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Chapter I 

General Introduction  

  

1.1 Introduction 

 

 Imagine a musical symphony composed out of one type of notes, an artistic painting with 

one color, or an architectural design with similar building blocks, it is boring, but also far from 

being optimal. In any creative or architectural design one needs a set of basic building 

components: different notes for musicians, different colors for painters are examples. And having 

these several basic building components gives the designer more freedom and more 

dimensionality to achieve very sophisticated designs. 

 In the area of engineering and applied sciences where the design process lies in the heart 

of these disciplines, we can see clearly how the invention of new materials (building 

components) has automatically led to a new revolution in the technology: semiconductors, 

graphene and modern nano-materials are simple examples.    

 Likewise in the area of electromagnetism and electromagnetic devices, the fact that there 

are media with different properties is a blessing, even though this may make the design and 

analysis process more difficult. It will allow us to design and build much advanced devices that 

outperforms the ones that use simple media only. A simple example which was one of the 

motivations behind writing this thesis is to study the effect and the potential usages of saturated 

[1.I] [2.I] and non-saturated ferrite material inside different devices [3.I], like waveguides or 

antennas…etc. Usually, this material is very complex since it is fully nonhomogeneous, 

frequency dependent, anisotropic, and all these properties depend on externally applied static 

magnetic-field. Even with these difficulties, the usage of this material in antennas (as a substrate) 

for instance has shown better performance, thanks to the tunability of antenna properties by 

means of an external applied magnetic field. Apart from the non-saturate ferrite, complex media 

in nature or those which are fabricated in laboratories are countless. Thus, we imagine the 

enormous number of applications that will benefit from using these media. Furthermore, we 

should not forget the electronic circuits that tend to increase their frequency of operation every 



Chapter I: General Introduction 

2 
 

year and they will eventually require the use full-wave electromagnetic simulation. Also, as 

mentioned above, these circuits will benefit from the usage of complex media [4.I]. 

 Besides the real life applications, dealing with complex media is a mathematical issue 

and hot topic of research. When dealing with fluid dynamics problems (Nervier-Stokes 

equations) [5.I], electromagnetism (Maxwell’s equations) [3.I], thermodynamics (potentials 

equations) [5.I]…etc., whatever the domain of application considered, we always face the same 

problem of developing reliable computational schemes capable of handling these complex 

media. Last but not least, one has to elaborate reliable and relevant numerical experiments to test 

and validate these numerical schemes [6.I] [7.I]. 

 In this introductory chapter of the thesis, we first define the computational 

electromagnetics and computational domain components. Then, we discuss three formulations to 

describe Maxwell’s equations mathematically and how every formulation is more suitable in 

certain scenarios. It is followed by a comparison between different computational schemes. We 

explain further the problem statement, the objectives of this work and briefly what has been 

achieved. Finally, we will mention the computer resources that have been used to accomplish 

this work.  

 

1.2  Computational Problem 

 

 A computational problem is defined as a mathematical object that contains a set of given 

data and a collection of questions and unknowns that computers possibly can solve [8.I] [9.I]; it 

could be a problem of factoring a number or a problem to solve a complex system of equations 

numerically or a problem of doing a full simulation of a very complex system...etc. In the field of 

numerical\computational electrodynamics, we usually face problems that involve a region of 

space-time filled by different media, in which some vector-quantities (electric and magnetic 

fields) are propagating and changing with time and space. Those fields are governed by a system 

of differential equations (Maxwell’s equations), and the space-time region is surrounded by some 

boundary and initial conditions [10.I]. Figure.1.I shows different components of a computational 

problem which is detailed below: 
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 The dynamical system of equations (Maxwell’s equations)  

 

 This system of equations which governs the evolution of fields in every localion (govern 

the local behaviour of the solution). In other words, at any given point in the computational 

domain, the system of differential equations provides us with full information about the way the 

fields are going to evolve, assuming we already know the present and the past values of the fields 

at that point and its neighborhood. However, if the system is time dependent (which means that it 

has some type of memory) then it will be necessary to know the previous values of the fields in 

that neighborhood in order to calculate the future values of the fields (like the case of dispersive 

media) [3.I] [11.I].  

 

 The boundary conditions 

 

 Even though they may not appear explicitly in each point in the computational domain 

(usually they appear explicitly at the interface between two different media), they control the 

global behavior of the solution. The existence of specific modes of propagation inside a 

waveguide is an example. In computational electrodynamics, there are different types of 

boundary conditions, but it is more suitable to classify them into two categories:   

 

 Natural boundary conditions 

 

At the interface of between different media, it is obligatory to respect some boundary 

conditions (the continuity of tangential electric and normal magnetic field induction components 

at the interface between different media) [12.I]. Furthermore, even inside homogenous media the 

boundary conditions should be respected at every point in the space, because they are  direct 

implication of Maxwell’s equations [11.I] [4.I]. A special case of natural boundary condition is 

the Perfect Electric Conductor (PEC) which ideally exists at the surface of media with infinte 

electric conductivity. The duality, that exists in electromagnetism allows the dual ideal (but 

ficticious) medium that has infinite magnetic conductivity. We thus refer to Perfect Magnetic 

Conductor (PMC) whose boundary conditions are the dual of the ones of the PEC. 
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 Artificial boundary conditions 

 

For volumic numerical formulation, it is necessary for space unbounded problems to limit 

the computational domain by Artificial Boudaries Conditions (ABC) that emulate the truncated 

space outside. They can be classified into two categories: 

 One-way equation techniques which evaluate field values at boundaries from nearby 

samples. 

 Bérenger's type of ABC which extend the computational domain by a non-Maxwellian 

artificial medium that absorbs fields with negligible reflections back to the computational 

domain. 

More about boundary conditions will be presented in chaper III [6.I] [13.I] [14.I]. 

 

 Initial Conditions 

 

They are not relevant when steady-state solutions in linear time invarient (LTI) systems 

are desired. However, for time-domain solutions a full knowledge of them is required for 

evaluating the transient response. In time domain-methods, it is traditionally to assume that the 

fields are identically zeros at the beginning of the simulation (causality). Once the souce is 

applied, fields start to propagate [6.I] [10.I].  

 

 Sources 

 

In differential form of Maxwell’s equations, we have to define current sources (or 

associated charge distributions) explicitly. This means that we need to know a priori the regions 

that contain them and the corresponding value of the source at each point in those regions. In 3D 

structures we have current and associated charge densities. If one is interested in illuminating a 

computational domain by a plane wave (or any type of waves), it is possible to use the technique 

of Huygens’ surface. Equivalent surface current densities, both magnetic and electric are injected 

at the surface of the Huygens’ surface that encloses the region to be illuminated with total field. 

These sources are related to incident fields by using equivalence principle [15.I] [16.I] [4.I]. 
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Figure 1.I, computational domain components 

 

 Materials 

 

 Materials represent the environment in which fields evolve and propagate. As a material 

at the ultimate level may consist of charged elementary particles, these may interact with the 

electromagnetic fields. This interaction can take different forms, which are characterized by key 

parameters that are involved in fields’ evolution. More about the physics of materials will be 

discussed in chapter II [3.I] [4.I]. 

 

 Coordinate system 

 

 The system of coordinates is a mathematical tool to describe the geometrical properties 

(shapes and positions) of different objects in the computational domain; it could be Cartesian, 

cylindrical, spherical, or any other appropriate coordinate system. There is another mathematical 

very important tool accompanied with any geometry, namely, the metric tensor [17.I] [18.I], 

which is usually ignored in most cases that deal with Euclidian and Minkowskian spaces. 

However, in a general geometry, one should state the metric tensor explicitly, because the 

coordinate system identifies every point in space with n-tuples that define that point uniquely. 

Also, the metric tensor gives full information about the distances between any two points [18.I]. 

The reason behind not mentioning the metric tensor in traditional Euclidean and Minkowskian 

spaces, is that the distance between any two points is by default governed by the Pythagorean 

Theorem. As we will see in the next section, to solve Maxwell’s equations in presence of curved 
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space-time geometry like the one beside a black hole, one should use Maxwell’s equations in 

tensor form and should work in the Riemannian geometry platform [17.I].  

 

 

1.3  Maxwell’s equations in different formulations 

 

 Maxwell’s equations came into light after years of work by J. Clark Maxwell between 

1861 and 1862. His formulation is based on many results obtained by several researchers who 

worked on the field before him like Michel Faraday, and Ampère…etc. Those equations came to 

govern all the aspects of wave-nature of electromagnetism. They also state the exact relations 

between electric and magnetic fields, and they show why they can’t exist separately (except ate 

DC when dealing with static fields) [4.I]. 

 Maxwell’s equations have two main formulations, the microscopic version that works at 

the atomic and molecular level and macroscopic version that is valid for the case when media 

can be considered as continuous. In this case, any infinitesimal volume can be characterized by 

an average constitutive parameter value. By applying an appropriate statistical physic analysis, 

one can derive from the microscopic description the macroscopic model [3.I] [4.I]. 

 Originally, Maxwell’s equations were written in twenty scalar equations. It is later that 

Hertz and Heaviside wrote them in the modern vector form. Introducing the general Ohm's laws, 

they can be expressed in the general form (1.I). However, after the publication of the relativity 

theory, it became necessary to use suitable mathematical tools to describe electromagnetism in 

reference frames with high gravity fields, or with high speeds with respect to a frame of 

reference. In other words, when the metric tensor of the space-time is no longer Minkowskian 

[17.I], the reformulation of Maxwell’s equations in tensor form (2.I) was a necessity to study the 

electromagnetic radiations in the presence of heavy objects such as stars and black holes in deep 

space [5.I] [19.I]. 
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Table 1.I, Maxwell's equations in different mathematical forms [4.I] [20.I] 

Vector Form 

 

∇ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
− 𝜎𝑚 ∗ �⃗⃗� − 𝐽 𝑚 

∇ × �⃗⃗� = −
𝜕�⃗⃗� 

𝜕𝑡
− 𝜎𝑒 ∗ �⃗� − 𝐽 𝑒 

∇. �⃗⃗� = 𝜌𝑣 

∇. �⃗� = 0 

(1.I) 

Tensor Form 
∇[𝛼𝐹𝛽𝛾] = 0 

∇𝛼(√−𝑔𝐹𝛽𝛼) = 𝜇𝑜𝐽
𝛽 

(2.I) 

Differential Form 
𝑑𝐹 = 0 

𝑑 ∗ 𝐹 = 𝜇𝑜𝐽 
(3.I) 

  

 

where �⃗�  and �⃗⃗�  are the electric and magnetic fields intensities, respectively,  �⃗⃗�  and �⃗�  are the 

electric and magnetic field densities, respectively. 𝜎𝑒 and  𝜎𝑚 are the electric and magnetic 

conductivity tensors, respectively. 𝐽 𝑒 and 𝐽 𝑚 are the impressed magnetic and electric current 

sources, and 𝜌𝑣 is the charge density. 

 While tensor formulation of Maxwell’s equations is analogous to differential equation 

formulation in vector form, the differential form of Maxwell’s equations (3.I) is analogous to 

integral equation formulation in vector form [20.I] [21.I]. If one is interested in solving 

Maxwell’s equation in general (non-Minkowskian) space-time geometry, then the differential 

form provides a solid tool to perform the necessary integrations in this kind of complicated 

space-time geometry [18.I]. Even with normal Euclidian geometry one could apply numerical 

methods based on differential form of Maxwell’s equations instead of tradition integral equation. 

This can help to overcome many numerical problems we encounter in vector calculus such as 

different types of singularities or dealing very fine details in multi-scale computational problems 

[16.I] [21.I]. Referring to table 1.I, fields in the tensor form are defined by [17.I] [5.I]: 
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𝐹𝛼𝛽 = [

0 −𝐸1

𝐸1 0
−𝐸2 −𝐸3

−𝑐𝐵3 𝑐𝐵2

𝐸2 𝑐𝐵3

𝐸3 −𝑐𝐵2
0 −𝑐𝐵1

𝑐𝐵1 0

]                                                (4.I) 

𝐻𝛼𝛽 = [

0 −𝐷1

𝐷1 0
−𝐷2 −𝐷3

−𝑐𝐻3 𝑐𝐻2

𝐷2 𝑐𝐻3

𝐷3 −𝑐𝐻2
0 −𝑐𝐻1

𝑐𝐻1 0

]                                                (5.I) 

  

The metric tensor  𝑔𝛼𝛽  is a square matrix, that uniquely defines distances between 

different points in space (this is the reason behind its name), and 𝑔 is the determinant of the 

metric tensor. The latter is equal to unity in normal Minkowskian space-time. Thus it doesn’t 

appear in traditional vector form of Maxwell’s equations: 

𝑔 = 𝐷𝑒𝑡(𝑔𝛼𝛽)                                                    (6.I) 

 In general material, constitutive parameters are defined by the relation between the field 

tensors 𝐹𝛼𝛽 and 𝐻𝛼𝛽 which is given by some function 𝑓 that is material dependent [17.I], such 

as: 

𝐻𝛼𝛽 = 𝑓(𝐹𝛼𝛽)                                                  (7.I) 

where 𝑓 is some general tensorial function. For the special case of free space (7. I) becomes: 

𝐻𝛼𝛽 = 𝜀0𝐹𝛼𝛽                                                 (8.I) 

 In differential forms (3.I) the symbol ∗ is the Hodge-star operator, and fields are defined 

as [20.I]: 

𝐹 = 𝐹𝛼𝛽𝑑𝑥𝛼 ∧ 𝑑𝑥𝛽                                                        (9.I) 

where ∧ is the exterior product operator, 𝑑𝑥𝛼 and 𝑑𝑥𝛽 are incremantal displacement 1-form 

quantities [18.I].  As shown in (6.I), fields are contained in the 2-form quantity 𝐹, and the 

objective of solving system (3.I) is to calculate the field 2-form 𝐹 [20.I] [21.I]. 

 

 

 

 



Chapter I: General Introduction 

9 
 

1.4  Computational methods in electromagnetics 

 

 Analytical methods either in electrodynamics or any other discipline are practical only for 

simple problems; this includes simple geometry, simple boundary conditions and simple 

equation parameters (called constitutive equations in electromagnetics) [4.I]. This is because 

when facing a simple problem the amount of information one has to process is limited. For 

instance, the sphere is characterized by its radius and the position of its center. Hence, full 

analytical solutions can be obtained. In a general manner, one can state that an analytical solution 

is feasible if boundary conditions are invariant over fixed value of coordinate parameters. Thus, 

one necessary (but not sufficient) condition is that structure boundaries coincide with the 

coordinate system.  

 However, in real life, structures are complex in shape and material properties. Hence, 

some numerical techniques should be applied to obtain useful results. Thus, in the majority of 

practical problems, the use of numerical methods is indispensable. To name few: scattering of 

objects with arbitrary shape to calculate their radar cross section (RCS), to predict the 

performance of antenna systems or to simulate an electromagnetic compatibility test (EMC) for a 

new device [6.I] [13.I]. 

 The above applications require a huge amount of variables to be processed. Hence, it is 

necessary to use a computer (or a super-computer) with efficient numerical techniques to obtain 

useful results within a realistic amount of time. In electrodynamics, as in many other fields in 

physics, there are plenty of numerical techniques that could be applied to solve the same 

problem. Obviously, any method should give the correct solution. However, all methods have 

their pros and cons and some are more suitable than others for certain types of problems as 

shown in table 2.I. 

 In computational electrodynamics there are two domains in which numerical schemes can 

be applied: time-domain (TD) or frequency-domain (FD). In addition, the initial problem can be 

formulated in different ways. For instance, curl’s differential equations, Maxwell integral form, 

Helmholtz equation or variational form (see table 3.I). In the following pages we briefly discuss 

the most popular full-wave numerical schemes in EM for analyzing structures with general 

geometries, and categorize them in their typical domain of solution either in TD or FD [15.I]. 
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1.4.1 Time-Domain methods 

 

 In some applications, the main interest is the transient response to an electromagnetic 

simulation. In others, we are rather interested in performing a very wideband characterization, 

for instance, a wideband antenna or filter. In some other applications, we may encounter material 

exhibiting nonlinear behavior. For all the above mentioned applications, using time-domain 

methods is the most suitable and natural choice for carrying out the necessary simulations. In 

addition, while frequency domain methods provide the steady state solution for exactly one 

frequency, time domain methods give us the complete spectrum of solutions (within the validity 

of the method and according to the frequency spectrum of the source signal), including the 

transient part [6.I] [7.I] [13.I].  

 Finite difference time domain (FDTD) 

 

 FDTD method is the easiest and the most direct way to solve Maxwell’s equations and, in 

general, any differential equation based system. The idea behind this method is to replace the 

derivatives with respect to time or space with discrete derivatives .i.e.  

𝜕𝐹

𝜕𝛼
≈

𝐹(𝛼+1,�̅�)−𝐹(𝛼,�̅�)

∆𝛼
                                                (10.I) 

where �̅� stands for the arguments that the function 𝐹 may depend on. Similarly, one could derive 

expression for second or higher order derivatives by using Taylor’s series approximation. 

 The next step is to construct a system of update equations, which depend on the previous 

time step (explicit form of solution) and the solution will evolve with time. Keep in mind that we 

should have the knowledge of both initial and boundary conditions. Note that because of the 

local nature of the formulation, the computational domain extends to the space where fields exist. 

One refers to volumic methods and in this case the computational domain should be limited by 

some known boundary conditions [22.I]. 

 Even though finite difference techniques have been known for many decades, its usage 

for modeling electromagnetic problems became feasible just after the invention of computers, 

namely, in the sixties. In his very famous paper, K. Yee [10.I] presented an algorithm for FDTD 

to solve Maxwell’s equations. He introduced two 3-D meshes for the same geometry, one for 

electric fields, and the other for magnetic fields. Meshes are staggered by half space and time 

steps.  
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 Time-Domain Transmission-Line Matrix method (TD-TLM) 

 

 Circuit theory approach for EM problems, is valid only when the wavelength is much 

larger than the circuit dimensions. In other words, we exclude the space from the problem and 

assume that quantities reach all points in the space domain simultaneously. The next 

improvement on the circuit theory model is to introduce transmission-lines between different 

connecting nodes separated by distances of the wavelength order. Hence, the model includes 

delay and reflection phenomena by using the transmission-line theory [14.I] [13.I]. The basic 

principle of the TLM is to replace the computational domain by a network of interconnected 

transmission-lines running along the Cartesian directions [23.I]. Field propagation is simulated 

by ordinary waves that travel along the interconnected transmission-line network. If the 

interconnecting lines are short compared to the wavelength signal, then the field propagation 

process is correctly simulated. Scattering processes take place at every node according to 

electromagnetic laws and produce local reflections. Fields are computed by linear combination 

of local waves. Details will be presented in chapter III and appendix A. 

 

 Finite Integration Technique (FIT) 

 

 FIT is a computational method based on the  Discretization of Maxwell’s equations in 

their integral form. Unlike the FDTD (which is based on the discretization of the Maxwell’s curl 

equations), the FIT inherently fulfils the divergence equations, hence, the conservation of charge 

and energy is guaranteed. As a result, FIT has a better behavior as FDTD in terms of stability. In 

addition, the compact matrix form is very elegant and mesh independent. Note that for Cartesian 

mesh both algorithms are identical [7.I]. 

 

 Discontinuous Galerkin time-domain method  

 

 Discontinuous Galerkin method is a computational technique developed in early 1970 to 

solve partial differential equations [24.I]. This technique combines different features from FEM 

(Finite-Element Method) and FIT methods. This makes it an efficient method to handle complex 

geometrical structures that that are discretized into conforming, non-conforming and locally 
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refined meshes [25.I]. The time-domain version of this method (DGTD) became an attractive 

numerical technique to solve time-domain Maxwell’s equations especially when complex 

structures and fine-details are involved [25.I]. However, DGTD method is relatively new 

method, and presently, no well-known commercial solver uses it.  

 

 Multi-resolution time domain (MRTD) 

 

 In essence the MRTD is an adaptive computational method based on FDTD technique, 

and the wavelet analysis. This method has very attractive features, such as the ability to work 

with larger spatial and time step sizes than normal FDTD, with high level of accuracy [26.I]. 

However, MRTD requires more operations per iteration and loses its advantages when refined 

mesh is required near singularities [27.I]. Therefore, it will not be discussed further. 

 

1.4.2 Frequency-Domain methods 

 

 When the computational domain is linear (linear materials), and when the main interest is 

to calculate the response for single frequency, or few set of frequencies (for narrow band 

characterization), frequency-domain methods exceeds time-domain ones. Unlike time-domain 

schemes, they generate a matrix system to be solved for a given frequency. However, because of 

the huge advancement of the precondition and iterative linear solvers in the last few decades, 

solutions can be obtained in some reasonable time for thousands of degrees of freedom. In 

addition, interpolation techniques have been developed that necessitate solutions at few points 

within a given frequency range. However, accuracy is reached for rather smooth characteristics 

only. 

 Frequency-domain methods are also preferable when dealing with dispersive media, 

since in frequency-domain they are simply characterized by complex numbers well defined at 

the frequency of interest. In time domain the dispersive nature of any parameter translates in 

terms of convolution process. Therefore, unlike for FD methods, media are represented by 

filtering processes that should be performed every time step [13.I] [6.I]. 

 Theoretically, every method has both its time and frequency-domain versions. This is due 

to the fact that any linear system that can be analyzed in time domain can also be analyzed in 
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frequency domain via Fourier-transformation. While in literature there are many frequency 

domain computational schemes, the following list contains the ones that are the most used by 

research labs in academic and industrial sectors in the domain of electromagnetism [13.I] [15.I] 

[28.I].  

 

 Finite Element method (FD-FEM) 

 

 FEM is a numerical scheme used to solve for variational formulations. The original 

problem, which is the Helmholtz equation, is replaced by an associated functional to the 

Helmholtz operator with specified boundary conditions. This functional, which is a definite 

integral has a Kernel related to the unknown function to be determined. Using a numerical 

approach, it is made stationary (weak formulation) generating a linear system of equations whose 

unknowns are trial function coefficients. The FEM is specific to the choice of trial functions that 

approximate the solutions in a sub domain (element) by polynomials. Usually, elements that 

approximate the computational domain are tetrahedrons in 3D and triangles in 2D.  In case of 

TD-FEM the procedure is done for every time step [29.I]. 

 

 Method Of Moment (MoM)  

 

 The MoM is a numerical method used to solve any linear equation that can be 

differential, integral, integro-differential. It is typically applied in electromagnetics to field or 

potential integral equation formulations [43.I]. Indeed, these quantities can be written in terms of 

integrals containing the unknown currents where the Kernel involves the problem Greens 

functions. To solve numerically, the unknown currents are expressed in terms of linear 

combination of weighted basis-functions defined in the computational domain. The objective is 

to find these weights by minimizing the residual error with respect to a set of testing functions. 

This procedure generates a linear system of equations from which the basis function weighing 

coefficients are determined to approximate the current distributions. Fields can then be 

computed from those distributions via Green's functions. The MOM is the most general 

numerical procedure and it can be shown that other methods can be expressed by a MOM 
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system if basis and test functions are chosen appropriately [30.I] [43.I]. In TD-MOM one 

perform this procedure every time step [31.I]. 

Table 2.I, typical solution domain of numerical methods [15.I] 

Method Formulation Typical domain 

FDTD Differential equations time-domain 

TLM Local wave decomposition time-domain 

MOM Integral equations frequency-domain 

FEM Variational frequency-domain 

FIT Maxwell local integral form time-domain 

DGTD Variational time-domain 

 

 

Table 2.I, comparison between different largely-used computational techniques, ∗∗∗ excellent, ∗∗ good, ∗  not optimal, No not 

appropriate [15.I]  

Method 

Non-

homogeneous 

media 

Curved 

Boundary 

Approximation 

Dispersive 

media 

Anisotropic 

media 

Nonlinear 

and non-

stationary 

media 

Wide band 

characterization 

and transient 

FDTD ** * ** ** ** ** 

TD-TLM ** * ** ** ** ** 

FIT ** ** ** ** ** ** 

FD- (IE) 

MOM 
** ** *** * No * 

FD-FEM ** ** *** *** No * 
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1.5  Categories of EM problem 

 

 As discussed earlier, the computational domain consists of several components shown in 

figure.1.I. In this section we will concentrate on two of them namely, the sources and the 

material: 

 Sources 

 

 For deterministic problems, the structure has to be excited by sources which can be of 

various forms. The frequency content of the source is a crucial parameter in computational 

problems especially in time domain techniques as it is involved in the choice of time and spatial 

steps. For wide-band excitation, the highest frequency, which corresponds to the smallest 

wavelength, is to be considered to select the maximum cell size. This allows one to minimize the 

dispersion and fix the maximum time-step to insure stability. A point to mention here is that for 

solving eigenvalue problems in time-domain methods one should apply an excitation, which is 

not the case for frequency domain methods. 

 Generally a computational problem can be classified into three categories according to a 

source frequency component (or equivalently the wavelength) [6.I]:  

 High frequency when 𝑂𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 𝑎𝑟𝑒 ≫ 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

 Low frequency when 𝑂𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 𝑎𝑟𝑒 ≪ 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

 Medium frequency when 𝑂𝑏𝑗𝑒𝑐𝑡 𝑑𝑒𝑡𝑎𝑖𝑙𝑠 𝑎𝑟𝑒 ~ 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 

 Usually the computational methods, also called "full-wave" methods, in their standard 

form are very effective in the range of medium frequencies up to few corresponding 

wavelengths. However, when using traditional numerical schemes, several problems appear for 

low and high frequencies. At high frequencies, the necessary discretization of the computational 

domain exhausts the computational resources. Thus, asymptotic methods [32.I] should be used 

instead. 

 At low frequencies, the problem is even worse for time-domain method. The reason is 

that for insuring stability, the time-step depends on the mesh size. Thus if small meshes (could be 

order of magnitudes smaller than the wavelength) are required for avoiding coarseness error in 

some locations, the time step is greatly reduced correspondingly. As a result, it is necessary to 

perform an excessive number of iterations to cover the whole time response (this issue will be 
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discussed later in more details). Ultimately, long term instabilities may occur. In frequency 

domain the corresponding system matrix becomes nearly singular with very high condition 

number. This makes the solution process very cumbersome or even impossible to solve 

accurately. Advanced preconditioning techniques and changing the mathematical formulation of 

the computational scheme such as in loop-star decomposition method for MOM at low 

frequencies must be applied [16.I] [33.I]. 

 

 Media 

 

 It is well known that media in nature (either natural or artificial) have different 

electromagnetic properties, as we will discuss in chapter II. From Maxwell’s equation 

perspective, media properties can be categorized into several groups like linear, homogeneous, 

dispersive (frequency dependent properties), anisotropic, etc. 

 A full knowledge of which categories the material belongs to is crucial. For instance, a 

solver assuming linear material cannot be used for nonlinear ones. Also, a solver assuming 

isotropic media cannot handle structures including anisotropic material. However, writing a 

general solver that can solve any problem and deals with any material is a very difficult task. In 

addition, such a general solver would require a complex programming and the manipulation and 

storage of large constitutive parameter matrices, which is not necessary for simple media.  

 

1.6  Research problem and hypotheses 

 

 In its original French description, the thesis is entitled « Etudes d’un modèle temporal 

efficace pour la simulation d’objets communicants contenant des milieux complexes ». Thus, the 

main objective of this thesis is to develop a simulator that can handle general geometrical 

structures, involving complex linear media, i.e. media that can be: 

  

 Nonhomogeneous  

 Dispersive  

 Anisotropic  

 Chiral 
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 Once the simulator is implemented, tested, validated with several canonical examples and 

commercial EM solvers, it will be ready to be used to study different types of microwave and 

optical devices that use complex material substrates such as ferromagnetic media. 

In a nutshell, the work that has been done during this thesis could be summarized in five points: 

 Building a TLM based simulator for general linear media 

 Implementing a graphical user interface (GUI) for the solver. 

 Perform complete mathematical analysis for the dispersion and stability issues, for 

numerical scheme used in the solver. 

 Presenting the potential usage of general coordinate transformation methods as a 

mapping technique to solve low-frequency problems using TLM or FDTD. 

 Carrying out a performance comparison between the TLM method vs. FDTD at the 

interface between different media, and the impact of highly contrast material on the 

computation accuracy in both numerical techniques. 

 

1.7  Justification for the research 

 

 It is necessary for general solver to simulate modern microwave/optical circuits or 

structures that include complex media, such as antennas with ferrite substrates, phase shifters, 

circulators, biological tissues, etc. Among the well-known commercial electromagnetic solvers 

like COMSOL Multiphysics [34.I]/CST Microwave Studio [35.I]/ FEKO [36.I]/ ANSYS HFSS 

[37.I], there are practical cases with general non homogeneous complex media which can be 

handled. However, there are special cases, for example anisotropic ferrite substrates with partial 

inhomogeneous magnetization, which cannot be handled by commercial software. The TLM 

solver developed in this work can tackle such special, yet practical, complex cases. Furthermore, 

the goal of an efficient solver is to have a permanent access to the code file for optimization and, 

least but not last, the possibility to introduce new models that suit the permanent need of the 

laboratory to tackle new challenging problems. 

 

 

 



Chapter I: General Introduction 

18 
 

1.8  Methodology 

 

 Time-Domain TLM is a good candidate for electromagnetic simulations for several 

reasons: Compared to FDTD it is less dispersive. In other words, larger mesh can be used for 

equal accuracy. Then, it has been proved to give a better convergence when dealing with 

structures that have high-contrast constitutive parameters [38.I]. Unlike FDTD, the TLM always 

updates fields at the center of cells adjacent to interfaces without applying an averaging process 

and systematically enforcing field continuity conditions across interfaces. For the same reason, 

TLM is more accurate when irregular (structured) meshing is used with arbitrary mesh ratios. 

However, the price to pay is to manipulate more samples per cell than in FDTD. But the 

disadvantage is largely compensated when the degree of heterogeneity of the structure increases. 

To conclude, TD-TLM has some real potential to treat problems that involves complex media, 

with reasonable accuracy and efficiency. The different issues raised about salient features of the 

TLM and FDTD will be discussed in the final chapter where comparison between FDTD and 

TLM is presented. 

 

1.9  Delimitations of scope and key assumptions 

 During our development of the TLM solver, we based our work on some key 

assumptions: 

i. The media are linear 

ii. Different kinds of boundary conditions are available including perfectly matched 

layer (PML), impedance boundary conditions, perfectly electric conductor (PEC) and 

perfectly magnetic conductor (PMC). 

iii. The solver is implemented to solve Maxwell’s equations in Cartesian coordinate 

system. This implies the use of parallelepipedic (hexahedral) cells, which implies 

stair-case approximation for curvilinear boundaries. 

iv. The solver can handle irregular structured meshes with hexahedral cells. 

v. Media properties and boundary conditions are stationary during the simulation time, 

LTI (linear time invariant computational domain). The media can be 

nonhomogeneous, anisotropic, dispersive, and chiral. 
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vi. Near to far-field transformation is implemented in the solver. 

vii. Huygens' box to separate total from scattering field or to inject sources is available.  

The two last items are needed for scattering and antenna problems. 

 

1.10 Computer resources 

 

 For the development and implementation processes, we mainly used FORTRAN 90 

programming language, with which we implemented the main TLM solver. The reason is that 

FORTRAN is still well suited for scientific computation. Also, it is associated with a complete 

set of subroutines and predefined functions, such as the scientific Numerical Algorithms Group 

(NAG) library or Math Kernel Library (MKL). The important part was to develop a graphical 

user interface, because the input data of complicated geometry carried out manually is very 

tedious with high probability of making mistakes. The GUI was accomplished using GiD mesher 

software [39.I], in which the user can design the required structure, assign the necessary 

materials, define the excitation and the necessary outputs. The GUI was implemented using 

TCL-TK script language, which produces a formatted file containing all the necessary 

information about the computational domain. Then, another interface between this formatted file 

and the TLM solver was implemented using again FORTRAN 90 [40.I] [41.I]. 

 There are also dozens of other codes that were necessary to perform some post processing 

tasks, such as near to far-field transformation or s-parameters calculations. Some of them were 

developed using FORTRAN 90 while others were with MATLAB. Finally, for dispersion and 

stability analysis and the analytical transfer functions associated with different media, we used 

Mathematica9-Wolfram as symbolic algebra software [42.I]. 
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1.11 Outline of the thesis 

 

 Following this first introductory chapter, the physics of complex media is presented in 

chapter II. It emphasizes that the main objective of this thesis is to develop a solver that can 

handle such media. The method that we have used to build the EM simulator namely, the 

transmission line matrix method (TLM), is presented in chapter III, with all necessary 

background material and state-of-the-art. In chapter IV, we discuss the TLM method, and 

reformulate it in matrix form. Then, we perform a complete stability and dispersion analysis for 

the general case in the presence of complex media. 

Applications and results are presented in chapter V. In the first part we discuss the graphical user 

interface (GUI) that we developed for the solver with several canonical examples to validate both 

the solver and the GUI. In the second part of chapter V, we present the relevant results of this 

thesis, namely, simulations including several microwave devices containing complex media 

compared either with other theoretical results or measurements for validation purposes. In 

chapter VI, two issues are addressed: firstly the traditional and some alternate techniques to solve 

EM problems at very low frequencies using time-domain methods, including TD-TLM and 

FDTD. In the second part of the chapter, the inherent error problem in FDTD at the interface 

between different media is discussed and, how the improvement brought by the TLM technique 

can be achieved. Several examples comparing the performance of TLM vs. FDTD for high 

contrast structures are presented for illustration. Finally, chapter VII contains a general 

conclusion and future work. 
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Chapter II 
Physics of Complex Media 

 

2.1  Introduction 

 

 A simple electrodynamic problem usually includes media that are defined by three 

electromagnetic parameters namely, permittivity, permeability and conductivity; all of them are 

positive scalar constant, when a simple medium is considered [1.II]. If any of these parameters 

violates the above assumption, the material is said to be complex. The complexity of the medium 

can manifest itself by possessing one or more of the following properties [2.II]: 

 

 Inhomogeneity  

 Dispersion 

 Anisotropy 

 Chirality 

 Nonlinearity  

 Time varying (non stationarity) 

 

 Apart from the mathematical and/or physical simplifications, all media in nature are 

complex, and sooner or later one should face this reality. In designing modern advanced 

electromagnetic devices, especially when working at higher frequencies, the complexity of the 

medium starts to clearly appear. Thus, for a correct design, it is necessary to know in details the 

complex behavior of the media. Furthermore, for specific applications we need to use media 

displaying certain characteristics (usually complex ones) to enhance the device performances. 

Another very important motivation behind the development of the use of complex media is the 

biomedical applications (since all tissues are complex media). For instance, in Magnetic 

Resonance Imaging (MRI) and Computerized Tomography (CT) scan the better we know the 

material behavior the more accurate the diagnosis. 
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 In this chapter, we briefly discuss the physics of complex media for electrodynamic 

application perspective, and show different ways by which a material can display some complex 

behavior. 

 

2.2  Maxwell’s equations in general vector form 

 

 As discussed in the first chapter, one can formulate Maxwell’s equations by using 

different mathematical tools i.e. tensor calculus, exterior calculus, or vector calculus. The latter, 

is the formulation that we are going to use throughout this chapter. 

 In a general media, the wave propagation is governed by the following four equations 

[2.II]: 

∇ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
− 𝜎𝑚 ∗ �⃗⃗� − 𝐽 𝑚,𝑖𝑚                                                  (1.IIa) 

∇ × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
+ 𝜎𝑒 ∗ �⃗� + 𝐽 𝑒,𝑖𝑚                                                         (1.IIb) 

∇ ∙ �⃗⃗� = 𝜌𝑣                                                                             (1.IIc) 

∇ ∙ �⃗� = 𝜌𝑚                                                                           (1.IId) 

where 𝜎𝑚, 𝜎𝑒 are the magnetic and electric conductivity matrices respectively, and 𝐽 𝑚,𝑖𝑚, 𝐽 𝑒,𝑖𝑚 

are the impressed magnetic and electric currents respectively, 𝜌𝑣 and 𝜌𝑚 are the volume electric 

and magnetic charge distributions, respectively. The constitutive equations relate the electric and 

magnetic flux intensities �⃗� , �⃗⃗�  with the electric and magnetic flux densities �⃗⃗� , �⃗� , respectively. 

For a general media, the constitutive relations are given by [3.II]: 

�⃗⃗� (𝐫, 𝑡) = 𝜀𝑜�⃗� (𝐫, 𝑡) + 𝑓 (�⃗� , �⃗⃗� )                                                    (2.IIa) 

�⃗� (𝐫, 𝑡) = 𝜇𝑜�⃗⃗� (𝐫, 𝑡) + 𝑔 (�⃗� , �⃗⃗� )                                                  (2.IIb) 

where the vector functions  𝑓  and  𝑔  are general operators. They can take into account the 

various types of media, including nonlinear media. 
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 If we include the possibility of electro-magnetic coupling, which occurs in chiral media 

or moving magnetized plasma, Maxwell’s equations then write: 

∇ × �⃗⃗� =
𝜕(�̿��⃗� )

𝜕𝑡
+

𝜕(�̿��⃗⃗� )

𝑐𝑜𝜕𝑡
+ 𝜎𝑒 ∗ �⃗� + 𝐽 𝑒,𝑖𝑚                                              (3.IIa) 

∇ × �⃗� = −
𝜕(�̿��⃗⃗� )

𝜕𝑡
−

𝜕(�̿��⃗� )

𝑐𝑜𝜕𝑡
− 𝜎𝑚 ∗ �⃗⃗� − 𝐽 𝑚,𝑖𝑚                                       (3.IIb) 

which is equivalent to choose the vector functions  𝑓  and  𝑔  as: 

𝑓 = 𝜀�⃗̿� +
�̿��⃗⃗� 

𝑐𝑜
                                                            (4.IIa) 

𝑔 =
�̿��⃗� 

𝑐𝑜
+ �̿��⃗⃗�                                                          (4.IIb) 

 The use of the above vector functions maintains Maxwell’s equations in their simple 

form (1.II). 

 

2.3  Solving an electrodynamic problem 

 

 In a general three dimensional electrodynamic problem, there are 20 unknowns to be 

calculated at any point in space inside the computational domain. Without loss of generality, we 

will assume that we are solving Maxwell’s equations in Cartesian coordinates system. Thus, the 

unknowns are: 

 Electric field intensity components 𝐸𝑥, 𝐸𝑦, 𝐸𝑧 

 Electric field density (or displacement field) components 𝐷𝑥, 𝐷𝑦, 𝐷𝑧 

 Magnetic field intensity components 𝐻𝑥, 𝐻𝑦, 𝐻𝑧 

 Magnetic field density components 𝐵𝑥, 𝐵𝑦, 𝐵𝑧 

 Electric current density components 𝑗𝑒𝑥, 𝑗𝑒𝑦, 𝑗𝑒𝑧 

 Magnetic current density components 𝑗𝑚𝑥, 𝑗𝑚𝑦, 𝑗𝑚𝑧 

 Electric and magnetic charge densities 𝜌𝑒𝑣, 𝜌𝑚𝑣, respectively 

 To determine the above twenty scalar unknowns, one should have twenty independent 

equations: 
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1- The continuity equations for charges and currents [3.II] ( two equations) 

∇. 𝐽 𝑒 = −
𝜕 𝜌𝑒𝑣

𝜕𝑡
                                                                        (5.IIa) 

∇. 𝐽 𝑚 = −
𝜕 𝜌𝑚𝑣

𝜕𝑡
                                                                      (5.IIb) 

2- Constitutive relations (six equations) 

�⃗⃗� (𝐫, 𝑡) = 𝜀𝑜�⃗� (𝐫, 𝑡) + 𝑓 (�⃗� , �⃗⃗� )                                                          (5.IIc) 

�⃗� (𝐫, 𝑡) = 𝜇𝑜�⃗⃗� (𝐫, 𝑡) + 𝑔 (�⃗� , �⃗⃗� )                                                         (5.IId) 

3- Maxwell-Gauss’ equations (two equations) 

∇ ∙ �⃗⃗� = 𝜌𝑒𝑣                                                   (5.IIe) 

∇ ∙ �⃗� = 𝜌𝑚𝑣                                                                   (5.IIf) 

4- Electric and magnetic flux conservation (six equations) 

∇ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
− 𝐽 𝑚 − 𝐽 𝑚,𝑖𝑚                                                           (5.IIg) 

∇ × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
+ 𝐽 𝑒 + 𝐽 𝑒,𝑖𝑚                                                               (5.IIh) 

5- Ohms low (six equations) 

𝐽 𝑒 = 𝜎𝑒 ∗ �⃗�                                                    (5.IIi) 

𝐽 𝑚 = 𝜎𝑚 ∗ �⃗⃗�                                                    (5.IIj) 

 Thus, we have 22-scalar equations from the above. However, taking the divergence of 

(5.IIg-5.IIh) and using (5.IIe-5.IIf), respectively, one retrieves the charge conservation laws 

(5.IIa-5.IIb). Thus, there are only 20 independent scalar equations that render Maxwell's 

equations consistent. 

2.4  Dispersive media 

 

 In any type of media, Maxwell’s equations using the four field quantities keep their form 

for any medium. Constitutive equations, that are medium dependent, allow the use of two field 

quantities only. For a general linear media the constitutive equations are defined by [4.II]: 
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𝑓 (�⃗� , �⃗⃗� ) = 𝜀𝑜 ∫ ∫ ψ̿11(𝐫, �́�, 𝑡, �́�)
+∞

−∞

+∞

−∞

�⃗� (𝐫, �́�) 𝑑�́�𝑑�́� +
𝜀𝑜

𝑐𝑜
∫ ∫ ψ̿12(𝐫, �́�, 𝑡, �́�)

+∞

−∞

+∞

−∞

�⃗⃗� (𝐫, �́�)  𝑑�́�𝑑�́� 

                                       (6.IIa) 

𝑔 (�⃗� , �⃗⃗� ) =
𝜇𝑜

𝑐𝑜
∫ ∫ ψ̿21(𝐫, �́�, 𝑡, �́�)

+∞

−∞

+∞

−∞

�⃗� (𝐫, �́�) 𝑑�́�𝑑�́� + 𝜇𝑜 ∫ ∫ ψ̿22(𝐫, �́�, 𝑡, �́�)
+∞

−∞

+∞

−∞

�⃗⃗� (𝐫, �́�)  𝑑�́�𝑑�́� 

                                       (6.IIb) 

 In the above equations (6.IIa and 6.IIb), different phenomena are simultaneously 

included: 

 The integration with respect to time stands for frequency dispersion. This means that the 

media operate as a frequency selective filter that translates to a convolution process in 

time domain. 

 The integration with respect to space tells us that the spatial locality of the constitutive 

equations is not a necessary condition. Thus, the electromagnetic response at certain point 

may depend on its neighborhood. This phenomenon is well-known in statistical physics, 

especially at microscopic level. 

 The fact that all  ψ̿11, ψ̿12, ψ̿21, ψ̿22 are full matrices in general, stands for the anisotropy 

phenomena, in which the field intensity applied to one direction, induces flux density to 

other directions. 

 The matrices  ψ̿11, ψ̿12, ψ̿21, ψ̿22 stands for electric susceptibility, magneto-electric 

coupling, electro-magnetic coupling, and magnetic susceptibility, respectively. 

 If we assume the spatial locality of the constitutive relations (which is assumed to be true 

in this thesis unless stated otherwise) then, the above formulas become: 

𝑓 (�⃗� , �⃗⃗� ) = 𝜀𝑜 ∫ ψ̿11(𝐫, 𝑡, �́�)
+∞

−∞
�⃗� (𝐫, �́�) 𝑑�́� +

𝜀𝑜

𝑐𝑜
∫ ψ̿12(𝐫, 𝑡, �́�)

+∞

−∞
�⃗⃗� (𝐫, �́�) 𝑑�́�           (7.IIa)  

𝑔 (�⃗� , �⃗⃗� ) =
𝜇𝑜

𝑐𝑜
∫ ψ̿21(𝐫, 𝑡, �́�)

+∞

−∞
�⃗� (𝐫, �́�) 𝑑�́� + 𝜇𝑜 ∫ ψ̿22(𝐫, 𝑡, �́�)

+∞

−∞
�⃗⃗� (𝐫, �́�)  𝑑�́�             (7.IIb) 

Equivalently in frequency domain we obtain: 

𝐹 (�⃗� , �⃗⃗� ) = 𝜀𝑜ψ̿11(𝐫, 𝜔)�⃗� (𝐫, 𝜔)  +
𝜀𝑜

𝑐𝑜
ψ̿12(𝐫,𝜔)�⃗⃗� (𝐫,𝜔)                      (8.IIa) 
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𝐺 (�⃗� , �⃗⃗� ) =
𝜇𝑜

𝑐𝑜
ψ̿21(𝐫,𝜔)�⃗� (𝐫,𝜔) + 𝜇𝑜ψ̿22(𝐫,𝜔)�⃗⃗� (𝐫,𝜔)                        (8.IIb) 

where �⃗� (𝐫,𝜔) and �⃗� (𝐫, 𝑡) are connected via Fourier transform: 

�⃗� (𝐫, 𝜔) = ∫ �⃗� (𝐫, 𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
                        (9.IIa) 

�⃗� (𝐫, 𝑡) =
1

2𝜋
∫ �⃗� (𝐫,𝜔)𝑒+𝑗𝜔𝑡𝑑𝜔

+∞

−∞
                              (9.IIb) 

 Similar expressions to (9.IIa) and (9.IIb) are valid for magnetic field and constitutive 

parameters ψ̿11, ψ̿12, ψ̿21 ψ̿22. 

 In most of the materials, the magneto-electric and the electro-magnetic coupling are 

negligible. Thus, if we apply the assumption that 

ψ̿21(𝐫,𝜔) = ψ̿12(𝐫,𝜔) = 0                                         (10.II) 

we obtain to the well-known polarization and magnetization vectors i.e.  

�⃗� (𝐫, 𝜔) = 𝜀𝑜ψ̿11(𝐫, 𝜔)�⃗� (𝐫,𝜔)                             (11.IIa) 

�⃗⃗� (𝐫,𝜔) = 𝜇𝑜ψ̿22(𝐫,𝜔)�⃗⃗� (𝐫,𝜔)                           (11.IIb) 

 In general, a material is considered as frequency dispersive if its properties vary with 

angular frequency 𝜔. 

 

2.5  Anisotropic media 

 

 A material is said to be anisotropic if an electric field �⃗�  applied to some direction 

produces in that material a flux density �⃗⃗�  pointing to another direction. The same definition 

holds for a magnetic field �⃗⃗� , and the induced magnetic flux density �⃗�  in magnetic media. In 

these cases, constitutive relations write:  

 �⃗⃗� (r, 𝜔)  = 𝜀 ̿(r, 𝜔) �⃗� (r, 𝜔)                                        (12.IIa) 

 �⃗� (r, 𝜔)  = �̿�(r,𝜔)  �⃗⃗� (r, 𝜔)                                        (12.IIb) 

in which constitutive parameters are tensors 𝜀 ̿or�̿�, and are no longer identity matrices scaled by 

a real constant. As a result, the above tensors act as linear applications that modify the direction 

of the flux densities 𝐷⃗⃗  ⃗, �⃗�  with respect to the applied fields �⃗�  and  �⃗⃗� , respectively.  
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 According the previous formulation, the anisotropy occurs when the tensors ψ̿11(r, 𝜔) or 

ψ̿22(r, 𝜔) are general nonsingular 3 × 3 Hermitian matrices other that a scaled version of the 

identity matrix. 

 

2.6  Transformation optics 

 

  In physics, usually basic laws like Maxwell’s equations in electrodynamics, 

Hamilton and Lagrange equations in mechanics, etc., are usually expressed in tensorial form. 

That means they are coordinate system independent. In other words, if we use whatever 

coordinate system capable of describing the space-time geometry of the problem, results that 

describe the same physical phenomenon should be obtained [5.II] [6.II]. 

 A tensor is a mathematical object    𝑇𝜈1⋯𝜈𝑙

𝜇1⋯𝜇𝑘 of rank (𝑘, 𝑙) which is a collection of numbers 

(vector for instance is a rank-one tensor) that operates a transformation between different 

coordinate systems according to the relation [5.II]:  

                                     𝑇
𝜈1

′⋯𝜈𝑙
′

𝜇1
′⋯𝜇𝑘

′

= Λ𝜇1

𝜇1
′

⋯Λ𝜇𝑘

𝜇𝑘
′

  Λ𝜈1

𝜈1
′

⋯Λ𝜈𝑙

𝜈𝑙
′

   𝑇𝜈1⋯𝜈𝑙

𝜇1⋯𝜇𝑘                             (13.II) 

where Λ𝜇1

𝜇1
′

 is the Jacobian matrix (a differential-map between two coordinate systems) defined by 

[5.II]: 

Λ𝜇1

𝜇1
′

= (
𝜕𝑥𝜇1

′

𝜕𝑥𝜇1
)
∀ 𝜇1,𝜇1

′  ∈{1,..,𝑛}
                              (14.II) 

 A very interesting property of Maxwell’s equations is that when a coordinate 

transformation is applied to them, all electromagnetic quantities follow the simple coordinate 

transformation rule (13.II). This fact could be used in different contexts, for instance: 

 Using a coordinate transformation to simplify the geometry description of the underlying 

problem. In discrete world, we can use that transformation to reduce the effect of some 

approximation errors (like stair-case approximation of curved objects). 

 In principle, one can use a Cartesian-coordinate-based solver to solve Maxwell’s 

equations for any geometry described by any coordinate system. One should assume that 

the transformation between the new coordinate system and the Cartesian one is bijective 

(there is a one-to-one mapping between them). 
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 One can design structures that control the propagation of electromagnetic waves in a very 

flexible way, such as invisibility cloak, super lenses and many other applications. 

 

Figure 1.II, transformation optics (mapping of the computational domain between two coordinate systems) 

 In general, after applying the coordinate transformation 𝜙, two things will happen to the 

computational domain 

I. The geometry changes according to the map of coordinate transformation 𝜙 

II. The material property tensors are modified according to the Jacobian of the 

transformation Λ as presented in table 1.II, where: 

Λ = Jacobian(𝜙)                                 (15.II) 

 

Table 1.II, Transformation optics formulas 

Computational Domain 

Quantity 

Original coordinate 

system  (𝑥1, 𝑥2, 𝑥3) 

Transnsformed  coordinate 

system  (𝑥1́, 𝑥2́, 𝑥3́) 

Position of  a point (𝑥1, 𝑥2, 𝑥3) 𝜙(𝑥1, 𝑥2, 𝑥3) = (𝑥1́, 𝑥2́, 𝑥3́) 

Permittivity tensor 𝜀�̿� 𝜀�́̿� = Λ𝑡
𝜀�̿�Λ/det(Λ) 

Permeability tensor �̿�𝑟 �̿�𝑟
́ = Λ𝑡

�̿�𝑟Λ/det(Λ) 

Conductivity �̿�𝑟 �̿��́� = �̿�𝑟Λ
𝑡
𝜀�̿�Λ/det(Λ) 

Electric current density 𝐽  𝐽 ′ = Λ𝑡
𝐽 /det(Λ) 

Electric charge density 𝜌𝑒𝑣 𝜌𝑒𝑣́ = 𝜌𝑒𝑣/det(Λ) 

Electric field �⃗�  �⃗� ′ = Λ𝑡
�⃗�  

Magnetic  field �⃗⃗�  �⃗⃗� ′ = Λ𝑡
�⃗⃗�  
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2.7  Periodic structures 

 

 Periodic structure is a structure that is composed of identical or semi-identical 

substructures that repeat themselves in some region of space according to a specific pattern. 

