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Introduction

L'étude des variétés di�érentiables munies d'une métrique Riemannienne constitue un
domaine prospère des mathématiques depuis le dix-neuvième siècle, et elle a connu d'in-
nombrables avancements tout au long du vingtième, grâce à ses interactions fructueuses
avec la topologie et l'analyse. Néanmoins, certains phénomènes très naturels incitent à
élargir les horizons des géomètres : par exemple, il est un résultat bien connu et élémen-
taire que le quotient d'une variété Riemannienne par un groupe n'est pas forcément une
variété Riemannienne. De plus, si on considère une suite de variétés compactes lisses
Mi, munies d'une métrique riemannienne gi, sa limite de Gromov-Hausdor�, quand elle
existe, n'est pas en général une variété. Il y a alors plusieurs approches possibles : on
peut par exemple introduire des variétés avec singularités, comme les orbifolds ; on peut
également étudier des espaces métriques, plutôt que des variété lisses, et chercher à
étendre des outils de géométrie Riemannienne, notamment la courbure, à ces espaces.
Cette direction à été entreprise par exemple par A. Alexandrov, qui a introduit une
notion de courbure basée sur la comparaison des triangles, et plus récemment par les
travaux de D. Bakry et M. Émery et ceux de J. Lott, C. Villani, et K.-T. Sturm, dans
le contexte du transport optimal de mesures.

Cette thèse s'occupe d'étudier une classe particulière d'espaces métriques singuliers,
les espaces strati�és. Ces derniers sont apparus dans plusieurs branches des mathéma-
tiques. Ils ont été introduits d'abord par H. Whitney [Whi47], avec l'idée de partitionner
un espace topologique en sous-éléments plus simples, des "complexes de variétés", bien
agencés entre eux. La dénomination de strati�cation est due à R. Thom [Tho69], qui
s'est servi des espace strati�és pour l'étude de la stabilité des applications lisses entre va-
riétés. De plus, les espaces strati�és fournissent un cadre approprié à la reformulation de
la dualité de Poincaré pour l'homologie d'intersection sur des espaces singuliers ([GM88],
[P�01]). D'un point de vue analytique, J. Cheeger [Che83] a inauguré dans les années 80
l'étude de l'analyse spectrale pour des variétés avec singularités coniques ou à coins, qui
sont des cas particuliers d'espaces strati�és ; plusieurs contributions ont été apportées
par R. Melrose et par son école à travers l'outil des opérateurs pseudo-di�érentiels, et par
une école allemande qui comprend K.-T. Sturm, J. Brüning, K. Schulze, W. Ballmann.

Il est aussi très naturel d'étudier les espaces strati�és avec des outils de géométrie
di�érentielle, car ils peuvent être construits très facilement à partir de variétés compactes
lisses. Par exemple, considérons une sphère S2 et une rotation d'angle 2π/n pour un
entier n. Le quotient de la sphère par le groupe engendré par cette rotation a la forme
d'un ballon de rugby, avec deux singularités coniques aux points �xes de la rotation.
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Introduction

Or, une surface à singularités coniques est l'exemple le plus simple possible d'espace
strati�é. En e�et, les espaces strati�és généralisent la notion de singularité conique isolée,
dans le sens suivant : un espace strati�é X est un espace métrique compact qui peut
être décomposé en un lieu régulier, c'est-à-dire une variété ouverte, lisse de dimension
n et dense dans X, et un lieu singulier. Ce dernier est l'union disjointe de plusieurs
composantes connexes, les strates singulières, de dimensions di�érentes. Un point dans
une strate singulière possède un voisinage qui est homéomorphe au produit entre un
boule euclidienne et un cône sur une base, qui s'appelle link, ou étoile, de la strate.
Le link peut être à priori un espace strati�é. Nous renvoyons au Chapitre 1 pour une
dé�nition détaillée. Pour se faire une idée, on peut imaginer une variété de dimension 3,
et considérer des singularités coniques le long d'un courbe, comme sur la �gure suivante :

Le voisinage d'un point appartenant à la courbe singulière est alors le produit d'un
intervalle dans R avec un cône qui a comme base un cercle S1. Ce genre de construction
peut être généralisé à des dimensions di�érentes, en donnant lieu à des variétés avec
simple edges, qui sont des espaces strati�és dont les links sont des variétés compactes
lisses. Dans le Chapitre 1 nous donnons également plusieurs exemples dans lesquels le
link peut être un espace singulier.

On peut aussi dé�nir une métrique g sur un espace strati�é : c'est une métrique
riemannienne lisse sur le lieu régulier ; près d'une strate singulière, la métrique doit
rendre compte de la structure locale de l'espace, et elle a la forme d'une métrique produit
entre celle euclidienne et une métrique conique. Par conséquent, un espace strati�é
est aussi muni d'une mesure dvg, et on peut dé�nir des objets analytiques, en suivant
[ACM14] : notamment les espaces Lp et de Sobolev, qui seront de première importance
dans la suite. Pour un espace strati�é X muni d'un métrique g, l'espace de Sobolev
W 1,2(X) est l'adhérence de l'ensemble des fonctions Lipschitz sur X pour la norme
usuelle :

‖u‖21,2 =

∫
X
|u|2dvg +

∫
X
|du|2dvg.

Il est alors possible de montrer que l'inégalité de Sobolev :

‖u‖ 2n
n−2
≤ Cs ‖u‖1,2

est véri�ée pour toute fonction u dans W 1,2(X), et que les injections de Sobolev de
W 1,2(X) dans Lp(X), pour p compris entre 1 et 2n/(n − 2), ont les mêmes propriétés
que dans le cas des variétés compactes. De plus l'opérateur Laplacien ∆g peut être dé�ni,
en tant qu'extension de Friedrichs de la forme quadratique appropriée.
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Introduction

Le but principal de cette thèse consiste à montrer comment certains résultats
classiques de géométrie Riemannienne et d'analyse globale sur les variétés compactes
peuvent être étendus aux espaces strati�és, et d'étudier ensuite les conséquences de ces
résultats sur la résolution d'un problème d'analyse géométrique, le problème de Yamabe.
Celui-ci consiste à chercher une métrique à courbure scalaire constante parmi la classe
conforme d'une métrique donnée g, c'est-à-dire parmi l'ensemble des métriques qui sont
obtenues par multiplication de g par une fonction lisse et positive :

[g] = {g̃ = fg, pour f ∈ C∞(M), f > 0}.

Dans le cas d'une surface de Riemann compacte, il existe toujours une métrique conforme
avec courbure de Gauss constante égale à 1, 0 ou −1, d'après le théorème d'uniformi-
sation de Poincaré. De plus, cela implique que la surface de départ est conforme à un
quotient respectivement de la sphère S2, du plan euclidien R2 ou de l'espace hyperbolique
H2. Pour une variété compacte lisse de dimension supérieure ou égale à 3, le problème
a été formulé par H. Yamabe [Yam60] en 1960, puis résolu à travers les contributions
de plusieurs mathématiciens, N. Trudinger, T. Aubin, R. Schoen ([Tru68], [Aub76a],
[Sch84]). L'approche utilisée repose sur la compréhension d'un invariant conforme, la
constante de Yamabe, qui est la borne inférieure de l'intégrale de la courbure scalaire
parmi les métriques conformes de volume unitaire :

Y (M, [g]) = inf

{∫
M
Scalg̃dvg̃, t.q. g̃ ∈ [g] et Volg̃(M) = 1

}
.

Une métrique qui atteint cette constante s'appelle métrique de Yamabe et est à courbure
scalaire constante, mais réciproquement, une métrique à courbure scalaire constante
n'est pas nécessairement une métrique de Yamabe, car elle n'est pas nécessairement
minimisante.

Les questions au départ de ce travail proviennent du récent article de K. Akutagawa,
G. Carron et R. Mazzeo [ACM14], qui fournit le cadre approprié pour étudier le pro-
blème de Yamabe sur les espaces strati�és, par une approche similaire à celle entreprise
par N. Trudinger et T. Aubin dans le cas de variétés compactes lisses. Les auteurs dé-
montrent, entre autres, qu'une métrique de Yamabe existe si la courbure scalaire satisfait
une condition d'intégrabilité et si la constante de Yamabe de l'espace est strictement
inférieure à un invariant conforme, la constante de Yamabe locale. Or, la valeur de cet
invariant n'est connue qu'en très peu de cas et trouver des conditions pour que l'inégalité
soit stricte n'est pas un problème trivial. Il serait aussi souhaitable d'obtenir un résultat
de rigidité dans le cas d'égalité.

Comme il advient souvent dans la recherche, et peut-être pas seulement dans la
recherche, les meilleures questions ne sont pas celles qui mènent à une réponse, mais
plutôt celles qui en engendrent d'autres. Ainsi le problème initial consistant à calculer
la constante de Yamabe locale m'a amenée à étudier les propriétés d'espaces strati�és
dont le tenseur de Ricci est minoré sur le lieu régulier. Pour une variété compacte lisse
avec tenseur de Ricci minoré, nous avons un résultat bien connu, dû à A. Lichnerowicz
et à M. Obata :
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Théorème (Lichnerowicz-Obata). Soit (M, g) une variété Riemannienne compacte lisse
de dimension n, telle que le tenseur de Ricci est minoré par une constante positive k,
Ricg ≥ kg. Alors la première valeur propre non nulle du Laplacien est supérieure ou égale
à nk, avec égalité si et seulement si (M, g) est isométrique à la sphère Sn de rayon 1/

√
k

munie de la métrique canonique.

De plus, toute variété complète dont le tenseur de Ricci est minoré est compacte :

Théorème (Myers). Soit (Mn, g) une variété Riemannienne lisse de dimension n, telle
que le tenseur de Ricci est minoré par une constante positive k. Alors le diamètre de
(Mn, g) est inférieur ou égal à π/

√
k.

Nous pouvons étendre une partie de ces résultats à une large classe d'espaces stra-
ti�és, que l'on peut considérer comme des espaces à tenseur de Ricci minoré par une
constante positive. La première condition à imposer est, évidemment, que le tenseur de
Ricci soit minoré sur le lieu régulier. On doit de plus imposer une condition qui concerne
la strate singulière de codimension égale à deux. En e�et, le modèle local autour d'un
point de cette strate est le produit d'une boule euclidienne avec un cône sur un cercle :
l'angle de ce cône peut être inférieur ou supérieur à 2π, selon que le rayon du cercle soit
inférieur ou supérieur à 1. Cela donne lieu à deux situations géométriques di�érentes,
car un cône est un espace métrique de courbure positive au sens d'Alexandrov si son
angle est inférieur à 2π , et à courbure négative si son angle est supérieur à 2π. Donc la
présence d'une strate de codimension deux dont le link est un cercle de rayon supérieur à
1 introduit en un certain sens de la courbure négative, qui crée un obstacle pour prouver
des résultats analogues aux précédents.

Nous considérons alors la notion d'espace strati�é admissible, qui en plus d'avoir
un tenseur de Ricci minoré sur le lieu régulier, par la dimension de l'espace moins un,
ne possède pas de strate singulière de codimension deux et angle du cône strictement
supérieur à 2π. Dans ce cadre nous pouvons prouver le théorème suivant :

Théorème A (Lichnerowicz singulier). Soit (X, g) un espace strati�é admissible de
dimension n. Alors la première valeur propre du Laplacien est supérieure ou égale à n.

K. Bacher et K.-T. Sturm [BS14] ont prouvé un théorème "à la Lichnerowicz" pour
des cônes et des suspensions sphériques dont la base est une variété Riemannienne
compacte à tenseur de Ricci minoré par une constante positive, c'est-à-dire des espaces
strati�és qui ont respectivement une ou deux singularités coniques isolées. Les techniques
qu'ils utilisent se basent sur l'inégalité de courbure-dimension de Sturm-Lott-Villani.
Notre résultat s'applique pour des singularités plus générales que les singularités coniques
isolées, et sa preuve est plus proche de la démonstration classique dans le cas régulier,
car elle se fonde principalement sur la formule de Bochner-Lichnerowicz.

Notre version singulière du théorème de Lichnerowicz a�rme, en termes analytiques,
l'existence d'un trou spectral. Celui-ci, couplé avec l'existence d'une inégalité de Sobolev
sur un espace strati�é, nous permet d'obtenir une inégalité de Sobolev améliorée, pour
laquelle les constantes qui apparaissent ne dépendent que de la dimension et du volume
de l'espace :
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Théorème B. Soit (X, g) un espace strati�é admissible de dimension n. Pour tout p
compris entre 1 et 2n/(n− 2) et tout f dans l'espace de Sobolev W 1,2(X), l'inégalité de
Sobolev suivante est véri�ée :

V
1− 2

p ‖f‖2p ≤ ‖f‖
2
2 +

p− 2

n
‖df‖22 ,

où V est le volume de X pour la métrique g.

Ce résultat est inspiré d'un théorème de D. Bakry, contenu dans [Bak94]. Les travaux
de ce dernier avec M. Ledoux ont également montré que le théorème de Myers peut être
démontré en utilisant uniquement des outils analytiques, pourvu que le trou spectral
existe et qu'une inégalité de Sobolev analogue à celle prouvée dans le Théorème B soit
véri�ée. Il s'ensuit que nous pouvons appliquer la démonstration de [BL96] et en déduire :

Corollaire C (Myers singulier). Soit (X, g) un espace strati�é admissible de dimen-
sion n. Alors son diamètre est inférieur ou égal à π.

En outre, nous démontrons que la borne π pour le diamètre est atteinte si et seule-
ment si la première valeur propre non-nulle du Laplacien est égale à la dimension de
l'espace. Plus précisément, nous obtenons le résultat suivant :

Corollaire D. Soit (X, g) un espace strati�é admissible de dimension n. Les trois af-
�rmations suivantes sont équivalentes :

(i) La première valeur propre non-nulle du Laplacien ∆g est égale à n.

(ii) Le diamètre de X est égal à π.

(iii) Il existe des fonctions extrémales pour l'inégalité de Sobolev.

Par fonctions extrémales, nous entendons fonctions qui atteignent l'égalité dans l'in-
égalité de Sobolev du Théorème B.

Il serait également intéressant d'obtenir un résultat de rigidité dans l'esprit de celui
de M. Obata, lorsque la première valeur propre non-nulle du Laplacien est égale à la
dimension de l'espace. Le fait que λ1(∆g) = n soit équivalent à avoir un diamètre égal
à π rend très vraisemblable ce genre de résultat, mais, en mettant en place une preuve
inspirée par celle classique, on se heurte à des obstacles liés à l'unicité et à la régularité
des géodésiques minimisantes : le problème n'est pas trivial à résoudre.

Il existe des versions similaires des théorèmes "à la Lichnerowicz-Obata" et "à la
Myers" pour des espaces métriques mesurés qui satisfont une inégalité de courbure-
dimension : leurs preuves reposent sur un récent théorème de splitting dû à N. Gigli
[Gig13] (voir [Ket14]). Nos résultats sont moins généraux, mais leurs démonstrations ont
l'avantage d'utiliser principalement sur des outils de géométrie riemannienne classique.

Les Théorèmes A et B ont des conséquences directes sur l'étude du problème de
Yamabe pour des espaces strati�és. En e�et, le deuxième théorème nous permet de
déduire une borne inférieure sur la constante de Yamabe, qui est atteinte dans le cas
d'une métrique d'Einstein :
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Corollaire E. Soit (X, g) un espace strati�é admissible de dimension n. Alors sa
constante de Yamabe satisfait :

Y (X, [g]) ≥ n(n− 2)

4
Volg(X)

2
n =

(
Volg(X)

Vol(Sn)

) 2
n

Yn,

où Yn est la constante de Yamabe de la sphère canonique de dimension n. L'égalité est
atteinte dans l'inégalité précédente si la métrique est une métrique d'Einstein.

Ceci étend un théorème analogue de J. Petean dans [Pet09], qui a�rme l'existence de
la même minoration pour la constante de Yamabe d'un cône sur une variété riemannienne
compacte avec tenseur de Ricci minoré par une constante positive. Ce résultat découle
d'une étude des domaines isopérimétriques des cônes, similaire à celle faite par F. Morgan
et M. Ritoré dans [MR02]. Il serait intéressant d'étendre cette approche aux cônes sur
les espaces strati�és admissibles, dont la dimension d'Hausdor� du lieu singulier est
inférieure à (n− 3).

L'un des intérêts du résultat précédent est qu'il peut être appliqué pour calculer
la constante de Yamabe locale d'un espace strati�é dont les links soient munis d'une
métrique d'Einstein. Cette condition est motivée par le fait que, si la courbure de chaque
link Z de dimension d est égale à d(d− 1), alors la courbure de tout l'espace satisfait la
condition d'intégrabilité nécessaire pour appliquer le théorème d'existence de [ACM14].
Nous obtenons :

Théorème F. Soit (X, g) un espace strati�é de dimension n avec strates singulières
Xj et links (Zj , kj) de dimension dj. Supposons qu'aucun des links n'est un cercle de
rayon supérieur à 1, et que pour tout j la métrique kj sur le link Zj est une métrique
d'Einstein. Alors la constante de Yamabe locale de (X, g) est égale à :

Y`(X) = inf
j

{(
Volkj (Zj)

Vol(Sdj )

) 2
n

Yn

}
,

où Yn est la constante de Yamabe de la sphère Sn.

Ce résultat permet de calculer la constante de Yamabe locale dans de nombreux cas,
comme par exemple un espace strati�é avec une strate de codimension égale à deux,
lorsque l'angle du cône est inférieur à 2π. Il s'applique en particulier aux orbifolds, et
il étend un théorème de K. Akutagawa et B. Botvinnik, valable pour les orbifolds à
singularités isolées.

Le cas qui n'est pas inclus dans le théorème précédent est celui d'une strate de
codimension deux pour laquelle l'angle est supérieur à 2π. Nous traitons cette situation
en utilisant une approche di�érente, qui se base sur une relation entre une inégalité de
Sobolev optimale et l'inégalité isopérimétrique, et que nous expliquons à présent. En
suivant une stratégie basée sur le lissage de la métrique conique et sur l'étude de pro�ls
isopérimétriques, nous démontrons le résultat suivant :

6



Introduction

Théorème G. Considérons le produit Rn−2×C(S1
a), où S1

a est le cercle de rayon a > 1,
muni de la métrique g produit entre la métrique euclidienne ξ sur Rn−2 et la métrique
conique dr2 + (ar)2dθ2 sur C(S1

a) :

g = ξ + dr2 + (ar)2dθ2.

Soit Ig :]0, volg(X)/2]→ R le pro�l isopérimétrique associé à g :

Ig(v) = inf{Volg(∂E), E ⊂ X, t.q. ∂E est lisse par morceaux ,Volg(E) = v}.

Alors Ig coïncide avec le pro�l isopérimétrique euclidien In(v) = cnv
1− 1

n .

La preuve montre que le cône C(S1
a) peut être approché par des surfaces de Cartan-

Hadamard, qui sont complètes, simplement connexes et à courbure sectionnelle minorée ;
elle utilise un résultat d'A. Weil [Wei26], qui a prouvé la conjecture de Cartan-Hadamard
en dimension deux, et un résultat d'A. Ros sur le pro�l isopérimétrique d'un produit
riemannien.

Cela nous permet d'adapter un argument classique de G. Talenti [Tal76] (et prouvé
indépendamment par T. Aubin dans [Aub76b]) sur l'inégalité de Sobolev optimale et
d'en déduire :

Corollaire H. Soit (Xn, g) un espace strati�é avec une seule strate de codimension
deux et angle du cône supérieur à 2π. Alors sa constante de Yamabe locale coïncide avec
celle de la sphère canonique de dimension n.

Nous pouvons donc améliorer le Théorème F en enlevant l'hypothèse sur la strate
de codimension deux et le reformuler de la façon suivante :

Théorème I. Soit (X, g) un espace strati�é de dimension n avec strates singulières Xj

et links (Zj , kj) de dimension dj. Si pour tout j la métrique kj sur le link Zj est une
métrique d'Einstein, la constante de Yamabe locale de (X, g) est égale à :

Y`(X) = inf
j

{
Yn,

(
Volkj (Zj)

Vol(Sdj )

) 2
n

Yn

}
.

Le résultat précédent répond donc à la question de calculer la constante de Yamabe
locale pour tout espace strati�é dont les links soient munis d'une métrique d'Einstein.
Nous présentons dans la suite une autre approche possible pour traiter ce problème,
inspirée par un autre résultat de M. Obata. Soit (Mn, g) une variété compacte lisse de
dimension supérieure ou égale à 3 : si g est une métrique d'Einstein, alors elle atteint
la constante de Yamabe, et toute autre métrique conforme à g avec courbure scalaire
constante est homothétique à g.

La démonstration de ce résultat consiste à prouver que s'il existe une métrique
conforme à g, à courbure scalaire constante, et qui n'est pas homothétique à g, alors il
existe une fonction propre relative à la valeur propre n, et (Mn, g) est isométrique à la
sphère canonique. Nous montrons un résultat analogue en adaptant un argument utilisé
par J. Viaclovsky dans [Via10] :
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Théorème J. Soit (Xn, g) un espace strati�é admissible d'Einstein. S'il existe une
métrique conforme à g, non homothétique à g et avec courbure scalaire constante, alors
la métrique d'Einstein g est une métrique de Yamabe.

La di�culté de cette approche est qu'elle nécessite un résultat d'existence d'une
métrique de Yamabe sur l'espace strati�é. Nous pouvons toutefois donner une classe
d'exemples pour laquelle il y a existence. Si on considère une variété compacte d'Einstein
(Zd, k) nous avons les équivalences conformes suivantes :(

Hn−d × Zd, [gH + k]
)
∼=
(
Rn−d−1 × Zd, [ξ + dr2 + r2k]

)
∼=
(
C(Ẑ), [dt2 + sin2(t)h]

)
.

où Ẑ et sa métrique h sont dé�nis par :

Ẑ =
[
0,
π

2

]
× Sn−d−3 × Zd

h = dψ2 + cos2(ψ)gS + sin2(t)k.

Le cône sur Ŝ est un espace strati�é compact de dimension n, muni de la métrique
d'Einstein dt2 + sin2(t)h.

Or, un résultat dû à K. Akutagawa, prouvé par N. Grosse dans [Gro13], concernant
l'existence d'une métrique de Yamabe sur des variétés ouvertes et complètes, s'applique
au produit Hn−d × Zd. Nous donnons une preuve alternative et plus directe, utilisant
essentiellement la technique d'itération de Moser, de ce théorème de N. Grosse :

Théorème. Soit (Mn, g) un variété complète lisse de dimension n ≥ 3. Supposons qu'il
existe un sous-groupe d'isométries Γ ⊂ Isom(M) et un compact K tels que pour tout x
dans M il existe une isométrie γ de Γ qui envoie x dans K. Si la courbure scalaire de g
est strictement positive et si la constante de Yamabe Y (M, [g]) est strictement inférieure
à Yn, alors il existe une métrique de Yamabe dans la classe conforme de g.

Comme conséquence, nous obtenons que le produit Hn−d × Zd admet une métrique
de Yamabe tant que sa courbure scalaire est strictement positive. Si nous supposons
donc que la dimension d de Z est strictement supérieure à n/2, il existe donc une
métrique de Yamabe sur le cône C(Ẑ). Nous pouvons alors appliquer le Théorème J
et en déduire que la métrique d'Einstein atteint la constante de Yamabe. Ceci permet
aussi de retrouver la valeur de la constante de Yamabe locale du Théorème F pour
un espace strati�é de dimension n, dont les links sont des variétés compactes, lisses,
d'Einstein, avec dimension supérieure à n/2.

Nous concluons cette introduction par quelques perspectives du travail à venir, qui
motivent les résultats présentés ci-dessus. Connaître la valeur de la constante de Yamabe
locale ouvre naturellement la voie à plusieurs questions : sous quelles conditions peut-on
avoir inégalité stricte, et donc existence d'une métrique de Yamabe, entre constante de
Yamabe locale et globale ? Que se passe-t-il si on a égalité entre les deux ?
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Dans le cas d'une variété compacte lisse (Mn, g), la constante de Yamabe locale est
égale à celle de la sphère Yn, et une métrique de Yamabe existe lorsque la constante de
Yamabe est strictement inférieure à Yn. Or, T. Aubin a montré que pour toute variété de
dimension supérieure ou égale à 6 dont la métrique n'est pas localement conformément
plate, l'inégalité stricte

Y (Mn, [g]) < Yn,

est véri�ée. Son argument est local et utilise des fonctions test appropriées, dont le
support est contenu dans une boule.

Si nous considérons un espace strati�é de dimension supérieure ou égale à 6, muni
d'une strate singulière de codimension deux, dont l'angle est supérieur à 2π, nous sa-
vons grâce aux Corollaire H que sa constante de Yamabe locale est égale à Yn. Si sa
métrique n'est pas localement conformément plate, en utilisant les mêmes fonctions test
que T. Aubin autour d'un point du lieu régulier, nous récupérons alors le même résultat,
c'est-à-dire la constante de Yamabe globale de l'espace strati�é est strictement inférieure
à sa constante de Yamabe locale Yn. En particulier, dans ce cas, une métrique de Yamabe
existe.

Le problème est di�érent en dimension petite, égale à 3, 4 ou 5 et pour une métrique
localement conformément plate sur le lieu régulier. R. Schoen [Sch84] a montré, en se
basant sur ses travaux avec S.T. Yau à propos du théorème de la masse positive, que si
Y (Mn, [g]) coïncide avec Yn, alors la variété est conforme à la sphère canonique Sn. Un
théorème de rigidité analogue a été démontré par E. Witten en toute dimension lorsque
la variété est supposée spin. Il est donc raisonnable de croire que certains des outils
développés par R. Schoen et E. Witten peuvent s'étendre au cas des espaces strati�és
avec une strate de codimension deux et angle du cône supérieur à 2π.

Si on considère un espace strati�é de dimension n avec une seule strate de codi-
mension deux et angle α du cône inférieur à 2π, nous avons montré que sa constante
de Yamabe locale est strictement inférieure à celle de la sphère. En particulier, elle est
égale à :

Y`(X) =
( α

2π

) 2
n
Yn.

Par conséquent, utiliser des fonctions test à support dans le lieu régulier comme dans le
cas précédent ne donne aucune information sur la relation entre constante de Yamabe
locale et globale. On pourrait s'inspirer de l'étude proposée par J.M. Lee and T.H. Parker
du développement de la fonction de Green associée au Laplacien conforme (voir [LP87]) :
en adaptant cette approche au voisinage d'un point singulier, on chercherait à trouver
une relation entre les coe�cients de ce développement et l'angle α. Cela pourrait suggérer
les conditions à imposer pour que l'on ait inégalité stricte entre constante de Yamabe
locale et globale.

En�n, il faut également rappeler que J. Viaclovsky à exhibé dans [Via10] un exemple
d'orbifold avec une singularité conique dont la constante de Yamabe coïncide avec celle
locale, et pour lequel il n'existe pas de métrique de Yamabe. Il est donc possible que
d'autres exemples de non-existence se présentent, et il serait intéressant de les étudier

9



Introduction

(ou classi�er ?).

Plan de la thèse

Le Chapitre 1 est dédié aux dé�nitions géométriques et analytiques concernant les
espaces strati�és, aux exemples, et à la présentation de plusieurs résultats connus à
propos des espaces de Sobolev et des équations de Schrödinger dans le cadre singulier. Il
se base principalement sur [Klo09], [ALMP12], [ACM14] and [ACM15]. Nous prouvons
également un résultat de régularité pour le gradient d'une solution de l'équation de
Schrödinger, qui se fonde sur la géométrie spectrale des links, et qui représente un outil
technique nécessaire à plusieurs preuves dans la suite.

Dans le Chapitre 2 nous collectons et démontrons les nouveaux résultats à propos
des espaces strati�és admissibles : on y trouve en particulier les démonstrations des
Théorèmes A, B et du Corollaire D.

Le Chapitre 3 présente brièvement le problème de Yamabe sur les variétés compactes
lisses et les résultats obtenus dans [ACM14] dans le cadre des espaces strati�és. Cette
partie ne contient pas de résultat nouveau, mais elle est importante pour motiver et
comprendre la suite.

En�n, le dernier Chapitre est dédié à tisser les liens entre les résultats prouvés pour
les espaces strati�és admissibles et la question initiale consistant à calculer la constante
de Yamabe locale. Nous y démontrons le Corollaire E et le Théorème F. Une deuxième
partie du chapitre présente le Théorème G avec son Corollaire H. Nous concluons par
l'approche "à la Obata" avec la preuve du Théorème J et la reformulation du théorème
de N. Grosse pour les variétés presque homogènes.
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The study of di�erentiable manifolds endowed with a Riemannian metric constitutes a
prosperous domain in mathematics since the nineteenth century, and it had countless
developments all along the twentieth, thanks to its successful interactions with both
topology and analysis. Nevertheless, some very natural phenomena push geometers
to extend their horizons: for example, it is a well known and elementary fact that the
quotient of a Riamannian manifold by a group is not necessarily a Riemannian manifold.
Moreover, if we consider a sequence of compact smooth manifolds Mi, endowed with
a Riemannian metric gi, its Gromov-Hausdor� limit, when it exists, is not a manifold
in general. There are then various possible approaches: one can for example introduce
manifolds with singularities, like orbifolds; it is also possible to study metric spaces,
instead of compact smooth manifolds, and to try and extend some tools of Riemannian
geometry, like curvature, to these spaces. This direction has been taken for example
by A. Alexandrov, who introduced a notion of curvature based on the comparison of
triangles, and more recently by the works of D. Bakry and M. Émery and those of
J. Lott, C. Villani and K.-T. Sturm, in the context of optimal transport of measures.

This thesis is dedicated to the study of a particular class of singular metric spaces,
strati�ed spaces. These latter has appeared in various domains of mathematics. First,
they have been introduced by H. Whitney [Whi47], with the idea of partitioning a
topological space in simpler elements, "complexes of manifolds", which must be well
glued together. The denomination of strati�cation is due to R. Thom [Tho69], who
used strati�ed spaces to study the stability of smooth applications between manifolds.
Moreover, strati�ed spaces furnish an appropriate context to reformulate Poincaré's
duality for the intersection homology of singular spaces ([GM88], [P�01]). From an
analytical point of view, during the eighties J. Cheeger launched the study of spectral
analysis on manifolds with conical singularities or simple edges, which are particular
cases of strati�ed spaces. Many contributions have been provided by R. Melrose and his
school through the tool of pseudo-di�erential operators and micro-local analysis, and by
a German school including K.-T. Sturm, J. Brüning, K. Schulze, W. Ballmann.

