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Résumé de la thèse en français

Le chapitre 1 présente le contexte et l’évolution des systèmes de communication
sans fil répondant à une demande toujours plus forte des acteurs et des contenus. Na-
turellement, les ressources disponibles pour satisfaire cette demande sont limitées.
Afin d’exploiter au mieux ces ressources et pour augmenter l’efficacité spectrale, de
nouvelles techniques ou standards de communication ont été développés comme le
Wide Code Division Multiple Access (WCDMA), l’Orthogonal Frequency Division
Multiplexing (OFDM) et le Long Term Evolution (LTE). Malheureusement, ces tech-
niques ont pour effet d’augmenter la dynamique des signaux entrainant une plus grande
sensibilité aux non-linéarités des éléments de la chaine de transmission.

Plusieurs éléments de cette chaîne présentent des non-linéarités, en particulier des
saturations qui ont pour effet de déformer le signal à transmettre. La plus forte non
linéarité est apportée par l’amplificateur de puissance. L’amplification, qui doit être
constante quelque soit l’amplitude du signal d’entrée, diminue puis stagne lorsque la
puissance moyenne du signal est trop importante. Ces deux effets génèrent des distor-
sions non-linéaires en amplitude et en phase sur le signal, notamment des remontées
spectrales dans les canaux adjacents et des rotations et compressions de la constella-
tion dans le domaine temporel dégradant la qualité de la communication et perturbant
les communications dans les bandes de fréquence voisines. Pour éviter de générer
ces déformations, il suffirait de diminuer la puissance d’émission du signal en sur-
dimensionnant les équipements. Mais ceci aurait deux effets négatifs. D’une part, les
systèmes seraient beaucoup plus volumineux, et d’autre part le rendement serait forte-
ment dégradé ce qui est souvent une contrainte forte sur les systèmes portatifs. Pour
optimiser ce rendement, il faut s’approcher de la zone de saturation de l’amplificateur,
là où le rendement est maximum. De plus, les signaux transmis sont de plus en plus
large bande entrainant un effet mémoire non linéaire qui vient s’ajouter aux distorsions
précédentes. Ceci entraine un spectre asymétrique et un effet de nuage sur les points
de la constellation. Plusieurs critères sont introduits pour évaluer ces non-linéarités :
l’ACPR (qui évalue les remontées spectrales) et l’EVM (qui mesure les distorsion de
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la constellation).

Pour obtenir un bon compromis entre le rendement et la linéarité, deux sorte de
méthode sont exploitées. L’une est destinée à améliorer le rendement comme les
méthodes Doherty ou d’enveloppe tracking, l’autre cherche à linéariser l’amplificateur
(Feedback, Feedforward, LINC, EER, Pré-distorsion). Dans cette thèse, on étudiera
spécifiquement les techniques de linéarisation et plus spécifiquement la pré-distorsion
numérique en bande de base. Cette pré-distorsion consiste à déformer le signal avant de
l’insérer dans le PA pour que celui-ci soit globalement linéairement amplifié quelque
soit son amplitude. Le pré-distorteur est donc un élément placé devant le PA. Une
première méthode (LUT) qui consiste à placer en pré-distorteur une table indexée sur
l’amplitude du signal d’entrée pour inverser la caractéristique de l’amplificateur est
simple à mettre en œuvre mais ses performances dépendent de la taille de la LUT.
Une autre méthode basée sur des modèles mathématiques est souvent exploitée. Elle
donne d’excellents résultats tout en prenant en compte les effets mémoires mais au prix
d’une complexité accrue. Le pré-distorteur peut aussi être judicieusement implanté
par un réseau de neurone qui est performant en termes de linéarisation, mais dont la
phase d’apprentissage est longue. Dans les méthodes basées sur des modèles, il ex-
iste plusieurs modèles (Hammerstein, Wiener, MP, Volterra ...) et deux architectures
(directe DLA et indirecte ILA). La première architecture identifie un modèle prédéfini
(MP, ...) en utilisant un algorithme du type LMS pour reproduire la caractéristique di-
recte du PA. Ce modèle est ensuite inversé dans la pré-distorsion. Dans l’architecture
ILA, c’est la caractéristique inverse du PA qui est identifiée par un modèle prédéfini.
Il suffit alors de placer ce modèle devant le PA pour réaliser la pré-distorsion.

Dans cette thèse, les deux architectures sont comparées. Nous considérons prin-
cipalement la technique de la prédistorsion en bande de base, basée sur l’architecture
DLA et le modèle MP. Cette méthode est simplifiée par l’utilisation d’une table (Look
Up Table) pour bénéficier de la simplicité de cette dernière. Pour réduire la taille de la
LUT, des méthodes d’interpolation linéaire et quadratique sont proposées. Enfin, une
implémentation basée sur un réseau de neurones est réalisée pour accélérer le temps de
prédistorsion.

Le chapitre 2 s’attache en particulier à caractériser l’amplificateur de puissance
et à décrire les principales techniques de linéarisation existantes par une bibliogra-
phie. Après avoir présenté l’évolution des systèmes de communications radio mobile
de première à la quatrième génération ainsi que les architectures d’émetteur pour met-
tre en évidence l’importance du PA, les caractéristiques principales de l’amplificateur
de puissance sont détaillées : le gain, les caractéristiques AM/AM, AM/PM, le ren-
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dement. Le compromis linéarité/rendement est expliqué et justifié au moyen de la
caractéristique AM/AM et de la courbe de rendement.

Les harmoniques et l’intermodulation, conséquences de la non-linéarité, sont abor-
dés au travers d’exemples classiques avec les signaux à un ton et à deux tons. Les
harmoniques peuvent être supprimées par filtrage nécessitant des circuits supplémen-
taires dans la chaîne de transmission mais les produits d’intermodulation ne peuvent
être filtrés facilement. Pour un signal modulé, la non linéarité produit une remonté
spectrale, une rotation et compression de la constellation, puisque les amplitudes les
plus fortes sont diminuées par l’effet de saturation progressif. Pour caractériser quan-
titativement ces non-linéarités, les points à 1dB et 3dB de compression, l’IP3 l’ACPR
et l’EVM sont rappelés.

Pour étudier et analyser finement les amplificateurs de puissance, il faut définir
des modèles comportementaux. Le modèle de Saleh, le modèle de Rapp, le modèle
polynomial, le modèle de Volterra, le modèle polynomial généralisé à mémoire, le
modèle polynomial à mémoire, le modèle d’Hammerstein et de Wiener sont tous des
modèles classiquement exploités. Ils sont rappelés et détaillés.

Pour lutter contre les distorsions introduites par les effets non linéaires, différentes
techniques sont développées. On retrouve les techniques dites d’amélioration du rende-
ment et celles qui tendent à linéariser le PA pour obtenir une caractéristiques AM/AM
parfaitement linéaire jusqu’à la saturation. Elles sont rappelées avec leurs avantages et
inconvénients (Feedback, Feedforward, LINC, EER, Pré-distorsion).

Le chapitre 3 est consacré à la pré-distorsion numérique en bande de base (DPD).
Dans un premier temps, les avantages et inconvénients d’une pré-distorsion sur les
signaux RF, IF ou bande de base sont synthétisés. De part l’évolution des technologies
numériques, le traitement numérique des signaux en bande de base est parfaitement
adapté à la pré-distorsion. La modélisation du PA en bande de base, le traitement du
signal pour la pré-distorsion sont deux étapes fondamentales du système. Idéalement,
la caractéristique entrée/sortie de l’ensemble (amplificateur et predisorteur) obtenue
doit être parfaitement linéaire jusqu’au point de saturation. Au delà, il n’y aura pas
d’amélioration possible, l’amplificateur saturera.

Trois méthodes classiques de linéarisation sont détaillées. La méthode exploitant
une table indexée par l’amplitude du signal entrant traite le signal en coordonnées po-
laires, cartésiennes ou exploite directement le gain complexe. Le principe est explicité
par la formulation suivante

x(n) = u(n)g(ru(n)) (1)
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dans laquelle u(n) représente le signal d’entrée, ru(n) l’amplitude du signal d’entrée,
x(n) le signal pré-distordu et g(·) le gain indexé par l’amplitude du signal d’entrée.
La taille de la table et le choix de l’indexation influencent les performances du pré-
distorteur (linéarisation et temps de calcum). Les entrées de la table peuvent être
équidistantes par rapport à l’amplitude du signal, à la puissance du signal ou bien
au logarithme de la puissance. Il existe aussi des fonctions de compression utilisant
la densité de probabilité du signal d’entrée qui optimise les performances. Ces méth-
odes ne peuvent pas prendre en compte l’effet mémoire non-linéaire. Une deuxième
méthode exploitant les réseaux de neurones est également présentée. Le réseau de neu-
rone est connu pour sa capacité à approximer une fonction non-linéaire avec un niveau
d’erreur souhaité. Plusieurs structures de réseau de neurones sont communément dé-
ployées : MultiLayer Perceptron (MLP), le Radial Basis Function artificial Neural Net-
work (RBFNN) et le Recurrent artificial Neural Network (RNN). La structure RNN
convient bien a priori pour les systèmes non linéaires à effet mémoire mais l’étape
d’apprentissage est complexe. La structure classique type RBFNN lui est préférée en
ajoutant comme entrée les échantillons complexes à l’instant t et ceux des instants
précédents pour prendre en compte cet effet mémoire. L’étape d’apprentissage de-
meure un problème en termes de temps de calcul. La pré-distorsion peut aussi être
réalisée à l’aide d’un modèle analytique en lieu et place du pré-distorteur. Il existe
des modèles sans mémoire comme le modèle de Saleh, le modèle de Rapp, le modèle
polynomial mais également des modèles plus complexes prenant en compte ces effets
mémoires : modèle d’Hammerstein, de Wiener, modèle polynomial à mémoire.

Il existe deux architectures exploitant la pré-distorsion. L’architecture dite di-
recte dans laquelle le modèle défini représente le comportement de l’amplificateur et
l’architecture dite indirecte dans laquelle le modèle identifié représente la caractéris-
tique inverse du PA. Dans ce dernier cas, il suffit de placer le modèle en amont du
PA pour réaliser la pré-distorsion tandis que dans le premier cas, une méthode doit être
mise en œuvre pour inverser le modèle et générer le signal pré-distordu. Pour identifier
efficacement le modèle, une écriture linéaire dans les paramètres est souhaitable, c’est
le cas d’un certain nombre de modèles comme celui d’Hammerstein, du modèle poly-
nomial à mémoire. L’exemple du modèle MP illustre l’écriture classique permettant
l’indentification de ses paramètres en utilisant par exemple l’algorithme LS.

Les algorithmes d’identification LMS (Least Mean Squares) et RLS (Recursive
Least Squares) sont également présentés. L’algorithme LMS consiste à minimiser
l’erreur quadratique moyenne entre le signal de sortie du modèle et le signal de sortie
mesuré. Le modèle défini par ses paramètres w(n) liant la sortie et l’entrée du PA peut
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s’écrire :
y(n) = xT (n)w(n) (2)

dans laquelle x(n) représente l’entrée et w(n) les paramètres du modèle. Les paramètres
w(n) sont remis à jours en utilisant l’algorithme du gradient

w(n+ 1) = w(n) + µe(n)x(n) (3)

µ contrôle la convergence et la vitesse de convergence de l’algorithme qui est détaillé
dans le cas du modèle MP. L’algorithme RLS basé sur la minimisation d’une fonction
de coût (erreur) introduisant un facteur d’oubli est précisé dans le cas du modèle MP.

Il est important de pouvoir comparer les deux architectures ILA et DLA. Première-
ment, leur stabilité est étudiée lors de la phase d’identification utilisant l’algorithme
LS en analysant le conditionnement de la matrice qui doit être inversée. Ce condition-
nement est défini par l’écart entre la plus petite et la plus grande valeur propre de la
matrice à inverser. Dans l’architecture ILA, la matrice à inverser est constituée par les
échantillons de sortie de l’amplificateur, le modèle cherchant à inverser sa caractéris-
tique, l’entrée du modèle devient la sortie du PA. Dans l’architecture DLA, la matrice
à inverser est constituée par les échantillons du signal d’entrée du PA (modèle directe).
Une comparaison utilisant un modèle de Wiener simulant le PA attaqué par un signal
16QAM avec un débit symbole de 3.84MHz est réalisée. Le nombre caractéristique du
conditionnement de la matrice est tracé en fonction de la puissance moyenne du signal
d’entrée. Si le signal est entaché d’erreur, le conditionnement devient moins bon. C’est
le cas pour la méthode ILA dont les mesures peuvent être bruitées. Ce nombre est aussi
tracé en augmentant les ordres du modèles MP. Si l’ordre est trop important, la matrice
devient mal conditionnée et l’identification devient très sensible aux imperfections des
mesures. Un exemple de simulation est donné en simulant l’acquisition du signal par
un convertisseur analogique-numérique à 8 bits et en ajoutant un bruit ayant un rapport
signal sur bruit de 35dB. Les ACPR et EVM sont tracés. Il en ressort que l’architecture
DLA est plus robuste aux imperfections du système par rapport l’architecture ILA.
C’est la raison pour laquelle, elle est adoptée dans ce travail de thèse.

Dans le chapitre 4, les différentes méthodes proposées sont décrites et simulées
en expliquant les degrés d’optimisation apportés en vue d’une implémentation temps
réel. La technique s’appuie sur l’architecture DLA et optimise la méthode originale
consistant à déterminer le signal pré-distordu à partir d’une recherche de racine dans
un polynôme. Cette méthode donne d’excellents résultats mais nécessite un temps de
calcul trop important, qui empêche son implémentation en temps réel. Pour résoudre
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ce problème, l’utilisation d’une LUT pour remplacer ce processus de recherche de
racine est tout d’abord proposée. Pour s’affranchir du problème lié à la taille de la
LUT, les interpolations linéaire et quadratique sont exploitées. Enfin la pré-distorsion
par un réseau de neurones est réalisée.

Le modèle d’amplificateur choisi pour simuler le PA est un modèle de Wiener avec
un filtre numérique possédant trois retards. Les caractéristiques AM/AM et AM/PM
montrent bien les effets non-linéaires avec mémoire de l’amplificateur de puissance.
Après avoir défini le modèle MP pour modéliser le PA considérant que ce dernier
offre un bon compromis entre la complexité du modèle et sa capacité à suivre les
effet non linéaire avec mémoire du PA, le choix de l’ordre de la non-linéarité et de la
profondeur de la mémoire est étudié en observant le NMSE pour diverses valeurs. Une
non linéarité de 9 et une profondeur mémoire de 3 suffisent pour obtenir un NMSE
minimal. Les signaux I/Q et les caractéristiques AM/AM et AM/PM sont tracés et
comparés entre le modèle de PA simulé et le modèle MP identifié par un algorithme
LS. La similarité des courbes montre bien l’excellente capacité du modèle MP à suivre
le comportement du PA.

Après avoir rappelé le principe de la méthode de pré-distorsion [1] utilisant une
architecture DLA associée à une recherche de racine polynomiale appelée MP/root-
finding, la méthode utilisant une LUT [2] est complétée et optimisée en proposant
une tabulation du module et de la phase du signal (ce qui n’est pas traité dans [2]).
L’algorithme appelé MP/LUT réalisant la pré-distorsion est présenté. Le phénomène
de pallier introduit naturellement par une table, génère une remontée du plancher du
spectre du signal. Augmenter la taille de la LUT pour le diminuer accroît l’espace mé-
moire nécessaire. Une interpolation linéaire, algorithme appelé MP/LILUT, associée à
cette LUT permet de garder une faible taille au prix d’un faible calcul supplémentaire
sur la pré-distorsion [3]. Une interpolation quadratique, algorithme appelé MP/QILUT
améliore encore les performances [4] au prix d’une complexité supérieure. Les trois
méthodes sont comparées dans un premier temps en mesurant le NMSE du signal
pré-distordu obtenu avec la méthode proposée et l’algorithme calculant la racine d’un
polynôme. Pour le même NMSE, une taille de 2000 est nécessaire pour l’algorithme
MP/LUT, alors qu’une taille de 20 pour MP/LILUT et 10 pour le MP/QILUT est suff-
isante. De même, le NMSE entre la sortie du PA linéarisé avec la méthode MP/root-
finding et les trois autres méthodes proposées est tracé. On retrouve sensiblement les
mêmes résultats. Les caractéristiques AM/AM et AM/PM sont alors tracées en su-
perposition de celles obtenues sans linéarisation. On observe une caractéristique bien
linéarisée et une annulation des effets mémoire. Les ACPR sont aussi comparés pour
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une puissance moyenne d’entrée de -4dBm, permettant une répartition des symboles
dans les zones linéaires et non linéaires. En considérant la même taille de table pour
chaque méthode, on peut conclure que la méthode de l’interpolation linéaire est un bon
compromis, qu’elle améliore considérablement la méthode MP/LUT et que l’effet ap-
porté par la méthode QILUT n’est pas considérable compte tenu de son coût de calcul
supérieur. Les mêmes résultats sur l’EVM sont observés. Pour compléter l’étude, le
temps de calcul du signal pré-distordu par les différentes méthodes fonction de la taille
de la table est représenté sur une même courbe.

Une quatrième méthode exploitant le réseau de neurone (FFNN) est présentée. La
technique propose de réaliser la séquence d’apprentissage du réseau de neurones pour
modéliser le pré-distorteur avec le pré-distorteur MP/root-finding déjà réalisé. On dis-
pose ainsi des entrées sorties d’un pré-distorteur. Pour obtenir l’effet mémoire es-
compté, les échantillons complexes avec une certaine profondeur mémoire sont placés
à son entrée et le signal pré-distordu est placé à sa sortie. Pour différentes valeurs de
profondeur mémoire, pour différentes structures du réseau de neurones, les spectres,
les EVM, les ACPR sont comparés avec la méthode MP/root-finding. Il est évident que
le FFNN parvient parfaitement à linéariser l’amplificateur de puissance. Le temps de
calcul du signal pré-distordu est faible. La contrainte majeure de cette méthode réside
dans sa phase d’apprentissage qui est relativement longue.

Dans le chapitre 5, l’ensemble des méthodes présentées dans le chapitre précédent
sont testées expérimentalement.

Le système expérimental est constitué d’un PC, d’un générateur de signaux vec-
toriels (VSG, R&S SMU 200A), d’un oscilloscope numérique (DO, Lecroy, 4 voies,
Wave master 8600, bande 6GHz, 20 GS/sec) et d’un analyseur de spectre (SA, Agilent
E4440A). Le PC réalise les algorithmes pour calculer le signal pré-distordu et plus
globalement pilote les différents appareils sous le logiciel Matlab (Instrument Control
Toolbox). Après avoir généré les signaux bande de base, le PC démodule les signaux
acquis par l’analyseur de spectre, calcule le signal pré-distordu, le renvoie au généra-
teur pour tester les performances des méthodes. L’ensemble de ces fonctionnalités est
géré par une interface graphique programmé sous Matlab.

L’amplificateur utilisé est un ZFL2500 de bande 500-2500 MHz avec un gain
d’environ 31 dB. La puissance moyenne de sortie au point de compression à 1 dB
est de 17.5dBm et la fréquence porteuse choisie est de 1.8GHz. Le signal initial émis
modulé est un signal 16QAM de largeur de bande 3.84MHz.

