in time y is not tainted because it does not explicitely depend on the
tainted variables. It is assigned to Y that is leaked through the network connection.
Our approach cannot directly detect this timing attack and the private information
will be leaked without any warning report. However, this timing attack can be de-
tected by tainting the system clock. Thus, the ReadSystemTime() function returns
a tainted value. Therefore, the StartTime is tainted. Also, we propose to add rule
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that propagates the private data taint to the clock if Wait() function has a tainted
parameter. Thus, the taint of StopTime includes the private data taint. Thus, the
difference in time readings before and after a waiting period is tainted. Therefore, the
attacker cannot get the value of private data using this timing attack.

The same attack can be written differently (see Algorithm 6). We use a loop
statement to get the private data. The loop condition is tainted and propagated in
the loop block. Thus, we apply the first rule: Y is tainted and Taint(Y ) = Taint(x ∈
X)⊕ Taint(Y + IntToChar(y)). So, the private data cannot be leaked.
TaintDroid cannot track taint tags on Direct Buffer objects, because the data is stored
in opaque native data structures. The side channel attack presented in Algorithm 7
exploits this limitation to leak private data. The memory buffer created is used to
write a tainted variable at a specific address. Then, the attacker reads the content
of the Direct Buffer specific address. The buffer contains private data but it is not
tainted. Using our approach, we can avoid the leak of private data because Y will be
tainted and Taint(Y ) = Taint(x ∈ X)⊕ Taint(Y + IntToChar(y)).

Algorithm 7 DirectBuffer Attack
X ← Private_Data
D ← NewDirectBuffer()
for each x ∈ X do
n← CharToInt(x)
DirectBufferWrite(n;D(0× 00))
y ← DirectBufferRead(D; 0× 00)
Y ← Y + IntToChar(y)

end for
Send_Network_Data(Y )

Note that our approach will not detect this side channel attack if the attack code
is not included in a control statement. To detect this direct buffer attack, we need to
refine our approach by adding a taint propagation rule that associates a private data
taint to Direct Buffer objects at the execution of the DirectBufferWrite() function.
This solution is similar to the one used in the Algorithm 5 to detect a side channel
attack by tainting the clock.
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5.10 Conclusion

In this chapter, we present some obfuscated attacks in control flow statements. These
attacks exploit limitation of dynamic taint analysis that does not propagate taint in
control dependencies to leak sensitive information. We use the two taint propagation
rules to detect these obfuscation techniques based on control flow. We show that our
approach can successfully avoid them. Thus, using our technique, malicious applica-
tions cannot bypass the Android system and get private sensitive information through
obfuscated code attacks.





CHAPTER

6 Platform and
Implementation

6.1 Introduction

In chapter 4, we have provided an algorithm that enhances the dynamic taint analysis
using the static analysis to propagate taint along control dependencies. In this chapter,
we present a concrete implementation of this algorithm in the TaintDroid system.
TaintDroid cannot detect control flows because it only uses dynamic taint analysis. We
aim to enhance the TaintDroid approach by tracking control flow in the Android system
to solve the under-tainting problem. To do so, we adapt and integrate the implicit flow
management approach defined in Trishul. Then, we show effectiveness of our approach
to propagate taint in the conditional structures of real Android applications to solve
the under-tainting problem and to detect leakage of sensitive informations.

This chapter is organized as follows: As we implement our approach in the Taint-
Droid system which is an extention of the Android system, we present in Section 6.2
the Android and TaintDroid approaches. Also, we present Trishul from which we took
our inspiration to implement our approach in real-time applications such as smart-
phone applications. We give an overview of our approach in section 6.3. Section 6.4
describes implementation details of our approach. We analyze a number of Android
applications to test the effectiveness of our approach and we study our taint tracking
approach overhead in Section A.7. Also, we implement and test the three obfuscated
code attacks based on control dependencies presented in Section 5.7 of Chapter 5 to
test the effectiveness of our approach. We discuss the limitations of our work in section
6.6. Finally, we present concluding remarks in section A.8.
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6.2 Background

6.2.1 Android

Android is a Linux-based operating system designed for smartphones and tablet com-
puters. Android supports the execution of native applications and a preemptive mul-
titasking capability (in the form of services). The open-source code of Android and
permissive licensing allows the software to be freely modified and distributed by device
manufacturers, wireless carriers and enthusiast developers.

Architecture of Andoid

Figure 6.1: Android operating system architecture.

The architecture of Android mobile-phone platform is illustrated in Figure 6.1. Android
system is composed of the following layers [140]:

Applications
Android has a large community of developers writing applications such as email client,
SMS program, calendar, maps, browser, contacts and others that extend the function-
ality of devices. These applications are written using the Java programming language.
Then, they are compiled to a specific byte-code (the Dalvik EXecutable: DEX) which
is optimized for minimal memory footprint.

Application Framework
The Application Framework layer offers many higher-level services to applications.
These services are written mostly in Java and include:
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• A set of Views (text boxes, lists, buttons) for building an application.

• Content Providers for managing access to a set of data between applications.

• A Resource Manager that allows access to graphics, localized strings and layout
files resources.

• A Notification Manager for displaying alerts in the status bar.

• An Activity Manager for managing the lifecycle of applications

Android provides an open development platform where developers can access to the
same framework APIs and use these services in their applications. The applications
and most framework code are executed in the Dalvik virtual machine.

Android Runtime

The Android Runtime is composed of the Dalvik Virtual Machine and the core
libraries.

• Dalvik Virtual Machine (DVM):
The Dalvik Virtual Machine has the same characteristics as the Java Virtual Ma-
chine (JVM) but it is designed and optimized for Android [141]. Unlike Java virtual
machine, which is a stack machine, the Dalvik virtual machine has a register-based
architecture optimized for low memory requirements.

Figure 6.2: Difference between JVM and DVM [142].
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The stack machine requires more instructions to load and store data in the stack
than register machines. Using the Dalvik virtual machine, an Android application
runs in its own process, with its own instance of the Dalvik virtual machine.
Hence, the smartphone can run multiple VMs efficiently. Figure 6.2 explains
difference between JVM and DVM. The Dalvik virtual machine is slimmed down
to consume less space and time (the creation of new VM instances must be fast
as well).

Dalvik VM Interpreter: The "dex” tool transforms classes compiled by a Java
language compiler to .dex files that are executed by the interpreter of the Dalvik
virtual machine. The .dex file is smaller in size than the .jar file derived from
same .class file (see Figure 6.3). The Dalvik executable can be modified when it
is installed on to the smartphone.

Figure 6.3: Size Comparison between Jar and Dex files [141].

The Dalvik VM interpreter handles method registers using an internal execution
state stack. The registers of the current method are stocked on the top stack
frame. Each register presents a local variable in the Java method. It contains
primitive types and object references. Data are stored in registers used for
computation arithmetic, manipulated by some machine instruction. But, the
instructions in a Dalvik machine must encode the source and destination registers
therefore, tend to be larger.

Dalvik VM Verifier: Dalvik performs verification at build time and at installa-
tion of new applications. The Dalvik VM Verifier checks the instructions of every
method in every class in a DEX file to determine illegal instruction sequences.
Verified instructions are not checked at run time. Dalvik performs optimization
of the byte code result of the verifier to increase performance, save battery life,
reduce redundancy and make system response faster.

• The core libraries in the Android runtime enable developers to write Android
applications using standard Java programming language.
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Native Libraries and Native Method

The set of standard library of Android resembles to J2SE (Java Standard Edition).
The main difference is that the AWT and Swing GUI libraries are replaced by Android
libraries [140].

The Android library allows the creation of graphical user interfaces similarly to the
fourth generation frameworks. These GUI such as XUL, JavaFX and Silverlight can
be used with several skins or graphic charts.

The native libraries and methods are written in C or C++. These libraries are
used by various components of the Android system. They include the open-source
web browser engine WebKit, libc library, SQLite database, media libraries and SSL
libraries.

In Android systems, there are two kinds of native methods. The first ones are
the internal virtual machine methods which are dedicated to access to structures of
the interpreter and APIs. The second type of native methods are the Java Native
Interface (JNI) methods, compliant with standard specifications [143], used to manage
code written in the Java programming language to interact with native code written
in C/C++.

Linux Kernel

The Linux kernel is used for the classical operating systems services: use of the
devices, access to the different networks of telecommunication, manipulation of memory
and to control the access to the process. It is an interface between the hardware and
the rest of the software stack. It is a branch of the Linux kernel 2.6, modified to be
used on mobile devices. The X Window System, GNU tools and some configuration
files, that are typically present in the Linux distributions, are not included in Android.
The Android development team has made many improvements to the Linux kernel and
the decision was taken by the community of Linux development to incorporate these
improvements into the kernel Linux 3.37 [15].

Building and Running an Android Application

As shown on Figure 6.4, an Android project is compiled and packaged into an .apk
file that contains the compiled .dex files, the binary version of Manifest file, compiled
resources and uncompiled resource files for the application. These files are necessary
to run the Android application. Eclipse can be used as an integrated development
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environment (IDE) to build an Android project by using the Android Developer Tools
(ADT) plugin. ADT provides graphical user interface access to many of the command
line Android Software Development Kit(SDK) tools. The Android SDK includes the
API libraries and developer tools that are used to build an Android application.

Figure 6.4: Building and Running Application [144].

The Ant file “build.xml" can also be used instead of the Eclipse environment to
build the Android project. Before running an Android application, it is signed using
debug mode in developing and testing steps or release mode when it will be delivered
in the market. An Android application can be installed executed and tested either on
a device or on an emulator.
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Figure 6.5: The Android application project build process [144].

For producing a final .apk file, the Android application project build process passes
through 7 steps described in Figure 6.5:

• Resource code generation: The aapt (Android Asset Packaging Tool) tool com-
piles the application resource files (AndroidManifest.xml file, the XML files for
application Activities) and generates an R.Java.

• Interface code generation: The aidl (Android Interface Definition Language) tool
converts the .aidl interfaces into Java interfaces.
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• Java compilation: The Javac (Java Compiler) is used to compile the Java code
that includes the R.Java and .aidl files and produces the .class files.

• Byte code conversion: The dex tool converts the .class files and third party libraries
of the Android project to .dex files.

• Packaging: The apkbuilder tool is used to package all resources (non-compiled
and compiled resources) and the .dex files to an .apk file.

• Signing the package: The jarsigner tool associates a signature (debug key or release
key) to the .apk file that will be installed to a device.

• Package optimization: The zipalign tool arranges the files in the .apk package to
reduce memory usage at application run time.

We modify the Dalvik virtual machine verifier and we statically analyze instructions
of third party application Dex code at load time. Moreover, we modify the Dalvik
virtual machine interpreter to taint variables in the conditional instructions at run
time. We use native methods to implement the two additional rules that define the
taint propagation presented in Section 4.5 of Chapter 4.

6.2.2 TaintDroid

Third-party smartphone applications can access to sensitive data and compromise con-
fidentiality and integrity of Android systems. To solve this problem, TaintDroid [5],
an extension of the Android mobile-phone OS can be used to control in realtime the
manipulation of users personal data by third-party applications. It implements dy-
namic taint tracking and analysis system to track the information flow and to detect
when sensitive data leaves the system. TaintDroid considers that information acquired
through low-bandwidth sensors (location and accelerometer), high-bandwidth infor-
mation source (microphone and camera), information databases (address books and
SMS messages) and device identifiers(the phone number, SIM card identifiers (IMSI,
ICC-ID), and device identifier (IMEI)) are privacy sensitive information that should
be tainted.
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Figure 6.6: TaintDroid Approach. Our Approach is implemented in Dalvik virtual
machine (Blue)

Figure 6.6 presents the TaintDroid approach. It is a multi-level approach for per-
formance efficient taint tracking in smartphones. The variable-level tracking is imple-
mented by instrumenting the virtual machine interpreter. The message-level tracking is
used to track messages between applications and to minimize the inter process commu-
nication (IPC) overhead. The method-level tracking is used for system-provided native
libraries to patch the taint propagation. The file-level tracking is implemented in the
storage level to track files in the systems. The taint propagation rules are spread across
the internal VM native methods and the JNI native methods. Enck et al. patched the
call bridge to provide taint propagation for all JNI methods. They instrumented the
Java framework libraries to define the taint sink within interpreted code.

Architecture of TaintDroid

Figure 6.7 presents the TaintDroid architecture.
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Figure 6.7: TaintDroid architecture [5]

Sensitive data is tainted in a trusted application (1). Then, a native method called
by the taint interface stores the taint in the virtual taint map (2). The taint tags are
stored adjacent to variables in memory, providing spatial locality to address perfor-
mance and memory overhead challenges. TaintDroid associates taint to five variable
types: method local variables, method arguments, class static fields, class instance
fields, and arrays. To encode the taint tag, TaintDroid defines a 32-bit vector with
each variable.

Figure 6.8: TaintDroid Propagation Logic [5]

The taint tags are propagated by the Dalvik VM referencing (3) data flow rules pre-
sented in Table 6.8. vX and fX represent register variables and class fields respectively.
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R and E reference the return and exception variables. A, B, and C are constants in the
byte-code. The virtual taint map function τ(v) returns the taint tag t for variable v or
assigns a taint tag to a variable. We can note that TaintDroid defines taint propagation
logic just for explicit (direct) flows and does not track indirect flows (control flows).
When the tainted information is used in an IPC transaction, the modified binder li-
brary (4) verifies that the taint tag parcel is equivalent to combined taint marking of
all data in the parcel. The parcel is sent through the kernel (5) and received by the
remote untrusted application (only the interpreted code is untrusted). The modified
binder library assigns the taint tag from the parcel to all values read from it (6). The
taint tags are propagated by the remote Dalvik VM instance (7) identically to the
untrusted application. When tainted data is used in a taint sink (network sink) (8),
the library specifies the taint sink, gets the taint tag (9) and reports the event.

Handling Flows with TaintDroid

TaintDroid uses the dynamic taint analysis to track explicit flows on smartphones.
First, it defines a sensitive source. Each input data is tainted with its source taint.
Then, TaintDroid tracks propagation of tainted data at the instruction level. The
taint propagation is patched by running the native code without instrumentation. To
minimize IPC overhead, it implements message-level tracking between applications
and file-level tracking. Finally, vulnerability can be detected when tainted data are
used in taint sink (network interface). One limit of TaintDroid is that it cannot detect
control flows because it uses dynamic taint analysis. We aim to enhance the TaintDroid
approach by tracking control flow in the Android system to solve the under-tainting
problem. To do so, we adapt and integrate the Trishul approach. We describe this
approach with more details in the following.

6.2.3 Trishul

Trishul is an information flow control system. It is implemented in a Java virtual
machine to secure execution of Java applications by tracking data flow within the
environment. It does not require a change to the operating system kernel because it
analyzes the bytecode of an application being executed. Trishul is based on the hybrid
approach to correctly handle implicit flows using the compiled program rather than
the source code at load-time.
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Figure 6.9: Architecture of Trishul [112]

Architecture of Trishul

When an application calls a function, the Trishul’s run-time policy enforcement archi-
tecture provides a mechanism to trap these function calls. By using a policy decision
engine that prevents tainted data to be propagated to insecure locations (network chan-
nels), it checks the policy and decides whether or not to allow the calls. To do that,
Trishul is placed between the Java application and the operating system. The Trishul
architecture is based on two parts illustrated in Figure 6.9: the core Trishul JVM sys-
tem and the pluggable policy engine. The core JVM allows information flow tracking
and provides the policy engine with the hooks needed to trap the calls performed by the
untrusted application. Using these hooks, the policy engine loads appropriate policies
into the Trishul system based on the access and propagation of tainted data in the
application to allow or not the application function call. When the application code is
loaded, a policy engine is also loaded in the JVM. If the application reads a piece of
data from the hard disk (1), these data are loaded into Trishul (2). The policy engine
hooks onto the call and taints the data. The information flow control functionality of
Trishul ensures that the taint remains associated with the data when it is propagated
(3). When the tainted data is used by the application (4) (sent over a socket connec-
tion) (5), Trishul interposes (6) and transfers the control to the policy decision engine
(7). The engine checks with the respective data’s usage policy (8) and decides whether
or not to allow the application to proceed.
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Handling Flows with Trishul

Trishul assigns a taint to each value that appears as an operand on the JVM work-
ing stack (local variable, parameter and return value). It handles explicit flows by
instrumenting the Java bytecode instructions to combine the taint values when the
corresponding values are used as operands of a logic or arithmetic operation. To detect
the implicit flow, Trishul uses:

• Static analysis of the bytecode at load time: To define the conditional control
flow instruction, Trishul creates the control flow graph (CFG) which is analyzed
to determine branches in the method control flow. A basic block is assigned to
each control flow branch. When the basic block is executed, the condition taint is
included in its context taint, because the information flow in that block depends
on the condition. This taint is removed from the context taint when all paths
have converged and the condition does not influence the control flow. A dataflow
analysis (postdominator analysis) is determined to detect branching and merging
of the flow of control in the graph. A context bitmap summarizes the result of
this dataflow and is used to update the context-taint appropriately at run-time.

