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Introduction

The notion of classifying space of a group was introduced by Milnor in the 1950s. To
each group G (discrete or topological), he associated a topological space BG. When we
work with �nite (and thus discrete) group, this space is just a CW complex BG with
a contractible universal covering space and such that π1(BG) = G (i.e. an Eilenberg
MacLane space K(G, 1)). One canonical way to de�ne it is as the geometric realization
of the group category B(G) (see 2.4 for details). The application which assigns to G
the space BG de�nes a functor B : G ∈ Grp // BG ∈ Top and creates a link between
group theory and homotopy theory. Milnor introduces these spaces to classify certain
�ber bundles with a structure determined by the given group. But in the early 1980s,
Lannes, Miller and Carlson proved the Sullivan conjecture which implies that BG has
homotopy theoretic properties really rigid, and closely connected to the structure of G
itself. For example, if G is a �nite group, for every Z[G]-module M , there is a natural
isomorphism

H∗(G,M) ∼= H∗(BG,M),

where the left term is the usual group cohomology ofG and the right one is the cohomology
of BG with twisted coe�cients by the action of π1(BG) = G on M . Recall that, if a

space X has a universal covering space X̃, the cohomology of X with twisted coe�cients
in a Z[π1(X)]-module M is the cohomology of the chain complex

C∗(X;M) = HomZ[π1(X)](S∗(X̃),M),

where S∗(X̃) is the usual singular chain complex of X̃. We refer the reader not familiar
with algebraic topology to [Hatch], with group cohomology to [AM], [Br2], [Ev] or [Be2]
and with general homological algebra to [We].

For p a prime number, we can be interested in the p-completion, BG∧p , of BG and how
it is linked to the structure of G. The p-completion of a space X, de�ned by Bous�eld
and Kan in the 1970s, is a space which allows us to focus on the properties of X �at mod
p� (see appendix 2 for more details). It turns out that the homotopy theoretic properties
of BG∧p , for G a �nite group, are closely linked to the p-local structure of G, i.e. the
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Introduction 2

structure of S together with the conjugacy relations between its subgroups. For example,
by Cartan-Eilenberg Theorem (Theorem 2.2.4), the cohomology of BG∧p with coe�cients
in a trivial abelian p-group is completely determined by the p-local structure of G.
The notion of fusion and p-local structures in �nite groups have been of interest for

over a century and some results along these lines have been stated in the end of the 18th
century by Burnside. Puig was the �rst, in the early 1970s (in [P1]), to consider the
category FS(G) to encode the p-local structure of G. The fusion system of a �nite group
G, denoted by FS(G), for S a Sylow p-subgroup of G, is the category with objects the
set of all the subgroups of S and the morphisms between two subgroups are given by
conjugacy by an element of G. This category seems to be the good object to consider
when we want to study the p-local structure of a �nite group and many classical results
on fusion in a �nite group G can be interpreted as results about the fusion system FS(G).
Recently, Oliver [O1,O2] proved the Martino-Priddy conjecture, which gives a re�ne

of the Cartan-Eilenberg Theorem.

Theorem (Martino-Priddy-Oliver Theorem). Let p be a prime number and G1, G2 be
two �nite groups.
If S1 and S2 are, respectively, Sylow p-subgroups of G1 and G2, then the following

statements are equivalent,

(i) FS1(G1) = FS2(G2),

(ii) (BG1)∧p ' (BG2)∧p .

While working on this conjecture, and also trying to understand the group of self
homotopy equivalences of BG∧p , Broto, Levi and Oliver [BLO1] were led to investigate
the centric linking system LcS(G) associated to a �nite group G with S as Sylow p-
subgroup. They discovered that the p-completed geometric realization |LcS(G)|∧p of this
category has the homotopy type of BG∧p , and also that many of the homotopy properties
of BG∧p can be described in terms of properties of LcS(G).

The notion of fusion system of a �nite group G over a Sylow p-subgroup S can be
generalized by the notion of saturated fusion system by forgetting the group G and
mimicking the Sylow Theorems in terms of morphisms between subgroups of S. This
notion was �rst developed by Puig in the 1990s [P6]. A saturated fusion system F over a
p-group S is the category whose objects are the subgroups of S, with the set HomF(P,Q)
of morphisms from P to Q consisting of monomorphisms from P to Q, and such that
some axioms are satis�ed (see De�nition 1.1.1 for more details). Of course, the standard
example of a saturated fusion system is the category FS(G), where G is a �nite group
and S is a Sylow p-subgroup of G.
Motivated by a work of Ron Solomon, Dave Benson (in [Be3] and unpublished work)

predicted that there should be a way of associating classifying spaces to saturated fusion
systems, which would generalize the association between FS(G) and BG∧p . In that pur-
pose, Broto, Levi and Oliver [BLO2] de�ne the notion, more general, of centric linking
system associated to a saturated fusion system over a p-group S. As an example, we
can mention that, when we work with a �nite group G and S a Sylow p-subgroup of G,
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LcS(G) is a centric linking system associated to FS(G). They also de�ne the notion of
p-local �nite group as a triple (S,F ,L) with S a p-group, F a saturated fusion system
over S and L an associated centric linking system. Thus, a classifying space of a p-local
�nite group (S,F ,L) can be de�ned to be the space |L|∧p . In particular, if G is a �nite
group and S a Sylow p-subgroup of G, (S,FS(G),LcS(G)) de�nes a p-local �nite group
and |LcS(G)|∧p ∼= BG∧p is its classifying space. One problem with linking systems was the
existence and uniqueness: for a given saturated fusion system, can we always �nd an
associated centric linking system and, if it exists, is there a unique one? Recently, Cher-
mak proved, using his theory of partial groups [Ch], that for any saturated fusion system,
there is a unique associated centric linking system. Hence, for a saturated fusion system
F , we can de�ne its classifying space BF as the space |L|∧p where L is the associated
centric linking system.

The p-completed classifying space of a �nite group have some very remarkable homo-
topy properties and classifying spaces of saturated fusion systems share many of these
properties. Hence, for a p-local �nite group (S,F ,L), the homotopy type of |L| and its
homotopy properties are strong invariants of F .
One important result of Broto, Levi and Oliver ([BLO2], Theorem B) and of �rst

interest in this thesis is the following.

Theorem (2.3.4). Let (S,F ,L) be a p-local �nite group.
The inclusion of BS in |L| induces a natural isomorphism

H∗(|L|,Fp)
∼= // H∗(F ,Fp).

Here, H∗(F ,Fp) ⊆ H∗(S,Fp) is the submodule of F-stable elements (De�nition 2.3.3).
This theorem is a version of the Cartan-Eilenberg Theorem in the case of a saturated
fusion system and with trivial coe�cients. In particular, if G is a �nite group and if
we consider the associated p-local �nite group (S,F ,L), it is just another way to state
Cartan-Eilenberg Theorem with trivial coe�cients.

In this work, for (S,F ,L) a p-local �nite group, we are interested in the cohomology of
|L| with twisted coe�cients in a Z(p)[πL]-module. More precisely, we want to generalize
Cartan-Eilenberg Theorem and Theorem 2.3.4, trying to express the cohomology of |L| in
terms of �stable� elements in the cohomology of the p-group S. This is a really interesting
problem and it corresponds to the 7th open problem ask by Oliver in [AKO], Part III.
The �rst thing we have to �x is the notion of �stable� elements. Indeed, when we work

with untwisted coe�cients there is a cohomology functor F // Z(p)-Mod which allows

us to de�ne the notion of F -stable element (De�nition 2.3.3). But, in general, when
we work with coe�cients twisted by an action of π1(|L|), there is not such a functor...
However, it is possible to construct a cohomology functor from L which factor through F c,
the F -centric part of F . Hence we can de�ne the notion of F c-stable element (De�nition
3.2.1) which extends naturally, by Alperin's Fusion Theorem (Theorem 1.1.9), the notion
of F -stable elements. Then, for M a Z(p)[π1(|L|)]-module, if we denote by H∗(F c,M) ⊆
H∗(S,M) the submodule of all F c-stable elements, we can ask if the inclusion of BS in
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|L| induces a natural isomorphism,

H∗(|L|,M) ∼= H∗(F c,M) ?

Unfortunately several examples (see Chapter 7) show that this is impossible in general.
Indeed, sometimes, the cohomology of S is trivial whereas the cohomology of |L| is not.
Nevertheless, under some conditions, we can express the cohomology of |L| with twisted
coe�cients in terms of F c-stable elements in the cohomology of S.
We can �rst try to look at some restricted classes of fusion systems where we have a

good control on the homotopy type of |L|. If we look at constrained fusion systems, almost
everything true in the trivial case can be extended, without too much modi�cations, to
the twisted case. In particular we have the following.

Theorem (5.2.5). Let (S,F ,L) be a p-local �nite group and M a Z(p)[π1(|L|)]-module.
If F is a constrained fusion system, then the inclusion of BS in |L| induces a natural

isomorphism

H∗(|L|,M)
∼= // H∗(F c,M).

The second way to attack the problem is by working on restrictions on the action
of π1(|L|). One �rst idea is to study nilpotent actions and try to use, by induction,
the isomorphism given when the action is trivial (Theorem 2.3.4). For this purpose,
we have to work on (S, S)-biset. Indeed, an important tool in the proof of Theorem
2.3.4 is the existence of an F-characteristic (S, S)-biset which induces an idempotent on
H∗(S,Fp) with image H∗(F ,Fp). Here we have to be more careful when working with F -
characteristic bisets. In Chapter 3, we look at the problem of constructing an idempotent
from a F -characteristic biset and assuming an hypothesis (Hypothesis (A)) we construct
an idempotent of the δ-functor

(
H∗(S,−), δH∗(S,−)

)
, with image containing H∗(F c,M).

From that we can deduce the following theorem.

Theorem (4.2.3). Let (S,F ,L) be a p-local �nite group and M an abelian p-group with
an action of π1(|L|).
Assume that Hypothesis (A) is satis�ed.
If the action of π1(|L|) on M is nilpotent, then the inclusion of BS in |L| induces a

natural isomorphism

H∗(|L|,M)
∼= // H∗(F c,M).

In particular, if the action of π1(|L|) on M factors through a p-group, the action is
nilpotent and then, we get a natural isomorphism between the cohomology of |L| and the
F c-stable elements. The action of π1(|L|) on M factors through a p-group if, and only if,
the action factor through π1(|L|∧p ) ∼= S/hyp(F), where

hyp(F) = 〈g−1α(g) | g ∈ P ≤ S, α ∈ Op (AutF(P ))〉 E S

is the hyperfocal subgroup of F . As a corollary, we can look at the cohomology of BF =
|L|∧p .
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Theorem (4.2.4). Let F be a saturated fusion system and M an abelian p-group with an
action of π1(BF).
If Hypothesis (A) is satis�ed, then there is a natural isomorphism,

H∗(BF ,M) ∼= H∗(F c,M).

Some inductions can also be made using a p-local subgroup which induces a covering
space on geometric realizations. For example, by studying p-local subgroups of index
prime to p, we get the following theorem.

Theorem (5.1.4). Let (S,F ,L) be a p-local �nite group and M an abelian p-group with
an action of π1(|L|).
If the action of π1(|L|) on M factors through a p′-group, then the inclusion of BS in
|L| induces a natural isomorphism

H∗(|L|,M)
∼= // H∗(F c,M).

By Theorem 1.3.5, we also know that p-local subgroups of index a power of p induces
covering spaces on the geometric realizations. Unfortunately it is more di�cult to work
with them. Indeed, as we work on fusion systems over di�erent p-groups, it is more
di�cult to compare the F c-stable elements. However, working with realizable p-local
�nite groups, we get the following

Theorem (5.2.7). Let G be a �nite group and (S,F ,L) be the associated p-local �nite
group. Let M be a Z(p)[π1(|L|)]-module.
If there is a �natural� action of G on M , then there is a natural ismorphism,

H∗(|L|,M) ∼= H∗(G,M).

We also recall some conditions, due to Grodal [Gr], under which the cohomology of G
is isomorphic to the F c-stable elements. All these Theorems might be generalized and
we can conjecture the following.

Conjecture (5.2.9). Let (S,F ,L) be a p-local �nite group andM a Z(p)[π1(|L|)]-module.
If the action of π1(|L|) onM is p-solvable, then the inclusion of BS in |L| induces a natural
isomorphism

H∗(|L|,M)
∼= // H∗(F c,M).

We �nally work, in Chapter 6, on some constructions of p-local �nite groups or linking
systems with particular forms to give some tools when working on concrete examples.
We start with products of p-local �nite groups, and using the Kunneth formula we get
the following.

Proposition (6.1.5). Let, for i ∈ {1, 2}, (Si,Fi,Li) be two p-local �nite groups and
(S,F ,L) the p-local �nite group product of (S1,F1,L1) and (S2,F2,L2).
Let also M1 be a Fp[π1(|L1|)]-module and M2 be a Fp[π1(|L2|)]-module.
If, for i ∈ {1, 2}, δSi

induces a natural isomorphism H∗(|Li|,Mi) ∼= H∗(F ci ,Mi) then
the inclusion of BS in |L| induces a natural isomorphism

H∗(|L|,M1 ⊗Fp M2) ∼= H∗(F c,M1 ⊗Fp M2).
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Secondly, we work on linking systems that we can decompose as the union of two other
linking systems which might be more easy to study and we give some criteria (De�nition
6.2.1) under which, if we can compute the cohomology of the geometric realizations of the
two parts by stable elements, then the initial one can also be compute by stable elements.