It also very natural to study strati�ed spaces with tools coming from di�erential
geometry, since they can be constructed very easily starting from compact smooth man-
ifolds. For example, let us consider a sphere S2 and a rotation of angle 2π/n for an
integer n. The quotient of the sphere by the group generated by this rotation has the
form of an American football, with two conical singularities at the two �xed points of
the rotation. Now, a surface with conical singularities is the simplest possible example
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of strati�ed space. Indeed, strati�ed spaces generalize the notion of isolated conical
singularity, in the following sense: a strati�ed space X is a compact metric space which
can be decomposed in a regular set, that is an open smooth manifold of dimension n,
dense in X, and a singular set. This latter is the disjoint union of di�erent connected
components, the singular strata, of di�erent dimensions. A point in a singular stratum
possesses a neighbourhood which is homeomorphic to the product between an Euclidean
ball and a cone over a base, called link of the stratum. The link may be a priori a strat-
i�ed space. We refer to Chapter 1 for a detailed de�nition. In order to get an idea, one
can imagine a manifold of dimension 3, and consider conical singularities along a curve,
like in the �gure below:

The neighbourhood of a point belonging to the singular curve is then be the product
between an interval in R and a cone which has a circle S1 as a basis. This kind of
construction can be generalized to di�erent dimensions, leading to manifolds with simple
edges: these are strati�ed spaces whose links are compact smooth manifolds. In the �rst
chapter we give various examples that explain why the link can be a singular space as
well.

It is also possible to de�ne a metric g on a strati�ed space: this is be a smooth Rie-
mannian metric on the regular set; near to a singular stratum, it must respect the local
structure of the space, and it has the form of a product metric between the Euclidean
one and a conic metric. As a consequence, a strati�ed space is also endowed of a measure
dvg and one can de�ne some analytical objects, following [ACM14]: in particular the Lp

and Sobolev spaces, which are going to be fundamental in what follows. For a strati�ed
space X endowed with a metric g, the Sobolev space W 1,2(X) is the closure of the set
of Lipschitz functions on X with the usual norm:

‖u‖21,2 =

∫
X
|u|2dvg +

∫
X
|du|2dvg.

It is then possible to show that the Sobolev inequality

‖u‖ 2n
n−2
≤ Cs ‖u‖1,2

holds for any function u in W 1,2(X), and that the Sobolev embeddings of W 1,2(X)
in Lp(X) for p between 1 and 2n/(n − 2), have the same properties as in the case of
compact smooth manifolds. Furthermore, the Laplacian operator ∆g can be de�ned: it
is the Friedrichs extension of the appropriate quadratic form.
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The main goal of this thesis consists in showing how certain classical results in
Riemannian geometry and global analysis on compact smooth manifolds can be extended
to strati�ed spaces, and to study then their consequences on the resolution of a problem
in geometric analysis, the Yamabe problem. This latter consists in looking for a metric
with constant scalar curvature in the conformal class of a given metric g, that is the
set of all the metrics which are obtained from g by multiplication by a smooth positive
function:

[g] = {g̃ = fg, pour f ∈ C∞(M), f > 0}.

In the case of a compact Riemannian surface, there always exists a conformal metric
with constant Gauss curvature equal to 1, 0 or -1, thanks to Poincaré's uniformization
theorem. Moreover, this implies that the given surface is conformal to a quotient,
respectively of the sphere S2, of the Euclidean plane R2 or of the hyperbolic plane H2.
For a compact smooth manifold of dimension larger than three, the problem has been
formulated by H. Yamabe [Yam60] in 1960 and solved afterwards through the works of
various mathematicians, N. Trudinger, T. Aubin, R. Schoen ([Tru68], [Aub76a], [Sch84]).
The approach which has been used relies on the comprehension of a conformal invariant,
the Yamabe constant, which is the in�mum of the integral of the scalar curvature among
the conformal metrics of volume one:

Y (M, [g]) = inf

{∫
M
Scalg̃dvg̃, t.q. g̃ ∈ [g] et Volg̃(M) = 1

}
.

A metric which attains this constant is called a Yamabe metric and it has constant scalar
curvature, but vice versa, a metric with constant scalar curvature is not necessarily a
Yamabe metric, since it is not necessarily minimizing.

The starting questions of this work come from the recent article by K. Akutagawa,
G. Carron and R. Mazzeo [ACM14], which gives the appropriate setting to study the
Yamabe problem on strati�ed spaces, through an approach similar to the one developed
by N. Trudinger and T. Aubin in the case of compact smooth manifolds. Moreover,
the authors prove, among others, that a Yamabe metric exists if the scalar curvature
satis�es an integrability condition and if the Yamabe constant of the space is strictly less
than a conformal invariant, the local Yamabe constant. Now, the explicit value of this
invariant is known only in a few cases, and to �nd conditions for which the inequality
is strict is not trivial. It would also be desirable to have a rigidity result in the case of
equality.

As it often happens in research, and maybe not only in research, the best questions
are not the ones leading to an answer, but the ones that give birth to other questions.
The initial problem of computing the local Yamabe constant led me to study the prop-
erties of strati�ed spaces whose Ricci tensor is bounded by below on the regular set. For
a compact smooth manifold with Ricci tensor bounded by below we have a well-known
result, due to A. Lichnerowicz and M. Obata:
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Theorem (Lichnerowicz-Obata). Let (M, g) be a compact Riemannian manifold of di-
mension n, with Ricci tensor bounded by below by a positive constant k, Ricg ≥ kg.
Then the �rst non-zero eigenvalue of the Laplacian is larger or equal to kn, with equal-
ity if and only if (M, g) is isometric to the sphere Sn of radius 1/

√
k endowed with the

canonical metric.

Moreover, any complete manifold with Ricci tensor bounded by below is in fact
compact:

Theorem (Myers). Let (M, g) be a complete Riemannian manifold of dimension n, with
Ricci tensor bounded by below by a positive constant k. Then the diameter of (Mn, g) is
less or equal than π/

√
k.

We can extend part of these results to a large class of strati�ed spaces, which we
can considered as spaces with Ricci tensor bounded by below by a positive constant.
The �rst condition to ask is clearly that the Ricci tensor is bounded by below on the
regular set. We have to ask for a further condition concerning the singular stratum of
codimension equal to two. Indeed, the local model around a point of this stratum is the
product between an Euclidean ball and a cone over a circle: the angle of this cone can
be smaller or larger than 2π, depending on whether the radius of the circle is smaller or
larger than 1. This leads to two di�erent geometric situations, since a cone is a metric
space of positive curvature in the sense of Alexandrov if its angle is smaller than 2π, and
of negative curvature if its angle is larger than 2π. Therefore, the presence of a stratum
of codimension two and cone angle larger than 2π introduces in some sense negative
curvature, and it generates an obstacle to prove results analogous to the previous ones.

We consider then the notion of admissible strati�ed space, which in addition to
having Ricci tensor bounded by below on the regular set by the dimension of the space
minus one, does not posses any singular stratum of codimension two and cone angle
larger than 2π. In this context we prove the following theorem:

Theorem A (Singular Lichnerowicz). Let (X, g) be an admissible strati�ed space of
dimension n. Then the �rst non-zero eigenvalue of the Laplacian operator is larger than
or equal to n.

K. Bacher and K.-T. Sturm [BS14] have proven a Lichneorowicz theorem for cones
and spherical suspension whose basis is a compact Riemannian manifold with Ricci ten-
sor bounded by below, that is strati�ed space with respectively one and two isolated
conical singularities. The techniques that they use are based on a curvature-dimension
condition in the sense of Sturm-Lott-Villani. Our result applies to more general singu-
larities than conical isolated singularities, and its proof is more similar to the classical
demonstration for the regular case, since it is mainly based on the Bochner-Lichnerowicz
formula.

Our singular version of the Lichnerowicz theorem a�rms, in analytical terms, the
existence of a spectral gap. This latter, together with the existence of a Sobolev in-
equality on a strati�ed space, allows us to obtain a re�ned Sobolev inequality, for which
the constants appearing in the right-hand side only depends on the volume and on the
dimension of the space:
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Theorem B. Let (X, g) be an admissible strati�ed space of dimension n. For any p
between 1 and 2n/(n − 2), and for any function f in W 1,2(X), the following Sobolev
inequality holds:

V
1− 2

p ‖f‖2p ≤ ‖f‖
2
2 +

p− 2

n
‖df‖22 ,

where V is the volume of X with respect to the metric g.

This result is inspired by a theorem due to D. Bakry, contained in [Bak94]. The
works of this latter and M. Ledoux also showed that the Myers theorem can be proven
by using analytical tools only, provided that the spectral gap exists and a Sobolev
inequality analogous to the one proven in Theorem B holds. As a consequence, we can
apply the proof of [BL96] and deduce:

Corollary C (Singular Myers). Let (X, g) be an admissible strati�ed space of dimension
n. Then its diameter is smaller or equal than π.

Furthermoree, we also prove that the diameter attains its upper bound π if and only
if the �rst non-zero eigenvalue of the Laplacian is equal to the dimension of the space.
More precisely, we have the following result:

Corollary D. Let (X, g) be an admissible strati�ed space of dimension n. The following
statements are equivalent:

(i) The �rst non-zero eigenvalue of the Laplacian ∆g is equal to n.

(ii) The diameter of X is equal to π.

(iii) There exist extremal functions for the Sobolev inequality.

With extremal functions we mean functions attaining the equality in the Sobolev
inequality obtained in Theorem B.

It would be also interesting to get a rigidity result in the spirit of Obata's theorem,
when the �rst non-zero eigenvalue of the Laplacian is equal to the dimension of the
space. The fact that λ1(∆g) = n is equivalent to having diameter equal to π makes this
kind of result very probable, but, when we try to adapt the classical proof to this case,
we encounter some obstacles related to the uniqueness and the regularity of minimizing
geodesics: the problem is not trivial to solve.

There exist similar versions of the Lichnerowicz-Obata and Myers theorems for
metric-measure spaces satisfying a curvature-dimension condition, which rely on a re-
cent splitting theorem by N. Gigli [Gig13] (see [Ket14]). Our results are less general,
but our proofs have the advantage to mainly use tools of classical Riemannian geometry.

Theorems A and B have direct consequences on the study of the Yamabe problem
for strati�ed spaces. Indeed, the �rst theorem allows us to deduce a lower bound on the
Yamabe constant, which is attained in the case of Einstein metric:
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Corollary E. Let (X, g) be an admissible strati�ed space of dimension n. Then its
Yamabe constant satis�es

Y (X, [g]) ≥ n(n− 2)

4
Volg(X)

2
n =

(
Volg(X)

Vol(Sn)

) 2
n

Yn.

where Yn is the Yamabe constant of the sphere Sn. The equality is attained in the previous
inequality if the metric is an Einstein metric.

This extends an analogous theorem by J. Petean in [Pet09], which states the exis-
tence of the same bound by below for the Yamabe constant of a cone over a compact
Riemannian manifold with Ricci tensor bounded by below by a positive constant. This
results relies on the study of the isoperimetric domains in cones, similar to the one of
F. Morgan and M. Ritoré in [MR02]. It would be interesting to extend this argument
to cones over admissible strati�ed spaces, provided that the Hausdor� dimension of the
singular set is smaller than (n− 3).

One of the interests of the previous result is that it can be applied to compute the
local Yamabe constant of a strati�ed space whose links are endowed with an Einstein
metric. This condition is motivated by the fact that, if the scalar curvature of each link
Z of dimension d is equal to d(d− 1), then the curvature of the whole space satis�es the
integrability condition which is necessary to apply the existence theorem in [ACM14].
We obtain:

Theorem F. Let (X, g) be a strati�ed space of dimension n with singular strata Xj and
links (Zj , kj) of dimension dj. Assume that any of the links is a circle of radius larger
than one, and that for every j the metric kj on Zj is an Einstein metric. Then the local
Yamabe constant of (X, g) is equal to:

Y`(X) = inf
j

{(
Volkj (Zj)

Vol(Sdj )

) 2
n

Yn

}
This result allows us to compute the local Yamabe constant of numerous cases, like

for example a strati�ed space with a stratum of codimension equal to two and cone
angle less than 2π. In particular it can be applied to orbifolds, and it extends a theorem
of K. Akutagawa and B. Botvinnik holding for orbifolds with isolated singularities.

The case which is not included in the previous theorem is the one of a stratum of
codimension two and cone angle larger than 2π. We are going to treat this situation
with a di�erent approach, which depends on the relation between an optimal Sobolev
inequality and the isoperimetric inequality, and which we explain in what follows. By
following a strategy based on smoothing the conic metric and on studying the isoperi-
metric pro�les, we prove the following theorem:

Theorem G. Let us consider the product Rn−2×C(S1
a), where S1

a is the circle of radius
a > 1 endowed with the metric g, product between the euclidean metric ξ on Rn−2 and
the conic metric dr2 + (ar)2dθ2 on C(S1

a):

g = ξ + dr2 + (ar)2dθ2.
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Let Ig : (0, volg(X)/2]→ R the isoperimetric pro�le associated to g:

Ig(v) = inf{Volg(∂E), E ⊂ X, s.t. ∂E is piecewise smooth ,Volg(E) = v}.

Then Ig coincides with the euclidean isoperimetric pro�le In(v) = cnv
1− 1

n .

The proof shows that the cone C(S1
a) can be approximated by Cartan-Hadamard

surfaces, which are complete, simply connected, with negative sectional curvature. It
uses a result of A. Weil [Wei26], which has proven the Cartan-Hadamard conjecture in
dimension 2, and a result of A. Ros about the isoperimetric pro�le of a Riemannian
product.

This allows us to adapt a classical argument due to G. Talenti [Tal76] (and proven
indipendently by T. Aubin in [Aub76b]) about the optimal Sobolev inequality in order
to deduce:

Corollary H. Let (X, g) be a strati�ed space of dimension n with one singular stratum
of codimension two and cone angle larger than 2π. Then its local Yamabe constant
coincides with the one of the sphere Sn.

We can then improve Theorem F by taking away the hypothesis about the stratum
of codimension two, and we can reformulate it in the following way:

Theorem I. Let (X, g) be a strati�ed space of dimension n with singular strata Xj and
links (Zj , kj) of dimension dj. If for every j the metric kj on the link Zj is an Einstein
metric, then the local Yamabe constant of (X, g) is equal to:

Y`(X) = inf
j

{
Yn,

(
Volkj (Zj)

Vol(Sdj )

) 2
n

Yn

}

The previous result answers completely to the question of computing the local Yam-
abe constant of any strati�ed space whose links are endowed of an Einstein metric. We
present here another possible approach to treat this problem, which is inspired by an-
other result by M. Obata. Let (Mn, g) be a compact smooth manifold of dimension
larger or equal than three: if g is an Einstein metric, then it attains the Yamabe con-
stant, and any other metric conformal to g with constant scalar curvature is homothetic
to g.

The proof consists in showing that if there exists another metric conformal to g with
constant scalar curvature, which is not homothetic to g, then there exists an eigenfunc-
tion for the eigenvalue n, and (Mn, g) is isometric to the sphere. We show an analogous
result by adapting an argument used by J. Viaclovsky in [Via10]:

Theorem J. Let (Xn, g) be an admissible Einstein strati�ed space. If there exists a
conformal metric, not homothetic to g and with constant scalar curvature, then the
Einstein metric is a Yamabe metric.
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The di�culty of this approach is that it needs a result of existence of a Yamabe
metric on a strati�ed space. Nevertheless, we can give a class of examples for which
the existence holds. If we consider a compact Einstein manifold (Zd, k) we have the
following conformal equivalences:(

Hn−d × Zd, [gH + k]
)
∼=
(
Rn−d−1 × Zd, [ξ + dr2 + r2k]

)
∼=
(
C(Ẑ), [dt2 + sin2(t)h]

)
.

where Ẑ and its metric h are de�ned by:

Ẑ =
[
0,
π

2

]
× Sn−d−3 × Zd

h = dψ2 + cos2(ψ)gS + sin2(t)k.

The cone over Ŝ is a compact strati�ed space of dimension n, endowed with the Einstein
metric dt2+sin2(t)h. Now, a theorem due to K. Akutagawa, proven by N. Grosse [Gro13],
which concerns the existence of a Yamabe metric on complete manifolds, can be applied
to the product Hn−d × Zd. We give an alternative and more direct proof, which uses
the Moser iteration technique, of this result of N. Grosse:

Theorem. Let (Mn, g) be a complete smooth manifold of dimension n ≥ 3. Assume
that there exists a subgroup og isometries Γ ⊂ Isom(M) and a compact K such that for
any x ∈M there exists an isometry γ in Γ which sends x in K. If the scalar curvature
of g is positive and if the Yamabe constant Y (M, [g]) is strictly smaller than Yn, then
there exists a Yamabe metric in the conformal class of g.

As a consequence, we have that the product Hn−d × Zd admits a Yamabe metric
provided that it has positive scalar curvature: then if we assume that d is strictly
larger than n/2, the exists a Yamabe metric on the cone C(Ẑ). Therefore we can apply
Theorem J and deduce from it that the Einstein metric attains the Yamabe constant.
This also allows one to �nd the value of the local Yamabe constant of Theorem F for a
strati�ed space of dimension n, whose links are compact smooth Einstein manifolds of
dimension strictly larger than n/2.

We conclude this introduction with some perspectives of the work to come, which
motivate the results presented above. Knowing the value of the local Yamabe constant
naturally opens the way to further questions: under which conditions can we have the
strict inequality between the local and global Yamabe constants, and thus existence of
a Yamabe metric? What happens when the equality occurs?

In the case of a compact smooth manifold (Mn, g), the local Yamabe constant is equal
to the one of the sphere Yn, and a Yamabe metric exists when the Yamabe constant
is strictly smaller than Yn. Now, T. Aubin showed that for any compact manifold of
dimension larger than or equal to 6 and not locally conformally �at metric, the strict
inequality:

Y (Mn, [g]) < Yn,
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is satis�ed. His argument is local and it is based on using the appropriate test functions,
whose support is contained in a ball. If we consider a strati�ed space of dimension larger
than or equal to 6, with only one singular stratum of codimension two and cone angle
larger than 2π, we know thanks to Corollary H that its local Yamabe constant is equal
to Yn. If the metric is not locally conformally �at, by using the same test functions
as T. Aubin around a regular point, we then get the same result, that is, the global
Yamabe constant of the space is strictly smaller than its local Yamabe constant Yn. In
particular, a Yamabe metric exists in this case.

The problem is di�erent for small dimension, equal to 3, 4 or 5, and for a locally
conformally �at metric on the regular set. R. Schoen [Sch84] has shown, thanks to his
works with S.T. Yau concerning the positive mass theorem, that if Y (Mn, [g]) coincides
with Yn, then the manifold is conformally equivalent to the canonical sphere Sn. An
analogous rigidity theorem has been proven by E. Witten in any dimension when the
manifold is supposed to be spin. It is then reasonable to believe that some of the tools
developed by R. Schoen and E. Witten can be extended to the case of strati�ed spaces
with one stratum of codimension two and cone angle larger than 2π.

If we consider a strati�ed space with one stratum of codimension two and cone angle
α smaller than 2π, we have shown that its local Yamabe constant is strictly smaller than
the one of the sphere. In particular, it is equal to:

Y`(X) =
( α

2π

) 2
n
Yn.

As a consequence, to use test functions with support in a ball of the regular set as
in the previous case does not give any information about the relationship between the
global and local Yamabe constant. One could take inspiration from the study proposed
by J.M. Lee and T.H. Parker of the expansion of the Green function associated to the
conformal Laplacian (see [LP87]): by adapting this approach in a neighbourhood of a
singular point one could seek for a relationship between the coe�cients of this expansion
and the cone angle α. This may suggest the conditions to choose in order to have strict
inequality between the global and local Yamabe constant.

Finally, it is also important to remember that J. Viaclovsky has exhibited in
[Via10] an example of an orbifold with one isolated singularity whose Yamabe constant
coincides with the local one, and for which a Yamabe metric does not exist. It is then
possible that other examples of non-existence occur, and it would be interesting to
study (and classify?) them.
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Outline of the thesis

Chapter 1 is devoted to geometric and analytic de�nitions concerning strati�ed
spaces, to the examples, and to the presentation of various known results about Sobolev
spaces and solutions to the Schrödinger equations in the singular setting. It is mainly
based on [Klo09], [ALMP12], [ACM14] and [ACM15]. We also prove a regularity result
for the gradient of a solution to the Schrödinger equation which is based on the spectral
geometry of the links, and which represents a useful technical tool for many of the
proofs in what follows.

In Chapter 2 we collect and prove the new results about admissible strati�ed spaces:
in particular, one �nds there the proofs of Theorems A, B and Corollary D.

Chapter 3 brie�y presents the Yamabe problem on compact smooth manifolds and
the results obtained in [ACM14] in the setting of strati�ed spaces. This part does not
contain any new result, but it is important to motivate and understand what comes next.

Finally, the last Chapter is devoted to build up the connections between the results
proven for admissible strati�ed spaces and the initial question of computing the local
Yamabe constant. We prove there Corollary E and Theorem F. A second part of the
chapter presents Theorem G with its consequence H. We conclude by the approach à la
Obata with the proof of Theorem J and the reformulation of the theorem of N. Grosse
for almost homogeneous manifolds.
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Chapter 1

Strati�ed spaces

In this chapter we are going to present in details the setting of our results: we �rst
give the de�nition of strati�cation and smooth strati�cation of a topological space, then
we recall the main geometric properties and analytical tools that we will need in the
following. We refer to [ALMP12], [ACM14] and [ACM15] for most of the de�nitions and
the proofs.

1.1 Geometric Aspects of Strati�ed Spaces

The notion of strati�cation was originally introduced in topology by H. Whitney, with
the idea of partitioning a topological space in simpler elements glued together in an
appropriate way. If these elements are manifolds, we have roughly speaking a smooth
strati�cation, and in particular we can consider Riemannian metrics on each element of
it. For the sake of completeness, we brie�y recall the de�nition of strati�cation from
a topological point of view, by following the survey [Klo09] of B. Kloeckner. Next we
describe the notion of smoothly strati�ed space as presented in [ALMP12] and [ACM14],
together with some examples. We also give the de�nition of an admissible metric and a
description of the local geometry with respect to this metric which follows [ACM15].

1.1.1 De�nitions

The most general de�nition of strati�cation reads as follows: given a metrizable and
separable topological space X, a strati�cation of X is a partition S = {Xj}j=0...N whose
elements Xj , called strata, are locally closed, and which satisfy for all j1, j2 ∈ [0, N ]:

Xj1 ∩ X̄j2 6= ∅ if and only if Xj1 ⊂ X̄j2 .

We refer to the couple (X,S) as a strati�ed space.
It is also possible to consider a decomposition of the form:

X = XN ⊃ XN−1 ⊃ . . . ⊃ X0 (1.1)
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where Xj , for j = 0, . . . N , is closed. By de�ning Xj = Xj \Xj−1 we obtain a partition
as above with X̄j = Xj . Given a partition S, we can always get a decomposition of the
form (1.1). In order to explain how, we de�ne the notion of topological depth:

De�nition 1. Let (X,S) be a strati�ed space. The topological depth of a stratum
Xj ∈ S is the largest integer q such that there exists a chain Xj0 , . . . Xjq such that
Xjq = Xj and Xji ⊂ X̄ji−1 for i = 1, . . . q. We denote q = deptht(X

j). The topological
depth of X is the maximum among the topological depths of the strata:

deptht(X) = max
j=1,...N

deptht(X
j).

Note that we are following the same convention for the inclusions Xji ⊂ X̄ji−1 as in
[ALMP12]. Given a strati�ed space (X,S) of topological depth equal to q ∈ N, we can
de�ne for any positive integer k less than or equal to q:

Xq−k =
⋃

deptht(Xj)≥k

X̄j .

and obtain a decomposition of the form (1.1): Xq ⊃ Xq−1 ⊃ . . . ⊃ X0 for Xj closed.

We are interested in compact smoothly strati�ed spaces: this means that the strata
must be smooth manifolds of varying dimensions, and moreover that we require a more
speci�c condition on how they are related. We will ask that for each stratum there exists
a tubular neighbourhood with a precise structure, which is locally cone-like. We specify
here that with a truncated cone C(Z) over a topological space we mean the product
[0, 1] × Z with the equivalence relation (0, z1) ∼ (0, z2) for all z1, z2 ∈ Z: this means
that we identify all the points of Z × {0} to a unique point, the vertex of the cone.

De�nition 2 (Smoothly Strati�ed Spaces). Let X be a compact strati�ed space with
strati�cation

S = {Xj}j=1...n

We say that X is a smoothly strati�ed space if the following are satis�ed:

1. Each stratum Xj is a smooth manifold of dimension j, possibly disconnected,
Xn−1 is empty and Xn is open and dense in X;

2. For each j = 1 . . . n and each connected component of Xj there exists a tubular
neighbourhood Uj of Xj , a retraction πj , a radial function ρj

πj : Uj → Xj , ρj : Uj → [0, 1].

and a smoothly strati�ed space Zj , such that πj is a cone bundle, whose �bre in
each point is a truncated cone over Zj . The strati�ed space Zj is called the link
of the stratum Xj .
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We also observe that the level set ∂Uj = ρ−1
j (1) is the total space of a bundle

πj : ∂Uj → Xj with �bre Zj . We will not distinguish between this latter and the cone
bundle of the de�nition.

By our de�nition, a smoothly strati�ed space contains an open dense subset which is
a smooth manifold. We will refer to this dense subset, which is the stratum of maximal
dimension Xn, as the regular set of X, and we will denote it Ω or Xreg. The dimension
of a smoothly strati�ed space is then de�ned as the one of the regular set. Observe that
as a consequence, for any j = 1, . . . , n the dimension of the link Zj must be equal to
dj = n − j − 1. With the singular set of X we mean X \ Ω, and we denote it by Σ or
Xsing.

Note that for a smoothly strati�ed space, we can easily obtain a decomposition of
the form (1.1) without using the notion of topological depth but only the dimensions of
the strata. In fact, if (X,S) is a smoothly strati�ed space of dimension n we can de�ne
for any integer k less or equal than (n− 2)

Xk =
⋃

dim(Xj)≤k

Xj , Xn = X.

and we will have:
Xn ⊃ Xn−2 ⊃ . . . ⊃ X0. (1.2)

The regular set of X will be then X \ Xn−2, and the singular set Xn−2. This is the
notation that is used in [ACM15] and [Mon14]. Vice-versa, if we start with a decompo-
sition of X based on the dimensions as in (1.2), we can get back to the De�nition 2 by
de�ning each stratum as Xj = Xj \Xj−1.

We are going to describe more in detail the local structure of a strati�ed space X.
By de�nition, for any j = 1, . . . , n we have a cone bundle πj : Uj → Xj . Thus for
any point x ∈ Xj there exist a trivializing neighbourhood Bj(x) and a local continuous
trivialization ϕx such that

ϕx : Bj(x)× C(Zj)→Wx = π−1
j (Bj(x)). (1.3)

satis�es πj ◦ ϕx = π̃1, where π̃1 is the projection on the �rst factor of the product
Bj(x) × C(Zj). For simplicity we can identify the neighbourhood Bj(x) with an open
ball in Rj , by using local coordinates in Xj , so that we can summarize the preceding
as follows: for each point x ∈ Xj there exist a neighbourhood Wx, a positive radius δx
and an homeomorphism

ϕx : B(δx)× Cδx(Zj)→Wx (1.4)

where B(δx) is a ball in Rj centred in 0 of radius δx, and Cδx(Zj) is the truncated cone
over Zj of size δx; moreover ϕx restricts to a di�eomorphism on the regular sets, which
are respectively Wx ∩ Ω and

B(δx)× Cδx(Zreg

j ) \ B(δx)× {0}.

This homeomorphism will be considered in the following as an identi�cation between
Wx and the product Bj(δx)× Cδx(Zj).
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Let us introduce an iterative de�nition of depth which is more suitable to smoothly
strati�ed spaces and follows the one given in Section 2 of [ACM14]. We underline that
this notion of depth is not equivalent to the one given in De�nition 2: this is the reason
why we refer to the previous as topological depth instead of only depth, as it was done
previously in the literature about strati�ed spaces.

De�nition 3. Let X be a compact smooth manifold: then we de�ne its depth to be
equal to zero. Assume that for any positive integer k less or equal than q > 0 we have
de�ned a smoothly strati�ed space of depth k, and consider Z a smoothly strati�ed
space of depth equal to q. If X is a smoothly strati�ed space with one stratum whose
link is Z, then we de�ne its depth to be equal to :

depth(X) = q + 1

More generally, if X has strata Xj , j = 1, . . . n, with links Zj , we have:

d(X) = 1 + max
j=1,...n
j 6=n−1

{depth(Zj)}.

Note that we will often refer to the depth of a stratum as the depth of its link.
Roughly speaking, the depth tells us how much the local structure in cones is compli-

cated, or how many steps we have to do to get to a smooth link. The previous de�nition
can be be reformulated in the following way: the idea consists in decomposing a strati-
�ed space X into two subsets, one containing all the strata of maximal depth, and the
other one not containing any of the strata of maximal depth.

De�nition 4. Let d ≥ 0 be an integer. We de�ne the class Id of smoothly strati�ed
spaces of depth d iteratively:

1. An element of I0 is a compact smooth manifold;

2. A smoothly strati�ed space belongs to Id if it can be decomposed in the union
X ′ ∪X ′′, where X ′ is an element of Id−1 with a codimension one boundary along
the intersection X ′∩X ′′. As for X ′′, each of its connected components is the total
space of a bundle over a compact base, with �bre C(Z) for some Z ∈ Id−1.

Before giving some examples, we brie�y explain what we mean for a two-dimensional
cone of angle α. In order to construct a cone we can imagine to have a circular sector
of angle α, smaller that 2π, and identify the two radii that delimit it: we will simply
have a cone of angle α, which is also a cone over a circle S1 of radius a = α/2π smaller
than 1. If α is equal to 2π, we have clearly nothing to do. We also admit cones of
angle α greater than 2π: in order to imagine the form that this cone takes, we can
think of a plane, cut along a half-line, and we add a circular sector of angle β such that
α = 2π + β. Then we identify along the cut and get a cone of angle bigger that 2π,
which corresponds to a cone over a circle S1 of radius greater than one. In both cases
we will denote a two dimensional cone of angle α > 0 as C(R/αZ). Note that the cone
of angle α has positive curvature in the sense of Alexandrov when α is less than 2π, and
negative curvature in the sense of Alexandrov otherwise: we refer to the complete book
[BBI01], and in particular to the example 4.1.4.
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1.1.2 Examples

We �rst give three examples that belongs to the class of the manifolds with simple edges:
these are nothing but strati�ed spaces whose links are compact smooth manifolds. In
particular they have depth equal to one.

Conical singularities: The simplest example of compact smoothly strati�ed space
is a manifold X of dimension n with isolated conical singularities p0, . . . pk. In this case
we have only two strata: Xn = X \ {p0, . . . pk} and X0 = {p0, . . . pk}. The link of each
conical point in X0 is a compact manifold of dimension (n − 1). Surfaces with conical
singularities arise very easily as quotients: for example, if we consider the sphere S2

and the rotation ξ of angle π around an axis, the quotient of S2 by the group generated
by ξ is an American football, with two conical singularities at the South and North pole.