They may exist naturally like different types of photonic crystals, or can be fabricated. 

                             

 

Figure 2.II, periodic structures of  (a) one-dimension  (b) two-dimension  (c) three-dimension 

 Periodic structures have many applications such as filters or optical devices. In periodic 

structures, Bloch’s theorem plays a central role for field computation in such media. This 

theorem is based on the idea of periodic potential function that respects the boundary conditions 

at the boundaries of every homogeneous region in the periodic structure [7.II]. 

 

2.8  Random media 

 

 Usually media in nature are inhomogeneous and contain many impurities; hence, it can’t 

be described deterministically to infinite precision. To use these media in applications that 

require high accuracy, one should have a good stochastic model describing the media properties. 

By incorporating the mathematical tools of random processes with Maxwell’s equations and 

using the model given for any random media one could extract some parameters like effective 

permittivity and permeability within a given frequency band. This allows the use of these 

materials in reliable and robust design procedures [8.II]. 
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Figure 3.II, cross section of a random material 

 One can face the scenario of random media, when dealing with wave propagation in rainy 

condition for instance. Hence, it is necessary to use some stochastic model to describe the 

propagation channel physical characteristics. In geophysics, it is also of importance to have some 

stochastic model about the layers of the earth crust when searching for petroleum, water, or some 

other minerals, by using electromagnetic scattering based procedure. 

 Even though random media could be composed of simple inhomogeneous dielectrics, 

they are considered complex media because of the impossibility of taking all the random details 

into account. 

 

2.9  Magneto-electric coupling 

 

 A Chiral medium is a medium in which the electric field may also couple with 

magnetization and magnetic field with electric polarization. In frequency domain the constitutive 

relationships are given by [2.II] [9.II]: 

�̅�(𝜔) =  𝜀(𝜔)�̅�(𝜔) −
𝑗𝜅(𝜔)

𝑐𝑜
�̅�(𝜔)                                        (16.IIa) 

�̅�(𝜔) =  𝜇(𝜔)�̅�(𝜔) +
𝑗𝜅(𝜔)

𝑐𝑜
�̅�(𝜔)                                        (16.IIb) 

or, following the termonology used in (8.IIa) and (8.IIb), we obtain: 
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ψ̿11(𝐫,𝜔) =
𝜀(𝜔)

𝜀𝑜
𝐼3̿                                          (17.IIa) 

ψ̿12(𝐫,𝜔) = −
𝑗𝜅(𝜔)

𝜀𝑜
𝐼3̿                                          (17.IIb) 

ψ̿21(𝐫,𝜔) =
𝑗𝜅(𝜔)

𝜇𝑜
𝐼3̿                               (17.IIc) 

ψ̿22(𝐫,𝜔) =
𝜇(𝜔)

𝜇𝑜
𝐼3̿                 (17.IId) 

where 𝜀, 𝜇 are the permittivity and the permeability, respectively, 𝑐𝑜 is the speed of light in 

vacuum, 𝜅 is the chirality parameter, and 𝐫 is the position vector. All parameters are frequency 

dependent according to the following relations [9.II]: 

 𝜅(𝜔) =
𝜏𝜔𝑜

2𝜔

𝜔𝑜
2−𝜔2+𝑗2𝜔𝑜𝜉𝜔

                                        (18.IIa) 

𝜀(𝜔) = 𝜀𝑜𝜀∞ +
(𝜀𝑠−𝜀∞)𝜀𝑜𝜔𝑜𝑒

2

𝜔𝑜𝑒
2 −𝜔2+𝑗2𝜔𝑜𝑒

2 𝜉𝑒𝜔
                                        (18.IIb) 

𝜇(𝜔) = 𝜇𝑜𝜇∞ +
(𝜇𝑠−𝜇∞)𝜇𝑜𝜔𝑜𝑚

2

𝜔𝑜𝑚
2 −𝜔2+𝑗2𝜔𝑜𝑚

2 𝜉𝑚𝜔
                                        (18.IIc) 

where 𝜔𝑜 is the characteristic resonant frequency for the chiral material sample, 𝜉 is the damping 

factor and 𝜏 is a time constant. Constants   𝜔𝑜𝑒 and  𝜔𝑜𝑚 are resonant frequencies for the 

dielectric and magnetic models, respectively, and 𝜉𝑒, 𝜉𝑚 are their damping factors, 𝜀𝑠, 𝜇𝑠 are the 

static values of permittivity and permeability. Finally, 𝜀∞, 𝜇∞ are permittivity and permeability 

values at a high frequencies, respectively [9.II]. 

 

2.10  Ferroelectric media 

 

 In some anisotropic crystals, the constitutive relation between electric field and flux 

density is given by [10.II]: 

�⃗⃗� = �⃗⃗� 𝑜 + 𝜀�⃗̿�                                          (19.II) 
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 This means that in these materials, there may exist a flux density �⃗⃗� 𝑜 even when there is 

not external electric source. Such material is called pyroelectric. Pyroelectricity is an essential 

property for the crystal to acquire ferroelectric behavior [10.II].   

 Ferroelectric materials exhibit the property of spontaneous electric polarization that can 

be obtained by applying an external electric field. The various states of polarization follows the 

Hysteresis cycle illustrated in figure 4.IIa. Even after the applied external field vanishes, 

remanent polarization remains. Ferroelectricity has a phenomenon analogous to ferromagnetism 

in many aspects; for instance, both ferroelectric and ferromagnetic behaviors appear only below 

the phase transition temperature (Curie temperature, which is different for each ferroelectric or 

ferromagnetic material). Historically the ferroelectricity was first discovered by Valasek in 

Rochelle salt in 1920 [11.II]. 

 Ferroelectric materials have several applications like the ferroelectric capacitors, which 

consists of two conductors with ferroelectric sample between them. These types of capacitors 

have very interesting property: their capacitance can be controlled by an external field (tunable 

capacitors). Also, the fact that the permittivity can go to high values near the resonant frequency 

of the material, they allow us to fabricate capacitors with very high capacitance and small 

physical size compared to dielectric capacitors (with similar capacitance value) [11.II]. 

 The remanent polarization in the ferroelectric materials, which is shown in the hysteresis 

diagram of figure 4.IIa, can be used to save data such as in ferroelectric RAMs for computers 

[11.II]. 

 

2.11  Ferromagnetic media 

 

 As mentioned in the previous section, there is a close analogy between ferromagnetic and 

ferroelectric media. For instance, magnetic properties of a ferromagnetic material are dependent 

on the applied external static magnetic field and the permeability tensor is a function of the 

external applied field. Also remanent magnetization may exist as illustrated in the hysteresis 

cycle shown in figure 4.IIb. Note that the cycle shape depends on the maximum applied external 

field, before saturation value is attained. 
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Figure 4.II, (a) hysteresis diagram for ferroelectric media, (b) hysteresis diagram of ferromagnetic media 

 Initially the magnetization state �⃗⃗�  in ferromagnetic media was modeled by the soviet 

physicists L. Landau and his student E. Lifshitz. They derived the equation from the Larmor’s 

precession motion differential equation:  

𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓 + 𝜆�⃗⃗� × (�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓)                (20.II) 

where 𝛾 the electron is gyromagnetic ratio, and 𝜆 is the phenomenological damping factor, which 

is often replaced by: 

 

𝜆 = −𝛼
𝛾

𝑀𝑠
                                         (21.II) 

 

where 𝑀𝑠 is the magnetization at the saturation, and 𝛼 is a dimensionless scalar called the 

damping factor. The effective magnetic field is defined as: 

 

�⃗⃗� 𝑒𝑓𝑓 = �⃗⃗� 𝑖 + ℎ⃗ 𝑑                                                (22.II) 

 

where �⃗⃗� 𝑖 is the static biasing field, and ℎ⃗ 𝑑 is the perturbating magnetic time-vayring field of 

small magnitude. This has some analogy with the transistors mode of operation, where �⃗⃗� 𝑖 is 

analogous to the biasing current and ℎ⃗ 𝑑 to the small sigal to be processed 

(a) (b) 
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 Another modification Landau-Lifshitz equation came by E. Gilbert in which the 

magnetization vector �⃗⃗�  is governed by the equation (GLL): 

 

𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓 +

𝑎

𝑀𝑠
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
                           (23.II) 

 

 When the applied field is above certain amplitude, the magnetic medium becomes 

saturated. As a result, the domains shown in figure 5.IIb disappear and the magnetization 

becomes uniform as shown in figure 5.II (a). For a small perturbating field one can characterize 

the saturated medium by the Polder tensor model [12.II] [13.II]: 

 

𝜇 = (

𝜇𝑥𝑥 𝜇𝑥𝑦 0

𝜇𝑦𝑥 𝜇𝑦𝑦 0

0 0 𝜇𝑧𝑧

)                          (24.II) 

 

 On the other hand, if the applied magnetizing field does not enforce saturation, domains 

shown figure 5.II(b) exist and the magnetization is not uniform. In this case, one has to use more 

sophisticated models such as Gelin et al.'s that leads to a full tensor model [14.II] [15.II]: 

 

𝜇 = (

𝜇𝑥𝑥 𝜇𝑥𝑦 𝜇𝑥𝑧

𝜇𝑦𝑥 𝜇𝑦𝑦 𝜇𝑦𝑧

𝜇𝑧𝑥 𝜇𝑧𝑦 𝜇𝑧𝑧

)                           (25.II) 

 

 

 

Figure 5.II, (a) saturated ferromagnetic material (b) non-saturated ferromagnetic material 
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 To summarize, having the ferrite sample shown by figure 5.IIa and 5.IIb and depending 

on the strength of the applied DC magnetizing field, its permeability properties can be 

determined. When the DC magnetic field is very strong, the ferrite sample reaches the saturation 

state. In this case, the sample becomes homogenous and the permeability tensors follow Polder’s 

model for saturated ferrite [12.II] shown in (24.II). However, if the DC magnetizing field is not 

strong enough, the different domains inside the sample acquire different magnetic properties. In 

such scenario, the permeability tensor usually follows the more general model (25.II) developed 

by Gelin and his colleagues [15.II].  The calculation of tensor components inside the non-saturate 

ferrite sample requires solving the GLL equation (23.II) [15.II] [14.II]. This equation is a 

nonlinear partial differential equation and usually very difficult to solve especially for non-

canonical geometries. By solving (23.II), one can calculate the magnetization state inside each 

domain.  

 Usually, the process of calculating the permeability tensors, especially for non-saturated 

ferrite, is a multi-stage process and we can easily end up with non-accurate results. Initially, to 

analyze the ferrite sample it is necessary to have some experimental data about its properties 

(such as Curie temperature, its dimensions, its initial magnetization state…etc.). These data 

usually have some uncertainty due to experimental errors. This uncertainty may affect the 

solution of the GLL equations, hence, deviate the magnetization state in every domain from the 

real values.  

 

2.12 Metamaterials 

 

 In theory of electrodynamics, metamaterials are media possessing unusual 

electromagnetic properties. For instance, the permeability or the permittivity or both of them can 

be negative, zero, or extremely high within some frequency bands [16.II] [17.II]. In practice, 

metamaterials are constructed artificially at the microscopic level and provides these unusual 

properties at the macroscopic scale. For one or two-dimensional propagation, they can be built 

by periodic structure of small metal motives printed on a dielectric substrate [18.II]. The 

metamaterial science opens a door for advancement in the theory of electromagnetics, assuming 

that we have full control of the material properties within a given frequency band [6.II]. 
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Applications are numerous: highly efficient antennas, super lenses, invisibility clocks and 

microwave circuits, to name a few [19.II]. 

 A special group of metamaterial is the left hand (LH) materials [3.II]. In such material, 

the phase velocity and the group velocity travels in opposite directions. LH metamaterials have 

attracted researchers because it adds new functionalities to media properties [20.II]. 

 

2.13 Kramers-Kronig’s relation 

 

 For lossy media, it is possible to characterize losses in sinusoidal steady state by complex 

constitutive parameters. As the real part corresponds to energy storage, the imaginary part, which 

is negative for passive media, corresponds to lost energy. It can be shown that real and imaginary 

parts are not independent. In this section we discuss the relationship between the real and 

imaginary parts of permittivity. A similar discussion can be done for permeability. 

 For simplicity we consider an isotropic nonmagnetic linear dielectric dispersive 

homogeneous media. Hence, the constitutive relations become:  

 

�⃗⃗� (𝜔)  = ε (𝜔) �⃗� (𝜔)                                             (26.IIa) 

 �⃗� (𝜔)  = μ𝑜  �⃗⃗� (𝜔)                                             (26.IIb) 

In time domain, (26.IIa) becomes [2.II]: 

�⃗⃗� (t)  = ε𝑜 �⃗� (t) + ε𝑜 ∫ 𝑓(𝜏)�⃗� (t − τ)𝑑𝜏
∞

0
                                   (27.II) 

where, 𝑓(𝜏) is a function of time that depends on the electric properties of the medium and 

relates to the well-known permittivity via Fourier transform [2.II] as: 

 

ε (𝜔) = ε𝑜(1 + ∫ 𝑓(𝜏)𝑒𝑗𝜔𝜏𝑑𝜏
∞

0
)                             (28.II) 

 

The frequency 𝜔 is defined as a complex variable: 

𝜔 = 𝜔′ + 𝑗𝜔′′                                                        (29.II) 

 Since the permittivity function defined in (28.II) is a complex in general, it is possible to 

rewrite it as [2.II]: 

ε (𝜔) = ε′ (𝜔) + 𝑗ε′′ (𝜔)                                            (30.II) 
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However, from (28.II) we can see that: 

ε (−𝜔†) = ε†(𝜔)                                       (31.II) 

where † is the complex conjugate symbol. This yield: 

ε′ (−𝜔) = ε′ (𝜔)                                      (32.IIa) 

ε′′ (−𝜔) = −ε′′ (𝜔)                                              (32.IIb) 

 In other words, the real part of permittivity is an even frequency dependent function, 

while the imaginary part is and odd function. Now, if we assume that the function  �⃗� (t) is given 

by the real mathematical expression, one obtains: 

 

�⃗� (t) =  �⃗� 𝑜𝑒
−𝑗𝜔𝑡 + �⃗� 𝑜

†𝑒𝑗𝜔†𝑡                            (33.IIa) 

�⃗⃗� (t) = ε (𝜔) �⃗� 𝑜𝑒
−𝑗𝜔𝑡 + ε (−𝜔†)�⃗� 𝑜

†𝑒𝑗𝜔†𝑡                                   (33.IIb) 

 

 After applying the appropriate mathematical analysis from complex theory, we reach to 

the well-known Kramers-Krong’s relations: 

 

ε′ (𝜔) − 1 =
1

2𝜋
𝑃 {∫

ε′′ (𝜔)

𝑥−𝜔
𝑑𝑥

+∞

−∞
}                                 (34.IIa) 

ε′′ (𝜔) = −
1

2𝜋
𝑃 {∫

ε′ (𝜔)−1

𝑥−𝜔
𝑑𝑥

+∞

−∞
}                                 (34.IIb) 

 

 Since the integrals in (34.II) and (34.IIb) are improper integrals containing singularities, 

we are interested in calculating their principal value 𝑃{∙}. 

 A point to be mentioned here is that the above Kramers-Kronig’s relations hold only for 

linear media. It has been proven that they are violated in nonlinear media [21.II], because 

calculating the principal value of integral requires certain symmetry which doesn’t exist in these 

types of media. However, one can derive relations between imaginary and real parts of 

permittivity in nonlinear media; they will be problem dependent since they depend on the type of 

nonlinearity [22.II]. 
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2.14 Conclusion 

 

 In this chapter we discussed some physical aspects of complex media from 

electrodynamic point of view at macroscopic scale. We presented different scenarios by which a 

material can acquire complex properties. 

 For instance, one can design fiber optic cable with some nonlinearity to mitigate 

dispersion, allowing higher data rates. The usage of ferroelectric and ferromagnetic media in 

microwave circuits allows some controllability by external electric or magnetic field. Another 

property of ferroelectric and ferromagnetic media is that they can induce very high permittivity 

and permeability values, respectively, which can contribute to circuit miniaturization. 

 The periodic structures are considered as complex media, even though they can consist of 

two types of simple dielectric arranged in certain way, the reason is that the periodic structures 

can possess very complex behavior that doesn’t exist in simple media. 

 Transformation optics (TO) can be considered as a type of conformal mapping in which 

we transfer the whole computational domain into another simpler one. Then, obtaining the 

results in the transformed domain, we may come back to the original problem. This procedure is 

very similar to what we do in solving linear differential equations (ODE) using Laplace or 

Fourier transforms. On the other hand, TO can be used the other way around by which we search 

for certain behavior of the electromagnetic field propagation. The objective is to design a 

computational domain (material distribution) that can achieve various functions such as invisible 

clocks, super lenses and many others TO applications. 

 Finally, we discussed a very important relation between the real part and imaginary part 

of permittivity or permeability tensors in linear media namely, the Kramers-Kronig’s relations. 

They mean that we cannot choose both of them arbitrarily (even from mathematical point of 

view perspective). 
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Chapter III 
Transmission Line Matrix Method (TLM) 
State of the Art 

 

3.1 Introduction 

 

 In fundamental sciences, engineering and other disciplines, the common challenge is to 

solve problems with ever increasing complexity. As a result, several techniques have been 

developed, sometime simultaneously or separately, in various disciplines. For instance, the 

invention of genetic algorithms came from observing the evolution of living beings in biology 

from Darwinian perspective. Integral transformations (Fourier transform for instance), is 

analogue to currency change while trading between different markets. Linear systems either in 

mechanics or electric circuits end up with very similar equations that govern their behavior. Not 

very far from the theory of electromagnetics, the original form of Maxwell’s equations was more 

similar to a system of fluid dynamic equations. The most important restriction in using this 

analogy is that a perfect or almost perfect mapping must exist between both problems. In other 

words, either zero or negligible amount of information is allowed to be lost in the mapping 

process.  

 Based on the same idea of analogy, Kron [1.III] proposed a new way to look at 

Maxwell’s equations. He realized that in order to describe any linear circuit, we need sources and 

only three types of components: resistors, inductors and capacitors. Then, he proposed that it is 

possible to describe the medium in which the fields propagate using a network of interconnected 

components. To verify his idea, he studied a two-dimensional electrical-mesh of interconnected 

transmission lines (that can be represented by distributed capacitors and inductors). By exiting 

this network using a voltage source, the behavior of the node voltages and currents everywhere 

in the network is very similar to the solutions of  Maxwell’s equations in two-dimension for 

lossless dielectric medium. This experiment was sort of validation to his assumption that the 

mesh itself serves as a propagating medium. Later, the analogy between an electromagnetic 
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medium and the corresponding network of interconnected TL became more obvious. The 

different electrical components mimic what happens in Maxwell’s equations locally i.e.  resistors 

are analogous to losses, capacitors are analogous to electric energy storage and inductors are 

analogous to magnetic energy storage [2.III]. Transmission-lines provide the delay that mimics 

the field propagation phenomenon. It is from this experiment that later Johns proposed the TLM 

model of field propagation. 

In this chapter we present the history of TLM algorithm and its development from one to three 

dimensions and the insertion of complex media into the TLM model [3.III] [4.III]. 

 We mentioned in the first chapter, that the TLM method is most commonly used in time-

domain. However, its frequency domain version also exists but will not be discussed here. For 

more information one can consult [5.III] [6.III] [7.III] [8.III]. The frequency domain TLM is 

potentially useful, only when we are dealing with linear media, single frequency or narrow band 

characterization. 

 Finally, one issue to be discussed in this chapter is the relation between FDTD and TLM. 

For many scientists working in computational electromagnetics, it is felt that TLM is just a 

slightly modified FDTD. In fact, we will show that the latter is as different from TLM as the 

MoM integral equation technique can be from the FEM. The subsequent developments of TLM 

have been made in a concomitant manner with the ones in FDTD [9.III] [10.III]. The reason of 

this erroneous perception of TLM comes from the fact that it was published almost 10 years after 

the FDTD and appeared to be more complicated as far its algorithm is concerned. Since FDTD 

Yee's algorithm looks simpler, practitioners found no advantage to move towards TLM 

simulation. 

 

3.2 Diakoptic principle 

 This principle in electromagnetics allows one to solve rigorously a problem by first 

splitting it into several sub-problems. Then, solutions in one particular subdomain can be 

computed by discretizing one sub domain only and rigorously accounting for other sub domains 

via operations at its boundaries only. This principle has several versions in different contexts. For 

instance, in algorithm discipline it is called the divide and conquers technique, among which, we 

can find many algorithms such as FFT [11.III]. 
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 In computational electromagnetics, this principle provides us with a great idea that allows 

one to simplify the simulations: we discretize the computational domain into small cells, each 

considered as an isolated entity with input and output ports. Thus, field calculation is a local 

issue for each cell, and once they are calculated the interaction between neighboring cells 

happens through voltages exchange [1.III]. This philosophy allows us to include fine structures 

without affecting the computational procedure. For instance, we can do simulations of a structure 

that includes thin wires, thin panels, slots or any fine objects. Inside each cell, the small structure 

will interact with fields according to known laws. Hence, we can incorporate the small structure 

effect in the TLM algorithm locally. So, it is only required to modify the algorithm at cells which 

interact with the small structure [12.III]. Even though in principle this can be also done in FDTD 

and other volumic methods, the TLM method provides a very straightforward way to apply 

diakoptics. For instance, to include a thin wire model in FDTD we will face several issues like 

the half-step staggering between electric and magnetic fields. Also, the fact that in FDTD the 

update equations in one cell will depend on material contents in the neighboring cells will raise 

the issue of existence the thin wire for its neighbors. This issue doesn’t exist in TLM since the 

fields calculation in every cell is independent form the material contents of other cells 

(considering the Symmetrical Condensed Node).       

 As we will see later in this chapter, by applying this methodology one can easily do 

simulations for media possessing complicated constitutive relations (dispersive or anisotropic 

media), just by adjusting field values at the cell center using some filtering process [13.III] 

[14.III]. 

  

3.3 TLM for simple media 

 

In literature a lot of work has been done regarding TLM method for handling 

computational domains including simple media [15.III] [16.III] [17.III]. For interested readers, 

appendix A is dedicated for an extensive literature review for TLM basic algorithms for linear 

non-dispersive isotropic media. 
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3.4 TLM for Complex media 

  

 In the appendix A, we discuss the origins of the TLM techniques and some algorithms for 

simple media, i.e., linear, isotropic or with diagonal tensors only and non-dispersive (however 

allowing frequency independent conduction losses 𝜎𝑒 or 𝜎𝑚). In literature, one can find many 

papers that have been published to address and handle non dispersive anisotropic media [18.III]. 

This is done by simply adjusting electric or magnetic field expressions at cell centers to include 

the (constant) coupling with field components from other directions. However,   in the following 

section, we discuss how the TLM method can be extended to cover a wider range of EM 

phenomena, and how to handle more sophisticated types of materials that were discussed in 

chapter II in a unified systematic manner. This includes anisotropic media, material possessing 

magneto-electric coupling…etc. 

 

3.4.1 TLM for Dispersive media 

 

 As presented in chapter II, dispersive media are those for which properties change 

according to the operating frequency. In other words, they behave like filters when an 

electromagnetic wave propagates through them (wave frequency selective media). It is obvious 

that in frequency domain, the frequency dependence of the material parameters don’t affect the 

computational scheme except, perhaps, the need to change from real to complex arithmetic. In 

time domain, the problem is more involved and major modifications should take place in the core 

of the algorithm. In the literature, many papers have been published in FDTD or TD-TLM to 

address this problem for which parameter frequency variation must be translated in a time-

domain filtering:  

 Auxiliary differential equation technique (ADE) [19.III] [20.III] [21.III]. 

 Piece wise linear recursive convolution technique (PLRC) [22.III]. 

 z-transform based approach [23.III] [19.III] [21.III] [24.III] [25.III] [26.III] [27.III] 

[28.III]. 

 Philosophically speaking, the three above techniques are very similar. They are just 

different algorithmic representations to compute the convolution process that should take place 
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between fields and the media impulse response in time domain. ADE and PLRC techniques are 

very efficient for isotropic media, because the convolutions process is well integrated inside the 

update equations. However, ADE and PLRC are problem dependent approaches (for instance the 

update equations for Debye medium are different than those of Lorentz medium). Furthermore, 

they are very difficult to derive for general anisotropic constitutive parameters. On the other 

hand, the last technique namely, the z-transform approach, is based on filtering processes and is 

very direct, systematic and generic. It is not problem dependent as we just need to know the 

corresponding digital filters that represent the constitutive parameters [29.III]. 

 As mentioned earlier, the local field-matter interaction of the TLM method presents an 

elegant way to handle dispersive media. The same basic SCN algorithm presented by Johns 

[16.III] is used with some modifications. Instead of calculating fields by (40.III), we add a 

filtering process to account for the medium under study. Then, the algorithm continues as for 

usual non dispersive media. 

3.4.2 TLM for metamaterial 

 

  The first attempts to simulate LH materials were through the change of the TLM 

network topology (one-dimension, two-dimension, or three-dimension model that is constructed 

by three shunt nodes connected to three series nodes) [30.III] [27.III]. In the proposed modified 

topologies, authors embedded shunt inductors, and series capacitors (as opposed to shunt 

capacitors and series inductors in normal RH media). But for rigorous numerical simulations, 

time-domain approaches were not appropriate. Hence, several algorithms have been developed to 

handle such materials in more sophisticated and systematic way. Frequency domain methods 

provide a possible choice, if one is interested in steady state and narrow band characterization. 

On the other hand, using full-wave time domain methods like FDTD or TLM opens the door for 

several observations about the way the media interact with fields in real time and how waves are 

created and modified at any point in the space. This is in addition to their wide bandwidth 

characterization capability. 

 In their paper [27.III], authors developed an algorithm based on z-transform and 

convolution for taking into account the frequency selective nature of the LH media [28.III]. In 

their approach, they assumed the material to be isotropic, which is not true for an arbitrary LH 
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material. On the other hand, the method discussed earlier in this chapter developed by Farhat et 

al [14.III] can handle such media in systematic way. In addition, their approach doesn’t require 

paying special attention whether media are LH or RH isotropic or anisotropic. It just requires the 

full knowledge about the material properties in frequency domain. Hence, equivalent time 

domain filters can be designed and provide the required correction of fields at node centers. 

 An interesting point to be mentioned here is that LH materials are usually constructed out 

of arrays of identical metal and dielectric elements [31.III]. If the elements are small compared to 

wavelength, it can be simulated and its scattering matrix can be saved. This scattering matrix can 

be used in simulating the complete structure that contains this LH media instead of including 

these small elements in the overall computational process. This considerably decreases the 

computational effort.  

 

3.4.3 TLM for general linear media 

 In [14.III] [23.III] [32.III] authors presented a TLM (symmetrical condensed node) 

formulation for general anisotropic media.  In chapter IV this algorithm will be revised with all 

dispersion and stability analysis. 

 Maxwell’s equations for general linear dispersive media can be written in time domain as 

[33.III]: 

(
∇ × 𝐻
−∇ × 𝐸

) − (
𝐽𝑒𝑓
𝐽𝑚𝑓
) =  

𝜕

𝜕𝑡
(
휀𝑜𝐸
𝜇𝑜𝐻

) + (
𝜎𝑒 ∗ 𝐸

𝜎𝑚 ∗ 𝐻
) +

𝜕

𝜕𝑡
(
휀𝑜�̿�𝑒

�̿�

𝑐𝑜

�̿�

𝑐𝑜
𝜇𝑜�̿�𝑚

) ∗ (
𝐸
𝐻
)              (1.III) 

where �̿�𝑒, �̿�𝑚are the electric and magnetic susceptibility tensors respectively, 𝜎𝑒 , 𝜎𝑚 the electric 

and magnetic conductivities tensors, and  𝜉̿ , 휁 ̿ the chirality (the electro-magneto  coupling 

factors [34.III]) tensors respectively, and ∗ is the time domain convolution operator. 

From the system (1.III) we can observe two main components: 

 The spatial and temporal operators ( ∇ ×, ∇. , 𝜕 𝜕𝑡⁄  )  

 The material properties tensors �̿�𝑒 , �̿�𝑚, 𝜎𝑒 , 𝜎𝑚, 𝜉̿, 휁  ̿
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Thus, it is legitimate to link the first components to a propagation phenomenon in vacuum and 

the second to a local interaction with the medium. .This observation is interestingly enough 

conform to the TLM process as shown later. 

 A proper TLM model of the above equations can be carried out by the general procedure 

described by Peña and Ney [15.III]. Now, we are going to describe the different steps in the 

TLM algorithm for general linear media, described by (1.III): 

 

1- Field evaluation  

 

 The fields are calculated exactly as in free space with a SCN-TLM cell. Thus, there is no 

need to introduce reflection coefficients in the connecting arm across media interfaces. The field 

components at the cell center are updated as [14.III]:  

 

(

 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥

Δ𝑦𝐸𝑦

Δ𝑧𝐸𝑧

𝑍𝑜Δ𝑥𝐻𝑥

𝑍𝑜Δ𝑦𝐻𝑦

𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 

𝛾𝑒,𝑖(𝑉𝑖𝑛,1 + 𝑉𝑖𝑛,2 + 𝑉𝑖𝑛,9 + 𝑉𝑖𝑛,12 + 𝛽𝑒,𝑖𝑉𝑖𝑛,13)

𝛾𝑒,𝑖(𝑉𝑖𝑛,3 + 𝑉𝑖𝑛,4 + 𝑉𝑖𝑛,8 + 𝑉𝑖𝑛,11 + 𝛽𝑒,𝑖𝑉𝑖𝑛,14)

𝛾𝑒,𝑖(𝑉𝑖𝑛,5 + 𝑉𝑖𝑛,6 + 𝑉𝑖𝑛,7 + 𝑉𝑖𝑛,10 + 𝛽𝑒,𝑖𝑉𝑖𝑛,15)

𝛾𝑚,𝑖(−𝑉𝑖𝑛,4 + 𝑉𝑖𝑛,5 − 𝑉𝑖𝑛,7 + 𝑉𝑖𝑛,8 + 𝛽𝑚,𝑖𝑉𝑖𝑛,16)

𝛾𝑚,𝑖(𝑉𝑖𝑛,2 − 𝑉𝑖𝑛,6 − 𝑉𝑖𝑛,9 + 𝑉𝑖𝑛,10 + 𝛽𝑚,𝑖𝑉𝑖𝑛,17)

𝛾𝑚,𝑖(−𝑉𝑖𝑛,1 + 𝑉𝑖𝑛,3 − 𝑉𝑖𝑛,11 + 𝑉𝑖𝑛,12 + 𝛽𝑚,𝑖𝑉𝑖𝑛,18))

 
 
 
 
 
 
 
 
 

                 (2.III) 

 

where 𝐸,𝐻 are the electric and magnetic field components, respectively, at the cell center, 𝑍𝑜 is 

the wave impedance in free space. The other parameters are defined in table 1.III. 
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Table 1.III, update equation parameters in TLM algorithm of general linear media 

∆𝑙 = 𝑐𝑜∆𝑡 𝛿1 =
∆𝑦∆𝑧

∆𝑥
 

𝛿2 =
∆𝑥∆𝑧

∆𝑦
 𝛿3 =

∆𝑥∆𝑦

∆𝑧
 

𝛼𝑚,𝑖 = 1 𝛼𝑒,𝑖 = 1 

𝛾𝑚,𝑖 =
∆𝑙

𝛿𝑖
 𝛾𝑒,𝑖 =

∆𝑙

𝛿𝑖
 

𝛽𝑚,𝑖 = 4(
𝛿𝑖
2𝑑𝑙

− 1) 𝛽𝑒,𝑖 = 4(
𝛿𝑖
2𝑑𝑙

− 1) 

 

where ∆𝒙, ∆𝒚, ∆𝒛 are the spatial-steps and ∆𝑡 is the time step. 

2- Field correction process 

 

 We first need to define the correction matrix, which is a 6 × 6  matrix of filters. Usually, 

these filters are first defined in Laplace s-transfom domain and they are obtained either from 

analytical expressions derived from physical models or using curve-fitting algorithms to obtain 

Pade-approximation of experimental data. The continuous media propertie tensors (3.II) that  

apear  in the system (1.III) should be normalized according to the simulation parameters.Then, 

they can be used in building the correction matrix. The media tensors are expressed by: 

𝜎 =

(

 
 
 
 

𝜎𝑒
𝑥𝑥 𝜎𝑒

𝑥𝑦
𝜎𝑒
𝑥𝑧 0 0 0

𝜎𝑒
𝑦𝑥

𝜎𝑒
𝑦𝑦

𝜎𝑒
𝑦𝑧

0 0 0

𝜎𝑒
𝑧𝑥 𝜎𝑒

𝑧𝑦
𝜎𝑒
𝑧𝑧 0 0 0

0 0 0 𝜎𝑚
𝑥𝑥 𝜎𝑚

𝑥𝑦
𝜎𝑚
𝑥𝑧

0 0 0 𝜎𝑚
𝑦𝑥

𝜎𝑚
𝑦𝑦

𝜎𝑚
𝑦𝑧

0 0 0 𝜎𝑚
𝑧𝑥 𝜎𝑚

𝑧𝑦
𝜎𝑚
𝑧𝑧)

 
 
 
 

                                        (3.IIIa) 

 �̅̅� =

(

 
 
 
 

𝜒𝑒
𝑥𝑥 𝜒𝑒

𝑥𝑦
𝜒𝑒
𝑥𝑧 𝜉𝑟

𝑥𝑥 𝜉𝑟
𝑥𝑦

𝜉𝑟
𝑥𝑧

𝜒𝑒
𝑦𝑥

𝜒𝑒
𝑦𝑦

𝜒𝑒
𝑦𝑧

𝜉𝑟
𝑦𝑥

𝜉𝑟
𝑦𝑦

𝜉𝑟
𝑦𝑧

𝜒𝑒
𝑧𝑥 𝜒𝑒

𝑧𝑦
𝜒𝑒
𝑧𝑧 𝜉𝑟

𝑧𝑥 𝜉𝑟
𝑧𝑦

𝜉𝑟
𝑧𝑧

휁𝑟
𝑥𝑥 휁𝑟

𝑥𝑦
휁𝑟
𝑥𝑧 𝜒𝑚

𝑥𝑥 𝜒𝑚
𝑥𝑦

𝜒𝑚
𝑥𝑧

휁𝑟
𝑦𝑥

휁𝑟
𝑦𝑦

휁𝑟
𝑦𝑧

𝜒𝑚
𝑦𝑥

𝜒𝑚
𝑦𝑦

𝜒𝑚
𝑦𝑧

휁𝑟
𝑧𝑥 휁𝑟

𝑧𝑦
휁𝑟
𝑧𝑧 𝜒𝑚

𝑧𝑥 𝜒𝑚
𝑧𝑦

𝜒𝑚
𝑧𝑧)

 
 
 
 

                                       (3.IIIb) 
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Hence, tensors (3.IIIa) and (3.IIIb) must be modified accordring to table 2.III: 

Table 2. III media normalization formulas 

𝜗 = 2𝑐𝑜∆𝑡 𝐷𝑥 =
𝜗∆𝑥

2∆𝑦∆𝑧
 

𝐷𝑦 =
𝜗∆𝑦

2∆𝑥∆𝑧
 𝐷𝑥 =

𝜗∆𝑧

2∆𝑥∆𝑦
 

𝜎𝑒,𝑛
𝑖𝑗
= 𝑍𝑜∆𝑘𝐷𝑖𝜎𝑒

𝑖𝑗
 ,       𝑖 ≠ 𝑗 

𝜎𝑒,𝑛
𝑖𝑖 = 𝑍𝑜

∆𝑗∆𝑘

∆𝑖
𝐷𝑖𝜎𝑒

𝑖𝑖  ,       𝑖 = 𝑗 

 

𝜎𝑚,𝑛
𝑖𝑗
=
∆𝑘𝐷𝑖𝜎𝑒

𝑖𝑗

𝑍𝑜
 ,       𝑖 ≠ 𝑗 

𝜎𝑚,𝑛
𝑖𝑖 =

∆𝑗∆𝑘

𝑍𝑜∆𝑖
𝐷𝑖𝜎𝑚

𝑖𝑖  ,       𝑖 = 𝑗 

𝜉𝑟,𝑛
𝑖𝑗
=
∆𝑡∆𝑖

2∆𝑗
𝜉𝑟
𝑖𝑗

 𝜒𝑒,𝑛
𝑖𝑗
=
∆𝑡∆𝑖

2∆𝑗
𝜒𝑒
𝑖𝑗

 

휁𝑟,𝑛
𝑖𝑗
=
∆𝑡∆𝑖

2∆𝑗
휁𝑟
𝑖𝑗

 𝜒𝑚,𝑛
𝑖𝑗

=
∆𝑡∆𝑖

2∆𝑗
𝜒𝑚
𝑖𝑗

 

 

where 𝑖, 𝑗, 𝑘 ∈ {𝑥, 𝑦, 𝑧}.  

In the above table, 𝜎𝑒,𝑛
𝑖𝑗

 and 𝜎𝑚,𝑛
𝑖𝑗

 are the normalized electric and magnetic conductivities 

respectively, 𝜒𝑒,𝑛
𝑖𝑗

 and  𝜒𝑚,𝑛
𝑖𝑗

 the normalized electric and magnetic susceptibilities, respectively, 

and  휁𝑟,𝑛
𝑖𝑗

 and 𝜒𝑚,𝑛
𝑖𝑗

 the normalized chiralities (electro-magnetic and magneto-electric coupling 

factors, respectively) of the element 𝑖, 𝑗. After performing the normalization process, we obtain 

the normalized version of (3.III a) and (3.IIIb) which we will refer to 𝜎𝑛 and �̅̅�𝑛, respectively. 

 Once the media tensors are normalized they are ready to be used to get the correction 

matrix in Laplace domain: 

Γ̅̅(𝑠) = (𝐼 ̅̅6 + 𝜎𝑛 + 𝑠�̅̅�𝑛)
−1

                                                 (4.III) 

where 𝐼 ̅̅6 is the identiy matrix of rank 6. The correction matrix that results from (4.III) can be 

written as: 

Γ̅̅(𝑠) = (
Γ11(𝑠) ⋯ Γ16(𝑠)
⋮ ⋱ ⋮

Γ61(𝑠) ⋯ Γ66(𝑠)
)                                                 (5.III) 



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

54 
 

The correction matrix Γ̅̅(𝑠) in (4.III) is dereived from discretized version of Maxwell’s curl 

equation (1.III). For more details the reader can consult [33.III]. 

 The next process is to prepare the correction matrix Γ̅̅(𝑠) to be used in TLM-time domain 

algorithm. This is done by using a bilinear transform to convert filter response into z-domain. 

The process of converting Laplace s-domain filter responses into z-domain is critical. It should 

be very accurate, otherwise we may end up with unstable or even unphysical system. Finally, we 

obtain the filter correction matrix Γ̿(𝑧) which is also a 6x6 matrix. Each element of this matrix is 

an infinite impulse response (IIR) filter that is defined by the general expression: 

 

Γ𝑖𝑗(𝑧) =
∑ 𝑏𝑖𝑗𝑘𝑧

−𝑘𝑀
𝑘=0

1+∑ 𝑎𝑖𝑗𝑘𝑧
−𝑘𝑀

𝑘=1

= 𝑏𝑜
′ +

∑ 𝑏𝑖𝑗𝑘
′  𝑧−𝑘𝑀

𝑘=1

1+∑ 𝑎𝑖𝑗𝑘𝑧
−𝑘𝑀

𝑘=1

                               (6.III) 

 

Figure 1.III shows a realization of an arbitrary IIR filter in the correction matrix. 

 

  

Figure 1.III the �̿�𝒊𝒋(𝒛)  filter block diagram 

 

 Once all filters are obtaind in z-domain, we can incorporate them in (6.III) to perform the 

correction process [14.III]: 
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(

 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥

Δ𝑦𝐸𝑦

Δ𝑧𝐸𝑧

𝑍𝑜Δ𝑥𝐻𝑥

𝑍𝑜Δ𝑦𝐻𝑦

𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 
 
 
 
 
 

𝑐,𝑛

= (
Γ11 ⋯ Γ16
⋮ ⋱ ⋮
Γ61 ⋯ Γ66

) ∗

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥

Δ𝑦𝐸𝑦

Δ𝑧𝐸𝑧

𝑍𝑜Δ𝑥𝐻𝑥

𝑍𝑜Δ𝑦𝐻𝑦

𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 
 
 
 
 
 

𝑜,𝑛

 

|

|

|

|

(

 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥

Δ𝑦𝐸𝑦

Δ𝑧𝐸𝑧

𝑍𝑜Δ𝑥𝐻𝑥

𝑍𝑜Δ𝑦𝐻𝑦

𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 
 
 
 
 
 

𝑐,𝑛−1

|

|

|

|

⋯

|

|

|

|

(

 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥

Δ𝑦𝐸𝑦

Δ𝑧𝐸𝑧

𝑍𝑜Δ𝑥𝐻𝑥

𝑍𝑜Δ𝑦𝐻𝑦

𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 
 
 
 
 
 

𝑐,𝑛−𝑀)

 
 
 
 
 
 
 
 
 

 (7.III) 

In (7.III) we can see that the correction process in general dispersive media requires the 

knowledge of the field values from previous time steps. This is expected because it is an IIR 

filtering process in essence, but for several field components. In figure 2.III we see the complete 

correction process for the electric field component in the x-direction. 

 

 

Figure 2.III, complete filtering process for electric field in x-direction 

As we can see, the correction process takes into account the material presence. If the medium 

under consideration is just free space, the correction matrix becomes a diagonal matrix of delta 

functions. In fact, for a non-dispersive simple media with certain relative permittivity 휀𝑟 and 

relative permeability 𝜇𝑟, the correction procedure becomes trivial and it will reproduce Johns' 

basic SCN formulation. 

 

3- Scattering process 

 After fields at the center nodes are corrected by (6.III) , reflected voltages can be 

determined by the following vector expression: 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉ref,1

𝑉ref,2

𝑉ref,3

𝑉ref,4

𝑉ref,5

𝑉ref,6

𝑉ref,7

𝑉ref,8

𝑉ref,9

𝑉ref,10

𝑉ref,11

𝑉ref,12

𝑉ref,13

𝑉ref,14

𝑉ref,15

𝑉ref,16

𝑉ref,17

𝑉ref,18)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥 + 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,12

Δ𝑥𝐸𝑥 − 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,9

Δ𝑦𝐸𝑦 − 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,11

Δ𝑦𝐸𝑦 + 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,8

Δ𝑧𝐸𝑧 − 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,7

Δ𝑧𝐸𝑧 + 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,10

Δ𝑧𝐸𝑧 + 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,5

Δ𝑦𝐸𝑦 − 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,4

Δ𝑥𝐸𝑥 + 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,2

Δ𝑧𝐸𝑧 − 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,6

Δ𝑦𝐸𝑦 + 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,3

Δ𝑥𝐸𝑥 − 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,1

Δ𝑥𝐸𝑥 − 𝑉𝑖𝑛,13

Δ𝑦𝐸𝑦 − 𝑉𝑖𝑛,14

Δ𝑧𝐸𝑧 − 𝑉𝑖𝑛,15

Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,16

Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,17

Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,18 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

                                (8.III) 

 

Now, the reflected voltages can be connected to the neighboring nodes via the connection 

process for the next time iteration. 

 

4- Connection process 

 

 The connection process can be written in following vector expression: 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉𝑖𝑛,1(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,2(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,3(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,4(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,5(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,6(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,7(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,8(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,9(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,10(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,11(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,12(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,13(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,14(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,15(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,16(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,17(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,18(𝑘, 𝑙, 𝑚))

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉ref,12(𝑘, 𝑙 − 1,𝑚)

𝑉ref,9(𝑘, 𝑙, 𝑚 − 1)

𝑉ref,11(𝑘 − 1, l,𝑚)

𝑉ref,8(𝑘, 𝑙, 𝑚 − 1)

𝑉ref,7(𝑘, 𝑙 − 1,𝑚)

𝑉ref,10(𝑘 − 1, 𝑙,𝑚)

𝑉ref,5(𝑘, 𝑙 + 1,𝑚)

𝑉ref,4(𝑘, 𝑙, 𝑚 + 1)

𝑉ref,2(𝑘, 𝑙, 𝑚 + 1)

𝑉ref,6(𝑘 + 1, 𝑙,𝑚)

𝑉ref,3(𝑘 + 1, 𝑙,𝑚)

𝑉ref,1(𝑘, 𝑙 + 1,𝑚)

𝑉ref,13(𝑘, 𝑙, 𝑚)

𝑉ref,14(𝑘, 𝑙, 𝑚)

𝑉ref,15(𝑘, 𝑙, 𝑚)

𝑉ref,16(𝑘, 𝑙, 𝑚)

𝑉ref,17(𝑘, 𝑙, 𝑚)

𝑉ref,18(𝑘, 𝑙, 𝑚) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

                         (9.III) 

where (𝑘, 𝑙,𝑚) are the space cell indices. And, as usual, the complete process (field evaluation, 

field correction, scattering and connection processes) will repeat for the next time steps. 

 Some very interesting facts about this TLM scheme should be highlighted here: 

 If we chose cubic cells, at maximum time step the parameters   𝛽𝑒,𝑖 = 4(
𝛿𝑖

2𝑑𝑙
− 1) and  

𝛽𝑚,𝑖 = 4(
𝛿𝑖

2𝑑𝑙
− 1) will be identically zero. Hence, from update equations system (3.III) we 

no longer need the voltages 𝑉𝑖𝑛,13 to 𝑉𝑖𝑛,18 and 𝑉ref,13 to 𝑉ref,18. This is due to the fact that 

material presence is taken into account through a filtering process instead of stubs used in the 

original work by Johns [16.III]. 

 Even for simple media (isotropic and non-dispersive) other than free space, we need filters to 

represent these media. This is not the case in the original paper by Johns [16.III] since stub 

loading is used instead. However, with some mathematical analysis we can obtain the 

original Johns formulation exactly from the general media presented above. 

 Free space is assumed to be the connection media. This means that wave propagation occurs 

only in free space (in the proposed SCN-TLM scheme). We may question what happens 
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when modeling other media, in which phase and group velocities are different from the ones 

of free space. The answer is twofold: first, the phase change that occurs in the filtering 

process corrects the phase velocity to the media one. Second, the maximum time step that 

comes from the stability criteria will provide the correct medium group velocity. For 

instance, in dielectrics in which the speed of light is less than the one in free space, the 

maximum time step is greater than the one in free space. Hence, the ratio between the cell 

dimensions over time step gives the correct phase velocity. This also applies to artificial 

media with permittivity less than the one of free space.  

 

3.4.4 TLM for nonlinear media 

 In electrodynamics, the term nonlinearity refers to the wave propagation in media in 

which properties are field dependent. It has been shown experimentally that any material shows 

nonlinear behavior above certain range of frequencies or amplitudes [35.III]. Even though the 

nonlinearity in Maxwell’s equations can occur if any of the material parameters behave as a 

function the field values (magnetic or electric fields), nonlinearities that involve the electric 

susceptibility are of special importance. This is due to the fact that most of the materials in nature 

possess electric susceptibility whilst very few materials possess magnetic susceptibility. In this 

section we will present the nonlinearity that occurs in the electric susceptibility only although, as 

a future work, one could study the effect of nonlinearity in magnetic susceptibility in a similar 

manner. However, non-linearity will not be investigated in details in the thesis 

 The nonlinear behavior of the media is due to the nonlinear dependence of polarization 

vector �⃗�  (the electric susceptibility) with the field intensity 𝐸⃗⃗  ⃗. For instance [36.III]: 

𝑃 = 휀𝑜(𝜒
(1) 𝐸 + 𝜒(2) 𝐸2 + 𝜒(3) 𝐸3 +⋯) =  𝑃𝐿 + 𝑃𝑁𝐿                               (10.III) 

where 𝑃𝐿 and 𝑃𝑁𝐿  are the linear and nonlinear polarizations, respectively.  

Generally for simulating a nonlinear media it is necessary to incorporate three scenarios [36.III]  

 Linear dispersion. 

 Instantaneous nonlinearity. 

 The nonlinear dispersion. 
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In TD-TLM and FDTD there are two main methods to simulate the nonlinear media  

 

I. Nonlinear solver based on piecewise-linear recursive convolution method 

(PLRC) 

 In this method, the update equations for E-field for next time-step construct a 

nonlinear algebraic system of equations; the objective is to find the roots of this system. 

Usually this is done by Newton’ method and the root with lowest value is chosen as a 

physical solution [37.III] [19.III]. 

II. Auxiliary Differential Equation Method (ADE)  

 In this method, we introduce other differential equations (auxiliary) that relate the 

polarization and the electric flux density. These equations are time-stepped in 

synchronism with Maxwell’s equations. This formulation eliminates the need to solve an 

algebraic polynomial equation at each time step like in the previous method [19.III] 

[20.III]. 

 

3.5 Implementation for  fine details 

 TLM SCN-based algorithm has a very special feature, i.e., each cell can be treated as an 

isolated entity with input output ports. The mutual communication between the neighboring cells 

happens through simple rules of voltage exchange. Those rules are fixed and do not change at the 

interface between different media [38.III] [12.III] [39.III]. 

 The above properties of TLM SCN-based nodes (which follows the diakoptic principle), 

allows us to incorporate fine structures (thin wires, thin panels) inside the TLM cell without the 

necessity to discretize those fine structures. Hence, it is sufficient to know the scattering 

properties (scattering matrix elements) of the TLM cell after including the fine structure inside it. 

Scattering properties can be calculated either analytically or numerically (at the cell level) 

[40.III]. In other words, if we are interested in simulating a structure containing fine details in 

some regions (for instance to include thin wires inside the TLM cell [41.III]), then to avoid the 

multi-scale problem, one first simulates these fine details alone. Then, one analyzes their 
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frequency dependent behavior to reconstruct a suitable correction matrix. The next step is to 

replace the fine details in the original computational domain by relatively big cells with the 

obtained correction matrices. These cells will produce the same effect of the original fine details. 

Consequently, we avoid using fine meshing for these fine structures in the computational 

process. 

 

3.6 Modelling Time Dependent Computational Domain 

 Even though time varying media are usually more common in fluid dynamics or 

thermodynamics [42.III], the possibility of having a time varying computational domain in 

electrodynamics may occur. This can give us a deeper insight into some interesting 

electromagnetics phenomena, and how fields interact with time varying media or time varying 

boundary conditions [43.III]. As a matter of fact, to handle the time varying computational 

domain one should give special attention to the following points: 

 If any parameter of the computational domain is changing with time (even the time step itself 

[44.III]), then we have a time dependent computational problem. This includes material 

properties, boundary conditions, discretization, location and orientation of components inside 

the computational domain (for instance, antennas in motion). 