Proposition (6.2.5). Let (S,F ,L) and, for i = {1, 2}, (S,Fi,Li) be three p-local �nite
groups on the same p-group S. Let M be a Z(p)[πL]-module.
Assume that {L1,L2} is an M-cohomological covering of L.
If, for i ∈ {1, 2}, we have natural isomorphisms H∗(|Li|,M) ∼= H∗(F ci ,M), then we

have a natural isomorphism

H∗(|L|,M) ∼= H∗(F c,M).

We apply this machinery to the 2-local �nite group associated to PΓL3(F4) and give
an example of isomorphism between the cohomology of |L| and the F c-stable elements
when the action is twisted by a 2-solvable.
We �nally study some realizable p-local �nite group given by a wreath products. We

give informations on the F -essentials subgroups and use it to study the 5-local subgroup
associated to GL20(F2) oC5. We give an example of isomorphism between the cohomology
of |L| and the F c-stable elements when the action is twisted by a 5-solvable but where
there is no natural action of GL20(F2) o C5 on the coe�cients.
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Notation

Let G be a �nite group.
For g ∈ G, let cg : G // G be the conjugation by g, de�ned by, for all x ∈ G,

cg(x) = gxg−1. For X ⊆ G, let NG(X) = {g ∈ G | cg(X) ⊆ X} be the normalizer in G
of X, and CG(X) = {g ∈ G | cg|X = IdX} be the centralizer in G of X . For X, Y ⊆ G
we denote by TG(X, Y ) = {g ∈ G | cg(X) ⊆ Y } the transporter in G from X to Y .
We write 〈X〉 for the subgroup of G generated by X.
For H and G two groups, we write H ≤ G, H < G or H E G to indicate that H is a

subgroup, proper subgroup or a normal subgroup of G, respectively. Let Hom(G,H) be
the set of all homomorphisms of groups from G to H, Inj(G,H) ⊆ Hom(G,H) the set
of all injective homomorphisms and Aut(G) the group of automorphisms of G. Observe
that, for H ≤ G, c : g � // cg is a homomorphism from NG(H) to Aut(H) with kernel

CG(H); we write AutG(H) its image and call it the automizer in G of H and thus,
AutG(H) ∼= NG(H)/CG(H). The inner automorphism group of H is Inn(H) = AutH(H)
and the outer automorphism group of H is Out(H) = Aut(H)/Inn(H).
For G a �nite group, we write |G| for its order. For p a prime number, we say that G is

a p-group if |G| is a power of p and a p′-group if |G| is prime to p. We denote by Op(G) or
Op′(G) the largest normal subgroup of G which is a p-group or a p′-group, respectively.
We also denote by Op(G) or Op′(G) the smallest normal subgroup of G of index a power
of p or prime to p, respectively. If we consider a Z(p)[G]-module M , we will denote by
MG the submodule of M ,

MG = {x ∈M | gx = x}

(which is sometimes also denoted by CM(G) in the literature).
For speci�c groups, Cn will denote the cyclic group of order n, D2n the dihedral group

of order 2n and An E Sn will denote the alternating and symmetric group on n letters.
For p a prime number and q a power of p, we write, Fq the �eld of characteristic p

with q elements and Z(p) the ring Z localized at the prime ideal (p). We will also denote
by GLn(Fq), SLn(Fq), PGLn(Fq), PSLn(Fq) the general linear, special linear, projective
general linear and projective special linear group of Fnq .

Let C be a category. We write Ob(C) for the set of objects, Mor(C) for the set of all
morphisms. If x, y ∈ Ob(C), we denote by MorC(x, y) the set of all morphisms from x
to y and IsoC(x, y) the set of all isomorphisms between x and y. If F : C1

// C2 is a

functor and x, y ∈ Ob(C1), we denote by Fx,y : MorC1(x, y) //MorC2(F (x), F (y)) the

application induced by F and Fx = Fx,x.

For X, Y two spaces, we write X ∼= Y or X ' Y to indicate that X is homeomorphic
to Y or has the homotopy type of Y , respectively. We also denote by [X, Y ] the set of
homotopy classes of maps from X to Y . For a space X, we write π1(X) the fundamental
group of X, i.e. the set of homotopy classes of pointed loops with concatenation as
composition law.
Finally, for C a small category, we denote by N (C) its nerve and |C| = |N (C)| its

geometric realization (see 2 for more details).





1
Fusion systems and p-local �nite groups

In this chapter, we recall the de�nitions of fusion system and linking system, and some
background in homotopy theory of fusion systems. We refer the reader more interested
in fusion systems or homotopy theory of fusion systems to [AKO] or [Cr].

1.1 Fusion systems

A fusion system over a p-group S is a way to abstract the action of a �nite group G ≥ S
on the subgroups of S by conjugation.

De�nition 1.1.1. Let S be a �nite p-group.
A fusion system over S is a small category F , where Ob(F) is the set of all subgroups

of S and which satis�es the following two properties for all P,Q ≤ S:

(a) HomS(P,Q) ⊆ MorF(P,Q) ⊆ Inj(P,Q);

(b) each ϕ ∈ MorF(P,Q) is the composite of an F -isomorphism followed by an inclusion.

The composition in a fusion system is given by composition of homomorphisms. We
usually write HomF(P,Q) = MorF(P,Q) to emphasize that the morphims in F are
homomorphisms.
The typical example of fusion system is the fusion system of a �nite group G.

Example 1.1.2. Let G be a �nite group and S a p-subgroup of G.
The fusion system of G over S is the category FS(G) where Ob(FS(G)) is the set of

all subgroups of S and for all P,Q ≤ S, MorFS(G)(P,Q) = HomG(P,Q).
The category FS(G) de�nes a fusion system over S.

In general, it is more convenient to work with fusion system when S is a Sylow p-
subgroup of G or more generally, when the fusion system is saturated. For that purpose,
we will try to mimic Sylow Theorems in terms of the category FS(G). There are several
de�nitions of saturation. Here, we only give one due to Roberts and Shpectorov and the
reader interested in other equivalent de�nitions can �nd more, for example, in [AKO].

De�nition 1.1.3. Let S be a p-group and F a fusion system over S.

9
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(a) Two subgroups P,Q ≤ S are F-conjugate if they are isomorphic as objects in F . We
denote by PF the set of all subgroups of S F -conjugate to P .

(b) A subgroup P ≤ S is fully automized if AutS(P ) is a Sylow p-subgroup of AutF(P ).

(c) A subgroup P ≤ S is receptive in F if it has the following property: for each Q ≤ S
and ϕ ∈ IsoF(Q,P ), if we set

Nϕ =
{
g ∈ NS(Q) | ϕ ◦ cg ◦ ϕ−1 ∈ AutS(P )

}
,

then there is ϕ ∈ HomF(Nϕ, S) such that ϕ|Q = ϕ.

A fusion system F over a p-group S is saturated if each subgroup of S is F -conjugate to
a subgroup which is fully automized and receptive.

The case of the fusion system of a �nite group over one of its Sylow p-subgroup is a
particular case of a saturated fusion system.

Proposition 1.1.4 (Puig). Let G be a �nite group.
If S is a Sylow p-subgroup of G, then the category FS(G) is a saturated fusion system.

A fusion system F over a p-group S is called realizable if there is a �nite group G such
that S is a Sylow p-subgroup of G and F = FS(G), and exotic otherwise. We know
examples of exotic fusion systems (see [AKO], Section III.6, for some examples) but we
do not know a lot about them and especially how they appear.
Let also distinguish other particular subgroups of S which play an important role.

De�nition 1.1.5. Let S be a subgroup and F a saturated fusion system over S.

(a) A subgroup P ≤ S is fully centralized in F if, for all Q ∈ PF , |CS(P )| ≥ |CS(Q)|.

(b) A subgroup P ≤ S is fully normalized in F if, for all Q ∈ PF , |NS(P )| ≥ |NS(Q)|.

If F is realizable by a �nite group G, then a subgroup P ≤ S is fully centralized (resp.
fully normalized) if, and only if, CS(P ) (resp. NS(P )) is a Sylow p-subgroup of CG(P )
(resp. NG(P )).
If F is a fusion system over a p-group S, for each P ≤ S, we write OutF(P ) =

AutF(P )/Inn(P ) and OutS(P ) = AutS(P )/Inn(P ).

De�nition 1.1.6. Let F be a saturated fusion system over a p-group S.

(a) A subgroup P ≤ S is F-centric if CS(Q) = Z(Q) for every Q ∈ PF .

(b) A subgroup P ≤ S is F-radical if Op(OutF(P )) = 1.

We will denote by F c, F r and F cr the full subcategory of F whose objects are the
F -centric subgroups, F -radical subgroups and F -centric and F -radical subgroups of S
respectively.
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If F is realizable by a �nite group G, then a subgroup P ≤ S is FS(G)-centric if, and
only if, P is p-centric, i.e. Z(P ) is a Sylow p-subgroup of CG(P ). The notion of F -radical
is not the same as being a radical p-subgroup. A p-subgroup is a radical p-subgroup of
G if Op(NG(P )/P ) = 1 while, P is FS(G)-radical if Op (NG(P )/PCG(P )) = 1. The two
de�nitions are closed but there is no implication in between. However, if P is FS(G)-
centric and FS(G)-radical, then P is a radical p-subgroup of G.

De�nition 1.1.7. Let F be a saturated fusion system over a p-group S.
A subgroup P ≤ S is F-essential if P is F -centric and fully normalized in F , and if

OutF(P ) contains a strongly p-embedded subgroup.

For a �nite group G, a subgroup H < G is strongly p-embedded, if p | |H| and for each
x ∈ G \H, H ∩ xHx−1 has order prime to p.
The following proposition describes the properties of these F -essential subgroups.

Proposition 1.1.8 ([AKO], Proposition I.3.3). Let F be a saturated fusion system over
a p-group S.

(a) Each F-essential subgroup of S is F-centric, F-radical and fully normalized in F .

(b) Let P be a fully normalized proper subgroup of S and let HP ≤ AutF(P ) be the
subgroup generated by those α ∈ AutF(P ) which extend to F-isomorphisms between
strictly larger subgroups of S. Then, either P is not F-essential and HP = AutF(P );
or P is F-essential and HP/Inn(P ) is strongly p-embedded in OutF(P ).

These essential subgroups are important because their automorphisms generate the
whole fusion system in a precise sens.
For a p-group S, there is a universal fusion system U over S which contains all other

fusion systems over S: for each P,Q ≤ S, HomU(P,Q) = Inj(P,Q). Also, the intersection
of two fusion systems over S is again a fusion system over S. We can then de�ne, for Ψ a
family of monomorphisms between subgroups of S and/or fusion systems over subgroups
of S, the fusion system generated by Ψ, denoted 〈Ψ〉S (or 〈Ψ〉 when there is no confu-
sion on the p-group we consider), as the smallest fusion system over S (not necessarily
saturated!) which contains Ψ. Thus, 〈Ψ〉S is the intersection of all the fusion systems
over S which contain Ψ and the morphisms in 〈Ψ〉 are the composites of restrictions of
homomorphisms in the set Ψ ∪ Inn(S) and their inverses.

Theorem 1.1.9 (Alperin's Fusion Theorem). Let F be a saturated fusion system over a
p-group S.
Then,

F = 〈AutF(P ) | P = S or P is F-essential〉S.

1.2 Linking systems

For a �nite group G and a subgroup H ≤ G, we will denote by TH(G) the transporter
category ofG overH which is the small category with set of objects the set of all subgroups
of H and for all H1, H2 ≤ G, MorTG(H)(H1, H2) = TG(H1, H2). If we just want to consider
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a familyH of subgroups ofH, we will denote by T HH (G) the full subcategory of TH(G) with
set of objects H. Here, we will consider the case where G is a �nite group and H = S
is a Sylow p-subgroup of G. We will also sometimes restrict our attention on the full
subcategory T cS (G) = T HS (G) with H = Ob(F c) or T crS (G) = T HS (G) with H = Ob(F cr).
These transporter categories are useful in the study of the p-local structure of a �nite

group G and we can mention that Oliver and Ventura [OV1] extend them to the notion of
transporter systems to study extension of p-local �nite groups by a p-group. Nevertheless,
the structure of TS(G) is too linked to G (for example, we can show that |TS(G)| = BG)
and even if we restrict our attention on the centric subgroups, two groups G1 and G2

with a same Sylow p-subgroup S and the same fusion system over S can have di�erent
centric transporter categories (you can for example take G1 such that Op′(G1) 6= 0 and
G2 = G1/Op′(G1)). The good object to consider is the centric linking system!

De�nition 1.2.1. Let F be a fusion system over a p-group S.
A linking system associated to F is a �nite category L together with a pair of functors

T Ob(L)
S (S) δ // L π // F

satisfying the following conditions:

(A1) Ob(L) is a set of subgroups of S closed under F -conjugacy and overgroups, and
contains Ob(F rc). Each object in L is isomorphic (in L) to one which is fully
centralized.

(A2) δ is the identity on objects, and π is the inclusion on objects. For each P,Q ∈ Ob(L)
such that P is fully centralized in F , CS(P ) acts freely on MorL(P,Q) via δP,P and
right composition, and

πP,Q : MorL(P,Q) // HomF(P,Q)

is the orbit map for this action.

(B) For each P,Q ∈ Ob(L) and each g ∈ TS(P,Q), the application πP,Q sends δP,Q(g) ∈
MorL(P,Q) to cg ∈ HomF(P,Q).

(C) For each P,Q ∈ Ob(L), all ψ ∈ MorL(P,Q) and all g ∈ P , the diagram

P

δP (g)

��

ψ
// Q

δQ(π(ψ)(g))

��

P
ψ
// Q

commutes in L.