• The dynamic system uses information provided by the static analysis and run-time
enforcement: The run-time enforcement allows policies to be attached when the
program is executed. Trishul attaches an array of context taints to each method
that is stored in the method’s stack frame. When the conditional flow instruction
is executed, the condition taint is stored in an appropriate entry of the array.

Trishul solves the under-tainting problem by updating the context taint and main-
taining a list of all the variables that are modified in a basic block of control flow graph
to handle not executed branches. But, it is not implemented in embedded system such
as smartphone.

We adapt and integrate the implicit flow management approach of Trishul and
we follow not executed branches to solve the under-tainting problem in the Android
system. We present, in the following, extensions of the TaintDroid and Trishul works
that we implement in real-time applications such as smartphone applications.
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6.3 Design of Our Approach

6.3.1 Design Requirements

Our objective is to detect private information leakage by untrusted smartphone appli-
cations exploiting implicit flows. We control the manipulation of private data by third
party application in realtime. In this context, many challenges need to be addressed:

• The resource constrained of Smartphones: the limited processing and memory
capacity of smartphones make it difficult to use information flow tracking systems
[79], [74, 76, 77]. Thus, it is necessary to design a resource efficient security
mechanism.

• The unavailable application source code: the source code of smartphone applica-
tions is often unavailable.

• False negatives: while the most used information flow tracking systems [5, 103]
do not track control flows, false negatives could be generated and caused security
flaws.

• False positives: tracking all information flows can give false alarms. Most smart-
phones are based on the ARM instruction set, so false positives and false negatives
could occur.

• Detection of control dependencies: it is difficult to detect all control dependencies
and the assignments in the conditional structure.

• Diversity of sensitive data: Third party applications use different types of sensitive
data. Thus, the security mecanisms must distinguish multiple sensitive data types.
This operation requires additional computation and storage.

6.3.2 System Design

In Section 4.5.2 of Chapter 4, we proposed a tainting algorithm, Taint_Algorithm,
that allows solving the under-tainting problem. The proposed approach is based on
this algorithm and combines and benefits from the advantages of static and dynamic
analyses. It does not need source code because it analyses the Dex code (binary code)
of untrusted Smartphones applications. As shown in Figure 6.6, we modify the Dalvik
virtual machine to implement our approach.
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Figure 6.10: Our Approach Architecture

Our approach consists of two main components (see Figure 6.10). The first one
is the StaticAnalysis that allows detecting control dependencies. This component
checks the instructions in the code applications at load time to generate a control flow
graph [121, 122]. This graph will be analyzed to determine branches in the conditional
structure. Also, we detect variable assignments in a basic block of the control flow graph
to handle not executed branches. The second component is the DynamicAnalysis,
which uses information provided by the StaticAnalysis component. It allows tainting
variables to which a value is assigned in the conditional instruction at run time. To
taint these variables, we use the set of formally defined rules presented in Section 4.5
of Chapter 4.

These rules allow tainting all variables to which a value is assigned in the conditional
structure whether the branch is taken or not. Thus, our system cannot be in the under
tainting situation. Our approach does not generate false negative but false positives
can occur. We show in Section 6.6 that it is possible to reduce those false positives by
considering expert rules.

We present in the following, implementations details of our approach.

6.4 Implementation

We implement our proposed approach in TaintDroid operating system. We use our
implementation to extend and enhance the dynamic taint analysis performed by Taint-
Droid to propagate taint in control branches by integrating the concepts introduced
by Trishul. To do so, we add a StaticAnalysis component in the Dalvik virtual ma-
chine verifier that statically analyzes instructions of third party application Dex code
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Figure 6.11: Verification process.

at load time. Also, we modify the Dalvik virtual machine interpreter to integrate the
DynamicAnalysis component. We implement the two additional rules presented in
Section 4.5 of Chapter 4 using native methods that define the taint propagation.

6.4.1 Static Analysis Component

The static verification is performed in the file DexVerify.c. In this file, there are three
levels of verification: class level, method level and instruction level. Figure 6.11 shows
the verification process.

In order to add static analysis component, DexVerify.c is modified by adding three
functions, contextAnalysisBeginAnalyze, contextAnalysisControlF lowInstruction
and contextAnalysisEndAnalyze in the function verifyInstructions. Calling the
sequence of functions is shown in Figure 6.12.

In the contextAnalysisBeginAnalyze function, we initialize global variables
for method analysis. Then, we check the methods instructions. When
control flow instructions (if, switch , goto, catch...) are detected, the
contextAnalysisControlF lowInstruction function is called to signal a jump instruc-
tion. This function takes as input arguments the program counter pc, pc_target, the
length and the type of block. The pc_target presents the jump target if this is a jump
instruction or the number of cases if this is a switch instruction. In this function,
we create the BasicBlock, or several if forward branches were defined at the end of
the basic blocks list. Then, we specify the target of basic blocks. Also, we allocate a
BitmapBits for tracking condition dependency.
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Figure 6.12: Calling sequence of functions added.

When we achieve the analysis of a single method, we call the
contextAnalysisisEndAnalyze function to create the control flow graph (CFG).
A CFG is composed of basic blocks and edges. We allocate the last basic block in the
basic blocks list. We call the dumpGraph function that uses this list to determine
blocks of the graph. The basic blocks represent nodes of the graph. The directed
edges represent jumps in the control flow. Edges of the CFG are defined using the
BitmapBits struct. The BitmapBits is composed of bits. Setting all bits indicates
that the flow of control is merged and the basic block is not controlled by control
condition. When one bit is set, the basic block depends on the control condition. The
basic block represents the conditional instruction when no bit is set. We store the
control flow graph in graphviz format [145] in the smartphone data directory. The
appendix D shows in details the implementation of the static analysis component
(structure and function used).

6.4.2 Dynamic Analysis Component

The dynamic analysis is performed at run time by instrumenting the Dalvik virtual
machine interpreter. The DynamicAnalysis component uses information provided
by the StaticAnalysis component such as the BitmapBits. The BitmapBits allows
detecting the condition dependencies from variables in basic blocks of the graph. We
assign a context_taint to each basic block. The context_taint includes the taint of
the condition on which the block depends. By referencing to the BitmapBits, we
set the context_taint of each basic block. We start by exploring the branches that
are not taken. The StaticAnalysis component provides the type and the number of
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instructions in these branches (in basic block). Then, we force the processor to taint
variables to which a value is assigned in these instructions. To taint these variables,
we use the context_taint of the basic block containing these variables and we apply
the second rule defined in the Section 6.3.

We compare arguments in the condition using the following instruction :
res_cmp = ((s4)GET_REGISTER(vsrc1)_cmp(s4)GET_REGISTER(vsrc2)).
Based on the comparison result, we verify whether the branch is taken or
not. We combine the taints of different variables of the condition as follows:
SET_REGISTER_TAINT (vdst, (GET_REGISTER_TAINT (vsrc1)|
GET_REGISTER_TAINT (vsrc2))) to obtain the Context_Taint. If res_cmp is
not null then the branch is not taken. Thus, we adjust the ordinal counter to point to
the first instruction of the branch by using the function ADJUST_PC(2). Otherwise,
it is the second branch (else) which is not taken then we adjust the ordinal counter to
point to the first instruction in this branch by using the function ADJUST_PC(br)
where br represents the branch pointer.

We instrument different instructions in the interpreter to handle conditional state-
ments. For each instruction, we check if it is a conditional statement or not. Then,
we test if the condition is tainted (Context_Taint is not null). In this case, we
taint the variable to which we associate a value (destination register) as follows:
SET_REGISTER_TAINT (vdst, (GET_REGISTER_TAINT (vsrc1)|
GET_REGISTER_TAINT (vsrc2)|taintcond))

If the conditional branch contains multiple instructions, we verify each time that
(pc_start < pc) and (pc < pc_end) to handle all the instructions (we incement the
ordinal counter when we execute an instruction).

In the case of for and while loops, we process by the same way but we test whether
the condition is still true or not in each iteration.

We make a special treatment for Switch instructions. We deal with all case state-
ments and all instructions which are defined inside Switch instructions. Note that,
we only taint variables and do not modify their values. Once we handle all not taken
branches, we restore the ordinal counter to treat the taken branches. We assign taints
to modified variables in this branch using the first rule presented in the Section 6.3.
We modify the native methods of TaintDroid to implement the two additional rules
that propagate taint in the control flow. The appendix E shows in details the imple-
mentation of the dynamic analysis component.

Exception Handling
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TaintDroid does not detect exceptions used in control flow. Thus, an attacker can
successfully leak sensitive information by throwing exceptions to control flow. For this
reason, we make a special exception handling to avoid leaking information. The catch
block depends on the type of the exception object raised in the throw statement. If
the type of exception that occurred is listed in a catch block, the exception is passed
to the catch block. So, an edge is added in the CFG from the throw statement to the
catch block to indicate that the throw statement will transfer control to the appropriate
catch block. If an exception occurs, the current context taint and the exception’s taint
are stored. The variables assigned in any of the catch blocks will be tainted depending
on the exception’s taint. Each catch block has an entry in the context taint for this
purpose.

Native Code Taint Propagation

We do not instrument native code to implement taint propagation. We manually
inspect and patch the C source code of internal VM methods which are called directly
by interpreted code for taint propagation. We assign taint tags to all accessed external
variables referenced by other methods and to the return value according to data flow
rules presented in Table 6.8. There are less than 200 internal VM methods, and only a
dozen or so need to be patched. For JNI methods, we patch the call bridge to provide
taint propagation. In addition, we define a method profile that is a list of (from; to)
pairs indicating flows between variables (method parameters, class variables, return
values) for tag propagation in JNI methods. It will be used to update taints when
a JNI method returns. We include an additional propagation heuristic patch. The
heuristic assigns the union of the method argument taint tags to the taint tag of the
return value. It is conservative for JNI methods that only operate on primitive and
String arguments and return values.

6.5 Evaluation

In this section, we analyse a number of Android applications to test the effectiveness of
our approach. Then, we implement and test the three obfuscated code attacks based on
control dependencies presented in Section 5.7 of Chapter 5 to show experimentally that
our approach resists to these attacks. We study our taint tracking approach overhead
using standard benchmarks. We evaluate the false positives that could occur using
our approach. We use a Nexus One mobile device running Android OS version 2.3
enhanced to track implicit flows.
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Table 6.1: Third party applications grouped by the requested permissions (L: location,
Ca: camera, Co: contacts, P: phone state).

Third party applications Permissions
L Ca Co P

The Weather Channel∗; Cestos; Solitaire; Babble; Manga
Browser (5)

x

Bump; Traffic Jam; Find It∗; Hearts; Blackjack; Alchemy;
Horoscope∗; Bubble Burst Free; Wisdom Quotes Lite∗; Paper
Toss∗; Classic Simon Free; Astrid∗ (12)

x x

Layar∗; Knocking∗; Coupons∗; Trapster∗; ProBasketBall (5) x x x
Wertago∗; Dastelefonbuch∗; RingTones∗; Yellow Pages∗;
Contact Analyser (5)

x x x

6.5.1 Effectiveness

To evaluate the effectiveness of our approach, we analyse 27 free Android applications
downloaded from the Android Market [146]. As shown in Table 6.1, five applications
require permissions for contacts and five applications require permissions for camera at
install time. Most of these applications access to locations and phones identity. Also,
our analysis showed that these permissions are acquired by the implicit or explicit
consent of the user. For example, in the weather application, when the user selects the
option “use my location", he gives permission to the application to use and to send this
information to the weather server.

We found that 14 of these 25 analyzed Android applications (marked with * in the
Table 6.1) leak private information:

• The IMEI numbers that identify a specific cell phone on a network is one of the
information that is transmitted by 11 applications. Nine of them do not present
an End User License Agreement (EULA) [147].

• Two applications transmitted the device’s phone number, the IMSI (International
Mobile Subscriber Identity) which is used to identify the user of a cellular network
and the ICC-ID (Integrated Circuit Card IDentifier) which is a unique SIM card
serial number to their server.

• The location information is leaked by 15 third-party applications to advertisement
servers. These applications do not require implicit or explicit user consent. Just
two applications require an EULA.
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Figure 6.13: example of control flow in the Weather Channel application.

We use dex2jar tool [148] to translate dex files of different applications to jar files.
Then, we use jd-gui [149] to obtain the source code that will be analysed. As shown in
Table 6.2, we found that 14 of tested Android applications listed by types of accessed
sensitive data use control flows to transfer private information. Eight of them leaked
private data. Sensitive data is used in the if , for and while control flow instructions
(see example of the Weather Channel application code in the Figure 6.13).

We verify that variables to which a value is assigned in these instructions and that
depend on a condition containing private data are not tainted using TaintDroid. Our
approach has succesfully propagated taint in these control instructions and detected
leakage of tainted sensitive data that is reported in the alert messages. Figure 6.19
presents notification messages of examples of tested applications that appear when
sensitive data is leaked.

6.5.2 Taint Propagation Tests

To test our approach, we run an Android application in which an attacker tries to get
a secret information (the IMEI of the smartphone) using the implicit flows.

Figure 6.14: Test application source code
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Table 6.2: Third party applications used control flows

Category application Name Leaked Data
Wertago x

Contact and Phone Identity Dastelefonbuch x
Yellow Pages x

Camera Knocking x
ProBasketBall
The Weather Channel x
Cestos
Classic Simon Free
Bubble Burst Free

Location and Phone Identity Bump
Traffic Jam
Horoscope x
Paper Toss x
Find It x

The source code of this Android application is given in Figure 6.14. The application
gets the attacker input using the Get_user_input() function. When the attacker clicks
on the test value button, the user input will be compared with the IMEI value using the
leakboolean() function. The comparison result will be transfered by network connection
when the attacker clicks on the send button. The source code of the leakboolean()
function is given in Figure 6.15. This function presents an implicit flow of information
from the condition (IMEI == input_user) to c.

Figure 6.15: LeakBoolean function source code
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Using TaintDroid approach, variables to which a value is assigned in the conditional
structure are not tainted. Hence, this example presents an under tainting problem. To
solve this problem, we start by the static analysis of the code instructions. We obtain
the same control flow graph presented in Section 4.5.3 of Chapter 4.

In our example, when the test is positive (the attacker finds the correct value
of IMEI), the first branch is executed but the second is not. We use the first rule
presented in Section 4.5 of Chapter 4 to taint c in the branch taken: Taint(c) =
ContextTaint ⊕ Taint(explicitf lowstatement) or ContextTaint = Taint(IMEI) ⊕
Taint(input_user) then Taint(c) depends on Taint(IMEI).

We use the second rule presented in Section 4.5 of Chapter 4 to taint c in the branch
not taken: Taint(c) = ContextTaint⊕ Taint(c) or ContextTaint = Taint(IMEI)⊕
Taint(input_user) then Taint(c) depends on Taint(IMEI). We use the function
getTaintBoolean(c) defined in the TaintDroid code to get and to display the taint of
the variable c in the two branches. The variable c is tainted whether the branch is
taken or not and the Taint(c) is equal to Taint(IMEI) (((u4)0× 00000400) = 1024).

The attacker clicks on the send button to transfer variable c through the network
connection to know if the test is positive. The value of c is successfully sent to the
server application. A warning message that indicates the value ‘true’ and the taint
‘0× 400’ of received message is displayed in the taintdroid log (see Figure 6.16).

Figure 6.16: TaintDroid log

So, all variables that depend on the condition are tainted whether the branch is
taken or not. The implicit flow of information from the condition to c is correctly
identified and we don’t have an under-tainting problem using this approach. We can
also detect the leak of private tainted information that is reported in the warning
message. We have a similar result when the test is negative.

6.5.3 Obfuscation code attacks Tests

We have implemented and run the three obfuscated code attacks based on control
dependencies presented in Section 5.7 of Chapter 5 to test the effectiveness of our
approach in detecting these attacks.

We have tested these attacks using a Nexus One mobile device running Android OS
version 2.3 modified to track control flows. The complete code for the three obfuscated
code algorithms is presented in Appendix C.
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Figure 6.17: Code obfuscation attack 1.

(a)

(b)

(b)

Figure 6.18: Log files of Code obfuscation attacks

We use the Traceview tool to evaluate the performance of these attacks. We present
both the inclusive and exclusive times. Exclusive time is the time spent in the method.
Inclusive time is the time spent in the method plus the time spent in any called func-
tions. We install the TaintDroidNotify application to enable notifications on the device
when tainted data is leaked.