Pour prendre en compte l’effet de la conversion analogique numérique sur le signal,
un premier test de simulation est réalisé en quantifiant les signaux d’entrée et de sortie



12

en considérant un nombre de bits allant de 3 à 16. Les résultats sur l’ACPR montrent
qu’un convertisseur à 10 bits suffirait. Lors de la pré-distorsion, la largeur de bande du
signal pré-distordu augmente. Aussi, le générateur de fonction doit pouvoir supporter
cet accroissement de bande. Pour évaluer ce phénomène, lors d’une simulation, un
filtre pas bas est placé après le signal pré-distordu et la performance de la linéarisation
en ACPR est calculée pour différente fréquence de coupure émulant ainsi la limitation
de bande du générateur de fonction. On s’aperçoit qu’une bande cinq fois supérieure à
celle du signal original est nécessaire pour obtenir une bonne performance. Enfin, une
comparaison des méthodes est effectuée en analysant les spectres, l’ACPR et l’EVM
des signaux linéarisés. Le temps de calcul des différents pré-distorteurs confirme les
résultats de simulation. Il est à noter que seul est pris en compte le temps de calcul de
la pré-distorsion et ni le temps de création des LUT ni celui de la phase d’apprentissage
du réseau de neurones n’est considéré.

Le dernier chapitre synthétise les conclusions et perspectives. Après un rappel sur
les communications numériques mobiles, le problème spécifique de la non-linéarité
sur le PA, les caractéristiques principales du PA ainsi que les différentes méthodes
destinées à linéariser le PA sont énoncées. La pré-distorsion numérique en bande de
base est en particulier étudiée d’un point de vue bibliographique. Quatre méthodes
originales de pré-distorsion basées sur l’architecture DLA sont proposées. Elles sont
explicitées analytiquement. Des tests en simulation confortent les résultats escomptés.
Enfin, une validation expérimentale confirme le bien fondé des méthodes développées.

Trois perspectives à ce travail sont énumérées : le modèle GMP un peu plus com-
plet que le modèle MP doit pouvoir être testé sans que cela ne change les principes des
méthodes proposées, une étude plus approfondie sur la constitution des LUT en termes
d’espacement, et enfin l’utilisation conjointe des techniques de réduction du PAPR et
de la pré-distorsion numérique en bande de base.
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1
Introduction

1.1 Introduction

In modern wireless telecommunications systems, many different types of data are
transmitted such as speech, email, picture, video, web page. As the demand of peo-
ple is increasing for wireless applications, more and more data need to be transmitted
through wireless network. However, the spectrum resources are limited. In order
to improve the spectral efficiency, advanced wireless communication techniques such
as Wide Code Division Multiple Access (WCDMA), Orthogonal Frequency Division
Multiplexing (OFDM) and Long Term Evolution (LTE) standard have been developed.
Generally, the involved signals are characterized by wide bandwidth and non-constant
envelopes leading to a high Peak to Average Power Ratio (PAPR). The signals charac-
terized by high PAPR are very sensitive to the nonlinear characteristic of transmitter.

Power Amplifier (PA) is a crucial component in transmitter. Its inherent nonlin-
earity directly impacts the linearity of the whole transmitter. In most cases, the power
backoff can make PA operate in linear mode, but it results in a significantly low power
efficiency. To have a high power efficiency, PA usually works close to its saturation re-
gion, where the nonlinear distortion is severe. The amplitudes of signals characterized
by a high PAPR may exceed the saturation level of PA. It results in nonlinear dis-
tortions, such as the amplitude and phase, the adjacent channel interference and thus
degradation of bit error rates. Additionally, as the bandwidth of signal continues to
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increase, the memory effect is obvious and can no longer be ignored. The frequency-
dependent distortion caused by the memory effect also needs to be taken into account.
These distortions and interferences lead to seriously degradation of the performance of
the transmission system. To correctly transmit these signals and to have a high power
efficiency, one solution is to compensate the nonlinearity of PA.

The nonlinearity of PA mainly contains two aspects: static distortions and dy-
namic distortions. Static distortions exist in the PA inherently. It can be observed
on Amplitude-to-Amplitude (AM/AM) and Amplitude-to-Phase (AM/PM) character-
istics of PA. It will result in the spectral regrowth in frequency domain, the rotation
and the compression of constellation in time domain. Dynamic distortions are caused
by the electrical and electrothermal effects, also called the memory effects. It means
that the response of PA depends not only on the current input sample, but also on the
previous input samples. The memory effects will result in the spectrum asymmetry in
frequency domain, and the dispersion of constellation in time domain. Generally, in
the narrow band system, the memory effects can be neglected. To evaluate the nonlin-
earity of PA, there are several criteria such as Adjacent Channel Power Ratio (ACPR),
and Error Vector Magnitude (EVM).

To make a good trade-off between the power efficiency and linearity, there are
two research directions. The first one is to improve the power efficiency by advanced
PA techniques, such as Doherty amplifiers [5] and envelope-tracking techniques [6].
The second one is to extend the linear range of PA by some linearization techniques.
Many existing techniques are reported for the linearization of PA [7], such as Power
backoff, Feedback, Feedforward, LInear amplification with Nonlinear Components
(LINC), Envelope Elimination and Restoration (EER), and Predistortion.

Among these linearization techniques, predistortion is the most efficient and promis-
ing one. Depending on signal types, predistortion methods can be classified into digital
predistortion and analog predistortion [8, 9]. According to the position of the predis-
torter in whole transmitter, predistortion methods can be classified into Radio Fre-
quency (RF) predistortion, Intermediate Frequency (IF) predistortion and BaseBand
(BB) predistortion. In this thesis, we mainly focus on the baseband digital predistor-
tion. According to the implementation way, the baseband digital predistortion meth-
ods can be classified into three groups: LookUp Table (LUT) based methods [10, 11],
model (or polynomial) based methods [12, 13] and neural network based methods
[14, 15]. They have their own advantages and disadvantages. LUT based predis-
tortion has low complexity, and is easy to implement in hardware. But it needs to
overcome problems caused by the quantification error. Model based predistortion can
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obtain more accuracy than LUT based predistortion, but it requires a large number of
mathematical operations. Neural network based predistortion has been developed in
recent years. Theoretically, artificial neural network can learn and imitate the behav-
ior of any nonlinear system. Therefore, the neural network can be used to imitate the
nonlinear behavior of predistorter. However, the implementation of neural network
internal structure in hardware is difficult and the training process is complicated and
time-consuming.

Digital PreDistortion (DPD) is considered as a key enabling technique for fu-
ture software-defined and cognitive radio transmitters due to its simplicity and re-
configurability. In DPD, a block called predistorter is inserted at front of the PA so
that the whole system has a linear behavior. The predistorter can be seen as the inverse
model of PA. Generally, two steps are important for realizing DPD. One is to model
the PA. The other is the identification algorithm of the predistorter.

The PA models can be classified into memoryless models and models with mem-
ory. In modern wireless communication systems, due to the increasing bandwidth of
signal, PAs exhibit strong memory effects. The PA models with memory are more
focused on by researchers. The well-known Volterra series model [16] is usually used
to model the PA with memory effects. The number of parameters in the conventional
Volterra series model increases drastically with the nonlinearity order and the memory
depth. To alleviate the complexity burden, some simplified versions of Volterra series
model have been proposed, such as the generalized memory polynomial model [13],
Hammerstein model [17], Wiener model [18], memory polynomial model [12] and
other variants[19]. Among all models of this type, the memory polynomial is mostly
used because it has good modeling performance and low complexity.

There are two different approaches to determine the predistorter: Indirect Learning
Architecture (ILA) and Direct Learning Architecture (DLA) [20]. In ILA, a post-
distorter is assumed. The input (PA output) and output (PA input) of model which
constitute the post-distorter are known. The post-distorter can be identified by using
either Least Squares (LS) algorithm, Least Mean Squares (LMS) algorithm or Recur-
sive Least Squares (RLS) algorithm [21]. Then the post-distorter is copied as the pre-
distorter. In DLA, a PA model is first chosen and then the identification is performed
to fit with PA behavior. The predistorter is obtained based on a reference error between
the output of model and the output of PA. Some iterative identification algorithms have
been reported, such as the Nonlinear Filtered-x LMS (NFLMS) algorithm [22] and the
Nonlinear Filtered-x RLS (NFRLS) algorithm [23].

DPD is one of the most fundamental building blocks in modern wireless commu-
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nication systems. It is usually combined with Crest Factor Reduction (CFR) technique
in practical applications [24]. CFR technique is also called PAPR reduction technique.
The cascade of CFR and DPD allows to increase significantly the power efficiency
of PA. For instance, a typical Class AB LDMOS PA with WCDMA waveforms may
have approximately 8-15% efficiency. A DPD LogiCORE Intellectual Property (IP)
has been proposed by Xilinx [25]. Its tests have be shown that the PA efficiency can
grow to as much as 30-40% with CFR and DPD turned on.

In this thesis, we study DPD techniques for the linearization of PAs with memory
effects. The main contributions of this thesis are summarized as follows.

1. The two different DPD learning architectures (ILA and DLA) are compared.
Although several authors already reported the comparison of ILA and DLA [20,
26], to the best of our knowledge the comparison related to the condition number
of matrix has not been investigated. In this thesis, we analyze the difference of
ILA and DLA in terms of the condition number of the matrix to be inverted
in LS identification algorithm, the modeling performance and the linearization
performance of DPD.

2. A DPD method combining LUT and MP is proposed based on DLA. In original
DPD method based on MP, the amplitude and phase of predistorted signal are
both obtained by complicated mathematical operations. It is time-consuming. In
this thesis, the processes of calculating the amplitude and phase of predistorted
signal are both simplified by using LUT. The calculating time of DPD step is
significantly decreased.

3. In the proposed DPD method mentioned above, although the calculating time
of predistorted signal is reduced, it requires a sufficiently large table size to ob-
tain a good linearization performance. The linear-interpolation and quadratic-
interpolation techniques are introduced in LUT. They allows a trade-off between
the time, table size and linearization performance.

4. We also implement DPD by using neural network. A DPD method combining a
feed-forward neural network and MP is proposed. Firstly, a set of predistorted
signals are obtained by using MP DPD method based on DLA. Secondly, such
predistorted signals are used to train the neural network. Finally, the trained
neural network is adopted as the predistorter. The proposed DPD method based
on neural network has a good linearization performance. The drawback is that
the training process is time-consuming.
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1.2 Thesis organization

In chapter 2, the background of our study is presented briefly. We begin by the evo-
lution of wireless communication systems. Then the transceiver, transmitter, power
amplifier are introduced. After that, power amplifier nonlinearity, power amplifier
behavior modeling and some criteria for evaluating the nonlinearity are described. Fi-
nally, several classical linearization techniques are presented.

Chapter 3 provides an overview of the baseband digital predistortion. It includes
the principle of digital predistortion, the classification, the implementation method,
the learning architecture and the identification algorithm. In addition, it emphasizes
the comparison of indirect learning architecture and direct learning architecture.

Chapter 4 presents the proposed DPD methods in detail. It mainly includes two
kinds of solutions. One is to combine memory polynomial and LUT. The other is to
combine memory polynomial and neural network. Simulation results are given to show
the performance of the proposed methods.

Chapter 5 discusses the experimental setup and results. Some parameters which
influence the linearization performance in practical applications are studied, such as
the number of bits of ADC and bandwidth of instruments.

Chapter 6 concludes the dissertation and provides some future possible research
directions.





2
Power amplifier and linearization
techniques

This chapter serves an introduction to the basic knowledge of the power ampli-
fier and its linearization. Section 2.1 gives an evolution of wireless telecommunica-
tion systems where some advanced techniques, such as LTE, are introduced briefly.
The transceiver where PA is located is discussed in section 2.2, especially, the trans-
mitter is described. Power amplifier, key component in this thesis, is introduced in
section 2.3. PA nonlinear characteristics, some criteria for measuring the nonlinearity
and typical PA behavior models are presented. Finally, a survey of different lineariza-
tion techniques is given in section 2.4. The techniques, such as Backoff, Feedforward,
Feed-back, LINC, EER and Predistortion are presented briefly.

2.1 Wireless telecommunications systems

In modern wireless telecommunications systems, lots of data must be transmitted
such as email, speech, picture, video, web page. Wireless networks connect people to
each other and give them an important source of knowledge. Wireless communication
technology has been continuously improved and evolved from 1G (First Generation)
to 4G (Fourth Generation). Nowadays, 4G technology has been commercialized. 5G
(Fifth Generation) technology will soon be realized and will be available to general
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public.

MTS (Mobile Telephone Service) published in 1946 by Bell Laboratories is the first
wireless mobile system which is characterized by half duplex and requires operator to
establish call [27]. In 1969, IMTS (Improved Mobile Telephone Service) appeared
with duplex and direct dial using DTMF (Dual Tone Multi-Frequency) keypad. MTS
and IMTS systems was called 0G (Zero Generation) wireless communication system.

In the 1980s, it begins the era of 1G analog cellular network. Several typical 1G
systems were made such as NMT (Nordic Mobile Telephone), AMPS (Advanced Mo-
bile Phone System) and TACS (Total Access Communication Systems) [28]. These
1G analog radio transmission systems all based on FDMA (Frequency Division Mul-
tiple Access) techniques provided only voice services. The biggest drawback is the
limitation of channel capacity restricting the data rate. Moreover, it is difficult to im-
plement a communication between countries because different countries use different
communication protocols [28].

In the late 1980s and the early 1990s, some techniques based on TDMA (Time Di-
vision Multiple Access) and CDMA (Code Division Multiple Access) standards were
proposed, which were called 2G (Second Generation) wireless communication sys-
tems, such as GSM (Global System of Mobile communication), TDMA IS-54 (Interim
Standard-54), IS-95, and so on. 2G system is digital cellular network, which transmits
digital data stream. It provides voice and text messaging services. Compared with
1G system, 2G system can accommodate more users in the radio spectrum through
either time or code multiplexing [29] and also enable to implement a communication
between countries.

Due to the increasing requirement of data types and of transmission speed, the
wireless communication systems are constantly evolving. GPRS (General Packet Ra-
dio Service) system has been proposed, whose data rate can be up to 171.2 kb/s [27].
Afterwards, with EDGE system, the data rate reaches 384 kb/s. Now 3G (Third Gener-
ation) system has been widely used in many wireless application products. 3G systems
include WCDMA, TD-SCDMA (Time Division-Synchronous Code Division Multiple
Access), and CDMA2000. In 3G system, the multimedia data, such as picture, video,
web data, can be transmitted and the data rate can be up to 2 Mb/s [30].

After 3G technique, HSDPA (High Speed Downlink Packet Access) technique has
been proposed. It adopts QPSK (Quadrature Phase Shift Keying) and QAM (Quadra-
ture Amplitude Modulation) modulations, whose downlink speed can be up to 14.4
Mb/s [27]. But it does not yet belong to 4G system. In 2008, ITU-R (International
Telecommunication Union-Radiocommunication) specifies a set of requirements for
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4G standard. In 4G system, the transmission speed can be up to 1 Gb/s under the static
environment and it can still achieve 100 Mb/s under the fast-moving environment [30].
4G techniques such as LTE, LTE Advanced and WiMAX (Worldwide Interoperability
for Microwave Access) techniques have been proposed successively, which all adopt
OFDM modulation thanks to its high spectral efficiency.

With the diversification of mobile applications, 4G system is not powerful enough
to meet people’s requirements in wireless communication. Therefore, the emergence
of advanced communication techniques comes up with 5G system. Currently, 5G sys-
tem is not a term present in official document made public by telecommunication com-
panies or standardization bodies. But in the near future, 5G system will be realized,
whose transmission speed is higher than 1 Gb/s [31]. 5G system will bring almost per-
fect real world wireless called WWWW (World Wild Wireless Web). Thanks to these
wireless communication techniques, the people can exchange all types of information
via immediate way. Table 2.1 summarizes the evolution of the wireless communication
techniques [27, 28, 29, 30, 31, 32].

2.2 Transceiver

In wireless communication systems, information is transmitted and received by
radio waves. The block realizing the functions of the transmitting and receiving is
called as transceiver (TRx) [33]. The transceiver is mainly composed of a transmitter
(Tx) and a receiver (Rx). The transmitter is especially significant, because sending
data without error is the premise to receive the correct data. The block diagram of
the transceiver is shown in Fig. 2.1. The functions of modulation and up-conversion
are realized in the transmitter. Correspondingly, the functions of demodulation and
down-conversion are realized in the receiver.

Several transceiver architectures widely used are: full-duplex, half-duplex and sim-
plex modes [34]. In full-duplex mode, the transmitter and receiver operate simulta-
neously in different time slots. It allows communication in both directions simultane-
ously. In half-duplex mode, the transmitter and receiver do not operate simultaneously.
The half-duplex mode allows communication in both directions but only one direction
at a time. The simplex mode only transmits information in one direction. Information
flows only from the transmitter site to the receiver site. This operating model is usually
used in radio broadcasting system.

In the transmitter, the baseband signals are firstly handled by DSP (Digital Signal
Processing) in most cases, to perform the source and channel coding, filtering, symbol
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Generation Technique
standard

Year Description

0G MTS 1946 First mobile telephone service, half duplex
IMTS 1969 full duplex, up to 13 channels, 60-100 km ra-

dius, direct dial using DTMF (dual tone multi-
frequency) keypad

1G NMT 1981 Nordic mobile telephone, 12.5 kHz channel,
450 MHz, 900 MHz, FM modulation

AMPS 1983 30 kHz channel, 825-895MHz, FM modulation
TACS 1985 25 kHz channel, widely used up to 1990s, FM

modulation
DataTac 1990 Point-to-point wireless data communications

standard, 25 kHz channels, max bandwidth 19.2
kb/s

2G GSM 1991 TDMA, constant envelope, 200 kHz channel,
GMSK modulation

TDMA IS-
54

1991 Digital AMPS, 30 kHz channel, pi/4DQPSK
modulation

PDC 1992 25 kHz channel
IS-95 1995 spread spectrum, CDMA, 1.25 MHz channel,

QPSK modulation
2.5G GPRS 2000 200 kHz channel, max bandwidth 171.2 kb/s

2.75G CDMA2000 2000 CDMA, double data rate, 1.25 MHz channel
EDGE 2003 8PSK, TDMA, 200 kHz channel, max band-

width 384 kb/s
3G WCDMA 2004 CDMA, 3.84 MHz channel

TD-
SCDMA

2006 Uses the same band for transmit and receive,
base stations and mobiles use different time
slots to communicate, 1.6 MHz channel

3.5G HSDPA 2006 download speeds up to 14.4 Mb/s
4G LTE 2009 MIMO, OFDM, 20 MHz bandwidth, download

speeds up to 100 Mb/s
WiMAX 2010 MIMO, OFDM, download speeds up to 128

Mb/s
LTE Ad-
vanced

2011 the support of 20 MHz bandwidths, higher cell-
average and cell-edge spectral efficiencies

5G Not pub-
lished

- WWWW, speed is higher than 1 Gb/s

Table 2.1: Evolution of wireless communication techniques

mapping, shaping and interleaving. The processed signal is then modulated by mod-
ulation techniques, such as PSK or QAM. Then the modulated signal is up-converted



2.2. TRANSCEIVER 25

Figure 2.1: Transceiver

with a carrier frequency. At this time, the transmitted signal is still with low power.
Finally, the signal is amplified by the PA and transmitted by the antenna. During this
process, the nonlinearity of transmission system is unavoidably introduced into the sig-
nals. The important contribution of the nonlinearity is mostly introduced by the power
amplifier.

In the following, the architectures of the transmitters are briefly introduced.
The architecture of the two-step conversion transmitter is shown in Fig 2.2. The

signals are modulated at a fixed frequency by the IQ (In-phase and Quadrature) modu-
lator. The BPF1 (Band-Pass Filter) is used to reject all undesired signals produced by
the IQ modulator. The mixer shifts the spectra of signal to the final transmit frequency
fT . The BPF2 is used to reject all unwanted signals produced by the upmixing. This
architecture has high-level performance and decreases the constraints of filters. But it
is less suitable for integration because the complexity and physical size are increased
[34].