 

 One can argue for example that time varying media are special cases of dispersive media 

since both of them are frequency selective processes. If that is true, one should not ignore the 

fact that, in traditional dispersive media, the filter coefficients are constant with time. For 

time-varying scenarios, filters are time-varying coefficients. This has many implications on 

the implementation and validity [45.III]. 

 

 If the material properties (constitutive parameters) are varying extremely rapidly with time, 

the medium characteristics change dramatically. Many quantum related phenomena appear 

and should be included in any computational model [35.III]. 
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 A modified version of Maxwell’s equations should be used to include the relativistic effects. 

This model can be used in case of simulating objects that are moving at high relative velocity 

(such as elementary particles inside a cyclotron, or celestial objects in space) [43.III]. 

 

 Assuming that we want to simulate a material that is changing very rapidly with time. This 

may bring extra constrains on the choice of the time step of the simulation process. This fact 

is well known in adaptive filter theory for which the sampling time becomes very small when 

adaptive filter parameters change very rapidly [45.III].  

 Time-domain TLM method provides us with a powerful tool to tackle time-domain 

computational problems including complex media. Time varying media are a kind of complex 

media; but unfortunately, the derivations presented in this chapter is valid only for computational 

problems involving time invariant media. To include the time varying media a new derivation is 

required based on classical Maxwell’s equations (1.III). However, the media properties will 

become functions of time. On the other hand, in case of computational problems involving 

relativistic effects, the necessary TLM derivation should be based on transformed Maxwell’s 

equations via relativity theory [35.III] [43.III]. 

 Finally, Porti et al [46.III] developed a TLM based algorithm that could handle time 

varying media such as moving plasma. They also studied the effect of time varying time step on 

the performance of the algorithm. 

 

3.7 TD-TLM compared to FDTD   

 In his famous paper K. Yee [47.III] developed a systematic way to solve Maxwell’s 

equation boundary value problems by constructing a new type of cells (known as Yee-cell in 

computational community). What he did was to discretize both curl equations in space and time 

directly. In each cell, there is room for the six field components, and the material properties at 

the location of the updated component. When field components are updated, they require 

samples from their own node and its neighbors. This means that when field samples are updated 

at interface, constitutive parameters from adjacent media are involved. It is easy to show that this 
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leads to averaging the values of the parameters. This may produce some substantial error, 

depending on the contrast and the number of interfaces (heterogeneity). This is where the TLM 

local property plays a significant role: fields are always updated in a homogeneous medium at 

both sides of the interface. In addition, field tangential components computed at the interface 

from either cell are always equal, insuring the field continuity conditions.  

 

 As seen previously in this chapter, TLM method became a general purpose rigorous 

method after the development of the SCN by Johns [16.III] Now, if we compare basic 

mechanisms of TLM and FDTD, we see that TLM algorithm is based on diakoptics principle that 

builds up solutions by superposition of local waves (proved to be totally compatible with 

Maxwell’s theory). On the other hand, FDTD algorithm directly discretizes Maxwell’s curl 

equations in space and time. 

 In terms of memory cost and calculation speed, the FDTD method needs to save six-field 

component values from the previous time step, and six in the current time step. On the other 

hand, TLM needs to keep track for 18-voltages at every cells (12-voltages if one use SSCN) and 

six-field components. However, TLM algorithm operates at the highest Courant condition limit 

without any instability problem. In FDTD one should always use a value less that the Courant 

condition to insure stability, thus increasing both the simulation time and the numerical 

dispersion. 

 For dispersive media the TLM method deals with dispersive media locally through the 

filtering and correction process. Furthermore, the TLM algorithm is standard and systematic for 

all types of linear media. The only requirement is to use time domain filters to represent 

dispersive media and no special issues appear at the interface between two dispersive media. 

However, in FDTD the update equations in PLRC and ADE approaches used to deal with 

dispersive media are problem dependent (the update equations for Lorentz media are different 

from those of the Debye media). This adds extra limitation on using FDTD, especially for 

anisotropic complex media such as non-saturated-ferrite. Furthermore, some issues should be 

raised at the interface between different dispersive media, since in FDTD the update equations 

depends on the field media properties on the neighboring cells. [14.III] [48.III]. 



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

63 
 

 To summarize, TLM and FDTD are two distinct numerical schemes to solve 

electromagnetic problems. They have very different dispersion properties, manipulate a different 

number of unknowns and update field components at different locations. They have their specific 

advantage and disadvantages. For the early computational electromagnetic practitioners, the 

simplicity of the FDTD algorithm was very attractive and the time-domain approach provided 

new possibilities. The TLM algorithm was published about 10 years later and many people did 

not fully understand the concept which was perceived as complicated. Despite some real 

advantages over the FDTD in certain practical cases, the TLM will never reach the notoriety of 

the FDTD. An explanation could be also the premature death of Peter B Johns with whom the 

TLM was starting to gain some interest in the scientific community. 

 

3.8 N-port network characterization  with TLM  

The TLM method provides us with direct procedure to characterize a microwave device 

such as in calculating the s-parameters, propagation constant and input impedance, namely, 

𝑆11, 𝛽 and𝑍𝑖𝑛, respectively. To perform this characterization for a microwave device, for any 

port we chose three points in a row (separated by some distance 𝑑) say {𝑝1, 𝑝2, 𝑝3} as shown in 

figure 3.III. Then, we measure the voltages (or the currents) values at these three points.  

 

Figure 3.III, generic N-ports microwave network 

From the basic knowledge of transmission line theory we can construct three equations based on 

those three voltages such as: 



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

64 
 

𝑉(𝑝1) = 𝑉
+𝑒−𝑗𝑑𝛽 + 𝑉−𝑒+𝑗𝑑𝛽                                       (11.IIIa) 

𝑉(𝑝2) = 𝑉
+𝑒−𝑗2𝑑𝛽 + 𝑉−𝑒+𝑗2𝑑𝛽                                   (11.IIIb) 

𝑉(𝑝3) = 𝑉
+𝑒−𝑗3𝑑𝛽 + 𝑉−𝑒+𝑗3𝑑𝛽                                   (11.IIIc) 

Similarly for currents:  

𝐼(𝑝1) = 𝐼
+𝑒−𝑗𝑑𝛽 + 𝐼−𝑒+𝑗𝑑𝛽                                   (12.IIIa) 

𝐼(𝑝2) = 𝐼
+𝑒−𝑗2𝑑𝛽 + 𝐼−𝑒+𝑗2𝑑𝛽                               (12.IIIb) 

𝐼(𝑝3) = 𝐼
+𝑒−𝑗3𝑑𝛽 + 𝐼−𝑒+𝑗3𝑑𝛽                              (12.IIIc) 

By solving the previous systems (45.III) and (46.III) for { 𝑉+, 𝑉−, 𝐼+, 𝐼−, 𝛽} we can find the 

reflection coefficients and the input impedance directly as:  

𝑆11(𝜔) =
 𝑉+(𝜔)

𝑉−(𝜔)
=
𝐼+(𝜔)

𝐼−(𝜔)
                                        (13.IIIa) 

𝑍𝑖𝑛(𝜔) =
 𝑉𝑡(𝜔)

𝐼𝑡(𝜔)
                                                       (13.IIIb) 

where  𝑉𝑡 and  𝐼𝑡 are the total voltages and currents at the input of the antenna (a linear 

combination of waves going both directions). 

 As we can see, this procedure is straight forward in TLM since voltages and currents are 

calculated by default in all points in the computational domain. However, in FDTD we need to 

calculate the voltage V and the current I by making integration of the E and H fields. A further 

remark is that in both techniques TLM or FDTD we should apply the previous procedure to 

calculate the microwave circuit parameters in frequency domain. This requires transferring the 

time domain-values of measured currents and voltages at the three points {𝑝1, 𝑝2, 𝑝3} to the 

frequency domain as a first step. Finally to calculate the radiated far-field (which is at locations 

outside the computational domain) we use KISR (Kirchhoff’s surface Integral representation) in 

both FDTD and TLM: all sources are enclosed by an arbitrary closed surface on which some 

field components are computed and stored. Far-field values are computed by integration of the 

stored components weighted by the free-space Green's function in time-domain [19.III]. 
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3.9 Conclusion 

 One has to admit that there is no champion method that is optimal for all scenarios 

discussed in chapter I. For instance, MOM (applied to surface integral equation formulation) is 

an efficient technique for studying scattering problems from homogenous or conducting objects. 

On the other hand, FEM, FDTD or TLM are more natural choices when simulating 

nonhomogeneous structures [49.III]. 

 In this chapter, a historical tracing of the development of TLM algorithm was presented, 

starting from the simple experimental observation of Kron [1.III] which showed the analogy 

between Maxwell’s equations and Kirchhoff's circuit theory laws. Then, we described the 

evolution brought by P. Johns to build a numerical scheme based on this observation. Finally, we 

discussed how TLM was further extended to simulate complex media (anisotropic, dispersive, 

nonlinear …etc. 

 A comparison between time domain TLM and frequency domain TLM was discussed to 

show the common roots for both of them [9.III] and their specific advantages. Further, we briefly 

discussed topics relevant to TLM computation, such as the different types of meshing. Also, the 

possibility of including fine details (like thin wires or slots smaller than 0.1 ) by modifying 

locally the algorithm was presented. It avoids mesh refinement that enforces a much smaller 

time-step and, thus, exhausts the simulation time. Further, the scenario of time varying 

computational problems and the way to handle them using TLM algorithm were briefly 

presented. Finally, a short discussion on FDTD and TD-TLM was presented to shed some light 

on the fundamental differences and try to stop the wrong perception by many time-domain 

practitioners that TLM is just a "disguised" FDTD. 

 

 

 

 



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

66 
 

References 

 

[1.III]  G. Kron, "Equivalent Circuit of the Field Equations of Maxwell-I*," Proceedings of the I.R.E, pp. 

289-299, 1944.  

[2.III]  R. F. Harrington, Time-Harmonic Electromagnetic Fields, John Wiley & Sons, INC., 2001.  

[3.III]  P. Russer, M. Mongiardo and L. B. Felsen, "Electromagnetic field representation and 

computations in complex strucures III: network representaions of the connecgtion and subdomain 

circuits," Int. J. Numer. Model, vol. 15, pp. 127-145, 2002.  

[4.III]  L. B.Felsen, M. Mongiardo and P. Russer, "Electromagnetic field representation and computation 

in complex strucurtes I: complexity architecture and generalized network formulation," Int. J. 

Numer. Model, vol. 15, pp. 93-107, 2002.  

[5.III]  M. Attia, M. Ney and T. Aguili, "Comparitive Analysis between 3D-TLM Nodes in the 

Frequency Domain," in URSI Interantional Symposium on Electrmagnetic Theory, , 2010.  

[6.III]  H. Jin and R. Vahldiek, "Full-Wave Analysis of Coplanar Waveguide Discontinuities Using the 

Frequency Domain TLM Method," IEEE Transactions on Microwave Theroy and Techniques, 

vol. 41, no. 9, pp. 1538-1542, 1993.  

[7.III]  H. Jin and R. Vahldieek, "The Frequency-Domain Transmission Line Matrix Method- A New 

Concept," IEEE Transactions on Microwave Theroy and Techniques, vol. 40, no. 12, pp. 2207-

2218, 1992.  

[8.III]  D. Johns and C. Christopoulos, "New frequency-domain TLM for numerical solution of steady-

state electromagnetic problems," IEE Proc. SCI, Meas. Technol., vol. 141, no. 4, pp. 310-316, 

1994.  

[9.III]  P. B.Johns, "On the Relationship Between TLM and Finte-Difference Methods for Maxwell's 

Equations," IEEE Transactions on Microwave Theory and Techniques, Vols. MTT-35, no. 1, pp. 

60-61, 1987.  

[10.III]  Z. Chen and J. Xu, "The Generalized TLM-Based FDTD- Summery of Recent Progress," IEEE 

Microwave and Guided Wave Letters, vol. 7, no. 1, pp. 12-14, 1997.  

[11.III]  S. S. Skiena and M. A. Revilla, Programming Challenges, Springer, 2002.  

[12.III]  P. Sewell, Y. K. Choong and C. Christopoulos, "An Accurate Thin-Wire Model for 3-D TLM 

Simulaitons," IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 2, pp. 207-217, 

2003.  



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

67 
 

[13.III]  J. Paul, C. Christopoulos and D. W. P. Thomas, "Generalized Material Models in TLM- Part 2: 

Materials with Anisotropic Properties," IEEE Transactions on Antennas and Propagation, vol. 

47, no. 10, pp. 1535-1542, 1999.  

[14.III]  A. L. Farhat, S. L. Maguer, P. Quéffélec and M. Ney, "TLM Extension to Electromagnetic Field 

Analysis of Anisotropic and Dispersive Media: A Unified Field Equation," IEEE Transactions on 

Microwave Theory and Techniques, vol. 60, no. 8, pp. 2339-2351, 2012.  

[15.III]  N. Peña, M. M. Ney, "A General Formulation of a Three-dimensional TLM Condensed Node 

with the Modeling of Electric and Magnetic Losses and Current Sources," 12th Annual Review of 

Progress in APPlied Computational Electromagnetics, pp. 262-269, 18-22 March 1996.  

[16.III]  P. B.Johns, "A Symmetrical Condensed Node for the TLM Method," IEEE Transactions on 

Microwave Theory and Techniques, Vols. MTT-35, no. 4, pp. 370-377, 1987.  

[17.III]  P. Johns and R. Beurle, "Numerical solution of 2-dimensional scattering problems using a 

transmission line matrix," Proceedings of the IEE, vol. 188, pp. 1203-1208, 1971.  

[18.III]  A. C. Cabeceira, A. Grande, I. Barba and J. Represa, "A Time-Domain Modeling for E: Wave 

Propagation in Bi-Isotropic Media Based on the TLM Method," IEEE Transactions on 

Microwave Theory and Techniques, vol. 54, no. 6, pp. 2780-2789, 2006.  

[19.III]  A. Taflove and S. C. H. , Computational Electrodaynamics, The Finite-Difference Time-Domain 

Method, Norwood: Artch House, INC., 2005.  

[20.III]  H. E. Fayali, M. I. Yaich and M. Khaladi, "Scattered-Field Modeling in Linear Dispersive Media 

Using ADE-TLM Algorithm," IJETEE, vol. 5, no. 1, July 2013.  

[21.III]  A. R. Luebbers and e. al, "A Frequency-Dependet Finite-Difference Time-Domain Formulation 

for Dispersive Materials," IEEE Transactions on Electromagnetic Compatibility, vol. 32, no. 3, 

pp. 222-227, 1990.  

[22.III]  D. F. Kelley and R. J. Luebbers, "Piecewise Linear Recursive Convolution for Dispersive Media 

Using FDTD," IEEE Transactions on Microwave Theroy and Techniques, vol. 44, no. 6, pp. 792-

797, 1996.  

[23.III]  C. Christopoulos, The Transmission-Line Modeling (TLM) Method in Electromagnetics, 

Arizona: Morgan & Claypool, 2006.  

[24.III]  M. I. Yaich, M. Khalladi; I. Zekik;J. A. Morente, "Modeling of Frequency-Dependent 

Magnetized Plasma in Hybrid Symmetrical Condensed TLM Method," IEEE Microwave and 

Wireless Components Letters, vol. 12, no. 8, pp. 293-295, 2002.  

[25.III]  J. Paul, C. Christopoulos and D. W. P. Thomas, "Generalized Material Models in TLM- Part I: 

Materials with Frequency-Dependent Properties," IEEE Transactions on Antennas and 



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

68 
 

Propagation, vol. 47, no. 10, pp. 1528-1534, 1999.  

[26.III]  N. Doncov, T. Asenov, Z. Stankovic, J. Paul and B. Milovanovic, "TLM Z-Transform Method 

Modelling of Lossy Grin MTM with Different Refractive Index Profiles," SER: Elec. Energ, pp. 

103-112, August 2012.  

[27.III]  N. Doncov and e. al, "TLM Modelling of Left-Handed Metamaterials by Using Digital Filering 

Techniques," Microwave Review, 2010.  

[28.III]  N. Doncov, T. Asenov, Z. Stankovic and J. Paul, "Time-domain Modelling of Graded Refractive 

Index Metamaterials by using 3D TLM Z-Transform Method," in TELSIKS, Serbia, Nis, 2011.  

[29.III]  V. Rawin, C. Christopoulos, D. Thomas and S. Greedy, "Application of Digital Filtering 

Techniques in Three-Dimensional Multi-Scale Problems," in Loughborough Antennas & 

Propagation Conference, Loughborough, 2010.  

[30.III]  M. A. Eberspacher, T. F. Eibert and P. Russer, "An Analysis Procedure for 3D Metamaterial Unit 

Cell Based on the Rotated Transmission-Line Matrix Scheme," in Loughborough Antennas & 

Propagation Conference, Loughborough, 2010.  

[31.III]  C. Blanchard and e. al, "Time domain simulation of electromagnetic cloaking strucures with TLM 

method," Optical Society of America, vol. 16, no. 9, 2008.  

[32.III]  J. Paul, "Modelling of General Electromagnetic Material Properties in TLM," PhD thesis, 

University of Nottingham, 1998. 

[33.III]  A. Farhat, P. Q. Ney and M. Ney, "Wideband TLM Modeling of Microwave Structures with 

Anisotropic and Dispersive Media," in EuMa, Paris, 2010.  

[34.III]  M. I. Yaich, M. Khalladi and M. Essaadi, "Efficient Modeling of Chiral Media Using SCN-TLM 

Method," Serbian Journal of Electrical Engineering, vol. 1, no. 2, pp. 249-254, 2004.  

[35.III]  J. D. Jackson, Classical Electrodynamics, JOHN WILEY & SONS, INC., 1999.  

[36.III]  G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 2006.  

[37.III]  J. Paul, C. Christopoulos and D. W. P. Thomas, "Generalized Material Models in TLM - Part 3: 

Materials With Nonlinear Properties," IEEE Transactions on Antennas and Propagation, vol. 50, 

no. 7, pp. 997-1004, 2002.  

[38.III]  J. Paul, V. Podlozny and C. Christopoulos, "The Use of Digital Filtering Techniques for the 

Simulation of Fine Features in EMC Problems Solved in the Time Domain," IEEE Transactions 

on Electrmagnetic Compatability, vol. 45, no. 2, pp. 238-244, 2003.  



Chapter III: Transmission Line Matrix Method (TLM) State of the Art 

 

 

69 
 

[39.III]  Z. Li, "Contributions aux techniques de maillages irréguliers dans la méthode TLM:Applicqtions 

au calcul électromagnetique de structures à détails fins et interface non-cartésienns," These, 

L'Université de Bretagne Occidentale, 2005. 

[40.III]  J. Paul, C. Christopoulos, D. W. P. Thomas and X. Liu, "Time-Domain Modeling of 

Electromagnetic Wave Interaction With Thin-Wires Using TLM," IEEE Transactions on 

Electromagnetic Compatibility, vol. 47, no. 3, pp. 447-455, 2005.  

[41.III]  Ahmad, A.; Thomas, D.W.P.; Christopoulos, C., "Thin wire formulation for 3-D modeling of a 

ground wire," Transmission and Distribution Conference and Exposition, 2008. T&D. IEEE/PES , 

vol., no., pp.1,6, 21-24 April 2008.  

[42.III]  T. J. CHUNG, Computational Fluid Dynamics, Cambridge University Press, 2002.  

[43.III]  L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, PERGAMON PRESS, 1962.  

[44.III]  S.Y.R. Hui et al, "Variable time step techqniue for transmission line modelling," IEE 

PROCEEDINGS, vol. 140, no. 4, pp. 299-302, 1993.  

[45.III]  S. Hykin, Adaptive Filter Theory, Prentice Hall, 2001.  

[46.III]  J. A. Porti, J. A. Morente, A. Salinas, E. A. Navarro and M. Rodriguez-Sola, "A Generalized 

Dynamic Symmetrical Condensed TLM Node for the Modeling of Time-Varying 

Electromagnetic Media," IEEE Transactions on Antennas and Propagation, vol. 54, no. 1, pp. 2-

11, 2006.  

[47.III]  K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equation in 

isotropic media," IEEE trans. Antennas Propagat, no. AP-14, pp. 302-307, May 1966.  

[48.III]  M. Zedler and G. V.Eleftheriades, "Anisotropic Tranmission-Line Metamaterials for 2-D 

Transformation Optics Applications," Proceedings of the IEEE, vol. 99, no. 10, October 2011.  

[49.III]  H. G. Dantanarayana, Application of TLM for Optical Microresonators, PhD Thesis, University 

of Nottingham, 2012.  

 

 

 

 



 

70 

 

Chapter IV 
Stability and Dispersion Analysis of a 
TLM Unified Approach for General Linear 
Media 

 

4.1 Introduction 

 

 In continuous media, the term dispersion refers to the change of phase velocity either due 

to the change in the operating frequency or due to the change in wave number in case of 

anisotropic media (which is responsible for velocity anisotropy in such media ) [1.IV]. Since the 

phase velocity is a function of the wave-number, one can say that dispersion is a phenomenon 

that connects the frequency with the wave-vector. However, in discretized media, since it is 

impossible to have spherically symmetric cells in the entire computational domain, there must 

exist some kind of anisotropy in the wavenumber for different directions inside the 

computational domain, even for isotropic media. Hence, dispersion due to the discretization 

process is inevitable. This kind of dispersion is referred to as numerical dispersion, and it 

explains the difference between physical phase velocities in continuous media and the phase 

velocity calculated via numerical techniques [2.IV]. 

 It is well-known that the limiting case of the discretized system of Maxwell’s equations 

tends toward continuous form of Maxwell’s equations as the mesh size and the time step go 

toward zeroes [2.IV]. Hence, one can intuitively predict that the numerical dispersion 

phenomenon will be negligible when dealing with very fine meshes. However, it will increase 

until it spoils the simulation results as we go toward coarser meshes or, equivalently, when the 

wavelength decreases as compared to the mesh size. In this context an important question arises: 

how to choose the mesh-size in an optimal way? In other words how to make the best tradeoff 

between mesh-size (computational requirements) and the tolerable level of numerical dispersion? 

One trivial answer is to do an initial simulation for a coarse-mesh, then to refine the mesh 

gradually until convergent results are obtained. However, when one deals with complicated 
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problems, especially those including complex media, then remeshing the computational domain 

and repeating the numerical experiment several times is not a tolerable option. Furthermore, for a 

given mesh-size it is important to have a systematic procedure to calculate the maximum time 

step to minimize the simulation time. These issues are going to be discussed in details in this 

chapter. 

 As far as time-domain models are concerned, their domain of validity in terms of 

dispersion and stability has not be thoughouly investigated in presence of complex media, in 

particular for the Transmission-Line Matrix (TLM) method. In this chapter, starting from a TLM 

algorithm for general linear media, procedures for dispersion and stablity analysis are given and 

special cases are presented. 

 Recall that the SCN proposed by Johns [3.IV] was selected for this work owing to its 

very good dispersion characteristics (no dispesion in the cartesian axis directions) and the fact 

that it can always operates at the maximum time-step [4.IV].  In [5.IV] [6.IV] authors presented a 

3D formulation for anisotropic and dispersive media in TLM method, where the filtering process 

was done directly to TLM node voltages This requires a 18 × 18 matrix of filter transfer 

functions for the general case. The development of a unifying approach for a general linear 

media was done in [7.IV], where the filtering process was applied only on the 6 field components 

instead of voltages. As far as TLM dispersion is concerned, some  analyses were reported  for 

non-dispersive media [8.IV] [9.IV] [10.IV] [11.IV] [12.IV]. However, very little work has been 

reported for complex general media. 

 

4.2 Dispersion analysis of continues linear media 

 

 As seen previously in chapter III, time-domain Maxwell’s equations for general linear 

media is given by: 

(∇ × �⃗⃗�
 

−∇ × �⃗� 
) =

∂

∂𝑡
(
𝜀𝑜�⃗� 

𝜇𝑜�⃗⃗� 
) + 𝜎 ∗ (�⃗�

 

�⃗⃗� 
) +

∂

∂𝑡
[�̅̅� ∗ (�⃗�

 

�⃗⃗� 
)] + (

𝐽 𝑖𝑚

𝐽 𝑖𝑒
)                       (1.IV) 

where ∗ denotes time convolution,  𝜎 represents the conductivity tensor in continues medium: 
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𝜎 =

(

 
 
 
 

𝜎𝑒
𝑥𝑥 𝜎𝑒

𝑥𝑦
𝜎𝑒
𝑥𝑧 0 0 0

𝜎𝑒
𝑦𝑥

𝜎𝑒
𝑦𝑦

𝜎𝑒
𝑦𝑧

0 0 0

𝜎𝑒
𝑧𝑥 𝜎𝑒

𝑧𝑦
𝜎𝑒
𝑧𝑧 0 0 0

0 0 0 𝜎𝑚
𝑥𝑥 𝜎𝑚

𝑥𝑦
𝜎𝑚
𝑥𝑧

0 0 0 𝜎𝑚
𝑦𝑥

𝜎𝑚
𝑦𝑦

𝜎𝑚
𝑦𝑧

0 0 0 𝜎𝑚
𝑧𝑥 𝜎𝑚

𝑧𝑦
𝜎𝑚
𝑧𝑧)

 
 
 
 

                                    (2.IV) 

and the matrix  �̅̅� is defined as: 

�̅̅� =

(

 
 
 
 

𝜒𝑒
𝑥𝑥 𝜒𝑒

𝑥𝑦
𝜒𝑒
𝑥𝑧 𝜉𝑟

𝑥𝑥 𝜉𝑟
𝑥𝑦

𝜉𝑟
𝑥𝑧

𝜒𝑒
𝑦𝑥

𝜒𝑒
𝑦𝑦

𝜒𝑒
𝑦𝑧

𝜉𝑟
𝑦𝑥

𝜉𝑟
𝑦𝑦

𝜉𝑟
𝑦𝑧

𝜒𝑒
𝑧𝑥 𝜒𝑒

𝑧𝑦
𝜒𝑒
𝑧𝑧 𝜉𝑟

𝑧𝑥 𝜉𝑟
𝑧𝑦

𝜉𝑟
𝑧𝑧

𝜁𝑟
𝑥𝑥 𝜁𝑟

𝑥𝑦
𝜁𝑟
𝑥𝑧 𝜒𝑚

𝑥𝑥 𝜒𝑚
𝑥𝑦

𝜒𝑚
𝑥𝑧

𝜁𝑟
𝑦𝑥

𝜁𝑟
𝑦𝑦

𝜁𝑟
𝑦𝑧

𝜒𝑚
𝑦𝑥

𝜒𝑚
𝑦𝑦

𝜒𝑚
𝑦𝑧

𝜁𝑟
𝑧𝑥 𝜁𝑟

𝑧𝑦
𝜁𝑟
𝑧𝑧 𝜒𝑚

𝑧𝑥 𝜒𝑚
𝑧𝑦

𝜒𝑚
𝑧𝑧)

 
 
 
 

                                     (3.IV) 

 

in which 𝜒𝑒
𝑖𝑗

 and  𝜒𝑚
𝑖𝑗
 are the electric and magnetic susceptibility, respectivily, 𝜉𝑟

𝑖𝑗
and 𝜁𝑟

𝑖𝑗
, 

electric-magnetic coupling factors related to varying media such as moving [7.IV]. Finally, 

𝐽 𝑖𝑒 ,   𝐽 𝑖𝑚 are the electric and magnetic impressed current sources, respectively. Note that 𝜎 takes 

into account the possible presence of magnetic free charges. They can exist in fictitious media, or 

after doing some conformal tranformation to Maxwell’s equations [7.IV] [13.IV]. 

To study the theoretical dispersion characteristics, we should find a relation between the 

frequency 𝜔 , and the wave vector �⃗�  of a wave propagating in the medium, which is supposed to 

extend indefinitly. This will allow us to evaluate the wave velocity for a given frequency, as a 

function of its direction of propagation. It is a way to characterize the numerical model 

anisotropy. In the same time, the dispersion as a function of frequency for a given direction of 

propagation can be established. The first step is to write Maxwell’s equations in spectral domain, 

assuming the medium understudy is source free. Hence, we obtain from (1.IV): 

 

(𝜔𝐼 ̅̅6 + 𝜔�̅̅�(𝜔) − 𝑗𝜎(𝜔) + Λ̅̅) (
�⃗� 

�⃗⃗� 
) = 0                                      (4.IV) 

 

where Λ̅̅ represents the curl operator in spectral domain: 
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Λ̅̅ =

(

 
 
 
 

0 0 0 0 +𝑘𝑧 −𝑘𝑦
0 0 0 −𝑘𝑧 0 +𝑘𝑥
0 0 0 +𝑘𝑦 −𝑘𝑥 0

0 −𝑘𝑧 +𝑘𝑦 0 0 0

+𝑘𝑧 0 −𝑘𝑥 0 0 0
−𝑘𝑦 +𝑘𝑥 0 0 0 0 )

 
 
 
 

                                     (5.IV) 

 

The necessary condition for (4.IV) to have a nontrivial solution is:  

 

det(𝜔𝐼 ̅̅6 + 𝜔�̅̅�(𝜔) − 𝑗𝜎(𝜔) + Λ̅̅) = 0                                            (6.IV) 

 

Equation (6.IV) provides us with a tool to test whether or not the material properties are 

physically feasible for  a linear passive media. Given any direction of propagation �⃗� = 𝑘𝑥�̂� +

𝑘𝑦�̂� + 𝑘𝑧�̂�, for all roots 𝜔𝑘, the imaginary part should be greater than or equal to zero: 

 

𝐼𝑚(𝜔) ≥ 0|{∀�⃗� |det(𝜔𝐼 ̅̅6 + 𝜔�̅̅�(𝜔) − 𝑗𝜎(𝜔) + Λ̅̅) = 0}                           (7.IV) 

 

where �̂�, �̂� and �̂� are the unite vectors in the directions of the axis x,y and z, repectively. If (7.IV) 

is not fulfilled, the waves propagating in such media, will be amplified, which violates the 

energy conservation principle. 

 

4.3 Mathematical model of TLM  

 

 In this section we present a new formulation of the TLM algorithm for general media that 

presented in the previous chapter. The basic TLM algorithm presented in chapter III consists of 

four-steps, in the following formulation we will keep those steps but the quantities and the 

operations will be reformulated using Hilbert space representation [9.IV] [10.IV]. This will give 

us more concise version of the TLM algorithm than the one presented in chapter III. It will also 

ease the derivation of necessary eigenvalue equations to get the dispersion relation and the 

stability criteria.  
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4.3.1 Propagation process  

 

 Initially, fields at the center of each cell  are  calculated  as a linear combination of the 

incident voltages from the adjacent cells: 

�̅�𝑜,𝑛 = �̅̅��̅�𝑖𝑛,𝑛                       (8.IV) 

where �̅�𝑜,𝑛,  �̅�𝑖𝑛,𝑛 are the fields and incident voltages vectors at n-th time step, respectivily, which 

write: 

�̅�𝑜,𝑛 =

(

 
 
 

Δ𝑥𝐸𝑥
Δ𝑦𝐸𝑦
Δ𝑧𝐸𝑧
𝑍𝑜Δ𝑥𝐻𝑥
𝑍𝑜Δ𝑦𝐻𝑦
𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 

                                           (9.IV) 

 �̅�𝑖𝑛 = (

𝑉𝑖𝑛,1
𝑉𝑖𝑛,2
⋮
𝑉𝑖𝑛,18

)                                     (10.IV) 

 

and  the transformation matrix between fields and incident voltages �̅̅�, is defined as  

 

�̅̅� = (
�̅̅� 0

0 �̅̅�
) [𝐶̅̅1 + 𝐶̅

̅
2 + (

�̅̅� 0

0 �̅̅�
) 𝐶̅̅3]                                              (11.IV) 

 

In the above, several submatrices are used  to represent the linear operator �̅̅� in compact 

form as shown below: 

�̅̅� = (
𝛾1 0 0
0 𝛾2 0
0 0 𝛾3

)                                            (12.IV) 

 

�̅̅� = (

𝛽1 0 0
0 𝛽2 0
0 0 𝛽3

)                                                      (13.IV) 

 

where the elments of the matrices in (12.IV) and (13.IV) are defined in table 1.IV. 
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Table 1.IV, elements of �̅̅� and �̅̅� 

𝛾1 = 4(
Δ𝑦Δ𝑧

2Δ𝑥Δ𝑡𝑐𝑜
− 1) 𝛾2 = 4(

Δ𝑥Δ𝑧

2Δ𝑦Δ𝑡𝑐𝑜
− 1) 

𝛾3 = 4(
Δ𝑥Δ𝑦

2Δ𝑧Δ𝑡𝑐𝑜
− 1) 𝛽1 =

Δ𝑥Δ𝑡𝑐𝑜
Δ𝑦Δ𝑧

 

𝛽2 =
Δ𝑦Δ𝑡𝑐𝑜
Δ𝑥Δ𝑧

 𝛽3 =
Δ𝑧Δ𝑡𝑐𝑜
Δ𝑥Δ𝑦

 

 

where Δ𝑥, Δ𝑦, Δ𝑧, Δ𝑡 are the spatial and temporal step sizes respectively, 𝑐𝑜 is the speed of light 

in free space. Matrices 𝐶̅̅1, 𝐶̅̅2 and 𝐶̅̅3 are defined as  

 

𝐶̅̅1 = Δ̅̅1,1 + Δ̅̅1,2 + Δ̅̅1,9 + Δ̅̅1,12 + Δ̅̅2,3 + Δ̅̅2,4 + Δ̅̅2,8 + Δ̅̅2,11 + Δ̅̅3,5 + Δ̅̅3,6 + Δ̅̅3,7 + Δ̅̅3,10   (14.IV) 

 

𝐶̅̅2 = −Δ̅̅4,4 + Δ̅̅4,5 − Δ̅̅4,7 + Δ̅̅4,8 + Δ̅̅5,2 − Δ̅̅5,6 −Δ̅̅5,9 + Δ̅̅5,10 − Δ̅̅6,1 + Δ̅̅6,3 − Δ̅̅6,11 + Δ̅̅6,12(15.IV) 

 

𝐶̅̅3 = Δ̅̅1,13 + Δ̅̅2,14 + Δ̅̅3,15 + Δ̅̅4,16 + Δ̅̅5,17 + Δ̅̅6,18                (16.IV) 

 

where Δ̅̅ 𝑖,𝑗 is a 6 by 18 matrix defined as: 

 

[Δ̿𝑖,𝑗]𝑝𝑞 = {
1,  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝 = 𝑖, 𝑗 = 𝑞 
0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                         (17.IV) 

 

The full derivation of the above expressions is obtained directly from discretized 

Maxwell’s curl equations (1.IV), rearanging the update equations and applying the SCN-based 

TLM algorithm presented in [3.IV]. Full derivations and other details could be found in [14.IV], 

[7.IV] . 

As previously shown, update equations are  material independent. In other words, free-

space is considered as the local voltage propagation  medium. This highlights some interesting 

property of the TLM-SCN based algorithms: even when dealing with complex materials, there is  

no need for a special treatment at interfaces. 
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4.3.2 Correction process  

 

After calculating fields at the center of each node as described by (8.IV), local material 

presence is accounted for by applying a convolution process with a 6 × 6 correction matrix, 

whose components are usually filter functions. From (2.IV) and (3.IV), the correction matrix in 

linear media is given by [7.IV]: 

Γ̅̅(𝑠) = (𝐼 ̅̅6 + 𝜎𝑛 + 𝑠�̅̅�𝑛)
−1

                                           (18.IV) 

where the matrices 𝜎𝑛 and �̅̅�𝑛 are the normalized version of  (2.IV) and (3.IV) as presented in 

chapter III. 

The correction matrix Γ̅̅(𝑠) can be obtained in the Laplace s-domain, by two different 

ways: either from analytical expressions of constitutive parameters, or by applying some curve-

fitting algorithms on media properties that are obtained experimentally. At the end of this step 

the correction matrix is known: 

Γ̅̅(𝑠) = (
Γ11(𝑠) … Γ16(𝑠)
⋮ ⋱ ⋮
Γ61(𝑠) … Γ66(𝑠)

)                                             (19.IV) 

any  element in (19), is a filter transfer function and is given by: 

Γ𝑖𝑗(𝑠) =
∑  
𝑁𝑃
𝑘=0𝑎𝑘𝑠

𝑘

1+∑  
𝑁𝑃
𝑘=1𝑏𝑘𝑠

𝑘
                                       (20.IV) 

where 𝑁𝑃 is the number of poles of each filter. Once all filters are known in the correction matrix 

(19.IV), a transformation to z-domain is applied to obtain the expression of IIR filters:  

Γ𝑖𝑗(𝑧) =
∑  
𝑁𝑃
𝑘=0𝑎𝑘

′ 𝑧−𝑘

1+∑  
𝑁𝑃
𝑘=1b𝑘

′ 𝑧−𝑘
                                      (21.IV) 

As a result, filtering processes translate to convolution products in the time-domain. An 

important point to be mentioned is that the conversion process from s-domain to z-domain is a 

critical issue. It should be carried out very carefully with high precision, to avoid any potential 

source of instability. 

After the fields are calculated by (8.IV), they should be  modified through the 

convolution process with the correction matrix Γ̅̅(𝑧), such that: 

 

�̅�𝑐,𝑛
′ = Γ̅̅(𝑧) ∗ �̅�𝑜,𝑛                           (22.IV) 
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whrere �̅�𝑐,𝑛
′  is the corrected fields vector at the n-th time step, and defined as: 

�̅�𝑐,𝑛
′ =

(

 
 
 

Δ𝑥𝐸𝑥
Δ𝑦𝐸𝑦
Δ𝑧𝐸𝑧
𝑍𝑜Δ𝑥𝐻𝑥
𝑍𝑜Δ𝑦𝐻𝑦
𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 

𝑐,𝑛

                                      (23.IV) 

At this stage of the algorithm, if one is interested in calculating the actual fields, the 

denormalization operation below should be performed to the corrected fields vector �̅�𝑐,𝑛
′  : 

�̅�𝑐,𝑛 = �̅̅��̅�𝑐,𝑛
′         (24.IV) 

where �̅�𝑐,𝑛 is the vector of actual fields after the denormalization process: 

�̅�𝑐,𝑛
′ = [𝐸𝑥 𝐸𝑦 𝐸𝑧 𝐻𝑥 𝐻𝑦 𝐻𝑧]𝑛

 𝑇                                        (25.IV) 

and,  �̅̅� is the normalization matrix defined as: 

 

�̅̅� =

(

 
 
 
 
 
 
 

1

∆𝑥
0 0 0 0 0

0
1

∆𝑦
0 0 0 0

0 0
1

∆𝑧
0 0 0

0 0 0
1

𝑍𝑜 ∆𝑥
0 0

0 0 0 0
1

𝑍𝑜 ∆𝑦 
0

0 0 0 0 0
1

𝑍𝑜 ∆𝑧 )

 
 
 
 
 
 
 

                                    (26.IV) 

 

where  𝑇 is the matrix-transposition operator, and 𝑍𝑜 is the free-space wave impedance. 

 

4.3.3 Scattering process 

Once the correction process is completed, the reflected voltages form the 18 ports of each 

cell in the TLM computational domain  are calculated. They will be used later to evaluate the 

incident voltages to the neighboring cells at the next time step. Defining the vector of reflected 

voltages at the n-th time step as: 
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�̅�𝑛 = (
𝑉1
⋮
𝑉18

)

𝑛

              (27.IV) 

 

The reflected voltages  can be expressed as a linear combination of the corrected fields at 

the center of the cell and the incident voltages at the same time step. This writes in matrix form: 

 

�̅�𝑛 = Λ̅̅�̅�𝑐,𝑛
′ − Φ̅̅�̅�𝑖𝑛,𝑛    (28.IV) 

 

where, the operators  Λ̅̿, Φ̅̅  are defiend as: 

 

Λ̅̅ = φ̅̅1,1 + φ̅̅1,6 + φ̅̅2,1 − φ̅̅2,5 + φ̅̅3,2 − φ̅̅3,6 + φ̅̅4,2 + φ̅̅4,3 + φ̅̅5,3 − φ̅̅5,3 + φ̅̅6,3 +

φ̅̅6,5 + φ̅̅7,3 + φ̅̅7,3 + φ̅̅8,2 − φ̅̅8,3 + φ̅̅9,1 + φ̅̅9,5 + φ̅̅10,3 − φ̅̅10,5 + φ̅̅11,2 + φ̅̅11,6 +

φ̅̅12,1 − φ̅̅12,6 + φ̅̅13,1 + φ̅̅14,2 + φ̅̅15,3 + φ̅̅16,4 + φ̅̅17,5 + φ̅̅18,6                                (29.IV) 

 

Φ̅̅ = Θ̅̅1,12 + Θ̅̅2,9 + Θ̅̅3,11 + Θ̅̅4,8 + Θ̅̅5,7 + Θ̅̅6,10 + Θ̅̅7,5 + Θ̅̅8,4 + Θ̅̅9,2 + Θ̅̅10,6 + Θ̅̅11,3 +

Θ̅̅12,1 + Θ̅̅13,13 + Θ̅̅14,14 + Θ̅̅15,15 + Θ̅̅16,16 + Θ̅̅17,17 + Θ̅̅18,18                                    (30.IV)                   

 

where φ̅̅𝑖,𝑗 is a 18 by 6 matrix defined as the transpose of the matrix Δ̅̅𝑖,𝑗 in (17.IV), and  Θ̅̅𝑖,𝑗 is a 

18 by 18 matrix defined as: 

[Θ̅̅𝑖,𝑗]𝑝𝑞 = {
1, 𝑖𝑓 𝑖 = 𝑝 𝑎𝑛𝑑 𝑗 = 𝑞 
0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                       (31.IV) 

where 𝑖, 𝑗, 𝑝, 𝑞 are integers. 

 

4.3.4 Connection process 

 

After scattering processes took place at every TLM node, arm reflected voltages from one 

cell become incident voltages to its neighboring ones. This process, which  can be seen as a 

discrete form of Huygens principles of wave propagation, is called the TLM connection process 

and it can be written as follows [14.IV]:  
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉𝑖𝑛,1
𝑉𝑖𝑛,2
𝑉𝑖𝑛,3
𝑉𝑖𝑛,4
𝑉𝑖𝑛,5
𝑉𝑖𝑛,6
𝑉𝑖𝑛,7
𝑉𝑖𝑛,8
𝑉𝑖𝑛,9
𝑉𝑖𝑛,10
𝑉𝑖𝑛,11
𝑉𝑖𝑛,12
𝑉𝑖𝑛,13
𝑉𝑖𝑛,14
𝑉𝑖𝑛,15
𝑉𝑖𝑛,16
𝑉𝑖𝑛,17
𝑉𝑖𝑛,18

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉12(𝑘, 𝑙 − 1,𝑚)
𝑉9(𝑘, 𝑙,𝑚 − 1)
𝑉11(𝑘 − 1, 𝑙,𝑚)
𝑉8(𝑘, 𝑙,𝑚 − 1)
𝑉7(𝑘, 𝑙 − 1,𝑚)
𝑉10(𝑘 − 1, 𝑙,𝑚)
𝑉5(𝑘, 𝑙 + 1,𝑚)
𝑉4(𝑘, 𝑙, 𝑚 + 1)
𝑉2(𝑘, 𝑙,𝑚 + 1)
𝑉6(𝑘 + 1, 𝑙,𝑚)
𝑉3(𝑘 + 1, 𝑙,𝑚)
𝑉1(𝑘, 𝑙 + 1,𝑚)
𝑉13(𝑘, 𝑙, 𝑚)
𝑉14(𝑘, 𝑙, 𝑚)
𝑉15(𝑘, 𝑙, 𝑚)
𝑉16(𝑘, 𝑙, 𝑚)
𝑉17(𝑘, 𝑙, 𝑚)
𝑉18(𝑘, 𝑙, 𝑚)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

                                       (32.IV) 

 

where 𝑘, 𝑙, 𝑚 are node spatial position indices of the node and 𝑛 is the time index. Now, we can 

refer to the time shift property in discrete time fourier transform (DTFT): 

 

𝐷𝑇𝐹𝑇 { 𝑔[𝑛 + 1] } = 𝑒𝑗Ω 𝐺(𝜔)                                           (33.IV) 

 

where  𝐺(𝜔) is the DTFT of 𝑔[𝑛] and Ω is the normalized frequency defined as  Ω = 2πΔt𝑓. In 

a similar manner, it turns out that the above connection process (32.IV) can be represented in 

Hilbert space using space and time shift operators [15.IV] [13.IV]: 

�̅�𝑖𝑛,𝑛+1 = �̅̅��̅�𝑖𝑛,𝑛                           (34a.IV) 

�̅�𝑖𝑛,𝑛+1 = Ψ̅̅�̅�𝑛                          (34b.IV) 

where �̅̅� is the time shift operator which increments the time index by one step value for each 

cells in the computational domain: 

�̅̅� |𝑛; 𝑘, 𝑙,𝑚⟩ = |𝑛 + 1; 𝑘, 𝑙,𝑚⟩                                                (35.IV) 

or in matrix  form : 

�̿� = 𝑒𝑗Ω𝐼1̿8                        (36.IV) 
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where 𝐼1̿8 is a unity matrix of size 18. Once the time shift operator is defined, the  space shift 

operator can be defined in a similar way. It performs spatial shift in the right-hand side of 

(32.IV). It is written in matrix form as : 

 

Ψ̅̅ = (

0 �̅̅�1 0

�̅̅�2 0 0

0 0 𝐼 ̅̅6

)                                    (37.IV) 

where �̅̅�1 and �̅̅�2 are 

�̅̅�1 =

(

 
 
 

0 0 0 0 0 𝑌†

0 0 𝑍† 0 0 0
0 0 0 0 𝑋† 0
0 𝑍† 0 0 0 0
𝑌† 0 0 0 0 0
0 0 0 𝑋† 0 0 )

 
 
 

                                         (38.IV) 

 

�̅̅�2 =

(

  
 

0 0 0 0 𝑌 0
0 0 0 𝑍 0 0
0 𝑍 0 0 0 0
0 0 0 0 0 𝑋
0 0 𝑋 0 0 0
𝑌 0 0 0 0 0)

  
 

                                              (39.IV) 

and the elements of the above matrices are defined in table 2.IV: 

 

Table 2.IV, space-shift operators in spectral domain and Hilbert space 

Spectral domain notation Hilbert stapce notation 

 𝑋† = 𝑒−𝑗𝜒 𝑋†|𝑛; 𝑘, 𝑙,𝑚⟩ = |𝑛; 𝑘 − 1, 𝑙,𝑚⟩ 

 𝑋 = 𝑒𝑗𝜒 𝑋|𝑛; 𝑘, 𝑙,𝑚⟩ = |𝑛; 𝑘 + 1, 𝑙, 𝑚⟩ 

 𝑌† = 𝑒−𝑗𝜂 𝑌†|𝑛; 𝑘, 𝑙,𝑚⟩ = |𝑛; 𝑘, 𝑙 − 1,𝑚⟩ 

𝑌 = 𝑒𝑗𝜂 𝑌|𝑛; 𝑘, 𝑙,𝑚⟩ = |𝑛; 𝑘, 𝑙 + 1,𝑚⟩ 

 𝑍† = 𝑒−𝑗𝜉  𝑍†|𝑛; 𝑘, 𝑙,𝑚⟩ = |𝑛; 𝑘, 𝑙,𝑚 − 1⟩ 

𝑍 = 𝑒𝑗𝜉  𝑍|𝑛; 𝑘, 𝑙, 𝑚⟩ = |𝑛; 𝑘, 𝑙,𝑚 + 1⟩ 
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where 𝜒, 𝜂, 𝜉 are the normalized spatial frequencies. In analogy with Ω in (33.IV),they are 

defined by: 

 𝜒 = 2𝜋Δ𝑥𝑘𝑥  

 𝜂 = 2𝜋Δ𝑦𝑘𝑦  

 𝜉 = 2𝜋Δ𝑧𝑘𝑧 

where the propagation frequency of the wave is replaced by the corresponding wave number 

component. 

It is obvious from (38.IV) and (39.IV), that �̅̅�1 = �̅̅�2
†
, where † is the Hermetian operator. 

This implies that the space shift operator Ψ̅̅ is a Hermetian matrix. This leads us to an interesting 

geometrical interpretation: any cell works as an isotropic local radiator exactly like the secondary 

wavelets in Huygens’ propagation model. Hence, operator that represents the radiation process 

should reflect the geometrical symmetry of the radiation propeties. Consequently, it should lead 

to a symmetrical operator, represented by a Hermitian complex matrix. 

 

4.4 Dispersion Analysis 

 

As shown earlier in section 4.2 for continuous media, the relationship between operating 

frequency and wave vector (6.IV), is the dispersion relation. For a discrete computational 

scheme, the procedure is similar. First, we express the update equations in spectral domain using 

Hilbert space representation. Then, by constucting a homogeneous linear system similar to 

(4.IV), the condition for nontrivial solutions yields eigen values and associated eigen functions. 

Now, starting from the simple observation of time shift operator (35.IV) , one can write the fields 

vector as: 

�̅�𝑜,𝑛 = �̅̅��̅�𝑜,𝑛−1                        (40.IV) 

 

and by combining (22.IV) , (28.IV) and (34.IV), we obtain: 

 

�̅�𝑖𝑛,𝑛 = Ψ̅̅(Λ̅̅ Γ̅̅ ∗ �̅�𝑜,𝑛−1 − Φ̅̅�̅�𝑖𝑛,𝑛−1)                                       (41.IV) 

Using (8.IV) and the time shift operation (40.IV) in (41.IV) yields  the eigenvalue equation: 
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�̅̅��̅�𝑖𝑛,𝑛−1 = Ψ̅̅(Λ̅̅Γ̅̅(𝑧)�̅̅��̅�𝑖𝑛,𝑛−1 − Φ̅̅�̅�𝑖𝑛,𝑛−1)                                (42.IV) 

or, equivalentely: 

(�̅̅� − Ψ̅̅(Λ̅̅Γ̅̅(𝑧)�̅̅� − Φ̅̅)) �̅�𝑖𝑛,𝑛−1 = 0                                      (43.IV) 

 

Equation (43.IV) is the discrete version of (4.IV) for continuous media. As in section 4.2, the 

sufficient condition for (43.IV)  to have nontrivial solutions is: 

 

det (�̅̅� − Ψ̅̅(Λ̅̅Γ̅̅(𝑧)�̅̅� − Φ̅̅)) = 0                                       (44.IV) 

 

After performing the determinant operation in (44.IV) for a specific medium with specific spatial 

and temporal discretizations {𝑑𝑥, 𝑑𝑦, 𝑑𝑧, 𝑑𝑡}, we obtain the dispersion equation: 

 

Υ(Γ, Δ𝑥, Δ𝑦, Δ𝑧, Δ𝑡, 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 , 𝜔) = 0                                  (45.IV) 

 

The function Υ is equivalent to the determinant in (44.IV) that relates all the arguments in 

(45.IV) in a closed form relation. The above procedure is very general. However, evaluating 

(44.IV) to obtain Υ and doing the appropriate analysis to extract useful information about the 

dispersion level, is usually a difficult task. Generally, it cannot be done analytically for complex 

media and numerical procedures provided by dedicated mathematical software must be used. 