Let us consider the first obfuscated code attack (see Figure 6.17). The first loop is
used to fill the table of ASCII characters. The attacker tries to get the private data
(user contact name= ‘Graa Mariem’) by comparing it with symbols of Ascii table in
the second loop. The taint of the user contact name is ((u4)0× 00000002).
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(a) (b) (c)

Figure 6.19: Notification reporting the leakage of sensitive data

The variable x is tainted because it belongs to the tainted character string X. Thus,
the condition (x == TabAsc[j]) is tainted. Our system allows propagating the taint
in the control flow. Using the first rule, Y is tainted and Taint(Y ) = Taint(x ==
TabAsc[j])⊕Taint(Y +TabAsc[j]). We can show in the log file given in Figure 6.18(a)
that Y is tainted with the same taint as the user contact name. A notification appears
(see Figure 6.19(a)) reporting the leakage of Y that contains the value of private
data. The execution of the first algorithm takes 88 ms as Inclusive CPU Time using
TaintDroid modified to track control flows and 36ms in not modified Android.

Figure 6.20: Code obfuscation attack 2.
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The second obfuscated code attack is illustrated in Figure 6.20. The attacker tries to
get a secret information X that is the IMEI of the smartphone. The taint of the IMEI is
((u4)0×00000400). The variable x is tainted because it belongs to the character string
X that is tainted. The result n of converting x to integer is tainted. Thus, the condition
(j = 0 to n) is tainted. Using the first rule, y is tainted and Taint(y) = Taint(j = 0
to n) ⊕ Taint(y + 1). In the first loop, the condition x ∈ X is tainted. We apply the
first rule, Y is tainted and Taint(Y ) = Taint(x ∈ X) ⊕ Taint(Y + (char)y). This
result is shown in the log file given in Figure 6.18(b). The leakage of the private data
event is presented in the notification (see Figure 6.19(b)). The execution of the second
algorithm takes 101 ms as Exclusive CPU Time using TaintDroid modified to track
control flows and 20ms in unmodified Android. The execution time in our approach
is more important because it includes the time of the taint propagation in the control
flow.

Figure 6.21: Code obfuscation attacks 3.

The third obfuscated code attack is illustrated in Figure 6.21. The attacker exploits
exception to launch obfuscated code attacks and to leak sensitive data (phone number).
The division by zero throws an ArithmeticException. This exception is tainted and
its taint depends on the while condition y < n. Also, the while condition (y < n)
is tainted because the variable n that corresponds to the conversion of a character in
phone_number is tainted. TaintDroid does not assign taint to exception. We define
taint of exception (Taint_Exception = ((u4)0 × 00010000)). Then, we propagate
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exception’s taint in the catch block. We apply the first rule to taint y. We obtain
Taint(y) = Taint(exception)⊕ Taint(y + 1). Finally, the string Y which contains the
private data is tainted and Taint(Y ) = Taint(x ∈ X)⊕Taint(Y +(char)y). In the log
file given in Figure 6.18(c), we can show that the taint of Y is the combination of the
taint of the exception (((u4)0×00010000)) and the taint of the phone number (((u4)0×
00000008)). A warning message appears indicated the leakage of sensitive information
(see the notification in Figure 6.19(c)). The execution of the third algorithm takes
1385 ms as Inclusive CPU Time using TaintDroid modified to track control flows and
1437 ms in unmodified Android. This difference is due to the taint propagation in the
control flow.

The sizes of control flow graphs obtained of the three algorithms are about 1200
bytes.

6.5.4 Performance

In this section, we study our taint tracking approach performance and memory over-
head.

The static analysis is performed at load and verification time. At load time, our
approach adds 33% overhead with respect to the unmodified system. At verification
and optimization time, the static analysis requires 35ms on the unmodified system and
48ms with our approach indicating a 27% overhead. This time increase is due to the
verification of method instructions and the construction of the control flow graphs in
the static analysis phase.

We install the CaffeineMark application [150] in our Nexus One mobile device to
determine the Java microbenchmark. Note that the CaffeineMark scores roughly cor-
relate with the number of Java instructions executed per second and do not depend
significantly on the amount of memory in the system or on the speed of a computers
disk drives or internet connection [150].

The first obfuscated code algorithm has an overall score of 3486 Java instructions
executed per second using the unmodified Android and 2893 instructions using our
approach. The second obfuscated code algorithm has a total score of 3465 using un-
modified Android and 2893 using our approach. The third algorithm provides an
overall score of 4241 using unmodified Android and 3440 using our approach. We
tested the proposed approach with more complex algorithms. Our approach affects
the performance of the Android system and gives a slower execution speed rate, i.e,
less instructions executed per second. This is because in our approach we perform an
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additional treatement and we taint variables to which a value is assigned in conditional
instructions whether the branch is taken or not. We tested the proposed approach with
more complex applications.

Figure 6.22: Microbenchmark of Java overhead

Figure 6.22 presents the execution time results of a Java microbenchmark. We
propagate taint in the conditional branches especially in the loop branches and we
add instructions in the processor to solve the under tainting problem. Then, the
loop benchmark in our approach presents the greatest overhead. We taint results of
arithmetic operations in explicit and control flows. Thus, the arithmetic operations
present the greatest overhead. The string benchmark difference between unmodified
Android system and our approach is due to the additional memory required in the
string objects taint propagation.

We observe that the unmodified Android system had an overall score of 3625 Java
instructions executed per second. Whereas, our approach had an overall score of 2937
Java instructions executed per second. Therefore, our approach has a 19% overhead
with respect to the unmodified system. On the other hand, the TaintDroid system had
an overall score of 3117 Java instructions executed per second. Therefore, TaintDroid
has a 14% overhead with respect to the unmodified Android system. Thus, the overhead
given by our approach is acceptable in comparison to the one obtained by TaintDroid.

We also measure the amount of memory allocated by applications during the Caf-
feineMark benchmark. The benchmark consumed 21.28 MB on the unmodified system,
22.21MB while running TaintDroid and 24.09 MB while running our approach. There-
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fore, our approach presents 12% memory overhead with respect to the unmodified
Android system.

6.5.5 False positives

We found that 14 of the 25 tested Android applications (almost of 50%) use control
flows to transfer private information and leak sensitive data (see section 6.5.1). We
detected an IMSI leakage vulnerability when it was really used as a configuration
parameter in the phone. Also, we detected that the IMEI is transmitted outside of
smartphone when it was really the hash of the IMEI that was transmitted. Thus, we
can not treat these applications as privacy violators. Therefore, our approach generates
25% of false positives.

6.6 Discussion

Cavallaro et al. [137] describe evasion techniques that can easily defeat dynamic in-
formation flow analysis. These evasion attacks can use control dependencies. They
demonstrate that a malware writer can propagate an arbitrarily large amount of in-
formation through control dependencies. Cavallaro et al. see that it is necessary to
reason about assignments that take place on the unexecuted program branches. We
implement the same idea in our taint propagation rules. Unfortunately, this will lead
to an over-tainting problem (false positives). The problem has been addressed in [111]
and [151] but not solved though. Kang et al. [111] used a diagnosis technique to se-
lect branches that could be responsible for under-tainting and propagated taint only
along these branches in order to reduce over-tainting. However a smaller amount of
over tainting occurs even with DTA++. Bao et al. [151] define the concept of strict
control dependencies (SCDs) and introduce its semantics. They use a static analysis
to identify predicate branches that give rise to SCDs. They do not consider all con-
trol dependencies to reduce the number of false positives. Their implementation gives
similar results as DTA++ in many cases, but is based on the syntax of a compari-
son expression. Contrariwise, DTA++ uses a more general and precise semantic-level
condition, implemented using symbolic execution.

We showed in Section A.7.2 that our approach generates significant false positives.
But it provides more security because all confidential data are tainted. So, the sensitive
information cannot be leaked. We are interested in solving the under tainting because
we consider that the false negatives are much more dangerous than the false positives
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since the false negatives can lead to leakage of data. It is possible to reduce the over-
tainting problem by considering expert rules. Also, we can ask user at the moment
when the sensitive data is going to be leaked to authorize or not the transmission of
the data outside of the system.

6.7 Conclusion

In order to detect the leakage of sensitive information by third-party apps exploiting
control flows in smartphones, we have implemented a hybrid approach that propagates
taint along control dependencies. In this Chapter, we have enhanced dynamic taint
analysis implemented in TaintDroid approach with static analysis to track control flows
and to solve the under tainting problem. By using the taint propagation rules imple-
mented in native methods, we showed that our system cannot create under tainting
states. We have analyzed 27 free Android applications to evaluate the effectiveness of
our approach. We found that 14 applications use control flows to transfer sensitive
data and 8 leaked private information. We tested the three obfuscated code attacks
based on control dependencies presented in Section 5.7 of Chapter 5. We showed that
our approach successfully detects these attacks. Our approach incurs 19% performance
overhead that is due to the propagation of taint in the control flow. By implementing
our approach in Android systems, we successfully protect sensitive informations and
detect most types of software exploits caused by control flows without reporting too
many false positives.
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7 Conclusion and
perspectives

As privacy issues on smartphones are a growing concern, in this thesis, we propose an
approach that allows tracking information flows to detect leakage of sensitive infor-
mation caused by the under tainting problem. We use the data tainting technique to
control the manipulation of private data by third party Android applications. We show
that dynamic taint analysis implemented in smartphones cannot detect control flows
that provoke an under tainting problem. So, we combine the static and dynamic taint
analyses to solve this problem. The static analysis is used to detect control dependen-
cies and to have an overview of all conditional branches in the program. We show how
to use information provided by static analysis, we have enhanced the dynamic taint
analysis to propagate taint along all control dependencies. We show also how to spec-
ify a set of formally correct and complete rules that describe taint propagation. We
then prove formally that our system cannot be in an under tainting state. We propose
a correct and complete taint algorithm to solve the under tainting problem based on
these rules. We test some obfuscated code attacks based on control dependencies and
we show that the dynamic taint analysis can be circumvented by these attacks that
leak sensitive data by exploiting the under tainting problem.

As the TaintDroid approach implements dynamic taint analysis in smartphones
based on Android system, we implement and test our approach in the TaintDroid
system. We show that our approach is effective to solve the under-tainting problem
and to detect leakage of private data without reporting too many false positives. Also,
our approach can resist to code obfuscated attacks in control flow statements. Thus,
malicious applications cannot bypass smartphones based on the Android system and
get privacy sensitive information through control flows.
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Perspectives

We give a set of future research directions that could be investigated as continuation
of the results presented in this thesis:

False positives

In this thesis, we are interested in solving the under tainting problem because the false
negatives can lead to a flaw in security. So, we taint all variables on conditional branches
to reflect the control dependencies. This can cause false alarms that may occur through
incorrect interpretation of tainted data. These alarms lead to conclude that there is
an attack when in fact there is not. The tainted variables can be transmitted to an
authorized server or can be handled in a secure manner (using the hash of the tainted
data). Thus, we should not treat these applications that send these tainted data as
privacy violations. We showed in Section A.7.2 that our approach generates 25% of
false positives. To balance (trade-off) between over-tainting and leakage of private
information, we plan to apply expert rules (ad hoc rules) to reduce the over-tainting
problem and protect private data. Also, we can use an access control approach, at the
moment when the sensitive data is leaked, to authorize or not the transmission of the
data outside the system.

Reaction mechanism

In this thesis, we focus just on the detection of sensitive information leakage. Our
detection mechanism is passive because it does not launch a reaction when private
data is transmitted outside the system. We can improve our detection mechanism by
implementing a reaction process. For example, we can send a message to the user to
warn him that sensitive data will be leaked. We can also block the data sent through
the network. Another solution is to ask the server to which the data is sent to give
proof of authorization.

Performance optimization

Our approach induces 19% performance overhead that is due to the propagation of
taint in all branches (executed and not executed). We implement our approach in the
Dalvik virtual machine interpreter because it allows the instructions behavior to be
modified easily so it can be ideally used for research purposes. But, the Dalvik virtual
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machine interpreter is slow (typically less than 1/3rd of time spent in the interpreter
[152]). So, to improve performance of our system, we suggest implementing the taint
propagation mechanism in Just In Time Compiler (JIT) that translates byte code to an
optimized native code at run time. The JIT compiler provides better performance than
the interpreter such as a minimal additional memory usage but modifying instructions
with JIT is more complex than the interpreter.

Implementation in other smartphone OS

We implement our approach on Android-based smartphones. But, as shown in Section
2.3 of Chapter 2, problem of private data leakage concerns most smartphone operating
systems (iPhone, Windows, less Symbian and BlackBerry). All these platforms are
targeted by data leakage attacks. In addition, they share limited capacity hardware and
are based on ARM architecture. To implement our approach, we modified the Dalvik
virtual machine, which is a Java virtual machine. Symbian also uses a Java virtual
machine called KJava that is running on "KJavaVirtualMachine" interpreter. Windows
Phone 7 is based on Windows CE and Windows Phone 8 on the windows NT kernel.
These OSes use a virtual machine called CLR (Common Language Runtime). An
instance of this VM is started for each program. In fact, it is only for Symbian, Android
and Windows that we can have a complete list of features and requirements needed
to run them. This is because BlackBerry and iPhone platforms are proprietary, with
no sensitive information given out to the public. Our approach can be implemented
in other smartphone operating systems by adapting to the technical features of these
OSes.

Multilevel security

In this thesis, we consider only two security levels (private/public), with the single
security requirement that private information cannot flow into a public object. We
assign taint to sensitive data. Public data are not tainted. Our approach can be
extended to support a multi-level security as suggested by Denning [41] and Bieber et
al. [153] approaches.

Native Code Taint Propagation

In this thesis, we manually inspect and patch native methods for taint propagation.
We run native code without instrumentation and patch the taint propagation. We
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add an additional propagation heuristic patch that assigns the union of the method
argument taint tags to the taint tag of the return value. This does not reflect the
exact taint propagation. So, to ensure the proper propagation to the native code, we
suggest instrumenting the ARM code. Also, we can use static analysis to enumerate
the information flows for all JNI methods.

Implementation in Android 4.4

We implement our approach in Dalvik VM of Android 2.3. The ART (Android Run-
time) is currently experimental replacement of the Dalvik VM in the last version of
Android (Android 4.4 KitKat). It works using a concept called ahead-of-time (AOT)
compilation that precompiles downloaded and installed applications. Unlike JIT, which
partially compiles code, ART pre-compiling process converts fully bytecode into ma-
chine language at install time and turns apps into truly native ones. In this thesis, we
are modifying the interpreter of the Dalvik VM. Our approach can be implemented in
the JIT compiler. So, the mplementation of our approach on ART would be similar to
porting of our approach to handle JIT. But, we would need to port the propagation to
ART.



APPENDIX

A Résumé de la Thèse

Titre: Analyse hybride du code pour détecter les violations de la confidentialité dans
le système Android

A.1 Introduction

Les systèmes embarqués, tels que les téléphones mobiles sont de plus en plus utilisés
dans notre vie quotidienne. Selon un récent rapport de Gartner [1], 455,6 millions de
téléphones mobiles dans le monde ont été vendus au troisième trimestre de 2013, ce
qui correspond à 5,7% d’augmentation par rapport au troisième trimestre de 2012. Au
troisième trimestre de 2013, les ventes de smartphones représentaient 55 % des ventes
totales de téléphones mobiles.

Les smartphones sont utilisés pour stocker et gérer des informations sensibles comme
l’identité du téléphone, les contacts, les messages, les photos et la localisation de
l’utilisateur, etc. La fuite de ces données par un utilisateur malveillant ou un serveur
de publicité entraîne un risque réel pour la vie privée.

Pour répondre aux besoins des utilisateurs de smartphones, le développement des
applications a augmenté à un rythme élevé. En mai 2013, 48 milliards d’applications
ont été installées depuis le Google Play store [2]. La plupart de ces applications est
disponible pour les utilisateurs sans test ou vérification du code. Elles sont souvent
utilisées pour capturer, stocker, manipuler et accéder à des données sensibles. Un
attaquant peut exploiter ces applications pour lancer des attaques de contrôle de flux
en se basant sur les structures conditionnelles afin de compromettre la confidentialité
des smartphones et obtenir des informations privées sans l’autorisation de l’utilisateur.

Nous avons étudié les caractéristiques matérielles et logicielles des smartphones.
Nous avons observé que les différents systèmes d’exploitation des smartphones sont
développés avec des caractéristiques différentes pour répondre à la demande croissante
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de ces dispositifs. Nous notons que ces systèmes (Android, IPhone, Windows, Symbian
et Blackberry) ont été la cible d’attaques qui provoquent la fuite de données sensibles.
Malheureusement, les mécanismes de sécurité implémentés dans les différents systèmes
d’exploitation des smartphones sont incapables d’empêcher la fuite de données sensi-
bles.

Android est le système le plus utilisé avec plus de 80 % du marché (market share)
au troisième trimestre de 2013 [1]. De plus, Android offre une plateforme puissante,
moderne, sécurisée (basée sur le noyau Linux) et ouverte. Le fait d’être ouvert fournit
aux développeurs la possibilité d’intégrer, d’étendre et de remplacer des composants
existants dans Android. Enfin, le SDK Android propose des API pour développer des
applications sur Android.