Figure 2.2: Two-step conversion transmitter

The architecture of the direct launch transmitter is shown in Fig 2.3. The baseband



26 CHAPTER 2. POWER AMPLIFIER AND LINEARIZATION TECHNIQUES

IQ modulated signals are upconverted directly to the final transmitter frequency fT

by the LO (Local Oscillator). Compared with the two-step conversion transmitter, the
direct launch transmitter is greatly simplified. It is better for the SoC (System On Chip)
integration. The drawback is the PA and LO operate at the same frequency. This fact
leads to a major source of interference and degrades the total transmitter performance
[34]. The direct launch transmitter is suitable for mid-level performance, low-cost and
low-power broadband applications, such as Bluetooth and WiFi.

Figure 2.3: Direct launch transmitter

The architecture of FM transmitter is shown in Fig 2.4. The RF signals are directly
generated by modulating the VCO (Voltage-Controlled Oscillator) frequency with the
baseband signal. The main feature of FM transmitter is constant-envelope digital mod-
ulations which can be efficiently implemented. It is widely used in military and public
safety applications.

Figure 2.4: FM transmitter

In the receiver, the signal processing is the inverse operation with respect to the
transmitter side. The transmitted signal is firstly received by the antenna. Then the
received signal passes a LNA (Low-Noise Amplifier). Finally, the signal is down-
converted and demodulated to the original signal. The common receiver architectures
include superheterodyne receiver, direct conversion receiver and low IF receiver. A
thorough discussion about the structure of receiver is beyond the scope of this thesis.
This thesis focuses on the power amplifier linearization at the transmitter side.
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2.3 Power amplifier overview

In RF transmitter, PA is a key component, which amplifies low power signal for
long distance transmission. In this section, the power amplifier is introduced.

2.3.1 Power amplifier characteristics

There are two basic types of PAs: TWTA (Traveling-Wave Tube Amplifier) and
SSPA (Solid-State Power Amplifier) [35]. TWTA is traditionally used at higher mi-
crowave frequencies, while SSPA is used at lower frequency bands. The former pro-
vides larger output power than the latter. But the life of TWTA is limited because of
the heat generated by high voltage. SSPA is less weight, more reliable than TWTA.
TWTA can be modeled by Saleh model [36]. SSPA can be modeled by Rapp model
[37].

On the other hand, according to the linearity and efficiency of PA, there are many
different classes of PAs, such as Class A, B, AB, C, D, and so on. Class A, B and
AB PA are linear, but they are not perfectly linear. Commonly, except for class A, B
and AB, other classes of PAs are not commonly used for applications requiring high
linearity [33].

In the following, the parameters which describe the characteristics of PA are listed
and commented, such as PA gain, AM/AM, AM/PM, power efficiency.

PA gain

Gain characteristic of PA denotes the ratio between the output power and input
power. Normally, it is presented in dB unit, defined by

G = 10log
Pout
Pin

(2.1)

where Pout and Pin are the output and input powers of PA, respectively. The gain is
linear when the input power level is low, while it is compressed when the input power
is high.

AM/AM and AM/PM characteristics

The baseband input/output signals of PA are complex (amplitude and phase). Nor-
mally, the amplitude and phase need to be analyzed separately. AM/AM characteristic
denotes the relationship between the amplitude of output signal and the amplitude
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of input signal. AM/AM characteristic is linear when the input power level is much
smaller than the saturation point. As the input power increases, the nonlinearity of
AM/AM characteristic becomes more and more obvious. Until the output power be-
comes saturated. In other words, the gain is compressed along with the increase of
input power. AM/PM characteristic denotes the relationship between the phase shift of
output signal and the amplitude of input signal. In small signal region, AM/PM char-
acteristic is constant. As the input power increases, the shift of phase is more and more
serious. An example of AM/AM and AM/PM of Saleh memoryless model is shown in
Fig 2.5 and Fig 2.6. AM/AM and AM/PM characteristics are an important criteria for
analyzing the linearity of power amplifier.
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Figure 2.5: AM/AM characteristic of a
memoryless PA
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Figure 2.6: AM/PM characteristic of a
memoryless PA

Power efficiency

Power efficiency of PA is most concerned by researchers in modern wireless com-
munication system. It is because that it directly affects the power efficiency of whole
transmitter. Commonly, the power efficiency of PA can be estimated by Power Added
Efficiency (PAE) [38].

PAE, which involves PA input signal power, is expressed as

PAE =
Pout − Pin
PDC

= η

(
1− 1

g

)
(2.2)

where Pin and Pout denote the input and output powers of PA, respectively, PDC
denotes supplied DC (Direct Current) power, and g = Pout

Pin
is linear gain.

The primary aim of PA is to produce an amplification that has a good efficiency and
low distortion. However, in practical design, there is always a trade-off between the
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power efficiency and distortion. It is explained by the fact that there is low efficiency
in linear region of PA, while a high efficiency is obtained in nonlinear region [32].
The relationship between the linearity and the power efficiency is shown in Fig. 2.7.
The solid curve is the AM/AM characteristic, and the dashed one refers to the power
efficiency. In Fig. 2.7, there are three regions: region 1 is the linear region, region
2 is the nonlinear region, and region 3 is the saturation region. In region 1, there is
a good linearity for avoiding the distortion, but the power efficiency is very low. For
improving the power efficiency, PA can operate in region 2, where there is a high power
efficiency. But the nonlinearity is serious. The purpose of power amplifier linearization
is to make the power amplifier operate at nonlinear region, and at the same time keep
high power efficiency.

Figure 2.7: Power efficiency and AM/AM characteristic of PA

2.3.2 Power amplifier nonlinearity

In section 2.3.1, the main characteristics of PA are introduced, such as PA gain,
AM/AM and AM/PM. Obviously, it can be found that the signal can not be amplified
linearly when the input signal power exceeds a certain level. This is only one aspect of
the nonlinearity of PA.

For an ideal linear PA, its input rin(t) and output rout(t) satisfy a linear relationship,
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which can be expressed as
rout(t) = grin(t) (2.3)

where g is the ideal gain, rout(t) and rin(t) are the signal amplitudes of the output
and input of PA, respectively. An ideal linear PA enables that all signals are increased
in magnitude by the same factor; and there is a fixed phase shift between the input
and output. Moreover, it does not exist memory effects, namely, the output of PA
only depends on the instantaneous input sample, not any previous samples. However,
perfectly linear PA dose not exist. We can only compensate the nonlinearity of PA.

The nonlinear behavior of PA includes two major components: the static nonlinear-
ity and the memory effects [39]. The static nonlinearity, also known as the memoryless
nonlinearity, corresponds to the distortion generated by PA when memory effects are
not considered. They result in spectral regrowth in frequency domain as shown in
Fig. 2.8, and rotation and compression of the constellation in time domain as shown
in Fig. 2.9(b). The memory effects are also called the dynamic distortion, which are
caused by electrical and electrothermal effects [40]. The output of PA depends not
only on the current input sample, but also on the previous input samples. The memory
effects result in the spectrum asymmetry, and the dispersion of constellation in time
domain as shown in Fig. 2.9(c). Generally, the contribution of the static nonlinear-
ity to the nonlinear behavior of PA is more stronger than that of the memory effects.
However, both of them are equally important and need to be compensated in order to
improve the linearity of the system.

In the following, the static nonlinearity is analyzed by two specific examples, where
the memory effects are not considered temporarily. The first one is that a single-tone
signal is taken as the input of PA. The single-tone signal is expressed as

Vin(t) = acos(2πft) (2.4)

where a is the amplitude and f the frequency of the input signal.

For a memoryless nonlinear amplifier, the relationship of input and output signals
can be expressed by Taylor polynomial as [33]

Vout(t) = g1Vin(t) + g2V
2
in(t) + g3V

3
in(t) + ...+ gnV

n
in(t) (2.5)

where g1, g2, ..., gn are the coefficients of Taylor polynomial. When (2.4) is substi-
tuted into (2.5), we obtain PA’s output responses, which contain the original signal and
some harmonics. If only the first three terms of Taylor polynomial are considered, and
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Figure 2.8: Spectral regrowth

denotes by θ = 2πft, (2.5) can be rewritten as

Vout(t) =
g2a

2

2
+ {g1a+

3g3a
3

4
}cos(θ) +

g2a
2

2
cos(2θ) +

g3a
3

4
cos(3θ) (2.6)

It can be seen that there are DC term, the fundamental term, the second-order har-
monic term and the third-order harmonic term in the output signal. They are summa-
rized in Table. 2.2. Actually, only the fundamental term is useful, other harmonic terms
are useless. It assumes only the fundamental term {g1a+ 3g3a3

4
}cos(θ) is extracted. It

can be seen that the amplitude of the output at the fundamental term is g1a+ 3g3a3

4
. As

mentioned before, a is the amplitude of the input signal. When a is very small, it can
assume that

3g3a
3

4
≈ 0. (2.7)

Therefore, the gain of the PA is approximated to g1. As the value of a increases, 3g3a3

4

can no longer be ignored. The actual gain becomes

gactual = g1 +
3g3a

2

4g1
. (2.8)

where if 3g3a2

4g1
< 0, the gain decreases as a increases; if 3g3a2

4g1
> 0, the gain increases

as a increases. In most cases, the gain of PA decreases as the input power increases.



32 CHAPTER 2. POWER AMPLIFIER AND LINEARIZATION TECHNIQUES

−0.2 −0.1 0 0.1 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

In−Phase

 

 

Q
ua

dr
at

ur
e

original input

(a) Constellation of input

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Q
ua

dr
at

ur
e

In−Phase

 

 

output without memory effect

(b) Constellation of output without memory effect

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

Q
ua

dr
at

ur
e

In−Phase

 

 

output with memory effect

(c) Constellation of output with memory effect

Figure 2.9: Distortions of constellation of output

This phenomenon is called gain compression.

Except for the fundamental term, the harmonic terms are redundant. They result
in the spectral regrowth in frequency domain. The spectral regrowth can lead to the
interference between main channel and other channels. Theoretically, these useless
terms (second-order, third-order and other harmonic terms) can be filtered out by some
filters.

However, for multi-tone input signal, some intermodulation distortions (IMD) close
to the fundamental signal are generated. It is difficult to filter these IMD products out.
In the second example, it assumes that a two-tone signal is considered as the input. To
assume the input signal as

Vin(t) = acos(2πf1t) + acos(2πf2t) (2.9)

where a is the amplitude of the testing signal, f1 and f2 are the frequency components
of the two-tone signal. It assumes 2πf1t = θ1 and 2πf2t = θ2, and still only the
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DC term g2a2

2

Fundamental term {g1a+ 3g3a3

4
}cos(θ)

Second harmonic g2a2

2
cos(2θ)

Third harmonic g3a3

4
cos(3θ)

Table 2.2: Output response of single-tone signal

first three terms of the Taylor polynomial are considered. The output response can be
written as

Vout(t) = g2a
2 + (g1a+

9g3a
3

4
)cos(θ1) + (g1a+

9g3a
3

4
)cos(θ2) + ...

+
g2a

2

2
cos(2θ1) +

g2a
2

2
cos(2θ2) + g2a

2cos(θ1 + θ2) + g2a
2cos(θ1 − θ2) + ...

+
g3a

3

4
cos(3θ1) +

g3a
3

4
cos(3θ2) +

3g3a
3

4
cos(2θ1 + θ2) + ...

+
3g3a

3

4
cos(2θ2 + θ1) +

3g3a
3

4
cos(2θ1 − θ2) +

3g3a
3

4
cos(2θ2 − θ1)

(2.10)

The response in frequency domain is shown in Fig 2.10. Except for the fundamen-
tal tones f1 and f2, other harmonics and intermodulation products also are found. In
practical applications, the terms cos(2θ1), cos(2θ2), cos(3θ1), cos(3θ2), cos(θ1 + θ2),
cos(θ1−θ2), cos(2θ1+θ2), cos(θ1+2θ2) can be filtered out. But the terms cos(2θ1−θ2)
and cos(2θ2 − θ1) can not be easily filtered out, because these two terms are close to
the fundamental tones. The terms cos(2θ1 − θ2) and cos(2θ2 − θ1) are called IMD3
products. By the same principle, there are other IMD products, such as IMD5, IMD7.
The intermodulation products result in signal distortion and spectral regrowth. These
characteristics constitute the static nonlinearity of PA.

The memory effects are another aspect of the nonlinearity of PA. It describes the
influence of the history of the input signal on its current output value. In time do-
main, the memory effects refer to that the output of PA does not only depend on the
current input sample, but also on the previous input samples. In frequency domain,
AM/AM and AM/PM characteristics of the PA vary with the frequency of the input
signal envelope. This behavior can be explained by the principle of a R-C circuit. The
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Figure 2.10: Distortion products of two-tone signal

memory effects are the result of energy storage in the system. They are a manifestation
of the dynamical behavior of the system. For linear system, it can be described by time
derivative or time-delay expressions. For nonlinear system, such as a PA, the output is
influenced by the previous inputs.

Generally, in narrow band system, the memory effects can be ignored. But in wide
band system, the time span of memory effects in PA can be comparable to the time
variations of the input signal envelope [41] so that the memory effects can no longer
be ignored. In AM/AM and AM/PM curves, the dispersion phenomenon indicates the
presence of memory effect. The AM/AM and AM/PM characteristics of a PA with
memory effects are shown in Fig. 2.11 and Fig. 2.12, respectively. In the constella-
tion of a system with memory effects, there are not only rotation and compression
distortions, but also dispersion distortions. Another characteristic is that it exists the
phenomenon of spectral asymmetry.

The static nonlinearity and memory effects together constitute the nonlinearity
characteristics of PA. In practical applications, they are related to each another. They
jointly affect the characteristics of PA.

In the following, some criteria corresponding to the nonlinearity of PA are intro-
duced, such as 1dB compression point, third-order Intercept Point (IP3), Adjacent
Channel Power Ratio (ACPR), and Error Vector Magnitude (EVM).
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Figure 2.11: AM/AM characteristic of a PA
with memory effects
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Figure 2.12: AM/PM characteristic of a PA
with memory effects

1dB compression point

The gain of PA at 1dB compression point is defined as

G1dB = Gideal − 1dB (2.11)

where Gideal is the ideal gain. At 1dB compression point, the actual gain is 1dB lower
than the ideal gain, as shown in Fig. 2.13. The corresponding input and output powers
are called the input and output powers at 1dB compression point, respectively. The
1dB compression point is a typical parameter for evaluating PA’s nonlinearity. By the
same principle, another point called 3dB compression point can be defined, where the
actual gain is 3dB lower than the ideal gain.

IP3

The third-order Intercept Point (IP3) relates nonlinear products caused by the third-
order nonlinear terms cos(2θ1 − θ2) and cos(2θ2 − θ1). From (2.10), it can be seen
that the amplitudes of the third-order nonlinear terms cos(2θ1 − θ2) and cos(2θ2 − θ1)
are both proportional to a3. When the fundamental increases by 1dB, these third-order
intermodulation products increase by 3dB. IP3 point is defined as the theoretical level
where the intermodulation products have equal amplitude of the fundamental tone. It
is shown in Fig. 2.14.

ACPR

The spectral regrowth is generated by the nonlinearity of PA. ACPR represents
the power ratio between the adjacent channel and the main channel of the signal. It
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Figure 2.13: 1dB compression point

Figure 2.14: IP3

describes the degree of the spectral regrowth into the adjacent channels. ACPR is an
important parameter for wireless radio standards, which is defined as follows
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ACPR = 10log

∫
Badjacent

P (f)df∫
Bmain

P (f)df
(2.12)

where P (f) represents the power spectral density of the output signal, Bmain and
Badjacent refer to the main and adjacent channels, respectively. An example is shown
in Fig. 2.15. The offset is 5 MHz between the adjacent channel and the main channel.

Figure 2.15: Main and adjacent channels

EVM

EVM is a measure of the shift of constellation diagram in time domain. It evaluates
the error between the ideal signal and the practical measured signal in the receiver by
vector format. EVM is defined as

EVM =

√∑N
n=1 |S(n)ideal − S(n)measured|2∑N

n=1 |S(n)ideal|2
(2.13)

where N is the number of constellation points, Sideal and Smeasured are the ideal con-
stellation and the practical measured points, respectively. The difference between them
is the error vector. It is shown in Fig. 2.16.
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Figure 2.16: A constellation diagram for 16QAM signal

2.3.3 Power amplifier behavioral modeling

In order to compensate the nonlinearity of PA, it is necessary to model the behavior
of PA accurately. In the following, some classical PA models are presented. In this
thesis, all the models are considered in discrete-time domain. The PA models can be
classified into memoryless models and memory models. The classical memoryless PA
models include Saleh model, Rapp model and memoryless polynomial model.

Saleh model

Saleh model is usually used for modeling the behavioral of TWTA [36]. It com-
posed of AM/AM and AM/PM functions, as follows

A(|x(n)|) =
αa|x(n)|

1 + βa|x(n)|2
(2.14)

Φ(|x(n)|) =
αϕ|x(n)|2

1 + βϕ|x(n)|2
(2.15)

where |x(n)| is the amplitude of the input signal, A(·) and Φ(·) are the AM/AM and
AM/PM conversion functions, respectively; αa, βa, αϕ and βϕ are the coefficients of
the model.
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Rapp model

Rapp model is usually used for modeling the behavioral of SSPA [37], because the
phase distortion is small for SSPA. The phase distortion can be ignored. Rapp model
is represented by

A(|x(n)|) =
|x(n)|

[1 + (|x(n)|/Vsat)2p]
1
2p

(2.16)

Φ(|x(n)|) ≈ 0 (2.17)

where Vsat is the saturation voltage of PA, and p is called the smoothing factor which
can affect the linear degree of the model. The higher the value of p is, the more linear
the characteristic of the model is. Because the number of this model’s coefficients is
small, the complexity of this model is low.

Polynomial model

The polynomial model is another usual memoryless PA model. It has been used
extensively for memoryless or quasi-memoryless PAs. It can be expressed by

y(n) =
K∑
k=0

akx(n)|x(n)|k (2.18)

where x(n) and y(n) are the input and output signals, respectively, K + 1 is the maxi-
mum order of the polynomial, and ak are the complex-valued coefficients of the model.
Because the impact of the even-order polynomial terms can be ignored in the PA non-
linearity. Generally, only odd-order nonlinear terms are considered [42, 43]. The
odd-order polynomial model is presented by

y(n) =
K∑
k=0

akx(n)|x(n)|2k (2.19)

The memoryless PA model is used in narrow band systems because the memory
effects are not important. In wide band systems, the memoryless model results in poor
performance, thus the nonlinear model with memory is adopted. The general nonlin-
ear model with memory includes Volterra Series (VS), Generalized Memory Polyno-
mial (GMP) model, Dynamic Deviation Reduction (DDR) model [19, 44], Memory
Polynomial (MP) model, Hammerstein model, Wiener model, and other simplified VS
variants.
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Volterra series model

VS model is the most comprehensive model for nonlinear PAs with memory ef-
fects. It can be thought of as a Taylor series with memory [45, 46]. Its mathematical
expression is described as

y(n) = h0 +
P∑

p1=0

h1(p1)x(n− p1)

+
P∑

p1=0

P∑
p2=0

h2(p1, p2)x(n− p1)x(n− p2)

+ ...

+
P∑

p1=0

P∑
p2=0

...
P∑

pQ=0

hq(p1, p2..., pQ)x(n− p1)x(n− p2)...x(n− pQ)

(2.20)

where h1(p1), ... , hq(p1, p2..., pq) represent the Volterra kernels, P is the memory
depth, and Q is the nonlinearity order. Theoretically, it can infinitely approximate the
characteristic of PA. But the number of the model’s coefficients increases drastically
with the nonlinearity order and memory depth. So that the complexity of the system
is increased and the inverse model of PA is hard to calculate. The complexity of VS
model is given [47] by

C(P,Q) =

Q∑
q=1

(P − 1 + q)!