It is of importance in any simulation process to determine the maximum allowed level of 

dispersion. This is equivalent to choose the maximum spatial discretizations to obtain negligible 

dispersion errors. In general, the effect of dispersion is a problem-dependant issue. For instance, 

resonant frequencies of a cavity are more sensitive to the dispersion than the radiation pattern of 

an antenna. But if one is interested in maintaining minimum level of dispersion, it is necessary to 

introduce some metrics to define the dispersion quantitatively. In the literature, there are two 

common ways to represent the level of dispersion, either by the  relative error in phase (or group) 

velocity or the relative error in the magnitude of the wavevector �⃗� , between discrete and 

continuous media. 

For instance, assuming that  the error in phase velocity is used as a reference quantity, 

then a problem may require a  dispersion level that do not exceed a certain threshold 𝑃𝑚𝑎𝑥%. 
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Consequently, one seeks for the maximum spatial discretizetion that fulfills: 

{Max {Δ𝑥, Δ𝑦, Δ𝑧}| |
𝑉𝑝𝑑−𝑉𝑝𝑐

𝑉𝑝𝑐
| ≤ 𝑃𝑚𝑎𝑥%}                (46.IV) 

Note that if (46.IV) is fulfilled at the limit by a given cell dimension, selecting a smaller 

cell dimension is not optimal as that will increase the number of cells to fill the computational 

domain (spatial over-sampling) and, consequently, the computational cost. Thus, some good 

knowledge of the dispersion helps to obtain more efficient simulation. 

In most publications, either for FDTD or TLM [14.IV] [2.IV], authors use the following 

inequality as a rule of thumb, to calculate the maximum cell size that maintains some acceptable 

level of dispersion: 

{Δ𝑥, Δ𝑦, Δ𝑧} ≤ 𝑀𝑖𝑛 [
𝜆𝑜

10 √𝜀𝑟𝜇𝑟
]        (47.IV) 

where 𝜆𝑜 is the wavelength in free space, 𝜀𝑟 , 𝜇𝑟 are the permittivity and the permeability of the 

medium, respectively. Whenever, the computational domain consists of nonhomogeneous media 

(which is usually the case), one should use the minimum cell dimension, so that the overall 

dispersion will remain negligible everywhere, and this is the reason behind the 𝑀𝑖𝑛 operator in 

(47.IV). As a matter of fact, this relation (which agrees with the approach presented earlier) is 

trustful only for isotropic nondispersive lossless media. However, when complex media are 

involved and when it is necessary not to exceed a certain limit of dispersion, a mesh convergence 

test should be applied. This implies that successive simulations from a coarse to finer mesh 

should be performed, at least at some locations. 

The alternative to a mesh convergence test is to know the level of dispersion a priori, by 

applying condition (46.IV). Therefore, one can use a maximum cell size in all regions which 

does not require fine spatial resolution. 

 

4.5 Stability Analysis 

 

As discussed earlier, the possibility to work with maximum spatial discretization, reduces 

the computational effort. In a simillar manner, the possibility to work on highest allowed time 

step, reduces the simulation time. However, the computational process is more sensitive to time 

under sampling, than to spatial discretization. Indeed, if in the later the dispersion level may 
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increase, instability will occur and no useful results at all can be obtained if the time step exceeds 

some limit. This limit is given by the well-known Courant-Friedrichs-Lewy condition (CFL) 

[14.IV] [2.IV]. 

In the literature, there are two general approaches to perform a stability analysis (to find 

the CFL limit). For an explicit computational scheme, one could apply Von-Neumann’s 

approach in which the growth factor of any of field or voltage sample must not exeed unity at the 

maximum time step [2.IV]. An alternate approach is to use numerical dispersion relation (45.IV), 

by which it is possible to predict the instability. The idea is to find its roots 𝜔𝑖which must have 

either zero or positive imaginary part for a stable scenario. If the condition is not met, fields will 

grow exponentially with time and an instability will occur  [14.IV] [10.IV] [2.IV].  

 

4.5.1 Growth factor (Von-Neumann) method 

 

From (42.IV), we obtain the matrix update equation: 

�̅�𝑖𝑛,𝑛 = 𝑆̿�̅�𝑖𝑛,𝑛−1                     (48.IV) 

where the system matrix 𝑆̿ is defined as: 

 

 𝑆̿ = Ψ̅̅(Λ̅̅Γ̅̅(𝑧)�̅̅� − Φ̅̅)                                 (49.IV) 

 

The necessary condition for the system (48.IV) to be stable is that eigenvalues of the 

updating matrix 𝑆̿ lie inside the unit circle in the complex plan: 

 

‖𝜆𝑖(∆𝑡)‖ ≤ 1 ∀ 𝑖 ∈ {1,18}                                              (50.IV) 

 

As shown in (49.IV), the matrix 𝑆̿ depends on local information of the the cell, including 

media properties and the spatial and temporal discretizations. If an analytic solution is feasible, 

one can seek the maximum common ∆𝑡 that fullfils the condition (50.IV). In case of complex 

media, especially when 𝑆̿ contains complicated expressions (i.e. obtained by curvefitting), the 

process may be more time consuming. Indeed, one has to solve for eigenvalues of 𝑆̿ several 

times by incrementing ∆𝑡 gradully until the condition limit (50.IV) is reached.  
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4.5.2 Complex frequency method 

Assuming that the computational domain is excited by a sinusoidal signal of the form: 

𝑉𝑠 = 𝑉𝑜𝑒
𝑗𝜔𝑜𝑛Δ𝑡                                                  (51.IV) 

where 𝜔𝑜, is the signal frequency. The voltage 𝑉𝑘,𝑙,𝑚,𝑛 at any space-time point in the TLM 

computational domain (𝑘, 𝑙,𝑚, 𝑛) writes [2.IV]: 

𝑉𝑘,𝑙,𝑚,𝑛 = α𝐿𝑉𝑜𝑒
𝑗((𝜔𝑟𝑒+𝑗𝜔𝑖𝑚)𝑛Δ𝑡+𝑘𝑥𝑘Δ𝑥+𝑘𝑦𝑙Δ𝑦+𝑘𝑧𝑚Δ𝑧)                       (52.IV) 

 

where, α𝐿 is some time-independent attenuation factor,  𝑉𝑜 is the signal amplitude at the exitation 

region, {𝑘𝑥, 𝑘𝑦, 𝑘𝑧} are the wave vector components in x,y,z directions, respectively, 𝜔𝑟𝑒, 𝜔𝑖𝑚 

are the real and imaginary parts of the frequency 𝜔, respectively. The dispersion relation, 

contains parameters such as operating frequency, time and spatial steps and the wave vector 

components. Consequently, for a given spatial discretization and wave vector, one could easily 

find a relationship between the operating frequency, and time step. 

The necessary condition for a computational domain whose dispersion relation is 

described by (45.IV) to be stable is that 𝜔𝑖𝑚 be zero or a positive number, for each node: 

 

𝐼𝑚{𝜔} ≥ 0, ∀𝜔|{Υ(Γ, Δ𝑥, Δ𝑦, Δ𝑧, Δ𝑡, 𝑘𝑥 , 𝑘𝑦, 𝑘𝑧 , 𝜔) = 0   , ∀ 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 ∈ ℝ, ∀ 𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠}              

(53.IV) 

 

Two points should be highlighted here. Firstly, since we are dealing with a linear time-

invariant media, the real part of frequency 𝜔𝑟𝑒 in (52.IV) should be the same as the frequency of 

the source signal 𝜔𝑜. Secondly, for a general computational domain, waves can  propagate in any 

direction. Thus, in finding roots of (45.IV) as a function of the time step, the solutions should be 

valid for any direction of propagation. This is enforced by taking all possible combinations of 

directions in a parallelepipedic cell i.e. {�̂�, �̂�, �̂�, �̂� + �̂�, �̂� + �̂�, �̂� + �̂�, �̂� + �̂� + �̂�} and finding the 

lowest limit among these directions. For isotropic media, and because of symmetry, it is 

sufficient to analyse only three directions  {�̂�, �̂� + �̂�, �̂� + �̂� + �̂�}. 

An important issue should be discussed here: as shown previously, the update equations 

are temporal step-size dependent. In addition, IIR filter coefficents require some a priori 

knowledge of the upper bound of the  time step. Indeed, if it was unstable, the process of 
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recalculating the filter coefficients should take place again until an appropriate prediction is 

done. As discussed earlier, if one chooses a very small step compared to Δ𝑡𝑀𝑎𝑥, the time 

response will be oversampled, and couputational resources will be exhausted. 

The previously discussed approach to calculate Δ𝑡𝑀𝑎𝑥, allows a systematic procedure, 

regardless the kind of the media. However, analytical expressions and empirical  expressions 

exist in literature only for non-dispersive media [2.IV]. 

 

4.6 Results and discussions 

In this section we present several numerical  experiments to study the dispersion for 

different types of media. The first objective is to verify the validity of the procedure, and then, to 

show the impact of spatial and time step values on dispersion. Finally, both approaches for 

stability analysis are used to calculate Δ𝑡𝑀𝑎𝑥for two different media. However, to simplify the 

calculations, without loss of generality, cubic cells of size ∆𝑙 are used in all simulations. 

 

4.6.1 Dispersion in free-space 

In free space, the correction matrix is Γ̿ = 𝐼 ̅̅6. If we chose  the maximum time step 

Δ𝑡 = ∆𝑙/(2𝑐𝑜) and substitute it in (44.IV), we obtain the well-known dispersion equation for 

free space [12.IV]: 

2cos (
2𝜋∆𝑙𝑓

𝑐𝑜
) = cos(𝜂)(cos(𝜉) + cos(𝜒)) + cos(𝜉)cos(𝜒) − 1                 (54.IV) 

where  𝑓 is the operating frequency. By choosing different time steps that respect the 

stability criteria, we end up with different dispersion relation. This shows that the numerical 

dispersion is also time-step value dependent. Several computational tests have shown that 

mimum dispersion occurs at the maximum allowed time step as already known. However, even 

for a very simple propagating medium like free space the optimum time-step is also direction 

dependent. For instance, let us analyze the dispersion in the directions (1,1,0), (1,0,1)  or  

(0,1,1). These directions correspond to the modes propagation (𝑇𝐸110, 𝑇𝐸101, 𝑇𝐸011) in a cubic 

cavity. As shown in figure.1.IV ( 𝑉𝑃𝑁 is the numerical phase velocity, 𝑉𝑃𝑇 is the theoritical phase 

velocity calculated for the continuous medium  model) the numerical dispersion is smaller when 

Δ𝑡𝑚𝑎𝑥/2 is chosen as compared to Δ𝑡𝑚𝑎𝑥 along the diagonal face directions.  
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Figure 1.IV, dispersion in free space in face-diagonal directions (1,1,0), (1,0,1) , (0,1,1) with different Δt, analytical vs. 

numerical simulations 

 

However, as expected, the dispersion is found  minimal for maximum time step in the 

axis directions (1,0,0), (0,1,0) , (0,0,1), which is the case of minimum dispersion for the TLM 

cell. 

 

4.6.2 Dispersion in anisotropic medium  

In the second expriment, we chose a nonmagnetic, lossless anisotropic medium. The 

operating frequency 𝑓 = 500𝑀𝐻𝑧, and  Δ𝑡𝑚𝑎𝑥 was used. 

 

As as shown in  Figure.2.IV, different directions have different dispersion characteristics. 

For instance, in x-direction no dispersion appears, wheras, a maximum dispersion occurs along 

the main diagonal direction of the cube  (1,1,1). 
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Figure 2.IV, dispersion curves in a nonmagnetic anisotropic medium at different directions of propagation, where 𝜀̅�̅� =
𝑑𝑖𝑎𝑔{1,2,3} 

If one choses an empirical formula such as (47.IV), then the maximum spatial step will 

be 𝜆𝑜 10√𝜀𝑟,𝑀𝑎𝑥 = 0.057 𝜆𝑜⁄ , for a negligible dispersion error, which matches results in figure 

2.IV for around 1.0% error threshold. 

 

4.6.3 Dispersion in Debye medium 

 

The permetivity of a non magnetic Debye dispersive medium is given by [15.IV] [2.IV]:  

 

𝜀̅�̅� = (𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏𝑜
) 𝐼 ̅̅3                                                   (55.IV) 

 

where 𝜀∞ , 𝜀𝑠 is the permitivity at very high frequencies and at DC respectively, 𝜏𝑜 is the 

relaxation time of the medium. In Figure. 3.IV, different dispersion curves for different Debye 

materials in the axial-direction are illustrated at 𝑓 = 79.6 𝑀𝐻𝑧. 𝑉𝑃𝑁 is the numerical phase 

velocity, 𝑉𝑃𝑇 is the theoritical phase velocity calculated for the continuous medium  model 

[13.IV]. Each dispersion curve is normalized to its theortical phase velocity. In this numerical 

experiment the time step we used is slightly smaller than Δ𝑡𝑚𝑎𝑥 (to decrease the number of 

decimal points in ∆𝑡 to speed up the algabraic calculations done by Mathematica). As expected, 

the dispersion increases with 𝜀𝑠. 
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If we chose the empirical formula (47.IV), then the maximum spatial step will 

be  𝜆𝑜 10√‖𝜀𝑟(𝑓)‖⁄ . Table 3.IV shows the difference between applying the proposed approach 

for 1.0% dispersion error margin in comparison with the simple formula (47.IV). The value of 

memory saving is calculated using  

Memory saving = ( 
∆𝑙/𝜆𝑜 1.0%  Error

∆𝑙/𝜆𝑜 Rule  (47.IV)
)
3

                              (56.IV) 

 

Figure 3. IV, dispersion curves in Debye medium along cell diagonal directions (1,1,1) with 𝜀𝑠 = {2,4,9}, 𝜀∞ = 1 and 

𝜏𝑜 = 100𝑝𝑠  

 

Table 3.IV, comparison between the rigorous proposed approach and the rule (47.IV) for maximum cell size in terms of memory 

requirements for the Debye medium of the case of figure 3.IV 

𝜀𝑠 ∆𝑙/𝜆𝑜 Rule  (47.IV) ∆𝑙/𝜆𝑜 1.0%  Error  Memory Saving % 

2.0 0.071 0.095 239.5% 

4.0 0.050 0.068 251.6 % 

9.0 0.033 0.045 253.6 % 

 

In the physical continuous dispersive medium, it is well known that the wave phase 

velocity is frequency dependent. Thus, the behaviour of a  discrete model should converge to the 

one for continuous model as ∆𝑙/𝜆𝑜 → 0. Figure.4.IV shows dispersion curves of a Debye 

medium for propagation in the x-y plane for different values of Δ𝑙.By solving (6.IV) for the 

corresponding Debye continuous medium, the analytical solution is found to be: 
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𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘𝑜
2                                   (57.IVa) 

 

where 𝑘𝑜
2 is the magnitude squared of the wavenumber vector and given by:  

 

𝑘𝑜
2 = ‖

𝜔𝑜
2

𝑐𝑜
2 (

𝑗𝜀∞−𝜏𝑜𝜔𝑜𝜀𝑠

𝜏𝑜𝜔𝑜−𝑗
)‖                                (57.IVb) 

 

Figure 4. IV, 𝑘𝑥 − 𝑘𝑦 for different values of Δ𝑥 in a Debye medium, with 𝜀∞ = 1, 𝜀𝑠 = 2, 𝜏𝑜 = 1.667𝑛,  𝜔𝑜 = 𝜋10
9𝑟𝑎𝑑/𝑠𝑒𝑐 

 

One can observe in figure 4.IV the convergence of the discrete model to the analytical 

solution (57.IVb) as the spatial step-size is reduced relatively to the free-space wavelegnth.  

 

4.6.4 Maximum step size in Debye medium 

 

In this experiment, we study the impact of choosing different spatial discretization on the 

accuracy of the resonant frequencies of a cavity filled by a nonmagnetic Debye medium with 

permittivity relation (55.IV). 

Theoretically, resonant frequencies are calculated by solving the following third-order 

equation: 

𝜔𝑟
3 − 𝑗

𝜀𝑠

𝜀∞𝜏𝑜
𝜔𝑟
2 −

𝜌

𝜀∞
𝜔𝑟 +

𝑗𝜌

𝜀∞𝜏𝑜
= 0                                         (58.IV) 

 

where 𝜌 is defined as  
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    𝜌 = 𝜋2 [(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

+ (
𝑝

𝑑
)
2

] 𝑐𝑜
2                                           (59.IV) 

 

The 3-tuple (𝑚, 𝑛, 𝑝)  represents the mode indices, 𝜔𝑟 is the resonant mode, and 𝑐𝑜 is the 

speed of light in free space. 

As expected, results in table 4.IV show that dispersion error is directly proportional to the 

cell size. However, the lack of an empirical formula for calculating the maximum allowed spatial 

step size with minimum dispersion shows a huge impact on the simulation process. For instance, 

the size of the computational domain when Δ𝑙 = 1.0 𝑚𝑚 is eight times larger than using Δ𝑙 =

2.0 𝑚𝑚. It is even more obvious for  Δ𝑙 = 2.0 𝑚𝑚 compared to Δ𝑙 = 0.4 𝑚𝑚, for which the 

memory and simulation time requirements is increased by a factor 125.  

 

Table 4.IV, dispersion error for different spatial discretization: Debye medium 𝜀∞ = 2, 𝜀𝑠 = 10, 𝜏𝑜 = 10 ps  

 

The procedure presented in this chapter allows one, to estimate the dispersion error as a 

function of the chosen Δ𝑙. Based on that knowledge, the appropriate spatial step size is chosen 

for minimum dispersion error. For instance Δ𝑙 = 1.2 𝑚𝑚 corresponds to a maximum dispersion 

error of 1.0%, for the maximum frequency of 12GHz in the cavity experiment of table 4.IV. If 

one uses the rule of thumb (47.IV), it is not clear which permittivity to be used {𝜀𝑠, 𝜀∞, 𝜀𝑟(𝜔)}, 

because everyone will lead to different maximum step size Δ𝑙 = {1.6 𝑚𝑚, 1.0 𝑚𝑚, 0.8 𝑚𝑚}, 

respectively, which shows some ambiguity in applying (47.IV) for general dispersive media. 

 

Resonant 

Mode 

Resonant 

Frequency 

(GHz) 

Relative Error % 

Δ𝑙 = 2.0 𝑚𝑚 Δ𝑙 = 1.0 𝑚𝑚 Δ𝑙 = 0.4 𝑚𝑚 

𝑓110 6.709 0.89 0.18 0.0 

𝑓111 8.218 1.41 0.39 0.17 

𝑓120 10.615 2.31 0.61 0.05 

𝑓121 11.634 2.53 0.64 0.21 
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4.6.5 Dispersion in Lorentz medium 

 

Now,we consider a nonmagnetic Lorentz medium, with permetivity defined as [2.IV] 

[16.IV]: 

 

𝜀̅�̅�(𝜔) = (𝜀∞ +
(𝜀𝑠−𝜀∞)𝜔𝑜

2

𝜔𝑜
2−𝜔2+2𝑗𝜁𝑒𝜔

) 𝐼 ̅̅3                                      (60.IV) 

 

where 𝜔𝑜 is the characteristic resonant frequency of the Loretnz material sample, 𝜁𝑒  the damping 

coefficient,𝜀𝑠 the static value  of permittivity and 𝜀∞ is the value at high frequencies. 

In figure 5.IV, the dispersion curves for different values of operating frequency 𝜔 are 

presented where 𝑉𝑃𝑁 is the numerical phase velocity calculated by the discrete model (44.IV) 

and 𝑉𝑃𝑇 is the theoritical phase velocity calculated in continuous medium (6.IV). Each dispersion 

curve is normalized to its corresponding theortical phase velocity: 

𝑣𝑝 =
𝜔

‖�⃗� ‖
 (61.IV) 

where the wave number vector �⃗�  is calculated by solving (6.IV) for continuous medium, given 

by 

�⃗� =
𝜔

𝑐𝑜
√
𝜔(𝜔−2𝑗𝜁𝑒)𝜀∞−𝜔𝑜

2𝜀𝑠

2𝑗𝜁𝑒𝜔−𝜔2+𝜔𝑜
2  𝑎 𝑘                                                   (62.IV) 

where  𝑎 𝑘 is a unit vector in the direction of propagation. Along the horizontal axis ∆𝑙/𝜆𝑜, each 

curve is normalized to its own free space wavelength 𝜆𝑜 = 2𝜋 𝑐𝑜/𝜔. 



Chapter IV: Stability and Dispersion Analysis of TLM Unified Approach for General Linear Media 

93 

 

 

Figure 5. IV, numerical dispersion curves in Lorentz medium along the cell diagonal direction (1,1,1), with parameters, 𝜀𝑠 =

2, 𝜀∞ = 1,  𝜔𝑜 = 6 × 10 
8 𝑟𝑎𝑑/𝑠 and 𝜁𝑒 = 0.167  𝜔𝑜 

 

As observed in figure 5.IV, the dispersion characterestics change according the operating 

frequency 𝜔 due to the fact that the material properties are changing too. In this numerical 

experiment the time step we used is slightly smaller than Δ𝑡𝑚𝑎𝑥 (to decrease the number of 

decimal digits in ∆𝑡 to speed up the algabraic calculations done by Mathematica). Table 5.IV 

shows the difference between using (47.IV) as a rough estimation for the maximum spatial step, 

and using the proposed approach with 1.0 % error criteria.  

 

 

Table 5.IV,comparison between the rigorous proposed approach and the rule (47.IV) for maximum cell size in terms of memory 

requirements for the Lorentz medium of the case of figure 5.IV 

Frequency (10 8 𝑟𝑎𝑑/𝑠) ∆𝑙/𝜆𝑜 Formula (47.IV) ∆𝑙/𝜆𝑜 1.0% Error Memory saving % 

2.0 0.0688 0.0914 234.46 % 

3.0 0.0661 0.0871 228.80 % 

4.0 0.0617 0.0828 241.68 % 

5.0 0.0556 0.0791 287.94 % 

 

It is obvious that using this approach, one can control the level of dispersion to the 

desired value but with some compromize with the computational requirements. For instance, 

fixing the maximum level of dispersion to 1.0%, leads to around half the computational effort 

compared to the rule (47.IV). Note that memory saving is calculated using (56.IV). 
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4.6.6 Stability in Anisotropic medium 

 

In this example, we chose a rectangular cavity filled by the anisotropic material with 

diagonal permittivity and premeability tensors, and excited with a modulated-gaussian 

pulse(𝑡0 = 200 ∆𝑡 , 𝜎 = 50 Δ𝑡, 𝐴 = 1000, 𝑓0 = 150 𝐺𝐻𝑧 ). To obtain the maximum time step, 

we solved (45.IV).  

As explainded before, the procedure to obtain Δ𝑡𝑚𝑎𝑥, is to plot the imaginary part of all 

the roots of (45.IV) vs. Δ𝑡 for different directions of propagation (1,0,0), (0,1,0), (0,0,1). (1,1,0), 

(0,1,1), (1,0,1), (1,1,1). Then, among all obtained Δ𝑡 we select the maximum value beyond 

which 𝐼𝑚(𝜔) changes its sign. 

Figure 6.IVa shows the simulation at the limit of the maximum time step for which 

stability can be observed. Any small increment of the time-step brings its value beyond the 

maximum limit for which instabilities can be observed in the short term as shown in Figure.6IVb 

 

Figure 6.IV, 𝐸𝑥 field vs. iteration number, with Δ𝑙 = 0.1𝑚𝑚 and  𝜀̅�̅� = �̅̅�𝑟 = 𝑑𝑖𝑎𝑔{2.0,2.0,1.0} a) at the stability limit. b), for 

a very small increment of the time step beyond the  stability limit. 

If one compares with the simple TLM CFL limit in an anisotropic lossless medium with 

diagonal permittivity and permeability tensors [17.IV]: 

∆𝑡𝑀𝑎𝑥 =
√min (𝜀𝑖𝜇𝑖)

𝑐𝑜
√
4

3
((

1

∆𝑥
)
2

+ (
1

∆𝑦
)
2

+ (
1

∆𝑧
)
2

)      (63.IV) 

The results of applying (63.IV) perfectly agrees with stability limits calculated using the 

complex frequency approach presented in the previous section (as illustrated by figure 6.IVa). 

Note that the resonant mode triggered by the gaussian pulse reaching the steady state can be 

observed.  
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4.6.7 Stability in lossy dispersive medium 

 

A similar experiment was carried out for a rectangular cavity filled by a lossy dielectric 

medium and excited with a modulated-gaussian pulse, where (𝑡0 = 200 ∆𝑡 , 𝜎 = 50 Δ𝑡, 𝐴 =

1000, 𝑓0 = 30 𝐺𝐻𝑧 ). 

As shwon in figure 7.IV a, the 𝐸𝑥 field inside the cavity, is attenuated after a certain time, 

due to losses. A point to mention here is that the stabilty is not as sensitive as in the previous 

example. This is due to medium losses which compensate the growth that comes from the 

instability. If we exceed Δ𝑡𝑀𝑎𝑥, for instance by 0.2% as shown in figure 7.IV b, the instability 

occurs after 500 iterations. However, if we chose a value 10.01 ps which is 0.1% above Δ𝑡𝑀𝑎𝑥, 

the instability only appears after several thousands of iterations. 

 

Figure 7. IV,  𝐸𝑥  field vs. iteration number, where  𝜀𝑟 = 2,𝜇𝑟 = 2, and 𝜎𝑒 = 1.5 𝑆/𝑚 , for Δ𝑙 = 3.0𝑚𝑚, a) At the limit of 

stability. b) With 0.2% time-step increase beyond the stability limit. 

In this numerical experiment, Von-Neumann’s approach was applied. We calculated the 

18 eigenvalues as a function of Δ𝑡 for the main directions of propagation (1,0,0), (1,1,0), (1,1,1). 

Note that since the material is isotropic, there is no need to consider other directions like in the 

previous example. Then, we found the point Δ𝑡𝑀𝑎𝑥 beyond which the the condition (50.IV) is 

violated. 

 

 

 



Chapter IV: Stability and Dispersion Analysis of TLM Unified Approach for General Linear Media 

96 

 

4.7 Conclusion 

 

In this chapter we presented a  procedure to evaluate dispersion characteristics and 

stability condition of the TLM-SCN algorithm for general linear media. A similar approach can 

be applied for FDTD algorithm. It is only necessary to modify the corresponding update 

equations. 

Several examples were presented to show the validity of the proposed procedure. 

Furthermore, for complex media no formulas are available for evaluating both maximum space 

and time steps. It is shown that the procedure allows one to select optimum values which leads to 

an efficient simulation, minimizing both the dispersion error and the computer expenditure. 

Finally, the procedure described here is valid for any linear, anisotropic, dispersive medium for 

field compution by the time-domain TLM model. 
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Chapter V 
Results, Applications and Discussions 

 

5.1   Introduction 

 

 In this chapter, we present and discuss the core results that have been obtained in this 

thesis. Initially, we started working with a TLM solver developed at the Laboratory Lab-STICC 

during the last two decades. This TLM solver was designed to handle general geometries, 

nondispersive media with diagonal tensors and different kinds of boundary conditions. However, 

that TLM solver was lacking two important features: first, it could not handle general dispersive 

linear media and, secondly, it lacked a Graphical User Interface (GUI) that renders the simulator 

impractical to create complex objects with non-Cartesian boundaries. One objective of this 

project was to add those two important features to the original TLM solver. At the beginning, we 

implemented the part that enables us to handle anisotropic dispersive media (media with general 

linear properties). Then, we implemented a GUI in connection with GiD mesher [1.V]. It allows 

us to construct complicated structures with a user-friendly approach. The contribution was 

necessary as no dedicated software that could be adapted to our needs, was available. 

 In the first part of this chapter, we briefly describe the TLM solver and some of its 

functionalities. Then, we present the GUI alongside with several numerical experiments intended 

to validate both the TLM-solver and the GUI. Finally, we present numerical experiments 

including complex media with the rigorous comparison either with analytical or experimental 

data. 

5.2  TLM simulator 

 

 As presented in the previous chapters, the TLM algorithm is a time-domain full-wave 

computational method that is based on the analogy between Maxwell field equations and the 

circuit theory. So, we need to calculate all voltages and currents in each cell at each time step. 
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Then, we use correspondence relations to find all electric and magnetic field components. As 

seen before, this method has several features that we summarize below: 

 

 Accuracy: depends on the spatial discretization. 

 Speed: it operates at ∆𝑡𝑚𝑎𝑥 and computes all field components at the same location and 

time. It also computes the tangential component on the cell faces which makes it easy to 

interface with other methods.  

 As a result of the preceding feature, TLM provides better performance than FDTD when 

dealing with high contrast parameters. This will be detailed in the next chapter 

 Memory requirement: it needs to save local physical characteristics of the media like any 

other method. However, it requires storing at most 18 voltages at each node when the 

SCN version is used. 

 The TLM node is able to deal with anisotropic, dispersive and highly inhomogeneous 

structures. 

 Simple basic algorithm with no complex pre-analytical procedure. 

 

 As discussed earlier in chapter III, TLM method is completely local which means that the 

update equations at any instant of time only depends on the local information inside the cell 

(besides incident voltages from neighboring cells), whereas in FDTD the update equations in any 

cell depend also on the media properties in the neighboring cells [2.V]. This implies some 

averaging that may introduces some error (as we will show in the next chapter). Furthermore, 

one can estimate the worst case scenario for such averaging for simple media in FDTD but this 

becomes much more difficult when including anisotropic dispersive media like non-saturated 

ferrite.  

Features of the TLM solver 

 It can simulate three-dimensional structures with general geometry (but presently only 

with staircase approximation of curved boundaries). 

 The solver is written for Maxwell’s equations in Cartesian coordinate system. However, 

it can handle general structured irregular Cartesian meshes. 
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 It can handle any linear media, which includes dispersive, nonhomogeneous, anisotropic, 

chiral media, and there is an access to every cell in the computational domain. 

 The computational domain can be truncated using different kinds of boundary conditions 

such as perfectly matched layer (PML), perfectly electric (PEC) and magnetic (PMC) 

conductors, lossy boundary conditions and free space boundary conditions (radiation 

conditions). 

 It is possible to use the PMC and PEC as symmetry or asymmetry planes, respectively, to 

reduce the computational effort. 

 The solver is equipped with functions to show the field values, voltages and currents 

anywhere inside the computational domain both in time and frequency domain. 

 The solver is based on symmetrical condensed node (SCN), which is an important and 

justifiable choice since both the Hybrid symmetrical condensed (HSCN) and the 

symmetrical super condensed (SSCN) nodes need voltage reflection coefficient between 

neighboring cells across interfaces between different media. As a result, when complex 

dispersive media are involved, elaborated interface processes (including filtering) must 

take place with HSCN and SSCN [3.V]. On the contrary, the SCN always assumes that 

the free space is the common medium and media presence is accounted for at the node 

center only.   

 It allows far-field calculations using Kirchhoff’s surface integral. This is useful in 

antenna and scattering problems and, for instance, to obtain the radiation pattern and the 

radar cross-section (RCS). 

 Allows for several types of excitation, such as lumped port, mode template methods and 

Huygens surface. 

 The solver is written using the FORTRAN90 language [4.V], in which we have imported 

several functions from the NAG computational library. The solver can work both under 

Windows and Linux operating systems. 

 The code is serial; however, it can be parallelized to perform computations of large 

structures using parallel processor machine. 
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Figure 1.V, block diagram of the TLM simulator 

 

 Beside the simulator, we have several post-processing codes, such as S-parameter 

calculator, scattering field calculator, field distribution displayer…etc. In all post-processing 

routines, we use the output files from the TLM simulator. Figure 2.V, for instance shows the S-

parameter calculator in access ports. 

  

 

Figure 2.V, block diagram of s-parameters calculation post-process 

 

 As a final remark, writing a parallel version of the above program is a relatively easy 

task. The parallelization process should occur in two main places. First, we should parallelize the 

input procedure so each machine is responsible of a portion of the computational domain only. 

The role of this parallelization is to enhance the memory use. Secondly, it is necessary to 

parallelize the field calculation routines. Hence, each machine calculates fields inside some part 

of the computational domain, and sends values at the interface to the other machines. This 

parallelization is to enhance the speed performance [5.V]. 
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5.3  Graphical user interface for the TLM solver (GUI) 

 

 We know that complex structures, especially curved ones, are very difficult to describe 

manually using an electromagnetic solver input file. Also, there is some high probability to make 

mistakes when defining the geometry in that manner. To overcome this difficulty, we 

implemented a graphical user interface for the TLM simulator via dedicated software which 

allows us to enter all input information in a user-friendly manner. 

 At the beginning we had to select a suitable mesher among different possible candidates, 

such as GMSH [6.V], Rhinoceros [7.V] and GiD [1.V]. After examining the previously 

mentioned software, we found that GiD is the most suitable for our objectives. It allows entering 

any geometry in a user-friendly manner. GiD is programmable, so we can create the output files 

in the format we like. We can also add several windows to control the configuration parameters 

of the TLM simulator, the material properties and the excitation. Finally, it was the only one that 

can produce structured Cartesian three-dimensional grids that is suitable to our solver.  Figure 

3.V shows two examples of structures that are created and meshed by using GiD. 

 

 

Figure 3.V, meshes creating using GiD, (a) double layered sphere (b) loaded rectangular waveguide 

 Figure 4.V shows the block diagram of the GiD GUI, in which we see abstractly how it 

can be used to control all the steps of the computational process, from designing the problem to 

analyzing the results. 
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Figure 4.V, GiD graphical user interface structure (GUI) 

 In figure 5.V we see a flowchart diagram of how GiD operates in more details. The 

computational process is split into three main steps: 

I. Pre-processing 

 

 In this step we define all the components of the computational domain which includes 

 Drawing the geometry  

 Assigning the material properties 

 Defining the boundary conditions 

 Define the general computational parameters like the time-step and the type of nodes.  

 Define the sources, probe points for fields, voltages and currents 

 Define the Kirchhoff’ window to calculate the far field. 

 Once all the previous details are defined, we create a Cartesian mesh for the 

computational domain. Then, GiD (according to a script format, here we use TCL scripting 

language) produces different input files describing all the details of the computational domain. 

Finally, another interface code for formatting purposes is written in FORTRAN90. This code 

combines all these files to create one big file to be input to the TLM solver as shown in figure 

1.V and 5.V. 

II. Processing 

 After creating the input file from inside GiD, we can run the TLM solver to perform the 

simulation process. 
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III. Post-processing 

 

 Once the results are obtained, we can use GiD to visualize them with different 

appropriate displaying methods and different types of graphs. Note that for more elaborated 

analysis (for instance, to analyze the scattering parameters of a microwave circuit) additional 

codes in Matlab, FORTRAN 90 or C languages must be written by the user. 

 

 

Figure 5.V, organization chart of the complete simulation process carried out by GiD [1.V] 
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5.4    Experiments including simple media 

 

 In this section, we present several numerical experiments. These experiments were 

created and meshed using the GiD interface. All the following experiments in this section will be 

used as a punch-mark to validate the TLM simulator as well as the GiD GUI, since all these 

experiments were created by GiD.  The set of experiments includes: 

 

 Scattering by a dielectric sphere, with which we experiment the solver performance in 

case of non-Cartesian boundaries and the effect of stair-case approximation. Moreover, to 

test the near-field far-field transformation using Kirchhoff’s integral method. 

 PML performance in an empty rectangular waveguide. In this experiment, the goal is to 

study the PML performance for all angles of incidence over a large spectrum of 

frequencies. 

 Waveguide including discontinuities, which is dedicated to study the performance of 

structured irregular meshing. 

  Microstrip patch antenna, were we compared with some measurements and other 

computational method due the lack of analytical solutions for such structure. This 

experiment is dedicated to test the solver’s and the GUI’s performance for some more 

complicated and non-canonical structure.  

 

  Unlike the experiments that will be presented in the next section, all the structures and 

computational problems presented in this section include only simple media, i.e., linear, 

nondispersive and isotropic. 

 

5.4.1 Far-field plane wave scattering by dielectric sphere 

 

 In this experiment, we study the scattering of a plane wave impinging on a dielectric 

sphere, the computational domain was created via GiD GUI, and then a TLM simulation was 

carried out to calculate the scattered field. As shown in figure 6.V, scattered fields are calculated 

in the far field region at pointing angles 𝜃 ∈ [0𝑜 , 180𝑜]. 
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Figure 6.V, dielectric sphere illuminated by a plane wave 

 To create a plane wave inside the computational domain in TLM method we used 

Huygens surface excitation as a shown in figure 6.V. Using this kind of excitation has two 

benefits: firstly, it produces a perfect plane wave. Secondly, it allows us to calculate the scattered 

fields automatically; indeed, inside the red surface (Huygens surface) we have the total field, 

whereas outside there is only the field scattered by the sphere [8.V].  Then, to calculate the 

scattered fields in the far-field zone, we used Kirchhoff’s surface integration technique to 

perform the near-field to far-field transformation. Finally, to absorb the scattered fields and to 

simulate the open boundaries, we used PML layer of 10-cells thickness for all six faces of the 

computational domain. 

 This simulation was repeated twice; in both of them we used cubic cells. In the first 

simulation we used mesh size of ∆𝑙 = 10.0 mm, and for the second simulation we used ∆𝑙 = 5.0 

mm, that is equivalent to 35 cells/wavelength and 70 cells/wavelength, respectively. This choice 

of relatively small spatial step-size allows a good geometrical description of the sphere using 

stair-case approximation as shown in figure 7.V. Moreover, both mesh sizes ensure negligible 

level of numerical dispersion as expressed by (47.V). In both simulations, CFL maximum time-

step was used, namely, 16.66 ps and 8.33 ps, respectively. The radius of the dielectric sphere is 

10 cm. For time excitation, we used a modulated-Gaussian signal with parameters 𝜎 = 100∆𝑡 

and 𝑡𝑜 = 300 ∆𝑡. The simulation was performed for 2000 iterations until the incident and 

scattered fields practically vanished in the computational domain. 
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Figure 7.V, dielectric sphere discretized using GiD a) mesh size  ∆𝑙 = 5.0 mm, b) mesh size ∆𝑙 = 10.0 mm 

 

In figure 8.V we see the scattering profile as a function of the angle 𝜃 at a distance of R=100.0 

meter from the center of the dielectric sphere. That distance is equivalent to 166.7 wavelengths at 

frequency of 500MHz.    

 

Figure 8.V, dielectric sphere normalized scattered electric field vs. angle θ in the far-field region 

 

 The results obtained using TLM are in good agreement with the analytical solution 

obtained by Mie series approximation [9.V] [10.V]. As expected, we obtain a closer solution to 

the analytical one as we decreased the mesh size. Hence, one can explain the discrepancy 

between the analytical solution and the simulation, due to the stair-case approximation effect.   
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5.4.2 Rectangular waveguide with discontinuity 

 

 In this experiment, we want to determine the mode cutoff frequencies of the ridged 

waveguide  whose cross section is shown in figure 9.V. To find those frequencies, we considered 

a waveguide of one ∆𝑙 length in the longitudinal direction terminated by PEC's. As a result, we 

obtain a resonator of length ∆𝑙 and the first resonances will correspond to the mode cutoff 

frequencies that occur in the transverse plane only, with a good accuracy. This approximation no 

longer applies to very higher-order modes. The objectives of this experiment is to test the TLM 

solver for structured irregular meshes and to show the benefits of such meshing when fine details 

require mesh refinement in the computational domain. 

 

                       Figure 9.V, cross section of the ridged rectangular waveguide 

 In figure 10.V (a,b, and c) we can see the different meshes that we used to discretize the 

computational domain presented in figure 9.V. In figure 10.Va, a coarse mesh of around 14 cells 

per wavelength was used, while in figure 10.V c, a very fine mesh of around 42 cells per 

wavelength was used. In figure 10.Vb, we can see a structured irregular mesh, in which we used 

fine mesh only around the discontinuities.  

 

Figure 10.V, cross section of rectangular waveguide (a) uniform coarse mesh (b) nonuiform mesh (c) fine mesh 
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 Table 1.V shows the different mesh parameters used in figure 10.V (a, b and c). In all 

three experiments we used delta function for excitation. And the simulations were performed for 

30000 iterations. 

Table 1.V, mesh and time step properties for the case of figure 10.V 

 Mesh properties Time step 
Computational 

domain size 

Mesh (a) ∆𝑥 = ∆𝑦 = 5 𝑚𝑚 =
𝜆𝑜
14

 ∆𝑡 = 8.333 𝑝𝑠 400 cells 

mesh (b) 

∆𝑥 = ∆𝑦 = 5 𝑚𝑚 in the sparse 

region, and ∆𝑥 = ∆𝑦 =

1.667 𝑚𝑚 in the dense region 

∆𝑡 = 1.389 𝑝𝑠 1008 cells 

mesh (c) ∆𝑥 = ∆𝑦 = 1.667 𝑐𝑚 =
𝜆𝑜
42

 ∆𝑡 = 2.77 𝑝𝑠 3600 cells 

 

 In table 2.V, we can see resonant frequencies obtained by using different meshes. Due to 

the lake of analytical solution, we used the results of mesh (c) as a reference since it is very fine 

(42 cells per wavelength).  

Table 2.V, comparison of the performances of different meshes 

 

 As we can observe, non-uniform meshing can dramatically reduce the computational cost 

and in the same time maintains an acceptable level of accuracy (less than 1%). One can notice in 

Resonant Mode 

Mesh (figure 10.Va) 
Mesh ( figure 10.Va b) 

Mesh ( figure 10.Va c) 

(Reference) 

Resonant 

frequency(GHz) 

% Relative 

difference 

Resonant 

frequency(GHz) 

% Relative 

difference 

Resonant 

frequency(GHz) 

dominant mode 2.671 1.657% 2.725 0.331 % 2.716 

second mode 3.419 1.605% 3.378 0.386 % 3.365 

third mode 4.018 2.031 % 4.131 0.438 % 4.113 

fourth mode 4.433 3.599 % 4.302 0.538 % 4.279 
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table 1.V, that the memory gain when using the irregular meshing as in figure 10.Vb is around 

357%  compared to using the fine meshing of figure 10.Vc, and the time gain is around 178.6%. 

Note that the time gain is calculated using: 

time gain =
∆𝑡 𝑛𝑜𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑚𝑒𝑠ℎ𝑖𝑛𝑔

∆𝑡 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑚𝑒𝑠ℎ𝑖𝑛𝑔
(
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑚𝑒𝑠ℎ𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑓𝑖𝑛𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑚𝑒𝑠ℎ𝑖𝑛𝑔
)                 (1.V) 

5.4.3 PML performance in an empty rectangular waveguide 

 

 In this experiment we calculate the back-to-back reflection coefficient of the PML layer 

in an empty wave guide as shown in figure 11.V. This experiment is the best suited for testing 

any ABC's as the TE10-mode propagation can be seen as plane waves impinging with different 

incident angles on the PML interface when the frequency signal is changed. 

 

 

Figure 11.V, WR90 waveguide of dimensions 10.16 mm x 22.86 mm matched from both sides by a PML ABC 

 

 The computational domain was discretized using a uniform mesh of cubic cells of 

dimension ∆𝑥 = 1.27 𝑚𝑚 , with a total size of 200 by 18 by 8 cells. The time step we used 

is  ∆𝑡 = 2.11 𝑝𝑠 . For time excitation, we applied a TE10 mode template at a distance 25.4 mm 

(20 cells), to ensure a single mode propagation inside the waveguide.  The signal waveform we 

used was a modulated-Gaussian pulse with parameters  𝑓𝑜 = 10  𝐺𝐻𝑧, 𝜎 = 30 ∆𝑡 and 𝑡𝑜 =

300∆𝑡. Finally, the detection points are separated from the excitation plane by distances 16.51 

cm, 171.45 cm and 17.78 cm, respectively. 

 The next step is to apply the post-processing technique presented in chapter III to 

calculate the reflection coefficient, in which we solve the transmission-line equations based on 

the knowledge of the voltages at three different points. Moreover, since there are two PML 
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layers at both ends of the waveguide, the actual value of the reflection coefficient will be half ( -

3dB) the one produced by the back-to-back configuration. 

 Figure 12.V shows the reflection coefficent for different PML layer widths. As we can 

see, a PML layer of 15 cells width gives better perfomance than a 10-cells width but at the cost 

of more computations in the PML layer. However after some simulated experiments, 15 cells 

only produces similar results than using a PML width of 20 cells. Results were obtain with 

80000 iterations. Matched impedance boundary condition were used to terminate the PML layer 

to further decrease reflections due to PML layer truncation.  

 

 

Figure 12.V, reflection coefficient vs. frequency for different PML layer of parabolic profile with  𝜎𝑚𝑎𝑥 = 4.33 𝑆/𝑀 , 𝜎𝑚𝑎𝑥 =

2.885 𝑆/𝑚 and 𝜎𝑚𝑎𝑥 =  2.164 𝑆/𝑚 for 10 cells, 15 cells, and 20 cells thickness PML layers, respectively. 

  

 We repeated this experiment again but, this time, we used simple PEC and PMC 

boundary conditions to terminate the PML layer. We observed some unstability after 30000 

iterations. However, 30000 iterations were not sufficient to obtain smooth curves as in figure 

12.V. 
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5.4.4 Microstrip-line fed rectangular patch antenna 

 

 The actual dimensions and other details of the microstrip antenna that we used in this 

experiment are shown in figure 13.V. The simulation of this antenna involves a direct use of the 

TLM algorithm with PML boundary conditions (10-cells width from all sides except the ground 

plane) to simulate the outer free space. To model the dimensions as accurately as possible we 

used ∆𝑥 = 0.40 mm, ∆𝑦 = 0.389 mm and ∆𝑧 = 0.296 mm. Consequently, the maximum time 

step was 0.424 ps. The maximum spatial size is justified because it respects the negligible 

numerical dispersion criteria since the chosen value is ∆𝑥 ≈ 𝜆𝑔 25⁄  for the maximum frequency 

(20 GHz). This value is a good compromise between negligible numerical dispersion and 

accurate geometrical quantization to minimize the quantization error effects due to the use of 

parallelepipedic cells. The length of the microstrip-line used to feed the patch antenna is 50 ∆𝑥 

from the PML layer to the rectangular patch. The source was placed a 10 ∆𝑥 from the side of the 

PML or 40 ∆𝑥 from the patch. We used a modulated-Gaussian pulse of half-width of 15 ps, and 

time delay of 45 ps with a center frequency of 7.5 GHZ. Due to the resonant behavior of the 

structure the simulation was required 10000 iterations. 

 

Figure 13.V, microstrip-line fed rectangular patch antenna detail [11.V] 

 The reflection coefficient 𝑆11 is shown in figure 14.V and some good agreement can be 

observed with both the FDTD simulation results and measured data [11.V]. The operating first 

resonance is 7.5 GHz which is almost exactly obtained by both numerical techniques and 

measurements. The other resonances are also in good match with both FDTD and measurements; 

however, there are small discrepancies which can be explained by the geometry quantization 

error (which occurs when using a coarse mesh that implies slightly different dimensions from the 

real structure). One should highlight here that we wanted to use the same meshing as in the 

reference paper [11.V] for comparison purposes and thus, kept the same quantization error.  
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Figure 14.V, reflection coefficient of the rectangular patch antenna of figure 13.V 

 For calculating the reflection coefficient, we recorded the voltage values at three points 

on the microstrip-line at distances 25∆𝑥, 30∆𝑥, 35∆𝑥, where we located the source at a distance 

of 10 ∆𝑥 from the PML layer. Then we applied the technique presented in chapter III, section 13. 

  

5.5  Experiments involving complex media. 

 

 After testing and validating the TLM solver in previous section, we can make a step 

further to use it for structures including complex media. In this section, we present several 

experiments that validate the TLM solver for problems involving anisotropic and dispersive 

media.  

 First of all, we perform some comparisons with canonical examples. This includes, 

cavities filled by anisotropic or dispersive media, plane-wave scattering by a chiral sphere, and 

some experiments involving transformation optics (TO). After validating the solver for complex 

media, we present an example that involves a waveguide loaded by non-saturated ferrite 

material. The ferrite sample is fully nonhomogeneous, anisotropic and dispersive.  

 One point to mention here is that the objective of performing the following experiments 

is to show the correctness of the simulator. Hence, for all experiments we used fine meshes to 
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minimize the dispersion. However, to estimate the appropriate values of mesh size we used 

empirical formula such as (47.IV) presented in the previous chapter. Note that for computer cost 

optimization, dispersion studies described in chapter IV should rather be performed. 

 

5.5.1 Rectangular resonators filled by anisotropic/dispersive media 

I. Resonator filled by anisotropic media  

 In this experiment we compute resonant frequencies for a PEC rectangular resonator 

filled by an anisotropic material as shown in figure 15.V.   

 

Figure 15.V, rectangular resonator filled by an anisotropic medium. 

The anisotropic media constitutive parameters that we used in this numerical experiment are: 

휀𝑟 = (
8 0 0
0 2 0
0 0 2

)     ;      𝜇𝑟 = (
8 0 0
0 2 0
0 0 2

)                             (2.V) 

 

To obtain a negligible level of numerical dispersion, we used uniform mesh of cubic cells with 

size Δ𝑙 = 1 𝑐𝑚 . This value ensures less than 1.0% error due to the numerical dispersion as 

discussed in chapter IV. Consequently, the corresponding time step is ∆𝑡 = 8.33 𝑝𝑠. For time 

excitation, we used a delta function to excite all modes. Note that, one could also use Gaussian 

pulse with appropriate bandwidth to cover the useful output spectrum. 

 Table 3.V, shows a comparison between analytical and simulated results for resonant 

frequency of a resonator filled with the anisotropic material described above.  
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Table 3.V, resonant frequencies of the rectangular cavity shown in figure 20.V 

Modes Simulation results Analytical results Relative error % 

f110 176.8  MHz 176.78  MHz 0.011 

f111 216.6  MHz 216.51  MHZ 0.041 

f102 280.1  MHz 279.51  MHz 0.211 

f112 306.7  MHz 306.19  MHz 0.166 

 

 As we can see, results generated by the TLM model are very accurate. This is due to the 

fact that we used small spatial step size (according to 47.IV). The choice of fine mesh size 

minimizes the effect of numerical dispersion, which is the main source of error in this 

experiment. Furthermore, we used the cell size to fit exactly the resonators dimensions to avoid 

geometry quantization errors. 

 

II. Rectangular resonator filled by lossy/dispersive dielectric  

  

In this experiment we calculate the quality factor of a rectangular resonator filled by lossy 

dispersive media. The quality factor in table 4.V is shown for different values of filling media 

conductivity 𝜎. The process of computing the quality factor in numerical experiment includes 

two steps: firstly, to find the desired resonance frequency 𝑓𝑜 and then, to measure the -3dB 

bandwidth  ∆𝑓 around 𝑓𝑜. Finally, the quality factor is defined as: 

𝑄 = 𝑓𝑜 ∆𝑓⁄                                                (3.V) 

In the simulation, we used regular mesh with cubic cells. For a negligible level of numerical 

dispersion we used the cell size to be ∆𝑙 = 10𝑚𝑚, which is around to 25 cells per wavelength in 

the medium (according to 47.IV). The corresponding time step is  ∆𝑡 = 8.33 𝑝𝑠 and 50000 

iterations were performed. The time excitation was a delta (Dirac) function. 