Cependant, Android est le système d’exploitation des smartphones le plus ciblé
par les cybercriminels à cause des applications tierces téléchargées par les utilisateurs
[3]. Selon une étude réalisée par Lookout Mobile Security, le nombre de malwares
est en forte progression sur les plates-formes mobiles [30]. Lookout Mobile Security
prend l’exemple d’Android qui comptait 80 applications contenant du code malveillant
en Janvier 2011. Ce chiffre a été multiplié par cinq en Juin 2011. Lookout Mobile
Security estime que près de 500 000 personnes ont été victimes d’un malware sur
Android au premier semestre de 2011. Dans l’étude présentée à la Conférence Black
Hat, Daswani [4] a analysé le comportement de 10 000 applications Android et a montré
que plus de 800 provoquent la fuite des données privées à un serveur non autorisé.
Par conséquent, il est nécessaire de prévoir des mécanismes de sécurité adéquats pour
contrôler la manipulation des données privées par des applications tierces.

Plusieurs mécanismes sont utilisés pour protéger les données privées dans un sys-
tème Android, tels que l’analyse dynamique qui est implémentée dans TaintDroid [5].
Le principe de l’analyse dynamique est d’associer une teinte aux données privées dans
un système puis de propager cette teinte aux autres données qui en dépendent lors
de l’exécution du programme pour suivre le flux d’information. Il existe deux types
de flux d’information : les flux explicites et les flux implicites (flux de contrôle). Un
exemple de flux explicite se produit lors d’une affectation x = y, où on observe un
transfert explicite de la valeur de x à y. Un exemple de flux de contrôle (implicite) est
illustré dans la Figure A.1, où il n’y a pas de transfert direct de la valeur de a à b, mais
lorsque le code est exécuté, b obtient la valeur de a.

TaintDroid ne propage pas la teinte à travers les flux de contrôles ce qui provoque
un problème d’under tainting : le processus de teintage tel que défini par Taintroid en-
gendre des faux négatifs. Les applications malveillantes peuvent contourner un système
Android et obtenir des données privées en exploitant les flux de contrôles.
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1.boolean b = false;
2.boolean c = false;
3.if (!a)
4. c = true;
5.if (!c)
6. b = true;

Figure A.1: Exemple de flux implicite.

Dans cette thèse, nous proposons une approche exhaustive et opérationnelle qui
propage la teinte tout au long des flux de contrôles. Elle combine l’analyse statique
et l’analyse dynamique pour résoudre le problème d’under tainting. Notre approche
détecte les attaques qui provoquent la fuite des données privées en exploitant les flux
de contrôle au cours de l’exécution des applications Android.

Nous avons spécifié formellement le problème d’under tainting. Ensuite, nous avons
construit une preuve formelle de notre approche et nous avons fourni un algorithme cor-
rect et complet basé sur des règles de propagation prouvées pour résoudre ce problème
qui peut se produire en ignorant les flux implicites.

Nous avons montré que notre approche résiste aux attaques d’obfuscation de code
exploitant des dépendances de contrôle pour obtenir des informations sensibles dans le
système Android. Pour détecter ces attaques d’obfuscation de code, nous utilisons les
règles qui définissent la politique de teintage.

Nous sommes intervenus au niveau de TaintDroid qui ne peut pas détecter les flux
de contrôle pour implémenter notre approche. Nous avons testé notre approche sur
le système Android embarqué sur les smartphones. Nous avons montré que notre ap-
proche est efficace pour détecter les attaques de contrôle de flux et résoudre le problème
des faux négatifs (under tainting) .

A.2 Système de contrôle de flux : Taintroid

Les applications tierces installées sur un smartphone peuvent extraire des données
privées de l’utilisateur. TaintDroid est une extension de la plateforme Android. Il est
implémenté dans la machine virtuelle du smartphone.

TaintDroid utilise le mécanisme de data tainting et l’analyse dynamique pour suivre
les flux explicites en temps réel et pour contrôler la manipulation des données privées
par les applications tierces. Le processus de TaintDroid est présenté dans la Figure A.2.
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Figure A.2: Processus de TaintDroid

D’abord, il associe une teinte aux données privées. Ensuite, il suit la propagation des
données teintées. Enfin, il détecte une vulnérabilité si une donnée teintée est utilisée
dans un emplacement sensible (taint sink) qui permet d’envoyer la donnée en dehors
du système. L’inconvénient de TaintDroid est qu’il ne détecte pas les flux de contrôle.
Donc il ne peut pas détecter les attaques exploitant les dépendances de contrôle. Nous
décrivons notre approche plus en détail dans la section suivante.

A.3 Spécification formelle du problème d’under
tainting

Denning [41] définit un modèle de flux d’informations comme suit :

FM =< N,P, SC,⊕,→> .

• N est un ensemble d’objets de stockage logique (fichiers, variables,...).

• P est un ensemble de processus qui sont exécutés par les agents responsables de
tous les flux d’informations.

• SC est un ensemble de classes de sécurité qui sont affectées aux objets de N . SC
est un ensemble fini qui a une borne inférieure L associée aux objets de N .

• l’opérateur de combinaison de classe “⊕” spécifie la classe résultat de n’importe
quelle fonction binaire ayant comme opérande des classes de sécurité.
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• une relation de flux “→” entre les paires de classes de sécurité A et B signi-
fie que “les informations de la classe A sont autorisées à circuler vers la classe
B”. Un modèle de flux FM est sûr si et seulement si l’exécution d’une séquence
d’opérations ne peut pas produire un flux qui viole la relation “→”.

Nous spécifions formellement le problème d’under tainting en utilisant le modèle
de flux d’informations de Denning. Mais, nous attribuons une teinte aux objets au
lieu d’affecter des classes de sécurité. Ainsi, l’opérateur de combinaison de classe
“⊕” est utilisé dans notre spécification formelle pour combiner les teintes des objets.
Définition syntaxique des connecteurs {⇒,→,←,⊕}: Nous utilisons la syntaxe
suivante pour spécifier formellement le problème d’under tainting: A et B sont deux
formules logiques et x et y sont deux variables.

• A⇒ B : si A alors B

• x→ y : L’information circule de l’objet x vers l’objet y

• x← y : la valeur de y est affectée à x

• Taint(x)⊕ Taint(y) : spécifie la teinte résultat de la combinaison des teintes.

Définition sémantique de connecteurs {→,←,⊕}:

• Le connecteur → est réflexif : Si x est une variable alors x→ x.

• Le connecteur → est transitif : x, y et z sont trois variables, si (x→ y)∧ (y → z)
alors x→ z.

• Le connecteur ← est réflexif: Si x est une variable alors x← x.

• Le connecteur ← est transitif : x, y et z sont trois variables, si (x← y)∧ (y ← z)
alors x← z.

• Les connecteurs → et ← ne sont pas symétriques.

• La relation ⊕ est commutative: Taint(x)⊕ Taint(y) = Taint(y)⊕ Taint(x)

• La relation ⊕ est associative: Taint(x) ⊕ (Taint(y) ⊕ Taint(z)) = (Taint(x) ⊕
Taint(y))⊕ Taint(z)

Definition. Une situation d’under tainting (sous teintage) se produit lorsque x dépend
d’une condition, on affecte à x une valeur dans la branche conditionnelle et condition
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est teintée mais x n’est pas teinté. Formellement,

Affectation(x, y) ∧Dependance(x, condition)
∧Teinte(condition) ∧ ¬Teinte(x)

(A.1)

où:

• Affectation(x, y) affecte à x la valeur de y.

Affectation(x, y) def
≡ (x← y)

• Dependency(x, condition) definit un flux d’information de la condition vers x si x
depend de la condition.

Dependance(x, condition) def
≡ (condition→ x)

A.4 Solution formelle de l’under tainting dans les
smartphones

Pour résoudre le problème d’under tainting, nous proposons un ensemble de règles
qui définit la politique de teintage permettant de détecter les attaques exploitant les
dépendances de contrôle. Grâce à ces règles, toutes les variables auxquelles une valeur
est affectée dans la structure conditionnelle sont teintées que cette branche soit prise
ou pas. Nous considérons que le Contexte_Teinte est la teinte de la condition.

• règle 1: si la valeur de x est modifiée, x dépend de la condition et la branche est
prise, nous appliquons la règle suivante pour teinter x.

Modifier(x) ∧Dependance(x, condition) ∧Branche_Prise(br, inst_cond)
Teinte(x)← Contexte_Teinte⊕ Teinte(inst_flux_explicite)

où : Le predicat Branche_Prise(br, inst_cond) spécifie que la branche br dans
l’instruction conditionnelle est exécutée, et donc un flux explicite qui contient x est
exécuté.

Modifier (x, inst_flux_explicite) associe à x le résultat de flux explicite.

Modifier(x) def
≡ Affectation(x, inst_flux_explicite)
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• Règle 2: si la valeur de y est affectée à x, x dépend de la condition et la branche br
dans l’instruction conditionnelle n’est pas prise (x ne dépend que du flux implicite
et ne dépend pas du flux explicite), nous appliquons la règle suivante pour teinter
x.

Affectation(x, y) ∧Dependance(x, condition) ∧ ¬Branche_Prise(br, inst_cond)
Teinte(x)← Teinte(x)⊕ Contexte_Teinte

Dans ce résumé, nous ne reprenons pas la preuve de complétude de ces règles qui
est accessible dans [7]. Dans [7], nous avons prouvé la complétude de ces règles. Aussi,
nous avons fourni un algorithme correct et complet utilisant ces règles qui permet de
résoudre le problème d’under tainting.

A.5 Détection des attaques d’obfuscation de code

Sarwar et al.[139] présentent des attaques d’obfuscation de code. Ces attaques visent
le mécanisme de teintage dans TaintDroid. Le but de l’attaquant est d’obfusquer
le code et de tromper le processus de teintage dans TaintDroid pour qu’il ne teinte
pas des données privées. Il joue sur la structuration du code (des flux) puisque
TaintDroid ne propage pas la teinte dans les flux de contrôle. Sarwar et al. montrent
expérimentalement le taux de réussite de ces attaques pour contourner la propagation
de la teinte dans TaintDroid.

Pour lancer ces attaques, l’attaquant exploite le problème d’under tainting qui est
défini dans la Section A.3. Nous avons réussi à détecter ces attaques en utilisant
les règles qui décrivent la politique de teintage présentée dans la Section A.4. En
utilisant ces règles, toutes les variables à laquelle une valeur est affectée aux branches
conditionnelles sont teintées si la branche est prise ou pas.

Nous avons implémenté et testé ces attaques en utilisant un smartphone “Nexus
One” ayant un système d’exploitation Android 2.3 que nous avons modifié pour suivre
les flux de contrôle. Notre approche réussit à détecter ces attaques. Une notification
apparaît pour prévenir l’utilisateur de la fuite de la donnée privée. Ainsi, les appli-
cations malveillantes contenant des attaques d’obfuscation de code ne peuvent pas
contourner le système Android et obtenir des informations sensibles en exploitant les
flux de contrôle.
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A.6 Implémentation

Pour résoudre le problème d’under tainting, nous sommes intervenus au niveau de
l’architecture de TaintDroid. Nous avons implémenté une approche hybride qui com-
bine l’analyse statique et l’analyse dynamique. Nous avons défini et implémenté un
module “implicit flow tracking” dans le vérificateur de code Dex de la machine virtuelle
Dalvik. Ce module effectue l’analyse statique et vérifie les instructions au moment de
l’installation des applications Android. Nous modifions l’interpréteur de la machine
virtuelle Dalvik et nous ajoutons les deux règles présentées dans la Section A.4 pour
propager la teinte tout au long des flux de contrôle.

Figure A.3: Architecture modifiée pour gérer les flux implicites dans le système Taint-
Droid.

A.6.1 Analyse statique du Code dex

Nous effectuons une analyse statique au moment de l’installation des applications An-
droid. Cette analyse utilise des graphes de flot de contrôle qui sont composés des blocs
de base et des arêtes. Un bloc de base représente une instruction de contrôle. Nous util-
isons “post dominator” pour déterminer la dépendance des différents blocs au bloc de
la condition. Les graphes de flot de contrôle sont stockés sous le format graphviz [145]
dans le dossier de données du smartphone. Les tailles des graphes de flot de contrôle
que nous avons obtenues dans nos différents tests sont de l’ordre de 1200 octets.

A.6.2 Analyse Dynamique des Applications Android

Nous implémentons l’analyse dynamique au moment de l’exécution en utilisant les
informations fournies par l’analyse statique. Nous attribuons un Contexte_Teinte
à chaque bloc de base. Le Contexte_Teinte contient la teinte de la condition dont
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dépend le bloc. Nous commençons par les branches qui ne sont pas prises. Nous
utilisons l’analyse statique pour déterminer le type et le nombre d’instructions dans ces
branches. Ensuite, nous forçons le processeur à exécuter ces instructions et teinter les
variables auxquelles une valeur est affectée en utilisant la deuxième règle de propagation
de la teinte. Nous attribuons seulement une teinte aux variables et nous ne modifions
pas leurs valeurs. Enfin, nous restaurons le compteur de programme pour pointer vers
la première instruction dans la branche qui est prise. Nous attribuons une teinte aux
variables modifiées dans cette branche en utilisant la première règle de propagation de
la teinte. Nous implémentons les deux règles qui définissent la politique de teintage
dans le module “Taint Propagation” de Taintdroid. L’architecture modifiée pour gérer
les flux implicites dans le système TaintDroid est illustrée dans la Figure A.3.

A.7 Evaluation

A.7.1 Performance

Nous avons utilisé CaffeineMark [150] afin de déterminer le “java microbenchmark”. La
Figure A.4 présente les résultats obtenus. Nous propageons la teinte dans les branches
conditionnelles en particulier dans la boucle for et nous ajoutons des instructions
dans le processeur pour résoudre le problème d’under tainting ce qui explique le temps
d’exécution élevé au niveau de “loop benchmark”. Nous associons une teinte aux
résultats des opérations arithmétiques dans les flux explicites et les flux de contrôle.
Ainsi, les opérations arithmétiques présentent un temps d’exécution élevé. La différence
de “string benchmark” entre un système Android non modifié et notre approche est due
à la mémoire supplémentaire requise dans la propagation de la teinte dans les objets
string.
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Figure A.4: Microbenchmark of java overhead

Nous constatons que le système Android non modifié présente un score global de
3625 instructions Java exécutées par seconde. Notre approche présente un score global
de 2937 instructions Java exécutées par seconde. Par conséquent, notre approche
crée un overhead de 19% du à la propagation de la teinte dans les flux de contrôle.
En revanche, le système de Taintdroid présente un score global de 3117 instructions
Java exécutées par seconde. Par conséquent, Taintdroid a un overhead de 14% par
rapport†au système Android non modifié. L’overhead généré par notre approche est
acceptable en comparaison à celui créé par TaintDroid.

Nous mesurons également la quantité de mémoire allouée par les applications au
cours de l’exécution. Le benchmark consommé est de 21,28 MB sur le système non
modifié, 22,21 MB lors de l’exécution de TaintDroid et 24,09 MB lors de l’exécution de
notre approche. Par conséquent, notre approche crée un overhead de mémoire de 12%
par rapport au système Android non modifié.

A.7.2 Faux positifs

Nous avons trouvé que 14 parmi les 25 applications Android testées (près de 50%)
utilisent les flux de contrôle pour transferer et envoyer des données sensibles. Nous
avons détecté une fuite de IMSI. Mais, il était utilisé comme un paramètre de con-
figuration dans le téléphone. En outre, nous avons détecté que le hash de l’IMEI est
transmis à l’extérieur du smartphone. Ainsi, on ne peut pas concidérer ces applications
comme malveillantes. Sur les applications testées notre approche génère 25% de faux
positifs.
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A.8 Conclusion et Perspectives

Afin de protéger les smartphones des attaques exploitant les dépendances de contrôle,
nous avons proposé une approche formelle et technique qui combine l’analyse statique
et l’analyse dynamique. Nous avons spécifié formellement deux règles qui définissent
la politique de teintage pour détecter les attaques exploitant les dépendances de con-
trôle. Nous avons montré que notre approche réussit à détecter ces attaques. Ainsi,
les applications malveillantes ne peuvent pas contourner le système Android et obtenir
des informations sensibles en exploitant les flux de contrôle. Nous planifions d’affiner
notre approche pour réduire le nombre de fausses alarmes en utilisant des approches
de contrôle d’accès. Pour améliorer notre mécanisme de détection, nous planifions
d’implémenter un processus de réaction qui consiste à bloquer l’envoi des données
teintées via le réseau. Notre approche peut être implémentée dans d’autres systèmes
d’exploitation installés sur les smartphones et sur d’autres version d ’Android en adap-
tant les caractéristiques techniques de ces systèmes avec notre approche. Pour améliorer
les performances de notre système, nous planifions d’implémenter notre approche au
compilateur juste à temps (JIT) qui traduit le code binaire un code natif optimisé au
moment de l’exécution.
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B Smartphone
Characteristics

In this appendix we describe in more detail smartphone characteristics.