(q − 1)!(P − 1)!
(2.21)

Generalized memory polynomial model

In order to alleviate the complexity burden, some techniques are proposed to sim-
plify VS model. GMP model is a simplified version of VS model. It restricts the
interaction between the various terms of VS model by the leading and lagging envelop
terms. GMP model [13] is described by
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y(n) =

Qa∑
q=0

Pa∑
p=0

apqx(n− p)|x(n− p)|q

+

Qb∑
q=0

Pb∑
p=0

Mb∑
m=1

bpqmx(n− p)|x(n− p−m)|q

+

Qc∑
q=0

Pc∑
p=0

Mc∑
m=1

cpqmx(n− p)|x(n− p+m)|q

(2.22)

where Pa, Pb, and Pc are the memory depths of each of the branches of the model;
Qa, Qb, and Qc are the nonlinearity order of each of the branches of the model; Mb

and Mc are the memory depths of the lagging and leading branches of the model,
respectively; apq, apqm, and cpqm are the coefficient of the time-aligned, lagging and
leading branches of the model, respectively. Compared with VS model, GMP model
requires less complexity.

Memory polynomial model

The memory polynomial model is a further-simplified version of VS model. It is
widely used for the behavioral modeling and digital predistortion of PAs with memory
effects [39]. The well-known MP model is given [12] by

y(n) =
P∑
p=0

Q∑
q=0

apqx(n)|x(n− p)|q (2.23)

where apq represents the model’s coefficients, P and Q + 1 are the memory depth
and the maximum nonlinearity order of the model, respectively. It achieves a good
trade-off between the complexity and modeling accuracy of the system.

Hammerstein model

Hammerstein model is a two-box model. It consists of a memoryless nonlinear
model followed by a Finite Impulse Response (FIR) filter. Its structure is shown in
Fig. 2.17. The memoryless nonlinear part represents the static nonlinearity, and the
FIR filter represents the memory effect. Its mathematical expression is described as
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v(n) =

Q∑
q=0

aqx(n)|x(n)|q (2.24)

y(n) =
P∑
p=0

hpv(n− p) (2.25)

where x(n) represents the input of the memoryless nonlinear part, v(n) represents the
output of the memotyless nonlinear part (or the input of the FIR filter), and y(n) repre-
sents the output of the FIR filter. aq and hp are the coefficients of memoryless nonlinear
part and FIR filter, respectively. Q + 1 and P represent the maximum nonlinear order
and the memory depth of the model, respectively.

Figure 2.17: Hammerstein model

Wiener model

Wiener model has an opposite structure of Hammerstein model. It is composed of a
FIR filter followed by a memoryless nonlinear part. Its structure is shown in Fig. 2.18.
And the mathematical expression is described by

v(n) =
P∑
p=0

hpx(n− p) (2.26)

y(n) =

Q∑
q=0

aqv(n)|v(n)|q (2.27)

The identification process of Wiener model is more complicated than that of Ham-
merstein model. Hammerstein and Wiener model are both the simplified version of
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Figure 2.18: Wiener model

Volterra model. Therefore, they are less complexity than Volterra model. However,
their performance is less than that of the full Volerra model.

Except for these PA models mentioned above, it still exists other models for PA
modeling, such as Dynamic Deviation Reduction (DDR) model [19, 44] and so on.

2.4 Linearization techniques

PAs are inherently nonlinear. People want to realize high linearity while maintain
a high power efficiency. There are two directions to achieve this goal. One is to
improve the power efficiency, such as Doherty PA technique [48] and envelop tracking
approaches [49, 50]. The other is to extend the linear behavior into high efficiency
regions of operation. The latter is known as the linearization technique.

A large number of PA linearization techniques are proposed, including Backoff,
Feedforward, Feedback, LInear amplification with Nonlinear Components (LINC),
Envelope Elimination and Restoration (EER), PreDistortion, and so on. The details
of these techniques are briefly presented in this section.

2.4.1 Backoff

Backoff is a general solution of PA’s linearization, which makes PA work only in
the linear region thanks to a power backoff [51]. In other words, the PA is operated
at the region of low output power. This technique does not need additional auxiliary
circuit and is easy to implement. The drawback is a loss of the power efficiency. The
power efficiency is low when the PA is operated in its linear region as can be seen in
Fig. 2.7. Moreover, the performance of Backoff also depends on the linearity degree



44 CHAPTER 2. POWER AMPLIFIER AND LINEARIZATION TECHNIQUES

of the PA. For some highly nonlinear PA, Backoff is not suitable. Therefore, Backoff
is only treated as an assistant technique rather than the main amplifier linearization
technique.

2.4.2 Feedforward

The principle of Feedforward is shown in Fig. 2.19. Feedforward has two paths:
the main path and the error path [52, 7].

1. The first step is to extract the distortion products. The input signal a is first
separated into two parts by a coupler: signal b and signal c. Signal b is ampli-
fied by the main amplifier and the output signal d of the main power amplifier
is obtained, which includes amplified original signal and unwanted distortion
products. Signal d is duplicated to signal e and signal f by using a second cou-
pler. Then signal f goes into a attenuator and generates signal g. The attenuation
factor of the attenuator is calibrated such as the amplitude of original signal in g
is similar to that in h. h is the delayed version of c. h is subtracted from g, then
signal l only includes the distortion.

2. The second step is to amplify the distortion products. Signal l is amplified by the
error power amplifier and to give signalm. The gain of the error power amplifier
is calibrated such as the distortion products in signal m is equal to those in n,
which is the delayed version of signal e.

3. The last step is to eliminate the distortion products. Because the amplitudes
of distortion products are same in signals n and m, the distortion products are
eliminated by the subtraction. As a result, the output signal y contains only the
amplified original signal.

Feedforward has good linearization performance among power amplifier lineariza-
tion techniques [53, 54]. It can work in both constant and nonconstant envelope sig-
nals. It has high stability and theoretically allows operation over a wide bandwidth.
These advantages make Feedforward still be studied. However, the matching and drift
problems make Feedforward be complicated. The gains of the main power amplifier
and the error power amplifier need to match. The delay elements need to match for
the signal synchronization. Especially, in wide bandwidth, these matchings are very
challenging.
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Figure 2.19: Feedforward linearization technique

2.4.3 Feedback

Feedback is a linearization technique which makes the output of the amplifier be
fed back to the input of the amplifier, and compared with the input signal to reduce
the distortion [33, 55]. The principle is shown in Fig. 2.20. There are two forms of
feedback: positive feedback and negative feedback. Usually, for the amplifier, the
feedback is the negative feedback.

Suppose the gain of the power amplifier is A, the open-loop transfer function is

A =
Vout
Vin

(2.28)

where Vin and Vout are the input and output of the amplifier, respectively. The feedback
signal is defined as

Vf = βVout (2.29)

where β is the feedback factor, which controls the amount of the feedback. And the
relationship between the original signal Vs, the feedback signal Vf and the intput Vin
of the amplifier is

Vin = Vs − Vf (2.30)
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Figure 2.20: Feedback linearization technique

According (2.29) and (2.30), we get

Vin = Vs − βVout (2.31)

Then according (2.28) and (2.31), we can get the close-loop transfer function

Af =
Vout
Vs

=
A

1 + βA
(2.32)

In general, βA >> 1, so (2.32) becomes

Af =
1

β
(2.33)

From (2.33), we can see that the gain of the feedback technique is almost inde-
pendent of the gain A of the amplifier and only depends on the feedback factor β.
Therefore, the implementation of the feedback technique has low complexity. But
feedback technique still has some disadvantages. The first is that the gain of the power
amplifier A is required large enough to meet βA >> 1. The second is the delay of
the feedback path, it is very difficult to make the input and output operate at the same
time exactly. The third problem is the stability. The system must limit the bandwidth
in order to assure the stability of the system. So that the bandwidth of the feedback
technique is restricted.
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2.4.4 Linear amplification with nonlinear components

LINC technique is applied to some modulated signals where both the amplitude
and phase are variable. The principle is shown in Fig. 2.21. The input signal Vin(t)

is separated into two constant-envelope signals V1(t) and V2(t). These two constant-
envelope signals are amplified by two power amplifiers with same characteristic re-
spectively. Then the two amplified signals are combined together to generate the final
output signal Vout(t).

Figure 2.21: LINC linearization technique

Vin(t) = a(t)cos[wct+ φ(t)]

= 0.5V0sin[wct+ φ(t) + θ(t)]− 0.5V0sin[wct+ φ(t)− θ(t)]

= V1(t) + V2(t)

(2.34)

V1(t) = 0.5V0sin[wct+ φ(t) + θ(t)] (2.35)

V2(t) = −0.5V0sin[wct+ φ(t)− θ(t)] (2.36)

θ(t) = sin−1(a(t)/V0) (2.37)

where Vin(t) is the input signal of the system, a(t) is the nonconstant amplitude of input
signal, and V0 is the max amplitude of a(t). The concept of LINC is very appealing,
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and the actual implementation is possible. But the separation and combination of the
signal are complicated and it is problematic for the perfect matching of amplifiers in
two branches [56, 57].

2.4.5 Envelope elimination and restoration

EER linearization technique is firstly proposed by Khan [58]. It combines a high
efficiency nonlinear PA with an envelope amplifier to implement a high efficiency lin-
ear PA. Its classical form is shown in Fig. 2.22. An envelope limiter eliminates the
envelope of the RF carrier signal. The resulting constant-amplitude phase modulated
signal is amplified by a high efficiency PA. Finally, the RF PA restores the envelope to
the phase modulated signal by the amplitude modulation. An amplified replica of the
input signal is created.

Figure 2.22: Envelope elimination and restoration technique

In contrast to linear amplifiers, EER technique allows a high efficient amplification
in a wide power output range. And it produces a high average efficiency for a wide
range of signals with different backoff requirements. Two of the most important fac-
tors affecting the linearity are the envelope bandwidth and the alignment between the
envelope and the phase modulated signals. Generally, the envelope bandwidth must
be at least twice the RF bandwidth. The misalignment between the envelope and the
phase modulated signals must not exceed 10% of the inverse of the RF bandwidth [59].
This technique is widely adopted in single carrier or narrow-band applications.
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2.4.6 Predistortion

Predistortion technique is one of the most effective linearization techniques. Its
principle is shown in Fig. 2.23. A functional block called the PreDistorter (PD) is
inserted in front of the PA, which has the inverse nonlinear characteristics of that of
the PA, so that the cascaded PD-PA system has a linear behavior. Predistortion doesn’t
require a deep knowledge about the physic circuit of power amplifier and is easy to
realize. It can be implemented entirely using digital processors (DSP and FPGA) and
this offers re-configurability capabilities. So it is most efficient and promising among
these linearization techniques for future communication systems.

Figure 2.23: Predistortion technique

To obtain a good linearization performance, it is necessary to design a good PD
which is the precise inverse model of the PA model. Therefore, the crucial issue is how
to obtain an excellent PD model. More details about the predistortion is presented and
discussed in the following chapters.





3
Digital predistortion

In this chapter, the DPD is described in detail. We give the purpose of DPD in
section 3.1. In section 3.2, DPDs based on different implementation methods are in-
troduced. The description about two different learning architectures of DPDs is given
in section 3.3. Several identification algorithms are described in section 3.4. Finally,
in section 3.5 we compare two different DPD learning architectrures (ILA and DLA)
by analyzing the condition number of the matrix to be inverted in LS identification
algorithm, the modeling performance and the linearization performance of DPD.

3.1 Digital predistortion overview

According to the position of predistorter, predistortion techniques can be classified
into three categories: Radio Frequency (RF) predistortion, Intermediate Frequency
(IF) predistortion and BaseBand (BB) predistortion. RF predistortion is realized in
RF bands. Usually, the operating frequency in RF bands is high so that it is difficult to
predistort the RF signal. It requires complicated analog circuit design and the improve-
ment of the linearization performance is not good enough. Thus, RF predistortion is
less used. For IF predistortion, the operating frequency is in IF bands which are lower
than RF bands. One drawback of IF predistortion is that the nonlinear control is still
implemented with difficulty by digital devices. Compared with RF and IF predistor-
tion, BB predistortion has the lowest operating frequency bands. It is processed at
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baseband frequency where the signal rate is relatively low, and the hardware require-
ment is not high. BB predistortion can be implemented by components such as FPGA
or DSP. Nowadays, BB predistortion is adopted most widely, as shown in Fig. 3.1.

Figure 3.1: Block diagram of baseband digital predistortion

According to the signal types, predistortion techniques can be classified into ana-
log predistortion and digital predistortion. In 1959, the concept of predistortion was
firstly proposed by MacDonald [60]. It proposed to compensate the nonlinearity of
the PA by using a component characterized by the PA’s inverse behavior. In 1979,
an analog predistorter was realized by Satoh and applied to the TWTA [61]. The
linearization performance was moderate. In 1984, an analog predistortion system op-
erated at an intermediate frequency (130MHz) was designed using diodes by Nojima
et al. and adopted in the mobile telephone system [62]. After the 1980s, the predis-
tortion techniques were developed rapidly. Some integrated chips, such as MAX2009
and MAX2010 of Maxim company, have been realized. As the digital technology de-
veloped, digital predistortion becomes possible. Compared with analog predistortion,
digital predistortion is more accurate. In the past two decades, Digital PreDistortion
(DPD) techniques have been more concerned with the development of the digital tech-
nology.

The aim of DPD is to make the system be linear when the PA operates in the non-
linear region. Consider the scenario depicted in Fig. 3.2. Assume rin be the amplitude
of the input signal, the amplitude of the PA’s output signal actually is rout. The rela-
tionship of rin and rout is nonlinear. Ideally, the desired output amplitude of the system
is rdesired_out from the linear response. The value rdesired_out is used to search through
the output characteristic of the PA. The proper input amplitude to the PA is determined
rpd. The task of the PreDistorter (PD) is to adjust the original input amplitude rin to be
the corrected amplitude rpd. Then rpd should produce the correct output amplitude to
give the PD-PA system a linear response. In addition, the phase of input signal is also
predistorted to obtain a constant phase difference.
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Figure 3.2: Predistortion conception

Fig. 3.3 exhibits the improvement in PA’s operating region with the predistortion.
In the figure, the range of input values is represented as a gray rectangle. The left
rectangle is for the range of PA’s operating region without predistortion. The peak
power can not exist too far into the nonlinear region, otherwise the distortion is so large
that it will affect the transmission. The right rectangle is for the range of operating
region with predistortion. The range of input power level with the predistortion is
greatly improved. But the upper level of operating point is limited by the characteristic
of PA (the desired output power can not be beyond the saturation limit of PA). At
the full saturation level of PA, any increase in the input power does not produce an
increase in output power. Therefore, any input signal with an amplitude higher than
the saturation level will not be fully corrected and distortions will increase again.

Figure 3.3: Operating region improvement
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3.2 Popular solutions

A large number of DPD techniques have been published in the literature. The
widely used implementation methods can be classified into three categories: Look-Up
Table (LUT) based DPDs, Neural network based DPDs and model based DPDs (or
called polynomial based DPDs ). They are described in the following.

3.2.1 LUT based DPD

LUT based DPD is a basic method for implementing DPD technique [10, 11, 63,
64, 65]. It is a simple and efficient technique. The values of desired predistorted signals
are stored in the memory units as a table. The table is indexed by the amplitude of the
input signal, then the predistorted signal is extracted.

The core of LUT based DPD is the table used to generated the predistorted signal.
The important task is to properly construct a LUT which represents the inverse function
of PA. The contents of LUT can be implemented in Cartesian form [66, 67], polar
form [68, 69] and complex-gain form [70, 71]. In LUT based DPD, compared with
the Cartesian and polar forms, the complex-gain form requires less table size and less
calculations. Thus, the complex-gain form is widely used. Fig. 3.4 shows a typical
structure of complex-gain LUT-based predistorter. The predistorted signal is obtained
by

x(n) = u(n)g(ru(n)), (3.1)

where u(n) is the input signal, ru(n) the amplitude of input signal, and g(·) the com-
plex gain of the predistorter.

Furthermore, how to distribute the LUT entries is also an important issue. In other
words, the LUT indexing technique influences the obtained performance. Commonly,
equispaced LUT is widely used because of its simplicity and low computational com-
plexity. The LUT entries can be equispaced in linear amplitude, linear power or loga-
rithmic power [72]. For equispaced LUT addressed using linear amplitude, it exhibits
good performance by uniformly spacing the table entries along the input signal range.
But there are some drawbacks, which are related to the calculation for a rectangular
to polar coordinates converter. For equispaced LUT addressed using linear power, it
inherently leads to dense table entries at large signal region, while few entries are as-
signed to small signal region. This indexing technique is suitable for class A PAs,
where there is almost no gain variation at small signal region. For equispaced LUT ad-
dressed using logarithmic power, by contrast, more entries are assigned to large signal
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Figure 3.4: Structure of complex-gain LUT-based predistorter

region.

These LUT indexing techniques mentioned above only fit a type of specific PAs.
In order to distribute the LUT entries more optimally, the nonuniform spacing method
is reported by several authors [63, 65, 70, 73]. Cavers in [63] proposed a companding
function to minimize the intermodulation distortion power due to LUT quantification
errors. The proposed companding function depends on the Probability Density Func-
tion (PSD) of the input signal. A typical structure of complex-gain LUT-based predis-
torter including companding function is shown in Fig. 3.5. In LUT based DPDs, the
nonuniform spacing method provides a better prospect. It is a research trend for future
LUT based DPDs.

Figure 3.5: Structure of complex-gain LUT-based predistorter including companding
functions
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For LUT based DPD, in order to improve the linearization performance, it requires
a large table size. A large number of LUT entries leads to a long convergence time.
There are other LUT based DPDs, which adopt the interpolation technique. The inter-
polated LUT based DPDs [64, 74, 75, 3, 4] can decrease the table size while maintain
good linearization performance.

The LUT based DPD has been concerned by researchers because it has simplicity
and is easy to implement [11, 10, 63, 64, 65]. But it needs to overcome the distortion
due to the quantification error. The LUT based DPD is applied mostly in memoryless
PAs, only few is applied in PAs with memory effects.

3.2.2 Neural network based DPD

Artificial Neural Network (ANN) has an excellent capability to accurately approx-
imate nonlinear functions [76]. In [77], it has been proven that a feed forward ANN
with a single hidden layer and nonconstant, bounded and monotone-increasing con-
tinuous activation functions, can approximate any nonlinear function with any desired
error. Hence, ANN can be used to model a PA and its predistorter. Several neural
network based DPDs are reported in the literature [14, 78, 79, 80, 81, 82, 83].

The model of a single neuron is shown in Fig. 3.6. And the mathematical expres-
sion is given by

y = F (wx+ b) (3.2)

where x and y are the input and output of the neuron, respectively, w the weight value,
b the bias value, and F the activation function. Usually, the activation function is
sigmoid function or tanmoid function. As an example, when sigmoid function is used
as the activation function, (3.2) can be written as

y = F (wx+ b) =
λ · (1− eµ(wx+b))

1 + eµ(wx+b)
(3.3)

where λ and µ are constants.

Figure 3.6: Model of a single neuron
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Generally, ANN is composed of a number of neurons. Depending on neural net-
work structure, they can be divided into three types: MultiLayer Perceptron (MLP),
Radial Basis Function artificial Neural Network (RBFNN) and Recurrent artificial
Neural Network (RNN) [14]. MLP and RBFNN are the two most commonly-used
types of feed forward neural network. Their only fundamental difference is the way
in which hidden units combine values coming from preceding layers in the network.
MLP uses inner products, while RBFNN uses Euclidean distance. The structure of a
simple feed forward neural network is shown in Fig. 3.7.