We give here an example in which conical singularities of angle bigger than 2π
appear very easily.

A surface of genus two with conical singularities: Consider �ve (empty)
cubes glued together in order to form a Greek cross and identify the upper face
with the one on the right, and the lower face with the one on the left. We obtain
a surface S of genus equal to two with a conical singularity at each of the eight
vertices of the interior cube. The cone angle measures 5π/2: in fact, the circular
sector around an interior vertex comes from the three faces of the cross that contains
it, two of them contributing for an angle of π/2 and the third one giving an angle of 3π/2.

Pinched curve: We can have conical singularities along a curve instead of isolated
ones. Consider a curve in a compact smooth manifold Mn of dimension n = 3 and a
tubular neighbourhood of the curve. We can pinch this tubular neighbourhood at each
point along the curve and create a singularity: a section of the tubular neighbourhood,
that is a disk, is replaced by a cone over a circle. Therefore, each point of the curve
has a neighbourhood which is the product of an interval (−ε, ε), for ε > 0, with a cone
C(R/αZ) of angle α > 0. Again we will have two strata, the pinched curve, and the
regular set.

Manifolds with simple edges: We can imagine to apply a construction similar to
the previous one for arbitrary dimension n, for a manifold Mn with boundary ∂M . We
assume that the boundary is the total space for a bundle π with base B and �bre Z, for
Z and B compact smooth manifolds: we can then obtain a bundle π̂ with total space
[0, 1] × ∂M , same base and �bre [0, 1] × Z. We replace this latter with a cone bundle
by gluing the �bres at {0}×Z: this means that we identify via the equivalence relation
(0, x) ∼ (0, y) if and only if π̂(0, x) = π̃(0, y). Therefore we obtain a cone bundle with
�bre C(Z). In this case we refer to the singular space that we have constructed as a
manifold with simple edges, that is a strati�ed space of depth equal to one, whose links
are compact smooth manifolds.
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Our de�nition includes spaces that are more singular than manifolds with simple
edges, since we allow the link to be a strati�ed space as well. Note also that the
previous examples have all depth equal to one. We describe four examples of depth
equal to two that help to visualize a more singular situation.

Intersecting pinched curves: Consider a smooth manifold M3 and two curves γ1

and γ2 intersecting transversally in one point p0. If we repeat the construction above
along the two curves, the point p0 will give us a stratum of depth equal to two. In fact,
a neighbourhood of p0 will be a cone over a sphere S2 with four conical singularities,
coming from the four points in which the neighbourhood intersects the curves γ1 and
γ2. Therefore, we will have the regular set, the stratum of depth one given by the two
curves without the point of intersection p0, and the stratum of depth two consisting in p0.

The double cube: Consider a solid cube C1 and a copy C2 of it: if we identify each
face of C1 with one face of C2, we obtain a strati�ed space of depth equal to two. Each
identi�ed edge gives us a stratum of depth one along which the conical singularities
have cone angle equal to π: this means that a neighbourhood of a point belonging only
to one edge is the product of an interval with a cone over a circle of radius 1/2. The
eight identi�ed vertices are a stratum of depth two, and a neighbourhood of one vertex
is a cone over a sphere S2 having three conical singularities of angle π, coming from the
three points in which a neighbourhood of a vertex intersects the edges.

The double cross: Consider �ve solid cubes glued together in order to form
a Greek cross and denote this solid by G1. Take a copy G2 of it and as for the
double cube identify each face of G1 with the copied face in G2. We have again a
strati�ed space of depth equal to two: the identi�ed edges give a stratum of depth
one and the vertices a stratum of depth two. There is a di�erence between the
interior vertices and edges of the cross, that is the eight vertices and four edges
of the central cube, and the exterior ones. These latter behave like in the case
of the double cube: along the exterior edges we have conical singularities of cone
angle π, and each exterior vertex is the vertex of a cone over a sphere with three
conical singularities of angle π. As for the interior edges, at each point we have to
imagine that we glue together two circular sectors of angle 3π/2: this means that at
each point the cone angle is 3π. Therefore, a neighbourhood of an interior vertex is a
cone over a sphere with three singularities, one of cone angle 3π and two of cone angle π.

Orbifolds: An n-orbifold with isolated singularities is a locally compact Hausdor�
space M with singularities Σ = {(p1,Γ1), . . . , (ps,Γs)} such that M \ Σ is a smooth
manifold of dimension n, Γj is a �nite subgroup of O(n) acting freely on Rn \ {0} and
there exist an open neighbourhood Uj and a homeomorphism ϕj : Uj → Bn(0)/Γj , for
any j = 1, . . . s. This last quotient is homeomorphic to a cone over Sn−1/Γj , so that we
can see an orbifold as a strati�ed space with singular set Σ and of depth equal to two.

We can consider more in general orbifolds whose singularities are not isolated: there
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exists an atlas (Ui, Ũi, ϕi,Γi), where Ũi is an open set Rn on which the �nite subgroup
Γi acts, not necessarily freely, and ϕi is a homeomorphism between Ũi/Γi and Ui. See
[Joy00], Section 6.5, for a more detailed de�nition.

Consider for simplicity an action of a �nite group G in O(n) on Rn, and the quotient
Rn/G. By following the discussion in Section 9.1 of [Joy00], we know that a singular
point vG of Rn/G is such that v is �xed by a subgroup Γ of G. Moreover, a neighbour-
hood of vG has the form of a product:

V k ×Wn−k/Γ.

where V k is the k-dimensional vector space of Rn which is �xed by Γ, and Wn−k is its
orthogonal complement. This is clearly homeomorphic to Rk × C(Sn−k−1/Γ), and thus
the quotient Rn/G has the structure of a strati�ed space. This discussion clearly holds
for an n-orbifold, which is as a consequence a strati�ed space of depth at most equal to
two.

1.1.3 Iterated edge metrics

The goal of this section is to de�ne an admissible metric on a smoothly strati�ed space,
with the basic idea that it must be a smooth Riemannian metric on the regular set
behaving in the appropriate way near the singular strata: this means that an admissible
metric must agree with the local structure given by the cone bundles. We refer to
Section 3 of [ALMP12], where the existence of an admissible metric on a strati�ed space
is proven, and to Section 2.1 of [ACM14].

We are going to give an iterative de�nition based on the depth of the space. If the
depth is equal to zero, X is a compact smooth manifold and an admissible metric is
clearly a Riemannian metric.

Let q be an integer and assume that we have de�ned an admissible metric on all
smoothly strati�ed spaces of depth q − 1. Consider a smoothly strati�ed space X of
depth d(X) = q: then by de�nition of depth we can decompose X in X ′ and X ′′ in such
a way that X ′ belongs to the class Iq−1, and X ′′ contains the stratum Xj of maximal
depth q. Then each connected component of X ′′ admits a neighbourhood Uj which is
the total space of a cone bundle with �bre C(Zj), and Zj is the link of depth (q − 1).
By the iteration argument, an admissible metric exists on X ′ and on Zj : it remains to
describe the behaviour of the metric on each Uj .

Consider ∂Uj = ρ−1
j (1) and k a symmetric 2-tensor on ∂Uj which restricts to an

admissible metric on each �bre of the bundle πj : ∂Uj → Xj and vanishes on a j-
dimensional subspace. Let h be a smooth Riemannian metric on Xj . Then we de�ne
the model metric on Uj as:

g0 = π∗jh+ dρ2
j + ρ2

jk. (1.5)

This means in particular that the metric induced by g0 on each �bre of the cone
bundle πj : Uj → Xj is an exact cone metric. An admissible metric g is then a metric
de�ned by the inductive hypothesis away from Uj and which is a perturbation of the
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model metric on Uj . This means that there exist γ > 0 and a positive constant C such
that:

|g − g0|g0 ≤ Cρ
γ
j on Uj .

Furthermore we require that (g− g0) vanishes at ρj = 0. To be more explicit, let X
be a smoothly strati�ed space of depth q with strata Xj , j = 1, . . . n and links Zj , each
of depth strictly inferior to q. For any j = 1, . . . n, let kj be an admissible metric on
Zj and hj a Riemannian metric on Xj . Then an admissible metric g on X is a smooth
Riemannian metric on the regular set Xreg which near each stratum takes the form:

π∗jhj + dρ2
j + ρ2

jkj + E.

where E is a perturbation decaying as ργj , γ > 0, as speci�ed above.
We refer to g as an admissible metric or more often as an iterated edge metric on

X. From now on we will denote by (X, g) a smoothly strati�ed space X endowed with
iterated edge metric g, and we will refer to it simply as a strati�ed space.

Remark 1.1. Let x ∈ Xj and consider local coordinates y on Xj and z on the link Zj
such that at x we have ρj = 0, y = 0 and z = z0. Then the model metric at x is the
product metric between the Euclidean metric on Rj and the exact cone metric dρ2

j+ρ2
jkj

on C(Zj).

Remark 1.2. The model metric g0 is often referred as a rigid iterated edge metric in the
literature: see for example [ALMP12], or Section 1 of [BV14]. In Section 3 of [ALMP12]
it is also shown that any two admissible metrics on a strati�ed space are quasi-isometric.

A covering of X adapted to the metric

We can give a �nite covering of (X, g) with open sets Wα in such a way that on each
Wα the metric g is "not far" from the model metric.

More precisely, we know that for each point x ∈ Xj we have a neighbourhood Wx,
and a radius δx > 0 such that Wx is homeomorphic to Bj(δx) × Cδx(Zj). Since X is
compact, we can choose a �nite number of such open neighbourhoods Wα which cover
X. The covering is such that for each α there exist δα > 0, an open set Uα in Rdα , a
compact strati�ed space Zα of dimension (n−dα−1) and a homeomorphism ϕα between
Wα and Uα × Cδα(Zα). Moreover, we can construct the covering in such a way that
there exists η > 0 such that for any radius r < η and any point x ∈ X the ball centred
at x of radius r is included in at least one of the open sets Wα.

Each Zα is endowed with a family of iterated edge metrics {kα(y), y ∈ Uα}, and Uα
carries a smooth Riemannian metric hα. Then there exist positive constants Λ, γ such
that for each α the metric g satis�es on Wα:

|ϕ∗g − (hα + dr2 + r2kα)| ≤ Λrγ .

where r is the radial function on the cone Cδα(Zα).
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Remark 1.3. It is possible to consider metrics of lower regularity: for example we can
ask that hα, and thus g on the regular set, is only γ-Hölder continuous. Most of the
proofs we are going to present hold with this assumption as well, but for simplicity we
only consider smooth metrics.

1.1.4 Tangent Cones

A useful tool to study strati�ed spaces is given by tangent cones, which generalize the
notion of the tangent space. In fact, given a strati�ed space (X, g) with regular set Ω
and singular set Σ, we cannot de�ne the tangent space at any singular point x belonging
to Σ. We consider instead the following de�nition:

De�nition 5. Let X be a strati�ed space of dimension n, endowed with iterated edge
metric g, and consider x ∈ X. The tangent cone at x is the unique Gromov-Hausdor�
limit of the pointed metric spaces (X, ε−2g, x) as ε tends to zero.

If x belongs to the regular set Ω, then the tangent cone coincides with the usual
tangent space and it is isometric to the Euclidean space Rn.

If x ∈ Xj for j 6= n, then the tangent cone is the cone (C(Sx), dr2 + r2hx), where
Sx is the (j − 1)-fold spherical suspension of the link Zj . More precisely, if Sj−1 is the
canonical sphere of dimension (j − 1) and gSj−1 its canonical metric, we consider the
product (

0,
π

2

)
× Sj−1 × Zj

endowed with the metric:

hx = dθ2 + sin2 θgSj−1 + cos2 θkj .

Then the (j − 1)-fold spherical suspension Sx of Z is the completion of the previous
product with respect to the metric hx. We refer to Sx as the tangent sphere at x.
Observe that if Z is not the round sphere, the tangent sphere Sx is a strati�ed space of
dimension (n− 1) and depth equal to the one of Z plus one. In fact if we consider the
metric completion of the product above, its singular set is constituted of the product:(

0,
π

2

)
× Sj−1 × Zsing

x .

which has the same depth as Zx, plus the following two products:

Σ0 = {0} × Sj−1 × Zx, and Σ1 =
{π

2

}
× Sj−1 × Zx.

If we look at the metric near Σ0, that is when θ is near to zero, we get that a point
in Σ0 has a neighbourhood of the form Bj × Zx (since C(Sj−1) = Bj), and therefore
Σ0 is a stratum of the same depth as Z. When we consider the metric for θ near to
π/2, we obtain that a neighbourhood of a point in Σ1 has the form Sj−1×C(Zx). As a
consequence Σ1 has depth equal to the one of Z plus one.

Note that C(Sx) is a strati�ed space of dimension n with depth equal to the one of
Sx plus one: therefore the depth of the tangent cone at x is equal to depth(Zx) plus
two.
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Lemma 1.4. Let (X, g) be a strati�ed space of dimension n and let x ∈ Xj, j 6= n.
Then the tangent cone C(Sx) endowed with the exact cone metric dr2 +r2hx is isometric
to the product Rj × C(Zj) with the model metric g0 = dy2 + dτ2 + τ2kj, where dy2 is
the Euclidean metric on Rj.

Proof. It su�ces to rewrite the Euclidean metric dy2 in polar coordinates:

dy2 = dρ2 + ρ2gSj−1 .

Then with the change of coordinates τ = r sin(θ), ρ = r cos(θ) in g0 we get g = dr2+r2hx
where hx coincides with the metric on the tangent sphere. This change of variables gives
us an isometry between the regular sets of the two strati�ed spaces, that are C(Sreg

x )\{0}
and Rj×C(Zreg)\{0}. This can be extended to the singular set by taking the completion
of each of the two with the corresponding metric.

1.1.5 Geodesic balls

We follow now Section 2.2 in [ACM15] in order to describe the behaviour of geodesic
balls in a strati�ed space (X, g) of dimension n. What it is possible to show, is that
for an appropriate small radius, a geodesic ball is always contained in a truncated cone
Cτ (S) over a connected strati�ed space S of dimension (n− 1). Moreover, on this ball
the metric g di�ers from the exact cone metric on C(S) by a factor τγ with γ > 0. The
precise result is the following:

Proposition 1.5. Let (X, g) a strati�ed space of dimension n and depth d, with covering
{Wα}α as introduced in the previous section. Let x be in X and α such that x ∈ Wα.
There are positive constants Λ, η, κ such that Λη < 1 and for any δ < η the ball B(x, δ)
centred at x of radius δ is contained inWα. Moreover, there exists a sequence of numbers
ε0 > ε1 > . . . > εd = 0 such that if we set τj = δ

∏j−1
i=0 εi and τ belongs to the interval

[τj , τj−1) the ball B(x, τ) is contained in an open set Ωx,α:

B(x, τ) ⊂ Ωx,α ⊂ B(x, 2κτ).

and Ωx,α is homeomorphic to a cone Cκτ (Sx,α) over a connected strati�ed space Sx,α
of dimension (n − 1). If we denote by hx,α an admissible metric on Sx,α and ϕx,α the
homeomorphism between Ωx,α and the cone over Sx,α, we have on Ωx,α:

|g − ψ∗(dt2 + t2hx,α)| ≤ Λ

(
τ

ε0ε1 . . . εj−1

)γ
.

We brie�y sketch the iterative argument based on the depth that constitutes the
proof, and refer to [ACM15] for the details.

Assume �rst that X has depth equal to one. Then the link of each singular stratum
Xj of X is a compact smooth manifold Zj : assume for simplicity that there is only one
connected singular stratum. Otherwise, we can repeat the same argument for the other
strata and for each connected component. Let {Wα}α and η > 0 be a covering and a
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radius as described above. Consider a point x in X and τ < η: the ball B(x, τ) can
be included in an open set Wα not intersecting Xj , and in this case it is a geodesic
ball in a smooth manifold, the regular set Ω. Otherwise, if B(x, τ) is included in one
Wα,j intersecting Xj , then its behaviour depends on the distance ε of x to Xj : roughly
speaking, it depends on whether the ball is far enough from the singular stratum.

If τ is smaller enough than ε, then there exists a positive constant κ such that B(x, τ)
is homeomorphic to the product:

Bj(κτ)× (ε− κτ, ε+ κτ)×BZ(z0, κτ/ε). (1.6)

where Bj(κτ) is an Euclidean ball in Rj , I is an interval and BZ(z0, κτ/ε) a ball in the
link Z centred at z0 ∈ Z. Moreover, the metric g on B(x, τ) di�ers from the product
metric on (1.6) for a an error decaying as (τ/ρ)γ , for γ as de�ned in section 1.1.3:

|g − (hα,j + dr2 + ε2k)| ≤ Λ1

(τ
ε

)γ
. (1.7)

where Λ1 is some positive constant.
If τ is larger than ε, then it is possible to show that there exists a positive constant

κ such that B(x, τ) is included in a ball centred at a singular point x0 ∈ Xj of radius
κτ . A ball centred at x0 is homeomorphic to a cone C(Sx0) over the tangent sphere at
x0, and moreover the metric g on the ball di�ers from the cone metric on C(Sx0) for an
error decaying as τγ :

|g − (dr2 + r2hx0)| ≤ Λ2τ
γ . (1.8)

This latter inequality proves the statement of Proposition 1.5 in the case of depth equal
to one.

Now consider a strati�ed space X of depth equal to two. Then we can decompose it
into two subsets X ′ and X ′′ in such a way that X ′ is a strati�ed space of depth equal to
one and X ′′ contains all the strata of depth equal to two. If a ball B(x, τ) is included
in X ′ then the previous discussion holds. Assume that B(x, τ) is included in X ′′ and in
particular in an open set of the covering Wα intersecting a stratum Xj , whose link is a
strati�ed space Zj of depth one. Let ε be the distance between x and Xj . Therefore, as
above, B(x, τ) is either included in a cone with vertex x0 in Xj over the tangent sphere
Sx0 , and we have the desired estimate on the metric, or B(x, τ) is included in a product
of the form (1.6). In this last case, the ball BZj (z0, κτ/ε) is a ball in a strati�ed space
of depth equal to one, and we have the previous description: either it is a geodesic ball
completely contained in the regular set of Zj , or its behaviour depends on the distance
ε1 of z0 to the singular set of Zj and on whether the radius κτ/ε is smaller or larger
than ε1. When the radius is larger than ε1, by an argument similar to the one explained
in the previous section, the product (1.6) is homeomorphic to the cone C(Ŝz1) over the
j-spherical suspension of Sz1 , for a point z1 in the singular set of Zj with distance from
z0 equal to ε1. Furthermore, thanks to the estimates (1.7) and (1.8), we get that the
metric g on the ball B(x, τ) di�ers from the cone metric on C(Ŝz0) for an error of size
(τ/ε)γ . This explains why in Proposition 1.5 the numbers ε0, . . . εj , which depend on
the depth, appear in the estimate for the metric.
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1.2 Analytical Aspects of Strati�ed Spaces

This section is devoted to the de�nition of some analytical tools on strati�ed spaces,
in particular Sobolev spaces and the Laplacian operator. We collect here part of the
results contained in [ACM14] and [ACM15] which we will extensively use later. In a
�rst part we review how some issues about analysis on compact manifolds, like Sobolev
embeddings, naturally extend to strati�ed spaces. In a second part we recall some results
about the Schrödinger equation on strati�ed spaces, since we will often encounter this
kind of equation in the next chapters. We �nally give an improvement of a proposition
contained in [ACM15], under one additional assumption, which will reveal to be a useful
tool in many of the proofs presented in this thesis.

1.2.1 Sobolev spaces and inequalities

Given a strati�ed space (X, g) of dimension n, we denote by dvg the measure associated
to the iterated edge metric g: such measure is Ahlfors n-regular, that is there exists a
positive constant C such that for any x ∈ X and 0 < r < diam(X)/2 the measure of
the ball B(x, r) of radius r centred at x is bounded between:

C−1rn < Volg(B(p, r)) < Crn.

Furthermore, as a consequence of the Ahlfors regularity, dvg is a doubling measure:
there exists a constant C1 such that for any x ∈ X and 0 < r < diam(X)/2 we have:

Volg(B(x, 2r)) ≤ C1 Volg(B(x, r)).

We are going to de�ne classical analytic tools on (X, g): the space Lp(X) for p ∈ [1,+∞)
is obviously de�ned as the equivalence classes of the functions f whose power p has �nite
integral on X, with respect to the relation f v g if and only if f = g almost everywhere.
The space L∞(X) is the space of bounded functions on X up to the same equivalence
relation. The norms in the spaces Lp(X) are the usual ones.

We are interested in Sobolev spaces, which are de�ned as follows:

De�nition 6. Let (X, g) be a strati�ed space of dimension n, and p ∈ (1,+∞]. The
Sobolev space W 1,p(X) is the completion of the space of Lipschitz functions Lip(X)
with respect to the norm:

‖f‖p1,p = ‖f‖pp + ‖df‖pp .

For the moment we restrict our discussion to the case p = 2. The assumption that
there are no strata of codimension one allows us to prove the following:

Lemma 1.6. Let (X, g) be a smoothly strati�ed space and Ω the regular set of X. Then
the space C1

0 (Ω) of continuously di�erentiable functions with compact support in Ω is
dense in W 1,2(X).

The proof consists in choosing the appropriate Lipschitz cut-o� functions with com-
pact support in the regular set. We sketch this argument here for two reasons: it
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motivates the necessity of avoiding strata of codimension equal to one, and it allows us
to introduce some cut-o� functions that will be widely used later.

Let ϕ ∈ Lip(X). We aim to �nd a sequence of functions in Lip0(Ω) which converges
in the norm of W 1,2(X) to ϕ. This is enough to prove our statement, because for
any function f in Lip0(Ω) we can �nd a sequence of smooth functions with compact
support in Ω converging to f in W 1,2(X). This is done by using a standard argument
based on local charts, partitions of unity and convolution in Rn. In fact, we can cover
the compact support of f with a �nite number of local charts (Ui, ψi) of Ω, and then
associate a partition of unity χi to this covering, so that we can rewrite:

fi =
k∑
i=1

χif.

By convolution with molli�ers in Rn, we can �nd a sequence of smooth functions with
compact support in Rn converging to (χif) ◦ ψ−1

i for each i = 1, . . . k. Pulling back
these sequences to Ω gives us the desired sequence of functions in C∞0 (Ω) converging to
f in the norm of W 1,2(X). We refer to Proposition 2.4 and Theorem 2.4 in [Heb99] for
more precise details.

It remains to show that the Lipschitz functions with compact support in the regular
set are dense in Lip(X). Recall that the singular set Σ of X consists of a �nite number of
connected components Σj , with possibly di�erent dimensions: we denote by m ≥ 2 the
minimal codimension of the strata Σj , and by t the distance function from the singular
set t(x) = dg(x,Σ). We are going to choose cut-o� functions depending on whether
m > 2 or m = 2.

Assume �rst that m = 2 and for a small ε > 0 consider the tubular neighbourhoods
of size ε and ε2: we denote them by Σε and Σε2 . We consider

fε(t) =


1 in X \ Σε

2− ln(t)

ln(ε)
in Σε \ Σε2

0 in Σε2 .

|dfε| =
1

t| ln(ε)|
.

Then fε is a Lipschitz function with compact support in Ω. Furthermore, we claim that
there exists a positive constant A such that we have:(∫

Σε\Σε2
|dfε|2dvg

)
≤ A

| ln(ε)|
. (1.9)

Let us assume that − ln(ε) is an integer number N . Then we can decompose Σε \ Σε2

in the disjoint union:

Σε \ Σε2 =
2N−1⋃
j=N

Σe−j \ Σe−(j+1)
.
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As a consequence the integral (1.9) can be written as the following sum:(∫
Σε\Σε2

|dfε|2dvg

)
=

1

| ln(ε)|2

(∫
Σε\Σε2

1

t2
dvg

)

=
1

| ln(ε)|2
2N−1∑
j=N

∫
Σe
−j \Σe−(j+1)

1

t2
dvg

≤ 1

| ln(ε)|2
2N−1∑
j=N

∫
Σe
−j \Σe−(j+1)

e2(j+1)dvg

≤ 1

| ln(ε)|2
A(N − 1) ≤ A

| ln(ε)|
.

which is the estimate we wanted to prove. In the last line we used that the volume of
a tubular neighbourhood of size ε of Σ is smaller than a constant times εm, and in this
case m = 2.

If m > 2 consider the tubular neighbourhoods Σε and Σ2ε and de�ne the following
function:

gε(t) =


1 on X \ Σ2ε

t

ε
− 1 on Σ2ε \ Σε

0 on Σε.

|dgε| =
1

ε
.

This is again a Lipschitz function with compact support in Ω. A straightforward com-
putation shows that there exists a constant B > 0 such that:∫

Σ2ε\Σε
|dgε|2dvg ≤

∫
Σ2ε\Σε

1

ε2
dvg ≤ Bεm−2.

In both cases we have found a cut-o� function in Lip0(Ω) such that the norm in L2(X)
of the gradient converges to zero as ε tends to zero. Now consider the functions fεϕ if
m = 2 and gεϕ otherwise, which belong to Lip0(Ω) . When ε tends to zero, fεϕ and
gεϕ converge in the Sobolev space W 1,2(X) to ϕ: this is an easy computation due to
the fact that fε and gε converge to the constant function equal to one in L∞(X), and
to Hölder inequality applied to the terms ϕdfε and ϕdgε for what concerns the norm in
L2(X) of the gradients.

Observe that if we consider the Sobolev space W 1,p(X) for p greater than two, and
if we want C1

0 (Ω) to be dense in it, we need to assume that the strati�ed space has
only strata of codimension larger than or equal to p. We give another simple and useful
lemma about the composition of a function u in W 1,2(X) with a real-valued function.

Lemma 1.7. Let u ∈ W 1,2(X) and f ∈ C1(R). If the �rst derivative of f is bounded,
then f ◦ u belongs to W 1,2(X).

The Laplacian operator on a strati�ed space is de�ned as follows, in terms of gener-
ator of a quadratic form:
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De�nition 7. Let (X, g) be a strati�ed space. Consider the semi-bounded quadratic
form E de�ned on C∞0 (Ω) by:

E(u) =

∫
X
|du|2dvg.

Let ∆g be the self-adjoint operator obtained as Friedrichs extension of E . We refer to
∆g as the Laplacian operator associated to g.

We have chosen the de�nition of ∆g in such a way that it is a non-negative operator:
this means that in the Euclidean space we would have taken as Laplacian operator the
one with minus sign −

∑
i ∂

2
i .

We are now in position to state that the Sobolev inequality holds on a strati�ed space.
This was proven in [ACM14], together with some of its consequences: the compactness
of the Sobolev embeddings and the discreteness of the spectrum of the Laplacian. We
recall these results and brie�y sketch their proofs.

Proposition 1.8 (Sobolev inequality). Let (X, g) be a smoothly strati�ed space of di-
mension n. Then there exists a positive constant Cs such that for any function u in the
Sobolev space W 1,2(X) we have:(∫

X
|u|

2n
n−2dvg

)n−2
n

≤ Cs
∫
X

(|u|2 + |du|2)dvg.

The proof is by iteration on the depth of the space (X, g). If the depth is equal
to zero, then (X, g) is a smooth compact manifold, and the existence of a Sobolev
inequality is a well-known result in this case (see for example [Heb99]). Assume that
we have proven the proposition for all depths smaller than or equal to (d − 1), for an
integer d ≥ 1, and consider a strati�ed space X of depth d. Then X can be decomposed
into the union of X ′ belonging to the class of strati�ed spaces of depth (d− 1) and X ′′

containing the stratum of maximal depth d. Assume for simplicity that X ′′ is connected
(and repeat otherwise the following discussion for each connected component of X ′′):
each point of X ′′ admits a neighbourhood of the form Bj×C(Z) for an Euclidean ball Bj
in Rj and a compact strati�ed space Z of depth (d− 1), endowed with an iterated edge
metric k. Observe also that the Sobolev inequality is invariant under quasi-isometric
changes of the metric, so that we can prove it by using the model metric g0 introduced
in Section 1.3. Then it su�ces to prove the Sobolev inequality on Bj × C(Z) endowed
with the metric dy2 + dr2 + r2k.

The Sobolev inequality is in fact equivalent to a diagonal upper bound on the heat
kernel P associated to the Laplacian operator:

P (t, x, x) ≤ Ct−
n
2 for all t ∈ R, x ∈ X.

This estimate is true in the Euclidean space Rj and in Z as well, since by the iterative
assumption the Sobolev inequality holds on Z. Moreover, the heat kernel of a product
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X × Y is the product of the heat kernels PX and PY : is su�ces then to show than
a diagonal upper bound holds on the cone C(Z) endowed with the metric k̄ = dr2 +
r2k. The next step of the proof consists in decomposing C(Z) into conic slices of the
appropriate size, on which the heat kernel estimates holds, and in gluing them together
by means of a partition of the unity. This leads to the following inequality:

‖u‖2
L

2n
n−2 (C(Z))

≤ C

(
‖du‖2L2(C(Z)) +

∫
C(Z)

u2

r2
dvk̄

)
. (1.10)

In order to handle the last term of this inequality, one can use separation of variables
on the cone and the spectral decomposition of the Laplacian on C(Z), since by the
iteration hypothesis the Laplacian on Z has discrete spectrum. See Corollary 1.10 for
an explanation of how the Sobolev inequality implies the discreteness of the spectrum
of the Laplacian. This allows one to get a Hardy inequality on C(Z) and to bound the
last term in (1.10) by a constant times the norm of the gradient in L2(C(Z)). Then the
following holds on the cone:

‖u‖2
L

2n
n−2 (C(Z))

≤ C ‖du‖2L2(C(Z)) ≤ C ‖u‖
2
W 1,2(C(Z)) .

This leads to the desired diagonal upper bound on the heat kernel, and therefore to the
Sobolev inequality.

As a consequence of Proposition 1.8, it is possible to prove the compactness of the
Sobolev embeddings:

Proposition 1.9. Let (X, g) be a smoothly strati�ed space of dimension n. The inclusion

W 1,2(X) ↪→ Lq(X) is compact for any q ∈
[
1, 2n

n−2

)
.

Observe that in order to prove this statement, it su�ces to show the compactness
of the embedding with q equal to 2p

p−2 for p ∈ (n,∞). In fact we have:

2 < q <
2n

n− 2
, Lq(X) ↪→ L2(X) ↪→ L1(X).

Then by composition of a continuous embedding with a compact one, we get the com-
pactness for q = 1, 2 as well. The proof consists in approximating the embedding
ı : W 1,2(X) ↪→ Lq(X) by a sequence of compact operators converging to ı in the op-
erator norm. Such sequence is given by the semi-group of operators associated to the
quadratic form

Q(u, u) =

∫
X

(|du|2 + |u|2)dvg.