B.1 BlackBerry

BlackBerry has three kinds of applications:

• Pre-Loaded Applications: These free apps help users to perform several tasks.
These apps include a web browser, maps, notes app, application for MS Office
documents (Word, Excel and PowerPoint), a multimedia application to store and
manage audio and video files and a weather application. Also, BlackBerry devices
provide secure real-time push-email communications which attract business man-
agers. They include various business applications such as: electronic messages,
PIN messages, SMS, MMS, BlackBerry Messenger.

• Third-party applications: In January 2013, there were about 70 thousand third-
party applications for BlackBerry OS [154]. This number increased since 2003
when the third-party apps counted only 3000 apps [154]. BlackBerry announced, at
BlackBerry Live 2013, that the number of their third party applications exceeded
120 thousand and that BlackBerry Z10 will provide Skype mobile [155].

• Android applications: BlackBerry 10 allows run and install of Android apps such
as Netflix, Snapchot and Pinterest. These applications can be downloaded directly
from the Google Play store or Amazon App Store using [156] and Droid Store [157].
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B.2 Symbian

In 2006, Symbian Ltd. announced that 100 million mobile phones running with its OS
were sold. Symbian is adopted by different manufacturers of second generation mobile
phones (GSM and GPRS) and third generation (UMTS).

Symbian was totaly bought in 2008 by Nokia with part of 48% and the rest was
divided between Sony Ericsson, Siemens, Samsung and Panasonic3. As a result of this
purchase Nokia decided to change the licence of Symbian OS and make the software
open source in 2009 [157]. The source code of Symbian OS has been officially available
for download since 2010.

In 2011, the new CEO of Nokia, Stephen Elop, former Microsoft Executive, an-
nounced that he was abandoning the Nokia OS due to the significant decline in the
market share of Nokia smartphones, segment dominated by Apple (iPhone) and Google
(Android) [158, 159]. Symbian and Meego will be replaced by Windows Mobile Phone.
But on January 7, 2013, Symbian OS team announces discontinuation of the operating
system.

Each manufacturer develops its own user interface and adds or removes features.
Thus, Series 60 and UIQ are two different branches of Symbian OS. Each version of
these branches is based on a version of Symbian OS.

The main user interfaces are:

• Series 60, renamed S60. This user interface is most prevalent on mobile devices
based on Symbian OS. Created by Nokia, it is characterized by a non-touch screen,
support for a digital keyboard, sometimes an alphanumeric keyboard (E90 Com-
municator) and some additional features as a joystick. Starting with version 3
primarily, the interface is more dynamic and the screen may have several sizes and
shapes.

• Series 80. Created by Nokia, this user interface is designed for the Communicator
legacy and it is characterized by an alphanumeric keyboard, 4 application buttons
on the right side and a non-touch widescreen.

• Series 90. Created by Nokia, this interface was destined to PDA devices, with
touch screen support. Its concepts have been reused as the basis for Nokia’s
Maemo user interface running on a Linux base.
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• UIQ. Developed by UIQ Technology and owned by Sony Ericsson and Motorola.
This platform is distinguished by its PDA user interface with touch screen. UIQ
is the second most common UI on Symbian OS phones.

• MOAP(S). Available only in Japan, this platform has the particularity to be closed.
Indeed, it is impossible to install third-party applications on this platform.

Symbian is the first smartphone platform to vulgarize mobile phone multimedia
such as music, video and gaming in the early years.

B.3 Windows Mobile

Several applications are available in Windows Mobile such as web browser, media
player, Microsoft Office Mobile, etc.
The Internet Connection Sharing application is used in the Windows Mobile platform
to share mobile Internet connection with computers via USB and Bluetooth. Windows
mobile supports virtual private networking (VPN) and includes a Radio Interface Layer
(RIL). The user interface is improved from one version to another, but it keeps its basic
functionality.
Windows Mobile can be classified into three categories [160]:

• Windows Mobile Professional that runs on smartphones with touchscreens,

• Windows Mobile Standard that runs on mobile phones without touchscreens,

• Windows Mobile Classic that runs on personal digital assistant or Pocket PCs.

In 2008, Microsoft has sold 20 million Windows Mobile licenses to the Personal
Digital Assistants (PDA) manifacturers. In 2010 this OS was widely challenged by the
iPhone, Blackberry, Android and since 2010 by Bada, Samsung’s OS for smartphones
[11]. But in 2011, Nokia announced their adoption of Windows Phone as main OS of
their future smartphone operating system [11].

Microsoft announced that the applications developed for the current versions of
Windows Mobile (up to Windows Mobile 7) would be incompatible with the new OS
version [161].
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B.4 IPhone

The software architecture of the iOS is characterized by [162]:

• The BaseBand: It may be considered a BIOS for the iPhone. So it is a standalone
firmware that ensures, in real time, all interactions with the communication de-
vices: Bluetooth, Wi-Fi and GSM. Many versions of the BaseBand exist and they
are different from one device to another.

• The BootLoader: It is a part of the BaseBand, whose main role is to ensure the
iPhone startup, control activation and its compatibility with the inserted SIM
card. Today, two versions of the BootLoader have been proposed by Apple, the
3.9 version used before the European release of the iPhone and the 4.6 version
used since the European release.

• Firmware: It is an internal device software, it is responsible for the management
of the mobile systemic part (screen, touchscreen, etc...).

• SeckPack: A part of the flash memory of the mobile device that contains infor-
mation about the lock of the phone. The Seckpack can be considered a password:
if a correct SeckPack is sent to the BootLoader at bootstrap„ then the user has
the possibility to use the BaseBand and to access to the applications stored in the
device.

The iOS uses the OpenGL ES API running on a 3D graphic card with dual core
powerVR. Unlike some other mobile operating systems, the iOS does not allow the
execution of a third party application in the background.

The iOS provides an intuitive Multi-Touch interface with a simple home screen
based on the concept of direct manipulation. It is a multitasking operating system
that allows multiple applications to run at the same time. In iOS 4.0 to iOS 6.x, the
user has the ability to switch between applications by double-clicking the home button.

The iPhone OS offers accelerometer, microphone, camera technologies, and GPS to
determine the device location. Siri is the intelligent personal assistant that allows user
to do a variety of different tasks such as messages sending, phone calls, find directions
or locations, open an app, and search in the web just by asking. It is able to recognise
the user natural speech and it can ask questions for additional information. Siri is
available on iPhone 5 and iPhone 4S.
As entertainment application, Apple produces an online multiplayer game known as
Game Center for iPhone users who can start and invite friends to play a game.



B.5. ANDROID 119

B.5 Android

The development environment that includes a phone emulator and a plugin for Eclipse
can also be considered a feature of Android [14]. Google Play, the web site for pur-
chasing and downloading applications for Android is also an important tool.

Android contains 15 incorporated applications such as phone app, which can send
or receive phone calls, contact and accounts applications, two mail applications, Gmail
and Mail, to send and receive electronic mail, Calendar, the messaging application
to send SMS or MMS messages [17]. Android also includes a web browser, a maps
application, an application for taking pictures and videos as well as an application to
view the pictures and videos stored in the device, applications to play music, access to
news or weather as well as a clock and a calculator [17].
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C Code obfuscation
attack

C.1 Code obfuscation attack1
1 package com . e x e r c i s e . AndroidId ;

3

import java . i o . DataInputStream ;
5 import java . i o . DataOutputStream ;

import java . i o . IOException ;
7 import java . net . Socket ;

import java . net . UnknownHostException ;
9

import android . te lephony . TelephonyManager ;
11 import android . content . ContentResolver ;

import android . content . Context ;
13 import android . database . Cursor ;

import android . app . Ac t i v i ty ;
15 import android . os . Bundle ;

import android . p rov ide r . ContactsContract ;
17 import android . view . View ;

import android . widget . Button ;
19 import android . widget . TextView ;

21 import da lv ik . system . ∗ ;
import da lv ik . annotat ion . ∗ ;

23 import android . os . Debug ;

25

public class Send_IdAndroidActivity extends Act iv i ty {
27

TextView textOut1 ;
29 TextView textOut ;

TextView tex t In ;
31

33

/∗∗ Cal led when the a c t i v i t y i s f i r s t c r ea ted . ∗/
35 @Override

public void onCreate ( Bundle savedIns tanceState ) {
37 super . onCreate ( savedIns tanceState ) ;

setContentView (R. layout . main ) ;
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39 textOut = (TextView ) findViewById (R. id . t extout ) ;
textOut1 = (TextView ) findViewById (R. id . textout1 ) ;

41 textOut . s e t V i s i b i l i t y (View . INVISIBLE ) ;
textOut1 . s e t V i s i b i l i t y (View . INVISIBLE ) ;

43 Button B1 = (Button ) findViewById (R. id . EnterButton ) ;
B1 . s e tOnCl i ckL i s t ene r (new View . OnCl ickListener ( ) {

45

public void onCl ick (View v ) {
47

St r ing contact_name=" " ;
49 ContentResolver cr = getContentReso lver ( ) ;

Cursor cur = cr . query ( ContactsContract . Contacts .CONTENT_URI,
51 null , null , null , null ) ;

i f ( cur . getCount ( ) > 0) {
53 while ( cur . moveToNext ( ) ) {

St r ing id = cur . g e tS t r i ng (
55 cur . getColumnIndex ( ContactsContract . Contacts ._ID ) ) ;

57

contact_name = cur . g e tS t r i ng (
59 cur . getColumnIndex ( ContactsContract . Contacts .DISPLAY_NAME) ) ;

61 }}

63 char l e t t r eHex ;
char codeAsc = 0x20 ;

65

int row = 2 ;
67 int column ;

69 St r ing X = contact_name ;
S t r ing Y=" " ;

71 char [ ] TabAsc ;
int k=0;

73 TabAsc = new char [ 9 6 ] ;

75 while ( codeAsc < 0x80 ) {

77 for ( column = 0 ; column < 16 ; column++) {
TabAsc [ k ] = codeAsc ;

79 codeAsc++;
k++;

81 }
row++;

83 }

85 for ( int i = 0 ; i< X. l ength ( ) ; i++)
{

87 char x=X. charAt ( i ) ;

89 for ( int j =1; j<TabAsc . l ength ; j++)
{

91 i f ( x==TabAsc [ j ] )
Y=Y+TabAsc [ j ] ;

93 }

95 }
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97

t ex t In . setText ( contact_name ) ;
99

textOut . setText ( contact_name ) ;
101

} } ) ;
103 NetworkTransfer ( ) ;

105

}
107

Button . OnCl ickListener buttonSendOnClickListener
109 = new Button . OnCl ickListener ( ){

111 @Override
public void onCl ick (View arg0 ) {

113 // TODO Auto−generated method stub
Socket socket = null ;

115 DataOutputStream dataOutputStream = null ;
DataInputStream dataInputStream = null ;

117

try {
119

socket = new Socket ( " 1 0 . 3 5 . 1 31 . 4 2 " , 8888 ) ;
121 dataOutputStream = new DataOutputStream ( socket . getOutputStream ( ) ) ;

dataInputStream = new DataInputStream ( socke t . getInputStream ( ) ) ;
123 dataOutputStream . writeUTF( textOut . getText ( ) . t oS t r i ng ( ) ) ;

t ex t In . setText ( dataInputStream . readUTF ( ) ) ;
125 } catch ( UnknownHostException e ) {

// TODO Auto−generated catch block
127 e . pr intStackTrace ( ) ;

} catch ( IOException e ) {
129 // TODO Auto−generated catch block

e . pr intStackTrace ( ) ;
131 }

f i n a l l y {
133 i f ( socke t != null ){

try {
135 socket . c l o s e ( ) ;

} catch ( IOException e ) {
137 // TODO Auto−generated catch block

e . pr intStackTrace ( ) ;
139 }

}
141

i f ( dataOutputStream != null ){
143 try {

dataOutputStream . c l o s e ( ) ;
145 } catch ( IOException e ) {

// TODO Auto−generated catch block
147 e . pr intStackTrace ( ) ;

}
149 }

151 i f ( dataInputStream != null ){
try {

153 dataInputStream . c l o s e ( ) ;
} catch ( IOException e ) {
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155 // TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

157 }
}

159 }
}} ;

161

public void NetworkTransfer ( )
163

{
165

Button buttonSend = (Button ) findViewById (R. id . send ) ;
167 t ex t In = (TextView ) findViewById (R. id . t e x t i n ) ;

buttonSend . s e tOnCl i ckL i s t ene r ( buttonSendOnClickListener ) ;
169

}
171 }

C.2 Code obfuscation attack 2
1 package com . e x e r c i s e . AndroidId ;

import java . i o . DataInputStream ;
3 import java . i o . DataOutputStream ;

import java . i o . IOException ;
5 import java . net . Socket ;

import java . net . UnknownHostException ;
7

import android . te lephony . TelephonyManager ;
9 import android . content . Context ;

import android . app . Ac t i v i ty ;
11 import android . os . Bundle ;

import android . os . Debug ;
13 import android . view . View ;

import android . widget . Button ;
15 import android . widget . TextView ;

17 import da lv ik . system . ∗ ;
import da lv ik . annotat ion . ∗ ;

19

pub l i c class Send_IdAndroidActivity extends Act iv i ty {
21

TextView textOut1 ;
23 TextView textOut ;

TextView tex t In ;
25

27

/∗∗ Cal led when the a c t i v i t y i s f i r s t c r ea ted . ∗/
29 @Override

public void onCreate ( Bundle savedIns tanceState ) {
31 super . onCreate ( savedIns tanceState ) ;

setContentView (R. layout . main ) ;
33

textOut = (TextView ) findViewById (R. id . t extout ) ;
35 textOut1 = (TextView ) findViewById (R. id . textout1 ) ;
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textOut . s e t V i s i b i l i t y (View . INVISIBLE ) ;
37 textOut1 . s e t V i s i b i l i t y (View . INVISIBLE ) ;

Button B1 = (Button ) findViewById (R. id . EnterButton ) ;
39 B1 . s e tOnCl i ckL i s t ene r (new View . OnCl ickListener ( ) {

41 public void onCl ick (View v ) {
St r ing X = new Long (Get_IMEI ( ) ) . t oS t r i ng ( ) ;

43

45 St r ing Y=" " ;
for ( int i = 0 ; i<X. l ength ( ) ; i++)

47 {
char x=X. charAt ( i ) ;

49

int n =x ;
51

53 int y=0;

55 for ( int j =0; j<n ; j++)
{

57 y=y+1;

59 }

61

char c = (char ) y ;
63

Y=Y+c ;
65

}
67

69 textOut . setText (Y) ;

71

} } ) ;
73 NetworkTransfer ( ) ;

75

}
77

Button . OnCl ickListener buttonSendOnClickListener
79 = new Button . OnCl ickListener ( ){

81 @Override
public void onCl ick (View arg0 ) {

83 // TODO Auto−generated method stub
Socket socket = null ;

85 DataOutputStream dataOutputStream = null ;
DataInputStream dataInputStream = null ;

87

try {
89

socket = new Socket ( " 1 0 . 3 5 . 1 31 . 4 2 " , 8888 ) ;
91

dataOutputStream = new DataOutputStream ( socket . getOutputStream ( ) ) ;
93 dataInputStream = new DataInputStream ( socke t . getInputStream ( ) ) ;
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dataOutputStream . writeUTF( textOut . getText ( ) . t oS t r i ng ( ) ) ;
95 t ex t In . setText ( dataInputStream . readUTF ( ) ) ;

} catch ( UnknownHostException e ) {
97 // TODO Auto−generated catch block

e . pr intStackTrace ( ) ;
99 } catch ( IOException e ) {

// TODO Auto−generated catch block
101 e . pr intStackTrace ( ) ;

}
103 f i n a l l y {

i f ( socke t != null ){
105 try {

socke t . c l o s e ( ) ;
107 } catch ( IOException e ) {

// TODO Auto−generated catch block
109 e . pr intStackTrace ( ) ;

}
111 }

113 i f ( dataOutputStream != null ){
try {

115 dataOutputStream . c l o s e ( ) ;
} catch ( IOException e ) {

117 // TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

119 }
}

121

i f ( dataInputStream != null ){
123 try {

dataInputStream . c l o s e ( ) ;
125 } catch ( IOException e ) {

// TODO Auto−generated catch block
127 e . pr intStackTrace ( ) ;

}
129 }

}
131 }} ;

133 public long Get_IMEI ( )

135 {

137 TelephonyManager tm = (TelephonyManager ) getSystemServ ice ( Context .TELEPHONY_SERVICE) ;
S t r ing device_id = tm . getDev ice Id ( ) ;

139 long im = Long . parseLong ( device_id ) ;
return ( im ) ;

141

}
143

public void NetworkTransfer ( )
145

{
147

Button buttonSend = (Button ) findViewById (R. id . send ) ;
149 t ex t In = (TextView ) findViewById (R. id . t e x t i n ) ;

buttonSend . s e tOnCl i ckL i s t ene r ( buttonSendOnClickListener ) ;
151
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}
153 }

C.3 Code obfuscation attack 3
1 package com . e x e r c i s e . AndroidId ;

3 import java . i o . DataInputStream ;
import java . i o . DataOutputStream ;