A centric linking system associated to a fusion system F is a linking system associated
to F such that Ob(L) = Ob(F c).
The example of linking system we should have in mind is the centric linking system of

a �nite group, de�ned as follows.
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Example 1.2.2. Let G be a �nite group and S a p-subgroup of G.
The centric linking system of G over S is the category LcS(G) where Ob(LcS(G)) is the

set of all p-centric subgroups of S and for all P,Q ≤ S,

MorFS(G)(P,Q) = TG(P,Q)/Op(CG(P ))

(remark that, as P is p-centric, Op(CG(P )) has order prime to p).
The category LcS(G), with the obvious functors π and δ, de�nes a centric linking system

associated to FS(G).

The following proposition gives some basic properties of linking systems.

Proposition 1.2.3 ([O4], Proposition 4). Let F be a saturated fusion system over a
p-group S and L be an associated linking system.

(a) For each P,Q ∈ Ob(L), the subgroup

E(P ) = Ker
(
πP : AutL(P ) // AutF(P )

)
acts freely on MorL(P,Q) via right composition and πP,Q induces a bijection

MorL(P,Q)/E(P )
∼= // HomF(P,Q) .

(b) A morphism ψ ∈ Mor(L) is an isomorphism if and only if π(ψ) is an isomorphism
in F .

(c) If P ∈ Ob(L) is fully normalized in F , then δP (NS(P )) is a Sylow p-subgroup of
AutL(P ).

(d) All morphisms in L are monomorphisms and epimorphisms in the categorical sense.

When P ≤ Q are objects in a linking system L, the morphism δP,Q(1) ∈ MorL(P,Q)
can be seen as an inclusion morphism. This terminology is motivated by axiom (B),
because πP,Q(δP,Q(1)) = inclQP ∈ HomF(P,Q).

De�nition 1.2.4. Let S be a p-group, F a saturated fusion system over F and L a
linking system associated. A compatible set of inclusions for L is a choice of morphisms
ιQP ∈ MorL(P,Q), one for each pair P ≤ Q of objects of L, such that ιSS = IdS, and the
following holds for all P ≤ Q ≤ R,

1. π(ιQP ) is the inclusion P ≤ Q;

2. ιRQ ◦ ι
Q
P = ιRP .

We often write ιP = ιSP . The existence of a compatible set of inclusions for L is proved
in [5a2], Proposition 1.13, but an easy example is given by, for each pair P ≤ Q of objects
in L,

ιQP = δQP (1).
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In this thesis, we will �x a compatible set of inclusion
(
ιQP

)
P≤Q

.

Once inclusions have been de�ned, we can consider restrictions and extensions of mor-
phisms in L and since morphisms in a linking system are monomorphisms and epimor-
phisms, restrictions and extensions are unique whenever they exist. The following propo-
sition describes the conditions under which they do exist.

Proposition 1.2.5 ([O4], Proposition 4(b,e)). Let F be a saturated fusion system over
a p-group S and L be an associated linking system.

(a) For every P,Q ∈ Ob(L), ψ ∈ MorL(P,Q) and P0, Q0 ∈ Ob(L) such that, P0 ≤ P ,
Q0 ≤ Q and π(ψ)(P0) ≤ Q0, there exists a unique morphism, ψ|Q0

P0
such that ψ◦ ιPP0

=

ιQQ0
◦ ψ|Q0

P0
.

(b) Let P,Q, P ,Q ∈ Ob(L) and ψ ∈ MorL(P,Q) be such that P E P , Q ≤ Q, and for

each g ∈ P , there is an h ∈ Q such that ιQQ ◦ ψ ◦ δP (g) = δQ,Q(h) ◦ ψ. Then there is

a unique morphism ψ ∈ MorL(P ,Q) such that ψ|QP = ψ.

Usually, when we only study one fusion system, the most convenient linking system
to work with is the centric linking system. But when we work with two di�erent fusion
systems, or with fusion subsystems, it is convenient to work with linking systems with
an adapted set of objects. Hence we have to determine what are the possible sets of
subgroups of S. For that we have to de�ne the notion of F -quasicentric subgroup.

De�nition 1.2.6. Let F be a saturated fusion system over a p-group S.
A subgroup P ≤ S is F-quasicentric if for each Q ≤ PCS(P ) containing P , and each

α ∈ AutF(Q) such that α|P = Id, α has a p-power order.

We will denote by F q the full subcategory of F with set of objects all the F -quasicentric
subgroups of S.
If G is a �nite group and S a Sylow p-subgroup of G, a subgroup P ≤ S is FS(G)-

quasicentric if, and only if, P is a p-quasicentric subgroup of G, i.e. Op(CG(P )) has order
prime to p.

We are now ready to describe the possible sets of subgroups of S we can choose to get
a well-de�ned linking system.

Proposition 1.2.7. Let F be a saturated fusion system over a p-group S.
Let L be a linking system associated to F .
We have Ob(F cr) ⊆ Ob(L) ⊆ Ob(F q), and there exists a linking system Lq associated

to F such that Ob(L) = Ob(F q), and L is a full subcategory of Lq.
Moreover, for every subset Ob(F cr) ⊆ H ⊆ Ob(F q) stable by F-conjugacy and over-

groups, the full subcategory LH of Lq with set of objects H is also a linking system asso-
ciated to F .

Proof. The �rst point can be found for example in [O4], Proposition 4(g). For the
second one, you can �nd a proof in [AKO], Proposition III.4.8. Finally, the last statement
is clear from the axioms of linking system. �
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A quasicentric linking system associated to F is a linking system L with Ob(L) =
Ob(F q).
If G is a �nite group and S a Sylow p-subgroup of G, we can de�ne the quasicentric

linking system of G as the category LqS(G) with set of objects all the p-quasicentric
subgroups of S and for all P,Q ∈ Ob (LqS(G)),

MorLqS(G)(P,Q) = TG(P,Q)/Op(CG(P )).

This category, with the obvious functors π and δ, de�nes a quasicentric linking system
associated to FS(G) and LcS(G) is a full subcategory of LqS(G).

We �nish with the problem of existence and uniqueness of a linking system for a given
saturated fusion system over a p-group S and a set Ob(F cr) ⊆ H ⊆ Ob(F q) of subgroups
of S stable by F conjugacy and overgroups. This is a really di�cult problem but it have
been solved by Andrew Chermak [Ch] using the theory of partial groups (an interpretation
by Bob Oliver in terms of obstruction theory is given in [O5]) and the answer is positive!
Here we will always explicitly give the linking system and work with a p-local �nite group.

De�nition 1.2.8. A p-local �nite group is de�ned to be a triple (S,F ,L) where S is a
p-group, F a saturated fusion system over S, and L a linking system associated to F .
If S0 is a subgroup of S, F0 a saturated subsystem of F and L0 a linking system

associated to F0, the p-local �nite group (S0,F0,L0) will be called a p-local subgroup of
(S,F ,L) (even if L0 * L).

We will always, or it will be stated explicitly, work with a centric linking system.

1.3 Homotopy properties of linking systems

When we work in homotopy theory and with classifying spaces of �nite groups, we can be
interested in the p-completion of them. If you take a �nite group G, its classifying space
BG is a space which is strongly linked to the structure of G. This link can be highlighted
by p-local structure through the Martino-Priddy conjecture. The proof uses the notion
of linking systems of groups and when we work with abstract saturated fusion systems,
linking systems allow us to de�ne classifying spaces and make a link between the theory
of fusion systems and homotopy theory.

From now on, for a p-local �nite group (S,F ,L), π and δ will denote the structural
functors

T cS (S) δ // L π // F .

We also write πL = π1(|L|, S), and ω : L // B(πL) denotes the functor which sends

each objects of L to the unique one in B(πL) and, for P,Q ≤ S, sends ϕ ∈ MorL(P,Q) to
the path ιQ.ϕ.ιP where ιP is the path ιP in the other direction (see appendix 2 for more
details).
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1.3.1 Fundamental groups and covering spaces

Some constructions made with fusion and linking systems can be explained in terms of
fundamental group and covering spaces of their geometric realizations.

If F is a saturated fusion system over a p-group S, an important subgroup of S is the
hyperfocal subgroup of F :

hyp(F) = 〈g−1α(g) | g ∈ P ≤ S, α ∈ Op (AutF(P ))〉 E S.

The space |L| is a p-good space and the fundamental group of its p-completion can be
computed as follows.

Theorem 1.3.1 ([AKO], Theorem III.4.17). Let (S,F ,L) be a p-local �nite group.
The space |L| is p-good and the composite

Ψ : S
δS // AutL(S)

ωS // πL
(λ|L|)∗

// π1(|L|∧p )

is surjective with Ker (Ψ) = hyp(F). Thus Ψ induces an isomorphism

π1(|L|∧p ) ∼= S/hyp(F).

Hence, the fundamental group of |L|∧p only depends on the associated fusion system.
We will see later that many of the other homotopy properties of |L|∧p depend only on the
fusion system.
We can also look at the covering spaces of |L| and we can wonder when they come from

fusion subsystems. For example, we have the following properties (you can see [AKO],
Section I.6, for the de�nition of normal subsystems of a fusion system and a linking
system).

Proposition 1.3.2 ([AKO], Proposition III.4.16). Let (S,F ,L) be a p-local �nite group.
Let (S0,F0,L0) be a p-local subgroup of (S,F ,L) and assume that F0 is weakly normal
in F and L0 is normal in L.
Then the inclusion L0 ⊆ L induces, up to homotopy, a covering space with covering

group,
L/L0 = AutL(S0)/AutL0(S0).

We can look at some particular p-local subgroups.

De�nition 1.3.3. Let (S,F ,L) be a p-local �nite group and (S0,F0,L0) a p-local sub-
group of (S,F ,L).

(a) We say that (S0,F0,L0) is a p-local subgroup of index a power of p if S0 ≥ hyp(F)
and, for every P ≤ S, Op(AutF(P )) ≤ AutF0(P ).

(b) We say that (S0,F0,L0) is a p-local subgroup of index prime to p if S0 = S and, for
every P ≤ S, Op′(AutF(P )) ≤ AutF0(P ).

These particular p-local subgroups satisfy the following properties.
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Proposition 1.3.4 ([5a2], Proposition 3.8). Let (S,F ,L) be a p-local �nite group and
(S0,F0,L0) a p-local subgroup of (S,F ,L).

(a) If (S0,F0,L0) is of index a power of p, then P ≤ S0 is F0-quasicentric if, and only
if, P is F-quasicentric.

(b) If (S0,F0,L0) is of index prime to p, then P ≤ S is F0-centric if, and only if, P is
F-centric.

These p-local subgroups are in one-to-one correspondence with covering spaces of |L|
with index a power of p or prime to p respectively.
Let us �rst look at p-local �nite subgroups of p-power index. According to the previous

proposition, we will work with F -quasicentric linking systems.

Theorem 1.3.5 ([5a2], Theorem 4.4). Let (S,F ,L) be a p-local �nite group with L a
quasicentric linking system.
For each T containing hyp(F), there is a unique p-local subgroup (T,FT ,LT ) of index

a power of p and such that LT = π−1(F qT ).
Moreover, the inclusion LT ⊆ L induces, up to homotopy, a covering space of degree

[S : T ]. Hence, |LT |∧p is homotopy equivalent to a covering space of |L|∧p with covering
group S/T .

Thus, there is a bijective correspondence between the p-local subgroups of (S,F ,L)
and the subgroups of π1(|L|∧p ). This can also be seen as an analogous to the situation for
the classifying space of a �nite group G: since π1(BG∧p ) = G/Op(G) there is a bijective
correspondence between connected covering spaces of BG∧p and subgroups of G containing
Op(G).
We can also de�ne, for a p-local �nite group (S,F ,L) the minimal p-local �nite group

of index a power of p (hyp(S), Op(F), Op(L)) and, by Theorem 1.3.5, we obtain that the
space |Op(L)|∧p is homotopy equivalent to the normal covering space of |L|∧p with covering
group S/hyp(F).

Let us now look at p-local subgroups of index prime to p. Here, for an in�nite group G,
we denote by Op′(G) the intersection of all normal subgroups in G of �nite index prime
to p. For F a fusion system over a p-group S, let Op′(F) be the fusion system generated
by Op′(AutF(P )) for all P ≤ S and de�ne

Out0
F(P ) = 〈α ∈ OutF(S) | α ∈ HomOp′ (F)(P, S), for some P ≤ S〉.

Since AutF(S) normalizes Op′(F), Out0
F(S) E OutF(S).

Proposition 1.3.6 ([5a2], Lemma 3.4 and Proposition 5.2). Let (S,F ,L) be a p-local
�nite group.

(a) F = 〈AutF(S), Op′(F)〉.

(b) π and the inclusion of BAutF(S) in |F c| induce isomorphisms,

θ : πL/O
p′(πL)

∼= // π1(|F c|)
∼= // OutF(S)/Out0F(S).
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Proof. The point (a) is proved in [5a2], Lemma 3.4, for (b) as π1(|F c|) is a p′-group by
[AKO] Theorem I.7.7.(a), the second isomorphism is given in [5a2], Proposition 5.2, and
the �rst one in Theorem 5.5 and the comments which follows . �

According to 1.3.4, we will work with centric linking systems.

Theorem 1.3.7 ([5a2], Theorem 5.5). Let (S,F ,L) be a p-local �nite group with L a
centric linking system.
For each subgroup H ≤ OutF(S) containing Out0F(S), there is a unique p-local �nite

group (S,FH ,LH) of index prime to p such that OutFH
(S) = H and LH = π−1(F cH).

Moreover, |LH | is homotopy equivalent, via its inclusion in |L|, to the covering space of

|L| with fundamental group H̃ ≥ Op′(πL) such that θ(H̃/Op′(πL)) = H/Out0F(S) (where
θ is the isomorphism of the previous proposition).