 Table 4.V shows a good matching between analytical and simulation results. One can 

also observe that the quality factor of the cavity increases as the losses 𝜎 decreases.  
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Table 4.V, Quality factor of a cubic cavity of side length =30 cm, filled by dispersive media   

εr =4.0,  μr=1.0, 𝑡𝑎𝑛(𝛿) = 𝜎 (𝜔𝑜휀𝑟휀𝑜)⁄ , 𝜔𝑜, for different 𝜎. 

Conductivity 𝜎 

(S/m) 

𝑄 = 𝑓𝑜 ∆𝑓⁄  

(Simulation) 

𝑄 = 1 tan (𝛿)⁄  

(Analytical) 

Relative Error in 

Quality factor 

calculation 

0.004 18.6 19.1 2.62 % 

0.003 25.97 25.42 2.16 % 

0.002 38.52 38.12 1.05% 

0.001 76.18 76.25 0.09% 

 

 One can also notice that, as the conductivity 𝜎 decreases the relative error between the 

analytical and simulation results decreases too. This can be explained by the fact that the increase 

of media conductivity for the same mesh size increases the numerical dispersion.   

 

5.5.2 Near-field scattering by chiral sphere 

 

 In this experiment that exploits the TLM scheme presented in chapter III and chapter IV, 

we study the plane-wave scattering by a chiral sphere and make a comparison with Mie series 

analytical solution [9.V]. As we discussed in chapter II, chiral material is a medium in which the 

electric field may also couple with magnetization and magnetic field with electric polarization. In 

such media the constitutive parameters can be written in the frequency domain (chapter II) as 

[12.V]: 

𝜅(𝜔) =
𝜏𝜔𝑜

2𝜔

𝜔𝑜
2−𝜔2+𝑗2𝜔𝑜𝜉𝜔

                                                      (18.IIa) 

휀(𝜔) = 휀𝑜휀∞ +
(𝜀𝑠−𝜀∞)𝜀𝑜𝜔𝑜𝑒

2

𝜔𝑜𝑒
2 −𝜔2+𝑗2𝜔𝑜𝑒

2 𝜉𝑒𝜔
                                      (18.IIb) 

𝜇(𝜔) = 𝜇𝑜𝜇∞ +
(𝜇𝑠−𝜇∞)𝜇𝑜𝜔𝑜𝑚

2

𝜔𝑜𝑚
2 −𝜔2+𝑗2𝜔𝑜𝑚

2 𝜉𝑚𝜔
                                  (18.IIc) 

 We chose a chiral sphere of radius 10 cm and the chiral medium described by the 

dispersive equations (18.II) such that, at the frequency of 0.5 GHz, the values are 휀𝑟 = 4.0, 𝜇𝑟 =



Chapter V: Results, Applications and Discussions 

118 
 

2.0, 𝜅 = 0.0314. Cubic cells, each with size of 1.0 𝑐𝑚 (since the chirality factor 𝜅 is relatively 

small), were used according to (47.IV) to obtain negligible numerical dispersion. The 

corresponding time step is ∆𝑡 = 16.60 𝑝𝑠 and 2000 total iterations were performed. Finally, for 

time excitation, we applied a modulated-Gaussian pulse signal with center frequency of 0.5 GHz 

and 𝜎 = 100.0∆𝑡 and 𝑡𝑜 = 300.0∆𝑡. The scattered field values were recorded at a distance of 

30.0 cm from the center of the sphere. Figure 16.V shows a comparison between TLM 

simulation and Mie series analytical solution [9. V]. As we can see, there is some good 

agreement between the analytical solution and TLM simulation curves. 

 

 

 

Figure 16.V, near-field scattering by chiral sphere of radius 10 cm, a comparison between simulated result and Mie series 

analytical solution. 

 

 As observed in figure 16.V, the small random ripples that appear in the TLM curve can 

be explained by the stair-case approximation of the computational domain position and the 

sphere (see figure 7.Vb). One can also notice that the relatively smooth curve of the simulated 

results can be explained by the fact that we chose a small sphere in comparison to the 

wavelength of the incident plane wave (𝑟 = 𝜆𝑜 6⁄ ). 
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5.5.3 Transformation optics ( TO) 

 

 As presented in chapter III, transformation optics [13.V] [14.V] provides mathematical 

tools to study the same computational problem in different coordinate systems. As mentioned, 

any change in the coordinate system will directly reflect on the media properties inside the 

computational domain. In the next three experiments, we use the TO principle to transform 

simple media of the original computational domain into complex media in the transformed 

computational domain. This provides analytical solutions for some computational problems 

involving complex media (because we know the analytical solution for the simple media case); it 

is an interesting way to accurately evaluate the TLM solver (or any other method) for complex 

media.  

I. Shrinking a dielectric slab in a parallel plate waveguide  

 In this first experiment shown in figure (17.Va) and (17.Vb), we compute the reflection 

and transmission coefficients from a lossless dielectric slab in a parallel-plate waveguide. In both 

cases, dielectric slab was excited by a TEM plane wave. To obtain a perfect plane wave, the 

computational domain was terminated by two parallel PEC walls at the top and bottom and two 

parallel PMC walls at both sides. This will ensure a TEM mode of propagation and generate a 

one-dimensional electromagnetic problem. 

 

 

Figure 17.V, scattering problem in parallel plate waveguide, (a) original computational domain with simple media , (b) 

transformed computational domain with complex media 
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 In the first scenario, we performed a numerical experiment with a simple nonmagnetic 

dielectric layer of permittivity  휀�̿� =  10.0  𝐼3̿  and thickness 𝑑 = 10.0 𝑐𝑚 (figure 17.Va). Then, 

we applied the TO coordinate transformation in which we shrink only the dielectric layer to 

𝑑 2 =⁄  5.0 cm (figure 16.Vb). This results in a new problem in which the dielectric layer has 

permittivity and permeability given by: 

휀�́̿� = (
20 0 0
0 20 0
0 0 5

)  ; �̿�𝑟́ = (
2 0 0
0 2 0
0 0 1 2⁄

)         (4.V) 

 In this numerical experiment we used regular mesh of cubic cells. To maintain a 

negligible level of numerical dispersion, we used the cell size to be ∆𝑙 = 5 𝑚𝑚, which is 

equivalent to 27 cells per wavelength in the isotropic medium of the original domain before 

transformation. Consequently, the time step we used is ∆𝑡 = 4.0 𝑝𝑠. The time excitation was a 

modulated Gaussian pulse at center frequency 𝑓𝑜 = 0.5 𝐺𝐻𝑧 and parameters 𝜎 = 30∆𝑡 and 𝑡𝑜 =

300∆𝑡.  The experiment was performed for 9000 iterations until all fields vanished in the 

computational domain.  

 

Figure 18.V, reflection coefficient: a comparison between analytical solution and TLM algorithm for both original computational 

domain and transformed domain 
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Figure 19.V, transmission coefficient: a comparison between analytical solution and TLM algorithm for both original domain and 

transformed computational domain 

 Figures 18.V and 19.V show the reflection and transmission coefficients, respectively 

over the frequency range from 250 to 700 MHz. As expected, we can see some good agreement 

between both TLM simulations (the original and transformed domain) and the analytical 

solution: 

𝑆11 =
𝑍𝑖𝑛−𝑍𝑜

𝑍𝑖𝑛+𝑍𝑜
                                   (5.Va) 

𝑍𝑖𝑛 = 𝑍𝑜√
𝜇𝑟

𝜀𝑟
(
1+√

𝜇𝑟
𝜀𝑟
𝑗𝑡𝑎𝑛(𝛽𝑑)

√
𝜇𝑟
𝜀𝑟
+𝑗𝑡𝑎𝑛(𝛽𝑑)

)                                    (5.Vb) 

where, 𝑍𝑜 is the free-space wave impedance and 𝜇𝑟 and 휀𝑟 are the relative permeability and 

permittivity of the dielectric slab in the original domain (figure 17.Va), respectively, 𝛽 is the 

wave number inside the isotropic dielectric slab, and 𝑑 is the thickness of the dielectric slab 

shown in figure 17.Va. 

 We can notice that the results obtained in the transformed domain have some higher (but 

still very small) discrepancy with the analytical solution than the results obtained in the original 

domain. This observation is expected since we used the same cell size for both original and 

transformed domains. In fact, the anisotropic media (as we discussed in chapter IV) generates 

higher dispersion characteristics than isotropic media. Finally, one can conclude that these results 
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validate the solver correctness and functionality for media having diagonal tensors constitutive 

parameters. They also validate the approach using TO. 

 

II. Rotation of a PEC cylindrical cavity 

 

 In this example, we exploit the TO concept to create an example of a structure that uses 

anisotropic media with non-diagonal tensor. The analytical solution of this example is already 

known and will be used for comparisons with numerical results obtained by the TLM solver. 

 Consider a PEC cylindrical cavity of radius 18 mm and height of 6 mm filled by an 

anisotropic medium defined by the following constitutive parameters: 

 

휀̅�̅� = (

ε𝑥 0 0
0 ε𝑦 0

0 0 ε𝑧

)        ;        �̅̅�𝑟 = (

μ𝑥 0 0
0 μ𝑦 0

0 0 μ𝑧

)                              (6.V) 

 

Now, one applies the following coordinate transformation (rotation around the z-axis): 

 

(
𝑥′
𝑦′

𝑧′

) = (
cos(𝜙) −sin(𝜙) 0
sin(𝜙) cos(𝜙) 0
0 0 1

)(
𝑥
𝑦
𝑧
)                                             (7.V) 

 

 According to the rules of TO discussed in chapter II, we can obtain the permittivity and  

permeability expression in the new coordinate system: 

 

휀̅̅ = (

cos2(𝜙)휀𝑥 + sin
2(𝜙)휀𝑦 sin(𝜙)cos(𝜙)휀𝑦 − sin(𝜙)cos(𝜙)휀𝑥 0

sin(𝜙)cos(𝜙)휀𝑦 − sin(𝜙)cos(𝜙)휀𝑥 sin2(𝜙)휀𝑥 + cos
2(𝜙)휀𝑦 0

0 0 휀𝑧

)        (8.Va) 

 

 

�̅̅� = (

cos2(𝜙)𝜇𝑥 + sin
2(𝜙)𝜇𝑦 sin(𝜙)cos(𝜙)𝜇𝑦 − sin(𝜙)cos(𝜙)𝜇𝑥 0

sin(𝜙)cos(𝜙)𝜇𝑦 − sin(𝜙)cos(𝜙)𝜇𝑥 sin2(𝜙)𝜇𝑥 + cos
2(𝜙)𝜇𝑦 0

0 0 𝜇𝑧

)        (8.Vb) 
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In reality, nothing has changed (just rotating the cylinder around its axis). However, if 

one looks from the new coordinate system perspective, it is possible to use the new material 

properties (8.Va) and (8.Vb) and maintain the same geometry (because of its invariance with the 

𝜙 angle). The correction matrix Γ̅̅(𝑠) in s-domain that will be used in the TLM algorithm is: 

 

Γ̅̅(𝑠) = (
Σ̿𝜀 0̿

0̿ Σ̿𝜇
)                                                        (9.Va) 

 

where, 0̿ is a 3x3 null matrix, and Σ̿𝜀, Σ̿𝜇 are defined as follows:  

 

 Σ̿𝜀 =

(

  
 

𝑠sin2(𝜙)𝜀𝑥+𝑠cos
2(𝜙)𝜀𝑦−𝑠+1

(𝑠𝜀𝑥−𝑠+1)(𝑠𝜀𝑦−𝑠+1)

𝑠sin(𝜙)cos(𝜙)(𝜀𝑥−𝜀𝑦)

(𝑠𝜀𝑥−𝑠+1)(𝑠𝜀𝑦−𝑠+1)
0

𝑠sin(𝜙)cos(𝜙)(𝜀𝑥−𝜀𝑦)

(𝑠𝜀𝑥−𝑠+1)(𝑠𝜀𝑦−𝑠+1)

𝑠cos2(𝜙)𝜀𝑥+𝑠sin
2(𝜙)𝜀𝑦−𝑠+1

(𝑠𝜀𝑥−𝑠+1)(𝑠𝜀𝑦−𝑠+1)
0

0 0
1

𝑠(𝜀𝑧−1)+1)

  
 

             (9.Vb) 

 

Σ̿𝜇 =

(

  
 

𝑠sin2(𝜙)𝜇𝑥+𝑠cos
2(𝜙)𝜇𝑦−𝑠+1

(𝑠𝜇𝑥−𝑠+1)(𝑠𝜇𝑦−𝑠+1)

𝑠sin(𝜙)cos(𝜙)(𝜇𝑥−𝜇𝑦)

(𝑠𝜇𝑥−𝑠+1)(𝑠𝜇𝑦−𝑠+1)
0

𝑠sin(𝜙)cos(𝜙)(𝜇𝑥−𝜇𝑦)

(𝑠𝜇𝑥−𝑠+1)(𝑠𝜇𝑦−𝑠+1)

𝑠cos2(𝜙)𝜇𝑥+𝑠sin
2(𝜙)𝜇𝑦−𝑠+1

(𝑠𝜇𝑥−𝑠+1)(𝑠𝜇𝑦−𝑠+1)
0

0 0
1

𝑠(𝜇𝑧−1)+1)

  
 

            (9.Vc) 

                             

The correction matrix (9.Va) will be used to construct the correction matrix in z-domain 

for any specific rotation angle 𝜙. As an example, let us assume that the cylindrical cavity is filled 

by an anisotropic medium with the following properties: 

 

휀̅�̅� = (
3 0 0
0 1 0
0 0 2

)          ;          �̅̅�𝑟 = (
3 0 0
0 1 0
0 0 2

)                                (10.Va) 

 

By applying the rotation transformation with 𝜙 =
𝜋

4
 the permeability and permittivity tensors 

become: 
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 휀̅′̅𝑟 = (
2 1 0
1 2 0
0 0 2

)          ;        �̅̅�′𝑟 = (
2 1 0
1 2 0
0 0 2

)                                 (10.Vb) 

 

From (9.V), the corresponding correction matrix in z-domain is given by 

 

 Γ̅̅(𝑧) =

(

 
 
 
 
 
 
 

2𝑧

1+3𝑧
−

1+𝑧

1+3𝑧
0 0 0 0

−
1+𝑧

1+3𝑧

2𝑧

1+3𝑧
0 0 0 0

0 0
−1+𝑧

2𝑧
0 0 0

0 0 0
2𝑧

1+3𝑧
−

1+𝑧

1+3𝑧
0

0 0 0 −
1+𝑧

1+3𝑧

2𝑧

1+3𝑧
0

0 0 0 0 0
−1+𝑧

2𝑧 )

 
 
 
 
 
 
 

                      (11.V) 

 

 In this experiment, we used a regular mesh with cubic cells. To maintain a negligible 

level of numerical dispersion, we used the cell size ∆𝑙 = 0.3 𝑚𝑚 which provides a sufficiently 

fine discretization to minimize the stair-case effect. It is also sufficient to maintain a negligible 

level of dispersion according to (47.IV). Consequently, the time step used was ∆𝑡 = 0.5 𝑝𝑠, and 

the cylinder was limited by PEC. For time excitation, one applied a delta function and we run the 

experiment for 20000 iterations until modes were established.  

Table 5.V shows a comparison of the first few modes frequency resonances for different 

rotation angles as compared to the analytical solution.  

 

Table 5.V, resonant frequencies for the first 4 modes with angles of rotation 

Rotation angle 0° 30° 45° 60° 90° 

Resonant mode Relative Error% 

First mode 0.023% 0.093% 0.37% 0.265% 0.230% 

Second mode 0.109% 0.563% 0.647% 0.395% 0.059% 

Third mode 0.084% 0.240% 0.305% 0.305% 0.045% 

Fourth mode 0.011% 0.094% 0.063% 0.063% 0.011% 

 



Chapter V: Results, Applications and Discussions 

125 
 

 As we can see, results produced by the TLM solver are very accurate. Furthermore, these 

results show us that the solver is working correctly in case of anisotropic media with full tensor. 

Moreover, we can see the robustness of the TLM approach and its coherence with the general 

theory of electrodynamics: two different materials (one is defined by simple diagonal set of 

digital filters while the other is defined by full matrix of digital filters) give identical solutions, 

which fulfills the TO theory. 

 

III. Deformation of a PEC spherical resonator 

 

 In this numerical experiment we use TO to verify again the accuracy of our TLM solver 

for another complex media. Consider the conducting sphere of radius 15 cm, as shown in figure 

20.Va, filled by a simple nonmagnetic dielectric with  휀𝑟 = 2.0. 

 

Figure 20.V, (a) spherical PEC resonator filled by an isotropic dielectric, (b) elliptical PEC resonator filled by an anisotropic 

dielectric medium 

 Now, we assume that the sphere is deformed to the ellipsoid shown in figure 19.Vb 

according to the following coordinate transformation: 

 

(
�́�
�́�
�́�

) → (
2𝑥
𝑦
𝑧
)                                                      (12.V) 

 

This coordinate transformation modifies the material properties as presented in chapter II. Hence, 

the permittivity and permeability tensors become, respectively: 
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휀̅�̅�
́ = (

4 0 0
0 1 0
0 0 1

)     ;      �̅̅�𝑟
́ = (

2 0 0
0 1 2⁄ 0
0 0 1 2⁄

)                             (13.V) 

If we simulate an ellipsoid filled by this anisotropic (both dielectric and magnetic) material, we 

should get the same resonant frequencies as the original problem of the sphere before the 

deformation.  

 To perform the numerical experiments for both the elliptical and the spherical cavities 

described above, we used regular mesh of cubic cells. To maintain a negligible level of 

numerical dispersion, the cell size is  ∆𝑙 = 3.3 𝑚𝑚 which is equivalent to 23 cells per 

wavelength with 휀𝑟 = 2.0 (relative error less than 1.0% according to (47.IV)). Moreover, this 

fine discretization was necessary to reduce the stair-case approximation for both structures.  The 

corresponding time steps we used were 5.49 ps and 2.772 ps for the spherical and the elliptical 

cavities, respectively. The time excitation applied was a delta function and we run the 

experiment for 6000 iterations until modes were established. We used 753571 and 1507142 cells 

for the spherical and elliptical cavities, respectively. 

 Table 6.V shows a comparison between the numerical results of resonant frequencies 

calculated for the sphere filled by the isotropic media, the ellipsoid filled by the anisotropic 

media, and the analytical solution (of the spherical resonator) [15.V]. We can observe some very 

good matching between the three cases. This shows the validity of the TLM solver when dealing 

with anisotropic media.  

 

Table 6.V, comparison between spherical and elliptical resonators with the analytical solution 

Resonant 

Modes 

Elliptical 

resonator 

(GHz) 

Relative 

Error % 

Spherical 

resonator 

(GHz) 

Relative 

Error% 

Analytical 

Solution (GHz) 

First mode 1.329 0.241% 1.321 0.362% 1.3258 

Second mode 1.866 0.209% 1.863 0.369% 1.8699 

Third mode 2.184 0.603% 2.172 0.051% 2.1709 

Fourth mode 2.399 0.162% 2.390 0.537% 2.4029 

Fifth mode 2.810 0.912% 2.791 0.230% 2.7846 
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 Finally, we highlight an interesting numerical phenomenon that appears in simulating the 

anisotropic media in (13.V): some of the diagonal values of the permeability are less that unity. 

In former TLM schemes, this led directly to instabilities. The reason is that stability condition 

when using stubs is that their characteristic impedance must be positive, which cannot be the 

case for relative permittivity less than unity. However, in the scheme presented in this thesis, 

only the digital filters that correspond to 𝜇𝑦 and  𝜇𝑧 are unstable (the poles are outside the unite 

circle in the complex plane in z-domain, or the poles are in the right hand side of the complex 

plane in s-domain). If will recall (38.III), one can easily derive: 

 

Γ55(𝑠) = Γ66(𝑠) =
1

1−
1

2
𝑠
                                             (14.Va) 

or, in the z-domain: 

Γ55(𝑧) = Γ66(𝑧) =
Δ𝑡(1+𝑧)

𝑧(Δ𝑡−1)+1+Δ𝑡
                                    (14.Vb) 

Consequently: 

‖𝑧𝑝𝑜𝑙𝑒‖ = ‖
1+Δ𝑡

1−Δ𝑡
‖                                     (14.Vc) 

 

From (14.Vc), we can see that the poles of both filters are outside the unit circle for any positive 

value of Δ𝑡. However, the overall simulation process is stable. The explanation to this 

phenomenon is that negative impedances that appeared in the former TLM scheme rendered the 

simulation unstable. Remember that in the new scheme, all local waves propagate through the 

mesh in free space. The material presence is taken into account at the center of each node by 

filtering processes. As discussed in chapter IV, one can notice that the necessary condition for 

stability is that all the eigenvalues of the system matrix defined by (49.IV) lie inside the unit 

circle. However, there are no constraints on the filters of the correction matrix to reach stability. 

This is a crucial issue when dealing with complex media such as LH metamaterials. The reason 

is that permeability or permittivity tensors can have components less than unity or even less than 

zero for a given frequency range of interest. Hence, with this approach, one has to respect the 

stability conditions in (49.IV) only.  
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5.5.4 Waveguide Loaded by Ferrite Sample 

 

 In this numerical experiment, we determine the s-parameters for the ferrite-loaded 

waveguide shown in figure 21.V. The transverse and longitudinal cross sections dimensions are 

shown in figure 22.V. The ferrite sample is excited by an external DC magnetic field that adjusts 

its permeability tensor properties as discussed in chapter II. Generally, the calculation of the 

exact tensor components is a very difficult task, especially when the ferrite sample is not 

saturated [16.V]. When the DC magnetic field is very strong, the ferrite sample becomes 

completely saturated. Thus, it can be analytically described by the Polder tensor [17.V] and the 

ferrite sample becomes homogenous (magnetic domains disappeared). However, for the general 

case of magnetization one can obtain the permeability tensors by solving the GLL equation 

[18.V] presented in chapter II, for specific ferrite sample geometry and structure and specific 

applied DC magnetic field [18.V] [16.V]. 

 

 

Figure 21.V, WR90 rectangular wave guide of dimensions 10.16 mm x 22.86 mm loaded by ferrite sample 

 

 As shown in figure 21.V, we used PML layer with 10-cells thickness as absorbing 

boundary conditions. The PML layer is terminated by free space 𝑍𝑜 impedance boundary 

condition to enhance the absorbing properties of the PML layer. 

 

Figure 22.V, waveguide shown in figure 21.V a) top view b) front view. 
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 The experiment was repeated three times. Initially, we assumed that the ferrite sample is 

homogeneously magnetized. Then, the ferrite sample was decomposed into nine homogeneous 

subdomains with different magnetic properties, to approximate the biasing DC field 

magnetization. Finally, we performed the experiment of a fully non-homogeneously magnetized 

ferrite sample, where the DC field magnetization approximation is made at the TLM cell level 

(this local DC-field mapping was computed by a magnetostatic simulator). The ferrite sample 

characteristics used in the following simulations are:  4𝜋𝑀𝑠 = 0.28 𝑇, 𝐻𝑎 = 318.3 𝐴/𝑚, ∆𝐻 =

3581 𝐴/𝑚, ∆𝐻𝑒𝑓𝑓 = 318.3 𝐴/𝑚 and 휀𝑟 = 16.6 [19.V].    

 The permeability tensors and other sample parameters that we used in the experiments 

described above were provided by the material research group of the Lab-STICC at the 

University of Brest [19.V]. To obtain the correction matrix in every cell of the ferrite sample, we 

applied Prony’s [20.V] [21.V] method for curve fitting. A second-order rational functions in 

Laplace s-domain were obtained. Then, we applied a bilinear transformation to obtain the time-

domain filters [20.V]. 

 In the simulations we used regular mesh of cubic cells. Due to the extremely complex 

properties of media tensors under study and to the lack of sufficient computer resources, we 

could not perform a complete dispersion analysis to calculate the optimal step size. However, 

because the smallest dimension in the geometry of figure 22.V is 1.27 mm, we decided to 

discretize it using 4 cells which mean ∆𝑙 = 0.3175 𝑚𝑚 . Moreover, the same mesh size was 

used to discretize the ferrite sample in solving the GLL equation to obtain the permeability 

tensors. The corresponding time-step used is ∆𝑡 = 0.5 𝑝𝑠. The applied time excitation was a 

modulated-Gaussian pulse with parameters 𝑓𝑜 = 10.0 𝐺𝐻𝑧, 𝜎 = 100∆𝑡 and 𝑡𝑜 = 300∆𝑡. Finally, 

we ran the experiment for 100000 iterations until all fields practically vanished. The range of 

frequencies under consideration is from 8 to 12 GHz, for which only the TE10 mode propagates 

in the waveguide. 

I. Homogeneous ferrite sample 

 

 Initially we assume that the sample is homogeneously magnetized as shown in figure 

23.V. The permeability tensors were obtained by solving the GLL equation [18.V] [22.V] and 

assuming an average Gelin’s model for permeability tensor in every cell.  
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Figure 23.V, TLM discretized homogeneous ferrite sample. The permeability in each cell assumed to follow Gelin's model 

 

 In this experiment, the ferrite sample was discretized into 32 by 32 by 4 cells, whereas 

the complete computational domain was discretized into 401 by 72 by 32 cells. For matching 

purpose, we used PML layer at both ends of the waveguide each of 10-cells thickness. 

 

Figure 24.V, scattering parameters for the ferrite loaded waveguide of figure 21.V, with ferrite discretization of figure 23.V 
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 As observed in figures 24.V, the time-domain TLM solver gives results slightly closer to 

the experiment than the frequency domain CST studio solver [23.V]. However, both solvers 

could not detect the secondary resonance at lower frequency, found by the measurement. 

 

II. Approximation of the ferrite by nine-homogeneous subdomains 

 

 To enhance the model, we considered the more realistic case for which the sample in not 

uniformly magnetized by the DC external magnetic field. This is due to the demagnetizing field 

and the fact that the sample is unsaturated. Thus, we considered the ferrite sample as nine-blocs, 

each being homogeneous with a given magnetization state according to Gelin's model as shown 

in figure 25.V.  

 

 

 

Figure 25.V, TLM discretization ferrite sample approximated by nine homogeneous blooks each of which follows Gelin's model 

 

 Figures 26.V shows a comparison between measurements (performed by the material 

research group of the Lab-STICC at the University of Brest [19.V]) and numerical solutions 

obtained by the TLM solver. This time, one can observe in all figures that results produced by 

the TLM solver are closer to the measurement than in the previous experiment. In particular, the 

secondary resonance appears around 10.6 GHz and reveals that it is not due to some parasitic 

coupling that occurred during the experiment.  

 

 The differences between the measurement and the numerical solutions can be explained 

as follow: First, nine-subdomain decomposition may not be a sufficient level of discretization to 

approximate the sample DC magnetization. Secondly, the physical model is not perfect. But, it 
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would be difficult to quantify the error. Finally, the physical experiment produces error also 

difficult to quantify. 

   

 

Figure 26.V, scattering parameters for the ferrite loaded waveguide of figure 21.V, with ferrite discretization of figure 25.V  

 

 One can also observe that the simulation results obtained by COMSOL [24.V] are very 

close to our TLM results, even though COMSOL is a frequency domain solver based on FEM 

that uses different discretization scheme. This can be an indication that the source of mismatch 

between numerical results and measurements may not be due to errors produces by numerical 

schemes only. 
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III. Full nonhomogeneous ferrite sample 

 

 To determine whether a finer discretization of the ferrite sample would give solution 

closer to the experiment, the GLL equation was solved for every cell. Therefore, each has its 

own local permeability tensor. The ferrite sample was discretized into 32 × 32 × 4  

parallelepipedic cells with dimensions Δ𝑥 = 0.3175 𝑚𝑚, Δ𝑦 = 0.3175 𝑚𝑚 and Δ𝑧 =

0.3175 as shown in figure 27.V below.  

 

 

 

 

Figure 27.V, TLM discretized ferrite sample (32 × 32 × 4 𝑐𝑒𝑙𝑙𝑠 ) fully inhomogeneous with Gelin's model at the cell level. 

 

 

 Figures 28.V shows the comparison between measurements (performed by the same 

group at Brest University) and the numerical simulations using the TLM solver. The s-

parameters of the waveguide loaded by the fully non-homogeneous ferrite sample shown in 

figure 27.V are represented. As we can see, using Gelin's model and the GLL equation to derive 

the local permeability tensor in each cell give a better representation of the ferrite sample. We 

can also observe that the second resonance obtained by both numerical simulations appears more 

clearly than in the previous experiment (see figure 26.V). However, some discrepancies 

concerning the resonance level can be observed. 
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Figure 28.V, scattering parameters for the ferrite loaded waveguide of figure 21.V, with ferrite discretization of figure 27.V  

 

 The discrepancy between the numerical solutions and the measurement in figure 28.V 

can be explained by three following reasons: First, the process of solving the GLL equation is 

complicated and depends on different parameters that are also measured with some uncertainty; 

hence, the obtained permeability tensors has some corresponding inaccuracy. Secondly, the 

Gelin’s model of ferromagnetic media has not been proven to be the ultimate model and may 

need some further improvement. Finally, repeated experimental measurements showed some 

small difference due to the sensitivity of the magnetization process and the sample position 

inside the waveguide.  

 It is worth to note that comparing these above simulations with commercial software such 

as COMSOL was almost impossible to implement due to the fact that the automati meshing 
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procedure wound up with a huge number of cells. Thus, as each of them requires its own tensor, 

the computing cost became exhaustive. 

 The effect of the uncertainty in  𝜺𝒓 

 

 Another explanation for the source of difference with the experiment may lie in the 

uncertainty of the permittivity value (휀𝑟 = 16.6 was used previously) given by the manufacturer. 

Therefore, different values of 휀𝑟 were used to carry out retro-simulations whose results are 

shown in figure 34.V.  

 

Figure 29.V, reflection coefficient for the ferrite loaded waveguide of figure 21.V, with ferrite discretization of figure 27.V for 

different value of 𝜺𝒓 
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 In figure 29.V we see the reflection coefficient of the waveguide loaded by the ferrite 

sample for different 휀𝑟 = {14.6, 15.6, 16.6, and 17.6}. We observe that among the four curves, 

the case with  휀𝑟 = 17.6 produced resonances whose frequency better match those of the 

measurement. However, magnitudes are still different and this discrepancy may be explained by 

the reasons stated before. 

 

 Effect of the number of iterations 

 

 In figure 30.V we present the curves of  𝑆11 and 𝑆12, respectively, for different number of 

iteration. As we can observe, results seem to converge after 50000 iterations. An interesting fact 

is that the solver became unstable after 13000 iterations when we used PML of 10 cells 

thickness. It was also unstable even for PML of 20 cell thickness. However, when we changed 

the boundary condition at the end of the PML layer from PEC boundary condition to a free-space 

boundary condition 𝑍𝑜, it was perfectly stable after 100000 iterations. 

 

 

Figure 30.V, |𝑺𝟏𝟏| and  |𝑺𝟏𝟐| vs. frequency for different number of iterations for the case of figure 28.V 
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 We can notice that it is necessary to run the simulation for a large number of iterations to 

eliminate the ripples at the lower frequency region of the diagram. One can also see that the 

values of |S12| can exceed the unity when a too small number of iterations is performed. In fact, 

the low frequency spectrum is generated by the long-term time response. 

 

5.6    Conclusion 

 

 In this chapter we presented some practical contribution of this thesis. We started by 

briefly presenting the graphical user interface (GUI) that we implemented. It was necessary to 

replace the data interface of the former solver of the laboratory to allow a user-friendly 

procedure to enter and mesh arbitrary geometries. Then, we presented some canonical examples 

to validate the TLM solver for simple media and, in the same time, the interface GUI. 

 In the last part of this chapter, we presented three numerical experiments involving 

complex media with their analytical solution by which we could validate the TLM solver. In 

addition, the transformation optic (TO) procedure was opportunely used to generate analytical 

solutions useful for benchmarking. Finally, we presented an experiment involving realistic 

complex material namely, a non-uniformly magnetized ferrite sample inside a rectangular 

waveguide. Required tensors were generated by a physical model. Simulated results were 

compared with the experiment and some reasonable agreement was found. Retro simulations 

were performed to show effects produced by uncertainties related to the ferrite permittivity 

value. Finally, convergence test were also carried out concerning the number of iterations. 
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Chapter VI 
Challenging Cases of Time-Domain 
Methods: Low frequency and high-
contrasts constitutive parameters 

 

6.1  Introduction 

 The chapter is dedicated to study some behaviors of time-domain methods such as TLM 

and FDTD for two special and challenging cases: 

 Low-frequency  

 This issue appears when one is interested in solving the EM problems at low frequencies 

for which structure details imposes using a mesh size that is much smaller than the wavelength. 

As a result, the time step is correspondingly very small. This leads to an exhaustively large 

number of iterations to generate a complete time response with an increasing risk of late time 

instability. The above case belongs to the class of multi-scale problems. 

 In the first part of this chapter, we will present some of the solutions that have been 

applied in the literature to both the low-frequency and multi-scale problems. Then, we propose 

some approaches that may solve those problems. They involve mapping techniques such that the 

original domain is transformed to another one more adequate to perform full-wave simulations. 

 High contrasts  

 It is well-know that the FDTD update equations involve some averaging of the media 

properties at the interface between different media. The impact on the accuracy becomes more 

obvious when the contrast is high between both media at both sides of an interface. For TLM, the 

local property of the algorithm modifies the impact of high contrast cases on the accuracy as no 

averaging is applied. After demonstrating the theoretical basis of this issue, we present several 
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numerical experiments that detect and magnify substantial differences between both methods 

when the computational domain involves highly contrasted media. 

 

6.2  The stiffness problem of numerical techniques 

 Let us assume that we have the problem of solving the one-dimensional wave equation 

[1.VI]: 

𝜕2𝐴

𝜕𝑥2
=

1

𝑣2
𝜕2𝐴

𝜕𝑡2
+ sin(2𝜋𝑓𝑜𝑡)                                        (1.VI) 

where 𝑥 ∈ [0, 𝐿] and 𝑡 ∈ [0, 𝑇𝑝]with boundary and initial conditions such as: 

𝐴(0, 𝑡) = 𝑔(𝑡)                                                     (2.VIa) 

𝐴(𝐿, 𝑡) = ℎ(𝑡)                                                     (2.VIb) 

𝐴(𝑥, 0) = 𝑘(𝑥)                                                    (2.VIc) 

where 𝑓𝑜 is the frequency of the source, 𝑣 is the wave velocity and 𝑔(𝑡), ℎ(𝑡) and 𝑘(𝑥) are the 

initial and boundary values, respectively. We first assume that the medium is homogenous. As a 

result, the wave velocity 𝑣 will remain constant in space and time. 

 If we use a FDTD discretization scheme to obtain the update equations corresponding to 

(1.VI), we obtain [2.VI]: 

 

𝐴(𝑥+∆𝑥,𝑡)−2𝐴(𝑥,𝑡)+𝐴(𝑥−∆𝑥,𝑡)

(∆𝑥)2
=

1

𝑣2
𝐴(𝑥,𝑡+∆𝑡)−2𝐴(𝑥,𝑡)+𝐴(𝑥,𝑡−∆𝑡)

(∆𝑡)2
+ sin(2𝜋𝑓𝑜𝑡)      (3.VI) 

 

Some mathematical manipulations on (3.VI), yields: 

 

𝐴(𝑥, 𝑡 + ∆𝑡) =
𝑣2(∆𝑡)2

(∆𝑥)2
(𝐴(𝑥 + ∆𝑥, 𝑡) − 2𝐴(𝑥, 𝑡) + 𝐴(𝑥 − ∆𝑥, 𝑡) − (∆𝑥)2sin(2𝜋𝑓𝑜𝑡)) +

2𝐴(𝑥, 𝑡) − 𝐴(𝑥, 𝑡 − ∆𝑡)                                                          (4.VI) 

 

If we use a discrete notation, (4.VI) becomes: 
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𝐴(𝑚, 𝑛 + 1) =
𝑣2(∆𝑡)2

(∆𝑥)2
(𝐴(𝑚 + 1, 𝑛) − 2𝐴(𝑚, 𝑛) + 𝐴(𝑚 − 1, 𝑛) − (∆𝑥)2sin(2𝜋𝑓𝑜𝑛∆𝑡)) +

2𝐴(𝑚, 𝑛) − 𝐴(𝑚, 𝑛 − 1)                                                         (5.VI) 

where 𝑚 and 𝑛 are the space and time indices, respectively. The necessary condition for (5.VI) 

to have a solution and stable results is [2.VI]: 

𝑣2(∆𝑡)2

(∆𝑥)2
≤ 1                                               (6.VI) 

 

 Recall the fact that in linear time invariant systems (LTI), the frequency of the response is 

identical to the one of the sources when the steady state is reached [3.VI]. In time domain 

simulations, we generally need to cover several time periods of the signal to insure that the 

steady-state is reached and to find the corresponding frequency spectrum of the output fields. 

This implies that the total simulation time Tp will be approximately: 

𝑇𝑝~
1

𝑓𝑜
                                                  (7.VI) 

 

 If the input signal contains multi-frequencies, then the denominator in (7.VI) should be 

the lowest spectrum frequency. As we can see with (7.VI), the total simulation time is 

independent on the numerical scheme used to solve the problem. It only depends on the 

frequency spectrum of the input signal. Thus, if we use a time-domain method to solve (1.VI) 

then, according to (7.VI), the total number of time iterations Niter is: 

𝑁𝑖𝑡𝑒𝑟 =
𝑇𝑝

∆𝑡
~

1

𝑓𝑜∆𝑡
                                         (8.VI) 

 

 Now, if for any reason the spatial discretization must be very small at some location, the 

stability condition (6.VI) requires choosing a small time-step. This leads to: 

lim∆𝑥→0 ∆𝑡 = 0                  (9.VIa) 

lim∆𝑡→0𝑁𝑖𝑡𝑒𝑟 = ∞                            (9.VIb) 

 

 The above relations illustrate the low-frequency issues in time-domain methods. As we 

can see, the total computational time depends only on the input signal frequency spectrum. This 

will result to a huge number of iterations when very small temporal discretization is used. This 
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relates to the definition of stiffness for the numerical scheme: Given a numerical scheme in finite 

region of absolute stability, it is applied to an initial and boundary value problem. If this 

numerical method is forced to use in a certain interval of integration over a step-length which is 

much smaller than the smoothness of the exact solution, then the system is said to be stiff in that 

interval [4.VI] [5.VI]. 

 It is clear that the low-frequency problem in time domain numerical techniques means 

that the system becomes stiff as described above. In case we need small mesh size to accurately 

describe the geometry then, for stability issues, we need a small time step which is much smaller 

than the one obtained by applying the Nyquist criterion for signal time sampling. Finally, we 

should also keep in mind that this stiffness problem is an issue that is only related to the discrete 

numerical scheme and not to the analytical solution of the original continuous problem (because 

the analytical solutions are smooth at low frequency). This means that the impacts of the stiffness 

problem can be reduced by modifying the numerical schemes [5.VI]. 

 

6.3  Low-frequency problem in Maxwell’s equations 

 

 In computational electromagnetics, to properly describe the geometrical shape of the 

physical objects, we need a certain level of spatial discretization; this level is mainly determined 

by: 

 

 The physical shapes of the objects inside the computational domain such as corners, 

ridges, slots, etc., which require local higher spatial resolution to avoid coarseness error. 

 Highly inhomogeneous structures with complex shape.  

 

 In the above cases, we reach to a scenario where{∆𝑥, ∆𝑦, ∆𝑧} ≪ 𝜆, typically< 𝜆 100⁄  , 

whereas in smooth quasi homogeneous (well-posed) problems one hasmax{∆𝑥, ∆𝑦, ∆𝑧}~𝜆/20. 

In summary, we can say that the low frequency problem can appear in the following practical 

scenarios: 
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 Highly heterogeneous computational domain of small electrical size, for instance the human 

body interaction with quasi-static frequencies. Indeed, to describe the human brain properly 

we need a spatial discretization at the centimeter or millimeter level. However, the brain 

signals are in the range of few Hz to few tenths of Hz [6.VI] [7.VI]. 

 

 Fine details inside the computational domain. For example a thin wire or any other fine 

objects, especially when they are radiation sources. In this scenario, a multi-scale issue 

appears. A typical application is the study of VLF antennas that operate at few kHz and have 

a wire structure of several hundreds of meters [8.VI]. 

 

Now, we should highlight the difference between wavelength of a wave and its time period 

which are defined by: 

𝜆𝑜 =
𝑐

𝑓
                        (10.VIa) 

𝑇𝑜 =
1

𝑓
                       (10.VIb) 

 As seen in chapter IV, the spatial discretization should be around 10 cells per minimum 

wavelength to obtain negligible numerical dispersion. In the case of low-frequency operation, 

cell dimensions are much smaller than one-tenth of the wavelength.  However, we know that the 

time and space components are related by the speed of light in the medium according to (10.VIa) 

and (10.VIb). This implicitly means that the field time-responses are oversampled compared to 

Nyquist criterion and this phenomenon worsens as the operating frequency decreases.  

 In the example shown in figure 1.VI, we want to calculate the first few resonant 

frequencies of one-dimensional resonator loaded by a thin dielectric slab with permittivity휀𝑟. 

The simulation will be carried out using a time-domain method. To illustrate what happens at 

low-frequencies, we assume a uniform meshing.  

 

Figure 1.VI, one-dimensional resonator loaded by highly permitivity thin dielectric slab 
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 A multi-scale problem appears due to the presence of fine details (the dielectric slab) 

inside the resonator. This multi-scale problem will lead to a low-frequency problem as discussed 

below. 

Let us start our analysis from the analytical solution of the problem, to determine the required 

spatial discretization to obtain negligible dispersion. Hence, the n-th resonant frequency is given 

by [1.VI]: 

𝑓𝑛 =
𝑐𝑜𝑛

2(𝑑1+𝑑2+𝛿√ 𝑟)
                       (11.VI) 

Next, assume that we are searching for the dominant mode. If the dielectric slab is absent, the 

appropriate cell size (for acceptable level of numerical dispersion) would be [9.VI]: 

Δ𝑧 ≤
𝜆

10
=

𝑐𝑜

10𝑓1
=

𝑑1+𝑑2

5
                         (12.VIa) 

The corresponding maximum time step is: 

Δ𝑡 =
Δ𝑧

𝑐𝑜
=

𝑑1+𝑑2

5𝑐𝑜
                                       (12.VIb) 

In this case, the total number of cells with (12.VIa) is 5. Now, assuming that the dielectric slab is 

very thin for instance:  

δ =
𝜆

10000
=

𝑐𝑜

10000𝑓1
                        (13.VI) 

This means that to describe the computational domain accurately one should chose Δ𝑧  to be less 

than the dielectric slab width, say,  using 3 cells. Thus, with (13.VI) one obtains: 

Δ𝑧 ≤
δ

3
=

𝑐𝑜

30000𝑓1
                          (14.VIa) 

and the new corresponding maximum time-step after including the slab in the computational 

domain and substituting in (12.VI) becomes:  

Δ𝑡 =
Δ𝑧

𝑐𝑜
=

𝑑1+𝑑2

15000𝑐𝑜
                        (14.VIb) 

Finally, the total number of cells is 
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𝑁2 =
𝑑1+𝑑2+δ

Δ𝑧
≅ 15000𝑐𝑒𝑙𝑙𝑠                 (14.VIc) 

 This illustrates the low-frequency difficulty, even for a very simple scenario. The number 

of time iterations and number of necessary cells have been multiplied by 3000. This means that 

the space memory complexity became 3000 larger, while the time complexity became larger by 

3000 × 3000 times. For more complicated computational problems one can imagine more 

severe impacts of the low-frequency problems (multi-scale problem). Note that if irregular 

meshing can solve the spatial problem by considerably reducing the number of cells, the time 

iteration issue will remain at the same level of complexity. 

 

6.4  Time-domain vs. Frequency-domain methods for quasi-static problems 

I. Time-domain methods 

 

 The FDTD and TLM methods have their explicit version [10.VI] [11.VI] and 

unconditionally stable version such as ADI-FDTD and SS-TLM [12.VI] [13.VI]. In explicit 

formulations CFL stability condition must be respected for stability considerations. However, in 

unconditionally stable formulations we cannot go far beyond the CFL limit (even though the 

algorithms are unconditionally stable). This is because of the numerical dispersion increases as 

we exceed the CFL limit [9.VI]. This means, that at low-frequency (in both conditionally and 

unconditionally stable techniques) a very high number of iterations is required to obtain a 

complete time response [14.VI]. In addition, late time instability may occur. Generally, it appears 

from the non-exact discretization of the curl operators [15.VI]. Also, instability can be generated 

by absorbing boundary conditions (PML for instance) [16.VI].  

 

II. Frequency-domain methods 

 The low frequency problem is not only restricted to time-domain techniques, similar 

problems happen in frequency domain methods. These are referred to as low frequency break 

down [17.VI]. To investigate what happens in frequency domain methods, we start using 

potentials to represent the electric field [17.VI]:  
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�⃗� = 𝑗𝜔𝐴 − ∇𝜙                          (15.VI) 

where 𝐴  is the magnetic vector potential, and 𝜙 is the electric scalar potential. It is known that 

the contribution from the charge distribution 𝜌𝑣 in Maxwell’s equations is related to the scalar 

potential𝜙 and the contribution from the current density 𝐽  is related to the vector potential𝐴 . 

The Helmholtz decomposition states that any vector quantity, say 𝐽  can be decomposed into 

divergence-free (solenoidal) and curl-free (irrotational) components such that [17.VI]: 

 

𝐽 = 𝐽 𝑠𝑜𝑙 + 𝐽 𝑖𝑟𝑟                    (16.VI) 

 

From Maxwell-Gauss and continuity equations we obtain at low frequencies: 

∇ ∙ 휀�⃗� = 𝜌 = lim𝜔→0
∇.𝐽 

𝑗𝜔
= lim𝜔→0

∇.𝐽 𝑖𝑟𝑟

𝑗𝜔
                (17.VI) 

 

As we see, the solenoidal component of the current vector has no effect to the charge 

distribution. However, the irrotational component does. As a result, to have a finite charge as the 

frequency goes toward zero, 𝐽 𝑖𝑟𝑟 should vanish linearly with the frequency as 𝜔 → 0. On the 

other hand, 𝐽 𝑠𝑜𝑙 component doesn’t require any scaling with frequency. We can also notice the 

decoupling between the electric field and magnetic field more clearly as the frequency goes 

down. At zero frequency, both fields are completely decoupled. Thus, the electrostatic field is 

produced by the irrotational component of the current source, while the magneto static field is 

produced by the solenoidal component. 

 Now, assume that we solve the electric field integral equation (EFIE) using MoM with 

Rao-Wilton-Glisson (RWG) basis functions [18.VI]. Once we build the impedance matrix to 

solve the MoM system, we will observe that the contribution from the vector potential is much 

smaller than the one that comes from the scalar potential. This is because of the lack of 

frequency scaling in the solenoidal part of the current source. This can be seen clearly from the 

EFIE equation [17.VI]: 

 

�⃗� (𝑟) = 𝑗𝜔𝜇∬ 𝑔(𝑟, �́�)𝐽 (�́�)𝑑�́�
𝑆

−
1

𝑗𝜔
∇∬ 𝑔(𝑟, �́�)∇ ∙́ 𝐽 (�́�)𝑑�́�

𝑆
             (18.VI) 
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where S is the dielectric object surface, 𝜇 and 휀 are the permeability and permittivity of the 

medium, respectively. The first integral is the contribution of the vector potential field. Because 

of the finite computer precision, this term contribution vanishes during the numerical 

calculations as the frequency goes toward zero [17.VI]. However, the second term which is the 

scalar potential part has a null-space because of the divergence operator. Hence, the impedance 

matrix will become quasi singular. This makes it very difficult to solve, even with iterative 

solvers [17.VI].  

 Several approaches have been developed to tackle the low-frequency break down in 

frequency-domain methods such as loop-tree and loop-star decomposition for integral equation 

based methods [19.VI] [17.VI] and the tree-cotree splitting technique in FEM based methods 

[20.VI]. However, these approaches are valid only for simple structures and mostly for either 

homogeneous dielectrics or PEC structures; moreover, they suffer from rather complicated 

implementation [20.VI]. 

 

6.5  Low- frequency problem statement for time-domain methods 

 

 Consider a computational domain discretized into cells within which there is a medium 

defined by constitutive parameter values{ε, μ, σ,⋯ etc. }. In this computational domain there exist 

sources (currents, voltages, incident fields …etc.). This domain is truncated by some boundary 

conditions, ABC, PEC, PMC …etc. Let us suppose that one deals with low-frequency conditions 

and, therefore, one uses a very small maximum time-step compared to the time period of the 

source signal. As discussed before, an exhaustive number of iterations is needed to cover the full 

response due to the source signal. The objective is to develop an alternate efficient method that 

achieves full-wave solutions under low-frequency conditions. 

 

6.6   Classical time-domain methods for quasi-static Maxwell’s equations 

 

 In this section we present the most intuitive techniques that already exist in the literature. 

They allow one to tackle the low-frequency problem in electromagnetics. 
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6.6.1 Curve-fitting incorporated with full-wave time domain solver 

 

 Let us assume that a transient response is negligible for𝑡 > 𝑡𝑡𝑟𝑎. If the system is linear 

and if the source is assumed to contain a sequence of sinusoids at frequency𝑓 = {𝑓1, ⋯ , 𝑓𝑁}, 

then the response should contain the same sequence of sinusoids𝑓 = {𝑓1, ⋯ , 𝑓𝑁}. However, both 

amplitude and phase of these sinusoids are unknowns. Now, if we record the response for time 

samples after the transient period𝑡 = {𝑡1, ⋯ , 𝑡𝑁} > 𝑡𝑡𝑟𝑎, then, at any point 𝑟 = (𝑥, 𝑦, 𝑧) in the 

computational domain, we can construct the following nonlinear system of equations [14.VI]: 

𝐹𝑗(𝑟, 𝑡) = ∑ 𝐴𝑖(𝑟)sin(𝜔𝑖𝑡𝑗 + 𝜑𝑖(𝑟))
𝑀
𝑖=1     (19.VI) 

where𝑗 ∈ {1,⋯ , 𝑁}, and𝑀 ≥ 2𝑁. 

 Solving the system (19.VI), one obtains a sinusoidal approximation for E or H fields. The 

crucial condition here is that the transient time 𝑡𝑡𝑟𝑎should not be too long; otherwise this method 

does not bring any advantage. 

 

6.6.2 Changing the speed of light 

 

 In some scenarios when the media losses play an important role, the effect of changing 

the permittivity will not considerably affect the simulation results. However, as we studied in 

chapter IV, the CFL condition is mostly dependent on the permittivity value for lossy dielectrics 

such as sea water [21.VI].  In this approach (which is empirical and valid for highly lossy 

media), we increase the material permittivity such that the speed of light is reduced. This means 

that the wavelength is also reduced and, consequently, the Courant limit increase. As a result, we 

can use higher values for the time-step∆𝑡. This approach is suitable for studying underwater 

communications. For instance, one can calculate the reflection and transmission coefficients for 

underwater antennas and optimize and manage the transmitter power. However, in more complex 

computational problems such as multi-scale microwave circuits this kind of assumptions (to 

increase휀𝑟) is not suitable [21.VI]. 
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6.6.3 Unconditionally stable full-wave FDTD or TLM based approaches 

  

  Generally, update equations of time-domain Maxwell’s at low frequencies 

produce a stiff system. However, for stiff equations, the traditional explicit Runge-Kutta method 

is not the optimal choice to solve such a system [5.VI]. Instead, implicit techniques can be 

applied. In these techniques, we divide each time step into substeps, and fields are updated 

within each substep. Hence, we can control/optimize those update equations subject to the 

stability condition [22.VI]. 