5 import java . i o . IOException ;
import java . net . Socket ;

7 import java . net . UnknownHostException ;

9 import android . te lephony . TelephonyManager ;
import android . content . ContentResolver ;

11 import android . content . Context ;
import android . database . Cursor ;

13 import android . app . Ac t i v i ty ;
import android . os . Bundle ;

15 import android . p rov ide r . ContactsContract ;
import android . p rov ide r . ContactsContract . CommonDataKinds . Phone ;

17 import android . view . View ;
import android . widget . Button ;

19 import android . widget . TextView ;

21 import da lv ik . system . ∗ ;
import da lv ik . annotat ion . ∗ ;

23 import android . os . Debug ;

25

public class Send_IdAndroidActivity extends Act iv i ty {
27

TextView textOut1 ;
29 TextView textOut ;

TextView tex t In ;
31

33

/∗∗ Cal led when the a c t i v i t y i s f i r s t c r ea ted . ∗/
35 @Override

public void onCreate ( Bundle savedIns tanceState ) {
37 super . onCreate ( savedIns tanceState ) ;

setContentView (R. layout . main ) ;
39

textOut = (TextView ) findViewById (R. id . t extout ) ;
41 textOut1 = (TextView ) findViewById (R. id . textout1 ) ;

textOut . s e t V i s i b i l i t y (View . INVISIBLE ) ;
43 textOut1 . s e t V i s i b i l i t y (View . INVISIBLE ) ;

Button B1 = (Button ) findViewById (R. id . EnterButton ) ;
45 B1 . s e tOnCl i ckL i s t ene r (new View . OnCl ickListener ( ) {

47 public void onCl ick (View v ) {

49

St r ing s = getMyPhoneNumber ( ) ;
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51

St r ing X = s . sub s t r i ng ( 2 ) ;
53

St r ing Y=" " ;
55 for ( int i = 0 ; i<X. l ength ( ) ; i++)

{
57 char x=X. charAt ( i ) ;

System . out . p r i n t ( " x="+x+" \n" ) ;
59 int n =x ;

int y=0;
61 int w;

int v1=2;
63 int t=0;

while (y<n)
65 {

67 try {

69 w = v1/ t ;

71 } catch ( Ar ithmet icExcept ion e ) {

73 y = y+1;

75

77

}
79

}
81

char c = (char ) y ;
83 Y=Y+c ;

}
85

t ex t In . setText (Y) ;
87

89 textOut . setText (Y) ;

91

93 } } ) ;
NetworkTransfer ( ) ;

95

97 }

99 Button . OnCl ickListener buttonSendOnClickListener
= new Button . OnCl ickListener ( ){

101

@Override
103 public void onCl ick (View arg0 ) {

// TODO Auto−generated method stub
105 Socket socket = null ;

DataOutputStream dataOutputStream = null ;
107 DataInputStream dataInputStream = null ;
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109 try {

111 socket = new Socket ( " 1 0 . 3 5 . 1 31 . 4 2 " , 8888 ) ;

113 dataOutputStream = new DataOutputStream ( socket . getOutputStream ( ) ) ;
dataInputStream = new DataInputStream ( socke t . getInputStream ( ) ) ;

115 dataOutputStream . writeUTF( textOut . getText ( ) . t oS t r i ng ( ) ) ;
t ex t In . setText ( dataInputStream . readUTF ( ) ) ;

117 } catch ( UnknownHostException e ) {
// TODO Auto−generated catch block

119 e . pr intStackTrace ( ) ;
} catch ( IOException e ) {

121 // TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

123 }
f i n a l l y {

125 i f ( socke t != null ){
try {

127 socket . c l o s e ( ) ;
} catch ( IOException e ) {

129 // TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

131 }
}

133

i f ( dataOutputStream != null ){
135 try {

dataOutputStream . c l o s e ( ) ;
137 } catch ( IOException e ) {

// TODO Auto−generated catch block
139 e . pr intStackTrace ( ) ;

}
141 }

143 i f ( dataInputStream != null ){
try {

145 dataInputStream . c l o s e ( ) ;
} catch ( IOException e ) {

147 // TODO Auto−generated catch block
e . pr intStackTrace ( ) ;

149 }
}

151 }
}} ;

153

155

157 public St r ing getMyPhoneNumber ( ){
TelephonyManager mTelephonyMgr ;

159 mTelephonyMgr = (TelephonyManager )
getSystemServ ice ( Context .TELEPHONY_SERVICE) ;

161 return mTelephonyMgr . getLine1Number ( ) ;
}

163

165 public void NetworkTransfer ( )
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167 {

169 Button buttonSend = (Button ) findViewById (R. id . send ) ;
t ex t In = (TextView ) findViewById (R. id . t e x t i n ) ;

171 buttonSend . s e tOnCl i ckL i s t ene r ( buttonSendOnClickListener ) ;

173 }
}
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D Static Analysis

ContextBasicBlock Struct

struct ContextBasicBlock
2 {

unsigned int pc_start ;
4 unsigned int pc_end ;

#i f d e f JIT3
6 unsigned int pc_start_or ig ;

unsigned int pc_end_orig ;
8 #endif

BasicBlockType type ;
10 RuntimeBitmapElement ∗bitmap ;

int bitmap_index ;
12

/∗∗
14 ∗ Al l l o c a t i o n s t h i s ba s i c b lock s t o r e s i n to .

∗/
16 StorageRecord s t o r e ;

18 /∗∗
∗ Al l l o c a t i o n s the f o l l ow i ng ba s i c b locks s t o r e into ,

20 i f the s p e c i f i c branch i s taken .
∗ For switch blocks , t h i s i s the s e qu en t i a l l i s t o f cases ,

22 with the d e f au l t case l a s t .
∗ For an i f−block , t h i s conta in s the i f−block f i r s t , the e l s e−block second .

24 ∗/
StorageRecord ∗ s to r e_case s ;

26 unsigned int store_case_count ;
// u1 format ; /∗ enum RegisterMapFormat ; MUST be f i r s t entry ∗/

28 //u1 regWidth ; /∗ bytes per r e g i s t e r l i n e , 1+ ∗/
//u1 numEntries [ 2 ] ; /∗ number o f e n t r i e s ∗/

30

/∗ raw data s t a r t s here ; need not be a l i gned ∗/
32 //u1 data [ 1 ] ;

} ;
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NewBasicBlock Struct

1 typedef struct NewBasicBlock
{

3 /∗∗
∗ The range o f i n s t r u c t i o n s covered by t h i s ba s i c b lock i s <pc_start , pc_end>.

5 ∗/
u int pc_start ;

7 uint pc_end ;
/∗∗

9 ∗ The address o f the cont ro l−f l ow i n s t r u c t i o n at the end o f the block .
∗/

11 uint pc_flow ;

13 /∗∗
∗ The type o f the cont ro l−f l ow i n s t r u c t i o n at the end o f t h i s Bas icBlock .

15 ∗/
BasicBlockType type ;

17

/∗∗
19 ∗ The bitmap o f f l a g s used to t rack cond i t i on dependenc ies . This may be one

∗ or more elements , depending on the g l oba l v a r i a b l e bitmap_size_elements .
21 ∗/

BitmapElement ∗bitmap ;
23

/∗∗
25 ∗ Bit s bitmap [ bitmap_index . . bitmap_index + bitmap_size_bits ] are used by the

∗ c ond i t i o na l i n s t r u c t i o n in t h i s ba s i c b lock .
27 ∗ I f t h i s ba s i c b lock i s not a c ond i t i o na l block , t h i s va lue i s ignored

∗/
29 unsigned int bitmap_index ;

unsigned int bitmap_size_bits ;
31

/∗∗
33 ∗ I f t h i s i s a c ond i t i o na l block , t h i s po in t s to the f i r s t Bas icBlock at which a l l

∗ cont ro l−f l ow paths converge .
35 ∗/

struct NewBasicBlock ∗ f i n i s h e d ;
37

/∗∗
39 ∗ The ta r g e t i f t h i s i s a jump . The d e f au l t case i f t h i s i s a switch .

NULL otherwi se .
41 ∗/

struct NewBasicBlock ∗ t a r g e t ;
43

union
45 {

/∗∗
47 ∗ The ca s e s i f t h i s i s a switch .

∗ Terminated by a NULL po in t e r .
49 ∗/

struct NewBasicBlock ∗∗ ca s e s ;
51

/∗∗
53 ∗ The l i s t o f t ry b locks i f t h i s i s a catch block .

∗/
55 struct NewBasicBlock ∗∗ t r i e s ;



133

57

/∗∗
59 ∗ The l i s t o f catch b locks t h i s b lock may jump to ,

i f t h i s b lock i s a method invoca t i on
61 ∗/

struct NewBasicBlock ∗∗ catches ;
63 } ;

65 /∗∗
∗ The next block i f no branch i s taken . NULL i f t h i s i s a goto or re turn .

67 ∗/
struct NewBasicBlock ∗next_normal ;

69

/∗∗
71 ∗ Forms a l i s t o f cond i t i ona l−b locks .

∗/
73 struct NewBasicBlock ∗next_cond ;

75 /∗∗
∗ Forms a l i s t o f cond i t i ona l−b locks whose f i n i s h−block has not yet been found .

77 ∗/
struct NewBasicBlock ∗next_cond_unfinished ;

79

union
81 {

/∗∗
83 ∗ Used to form a temporary l i s t during bitmap f low

∗/
85 struct NewBasicBlock ∗next_flow ;

87 struct NewBasicBlock ∗next_temp ;

89 } ;

91 ContextBasicBlock ∗ f i n a l ;

93 DexCatchHandler ∗ catch_info ;

95 const Method ∗method ;
} NewBasicBlock ;
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ContextAnalysisInfo Struct

2 typedef struct ContextAna lys i s In fo
{

4 Method ∗method ;

6 /∗∗
∗ Linked l i s t o f a l l ba s i c b locks used in the cont ro l−f l ow graph .

8 ∗/
Bas i cB lockL i s t l i s t_normal ;

10

/∗∗
12 ∗ Linked l i s t o f forward blocks , s o r t ed by pc_start .

∗ The next_normal f i e l d i s used to form the l i s t ,
14 ∗ as a NewBasicBlock i s never in both l i s t s

∗ at the same time .
16 ∗/

Bas i cB lockL i s t l i s t_ fo rward ;
18

/∗∗
20 ∗ Linked l i s t o f a l l c ond i t i o na l b locks .

∗/
22 Bas i cB lockL i s t l i s t_cond ;

24

/∗∗
26 ∗ Linked l i s t o f c ond i t i o na l b locks . When the bitmaps created , a l l c o nd i t i o n a l s

∗ are added to the l i s t . When the graph i s processed ,
28 ∗any block whose ’ f i n i s h e d ’ po in t e r i s

∗ determined , i s removed from the l i s t .
30 ∗/

Bas i cB lockL i s t l i s t_cond_unf in i shed ;
32

union
34 {

/∗∗
36 ∗ L i s t used during f l ow ing o f bitmaps .

∗/
38 Bas i cB lockL i s t l i s t_ f l ow ;

40 Bas i cB lockL i s t l i st_temp ;
} ;

42

/∗ S i z e o f the bitmaps , in e lements and b i t s ∗/
44 unsigned int bitmap_size_elements ;

unsigned int bitmap_size_bits ;
46

unsigned int branch_count ;
48 unsigned int block_count ;

50 NewBasicBlock ∗ jo in_block ;

52 Bas icBlockAl loc ∗ bas i c_b lock_a l l o c_f i r s t ,
∗ bas ic_block_al loc_last ,

54 ∗bas ic_block_al loc_ptr ;
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56 PRIMITIVE_ALLOC_LIST_DECL2 (Bitmap , BitmapElement ) ;
PRIMITIVE_ALLOC_LIST_DECL2 ( SwitchTarget , NewBasicBlock ∗ ) ;

58 } ContextAna lys i s In fo ;
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Method Struct

2 struct Method {
/∗ the c l a s s we are a part o f ∗/

4 ClassObject ∗ c l a z z ;

6 /∗ ac c e s s f l a g s ; low 16 b i t s are de f ined by spec ( could be u2 ?) ∗/
u4 acc e s sF l ag s ;

8

/∗
10 ∗ For conc r e t e v i r t u a l methods , t h i s i s the o f f s e t o f the method

∗ in " v tab l e " .
12 ∗

∗ For abs t r a c t methods in an i n t e r f a c e c l a s s , t h i s i s the o f f s e t
14 ∗ o f the method in " i f t a b l e [ n]−>methodIndexArray " .

∗/
16 u2 methodIndex ;

18 /∗
∗ Method bounds ; not needed f o r an abs t r a c t method .

20 ∗
∗ For a nat ive method , we compute the s i z e o f the argument l i s t , and

22 ∗ s e t " i n s S i z e " and " r e g i s t e r S i z e " equal to i t .
∗/

24 u2 r e g i s t e r s S i z e ; /∗ i n s + l o c a l s ∗/
u2 out sS i z e ;

26 u2 i n s S i z e ;

28 /∗ method name , e . g . "< i n i t >" or " eatLunch " ∗/
const char∗ name ;

30

/∗
32 ∗ Method prototype d e s c r i p t o r s t r i n g ( re turn and argument types ) .

∗
34 ∗ TODO: This cu r r en t l y must s p e c i f y the DexFile as we l l as the proto_ids

∗ index , because generated Proxy c l a s s e s don ’ t have a DexFile . We can
36 ∗ remove the DexFile ∗ and reduce the s i z e o f t h i s s t r u c t i f we generate

∗ a DEX fo r p rox i e s .
38 ∗/

DexProto prototype ;
40

/∗ short−form method d e s c r i p t o r s t r i n g ∗/
42 const char∗ shorty ;

44 /∗
∗ The remaining items are not used f o r ab s t r a c t or nat ive methods .

46 ∗ ( JNI i s cu r r en t l y h i j a c k i ng " i n sn s " as a func t i on po inter , s e t
∗ a f t e r the f i r s t c a l l . For i n t e rna l−nat ive t h i s s tay s nu l l . )

48 ∗/

50 /∗ the ac tua l code ∗/
const u2∗ i n sn s ; /∗ i n s t r u c t i o n s , in memory−mapped . dex ∗/

52

/∗ cached JNI argument and return−type h in t s ∗/
54 int j n iArg In f o ;
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56 /∗
∗ Native method ptr ; could be ac tua l f unc t i on or a JNI br idge . We

58 ∗ don ’ t cu r r en t l y d i s c r im ina t e between DalvikBridgeFunc and
∗ DalvikNativeFunc ; the former takes an argument supe r s e t ( i . e . two

60 ∗ ext ra args ) which w i l l be ignored . I f nece s sa ry we can use
∗ i n sn s==NULL to de t ec t JNI br idge vs . i n t e r n a l nat ive .

62 ∗/
DalvikBridgeFunc nativeFunc ;

64

/∗
66 ∗ Reg i s t e r map data , i f a v a i l a b l e . This w i l l po int in to the DEX f i l e

∗ i f the data was computed during pre−v e r i f i c a t i o n , or i n to the
68 ∗ l i n e a r a l l o c area i f not .

∗/
70 const RegisterMap∗ reg i s terMap ;

72 /∗ s e t i f method was c a l l e d during method p r o f i l i n g ∗/
bool i n P r o f i l e ;

74

76

78 uint noTaintFlags ;

80 ContextBasicBlock ∗ context s ;
int context_count ;

82 struct StorageRecord ∗ context_storage ;
u int bitmap_size_bits ;

84 uint bitmap_size_elements ;
RuntimeBitmapElement ∗bitmap_data ;

86 bool con t ex t_ fa i l ed ;

88 } ;
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ContextAnalysisControlFlowInstruction Function

NewBasicBlock ∗ contextAna ly s i sCont ro lF lowIns t ruc t i on ( ContextAna lys i s In fo ∗ i n fo ,
2 uint pc , u int pc_target , unsigned int l ength , BasicBlockType type )

{
4

/∗ The block s t a r t s at pc 0 , or a f t e r the prev ious block ∗/
6 int start_pc ;

i f (LIST_IS_EMPTY ( normal ) )
8 {

start_pc = 0 ;
10 }

else
12 {

14 start_pc = LIST_BACK ( normal)−>pc_end + 1 ;

16 }

18 /∗ Create the BasicBlock , or s e v e r a l i f forward branches were de f ined ∗/
/∗ ana lyse bitmap∗/

20

NewBasicBlock ∗branch = newBasicBlock ( in fo , start_pc , pc + length − 1 , pc , type ) ;
22

i f (BBT_IS_IF ( type ) )
24 {

/∗ ana lyse bitmap∗/
26 a l l ocateB i tmapBi t s ( in fo , branch , 2 ) ;

}
28 else i f (BBT_IS_SWITCH ( type ) )

{
30 int case_count = pc_target ;

a l l o ca teB i tmapBi t s ( in fo , branch , case_count + 1 ) ; /∗ +1 f o r d e f au l t case ∗/
32 branch−>case s = al locSwitchTargetElements ( in fo , case_count + 1 ) ;

/∗ +1 f o r te rminat ing NULL ∗/
34

}
36 else i f (BB_HAS_JOIN ( branch ) )

{
38 i f ( ! in fo−>join_block )

in fo−>join_block = a l l o cBas i cB l o ck ( in fo , PC_INVALID, PC_INVALID,
40 PC_INVALID, BBT_JOIN) ;

i f ( in fo−>join_block ==NULL)
42

a s s e r t ( ! branch−>ta rg e t ) ;
44 branch−>ta rg e t = in fo−>join_block ;

}
46

/∗ No e l s e here , t h i s ove r l ap s the above i f ∗/
48 i f (BBT_IS_JUMP ( type ) )

{
50 i f ( pc_target > pc )

52 {
/∗ Forward branch ∗/

54
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56 branch−>ta rg e t = forwardBranch ( in fo , pc_target ) ;
}

58 else
{

60

/∗ Backward branch ∗/
62

/∗ Store the o ld end o f the block , as the backward branch may be in to
64 the cur rent block , which would

∗ cause i t to s p l i t . By check ing pc_end a f t e r the branch , the s p l i t
66 can be detec ted .