Thus, for a p-local �nite group (S,F ,L) we can de�ne the minimal p-local subgroup of
index prime to p, (S,Op′(F), Op′(L)) corresponding to (S,FH ,LH) with H = Out0

F(S)
in the previous theorem.

1.3.2 Homotopy properties of classifying spaces

De�nition 1.3.8. Let (S,F ,L) be a p-local �nite group.
The classifying space of (S,F ,L) is the p-completed nerve |L|∧p .

For example if G is a �nite group and (S,F ,L) is the p-local �nite group associated,
then |L|∧p ' BG∧p .

Theorem 1.3.9 ([AKO], Theorem III.3.2). If G is a �nite group and S a Sylow p-
subgroup of G, then

BG∧p ' |LcS(G)|∧p .

Remark 1.3.10. The homotopy equivalence is given by the following,

LcS(G) T cS (S) ⊆ TS(G)
ρ
//δoo B(G)

where ρ is the functor which send each object on the unique one in the target and for
every P,Q ≤ S and g ∈ G, ρ(g) = g.

We now list some of the other results on the space |L|∧p which show that it has many
homotopy properties of the p-completed classifying spaces BG∧p . We �rst verify that the
homotopy type of |L| does not depend on the choice of the object set.

Theorem 1.3.11 ([5a1], Theorem 3.5). Let F be a saturated fusion system over a p-group
S. Let L0 ⊆ L be two linking systems associated to F with a di�erent set of objects.
Then the inclusion induces a homotopy equivalence of space |L0| ' |L|.

This theorem helps to motivate the use of the homotopy type of |L| and |L|∧p , and their
homotopy properties, as important invariants of the p-local �nite group we consider. It
also allows a certain �exibility when working with geometric realization of linking system.
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We now look at mapping spaces. If we take a �nite group G, and a p-group Q, Mislin
has shown that the natural map

Rep(Q,G) = Hom(Q,G)/Inn(G)
∼= // [BQ,BG∧p ]

is a bijection. We have an analogue for an abstract fusion system using |L|∧p instead of
BG∧p . If Q is a �nite group and F is a saturated fusion system over a p-group S, we set,

Rep(Q,F) = Hom(Q,S)/ ∼,

where for ρ, σ ∈ Hom(Q,S), ρ ∼ σ if there is α ∈ IsoF(ρ(Q), σ(Q)) such that α ◦ ρ = σ.

Theorem 1.3.12 ([BLO2], Corollary 4.5). Let (S,F ,L) be a p-local �nite group.
If Q is a p-group, then the map

Rep(Q,F)
∼= // [BQ, |L|∧p ],

de�ned by sending the class of ρ : Q // S to the class of the composite

BQ
Bρ
// BS

incl // |L|
λ|L|
// |L|∧p

is a bijection.

Another important homotopy property deals with cohomology but we will see it in the
next chapter.
Let us �nish with a theorem which states that the isomorphism type of a p-local �nite

group (S,F ,L) is completely determined by the homotopy type of the space |L|∧p .
An isomorphism (S1,F1,L1) // (S2,F2,L2) of p-local �nite groups is a triple

S1
α
∼=
// S2 F1 ∼=

αF // F2 and L1 ∼=
αL // L2

of isomorphisms of groups and categories, such that αF(P ) = α(P ) for all P ≤ S1,
αL(P ) = α(P ) for all P ∈ Ob(L), and such that they commute in the obvious way with

the structural functors Li
πi // Fi and TOb(L)(S)

δi // Li .

Theorem 1.3.13 ([AKO], Theorem III.4.25). If (S1,F1,L1) and (S2,F2,L2) are p-local
�nite groups, then any homotopy equivalence

|L1|∧p
∼= // |L2|∧p

induces an isomorphism

(S1,F1,L1)
∼= // (S2,F2,L2)

of p-local �nite groups.





2
Cohomology and stable elements

In this chapter, we are interested in the notion of �stable� elements.

After we recall some generalities on group cohomology, we remind the notion of stable
elements for a �nite group G from Cartan and Eilenberg, their link with the cohomology
of G and we translate it in term of projective limit. We also remind the notion of F -
stable for a saturated fusion system F when we work with a Z(p)-module. Then, we de�ne
the notion of F c-stable elements of a p-local �nite group with coe�cients in a Z(p)[πL]-
module. We end this chapter comparing these three notions in the case of a realizable
p-local �nite group.

2.1 Group cohomology and δ-functors

Let G be a group (not necessarily �nite) andM a Z(p)[G]-module. The group cohomology
of G with coe�cients inM , denoted byH∗(G,M), is the cohomology of the chain complex

HomZ(p)[G](P•,M),

where P• is a projective resolution of Z(p) as a trivial Z(p)[G]-module. We refer the
reader to [CE], [We], [AM] or [Br] for more details about this functor. Here we will use
the notion of transfer and the bifunctoriality of group cohomology. We also de�ne the
notion of δ-functor and give H∗(G,−) as an example.

Let D be the category of pairs (G,M) with G a group and M a Z(p)[G]-module. A

morphism in D from (G,M) to (H,N) is a pair, (ϕ, ρ) where ϕ : G // H is a group

homomorphism and ρ : N //M is a linear map such that, for every n ∈ N and every
g ∈ G, gρ(n) = ρ (ϕ(g)n). Then, we can remark the following.

Proposition 2.1.1.

H∗(−,−) : D // Z(p)-Mod

de�nes a contravariant functor.

21
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For a pair (ϕ, ρ) from (G,M) to (H,N), the morphism H∗(ϕ, ρ) is induced by the chain
map,

HomZ(p)[H](P
H
• , N) // HomZ(p)[G](P

G
• ,M)

f � // ρ ◦ f ◦ ϕ∗

where PH
• and PG

• are projective resolutions of Z(p) as trivial Z(p)[H]-module and Z(p)[G]-
module respectively and where ϕ∗ is the chain map induced by the identity between
the two chain complexes PG

• and ϕ](P
H
• ) (Here, for a Z(p)[H]-module M , ϕ]M is the

Z(p)[G]-module M where G acts through ϕ).

For example, for every group inclusion H ≤ G and every Z(p)[G]-module M , the pair
(inclGH , Id) induce the restriction map

ResGH : H∗(G,M) // H∗(H,M).

Another example is given by conjugation. Let G be a group, H be a subgroup of G
and g ∈ G. for every Z(p)[G]-module M , the pair (cg, g

−1) induce the conjugation map

c∗g : H∗(gHg−1,M) // H∗(H,M)

In that case, if we consider a projective resolution of Z(p) as a trivial Z(p)[G]-module it
also de�nes a projective resolution for H and gHg−1. Then on the chain level, the map
c∗g is given by,

HomZ(p)[gHg
−1](P

G
• ,M) // HomZ(p)[H](P

G
• ,M)

f � // (u 7→ g−1f(gu))

Another important point of view of group cohomology is through the notion of δ-
functor.

De�nition 2.1.2. Let A and B be two abelian categories.
A (contravariant) δ-functor is a functor F ∗ : A // B together with connecting ho-

momorphisms

δiF : F i(A) // F i+1(C)

de�ned for every short exact sequence 0 // A // B // C // 0 in A, and such
that,

(a) for every short exact sequence 0 // A // B // C // 0 in A, the long se-
quence

· · · // F i(C) // F i(B) // F i(A)
δiF // F i+1(C) // · · ·

is exact.
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(b) For every morphism of short exact sequences in A

0 // A //

ϕA

��

B //

ϕB

��

C //

ϕC

��

0

0 // A′ // B′ // C ′ // 0,

the following diagram commute for every i,

F i(A′)
δiF //

F i(ϕA)
��

F i+1(C ′)

��

F i+1(ϕC)
��

F i(A)
δiF

// F i+1(C).

If (F ∗, δF ) , (G∗, δG) : A // B are two δ-functors, a morphism of δ-functors from

(F ∗, δF ) to (G∗, δG) is a natural transformation η such that, for every short exact sequence

0 // A // B // C // 0

We have a commutative diagram,

· · · // F i(C)

ηC
��

// F i(B)

ηB
��

// F i(A)

ηA
��

δiF // F i+1(C)

ηC
��

// · · ·

· · · // Gi(C) // Gi(B) // Gi(A)
δiG

// Gi+1(C) // · · · .

With the usual composition on natural transformations, we obtain a category. When
there is no confusion on the connecting homomorphisms we will just say that F ∗ is a
δ-functor.

Remark 2.1.3. A δ-functor can be seen as a functor from the category SA of short ex-
act sequences in A to Ch(B) which sends any short exact sequence to an acyclic chain
complex.

If η : F // G is a natural transformation then, to show that it is a morphism of
δ-functors, it is enough to prove that, for every short exact sequence

0 // A // B // C // 0,

the following diagram is commutative for every i.

F i(A)

ηA
��

δiF

// F i+1(C)

ηC
��

Gi(A)
δiG

// Gi+1(C)
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One important example of a contravariant δ-functor is the left derived functor of an
additive and left exact functor. We refer the reader to [We], Chapter 2, where he can �nd
the notion of δ-functor, derived functor and their properties. For a group G, the group
cohomology functor H∗(G,−) : Z(p)[G]-Mod // Z(p)-Mod , with the usual connecting

homomorphism δH∗(G,−), is the left derived functor of the �xed point functor M
� //MG

and then, it de�nes a universal δ-functor (by [We], Theorem 2.4.7).

De�nition 2.1.4. A (contravariant) δ-functor (F ∗, δF ) : A // B is universal if, given

another δ-functor (G∗, δG) : A // B and a natural transformation η0 : F 0 // G0 ,

there exists a unique morphism of δ-functors η∗ : (F ∗, δF ) // (G∗, δG) extending η0.

In particular, if for two groups G and H, we have a natural transformation be-
tween the functors (−)G and (−)H , there is a unique morphism of δ-functors from(
H∗(G,−), δH∗(G,−)

)
to
(
H∗(H,−), δH∗(H,−)

)
which extends this natural transformation.

For G a �nite group, H a subgroup of G and M a Z(p)[G]-module, restriction and
conjugation by an element g ∈ G, de�ned in degree 0 by

(
ResGH

)0
: MG //MH

x � // x

and

c0
g : M gHg−1

//MH

x � // g−1x

,

give examples of morphisms of δ-functors. Another example is given by the transfer. If
G is a group and H is a subgroup of G of �nite index, we can de�ne a transfer map

trGH : H∗(H,−) // H∗(G,−)

as the morphism of δ-functors induced by the natural transformation (−)H // (−)G

given by, for M a Z(p)[G]-module,

MH //MG

x � //
∑

g∈[G/H] gx.

2.2 Cartan-Eilenberg Theorem

Let us now talk about an important theorem in group cohomology. This theorem, due
to Cartan and Eilenberg, expresses the cohomology of a �nite group G with coe�cients
in a Z(p)[G]-module as the submodule of �stable elements� in the cohomology of a Sylow
p-subgroup of G.
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Notation 2.2.1. For H ≤ K two subgroups of G and M a Z(p)[G]-module, we will denote

by ResKH : H∗(K,M) // H∗(H,M) the morphism induced by the inclusion, and by

trKH : H∗(H,M) // H∗(K,M) the transfer homomorphism.

If H ≤ G and g ∈ G, we will denote by c∗g : H∗(gHg−1,M) // H∗(H,M) the

morphism induced by cg.

These morphisms satisfy the following properties.

Proposition 2.2.2 ([CE], Chapter XII, �8). Let G be a �nite group and M be a Z(p)[G]-
module.
We have the following properties.

(a) For every g, h ∈ G, c∗h ◦ c∗g = c∗gh.

(b) For every g ∈ H, c∗g = IdH∗(H,M).

(c) For every H ≤ K ≤ G and g ∈ G, c∗g ◦ ResKH = Resg
−1Kg
g−1Hg ◦ c

∗
g

(d) For every H ≤ K ≤ G and g ∈ G, c∗g ◦ trKH = trg
−1Kg
g−1Hg ◦ c

∗
g

(e) For every H ≤ G, trGH ◦ ResGH = [G : H]IdH∗(G,M).

(f) For every H ≤ G, ResGH ◦ trGK =
∑

g∈[H\G/K] tr
H
H∩g−1Kg ◦ Res

g−1Kg
H∩g−1Kg ◦ c

∗
g.

where [H\G/K] denotes the set of all double classes modulo H and K of G.

We de�ne the stable elements as follows.

De�nition 2.2.3. Let G be a �nite group, S a Sylow p-subgroup of G and M a Z(p)[G]-
module.
We say that x ∈ H∗(S,M) is stable if, for every g ∈ G,

ResSS∩g−1Sg(x) = c∗g ◦ ResSgSg−1∩S(x).

For example, if S is a normal subgroup of G, x ∈ H∗(S,M) is stable if, and only if,
x ∈ H∗(S,M)G.

Theorem 2.2.4 (Cartan-Eilenberg). Let G be a �nite group, S a Sylow p-subgroup of G
and M a Z(p)[G]-module.

The morphism ResGS : H∗(G,M) // H∗(S,M) is injective and its image is the sub-
module of all the stable elements.

Proof. Let q = [G : S] be the index of S in G. As S is a Sylow p-subgroup of G, q is
invertible in Z(p). Thus, by Proposition 2.2.2 (d), trGS is surjective and ResGS is injective.
We then have to show that Im (ResGS ) is the set of all the stable elements.
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Let a ∈ Im (ResGS ). There exists b ∈ H∗(G,M) such that a = ResGS (b). For every
x ∈ G, cx is the identity on H∗(G,M), hence,

cx(a) = cx ◦ ResGS (b)

= ResGxSx−1 ◦ cx(b) (by Proposition 2.2.2 (c))

= ResGxSx−1(b).

and in particular,

ResxSx
−1

S∩xSx−1 ◦ cx(a) = ResxSx
−1

S∩xSx−1 ◦ ResGxSx−1(b)

= ResGS∩xSx−1(b)

= ResSS∩xSx−1 ◦ ResGS (b)

= ResSS∩xSx−1(a).

and a is stable.