Figure 3.7: Structure of a three-layer feed forward neural network

MLP has one or more hidden layers for which the activation function is the inner
product of the inputs and weights, plus a bias. The inputs are fully connected to the
first hidden layer, each hidden layer is fully connected to the next, and the last hidden
layer is fully connected to the outputs. It is the most popular neural network in practical
applications due to its simplicity. In [79], a complex-valued MLP is used to mimic the
AM/AM and AM/PM characteristics. In [80], a real-valued MLP is used to predict the
I&Q outputs of a device-under-test.

RBFNN usually has only one hidden layer for which the activation function is
based on the Euclidean distance between the input vector and the weight vector. The
output layer performs a simple weighted sum with a linear output. In [81], a RBFNN
has been used for modeling the dynamic nonlinear behavior of an RF power amplifier.

RNN is a class of ANN which includes feedback paths. The structure of a simple
RNN is shown in Fig. 3.8. Indeed, RNN allows for better emulation of the interaction
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between the input and output samples and the cross terms of the nonlinear system.
But its training algorithm is complex, therefore, it is not popular for real-time deploy-
ment [78]. In [82, 83], RNN is used for modeling RF power amplifier and its digital
predistortion.

Figure 3.8: Structure of a recurrent neural network

Because neural network has a strong ability of learning and imitation, the neural
network based DPDs can obtain good linearization performance. However, the training
of the neural network is complex and time-consuming. The hardware implementation
of the neural network is not easy in practical applications.

3.2.3 Model based DPD

Model based DPDs [12, 13, 84, 85], also called polynomial based DPDs, are mostly
used for the linearization of PA. In section 2.3.2, some typical models are presented
for modeling PA. Similarly, the predistorter is also a nonlinear system. Some of these
models can be used to model the predistorter. For memoryless system, the polynomial
model can be used to model the predistorter. For memory system, the models such
as Volterra series model, generalized memory polynomial model, memory polynomial
model, Hammerstein model and Wiener model all are used to model the predistorter.
These models were introduced in section 2.3.2. In this section they will no longer
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be repeated. It is worth noting that, the input and output of the model have different
meanings between modeling the PA and modeling the predistorter.

3.3 Learning architecture

DPD architectures can be classified into two types [20, 26]: Indirect Learning Ar-
chitecture (ILA) and Direct Learning Architecture (DLA). In ILA approach [12], a
postdistorter model is first assumed, the measured output of PA is taken as the input of
postdistorter, and the measured input of PA is taken as the output of postdistorter. Then
the postdistorter is estimated by an identification algorithm such as Least Squares (LS)
method. Finally, the postdistorter is placed before the PA as its predistorter directly.
In DLA approach [86, 87, 1], a model of PA’s behavior is first predefined and its co-
efficients are identified, then the predistorter is found by reversing the identified PA
model. In this section, the details of ILA and DLA are presented.

3.3.1 Indirect learning architecture

Figure 3.9: Indirect learning architecture

Fig. 3.9 shows the block diagram of ILA. Firstly, the postdistorter is identified.
Usually, the postdistorter is modeled as a MP [20]. The output of the postdistorter can
be expressed as

zp(n) =
K∑
k=0

L∑
l=0

aklΦkl[z(n)] (3.4)
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where z(n) = y(n)
G0

, G0 is the desired gain, akl, k = 0, · · · , K and l = 0, · · · , L are
the complex-valued coefficients, K refers to the memory depth, L + 1 the maximum
nonlinearity order, and Φkl[z(n)] = z(n − k) |z(n− k)|l. Theoretically, it requires
zp(n) = x(n) in a perfect system. x(n) and y(n) are the measured input and output of
the PA, respectively. Assume that the total number of samples is N , we get

zp = Za (3.5)

where zp = [zp(1), · · · , zp(N)]T , Z = [u00, · · · ,u0L, · · · ,ukl, · · · ,uK0, · · · ,uKL]N×KL,
ukl = [Φkl[z(1)], · · · ,Φkl[z(N)]]T , and a = [a00, · · · , a0L, · · · , akl, · · · , aK0, · · · , aKL]T .
Classical LS method can be used to extract the coefficients

â = (ZHZ)−1ZHzp (3.6)

where (·)H denotes complex conjugate transpose operation. After the identification of
the postdistorter, a copy of the postdistorter is placed directly in front of the PA as its
predistorter.

3.3.2 Direct learning architecture

Figure 3.10: Direct learning architecture

The block diagram of DLA is illustrated in Fig. 3.10. As mentioned before, the
determination of the PD needs two steps in DLA. Firstly, the model of PA’s behavior
needs to be predefined. Here MP is adopted as the PA model. The PA model is defined
as

y(n) =
P∑
p=0

Q∑
q=0

cpqΦpq[x(n)] (3.7)
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where Φpq[x(n)] = x(n − p) |x(n− p)|q, P and Q + 1 are the memory depth and
nonlinearity order, respectively, and cpq are the model’s coefficients. x(n) and y(n) are
the input and output of the PA, respectively. The coefficients cpq are extracted by LS
method as mentioned before. Secondly, the identified model of the PA is reversed for
the determination of the PD which is the complicated step. How to obtain the PD in
DLA is presented in later section.

3.4 Identification algorithms

In DPD, the PD model needs to be identified by an adaptive algorithm. The com-
mon identification algorithms include Least Squares (LS), Least Mean Squares (LMS)
and Recursive Least Squares (RLS). LS algorithm was presented in section 3.3.1. In
this section, the LMS and RLS identification methods are presented, respectively.

3.4.1 Least mean squares

LMS method is an adaptive algorithm based on gradient method. Its cost function
is defined by minimizing the mean square error, as follows

ε = E
{
|e(n)|2

}
(3.8)

where e(n) is the error between the desired output and actual output. The error is
defined by

e(n) = d(n)− y(n) (3.9)

y(n) = xT (n)w(n) (3.10)

where d(n) is the desired output, y(n) the actual output, x(n) the system input se-
quences, w(n) the weight function and (·)T transpose operation. The update of the
weight is given by

w(n+ 1) = w(n) + µe(n)x(n) (3.11)

where µ is the step which controls the convergence speed. In LMS algorithm, the
iteration is run, until a set of acceptable weight values are achieved such that the cost
function ε is small enough.

In [88], a Nonlinear Filtered-x LMS (NFxLMS) algorithm is used to the lineariza-
tion of a nonlinear system. We assume that a MP is used as the PD model. The output
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of PD can be written as

x(n) =
P∑
p=0

Q∑
q=0

wpqΦpq[u(n)] (3.12)

where Φpq[u(n)] = u(n − p) |u(n− p)|q, P and Q + 1 are the memory depth and
maximum nonlinearity order, respectively, and wpq are the PD’s coefficients. u(n) and
x(n) are the input and output of PD, respectively, as shown in Fig. 3.10. (3.12) can be
rewritten in vector form as

x(n) = uT (n)w(n) (3.13)

where u(n) = [Φ00[u(n)], · · · ,Φ0Q[u(n)], · · · ,Φpq[u(n)], · · · ,ΦP0[u(n)], · · · ,ΦPQ[u(n)]]

and w(n) = [w00, · · · , w0Q, · · · , wpq, · · · , wP0, · · · , wPQ].

The weight update equation for the PD based on gradient method is given as

w(n+ 1) = w(n)− 1

2
µ∇(n) (3.14)

where µ is the step size and ∇(n) the instantaneous estimate of the gradient ofE
{
|e(n)|2

}
with respect to the PD coefficients w(n).

E
{
|e(n)|2

}
= E

{
|d(n)− y(n)|2

}
(3.15)

where d(n) is the desired output of PA, y(n) the actual output of PA.

∇(n) = −2e∗(n)ψ(n) (3.16)

where ψ(n) = ∂y(n)
∂w(n)

. Thus, (3.14) can be rewritten as

w(n+ 1) = w(n) + µe∗(n)ψ(n). (3.17)

Assume that a MP is also used as the PA model. It is given as

y(n) =
K∑
k=0

L∑
l=0

aklΦkl[x(n)] (3.18)

where y(n) is the output of PA, x(n) is the input of PA (the output of PD), akl,
k = 0, · · · , K and l = 0, · · · , L are the complex-valued coefficients of PA model,
Φkl[x(n)] = x(n− k) |x(n− k)|l, K refers to the memory depth and L+ 1 the maxi-
mum nonlinearity order.
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Because the output of PA y(n) is a function of x(n) where x(n) = [x(n), x(n −
1), · · · , x(n−K)] and x(n) is a function of w(n). ψ(n) can be written as

ψ(n) =
∂y(n)

∂x(n)

∂x(n)

∂w(n)
=

K∑
k=0

∂y(n)

∂x(n− k)

∂x(n− k)

∂w(n)
. (3.19)

From (3.18) we obtain [20]

∂y(n)

∂x(n− k)
=

L+1∑
l=0

l + 2

2
akl |x(n− k)|l . (3.20)

According to (3.13), and assuming that w(n) ≈ w(n− k)[88, 22], we obtain

∂x(n− k)

∂w(n)
=
∂uT (n− k)w(n− k)

∂w(n)
≈ u(n− k). (3.21)

By (3.21), (3.20) and (3.19), we obtain

ψ(n) =
K∑
k=0

L+1∑
l=0

l + 2

2
akl |x(n− k)|l u(n− k). (3.22)

Finally, substituting (3.22) in (3.17), we get

w(n+ 1) = w(n) + µe∗(n)
K∑
k=0

L+1∑
l=0

l + 2

2
akl |x(n− k)|l u(n− k) (3.23)

3.4.2 Recursive least squares

RLS algorithm is a least squares method based on exponentially weighted error. Its
cost function is defined as

ξ(n) =
n∑
i=1

λn−i |e(i)|2 (3.24)

where 0 < λ < 1 is the exponential forgetting factor.
In the following, a Nonlinear Filtered-x RLS (NFxRLS) algorithm is presented.

In [23], NFRLS is used in a predistorter based on direct learning architecture. The
minimum can be achieved by differentiating (3.24) with respect to the weight vector
w(n) and making the result be equal to zero, namely let ∂ξ(n)

∂w(n)
= 0.

∂ξ(n)

∂w(n)
= −

n∑
i=1

2λn−iψ(i)e∗(i) (3.25)
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where ψ(i) is given in (3.22). Similarly e(i) can be derived as [23]

e(i) ≈ d(i)− w(n)ψ(i) (3.26)

where 1 ≤ i ≤ n. Combining (3.25) and (3.26),

∂ξ(n)

∂w(n)
≈ −

n∑
i=1

2λn−iψ(i)[d(i)− w(n)ψ(i)]∗

= −
n∑
i=1

2λn−iψ(i)d∗(i) +
n∑
i=1

2λn−iψ(i)w∗(n)ψH(i)

(3.27)

Making (3.27) be equal to zero, we obtain

n∑
i=1

λn−iψ(i)w∗(n)ψH(i) =
n∑
i=1

λn−iψ(i)d∗(i) (3.28)

which can be rewritten as
Rψ(n)w(n) = rψ(n) (3.29)

where Rψ(n) =
∑n

i=1 λ
n−iψ(i)ψH(i) and rψ(n) =

∑n
i=1 λ

n−id(i)ψ∗(i). We can
obtain the Kalman gain as in [89]

k(n) =
P(n− 1)ψ(n)

λ+ψH(n)P(n− 1)ψ(n)
(3.30)

where P(n) = 1
λ
[P(n−1)−k(n)ψH(n)P(n−1)]. The resulting weight update function

is
w(n+ 1) = w(n) + µe∗(n)k(n) (3.31)

3.5 Comparison of ILA and DLA

In this section, ILA and DLA are compared by some simulations. Firstly, their
stabilities are compared in terms of the condition number of a matrix closely related
to the architecture stability. Secondly, their modeling performances are analyzed by
considering different number of bits of Analog-to-Digital Converter (ADC) and vary-
ing noise at the output of PA. Finally, two DPDs based ILA and DLA are compared in
terms of the ACPR and EVM of linearized outputs of PA.
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3.5.1 Condition number of matrix

The principles of ILA and DLA are presented in section 3.3. They both need
to identify a pre-assumed model (MP model) with the measured input and output of
PA. LS method is used in the model identification. From (3.6), it can be seen that
the inverse of matrix ZHZ is required in LS algorithm. When solving the inverse
problem, the condition number is usually used to measure how sensitive the solution
is to changes or errors in the input. A problem with a low condition number is said
to be well-conditioned, while a problem with a high condition number is said to be
ill-conditioned.

In this subsection, the condition number of matrix ZHZ is considered to measure
the stability of the two DPD architectures. In ILA, matrix Z is related with the output
signal of PA. While in DLA, it is related with the input signal of PA. A simulation is
realized to compare these two DPD architectures. In this simulation, a Wiener model
is used as PA model. It is implemented as a 3-tap FIR filter with coefficients [0.7692,
0.1538, 0.0769] [90], followed by a Saleh model. Saleh model is described as

y(n) =
αa|v(n)|

1 + βa|v(n)|2
e
j∠[v(n)+

αϕ|v(n)|2

1+βϕ|v(n)|2
]

(3.32)

where y(n) and v(n) are the output and input of Saleh model, respectively, and αa =

20, βa = 2.2, αϕ = 2, βϕ = 1 [32]. The input signal of PA is a 16QAM signal with
3.84 MHz bandwidth. The measured sequence has 1000 symbols (8000 samples). The
ideal gain of this PA model is about 26 dB. The input power at 1 dB compression point
is about −1 dBm.

The condition number of ZHZ is affected by Z which depends on the memory
depth, nonlinearity order and value of each element (varies with the input signal power).
In the first simulation, we assume that the memory depth is 3 (K = P = 3) and the
nonlinearity order is 5 (L = Q = 4). The signal input power varies from -20 dBm to 5
dBm. The condition numbers of ZHZ of the two DPD architectures are compared. The
results are shown in Fig. 3.11. It can be seen that the condition number with ILA is
larger than that with DLA when the input power is close to the input saturation power.
It indicates that the stability of DLA is more robust than that of ILA.

In the second simulation, we assume that the input signal power is 0 dBm. The
condition number varies with the nonlinearity order and memory depth. The nonlin-
earity order varies from 3 to 15. The memory depth varies from 0 to 3. The comparison
of two DPD architectures is shown in Fig. 3.12.
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Figure 3.11: Comparison of condition number with different input signal power

From Fig. 3.11 and Fig. 3.12, it can be seen that the condition number of ZHZ
in DLA is always lower than that in ILA. It indicates that DLA is more robust than
ILA when changes or errors are present in the measurement, such as the noise and
quantization error of ADC. To further validate this result, the influences of the noise
and quantization error of ADC on the modeling performance are analyzed in next
section.

3.5.2 Modeling performance

In practical measurement, an ADC is required to realize the signal acquisition. The
number of bits of ADC will affect the accuracy of the signal acquisition and then affect
the performance of the model’s identification. Additionally, the measurement at the
output of PA is noisy in practical application. The noise also affects the performance
of the model’s identification. In the third simulation, considering the number of bits of
ADC in signal acquisition and the noise at the output of PA, simulations are realized
to compare these two DPD architectures.

For analyzing the influence of the noise at the output of PA, it assumes that white
Gaussian noise is present at the output of PA as shown in Fig. 3.9 and Fig. 3.10. An
original 16QAM signal x′(n) (bandwidth 3.84 MHz, power 0dBm, sequence length
8000 samples) is given as the PA input. And the output y′(n) of PA is obtained by
the Wiener model. The white Gaussian noise is added in the output signal y′(n) to get
the noisy output y′noise(n). The input x′(n) and output y′noise(n) of PA are used for the
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Figure 3.12: Comparison of condition number with different nonlinearity order and
memory depth

identifications of (3.4) and (3.7) as shown in Fig. 3.13. In the identifications of (3.4)
and (3.7), K = P = 3 (the memory depth = 3) and L = Q = 4 (the nonlinearity order
= 5), respectively. The coefficients of identified MP model with DLA is different with
those with ILA.

Figure 3.13: Identification with DLA and ILA

After the model identification, another 16QAM signal x′′(n) is used to test the
identified model. The signal x′′(n) passes the PA as the input, then the corresponding
output y′′(n) is obtained. For ILA, the signal y′′(n) is the input of the postdistorter, its
output z′′p(n) is obtained by the identified model (3.4). The Normalized Mean Squared
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Figure 3.14: Modeling performance with DLA and ILA

Error (NMSE) between z′′p(n) and x′′(n) is treated as the criterion of ILA modeling
accuracy shown in Fig. 3.14. NMSE is defined by

NMSE = 10log10

∑N
n=1 |x1(n)− x2(n)|2∑N

n=1 |x1(n)|2
(3.33)

where N is the number of sample sequence, x1(n) and x2(n) denote the actual signal
and modeling signal, respectively.

For DLA, the signal x′′(n) is the input of the identified model (3.7), the correspond-
ing output y′′DLA(n) is obtained. The NMSE between y′′DLA(n) and y′′(n) is treated as
the criterion of DLA modeling accuracy shown in Fig. 3.14.. Fig. 3.15 shows the per-
formance of ILA and DLA in terms of NMSE when the noise is present. It can be
seen that the modeling accuracy of ILA and DLA both improves as the noise power
decreases. When the noise is high, the performance of DLA is better than that of ILA.
When the power of noise is low (nearly ideal case), the performance of DLA and ILA
is similar. In practical applications, the noise can not be ignored. DLA is more robust
than ILA when the noise is present.

For the influence of the number of bits of ADC, an ADC is assumed for the signal
acquisition. The signals x′(n) and y′(n) pass the ADC and are denoted by x′ADC(n)

and y′ADC(n), respectively. The signals x′ADC(n) and y′ADC(n) are used for the identi-
fication of (3.4) and (3.7). After the model identification, the same signal x′′(n) is used
to test the identified model. The comparison principle considering the number of bits
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Figure 3.15: Comparison of ILA and DLA when considering noise

of ADC is the same as that considering the noise. Fig. 3.16 shows the performance of
ILA and DLA in terms of NMSE with varying number of bits of ADC. It can be seen
that the modeling accuracy of ILA and DLA both improves as the number of bits of
ADC increases. The modeling accuracy of DLA is always better than that of ILA.
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Figure 3.16: Comparison of ILA and DLA when considering number of bits of ADC

According to the above analysis, it further verifies that DLA is more robust than
ILA.

3.5.3 Linearization performance

In this section, two DPDs based on different learning architectures are compared.
The DPD proposed in [12] is taken as the example of ILA. And the DPD proposed in
[1] is taken as the example of DLA. In this simulation, the number of bits of ADC and
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the noise both are taken into account in the process of identification. We assume that
the number of bits of ADC is 8, the SNR at the output of PA is 35 dB. The average
power of the input signal varies from -13 dBm to -3 dBm. The input signal, which has
an average power of -3 dBm, includes many samples entering the nonlinear region of
PA model. Fig. 3.17 illustrates the distribution of samples of the input signal when the
average power is -3 dBm. It shows that the power of about 40% of the input samples
is higher than the input power (-1 dBm) at 1 dB compression point of the PA model
where the linearization is needed.
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Figure 3.17: Histogram distribution of the input signal when the average power is -3
dBm

The original input x′(n) and output y′(n) of PA firstly pass the ADC, then the noise
is added on the output signal of PA. The processed input and output signals are used
for the identification of (3.4) and (3.7). For ILA, the identified postdistorter model is
directly placed in front of PA as the predistorter [12]. For DLA, the predistorter is
determined by inverting the identified PA model [1].