For t > 0 we denote an element of this semi-group by Tt = e−t(∆+1). It is then necessary
to get an estimate the norm of (u− Ttu) in Lq(X), holding for any u in W 1,2(X), and
to show that this norm tends to zero as t goes to zero. In order to prove this, it is
possible to use estimates of the norm of Tt as an operator from Lr(X) to Lr(X) with

36



1.2. Analytical Aspects of Strati�ed Spaces

the appropriate exponent r, and as an operator from L1(X) to L∞(X). These estimates,
together with the spectral theorem in the form of functional calculus, give the desired
bound for the norm of (u− Ttu) in Lq(X): there exists a positive constant C such that

‖u− Ttu‖q ≤ Ct
1
2
− n

2p .

Letting t tend to 0 concludes the proof.

The compact Sobolev embeddings allow one to prove that the spectrum of the Lapla-
cian operator is discrete.

Corollary 1.10. The Laplacian ∆g has discrete spectrum.

In fact, if we denote by D(∆g) the domain of the Laplacian and consider the operator:

(∆g + 1)−1 : L2(X)→ D(∆g),

this is a self-adjoint and bounded operator (its norm is smaller than 1). Moreover,
D(∆g) is equal to W 2,2(X) ∩ W 1,2

0 (X) ⊂ W 1,2(X), which is compactly contained in
L2(X), therefore (∆g + 1)−1 is also compact. Thanks to the spectral theorem for
compact self-adjoint operators, (∆g + 1)−1 has discrete spectrum, and the same holds
for (∆g + 1) and thus obviously for ∆g.

In [ACM15] the authors also prove that a scale-invariant Poincaré inequality holds on
a strati�ed space. This can furnish an alternative proof of the Sobolev inequality, since
a scale-invariant Poincaré inequality on an almost smooth metric space with doubling
measure implies the Sobolev inequality.

Proposition 1.11 (Poincaré Inequality). Let (X, g) be a strati�ed space of dimension
n. Assume that for each x ∈ X the tangent sphere Sx is connected. There exist constants
a > 1 and C, ρ0 > 0 such that if B is a ball of radius ρ < ρ0 centred at x, and aB the
ball of radius aρ centred at the same point, then for any function u ∈W 1,2(aB) we have
a scale-invariant Poincaré inequality:∫

B
|u− uB|2dvg ≤ Cρ2

∫
aB
|du|2dvg.

where uB = Volg(B)−1
∫
B udvg.

The proof can be done by iteration on the dimension of the space and a localization
argument. Assume that the Poincaré inequality is proven for all strati�ed space of
dimension smaller than or equal to (n−1), and consider a strati�ed spaceX of dimension
n. By the previous discussion about geodesic balls, we know that there exists ρ0 such
that for any x in X and a su�ciently small radius ρ < ρ0, the ball B(x, ρ) is contained
in an open set which is homeomorphic to a cone C(S) over connected strati�ed space
S of dimension (n − 1). Moreover, the metric g di�ers from the exact cone metric
g0 = dr2 + r2h on C(S) for a factor ργ , γ > 0. Therefore, it su�ces to show that
the Poincaré inequality holds on the cone C(S), and this is done by using the iterative
assumption, separation of variables and the spectral decomposition of the Laplacian
associated to g0.
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1.2.2 Solutions to the Schrödinger equation

In the following, we often need to study solutions of a Schrödinger equation on a strati�ed
space (X, g) of dimension n. Given V belonging to some Lq(X) for q ∈ [1,∞], we
consider the Schrödinger operator ∆g−V . A weak solution u ∈W 1,2(X) of the equation

∆gu− V u = 0.

is such that for any ϕ ∈W 1,2(X), with ϕ ≥ 0, we have:∫
X

(dϕ, du)dvg =

∫
X
V ϕudvg.

In order for this equality to make sense, we need that V belongs to Lq(X) for q ≥ n/2:
in this case, thanks to the Sobolev embedding, we can apply the Hölder inequality to
the right-hand side and get that it is �nite.

The �rst result about weak solutions is that, if V belongs to the appropriate Lq(X),
then u is bounded: this is done by using Moser iteration technique, which we will apply
several times in di�erent contexts. We refer to Proposition 1.8 in [ACM14]:

Proposition 1.12 (Moser Iteration technique). Let (X, g) be a strati�ed space of di-
mension n and V in Lq(X) for q > n

2 . Assume that u ∈ W 1,2(X) is non-negative and
it satis�es the weak inequality:

∆gu− V u ≤ 0.

Then u is bounded on X and there exists a positive constant C such that:

‖u‖∞ ≤ C ‖u‖2 .

We recall the main steps of the proof. Since u belongs to W 1,2(X), the Sobolev

embeddings assure that u is in Lq(X) for q ∈
[
1, 2n

n−2

]
. Moser iteration technique

consists in using the Sobolev inequality and the weak equation (or inequality) satis�ed
by u with a good test function, in order to gain more regularity on u: this means to
increase the exponent q such that u belongs to Lq(X). The good test function appears
to be a power of u, but we have to be careful: for α > 1 the function uα is not necessarily
in W 1,2(X), since f(x) = xα is clearly C1(R), but its derivative is not bounded (see
Lemma 1.7). As a consequence of this, it is necessary to approximate f(x) = xα by
a continuously di�erentiable function fα,L which coincides with xα on larger an larger
intervals [0, L], and which is a line of slope equal to one elsewhere. By combining the
Sobolev inequality applied to fα,L ◦u, the weak inequality with a test function obtained
from fα,L, and the Hölder inequality with exponent q, it is possible to get for some
positive constant C1:(∫

X
fα,L(u)

2n
n−2dvg

)n−2
n

≤ C1α

(∫
X
fα,L(u)

2q
q−1dvg

) q−1
q

.
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Therefore, if we denote:

r =
2q

q − 1
<

2n

n− 2
and γ =

q − 1

q

n

n− 2
> 1.

and we let L tend to in�nity, the previous inequality leads to:

‖u‖αγr ≤ (C1α)
1
2α ‖u‖αr (1.11)

Choose α close enough to 1, in such a way that we have αr ≤ 2n
n−2 . The Sobolev space

W 1,2(X) is contained in Lq(X) for any q between 1 and 2n
n−2 , then it is in particular

contained in Lαr(X). Therefore with this choice of α the right-hand side of (1.11) is
�nite, and as a consequence the left-hand side is �nite as well. Since αγr is strictly
greater than αr, the regularity of u has been increased. It is now possible to iterate the
same argument leading to (1.11) for αj = γjα for an integer j.

As for the �rst step of the iteration, consider α2 = γ2α: then by repeating the
previous argument with α2 we get

‖u‖γ2αr ≤ (C2γα)
1

2γα ‖u‖γαr ≤ (C2γα)
1

2γα (C2α)
1
2α ‖u‖αr .

By iterating the same argument N times, for αN = γNα, one obtains:

‖u‖αNr ≤
N−1∏
j=0

(C2γ
jα)

1

2γjα ‖u‖αr

When N tend to in�nity, the left-hand side of the previous inequality converges to the
norm of u in L∞(X). The constant in the right-hand side converges to a �nite number
as well. Besides, for some positive C ′ we have that ‖u‖αr ≤ C ′ ‖u‖1,2. Therefore, there
exists a positive constant C such that:

‖u‖∞ ≤ C ‖u‖1,2 . (1.12)

In order to replace the norm in W 1,2(X) of u with its norm in L2(X) it su�ces to use
again the weak inequality with test function equal to u and interpolation between the
norm in L2(X) and L∞(X). In fact we have:

‖du‖22 =

∫
X
u∆gudvg ≤

∫
X
V u2dvg ≤ ‖V ‖n

2
‖u‖22n

n−2
≤ ‖V ‖n

2
‖u‖2(1−θ)

2 ‖u‖2θ∞

where θ ∈ (0, 1). Now by Young inequality we obtain for any ε > 0:

‖du‖22 ≤
1− θ
ε
‖V ‖

1
1−θ
n
2
‖u‖22 + θε ‖u‖2∞ .

Therefore if one chooses ε su�ciently small (say ε < 1/C2θ) and replace in (1.12), the
conclusion of Proposition 1.12 easily follows.
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Remark 1.13. The previous proposition applies in particular to the equation

∆gu = uq−1

for any q which is strictly smaller that the critical exponent in the Sobolev compact
embeddings, that is p = 2n/(n− 2), and u > 0. This can be seen by showing that u to
the power (q − 2) belongs to Lαn/2(X) for some α larger than one: the �rst step of the
previous proof and the Hölder inequality with the appropriate exponents prove indeed
that u is integrable to the power 2αp.

It is more di�cult to get a better regularity on a solution to the Schrödinger equation,
for example Hölder regularity: we recall here a result contained in [ACM15] that gives
a strong relation between the Hölder exponent and the spectral geometry of the links.
More precisely, if we denote by λ1(Z) the �rst non zero eigenvalue of the Laplacian on
the link Z, the exponent ν such that a solution u to the Schrödinger equation belongs
to C0,ν(X) is determined by the in�mum of λ1(Z) over the links.

We have recalled in the previous section that on a strati�ed space (X, g) of dimension
n, the Laplacian ∆g associated to the iterated edge metric g has discrete spectrum: we
denote by λ1(X) its �rst non zero eigenvalue. We can alternatively write for any λj
eigenvalue of ∆g:

λj = νj(n− 1 + νj).

for a unique value νj in the interval (0, 1). Then we de�ne:

ν1(X) =

{
1 if λ1(X) ≥ n,
ν1 if λ1 < n.

The case in which we will be the most interested is when λ1(X) is greater than or
equal to the dimension of the space, but for the sake of completeness we state the general
Hölder regularity result: we refer to Theorem A in [ACM15].

Theorem 1.14 (Hölder regularity). Let (X, g) be a compact strati�ed space of dimension
n. For each x ∈ X, denote by Zx the link of the cone bundle over the stratum containing
x, and de�ne:

ν = inf
x∈M

ν1(Zx).

Let u inW 1,2(X) be a solution to the Schrödinger equation ∆gu−V u = 0 for V belonging
to Lp(X), p > n/2. Then we have:

1. If p =∞ and ν = 1, then there is a positive constant C such that for all x, y ∈ X
with dg(x, y) ≤ 1/2:

|u(x)− u(y)| ≤ C
√
| log(dg(x, y))|dg(x, y).

2. If p =∞ and ν ∈ (0, 1), then u belongs to C0,ν(X).
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3. If p ∈ (n/2,∞) and ν ∈ (0, 1], then u belongs to C0,µ(X), where

µ = min

{
ν, 1− n

2p

}
.

For any x ∈ X, the �rst non zero eigenvalue λ1(Zx) of the Laplacian on the link
determines the �rst non zero eigenvalue of the Laplacian on the tangent sphere Sx. In
particular we have for any x in X:

ν1(Zx) = ν1(Sx) for any x ∈ X. (1.13)

Therefore, the hypothesis on the link can be replaced by an hypothesis on the
tangent sphere. This can be easily proven by using separation of variables and the
spectral decomposition of the Laplacian operator on the (j−1)-fold spherical suspension
Sx of Zx: we refer to Section 3.6 in [ACM15] for the details.

The proof of Theorem 1.14 relies on two results: the �rst one establishes the relation
between a Morrey inequality and the Hölder regularity of a function. The second one
(Proposition 4.1 in [ACM15]) allows one to deduce, by a local argument, the appropriate
Morrey inequality that a solution u to the Schrödinger equation satis�es: this is proven
through an interesting study of Dirichlet to Neumann operators.

We state here a consequence of 1.14, contained in [Mon14] that gives us a useful
technical tool for many of the proofs presented in this thesis. In the case ν = 1 and
p = +∞, let u be a solution to the Schrödinger equation ∆gu = V u: under a further
assumption on the gradient du, we can give an estimate for the norm of du in L∞(X)
away from the singular set Σ and depending from the distance to Σ. For ε > 0, let us
denote by Σε the tubular neighbourhood of size ε of Σ.

Proposition 1.15. Let (Xn, g) be a strati�ed space and assume that for any x we have

λ1(Zx) ≥ dim(Zx).

or, equivalently, ν1(Sx) = 1. Let V be in L∞(X) and u be a solution to the equation
∆gu− V u = 0. Assume that there exists a positive constant c such that

∆g|du| ≤ c|du| on Ω. (1.14)

Then there exists a positive constant C such that for any ε > 0 we have away from Σε:

‖du‖L∞(X\Σε) ≤ C
√
| ln(ε)|. (1.15)

The proof of this result consists in combining Theorem 1.14 and the Moser iteration
technique, which allows us to estimate the gradient on a ball centred at a regular point
with the mean of its norm in L2(X) over a bigger ball.
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Lemma 1.16. Let (X, g) be a strati�ed space of dimension n and f ∈ L2(X) such that
for some positive constant c the strong inequality

∆gf ≤ cf. (1.16)

holds on Ω. Then there exists a positive constant c1, depending on c, on the dimension
n and on the Sobolev constant Cs, such that for any regular point x ∈ Ω and radius
0 < r < dg(x,Σ)/2 we have:

‖f‖L∞(B(x,r/2)) ≤ c1

(
1

rn

∫
B(x,3r/4)

f2dvg

) 1
2

.

Proof. Remark that if (1.16) holds on Ω, f belongs toW 1,2
loc (Ω). As in the Moser iteration

technique which we presented above, the goal is to use the Sobolev inequality and to
increase the exponent q such that f belongs to Lq(X), but this time only over a ball.
Therefore, in order to get the inequality that we are going to iterate, we have to introduce
a cut-o� function supported on a ball centred at a regular point, and whose gradient
decreases in the appropriate way.

Moreover, we need to be sure that we can actually apply iteration on powers of the
function f . This means that an inequality of the form (1.16) must hold also for powers
fα, for α > 1, possibly with a di�erent constant. We claim that if (1.16) holds on Ω,
then for any α > 1 we have:

∆g(f
α) ≤ cαfα on Ω. (1.17)

This also implies that fα belongs to W 1,2
loc (Ω). In order to prove (1.17), for any ε > 0

de�ne fε =
√
f2 + ε2 > 0. Consider the Laplacian of f2

ε on Ω:

fε∆gfε − |dfε|2 =
1

2
∆g(f

2
ε ) = f∆gf − |df |2 ≤ cf2 − |df |2 ≤ cf2

ε − |dfε|2.

We have then shown that fε∆gfε ≤ cf2
ε on Ω. For α > 1 consider ∆g(f

α
ε ). Since xα is

a convex function, non-decreasing on R+, on Ω we have:

∆g(f
α
ε ) = α(fα−1

ε ∆gfε − (α− 1)fα−2
ε |dfε|2)

≤ αfα−1
ε ∆gfε

≤ cαfαε .

where in the last inequality we used the fact that fε∆gfε ≤ cf2
ε on Ω. Now it su�ces

to let ε go to zero to obtain (1.17).
Let R0 = dg(x,Σ)/2 and choose 0 < r < R < R0. Consider a Lipschitz function ϕ

having compact support in B(x,R0) such that ϕ is equal to one in B(x, r), it vanishes
outside B(x,R), it takes values between 0 and 1 on B(x,R), and its gradient satis�es:

|dϕ| ≤ 2

(R− r)
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Let us consider ϕf , to which we are going to apply the Sobolev inequality. By a standard
formula for the norm in L2 of the gradient d(ϕf) we have:∫

B(x,R)
|d(ϕf)|2dvg =

∫
B(x,R)

(|dϕ|2f2 + ϕ2f∆gf)dvg

≤
∫
B(x,R)

(|dϕ|2f2 + cϕ2f2)dvg

≤ A1

(R− r)2

∫
B(x,R)

f2dvg.

for some positive constant A1. By applying the Sobolev inequality to ϕf we then obtain:(∫
B(x,R)

|ϕf |
2n
n−2dvg

)n−2
n

≤ Cs

(∫
B(x,R)

ϕ2f2dvg +

∫
B(x,R)

|d(ϕf)|2dvg

)

≤ Cs
∫
B(x,R)

ϕ2f2dvg +
A1Cs

(R− r)2

∫
B(x,R)

f2dvg

≤ A2

(R− r)2
||f ||2L2(B(x,R))

If we denote γ = n
n−2 > 1, we have shown that:

‖f‖L2γ(B(x,r)) ≤
(

A2

(R− r)2

) 1
2

‖f‖L2(B(x,R)) (1.18)

We would like to iterate this argument on greater powers of f ; since the two radii
appearing in the previous inequality are di�erent, we have to de�ne an appropriate
sequence of radii in such a way that at the step j + 1 the radius Rj+1 coincides withe
the previous rj . Consider for j ∈ N the sequence given by:

rj =
(1

2
+ 2−(j+3)

)
R0

Rj =
(1

2
+ 2−(j+2)

)
R0.

so that we have Rj+1 = rj and (Rj − rj) = 2−j−3R0.
Thanks to (1.17), we are now able to apply the same argument we used for ϕf to

ϕfγ , and so on iteratively with γj , for j = 1, . . . N . This leads to:

||f ||
L2γN (B(x,rN ))

≤
N−1∏
j=0

(
22(j+3)A2γ

j

R2
0

) 1

2γj

||f ||L2(B(x,3R0/4)) (1.19)

When we let N tend to ∞, the left-hand side converges to the norm in L∞ of f over
the ball B(x,R0/2), and the �rst factor in the product in the right-hand side converges

to a constant C divided by Rn/20 . In fact we can consider its logarithm and we have:

ln

N−1∏
j=0

(
22(j+3)A2γ

j

R2
0

) 1

2γj

 =
ln(2)

2

N−1∑
j=0

j + 3

γj
+

ln(γ)

2

N−1∑
j=0

j

γj
+

1

2
ln

(
A2

R2
0

)N−1∑
j=0

1

γj
.
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Since γ is strictly greater than one, the �rst two sums converges to a constant as N

tends to in�nity, while the last one tends to
1

1− 1/γ
=
n

2
. Finally, by passing to the

limit as N goes to in�nity, we obtain:

‖f‖L∞(B(x,R0/2)) ≤ c1

(
1

Rn0

∫
B(x,3R0/4)

f2dvg

) 1
2

.

as we wished.

The proof of Proposition 1.15 follows easily:

Proof of Proposition 1.15. Let x ∈ Ω and B(x, r) a ball of radius 0 < r < dg(x,Σ)/2,
which is entirely contained in Ω. Lemma 1.16 allows us to bound the norm in L∞

of |du| over a ball B(x, r/2) with the mean of its norm in L2 over a ball of radius
3r/4. The square of this last quantity is bounded by some constant times | ln(r)|,
thanks to Theorem 1.14. Therefore, we get the desired inequality outside an ε tubular
neighbourhood of Σ by choosing an appropriate small radius r.

Remark 1.17. Since |du| satis�es the estimate (1.15), it is in Lp(X) for any p ∈ [1,+∞).
In fact, if we denote by m the codimension of the singular set Σ, which is greater or
equal to two, we have:∫

X
|du|pdvg =

∫
X\Σε

|du|pdvg +

∫
Σε
|du|pdvg

≤ | ln(ε)|
p
2 Volg(X) + Cp

∫ ε

0

(∫
∂Σt
| ln(t)|

p
2 dσg

)
dt

≤ | ln(ε)|
p
2 Volg(X) + C1

∫ ε

0
tm−1| ln(t)|

p
2 dt.

Where we used that the volume of boundary of the tubular neighbourhood of size t is
bounded by a constant times the (m− 1) power of t. The last integral is clearly �nite,
therefore |du| belongs to Lp(X).

Remark 1.18. We will show in the next chapters that the hypothesis of Proposition 1.15
hold on a large class of strati�ed spaces satisfying a lower bound on the Ricci tensor,
and for a large class of Schrödinger equations. For example, given a locally Lipschitz
function F on R, we will be able to apply this result to an equation of the form

∆gu = F (u)

This clearly includes the eigenfunctions of the Laplacian.
Moreover, if the metric g is an Einstein metric, we can also apply Proposition 1.15

to the solutions to the Yamabe equation:

∆gu+
n(n− 2)

4
u =

n(n− 2)

4
u
n+2
n−2 .
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We leave the details for the next chapters, where we de�ne what we mean for Einstein
metric and lower Ricci bound in the context of iterated edge metrics, and where this
kind of equations will naturally appear.
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Chapter 2

Positive Ricci lower bounds on

strati�ed spaces

The aim of this chapter is to study the consequences of a positive lower bound on the
Ricci tensor on a strati�ed space X endowed with an iterated edge metric g. What we
mean for Ricci bound on a strati�ed space is a classical bound for the Ricci tensor on
the regular set Ω of X: the iterated edge metric g is a smooth Riemannian metric on
Ω, therefore Ricg is well de�ned in each regular point, and it makes sense to consider
an inequality of the form

Ricg ≥ λg on Ω, for λ ∈ R.

If the equality holds, then we say that g is an Einstein metric and (X, g) an Einstein
strati�ed space. If λ is positive, we say that we have a positive Ricci lower bound.
Observe that in this case, we can always rescale the metric in order to get λ = (n− 1),
where n is the dimension of the strati�ed space.

We also de�ne the class of admissible strati�ed spaces, which satisfy a positive Ricci
lower bound and a second condition on the stratum of minimal codimension equal to
two:

De�nition 8. An admissible strati�ed space is a strati�ed space (Xn, g) which satis�es
the following assumptions:

(1) If there exists a stratum of codimension 2, its link has diameter smaller than π.

(2) The iterated edge metric g satis�es Ricg ≥ (n− 1)g on the dense smooth set Ω.

In this setting, we can extend some well-known results of classical Riemannian ge-
ometry: the Lichnerowicz and Obata theorems. The �rst states that a positive lower
bound on the Ricci tensor leads to a lower bound for the �rst non-zero eigenvalue of the
Laplacian, while the second gives a rigidity result in the case that this last lower bound
is attained.

At the end of this chapter, we also give a lower bound for the optimal constant
appearing in the Sobolev inequality on an admissible strati�ed space. This implies an
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Chapter 2. Positive Ricci lower bounds on stratified spaces

upper bound on the diameter which extends the Myers theorem. Both of this results
are inspired by a work of D. Bakry and D. with M. Ledoux.

2.1 Tangent cones and Ricci lower bounds

We start by giving some simple consequences of Ricci lower bounds on the tangent cones
of a not necessarily admissible strati�ed space.

Let (X, g) be a strati�ed space with strata Xj , j = 1, . . . N and links Zj , each
endowed with iterated edge metric kj . Let us denote by dj = n − j − 1 the dimension
of the link Zj .

A lower bound on the Ricci tensor of g implies that the Ricci tensor associated to the
exact cone metric on the tangent cone is non-negative. This leads in turn to a positive
Ricci lower bounds for the metrics kj and the metrics hx, de�ned in the previous chapter,
on the tangent spheres Sx.

Lemma 2.1. Let X be a compact strati�ed space endowed with an iterated edge metric
g such that the Ricci tensor is bounded by below. Then for each point x ∈ X the
tangent cone has non-negative Ricci tensor. Furthermore, on each link (Zj , kj) we have
Rickj ≥ (dj − 1)kj.

Observe that in order to prove this lemma we do not need to assume that the constant
λ for which we have Ricg ≥ λg on Ω is positive.

Proof. By de�nition, the tangent cone at a point x of the stratum Xj is the Gromov-
Hausdor� limit of (X, ε−2g, x) as ε goes to zero. Furthermore, the convergence of the
metrics is uniform in C∞ away from the singular set of X. As a consequence we have:

Ricgε = Ricg ≥ λg = ε2λgε on Ω.

Then when we pass to the limit as ε goes to zero the Ricci tensor of the limit metric
gT,x = dr2 + r2hx must be non-negative. We refer to the formulas for the Ricci tensor of
warped products contained in Chapter 3 of [Pet06] in order to deduce that the positivity
of the Ricci tensor of gT,x implies:

Richx ≥ (n− 2)hx

Recall that the metric hx has the form of a doubly warped product:

hx = dθ2 + sin2 θgSj−1 + cos2 θkj .

Then again by using the formulas in [Pet06], the metric kj on the link Zj must satisfy

Rickj ≥ (dj − 1)kj .

as we stated above.
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2.2. Lichnerowicz Singular Theorem

We can alternatively assume that a positive Ricci lower bound holds only on the
links, and not necessarily on the whole space X. This implies the positivity of the Ricci
tensor of the tangent cones.

Lemma 2.2. Let (Z, k) be a compact strati�ed space of dimension d with a positive
lower bound on the Ricci tensor. Let S be the (n− d− 2)-fold spherical suspension of Z

S =
[
0,
π

2

]
× Sn−d−2 × Z.

endowed with the metric:

h = dθ2 + sin2 θgSn−d−2 + cos2 θk. (2.1)

Then the cone C(S) = (0,∞)× S, endowed with the exact cone metric gT = dr2 + r2h
is a strati�ed space of dimension n with non-negative Ricci tensor.

Proof. As we observed above, we can assume that the Ricci tensor satis�es the inequality
Rick ≥ (d− 1)k, up to rescaling by a constant the metric k. By recalling again [Pet06],
Chapter 3, page 71, this implies that the Ricci tensor of the metric h is bounded by
below as follows:

Rich ≥ (n− 2)h.

As a consequence the Ricci tensor of gT = dr2 + r2h on C(S) is non-negative, as we
wished.

2.2 Lichnerowicz Singular Theorem

Before stating our extension of the Lichnerowicz theorem, we give a �rst example in
which we can apply Proposition 1.15. The proof is based on the fact that the classical
Bochner-Lichnerowicz formula holds on the regular set Ω: this technique is based on the
�rst part of the proof of Theorem 1.9 in [Bou12].

Proposition 2.3 (Bochner Method). Let (X, g) be a strati�ed space with a lower bound
on the Ricci tensor. Let F be a locally Lipschitz function on R. Let u be a non negative
function in W 1,2(X) ∩ L∞(X) and assume that u is a weak solution to the equation:

∆gu = F (u). (2.2)

Then there exists a constant c such that:

∆g|du| ≤ c|du| on Ω.

Proof. For ε > 0, let us introduce

fε =
√
|du|2 + ε2 > 0
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Chapter 2. Positive Ricci lower bounds on stratified spaces

We will consider ∆g(f
2
ε ) in order to obtain an inequality of the type fε∆gfε ≤ cf2

ε :
dividing by fε and letting ε tend to zero will allow us to conclude. We have

fε∆gfε − |dfε|2 =
1

2
∆g(|du|2 + ε2) = (∇∗∇du, du)− |∇du|2.

The Bochner-Lichnerowicz formula holds on the regular set Ω, then by applying it to
the equation (2.2) we get:

∇∗∇du+Ricg(du) = F ′(u)du

We can now multiply both sides by du. By assumption the function u is bounded and F
is locally Lipschitz: then there exists a positive constant c1 such that on [−‖u‖∞ , ‖u‖∞]
the derivative of F is bounded by c1. Moreover, the Ricci tensor Ricg is bounded by
below by λg for some real constant λ, and therefore we obtain:

(∇∗∇du, du) ≤ c1|du|2 − λ|du|2.

As a consequence there exists a positive constant c = max{c1 − λ, 1} such that:

(∇∗∇du, du)− |∇du|2 ≤ c1|du|2 − λ|du|2 − |∇du|2

≤ c|du|2 − |∇du|2.

We also observe that, by elementary calculations and Kato's inequality:

|dfε|2 =
|du|2|∇|du||2

|du|2 + ε2
≤ |∇|du||2 ≤ |∇du|2.

and as a consequence we get:

fε∆gfε − |dfε|2 = (∇∗∇du, du)− |∇du|2

≤ c|du|2 − |∇du|2

≤ cf2
ε − |dfε|2.

In conclusion

fε∆gfε ≤ cf2
ε

Since fε is positive everywhere, we can divide by fε and obtain

∆gfε ≤ cfε

By letting ε go to zero, we deduce the desired inequality on |du|.

As a consequence, provided that the hypothesis on the �rst eigenvalue of the tangent
spheres is satis�ed as well, we can apply Proposition 1.15 and obtain:
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2.2. Lichnerowicz Singular Theorem

Corollary 2.4. Let (Xn, g) be a strati�ed space with a Ricci lower bound. Assume that
for any x ∈ X we have:

ν1(Sx) = 1.

If u is a solution to the equation (2.2), then for any ε > 0 we have the following estimate
of its gradient, away from a tubular neighbourhood Σε of the singular set:

‖du‖L∞(X\Σε) ≤ C
√
| ln(ε)|.

We now have all the necessary tools to prove the following:

Theorem 2.5 (Singular Lichnerowicz Theorem). Let (X, g) be an admissible strati�ed
space of dimension n. Any non-zero eigenvalue λ of the Laplacian ∆g is greater than or
equal to n.

Remark 2.6. In [BS14] the authors give an analogous Lichnerowicz theorem for spherical
cones Σ(M) (considered as metric measure spaces) on a compact Riemannian manifold
(M, g) with lower Ricci bound Ricg ≥ (n − 1)g. They use the existence of a curvature
dimension condition CD(n, n+ 1) on Σ(M) in the generalized sense of Sturm and Lott-
Villani. Our theorem applies more generally to cones over any strati�ed space (X, g)
having a positive lower Ricci bound on the regular set Ω.

Proof. We proceed by iteration on the dimension n of the space.
If n = 1, by our hypothesis X must be a circle of diameter smaller than π. As a

consequence, the �rst eigenvalue of the Laplacian is greater than 1, and the theorem
holds in one dimension.

Assume that the statement is true for any dimension until (n − 1) and consider an
admissible strati�ed space X of dimension n. For any x ∈ X, the tangent sphere Sx is
an admissible strati�ed space of dimension (n−1). In fact, by Lemma 2.1, the condition
Ricg ≥ (n− 1)g implies that for any x the metric hx satis�es Richx ≥ (n− 2)hx.

Therefore, by the iteration argument, for any x ∈ X:

λ1(Sx) ≥ (n− 1)

Then the strati�ed space (Xn, g) satis�es the hypothesis of Corollary 2.4 and we can
apply this result to any eigenfunction ϕ of the Laplacian:

∆gϕ = λϕ. (2.3)

Therefore for any ε > 0 we have:

‖dϕ‖L∞(X\Σε) ≤ C
√
| ln(ε)|.

Since we have an estimation of the behaviour of dϕ depending on the distance from the
singular set, the rest of the proof is an adaptation of the classical one by means of a
well-chosen family of cut-o� functions. Consider for ε > 0 a cut-o� function ρε, being
equal to one outside Σε, vanishing on some smaller tubular neighbourhood of Σ and
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Chapter 2. Positive Ricci lower bounds on stratified spaces

such that between the two tubular neighbourhoods ρε takes values between 0 and 1. We
are going to specify the choice of such function in the following.