Conversely, let a ∈ H∗(S,M) be a stable element. Recall that, by [CE] Proposition
XII.9.2, we have

∑
x∈[S\G/S][S : S ∩ xSx−1] = [G : S]. By Proposition 2.2.2 (e) and (f),

we have

ResGS ◦ trGS (a) =
∑

x∈[S\G/S]

[S : S ∩ xSx−1]c∗x(a) (by Proposition 2.2.2 (e) and (f))

=
∑

x∈[S\G/S]

[S : S ∩ xSx−1]a (because a is stable)

= [G : S]a (by [CE] Proposition XII.9.2)

= qa.

Then, if l is the inverse of q ∈ Z(p),

ResGS ◦ trGS (la) = a.

Thus, a ∈ Im (ResGS ). �

This result can be interpreted as a projective limit.

Lemma 2.2.5. Let C be small category, k a ring and F : C // k-Mod a contravariant
functor.

Assume that there exists x0 ∈ Ob(C) such that for all y ∈ Ob(C), there exists ϕy ∈
MorC(y, x0).

Denote Estable the set of m ∈ F (x0) such that for all y ∈ Ob(C) and for all ψ, ψ′ ∈
MorC(y, x0), we have F (ψ)(m) = F (ψ′)(m).

Then,

Estable
∼= lim←−

C
F.
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Proof. Let A be a k-module and (γx)x∈C be a family of linear applications such that,
for x ∈ Ob(C), γx ∈ Homk-Mod(A,F (x)) and such that for all y, z ∈ Ob(C) and ϕ ∈
MorC(y, z), we have the following commutative diagram.

A
γy
//

γz
!!

F (y)

F (z)

F (ψ)

OO

Then, by de�nition of Estable, for all y, z ∈ Ob(C) and all ψ ∈ MorC(y, z),

A
γy

��

γz

((

γx0

""

Estable

i

$$

F (x0)
F (ϕy)

//

F (ϕz)

��

F (y)

F (z)
F (ψ)

;;

where i denotes the inclusion Estable ⊆ F (x0).
Thus, for every y ∈ Ob(C), γy factors trough Estable along γx0 . This decomposition is

clearly unique. �

Remind that TS(G) is the category with set of objects all the subgroups of S and for
all P,Q ≤ S, MorTS(G)(P,Q) = TG(P,Q).

Corollary 2.2.6. Let G be a �nite group, S a Sylow p-subgroup of G and M a Z(p)[G]-
module.
Then

H∗(G,M) ∼= lim←−
TS(G)

H∗(−,M).

Proof. This is just a consequence of Lemma 2.2.5 with

C = TS(G),

x0 = S ∈ TS(G),

ϕP = 1 ∈ TG(P, S), for all P ∈ FS(G),

F = H∗(−,M) : TS(G) // Fp-Mod

and of Theorem 2.2.4. �
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Remark 2.2.7. In fact, as P acts trivially on H∗(P,M), we can de�ne our functor
H∗(−,M) on the orbit category OS(G) with set of objects all the subgroups of S and for
P,Q ≤ S, MorOS(G)(P,Q) = Q\TG(P,Q) and then H∗(G,M) ∼= lim←−

OS(G)

H∗(−,M). This

category appears in the subgroup decomposition of BG (see [DwH] for more details).

2.3 Stable elements with trivial coe�cients

Let (S,F ,L) be a p-local �nite group.
First, we look at a realizable fusion system.

Proposition 2.3.1. Let G be a �nite group and S a Sylow p-subgroup of G.
If M is a Z(p)-module, then

H∗(G,M) ∼= lim←−
FS(G)

H∗(−,M).

Proof. By Corollary 2.2.6, we have, H∗(G,M) ∼= lim←−
TS(G)

H∗(−,M). However, as the

action of G on M is trivial, for every P ≤ S and every g ∈ CG(P ), c∗g is induced by
the pair (cg, g

−1) = (IdP , IdM) and then c∗g = IdH∗(P,M). Hence, as, for every P,Q ≤ S,
HomF(P,Q) = TG(P,Q)/CG(P ), the cohomology functor

TS(G)
H∗(−,M)

//

π
""

Z(p)-Mod

F
H∗(−,M)

::

factors through FS(G). �

We have then the following corollary.

Corollary 2.3.2. Let G1, G2 be two �nite groups and S1, resp. S2, a Sylow p-subgroup
of G1, resp. G2.
If FS1(G1) = FS2(G2), then, for every M ∈ Z(p)-Mod,

H∗(G1,M) ∼= H∗(G2,M).

In other words, for M a Z(p)-module H∗(G,M) is completely determined by FS(G).
If we consider a p-local �nite group (or even just a fusion system), we can de�ne the

more generally notion of F -stable elements.

De�nition 2.3.3. Let (S,F ,L) be a p-local �nite group and M a Z(p)-module.
An element x ∈ H∗(S,M) is called F-stable if for all P ∈ Ob(F) and all ϕ ∈

HomF(P, S),
ϕ∗(x) = ResSP (x).

We denote by H∗(F ,M) ≤ H∗(S,M) the submodule of all F -stable elements.
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By lemma 2.2.5, this submodule of F -stable elements corresponds to the inverse limit
of H∗(−,M) on the category F

H∗(F ,M) = lim←−
F
H∗(−,M).

It is easily a homotopy invariant of p-local �nite groups and Broto, Levi and Oliver
have shown the following results.

Theorem 2.3.4. Let (S,F ,L) be a p-local �nite group and M an abelian p-group.
The natural homomorphisms

H∗(|L|∧p ,M)
∼= // H∗(|L|,M)

∼= // H∗(F ,M)

induced by λ|L| and the inclusion of BS in |L|, are isomorphisms.

Proof. The case M = Fp have been proved in [BLO2], Theorem 8.1, and the general
case can be found in [5a2], Lemma 6.12. �

Let us �nish with a remark on the set of objects we consider which can be useful for
computations.

Proposition 2.3.5. Let (S,F ,L) a p-local �nite group.
Let H,H′ be two families of subgroups of S containing S and all the F-essential sub-

groups.
If k is a ring and F : F // k-Mod a contravariant functor, then

lim←−
FH′

F = lim←−
FH

F.

Proof. The modules lim←−
FH′

F and lim←−
FH

F can be seen as submodules of F (S). As FH ⊆ FH′

we have the inclusion lim←−
FH′

F ⊆ lim←−
FH

F . The opposite inclusion is given by Alperin's Fusion

Theorem (Theorem 1.1.9). �

In particular, we obtain that, for every Z(p)-module M ,

H∗(F ,M) = lim←−
Fc

H∗(−,M).

This last term will be of interest when we will work with twisted coe�cients.
Even better, if we denote by F ess the full subcategory of F with set of objects the set

of S and all the F -essential subgroups of S, a direct corollary of Proposition 2.3.5 is that
for every family H containing Ob(F ess), then, for every functor F ,

lim←−
FH

F = lim←−
Fess

F.



Chapter 2. Cohomology and stable elements 30

2.4 Stable elements with an action of πL

When we work with coe�cients twisted by an action of πL, we cannot de�ne our coho-
mology functor on all F . In fact, if we take a morphism ϕ in F between two subgroups
which are not F -centric, by Alperin's Fusion Theorem (Theorem 1.1.9), we can see it
as a composite of restrictions of morphisms in F c. However, this decomposition is not,
in general, unique and two di�erent decompositions can lead to di�erent morphisms in
twisted cohomology. As an easy example, we can look at the trivial group {e}: each mor-
phism in F c restricts to the identity on {e}, but, if M is not a trivial Z(p)[πL]-module,
every ϕ ∈ Mor(F c) does not act trivially on M = M{e} = H0({e},M).
Let (S,F ,L) be a p-local �nite group and M a Z(p)[πL]-module. Remark �rst that M

is naturally a Z(p)[S]-module where the action is given by the following composition:

B(S) = B(MorT c
S (S)(S, S))

δS // L ω // B(πL) .

Hence, we can consider, for P ≤ S, the cohomology of P with coe�cients in M .
As we work with an action of π1(|L|), we can easily de�ne a functor on L using the

bifunctoriality of group cohomology (see section 2.1) and the functor ω : L // B(πL)

which sends each objects of L to the unique one in B(πL) and, for P,Q ≤ S, sends
ϕ ∈ MorL(P,Q) to the path ιQ.ϕ.ιP (see appendix 2 for more details).

H∗(−,M) : L // Z(p)-Mod

P ∈ Ob(L) � // H∗(P,M)

ϕ ∈ MorL(P,Q) � // H∗(ϕ,M) = ϕ∗

:= H∗(π(ϕ), ω(ϕ)−1)

For P,Q two subgroups of S and ϕ ∈ MorL(P,Q), H∗(ϕ,M) can be also de�ned on
the chain level as follows:

HomZ(p)[Q] (R•,M) // HomZ(p)[P ] (R•,M)

f � // (ω(ϕ)−1f ◦ π(ϕ)∗)

where (R•) is a projective resolution of the trivial Z(p)[S]-module Z(p). Finally, it can also
be de�ned as the morphism between the two derived functors of (−)Q and (−)P induced
by

x ∈MQ � // ω(ϕ)−1x ∈MP .

By construction, this functor extend naturally the group cohomology functor de�ned
on T cS (S).

T cS (S)
H∗(−,M)

//

δ
""

Z(p)-Mod

L
H∗(−,M)

::

In particular, for every P ≤ S and g ∈ P , H∗(δP (g),M) = c∗g.
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Remark 2.4.1. By construction, for all ϕ ∈ MorL(P,Q), H∗(ϕ,−) de�nes a morphism of
δ-functors from

(
H∗(Q,−), δH∗(Q,−)

)
to
(
H∗(P,−), δH∗(P,−)

)
.

Proposition 2.4.2. Let ϕ, β ∈ MorL(P,Q) with P,Q ∈ L.
If π(ϕ) = π(β) then H∗(ϕ,M) = H∗(β,M).

Proof. If π(ϕ) = π(β), then there exists u ∈ Z(P ) such that ϕ = β ◦ δP (u) and thus

H∗(ϕ,M) = H∗(δP (u),M) ◦H∗(β,M).

However H∗(δP (u),M) = H∗(π(δP (u)), ω(u)−1) = H∗(cu, ω(u)−1) is the automorphism
of H∗(P,M) induced by the conjugation by u, and, as u ∈ Z(P ) ≤ P , from Proposition
2.2.2, this is the identity. �

In particular, if π(ϕ) = inclQP , then H
∗(ϕ,M) = H∗(ιQP ,M) = H∗(inclQP , IdM) = ResQP .

For M a Z(p)[πL]-module P,Q ≤ S two F -centric subgroups and ϕ ∈ HomF(P,Q) we
will also denote by H∗(ϕ,M) = ϕ∗ := H∗(ψ,M) where ψ ∈ MorL(P,Q) is such that
π(ψ) = ϕ. Hence, we can factor our functor through F c and we can de�ne the F-centric
stable elements.

De�nition 2.4.3. An element x ∈ H∗(S,M) is called F-centric stable, or just F c-stable,
if for all P ∈ Ob(F c) and all ϕ ∈ HomF(P, S),

ϕ∗(x) = ResSP (x).

We denote by H∗(F c,M) ⊆ H∗(S,M) the submodule of all F c-stable elements.

By lemma 2.2.5, this submodule of F c-stable elements corresponds to the inverse limit
of H∗(−,M) on the category F c,

H∗(F c,M) = lim←−
Fc

H∗(−,M).

Let us �nish with a computation of the stable elements in degree 0.

Lemma 2.4.4. Let (S,F ,L) be a p-local �nite group and M a Z(p)[πL]-module. We have
the following equality,

MπL = lim←−
L
H0(−,M) = H0(F c,M).

Proof. We identify lim←−
L
H0(−,M) with the submodule of x ∈ MS = H0(S,M) such

that for all P ∈ Ob(L) and all ϕ, ψ ∈ MorL(P, S), ϕ∗(x) = ψ∗(x).
As for all P,Q ∈ Ob(L) and all ϕ ∈ MorL(P,Q), the induced morphism ϕ∗ is given in

degree 0, by, x ∈MQ 7→ ω(ϕ)x ∈MP , we get the �rst inclusion MπL ⊆ lim←−
L
H0(−,M).

Conversely, as πL is generated by {ω(γ) ; γ ∈ Mor(L)} (by Proposition 2.5), it is
enough to show that for every γ ∈ L and x ∈ lim←−

L
H0(−,M), ω(γ)x = x. Consider then
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P,Q ∈ Ob(L), γ ∈ MorL(P,Q) and the following diagram (which is not commutative in
general).