The linearized outputs of two different learning architectures are obtained by the
DPD solutions mentioned above. The ACPR and EVM of linearized outputs of two
architectures are calculated, respectively. Fig. 3.18 shows the evolution of ACPR of
linearized outputs with varying input power from -13 dBm to -3 dBm. And Fig. 3.19
shows the evolution of EVM of linearized outputs with varying input power. It can be
seen that the linearization performance of DLA is more robust than that of ILA when
considering the number of bits of ADC and the noise at the output of PA. In this thesis,
we mainly focus on the DPD based on DLA.
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Figure 3.18: ACPR comparison of DPDs based different learning architectures
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Figure 3.19: EVM comparison of DPDs based different learning architectures





4
Proposed digital predistortion
methods

In this chapter, our proposed DPD methods are described in detail. In section 4.1,
the behavior modeling of PA is made using MP model. The nonlinearity order, mem-
ory depth and coefficients of MP model are determined. In section 4.2, a DPD with
root-finding procedure in [1] is presented. This DPD method has a good linearization
performance, but it is very time-consuming. Our proposed DPD methods are based
on this root-finding-based DPD. In section 4.3, the proposed MP/LUT-based DPD,
MP/LILUT-based DPD and MP/QILUT-based DPD are depicted respectively. And
their simulation results are summarized. In section 4.4, the proposed NN-based DPD
is described and its simulation results are given.

4.1 Power amplifier modeling

In this chapter, we consider that the Wiener model mentioned in section 3.5.1 is
used to simulate the PA. To remind this model, it is repeated as follows

v(n) = h0x(n) + h1x(n− 1) + h2x(n− 2) (4.1)

73



74 CHAPTER 4. PROPOSED DIGITAL PREDISTORTION METHODS

y(n) =
αa|v(n)|

1 + βa|v(n)|2
e
j∠[v(n)+

αϕ|v(n)|2

1+βϕ|v(n)|2
]

(4.2)

where x(n) and y(n) are the input and output of the simulated PA, respectively, v(n)

the input of Saleh model (the output of the filter), and h0 = 0.7692, h1 = 0.1538,
h2 = 0.0769, αa = 20, βa = 2.2, αϕ = 2, βϕ = 1. A 16QAM signal with 3.84 MHz
bandwidth is used to test and analyze the characteristics of this simulated PA. The test
sequence has 1000 symbols (8 samples/symbol).

Fig. 4.1 shows AM/AM and AM/PM characteristics based on the instantaneous
samples of input and output of the simulated PA. It can be seen that the simulated
PA suffers from the nonlinearity and memory effects. Fig. 4.2 presents the gain perfor-
mance of the simulated PA with varying average input power. The average input power
varies from −30 dBm to 5 dBm. The gain in linear region is about 26 dB. The average
input powers at 1 dB compression point and at 3 dB compression point are about −1

dBm and 4.3 dBm, respectively.

−50 −40 −30 −20 −10 0 10 20
−10

−5

0

5

10

15

20

25

30

Average input power (dBm)

A
ve

ra
ge

 o
ut

pu
t p

ow
er

 (
dB

m
)

 

 

AM/AM

(a) AM/AM characteristic of the instantaneous
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Figure 4.1: AM/AM and AM/PM characteristics of the instantaneous samples of sim-
ulated PA

As mentioned before, the first step for realizing DPD with DLA is to obtain a math-
ematical model which can accurately describe the nonlinear behavior of PA. Several
PA models have been described in section 2.3.3. Because the memory effects can no
longer be ignored in modern wide-band wireless communication system, it is neces-
sary to adopt a model with memory effects. In this thesis, MP model is adopted to
model the PA. MP model has lower complexity and can closely mimic the nonlinear
behavior of PA with memory effects. It offers a good trade-off between computational
complexity and modeling accuracy. In addition, the even orders of polynomial have
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Figure 4.2: Gain characteristic of simulated PA

very little effect on the final amplified and filtered signal, the odd-order MP model is
widely used [91, 32]. The odd-order MP model is described as

y(n) =
P∑
p=0

Q∑
q=0

cpqΦpq[x(n)] (4.3)

where Φpq[x(n)] = x(n − p) |x(n− p)|2q, P and 2Q + 1 are the memory depth and
highest nonlinearity order (only odd orders are considered), respectively, and cpq are
the model’s coefficients. x(n) and y(n) are the input and output of the PA, respectively.
In the following, we will observe the modeling performance of MP model.

In MP model, three parameters need to be determined: P , Q and cpq. Generally, a
set of estimated P and Q is given, then cpq are extracted by LS method as described
in section 3.3.1. In order to estimate the modeling performance of MP model, we
compare the outputs of the identified MP model and the simulated PA. Fig. 4.3 shows
NMSE between the output of the identified MP model and that of the simulated PA for
different memory depths and nonlinearity orders. The memory depth varies from 1 to
10. The nonlinearity order varies from 1 to 15 (only odd order). The smallest NMSE
(-50.17 dB) is achieved with the memory depth 3 and nonlinearity order 9. To observe
the results clearly, the curves of nonlinearity order 7, 9 11 and 13 are shown in Fig. 4.4.
In the later section, the memory depth is determined to be 3 (P=3) and the nonlinearity
order is determined to be 9 (Q=4) for MP model.

To further assess the accuracy of MP model, some tests are conducted. The in-
phase and quadrature components of the output signal of MP model (P=3, Q=4) are
compared with that of the simulated PA. Fig. 4.5 presents the first 100 samples of the
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Figure 4.3: NMSE between the output of the identified MP model and that of the
simulated PA
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Figure 4.4: NMSE with nonlinearity order 7, 9, 11 and 13

output of MP model and that of the simulated PA. It is observed that MP model has a
good fitting of the simulated PA. In addition, Fig. 4.6 compares AM/AM and AM/PM
characteristics of MP model and the simulated PA. It is clear that MP model has a good
ability to mimic the nonlinear behavior of the PA with memory effects.

4.2 MP based DPD with root-finding method

In this section, the MP DPD with root-finding procedure [1] is presented. The ideal
cascaded PD-PA system can be expressed as

y(n) =
P∑
p=0

Q∑
q=0

cpqΦpq[x(n)] = G0u(n) (4.4)
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Figure 4.5: In-phase and quadrature components of the output of MP model and sim-
ulated PA
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Figure 4.6: Comparison of AM/AM and AM/PM characteristics of MP model and
simulated PA

where Φpq[x(n)] = x(n−p) |x(n− p)|2q, P and 2Q+1 the memory depth and highest
nonlinearity order, respectively, cpq are the coefficients of PA model andG0 is the ideal
gain. u(n) denotes the input of PD-PA system, x(n) the predistorted signal (namely the
input of PA) and y(n) the output of PD-PA system, as shown in Fig. 3.10. According
to the memory behavior of PA, the output y(n) of PA can be represented as the sum of
two parts: the static part s(n) depending only on the current input sample (p=0), and
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the dynamic part d(n) which depends on the previous input samples (p is from 1 to P ).
y(n) = s(n) + d(n)

s(n) =
∑Q

q=0 c0qΦ0q[x(n)]

d(n) =
∑P

p=1

∑Q
q=0 cpqΦpq[x(n)]

(4.5)

From (4.4) and (4.5), s(n) can be rewritten as

s(n) = ej∠x(n)
Q∑
q=0

c0q|x(n)|2q+1 = G0u(n)− d(n) (4.6)

where ∠x(n) and |x(n)| are the phase and amplitude of the predistorted signal x(n),
respectively. By definition, d(n) depends only on the previous samples, the right-hand
side of (4.6) and coefficients c0q are known at instant n. |x(n)| can be calculated by
taking the absolute value.∣∣∣∣∣

Q∑
q=0

c0q|x(n)|2q+1

∣∣∣∣∣ = |G0u(n)− d(n)| (4.7)

(4.7) is a high-order nonlinear equation, the amplitude |x(n)| of the predistorted signal
can be found by a root-finding procedure [1]. The corresponding phase ∠x(n) is then
calculated by

∠x(n) = arg

{
G0u(n)− d(n)∑Q
q=0 c0q|x(n)|2q+1

}
. (4.8)

Finally, the predistorted signal x(n) is given by

x(n) = |x(n)|ej∠x(n). (4.9)

The DPD mentioned above can achieve good linearization performance, but the
calculation of the predistorted signal is time-consuming. The amplitude and phase of
the predistorted signal are calculated by (4.7) and (4.8), respectively. The calculations
of these two equations are both complicated and time-consuming, especially the root-
finding procedure in (4.7). For convenience, the MP DPD with root-finding procedure
[1] is denoted as MP/root-finding-based DPD in the later section.
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4.3 Proposed DPDs with combination of MP and LUT

In this section, three proposed baseband DPDs with DLA are presented in de-
tail. In the first DPD solution, (4.7) and (4.8) both are replaced by using the con-
ventional non-interpolated LUT, denoted as MP/LUT-based DPD in the later section.
In the second DPD solution, the linear interpolation is introduced in LUT based on
MP/LUT-based DPD, denoted as MP/LILUT-based DPD. In the third DPD solution,
the quadratic interpolation is introduced in LUT based on MP/LUT-based DPD, de-
noted as MP/QILUT-based DPD.

4.3.1 MP and LUT based DPD

In [2], the amplitude calculation of |x(n)| in (4.7) is replaced by a conventional
non-interpolated LUT, but the phase calculation still depends on (4.8). For our pro-
posed MP/LUT-based DPD, (4.7) and (4.8) both are considered and replaced by using
LUT.

In this subsection, MP/LUT-based DPD is proposed. (4.8) can be rewritten as

∠x(n) = arg{G0u(n)− d(n)} − arg{
Q∑
q=0

c0q|x(n)|2q+1}. (4.10)

Before performing the DPD, a LUT including the information of the amplitude
and phase of the predistorted signal should be constructed. Firstly, the dynamic range
of the amplitude |x(n)| of the predistorted signal needs to be estimated. Depending
on the analysis of Fig. 3.2 and Fig. 3.3, the maximum value of |x(n)| is set to be the
amplitude rin_sat which represents the input amplitude of the beginning point of the
saturation region. Suppose that a sample is near the saturation region in which the
amplitude of the predistorted signal should be rpd = rin_sat, we find the corresponding
point rin according to the characteristic of the PA. Then define that rpd

rin
= α. The

maximum dynamic range of |x(n)| is defined as

|x(n)| ∈ [0,min(α ·max(|u(n)|), rin_sat)] (4.11)

where u(n) is the input of PD-PA system. α depends on the characteristic of PA. In
this simulated PA, the value of α is around 2. Secondly, the dynamic range of |x(n)| is
decomposed into M intervals with equal length (the length of each interval is equal to
∆x), denoted by R(m). The LUT is shown in Table 4.1. In this table,
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R(m) = m∆x (4.12)

E(m) =

∣∣∣∣∣
Q∑
q=0

c0qR(m)2q+1

∣∣∣∣∣ (4.13)

θ(m) = arg{
Q∑
q=0

c0qR(m)2q+1} (4.14)

where E(m) is the LUT input and θ(m) the phase of the term
∑Q

q=0 c0qR(m)2q+1.

LUT input
LUT output

Amplitude Phase

E(0) R(0) θ(0)

... ... ...

E(m) R(m) θ(m)

... ... ...

E(M − 1) R(M − 1) θ(M − 1)

E(M) R(M) θ(M)

Table 4.1: Values of LUT in MP/LUT-based DPD

After the LUT is constructed, we use the proposed MP/LUT-based DPD algorithm
described in Algorithm 1. The proposed MP/LUT-based DPD can significantly im-
prove the time efficiency of DPD process than the root-finding method, but the quan-
tification error is large when the table size is small. Its linearization performance is
proportional to the table size. In order to achieve a good linearization performance, the
table size must be sufficiently large. Therefore, some interpolation techniques [92, 93]
are introduced in LUT for reducing the table size.

4.3.2 MP and linear-interpolated LUT based DPD

The linear interpolation is widely used due to its simplicity. In [74, 75], linear-
interpolated LUTs have been used to improve the performance of digital predistorter.
The principle of linear interpolation is shown in Fig. 4.7. Suppose that a point (ao, bo)

is between two points (ai, bi) and (ai+1, bi+1). ao is known, while bo needs to be calcu-
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Algorithm 1 Proposed MP/LUT-based DPD

1. Initialize n = 0, d(0) = 0.

2. Begin loop
{

3. Calculate the value of G0u(n)− d(n), denoted by s(n).

4. Find a value E(m) from Table 4.1, which is the closest to |s(n)|. m is deter-
mined.

5. Find the corresponding value of |x(n)| by

|x(n)| = LUTamp{|s(n)|} = R(m)

where LUTamp refers to the amplitude output of LUT.

6. Calculate the corresponding phase ∠x(n) by

∠x(n) = arg {s(n)} − LUTpha{|s(n)|} = arg {s(n)} − θ(m)

where LUTpha refers to the phase output of LUT.

7. Calculate x(n) = |x(n)|ej∠x(n).
8. Calculate n = n+ 1.

9. Calculate

d(n) =
∑P

p=1

∑Q
q=0 cpqx(n− p) |x(n− p)|2q.

10. } Goto loop

lated. If the curve between the points (ai, bi) and (ai+1, bi+1) is approximated as linear,
there is:

bo − bi
ao − ai

=
bi+1 − bi
ai+1 − ai

(4.15)

Then bo can be calculated as:

bo = bi + (ao − ai)so (4.16)

where so = bi+1−bi
ai+1−ai is the slope of the curve. In case of small table size (bi+1 and bi

are relatively far), linear-interpolated LUT provides a more appropriate corresponding
value than the conventional non-interpolated LUT, but at the cost of some small ad-
ditional computations due to linear interpolation. To further reduce the mathematical
computations, the slope of each interval is precomputed and stored in LUT.

The Linear-Interpolated LUT (LILUT) is shown in Table 4.2. In the table,

R(m) = m∆x (4.17)
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Figure 4.7: Principle of linear interpolation

E(m) =

∣∣∣∣∣
Q∑
q=0

c0qR(m)2q+1

∣∣∣∣∣ (4.18)

KR(m) =
R(m+ 1)−R(m)

E(m+ 1)− E(m)
(0 ≤ m ≤M − 1) (4.19)

θ(m) = arg{
Q∑
q=0

c0qR(m)2q+1} (4.20)

Kθ(m) =
θ(m+ 1)− θ(m)

E(m+ 1)− E(m)
(0 ≤ m ≤M − 1) (4.21)

whereKR(m) is the slope between the points (E(m), R(m)) and (E(m+1), R(m+1)),
and Kθ(m) the slope between the points (E(m), θ(m)) and (E(m+1), θ(m+1)). The
proposed MP/LILUT-based DPD algorithm is described in Algorithm 2.

4.3.3 MP and quadratic-interpolated LUT based DPD

The quadratic interpolation is another interpolation technique, where the interpo-
lated point is calculated depending on the nearest three points. Compared with the
linear interpolation, the quadratic interpolation is more accurate. Namely, there is still
room for improving the interpolation accuracy. The principle of quadratic interpo-
lation is described as follows. Suppose that there are three adjacent discrete points



4.3. PROPOSED DPDS WITH COMBINATION OF MP AND LUT 83

LUT input
LUT output

Amplitude Slope for amplitude Phase Slope for phase

E(0) R(0) KR(0) θ(0) Kθ(0)

... ... ... ... ...

E(m) R(m) KR(m) θ(m) Kθ(m)

... ... ... ... ...

E(M − 1) R(M − 1) KR(M − 1) θ(M − 1) Kθ(M − 1)

E(M) R(M) - θ(M) -

Table 4.2: Values of LUT in MP/LILUT-based DPD

Algorithm 2 Proposed MP/LILUT-based DPD

1. Initialize n = 0, d(0) = 0.

2. Begin loop
{

3. Calculate the value of G0u(n)− d(n), denoted by s(n).

4. Find two adjacent values E(m) and E(m+ 1) from Table 4.2, which are the two
closest to |s(n)|. m is determined.

5. Calculate the corresponding value of |x(n)| by

|x(n)| = LILUTamp{|s(n)|} = R(m) + [|s(n)| − E(m)]KR(m)

where LILUTamp refers to the amplitude output of LILUT.

6. Calculate the corresponding phase ∠x(n) by

∠x(n) = LILUTpha{|s(n)|} = arg {s(n)}−{θ(m) + [|s(n)| − E(m)]Kθ(m)}

where LILUTpha refers to the phase output of LILUT.

7. Calculate x(n) = |x(n)|ej∠x(n).
8. Calculate n = n+ 1.

9. Calculate

d(n) =
∑P

p=1

∑Q
q=0 cpqx(n− p) |x(n− p)|2q.

10. } Goto loop

(ai−1, bi−1), (ai, bi) and (ai+1, bi+1). The quadratic interpolation function is

b′ = fi−1(a
′)bi−1 + fi(a

′)bi + fi+1(a
′)bi+1 (4.22)
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where (a′, b′) is the interpolated point, a′ is known and b′ needs to be calculated.
fi−1(a

′), fi(a′) and fi+1(a
′) are the weighting functions [64].

fi−1(a
′) =

(a′ − ai)(a′ − ai+1)

(ai−1 − ai)(ai−1 − ai+1)
(4.23)

fi(a
′) =

(a′ − ai−1)(a′ − ai+1)

(ai − ai−1)(ai − ai+1)
(4.24)

fi+1(a
′) =

(a′ − ai−1)(a′ − ai)
(ai+1 − ai−1)(ai+1 − ai)

(4.25)

An example for the comparison of linear interpolation and quadratic interpolation is
shown in Fig. 4.8. Because there is more referenced information in quadratic interpo-
lation than in linear interpolation, the curve with quadratic interpolation is smoother
than that with linear interpolation. But the quadratic interpolation is more complicated
and requires more computations than the linear interpolation.
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Figure 4.8: Comparison of linear interpolation and quadratic interpolation (LUT con-
sists of 3 entries)

The contents of LUT in MP/QILUT-based DPD is the same as that in MP/LUT-
based DPD, as shown in Table 4.1. The proposed MP/QILUT-based DPD algorithm is
described in Algorithm 3.

4.3.4 Simulation results

In this subsection, the simulation results of MP/root-finding-based DPD, MP/LUT-
based DPD, MP/LILUT-based DPD and MP/QILUT-based DPD are presented and
compared. In the simulation, the Wiener model mentioned in section 3.5.1 is used as
the simulated PA. The odd-order MP model (4.3) is used to model the simulated PA.
For MP model, the memory depth is 3 (P=3) and the highest nonlinearity order is 9
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Algorithm 3 Proposed MP/QILUT-based DPD

1. Initialize n = 0, d(0) = 0.

2. Begin loop
{

3. Calculate the value of G0u(n)− d(n), denoted by s(n).

4. Find three adjacent valuesE(m−1), E(m) andE(m+1) from Table 4.1, which
are the three closest to |s(n)|. m is determined.

5. Calculate the weighting functions fm−1(|s(n)|), fm(|s(n)|) and fm+1(|s(n)|) by

fm−1(|s(n)|) = (|s(n)|−E(m))(|s(n)|−E(m+1))
(E(m−1)−E(m))(E(m−1)−E(m+1))

fm(|s(n)|) = (|s(n)|−E(m−1))(|s(n)|−E(m+1))
(E(m)−E(m−1))(E(m)−E(m+1))

fm+1(|s(n)|) = (|s(n)|−E(m−1))(|s(n)|−E(m))
(E(m+1)−E(m−1))(E(m+1)−E(m))

6. Calculate the corresponding value of |x(n)| by

|x(n)| = QILUTamp{|s(n)|} =
fm−1(|s(n)|)R(m− 1) + fm(|s(n)|)R(m) + fm+1(|s(n)|)R(m+ 1)

where QILUTamp refers to the amplitude output of QILUT.

7. Calculate the corresponding phase ∠x(n) by

∠x(n) = QILUTpha{|s(n)|} = arg {s(n)} −
{fm−1(|s(n)|)θ(m− 1) + fm(|s(n)|)θ(m) + fm+1(|s(n)|)θ(m+ 1)}

where QILUTpha refers to the phase output of QILUT.