 In time-domain computational methods, two implicit approaches were developed to solve 

Maxwell’s equations: 

 

 Alternating- Direction Implicit Method (ADI-FDTD) [22.VI],  or Split-Step TLM [12.VI] 

 Locally one-dimensional scheme (LOD-FDTD) [23.VI] 

 

The above techniques are based on Crank-Nicolson scheme [22.VI] and are 

unconditionally stable everywhere, and, thus, don’t require Courant condition fulfillment. 

However, beyond Courant limit, the numerical dispersion increases significantly [13.VI]. 

 

6.7  Proposed solutions 

 

 In this section we propose several ideas that may open a door for more efficient solutions 

to time-domain low-frequency problems. 

 

6.7.1 Transfer function under sampling  

 

 As already mentioned, the time-domain field responses are highly oversampled at low-

frequencies. Since fields are smoothly varying at low-frequency there is no physical or 

mathematical necessity for time oversampling, other than the stability condition. In this 

technique, we consider the whole 3D computational domain as a system composed of a large 

number of filters as illustrated by figure 2.VI. Let us assume that we have a low-frequency 
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source at discrete coordinate (𝑖1, 𝑗1, 𝑘1) and we want to calculate fields at any other 

point(𝑖2, 𝑗2, 𝑘2).  

 

Figure 2.VI, block diagram of one layer of the computational domain seen as a large filter network 

 We represent the computational domain as in TD-TLM. Thus, as discussed in chapter III, 

each cell is fully defined by the material correction matrix Γ̿ that contains digital filters. At every 

time step, neighboring cells exchange 12 voltages. These voltage exchange process takes place 

every time step. The objective is to find the equivalent transfer function between the source point 

at (𝑖1, 𝑗1, 𝑘1) and the destination point(𝑖2, 𝑗2, 𝑘2). To accomplish this, we can apply several 

techniques from graph theory and control theory such as Mason’s gain formula (MGF). Then, we 

can obtain the transfer function𝐻1,2(𝑧). The next step is to undersample this equivalent filter 

such that its sampling period becomes comparable to the one of the source signal [24.VI].  

 We can see the benefits of this approach by the fact that in the original computational 

problem, we were limited by CFL condition to maintain stability. However, after getting the 

equivalent transfer function and performing under sampling, we can increase the time step to 

much higher values than CFL (however, we are upper bounded by Nyquist time-sampling limit). 

Note that it is not necessary to worry about numerical dispersion if we respect it in the original 

problem. The reason lies in the fact that we didn’t change the problem mesh size. However, this 

technique can be useful for small computational domain only. The reason is that the process of 

calculating the transfer function between the source and the destination point is quite 

cumbersome. 
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6.7.2 Applying the space-time coordinate transformation to map the computational 

domain 

 Here we are presenting a technique of transforming the original low-frequency 

computational problem, using a time-varying coordinate transformation. This kind of 4D space-

time transformation modifies the metric tensor and changes the behavior of the computational 

problem [25.VI] [26.VI]. The objective is to search for a transformation that will transfer the 

computational problem to higher frequencies. Then, using standard full-wave solvers, we can 

obtain the results at high frequencies with reasonable time-step values. Finally, we apply the 

inverse time-space coordinate transformation to obtain solutions to the original low-frequency 

problem. 

 For simplicity, we will show the procedure to perform such a transformation for one-

dimensional wave equation in homogenous medium, which is solution of [1.VI]: 

𝜕2𝐴

𝜕𝑧2
=

1

𝑣2
𝜕2𝐴

𝜕𝑡2
+ 𝑠(𝑡, 𝑧)       (20.VI) 

Then, we apply the coordinate transformation 

(
�́�
�́�
) = (

𝑎𝑧 + 𝑏𝑡
𝑐𝑧 + 𝑑𝑡

) = (
𝑎 𝑏
𝑐 𝑑

) (
𝑧
𝑡
)                    (21.VI) 

for which its inverse transform is: 

(
𝑧
𝑡
) =

1

𝑎𝑏−𝑐𝑑
(
𝑑 −𝑏
−𝑐 𝑎

) (
�́�
�́�
)          (22.VI) 

Using the chain rule for the second derivative [27.VI]:  

𝜕2𝐴

𝜕𝑥𝑖𝜕𝑥𝑗
= ∑

𝜕𝐴

𝜕𝑢𝑘

𝜕2𝑢𝑘

𝜕𝑥𝑖𝜕𝑥𝑗

𝑀
𝑘=1 +∑ ∑

𝜕2𝐴

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑙

𝜕𝑥𝑗

𝑀
𝑙=1

𝑀
𝑘=1     (23.VI) 

where 𝑥𝑖 is the original coordinate system, 𝑢𝑘 is the new coordinate system after transformation 

and M is the dimensionality of the space. Applying (23.VI) with 𝑀 = 2 and the transformation 

(22.VI) to the original wave equation (20.VI) yields: 

𝜕2𝐴

𝜕𝑧2
= 𝑎2

𝜕2𝐴

𝜕�́�2
+ 𝑐2

𝜕2𝐴

𝜕�́�2
+ 2𝑎𝑐

𝜕2𝐴

𝜕�́�𝜕�́�
         (24.VIa) 
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𝜕2𝐴

𝜕𝑡2
= 𝑏2

𝜕2𝐴

𝜕�́�2
+ 𝑑2

𝜕2𝐴

𝜕�́�2
+ 2𝑏𝑑

𝜕2𝐴

𝜕�́�𝜕�́�
           (25.VIb) 

Then, by combining the above equations and substituting them in (20.VI) we obtain: 

𝜕2𝐴

𝜕�́�2
= (

𝑏2 𝑣2⁄ −𝑎2

𝑐2−𝑑2 𝑣2⁄
)
𝜕2𝐴

𝜕�́�2
+ 2(

𝑏𝑑 𝑣2⁄ −𝑎𝑐

𝑐2−𝑑2 𝑣2⁄
)
𝜕2𝐴

𝜕�́�𝜕�́�
+

𝑠(�́�,�́�)

𝑐2−𝑑2 𝑣2⁄
           (26.VI) 

From above, we see that we have a new wave equation: 

𝜕2𝐴

𝜕�́�2
=

1

�́�2
𝜕2𝐴

𝜕�́�2
+ 𝛾

𝜕2𝐴

𝜕�́�𝜕�́�
+ �́�(�́�, �́�)           (27.VI) 

where the equation parameters are defined as: 

�́� = 1 √(
𝑏2 𝑣2⁄ −𝑎2

𝑐2−𝑑2 𝑣2⁄
)⁄            (28.VIa) 

𝛾 = 2 (
𝑏𝑑 𝑣2⁄ −𝑎𝑐

𝑐2−𝑑2 𝑣2⁄
)           (28.VIb) 

�́�(�́�, �́�) =
𝑠(�́�,�́�)

𝑐2−𝑑2 𝑣2⁄
             (28.VIc) 

 As an example, if we chose a space-time transformation in which the factor 𝛾 is to be 

identically zero, one has the condition:   

𝑏𝑑 𝑣2⁄ − 𝑎𝑐=0             (29.VI) 

Now we have a mapped computational problem governed by (20.VI) by a new problem which is 

governed by (27.VI) that has the same mathematical form. However, we changed the frequency 

and the CFL limit such as: 

∆�́�𝐶𝐹𝐿 =
∆�́�

�́�
            (30.VIa) 

Instead of  

∆𝑡𝐶𝐹𝐿 =
∆𝑧

𝑣
         (30.VIb) 

 The main objective of this approach is to search for the space-time transformation that 

will change the CFL limit to finally decrease the huge number of iterations at low frequencies. 
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Further research should be done to know the limitations of this proposed approach and its 

potential advantages and to develop systematic techniques to find the useful transformation. 

 

6.7.3 Applying local transformation optics 

 

 Another approach to solve for the low-frequency case is to use the techniques of 

transformation optics (TO) [28.VI] that was presented in chapter II. It consists to apply some 

coordinate transformations to regions with fine details to magnify them. Hence, fine details and 

their related issues will disappear in the new transformed domain. 

 

Figure 3.VI, original multi-scale computational domain 

 

 As we can see in figure 3.VI, after the appropriate coordinate transformation one obtains 

a computational domain with no fine-details as shown in figure 4.VI. 

 

 

Figure 4.VI, transformed computational domain 
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Example with thin wire  

 

 Consider a computational domain that includes a thin wire (as a fine object). Instead of 

doing simulation of the structure that includes those thin wires directly, we will apply TO to 

avoid the usage of very small cells. To show its effectiveness, we solve the above problem in two 

dimensions by considering the 2D scattering of a very thing wire by cylindrical electromagnetic 

waves as shown in figure 5.VIa. 

 

 

Figure 5.VI, cross sections of a cable with a thin wire, (a) original domain, (b) tranformed domain 

 

 To show the effectiveness of TO, we solve the above problem in two dimensions in 

transforming the original problem to the geometry shown in figure 5.VIb. If we apply TO 

directly in Cartesian coordinates, we wind up with a two-dimensional transformation. However, 

if we use cylindrical coordinate system, the transformation takes place only along the radial 

direction, because of the symmetry. Starting from the relation between cylindrical and Cartesian 

coordinate systems [28.VI]: 

𝜌 = √𝑥2 + 𝑦2       (31.VIa) 

𝜙 = tan−1 (
𝑦

𝑥
)      (31.VIb) 

𝑧 = 𝑧        (31.VIc) 
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we obtain the Jacobian matrix of the transformation: 

Λ1 =(
cos(𝜙) −𝜌 sin(𝜙) 0

sin(𝜙) 𝜌 cos(𝜙) 0
0 0 1

)              (32.VI) 

An interesting fact is that, in such coordinate system, the free-space permittivity and 

permeability tensors become diagonal [28.VI]: 

휀�̿� = �̿�𝑟 =
Λ1Λ1

𝑡

det(Λ1)
= (

𝜌 0 0

0 1 𝜌⁄ 0
0 0 𝜌

)              (33.VI) 

 Now, we apply the radial geometry transformation to enlarge the size of the thin wire to 

become a cylinder of large diameter, as shown in figure 6.VI.  

 

 

Figure 6.VI, original thin wire or radius 𝒂transforms to a big cylinder of radius 𝑞 

 

Thus, one has the transformation: 

�́� = {

𝑞

𝑎
𝜌, 0 ≤ 𝜌 ≤ 𝑎

𝑞 + (𝑏 − 𝑞)
(𝜌−𝑎)

𝑏−𝑎
, 𝑎 ≤ 𝜌 ≤ 𝑏

              (34.VIa) 

�́� = 𝜙                  (34.VIb) 

�́� = 𝑧                         (34.VIc) 

The Jacobian of the above coordinate transformation (34.VI) is: 
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Λ2 =

{
  
 

  
 

(

𝑞

𝑎
0 0

0 1 0
0 0 1

) , 0 ≤ 𝜌 ≤ 𝑎

(

𝑏−𝑞

𝑏−𝑎
0 0

0 1 0
0 0 1

) ,𝑎 ≤ 𝜌 ≤ 𝑏

           (35.VI) 

We see that this Jacobian matrix is not continuous across the domain. However, the geometric 

transformation (34.VIa) is continuous, which is of crucial importance. If it is not the case, either 

there will be holes of undefined regions in the computational domain, or some regions will 

overlap. In both cases, the resulting complexity makes the new problem more difficult to solve.  

 Since the thin wire is assumed to be a PEC, no fields propagate inside it. Thus, the 

computational region is outside this thin wire, or outside the cylinder in the transformed domain. 

After this transformation, the material properties in cylindrical coordinates can be found by using 

table1.II (see chapter II): 

휀�̿� = �̿�𝑟 =
Λ2(

Λ1Λ1
𝑡

det(Λ1)
)Λ2

det(Λ2)
=

𝑏−𝑎

𝑏−𝑞
(

𝑤1 0 0
0 𝑤2 0
0 0 𝑤3

)          (36.VI) 

where,𝑤1,𝑤2, 𝑤3 are defined by: 

𝑤1 = (
𝑏−𝑞

𝑏−𝑎
)
2

((�́� − 𝑞)
𝑏−𝑎

𝑏−𝑞
+ 𝑎)                (37.VIa) 

𝑤2 = ((�́� − 𝑞)
𝑏−𝑎

𝑏−𝑞
+ 𝑎)

−1

               (37.VIb) 

𝑤3 = ((�́� − 𝑞)
𝑏−𝑎

𝑏−𝑞
+ 𝑎)               (37.VIc) 

The final step in this procedure is to come back to the Cartesian coordinate system by using:  

𝑥 = �́� cos(�́�)                (38.VIa) 

𝑦 = �́� sin(�́�)                (38.VIb) 

𝑧 = �́�                 (38.VIc) 
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 The previous coordinate transformations have been performed to transform the thin wire 

in (𝑥, 𝑦, 𝑧) original Cartesian coordinate system, into a cylinder with a relatively large radius in 

the same Cartesian coordinate system.  Finally, the overall effect of these transformations on the 

media constitutive parameters outside the PEC cylinder is given by [28.VI]: 
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              (39.VI) 

Now, it is possible to perform the simulations for the transformed domain with a solver that can 

handle such complex media and determine all the necessary fields. Once calculated, we apply the 

inverse coordinate transformation as described in chapter II. 

 This approach may be also very useful for frequency domain techniques, for instance in 

FEM method, even though time-step in frequency-domain methods is not relevant. The mesh can 

be non-hexahedral and irregular. However, to have an accurate solution, certain growth factor in 

the irregular meshing should be limited to low values. For instance, one may need to mesh very 

finely a region with small details while the adjacent region (for example air-filled) can be 

meshed with much larger cells. Therefore, to avoid the problem mentioned above, the cell size 

must gradually increase towards the region where much larger meshes are used. This is 

illustrated by figure 7.VI and figure 8.VI. 

 

Figure 7.VI, original domain discretized (thin PEC  wire of radius 1mm). The number of cells is 1732. Mesh created using 

COMSOL. 
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In both experiments we excited the structure by a current flowing in the wire in the z-direction 

(where the axe z is parallel to the cylinder axis), at the frequency of 1 GHz. This produces 

cylindrical waves with Ez polarization. These waves will exhibit the same polarization in both 

scenarios (because the axis-symmetry is conserved after transformation in this case). 

 

 

Figure 8.VI, transformed domain discretized (PEC cylinder of radius 30 cm). The number of cells is 672. Mesh created using 

COMSOL. 

 

 In figure9.VI we see the scattered𝐸𝑧 field of the original problem of the thin-wire. In 

figure 10.VI we see the scattered 𝐸𝑧 field in the transformed domain.  

 

 

Figure 9.VI, cylindrical wave 𝐸𝑧-component generated by the z-oriented current in the thin wire located at the center of the 2D 

computational original domain. Simulation by using COMSOL 
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Figure 10.VI, cylindrical wave 𝐸𝑧- component generated by the z-oriented current in the thin wire located at the center of the 2D 

computational transformed domain. Simulation by using COMSOL  

 As shown in figure 11.VI, we compared the𝐸𝑧  results of the original problem through 

the radial direction 𝜌 with the results of the transformed domain after performing the inverse 

coordinate transformations (see chapter II, section 2.6) of figure 10.VI. In figure 11.VI we can 

see some very good agreement between both numerical approaches namely, the direct solution 

and the TO approach by COMSOL, with the analytical solution [1.VI]. 

 

Figure 11.VI, normalized electric field 𝐸𝑧(𝜌) component along the radial direction, comparison between analytical and 

numerical solutions generated by COMSOL 

 The original problem with the thin-wire illustrated in figure 7.VI was solved with 

COMSOL using 1732 elements, while for the transformed domain (figure 8.V) the system matrix 
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was reduced to 672 elements. This is a considerable difference, either in terms of memory or in 

computational time. However, there is a price to pay. If we refer to (47.VI), it is obvious that the 

transformed domain contains complex media (fully anisotropic tensors) which is usually more 

difficult to simulate than isotropic media.  

 The previous experiment was carried out by a frequency domain commercial solver for 

simplicity. However, the time domain techniques can benefit from this mapping technique as 

well. Hence, after the appropriate coordinate transformations these fine details become of normal 

size compared to the other objects in the computational domain and eventually decrease the 

memory requirement. Furthermore, there is no longer need for using a very small time step; 

hence, the low-frequency problem can be solved more efficiently. However, there is also a price 

to pay for time-domain methods: after the transformation, we have to simulate anisotropic media 

(note that the TLM solver described in chapter V can do it). In addition, for open problems a full 

implementation of PML that can truncate any full tensor linear media (which has not been 

implemented yet to our TLM solver) is necessary.  

 The mapping approach presented here for the moment is limited for only PEC fine 

details, because the PEC properties don’t change with transformation. Further studies should be 

done for applying this approach to other kind of media. Moreover, a complete theory must be 

developed to systematically find the suitable coordinate transformation that can magnify the fine 

details smoothly, yet without producing new-fine details in other regions in the new 

computational domain. 

 

6.8   Volumic time-domain methods in presence of highly contrasted media                                                        

and irregular structured meshes with high transition ratios. 

 

Time-domain techniques in electrodynamics are mainly concerned in solving both 

Maxwell’s curl equations [9.VI]. To solve those curl equations using direct discretization of 

Maxwell’s equations, one can apply either the FDTD scheme for the curl equations in 

differential form or the FIT scheme for the same equations in integral form. Both the FDTD and 

FIT requires an important assumption due to the discretization scheme: electric and magnetic 
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fields are defined within two different meshes in space. When using hexahedral meshes either in 

FDTD or in FIT, both meshes are staggered by a half-step size from each other. 

This half-step staggering between electric and magnetic field meshes allows a minimum 

number of field samples to be manipulated and stored. But there is a price to pay: the loss of the 

locality concept in the constitutive parameters, hence, the interaction between the media and the 

electric or magnetic fields does not happen at the same location and time. While in a 

homogeneous medium this issue is negligible, it becomes clear when handling nonhomogeneous 

media especially when the contrast is high between both sides of the interface.   

Figure 12.VI and Figure 13.VI show the fields updating process at the interface between 

two different media for both the magnetic𝐻𝑧, and the electric𝐸𝑦, respectively. The dielectric 

interface must run as shown to enforce the tangential electric field continuity. All field update 

equations can be found in [9.VI].   

  

 

Figure 12.VI, magnetic field updating in Yee scheme 

For instance, the update equation for the magnetic field component𝐻𝑧, relevant to figure 

12.VI is given by Faraday's law in finite difference form: 
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    (40.VIa) 

As both media across the interface are assumed to have the same permeability, there is no 

ambiguity to apply the above update across the interface separating both dielectric media.  
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 Now, consider the update equation for the electric field component 𝐸𝑦 relevant to figure 

13.VI. From Ampère's law, the finite-difference form yields: 
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Here, there is some ambiguity as both media across the interface are assumed to have different 

permittivity and a single value is needed by (40.VIb) exactly on the interface. One way to 

overcome the problem is to average the loop integrals around partial path on each side of the 

interface. It is easy to show that this results exactly in considering the average permittivity 

around the entire loop across the interface.  

 A dual reasoning can be easily made for an interface between two magnetic media. It can 

be felt that the evaluation of the update equations will be even more critical if the interface 

separates two complex media, for instance being both dielectric and magnetic. 

 

Figure 13.VI, electric field updating in Yee scheme 

   

 In literature, various types of averaging were reported [29.VI]. In table 1.VI, we can see 

three ways to perform the approximation namely, using arithmetic mean, harmonic mean or 

geometric mean. Whatever the kind of averaging we use, some error occurs at the interface. Note 

that the error obviously decreases as the mesh size is reduced. Finally, the staggering between 
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electric and magnetic field meshes also exists in FIT and some averaging must also be applied as 

in FDTD [30.VI]. However, in this chapter we only address this issue for FDTD method, which, 

in case of hexahedral cells, have the same operator. 

One important point to highlight here is that this averaging issue is completely different from 

numerical dispersion phenomenon. While the latter is due to the discretization of continuous 

system as discussed in chapter IV (usually the equations of dispersion are derived for 

homogenous medium only), the former comes from the presence of interface between different 

media and hence appears in nonhomogeneous media. 

Table 1.VI, different kinds of media properties averaging at the interface [29.VI] 

Averaged 

Constitutive 

parameter 

Arithmetic mean Harmonic mean Geometric mean 

𝜇𝑖,𝑗+1
2
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1
2
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 It is worth to mention that in the TLM approach presented in chapter III, the treatment of 

interface between different media doesn’t appear explicitly. This is because in TLM-SCN based 

algorithm all voltages interactions happen in free-space. The material presence is taken into 

account using the correction process at the center of the cell. This means that the cell with its 
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specific constitutive parameters is a single entity. Furthermore, the field update equations imply 

only the cell media properties which are always homogeneous. Indeed, TLM cell boundaries are 

always located on media interfaces (if they exist) whether dielectric, magnetic or both. Finally, 

note that, tangential field components continuity is enforced at all-time steps by the voltage 

exchange process. 

  In the following section we present several numerical experiments to show how TLM 

and FDTD behave as the contrast between two media increases. As it is well-known that TLM is 

less dispersive than FDTD, one has to make sure that any result that would favor TLM is not due 

to the higher dispersion of the FDTD. Consequently, one chose spatial step values largely below 

the ones used normally for simulations. 

 

6.8.1 Modes cutoff frequencies in a rectangular waveguide partially filled by dielectric 

 In this experiment, we compute the dominant mode cutoff frequency in the rectangular 

waveguide whose cross-section is with dimensions𝑎 = 𝑏 = 10𝑐𝑚 and half-filled by a dielectric 

slab of permittivity 휀𝑟 as illustrated in figure 14.VI.  

The objective of this experiment is to study the effect of the interface between the two dielectrics 

(the air and the dielectric slab) using both TLM and FDTD methods. Analytical solution is taken 

as a reference for comparison [31.VI] [32.VI]. 

 

Figure 14.VI, cross section of a waveguide partially filled with dielectric  

 Note that in this experiment,, the dominant mode cutoff frequency 𝑓 is not constant inside 

the waveguide, since it is material depended. However, for standardizing the comparison criteria 

and because all dominant modes cutoff frequencies for the different values of permittivity were 
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less than 1.3 GHz, we chose that upper frequency limit as the maximum frequency range in the 

simulation. The value 휀𝑟 = 40.0 was taken as a reference in calculating 𝜆𝑑 defined as: 

𝜆𝑑 =
𝑐𝑜

𝑓√ 𝑟
                (41.VI)  

because it defines the shortest wavelength. One has to remember that using 10-cells/wavelength 

or more allows one to neglect numerical dispersion effects. Finally, we used cubic cells, and we 

performed the FDTD and the TLM for 100000 iterations, with maximum time step used for TLM 

and half the Von-Neumann limit for the FDTD, to ensure stability. 

 In figure 15.VI, we study the relative error in calculating the dominant mode in the 

waveguide as compared to the analytical solution for various values of permittivity and various 

spatial discretization. As observed, the TLM algorithm over performs the FDTD for the same 

spatial step-size. Furthermore, we can observe the effect of increasing the permittivity on the 

relative error in FDTD: it increases monotonically as the contrast increases whereas it remains 

quite stable for TLM. We can also note that the TLM algorithm with 10 cells per wavelength, 

yields an accuracy similar to FDTD with 40 cells per wavelength for high contrast. On the other 

hand, when the contrast is low all curves tend to give similar results.  

 

Figure 15.VI, Numerical scheme relative error, with respect to the analytical solution, of the dominant mode cutoff frequency of 

the dielectric loaded waveguide of figure 14.VI as a function of relative permittivity  
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6.8.2 Scattering parameters from periodic slabs in a parallel-plate waveguide  

 

 In this experiment, we study the reflection coefficient of TEM wave in a parallel-plate 

waveguide produced by a one-dimensional structure composed of several dielectric layers. This 

structure consists of consecutive interleaved dielectric layers with free-space gaps as shown in 

figures 16.VI and 17.VI. 

 

Figure 16.VI, parallel plate waveguide loaded by 8 dielectric slabs each of width 4 mm and separated by 4 mm 

 

Figure 17.VI, side cross-section of figure 16.VI 

 To respect the numerical dispersion criteria for both TLM and FDTD methods, we 

consider the wavelength in the dielectric material: 

𝜆𝑑 =
𝑐𝑜

𝑚𝑎𝑥(√ 𝑟)𝑓𝑚𝑎𝑥
= 15.811𝑚𝑚          (42.VIa) 

and select the spatial mesh size:  

∆𝑥 ≤
𝜆𝑑

10
≅ 1.58𝑚𝑚                 (42.VIb) 

 In figure 18.VI we show a comparison between FDTD and TLM methods, taking the 

analytical solution as a reference. As observed, the FDTD curves approach the analytical 

solution as the mesh size decreases. However, it is clear that the TLM outperforms the FDTD 

even when TLM uses a mesh size which is 3 times larger than the one used for FDTD. 
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Figure 18.VI, case of figure 17.VI: reflection coefficient as a function of frequency, comparison between FDTD, TLM and the 

analytical solution for different spatial-step values 

 

 The numerical dispersion of FDTD and TLM cells is negligible when using a mesh size 

of 10 cells / wavelength or more. This means that the source of error in FDTD simulations is not 

mainly due to the numerical dispersion but to the high contrast between the periodic slabs. One 

should mention that in [33.VI] authors reached a similar conclusion that TLM shows better 

performance that FIT in highly contrasted media, for the same spatial level of discretization. The 

structure under test was highly heterogeneous and with significant differences between media 

(computational dosimetry). It is mentioned that the ambiguity at interfaces may be the source of 

the slow convergence of the FIT as compared to TLM computations. 

 

6.8.3 The effect of irregular structured meshing 

 

 Extending the same reasoning of the previous section, we can expect that at the interface 

between two regions of different mesh size, we will face a similar issue. Consider a 

computational domain with irregular meshing which is filled by a homogenous medium. Let us 
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analyze field update equations at the interface between two regions with different mesh sizes as 

shown in figure19.VI. 

 

Figure 19.VI, electric field z- component at the interface bwteen two differnt mesh size. 

For instance, magnetic and electric field component in the y-direction are expressed by finite-

difference equations [9.VI]: 
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where the averaged spatial steps Δℎ𝑥𝑖 and Δℎ𝑧𝑖are defined as: 

 

Δℎ𝑥𝑖 =
∆𝑥𝑖+∆𝑥𝑖−1

2
              (44.VIa) 

Δℎ𝑧𝑖 =
∆𝑧𝑖+∆𝑧𝑖−1

2
              (44.VIb) 

 

 As we can notice, that at the interface between two different mesh sizes, the FDTD 

scheme is no longer a central difference. As a result, the error is no longer of order 𝑂((∆𝑥)2) but 

higher, depending on the ratio between cell sizes on sides of the interface. 
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 In the following experiments, we will compare both the FDTD and TLM methods in 

presence of irregular (but structured) meshing in terms of cell ratios. Figure 20.VI shows a top 

view of an irregularly meshed parallel-plate waveguide. For this structure, we calculate the level 

of parasitic reflections that occur from the interface between differently meshed zones. The 

computational domain is terminated at both sides by PML absorbing boundary conditions. 

Moreover, to ensure exact plane wave excitation (TEM mode) we used PEC at the top and 

bottom of the waveguide, and PMC at both sides. For wideband excitation, we applied a 

modulated-Gaussian pulse with parameters𝑓𝑜 = 10.0𝐺𝐻𝑧,𝜎 = 30∆𝑡 and 𝑡𝑜 = 300∆𝑡 and we 

run the experiment for 40000 iterations until all fields practically vanished. Then, we calculated 

the reflection coefficient over the range of frequencies from 8 to 13 GHz. 

 

 

Figure 20.VI, top view of the parallel plate waveguide showing the structured irregular mesh 

 

 One can expect that the error produced by the irregular meshing will depend on the ratio 

between mesh sizes ∆𝑥/𝛿𝑥 (see figure 20.VI). It can be reasonably expected that the level of 

parasitic reflections will increase with that ratio. In figure 21.VI, we show the reflection 

coefficient from the irregularly meshed slab. To ensure a negligible numerical dispersion we 

used very small mesh size (75 cells / wavelength). We can observe that the reflection coefficient 

increases with the ratio∆𝑥/𝛿𝑥. The reflection coefficient in case of regular meshing was around 

-100 dB; hence, the reflection levels observed are indeed due to irregular meshing.  
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Figure 21.VI, reflection coefficient from irregularly meshed regions for different mesh ratios using FDTD method.  

Case of figure 20.VI. 

 

 In figure 22.VI we show the effect of reducing the mesh size ∆𝑥 while keeping the ratio 

∆𝑥

𝛿𝑥
= 10 at the interface. As expected, the finer the mesh size, the lower the error due to the 

irregular meshing. In this experiment, we used very fine meshes to ensure a negligible level of 

numerical dispersion. One can notice that the TLM method shows better performance at 40 cells 

/ wavelength compared to FDTD, even with 115 cells/wavelength. This can be explained by the 

fact there is no averaging in TLM-SCN method at the interface between different mesh sizes (in 

structured meshes). 
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Figure 22.VI, reflection coefficient from irregularly meshed slab (of ratio
∆𝑥

𝛿𝑥
= 10) for different values of ∆𝑥, comparison 

between FDTD and TLM methods. Case of figure 20.VI. 

 

 In figure 23.VI, results for the same experiment are shown for different mesh ratios but, 

this time, compared with the TLM over the same frequency band. We can observe two 

phenomena: first, the TLM at 20 cells / wavelength outperforms the FDTD at 100 cells / 

wavelength for different mesh size ratios. Secondly, in both FDTD and TLM the error increases 

with the mesh ratio. The inherent error in FDTD explained above is confirmed by these results as 

the dashed curves move up with the ratio
∆𝑥

𝛿𝑥
. If this phenomenon is less apparent for the TLM 

method, as the numerical dispersion increases with the cell aspect ratio, one also observes an 

increase yet much less rapidly for TLM. It can be explained as follows: the numerical dispersion 

increases in the cells with higher aspect ratios. That means that the numerical phase velocity is 

different in the two regions of figure 20.VI; equivalently, the numerical wave impedance in the 

discretized media is different for different mesh discretization ratios  
∆𝑥

𝛿𝑥
  in the TLM mesh. Thus, 

parasitic reflections are generated at interfaces as that ratio increases. Note that this source of 

numerical dispersion error is not restricted to TLM only but also exists in FDTD and hexahedral 

FIT. 
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Figure 23.VI, reflection coefficient from irregularly meshed slab for different change ration, comparison between FDTD method   

and TLM method. Case figure 20.VI 

 

 Finally, we performed a simulated experiment regarding an air-filled rectangular 

waveguide WR90. In this experiment, we calculated the parasitic reflection coefficient in an 

irregularly meshed TLM computational domain (a transversal slab of 5𝛿𝑥  width in the middle 

of the waveguide, elsewhere we used cubic cells of dimension∆𝑥). As a TE10 wideband 

excitation, we applied a modulated-Gaussian pulse with parameters𝑓𝑜 = 10.0𝐺𝐻𝑧,𝜎 = 30∆𝑡 

and 𝑡𝑜 = 300∆𝑡 and we run the experiment for 80000 iterations until all fields practically 

vanished. Then, we calculated the reflection coefficient over the range of frequencies from 8 to 

13GHz. As absorbing boundary condition we used 10-cells PML layer at both ends of the 

waveguide, and to enhance the absorption characteristics we terminated the PML layer with a Zo 

free-space impedance boundary condition. Finally, we used∆𝑥 = 1.27𝑚𝑚 and, consequently, 

the time steps we used were 0.211 ps, 0.14 ps and 0.105 ps for the mesh ratios
∆𝑥

𝛿𝑥
= 10 ,

∆𝑥

𝛿𝑥
= 15 

and
∆𝑥

𝛿𝑥
= 20 , respectively.  

 

 

 



Chapter VI: Challenging Cases of Time-Domain Methods 

174 
 

In figure 24.VI we can see the effects of using different mesh size ratios.  

 

Figure 24.VI, reflection coefficient in an empty WR90 waveguide with irregularly meshed slab 

 

 As expected the reflection coefficient increases with the ratio 
∆𝑥

𝛿𝑥
. This can be explained 

by the effective wave-impedance discretized medium, as mentioned in the previous experiment. 

Finally, we should mention that the WR90-experiment is very different form the parallel-plate 

one. Indeed, unlike the TEM mode, the TE10 mode impinges at angles which are not normal to 

the mesh interface and varies with the frequency signal. 
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6.9  Conclusion 

 

 In this chapter, two main issues were discussed. In the beginning, we presented the multi-

scale and low-frequency problems in time domain techniques and their associated difficulties. 

Then, we proposed some novel solutions by applying mapping techniques. They are based on 

modifying the metric tensor of both space and time domains and transforming the original 

problem into a well-posed one and easier to solve. However, further research should be done to 

know the full potentials of these mapping approaches.  

 In the second part of this chapter, we addressed other challenging cases for time-domain 

methods namely, their performance in presence of high contrast heterogeneous and high cell 

ratios in irregular structure mesh. More particularly, comparison between FDTD and TD-TLM 

methods were carried out. Dedicated numerical experiments were carried out to emphasize the 

error produced at the interface between two different materials or different meshed regions in 

homogenous medium. Simulated results clearly confirm that TD-TLM outperforms FDTD 

method for the same spatial discretization level (especially for highly contrasted media). That 

means the TD-TLM method needs fewer number of mesh cells than the FDTD to give the same 

level of accuracy. 
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Chapter VII 
Conclusion and Future Work 

 

7. 1 General conclusion  

 

 In this PhD project, we mainly focused on time-domain numerical techniques in 

electrodynamics for structures including complex media. In particular, we investigated on the 

transmission line matrix (TLM) method as a computational method to implement in an 

electromagnetic simulator that can handle general three-dimensional geometries and media 

possessing general linear constitutive parameters. In chapter II, we presented different kinds of 

complex linear media and how their behaviour can be expressed mathematically and how 

electromagnetic fields interact with them. In chapter III, we briefly revised the theory of TLM 

from its beginnings to wind up with a more advanced algorithm that can deal with complex 

media that were used later in this research. As the TLM simulator formerly used in the laboratory 

completely lacked the interface with the TLM engine to enter complex structures, a new graphic 

interface (GUI) to render it user-friendly was then developed. Also, the former TLM engine was 

completed with additional features, including a unified environment that can simulate 

nontraditional materials such as chiral media, metamaterials, and experiments involving 

transformation optics...etc. Finally, we performed many experiments to validate both the TLM 

simulator and the module GUI by several comparisons with analytical solutions, other 

commercial simulators and measurements.  

 All other available time-domain commercial EM solvers that we tested are limited in 

comparison to our TLM simulator in terms of the material they can handle. First, when it comes 

to dispersive media they use frequency-domain methods only (to avoid dealing with time-domain 

filters). Secondly, they are limited when dealing with highly non homogeneous complex media. 

In the case of non-saturated ferrites, for example, validated results are obtained only when each 

cell are described with a local tensor, which can be handle by our TLM simulator.   

 In the next chapter, we developed a complete theoretical analysis for numerical 

dispersion phenomena and stability conditions for the TLM model when dealing with complex 



Chapter VII: Conclusion and Future Work 

 

180 
 

media. This was necessary as a simple rule of the thumb, which is generally used in the 

literature, has not been proved valid. It was shown that in certain cases, the maximum mesh size 

was underestimated, thus increasing uselessly the computer expenditure. As a result, it is 

recommended that in the presence of complex (dispersive, anisotropic), a dispersion and stability 

evaluation be carried out. The general procedure and examples are presented in these cases. It 

was also shown that an a priori knowledge of both the maximum allowed mesh size and time-

step allow the user to optimize the computer resources, given a required level of accuracy.  

 In chapter VI, some challenging cases that have several impacts on time-domain methods 

were investigated and solutions proposed. First of all, the low-frequency problem which usually 

leads to multi-scale difficulty was considered. To avoid coarseness error (spatial resolution), it is 

shown that the time step becomes very small to insure stability. As a result, the simulation time 

explodes because the response signal is oversampled way beyond the Nyquist's criterion. For this 

classical problem, we proposed a new solution based on space or time-space mapping 

techniques. In this kind of mapping, the objective is to transfer the original computational 

domain into a new one in which the low frequency problem disappears. Simple examples were 

shown with promising results. 

 In the second part of the chapter, the presence of high contrast of constitutive parameters 

was investigated. Although it may also be relevant for typical frequency domain methods, only 

time domain methods such as FDTD and TD-TLM were considered. First of all, the main 

difference between both algorithms concerning field update equations at cells on an interface 

separating two different media was explained. Numerical experiments show clearly that both 

algorithms do not behave the same way and produce different accuracy in a substantial manner. 

This trend is enhanced when the electromagnetic property contrast increases. In this case, results 

show a better behaviour for the TLM algorithm. This was explained by the inherent local feature 

of its algorithm, which does not require some averaging process at the interface. Some care was 

taken to clearly identify the interface problem error from the dispersion difference between both 

algorithms. 

 Finally, to pursue with the interface problem between media, we investigated the case of 

parasitic reflections produced at the interface between regions with different mesh size. The 

behaviour of both TLM and FDTD were investigated when the mesh ratio between both meshes 

was modified. Simulation experiments show clearly the better performance of the TLM which 
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cannot be explained by its better dispersion behaviour. It is concluded that, again, the local 

character of the TLM algorithm explains its better behaviour in terms of parasitic reflection, as 

compared to the FDTD.  

 

7. 2 Future work 

 

 The solver developed in this project is serial; hence, one can significantly enhance its 

performance by parallelizing the algorithm to benefit from the computational power of several 

processing units. In the frame of a coming national research project, it will constitute the core of 

a dedicated TLM solver for highly inhomogeneous structures with application to dosimetry, i.e., 

the field deposition and induces current density inside biological tissues, when irradiated by 

high-amplitude fields. Several enhancements should be considered: first, the use of non-

orthogonal cells developed by Li et al [1.VII] should be implemented. It was shown to have 

excellent performances for curved geometry, to be local (unlike conformal cells) and to yield 

minimum dispersion with a slight decrease of the time step as compared to the one of cubic cells. 

Also, if irregular (structured) meshing is now available in the simulator, block meshing 

technique is still to be investigated [1.VII]. Indeed, the circuit concept used in TLM provides an 

exact connection between blocks with arbitrary mesh ratios by the use of ideal transformers. This 

is valid when the global time-step limit is used. To substantially reduce the computation cost, 

time-step inherent to each block size should rather be used. However, for time-domain methods 

in general, middle to long term instabilities arise if the local time-step is used.  

 Secondly, coupling with other physical phenomena, more particularly the heat conduction 

should be considered. This coupling will be implemented in the future TLM solver that will be 

developed in the coming national research project on dosimetry. It will allow one to account for 

the change of the constitutive parameters with the temperature when fields contribute to heat the 

media. Other coupling may be investigated such as with acoustic propagation for which there is 

on-going research in RFID applications [2.VII]. Previous work has shown that TLM model can 

be integrally applied to other physical phenomena [3.VII] which make it totally compatible with 

other physical coupling. 

 Finally, as far as multi-scale or low-frequency problems are concerned. If some ideas 

were proposed in the thesis, the full potential of the approaches discussed should be investigated 
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in the case of more complex 3D structures. At the other side of the spectrum, some more 

research should be carried out on the coupling with asymptotic methods such as GTD or UTD. 

To that respect, some pioneer work was done for the optimization of antenna positioning in 

tunnels [4.VII]. TLM was used for mode decomposition approximation for propagation in the 

tunnels. However, the coupling between the antenna TLM computational domain and the tunnel 

propagation model based either on mode decomposition or GTD remain to be carried out.  
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Appendix A  
Introduction to Transmission Line Matrix 
Method (TLM) 

 

A.1 Introduction 

In this appendix, we present the necessary background regarding the basic TLM algorithm in 

one, two and three dimensions for simple media. Then, several kinds of boundary conditions 

such as perfectly matched layer PML are presented. 

  

A.2 One-dimensional TLM 

 

 In this section, we will show that the current and voltage distributions in a one-

dimensional transmission line and field distributions in a one-dimensional space are governed by 

the same equations if one uses the appropriate normalization. Figure 1.A shows the infinitesimal 

equivalent transmission-line circuit. We will show later that TLM mimics wave propagation by 

channeling local waves in a mesh of interconnected transmission-lines [1.A]. 

 

Figure 1.A, TLM one-dimensional cell [1.A] 

 Governing equations of circuit quantities in figure 1.A are found by applying Kirchhoff’s 

voltage and current laws (KVL) and (KCL), respectively: 

 

𝑉(𝑥+∆𝑥,𝑡)−𝑉(𝑥,𝑡)

∆𝑥
∆𝑥 = −𝐿

𝐼(𝑥,𝑡+∆𝑡)−𝐼(𝑥,𝑡)

∆𝑡
− 𝑅 𝐼(𝑥, 𝑡)                                       (1.A) 
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𝐼(𝑥+∆𝑥,𝑡)−𝐼(𝑥,𝑡)

∆𝑥
∆𝑥 = −𝐶

𝑉(𝑥,𝑡+∆𝑡)−𝑉(𝑥,𝑡)

∆𝑡
− 𝐺 𝑉(𝑥, 𝑡)                                      (2.A) 

 

From the above equations, if we take the limit ∆𝑥 → 0, we obtain the well-known telegraphists’ 

equations. By eliminating for instance the current, we obtain with (1.A) and (2.A): 

 

𝜕2𝑉(𝑥,𝑡)

𝜕𝑥2
=

𝐿𝐶

(∆𝑥)2
𝜕2𝑉(𝑥,𝑡)

𝜕𝑡2
+
𝐿𝐺+𝑅𝐶

(∆𝑥)2
 
𝜕𝑉(𝑥,𝑡)

𝜕𝑡
+

𝑅𝐺

(∆𝑥)2
𝑉(𝑥, 𝑡)                                     (3.A) 

 

Similarly, by eliminating the voltage, one obtains: 

 

𝜕2𝐼(𝑥,𝑡)

𝜕𝑥2
=

𝐿𝐶

(∆𝑥)2
𝜕2𝐼(𝑥,𝑡)

𝜕𝑡2
+
𝐿𝐺+𝑅𝐶

(∆𝑥)2
 
𝜕𝐼(𝑥,𝑡)

𝜕𝑡
+

𝑅𝐺

(∆𝑥)2
𝐼(𝑥, 𝑡)                                       (4.A) 

 

where 𝑅 and 𝐺 mimic losses. Now, if we take a one-dimensional Maxwell’s equations scenario, 

for instance, assuming �⃗� = (0, 𝐸𝑦, 0) and 𝐻⃗⃗  ⃗ = (0,0, 𝐻𝑧), both curl equations become: 

𝜕𝐸𝑦(𝑥,𝑡)

𝜕𝑥
= −𝜇

𝜕𝐻𝑧(𝑥,𝑡)

𝜕𝑡
− 𝜎𝑚𝐻𝑧(𝑥, 𝑡)                                                      (5.A) 

𝜕𝐻𝑧(𝑥,𝑡)

𝜕𝑥
= − 휀

𝜕𝐸𝑦(𝑥,𝑡)

𝜕𝑡
− 𝜎𝑒𝐸𝑦(𝑥, 𝑡)                                                       (6.A) 

 

By combining (5.A), and (6.A), we obtain: 

𝜕2𝐸𝑦(𝑥,𝑡)

𝜕𝑥2
= 휀𝜇

𝜕2𝐸𝑦(𝑥,𝑡)

𝜕𝑥2
+ (𝜇𝜎𝑒 +  휀𝜎𝑚)

𝜕𝐸𝑦(𝑥,𝑡)

𝜕𝑡
+ 𝜎𝑒𝜎𝑚𝐸𝑦(𝑥, 𝑡)                             (7.A) 

 

for the electric field. Similarly, for magnetic field we obtain: 

 

𝜕2𝐻𝑧(𝑥,𝑡)

𝜕𝑥2
= 휀𝜇

𝜕2𝐻𝑧(𝑥,𝑡)

𝜕𝑥2
+ (𝜇𝜎𝑒 +  휀𝜎𝑚)

𝜕𝐻𝑧(𝑥,𝑡)

𝜕𝑡
+ 𝜎𝑒𝜎𝑚𝐻𝑧(𝑥, 𝑡)                             (8.A) 

 

As we can notice, the electric and magnetic field equations (7.A) and (8.A) are identical to (5.A) 

and (6.A), respectively, provided that the coefficients are adjusted according to table 1.A. One 

can follow the procedure presented in [1.A] to derive a discrete update scheme to numerically 

solve the above equations. 
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Table 1.A, analogy between circuit and field quantities for a one dimensional propagation problem [2.A] 

𝑉 − 𝐼 𝐸𝑦 − 𝐻𝑧 

𝑅 ∆𝑥⁄  𝜎𝑚 

𝐺 ∆𝑥⁄  𝜎𝑒 

𝐿 ∆𝑥⁄  𝜇 

𝐶 ∆𝑥⁄  휀 

𝐼(𝑥, 𝑡)/∆𝑥 𝐻𝑧(𝑥, 𝑡) 

𝑉(𝑥, 𝑡)/∆𝑥 𝐸𝑦(𝑥, 𝑡) 

 

 

 At any instant of time, the resulting voltage at any arm (port) of the n-th node at k-th time 

step, as shown in figure 2.A, is given by:  

𝑉𝑘
 
𝑛 = 𝑉𝑘

 
𝑛
𝑖 + 𝑉𝑘

 
𝑛
𝑟                                                          (9.A) 

Whereas, the voltage value at the center of the node is the summation of either incident or 

reflected voltages at any instant of time: 

 

𝑉𝑘
 
𝑛
𝑐 = 𝑉𝑘

 
𝑛
𝑖,1 + 𝑉𝑘

 
𝑛
𝑖,2 = 𝑉𝑘

 
𝑛
𝑟,1 + 𝑉𝑘

 
𝑛
𝑟,2

                                                 (10.A) 

 

The above voltage values can be used with table 1.A, to determine the correspondent equivalent 

fields with some normalization factor (the cell dimension).  

 

Figure 2.A, one-dimensional TLM mesh 

 

Generally, update equations in the basic TLM algorithm are split into two main steps: 
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1- Connection process 

 It is the process in which reflected voltages from one side of the port become the incident 

ones to the other side of the same port for the next time-step, as shown in figure 2.A. This 

process writes: 

(
𝑉𝑘
 
𝑛
𝑖,1

𝑉𝑘
 
𝑛
𝑖,2
) = (

𝑉𝑘
 
𝑛−1
𝑟,1

𝑉𝑘
 
𝑛+1
𝑟,2 )                                                 (11.A) 

This process is equivalent to a propagation mechanism in the mesh, through which the voltages 

exchanges take place and the waves propagate.  

 

2- Scattering process 

 This process is local and takes into account the material existence; hence, the material 

field interactions happen at this stage of the TLM algorithm. The incident fields, decomposed in 

local waves under the form of incident voltages, enter the TLM cell and interact with matter.  

Then, fields scatter from the node under the form of reflected voltages. This process writes: 

 

(
𝑉𝑘+1
 
𝑛
𝑟,1

𝑉𝑘+1
 
𝑛
𝑟,2) = (

𝑠11 𝑠12
𝑠21 𝑠22

) (
𝑉𝑘
 
𝑛
𝑖,1

𝑉𝑘
 
𝑛
𝑖,2
)                                                  (12.A) 

  

Two points need to be mentioned here: first, the components of the scattering matrix are problem 

dependent. At maximum time-step operation, they depend on the cell size and material only. For 

more details, please refer to [1.A]. The second point is that a similar analysis can be done for 

currents. Once the voltages and currents are known in each cell and at each time step, we can 

calculate all field components by using table 1.A. 

 

A.3 Two-dimensional TLM method 

 

 Solving Maxwell’s equations in one-dimension always produces transverse Electro-

Magnetic (TEM) solutions. The model extension to two-dimensions can produce two additional 

types of solutions namely, Transverse Electric (TE) or Transverse Magnetic (TM) 

configurations, which have each three field components and can propagate in two dimensions 

[3.A]. To achieve such a model using TLM, one needs interconnected transmission-lines to 
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mimic propagation in the 2D plane [4.A]. Each type of solution is modeled with one specific 

type of connection, as detailed below: 

 

I- Shunt node  

 

 This type of node (figure 3.A) generates TM solutions: The only E component is 

perpendicular to the computational plane (𝐸𝑦) and the two only magnetic field components are in 

that plane (  𝐻𝑥, 𝐻𝑧). 

 

Figure 3.A, 2D TLM Shunt Node [4.A] 

By applying Kirchhoff’s laws to the node in figure 3.A, we obtain at the infinitesimal limit: 

−
𝜕

𝜕𝑥
(𝐼𝑥1 − 𝐼𝑥3) −

𝜕

𝜕𝑧
(𝐼𝑥2 − 𝐼𝑥4) = 2𝐶

𝜕𝑉𝑦

𝜕𝑡
                                                 (13.Aa) 

−
𝜕𝑉𝑦

𝜕𝑥
= 𝐿

𝜕

𝜕𝑡
(𝐼𝑥1 − 𝐼𝑥3)                                                  (13.Ab) 

−
𝜕𝑉𝑦

𝜕𝑧
= 𝐿

𝜕

𝜕𝑡
(𝐼𝑥2 − 𝐼𝑥4)                                                   (13.Ac) 

 

Combining (13.A a, b, c) yields: 

𝜕2𝑉𝑦

𝜕𝑥2
+
𝜕2𝑉𝑦

𝜕𝑥2
= 2𝐿𝐶

𝜕2𝑉𝑦

𝜕𝑡2
                                                           (14.A) 

 

 If we now consider curl Maxwell’s equations for TM solution, i.e., the field components 

  𝐻𝑥, 𝐻𝑧 , 𝐸𝑦 and 
𝜕

𝜕𝑦
≡ 0, one obtains: 
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𝜕𝐻𝑥

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝑥
= 휀

𝜕𝐸𝑦

𝜕𝑡
                                                           (15.Aa) 

𝜕𝐸𝑦

𝜕𝑥
= −𝜇

𝜕𝐻𝑧

𝜕𝑡
                                                               (15.Ab) 

𝜕𝐸𝑦

𝜕𝑧
= 𝜇

𝜕𝐻𝑥

𝜕𝑡
                                                                      (15.Ac) 

 

Combining (15.A a, b, c) yields for the electric field components: 

 

𝜕2𝐸𝑦

𝜕𝑥2
+
𝜕2𝐸𝑦

𝜕𝑥2
= 𝜇휀

𝜕2𝐸𝑦

𝜕𝑡2
                                                         (16.A) 

 

Comparing (14.A) and (16.A) yields the correspondence between circuit and field quantities 

shown in table 2.A. 