MS

δSQ(1)∗

||

δSP (1)∗

""

MQ
γ∗

//MP

As x ∈ lim←−
L
H0(−,M) ≤ MS, we obtain γ∗ ◦ δSQ(1)∗(x) = δSP (1)∗(x). Thus, as for every

x ∈MS we have δSQ(1)∗(x) = x = δSP (1)∗(x), we have ω(γ)x = γ∗(x) = x. �

2.5 Realizable fusion systems and stable elements

Let (S,F ,L) be a p-local �nite group.
Assume here that there is a �nite group G containing S as a Sylow p-subgroup and

such that F = FS(G). We can wonder what is the link between the cohomology of G
and the F c-stable elements. For example, by Proposition 2.3.1, we know that, for every
Z(p)-module M , the inclusion of S in G induces an isomorphism between H∗(G,M) and
H∗(F ,M), and, by Proposition 2.3.5, this last one corresponds also to H∗(F c,M). But
what happens when we consider a Z(p)[πL]-module ?
First of all, there is not always an obvious link between G and πL and then, we cannot

give to M a natural structure of Z(p)[G]-module. But we can consider here that we have
the following commutative diagram

πL

$$

πT

δ∗
>>

ρ∗
  

Aut(M)

G

::

where πT = π1(|T cS (G)|), and ρ : T cS (G) // B(G) is the functor which sends, for every

P,Q ∈ Ob(T cS (G)), g ∈ TG(P,Q) to g ∈ Mor(oG). In general, H∗(G,M) will be smaller
than H∗(F c,M). In fact, we can identify

H∗(G,M) ∼= lim←−
TS(G)

H∗(−,M)

and,
H∗(F cS(G),M) ∼= lim←−

T c
S (G)

H∗(−,M).

Hence, the inclusion of S in G induces an injective map H∗(G,M) ⊆ H∗(F c,M). These
inverse limits can also be translated in terms of inverse limits other the orbit categories
OS(G) and O(F c) respectively. A lot of techniques have been developed to compute
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limits, and higher limits, over orbit categories (see for example [AKO], Section III.3.5).
Grodal also studies these questions in [Gr] and gives some answers de�ning the notion of
M -centric-radical subgroups.

De�nition 2.5.1. Let G be a �nite group,M a Z(p)[G]-module and K ≤ G be the kernel
of the action of G on M .
A proper p-subgroup P is callM-centric if Z(P )∩K is a Sylow p-subgroup of CG(P )∩

K. If moreover, Op (NG(P )/ (P (CG(P ) ∩K))) = 1, then P is called M-centric-radical.

For example, if the action of G on M is trivial (i.e. K = G), P is M -centric-radical if,
and only if, P is p-centric and a radical p-subgroup. On the other hand, if K = 1, P is
M -centric-radical if and only if P is a radical p-subgroup of G.

Theorem 2.5.2 ([Gr], Corollary 10.4). Let G be a �nite group, S a Sylow p-subgroup of
G and M a Z(p)[G]-module.
Let H be a family of subgroup of S containing S and all the subgroups which are radical

and M-centric-radical.
Then, for every Z(p)[G]-module M , the inclusion of S in G induce a natural isomor-

phism,
H∗(G,M) ∼= lim←−

T HS (G)

H∗(−,M).

Hence, we have a condition under which the cohomology of G is isomorphic to the
F c-stable elements.

Theorem 2.5.3. Let G be a �nite group, S be a Sylow p-subgroup of G and (S,F ,L) be
the associated p-local �nite group. Let also M be a Z(p)[πL]-module.
Assume we have the following commutative diagram

πL

$$

πT

δ∗
>>

ρ∗
  

Aut(M)

G

::

and that every M-centric-radical subgroup is p-centric.
Then, the inclusion of S in G induces a natural isomorphism,

H∗(G,M) ∼= lim←−
T c
S (G)

H∗(−,M) = H∗(F c,M).





3
Idempotents problems

An important result in Broto, Levi and Oliver [BLO2], and a crucial tool in the proof of
Theorem 2.3.4, is the existence of an F -characteristic (S, S)-biset which leads to an idem-
potent of H∗(S,Fp) with image H∗(F ,Fp). Unfortunately things are more complicated
when we work with twisted coe�cients.
In this chapter, after we recall few things on left-free bisets and how it works with trivial

coe�cients, we point out what is the problem when we consider twisted coe�cients. We
then construct, under some hypothesis, an idempotent from an F -characteristic bisets
when we work with any coe�cients. We also look at the case of constrained fusion
systems where everything true in the non twisted case can be extended. We �nally show
that the image of this idempotent is a δ-functor.

3.1 Left-free (G,H)-bisets

Let G,H be two �nite groups.
Transitive (G,H)-bisets (here, G acts on the left and H on the right) are isomorphic

to bisets of the form (G × H)/K for K a subgroup of G × H. We can then use the
Goursat Lemma to describe all these subgroups. Here, we are just interested in isomorphic
classes of (G,H)-bisets where the action of G is free. In this setting, the classes of
transitive left-free (G,H)-bisets are given by pairs (K,ϕ), where K is a subgroup of G
and ϕ ∈ Hom(K,H) a group homomorphism.

Notation 3.1.1. For all (K,ϕ), with K a subgroup of G and ϕ ∈ Hom(K,H) a group
homomorphism, we write

∆(K,ϕ) = {(k, ϕ(k)) ; k ∈ K} ≤ G×H.

For a (G,H)-pair (K,ϕ), the set {K,ϕ} := (G × H)/∆(K,ϕ) de�nes a (G,H)-biset
and the isomorphic class of this biset is determined by the conjugacy class of ∆(K,ϕ)
and we will denote by [K,ϕ] this class.

We can also de�ne a category B, often called the Burnside category, where the objects
are the �nite groups and, for all �nite groups G and H, B(G,H) is the set of isomorphic
classes of (G,H)-bisets. The composition is given by the following construction.

35



Chapter 3. Idempotents problems 36

De�nition 3.1.2. Let G,H and K be �nite groups, Ω a (G,H)-biset and Λ a (H,K)-
biset. We de�ne,

Ω ◦ Λ = Ω×H Λ = Ω× Λ/ ∼
where, for all x ∈ Ω, y ∈ Λ and h ∈ H, (x, h.y) ∼ (x.h, y).

This construction is compatible with isomorphisms, and then B, endowed with the
induced composition law, de�nes a category.
As we work with left-free bisets, we consider the subcategory A ⊆ B where the objects

are the same but we restrict the morphisms to isomorphic classes of left-free bisets. This
gives us a category and the composition follows from the next lemma.

Lemma 3.1.3. Let G,H and K be �nite groups.
Let [K,ϕ] ∈ A(G,H) and [L, ψ] ∈ A(H,K).
Then,

[K,ϕ] ◦ [L, ψ] =
∐

x∈ϕ(K)\H/L

[ϕ−1(ϕ(K) ∩ xLx−1), ψ ◦ cx−1 ◦ ϕ].

3.2 F-characteristic bisets and trivial coe�cients

Let (S,F ,L) be a p-local �nite group.
When we work with trivial coe�cients, the idea is to consider the category AF where

the objects are the subgroups of S and for P and Q two subgroups of S, AF(P,Q) is
the set of isomorphic classes of F -generated left-free (P,Q)-bisets, i.e. the (P,Q)-bisets
union of transitive bisets of the form [R,ϕ] with R ≤ P and ϕ ∈ HomF(R,Q).
Then, for M a Z(p)-module, we construct a functor

M : AF // Z(p)-Mod

de�ned on objects by M(P ) = H∗(P,M) for every P ≤ S and on morphisms as follow.
For every P,Q ≤ S, R ≤ P and ϕ ∈ HomF(P,Q), (P [R,ϕ]Q)∗ = trPR ◦ ϕ∗ and, more
generally, we de�ne Ω∗, for every F -generated left-free (P,Q)-biset Ω, by sum of its
transitive components.
The existence of this functor will help us to construct an idempotent of H∗(S,M) with

image H∗(F c,M). For that, we also need the notion of F -characteristic (S, S)-biset.

De�nition 3.2.1. Let Ω be a left-free (S, S)-biset.

(a) We say that Ω is F-generated if it is the union of (S, S)-bisets of the form [P, ϕ] with
P ∈ Ob(F) and ϕ ∈ HomF(P, S).

(b) We say that Ω is left-F-stable if for all P ∈ Ob(F) and ϕ ∈ HomF(P, S), we have

ϕΩS
∼= PΩS, i.e.

(P [P, ϕ]S) ◦ [Ω] =
(
P [P, inclSP ]S

)
◦ [Ω].

(c) We say that Ω is right-F-stable if for all P ∈ Ob(F) and ϕ ∈ HomF(P, S), we have

SΩϕ
∼= SΩP , i.e.

[Ω] ◦
(
S[ϕ(P ), ϕ−1]P

)
= [Ω] ◦

(
S[P, inclSP ]P

)
.
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(d) We say that Ω is non degenerate if |Ω|/|S| 6= 0 modulo p.

If Ω satis�es all this four properties, we say that Ω is an F -characteristic (S, S)-biset.

The notion of F -characteristic biset was �rst motivated by work of Linckelmann and
Webb. They are the one who �rst formulated these conditions and recognized the impor-
tance of �nding a biset with these properties. Broto, Levi and Oliver proved that such a
biset always exists if the fusion system is saturated.

Proposition 3.2.2 ([BLO2], Proposition 5.5). Let F be a fusion system over a p-group
S.
If F is saturated, then there exists an F-characteristic (S, S)-biset.

We can also mention that Ragnarsson and Stancu proved ([RS], Theorem A) that a
fusion system F is saturated if, and only if, there exists an F -characteristic (S, S)-biset.
Now, as in [BLO2], Proposition 5.5, we can show that this biset induces, for M a

Z(p)-module, an idempotent of H∗(S,M) with image H∗(F c,M).

Proposition 3.2.3. Let (S,F ,L) be a p-local �nite group and M be a Z(p)-module (with
a trivial action of πL).

If Ω is an F-characteristic biset, then |S|
|Ω|Ω∗ ∈ End(H∗(S,M)) de�nes an idempotent

with image H∗(F c,M).

Proof. We will show that Im (Ω∗) ⊆ H∗(F c,M) and that Ω|H∗(Fc,M) = IdH∗(Fc,M).
Let us start with the second point. If x ∈ H∗(F c,M), for all P ∈ Ob(F c) and every

ϕ ∈ HomF(P, S),

[P, ϕ]∗(x) = trSP ◦ ϕ∗(x) = trSP ◦ ResSP (x) = [S : P ]x =
|[P, ϕ]|
|S|

x.

Thus, |S||Ω|Ω∗(x) = x.

The �rst point uses the F -stability of Ω (De�nition 3.2.1). For all x ∈ H∗(S,M),
P ∈ F and every ϕ ∈ HomF(P, S),

ϕ∗ ◦ Ω∗(x) = (P [P, ϕ]S)∗ ◦ (SΩS)∗(x) = (P [P, ϕ]S ◦ SΩS)∗

= (P [P, inclSP ]S ◦ SΩS)∗(x)

= ResSP ◦ Ω∗(x).

Hence the image of |S||Ω|Ω∗ is included in H∗(F c,M). �

3.3 Bisets and twisted coe�cients

Let (S,F ,L) be a p-local �nite group
When we work with twisted coe�cients, we have to be more careful. We cannot de�ne,

as in the trivial case, a functor from AF to Z(p)-Mod.
In fact, for M a Z(p)[πL]-module, our cohomological functor H∗(−,M) cannot be de-

�ned on F but only on F c and thus, we can only consider F c-generated bisets, i.e. bisets
union of transitive bisets of the form [R,ϕ] with R ∈ Ob(F c) and ϕ ∈ HomF(R,Q).
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De�nition 3.3.1. Let P,Q be two F -centric subgroups of S.
A left-free (P,Q)-biset is F c-generated, if it is an union of transitive bisets of the form

[R,ϕ] with R ∈ Ob(F c) and ϕ ∈ HomF(R,Q).

Unfortunately, by Lemma 3.1.3, we can see that the set of isomorphic classes of F c-
generated bisets is, in general, not stable by composition. Hence, we can not, by analogy
with AF , de�ne a category AFc where the objects are the F -centric subgroups of S and,
for P and Q two F -centric subgroups of S, AFc(P,Q) is the set of isomorphic classes of
F c-generated left-free (P,Q)-bisets.
Nevertheless, we have still a map from the set AFc(P,Q) of isomorphic classes of F c-

generated left-free (P,Q)-bisets to Hom(H∗(P,M), H∗(Q,M)) for all Z(p)[πL]-module M
and P,Q ≤ S.
For P,Q,R ∈ F c with R ≤ Q and ϕ ∈ HomF(R,P ), we can associate to the (P,Q)-pair
{R,ϕ} a morphism

{R,ϕ}∗ = trQR ◦ ϕ∗ : H∗(P,M) // H∗(Q,M).

If we take another (P,Q)-biset {R′, ϕ′} isomorphic to {R,ϕ} (this implies that R′ is
also F -centric), we obtain the same morphism by Proposition 2.2.2. Indeed, let {R,ϕ}
and {R′, ϕ′} be two isomorphic (P,Q)-bisets. Then, there exists g ∈ P and h ∈ Q such
that (g, h)∆(R,ϕ)(g, h)−1 = ∆(R′, ϕ′).

(g, h)∆(R,ϕ)(g, h)−1 = {(g.kg−1, h.ϕ(k).h−1) ; k ∈ R}
= {(k, ch ◦ ϕ ◦ cg−1(k)) ; k ∈ gRg−1}

Hence, R′ = gRg−1, ϕ′ = ch ◦ ϕ ◦ cg−1 and,

{R′, ϕ′}∗ = trQR′ ◦ ϕ
′∗

= trQhRh−1 ◦ c∗h ◦ ϕ∗ ◦ c∗g−1

= trQhRh−1 ◦ c∗h ◦ ϕ∗ (because g ∈ P and by 2.2.2)

= c∗h ◦ tr
Q
R ◦ ϕ

∗ (by 2.2.2)

= trQR ◦ ϕ
∗ (because h ∈ Q and by 2.2.2)

= {R,ϕ}∗.

Thus we can set [R,ϕ]∗ as the composite trQR ◦ϕ∗ and it is well-de�ned. We �nally de�ne
Ω∗, for all left-free F c-generated (P,Q)-biset Ω, by the sum of its transitive components.