We proceed here like in the setting of smooth compact manifolds: by the Bochner-
Lichnerowicz formula applied to equation (2.3), we have on the regular set Ω:

∇∗∇dϕ+Ricg(dϕ) = λdϕ

We then consider the Laplacian of |dϕ|2 and get:

1

2
∆g|dϕ|2 = (∇∗∇dϕ, dϕ)− |∇dϕ|2 ≤ λ|dϕ|2 − (n− 1)|dϕ|2 − |∇dϕ|2. (2.4)

If we multiply (2.4) by ρε and integrate by parts we obtain:∫
X

∆g(ρε)
|dϕ|2

2
dvg ≤

∫
X
ρε((λ− (n− 1))|dϕ|2 − |∇dϕ|2)dvg (2.5)

We study the right-hand side and we consider the �rst term. By elementary calculations
and integration by parts formula we can rewrite:∫

X
ρε|dϕ|2dvg =

∫
X

(d(ρεϕ), dϕ)− ϕ(dρε, dϕ))dvg

=

∫
X
ρεϕ∆gϕdvg −

∫
X
ϕ(dρε, dϕ)dvg

=
1

λ

∫
X
ρε(∆gϕ)2dvg −

∫
X
ϕ(dρε, dϕ)dvg.

Therefore, by going back to (2.5), we get:∫
X

∆g(ρε)
|dϕ|2

2
dvg ≤

∫
X
ρε

((
1− n− 1

λ

)
(∆gϕ)2 − |∇dϕ|2

)
dvg+λ

∫
X
ϕ(dϕ, dρε)dvg.

(2.6)
In order conclude the proof, we need to choose a family of cut-o� functions ρε such that
when ε goes to zero we have:

(i) the left-hand side of (2.6) tends to zero;

(ii) the last term of the right-hand side in (2.6) tends to zero.

If we can �nd a family of cut-o� functions satisfying these two conditions, then when
we pass to the limit as ε goes to zero we obtain:(

1− (n− 1)

λ

)∫
X

(∆gϕ)2dvg −
∫
X
|∇dϕ|2dvg ≥ 0

Moreover, by Cauchy-Schwarz inequality we have:

|∇du|2 ≥ (∆gϕ)2

n
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2.2. Lichnerowicz Singular Theorem

As a consequence, we �nally have:(
1− (n− 1)

λ
− 1

n

)∫
X

(∆gϕ)2dvg ≥ 0.

which clearly leads to λ ≥ n.
It remains to show that it is actually possible to construct a family of cut-o� functions
having the properties (i) and (ii). This is done in the following.
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Choice of the family of cut-o� functions

We have to distinguish two di�erent cases, whether the codimension m of Σ is strictly
greater than two, or equal to two.

Case 1: Firstly assume thatm > 2. Consider ε > 0 and the tubular neighbourhoods
Σε of size ε and Σ2ε of size 2ε. We want to build a cut-o� function ρε which is equal
to one away from Σ2ε and vanishes on Σε. Moreover, we need the gradient dρε and the
Laplacian ∆gρε to decay "fast enough" as ε tends to zero. We will obtain ρε from a
harmonic function, as explained in the following.
Let hε be the harmonic extension of the function which is equal to 1 on the boundary
of Σ2ε and vanishes on the boundary of Σε, i.e. hε satis�es:

∆ghε = 0

hε = 1 on ∂Σ2ε

hε = 0 on ∂Σε.

The harmonic extension has a variational characterization: if we consider the Dirichlet
energy E de�ned by:

E(ϕ) =

∫
Σ2ε\Σε

|dϕ|2dvg.

then hε attains the in�mum of the functional E among all functions ϕ ∈W 1,2(X) taking
values 1 on ∂Σ2ε and vanishing on ∂Σε.
Let r be the distance function from the singular set Σ, i.e. r(x) = dg(x,Σ), and consider
the function gε that we introduced in the �rst chapter:

gε(r) =


1 on X \ Σ2ε

r

ε
− 1 on Σ2ε \ Σε

0 on Σε.

|dψε| =
1

ε
.

We have already shown that there exists a positive constant B such that the Dirichlet
energy of gε is bounded by above:

E(gε) ≤ Bεm−2.

Therefore, by the variational characterization of hε, its Dirichlet energy is smaller than
the one of gε, E(hε) ≤ E(gε), and we obtain:

E(hε) ≤ Bεm−2. (2.7)

However, hε is not necessarily smooth. The cut-o� function ρε will be obtained by
composing hε with a smooth function ρ vanishing on (−∞, 1

4 ] end being equal to one on
[3
4 ,+∞): more precisely, ρε = ρ ◦ hε. As a consequence we have:

dρε = (ρ′ ◦ hε)dhε and ∆gρε = −(ρ′′ ◦ hε)|dhε|2.
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2.2. Lichnerowicz Singular Theorem

Since ρ is smooth and chosen independently from ε, there exist two constants c1, c2, not
depending on ε, such that:

|dρε| ≤ c1|dhε|, and |∆ρε| ≤ c2|dhε|2.

We claim that our choice of ρε satis�es (i) and (ii). For what concerns the �rst condition,
by using (2.2) on the gradient dϕ and (2.7), we obtain:∫

Σ2ε\Σε
|∆gρε||dϕ|2dvg ≤ c2

∫
Σ2ε\Σε

|dhε|2|dϕ|2dvg ≤ C2| ln(ε)|εm−2.

which tends to zero as ε goes to zero. As for the second condition (ii), by using Cauchy-
Schwarz inequality twice and the estimate we have on |dρε|, we get:∫

Σ2ε\Σε
(dρε, dϕ)dvg ≤

∫
Σ2ε\Σε

|dρε||dϕ|dvg

≤

(∫
Σ2ε\Σε

|dρε|2dvg

) 1
2
(∫

Σ2ε\Σε
|dϕ|2dvg

) 1
2

≤ c′1ε
m
2

√
| ln(ε)|

(∫
Σ2ε\Σε

|dhε|2dvg

) 1
2

≤ c′′1εm−1
√
| ln(ε)|.

which also tends to zero with ε.

Case 2: Consider m = 2. The cut-o� function ρε will be equal to one outside Σε

and it will vanish in Σε2 , for 0 < ε < 1. In this case too ρε is obtained by "smoothing"
the harmonic function hε being equal to one on ∂Σε and vanishing on ∂Σε2 . We will
be able to show that the Dirichlet energy of hε tends to zero when ε goes to zero as
| ln(ε)|−1. A priori this estimate does not su�ces to show (i) and (ii), but only implies
that the two integrals are bounded. For this reason we will need to give a more detailed
study: we are going to prove that in fact |dϕ| belongs to W 1,2(X) ∩ L∞(X).

Let hε be the harmonic function solving:
∆ghε = 0

hε = 1 on ∂Σε

hε = 0 on ∂Σε2 .

We can found a test function fε such that the Dirichlet energy E(fε) is bounded by a
constant times | ln(ε)|−1. We consider the function fε de�ned in Lemma 1.6:

fε(r) =


1 on X \ Σε(

2− ln(r)

ln(ε)

)
on Σε \ Σε2

0 on Σε2 .

|dfε| =
1

r| ln(ε)|
.
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We have already proven that there exists a positive constant A, independent of ε, for
which we have: (∫

Σε\Σε2
|dfε|2dvg

)
≤ A

| ln(ε)|
. (2.8)

Then by the variational characterization of hε we obtain:

E(hε) ≤ E(fε) ≤
A

| ln(ε)|
.

Furthermore, thanks to our estimate on the behaviour of dϕ we obtain:∫
Σε\Σε2

|dhε|2|dϕ|2dvg ≤ C| ln(ε2)|
∫

Σε\Σε2
|dhε|2dvg

≤ 2C2| ln(ε)|
∫

Σε\Σε2
|dfε|2dvg

≤ 2C2| ln(ε)| A

| ln(ε)|
≤ D.

where D is a positive constant independent of ε.
If we replace ρε by fε in (2.5) and we let ε go to zero we then obtain a �nite term

B1 on the left-hand side. Therefore we obtain the following estimate:∫
X
|∇dϕ|2dvg +B1 ≤

∫
X

(λ− (n− 1))|dϕ|2dvg.

Recall that ϕ belongs to W 1,2(X), so that the norm of |dϕ| in L2(X) is �nite. Then
the previous inequality tells us that also |∇dϕ| must be in L2(X), and so ∇|dϕ| too,
since we have clearly |∇|dϕ|| ≤ |∇dϕ|. As a consequence we have that |dϕ| belongs to
W 1,2(X). This allows us to get more regularity on |dϕ|, by using the fact that on Ω the
gradient satis�es ∆g|dϕ| ≤ c|dϕ|.

Claim: The gradient dϕ belongs to L∞(X).

Proof. Let us call u = |dϕ| for simplicity. We state that u satis�es the weak inequality

∆gu ≤ cu. (2.9)

on the whole X. This means that for any ψ ∈W 1,2(X), ψ ≥ 0 we have:∫
X

(du, dψ)gdvg ≤ c
∫
X
uψdvg. (2.10)

We already proved that ∆gu ≤ cu strongly on Ω, then we know that for any ψ ∈W 1,2(X)
we have: ∫

Ω
ψ∆gudvg ≤ c

∫
Ω
uψdvg.
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2.2. Lichnerowicz Singular Theorem

In order to extend this inequality to the whole X and obtain (2.9), we consider fε de�ned
as above, 0 ≤ fε ≤ 1 and we replace ψ by fεψ. By integrating by parts we obtain:∫

X
(d(fεψ), du)gdvg ≤ c

∫
X
fεψu+

∫
X
ψ(dfε, du)gdvg. (2.11)

We can use Cauchy-Schwarz inequality twice on the second term and obtain:∫
X
ψ(dfε, du)gdvg ≤ B2 ‖du‖2

(∫
X
|dfε|2dvg

) 1
2

≤ B3 ‖du‖2
1√
| ln(ε)|

.

Where we used the estimate (2.8) on the gradient of fε. Since the norm in L2(X)
of the Hessian du = ∇dϕ is �nite, the second term in (2.11) tends to zero when ε
goes to zero. Then letting ε go to zero in (2.11) implies (2.10), as we wished. Since
(2.9) is proven, Moser's iteration technique in Proposition 1.8 of [ACM14] assures that
|dϕ| ∈ L∞(X).

We are �nally in the position to show that in codimension m = 2 a family of cut-o�
functions satisfying (i) and (ii) exists: de�ne ρε = ρ ◦ hε for the same smooth function
ρ as before. We have for c1, c2 independent of ε

|dρε| ≤ c1|dhε| |∆gρε| ≤ c2|dhε|2.

The estimate on the Dirichlet energy on hε and the fact that the norm of the gradient
|dϕ| in L∞(X) is �nite assure that ρε is the desired cut-o� function. For the condition
(i) we obtain: ∫

X
|∆gρε||dϕ|dvg ≤ c′2

∫
X
|dhε|2dvg ≤

c′2A

| ln(ε)|
.

which tends to zero as ε goes to zero. For the condition (ii) we use Cauchy-Schwarz
inequality twice and we get:

∫
X

(dρε, dϕ)gdvg ≤

(∫
Σε2\Σε

|dρε|2dvg

) 1
2
(∫

Σε2\Σε
|dϕ|2

) 1
2

≤ c′1ε
(∫

X
|dhε|2dvg

) 1
2

≤ c
′′
1ε√
| ln(ε)|

.

which tends to zero as ε goes to zero.
We have found an appropriate family of cut-o� functions for any codimension of the

singular set Σ: this concludes the proof of the theorem.
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Remark 2.7. Observe that we have proven that the gradient of any eigenfunction ϕ of
the Laplacian is such that |dϕ| belongs to W 1,2(X) ∩ L∞(X) not only in the case of
codimension m = 2, but, using the same argument, also for m > 2.

Remark 2.8. In the discussion above for the choice of the cut-o� function in codimension
m > 2 (respectively m = 2), we obtain ρε by smoothing a harmonic function hε and
by considering ρ ◦ψε (respectively ρ ◦ fε) because we need a condition on the Laplacian
of ρε. The distance function from Σ is not necessarily smooth: we know that almost
everywhere |dr|2 = 1, but we do not have information on the behaviour of its Laplacian.

Remark 2.9. By our de�nition of admissible strati�ed space, we are excluding the exis-
tence of a stratum of codimension 2 whose link is a circle S1

a, of radius a bigger or equal
to one. Recall that the classical Lichnerowicz theorem does not hold for S1

a, since the
�rst eigenvalue of the Laplacian is equal to 1/a2 < 1: the �rst iterative step in our proof
could not be applied.

We can state a consequence of the previous Theorem and of Lemma 2.1 on the
spectral geometry of the links of a strati�ed space:

Lemma 2.10. Let (X, g) be a strati�ed space which satis�es a Ricci lower bound, not
necessarily positive, and which does not posses any strata of codimension two and cone
angle larger than 2π. Then for any x in X we have ν1(Sx) = 1, and in particular ν(X)
is equal to 1.

In particular, under the assumptions of the previous lemma, the hypothesis of Corol-
lary 2.4 is always satis�ed. We can then reformulate it in the following way:

Corollary 2.11. Let (X, g) be a strati�ed space of dimension n. Assume that it has no
codimension 2 stratum with link of diameter larger than π and that the Ricci tensor of g is
bounded by below. Let F be a locally Lipschitz function on R and u ∈W 1,2(X)∩L∞(X)
a non-negative solution to ∆gu = F (u). Then for any ε > 0 we have:

‖du‖L∞(X\Σε) ≤ C
√
| ln(ε)|.

If we use the Bochner-Lichnerowicz formula, integration by parts with the same cut-
o� functions as in the previous proof, and the argument of Claim 1, we can also get a
better regularity result:

Corollary 2.12. Let (X, g) be a strati�ed space of dimension n. Assume that it has no
codimension 2 stratum with link of diameter larger than π and that the Ricci tensor of g is
bounded by below. Let F be a locally Lipschitz function on R and u ∈W 1,2(X)∩L∞(X)
a non-negative solution to ∆gu = F (u). Then the gradient du is such that |du| belongs
to W 1,2(X) ∩ L∞(X).
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2.3 An estimate of Sobolev best constant

The following theorem is inspired by a result of D. Bakry contained in [Bak94] (and
also proven by S. Ilias [Ili83]): given a smooth compact Riemannian manifold (Mn, g)
with a Ricci positive lower bound of the form Ricg ≥ (n− 1)g, it is possible to give an
explicit estimate of the best constant appearing in the Sobolev inequality. Such estimate
depends only on the dimension and on the volume of M with respect to g.

Thanks to the Lichnerowicz theorem 2.5, we can prove an analogous result for an
admissible strati�ed space.

Theorem 2.13. Let X be an admissible strati�ed space of dimension n. Then for any
1 < p ≤ 2n/(n− 2) a Sobolev inequality of the following form holds:

V
1− 2

p ‖f‖2p ≤ ‖f‖
2
2 +

p− 2

n
‖df‖22 . (2.12)

where V is the volume of X with respect to the metric g.

Proof. All along this proof we are going to use the renormalized measure dµ = V −1dvg,
where V = V olg(X). By Theorem 2.5, we know that the �rst non-zero eigenvalue of the
Laplacian is greater than the dimension n; moreover, as we recalled in the �rst Chapter,
the Sobolev's inequality holds on X (see Proposition 2.2 in [ACM14]). The lower bound
on the spectrum of the Laplacian, the Sobolev's inequality and Lemma 4.1 in [Bak94]
imply that there exists a positive constant γ such that

‖f‖22n
n−2
≤ ‖f‖22 + γ ‖df‖22 .

where all the norms from now on are with respect to Lp(X, dµ). By using interpolation
between 2 and 2n

n−2 , it is easy to see that for any p < 2n
n−2 and for any δ > 0 we have the

following inequality:
‖f‖2p ≤ (1 + δ) ‖f‖22 + γ0 ‖df‖22

We denote by γ0 the best constant appearing in the previous inequality. We are going
to show that γ0 is smaller then (p−2)/n, for any choice of δ > 0. By coming back to the
measure dvg, we will get the power 1 − 2/p of the volume and therefore the inequality
(2.12) will hold on X.
Consider a minimizing sequence for γ0, i.e. a sequence of positive functions (fn)n in
W 1,2(X) such that the quotient

‖fn‖2p − (1 + δ) ‖fn‖22
‖dfn‖22

converges to γ0. We can assume without loss of generality that ||fn||2 = 1. Then (fn)n is
bounded in Lp(X) and by the compact embedding of W 1,2(X) in Lp(X) we can deduce
that there exists a positive function f in W 1,2(X) such that (fn)n converges weakly to
f in W 1,2(X), and strongly in Lp(X). Thanks to the normalization of the norms in
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L2(X) of fn, f is not vanishing everywhere, and thanks to the the choice of δ > 0, f
cannot be constant. Moreover, it satis�es the following equation on X:

γ0∆gf + (1 + δ)f = Afp−1. (2.13)

where A = ‖f‖2−pp is a �nite constant. As we observed in the �rst chapter, we can
apply to the equation (2.13) the Moser iteration technique (see Remark 1.13), as in
Proposition 1.8 in [ACM14], in order to show that f is bounded. Since the Ricci tensor
is bounded by below and f(x) = (Axp−1 − (1 + δ)x) is a locally Lipschitz function, we
can apply Corollary 2.12: then, the gradient of f is bounded and belongs to W 1,2(X).

We can express f as the power of a function u, i.e. f = uα for some α that will
be chosen later. Then u is also positive, bounded and its gradient satis�es the same
estimate as |df | away from a neighbourhood of the singular set Σ.
We can rewrite (2.13) in the form:

Auα(p−2) = (1 + δ) + γ0
∆g(u

α)

uα
= (1 + δ) + αγ0

(
∆gu

u
− (α− 1)

|du|2

u2

)
(2.14)

D. Bakry's proof consists in multiplying this equation for an appropriate factor, and
then by integrating it. He �nds a factor depending on γ−1

0 , p and n, multiplies by the
L2-norm of du, and he bounds it by below by some quantity, which is positive when α
is well-chosen. We will proceed in a similar way, by taking care of introducing a cut-o�
function, because we are allowed to use the equation (2.14) and integration by parts
only on the regular set Ω.

Fix ε > 0 and consider the cut-o� function ρε chosen in the proof of Theorem 2.5
and depending on the minimal codimension of the singular set. We multiply (2.14) by
ρεu∆gu and integrate on X:

A

∫
X
ρεu

1+α(p−2)∆gudµ = (1 + δ)

∫
X
ρεu∆gu

+ γ0α

(∫
X
ρε(∆gu)2dµ− (α− 1)

∫
X
ρε

∆gu

u
|du|2dµ

)
.

(2.15)

When integrating by parts the left-hand side we obtain:

A

∫
X
ρεu

1+α(p−2)∆gudµ =

∫
X
u1+α(p−2)(dρε, du)gdµ

+ (1 + α(p− 2))

∫
X
ρεu

α(p−2)|du|2dµ.

Since u is positive and bounded, we can bound u1+α(p−2) by a positive constant indepen-
dent of ε. Then �rst term, which contains (du, dρε)g, tends to zero as ε goes to zero as
we have shown in the proof of Theorem 2.5. In the second term we will replace uα(p−2)

by its value given by (2.14), and this allows one to simplify the constant A, which will
not appear in the following.
As for the right-hand side of (2.15), consider the �rst term:∫

X
ρε(u∆gu)dµ =

∫
X
u(du, dρε)gdµ+

∫
X
ρε|du|2dµ.
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and when we let ε tends to zero, since as before u is bounded, we simply get the L2-norm
of du, both for the case m > 2 and m = 2.
Therefore, after some elementary computation we obtain:

1 + δ

γ0
(p− 2)

∫
X
ρε|du|2dµ =

∫
X
ρε(∆gu)2dµ

+ (α− 1)(1 + α(p− 2))

∫
X
ρε
|du|4

u2
dµ

− α(p− 1)

∫
X
ρε

∆gu

u
|du|2dµ+ o(1).

(2.16)

where we replaced the two terms containing du and dρε by a term o(1) which tends to
zero as ε goes to zero. Let us denote:

I1 =

∫
X
ρε(∆gu)2dvg.

I2 =

∫
X
ρε

∆gu

u
|du|2dvg.

We are going to bound by below I1 by integrating the Bochner-Lichnerowicz formula,
which holds on the regular set Ω, and to give an alternative expression for I2 by inte-
grating by parts.
Consider �rstly I1. We multiply the Bochner-Lichnerowicz formula

(du, d∆gu)g = ∆g
|du|2

2
+ |∇du|2 +Ricg(du, du) on Ω.

by the cut-o� function ρε and integrate. Recall that by hypothesis we have Ricg ≥
(n− 1)g.
By rewriting ρε(du, d∆gu)g = (du, d(ρε∆gu))g−∆gu(du, dρε)g and integrating by parts,
we then obtain:∫

X
ρε(∆gu)2dµ ≥

∫
x
ρε(|∇du|2dvg + (n− 1)|du|2)dµ

+

∫
X

∆gρε
|du|2

2
dµ+

∫
X

∆gu(du, dρε)gdµ.

(2.17)

Remark that thanks to (2.14), and the fact that u is bounded, we know that ∆gu can
be split in the sum of a bounded term and a second term depending on |du|2: it is equal
to

∆gu =
1

α
u

(
∆gf

uα
+ α(α− 1)

|du|2

u2

)
.

We know that u is strictly positive and bounded, then the same is true for u−1, and
∆gf is bounded too. Furthermore, we observed at the end of the �rst chapter, Remark
1.17, that |du| belongs to Lp(X), for all p ∈ [1; +∞). As a consequence ∆gu also
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belongs to Lp(X) for p ∈ [1; +∞). Then we can bound the last term in (2.17) by using
Cauchy-Schwarz inequality:∫

X
ρε∆gu(du, dρε)gdµ ≤

(∫
X

(ρε∆gu)2dµ

) 1
2
(∫

X
(du, dρε)

2
gdµ

) 1
2

.

where the �rst factor is �nite, and the second one tends to zero as ε goes to zero. Then
the last term in (2.17) tends to zero as ε goes to zero. As for the term containing ∆gρε,
we know form the proof of Theorem 2.5 that this tends to zero as ε goes to zero.

We can modify (2.17) a bit more. We decompose the Hessian ∇du in its traceless
part A plus −(∆gu/n)g, since ∆gu = −tr(∇du). Then the square norm of ∇du is equal
to |A|2 + (∆gu)2/n, and therefore we get:∫

X
ρε(∆gu)2dµ ≥ n

n− 1

∫
X
ρε|A|2dµ+ n

∫
X
ρε|du|2dµ+ o(1). (2.18)

This will be the appropriate bound by below for I1.
Now consider I2 and integrate by parts:

I2 = 2

∫
X
ρε
∇du(du, du)

u
dµ−

∫
X
ρε
|du|4

u2
dµ+

∫
X

|du|2

u
(dρε, du)gdµ.

With the same observations as before (|du| ∈ Lp(X) for all p ∈ [1 +∞) and Cauchy-
Schwarz inequality), we can say that the last term in this expression tends to zero as
ε goes to zero. We can decompose again the Hessian ∇du in ∇du = A − ∆gu

n g. As a
consequence we can write:

I2 =
2n

n+ 2

∫
X
ρε
A(du, du)

u
dµ− n

n+ 2

∫
X
ρε
|du|4

u2
dµ+ o(1). (2.19)

We can now replace this expression for I2 and the bound by below (2.18) for I1 in (2.16);
after passing to the limit as ε and δ go to zero we obtain:(

1

γ0
(p− 2)− n

)∫
X
|du|2dµ ≥ n

n− 1

∫
X
|A|2dµ

− α(p− 1)
2n

n+ 2

∫
X

A(du, du)

u
dµ

+ C(α)

∫
X

|du|4

u2
dµ.

(2.20)

where
C(α) = (α− 1)(1 + α(p− 2)) + α(p− 1)

n

n+ 2
.

The �rst two terms in the left-hand side of (2.20) can be interpreted as a part of a square
norm for some convenient coe�cient: we can rewrite in fact(

1

γ0
(p− 2)− n

)∫
X
|du|2dµ ≥ n

n− 1

(∫
X

∣∣∣∣A+ β
du⊗ du

u

∣∣∣∣2 dµ
)

+

(
C(α)− β2 n

n− 1

)∫
X

|du|4

u2
dµ.
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where we have chosen:

β = −α(p− 1)
n− 1

n+ 2

We denote by T = du⊗du
u . Then, recalling that A is traceless, we have

|A+ βT |2 ≥ 1

n
tr(A+ βT )2 =

β2

n

|du|4

u2
.

Replacing this in the previous inequality, we �nally get:(
1

γ0
(p− 2)− n

)∫
X
|du|2dµ ≥ (C(α)− β2)

∫
X

|du|4

u2
dµ. (2.21)

We remark that C(α)− β2 is a quadratic expression in α. Its discriminant equals:

−4n(p− 1)((n− 2)p− 2n)

(n+ 2)2

which is positive for 1 < p < 2n
n−2 . Therefore, thanks to our hypothesis, we can choose α

in such a way that the right-hand side of (2.21) is a positive quantity. As a consequence
we get for any 1 < p < 2n

n−2 :
1

γ0
≥ n

p− 2
.

which gives the desired Sobolev inequality. We can pass to the limit as p tends to 2n
n−2

and get the result for 2n
n−2 as well.

A consequence of Sobolev inequality: singular Myers theorem

Another classical result holding for smooth Riemannian manifolds is the Myers theorem:
if (Mn, g) is complete, connected, and its Ricci tensor is bounded by below by (n− 1)g,
then the diameter of M is less or equal than π. In [BL96], the authors has proven
that this kind of lower bound can be shown in a great generality, on a probability
measure space with a Markov generator which satis�es a curvature-dimension condition.
Moreover, the proof relies only on analytical tools, in particular on the existence of a
Sobolev inequality of the form (2.12) and on the choice of the appropriate test functions
(see Section 2 in [BL96] for the details).

The previous theorem gives us the Sobolev inequality needed to apply D. Bakry and
M. Ledoux's proof. As a consequence, the Myers theorem holds on admissible strati�ed
spaces in the following sense:

Theorem 2.14 (Singular Myers Theorem). Let (X, g) an admissible strati�ed space.
Let us de�ne its Lipschitz diameter as:

diamL(X) = sup
{
||f̃ ||L∞(X×X ; f ∈ Lip1(X)

}
where f̃(x, y) = f(x)− f(y) and Lip1(X) is the set of Lipschitz functions with Lipschitz
constant less or equal than one.Then diamL(X) is less or equal than π.
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Observe that on a smooth Riemannian manifold, what we called Lipschitz diameter
coincides with the usual diameter associated to the Riemannian metric. We remark that
it is possible to prove the following lemma:

Lemma 2.15. Let (X, g) be a strati�ed space of dimension n with Ricg ≥ (n − 1)g,
and let γ : [0, 1]→ X be a Lipschitz curve in X. Let Lg(γ) denote its length. For any
ε > 0 there exists a curve γε such that γε((0, 1)) is contained in the regular set Ω and
Lg(γε) ≤ (1 + ε)Lg(γ).

This implies two facts: �rst, a function u in C1(Ω) whose gradient is bounded in
L∞(X) by a constant c is a Lipschitz function on the whole of X, with Lipschitz con-
stant less or equal than c; moreover, the Lipschitz diameter coincides with the diameter
associated to the metric g, and we can avoid any distinction between the two.

We are going to show that an admissible strati�ed space has diameter equal to π if
and only if the �rst non-zero eigenvalue of the Laplacian is equal to the dimension of
the space. Thanks to Theorem 4 in [BL96]this is in turn equivalent to the existence of
extremal functions for the Sobolev inequality (2.12) which only depend on the distance
from a point.

Theorem 2.16. Let (X, g) be an admissible strati�ed space of dimension n. Then the
following statements are equivalent:

(i)) The �rst non-zero eigenvalue of the Laplacian ∆g is equal to n.

(ii) The diameter of X is equal to π.

(iii) There exist extremal functions for the Sobolev inequality.

Proof. If the diameter of X is equal to π, then its Lipschitz diameter is equal to π,
and then Theorem 4 in [BL96] implies both the existence of functions attaining the
equality in Sobolev inequality and of an eigenfunction associated to the eigenvalue n.
As a consequence, we have to prove that if the �rst non-zero eigenvalue of the Laplacian
is equal to the dimension of the space, then its diameter is equal to π. If we �nd a
Lipschitz function f which takes values in an interval of length π and whose Lipschitz
constant is smaller or equal than one, then we have that diamL(X) = π, and thanks to
the previous lemma we get the desired value for the diameter.

Consider ϕ an eigenfunction associated to the eigenvalue n: we have seen in the proof
of Theorem 2.5 that its gradient belongs to W 1,2(X) and that it is bounded. Moreover,
its Hessian is proportional to the metric g: in fact, it must satisfy |∇dϕ|2 = (∆gϕ)2/n,
therefore we are in the case of equality in the Cauchy-Schwarz inequality and we get:

∇dϕ = −ϕg. (2.22)

As a consequence, we can show that the quantity |∇ϕ|2 +ϕ2 is a constant on the regular
set Ω. In fact we have:

d(|∇ϕ|2 + ϕ2) = 2ϕdϕ+ 2∇dϕ(·,∇ϕ) = 2ϕdϕ− 2ϕdϕ = 0.
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Then, up to multiplying by a constant, we can assume without loss of generality that:

|∇ϕ|2 + ϕ2 = 1 on Ω. (2.23)

This equality tells us that ϕ takes values between −1 and 1. Let us consider the function
f de�ned as follows:

f = arcsin(ϕ).

Its gradient is bounded on X, because the gradient of ϕ belongs to L∞(X), and then f
belongs to Lip(X) as well. Moreover, by de�nition ∇f has norm equal to one at each
regular point: thanks to Lemma 2.15 this implies that the Lipschitz constant of f on
the whole X is less or equal than one. In order to conclude, we need to show that the
image of X by f is equal to [−π/2, π/2]. This is clearly equivalent to proving that ϕ
has the closed interval [−1, 1] as image.

Let us de�ne U+ as the set on which ϕ is strictly positive. Observe that Ω ∩ U+ is
not empty, since ϕ changes sign on X, and Ω is dense in X. Moreover Ω ∩ U+ is dense
in U+, since Ω is dense and U+ is an open set in X.

Consider and the following problem with Dirichlet condition at the boundary:{
∆gf = λf in U+

f = 0 on ∂U+.

This problem has a variational formulation: we can de�ne the �rst non-zero Dirichlet
eigenvalue on U+ as the in�mum of the Dirichlet energy on functions in W 1,2

0 (U+), that
is:

λ1(U+) = inf

{
E(ψ) =

‖dψ‖22
‖ψ‖22

, ψ ∈W 1,2
0 (U+)

}
Assume by contradiction that the maximum of ϕ is equal to M , strictly smaller

than 1. We state that this implies the existence of a function u : [0,M ]→ R+ such that
u(0) = 0 and

∆g(u ◦ ϕ) = nϕu′(ϕ)− (1− ϕ2)u′′(ϕ) > n(u ◦ ϕ), on Ω ∩ U+.