Table 2.A, analogy between circuit and field quantities for shunt node [5.A] 

𝑉 − 𝐼 𝐸𝑦 − 𝐻𝑧 

𝑉𝑦 𝐸𝑦 

(𝐼𝑥1 − 𝐼𝑥3) 𝐻𝑧 

(𝐼𝑥4 − 𝐼𝑥1) 𝐻𝑥 

𝐿 𝜇 

2𝐶 휀 

 

 

II- Series node 

 

 This type of node is capable of generating both configurations but with dual circuit 

quantities [6.A]. For instance in TE configuration, the magnetic field only component is 

perpendicular to the computation plane and corresponds to a loop current (figure 4.A) and the 

two only electric field components in the computational plane are represented by voltages. The 

TM configuration is also possible by proper correspondences which can be similarly determined 

by comparison between Kirchhoff's laws and curl Maxwell' equations. 
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Figure 4.A, TLM Series Node [5.A] 

 For shunt or series node, the process of wave propagation and material field interaction is 

the same as for one-dimensional case: there are two steps that should be followed, namely, the 

connection and scattering processes, as detailed further: 

 

1- Connection process 

 Similar to the one-dimensional case, the connection process is responsible for voltages 

exchange, as presented in figure 5.A and expressed by: 

(

 
 
 
 

𝑉𝑘
 
𝑛,𝑚
𝑖,1

𝑉𝑘
 
𝑛,𝑚
𝑖,2

𝑉𝑘
 
𝑛,𝑚
𝑖,3

𝑉𝑘
 
𝑛,𝑚
𝑖,4

𝑉𝑘
 
𝑛,𝑚
𝑖,5
)

 
 
 
 

=

(

 
 
 
 

𝑉𝑘
 
𝑛−1,𝑚
𝑟,1

𝑉𝑘
 
𝑛,𝑚−1
𝑟,2

𝑉𝑘
 
𝑛+1,𝑚
𝑟,3

𝑉𝑘
 
𝑛,𝑚+1
𝑟,4

𝑉𝑘
 
𝑛,𝑚
𝑟,5
)

 
 
 
 

                                                 (17.A) 

where 𝑛,𝑚 are the indices in  𝑥, 𝑦 directions, respectively. As in the one-dimensional case, this 

process of voltage exchange is responsible for wave propagation inside the mesh. This can be 

thought conceptually as an equivalence to Huygens principle: once the waves reach any cell, this 

cell becomes a secondary radiator. Finally, the fifth voltage is reserved for a stub inside each 

node to take into account the material presence [7.A]. 

 The voltage at the center of the node (referred as node voltage) is proportional to the field 

component as shown in Table 2.A. It is given by a linear combination of all voltages either 

incident or reflected at any time step: 

𝑉𝑘
 
𝑛
𝑐 = ∑ 𝑉𝑘

 
𝑛
𝑖,𝑝4

𝑝=1 = ∑ 𝑉𝑘
 
𝑛
𝑟,𝑝4

𝑝=1                                                  (18.A) 
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Note that similar voltage combination can be expressed for the node current of the series node. 

 

 

Figure 5.A, two-dimensional TLM mesh 

2- Scattering process 

 

 This process is local and takes into account the material presence; hence, the material 

field interactions occur at this stage of the TLM algorithm. In this process, incident voltages 

enter the TLM cell, impinge to the TLM cell node center, and then scatter at all accesses as 

reflected voltages. They are ready for the connection stage that prepares the next time iteration 

step. This process is generally represented by the scattering matrix (3.19) since the TLM node 

can be seen as a 5-port device. Note that this explains the name of the method (should not to be 

called transmission-line method, which is another approach). Hence, the computational domain 

is filled with a network of interconnected nodes, each characterized with its scattering matrix 

[7.A]: 

(

 
 
 
 

𝑉𝑘
 
𝑛,𝑚
𝑟,1

𝑉𝑘
 
𝑛,𝑚
𝑟,2

𝑉𝑘
 
𝑛,𝑚
𝑟,3

𝑉𝑘
 
𝑛,𝑚
𝑟,4

𝑉𝑘
 
𝑛,𝑚
𝑟,5
)

 
 
 
 

=

(

 
 
 
 

𝑠11 𝑠12 𝑠13 𝑠14 𝑠15

𝑠21 𝑠22 𝑠23 𝑠24 𝑠25

𝑠31 𝑠32 𝑠33 𝑠34 𝑠35

𝑠41 𝑠42 𝑠43 𝑠44 𝑠45

𝑠51 𝑠52 𝑠53 𝑠54 𝑠55)

 
 
 
 

(

 
 
 
 

𝑉𝑘
 
𝑛,𝑚
𝑖,1

𝑉𝑘
 
𝑛,𝑚
𝑖,2

𝑉𝑘
 
𝑛,𝑚
𝑖,3

𝑉𝑘
 
𝑛,𝑚
𝑖,4

𝑉𝑘
 
𝑛,𝑚
𝑖,5
)

 
 
 
 

                 (19.A) 

 

 As in one-dimensional case, the components of the scattering matrix are problem 

dependent since they depend on the cell size, local material and time step (only if not operating 
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at maximum time step). For all nodes, fields at the node center can be retrieved by linear 

combination of the incident voltages or currents (which can be expressed in terms of voltages via 

transmission-line theory), using the correspondences of Table III. It is worth to mention that 

unlike FDTD, the 2D-TLM always operates at maximum time-step, is inherently stable and 

compute fields at the same location and time. 

 For the expression of the scattering matrix components of (19.A), one can refer to [7.A]. 

Note that to the fifth port, one connects an open circuited stub (shunt node) whose characteristic 

admittance value depends on local medium constitutive parameters. Note that a sixth port 

connected to an infinitely long (or matched) line could be used to account for local losses. Since 

the voltage never returns to the node, the port is not used and matrix components only are 

modified when losses are present. Finally, stub loading must also be used when the cell has an 

aspect ratio different than unity.  

 All the above applies to the 2D shunt node in a dual manner. Note that TE or TM 

configuration whether or not for magnetic or dielectric media can be modeled by either the shunt 

or series node with appropriate correspondences [8.A]. However, it is customary to use the shunt 

node with the node voltage as the electric field component only (stub loading for dielectric 

medium) and series node with the node current as the magnetic field component only and stub 

loading for magnetic media. 

 

A.4 Three-dimensional TLM method 

 

 For general structures, the decomposition of independent solutions in TE and TM 

configurations is no longer possible. Thus, one needs all 6 components of the electromagnetic 

field [5.A] [9.A]. Therefore, it is necessary to create a three dimensional type of nodes that 

incorporate both series and shunt nodes to compute all 6 components as illustrated in figure 6.A 

[5.A] [6.A] [9.A]. 
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Figure 6.A, three-Dimensional TLM distributed node [5.A] 

Combining series and shunt nodes in an appropriate way, one obtains the basic distributed 3D 

TLM cell that describes the complete set of 3D Maxwell’s equations in Cartesian coordinates. As 

shown in figure 6.A, at three vertices of the cell, there are shunt nodes whose node voltages 

relate to 𝐸𝑥, 𝐸𝑦,𝐸𝑧 and at the remaining vertices, there are series nodes whose node currents relate 

to 𝐻𝑥, 𝐻𝑦,𝐻𝑧. 

 As one can observe, electromagnetic field components are not defined at the same time 

and position by this TLM cell. On refers to the distributed TLM cell, which turns out to be the 

same as Yee's FDTD cell and same dispersion properties at maximum time-step. However, the 

TLM needs more operations and, therefore, does not bring any advantage over Yee's cell. 

Subsequent work was carried out to develop a condensed version of the 3D TLM node. First, 

Saguet and Pic [10.A] proposed a condensed TLM node by eliminating the interconnections 

between nodes illustrated in figure 6.A. However, the node presents some asymmetry which 

provokes errors in the solution, depending on the type of boundaries applied. This is only 5 years 
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later that John's published the 3D-Symmetrical Condensed Node (SCN) which is now widely 

used. 

 

A.5 Symmetric Condensed Node 

 

 Peter Johns, professor at the University of Nottingham carried out investigation to come 

up with an optimized cell that would present the following features:  

 It can carry all �⃗⃗�  and �⃗�  field components. 

 It can account for all material properties 𝜇, 휀, 𝜎. 

 It should be symmetric to provide the same characteristics for all Cartesian directions (for 

cubic cells). 

 It should fulfill the charge and energy conservation principles. 

 It should fulfill Maxwell’s curl’s equations. 

 It should have minimum, even zero, dispersion along the Cartesian directions. 

 

 From the above conditions, the device that represents the TLM node, should have 

symmetry (scattering matrix property of symmetry) and capable of modeling in a unique manner 

the 6-fields components {𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦, 𝐻𝑧} or their 6-curls components, and 6-flux 

quantities {𝐷𝑥, 𝐷𝑦, 𝐷𝑧 , 𝐵𝑥, 𝐵𝑦, 𝐵𝑧}  that account for the presence of matter. If one considers the 

TLM usual principle, one should have at most 18 voltages to have a consistent system to build 

the 18 electromagnetic quantities mentioned above. As there are 6 ports to feed the node 

(incidence-reflection along each Cartesian coordinates), each should contain two orthogonal 

voltages. This accounts for both polarizations of the traveling waves in the port line-access. It 

will be shown that line-voltage combination corresponds to tangential field components at the 

cell faces. 

 In his paper [23.A], Johns, describes the construction of such a node that he called 

"Symmetrical Condensed Node". Although, a pure circuit description is possible (published 

afterwards), he gave up the circuit description concept and simply applied the multi-port theory 

to come out with a general 12-port device, with 6 arms, each having two orthogonal voltages as 

illustrated in figure 7.A. The TLM cell refers to "unloaded SCN" as no stub connections appear. 
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To account for the presence of matter, fields at the node center must be modified. This is done by 

adding inductances or/and capacitances at the node center. To keep with the TLM concept, these 

immittances are modeled by stubs connected to the center: 3 stubs for the inductive loading 

(magnetic material) and 3 stub for the capacitive loading (dielectric material). Thus, the 

completely loaded TLM node includes at most 18 voltages. As a result, the fully loaded TLM 

cell can be characterized by an 18x18 scattering matrix. 

 

 

Figure 7.A, unloaded Symmetrical Condensed Node (SCN) [2.A] 

 

 A complete description and derivation of the SCN scattering matrix, based on Maxwell's 

equations under integral form was published by Peña and Ney [43.A]. This procedure allows the 

systematic development of any new TLM cell, starting from the definition of arm node voltages 

as a function of field components at cell faces: 

 In this section we will present a version of SCN-based TLM algorithm that can deal with 

nondispersive media with diagonal tensors for permittivity, permeability, electric and magnetic 

conductivities [11.A] [12.A], as shown in table 3.A. To minimize the number of operations and 

storage, we will not make use of the scattering matrix published by Johns, but rather express the 

field components at the cell center as a function of the incident arm voltages and then, compute 

reflected voltages from these quantities [13.A]. 
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Table 3.A, media property tensors for SCN-TLM algorithm 

휀�̿� = (

휀𝑟𝑥𝑥 0 0
0 휀𝑟𝑦𝑦 0

0 0 휀𝑟𝑧𝑧

) 𝜇𝑟 = (

𝜇𝑟𝑥𝑥 0 0
0 𝜇𝑟𝑦𝑦 0

0 0 𝜇𝑟𝑧𝑧

) 

�̿�𝑒 = (

𝜎𝑒𝑥𝑥 0 0
0 𝜎𝑒𝑦𝑦 0

0 0 𝜎𝑒𝑧𝑧

) �̿�𝑚 = (

𝜎𝑚𝑥𝑥 0 0
0 𝜎𝑚𝑦𝑦 0

0 0 𝜎𝑚𝑧𝑧

) 

 

 

 The computational domain is replaced by interconnected SCN-TLM nodes as shown in 

figure 8.A. Voltage exchanges happen at the interconnection planes, half way between 

neighboring cells. Given the parameter medium and cells, constants used in the update equations 

can be computed and are shown in table 4.A. 

 

 

Figure 8.A, three-dimensional TLM mesh based on SCN nodes 
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Table 4.A, constant terms used in TLM update equations 

𝛿1 =
∆𝑦∆𝑧

∆𝑥
 𝛿2 =

∆𝑥∆𝑧

∆𝑦
 𝛿3 =

∆𝑥∆𝑦

∆𝑧
 

𝑑𝑙 = 𝑐𝑜𝑑𝑡 𝑠 = 2𝑑𝑙 

𝛼𝑒,𝑖 =
4

4 + 𝑍𝑜𝜎𝑒,𝑖𝑠/휀𝑟,𝑖
 𝛼𝑚,𝑖 =

4

4 + 𝜎𝑚,𝑖𝑠/(𝑍𝑜𝜇𝑟,𝑖)
 

𝛽𝑒,𝑖 = 4(
휀𝑟,𝑖𝛿𝑖
2𝑑𝑙

− 1) 𝛽𝑚,𝑖 = 4(
𝜇𝑟,𝑖𝛿𝑖
2𝑑𝑙

− 1) 

𝛾𝑒,𝑖 =
𝑑𝑙

휀𝑟,𝑖𝛿𝑖
 𝛾𝑚,𝑖 =

𝑑𝑙

𝜇𝑟,𝑖𝛿𝑖
 

 

Update equations for normal SCN-base node at every time step is given by [11.A]: 

(

 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥

Δ𝑦𝐸𝑦

Δ𝑧𝐸𝑧

𝑍𝑜Δ𝑥𝐻𝑥

𝑍𝑜Δ𝑦𝐻𝑦

𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 
 
 
 
 
 

𝑛

=

(

 
 
 
 
 
 
 
 
 

𝛼𝑒,𝑖 (𝛾𝑒,𝑖(𝑉𝑖𝑛,1 + 𝑉𝑖𝑛,2 + 𝑉𝑖𝑛,9 + 𝑉𝑖𝑛,12 + 𝛽𝑒,𝑖𝑉𝑖𝑛,13))

𝛼𝑒,𝑖 (𝛾𝑒,𝑖(𝑉𝑖𝑛,3 + 𝑉𝑖𝑛,4 + 𝑉𝑖𝑛,8 + 𝑉𝑖𝑛,11 + 𝛽𝑒,𝑖𝑉𝑖𝑛,14))

𝛼𝑒,𝑖 (𝛾𝑒,𝑖(𝑉𝑖𝑛,5 + 𝑉𝑖𝑛,6 + 𝑉𝑖𝑛,7 + 𝑉𝑖𝑛,10 + 𝛽𝑒,𝑖𝑉𝑖𝑛,15))

𝛼𝑚,𝑖 (𝛾𝑚,𝑖(−𝑉𝑖𝑛,4 + 𝑉𝑖𝑛,5 − 𝑉𝑖𝑛,7 + 𝑉𝑖𝑛,8 + 𝛽𝑚,𝑖𝑉𝑖𝑛,16))

𝛼𝑚,𝑖 (𝛾𝑚,𝑖(𝑉𝑖𝑛,2 − 𝑉𝑖𝑛,6 − 𝑉𝑖𝑛,9 + 𝑉𝑖𝑛,10 + 𝛽𝑚,𝑖𝑉𝑖𝑛,17))

𝛼𝑚,𝑖 (𝛾𝑚,𝑖(−𝑉𝑖𝑛,1 + 𝑉𝑖𝑛,3 − 𝑉𝑖𝑛,11 + 𝑉𝑖𝑛,12 + 𝛽𝑚,𝑖𝑉𝑖𝑛,18)))

 
 
 
 
 
 
 
 
 

𝑛

                (20.A) 

  

where 𝑍𝑜 is the free space wave impedance and 𝑉𝑖𝑛,1 to 𝑉𝑖𝑛,18 are the incident voltages to the 

TLM node. Thus, electric and magnetic fields are computed first at the TLM cell center using 

(20.A). Then, reflected voltages can be computed by: 
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(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉ref,1

𝑉ref,2

𝑉ref,3

𝑉ref,4

𝑉ref,5

𝑉ref,6

𝑉ref,7

𝑉ref,8

𝑉ref,9

𝑉ref,10

𝑉ref,11

𝑉ref,12

𝑉ref,13

𝑉ref,14

𝑉ref,15

𝑉ref,16

𝑉ref,17

𝑉ref,18)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥 + 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,12

Δ𝑥𝐸𝑥 − 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,9

Δ𝑦𝐸𝑦 − 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,11

Δ𝑦𝐸𝑦 + 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,8

Δ𝑧𝐸𝑧 − 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,7

Δ𝑧𝐸𝑧 + 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,10

Δ𝑧𝐸𝑧 + 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,5

Δ𝑦𝐸𝑦 − 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,4

Δ𝑥𝐸𝑥 + 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,2

Δ𝑧𝐸𝑧 − 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,6

Δ𝑦𝐸𝑦 + 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,3

Δ𝑥𝐸𝑥 − 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,1

Δ𝑥𝐸𝑥 − 𝑉𝑖𝑛,13

Δ𝑦𝐸𝑦 − 𝑉𝑖𝑛,14

Δ𝑧𝐸𝑧 − 𝑉𝑖𝑛,15

Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,16

Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,17

Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,18 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

                               (21.A) 

 

Reflected voltages will be the incident ones to the adjacent cells at the next time step 

through the connection process descibed further. If one is interested in calculating the actual 

fields, the denormalization process should be performed through the multiplication with the 

denormalization matrix:  

(

 
 
 

𝐸𝑥
𝐸𝑦
𝐸𝑧
𝐻𝑥
𝐻𝑦
𝐻𝑧)

 
 
 

𝑛

=

(

 
 
 
 
 

1 Δ𝑥⁄ 0
0 1 Δ𝑦⁄

0 0
0 0

0 0
0 0

0 0
0 0

1 Δ𝑧⁄ 0

0
1

𝑍𝑜Δ𝑥

0 0
0 0

0 0
0 0

0 0
0 0

1

𝑍𝑜Δ𝑦
0

0
1

𝑍𝑜Δ𝑧)

 
 
 
 
 

(

 
 
 

Δ𝑥𝐸𝑥
Δ𝑦𝐸𝑦
Δ𝑧𝐸𝑧
𝑍𝑜Δ𝑥𝐻𝑥
𝑍𝑜Δ𝑦𝐻𝑦
𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 

𝑛

                 (22.A) 
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 After the scattering process descibed above, the connection process takes place, where 

reflected voltages are exchanged with the adjacent nodes for the next iteration:  

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉𝑖𝑛,1(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,2(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,3(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,4(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,5(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,6(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,7(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,8(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,9(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,10(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,11(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,12(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,13(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,14(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,15(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,16(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,17(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,18(𝑘, 𝑙, 𝑚))

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉ref,12(𝑘, 𝑙 − 1,𝑚)

𝑉ref,9(𝑘, 𝑙, 𝑚 − 1)

𝑉ref,11(𝑘 − 1, l,𝑚)

𝑉ref,8(𝑘, 𝑙, 𝑚 − 1)

𝑉ref,7(𝑘, 𝑙 − 1,𝑚)

𝑉ref,10(𝑘 − 1, 𝑙,𝑚)

𝑉ref,5(𝑘, 𝑙 + 1,𝑚)

𝑉ref,4(𝑘, 𝑙, 𝑚 + 1)

𝑉ref,2(𝑘, 𝑙, 𝑚 + 1)

𝑉ref,6(𝑘 + 1, 𝑙,𝑚)

𝑉ref,3(𝑘 + 1, 𝑙,𝑚)

𝑉ref,1(𝑘, 𝑙 + 1,𝑚)

𝑉ref,13(𝑘, 𝑙, 𝑚)

𝑉ref,14(𝑘, 𝑙, 𝑚)

𝑉ref,15(𝑘, 𝑙, 𝑚)

𝑉ref,16(𝑘, 𝑙, 𝑚)

𝑉ref,17(𝑘, 𝑙, 𝑚)

𝑉ref,18(𝑘, 𝑙, 𝑚) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

                         (23.A) 

 Finally, the simulation cannot take place if one does not include sources and boundary 

conditions that are required to limit the TLM computational domain. The way those are 

implemented in the TLM node will be described later. 

In general, one has many parameters linked to the TLM cell that can be utilized and 

modified in various manners to compute fields in a given medium. One can mention the six stub 

characteristic immittances and the 18 access-line impedances. In the literature, different types of 

cartesian cells have been presented beside the SCN node. The hybrid symmetical condensed 

node (HSCN ) and the super symmetrical condensed node (SSCN) are the most well known 

[1.A]. The main idea for these two nodes was to reduce the number of voltages to manipulate, 

i.e., the number of stubs. For instance, the SSCN does not use stubs at all but rather includes in 

the 12 line characteristic impedance values, the presence of material. However, a scattering 

process should take place in the connecting lines accross interfaces [14.A]. The HSCN 

compromizes between SCN and SSCN as it uses only three stubs and characteristic impedances 
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values of lines runing along the three space directions. In table 5.A we presents a comparison 

between the three types of common TLM nodes. 

Table 5.A, comparison between different TLM condensed cells 

 SCN HSCN SSCN 

Number of voltage lines  in parallelepipedic cell 18 15 12 

The necessity for explicitly define boundary conditions at 

the interface between two different media 
No Yes Yes 

Characteristic impedance 𝑍𝑜 
Material 

dependent 

Material 

dependent 

 

 As one can see, SCN node doesn’t need any knowledge such as material properties and 

shape of its neighboring cells. However HSCN and SSCN nodes do, as access lines with 

different impedances are directly connected across media interface. Thus, a scattering process 

takes place and reflection and transmission coefficients must be computed. When the media are 

simple (isotropic and non-dispersive) calculating the reflection coefficient is not a great deal. 

However, it should be mentioned that the cost in additional operation increases with the number 

of cells at interfaces, in other words, for increasing heterogeneity. When dealing with complex 

media, dispersive media for instance, the scattering process is much more involved. Intuitively, 

we know that those coefficients between two dispersive media are frequency dependent 

quantities. This means that some filtering process is necessary at the interface between different 

media. In this case, HSCN and SSCN rapidly become less attractive than SCN. However, further 

studies are necessary on that subject. 

 

A.6 Boundary Conditions  

 In system theory, the differential equation that models a system defines the rules of 

evolution of that system and how variables are connected together. The relation between the 

system and the outer space is done by using boundary conditions, which usually come from 

physical observations of how the system reacts with its exterior [15.A]. In fact, the way of 

truncating a computational domain depends mathematically on the problem formulation: 
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I. Integral equation formulation 

 In field integral equation formulation, the use of Greens function allows one to 

avoid any truncation process for open problems. Indeed, sources are variables only and 

bounded in space. The boundary conditions are already included in the Green's function 

and fields can be computed everywhere.  One sometime refers them as exact boundary 

conditions [15.A] [16.A]. 

II. Differential equation formulation 

 In this type of formulation, it is necessary to carry out a space truncation as fields 

are the unknowns to be determined and theoretically extend to infinity for open problems. 

Thus, some truncation methodology should be developed that minimizes parasitic 

reflections back to the limited computational domain [17.A] [18.A] [19.A] [20.A]. 

 Recalling that TLM algorithm belongs to volumic approaches, there are several ways to 

truncate the computational domain, depending on the purpose of this truncation and the subtleties 

of the problem under study. The most common types of boundary conditions encountered in 

TLM (like in other volumic approaches) are discussed below [2.A] [21.A] [22.A] [23.A] [24.A] 

[25.A]. 

1- Perfect Electric Conductor (PEC) 

 

 They have to be enforced where the computational domain is limited by a perfect 

conductor. PEC’s are also useful in exploiting the symmetry in the computational domain, for 

instance when we can define a plane where the electric field is purely normal and the magnetic 

field purely tangential. This allows a reduction of the computational domain [26.A] [11.A]. In 

TLM, PEC is simply implemented by short circuiting the related ports in the TLM node lines 

adjacent to the PEC boundary [2.A] (see figure 9.A). 

 

2- Perfect magnetic conductors (PMC) 

 

 PMC are the dual of PEC and do not represent real medium boundary. However, they are 

also very useful for taking advantage of symmetries to reduce a problem size. Such a plane exists 

if everywhere on that plane the magnetic field is purely normal and the electric field purely 
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tangential [15.A] [5.A]. In TLM, PMC are implemented by simply open circuiting the related 

ports in the TLM node lines adjacent to the PMC boundary [2.A] (see fig. 10.A). 

 

                                  

 

                   Figure 9.A, PEC boundary condition                                                    Figure 10.A, PMC boundary condition      

 

3- Lossy boundary conditions 

 

 These boundary conditions occur for various cases. For instance, suppose that the 

computational domain is limited at some location by a good but not perfect conductor. The 

impinging signal is mainly reflected and partially penetrates the conductor by several skin depths 

before it vanishes. One intuitive approach to handle such BC’s is to assume that they are 

composed of several layers of TLM cells (to cover several skin depths), and each of which has 

the conductivity (or the imaginary parts of permeability or permittivity) of the medium. But one 

of the major drawbacks of this approach is that the skin depth is very small, which means that the 

cell size used to discretize it will be very small too. Knowing that the time step will be 

correspondingly very small to insure stability, the total simulation time will explode. This was 

one of the reasons that drove J. Pendry to write his famous paper [27.A] to overcome this 

problem by modifying the coordinate system and the material properties. 

 

 An alternate way to solve the problem is ti consider the boundary condition at the 

interface with lossy media is given by:  

𝐸𝑠(𝜔) =  𝑍𝑠(𝜔)𝐻𝑠(𝜔)                                                   (24.A) 
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where 𝐸𝑠(𝜔), 𝐻𝑠(𝜔) are the tangential components of the electric field and the magnetic field, 

respectively, at angular frequency 𝜔, 𝑍𝑠(𝜔) is the surface impedance at the good conductor 

interface which is defined by: 

 

𝑍𝑠(𝜔) = √
𝑗𝜔𝜇

𝜎
                                                 (25.A) 

 In their paper J. Paul et al [28.A], have presented a digital filtering based approach to 

model the process of interaction of electromagnetic field with the lossy medium, by finding the 

equivalent time domain filter of 𝑍𝑠(𝜔), and applying a convolution process in time-domain. 

However, using this approach has some drawback when higher-order filters are used to enhance 

the simulation accuracy. The computational complexity increases and instabilities can occur. 

 To overcome this problem a full-time domain representation of the phenomena was 

proposed, using the concept of fractional derivative [29.A]. This allows a very accurate 

representation of the BC without the need of direct filtering process with their inherent 

complexities [29.A] [30.A]. In their approach, the authors modified the update equations of 

fields adjacent to the lossy boundaries, to take the condition (24.A) into account. For more 

details, one can refer to [29.A].           

     

4- Absorbing boundary conditions (ABC’s)  

 

 These conditions are enforced at the computational domain boundaries in two distinct 

cases: 

 To mimic the open free space scenario outside the computational domain without 

reflections. They are typically used when simulating antennas or free-space scattering 

problems. 

 To simulate wideband matching load terminating the computational domain, typically for 

waveguide discontinuity characterization.  

 

In literature there are two types of wideband ABC’s for time-domain simulations: 
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 One-way equation techniques (such as Mur, Higdon, Enquist, Majda, Taylor, etc...). In this 

category of ABS’ the fields are evaluated at boundaries from nearby samples inside the 

computatioal domain using extrapolation techniques [31.A] [32.A] [26.A] [7.A]. 

 Stretched coordinate or split-field techniques or sometimes called Bérenger's type of ABC 

[19.A]. In this category, we extend the computational domain by a non-Maxwellian artificial 

medium that absorbs fields with negligible reflections back to the computational domain. 

[20.A] [23.A] [26.A] [33.A]. 

 Both have cons and pros: the one-way equation techniques are easier to implement, and 

less expensive computationally. Indeed, they do not require to extend the computational domain 

with a layer of particular dissipative medium. However, if some excellent absorption can be 

obtained at a given incident angle, optimization at several angles requires higher order conditions 

that become rapidly complex to implement and eventually instable. In addition, the one-way 

approaches do not apply to evanescent waves. As a result, such ABC's have to located were 

propagating waves only prevail. 

 On the other hand, stretched coordinate techniques such as PML are more difficult to 

implement, and more expensive in terms of memory and running time. However, they have 

much better performances as they theoretically do not provoke any reflections at any incidence 

and frequency, and are valid for evanescent modes. In his paper [19.A], Bérenger was the first to 

propose the use of spilt-field technique. Maxwell's equations were solved in an artificial medium 

(non-Maxwellian medium) surrounding the computational domain (as shown in figure 11.A). 

The main feature of that medium is that it is lossy magnetically and electrically to attenuate 

transmitted fields. The splitting of field components and proper ratio of magnetic and electric 

conductivities allows one to provoke negligible reflections at the boundary of the computational 

domain for arbitrary incidence and frequency. However, it should be noted that fields must be 

computed in the entire extended PML domain, which requires the manipulation and storage of 

many more field components. In his work Bérenger implemented this method for the FDTD 

algorithm [20.A].  
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                        Figure 11.A, 2D TLM computational domain truncated by PML layer [26.A] 

 Several implementations of PML medium in TLM algorithm are presented in the 

literature. For instance, Pena and Ney used a coupling between TLM nodes in the computational 

domain and FDTD nodes that simulated the PML layer medium [33.A]. A full-3D PML-TLM 

node was later developed, but 30 voltages were required to completely simulate the PML 

medium [25.A]. Dubard and Pompei presented a modification to the TLM-PML algorithm that 

uses a reduced number of voltages, hence some better performance in terms of memory and 

running time  [23.A] [24.A].  

 Later Le Maguer and Ney [34.A] developed a new TLM based algorithm for PML that 

accounts for the evanescent waves. Indeed, these waves were not sufficiently attenuated in the 

PML layer which required extending the PML layer thickness or locating the boundary at larger 

distance from scatterer. It is this algorithm that is presented next, since it provides an optimal 

performance for the 3D TLM SCN-based cells. Also, it is the PML-TLM node which is 

implemented in the general TLM solver of our Laboratory.  

The mathematical formulation of PML SCN-based TLM 

 The basic idea of PML layer is to elaborate an artificial material which produces zero 

reflection at its interface, from impinging waves of any kind coming from real media and at any 

frequency. The penetrating fields in the PML continuous media should also be attenuated so that 

the layer can be limited within a short distance. Thus, PML is also a lossy medium [19.A].  

However, the discrete version of the theoretical PML medium is not perfect and small reflections 
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can occur from the interface with the computational domain. The magnetic and electric 

conductivity profiles can be optimized, yielding minimum level of reflection with a minimum 

layer thickness. The PML discretized medium can be limited by some impedance boundary 

conditions instead of PEC or PMC [19.A] [33.A], to further minimize the layer thickness. This is 

easily implemented as TLM allows arbitrary loading by just computing the reflection coefficient 

in the node arms. It should be kept in mind that fields must be computed for all times in the PML 

medium and, since field components are split, up to twice as many unknowns must be 

manipulated. Consequently, the PML layer thickness must be minimized to avoid substantial 

additional computer expenditure.   

 In the PML layer that surrounds the computational domain the electromagnetic field 

components are split into two sub-components, i.e: 

𝐸𝑖 = 𝐸𝑖𝑗 + 𝐸𝑖𝑘                                                                (26.Aa) 

𝐻𝑖 = 𝐻𝑖𝑗 + 𝐻𝑖𝑘                                                               (26.Ab) 

where the 3-tuple indices are defined as (𝑖, 𝑗, 𝑘) ∈ {(𝑥, 𝑦, 𝑧), (𝑦, 𝑧, 𝑥), (𝑧, 𝑥, 𝑦)}. The fields in the 

PML medium are governed by the following equations 

휀𝑖휀𝑜
𝜕𝐸𝑖𝑗

𝜕𝑡
+ 𝜎𝑒𝑗𝐸𝑖𝑗 =

1

𝛼𝑗

𝜕𝐻𝑘

𝜕𝑗
                                             (27.Aa) 

휀𝑖휀𝑜
𝜕𝐸𝑖𝑘

𝜕𝑡
+ 𝜎𝑒𝑘𝐸𝑖𝑘 = −

1

𝛼𝑘

𝜕𝐻𝑗

𝜕𝑘
                                         (27.Ab) 

𝜇𝑖휀𝑜
𝜕𝐻𝑖𝑗

𝜕𝑡
+ 𝜎𝑚𝑗𝐻𝑖𝑗 = −

1

𝛼𝑗

𝜕𝐸𝑘

𝜕𝑗
                                              (27.Ac) 

𝜇𝑖휀𝑜
𝜕𝐻𝑖𝑘

𝜕𝑡
+ 𝜎𝑚𝑘𝐻𝑖𝑘 =

1

𝛼𝑘

𝜕𝐸𝑗

𝜕𝑘
                                                 (27.Ad) 

where 𝜎𝑒𝑗 is the electrical conductivity in the j-th axis direction for propagating modes 

absorption, the factor 𝛼𝑗, which is greater than unity, damps the evanescent modes in the same 

direction, 𝜇𝑖 and 휀𝑖 are the medium relative permeability and permittivity respectively in the i-th 

axis direction. 
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 The matching condition for full absorption of a PML layer in the i-th axis direction is 

achieved by fulfilling the following relation [19.A] [34.A] [35.A]: 

𝜎𝑒𝑖

𝜀𝑖𝜀𝑜
=

𝜎𝑚𝑖

𝜇𝑖𝜇𝑜
                                                       (28.II) 

After discretizing the modified Maxwell’s curls equations for the PML cells, and applying 

similar procedures like in normal Maxwellian cells [11.A], one obtains: 

∆𝑖𝐸𝑖𝑗
(𝑛)
= 𝐴𝑒𝑖𝑗𝐶�̅�𝑗(𝑎𝑗𝑛𝑖 + 𝑎𝑗𝑝𝑖 + �̂�𝑠𝑖𝑗𝑎𝑒𝑖𝑗 − 2𝑎𝑒𝑖𝑘)                                  (29.Aa) 

∆𝑖𝐸𝑖𝑘
(𝑛)
= 𝐴𝑒𝑖𝑘𝐶�̅�𝑘(𝑎𝑘𝑛𝑖 + 𝑎𝑘𝑝𝑖 + �̂�𝑠𝑖𝑘𝑎𝑒𝑖𝑘 − 2𝑎𝑒𝑖𝑗)                               (29.Ab) 

𝑍𝑜∆𝑖𝐻𝑖𝑗
(𝑛)
= 𝐴𝑚𝑖𝑗�̅�𝑖𝑗(𝑎𝑗𝑛𝑘 − 𝑎𝑗𝑝𝑘 + �̂�𝑠𝑖𝑗𝑎𝑚𝑖𝑗 − 2𝑎𝑚𝑖𝑘)                       (29.Ac) 

𝑍𝑜∆𝑖𝐻𝑖𝑘
(𝑛)
= 𝐴𝑚𝑖𝑘�̅�𝑖𝑘(−𝑎𝑘𝑛𝑗 + 𝑎𝑘𝑝𝑗 + �̂�𝑠𝑖𝑘𝑎𝑚𝑖𝑘 − 2𝑎𝑚𝑖𝑗)                  (29.Ad) 

 

where the triple  (𝑖, 𝑗, 𝑘) ∈ {(𝑥, 𝑦, 𝑧), (𝑦, 𝑧, 𝑥), (𝑧, 𝑥, 𝑦)}, and the different parameters used in 

previous equations are defined in table 4.A.                 

 

Table 6.A, update equation parameters in TLM algorithm for PML cells 

𝐶�̅�𝑗 =
𝑠∆𝑖

2휀𝑖𝛼𝑗∆𝑗∆𝑘
 �̅�𝑖𝑗 =

𝑠∆𝑖

2𝜇𝑖𝛼𝑗∆𝑗∆𝑘
 

�̂�𝑠𝑖𝑗 = 4(
휀𝑖𝛼𝑗∆𝑗∆𝑘

𝑠∆𝑖
−
1

2
) �̂�𝑠𝑖𝑗 = 4(

𝜇𝑖𝛼𝑗∆𝑗∆𝑘

𝑠∆𝑖
−
1

2
) 

𝐴𝑒𝑖𝑗 =
4

4 + 𝐺𝑖𝑗
 𝐴𝑚𝑖𝑗 =

4

4 + 𝑅𝑖𝑗
 

𝐺𝑖𝑗 = 𝑍𝑜
𝜎𝑒𝑗𝑠

휀𝑖
 𝑅𝑖𝑗 = 𝑍𝑜

𝜎𝑚𝑗𝑠

휀𝑖
 

 

 

where  𝑠 = 2𝑐𝑜∆𝑡. Now, by applying (27.A) and (29.A) we obtain 
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(

 
 
 

Δ𝑥𝐸𝑥
Δ𝑦𝐸𝑦
Δ𝑧𝐸𝑧
𝑍𝑜Δ𝑥𝐻𝑥
𝑍𝑜Δ𝑦𝐻𝑦
𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 

𝑛

=

(

 
 
 
 

Δ𝑥𝐸𝑥𝑦 + Δ𝑥𝐸𝑥𝑧
Δ𝑥𝐸𝑦𝑥 + Δ𝑥𝐸𝑦𝑧
Δ𝑥𝐸𝑧𝑥 + Δ𝑥𝐸𝑧𝑦

𝑍𝑜Δ𝑥𝐻𝑥𝑦 + 𝑍𝑜Δ𝑥𝐻𝑥𝑧
𝑍𝑜Δ𝑥𝐻𝑦𝑥 + 𝑍𝑜Δ𝑥𝐻𝑦𝑧
𝑍𝑜Δ𝑥𝐻𝑧𝑥 + 𝑍𝑜Δ𝑥𝐻𝑧𝑦)

 
 
 
 

𝑛

+

(

 
 
 

Δ𝑥𝐸𝑥
Δ𝑦𝐸𝑦
Δ𝑧𝐸𝑧
𝑍𝑜Δ𝑥𝐻𝑥
𝑍𝑜Δ𝑦𝐻𝑦
𝑍𝑜Δ𝑧𝐻𝑧)

 
 
 

𝑛−1

                 (30.A) 

At this point, (i.e., after calculating fields inside the PML cells), the algorithm continues 

as in normal TLM cells. This is one of the very attracting features of TLM algorithm, either from 

programming perspectives or for code reusablity. 

After calculating fields inside the PML cells, reflected voltages are calculated from 

incident ones and fields at the center, similar to the standard SCN: 

  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉ref,1
𝑉ref,2
𝑉ref,3
𝑉ref,4
𝑉ref,5
𝑉ref,6
𝑉ref,7
𝑉ref,8
𝑉ref,9
𝑉ref,10
𝑉ref,11
𝑉ref,12
𝑉ref,13
𝑉ref,14
𝑉ref,15
𝑉ref,16
𝑉ref,17
𝑉ref,18
𝑉ref,19
𝑉ref,20
𝑉ref,21
𝑉ref,22
𝑉ref,23
𝑉ref,24)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Δ𝑥𝐸𝑥 + 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,12
Δ𝑥𝐸𝑥 − 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,9
Δ𝑦𝐸𝑦 − 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,11
Δ𝑦𝐸𝑦 + 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,8
Δ𝑧𝐸𝑧 − 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,7
Δ𝑧𝐸𝑧 + 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,10
Δ𝑧𝐸𝑧 + 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,5
Δ𝑦𝐸𝑦 − 𝑍𝑜Δ𝑥𝐻𝑥 − 𝑉𝑖𝑛,4
Δ𝑥𝐸𝑥 + 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,2
Δ𝑧𝐸𝑧 − 𝑍𝑜Δ𝑦𝐻𝑦 − 𝑉𝑖𝑛,6
Δ𝑦𝐸𝑦 + 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,3
Δ𝑥𝐸𝑥 − 𝑍𝑜Δ𝑧𝐻𝑧 − 𝑉𝑖𝑛,1
Δ𝑥𝐸1,𝑥 − 𝑉𝑖𝑛,13
Δ𝑦𝐸1,𝑦 − 𝑉𝑖𝑛,14
Δ𝑧𝐸1,𝑧 − 𝑉𝑖𝑛,15
Δ𝑥𝐻1,𝑥 − 𝑉𝑖𝑛,16
Δ𝑦𝐻1,𝑦 − 𝑉𝑖𝑛,17
Δ𝑧𝐻1,𝑧 − 𝑉𝑖𝑛,18
Δ𝑥𝐸2,𝑥 − 𝑉𝑖𝑛,19
Δ𝑦𝐸2,𝑦 − 𝑉𝑖𝑛,20
Δ𝑧𝐸2,𝑧 − 𝑉𝑖𝑛,21
Δ𝑥𝐻2,𝑥 − 𝑉𝑖𝑛,22
Δ𝑦𝐻2,𝑦 − 𝑉𝑖𝑛,23
Δ𝑧𝐻2,𝑧 − 𝑉𝑖𝑛,24 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

                                (31.A a) 

where each field component is split into two subcomponents, as in (26.A a) and (26.Ab)):  
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(

 
 
 

𝐸𝑥
𝐸𝑦
𝐸𝑧
𝐻𝑥
𝐻𝑦
𝐻𝑧)

 
 
 

𝑛

=

(

 
 
 
 

𝐸1,𝑥 + 𝐸2,𝑥
𝐸1,𝑦 + 𝐸2,𝑦
𝐸1,𝑧 + 𝐸2,𝑧
𝐻1,𝑥 + 𝐻2,𝑥
𝐻1,𝑦 + 𝐻2,𝑦
𝐻1,𝑧 + 𝐻2,𝑧)

 
 
 
 

𝑛

                                             (31.A b) 

As in standard TLM cells, the next process is the connection process, in which we 

calculate incident voltages for each cell represented by the vector equation: 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉𝑖𝑛,1(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,2(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,3(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,4(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,5(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,6(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,7(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,8(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,9(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,10(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,11(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,12(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,13(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,14(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,15(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,16(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,17(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,18(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,19(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,20(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,21(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,22(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,23(𝑘, 𝑙, 𝑚)

𝑉𝑖𝑛,24(𝑘, 𝑙, 𝑚))

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛+1

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑉ref,12(𝑘, 𝑙 − 1,𝑚)

𝑉ref,9(𝑘, 𝑙, 𝑚 − 1)

𝑉ref,11(𝑘 − 1, l,𝑚)

𝑉ref,8(𝑘, 𝑙, 𝑚 − 1)

𝑉ref,7(𝑘, 𝑙 − 1,𝑚)

𝑉ref,10(𝑘 − 1, 𝑙,𝑚)

𝑉ref,5(𝑘, 𝑙 + 1,𝑚)

𝑉ref,4(𝑘, 𝑙, 𝑚 + 1)

𝑉ref,2(𝑘, 𝑙, 𝑚 + 1)

𝑉ref,6(𝑘 + 1, 𝑙,𝑚)

𝑉ref,3(𝑘 + 1, 𝑙,𝑚)

𝑉ref,1(𝑘, 𝑙 + 1,𝑚)

𝑉ref,13(𝑘, 𝑙, 𝑚)

𝑉ref,14(𝑘, 𝑙, 𝑚)

𝑉ref,15(𝑘, 𝑙, 𝑚)

𝑉ref,16(𝑘, 𝑙, 𝑚)

𝑉ref,17(𝑘, 𝑙, 𝑚)

𝑉ref,18(𝑘, 𝑙, 𝑚)

𝑉ref,19(𝑘, 𝑙, 𝑚)

𝑉ref,20(𝑘, 𝑙, 𝑚)

𝑉ref,21(𝑘, 𝑙, 𝑚)

𝑉ref,22(𝑘, 𝑙, 𝑚)

𝑉ref,23(𝑘, 𝑙, 𝑚)

𝑉ref,24(𝑘, 𝑙, 𝑚) )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

                                  (32.A) 

An interesting fact about the  PML TLM node is that the first 12 ports are reserved for 

voltages exchanges. However, the remaining 12 ports, are reserved for stubs, to allow the cell to 

represent the PML non Maxwellian medium and only for internal usage. 
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5- Matched impedance boundary conditions  

 

 Single frequency waveguide matching is easily implemented with TLM as it is done by 

terminating the waveguide section limiting the computational domain by the mode wave-

impedance which is real for propagating modes. Note that this can be done only for single mode 

operation and at one frequency [36.A]. On the other hand, wideband matching can be achieved 

with PML. Layers are located at the guide section planes surrounding the discontinuity. They can 

be located very close to discontinuities as PML also absorbs evanescent modes. 

 

A.7 TLM meshes 

 Basic TLM algorithms have been developed for Cartesian grids just like FDTD Yee-

algorithm. However, one major drawback of this meshing scheme is that Cartesian cells don’t 

match curved boundaries at the interface between two different media in the computational 

domain. This means that staircase approximation can only be used. Another issue is that fine-

details need to be meshed using small cells far beyond the negligible dispersion limit (which is 

usually around ten cells per wavelength). As a result, we are obliged to use very fine mesh, 

which is very costly in terms of memory and computational time [26.A]. 

In order to tackle the above issues, algorithms for parallelepipedic (hexahedral) cells 

were initially developed. Then, irregular (or non-homogeneous) meshing were proposed [38.A] 

[26.A]. However, the meshing is structured, which means that any cell shares any face with one 

adjacent cell only. No interpolation is necessary in this case. Concurrently, different TLM 

algorithms were derived for different curvilinear coordinate systems such as cylindrical or 

spherical. These are useful in cases of highly spherical or cylindrical symmetries in the 

computational domain.  

To better approximate curved boundaries, structured tetrahedral meshing, as used in finite 

integration technique (FIT) was developed [39.A][40.A]. Taking advantage from the 

advancement in meshing technologies, other meshing techniques were developed such as non-

structured block meshing [41.A]. It allows one to better approximate fine details with small 

meshes and homogeneous zones with larger meshes. However, some instability was reported 

when local time steps were used to reduce the computational time [41.A] [42.A]. In this thesis 
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one shall consider parallelepipedic structured meshes, with nonhomogeneous cells sizes 

(irregular meshing) [38.A] [26.A]. 

An important point to mention, knowing that the TLM algorithm that we have worked on 

in this thesis, is valid for any types of linear media, one could use it to do a simulation for a 

computational domain, meshed by a very irregular non-structured mesh (with some restrictions) 

[37.A]. This can be done by using the transformation techniques presented by Ward and Pendry’ 

paper [37.A], without any loss of information, by transforming the cells geometrical variations 

into the material properties matrices. 
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Etudes d'un mode le temporel efficace pour 
la simulation d'objets communicants 
contenant des milieux complexes 

Résumé 

Au cours de ce projet de thèse, nous avons travaillé sur les techniques numériques dans le 

domaine temporel en électromagnétisme pour les structures comprenant des matériaux 

complexes. Nous avons utilisé la méthode "Transmission-Line Matrix" (TLM) comme une 

méthode de calcul pour mettre en œuvre un simulateur électromagnétique général. Ensuite, nous 

l'avons validé par plusieurs comparaisons avec des solutions analytiques et des mesures. Pour 

faciliter les simulations de structures à géométrie complexe, nous avons développé une interface 

utilisateur graphique (GUI) pour le simulateur. Nous avons développé une analyse théorique 

complète des phénomènes de dispersion numériques et des conditions de stabilité du modèle 

TLM lorsque des milieux complexes sont impliqués. Cela permet d'optimiser les ressources de 

l'ordinateur en fonction du niveau de précision requis. L'autre problème que nous avons abordé 

est le problème basse fréquence dans les techniques du domaine temporel. En effet, le pas 

temporel requis devient en général très petit et fait exploser le temps de calcul. Pour ce 

problème classique, nous avons proposé des solutions nouvelles en appliquant des techniques de 

cartographie. Ces solutions sont proposées sur la base de la modification du tenseur métrique de 

l'espace et du temps et la transformation du problème en un problème bien posé. Enfin, dans la 

dernière partie du projet nous avons effectué la comparaison entre les méthodes FDTD et TD-

TLM en simulant des structures avec des milieux très contrastés en termes de paramètres 

constitutifs. Cette étude confirme que la TLM possède une convergence plus rapide que la 

FDTD. On peut l'expliquer par la nature locale de l'algorithme TD-TLM. Cette différence de 

convergence a été aussi nettement observée en présence de maillages irréguliers (structurés), 

lorsque le rapport des tailles de maille augmente. 

1. Chapitre I : Introduction Générale 

 Dans ce chapitre, nous présentons une brève discussion sur les méthodes numériques en 

général et les différentes formes des équations de Maxwell. Nous discutons aussi de la portée et 

les limites de ce travail. De plus, nous discutons et justifions l'utilisation de la méthode TLM 

pour atteindre l'objectif qui est de mettre en œuvre un solveur électromagnétique pour les 

milieux linéaires généraux avec des géométries arbitraires. 
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La méthode TLM "Transmission line matrix" est une méthode de calcul des champs basée sur 

la superposition d’ondes locales canalisées par des lignes de transmission interconnectées [1]. On 

l'assimile à un modèle de propagation numérique spatio-temporel de Huygens. Les principales 

caractéristiques de cette méthode de calcul sont: 

• Précision : génère une dispersion (erreur de vitesse) plus faible que la méthode des 

différences-finies temporelles (FDTD). Le caractère condensé de la cellule (SCN) la rend plus 

précise que la FDTD lorsque les contrastes entre milieux et/ou les rapports de maillages 

irréguliers augmentent.  

 Calcul des champs : toutes les composantes sont calculées au centre de la cellule au même 

pas temporel. 

 Interface : les composantes tangentielles des champs sur les faces de la cellule sont aussi 

calculées simultanément ce qui aligne tout type de paroi et rend l’interface avec d'autres  

méthodes plus facile. 

• Coût de calcul : demande plus d'opérations que la FDTD mais fonctionne toujours au pas 

temporel maximum (minimum de dispersion). 

• Coût de mémoire : L'information supplémentaire sur les champs et la meilleure précision 

se paie par un stockage d'un plus grand nombre de variables (18 tensions de bras au maximum). 

• Types de solutions : Appartenant à la classe des méthodes volumiques temporelles dites 

rigoureuses [2] [2], elle peut traiter une géométrie arbitraire avec des milieux non linéaires, 

anisotropes et des structures très hétérogènes. 

2. Chapitre II : La physique des milieux complexes 

 

Dans ce chapitre, nous discutons brièvement la physique des milieux complexes et de 

montrer leur comportement lorsqu'ils sont soumis à un champ électromagnétique. D'une manière 

générale, l'action d'un champ électromagnétique sur un milieu induit une polarisation qui est une 

réaction de la structure interne de la matière. De la même manière, des densités de courant qui 

peuvent y être induites provoquent en général des phénomènes de dissipation. Les interactions 

décrites ci-dessus sont caractérisées par des paramètres constitutifs qui lient les champs �⃗�  et �⃗⃗� , 

respectivement aux champs d'induction �⃗⃗�  et �⃗�  ainsi que les densités de courant associées. La 

nature de ces relations appelées "constitutives" indique la nature plus ou moins complexe du 

milieu. Par exemple, un milieu simple homogène est défini par trois paramètres constitutifs, la 

permittivité 휀, la perméabilité 𝜇 et la conductivité 𝜎. Dans ce cas, tous sont des scalaires positifs 

et constants, c'est à dire, indépendants du temps, de la fréquence du signal et [3]. Les relations 

constitutives sont donc de simples expressions de proportionnalité entre les champs cités plus 

haut : 

�⃗⃗� = 휀�⃗�                                                                  (1.a) 

�⃗� = 𝜇�⃗⃗�                                                      (1.b) 

𝐽 = 𝜎�⃗�                                                                       (1.c) 
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Si un des paramètres constitutifs ne remplit plus les hypothèses simples émises ci-dessus, alors le 

milieu est dit "complexe". Ce milieu tombe alors dans les différentes catégories citées ci-dessous, 

dépendent du paramètre ou des paramètres impliqués [3] : 

 

 Hétérogène : Un des paramètres dépend des coordonnées spatiales. 