Remark 3.3.2. By Remark 2.4.1, for ϕ ∈ Mor(F c), ϕ∗ = H∗(ϕ,−) is a morphism of
δ-functors. Hence, as Ω∗ is a sum of composites of transfers, restrictions and ϕ∗, for
ϕ ∈ Mor(F c), which are all morphisms of δ-functors, it is a morphism of δ-functors.

3.4 Idempotents and twisted coe�cients

In general, an F -characteristic biset is not F c-generated.
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Example 3.4.1. Let (S,F ,L) be the p-local of S = D8 in A6. The lattice of subgroups of
S has the following form.

S

V R V ′

Q1 Q2 Z Q′2 Q′1

{e}

The fusion is generated by the inner automorphisms of S, α an automorphism of V of
order 3 which permutes Q1, Q2 and Z, and the analogue β ∈ AutF(V ′). The minimal
F -characteristic biset is given by the following decomposition,

[D8, Id] t [V, α] t [V ′, β] t [Q1, β
−1 ◦ α] t [Q′1, α

−1 ◦ β].

Here, the subgroupsQ1 andQ
′
1 are not F -centric and every F -characteristic biset contains

this minimal F -characteristic biset.
Hence, when we work with twisted coe�cients we cannot use the same biset or, at

least, not directly. In fact, we will use it indirectly with the following hypothesis.

Hypothesis (A). Let (S,F ,L) be a p-local �nite group.
There exists an F -characteristic (S, S)-biset Ω such that Ω = Ω1 ◦Ω2 ◦ · · · ◦Ωn, where,

for all i, Ωi is an F c-generate (S, S)-biset.

This is for example the case for the p-local �nite group of D8 in A6, if Ω is the minimal
F -characteristic biset and Ωc the F c-generate part of Ω. Then, by Lemma 3.1.3, we get
that (Ωc)4 = Ω2. Hence, as Ω2 is also F -characteristic, it satis�es Hypothesis (A).
Hypothesis (A) seems reasonable but we do not know yet how to prove it. But we can

make the following conjecture.

Conjecture 3.4.2. Hypothesis (A) is always true.

From now, we will use F -characteristic bisets satisfying Hypothesis (A). Let us de�ne
the notion of Ω-endomorphism of H∗(S,M) forM a Z(p)[πL]-module. This notion is more
arti�cial than really deep, we introduce it to get a better presentation of our propositions
and theorems.

De�nition 3.4.3. Let (S,F ,L) be a p-local �nite group. Let Ω be a F -characteristic
(S, S)-biset satisfying Hypothesis (A) and write Ω = Ω1 ◦ Ω2 ◦ · · · ◦ Ωn a decomposition
of Ω in F c-generated bisets.
For M a Z(p)[πL]-module, ω∗ = |S|

|Ω|(Ω1)∗ ◦ · · · ◦ (Ωn)∗ ∈ End(H∗(S,M)) is called a
Ω-endomorphism.
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Remark 3.4.4. If the action of πL on M is trivial, then ω∗ = |S|
|Ω|Ω∗ and, by Proposition

3.2.3, is an idempotent with image H∗(F c,M).

If we assume Hypothesis (A), we can de�ne for every �nite Z(p)[πL]-module M , an
idempotent of H∗(S,M) using an Ω-endomorphism. But �rst let us look at the behavior
of endomorphisms induced by F c-generated (S, S)-bisets with F c-stable elements.

Lemma 3.4.5. Let (S,F ,L) be a p-local �nite group and M be a Z(p)[πL]-module.
If Ω is an F c-generated (S, S)-biset, then the endomorphism Ω∗ ∈ End(H∗(S,M))

restricted to H∗(F c,M) is the multiplication by |Ω||S| .

In particular, if Ω is non degenerate, the image of Ω∗ ∈ End(H∗(S,M)) contains
H∗(F c,M).

Proof. If x ∈ H∗(F c,M), for all P ∈ Ob(F c) and ϕ ∈ HomF(P, S),

[P, ϕ]∗(x) = trSP ◦ ϕ∗(x) = trSP ◦ ResSP (x) = [S : P ]x =
|[P, ϕ]|
|S|

x.

Hence, as Ω is F c-generated, Ω∗(x) = |Ω|
|S|x. �

Remark that, when we work with F -generate (S, S)-bisets, they are left-free and right-
free (morphisms in a fusion system are injective homomorphisms). Thus, if Ω is a non
degenerate F -generated (S, S)-bisets, and Ω = Ω1 ◦Ω2 with Ω1 and Ω2 other F -generate
(S, S)-bisets, then

|Ω| = |Ω1| × |Ω2|
|S|

and Ω1 and Ω2 are also non degenerate. Hence, by Lemma 3.4.5, we have the following
corollary.

Corollary 3.4.6. Let (S,F ,L) be a p-local �nite group and M be a Z(p)[πL]-module.
If Ω is an F-characteristic (S, S)-biset satisfying Hypothesis (A), and ω∗ is an Ω-

endomorphism of H∗(S,M), then, the image of ω∗ contains H
∗(F c,M).

Remark 3.4.7. Remark also that, by construction and Remark 3.3.2, ω∗ is a morphism of
δ-functors.

Proposition 3.4.8. Let (S,F ,L) be a p-local �nite group and letM be an abelian p-group
with an action of πL. Let Ω be an F-characteristic (S, S)-biset satisfying Hypothesis (A)
and ω∗ an Ω-endomorphism.
For every k ≥ 0, there is a natural number Nk,M > 0 such that, (ωk)

Nk,M de�nes an
idempotent ωk,M of Hk(S,M) and we have

Hk(F c,M) ⊆ Im (ωk,M).

Proof. To simplify the notations, we write ω = ωk. For any k ≥ 0, we have the
following decreasing family of subgroups of Hk(S,M).

Hk(F c,M) ⊆ · · · ⊆ Im (ωr) ⊆ Im (ωr−1) ⊆ · · · ⊆ Im (ω1) ⊆ Im (ω0) = Hk(S,M).
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As Hk(S,M) is a �nite abelian p-group, this sequence stabilizes and then, there is an
n0 ≥ 1 such that for all n ≥ n0, Im (ωn) = Im (ωn0). In particular, ωn0|Im (ωn0 ) is a
permutation of the �nite set Im (ωn0) and there is an l such that (ωn0|Im (ωn0 ))

l = IdIm (ωn0 ).
Thus, for Nk,M = l × n0, the endomorphism ωk,M = ωNk,M ∈ End(Hk(S,M)) is an
idempotent with image Im (ωn0) ⊇ Hk(F c,M). �

Hence, we can de�ne an idempotent of H∗(S,M) as following. For every k ≥ 0 and
every x ∈ Hk(S,M),

ωk,M(x) = (ωk)
∏k

i=0Ni,M (x)

Besides, this de�nition only depends on the Ω-endomorphism ω∗.

De�nition 3.4.9. For Ω an F c-characteristic (S, S)-biset satisfying Hypothesis (A) and
ω an Ω-endomorphism, the idempotent ω∗,− of H∗(S,−) obtained by this process is called
the F c-characteristic idempotent associated to ω. We will also, for any abelian p-group
M with an action of πL, denote by I

∗
ω(M) ⊆ H∗(S,M) the image of ω∗,M .

Remark 3.4.10. Remark that, by Remark 3.4.4, if the action onM is trivial, then I∗ω(M) =
H∗(F c,M).

Proposition 3.4.11. Let (S,F ,L) be a p-local �nite group.

If Ω is an F c-characteristic (S, S)-biset satisfying Hypothesis (A) and ω∗ is an Ω-
endomorphism, then ω∗,−, the F c-characteristic idempotent induced by ω∗, de�nes an
endomorphism of the δ-functor

(
H∗(S,−), δH∗(S,−)

)
.

Proof. For M an abelian p-group with an action of πL and k ≥ 0, we denote by Nk,M

a natural number as in Proposition 3.4.8.

We have �rst to show that ω∗,−, the F c-characteristic idempotent associated to ω∗,
de�nes a natural transformation from the functor H∗(S,−) to itself. For every pair of
abelian p-groups (M,N) with an action of πL and every ϕ ∈ HomZ(p)[πL](M,N), let us
consider, for k ≥ 0, the following diagram,

Hk(S,M) Id //

ωk,M

��

Hk(S,M)
ϕk //

ω̃k,M,N

��

Hk(S,N)

ω̃k,M,N

��

Id // Hk(S,N)

ωk,M

��

Hk(S,M)
Id
// Hk(S,M) ϕk

// Hk(S,N)
Id
// Hk(S,N)

where ω̃k,M,N = (ωk)
∏k

i=0Ni,M×
∏k

i=0Ni,N . The middle square commutes as ω̃k,M,N is a �nite
iteration of ωk and ω∗ is an endomorphism of δ-functors by Remark 3.4.7. The �rst square

commutes because, as ωk,M is an idempotent of Hk(S,M), ω̃k,M,N = ω
∏k

i=0 Ni,N

k,M = ωk,M .

Finally, the last one commutes because, as ωk,N is an idempotent of Hk(S,N), ω̃k,M,N =

ω
∏k

i=0Ni,M

k,N = ωk,N . Hence, the exterior diagram commutes.

Now, to show that it de�nes a morphism of δ-functors, let consider a short exact
sequence of abelian p-groups with an action of πL, 0 // L //M // N // 0 . By
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the previous argument we just have to show that, for k ≥ 0, the following diagram
commutes,

Hk(S,M) δ //

ωk,M

��

Hk+1(S, L)

ωk+1,L

��

Hk(S,M)
δ
// Hk+1(S, L)

where δ = δH∗(S,−) corresponds to the connecting homomorphism. Consider then the
following diagram,

Hk(S,M) Id //

ωk,M

��

Hk(S,M) δ //

ω̃k,L,M

��

Hk+1(S, L)

ω̃k+1,L,M

��

Id // Hk+1(S, L)

ωk+1,L

��

Hk(S,M)
Id
// Hk(S,M)

δ
// Hk+1(S, L)

Id
// Hk+1(S, L)

where

ω̃k,L,M = (ωk)
∏k+1

i=0 Ni,L×
∏k+1

i=0 Ni,N

and

ω̃k+1,L,M = (ωk+1)
∏k+1

i=0 Ni,L×
∏k+1

i=0 Ni,N .

The middle square commutes as ω̃k,L,M and ω̃k+1,L,M are �nite iterations of ωk and ωk+1

and ω∗ is an endomorphism of δ-functors by Remark 3.4.7. The �rst square commutes

because, as ωk,M is an idempotent of Hk(S,M), ω̃k,L,M = ω
Nk+1,M×

∏k+1
i=0 Ni,L

k,M = ωk,M . The

last one commutes because, as ωk,L is an idempotent ofHk(S, L), ω̃k+1,L,M = ω
∏k+1

i=0 Ni,M

k+1,L =
ωk+1,L. Thus, the exterior diagram commutes. �

3.5 Idempotents and constrained fusion systems

When we work with a constrained fusion system, the (S, S)-characteristic biset is F c-
generated and, working with a suitable category, it induces, for every Z(p)[πL]-module
M , an idempotent of H∗(S,M) with image H∗(F c,M). Let us �rst recall the notion of
constrained fusion systems.

De�nition 3.5.1. Let F be a fusion system over a p-group S.
A subgroup Q ≤ S is normal in F if Q E S, and for all P,R ≤ S and every ϕ ∈

HomF(P,R), ϕ extends to a morphism ϕ ∈ HomF(PQ,RQ) such that ϕ(Q) = Q.
We write Op(F) for the maximal subgroup of S which is normal in F .
We say that F is constrained if Op(F) is F -centric.

De�ne, for F a fusion system over a p-group S and P0 a subgroup of S, AF≥P0 as
follow.

Ob(AF≥P0) = {P0 ≤ P ≤ S} is the set of all subgroups of S containing P0
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and for all P,Q ∈ Ob(AF≥P0),

AF≥P0(P,Q) = {F -generated left-free (P,Q)-bisets union of [R,ϕ] with R ≥ P0}.

AF≥P0 is not in general a subcategory of AF . The problem comes from Proposition
3.1.3: the set

Mor(AF≥P0) =
⊔

P,Q∈Ob(AF≥P0
)

AF≥P0(P,Q)

is not stable by composition. But it is stable when the subgroup P0 ≤ S is strongly closed
in F , i.e. no elements of P0 is F -conjugate to an elements of S \ P .

Lemma 3.5.2. Let F be a fusion system over a p-group S.
If P0 E S is strongly closed in F , then AF≥P0, with the composition de�ned in 3.1.2,

is a subcategory of AF .

Proof. As P0 is strongly closed in F , for every R,P ≥ P0, every s ∈ S and every
ϕ ∈ HomF(R, S),

ϕ−1(ϕ(R) ∩ sPs−1) ≥ ϕ−1(ϕ(P0) ∩ sP0s
−1) = P0.

thus, by Proposition 3.1.3, Mor(AF≥P0) is stable by composition and AF≥P0 de�nes a
subcategory of AF . �

In particular, for P0 = Op(F), which is normal in F and, thus, strongly closed in F ,
AF≥Op(F) is a subcategory of AF .

When F is constrained, Op(F) is F -centric. Thus, every biset Ω ∈ Mor(AF≥Op(F)) is
F c-generated. Hence, if F is constrained, for every Z(p)[πL]-module M , we have, as in
the trivial case, a functor

AF≥Op(F)
// Z(p)-Mod

P � // H∗(P,M)

P [R,ϕ]Q
� // trPR ◦ ϕ∗

Moreover, if we look at the minimal F -characteristic (S, S)-biset, we have the following.