This means that we can �nd a function u which vanishes at 0, is positive on (0,M ] and
satis�es the following di�erential inequality on (0,M ]:

− u′′(t)(1− t2) + ntu′(t) > nu(t). (2.24)

Let α > 1, to be chosen later, and consider uα(t) = t−tα. By replacing in the di�erential
inequality, we reformulate (2.24) in the following way:

α(α− 1)tα−2(1− t2) + nt(1− αtα−1) > n(t− tα).

α(α− 1)tα−2 − α(α− 1)tα − nαtα + ntα > 0

α(α− 1)tα−2 − (α− 1)tα(α+ n) > 0.
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Now by multiplying by (α− 1)t2−α > 0 we get:

α− t2(α+ n) > 0.

Therefore the question becomes to �nd an α > 1 such that the previous inequality is
satis�ed. The second degree polynomial appearing in the left-hand side of the previous
inequality has a solution in [0, 1] at t0(α) =

√
α(α+ n)−1, and it is positive between

0 and t0(α). Since this last quantity tends to one as α goes to in�nity, and since M is
strictly smaller than one, we can choose α large enough so that t0(α) is strictly larger
than M . For such α the function uα satis�es the desired di�erential inequality, it is
positive in (0,M ] and vanishes at 0. From now on we denote uα simply by u, and u ◦ϕ
by φ.

Let ε be a positive real number and de�ne uε = u + ε: then uε is strictly positive
and, if we consider φε = uε ◦ ϕ, the Laplacian of φε satis�es ∆gφε > nφ on Ω ∩ U+.

For any positive function ψ belonging to W 1,2
0 (U+) we can de�ne v = ψ/φε, which

still belongs to W 1,2
0 (U+). By integration by parts and using that Ω∩U+ is dense in U+

we obtain:∫
U+
|dψ|2dvg =

∫
U+
|d(vφε)|2dvg =

∫
U+

(v2|dφε|2 + 2vφε(dv, dφε)g + φ2
ε|dv|2)dvg

≥
∫
U+
φεv

2∆gφεdvg =

∫
U+∩Ω

φεv
2∆gφεdvg > n

∫
U+∩Ω

φεφv
2dvg

= n

∫
U+∩Ω

ψ2 φ

φε
dvg = n

∫
U+
ψ2 φ

φε
dvg.

Now observe that φ/φε is smaller than one, it converges to one almost everywhere when
ε goes to zero, and when we pass to the limit, by the dominated convergence theorem
we, get: ∫

U+
|dψ|2dvg ≥ n

∫
U+
ψ2dvg.

This shows that λ1(U+) is larger than or equal to n.
The eigenfunction ϕ associated to n is a positive function on U+ belonging to

W 1,2(U+), and therefore λ1(U+) is equal to n. Moreover, we can apply the same calcu-
lations as above with ψ = ϕ. We can write ϕ as vφ, where v is strictly positive on U+

and it is de�ned by v = (1 − ϕα−1)−1, since by de�nition φ = ϕ − ϕα. We can easily
deduce that v must be a positive constant. In fact we have:

n

∫
U+
ϕ2dvg =

∫
U+
|dϕ|2dvg =

∫
U+

(φ2|dv|2+φv2∆gφ)dvg >

∫
U+
φ2|dv|2dvg+n

∫
U+
ϕ2dvg.

This means that dv = 0, v must be equal to a constant c and φ is a multiple of ϕ,
therefore an eigenfunction relative to n. This is a contradiction, since we have shown
that ∆gφ is strictly larger than nφ on Ω ∩ U+. Therefore, the maximum of φ on U+

must be equal to one.
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Analogously, the minimum of ϕ is equal to −1: therefore the image of X via ϕ is
[−1, 1],, and via f is [−π/2, π/2]. Thanks to Theorem 2.14 we know that the Lipschitz
diameter is less or equal than π, therefore we get the equality, as we wished.
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Chapter 3

The Yamabe problem.

In this chapter we brie�y present some known result about a foundational problem in
geometric analysis: the Yamabe problem. The question posed by H. Yamabe in the
sixties is whether on a compact smooth Riemannian manifold (Mn, g) of dimension n
larger than 3 there exists a metric with constant scalar curvature within the conformal
class of g. The motivation for considering n larger than three came from the fact that
Poincaré's uniformization theorem holds in dimension two, and on any compact Rie-
mannian surface there exists a metric with constant Gauss curvature. The answer to
H. Yamabe's question is positive, and it is due to the works of several mathematicians,
T. Aubin, N. Trudinger, R. Schoen, along twenty years. In our presentation we empha-
sise the study of a conformal invariant, the Yamabe constant, and of its relationship
with the Yamabe constant of the sphere.

In the second section of this chapter we summarize the main results about the Yam-
abe problem on strati�ed space, which are contained in the recent paper by K. Akuta-
gawa, G. Carron and R. Mazzeo [ACM14], and which have been the starting point of
this thesis. In this case too, we are mainly interested in the role played by a conformal
invariant, the local Yamabe constant, on which the existence of a metric with constant
scalar curvature strongly depends.

3.1 The classical Yamabe problem

The study of the Yamabe problem on a compact smooth manifold has been the object
of many mathematics works, and a complete presentation of its resolution is given in
di�erent sources: for example, we refer to the book [SY94] of R. Schoen and S.T. Yau
and to the exhaustive survey of J.M. Lee and T.H. Parker [LP87]. We collect here the
de�nitions and the results that we will need in the next section and chapter, in order to
�x the notation and to underline the common points between the classical variational
approach and the recent developments about the Yamabe problem on strati�ed spaces.

Consider a compact smooth manifold M of dimension n ≥ 3, endowed with a Rie-
mannian metric g. We de�ne the conformal class of g the set of all metrics g̃ such that
there exists a smooth function f ∈ C∞(M) for which g̃ = e2fg. We denote the confor-
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mal class by [g], so that H. Yamabe question can be reformulated: does there exist a
metric g̃ in the conformal class [g] which has constant scalar curvature Sg̃?

We recall the formula for the scalar curvature under conformal change, which can
be found in Chapter 1-J of [Bes08]:

Sg̃ = e−2f (Sg + 2(n− 1)∆gf − (n− 2)(n− 1)|df |2).

If we write a conformal metric in the form g̃ = u
4

n−2 g, for a smooth positive function u,
the previous formula gets simpler and it reads:

Sg̃ = u1−p (∆gu+ anSgu)

where we have

p =
2n

n− 2
, an =

(n− 2)

4(n− 1)
.

From now on in this chapter p will denote the exponent 2n/(n − 2). The operator
Lg = ∆g + anSg is referred to as the conformal Laplacian. As a consequence of this
formulation, if it is possible to �nd a positive smooth function u solving the Yamabe
equation:

Lgu = ∆gu+ anSgu = λu
n+2
n−2 (3.1)

for a constant λ, then the metric g̃ = u
4

n−2 g has constant scalar curvature.
A classical way to try and solve this equation, is to reformulate the problem in

a variational way, and to see the Yamabe equation as the Euler-Lagrange equation
associated to the appropriate functional. In fact, we can de�ne the Yamabe functional
Qg. For a function u in C∞(M) we consider

Qg(u) =

∫
M

(|du|2 + anSgu
2)dvg

‖u‖2p
=
Eg(u)

‖u‖2p
. (3.2)

Note that, again by using the conformal transformation of the scalar curvature, the
Yamabe functional can be rewritten as a functional de�ned on the conformal class of g.
For any g̃ in [g] we have:

Qg(g̃) =

∫
M
Sg̃dvg̃

Volg̃(M)
2
n

. (3.3)

A critical point of the Yamabe functional is a solution to the Yamabe equation. We can
then de�ne the Yamabe constant Y (Mn, [g]) as the in�mum of Qg over the conformal
class:

Y (M, [g]) = inf
g̃∈[g]

Qg(g̃) = inf
u∈C∞(M)

u6=0

∫
M

(|du|2 + anSgu
2)dvg

‖u‖2p
. (3.4)
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This is clearly a conformal invariant, and if there exists a smooth positive function u
(equivalently, a metric g̃ in the conformal class) attaining the Yamabe constant, then u
is a solution to the Yamabe equation. In this case the metric

g̃ = u
4

n−2 g.

has constant scalar curvature, and we refer to it as a Yamabe metric. A metric with
constant scalar curvature is not necessarily a Yamabe metric, since it is not necessarily
minimizing. Note also that C∞(M) is dense in the Sobolev spaceW 1,2(M) and therefore
in the de�nition of the Yamabe functional and of the Yamabe constant we can consider
functions u belonging to W 1,2(X) instead of only smooth functions.

Observe that the di�culty of the Yamabe equation relies on the fact that the ex-
ponent p − 1 in the right-hand side of (3.1) leads to the critical exponent for which
the compactness of the Sobolev embedding W 1,2(M) ↪→ Lp(M) fails. The works of
N. Trudinger and T. Aubin showed that this issue can be passed over if we have further
information on the Yamabe constant Y (M, [g]). The �rst one proved that if the Yamabe
constant is non positive, then there exists a unique solution to the Yamabe equation
and therefore a conformal metric with constant scalar curvature.

T. Aubin proved in [Aub76a] a fundamental inequality which we refer to as Aubin's
inequality:

Theorem 3.1 (Aubin's inequality). The Yamabe constant of any compact manifold
(Mn, [g]) is less than or equal to the Yamabe constant Yn of the sphere Sn endowed with
the standard metric:

Y (Mn, [g]) ≤ Y (Sn, [can]) = Yn.

Note that the proof of this result depends on a local argument and on the fact that
the Yamabe constant of the sphere Yn coincides with the best constant Λ in the following
Sobolev inequality in Rn:

Λ

(∫
Rn
updx

) 2
p

≤
∫
Rn
|du|2dx.

As a consequence, Aubin's inequality holds also for complete smooth manifolds.
What is crucial in solving the Yamabe problem with the variational approach is the

following result:

Theorem 3.2 (T. Aubin). Let (Mn, g) be a compact Riemannian manifold of dimension
n ≥ 3. If Aubin's inequality is strict, that is Y (Mn, [g]) < Yn, then there exists a solution
to the Yamabe equation.

We brie�y recall the steps that prove the previous theorem. The main idea consists in
considering a sub-critical equation, in which we replace the critical exponent by a smaller
one, and to show that the sub-critical solutions converge uniformly to a smooth positive
function solving the Yamabe equation. The crucial point is to show that the sequence
of sub-critical solutions is uniformly bounded in L∞(M), this allowing to deduce the
uniform convergence.
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Then, for s ∈ [2, p) we de�ne the sub-critical functional:

Qs(u) =
E(u)

‖u‖2s
λs = inf{Qs(u), u ∈W 1,2(M), u > 0} (3.5)

Standard arguments in calculus of variations imply that there exists a positive func-
tion us belonging to W 1,2(M), with ‖us‖s = 1, which attains the in�mum λs of the
sub-critical functional: therefore, us is a weak solution of the following equation:

∆gus + anSgus = λsu
s−1
s

Elliptic regularity, the Morrey and Schauder inequalities allow one to deduce that us
is in fact smooth on M , thus us is a strong solution of the previous equation. Moreover,
it is not di�cult to prove that the sequence {λs}s is such that:

lim inf
s→p

λs = Y (M, [g]).

When Y (M, [g]) ≥ 0, {λs}s converges exactly to the Yamabe constant of the mani-
fold. If the sequence {us}s converges uniformly to some smooth positive function u on
M , then u is such that

Qg(u) = lim
s
λs ≤ Y (M, [g])

By de�nition of the Yamabe constant, we then obtain Qg(u) = Y (M, [g]). It remains
then to prove the uniform convergence of the sequence of sub-critical solutions.

If by contradiction the sequence {us}s is not bounded, we can �nd, up to a subse-
quence, a sequence of points xs in M such that us(xs) tends to in�nity as s tends to p.
SinceM is compact, there exists a point x0 inM to which the xs converges as s tends to
p. We consider normal coordinates in a small neighbourhood of x0 and, by looking the
sub-critical equation for us in these coordinates, we are able to �nd a smooth positive
function v on Rn such that ‖v‖2 ≤ 1, solving the following equation:

∆0v = λvp−1, λ = lim
s
λs.

where ∆0 is the Euclidean Laplacian in Rn. By using cut-o� function to approach
v by compact supported functions, it is not di�cult to show that the previous equation
implies that λ ≥ 0, then λ = Y (M, [g]) and moreover

Y (M, [g]) = λ ≥ Λ = Yn.

This contradicts our hypothesis. As a consequence, the sequence {us}s must be
uniformly bounded, and then by a regularity argument it converges uniformly in
Ck(M) for any positive k to a smooth solution u of the Yamabe equation. Thanks to
the maximum principle, this latter cannot be the null solution and it is positive. This
concludes the proof of the existence when Y (M, [g]) < Yn.
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T. Aubin's contribution to the solution of the Yamabe problem also includes the
proof that when the dimension of the manifold is greater than 6, and the metric is not
locally conformally �at, the strict inequality, and therefore the existence of a solution
to the Yamabe equation, hold.

For what concerns the other cases, the local argument proposed by T. Aubin does
not su�ce to conclude. Around a decade later, the works of S.T. Yau and R. Schoen
(see [SY79], [SY81], [SY88]) about the positive mass conjecture in dimension n ≤ 6 or
locally conformally �at metric, allowed this latter to deduce a rigidity result [Sch84]:
if the Yamabe constant of (Mn, g) coincides with the one of the sphere Yn, then the
manifold is conformally equivalent to the sphere. As a consequence, it naturally carries
a metric with constant scalar curvature. N. Trudinger, T. Aubin and R. Schoen's results
taken together give a complete answer to the Yamabe problem on compact manifolds:
we summarize them in the following theorem.

Theorem 3.3 (N. Trudinger, T. Aubin, R. Schoen). Let (Mn, g) a compact Riemannian
manifold of dimension n ≥ 3. Either the Yamabe constant of (Mn, g) is strictly smaller
than Yn, or (Mn, g) is conformally equivalent to the sphere. In both cases, there exists
a metric of constant scalar curvature in the conformal class of g.

Other approaches exist in order to solve the Yamabe problem, for example by study-
ing the Yamabe �ow, which exists for any time, and its long time convergence. We refer
to the complete survey by S. Brendle [Bre08] for a description of what is already known
in this direction.

The advantage of the variational approach is that it is easily adaptable to many
di�erent contexts. In the following we focus on the Yamabe problem on strati�ed spaces,
but we underline that there are many variants of the Yamabe problem. The same
question of �nding a conformal metric with constant scalar curvature can be considered
on open manifolds, on subdomains of the sphere (the singular Yamabe problem), on
manifolds with boundary, within conformal metrics that are invariant under the action of
a subgroup of isometries (the G-invariant Yamabe problem), on complex manifolds (the
Chern-Yamabe problem)... In the next chapter we will consider for example the Yamabe
problem on a class of complete open manifolds, almost homogeneous manifolds. We are
far from giving an exhaustive list of the possible existing developments of H. Yamabe's
original question, and there are surely more variations to come in the future.

Moreover, a related and extremely interesting question is the study of the Yamabe
invariant of a manifold Mn. If we denote byM the set of all Riemannian metrics on a
di�erentiable manifold Mn, we de�ne the Yamabe invariant:

Y (M) = sup
g∈M

Y (M, [g]) = sup
g∈M

inf
g̃∈[g]

Qg(g̃).

A Riemannian metric attaining the Yamabe invariant, if it exists, is an Einstein metric.
The existence of an Einstein metric is a much more di�cult question than the Yamabe
problem, but this latter can be considered as a �rst step through a min-max procedure
to construct Einstein metrics on compact manifolds.
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3.2 The Yamabe problem on strati�ed spaces

The following discussion is based on the article by K. Akutagawa, G. Carron and
R. Mazzeo [ACM14]. The authors formulate the Yamabe problem in the very gen-
eral context of almost smooth metric-measure spaces, to which all the �rst section of the
article is devoted. In order not to add more de�nitions that we will not use, we only
consider the case of strati�ed spaces.

Assumptions and Yamabe constant

Given an iterated edge metric g on a strati�ed space (X, g) of dimension n ≥ 3, we can
consider the Yamabe functional and try to �nd its critical points among the functions
belonging to the Sobolev space W 1,2(X). A �rst question is whether Qg(u) is well-
de�ned for any function u in W 1,2(X).

The Sobolev embeddings we recalled in Chapter 1 ensure that a function inW 1,2(X)
has �nite norm in Lp(X), and therefore the denominator of Qg does not give any prob-
lem. As for the numerator Eg(u), it is necessary to assume an integrability condition on
the scalar curvature of g. Accordingly to [ACM14], we assume that one of the following
assumption holds:

(a) Sg belongs to Lq(X) for q > n
2 ;

(b) For some q > 1 there exist α ∈ [0, 2) and a positive constant C such that for any
point x of X we have:

sup
r>0

(
rαq−n

∫
B(x,r)

|Sg|qdvg

)
≤ C.

Observe that the condition (a) implies (b) with α equal to n/q < 2 and C equal to the
norm in Lq(X) of V . In both of these cases the term containing the scalar curvature in
Eg(u): ∫

X
Sgu

2dvg.

is �nite for any u in W 1,2(X). When Sg satis�es the hypothesis (a) this is simply a
consequence of Hölder inequality; otherwise we refer to Lemma 1.1 in [ACM14] to state
that for any ε > 0 there exists a positive constant Cε such that for all u ∈W 1,2(X) we
have: ∫

X
|Sg||u|2dvg ≤ ε

∫
X
|du|2dvg + Cε

∫
X
|u|2dvg < +∞. (3.6)

As a consequence, under one of the assumptions (a) or (b) the Yamabe functional Qg
is well de�ned, we can study its critical points and consider the Yamabe constant of a
strati�ed space:

Y (X, [g]) = inf
u∈W 1,2(X)

Qg(u).
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3.2. The Yamabe problem on strati�ed spaces

In the classical case, the existence of a solution to the Yamabe equation depends on
the relationship between the Yamabe constant of the manifold and the Yamabe constant
of the sphere of corresponding dimension. There is an analogous situation in the case
of strati�ed spaces: we have to compare the Yamabe constant of X with a conformal
invariant and get an equivalent of Aubin's inequality. Such conformal invariant is no
longer Yn, but the local Yamabe constant.

The local Yamabe constant and the existence result

We �rst de�ne the Yamabe constant of an open set U ⊂ X:

Y (U) = inf{Qg(u), for u ∈W 1,2
0 (U ∩ Ω)}

where Ω is the regular set of X. Observe that for any open set U in X we clearly have
Y (X, [g]) ≤ Y (U). Then we give the following de�nition:

De�nition 9 (Local Yamabe Constant). The local Yamabe constant of a strati�ed
space (X, g) is de�ned as:

Y`(X) = inf
x∈X

lim
r→0

Y (B(p, r)).

The generalized Aubin's inequality Y (X, [g]) ≤ Y`(X) holds for any strati�ed space.

Note that if we consider the previous de�nition on a compact smooth manifold
(Mn, g), the local Yamabe constant of (Mn, g) coincides with the one of the sphere
Yn, so that the local Yamabe constant appears to be a good generalization of that
conformal invariant in the case of singular spaces. In particular, we have that the local
Yamabe constant of a strati�ed space is less than or equal to Yn. A preceding version
of the local Yamabe constant can be found in the cylindrical Yamabe constant de�ned
by K. Akutagawa and B. Botvinnik in [AB03], which can be considered as the local
Yamabe constant associated to a strati�ed space with only isolated conical singularities
and depth equal to one.

By using the local description of the iterated edge metric, if X has strata Xj with
links (Zj , kj) it is possible to show that the local Yamabe constant is equal to:

Y`(X) = min
j

inf
x∈Xj

{Y (Rj × C(Zj), [dy
2 + dr2 + r2kj,x]}. (3.7)

We know from Lemma 1.4 that Rj × C(Zj) is isometric to the cone on the tangent
sphere, so that the local Yamabe constant can be also be computed as:

Y`(X) = inf
x∈X

Y (C(Sx), [dt2 + t2hx]).

Moreover, if we factorise r2 in the product metric dy2 + dr2 + r2kj,x it is not di�cult to
see that Rj × C(Zj) is conformal to the product of an hyperbolic space and Zj . Then
we can also express the local Yamabe constant in the following form:

Y`(X) = min
j

inf
x∈Xj

{Y (Hj+1 × Zj , [gHj+1 + kj,x]}.
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In [ACM14], it is shown (see Proposition 1.4(b)) that under the assumption (a) or (b)
on the scalar curvature the local Yamabe constant is positive. Moreover, for any ε > 0
there exists a constant Cε such that the following Sobolev inequality holds for any u is
W 1,2(X):

(Y`(X)− ε) ‖u‖22n
n−2
≤
∫

Ω
|du|2dvg + Cε

∫
Ω
u2dvg. (3.8)

The authors also prove the following existence theorem:

Theorem 3.4. Let (X, g) be a strati�ed space of dimension n. Assume the following:

(i) The scalar curvature Sg satis�es one of the assumptions (a) or (b);

(ii) The strict generalized Aubin's inequality holds:

Y (X, [g]) < Y`(X).

Then there exists a bounded, non-negative function u in W 1,2(X) which attains the
Yamabe constant Y (X, [g]). Moreover, on the regular set Ω, the function u solves the
Yamabe equation.

We brie�y sketch the proof. In the next chapter the proof of Theorem 4.20 follows
the same technique as the following: we will give more details in that context.

First, it is possible to prove the result for the regularity of subsolutions to a
Schrödinger equation:

Proposition 3.5. Assume that V is a function on X satisfying one of the hypothesis
(a) or (b). Let u in W 1,2(X) be a non-negative function for which the weak inequality
∆gu ≤ V u holds. Then u is bounded on X.

If (a) holds, this in nothing but the Moser iteration technique that we recalled in
Chapter 1. Otherwise, we refer to Theorem 1.10 in [ACM14].

Then one can consider the sub-critical Yamabe quotient Qs for s ∈ [2, p) as in
the classical case, and �nd a sequence of sub-critical solutions {us}s which are non-
negative and, thanks to Proposition 3.5 with the assumption (b), bounded. Moreover
Ys = Qs(us) converges to the Yamabe constant Y (X, [g]) as s tends to p, and thus
the norm in W 1,2(X) of us is uniformly bounded. Therefore, thanks to the Sobolev
embeddings, us converges to a function u ∈ W 1,2(X) weakly in W 1,2(X) ans strongly
in any Lq(X) for q ∈ [1, p).

Consider the weak form of the equation satis�ed by us: for any test function ϕ in
C1

0 (Ω) we have ∫
X

((dus, dϕ) + Sgusϕ)dvg =

∫
X
us−1
s ϕdvg.

The weak convergence in W 1,2(X) assures that we can pas to the limit as s tends to
p in the �rst term of the left-hand side. If the convergence of us is strong in Lp(X)
as well, we can pass to the limit in the other terms too, and deduce that u is a weak
solution for the Yamabe equation. Classical regularity arguments show that u is also a
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strong solution on the regular set Ω of X. Therefore the rest of the proof consists in
proving that {us}s is a bounded sequence in L∞(X): since X is compact, the dominated
convergence theorem will immediately imply the strong convergence in Lp(X). This is
done by applying again Proposition 3.5 to the sub-critical equation:

∆gus = (Ysu
s−2
s − anSg)u = Vsus, Vs = Ysu

s−2
s − anSg.

In order to do that, the potential Vs must satisfy one of the assumption (a) or (b). If
we apply the �rst step of Moser iteration technique to us, the Sobolev inequality (3.8)
and the fact that Ys remains strictly smaller than Y`(X), then we can deduce that us
belongs to Lαp(X) for some α strictly larger than one. As a consequence us to the power
(s − 2) belongs to Lαn/2(X), and in particular satis�es both the assumptions (a) and
(b). Therefore we can apply Proposition 3.5 with the potential Vs and get a uniform
bound on the norm in L∞(X) of us:

‖us‖∞ ≤ C
′ ‖us‖1,2 ≤ C. (3.9)

As we said before this implies the convergence in Lp(X), and therefore we can pass
to the limit to deduce that the function u in W 1,2(X) ∩ L∞(X) attains the Yamabe
constant of X and it is a solution to the Yamabe equation on Ω. This concludes the
proof.

Remark 3.6. In Theorem 1.12 in [ACM14], one more case is studied. Instead of assuming
(a) or (b), it is possible to consider only the negative part S−g of the scalar curvature and
ask that it belongs to Lq(X) for q > n/2. In this case Y`(X) is not necessarily positive,
and in the generalized Aubin inequality it is replaced by the local Sobolev constant
S`(X). Nothing changes in the proof of the existence theorem apart from considering
S−g instead of Sg in Vs.

If we want to apply the previous existence theorem, we �rst need the hypothesis on
the scalar curvature to be satis�ed. This issue is extensively studied in Section 2.3 of
[ACM14]. Let (X, g) be a strati�ed space with strata Xj , each with link Zj of dimension
dj = (n− j − 1). If the iterated edge metric g is assumed to be smooth in the variable
that we denoted ρj near each stratum, then its scalar curvature in a neighbourhood of
Xj has the form:

Sg =
Aj0(ρj)

ρ2
j

+
Aj1(ρj)

ρj
+O(1).

By combining this expression with the one of the volume element near Xj , it is possible
to show that:

(1) the scalar curvature Sg satis�es (b) if and only if Aj0 vanishes for all j;

(2) the scalar curvature Sg satis�es (a) if and only if Aj0 vanishes for all j and Aj1
vanishes for all j such that the dimension of the link dj is less than or equal to
(n− 2)/2.

It is then possible to re�ne the expression of the scalar curvature by using the formulas
for the curvature of warped product metrics. This leads to the following result:
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Theorem 3.7. Let (X, g) be a strati�ed space with strata Xj and links (Zj , kj) of
dimension dj. If for all j the scalar curvature of the link Skj is equal to dj(dj − 1), the
scalar curvature Sg satis�es the assumption (b).

The assumption on the scalar curvature of the links is very rigid, and in [ACM14] it
is shown that another strategy to make the terms Aj0 vanish is to look for a metric g̃ in
the conformal class of g for which Aj0 disappears. This is related to the positivity and
discreteness of the spectrum of the following operator on the links:

Lnkj = ∆kj + anSkj .

Such operator di�ers from the conformal Laplacian on Zj for the constant an in-
stead of the one depending on the dimension of Zj . It had been introduced in
[AB03] in the context of open manifolds with cylindrical ends (that are conformal
to isolated conical singularities). The role played by Lnkj is very interesting, but we
will not use it in the following: we refer to [ACM14] and [AB03] for a detailed discussion.

For what concerns the second hypothesis, the explicit value of the local Yamabe
constant is unknown for general strati�ed spaces, even for general isolated conical sin-
gularity, and little can be done without knowing it. The goal of the next chapter is to
show how to compute the local Yamabe constant under a geometric assumption on the
links.

Some results exist in the case of orbifolds with isolated conical singularities (see
[AB04], [Aku12]). In [AB03] the authors consider what they call canonical cylindrical
manifolds, that are products between a compact Riemannian manifold (Zn, h) and R,
endowed with the product metric dt2 + h, and are clearly conformal to a spherical
suspension over Zn. In this case the local Yamabe constant of the spherical suspension
coincides with the cylindrical Yamabe constant of Z × R. It is shown in [AB03] that
when the dimension of Z is larger than or equal to 5, and the metric is not conformally
�at, the cylindrical Yamabe constant is always strictly less than the one of the sphere,
and a Yamabe metric exists. In the other cases, for n = 2, 3, 4 and locally conformally
�at metric, if the �rst non-zero eigenvalue of the operator Ln+1

h is positive, then there
is a rigidity result: the cylindrical Yamabe constant of Z ×R is equal to the one of the
sphere if and only if Zn is homothetic to Sn. Therefore, consider canonical cylindrical
manifold Zn × R, n ≥ 2, or equivalently a spherical suspension C(Z), such that

(i) Zn is not homothetic to Sn ;

(ii) the �rst non-zero eigenvalue of the operator Ln+1
h is positive

Then the cylindrical Yamabe constant is strictly less than Yn and a Yamabe metric
exists. This gives at least some examples of strati�ed spaces on which the Yamabe
problem is solvable.

Nevertheless, J. Viaclovsky in [Via10] has given an example of orbifold for which the
Yamabe constant coincides with the local Yamabe constant and a Yamabe metric does
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not exists. He considers a manifold (X, gGB) of dimension four endowed with a asymp-
totically locally euclidean Gibbons-Hawking metric, and its conformal compacti�cation
(X̂, ĝ). He shows that this latter is smooth with one orbifold isolated singularity (p,Γ),
and it has positive orbifold Yamabe invariant (with our terms positive local Yamabe
constant) equal to:

Y (X̂, ĝ) = Y`(X̂) =
Y4√
|Γ|

Furthermore, (X̂, ĝ) does not admit a Yamabe metric. It would be interesting to �nd
other cases of non existence, to understand better when they occur, and whether there
is any rigidity phenomena analogous to the one holding for compact smooth manifolds.
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Chapter 4

The local Yamabe constant of

Strati�ed Spaces.

This chapter is devoted to showing that we are able to compute the local Yamabe
constant of a strati�ed space if its links are endowed with an Einstein metric. This
hypothesis is motivated by Theorem 3.7: if the scalar curvature of the links Zj of
dimension dj is equal to dj(dj − 1), then the scalar curvature of the whole strati�ed
space satis�es the integrability condition of the existence theorem 3.4. This is necessary
if we hope to �nd examples in which the solution to the Yamabe equation exists.

Our �rst result is a lower bound on the Yamabe constant of an admissible strati�ed
space: this is a direct consequence of the Sobolev inequality that we proved in Chapter 2.
Such lower bound generalizes a result obtained by J. Petean [Pet09] about the Yamabe
constant of cones over smooth compact manifolds with a positive Ricci lower bound.
Moreover, our result gives the exact value of the Yamabe constant in the case of an
Einstein metric. This agrees with a computation of the orbifold Yamabe invariant given
by K. Akutagawa and B. Botvinnik in [AB04], and also gives the value of the local
Yamabe constant of any orbifold, not necessarily with isolated singularities.

The previous result does not apply to a strati�ed space with a stratum of codimension
two and cone angle larger than 2π. In this last case, we show that the Yamabe constant of
the product between the Euclidean space Rn−2 and a cone C(R/αZ) of angle greater than
2π coincides with the Yamabe constant of the sphere of dimension n. The proof relies on
a smoothing technique and on the study of the isoperimetric pro�les of Rn−2×C(R/αZ).

These results considered together give a complete answer to the question of comput-
ing the local Yamabe constant of a strati�ed space with Einstein links.