8. Calculate x(n) = |x(n)|ej∠x(n).
9. Calculate n = n+ 1.

10. Calculate

d(n) =
∑P

p=1

∑Q
q=0 cpqx(n− p) |x(n− p)|2q.

11. } Goto loop

(Q=4). The tested input signal u(n) is a 16QAM modulated signal with 3.84 MHz
bandwidth, which is filtered by a raised cosine filter. The roll-off factor of filter is
0.22. The input sequence has 1000 symbols (8 samples/symbol). The average power
of input signal is set to be −4 dBm.

The proposed DPD solutions are compared with MP/root-finding-based DPD in
terms of NMSE between the predistorted signal by the proposed DPDs and that by
MP/root-finding-based DPD, NMSE between the desired linearized PA output and ac-
tual PA output, ACPR of PA output, EVM of PA output, and the consumed time of
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DPD process.

NMSE between the predistorted signal by proposed DPDs and that by MP/root-
finding-based DPD

NMSE between the predistorted signal by the proposed DPD and that by MP/root-
finding-based DPD is defined as

NMSEPD = 10log10

∑N
n=1 |x(n)root−finding − x(n)proposed|2∑N

n=1 |x(n)root−finding|2
(4.26)

whereN is the number of samples, x(n)root−finding the predistorted signal by MP/root-
finding-based DPD, and x(n)proposed the predistorted signal by the proposed DPD.

In this subsection, NMSE between the predistorted signal by the proposed DPDs
and that by MP/root-finding-based DPD can be used to measure the accuracy of the
proposed DPDs. The proposed MP/LUT-based PD, MP/LILUT-based PD and MP/QILUT-
based PD are based on MP/root-finding-based PD. AM/AM and AM/PM characteris-
tics of MP/root-finding-based PD is shown in Fig. 4.9 and Fig. 4.10. It shows that
AM/AM and AM/PM characteristics of MP/root-finding-based PD is the inverse of
that of simulated PA. For the proposed MP/LUT-based PD, MP/LILUT-based PD and
MP/QILUT-based PD, the predistortion accuracy is related to the table size. If the
table size is large enough, they should have the same predistortion ability as MP/root-
finding-based PD.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

Amplitude of PA input signal

A
m

pl
itu

de
 o

f P
A

 o
ut

pu
t s

ig
na

l

 

 

AM/AM of simulated PA
ideal linear output

(a) AM/AM characteristic of simulated PA

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Amplitude of PD input signal

A
m

pl
itu

de
 o

f P
D

 o
ut

pu
t s

ig
na

l

 

 

AM/AM of MP/root−finding−based PD

(b) AM/AM characteristic of MP/root-finding-
based PD

Figure 4.9: AM/AM characteristics of simulated PA and MP/root-finding-based PD

Fig. 4.11(a) shows the evolution of NMSE between the predistorted signal by
MP/LUT-based DPD and that by MP/root-finding-based DPD versus the table size.
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Figure 4.10: AM/PM characteristics of simulated PA and MP/root-finding-based PD

It shows that NMSE value improves with the increasing table size. NMSE value can
achieve −69.2 dB when the table size is up to 2000.

Fig. 4.11(b) shows the evolution of NMSE between the predistorted signal by
MP/LILUT-based DPD and that by MP/root-finding-based DPD versus the table size.
It shows that MP/LILUT-based DPD requires less table size than MP/LUT-based DPD
for the same NMSE accuracy. NMSE value can achieve −71.1 dB with table size of
only 20 (far smaller than 2000).

Fig. 4.11(c) shows the evolution of NMSE between the predistorted signal by
MP/QILUT-based DPD and that by MP/root-finding-based DPD versus the table size.
It shows that MP/QILUT-based DPD further decreases the table size than MP/LILUT-
based DPD for the same NMSE accuracy. NMSE value can achieve −71.8 dB with
the table size of only 10.

From Fig. 4.11, it shows that the predistorted signal by MP/QILUT-based DPD
is the most closest to that by MP/root-finding-based DPD with same table size. For
instance, with same table size 100, NMSE values by MP/LUT-based DPD, MP/LILUT-
based DPD and MP/QILUT-based DPD are −43.1 dB, −99.7 dB and −133.7 dB,
respectively. In other words, when obtaining the same NMSE accuracy, MP/QILUT-
based DPD requires the least table size. As mentioned above, when NMSE value is
about −70 dB, MP/LUT-based DPD, MP/LILUT-based DPD and MP/QILUT-based
DPD require a table size of 2000, 20 and 10, respectively.
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Figure 4.11: Evolution of NMSE between the predistorted signal by proposed DPD
and that by MP/root-finding-based DPD versus table size
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NMSE between the desired PA output and actual linearized PA output

NMSE between the desired PA output and actual linearized PA output is used to
measure the linearity metrics of linearized PA. It is defined as

NMSE = 10log10

∑N
n=1 |G0u(n)− y(n)|2∑N

n=1 |G0u(n)|2
(4.27)

where G0 is the ideal gain, u(n) and y(n) are the input and output of PD-PA system,
respectively.

Fig. 4.12(a) shows the evolution of NMSE between desired PA output and actual
PA output with MP/LUT-based DPD versus table size. It indicates that the linearity
of output improves with the increase of table size. NMSE between desired PA out-
put and actual PA output with MP/root-finding-based DPD achieves −60.7 dB. For
MP/LUT-based DPD, NMSE achieves −60.3 dB when the table size is up to 2000.
MP/LUT-based DPD requires table size of 2000 to obtain similar linearity performance
as MP/root-finding-based DPD.

Fig. 4.12(b) shows the evolution of NMSE between desired PA output and ac-
tual PA output with MP/LILUT-based DPD versus table size. It can be seen that
MP/LILUT-based DPD requires table size of 20 to obtain similar linearity performance
(NMSE −60.3 dB) as MP/root-finding-based DPD.

Fig. 4.12(c) shows the evolution of NMSE between desired PA output and ac-
tual PA output with MP/QILUT-based DPD versus table size. It can be seen that
MP/QILUT-based DPD only requires table size of 10 to obtain similar linearity per-
formance (NMSE −60.2 dB) as MP/root-finding-based DPD. From Fig. 4.12(b), with
table size of 10, MP/LILUT-based DPD obtains NMSE performance−56.2 dB (greater
about 4 dB than MP/QILUT-based DPD).

To see the linearity of PA output with DPD intuitively, Fig. 4.13 shows AM/AM
characteristics of linearized PA. It further validates the results of Fig. 4.12.

ACPR of PA output

ACPR is a metric used to measure the linearity of PA output, which is defined
in section 2.3.2. In the simulation, the offset of adjacent channel is set to 5 MHz.
Fig. 4.14(a) shows the evolution of ACPR of PA output with MP/LUT-based DPD
versus table size. This ACPR refers to the upper ACPR value. ACPR performance of
MP/root-finding-based DPD is−61.2 dB. MP/LUT-based DPD requires a table size of
1000 to achieve the similar ACPR performance (−61.1 dB) as MP/root-finding-based
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Figure 4.12: Evolution of NMSE between desired PA output and actual PA output with
proposed DPD versus table size
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Figure 4.13: AM/AM characteristics of linearized PA

DPD.

Fig. 4.14(b) shows the evolution of ACPR of PA output with MP/LILUT-based
DPD versus table size. It shows that MP/LILUT-based DPD with table size of 10 can
achieve similar ACPR performance (−61.0 dB) as MP/root-finding-based DPD. When
the table size is up to 20, it can achieve the same ACPR performance (−61.2 dB) as
MP/root-finding-based DPD.

Fig. 4.14(c) shows the evolution of ACPR of PA output with MP/QILUT-based
DPD versus table size. It shows that MP/QILUT-based DPD requires the table size
of 10 to achieve the same ACPR performance (−61.2 dB) as MP/root-finding-based
DPD.

ACPR results shown above are obtained at the average input power −4 dBm (the
average output power is 21.4 dBm). In the following, the proposed MP/LUT-based
DPD, MP/LILUT-based DPD and MP/QILUT-based DPD are compared in terms of
different output powers. In order to obtain the best performance, the table sizes of
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Figure 4.14: Evolution of ACPR of PA output with proposed DPD versus table size

MP/LUT-based DPD, MP/LILUT-based DPD and MP/QILUT-based DPD are set to
1000, 20 and 10, respectively. Fig. 4.15 summaries the evolution of ACPR of PA
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output with different output power for proposed DPDs. In Fig. 4.15(a), it shows that
MP/LUT-based DPD with a table size of 1000 can achieve the similar performance
as MP/root-finding-based DPD and MP/LUT-based DPD with table size of 20 has
very bad performance. In Fig. 4.15(b) and Fig. 4.15(c), they give the performance of
MP/LILUT-based DPD and MP/QILUT-based DPD with different table sizes. It can
be seen that MP/LILUT-based DPD with table size of 10 has a similar performance as
MP/QILUT-based DPD with table size of 10. When the table size is 10, the difference
of ACPR performance is very small between MP/LILUT-based DPD and MP/QILUT-
based DPD. To see the difference of MP/LILUT-based DPD and MP/QILUT-based
DPD, the case of table size of 5 is given in Fig. 4.15(d). From Fig. 4.15(d), it shows
MP/QILUT-based DPD with table size of 5 is better than MP/LILUT-based DPD with
table size of 5. It indicates that, when the table size is small, the ACPR performance
of MP/QILUT-based DPD is better than that of MP/LILUT-based DPD. In Fig. 4.16,
the spectrums of outputs of linearized PA with proposed DPDs are given at the average
output power 18.6 dBm.

EVM of PA output

EVM is also a metric to measure the linearity of PA output, which is defined in
sections 2.3.2. Fig. 4.17(a) shows the evolution of EVM of PA output with MP/LUT-
based DPD versus table size. MP/root-finding-based DPD achieves EVM of 0.18%.
MP/LUT-based DPD requires a table size of 300 to achieve an EVM of 0.25%.

Fig. 4.17(b) shows the evolution of EVM of PA output with MP/LILUT-based DPD
versus table size. MP/LILUT-based DPD requires a table size of 10 to achieve an EVM
of 0.19%.

Fig. 4.17(c) shows the evolution of EVM of PA output with MP/QILUT-based DPD
versus table size. MP/QILUT-based DPD requires a table size of 10 to achieve an EVM
of 0.18%.

From Fig. 4.17, it shows that MP/LUT-based DPD requires more table size than
MP/LILUT-based DPD and MP/QILUT-based DPD for the same performance. MP/
LILUT-based DPD and MP/QILUT-based DPD both can achieve a good EVM per-
formance with table size of 10. The difference between MP/LILUT-based DPD and
MP/QILUT-based DPD is very small. In the following, EVMs of MP/LUT-based DPD,
MP/LILUT-based DPD and MP/QILUT-based DPD are compared in terms of different
output powers. In order to obtain the best performance, the table sizes of MP/LUT-
based DPD, MP/LILUT-based DPD and MP/QILUT-based DPD are set to 1000, 10
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Figure 4.15: ACPR of linearized PA output with proposed DPDs at different output
power

and 10, respectively. The results are summarized in Table 4.3 and Fig. 4.18. It fur-
ther verifies that MP/LUT-based DPD requires bigger table size than MP/LILUT-based
DPD and MP/QILUT-based DPD for the same performance. In EVM performance, the
difference between MP/LILUT-based DPD and MP/QILUT-based DPD is small.

Consumed time of DPD process

In this subsection, the consumed time of proposed DPDs is analyzed. The con-
sumed time of MP/LUT-based DPD, MP/LILUT-based DPD and MP/QILUT-based
DPD is shown in Fig. 4.19. The consumed time refers to the time for processing one
predistorted sample in DPD algorithm (not include the time of constructing LUT). It
shows that MP/root-finding-based DPD requires about 180 us. It is the most con-
suming among these DPD methods. The consumed time of MP/LUT-based DPD,



4.4. PROPOSED DPD WITH COMBINATION OF MP AND NN 95

−1 −0.5 0 0.5 1
x 10

7

−80

−60

−40

−20

0
Base band Signal

frequency (Hz)

P
S

D
 (

dB
)

 

 

input
output without DPD
output with MP root−finding DPD
output with MP/LUT DPD (zise 5)
output with MP/LILUT DPD (zise 5)
output with MP/QILUT DPD (zise 5)

(a)

−1 −0.5 0 0.5 1
x 10

7

−100

−80

−60

−40

−20

Base band Signal

frequency (Hz)

P
S

D
 (

dB
)

 

 

input
output without DPD
output with MP root−finding DPD
output with MP/LUT DPD (size 1000)
output with MP/LILUT DPD (size 20)
output with MP/QILUT DPD (size 10)

(b)

Figure 4.16: Spectrums of output of linearized PA with proposed DPDs at average
output power 18.6 dBm

MP/LILUT-based DPD and MP/QILUT-based DPD all increases slightly with the ta-
ble size. MP/LUT-based DPD requires the least time (only 30 us with table size 2000).
According the above analysis of NMSE, ACPR and EVM, MP/LILUT-based DPD
and MP/QILUT-based DPD require less table size. It is enough with table size of 20.
MP/LILUT-based DPD with table size of 20 requires about 45 us. MP/QILUT-based
DPD with table size of 20 requires about 151 us.

4.4 Proposed DPD with combination of MP and NN

In this section, a new DPD method with combination of neural network and MP is
proposed.
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Figure 4.17: Evolution of EVM of PA output with proposed DPD versus table size
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output power
(dBm)

without
DPD

MP/LUT
(size 1000)

MP/LILUT
(size 10)

MP/QILUT
(size 10)

5.93 5.732% 0.044% 0.004% 0.004%

6.92 5.734% 0.044% 0.005% 0.005%

7.92 5.738% 0.045% 0.007% 0.007%

8.92 5.744% 0.044% 0.008% 0.008%

9.91 5.751% 0.045% 0.011% 0.011%

10.90 5.763% 0.046% 0.012% 0.012%

11.89 5.780% 0.047% 0.014% 0.014%

12.88 5.805% 0.048% 0.019% 0.019%

13.86 5.843% 0.048% 0.024% 0.024%

14.84 5.900% 0.054% 0.031% 0.029%

15.81 5.987% 0.059% 0.039% 0.037%

16.77 6.116% 0.066% 0.050% 0.047%

17.73 6.310% 0.076% 0.063% 0.061%

18.64 6.598% 0.091% 0.082% 0.078%

19.60 7.019% 0.111% 0.107% 0.101%

20.52 7.622% 0.139% 0.144% 0.132%

21.41 8.466% 0.192% 0.192% 0.184%

22.28 9.617% 0.253% 0.273% 0.247%

23.12 11.14% 0.597% 0.596% 0.582%

23.93 13.12% 1.634% 1.592% 1.614%

Table 4.3: EVM with different output power

4.4.1 MP and neural network based DPD

Neural network has an ability of learning the dynamic behavior of nonlinear sys-
tem. We would like to use the neural network to learn the dynamic nonlinear behavior
of the predistorter. Feed Forward Neural Network (FFNN) shown in Fig .3.7 is used to
model the predistorter.

It exists some neural network based DPDs in the literature. In most cases, the
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Figure 4.18: EVM of linearize PA output with proposed DPDs at different output
power
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Figure 4.19: Consumed time with different table size

training samples of neural network in the predistorter are the measured input and output
of the real PA. The output of PA is taken as the input sample of neural network. The
input of PA is taken as the output sample of neural network. Such architecture based
on indirect learning algorithm has a problem of modeling accuracy, especially when
the measured signal is noisy [20]. In this thesis, the training samples are derived from
MP/root-finding-based DPD. Firstly, the predistorted signal is calculated based on MP
model with root-finding method. Secondly, such predistorted signal obtained by MP
model is used to train FFNN. Finally, the trained FFNN model is used to calculate the
predistorted signal as a predistorter, so that the cascade of FFNN and PA achieves a
linear behavior.



4.4. PROPOSED DPD WITH COMBINATION OF MP AND NN 99

The structure of FFNN is shown in Fig. 4.20. FFNN is trained by the system input
signal u(nT ) and the predistorted signal x(nT ) obtained by MP/root-finding-based
DPD. This FFNN is based on real-valued input and output. Since u(nT ) and x(nT )

are both complex signals, they are considered in FFNN model as two parts: the real
part and the imaginary part. Real{·} and Imag{·} represent the real and imaginary
parts of the complex signal, respectively. The input of FFNN includes the current and
previous samples. The FFNN is implemented by MATLAB ANN toolbox. The FFNN
generation function is newff and the training function is train.

Figure 4.20: Structure of three-layer feed-forward neural network

4.4.2 Neural network training

In order to obtain a good modeling performance of FFNN, some important param-
eters of FFNN need to be determined. They are number of hidden layers, number
of neurons, transfer function, Back Propagation (BP) network training function, BP
weight/bias learning function, performance function. These parameters setting mainly
depends on empirical analysis. The training sample sequence is 1000.

Number of hidden layers

The universal approximation theorem [76, 77, 94] has proven that a FFNN with
a single hidden layer can approximate any nonlinear function with any desired error.
Therefore, FFNN with a single hidden layer is adopted to realize the predistorter.
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Number of neurons in each layer

The number of neurons of input layer depends on the memory depth. The number
of neurons of hidden layer depends on the empirical analysis. The number of neurons
of output layer depends on the number of FFNN output, so it is set to be 2. To de-
termine the number of neurons of input layer, we compare NMSE (NMSE between
the sample output and the output of trained neural network) performance of NN with
different memory depth. Because the number of neurons of hidden layer is also not
known, the number of neurons of hidden layer is assumed to be 10. The maximum
number of iterations is 300. Table 4.4 shows NMSE performance of NN with different
memory depths. It shows that NN achieves the best performance with memory depth
P = 3. Therefore, the number of neurons of input layer is set to be 8. In the follow-
ing, the number of neurons of hidden layer needs to be determined. Table 4.5 shows
NMSE performance of NN with different numbers of neurons in hidden layer. It shows
NN achieves the best performance when the number of neurons of hidden layer is 25.
Henceforward, the number of neurons of hidden layer is set to be 25.

Memory depth NMSE (dB)

P=1 -57.06

P=2 -58.25

P=3 -61.03

P=4 -59.27

P=5 -58.53

Table 4.4: NMSE performance versus memory depth

Transfer function

A popular choice of transfer function in output layer is the linear function purelin.
For the transfer function of hidden layer, tansig (tan sigmoid function) and logsig (log
sigmoid function) are used mostly. Table 4.6 shows NMSE performance of NN with
different transfer functions in hidden layer. It shows tansig has better performance than
logsig. Thus, tansig function is used as the transfer function of hidden layer.
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Number of neurons NMSE (dB)

5 -36.69

10 -61.08

15 -67.30

20 -71.42

25 -71.99

30 -69.02

Table 4.5: NMSE performance versus number of neurons in hidden layer

Transfer function NMSE (dB)

tansig -72.35

logsig -68.63

Table 4.6: NMSE performance versus transfer function in hidden layer

Other parameters

In FFNN, there are still other parameters to be set. They are set as follows. BP
network training function is trainlm. BP weight/bias learning function is learngdm.
The performance function is mse. Table 4.7 summarizes the topology of the considered
FFNN and its training setup. To obtain a better modeling performance, the number of
iterations of NN is up to 1000 or MSE performance function achieves 10−10.

4.4.3 Simulation results

The trained FFNN model is inserted in the front of PA as the predistorter. Some
simulation results are obtained. NN-based DPD is compared with MP/root-finding-
based DPD in terms of NMSE between the desired linearized PA output and actual
PA output, ACPR of PA output, EVM of PA output, and the consumed time of DPD
process.