 Dispersif : Un des paramètres est fonction de la fréquence. 

 Anisotrope : Un des paramètres dépend de la direction du champ et doit s'exprimer sous 

la forme d'un tenseur. 

 Chiral : Les phénomènes électriques et magnétiques sont couplés et les relations 

constitutives font apparaître des paramètres de chiralité liant le champ électrique et 

magnétique. 

 Non linéaire : Un des paramètres dépend de l'amplitude des champs. 

 Non stationnaire : Un des paramètres dépend du temps. 

 

Un milieu peut appartenir à plusieurs des catégories mentionnées ci-dessus, augmentant 

encore plus sa complexité. D'une façon générale, un milieu est complexe mais il est 

souvent possible d'effectuer une simplification, par exemple sur une bande de fréquences 

ou pour de petites amplitudes, de façon à faire l'hypothèse d'un milieu simple. Cependant, 

pour des applications bien spécifiques, la nature complexe du milieu est justement 

utilisée ou pour des fréquences élevées ou de grandes amplitudes, celle-ci ne peut plus 

être négligée. Par conséquent, un modèle mathématique des paramètres constitutifs plus 

élaborés doit être mis en œuvre, basé sur le comportement physique du milieu. Dans un 

deuxième temps, ce modèle devra être inséré dans les équations de Maxwell pour 

déterminer la configuration des champs et la densité de courant correspondante, prenant 

ainsi en compte la complexité du milieu.  

Dans ce chapitre, nous avons présenté plusieurs types de milieux complexes tels que : 

 

 Milieu dispersive 

 

Un milieu est considérée dispersif si une ou plusieurs de ses paramètres constitutifs 

휀(𝜔), 𝜇(𝜔), 𝜎(𝜔)est 휀 dépendante de la fréquence. Un exemple est un milieu de Debye où la 

permittivité est définie par [4]: 

휀̅�̅� = (휀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏𝑜
)𝐼 ̅̅3                                                   (2) 

 

où 휀∞ , 휀𝑠 sont respectivement les permittivités à très haute fréquence et en DC, 𝜏𝑜 est le 

temps de relaxation du milieu. 
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 Milieu anisotrope 

Un milieu est considéré comme anisotrope si ses paramètres constitutifs sont dépendants de 

la direction. Dans ce cas les paramètres constitutifs deviennent des tenseurs. Par exemple, un 

milieu anisotrope diélectrique est caractérisé de manière général par  [3] : 

 

휀̅�̅� = (

휀𝑥𝑥 휀𝑥𝑦 휀𝑥𝑧
휀𝑦𝑥 휀𝑦𝑦 휀𝑦𝑧
휀𝑧𝑥 휀𝑧𝑦 휀𝑧𝑧

)                                                   (3) 

où 휀̅�̅� est une matrice hermitienne. 

 

 Milieu chiral 

 

Dans le domaine fréquentiel les relations constitutives du milieu chiral sont exprimées de 

la façon suivante [5]: 

 �̅�(𝜔) =  휀(𝜔)�̅�(𝜔) −
𝑗𝜅(𝜔)

𝑐𝑜
�̅�(𝜔)    (4.a) 

�̅�(𝜔) =  𝜇(𝜔)�̅�(𝜔) +
𝑗𝜅(𝜔)

𝑐𝑜
�̅�(𝜔)           (4.b) 

où 휀, 𝜇 sont respectivement la permittivité et la perméabilité, 𝑐𝑜 est la vitesse de la lumière 

dans le vide et 𝜅 est le paramètre de chiralité. Dans cet exemple, les paramètres , 휀, 𝜇, 𝜅 

dépendent de la fréquence selon les relations : 

 
𝜅(𝜔) =

𝜔𝑜𝜔

𝜔𝑜
2−𝜔2+𝑗2𝜔𝑜𝜉𝜔

    (5.a) 

 
휀(𝜔) = 휀𝑜휀∞ +

(𝜀𝑠−𝜀∞)𝜀𝑜𝜔𝑜𝑒
2

𝜔𝑜𝑒
2 −𝜔2+𝑗2𝜉𝑒𝜔

    (5.b) 

 
𝜇(𝜔) = 𝜇𝑜𝜇∞ +

(𝜇𝑠−𝜇∞)𝜇𝑜𝜔𝑜𝑚
2

𝜔𝑜𝑚
2 −𝜔2+𝑗2𝜉𝑚𝜔

    (5.c) 

 

où 𝜔𝑜 représente la fréquence de résonnance caractéristique du milieu chiral, 𝜉 est le facteur 

d'atténuation. Les pulsations  𝜔𝑜𝑒 et 𝜔𝑜𝑚 sont respectivement les fréquences de résonnances 

des modèles diélectriques et magnétiques, 𝜉𝑒, 𝜉𝑚 leur facteur d'atténuation correspondant. 

Les constantes 휀𝑠, 𝜇𝑠 sont respectivement les valeurs statiques de permittivité et perméabilité 

et 휀∞, 𝜇∞ leur valeur asymptotique correspondante vers les hautes fréquences. 

 

 Milieu ferrimagnétique 

 

Dans un milieu ferrimagnétique le tenseur de perméabilité dépend du champ magnétique statique 

externe appliqué et l'état d'aimantation intérieur de l'échantillon de ferrite suit l'équation de 

Landau-Lifshitz-Gilbert [6] :  
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𝑑�⃗⃗� 

𝑑𝑡
= −𝛾�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓 +

𝑎

𝑀𝑠
�⃗⃗� ×

𝑑�⃗⃗� 

𝑑𝑡
                           (6) 

 

Lorsque le champ externe appliquée atteint une certaine amplitude, le support magnétique est 

saturé. Pour un petit champ électromagnétique perturbant, on peut caractériser le milieu saturé 

par le modèle du tenseur Polder [3] : 

𝜇 = (

𝜇𝑥𝑥 𝜇𝑥𝑦 0

𝜇𝑦𝑥 𝜇𝑦𝑦 0

0 0 𝜇𝑧𝑧

)                          (7.a) 

D'autre part, si le champ magnétisant appliqué ne n'impose pas la saturation de l'échantillon 

ferrite, on doit utiliser des modèles plus sophistiqués comme celui de Gelin et al [3] qui prend en 

compte l'existance des domaines qui subsistent hors saturation. Ceci conduit à un modèle de 

tenseur complet : 

𝜇 = (

𝜇𝑥𝑥 𝜇𝑥𝑦 𝜇𝑥𝑧
𝜇𝑦𝑥 𝜇𝑦𝑦 𝜇𝑦𝑧
𝜇𝑧𝑥 𝜇𝑧𝑦 𝜇𝑧𝑧

)                           (7.b) 

Pour résumer, l'échantillon ferrite a des propriétés qui sont fonction de l'amplitude du champ 

de magnétisation appliquée. Lorsque le champ magnétique continu appliqué est au-delà d'une 

certaine valeur, l'échantillon de ferrite atteint l'état de saturation. Dans ce cas, il devient 

homogène et les tenseurs de perméabilité peut être décrit par le modèle de Polder (7.a). 

Toutefois, si le champ magnétisant diminue, des domaines ayant des propriétés magnétiques 

différentes apparaissent et le milieu n'est plus homogène. Dans un tel scénario, le tenseur de 

perméabilité suit généralement le modèle plus général (7.b) développés par Gelin et al. [5] [6]. 

Le calcul des composantes du tenseur à l'intérieur de l'échantillon non saturé nécessite la 

résolution de l'équation GLL (6). Cette équation est une équation différentielle partielle non 

linéaire et généralement très difficile à résoudre en particulier pour les géométries non-

canoniques. En résolvant (6), on peut calculer l'état d'aimantation à l'intérieur de chaque 

domaine. Habituellement, le processus de calcul des tenseurs de perméabilité, en particulier pour 

la ferrite non-saturé, est un processus en plusieurs étapes qui doit être mené avec soin pour 

déboucher sur des résultats fiables. Dans un premier temps, il est nécessaire d'avoir des données 

expérimentales sur ses propriétés (telles que la température de Curie, ses dimensions, son état de 

magnétisation initiale ... etc.). Ces données ont généralement une certaine incertitude en raison 

d'erreurs expérimentales. Cette incertitude peut affecter la solution des équations GLL et, par 

conséquent, fausser l'état d'aimantation des domaines. La résolution des problèmes impliquant 

des ferrites non saturées constitue une contribution majeure de ce travail et des applications sont 

détaillées dans le chapitre V, dans le cadre de la validation du simulateur TLM. 

. 
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3. Chapitre III : La méthode "Transmission Line Matrix" (TLM), état de l'art 

 

Dans ce chapitre, nous présentons l'état de l'art de l'algorithme TLM pour les milieux linéaires 

complexes, avec la description complète de l'algorithme pour les nœuds SCN-TLM. Toutefois, 

l'annexe A est consacrée à l'histoire de la TLM et les algorithmes SCN-TLM pour les milieux 

simples et les différents types de conditions aux limites : 

Dans [7] et [8], les auteurs ont présenté une cellule condensée symétrique (SCN) pour les 

milieux anisotropes. Des études de dispersion du modèle pour ces milieux ont été effectuées. 

Dans l'approche TLM présentée ici, deux étapes sont proposées: Dans la première, une simple 

mise à jour des champs dans le vide est effectuée [8] [9]. Dans le processus standard, les tensions 

réfléchies du nœud TLM pour effectuer l'itération suivante sont calculées par les valeurs des 

composantes des champs au centre et les tensions incidentes à l'itération précédente [9].  

La présence d'un milieu doit être prise en compte. Il est normalement d'usage d'ajouter des 

bras réactifs (stubs) soit au maximum 6 tensions supplémentaires pour le nœud SCN-TLM [9]. 

Dans l'approche présentée ici, cette présence de milieux est plutôt prise en charge par un filtrage 

de la séquence temporelle des champs au centre de la cellule avant le calcul des tensions 

réfléchies pour l'itération suivante. Il s'agit en fait d'une formulation générale commune à toute 

sorte de milieux tels que les milieux anisotropes dispersifs par exemple pour lesquels l'utilisation 

de bras réactifs n'est pas possible. Par exemple, dans le cas d'utilisation de cellules cubiques on 

économise ainsi la manipulation et le stockage de 6 tensions mais au prix d'un filtrage qui 

remplace le produit de convolution théoriquement nécessaire dans le cas général. Il doit être noté 

cependant que dans le cas de milieux simples, les produits de convolutions deviennent triviaux. 

 

 Modèle théorique 

 

Les équations rotationnelles de Maxwell, peuvent s'écrire dans le domaine temporel et pour 

un milieu général sous la forme compacte [3] [9] : 

[
∇ × 𝐻
−∇ × 𝐸

] − [
𝐽𝑒𝑓
𝐽𝑚𝑓
] =  

𝜕

𝜕𝑡
[
휀𝑜𝐸
𝜇𝑜𝐻

] + [
𝜎𝑒 ∗ 𝐸

𝜎𝑚 ∗ 𝐻
] +

𝜕

𝜕𝑡
[
휀𝑜�̿�𝑒

�̿�

𝑐𝑜

�̿�

𝑐𝑜
𝜇𝑜�̿�𝑚

] ∗ [
𝐸
𝐻
]                         (8) 

où �̿�𝑒, �̿�𝑚 sont respectivement les tenseurs de susceptibilité électrique et magnétique, 𝜎𝑒 , 𝜎𝑚 les 

tenseurs de conductivité électrique et magnétique, et 𝜉̿ , 휁 ̿ les tenseurs de chiralité [9]. Et * 

indique la convolution temporelle. Nous pouvons observer dans (8) plusieurs termes :  

1- Les opérateurs spatiaux et temporel ( ∇ ×, ∇. , 𝜕 𝜕𝑡⁄  )  

2- Les tenseurs caractérisant les milieux �̿�𝑒 , �̿�𝑚, 𝜎𝑒 , 𝜎𝑚, 𝜉̿, 휁 ̿

Ceci illustre les deux étapes de l'algorithme proposé : la propagation des ondes et leurs 

interactions avec les milieux. 
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L'application de l'algorithme TLM dont les détails peuvent être trouvés dans [9] [8] [10] [11], 

conduit aux équations de mise à jour des tensions et des champs  suivantes : 

 Diffusion des tensions aux nœuds TLM : 

  𝑉𝑛+1
𝑖𝑛𝑐 = 𝑆̿𝑉𝑛+1

𝑟𝑒𝑓
    (9) 

 Evaluation des champs au centre d'un nœud dans l'espace libre : 

 [
𝐸𝑜
𝐻𝑜
]
𝑛+1

= Λ ̿ ([
𝐸𝑐
𝐻𝑐
]
𝑛

 +�̿� 𝑉𝑛+1
𝑖𝑛𝑐 )     (10) 

 Correction des champs au centre d'un nœud due à la présence de la matière : 

[
𝐸𝑐
𝐻𝑐
]
𝑛+1

= ([
𝐸𝑜
𝐻𝑜
]
𝑛+1

 ;  [
𝐸𝑐
𝐻𝑐
]
𝑛−𝑀+1:𝑛

) ∗ Γ̿            (11) 

où Γ̿ est une matrice 6x6xM représentant un filtre d'ordre M dans le domaine temporel (figure 1) 

dont les éléments sont donnés par :  

Γ̿𝑖𝑗(𝑧) =
∑ 𝑏𝑖𝑗𝑘𝑧

−𝑘𝑀
𝑘=0

1+∑ 𝑎𝑖𝑗𝑘𝑧
−𝑘𝑀

𝑘=1

= 𝑏𝑜
′ +

∑ 𝑏𝑖𝑗𝑘
′  𝑧−𝑘𝑀

𝑘=1

1+∑ 𝑎𝑖𝑗𝑘𝑧
−𝑘𝑀

𝑘=1

   (12) 

On notera que la procédure de correction des champs s'applique en présence d'un milieu. 

Cependant, si nous sommes dans le cas limite où le milieu est l'espace libre la matrice de 

correction est diagonale dont les éléments sont des fonctions de Dirac. Ces dernières rendent les 

produits de convolution triviaux. 

 

 

Figure 1, Schéma bloc du filtre Γ̿𝑖𝑗(𝑧) 

 

 

Figure 2, Procédure de filtrage global pour la composante du champ électrique 𝐸𝑥𝑐 dans la direction x. 
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 Connexion effectuant le transfert des tensions entre les nœuds : 

 

  𝑉𝑛+2
𝑟𝑒𝑓

= �̿� [
𝐸𝑐
𝐻𝑐
]
𝑛+1

 +�̿�𝑉𝑛+1
𝑖𝑛𝑐      (13) 

 

 Dans cette étape, les tensions réfléchies sont calculées à tous les accès du nœud SCN. Elles 

seront utilisées comme tensions incidentes aux nœuds voisins pour l'itération suivante. 

Les matrices �̿�, Λ ̿, �̿�, �̿�, �̿� sont des matrices à éléments constants et peuvent être trouvées dans 

[9]. La matrice de filtrage Γ̿ contient 36 filtres à réponse impulsionnelle infinie (RII). Pour 

chacun, le numérateur et dénominateur ont un degré M. Pour un milieu dispersif ayant son 

modèle physique établi (Debye, Lorentz pour 휀(̿𝜔) [4], Polder ou Gelin [6]pour �̿�(𝜔)), des 

logiciels mathématiques sont utilisés pour extraire les coefficients des filtres. Dans le cas général 

d'un milieu dispersif dont les paramètres constitutifs sont donnés dans le domaine fréquentiel 

(données expérimentales incluses), des méthodes de traitement de signal comme celle de Prony 

ou LSM (moindres carrés) peuvent être utilisées [12]. Il s'agit d'extraire les pôles et résidus des 

données pour une approximation de Padé et ensuite appliquer une transformée bilinéaire pour 

trouver les coefficients des filtres [12].  

4. Chapitre IV : Analyse de la stabilité et de la dispersion analyse d'une de l'approche 

unifiée de la TLM pour les milieux complexes linéaires généraux 

 Dans ce chapitre, nous présentons une méthode systématique pour l'étude et l'analyse 

des caractéristiques de dispersion et de stabilité de la méthode dans les milieux linéaires 

complexes. Plus particulièrement, on montrera la pertinence de l'étude qui permet de déterminer 

la taille de maille et le pas temporel associé pour un niveau d'erreur due à la dispersion 

acceptable. Cela permet de réduire au minimum l'effort de calcul requis.  

En milieux continus, on entend par dispersion la modification de la vitesse de phase soit 

en raison de la variation de la fréquence de fonctionnement ou en raison de la variation du 

nombre d'ondes en cas de milieux anisotropes (appelée l'anisotropie de vitesse) [4] [3]. Etant 

donné que la vitesse de phase est une fonction du nombre d'onde, on peut dire que la dispersion 

est un phénomène qui relie la fréquence du signal et le vecteur d'onde. Dans les milieux 

échantillonnés spatialement il existe une erreur de vitesse additionnelle liée à la taille de 

l'échantillonnage relativement à la longueur d'onde du signal. Cette dépend aussi de la direction 

de propagation de l'onde (anisotropie). Il existe cependant, des directions où cette erreur est 

nulle, c'est à dire que la vitesse de l'onde simulée est égale à la vitesse physique quelle que soit la 

fréquence. Mais il existe toujours dans un cas général un phénomène d'erreur de vitesse de 

propagation apportée par le modèle numérique et qui dépend du processus d'échantillonnage 

spatio-temporel [13] [4] [14] [15]. Cette erreur devient négligeable lorsque la taille électrique des 

mailles devient petite par rapport à la longueur d'onde considérée [13] [14]. Elle dépend aussi du 
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pas temporel utilisé, bien qu'en TLM on opère toujours au pas temporel maximum qui assure la 

stabilité. 

Dans ce contexte, une question importante se pose: comment choisir le maillage de façon 

optimale ? En d'autres termes, comment faire le meilleur compromis entre la taille des mailles 

(des exigences de calcul) et le niveau tolérable de dispersion numérique ? Une première réponse 

serait de faire une simulation initiale avec des mailles relativement grande (environ 𝜆min/10, puis 

de raffiner le maillage progressivement jusqu'à ce que les résultats convergent. Cependant, quand 

on a affaire à des problèmes hétérogènes, en particulier ceux avec des milieux complexes, le 

remaillage successif du domaine et répétant chaque fois le calcul n'est pas une option acceptable. 

En outre, pour un maillage donné il est important d'avoir un procédé systématique pour calculer 

le pas temporel maximal dans le but de minimiser le temps de simulation.  

En ce qui concerne les modèles temporels, leur domaine de validité en termes de dispersion et 

leur stabilité n'ont pas été complètement étudiés en présence des milieux complexes et en 

particulier pour la méthode TLM. Dans cette thèse, ces deux sujets sont étudiés dans le cadre de 

la TLM en milieux complexes formulée selon la procédure générale pour la cellule SCN 

développée dans ce travail. 

Dans la plupart des publications, soit pour la FDTD ou la TLM [4] [13], les auteurs utilisent 

l'inégalité suivante en règle générale, pour calculer la taille maximale de cellule qui maintient un 

certain niveau acceptable de dispersion : 

{Δ𝑥, Δ𝑦, Δ𝑧} ≤ 𝑀𝑖𝑛 [
𝜆𝑜

10 √𝜀𝑟𝜇𝑟
]     (14) 

où 𝜆𝑜 est la longueur d'onde en espace libre, 휀𝑟 et 𝜇𝑟 sont respectivement la permittivité et la 

perméabilité du milieu. Chaque fois que le domaine de calcul est constitué de milieux non 

homogènes (ce qui est généralement le cas), il faut utiliser la dimension de cellule minimum, de 

sorte que la dispersion globale reste négligeable partout. Ce point est la raison de l'opérateur 

"min" dans (7). En fait, cette relation (qui est en accord avec l'approche présentée plus tôt) est 

valable pour les milieux sans pertes, non dispersifs et isotropes. Toutefois, lorsque des milieux 

complexes sont impliqués et où il est nécessaire de ne pas dépasser une certaine limite de 

dispersion, un test de convergence de maille doit être appliqué. Cela implique que des 

simulations successives avec un maillage plus fin, au moins à certains endroits, doivent être 

effectuées. 

L'alternative à un test de convergence mentionné plus haut est de connaître le niveau de 

dispersion maximum a priori. Par conséquent, on peut utiliser une taille maximale de cellule dans 

toutes les régions qui ne nécessitent pas la résolution spatiale fine (requis seulement par 

l’approximation géométrique fine de détails). 
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 Equations de dispersion dans les milieux continus 

 

Dans un milieu continu general, la propagation d'une onde plane dans une direction arbitraire �⃗�  

débouche sur une solution non triviale dans le domaine spectral, si la condition suivante est 

remplie : 

det(𝜔𝐼 ̅̅6 + 𝜔�̅̅�(𝜔) − 𝑗𝜎(𝜔) + Λ̅̅) = 0                                          (15.a) 

où 𝜔est la pulsation, �̅̅� et 𝜎 les tenseurs de milieux, et Λ̅̅  les opérateurs de rotation dans le 

domaine spectral : 

Λ̅̅ =

(

 
 
 
 

0 0 0 0 +𝑘𝑧 −𝑘𝑦
0 0 0 −𝑘𝑧 0 +𝑘𝑥
0 0 0 +𝑘𝑦 −𝑘𝑥 0

0 −𝑘𝑧 +𝑘𝑦 0 0 0

+𝑘𝑧 0 −𝑘𝑥 0 0 0
−𝑘𝑦 +𝑘𝑥 0 0 0 0 )

 
 
 
 

                                       (15.b) 

 

 Equations de dispersion dans les milieux discrétisés  

det (�̅̅� − Ψ̅̅(Λ̅̅Γ̅̅(𝑧)�̅̅� − Φ̅̅)) = 0                                                     (16) 

 

où les matrices {�̅̅�, Ψ̅̅, Λ̅̅, Γ̅̅(𝑧), �̅̅�, Φ̅̅} sont bien définis dans le quatrième chapitre de la thèse. 

 

4.a. Dispersion en milieu anisotrope 

 

Dans une première expérience numérique illustrée à la figure 3, nous choisissons, un 

milieu sans perte anisotrope non magnétique. La fréquence de fonctionnement est 𝑓 = 500𝑀𝐻𝑧, 

et  Δ𝑡𝑚𝑎𝑥 a été utilisé. 

 
Figure 3, courbes de dispersion dans un milieu anisotrope non magnétique à différentes directions de propagation, où 휀̅�̅� =

𝑑𝑖𝑎𝑔{1,2,3} 
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Comme nous pouvons le voir dans la figure 3, l'onde propagée dans des directions 

différentes ont des caractéristiques de dispersion différentes. Par exemple, dans la direction x il 

n'y a aucune dispersion, alors qu'elle est maximale dans la direction de la diagonale principale du 

cube (1,1,1). 

Si l'on choisit une formule empirique tel que (14), le pas spatial maximal 

sera 𝜆𝑜 10√휀𝑟,𝑀𝑎𝑥 = 0.057 𝜆𝑜⁄ , pour une erreur de dispersion négligeable. Cette taille de maille 

selon la figure 4, correspond à une erreur de vitesse maximum d'environ 1,0%.. 

 

4.b. Milieu de  Debye 

 

La permittivité d'un milieu dispersif de Debye non magnétique est donnée par (2). Dans 

la figure 4, différentes courbes de dispersion pour différents matériaux de Debye dans la 

direction axiale sont illustrées pour 𝑓 = 79.6 𝑀𝐻𝑧. 𝑉𝑃𝑁 est la vitesse de phase numérique, 𝑉𝑃𝑇 

est la vitesse de phase théorique calculée pour le milieu continu (8.a) [9]. Chaque courbe de 

dispersion est étalonnée par rapport à sa vitesse de phase théorique. Pour le choix du pas 

temporel, nous avons utilisé une valeur légèrement plus petite que Δ𝑡𝑚𝑎𝑥 pour accélérer les 

calculs effectués par Mathematica pour la solution de l'équation de dispersion. Comme prévu, la 

figure 5 montre que dispersion augmente avec 휀𝑠, puisque la taille électrique de la maille 

augmente das ce cas. 

 

Si nous choisissons la formule empirique (14), le pas spatial maximal 

est  𝜆𝑜 10√‖휀𝑟(𝑓)‖⁄ . Le tableau 1 montre la différence entre le choix de taille de maille après 

l'étude de dispersion formelle proposée pour 1,0% d'erreur de dispersion et celui par rapport à la 

formule simple (14). 

 
Figure 4, courbes de dispersion en milieu Debye dans la direction diagonale des cellules (1,1,1) avec 휀𝑠 = {2,4,9}, 휀∞ = 1 et 

𝜏𝑜 = 100𝑝𝑠 
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Tableau 1, comparaison entre l'approche proposée rigoureuse et la règle (14) pour la taille maximale de la cellule en termes de 

besoins en mémoire pour le milieu de Debye du cas de figure 4 

휀𝑠 ∆𝑙/𝜆𝑜 critère  (14) ∆𝑙/𝜆𝑜 1.0%  erreur Gain en mémoire % 

2.0 0.071 0.095 239.5% 

4.0 0.050 0.068 251.6 % 

9.0 0.033 0.045 253.6 % 

 

Dans le milieu dispersif continu, il est bien connu que la vitesse de phase de l'onde 

dépend de la fréquence. Ainsi, le comportement d'un modèle discret doit converger vers le 

modèle continu lorsque  ∆𝑙/𝜆𝑜 → 0. La figure 5 montre les courbes de dispersion d'un milieu de 

Debye pour une propagation dans le plan xOy en comparaison du modèle échantillonné pour 

différentes valeurs de Δ𝑙. En résolvant les équations de Maxwell dans le domaine spectral pour le 

milieu continu de Debye, la solution analytique de l'équation de dispersion est : 

 

𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘𝑜
2                                   (17.a) 

 

où 𝑘𝑜
2 est le module au carré du vecteur de nombre d'onde et donnée par : 

 

𝑘𝑜
2 = ‖

𝜔𝑜
2

𝑐𝑜
2 (

𝑗𝜀∞−𝜏𝑜𝜔𝑜𝜀𝑠

𝜏𝑜𝜔𝑜−𝑗
)‖                                (17.b) 

 
Figure 5, composantes du vecteur d'onde  𝑘𝑥 − 𝑘𝑦 pour différentes valeurs de Δ𝑥 dans un milieu  échantillonné de Debye, 

avec 휀∞ = 1, 휀𝑠 = 2, 𝜏𝑜 = 1.667𝑛,  𝜔𝑜 = 𝜋10
9𝑟𝑎𝑑/𝑠𝑒𝑐 

 

On peut observer sur la figure 5 la convergence du modèle échantilloné de la solution 

analytique (17.a) et (17.b) lorsque le pas spatial ∆𝑥 diminue. 
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5. Chapitre V : Résultats, Applications et Discussions 

Dans ce chapitre, le simulateur électromagnétique est brièvement décrit. Par rapport au 

simulateur TLM existant au laboratoire, ce travail a contribué à son extension aux milieux 

complexes et l'ajout d'une interface avec un mailleur pouvant appréhender des formes 

géométriques arbitraires de façon conviviale. Des tests de validité à la fois des modèles de 

milieux intégrés et de l'interface sont aussi présentés. 

 

5.a. Simulateur TLM 

 

 Il permet de simuler des structures tridimensionnelles avec une géométrie générale et en 

présence de milieux complexes. 

 Le solveur est écrit pour les équations de Maxwell dans le système de coordonnées 

cartésiennes.  

 Il utilise un maillage hexaédrique irrégulier structuré (approximation par escalier des 

frontières courbes). 

 Il peut gérer n'importe quel média linéaire (paramètre indépendants des valeurs des 

champs), dispersif, non homogène, anisotrope et chiral défini jusqu'au niveau de la 

cellule. 

 Le domaine de calcul peut être tronqué en utilisant différents types de conditions aux 

limites telles que la couche parfaitement adaptée (PML), conducteurs électriques parfaits 

(PEC) et parois magnétiques (PMC). Il peut aussi imposer des conditions d'impédance 

(par exemple une condition de rayonnement ou d'impédance de mode dans un guide). 

 Il est possible d'utiliser un PMC et/ou un PEC en tant que plans de symétrie (ou 

asymétrie) afin de réduire l'effort de calcul. 

 Le solveur est équipé de fonctions pour afficher les grandeurs électromagnétiques 

(champs, densités de courant) sur une zone ou des points n'importe où à l'intérieur du 

domaine de calcul à la fois dans le temps et dans le domaine fréquentiel (par FFT ou 

DFT). 

 Bien que plusieurs cellules TLM aient été développées, le solveur utilise la cellule 

condensée (SCN) qui est le meilleur choix pour les milieux complexes puisque, 

contrairement au nœud symétrique condensé hybride (HSCN) et au nœud symétrique 

super condensé (SSCN), les impédances des lignes sont toujours celle de l'espace libre et 

ne nécessite donc aucun traitement aux interfaces entre milieux.  

 Le solveur peut calculer les champs lointains en dehors du domaine de calcul en utilisant 

l'équivalence par l'intégration des sources fictives sur la surface de Kirchhoff entourant 

toutes les sources (rayonnement d'antennes et calcul de surface équivalente radar (SER)). 

 Permet plusieurs types d'excitation, comme le port localisée, zones d'excitation (gabarit 

de modes) et par surface de Huygens. 
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 Le solveur est écrit en langage FORTRAN90, dans lequel nous avons importé plusieurs 

fonctions de la bibliothèque de calcul NAG. Le solveur peut travailler à la fois sous 

Windows ou Linux. 

 On remarquera que le code peut être parallélisé pour effectuer les calculs sur les 

machines de traitement parallèle. Ceci sera effectué dans le cadre d'un projet DGA 

(MEDUSES 2), en collaboration avec l'Université de Nice (LEAT) et le CINES (Centre 

Informatique National de l'Enseignement Supérieur) à Montpellier.  

 

5.b. Interface graphique par le logiciel GiD 

 

Nous avons également terminé de tester le solveur avec l'interface GiD [9] pour différents 

exemples sur des antennes, des cavités, des guides d'ondes, par exemple. 

Les possibilités offertes par cette interface sont multiples : 

I. Création de la géométrie, en dessinant toutes les régions du domaine de calcul. 

II. Définir et attribuer les propriétés des matériaux à différentes régions jusqu'au niveau de la 

cellule. 

III. Définir les conditions aux limites et les plans de symétries au cas échéant. 

IV. Définir les sources et les points ou zones de lecture. 

V. Définir la surface Kirchhoff pour la transformation en champ proche-champ lointain. 

Cette interface graphique facilite l'entrée de géométries complexes (les figures 6 et 7); il nous 

permet également de voir et vérifier la structure avant de faire les simulations. Cette interface 

graphique facilite l'entrée de géométries complexes (les figures 6 et 7); il nous permet également 

de voir et vérifier la structure avant de faire les simulations. Les différentes couleurs représentent 

différentes zones (surface de Kirchhoff ou milieux) du domaine de calcul  

. 

                                         

                 Figure 6, Antenne Patch créés à l'aide GiD [16]                       Figure 7, Antenne conique créé en utilisant GiD [16] 
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5.c. Exemples d'application 

 

I. Cavité cubique remplie d'un matériau isotrope à pertes 

 

Dans un premier exemple de validation du modèle TLM général, le Tableau 2 montre la 

comparaison des fréquences de résonance d'une cavité remplie d'un milieu anisotrope. Le 

Tableau 3 montre le facteur de qualité d'une cavité cubique remplie d'un matériau isotrope à 

pertes (dispersif), en fonction de la fréquence. 

Tableau 2, cavité résonante rectangulaire 30x30x60 cm, rempli d'un matériel anisotrope εxx = 8, εyy =2 εzz =2, μ xx=8, μ yy=2 μ 

zz=2, μ ij, εij = 0 si i ≠ j. 

modes Simulation Théorie 

f110 176.8  MHz 176.78  MHz 

f111 216.6  MHz 216.51 MHZ 

f102 280.1  MHz 279.51  MHz 

f112 306.7  MHz 306.19  MHz 

 

Tableau 3, facteur de qualité d'une cavité cubique de=30 cm, remplie d'un matériau isotrope à pertes  et dispersif εr =4.0,  μr=1.0, 

𝑡𝑎𝑛(𝛿) = 𝜎 (𝜔𝑜휀𝑟휀𝑜)⁄ , 𝜔𝑜la première fréquence de résonance. 

𝑸 = 𝒇𝒐 ∆𝒇⁄  

(Simulation) 

𝑸 = 𝟏 𝐭𝐚𝐧 (𝜹)⁄  

(Théorie) 

18.6 19.1 

25.97 25.42 

38.52 38.12 

76.18 76.25 

 

On peut remarquer la bonne concordance entre la simulation TLM et la théorie [3].  

 

 

II. Diffraction d'une sphère en matériau chiral par une onde plane 

 

Le deuxième exemple concerne la diffraction d'une sphère remplie d'un milieu chiral dispersif  

(5.a) (5.b) (5.c)par une onde plane. Une comparaison avec une solution donnée par la série de 

Mie est utilisée comme référence [17] [18]. 

Les résultats sont présentés à la figure 8. Les  équations de dispersion sont choisies de telle 

façon qu'à la fréquence de 0.5 GHz les paramètres du milieu soient 휀𝑟 = 4.0, 𝜇𝑟 = 2.0, 𝜅 =

0.0314. 
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Figure 8, diffraction par une onde plane d'une sphère en matériau chiral de rayon 10 cm. Comparaison avec la série de Mie 

utilisée comme référence [18]. 

 

Les résultats sont présentés à la figure 8. On remarque une excellente adéquation du modèle 

TLM du simulateur et la solution analytique de la série de Mie. Aucun problème de stabilité n'a 

été observé pour les exemples présentés (2000 itérations). 

 

 

III. Coefficient de réflexion d'une lame chirale dispersive dans un guide à plaques 

parallèles 

 

Un autre exemple de validation concerne le calcul du coefficient de réflexion d'une lame 

chirale dispersive dans un guide à plaques parallèles illustré à la figure 9.  

 

 

Figure 9. Guide d'ondes à plaques parallèles chargé par un échantillon chiral 

 

La simulation a été effectuée à large bande par excitation temporelle à l'aide d'une impulsion 

gaussienne couvrant la bande de 1 à 3 GHz. Les paramètres du milieu chiral sont donnés par les 

relations (5.a), (5.b) et (5.c) dont les paramètres de l’échantillon sont montrés dans le tableau 4. 

 

 

 

 

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8


o
 , [

o
=0]

|E

|/
|E

in
c
|

Chiral Sphere,dist=0.3 m, freq =0.5 GHz,r=0.1m,
r
=4, 

r
 =2, =0.0314

 

 

TLM Method

Mie Series Solution



Résumé de la Thèse 

230 
 

Tableau 4, Paramètres de l’échantillon chiral de la figure 10. 

 
 

 

Le coefficient de réflexion est illustré à la figure 10 et montre une bonne concordance avec la 

solution analytique. On notera que le cas 𝜏𝑘 = 0  correspond au cas limite d'un milieu de Lorentz 

pur.  

 

Figure 10.  S11 d'un guide chargé par une lame chirale pour validation du simulateur TLM (cellules cubiques ∆𝑙 = 0,5 𝑚𝑚, 105 

itérations). 

 

 

IV. Paramètres S d’un guide d'ondes chargé par un échantillon de ferrite 

 

Une fois le modèle validé, on l'a appliqué pour la caractérisation à large bande d'un guide 

d'onde métallique chargé par un échantillon de ferrite non saturé, cas pour lequel il n'existe pas 

de solution analytique. A noter aussi, que les logiciels commerciaux pour la plupart ne peuvent 

traiter ce type de milieu à cause de la difficulté de représenter la magnétisation jusqu'au niveau 

de la cellule pour obtenir une bonne précision.  

 
Figure 11.  WR90 guide d'ondes de dimensions rectangulaire 10,16 cm x 22,86 mm chargé par échantillon de ferrite non saturé. 
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Comme le montre dans la figure 11, nous avons utilisé des couches PML avec 10 cellules 

d'épaisseur comme conditions aux limites absorbantes. La couche PML est terminée par 

l'impédance de l'espace libre pour améliorer l'absorption. 

L'échantillon de ferrite a été caractérisé par un tenseur adéquat [6] qui prend en compte les 

domaines magnétiques du milieu ferrite non saturé. Une carte magnétostatique a été aussi insérée 

dans le simulateur TLM pour affiner la magnétisation de l'échantillon et tenir compte du champ 

démagnétisant qui dépend de la forme de l'échantillon. La figure 12 montre une comparaison 

avec CST [19] et la mesure pour un échantillon magnétisé de façon moyenne homogène 

(approximation). 

 

Figure 12. Coefficient de réflexion d'un guide chargé par un échantillon de ferrite non saturé magnétisé de façon homogène. 

 

Les deux modèles numériques concordent assez bien avec la mesure avec un léger avantage 

pour la TLM. Cependant, ils ne reproduisent pas la première résonance et il y a un décalage en 

fréquence pour la 2
e
 résonance. 

 L'introduction de domaines avec des tenseurs locaux augmente considérablement le temps de 

calcul. Nous avons pu cependant faire une approximation de l'état de magnétisation en divisant 

l'échantillon en 9 sous-domaines (figure 13) à tenseur uniforme et comparer avec COMSOL [20] 

qui n'est pas un logiciel basé sur une approche temporelle et qui n'utilise pas un maillage 

hexaédrique. 

 

Figure 13. Approximation du ferrite par neuf sous-domaines magnétisés de façon homogène 

La figure 14 montre des comparaisons entre les mesures (effectuées par le groupe de 

recherche sur les matériaux du Lab-STICC à l'Université de Brest [21]) et des solutions 
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numériques obtenues par le solveur TLM. Cette fois, on peut observer dans toutes les figures que 

les résultats produits par le simulateur TLM et COMSOL sont plus proche de la mesure que dans 

l'expérience précédente. En particulier, la résonance secondaire apparaît autour de 10,6 GHz et 

révèle qu'elle n’est pas due à un couplage parasite produit pendant la mesure. Les différences 

entre la mesure et les solutions numériques peuvent s'expliquer comme suit : tout d'abord, la 

décomposition en neuf sous-domaines homogènes pour approcher la magnétisation de 

l'échantillon n'est peut-être suffisante. Deuxièmement, le modèle physique pour établir le tenseur 

du milieu ferrite n’est pas parfait et peut introduire des erreurs. Cependant, des études doivent 

être encore faites pour les évaluer. Enfin, les mesures sont entachées d'erreurs également 

difficiles à quantifier. 

 

Figure 14. Paramètres S d'un guide chargé par un échantillon de ferrite non saturé avec l'approximation de la magnétisation par 9 

sous-domaines homogènes (figure 13). 

On peut aussi observer que les résultats de simulation obtenus par COMSOL sont très proches 

de ceux du simulateur TLM, même si COMSOL est un solveur dans le domaine de la fréquence 

et basé sur les éléments-finis (FEM) dont l'échantillonnage spatial est tétraédrique. Ceci peut 
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aussi indiquer que les mesures sont entachées d'une erreur plus élevée qui peut expliquer les 

différences. 

Pour s'assurer d'une convergence du modèle TLM, la magnétisation DC de l'échantillon a été 

décrite au niveau de la cellule. La figure 15, montre la comparaison avec les mesures [21]en 

termes de paramètres S du guide d'onde chargé par l'échantillon de ferrite non homogène illustré 

à la figure 11. Comme nous pouvons le voir, le tenseur de perméabilité local dans chaque cellule 

donne une meilleure concordance avec la mesure. La première résonance est maintenant bien 

marquée. Toutefois, contrairement à la deuxième résonnance, son niveau et sa position montrent 

une différence relativement marquée. 

 

Figure 15. Paramètres  S d'un du guide chargé (figure 11) par un échantillon de ferrite échantillonnée au niveau de la cellule 

TLM. 

 

Les raisons des différences observées ont déjà été mentionnées plus haut. On notera 

cependant que des mesures expérimentales répétées ont montré une petite différence en raison de 

la sensibilité du processus d'aimantation et le placement de l'échantillon à l'intérieur du guide 
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d'ondes. Il est intéressant de noter que l'utilisation du logiciel commercial COMSOL était 

presque impossible du fait que la procédure automatique de maillage débouchait sur un nombre 

de cellules exhaustif, empêchant ainsi tout résultat dans un temps de calcul raisonnable. La 

description du tenseur au niveau de la cellule n'a pas été possible avec les autres logiciels 

commerciaux. Enfin, on a noté qu'après 10
5
 itérations en TLM, aucune instabilité n'a été 

observée pour toutes les simulations. Ceci tend à montrer que l'algorithme TLM modifié pour les 

milieux complexes est stable. Une démonstration théorique serait nécessaire pour valider cette 

observation. 

 

6. Chapitre VI : Cas limites de méthodes dans le domaine temporel : basse fréquence et 

haut contrastes des paramètres constitutifs 

 Dans ce chapitre, deux questions principales ont été discutées. Au début, nous avons présenté 

les problèmes multi-échelles et de basse fréquence dans les techniques du domaine temporel et leurs 

difficultés associées. Ensuite, nous avons proposé des solutions nouvelles en appliquant des techniques de 

cartographie. Ils sont basés sur la modification de la métrique des deux domaines de l'espace et du temps 

et de transformer le problème initial en un problème bien posé et facile à résoudre. Toutefois, d'autres 

études doivent être menées pour connaître le potentiel de ces approches de cartographie. Dans la 

deuxième partie de ce chapitre, nous avons abordé d'autres cas difficiles pour les méthodes dans le 

domaine temporel, à savoir leurs performances en présence d'interfaces entre milieux à contraste élevé ou 

zones à taille de maillage très différent lorsque des maillages irréguliers (mais structurés) sont utilisés. 

Plus particulièrement, la comparaison entre FDTD méthodes et TD-TLM ont été réalisées. Les résultats 

de simulations numériques confirment clairement que la TD-TLM produit une meilleure convergence que 

la FDTD pour les deux cas ci-dessus. Cela signifie que la méthode TD-TLM a besoin d'un moins grand 

nombre de mailles que la FDTD pour le même niveau de précision. 

 

6.a. Le problème basse fréquence dans les techniques du domaine temporel 

 

Certains cas difficiles qui ont plusieurs impacts sur les méthodes dans le domaine temporel 

ont été étudiés et des solutions proposées. Tout d'abord, le problème de basse fréquence qui 

conduit généralement à des difficultés multi-échelle a été examiné. Pour éviter toute erreur de 

grossièreté (résolution spatiale), il est démontré que le pas temporel devient très faible pour 

assurer la stabilité. En conséquence, le temps de simulation explose et le signal de la réponse est 

très largement échantillonné au-delà du critère de Nyquist. Pour ce problème classique, nous 

avons proposé une nouvelle solution basée sur l'espace ou l'espace-temps des techniques de 

cartographie. Dans ce genre de cartographie, l'objectif est de transférer le domaine de calcul 

original dans un nouveau dans lequel le problème de basse fréquence disparaît. Des exemples 

simples sont  présentés avec des résultats prometteurs. 
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6.b. Comparaison entre les méthodes FDTD et TD-TLM en présence d'interfaces entre  

milieux très contrastés en termes de paramètres constitutifs 

 

Enfin, dans la dernière partie du travail nous avons effectué la comparaison entre les 

méthodes FDTD et SCN-TLM en simulant des structures avec des milieux très contrastés en 

termes de paramètres constitutifs. Cette étude confirme que la TLM (SCN) possède une 

convergence plus rapide que la FDTD (ou la méthode d'intégrations finies FIT) en maillage 

hexaédrique. On peut l'expliquer par la nature locale de l'algorithme TLM. Cette différence de 

convergence a été aussi nettement observée en présence de maillages irréguliers (structurés), 

lorsque le rapport des tailles de maille augmente. Ceci est aussi expliqué par le caractère local de 

l'algorithme TLM. 

 

 Example : Fréquences de coupure d’un mode dans un guide d'onde rectangulaire 

partiellement rempli par un diélectrique 

 

 Dans cette expérience, on calcule la fréquence de coupure du mode dominant d'un guide 

d'ondes rectangulaire, de section 𝑎 = 𝑏 = 10 𝑐𝑚, partiellement rempli par une plaque 

diélectrique de permittivité 휀𝑟 (figure 16). 

L'objectif de cette expérience est d'étudier l'effet de l'interface entre les deux diélectriques (l'air et 

la lame diélectrique) utilisant à la fois la TLM et la FDTD. La solution analytique est considérée 

comme référence pour la comparaison [22]. 

 

Figure 16, section transversale d'un guide d'onde partiellement rempli d’un diélectrique 

 Dans la figure 17, nous reportons l'erreur relative par rapport à la solution analytique pour 

différentes valeurs de permittivité et plusieurs discrétisations spatiales. Nous pouvons clairement 

observer la meilleure précision de la TLM. En outre, nous pouvons voir l'augmentation plus 

rapide de l'erreur relative de la  FDTD avec la permittivité par rapport à la TLM. Par exemple, la 

TLM avec 10 cellules par longueur d'onde peut fournir une précision similaire à la FDTD avec 

40 cellules par longueur d'onde pour un contraste élevé. Cependant, cet avantage diminue pour 

de faibles contrastes. On doit noter que pour être sûr que l'erreur soit due de façon prédominante 

à la mise à jour des champs à l'interface et non à la différence de dispersion (la FDTD est plus 

dispersive que la TLM), nous avons choisi la fréquence limite supérieure avec 휀𝑟 = 40 pour le 

calcul de 𝜆𝑑. Par conséquent, nous pouvions négliger les effets de dispersion numériques sur 

toute la bande de fréquence. 
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Figure 17, erreur relative de la fréquence de coupure du mode dominant du guide de la figure 16 en comparaison avec solution 

analytique [22] 

  

Dans cette expérience, nous avons utilisé des cellules cubiques, et nous avons effectué 100 000 

itérations pour les deux méthodes. Par contre, si le pas temporel maximal a été utilisé pour la 

TLM un pas temporel deux fois inférieur a été utilisé pour la FDTD pour assurer la stabilité. 

Enfin, d'autres simulations confirment les mêmes tendances pour les cas de maillages irréguliers 

(structurés) lorsque le rapport des tailles des mailles entre deux zones augmente. 

 

7. Conclusion Générale 

Dans ce travail de thèse, nous nous sommes concentrés principalement sur des techniques 

numériques dans le domaine temporel pour l'électrodynamique, y compris en présence de 

milieux complexes. En particulier, nous avons étudié la méthode "Transmission-Line Matrix" 

(TLM) comme la méthode de calcul choisie pour sa mise en œuvre dans un simulateur 

électromagnétique. Le modèle doit pouvoir traiter des géométries et des supports 

tridimensionnels généraux possédant des paramètres constitutifs arbitraires mais linéaires. Dans 

le chapitre II, nous avons présenté différents milieux complexes linéaires et discuté comment les 

champs électromagnétiques interagissent avec eux. Dans le chapitre III, nous avons révisé 

brièvement la théorie de la TLM depuis ses débuts jusqu’à un algorithme avancé qui peut traiter 

les médias complexes de façon générale. Ensuite, le simulateur TLM du laboratoire a été 

amélioré par l'ajout d'une interface avec le moteur de calcul TLM permettant une entrée 

simplifiée et conviviale de structures à géométrie complexe. Cette interface graphique (GUI) 

rend le simulateur convivial. En outre, le cœur de calcul TLM a été complété avec des 

fonctionnalités supplémentaires, y compris un environnement unifié qui permet de simuler des 
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matériaux non traditionnels tels que les médias chiraux, anisotropes et dispersifs. Enfin, nous 

avons effectué de nombreuses expériences pour valider à la fois le simulateur TLM et le module 

GUI par plusieurs comparaisons avec des solutions analytiques, des résultats générés par d'autres 

simulateurs commerciaux et les mesures. 

Les solveurs EM commerciaux dans le domaine temporel que nous avons testés sont limités 

par rapport à notre simulateur TLM en termes de matériaux qu'ils peuvent appréhender. D'abord, 

quand il s’agit de milieux dispersifs, ils utilisent des méthodes dans le domaine fréquentiel 

uniquement (pour éviter l'utilisation de filtres dans le domaine temporel). D'autre part, ils sont 

limités lorsqu'il s’agit de milieux complexes fortement hétérogènes. Dans le cas des ferrites non 

saturées par exemple, on obtient des résultats validés uniquement lorsque chaque ce milieu est 

décrit avec un tenseur local défini au niveau de la cellule. Une telle définition n'a pu être 

entreprise qu'avec notre simulateur TLM, les logiciels commerciaux produisant des temps de 

calcul prohibitifs. 

Dans le chapitre suivant, nous avons développé une analyse théorique complète des 

phénomènes de dispersion numériques et les conditions de stabilité pour le modèle TLM en 

présence de milieux complexes. Cette analyse était nécessaire car la simple règle, généralement 

utilisée et valable pour les milieux simples, n'a pas été prouvée valide en présence de milieux 

complexes. Par exemple, il a été montré que dans certains cas la taille maximale des mailles a été 

sous-estimée, ce qui augmente inutilement le coût de calcul. Par conséquent, il est recommandé 

qu'en présence de milieux complexes (dispersifs, anisotropes), une évaluation de la dispersion et 

de la stabilité soit effectuée au préalable. Des exemples montrent un gain de temps substantiel en 

faisant cette analyse.  

En cinquième chapitre, nous avons présenté, le simulateur TLM et son interface graphique, 

puis nous avons présenté plusieurs expériences numériques pour validation, comme les antennes, 

guides d'ondes. L'utilisation de la transformation optique pour construire des cas complexes dont 

la solution analytique est connue a aussi été validée. Enfin, nous avons effectué une expérience 

d'un guide chargé par un échantillon de ferrite. Nous avons trouvé une très bonne concordance 

avec les mesures et d'autres logiciels comme CST et COMSOL.  

Dans le chapitre VI, nous avons étudié le problème basse fréquence dans les techniques du 

domaine temporel. En effet, le pas temporel requis devient en général très petit et fait exploser le 

temps de calcul. Pour ce problème classique, nous avons proposé des solutions nouvelles en 

appliquant des techniques de cartographie. Ces solutions sont proposées sur la base de la 

modification du tenseur métrique de l'espace et du temps et la transformation du problème en un 

problème bien posé. Enfin, dans la dernière partie du projet nous avons effectué la comparaison 

entre les méthodes FDTD et TD-TLM en simulant des structures avec des milieux très contrastés 

en termes de paramètres constitutifs. Cette étude confirme que la TLM possède une convergence 

plus rapide que la FDTD. On peut l'expliquer par la nature locale de l'algorithme TD-TLM. Cette 

différence de convergence a été aussi nettement observée en présence de maillages irréguliers 

(structurés), lorsque le rapport des tailles de maille entre deux zones augmente. 
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