In the third part of this Chapter we present another approach to the problem of
studying the local Yamabe constant, which is inspired by the works of M. Obata [Oba72]
and J. Viaclovsky [Via10]. We show a rigidity result following from the singular version
of Obata's theorem contained in Chapter 2: if there exists a non-trivial Yamabe mini-
mizer on an Einstein strati�ed space, then this latter must be isometric to the spherical
suspension of another strati�ed space of lower dimension, and again, the Einstein metric
attains the Yamabe constant. This gives another path to compute the local Yamabe
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constant, provided that we are able to �nd a non-trivial solution to the Yamabe equa-
tion. We give a family of examples in which we can prove the existence of a Yamabe
minimizer by presenting a new proof of a result due to K. Akutagawa and N. Grosse
[Gro13].

In the following we will alternatively use the various conformal equivalences that
we introduced in the previous chapter: the local Yamabe constant can be computed
by studying the product Rj × C(Z), or Hj+1 × Z or the cone over a m-fold spherical
suspension of the link, for the appropriate m.

4.1 A lower bound for the Yamabe constant

In Theorem 2.13 we have shown that a Sobolev inequality with explicit constants de-
pending only on the dimension and on the volume holds on an admissible strati�ed
space. As a consequence of that result, we can prove a lower bound for the Yamabe
constant of admissible strati�ed spaces, which is attained in the case of Einstein metrics,
as the following proposition shows:

Proposition 4.1. Let (X, g) be an admissible strati�ed space. Then its Yamabe constant
is bounded by below:

Y (X, [g]) ≥ n(n− 2)

4
V

2
n (4.1)

In particular, if g is an Einstein metric, we have equality.

Proof. Recall that the Yamabe constant of X is de�ned by

Y (X, [g]) = inf
u∈W 1,2(X),u6=0

∫
X

(|du|2 + anSgu
2)dvg

‖u‖22n
n−2

.

where an = n−2
4(n−1) and Sg is the scalar curvature. Since Ricg ≥ k(n − 1)g, we have

Sg ≥ kn(n− 1), and as a consequence

anSg ≥
n(n− 2)

4
.

We denote this constant by γ−1. Remark that if we take p = 2n
n−2 in the previous

theorem, γ is exactly the constant appearing in the right-hand side of the Sobolev
inequality of Theorem 2.13. Then for any u ∈W 1,2(X) we have:

V
2
n

γ
‖u‖22n

n−2
≤ ‖du‖22 +

1

γ
‖u‖22 ≤ ‖du‖

2
2 +

∫
X
anSg|du|2dvg.

and this easily implies the desired bound by below on the Yamabe constant.
Recall that in order to de�ne the Yamabe constant (3.4) we can also consider the

in�mum of the Yamabe functional Qg, as in (3.3), over the conformal class. When we
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consider an Einstein metric g on an admissible strati�ed space, its Yamabe quotient
attains exactly

Q(g) =
n(n− 2)

4
Volg(X)

2
n

since the scalar curvature of g is constant and equal to n(n − 1). Thanks to our lower
bound and the fact that the Yamabe constant is an in�mum, we get the case of equality
in the Einstein case.

This result gives us the Yamabe constant of an admissible strati�ed space with Ein-
stein metric; it can also be used to compute the local Yamabe constant of an admissible
strati�ed space with Einstein links, as we show in the following examples.

4.1.1 Examples

Consider an admissible strati�ed space (Zd, k) of dimension d with Einstein metric k. We
know from Chapter 1 that Rn−d−1 × C(Z) endowed with the model metric is isometric
to C(S) with the exact cone metric dr2 + r2h, where:

S =
[
0,
π

2

]
× Sn−d−3 × Z

h = dϕ2 + cos2(ϕ)gSn−d−3 + sin2(ϕ)k.

The exact cone metric is in fact conformal to the metric gc = dt2 + cos2(t)h, for t ∈
[−π/2, π/2], which is an Einstein metric. We have then the following:

Lemma 4.2. Let (Z, k) an admissible Einstein strati�ed space of dimension d. The
product X = Rn−d−1×C(Z) endowed with the metric g = dy2 +dr2 +r2k is conformally
equivalent to an Einstein admissible strati�ed space (C(S), gc).

Proposition 4.1 states then that Yamabe constant of (X, g) will be equal to:

Y (X, [g]) = Y (C(S), [gc]) =
n(n− 2)

4
Volgc(C(S))

n
2 . (4.2)

By computing the volume of C(S) with respect to gc we get the following explicit value:

Lemma 4.3. Let (Zd, k) be an admissible strati�ed space of dimension d with Einstein
metric k. Then the Yamabe constant of X = Rn−d−1 ×Z endowed with the metric g as
above is equal to:

Y (X, [g]) =

(
Volk(Z)

Vol(Sd)

) 2
n

Yn. (4.3)

Proof. Since the Yamabe constant of the sphere Sn is:

Yn =
n(n− 2)

4
Vol(Sn)

n
2 .
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Chapter 4. The local Yamabe constant of Stratified Spaces.

we can reformulate (4.2) and get:

Y (C(S), [gc]) = Yn

(
Volgc(C(S))

Vol(Sn)

)n
2

It remains to compute the volume of C(S) with respect to gc, which is clearly equal to:

Volgc(C(S)) = 2 Volh(S)

∫ π
2

0
cosn−1(t)dt.

Now recalling that h has the form h = dθ2 + cos2(θ)gSj + sin2(θ)k for j = n− d− 3, the
volume of S with respect to h is:

Volh(S) = Vol(Sn−d−3) Volk(Z)

∫ π
2

0
cosn−d−3(ϕ) sind(ϕ)dϕ.

By using polar coordinates, the sphere Sn can be viewed as the cone over the (n−d−3)-
fold spherical suspension of Sd, so that we can express its volume in the following form:

Vol(Sn) = 2 Vol(Sn−d−3) Vol(Sd)
∫ π

2

0
cosn−d−3(ϕ) sind(ϕ)dϕ

∫ π
2

0
cosn−1(t)dt.

Finally by replacing the two expressions for the volumes of C(S) and Sn we get the
desired value of Y (C(S), [gc]).

Simple edge of codimension 2: In the simplest case of Z being a circle of radius
a < 1, C(R/αZ) is a cone of angle α = 2πa, and a similar calculation leads to:

Y (Rn−2 × C(R/αZ), [g]) = a
2
nYn =

( α
2π

) 2
n
Yn.

Observe that this procedure cannot be applied if Z is a circle with radius larger than
one, since in our de�nition of admissible strati�ed spaces we excluded the existence of
codimension 2 strata with cone angle larger than 2π. In the next section we are go-
ing to give another way to compute the Yamabe constant of this kind of strati�ed spaces.

Orbifolds: The previous lemma can be applied in particular to a cone over a quotient
of the sphere Sn−1 for a �nite group Γ acting freely. If we denote by g the metric induced
by the quotient, we obtain:

Y (C(Sn−1/Γ), [g]) =

(
Volg(Sn−1/Γ)

VolSn

) 2
n

Yn =
Yn

|Γ|
2
n

.

As a consequence, our result applies to any orbifold, whose singularities are both isolated
or not, since at a singular point of an orbifold the link is always a quotient of the sphere
for a �nite group. Moreover, this agrees with a result of K. Akutagawa and B. Botvinnik
contained in [AB04]. By reformulating Theorem 3.1 in [Aku12] we can state that the
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4.2. Strata of codimension 2 and cone angle α > 2π.

local Yamabe constant of an orbifold with isolated singularities {(p1,Γ1), . . . , (ps,Γs)}
is equal to:

Y`(X) = min
j=1...s

Yn

|Γj |
2
n

.

which is the same as what we found above.

Cones over smooth manifolds: Lemma 4.3 extends a result by J. Petean about
the Yamabe constant of cones. The author shows in [Pet09] that if M is a compact
manifold of dimension n, endowed with a Riemannian metric such that Ricg = (n−1)g,
then the Yamabe constant of the cone C(M) = (0, π)×M endowed with the cone metric
dt2 + sin2(t)g is equal to:

Y (C(M), [dt2 + sin2(t)g]) =

(
Volg(M)

Vol(Sn)

) 2
n+1

Yn+1.

If the spherical suspension S were a compact smooth manifold, our computation would
give exactly the same result. Note that the argument of J. Petean is based on the study
of isoperimetric domains in cones over manifolds with a positive Ricci lower bound.
It would be interesting to generalize this technique to cones over admissible strati�ed
spaces Ricci tensor bounded by below, when the dimension of the singular set is small
enough (that is, the Hausdor� dimension of the singular set must be smaller than n−3).

4.2 Strata of codimension 2 and cone angle α > 2π.

In order to have a complete answer to the question of computing the local Yamabe
constant of a strati�ed space with Einstein links, it remains to study the case of codi-
mension two strata with cone angle greater than 2π. The link of such strata is a circle
of diameter greater than π, and as a consequence we cannot apply Proposition 4.1.

We are going to follow another strategy and study the product X = Rn−2×C(R/αZ)
for α ≥ 2π from the point of view of isoperimetric pro�les.

De�nition 10. Given a metric-measure space (X, d, µ), the isoperimetric pro�le of X
is the function Iµ : R+ → R de�ned by:

Iµ(v) = inf{µ(∂E), E ⊂ X,µ(E) = v}.

The story of isoperimetric pro�les, that is minimizing the boundary which contains
a �xed volume (or equivalently, maximizing the volume contained in a given boundary),
goes back to the Roman and Greek mythology [VFK06]: Dido, a Phoenician queen
escaping from her country after the assassinate of her husband, arrived to the coasts
of North Africa and asked to the Berber king Hiarbas the permission to build a town
for her people. Hiarbas, convinced of being smarter than Dido, told her to take the
region that could be bounded by an oxhide. But Dido cut the oxhide in �ne strips and
managed to have enough space to lay the foundations of Carthage.
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Chapter 4. The local Yamabe constant of Stratified Spaces.

Isoperimetric problems and their relations to other geometric and analytic proper-
ties of manifolds, or more in general metric-measure spaces, constitutes a wide, and
constantly developing, area of research in mathematics: we cite here as few examples
[Ros05a], [Gal88] or [Cha01]. What we are most interested in for our scopes, is the
Euclidean isoperimetric inequality.

We say that an Euclidean isoperimetric inequality holds on a metric-measure space
X of dimension n if the exists a constant c such that:

Iµ ≥ cv1− 1
n (4.4)

In the Euclidean space Rn with the standard metric, the constant is given by the isoperi-
metric quotient cn of the ball of radius one, and the isoperimetric pro�le is exactly the
function cnv

1−1/n. We can reformulate this in terms of an isoperimetric inequality:
for any bounded domain E ⊂ Rn with C1-boundary and volume v, denote by Es the
Euclidean ball centred at zero and of volume v. Then we have:

Vol(∂E)

Vol(E)
n−1
n

≥ Vol(∂Es)

v
n−1
n

(4.5)

It is a well-known result that the isoperimetric inequality in Rn is equivalent to a
sharp Sobolev inequality.

Theorem 4.4. The inequality (4.5) holds for any bounded domain E in Rn, n > 1, with
C1-boundary if and only if for there exists a constant C such that for any function f in
W 1,1(Rn) we have:

‖f‖q ≤ C ‖df‖1 , q =
n

n− 1
.

By knowing the value of cn (the isoperimetric quotient of the ball of radius one), it
is also possible to compute the explicit value for the optimal constant appearing in this
last inequality. This leads in turns to the following sharp inequalities for 1 ≤ p < n, see
for example [Tal76]:

‖f‖q ≤ Cn,p ‖df‖p , q =
np

n− p
(4.6)

In what follows, we are going to show that the isoperimetric pro�le of the product
X = Rn−2 × C(R/αZ) with the appropriate metric coincides with the isoperimetric
pro�le of Rn. By following the classical argument of G. Talenti, this will give us a sharp
Sobolev inequality and consequently the value of the Yamabe constant of X.

4.2.1 Approaching C(R/αZ) with Cartan-Hadamard manifolds

On the productX = Rn−2×C(R/αZ) we consider the metric ξ+dr2+(ar)dθ2, where ξ is
the Euclidean metric and a = α/2π. We �rst approximate the cone C(R/αZ) by Cartan-
Hadamard manifolds, that are complete, simply connected Riemannian manifolds with
non-negative sectional curvatures. This represents a very simple example of a strati�ed
space appearing as a limit of smooth manifolds. We are going to �nd a metric hε
on R2 which has negative sectional curvature, it is conformal to the Euclidean metric,
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4.2. Strata of codimension 2 and cone angle α > 2π.

and which converges to a metric h on R2 with one conical singularity. This is in turn
isometric to C(R/αZ) endowed with the metric dr2 + (ar)2dθ2.

Lemma 4.5. There exists a sequence of metrics hε on R2, conformal to the Euclidean
metric, with negative sectional curvature, such that hε converges uniformly on any com-
pact domain of R2 \ {0} to the cone metric on C(R/αZ) with α > 2π.

Proof. Consider the following metric on R2:

hε = (ε2 + ρ2)a−1(dρ2 + ρ2dθ2) (4.7)

We can compute its sectional curvature κε by applying the formulas for conformal
changes of metrics (see for example [Bes08]):

g =e2fε(dρ2 + ρ2dθ2), fε =
a− 1

2
ln(ρ2 + ε2)

κε = e−2fε∆gfε = − 2(a− 1)ρ

(ρ2 + ε2)a+1
.

Therefore κε is non-positive, since by assumption a ≥ 1. When ε tends to zero, the
conformal factor (ρ2 + ε2)a−1 converges to ρ2(a−1) pointwise and uniformly in C∞ on
any compact domain. As a consequence hε(ρ, θ) converges to

h(ρ, θ) = ρ2(a−1)(dρ2 + ρ2dθ2)

which is a Riemannian metric on R2 \ {ρ = 0}. Now, R2 endowed with the metric h is
a surface with one conical singularity at (0, 0), which is isometric to C(R/αZ) endowed
with the metric dr2 +(ar)2dθ2: it su�ces to apply the change of variables r = ρa/a.

The interest of Cartan-Hadamard manifolds four us lies in the following conjecture,
which is known as the Cartan-Hadamard conjecture or the Aubin conjecture (see for
example [Rit05] ):

Conjecture 4.6 (Cartan-Hadamard, Aubin). Let (Mn, g) be a Cartan-Hadamard man-
ifold, whose sectional curvatures satisfy κ ≤ c ≤ 0. Then the isoperimetric pro�le IM
of Mn is bounded from below by the isoperimetric pro�le Ic of the complete and simply
connected space Mn

c , whose sectional curvatures are equal to c.

This conjecture has been proved in dimension n = 2, 3, 4 respectively by A. Weil
[Wei26], C. Croke [Cro80] and B. Kleiner [Kle92]. In our particular case, (R2, hε) is a
Cartan-Hadamard manifold with c = 0. As a consequence we have:

Lemma 4.7. Let hε be the metric on R2 de�ned in the previous lemma. Then the
isoperimetric pro�le Ihε of (R2, hε) is bounded by below by the isoperimetric pro�le I2 of
R2 with the Euclidean metric.
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4.2.2 Isoperimetric pro�les

Since we can approximate the cone C(R/αZ) by Cartan-Hadamard manifolds, X is ap-
proximated by the Riemannian product (Rn−2×R2, ξ+hε). We need to get information
on the isoperimetric pro�les of this latter starting from the bound from below for Ihε .
In order to do that, we recall a result which is known in the literature as Ros Prod-
uct Theorem and contained in [Ros05a], about the isoperimetric pro�les of Riemannian
products.

Proposition 4.8 (Ros Product Theorem). Consider two Riemannian manifolds
(M1, g1) and (M2, g2), dim(M2) = n. Assume that the isoperimetric pro�le I2 of (M2, g2)
is bounded by below by the isoperimetric pro�le In of Rn. Then the isoperimetric pro-
�le of the Riemannian product (M1 ×M2, g1 + g2) is bounded by below by the one of
(M1 × Rn, g1 + ξ), where ξ is the Euclidean metric.

The proof consists in de�ning an appropriate symmetrization for subsets E of M1×
M2. Denote for simplicity g = g1 + g2 and g0 = g1 + ξ. We consider for x ∈ M1 the
section E(x) = E ∩ ({x} ×M2). Then the symmetrization Es ⊂ M1 × Rn will be the
set de�ned by:

1. if E(x) = ∅, then Es(x) = ∅;

2. if E(x) 6= ∅, then Es(x) = {x}×Br, where Br is an euclidean ball in Rn such that
Volξ(Br) = Volg2(E(x)).

By following Proposition 3.6 in [Ros05a], Es satis�es that Volg0(Es) = Volg(E) and
Volg0(∂Es) ≤ Volg(∂E). This is enough to show that if F ⊂ M1 × M2 realizes the
in�mum in Ig(v), i.e Volg(F ) = v and Volg(∂F ) = Ig(v), then its symmetrization F s

satis�es Volg0(F s) = v and

Ig0(v) ≤ Volg0(∂F s) ≤ Volg(∂F )

As a consequence, Ig(v) ≥ Ig0(v) for any v > 0.

Proposition 4.9. Let X = Rn−2 ×C(R/αZ) and denote by g the metric ξ + h. Let Ig
be its isoperimetric pro�le. Then Ig is coincides with the isoperimetric pro�le In of Rn
with the Euclidean metric.

Proof. We will show �rst that Ig is bounded by below by In. Consider Rn−2 × R2

endowed with the metric gε = ξ+hε, and denote by Iε the isometric pro�le with respect
to this metric. Thanks to Lemma 4.7 and to Ros Product theorem we deduce that Iε is
bounded by below by the isoperimetric pro�le of Rn−2 × R2 with the euclidean metric,
that is In.
Therefore we have the following isoperimetric inequality for any bounded domain E ⊂ X,
Volgε(Ω) = v, with smooth boundary ∂E:

Volgε(∂E)

Volgε(E)1− 1
n

≥ Iε(v)

v1− 1
n

≥ cn (4.8)
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where cn is the optimal constant appearing in the isoperimetric inequality in Rn. When
we pass to the limit as ε tends to zero, the volumes of both E and ∂E with respect to
gε converge to the volumes with respect to g.

In fact, if we denote by dx the n-dimensional Lebesgue measure on Rn and by dσ
the volume element induced on ∂E by the Euclidean metric, we have for the volume of
E:

lim
ε→0

Volgε(E) =

∫
E

(ρ2 + ε2)(a−1)dx = Volg(E)

since (ρ2 + ε2)(a−1) converges to ρ2(a−1) on any bounded domain. As for the volume of
∂E we get:

lim
ε→0

Volgε(∂E) = lim
ε→0

∫
∂E

(ρ2 + ε2)(a−1)dσ

= lim
ε→0

∫
∂E\Rn−2×{0}

(ρ2 + ε2)(a−1)dσ

=

∫
∂E\Rn−2×{0}

ρ2(a−1)dσ

=

∫
∂E
ρ2(a−1)dσ = Volg(∂E).

where we used again the convergence of the conformal factor and the fact that Rn−2×{0}
has zero (n− 1)-dimensional Lebesgue measure.

Therefore when we pass to the limit as ε goes to zero in 4.8 we obtain:

Volg(∂E)

Volg(E)1− 1
n

≥ cn (4.9)

Observe that Rn−2×C1(Sa) contains Euclidean balls: they are the geodesic balls Bn not
intersecting the singular set Rn−2 × {0}. They attains the constant cn, so that for any
v > 0 the in�mum de�ning Ig(v) is attained by the Euclidean geodesic ball of volume v,

i.e. I(v) = cnv
1− 1

n . As a consequence, the isoperimetric pro�le Ig coincides with In.

4.2.3 Yamabe constant of Rn−2 × C(R/αZ)

We have found an optimal constant for the isoperimetric inequality (4.9) with respect to
a metric g = ξ+h onX = Rn−2×C(R/αZ). Such metric is isometric to ξ+dr2+(ar)2dθ2

on X, so they obviously de�ne the same conformal class. As a consequence, we can
compute the Yamabe constant of Rn−2 ×C(R/αZ), as the following proposition shows.

Proposition 4.10. The Yamabe constant of X = Rn−2 × C(R/αZ), a > 1, is equal to
the Yamabe constant Yn of the standard sphere of dimension n.

Proof. As we recalled above, in the Euclidean space Rn, the existence of the isoperimetric
inequality leads to the existence of a sharp Sobolev inequality: for any 1 < p < n and
for any f ∈W 1,p(Rn):

‖f‖q ≤ Cn,p ‖df‖p , q =
np

n− p
. (4.10)
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The constant Cn,p is optimal in the sense that it is such that:

C−1
n,p = inf

f∈W 1,p(Rn)
f 6=0

‖df‖p
‖f‖q

. (4.11)

We brie�y recall the ideas of the proof given by G. Talenti in [Tal76]. For any Lipschitz
function u we can de�ne the symmetrization u∗ in the following way: for any t ∈ R, the
level set E∗t = {x ∈ Rn : u∗(x) > t} of u∗ are Euclidean n-balls having the same volume
as the level set Et of u. Then u is spherically symmetric and Lipschitz. It is possible to
show that this kind of symmetrization makes the ratio (4.11) decrease: from Lemma 1
in [Tal76] we have that for any 1 < p < n

‖u‖p = ‖u∗‖p and ‖du‖p ≥ ‖du
∗‖p .

The �rst equality is trivial. The second inequality is deduced by using isoperimetric
inequality and coarea formula, which relates the integral of |du| with the (n−1)-measure
of the boundaries ∂Et of level sets.
As a consequence, the in�mum in (4.11) is attained by spherically symmetric functions.
Classical argument of calculus of variations allows to prove that there exists a minimizer.
Moreover, G. Talenti exhibits a family of functions attaining Cn,p and gives its exact
value.
When p = 2, (Cn,2)−2 coincides with the Yamabe constant Yn of the n-dimensional
sphere. This is shown by pulling back the functions attaining Cn,2 from Rn to the
sphere Sn without the north pole.
In our case, X = Rn−2×C(S1

a) is �at and satis�es the Euclidean isoperimetric inequality
(4.9). We can then repeat the same argument as Talenti to deduce that the inequality
(4.10) holds on X with the same optimal constant Cn, 2 as in Rn. Furthermore, by
de�nition of the Yamabe constant, and since Sg = 0, we have:

Y (X, [g]) = inf
u∈W 1,2(X)

u6=0

∫
X |du|

2dvg

‖u‖22n
n−2

.

so that Y (X, [g]) is equal to (Cn,2)−2. We have then proved Y (X, [g]) = Yn.

As a consequence of the previous results, we are able to compute the local Yamabe
constant of any strati�ed space whose links are endowed with an Einstein metric:

Proposition 4.11. Let (X, g) be a strati�ed space with strata Xj, j = 1 . . . n and links
Zj of dimension dj endowed with an Einstein metric kj. Then the local Yamabe constant
of (X, g) is equal to:

Y`(X) = inf
j=1,...n

{
Yn,

(
Volkj (Zj)

Vol(Sdj )

) 2
n

Yn

}
.
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4.3 A second approach

Consider a compact smooth manifold (Mn, g), of dimension n greater or equal than 3,
with an Einstein metric Ricg = (n − 1)g. A result of M. Obata contained in [Oba72]
states that if (Mn, g) admits a conformal metric g̃ with constant scalar curvature, then
(Mn, g) is conformally equivalent to the standard sphere of dimension n. In particular,
an Einstein metric attains the Yamabe constant. The proof of this result is based on
the existence of a conformal vector �eld X on (Mn, g), that is a vector �eld X such that
the Lie derivative LXg of the metric along X is proportional to the metric.

We are going to show a similar result on admissible strati�ed spaces which admit a
Yamabe minimizer. We divide the proof into two steps: �rst we prove the existence of
a conformal vector �eld on an admissible strati�ed space, by following an argument of
J. Viaclovsky (see proof of Theorem 1.3 in [Via10]), then we deduce that an Einstein
metric is a Yamabe metric.

Theorem 4.12. Let (X, g) be an admissible Einstein strati�ed space of dimension n.
Assume that there exists a metric g̃ in the conformal class of g with constant scalar
curvature. Then g̃ is an Einstein metric and there exists a function φ satisfying:

∇dφ = −∆gφ

n
g. (4.12)

In particular, the vector �eld X = dφ is a conformal vector �eld such that LXg = −2φg.

Before proving this theorem we give two lemmas that allows us to deduce that, under
the previous hypothesis, a Yamabe minimizer belongs to the Sobolev spaceW 2,2(X) and
its gradient is bounded.

Lemma 4.13. Let (X, g) be an Einstein strati�ed space of dimension n, such that the
stratum of codimension 2, if it exists, has link of diameter smaller than π. Assume that
there exists a solution u ∈W 1,2(X) ∩ L∞(X) to the Yamabe equation:

∆gu+ anSgu = anSgu
n+2
n−2 . (4.13)

Then for any ε > 0 we have the following control of the gradient away from an ε-tubular
neighbourhood of the singular set Σ:

‖du‖(X\Σε) ≤ C
√
| ln ε|. (4.14)

where C is a positive constant not depending on ε.

In fact, since Sg is equal to a constant and the Ricci tensor is in particular bounded
by below, it su�ces to remark that

F (x) = (x
4

n−2 − 1)anSgx.

is a locally Lipschitz function, and then apply Corollary 2.11. As we did in the proof of
Theorem 2.5, we can deduce from the previous lemma and from the Yamabe equation
that the gradient of a Yamabe minimizer belongs to W 1,2(X) ∩ L∞(X).
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Lemma 4.14. Let (X, g) be an admissible strati�ed space of dimension n with Einstein
metric. Then the gradient |∇u| of a solution u to the Yamabe equation belongs to L∞(X).

Proof. From the previous lemma we know that on Ω we have:

1

2
∆g(|∇u|2) = (∇∗∇du, du)− |∇du|2 ≤ c1|∇u|2 − |∇du|2.

Denote by m the codimension of the singular set. If m > 2, consider the cut-o� function
ρε de�ned in the proof of Theorem 2.5. If m = 2 consider the function fε de�ned in
Lemma 1.6. Then multiply the previous inequality by ρε if m > 2, by fε otherwise. If
we integrate by parts we obtain:

1

2

∫
X

(∆gρε)|∇u|2dvg ≤ c1

∫
X
ρε|∇u|2dvg −

∫
X
ρε|∇du|2dvg. (4.15)

Thanks to the fact that ∇u satis�es (4.14), like any eigenfunction of the Laplacian, we
know from Theorem 2.5 that ρε is chosen is such a way that the left-hand side of (4.15)
tends to zero as ε tends to 0: as a consequence, the norm in L2(X) of ∇du is bounded
by the one of |∇u|, which is �nite. This means that ∇|∇u| belongs to L2(X), and |∇u|
to W 1,2(X). If m = 2, and we have fε instead of ρε, we know that the left-hand side of
(4.15) is bounded by a constant independent of ε, and we get to the same conclusion.
Therefore, we can apply the same argument as in the claim contained in the proof of
Theorem 2.5 in order to deduce that |∇u| satis�es the weak inequality ∆g|∇u| ≤ c1|∇u|
on the whole X. As a consequence, the Moser iteration technique implies that |∇u| is
bounded on X.

We are now in position to prove Theorem 4.12.

Proof of Theorem 4.12. By assumption, there exists a conformal metric g̃ ∈ [g] with
constant scalar curvature: we can assume without loss of generality that Sg̃ = Sg. If
φ is a positive function such that g̃ has the form g̃ = φ−2g, then there must exist a
function u ∈W 1,2(X) ∩ L∞(X) solving the Yamabe equation:

∆gu+
n(n− 2)

4
u =

n(n− 2)

4
u
n+2
n−2

and such that φ = u−
2

n−2 . We know from Theorem 1.12 in [ACM14] that u, and thus φ,
is positive and bounded. By the two previous Lemmas we also have that the gradient
of u, and therefore the gradient of φ, belongs to L∞(X).

Consider the traceless Ricci tensor Eg̃ and recall that g̃ is an Einstein metric if and
only if Eg̃ vanishes: our goal is to show that this is the case. The transformation law
for the traceless Ricci tensor under a conformal change (see for example [Bes08]) gives
us the following formula for Eg̃:

Eg̃ = Eg + (n− 2)φ−1
(
∇2φ+

∆gφ

n
g
)
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where the covariant derivatives are taken with respect to g. Since by assumption g is
an Einstein metric, Eg = 0. Then consider the following integral:

Iε =

∫
X
ρεφ|Eg̃|2gdvg

where ρε is chosen like in the proof of Theorem 2.5 depending on the codimension of
the singular set. If we show that Iε tends to zero as ε goes to zero, then the norm of Eg̃
must vanish: as a consequence we will obtain that g̃ is an Einstein metric and that its
conformal factor φ satis�es (4.12). Let us rewrite Iε in the appropriate form:

Iε =

∫
X
ρεφ

(
Eg̃, (n− 2)φ−1

(
∇dφ− ∆gφ

n
g

))
g

dvg

= (n− 2)

∫
X
ρε

(
Eg̃,∇dφ−

∆gφ

n
g

)
g

dvg

= (n− 2)

∫
X
ρε (Eg̃,∇dφ)g dvg

In the last equality we used that the Laplacian of φ is the trace of the Hessian ∇dφ.
Then we integrate by parts:∫

X
ρε (Eg̃,∇dφ)g dvg =

∫
X

(Eijg̃ ∇jρε∇iφ+ ρε∇jEijg̃ ∇iφ)dvg.

Since the scalar curvature of g̃ is constant, by the Bianchi identity (see also [BE87]),
which holds on the regular set of X, the second term of this integral is equal to zero.
The �rst one leads to:

Iε = (n− 2)2

∫
X
φ−1

(
∇dφ(∇ρε,∇φ)− ∆gφ

n
(∇ρε,∇φ)g

)
dvg. (4.16)

Observe that φ−1 is positive and bounded, because the solution u to the Yamabe equa-
tion is positive and bounded thanks to Theorem 1.12 in [ACM14]. We claim that the
Laplacian of φ is bounded as well. In fact, if we denote p = − 2

n−2 we have:

∆gφ = pup−1

(
∆gu− (p− 1)

|∇u|2

u

)
.

As we recalled above, the function u is bounded and positive, then its Laplacian ∆gu is
bounded, since it is equal to:

∆gu =
n(n− 2)

4
u(u

4
n−2 − 1).

Moreover, by the previous Lemmas the gradient |∇u| belongs to L∞(X), so that the
same holds for ∆gφ. Therefore, if we consider the last term in (4.16), we know from the
proof of Theorem 2.5 that ρε is chosen in such a way that the integral of (∇ρε,∇u) goes
to zero as ε tends to zero.
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As for the �rst term in (4.16), we can integrate by parts and obtain:∫
X
∇dφ(∇ρε,∇φ)dvg =

1

2

∫
X
ρε∆g|∇φ|2dvg =

1

2

∫
X

(∆gρε)|∇φ|2dvg.