∗/
68 uint old_end = branch−>pc_end ;

70 NewBasicBlock ∗ t a r g e t = backwardBranch ( in fo , pc_target ) ;

72 i f ( branch−>pc_end == old_end )
{

74 branch−>ta rg e t = ta rg e t ;
}

76

78 else
{

80 target−>ta rg e t = ta rg e t ;
}

82

84 }
}

86 return branch ;
}

ContextAnalysisEndAnalyze Function

1 void contextAnalys isEndAnalyze ( ContextAna lys i s In fo ∗ i n fo , Method ∗meth ,
u int pc , Ve r i f i e rData ∗ vdata )

3 {
char bu f f e rp c [ 5 0 ] ;

5 Context ∗ ctx ;
i f (LIST_IS_EMPTY ( normal ) )

7 {
/∗ I f the r e ’ s only a s i n g l e ba s i c block , the re ’ s nothing to do .

9 ∗ This case i s f a i r l y f r equent ( s imple c tor s , get and s e t methods , e t c ) ,
∗ so t h i s saves some work

11 ∗/
f r e e ( i n f o ) ;

13

return ;
15 }

17 i f (LIST_BACK( normal)−>pc_end + 1 != pc )
{

19 /∗ Al l o ca t e the l a s t ba s i c b lock ∗/
newBasicBlock ( in fo , LIST_BACK( normal)−>pc_end + 1 , pc − 1 , PC_INVALID, BBT_NONE) ;

21 }
f c = fopen ( " /data/data/meth−>clazz−>de s c r i p t o r /meth−>name/ context . txt " , "w" ) ;
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23 i f ( f c == NULL)
{ LOGI( " Unable to c r e a t e graph f i l e f i l e not open " ) ;

25

pe r ro r (NULL) ;
27 abort ( ) ;

29 }

31 i n i t i a l i z eB i tmap s ( i n f o ) ;

33 processBitmaps ( in fo , meth , vdata ) ;

35 dumpGraph ( in fo , meth , −1, f a l s e , vdata ) ;

37 i f ( !LIST_IS_EMPTY ( cond_unfinished ) ){
dumpGraph ( in fo , meth , −1, true , vdata ) ;

39 }

41 a s s e r t (LIST_IS_EMPTY ( cond_unfinished ) ) ;

43 /∗ Store the in fo rmat ion with the method ∗/
/∗ TODO: r e l e a s e the memory a l l o c a t e d here ∗/

45 /∗ TODO: can the cond l i s t be dropped
The only use ( f o r i n i t i a l i z a t i o n o f bitmaps ) can be done us ing

47 ∗ the cond_unfinished l i s t . branch_count might be unused , too .
∗/

49

51 i f ( in fo−>branch_count )
{

53

NewBasicBlock ∗bb , ∗cond ;
55 RuntimeBitmapElement ∗bitmap_ptr ;

57 char bu f f e r e l ement [ 5 0 ] ;
char bu f f e rb c [ 5 0 ] ;

59

int bitmap_index = 0 ;
61

63

StorageRecord ∗ storage_ptr ;
65 f p r i n t f ( fc , "%s \n" , meth−>name ) ;

67 meth−>bitmap_size_bits = in fo−>branch_count ;

69 s p r i n t f ( bu f f e rbc , "%d" ,meth−>bitmap_size_bits ) ;

71 f p r i n t f ( fc , "%d\n" , meth−>bitmap_size_bits ) ;

73 meth−>bitmap_size_elements = bitmapElementCount (meth−>bitmap_size_bits ) ;

75 s p r i n t f ( bu f f e re l ement , "%d" , meth−>bitmap_size_elements ) ;

77

f p r i n t f ( fc , "%d\n" , meth−>bitmap_size_elements ) ;
79
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81

meth−>bitmap_data = (RuntimeBitmapElement ∗) c a l l o c ( in fo−>block_count ,
83 meth−>bitmap_size_elements ∗ s izeof (RuntimeBitmapElement ) ) ;

85

87 bitmap_ptr = meth−>bitmap_data ;

89

meth−>context s = ( ContextBasicBlock ∗) c a l l o c ( in fo−>block_count ,
91 s izeof (∗meth−>context s ) ) ;

93

meth−>context_storage = ( StorageRecord ∗) c a l l o c ( in fo−>bitmap_size_bits ,
95 s izeof (∗meth−>context_storage ) ) ;

97

storage_ptr = meth−>context_storage ;
99

RecordAl locContextAnalys i s ( in fo−>block_count ∗ s izeof (∗meth−>context s ) ) ;
101 RecordAllocStorageRecord ( in fo−>bitmap_size_bits ∗ s izeof (∗meth−>context_storage ) ) ;

103 /∗ I n i t i a l i z e the runtime context s t r u c t u r e s ∗/
for (bb = LIST_FRONT( normal ) ; bb ; bb = LIST_NEXT(bb , normal ) , meth−>context_count++)

105 {
char bupcstar t [ 3 0 ] ;

107 char bupcend [ 3 0 ] ;
char buptype [ 3 0 ] ;

109

a s s e r t (meth−>context_count < in fo−>block_count ) ;
111

meth−>context s [ meth−>context_count ] . pc_start = bb−>pc_start ;
113

s p r i n t f ( bupcstart , "%d" , bb−>pc_start ) ;
115

f p r i n t f ( fc , " pc_start : %d\n" , bb−>pc_start ) ;
117

meth−>context s [ meth−>context_count ] . pc_end= bb−>pc_end ;
119

s p r i n t f ( bupcend , "%d" , bb−>pc_end ) ;
121

f p r i n t f ( fc , "bb−>pc_end : %d\n" , bb−>pc_end ) ;
123

meth−>context s [ meth−>context_count ] . type = bb−>type ;
125

s p r i n t f ( buptype , "%d" , bb−>type ) ;
127

meth−>context s [ meth−>context_count ] . s to r e_case s = storage_ptr ;
129 meth−>context s [ meth−>context_count ] . store_case_count= bb−>bitmap_size_bits ;

s torage_ptr += bb−>bitmap_size_bits ;
131 meth−>contex t_ fa i l ed = true ;

s torage_ptr += bb−>bitmap_size_bits ;
133

/∗ Ensure they are so r t ed by pc_start ∗/
135

a s s e r t ( ! meth−>context_count | |
137 meth−>context s [ meth−>context_count ] . pc_start == PC_INVALID | |

meth−>context s [ meth−>context_count − 1 ] . pc_start == PC_INVALID | |
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139 meth−>context s [ meth−>context_count − 1 ] . pc_start <
meth−>context s [ meth−>context_count ] . pc_start ) ;

141

bb−>f i n a l = &meth−>context s [ meth−>context_count ] ;
143 bb−>f i n a l−>bitmap_index = BB_HAS_RUNTIME_BIT (bb) ? bitmap_index++ : −1;

145

}
147

char count [ 3 0 ] ;
149

s p r i n t f ( count , "%d" , meth−>context_count ) ;
151 f p r i n t f ( fc , "%d\n" , meth−>context_count ) ;

153

a s s e r t (meth−>context_count == in fo−>block_count − ( in fo−>join_block ? 1 : 0 ) ) ;
155 a s s e r t ( storage_ptr == meth−>context_storage + in fo−>bitmap_size_bits ) ;

157 /∗ I n i t i a l i z e the run−time bitmaps .
∗ This must be done in a separa t e loop due to the i n i t i a l i z a t i o n

159 o f the bitmap i nd i c e s .
∗ Also , i n i t i a l i z e the branches ’ s t o rage r e co rd s

161 ∗/
for (bb = LIST_FRONT( normal ) ; bb ; bb = LIST_NEXT(bb , normal ) )

163 {

165 bb−>f i n a l−>bitmap = bitmap_ptr ;
bitmap_ptr += meth−>bitmap_size_elements ;

167

169

for ( cond = LIST_FRONT( cond ) ; cond ; cond = LIST_NEXT( cond , cond ) )
171 {

u int i ;
173 bool haveSet = f a l s e , haveUnset = f a l s e ;

175 for ( i = 0 ; i < cond−>bitmap_size_bits ; i++)
{

177 bool va l = bitmapGet ( in fo , bb−>bitmap , cond−>bitmap_index + i ) ;
i f ( va l ) haveSet = true ;

179 else haveUnset = true ;

181 i f ( haveSet && haveUnset ) break ;
}

183

i f ( haveSet && haveUnset )
185 {

runtimeBitmapSet (meth , bb−>f i n a l , cond−>f i n a l−>bitmap_index ) ;
187

189 /∗ Loop through b i t s again to de t e c t which ca s e s to add to ∗/

191 for ( i = 0 ; i < cond−>bitmap_size_bits ; i++)
{

193

bool va l = bitmapGet ( in fo , bb−>bitmap , cond−>bitmap_index + i ) ;
195 i f ( va l )

{
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197 storageRecordCopyRecord (&cond−>f i n a l−>store_case s [ i ] ,
&bb−>f i n a l−>s to r e ) ;

199

}
201 }

}
203 }

}
205

}
207

dumpGraph ( in fo , meth , −1, f a l s e , vdata ) ;
209

f c l o s e ( f c ) ;
211

/∗ Clean up ∗/
213 f r e eBa s i cB l o ck s ( i n f o ) ;

f reeBitmaps ( i n f o ) ;
215 f r e eSwi t chTarge t s ( i n f o ) ;

217 /∗ This used to be in tr i shulDestroyCodeAnalyseData ∗/

219 /∗ Destroy Bas icBlocks ∗/
for ( in fo−>basic_block_al loc_ptr=in fo−>bas i c_b lo ck_a l l o c_ f i r s t ; in fo−>basic_block_al loc_ptr ; )

221 {
Bas i cBlockAl loc ∗next = in fo−>basic_block_al loc_ptr−>next ;

223

f r e e ( in fo−>basic_block_al loc_ptr ) ;
225 i n fo−>basic_block_al loc_ptr = next ;

}
227

destroyBitmaps ( i n f o ) ;
229 destroySwitchTargets ( i n f o ) ;

231 f r e e ( i n f o ) ;

233

}

dumpGraph Function

stat ic void dumpGraph ( ContextAna lys i s In fo ∗ i n fo , Method ∗meth ,
2 int step , bool f o r c e , Ve r i f i e rData ∗ vdata )

{
4 unsigned int i ;

bool found = f o r c e ;
6 char bu [ 5 0 ] ;

for ( i = 0 ; i < debug_methods_used && ! found ; i++)
8

{
10 found = ( ! strcmp (meth−>clazz−>des c r i p t o r , debug_methods [ i ] . c lassname ) &&

! strcmp (meth−>name , debug_methods [ i ] . methodname ) ) ;
12

}
14

i f ( found )
16 {
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18 NewBasicBlock ∗block ;
u int pc ;

20 unsigned int i ;
char bu f f e r [ 1 0 2 4 ] ;

22 char path [ 2 0 0 0 ] ;

24 i f ( s tep < 0)
{

26

i f ( s np r i n t f ( bu f f e r , s izeof ( bu f f e r ) , "%s .%s . graph " ,
28 meth−>clazz−>des c r i p t o r , meth−>name) >= ( int ) s izeof ( bu f f e r ) )

{
30 pe r ro r ( " Unable to c r e a t e graph f i l e " ) ;

32 abort ( ) ;
}

34

}
36 else i f ( debug_methods_flow )

{
38 i f ( s np r i n t f ( bu f f e r , s izeof ( bu f f e r ) , "%s .%s .%u . graph " ,

meth−>clazz−>des c r i p t o r , meth−>name , s tep ) >= ( int ) s izeof ( bu f f e r ) )
40 {

42 pe r ro r ( " Unable to c r e a t e graph f i l e " ) ;

44 abort ( ) ;
}

46 }
else return ;

48

50

for ( i = 0 ; bu f f e r [ i ] ; i++)
52

switch ( bu f f e r [ i ] )
54 {

case ’ / ’ : b u f f e r [ i ] = ’ . ’ ; break ;
56 case ’< ’ :

case ’> ’ :
58 bu f f e r [ i ] = ’_ ’ ; break ;

}
60 FILE ∗ f=NULL;

f = fopen ( " /data/data/meth−>clazz−>de s c r i p t o r /meth−>name/ onc r e ra t e . txt " , "w" ) ;
62 fnb = fopen ( " /data/data/meth−>clazz−>de s c r i p t o r /meth−>name/ nb inst . txt " , "w" ) ;

f t = fopen ( " /data/data/meth−>clazz−>de s c r i p t o r /meth−>name/ type i n s t . txt " , "w" ) ;
64 f c = fopen ( " /data/data/meth−>clazz−>de s c r i p t o r /meth−>name/ context . txt " , "w" ) ;

66 i f ( f == NULL)
{ LOGI( " Unable to c r e a t e graph f i l e f i l e not open " ) ;

68

pe r ro r (NULL) ;
70 abort ( ) ;

}
72

i f ( fnb == NULL)
74 { LOGI( " Unable to c r e a t e graph f i l e f i l e not open " ) ;
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76 pe r ro r (NULL) ;
abort ( ) ;

78

}
80 i f ( f t == NULL)

{ LOGI( " Unable to c r e a t e graph f i l e f i l e not open " ) ;
82

pe r ro r (NULL) ;
84 abort ( ) ;

86 }
f p r i n t f ( f , " digraph f low {\n" ) ;

88 f p r i n t f ( fnb , " nbre i n s t r u c t i o n \n" ) ;
f p r i n t f ( f t , " type i n s t r u c t i o n \n" ) ;

90

const u2∗ i n sn s = meth−>insn s ;
92 OpCode opcode ;

for ( b lock = LIST_FRONT ( normal ) ; b lock ; b lock = LIST_NEXT ( block , normal ) )
94 {

f p r i n t f ( f , " \ tb lock%p [ shape=record l a b e l =\"{ " , b lock ) ;
96 i f (BBT_IS_CATCH ( block−>type ) )

{
98

f p r i n t f ( f , " catch {\n" ) ;
100

}
102 else

{
104

f p r i n t f ( f , "%d − %d" , block−>pc_start , block−>pc_end ) ;
106 }

108 f p r i n t f ( f , " | {{ " ) ;
i f ( block−>bitmap )

110 {
for ( i = 0 ; i < in fo−>bitmap_size_bits ; i++)

112 {

114

i f ( i == block−>bitmap_index )
116 { f p r i n t f ( f , " [ " ) ;

118 }
f p r i n t f ( f , "%c " , bitmapGet ( in fo , block−>bitmap , i ) ? ’ 1 ’ : ’ 0 ’ ) ;

120

i f ( i + 1 == block−>bitmap_index + block−>bitmap_size_bits )
122 { f p r i n t f ( f , " ] " ) ;

}
124 }

}
126

f p r i n t f ( f , " | " ) ;
128 /∗ The t e s t f o r block−>f i n a l−>bitmap i s only

r equ i r ed to a l low dumping incomplete graphs .
130 ∗ I t should not be NULL under normal c i r cumstances

∗/
132 i f ( block−>f i n a l && block−>f i n a l−>bitmap )
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{
134

for ( i = 0 ; i < meth−>bitmap_size_bits ; i++)
136 {

138 i f ( i == ( u int ) block−>f i n a l−>bitmap_index ) f p r i n t f ( f , " [ " ) ;
f p r i n t f ( f , "%c " , runtimeBitmapGet (meth , block−>f i n a l , i ) ? ’ 1 ’ : ’ 0 ’ ) ;

140 i f ( i == ( u int ) block−>f i n a l−>bitmap_index ) f p r i n t f ( f , " ] " ) ;
}

142

}
144

f p r i n t f ( f , " } | " ) ;
146 i f ( !BBT_IS_FAKE( block−>type ) )

{
148 InsnFlags ∗ i n snF lags = vdata−>insnFlags ;