Fig. 4.21 shows the AM/AM characteristics of linearized PA with NN-based DPD
at average output power 18.6 dBm. NMSE between the desired linearized PA output
and actual PA output with NN-based DPD achieves -64.47 dB. NMSE between the
desired linearized PA output and actual PA output with MP/root-finding-based DPD is



102 CHAPTER 4. PROPOSED DIGITAL PREDISTORTION METHODS

Characteristic Setting

Neural network three-layer

Number of neurons 8-25-2

Transfer function tansig-purelin

BP network training function trainlm

BP weight/bias learning function learngdm

Performance function mse

Number of training samples 1000

Table 4.7: Neural network training configuration

-68.61 dB. It shows that NN-based DPD has a good linearization performance.
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Figure 4.21: AM/AM characteristics of linearized PA with NN-based DPD

Fig. 4.22 shows the spectrum of output of linearized PA with NN-based DPD and
MP/root-finding-based DPD at average output power 18.6 dBm. ACPR with MP/root-
finding-based DPD is−68.15 dB and ACPR with NN-based DPD−68.00 dB. It shows
that the linearization performance of NN-based DPD is very close to that of MP/root-
finding-based DPD.
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Figure 4.22: Spectrum of output of linearized PA with NN-based DPD

Fig. 4.23 shows the constellations of PA input, PA output without DPD, PA output
with MP/root-finding-based DPD and PA output with NN-based DPD at average output
power 18.6 dBm. The EVM of PA output without DPD is 8.46%. The EVMs of
PA output with MP/root-finding-based DPD and with NN-based DPD are 0.07% and
0.06%, respectively. According to EVM results, it further indicates NN-based DPD
can achieve similar linearization performance as MP/root-finding-based DPD.

The simulation results shown above are based on an average output power of 18.6

dBm. In the following, the simulation results with different output power are given.
Fig. 4.24 summaries the evolution of ACPR of PA output with different output power
for MP/root-finding-based DPD and NN-based DPD. Fig. 4.25 summaries the evolu-
tion of EVM of PA output with different output power for MP/root-finding-based DPD
and NN-based DPD. They show the performance of NN-based DPD is almost same as
that of MP/root-finding-based DPD.

It is known that the training of NN is very time-consuming. Especially when a
good modeling performance is desired, the number of iterations is large. However, the
trained NN is less time-consuming. The consumed time with MP/root-finding-based
DPD and NN-based DPD is presented in Table 4.8. The time refers to the consumed
time for processing one predistorted sample.
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Figure 4.23: Constellation of linearize PA output with NN-based DPD
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Figure 4.24: ACPR of linearize PA output with NN-based DPD at different output
power
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Figure 4.25: EVM of linearize PA output with NN-based DPD at different output
power

DPD method Time (us)

MP/root-finding-based DPD 181.67

NN-based DPD 9.12

Table 4.8: Consumed time with MP/root-finding-based DPD and NN-based DPD





5
Experimental setup and results

In this section, the proposed DPDs are validated experimentally. Some parameters
which influence the linearization performance are discussed, such as the number of bits
of ADC and bandwidth of instruments. The experimental results of ACPR and EVM
are given to compare the different methods.

5.1 Experimental setup

In order to validate the proposed DPDs, an experimental testbed is built. Fig. 5.1
and Fig. 5.2 show the used experimental testbed. It consists of a PA (ZFL 2500), a
PC, a Vector Signal Generator (VSG, Rohde & Schwarz SMU 200 A) and a Spectrum
Analyzer (SA, Agilent E4440A, 3 Hz - 26.5 GHz). The PC provides the baseband
signal to VSG, realizes DPD algorithms and controls the measurement system by using
Matlab toolbox (Instrument Control Toolbox). The VSG generates a RF signal and
sends it to the PA. The SA receives and analyzes the output signal of PA. It is worth
noting that there is a 30 dB attenuator between the output of PA and SA because of the
maximum input power limitation of SA. More details of this testbed are presented in
[32, 95].

The bandwidth of PA ZFL2500 is 500-2500 MHz and its gain is about 31 dB [96].
Fig. 5.3 shows the gain characteristics of PA ZFL2500. The measured linear gain
is 31.67 dB. The average output power at 1 dB compression point is around 17.40

107
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dBm at frequency of 1.8 GHz. Fig. 5.4 shows the dynamic AM/AM and AM/PM
characteristics of PA ZFL2500.

Figure 5.1: Block diagram of experimental setup

Figure 5.2: Photograph of experimental setup

5.2 Discussions

In practical measurements, hardware conditions can not be ignored, such as the
number of bits of ADC (ADC is located is the SA) and instrument bandwidth. These
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Figure 5.3: Gain characteristic of PA ZFL2500
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Figure 5.4: Dynamic AM/AM and AM/PM characteristics of PA ZFL2500

parameters and their influence on measurements are analyzed by some simulations.
The simulated PA is still the Wiener model used in section 4.1. The original input
signal is a 16QAM signal with 3.84 MHz bandwidth. The input sequence is 1000
symbols. And the same sequence is transmitted continuously. The input power is −5

dBm. The DPD method used is the MP/root-finding-based DPD.

To evaluate the influence of number of bits of ADC, an ADC is assumed before the
data acquisition. The samples are quantified and the number of bits of ADC varies from
3 to 16. The sampling frequency of the input signal is 8 samples/symbol. ACPR is used
to quantify the linearization performance. Fig. 5.5 presents the evolution of ACPR
versus the number of bits of ADC. It can be seen that the linearization performance
improves as the number of bits of ADC increases. It indicates that if the number of bits
of ADC is not big enough in the data acquisition, the quantization error is too large
and degrades the linearization performance. In our experimental setup, the acquisition
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of signals by Agilent E4440A is realized with ADC of 14 bits.
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Figure 5.5: Evolution of adjacent channel ACPR versus number of bits of ADC

Another problem is the bandwidth limitation of instrument. In simulation, the sig-
nal bandwidth is only limited by the sampling frequency. In measurement, except for
the influence of the sampling frequency, the signal bandwidth is also affected by the
bandwidth limmitation of instrument. When the bandwidth of instrument is narrower
than that of the signal, the signal passing the instrument will be distorted. Especially,
the signal bandwidth will increase after the predistortion. The bandwidth of the predis-
torted signal is wider than that of the original input signal. Thus, if the bandwidth of
instrument is not sufficiently wide to enable the transmission of the predistorted signal,
the desired predistortion will be not achieved.

In order to evaluate the required bandwidth, the following simulation is made. It
assumes that the sampling frequency of input signal is 50 samples/symbol. To simu-
late the instrument limitation, a lowpass linear-phase FIR filter, with order 200 and a
varying cutoff frequency, is used to limit the bandwidth of the predistorted signal. The
limited bandwidth signal is finally applied to the Wiener PA model. Fig. 5.6 presents
the evolution of ACPR versus the cutoff frequency, where this cutoff frequency repre-
sents the bandwidth of instrument. It indicates that if the bandwidth of instrument is
wide enough, the linearization performance will be perfect. Actually, to obtain good
performance, 5 times is sufficient.

5.3 Experimental results analysis

Before testing the DPDs, the PA modeling is conducted firstly. A 16QAM signal
with 3.84 MHz bandwidth is transmitted to the PA at frequency of 1.8 GHz. Then
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Figure 5.6: Evolution of adjacent channel ACPR versus cutoff frequency

the RF input and output signals of PA are saved. After obtaining two perfectly syn-
chronous signals, these two RF signals are demodulated and processed in baseband.
The baseband input and output are used for PA modeling. The average power of PA
input is -15.93 dBm. The average power of PA output is 15 dBm. The input and output
sequences both have 200 symbols (20 samples by each symbol). The MP model is
chosen for digital predistortion. The best NMSE performance achieves -39.2 dB with
a nonlinearity order 5 and a memory depth 3.

In the measurement, PA ZFL2500 is also driven by a similar 16QAM signal with
different average power. The sampling frequency is 20 samples/symbol. The signal se-
quence is still 200 symbols. The proposed methods, MP/LUT-based DPD, MP/LILUT-
based DPD, MP/QILUT-based DPD and NN-based DPD, are tested on the experimen-
tal testbed.

Fig. 5.7 shows the spectrums of the output of linearized PA with the proposed
DPDs at average output power 14.3 dBm. It can be seen that MP/root-finding-based
DPD has the best linearization performance. For MP/LUT-based DPD, the lineariza-
tion performance is very low when the table size is small (size 10). The quantization
effect related to the table size affects the linearization performance of MP/LUT-based
DPD. It achieves a similar linearization performance as MP/root-finding-based DPD
with table size of 1000 (the quantization error is small). While MP/LILUT-based DPD
and MP/QILUT-based DPD achieve the same performance as MP/root-finding-based
DPD, with table size of only 10. The table size required by MP/LUT-based DPD is
far larger than that required by MP/LILUT-based DPD and MP/QILUT-based DPD.
For MP/LILUT-based DPD and MP/QILUT-based DPD, their difference of ACPR lin-
earization performance is very small with same table size in the measurement. Theoret-
ically, MP/QILUT-based DPD is slightly better than MP/LILUT-based DPD. Because
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the noise and measurement error, MP/QILUT-based DPD can not reflect its advantage
perfectly. At least, MP/QILUT-based DPD is not worse than MP/LILUT-based DPD
with same table size. For NN-based DPD, it can also achieve the same linearization
performance as MP/root-finding-based DPD.
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Figure 5.7: Spectrums of the output of linearized PA with proposed DPDs at average
output power 14.3 dBm

The linearization performance is also evaluated in terms of ACPR and EVM of
the output of linearized PA versus different average output power. Fig. 5.8 shows the
evolution of ACPR of PA output versus average output power for the proposed DPD
methods at the experimental testbed. The offset of adjacent channel is set to be 5
MHz. It indicates that MP/LUT-based DPD (size 1000), MP/LILUT-based DPD (size
10), MP/QILUT-based DPD (size 10) and NN-based DPD all can achieve the same
linearization performance as MP/root-finding-based DPD.

Fig. 5.9 shows the evolution of EVM of PA output versus average output power for
the proposed DPD methods. It further validates the results stated above. MP/LUT-
based DPD (size 1000), MP/LILUT-based DPD (size 10), MP/QILUT-based DPD
(size 10) and NN-based DPD all can reduce the distortion, especially at the high non-
linear region.

About the comparison result of consumed time of the proposed DPDs, it is pre-
sented in section 4.3.4 and section 4.4.3. In the measurement, the number of signal
sequence is 4000. Here the total time for obtaining 4000 samples of predistorted sig-
nal is compared. This consumed time only refers to the time of DPD process. For
NN-based DPD, the configure parameter of NN is the same as shown in Table 4.7
and the consumed time of NN training is not included in DPD process. For a good
accuracy, we run each DPD algorithm for 30 times and their average time is ob-
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(b) MP/LILUT-based DPD
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(c) MP/QILUT-based DPD
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Figure 5.8: ACPR of linearized PA output with proposed DPDs

tained as the consumed time of DPD. The consumed time of MP/LUT-based DPD
(size 1000), MP/LILUT-based DPD (size 10), MP/QILUT-based DPD (size 10) and
NN-based DPD is summarizd in Table 5.1.

It shows MP/root-finding-based DPD requires about 699.8 ms for 4000 samples.
It is the most consuming. The average consumed time of MP/LUT-based DPD (size
1000), MP/LILUT-based DPD (size 10), MP/QILUT-based DPD (size 10) and NN-
based DPD are 112.5 ms, 189.3 ms, 559.4 ms and 38.4 ms, respectively. The average
consumed time of NN-based DPD is the lowest, but the training of NN is very time-
consuming.
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(b) MP/LILUT-based DPD
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(c) MP/QILUT-based DPD
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Figure 5.9: EVM of linearized PA output with proposed DPDs

DPD method Time (ms)

MP/root-finding-based DPD 699.8

MP/LUT-based DPD (size 1000) 112.5

MP/LILUT-based DPD (size 10) 189.3

MP/QILUT-based DPD (size 10) 559.4

NN-based DPD 38.4

Table 5.1: Consumed time of proposed DPDs



6
Conclusions and perspectives

In this section, we make a conclusion of this thesis. And a brief discussion is
provided for the future work.

6.1 Conclusions

In this thesis, we studied the baseband digital predistortion method for linearizing
power amplifiers with memory effects. In wireless communication system, power am-
plifier is an indispensable component. Its inherent nonlinearity and memory effects
lead to the in-band and out-of-band distortions and affect the power efficiency. Base-
band digital predistortion is one of the most promising methods for compensating the
distortions.

In the beginning, this dissertation presents the background of linearization tech-
niques. It includes the evolution of wireless communication systems, transceiver,
power amplifier, nonlinearity characteristics of power amplifier, power amplifier be-
havior modeling and some criteria for evaluating the nonlinearity. After that, sev-
eral classical linearization techniques are briefly introduced, such as power backoff,
feedforward, feedback, LINC, EER and digital predistortion. Among these methods,
digital predistortion is adopted in this thesis due to its ability of reconfiguration and
simplicity of implementation. It exists lots of different digital predistortion methods
in the literature. They can be classified into three categories: LUT based DPD, neu-
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ral network based DPD and model based DPD. They have their own advantages and
disadvantages. In this thesis, these are three types of DPDs all have been studied. In
addition, the learning architecture and identification algorithm of digital predistortion
are described. There are two different learning architectures (ILA and DLA) to imple-
ment digital predistortion. ILA and DLA are compared in terms of condition number
of matrix, modeling performance and linearization performance. It indicates that DLA
is more robust than ILA when considering the noise and quantification error caused by
ADC.

Four DPD methods based on DLA, MP/LUT-based DPD, MP/LILUT-based DPD,
MP/QILUT-based DPD and NN-based DPD are proposed in this thesis. In practice,
they are implemented by two kinds of solutions. One solution is to combine MP
and LUT. LUT based DPD has the advantage of simplicity, but its linearization per-
formance depends on the LUT size. MP based DPD has good linearization perfor-
mance but it is time-consuming, such as MP/root-finding-based DPD. Consequently,
the method of combining LUT and MP is suggested. The other solution is to use
neural network to realize digital predistortion due to its strong ability of learning and
imitation.

MP/LUT-based DPD is proposed based on MP/root-finding-based DPD by comb-
ing MP and simple non-interpolated LUT. In MP/root-finding-based DPD, the ampli-
tude and phase of the predistorted signal both are obtained by complicated mathemati-
cal operations. This process is very time-consuming. In MP/LUT-based DPD, the pro-
cesses of calculating the amplitude and phase of predistorted signal are both replaced
by using LUT. The consumed time of MP/LUT-based DPD decreases greatly. How-
ever, the linearization performance of MP/LUT-based DPD depends on the table size.
Based on MP/LUT-based DPD, MP/LILUT-based DPD is proposed by introducing the
linear interpolation technique. MP/LILUT-based DPD greatly reduces the table size at
cost of a small increase of time. But the consumed time of MP/LILUT-based DPD is
still less than that of MP/root-finding-based DPD. Compared with the linear interpola-
tion, the quadratic interpolation has more accurate interpolation performance. In other
words, there is still a room for improving MP/LILUT-based DPD. MP/QILUT-based
DPD is proposed based on MP/LILUT-based DPD by using quadratic interpolation
instead of linear interpolation. The simulation results show MP/QILUT-based DPD is
slightly better than MP/LILUT-based DPD with same table size (small size). In addi-
tion, NN-based DPD is proposed based on a single layer feedforward neural network.
The innovation is the training samples of neural network is obtained from MP/root-
finding-based DPD. The trained neural network is taken as the predistorter. Although
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the training process of neural network is time-consuming, the trained predistorter is
less time-consuming.

6.2 Perspectives

To continue this work, some prospects are suggested for the future work.

1. PA behavioral modeling is very important for the performance of DPD. The
generalized memory polynomial is a good model widely used in recent literature.
The complexity of GMP is a little higher than that of MP, but far less than that
of Volterra series model. How to design a predistorter by combining GMP and
LUT should be investigated.

2. Nonuniform LUT technique is very promising for improving our work. It is
important to distribute table size effectively in different regions of PA. Theoret-
ically, at the high linearity region and low probability density region, it should
distribute less table size. Conversely, at the nonlinear region and high probability
density region, it should distribute more table size. How to adaptively distribute
table size depending on the characteristic of PA and the probability density func-
tion of input signal is worthy of research.

3. In real applications, DPD is usually used with peak-to-average power ratio re-
duction technique. The combining of DPD and PAPR reduction can further im-
prove the power efficiency of PA. In the future work, implementing a PAPR
reduction technique and combining it with the proposed DPD methods are an
interesting study orientation.
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Thèse de Doctorat

Xiaowen FENG
Techniques efficaces en bande de base pour linéariser un amplificateur de
puissance avec effet mémoire

Efficient baseband digital predistortion techniques for linearizing power
amplifier by taking into account nonlinear memory effect

Résumé
Les techniques de pré-distorsion numérique (DPD) en
bande de base permettant de linéariser un amplifica-
teur de puissance (PA) avec effets mémoires non li-
néaires sont étudiées. Des éléments de base liés à la
linéarisation du PA sont introduits, tels que le compor-
tement non-linéaire du PA, son influence sur les sys-
tèmes de communication, sa modélisation et carac-
térisation... Puis certaines techniques de linéarisation
existantes sont décrites, telles que le recul de puis-
sance, le feedforward, la boucle de retour, l’amplifica-
tion linéaire avec des composants non linéaires et la
DPD. La DPD est la technique de linéarisation la plus
prometteuse. L’architecture d’implémentation et les al-
gorithmes d’identification de la DPD sont décrits. Dans
cette thèse, quatre méthodes originales de DPD sont
proposées. La première méthode (MP/LUT DPD) com-
bine un modèle polynomial à mémoire (MP) avec une
simple LUT. L’amplitude et la phase du signal pré-
distordu sont calculées par cette LUT. La deuxième
méthode consiste à ajouter une interpolation linéaire à
cette méthode. La troisième méthode consiste à amé-
liorer la technique d’interpolation par une interpolation
quadratique. La quatrième méthode exploite conjoin-
tement la MP DPD et un réseau de neurones. L’inno-
vation principale dans cette dernière, réside dans l’ap-
prentissage du réseau de neurones avec les échan-
tillons du signal pré-distordu par la MP DPD. Enfin,
les résultats de simulation et expérimentaux en termes
de linéarisation, d’amélioration spectrale, de rotation
de constellation et de temps de calculs sont fournis.
Les méthodes proposées permettent différents com-
promis entre les performances de linéarisation et la
complexité.

Abstract
Baseband digital predistortion (DPD) techniques for lin-
earizing power amplifiers (PA) with memory effects are
investigated in this thesis. Firstly, the relevant elements
concerning PA linearization are introduced, such as PA
nonlinearity behavior, its influence on the communica-
tion systems, its modeling and characterization... Then
some existing linearization techniques are presented,
such as power backoff, feedforward, feedback, lin-
ear amplification with nonlinear components and DPD.
DPD is the most promising linearization technique. Af-
ter that, the implementation architecture and identifi-
cation algorithms of DPD are described. In this the-
sis, four DPD methods are proposed. The first method
(MP/LUT DPD) is to combine a memory polynomial
(MP) model and a simple non-interpolated LUT. Both
the amplitude and phase of the predistorted signal are
calculated by LUT. The second method is to add lin-
ear interpolation technique to MP/LUT DPD. The third
method improves the second one by using a quadratic
interpolation technique to MP/LUT DPD. The fourth
method is to combine MP DPD and feed forward neu-
ral network. The principal innovation is that the training
samples of the neural networks are the predistorded
signal obtained by MP DPD. Finally, simulation results
and experimental results are given and analyzed. The
proposed methods provide different trade-off between
the linearization performance, time efficiency and com-
plexity.

Mots clés
Amplificateur de puissance, Prédistorsion numérique,
Techniques de linéarisation, Effets mémoires non
linéaire, Look-up tables, Réseau de neurones.

Key Words
Power amplifier, Digital predistortion, Linearization
techniques, Memory effects, Look-up tables, Neural
network.
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