We have shown in the proof of Theorem 2.5 that ρε is such that this last term tends to
zero as ε goes to zero as well.

As a consequence, we have shown that Iε tends to zero as ε goes to zero. Therefore
we obtain that the norm of the traceless Ricci tensor Eg̃ is equal to zero, the metric g̃
is an Einstein metric and the function φ satis�es (4.12), as we wished.

A scalar function solving the equation (4.12) is called in the literature a concircular
scalar �eld. The existence of a concircular scalar �eld or of a conformal vector �eld on a
compact, or complete, smooth manifold can lead to various consequences. For example,
Y. Tashiro in [Tas65] classi�ed complete manifolds possessing a concircular scalar �eld.
See also Sections 2 and 3 of [Mon99] for a brief but complete presentation of some known
results about the subject.

In our case, the previous theorem leads to the following:

Corollary 4.15. Let (X, g) be an admissible Einstein strati�ed space of dimension n
admitting a Yamabe minimizer

g̃ = φ−2/(n−2)g

Assume that φ is not a constant function. Then the Einstein metric g attains the Yamabe
constant, which is consequently equal to

Y (X, [g]) =
n(n− 2)

4
Volg(X)

2
n .

Proof. We have proven in the previous theorem that any metric with constant scalar
curvature in the conformal class of g is an Einstein metric and it is determined by a
positive solution of (4.12). Up to multiplying by a constant, a positive solution of (4.12)
is given by

φt = (1− t)φ+ t

for some t ∈ [0, 1). Let us denote:

ut = φ
− 2n
n−2

t .

the corresponding solution to the Yamabe equation. The metric gt = φ−2
t g is still an

Einstein metric in the conformal class of g and has the same scalar curvature as g.
We want to show that the volume of X with respect to the metric gt is constant in

t: this means that it is constant among the metrics with constant scalar curvature equal
to n(n− 1). In this way, the ratio

Q(g̃) =

an

∫
X
Scalg̃dVg̃

Volg̃(X)1− 2
n
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does not decrease in the set of conformal metrics with constant scalar curvature. As a
consequence, the Yamabe constant of (X, g) will be attained by g and it is equal to:

Y (X, [g]) =
n(n− 2)

4
Volg(X)

2
n .

The volume of X with respect to gt is given by the formula

Volgt(X) =

∫
X
u

2n
n−2

t dvg =

∫
X
dvgt .

where we denote with dvgt the volume element with respect to gt. If we di�erentiate
with respect to t we get

d
dt
Volgt(X) =

2n

n− 2

∫
X
u
n+2
n−2

t u̇tdvg =
2n

n− 2

∫
X

u̇t
ut
dvgt . (4.17)

We are going to show that this integral is equal to zero. If we set

vh =
ut+h
ut

.

gh = v
4

n−2

h gt = u
4

n−2

t+h g.

then vh satis�es the Yamabe equation with respect to gt:

∆gtvh +
n(n− 2)

4
vh =

n(n− 2)

4
v
n+2
n−2

h .

By deriving this equality with respect to h we obtain

∆gt v̇h +
n(n− 2)

4
v̇h =

n(n+ 2)

4
v

4
n−2

h v̇h.

and when h = 0 we have as a consequence ∆gt v̇0 = nv̇0, that is v0 is an eigenfunction
relative to the �rst eigenvalue n of ∆gt . Any eigenfunction relative to the �rst eigenvalue
has mean equal to zero over X, so that we have:∫

X
v̇0dVgt = 0.

But by de�nition v̇0 is equal to
u̇t
ut
. Recalling (4.17) we have obtained that the volume

of X is constant with respect to t: this implies that the Einstein metric g attains the
Yamabe constant, as we wished.

The issue with this last result is that it can be applied only provided that we know
that a Yamabe minimizer exists, which is a non trivial assumption. However, we can
show that this hypothesis is satis�ed in some cases. In order to do that, we are going
to consider almost homogeneous manifolds.
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4.3.1 Yamabe minimizer on almost homogeneous manifolds

In this section we introduce a result due to K. Akutagawa and proven by N. Grosse
which states the existence of a Yamabe minimizer on a class of complete open manifolds,
almost homogeneous manifolds (see Theorem 13 in [Gro13]). N. Grosse's proof is based
on weighted Sobolev embeddings: we present here an alternative argument inspired by
[AB03] and [ACM14], which mainly relies on Moser's iteration technique.

We start by giving a few results which hold on complete open manifolds. The �rst
one is due to E. Hebey and M. Vaugon [HV95] (see also Theorem 7.2 in [Heb99]): it
states the existence of a Sobolev inequality with an explicit optimal constant.

Theorem 4.16. Let (Mn, g) be a smooth, complete, Riemannian manifold with n ≥ 3.
Suppose that the Riemann curvature Rmg is such that

|Rmg| ≤ Λ1 |∇Rmg| ≤ Λ2

for some non-negative constants Λ1,Λ2, and its injectivity radius is such that

injg ≥ i > 0.

Then there exists B = B(n, i,Λ1,Λ2) such that for any u ∈W 1,2(M) we have:(∫
M
|u|

2n
n−2dvg

)n−2
n ≤ 1

Yn

∫
M
|du|2dvg +B

∫
M
u2dvg. (4.18)

where Yn is the Yamabe constant of the standard sphere of dimension n.

From this theorem we can easily deduce the following:

Lemma 4.17. Under the same hypothesis as in the previous theorem, for any ε > 0
there exists δ > 0 such that for all x in Mn and u belonging to C∞(B(x, δ)) we have:(

Yn − ε
)(∫

B(x,δ)
u

2n
n−2dvg

)n−2
n ≤

∫
B(x,δ)

|du|2dvg. (4.19)

Proof. The proof simply depends on the fact that the volume of small balls B(x, δ) is
bounded by a constant times δn (see the classical theorem 3.98 in [GHL04]). Consider a
function u in C∞(B(x, δ)): by the Sobolev inequality (4.18) and the Hölder inequality
we obtain

Yn

(∫
B(x,δ)

u
2n
n−2dvg

)n−2
n ≤

∫
B(x,δ)

|du|2dvg +BYn

∫
B(x,δ)

u2dvg

≤
∫
B(x,δ)

|du|2dvg +BYn Volg(B(x, δ))
2
n

(∫
B(x,δ)

u
2n
n−2dvg

)n−2
n
.

and since there exists a constant C independent of x such that Volg(B(x, δ) ≤ Cδn, we
get for some positive C1:

Yn

(∫
B(x,δ)

u
2n
n−2dvg

)n−2
n ≤

∫
B(x,δ)

|du|2dvg + C1δ
2
(∫

B(x,δ)
u

2n
n−2dvg

)n−2
n
.

Then by taking δ <
√
ε/C ′ we get the desired inequality.
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The previous two forms of the Sobolev inequality su�ce to apply the Moser iteration
technique to a solution of the Schrödinger equation ∆gu − V u = 0, provided that we
can control the potential V in the appropriate way. The following theorem will be our
main tool to give a new proof of Theorem 13 in [Gro13].

Theorem 4.18. Let (Mn, g) be a complete Riemannian manifold satisfying the hypoth-
esis of Theorem 4.16. Assume that V belongs to Lqloc(M) for some q > n

2 and that there
exist δ0 > 0 and a positive constant C0 such that for any x ∈M we have(∫

B(x,δ0)
|V |qdvg

) 1
q ≤ C0 (4.20)

Let u be in W 1,2(M) and assume it satis�es ∆u− V u ≤ 0 in the weak sense. Then u is
bounded on M .

Proof. What we are going to show is that there exists an appropriate radius r such that
the function u is bounded on each ball B(x, r) by a constant which is independent of
x and r. This implies clearly that u is bounded. In order to do that we will introduce
a cut-o� function supported on a ball like in the proof of Lemma 1.16, and test the
Sobolev inequality on powers of u to increase the exponent q such that u belongs to
Lq(X). We need to be sure that we can iterate this procedure on powers of u: consider
then a convex non-decreasing function f . We claim that

∆f(u) ≤ V f ′(u)u (4.21)

Let {Pt, t > 0} be the semi-group of bounded operators associated to the self-adjoint
operator ∆. For any test function ϕ ∈ C∞c (M) we have∫

M
f(u)∆ϕ =

∫
M

lim
t→0

f(u)− Ptf(u)

t
ϕ

Since f is convex, we can apply Jensen's inequality Pt(f(u)) ≥ f(Pt(u)) and obtain∫
M
f(u)∆ϕ ≤

∫
M

lim
t→0

f(u)− f(Ptu)

t
ϕ

Use again convexity and the fact that f ′ is non-negative in order to obtain that

f(u)− f(Ptu) ≤ f ′(u)(u− Ptu)

and then:∫
M
f(u)∆ϕ ≤

∫
M
f ′(u) lim

t→0

u− Ptu
t

ϕ =

∫
M
f ′(u)∆uϕ ≤

∫
M
f ′(u)V uϕ

which proves our claim.
Consider any point x ∈ M and 0 < r < R. Let ϕ be a smooth cut-o� function such
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that ϕ has support contained in the ball B(x,R), ϕ equals one on the ball B(x, r) and
its gradient satis�es:

|dϕ| ≤ 2

R− r
on B(x,R) \B(x, r).

Let α ≥ 1 and consider ϕuα. By the integration by parts formula and (4.21) we get∫
M
|d(ϕuα)|2dvg =

∫
M
|dϕ|2u2α + ϕ2(∆uα)uα ≤

∫
M
|dϕ|2u2α + αϕ2V u2α

Fix a small positive ε < 1 and the corresponding δ in the inequality (4.19). We can
choose R to be smaller than the minimum between δ0 and δ. We can then apply Lemma
4.17 to ϕuα and get:(

Yn − ε
)(∫

M
(ϕuα)

2n
n−2

)n−2
n ≤

(∫
M
|dϕ|2u2α + αϕ2V u2α

)
.

Let us denote by A(ε) = (Yn − ε)−1. We can use Hölder's inequality with the exponent
q on both of the terms; then, by recalling the hypothesis (4.20) on V , we obtain(∫

B(x,r)
u

2αn
n−2

)n−2
n ≤ A(ε)

( 2

(R− r)2
+ αC0

)(∫
B(x,R)

u
2αq
q−1

) q−1
q

Since we have chosen a small radius R < 1, and since α is bigger than one, we can collect
the constants and write for some positive C1(∫

B(x,r)
u

2αn
n−2

)n−2
n ≤ C1α

(R− r)2

(∫
B(x,R)

u
2αq
q−1

) q−1
q

(4.22)

Observe that, as a consequence of the assumption q >
n

2
, the exponent

2q

q − 1
is strictly

less than the critical exponent in Sobolev embedding
2n

n− 2
. We can choose α su�ciently

close to 1, so that
2αq

q − 1
<

2n

n− 2

Then by Sobolev embeddings, the right-hand side of (4.22) is �nite. Let us de�ne

k =
n

n− 2
· q − 1

q
> 1, p =

2q

q − 1

Then the inequality (4.22) can be rewritten in the following form:

||u||Lαkp(B(x,r)) ≤
( C1α

(R− r)2

) 1
2α ||u||Lαp(B(x,R)) (4.23)

As in the proof of Lemma 1.16 we need to iterate this last equality by keeping in account
that we have two di�erent radii in the left and in the right-hand side. Consider then
the sequence of radii

Rj =
(1

2
+ 2−(j+2)

)
R
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rj =
(1

2
+ 2−(j+3)

)
R

so that Rj = rj−1; de�ne αj = kjα. Then we can apply iteratively (4.23) with αj
instead of α: for j = N we obtain

||u||
LαkNp(B(x,rN ))

≤
N−1∏
j=0

(22(j+3)C1k
jα)

1

2kjα ||u||Lαp(B(x,R1))

The constant that appears in the right-hand side is bounded independently of N , as

in Lemma 1.16. Besides, the Sobolev embedding W 1,2 ↪→ L
2n
n−2 implies that the norm

||u||Lαp(B(x,R1)) is bounded by the norm of u in W 1,2(M): then we can pass to the limit
as N goes to in�nity and obtain for any x ∈M

||u||L∞(B(x,R
2

)) ≤ C||u||W 1,2(M)

Since R is independent of the point x, u is in fact bounded on M . Observe that, as we
did in Chapter 1 while recalling the proof of Proposition 1.12, we can also deduce that
u is bounded by its norm in L2(M).

We can now introduce the notion of almost homogeneous manifold.

De�nition 11. Let (Mn, g) be a complete open manifold of dimension n ≥ 3. We say
that (Mn, g) is an almost homogeneous manifold if there exists compact subset K ⊂M
such that for any x ∈M there exists an isometry γ ∈ Isom(M) which sends x in K.

Clearly a homogeneous manifold (Mn, g) satis�es the previous de�nition, with K
being equal to any of its points. In particular, the product Hn−d × Zd, for a compact
smooth manifold Zd, is included in the de�nition: we can take K as {x0}×Z for a point
x0 in Hn−d. The subgroup Γ de�ned by:

Γ =
{
γ × idZ , γ ∈ Isom(Hn−d)

}
.

is such that
Hn−d × Zd =

⋃
γ∈Γ

γ(K).

and thus Hn−d × Zd satis�es the previous de�nition as well.
Observe that an almost homogeneous manifold has positive injectivity radius and its

Riemann curvature and its derivatives are bounded: therefore, we can apply Theorem
4.18.

The Yamabe constant of (Mn, g) is de�ned as usual as the in�mum of the Yamabe
functional Qg over smooth positive functions with compact support inM . Explicitly we
have:

Y (M, [g]) = inf
u∈C∞0 (M),

u6=0

E(u)

||u||22n
n−2

= inf
u∈C∞0 (M),

u6=0

∫
M

(|du|2 + anSgu
2)dVg(∫

M
u

2n
n−2dVg

)n−2
n

.
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As we observed in the previous Chapter, Aubin's inequality 3.1 holds for any smooth
complete Riemannian manifold and in particular it is true for an almost homogeneous
manifold of dimension larger than 3.

It is possible to prove that the Yamabe constant of an almost homogeneous manifold
is either non-negative or not bounded by below:

Lemma 4.19. Let (Mn, g) be an almost homogeneous manifold and assume that its
Yamabe constant is negative. Then Y (M, [g]) = −∞.

This lemma can be proven by combining two results contained in [Gro13] and in
[GN14]. Consider an open manifold (Mn, g) and a compact exhaustion {Ki}i∈N of M :
the Yamabe constant at in�nity of M is de�ned by

¯Y (M, [g]) = lim
i→+∞

Y (M \Ki, [g]).

Theorem 1.7(2) in [GN14] states that if the Yamabe constant at in�nity of an open
manifold is negative, then it must be equal to −∞. Remark 14 in [Gro13] shows that
the Yamabe constant of an almost homogeneous manifold coincides with its Yamabe
constant at in�nity, and this implies the above lemma. For the sake of completeness, we
also give a proof not explicitly involving the Yamabe constant at in�nity.

Proof. : Assume that there exists ε > 0 such that Y (M, [g]) ≤ −ε. Then by de�nition
of the Yamabe constant, there must exist a compactly supported smooth function u
s.t. Qg(u) ≤ −ε. We can assume that the support of u is contained in a ball of
radius R and center p0 in K, and that K ⊂ B(p0, R). For each integer i, consider a
point pi ∈ ∂B(p0, 5iR). Then {pi}i∈N is a sequence of points such that for any i 6= j,
dg(pi, pj) ≥ 5R. We can choose an isometry γi such that dg(γi(p0), pi) ≤ R (we are
saying that there exists an isometry that sends p0 in B(pi, R)). For i ≤ j, by triangular
inequality, γi and γj satisfy the following inequality:

dg(γi(p0), γj(p0)) ≥ dg(pi, pj)− dg(γi(p0), pi)− dg(γj(p0), pj) ≥ 3R

Consider ui = u ◦ γi. Then ui is supported on B(γi(p0), R), and thanks to the previous
inequality for i 6= j the functions ui and uj have disjoint supports. We de�ne for any N
positive integer

uN :=
∑N

i=1 ui

and we test the functional Qg on uN . Thanks to the fact that the elements of the sum
have disjoint supports and recalling that γi are isometries, it is easy to see that the norm

in L
2n
n−2 (M) of uN equals N

n−2
2n ||u|| 2n

n−2
. For the same reasons, for the numerator we get

E(uN ) = NE(u). Therefore:

Qg(uN ) =
E(uN )

||uN ||22n
n−2

= N
2
nQg(u) ≤ −N

2
n ε

The right hand side term goes to −∞ as N tends to in�nity: this shows that if the
Yamabe constant of an almost homogeneous manifold is negative, it can not be bounded
by below.
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As a consequence, to study the existence of a Yamabe minimizer on a almost homo-
geneous manifolds makes sense only when the Yamabe constant is non-negative. Our
goal is to give a new proof of the following:

Theorem 4.20 (Theorem 13 in [Gro13]). Let (Mn, g) be an almost homogeneous man-
ifold of dimension n ≥ 3. Assume that the scalar curvature of g is strictly positive and
that the Yamabe constant of M is non-negative and strictly smaller that Yn:

0 ≤ Y (M, [g]) < Yn

Then there exists u ∈W 1,2(M) ∩ (M) which solves the Yamabe equation.

Remark 4.21. If the Yamabe constant of (M, g) is non-negative, we can always assume
without loss of generality (up to a conformal change) that the scalar curvature of g is
non-negative. In most of the steps of our proof we only need Sg ≥ 0. We will specify
later where the positivity of Sg intervenes.

The idea of the proof consists in choosing an appropriate minimizing sequence
{uL}L∈N in W 1,2(M), such that the Yamabe quotient Qg(uL) converges to Y (M, [g]).
Therefore, {uL}∈N is bounded in W 1,2(M) and converges to some limit u weakly in
W 1,2(M), strongly in L2(M). In order to show that u is not the null limit, we need to
�nd a uniform bound on the norm in L∞(M) of the sequence {uL}∈N: this is done by
using the Moser iteration technique of Theorem 4.18.

We �rst de�ne the appropriate minimizing sequence. Let x0 ∈ K and consider ball
of radius L ∈ N centred in x0. By using the assumption that Y (M, [g]) is strictly smaller
than Yn, we can apply the standard argument as in Theorem 2.1 of [SY94], Chapter 5,
in order to deduce the following (see also Lemma 5.3 in [AB03]):

Lemma 4.22. Let (Mn, g) be a almost homogeneous manifold, n ≥ 3, whose Yamabe
constant satis�es 0 ≤ Y (M, [g]) < Yn. Let x0 ∈ K and denote for any L ∈ N:

QL := inf
u∈W 1,2

0 (B(x0,L)),
u6=0

Qg(u).

Then there exists a function uL ∈ W 1,2
0 (B(x0, L)) solving the Yamabe equation on the

ball B(x0, L) with Dirichlet condition at the boundary:
∆guL − anSguL = QLu

n+2
n−2

L

u > 0 in B(x0, L), u = 0 on ∂B(x0, L)

||u|| 2n
n−2

= 1.

Furthermore, QL tends to Y (M, [g]) as ` goes to in�nity.

We can assume that each uL attains its maximum in a point pL of K. In fact, if QL
is such that

uL(QL) = max
x∈M

uL(x)
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there always exist a point pL ∈ K and an isometry γL which sends pL to QL, γL(pL) =
QL. Then we can simply replace uL with uL ◦γL, which has still Yamabe quotient equal
to QL, it is supported in B(γL(x0), L) and solves the Yamabe equation with Dirichlet
boundary condition on B(γL(x0), L)

We are in position to prove that the minimizing sequence {uL}L∈N is uniformly
bounded.

Proposition 4.23. Let (Mn, g) be an almost homogeneous manifold of dimension n ≥ 3.
Assume that the Yamabe constant of M satis�es

0 ≤ Y (M, [g]) < Yn

Then the minimizing sequence {uL}L∈N de�ned above is uniformly bounded in L∞(M).

Proof. By de�nition of uL the following weak inequality holds on all of M :

∆guL ≤ (QLu
4

n−2

L − anSg)uL on M.

and since in particular Sg is non-negative, we have

∆guL ≤ (QLu
4

n−2

L )uL. (4.24)

We would like to apply Theorem 4.18 with the potential

V = QLu
4

n−2

L .

Remark that, by Sobolev embedding the function u
4

n−2

L belongs to L
n
2 (M), but we need

more regularity, since V must be locally integrable to a power q strictly greater than
n/2. Besides, we need a uniform bound like the one in the assumption (4.20). We are
going to reproduce the �rst step of Moser iteration technique, in order to increase the
exponent n/2 and be able to apply Theorem 4.18.

Let ε > 0 and let δ be the radius corresponding to ε/2 in inequality (4.17). Choose
r and R, 0 < r < R < δ and consider a cut-o� function ϕ supported in B(x,R), equal
to one in B(x, r) and such that |dϕ| < 2

R−r on B(x,R) \B(x, r).
Let α > 1 and consider ϕuαL. Then by integrations by parts formula and Hölder's
inequality we get:∫

M
|d(ϕuαL)|2dV olg ≤

∫
M

(|dϕ|2u2α
L + αQLu

4
n−2

L αu2α
L )dV olg

≤
∫
B(x,R)

|dϕ|2u2α
L + αQL

(∫
B(x,R)

u
2n
n−2

L

) 2
n
(∫

B(x,R)
u

2αn
n−2

L

)n−2
n

≤
∫
B(x,R)

|dϕ|2u2α
L + αQL

(∫
B(x,R)

u
2αn
n−2

L

)n−2
n
.
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where we used that uL has norm equal to one in L
2n
n−2 (M). By applying Lemma 4.17

to ϕuαL we obtain:(
Yn −

ε

2

)(∫
M

(ϕuα)
2n
n−2

)n−2
n ≤

∫
B(x,R)

|dϕ|2u2α
L + αQL

(∫
B(x,R)

u
2αn
n−2

L

)n−2
n

and as a consequence

(Yn − ε− αQL)
(∫

B(x,R)
u

2αn
n−2

L

)n−2
n ≤ 2

(R− r)2

∫
B(x,R)

u2α
L

Recall that QL tends to Y (M, [g]) < Yn. Then there exists L0 such that for any L > L0,
we have QL < Yn − 2ε. Now we can choose α > 1 in such a way that

αQL < Yn −
3

2
ε

We then have a positive constant on the left-hand side of the previous inequality.
Beside we can choose α to be between 1 and n

n−2 , and ε,R consequently, so that
L2α(M) is continuously embedded in W 1,2(M) and the right-hand side is bounded by
the norm of uL in W 1,2(M). Therefore we get:

||uL||
L

2αn
n−2 (B(x,r))

≤ B||uL||W 1,2(M)

Now uL is a minimizing sequence for the Yamabe functional, so it is a bounded se-
quence in W 1,2(M). This means that we have obtained a bound on the norm of uL
in L

2αn
n−2 (B(x, r)) which is independent of L, x and r. Observe that such bound easily

implies that uL belongs to L
2αn
n−2

loc (M), since we can cover any compact by a �nite number
of balls of radius r.

In particular we obtained that uL belongs to Lqloc(M) for q = αn/2 > n/2, and
moreover the assumption (4.20) holds for the power 4/(n − 2) of uL. This allows us
to apply the Theorem 4.18. Therefore we obtain that uL belongs to L∞(M) and the
sequence is uniformly bounded in L∞(M), since any of the constants depends on L.

Observe that in the previous Proposition we do not need to assume that the scalar
curvature is positive. This is in turn fundamental to prove Theorem 4.20, as the following
argument shows:

Proof of Theorem 4.20. The minimizing sequence uL is bounded in W 1,2(M), so there
exists a function u inW 1,2(M) such that, up to a subsequence, uL converges to u weakly
in W 1,2(M) and strongly in Lp(M) for any p ∈ [1, 2n

n−2).
Moreover, we have shown that {uL}L is uniformly bounded in L∞(M), then by

regularity theorem (see for example [LP87], Theorem 4.1) we deduce that up to a sub-
sequence uL converges to u in C2

loc(M) and that u belongs to C2(M). We have to check
that u is not the null limit. Consider pL ∈ K such that

uL(pL) = sup
M

uL = ML.
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Then we have ∆uL(pL) ≥ 0 and since uL solves the Yamabe equation we get

Sg(pL)ML ≥ QLM
n+2
n−2

L ⇒M
4

n−2

L ≥ Sg(pL)

Yn
> 0

Where we are using here that by assumption Sg is strictly positive on M , not only
non-negative. Since pL belongs to a compact K for any L, Sg(pL) cannot tend to zero
as L goes to in�nity; in particular, ML is bounded by below by a positive constant and
the uniform limit u cannot vanish.

Besides, the convergence in C2
loc(M) implies the strong convergence in L

2n
n−2

loc (M): hence,
for any ϕ ∈ C∞0 (M) we can pass to the limit in∫

M
((duL, dϕ)g + anSguLϕ)dvg = QL

∫
M
ϕu

n+2
n−2

L dvg.

and obtain that u ∈W 1,2(M)∩L∞(M) is a weak, then strong, solution of the Yamabe
equation.

4.3.2 Application to the local Yamabe constant

One of the interests of the previous result is that it can be applied to a product between
the hyperbolic space Hn−d and a compact smooth manifold Zd, and we know from
the previous chapter that such product is conformal to the cone C(S) over the j-fold
spherical suspension of Z. Furthermore, if Z is an Einstein manifold, than C(S) carries
an Einstein metric with scalar curvature equal to n(n− 1), conformal to the exact cone
metric: therefore, if we are able to �nd a Yamabe minimizer on Hn−d × Z, there exists
a Yamabe minimizer on C(S) and we can apply Corollary 4.15 in order to compute the
value of the Yamabe constant.

We have the following:

Lemma 4.24. Let (Zd, k) be a compact Einstein manifold of dimension d > n
2 such

that Rick = (d− 1)k. Consider the Riemannian product X = Hn−d × Zd endowed with
the product metric g = gHn−d + k. If (X, g) has non-negative Yamabe constant, one of
the following possibilities holds:

(i) either Y (X, [g]) = Yn;

(ii) or Y (X, [g]) < Yn and there exists a Yamabe minimizer.

The condition d > n
2 ensures that the scalar curvature of g is strictly positive, and

that we can apply Theorem 4.20. This result allows us to �nd the local Yamabe constant
of a strati�ed space with simple edges carrying an Einstein metric, provided that they
have dimension (n − d − 1) with d greater than n/2. This is less general but clearly
agrees with the previous result in Proposition 4.11 holding for any link endowed with
an Einstein metric.
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Proposition 4.25. Let (X, g) be a strati�ed space of dimension n, with one stratum of
dimension n− d− 1. Assume that its link is a compact smooth manifold Zd with d > n

2
endowed with an Einstein metric k such that Rick = (d − 1)k. Then the local Yamabe
constant of X is equal to:

Y`(X) = min

{
Yn,

(
Volk(Z)

Vol(Sd)

) 2
n

Yn

}
.

Proof. Proposition 1.4(b) in [ACM14] ensures that the local Yamabe constant is positive,
then in this case we have Y (Hn−d×Zd, [gHn−d + k]) > 0 and we can apply the previous
Lemma in order to deduce that either the Yamabe constant of Hn−d × Zd is equal to
Yn, or there exists a Yamabe minimizer. In this case, the cone C(S) endowed with the
Einstein metric gc = dt2 + cos2(t)h admits a Yamabe minimizer, and then we can apply
Corollary 4.15: the metric gc attains the Yamabe constant of C(S), which is equal to:

Y (C(S), [gc]) =
n(n− 2)

4
Volgc(C(S))

n
2 .

Since the Yamabe constant of the sphere Sn is:

Yn =
n(n− 2)

4
Vol(Sn)

n
2 .

we can reformulate the previous and get:

Y (C(S), [gc]) = Yn

(
Volgc(C(S))

Vol(Sn)

)n
2

This leads exactly to the same result as in Lemma 4.3.
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Thèse de Doctorat

Ilaria MONDELLO

Le Problème de Yamabe sur les espaces stratifiés.

The Yamabe Problem on stratified spaces.

Résumé
On étudie une classe d’espaces métriques singuliers,
les espaces stratifiés, et on se propose d’étendre à
ces derniers des résultats de géométrie riemannienne
et d’analyse sur les variétés. Dans une première
partie, on montre l’existence d’une borne inférieure
pour le bas du spectre du Laplacien, sous une
hypothèse géométrique de minoration de la courbure
de Ricci. Cela permet également de démontrer
l’existence d’une inégalité de Sobolev dont les
constantes dépendent uniquement du volume et de la
dimension de l’espace, et d’une borne supérieure pour
le diamètre. En outre, on prouve que la borne pour le
diamètre est atteinte si et seulement si celle pour le
bas du spectre l’est aussi. La deuxième partie de ce
manuscrit est dédiée aux conséquences des résultats
précédents sur le problème de Yamabe pour un
espace stratifié : ce problème consiste à chercher une
métrique conforme à courbure scalaire constante, et
l’existence d’une solution dépend d’un invariant
conforme, la constante de Yamabe locale, dont la
valeur est en général inconnue. On montre que
celle-ci peut-être calculée en un grand nombre de cas,
lorsque une hypothèse géométrique sur le lieu
singulier est vérifiée. On utilise des techniques liées
aux inégalités isopérimétrique et de Sobolev. Enfin, on
donne une classe d’exemples pour lesquels on peut
prouver qu’une métrique conforme à courbure scalaire
constante existe.

Abstract
We study a class of singular metric spaces, stratified
spaces, with an approach whose goal is to extend to
these latter some tools and results of Riemannian
geometry and analysis on smooth manifolds. In a first
part, we show the existence of a lower bound for the
bottom of the spectrum of the Laplacian, under the
assumption that the Ricci curvature is bounded by
below. This allows us to prove also the existence of a
Sobolev inequality whose constants only depend on
the volume and of the dimension of the space, and of
an upper bound for the diameter. Furthermore, we
prove that the bound for the diameter is attained if and
only if the one for the bottom of the spectrum is
attained as well.
The second part is devoted to the direct
consequences of the previous results on the Yamabe
problem on a stratified space: this problem consists in
looking for a conformal metric with constant scalar
curvature, and the existence of a solution depends on
a conformal invariant, the local Yamabe constant,
whose value is generally unknown. We show that this
latter can be computed in a large number of cases,
when a geometric hypothesis on the singular set is
verified. We use techniques which are related to the
Sobolev and the isoperimetric inequalities. Finally, we
give a class of examples for which we can prove the
existence of a conformal metric with constant scalar
curvature.

Mots clés
Espaces stratifiés, bas du spectre, inégalité de
Sobolev, théorème de Myers, problème de
Yamabe, constante de Yamabe locale, inégalité
isopérimétrique.

Key Words
Stratified spaces, bottom of the spectrum,
Sobolev inequality, Myers theorem, Yamabe
problem, local Yamabe constant, isoperimetric
inequality.
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