150

nbre_insn=0;
152 s i z ebb=0;

for ( pc = block−>pc_start ; pc <=block−>pc_end ; )
154

{
156

158 int width ;
width = dvmInsnGetWidth ( insnFlags , pc ) ;

160 opcode = (∗ i n sn s ) & 0 x f f ;
a s s e r t ( width > 0 ) ;

162 f p r i n t f ( f , "%s%s \\n" ,
pc == block−>pc_flow ? " ? " : " " ,

164 dexGetOpcodeName ( opcode ) ) ;
pc += width ;

166 s i z ebb+=width ;
s p r i n t f ( buc , "%d" , pc ) ;

168 i n sn s += width ;
nbre_insn+=1;

170

}
172 f p r i n t f ( fnb , "%d \n" , nbre_insn ) ;

f p r i n t f ( fc , "%d \n" , s i z ebb ) ;
174 s p r i n t f ( buptype , "%d" , block−>type ) ;

f p r i n t f ( f t , "%s \n" , buptype ) ;
176

}
178

i f ( block−>f i n a l && ( !STORAGE_IS_EMPTY (&block−>f i n a l−>s to r e )
180 | | block−>f i n a l−>s to r e . has_throw ) )

{
182

f p r i n t f ( f , " | WRITES\\n" ) ;
184

i f ( block−>f i n a l−>s to r e . has_throw )
186 {

f p r i n t f ( f , "THROW\\n" ) ;
188 }

190 i f ( !STORAGE_IS_EMPTY (&block−>f i n a l−>s to r e ) )
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{
192 i f (meth−>contex t_ fa i l ed )

{
194 f p r i n t f ( f , "FALLBACK MODE\\n" ) ;

}
196 else

{
198 dumpStores ( f , &block−>f i n a l−>s to r e ) ;

}
200 }

}
202

i f ( block−>f i n a l && (BB_HAS_CASES ( block )
204 | | BB_HAS_CATCHES ( block ) ) && block−>f i n a l−>store_case_count )

{
206 uint i ;

for ( i = 0 ; i < block−>f i n a l−>store_case_count ; i++)
208 {

210 f p r i n t f ( f , " | CASE %u\\n" , i ) ;
dumpStores ( f , &block−>f i n a l−>store_case s [ i ] ) ;

212 }
}

214

f p r i n t f ( f , " } } } \ " ] ; \ n " ) ;
216

i f (BB_HAS_TARGET( block ) )
218 {

220 f p r i n t f ( f , " \ tb lock%p −> block%p [ l a b e l =\" t \ " ] ; \ n " , block , block−>ta rg e t ) ;
}

222 i f (BB_HAS_NEXT( block ) )
{

224 f p r i n t f ( f , " \ tb lock%p −> block%p [ l a b e l =\"n \ " ] ; \ n " ,
block , LIST_NEXT ( block , normal ) ) ;

226 }
i f (BB_HAS_CASES ( block ) | | BB_HAS_CATCHES ( block ) )

228 {

230 int caseIndex ;
for ( caseIndex = 0 ; block−>case s [ caseIndex ] ; caseIndex++)

232 {
f p r i n t f ( f , " \ tb lock%p −> block%p [ l a b e l=\"%u \ " ] ; \ n " ,

234 block , block−>case s [ caseIndex ] , caseIndex ) ;
}

236 }
i f (BB_HAS_TRIES ( block ) )

238 {
int tryIndex ;

240 for ( tryIndex = 0 ; block−>t r i e s [ t ryIndex ] ; t ryIndex++)
{

242 f p r i n t f ( f , " \ tb lock%p −> block%p [ s t y l e=dotted l a b e l=\"%u \ " ] ; \ n " ,
block−>t r i e s [ t ryIndex ] , block , t ryIndex ) ;

244 }
}

246 #i f d e f RENDER_FINISHED
i f ( block−>f i n i s h e d )

248 {
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250 f p r i n t f ( f , " \ tb lock%p −> block%p [ s t y l e=dashed , l a b e l =\" f i n i s h e d \ " ] ; \ n " ,
block , block−>f i n i s h e d ) ;

252 }
#endif

254

i f ( in fo−>join_block )
256 {

258 f p r i n t f ( f , " \ tb lock%p [ l a b e l =\"JOIN" , in fo−>join_block ) ;
i f ( in fo−>join_block−>bitmap )

260 {
f p r i n t f ( f , " \\n" ) ;

262 for ( i = 0 ; i < in fo−>bitmap_size_bits ; i++)
{

264 f p r i n t f ( f , "%c " ,
bitmapGet ( in fo , in fo−>join_block−>bitmap , i ) ? ’ 1 ’ : ’ 0 ’ ) ;

266 }
}

268 f p r i n t f ( f , " \ " ] ; \ n " ) ;
}

270 }
i f ( s tep < 0)

272 {
for ( b lock =LIST_FRONT( cond_unfinished ) ; b lock ; b lock=LIST_NEXT( block , cond_unfinished ) )

274 {
f p r i n t f ( f , " \ tb lock%p −> UNFINISHED;\ n" , b lock ) ;

276 }
}

278 f p r i n t f ( f , " }\n" ) ;
f c l o s e ( f ) ;

280 f c l o s e ( fnb ) ;
f c l o s e ( f t ) ;

282 f c l o s e ( f c ) ;
}

284

}

NewBasicBlock Function

1

stat ic NewBasicBlock ∗newBasicBlock ( ContextAna lys i s In fo ∗ i n fo ,
3 uint pc_start , u int pc_end , u int pc_flow , BasicBlockType type )

{
5 NewBasicBlock ∗ f f = LIST_FRONT ( forward ) ;

7 /∗ Check i f a forward branch was de f ined in to t h i s b lock ∗/
i f ( f f && f f−>pc_start <= pc_end )

9 {
i f ( f f−>pc_start == pc_start )

11 {

13 NewBasicBlock ∗next = LIST_NEXT( f f , forward ) ;

15

/∗ May s t i l l have to s p l i t i f the new block cover s s e v e r a l forward branches ∗/
17 i f ( next && next−>pc_start <= pc_end )



149

{
19 dbg_printf ( " s p l i t t i n g forward 2 : %d %d\n" , pc_start , pc_flow ) ;

f f−>pc_end = next−>pc_start − 1 ;
21 f f−>type = BBT_NONE;

23 /∗ Remove from forward l i s t and add to the back o f normal l i s t ∗/
LIST_REMOVE_FRONT ( forward ) ;

25 LIST_ADD_BACK ( f f , normal ) ;

27 /∗ Sp l i t the block ∗/
NewBasicBlock ∗nb = newBasicBlock ( in fo , next−>pc_start ,

29 pc_end , pc_flow , type ) ;

31 /∗ Reass ign jump/ switch t a r g e t s ∗/
nb−>ta rg e t = f f−>ta rg e t ;

33 f f−>ta rg e t = NULL;
nb−>case s = f f−>case s ;

35 f f−>case s = NULL;

37 return nb ;
}

39 else
{

41

dbg_printf ( " us ing forward : %d %d\n" , pc_start , pc_end ) ;
43 f f−>pc_end = pc_end ;

f f−>pc_flow = pc_flow ;
45 f f−>type = type ;

47 /∗ Remove from forward l i s t and add to the back o f normal l i s t ∗/
LIST_REMOVE_FRONT ( forward ) ;

49 LIST_ADD_BACK ( f f , normal ) ;
return f f ;

51 }
}

53 else
{

55 dbg_printf ( " s p l i t t i n g forward 1 : %d %d %d\n" ,
pc_start , pc_end , f f−>pc_start ) ;

57

/∗ Sp l i t the block ∗/
59 newBasicBlock ( in fo , pc_start , f f−>pc_start − 1 , PC_INVALID, BBT_NONE) ;

LOGI( " S p l i t the block " ) ;
61 /∗ This w i l l a l s o remove i t from the forward l i s t ∗/

return newBasicBlock ( in fo , f f−>pc_start , pc_end , pc_flow , type ) ;
63 }

}
65

/∗ No s p l i t t i n g r equ i r ed ∗/
67

dbg_printf ( " ! %d %d\n" , pc_start , pc_end ) ;
69

NewBasicBlock ∗bb = a l l o cBas i cB l o ck ( in fo , pc_start , pc_end , pc_flow , type ) ;
71

LIST_ADD_BACK (bb , normal ) ;
73

return bb ;
75 }
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E Dynamic Analysis

Taint.h

#i f n d e f _DALVIK_INTERP_TAINT
2 #de f i n e _DALVIK_INTERP_TAINT

4 /∗ The Taint s t r u c tu r e ∗/
typedef struct Taint {

6 u4 tag ;
} Taint ;

8

/∗ The Taint markings ∗/
10

#de f i n e TAINT_CLEAR (( u4 )0 x00000000 ) /∗ No ta i n t ∗/
12 #de f i n e TAINT_LOCATION (( u4 )0 x00000001 ) /∗ Locat ion ∗/

#de f i n e TAINT_CONTACTS ( ( u4 )0 x00000002 ) /∗ Address Book ( ContactsProvider ) ∗/
14 #de f i n e TAINT_MIC ( ( u4 )0 x00000004 ) /∗ Microphone Input ∗/

#de f i n e TAINT_PHONE_NUMBER (( u4 )0 x00000008 ) /∗ Phone Number ∗/
16 #de f i n e TAINT_LOCATION_GPS ( ( u4 )0 x00000010 ) /∗ GPS Locat ion ∗/

#de f i n e TAINT_LOCATION_NET (( u4 )0 x00000020 ) /∗ NET−based Locat ion ∗/
18 #de f i n e TAINT_LOCATION_LAST ( ( u4 )0 x00000040 ) /∗ Last known Locat ion ∗/

#de f i n e TAINT_CAMERA (( u4 )0 x00000080 ) /∗ camera ∗/
20 #de f i n e TAINT_ACCELEROMETER (( u4 )0 x00000100 ) /∗ acce l e romete r ∗/

#de f i n e TAINT_SMS ( ( u4 )0 x00000200 ) /∗ SMS ∗/
22 #de f i n e TAINT_IMEI ( ( u4 )0 x00000400 ) /∗ IMEI ∗/

#de f i n e TAINT_IMSI ( ( u4 )0 x00000800 ) /∗ IMSI ∗/
24 #de f i n e TAINT_ICCID ( ( u4 )0 x00001000 ) /∗ ICCID (SIM card i d e n t i f i e r ) ∗/

#de f i n e TAINT_DEVICE_SN ( ( u4 )0 x00002000 ) /∗ Device s e r i a l number ∗/
26 #de f i n e TAINT_ACCOUNT (( u4 )0 x00004000 ) /∗ User account in fo rmat ion ∗/

#de f i n e TAINT_HISTORY (( u4 )0 x00008000 ) /∗ browser h i s t o r y ∗/
28

#end i f /∗_DALVIK_INTERP_TAINT∗/
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HANDLE_OP_IF Function

2 #de f i n e HANDLE_OP_IF_XX(_opcode , _opname , _cmp) \
HANDLE_OPCODE(_opcode /∗vA, vB , +CCCC∗/ ) \

4 vsrc1 = INST_A( i n s t ) ; \
vsrc2 = INST_B( i n s t ) ; \

6 res_cmp= ( ( s4 ) GET_REGISTER( vsrc1 ) _cmp ( s4 ) GET_REGISTER( vsrc2 ) ) ; \
br = ( s2 )FETCH(1 ) ; \

8 /∗ i f d e f WITH_TAINT_TRACKING ∗/ \
int type [ 1 0 ] ; \

10 dvmInterpGetTypeInst ( type ) ; \
pc_if=( int ) pc ; \

12 pc_br = ( int ) pc+br ; \
context_cond =true ; \

14

/∗ end i f ∗/ \
16 i f ( branch_taken ==f a l s e ){\

/∗ i f d e f WITH_TAINT_TRACKING ∗/ \
18 SET_REGISTER_TAINT( vdst , \

(GET_REGISTER_TAINT( vsrc1 ) |GET_REGISTER_TAINT( vsrc2 ) ) ) ; \
20 dvmInterpHandleIFTaint (GET_REGISTER_TAINT( vdst ) ) ; \

/∗ end i f ∗/ \
22 i f ( res_cmp ){\

branch_not_taken=true ; \
24

i f ( type [ 1 ] )\
26 {\

ADJUST_PC( 2 ) ; \
28 i n s t = FETCH(0 ) ; \

goto ∗handlerTable [ INST_INST( i n s t ) ] ; }\
30 branch_not_taken=f a l s e ; \

branch_taken =true ; \
32 }\

else {\
34 i f ( ( dvmInterpHandleSimpleIF ( type ) ) ) \

{\
36 branch_not_taken=true ; \

ADJUST_PC( br ) ; \
38 i n s t = FETCH(0 ) ; \

goto ∗handlerTable [ INST_INST( i n s t ) ] ; } \
40 branch_not_taken=f a l s e ; \

branch_taken =true ; \
42 }\

}\
44 else {\

}\
46 }\

i f ( ( s4 ) GET_REGISTER( vsrc1 ) _cmp ( s4 ) GET_REGISTER( vsrc2 ) ) {\
48 \

int branchOf f se t = ( s2 )FETCH( 1 ) ; /∗ s ign−extended ∗/ \
50 ILOGV( " | i f−%s v%d , v%d,+0x%04x " , (_opname) , vsrc1 , vsrc2 , \

branchOf f se t ) ; \
52 ILOGV( "> branch taken " ) ; \

i f ( branchOf f se t < 0) \
54 PERIODIC_CHECKS( kInterpEntryInst r , branchOf f se t ) ; \

i f ( strncmp ( curMethod−>name , " leakBoolean " ,11)==0){ \
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56 } \
FINISH( branchOf f se t ) ; \

58 } else { \
ILOGV( " | i f−%s v%d , v%d,− " , (_opname) , vsrc1 , vs rc2 ) ; \

60 i f ( strncmp ( curMethod−>name , " leakBoolean " ,11)==0){ \
}\

62 FINISH ( 2 ) ; \
}
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OP_PACKED_SWITCH Function

1 HANDLE_OPCODE(OP_PACKED_SWITCH /∗vAA, +BBBB∗/ )
{

3 const u2∗ switchData ;
u4 te s tVa l ;

5 s4 o f f s e t ;

7 vsrc1 = INST_AA( i n s t ) ;

9 o f f s e t = FETCH(1) | ( ( ( s4 ) FETCH(2 ) ) << 16 ) ;

11 ILOGV( " | packed−switch v%d +0x%04x " , vsrc1 , vs rc2 ) ;

13 switchData = pc + o f f s e t ; // o f f s e t in 16−b i t un i t s

15 /∗ i f d e f WITH_TAINT_TRACKING ∗/
context_cond =true ;

17 SET_REGISTER_TAINT( vdst ,
(GET_REGISTER_TAINT( vsrc1 ) |GET_REGISTER_TAINT( vsrc2 ) ) ) ;

19 dvmInterpHandleIFTaint (GET_REGISTER_TAINT( vdst ) ) ;

21 /∗ end i f ∗/
#i f n d e f NDEBUG

23 i f ( switchData < curMethod−>insn s | |
switchData >= curMethod−>insn s + dvmGetMethodInsnsSize ( curMethod ) )

25 {
/∗ should have been caught in v e r i f i e r ∗/

27 EXPORT_PC( ) ;
dvmThrowException ( " Ljava/ lang / In t e rna lE r r o r ; " , " bad packed switch " ) ;

29 GOTO_exceptionThrown ( ) ;
}

31 #end i f
t e s tVa l = GET_REGISTER( vsrc1 ) ;

33 /∗ i f d e f WITH_TAINT_TRACKING ∗/

35 const s4 ∗ ent ;
pc_switch=pc ;

37 ent = ( const s4 ∗) switchData ;
t a i l l e = s izeof ( switchData ) ;

39 i f ( de fau l t_case==f a l s e )
{

41 ADJUST_PC( 3 ) ;
i n s t = FETCH( 0 ) ;

43 de fau l t_case=true ;
context_switch =true ;

45 goto ∗handlerTable [ INST_INST( i n s t ) ] ; }
sw i t ch_o f f s e t=sw i t ch_o f f s e t +2;

47 i f ( nbswitch <= t a i l l e ) // bouc le case
{

49 context_switch =true ;
sw i t ch_o f f s e t = ( int ) ent [ nbswitch ] ;

51 nbswitch++;
ADJUST_PC( sw i t ch_o f f s e t ) ;

53 i n s t = FETCH( 0 ) ;
goto ∗handlerTable [ INST_INST( i n s t ) ] ;

55 }
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57 context_switch=f a l s e ;
}

59

o f f s e t = dvmInterpHandlePackedSwitch ( switchData , t e s tVa l ) ;
61 /∗ end i f ∗/

63 ILOGV( "> branch taken (0x%04x )\n" , o f f s e t ) ;
i f ( o f f s e t <= 0) /∗ uncommon ∗/

65 PERIODIC_CHECKS( kInterpEntryInst r , o f f s e t ) ;
FINISH( o f f s e t ) ;

67 }
OP_END
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