Proposition 3.5.3. Let F be a saturated fusion system over a p-group S.
If Ω is the minimal F-characteristic biset, then Ω ∈ AF≥Op(F).

Proof. This is a direct corollary of [GRh], Proposition 9.11. Indeed, by [GRh], Propo-
sition 9.11, every [P, ϕ] which appears in the decomposition of Ω satisfy P ≥ Op(F).
�

Hence, using the same argument as for Proposition 3.2.3, we have the following theorem.

Theorem 3.5.4. Let (S,F ,L) be a p-local �nite group, Ω be the minimal F-characteristic
(S, S)-biset and M be a Z(p)[πL]-module.

If F is constrained, then |S|
|Ω|Ω∗ ∈ End(H∗(S,M)) is an idempotent with image the

F c-stable elements H∗(F c,M).
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Proof. The proof is the same as the proof of Proposition 3.2.3. We will show that
Im (Ω∗) ⊆ H∗(F c,M) and that Ω|H∗(Fc,M) = IdH∗(Fc,M).
Let us start with the second point. If x ∈ H∗(F c,M), for all P ∈ Ob(F c) and every

ϕ ∈ HomF(P, S),

[P, ϕ]∗(x) = trSP ◦ ϕ∗(x) = trSP ◦ ResSP (x) = [S : P ]x =
|[P, ϕ]|
|S|

x.

Thus, |S||Ω|Ω∗(x) = x.

The �rst point uses the F -stability of Ω (De�nition 3.2.1). By [AKO] Proposition I.4.5,
every F -centric F -radical subgroup of S contains Op(F). Then, for all x ∈ H∗(S,M),
P ∈ Ob(F cr) and every ϕ ∈ HomF(P, S), P [P, ϕ]S ∈ AF≥P0 and

ϕ∗ ◦ Ω∗(x) = (P [P, ϕ]S)∗ ◦ (SΩS)∗(x) = (P [P, ϕ]S ◦ SΩS)∗

= (P [P, inclSP ]S ◦ SΩS)∗(x)

= ResSP ◦ Ω∗(x).

Hence, by Proposition 2.3.5, the image of |S||Ω|Ω∗ is included in H∗(F c,M). �

3.6 A δ-functor

Let (S,F ,L) be a p-local �nite group, Ω be an F -characteristic (S, S)-biset which satisfy
(A), and ω∗ an Ω-endomorphism.
For M an abelian p-group with an action of πL, let ω∗,− ∈ End(H∗(S,M)) be the

associated F c-characteristic idempotent.
Let us start with the behavior of δ-functors with idempotents. We refer the reader to

De�nition 2.1.2 for the de�nition of δ-functors and we recall that, by Remark 2.1.3, a
δ-functor can be seen as a functor from the category SA of short exact sequences in A to
Ch(B) which sends any short exact sequence to an acyclic chain complex.

Lemma 3.6.1. Let (M∗, f∗) =
(
· · · fl−2−−→Ml−1

fl−1−−→Ml
fl−→Ml+1

fl+1−−→ · · ·
)
l∈Z

be a long

exact sequence in an abelian category A.
Let i∗ : (M∗, f∗) → (M∗, f∗) be a morphism of long exact sequences such that, for all

l ∈ Z, il is an idempotent of Ml.
Then the sequence

· · · fl−2−−→ Im (il−1)
fl−1−−→ Im (il)

fl−→ Im (il+1)
fl+1−−→ · · ·

is exact.

Proof. Let l ∈ Z and x ∈ Im (il) such that fl(x) = 0. By exactness of (M∗, f∗) in l,
there is a y ∈ Ml−1 such that fl−1(y) = x. Thus x = il(x) = il ◦ fl−1(y) = fl−1 ◦ il−1(y)
and hence we obtain the exactness of (Im (i∗), f∗) in degree l. �
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Proposition 3.6.2. Let A,B be abelian categories and let (F ∗, δF ) : A → B be a δ-
functor.
If i∗ : (F ∗, δF )→ (F ∗, δF ) is an idempotent of δ-functors, then (Im (i∗), δF ) de�nes a

δ-functor.

Proof. By remark 2.1.3, a δ-functor can be seen as a functor from the category SA of
short exact sequences in A to Ch(B) which sends any short exact sequence to an acyclic
chain complex. A morphism of δ-functors is then a natural transformation in that setting.
With this point of view, this is just a corollary of Lemma 3.6.1. �

Theorem 3.6.3. Let (S,F ,L) be a p-local �nite group, Ω an F-characteristic (S, S)-
biset satisfying Hypothesis (A) and ω∗ an Ω-endomorphism. Then, the functor I∗ω(−),
with the connecting homomorphism δH∗(S,−), de�nes a δ-functor from the category of
�nite Z(p)[πL]-modules to Z(p)-Mod.

Proof. This is a direct corollary of Proposition 3.4.11 and Proposition 3.6.2. �





4
The cohomology of classifying spaces of fusion

systems

We apply here Theorem 3.6.3 to the study of the cohomology of the classifying space of
a fusion system. We �rst look at the behavior of twisted cohomology after p-completion.

4.1 Cohomology of p-good spaces

Here, for X a topological space,
λX : X → X∧p

will denote the natural transformation associated to the p-completion.

Lemma 4.1.1. Let X be a space and let 0→ L→M → N → 0 be a short exact sequence
of Z(p)[π1(X∧p )]-modules.
If λX induces isomorphisms H∗(X∧p , L) ∼= H∗(X,L) and H∗(X∧p , N) ∼= H∗(X,N), then

λX induces an isomorphism

H∗(X,M) ∼= H∗(X∧p ,M).

Proof. Let consider the exact sequences in cohomology induced by the short exact
sequence,

0 // L //M // N // 0

and look at the following commutative diagram,

· · · // Hn−1(X∧p , N) //

λ∗X
��

Hn(X∧p , L) //

λ∗X
��

Hn(X∧p ,M) //

λ∗X
��

Hn(X∧p , N) //

λ∗X
��

· · ·

· · · // Hn−1(X,N) // Hn(X,L) // Hn(X,M) // Hn(X,N) // · · ·

The two lines are exact and λ∗X gives the isomorphisms H∗(X∧p , L) ∼= H∗(X,L) and
H∗(X∧p , N) ∼= H∗(X,N). We then conclude with the �ve lemma. �

47
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Proposition 4.1.2. Let X be a space and M be an abelian p-group with an action of
π1(X∧p ).
If X is p-good, then λX induces a natural isomorphism

H∗(X∧p ,M) ∼= H∗(X,M).

Proof. As X is p-good, λX induces an isomorphism, H∗(X∧p ,Fp) ∼= H∗(X,Fp). and,
by Proposition 0.10, π1(X∧p ) is a p-group quotient of π1(X). In particular, the action of
π1(X∧p ) on M is nilpotent: there is a sequence

{0} = M0 ⊆M1 ⊆ · · · ⊆Mn = M

such that, for any 1 ≤ i ≤ n, Mi/Mi−1
∼= Fp is the trivial module. We conclude then by

induction on n, by Lemma 4.1.1. �

Corollary 4.1.3. Let (S,F ,L) be a p-local �nite group.
If M is an abelian p-group with an action of π1(|L|∧p ), λ|L| induces an isomorphism

H∗(|L|∧p ,M) ∼= H∗(|L|,M).

Proof. As |L| is p-good by Theorem 1.3.1, we can apply Proposition 4.1.2. �

4.2 Cohomology of |L| with nilpotent coe�cients

Lemma 4.2.1. Let (S,F ,L) be a p-local �nite group. The natural inclusion δS of B(S)
in L induces, for any Z(p)[πL]-module M , a natural morphism in cohomology

H∗(|L|,M) // H∗(F c,M) ⊆ H∗(S,M).

Proof. For P ∈ Ob(F c) and ϕ ∈ HomF(P, S), let ϕ̃ ∈ MorL(P, ϕ(P )) be such that
π(ϕ̃) = ϕ ∈ HomF(P, ϕ(P )). From the de�nition 1.2.1 of a linking system, for every
g ∈ P , we have the following commutative diagram in L.

P

δP (g)

��

ϕ̃
// ϕ(P )

δϕ(P )(ϕ(g))

��

P
ϕ̃
// ϕ(P )

Thus, we have a natural transformation between the functors δP and δϕ(P ) ◦ B(ϕ).

L

B(P )

δP

==

B(ϕ)
// B(ϕ(P ))

δϕ(P )

dd
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Hence, by Proposition 2.2, the maps |δP | and |δϕ(P )◦B(ϕ)| = |δϕ(P )|◦|B(ϕ)| are homotopic.
In particular, the following diagram commute

H∗(|L|,M)

H∗(P,M)
ww

δ∗P

oo

ϕ∗
H∗(ϕ(P ),M)
((

δ∗
ϕ(P )

and the lemma follows. �

Lemma 4.2.2. Let (S,F ,L) be a p-local �nite group, Ω be an F-characteristic (S, S)-
biset satisfying Hypothesis (A) and ω∗ an Ω-endomorphism. Let also 0 → L → M →
N → 0 be a short exact sequence of �nite Z(p)[πL]-modules.
If δS induces the following isomorphisms, H∗(|L|, L) ∼= I∗ω(L) and H∗(|L|, N) ∼= I∗ω(N),

then δS induces an isomorphism

H∗(|L|,M) ∼= I∗ω(M).

Proof. Consider the exact sequences in cohomology induced by the short exact sequence

0 // L //M // N // 0

and look at the following diagram (where ω∗,− denotes the F -characteristic idempotent
associated to ω∗).

· · · // Hn−1(|L|, N) //

ωn−1,N◦δ∗S
��

Hn(|L|, L) //

ωn,L◦δ∗S
��

Hn(|L|,M) //

ωn,M◦δ∗S
��

Hn(|L|, N) //

ωn,N◦δ∗S
��

· · ·

· · · // In−1
ω (N) // Inω(L) // Inω(M) // Inω(N) // · · ·

As H∗(|L|,−) is a δ-functor and, by Theorem 3.6.3, I∗ω de�nes also a δ-functor, the two
lines are exact and, as by Proposition 3.4.11 the F c-characteristic idempotent associated
to ω∗ de�nes a morphism of δ-functors, this diagram is commutative. We conclude then
with the �ve lemma. �

Theorem 4.2.3. Let (S,F ,L) be a p-local �nite group.
Assume Hypothesis (A) is satis�ed.
If M is an abelian p-group with a nilpotent action of π1(|L|),

H∗(|L|,M) ∼= H∗(F c,M).

Proof. As the action of πL is nilpotent, there is a sequence

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M
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such that, for every 1 ≤ i ≤ n, the action of πL on Mi/Mi−1 is trivial. We know, by
Theorem 2.3.4 and Remark 3.4.10, that for 1 ≤ i ≤ n, δS induces an isomorphism

H∗(|L|,Mi/Mi−1) ∼= H∗(F c,Mi/Mi−1) = I∗ω(Mi/Mi−1).

By induction on n and, by Lemma 4.2.2, we get that H∗(|L|,M) ∼= I∗ω(M). Finally we
also have from Lemma 4.2.1 that

δS(H∗(|L|,M)) ⊆ H∗(F c,M) ⊆ I∗ω(M).

Then H∗(|L|,M) ∼= H∗(F c,M) = I∗Ω(M). �

Corollary 4.2.4. Let (S,F ,L) be a p-local �nite group.
Assume Hypothesis (A) is satis�ed.
If M is an abelian p-group with an action of π1(|L|∧p ), then λ|L| ◦ δ∗S induces a natural

isomorphism
H∗(|L|∧p ,M) ∼= H∗(F c,M).

Proof. By Theorem 1.3.1, |L| is p-good. Then π1(|L|∧p ) is a p-group (by Proposition
0.10) and its action on M is nilpotent. Hence, this is just a corollary of Theorem 4.2.3
and 4.1.3. �



5
Cohomology with coe�cients twisted by a

p-solvable action

In this chapter we are interested in the study of p-solvable actions. We �rst look at p-
local subgroups of index prime to p which allows us to study the case of action factoring
through a p′-group. In a second section, we start by studying constrained fusion systems
and we �nish by realizable p-local �nite groups and p-solvable action.

5.1 Extension by a p′-group

In this section, we study the case of p′-actions on the coe�cients. The main ingredient
here is the use of p-local subgroups of index prime to p.

5.1.1 The minimal p-local subgroup of index prime to p

Recall that, for an in�nite group G, we denote by Op′(G) the intersection of all normal
subgroups in G of �nite index prime to p.

Lemma 5.1.1. Let (S,F ,L) be a p-local �nite group and (S,Op′(F), Op′(L)) its minimal
p-local subgroup of index prime to p.
If M is a Z(p)[πL]-module, then the inclusion Op′(L) ⊆ L induces the following isomor-

phism,

H∗(|L|,M) ∼= H∗(|Op′(L)|,M)πL/O
p′ (πL).

Proof. As |Op′(L)| is, up to homotopy, a covering space of |L| with fundamental group
Op′(πL) E πL (Theorem 1.3.6 and Theorem 1.3.7), this is just a consequence of the
transfer. �

Lemma 5.1.2. Let (S,F ,L) be a p-local �nite group and (S,Op′(F), Op′(L)) its minimal
p-local subgroup of index prime to p.
If M is a Z(p)[πL]-module, then

H∗(F c,M) ∼= H∗(Op′(F)c,M)
AutF (S)/Aut

Op′ (F)
(S)
.

51
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Proof. By Proposition 1.3.6, we have F = 〈Op′(F),AutF(S)〉 and Ob(Op′(F)c) =
Ob(F c). The result follows as an easy consequence. �

Theorem 5.1.3. Let (S,F ,L) be a p-local �nite group and (S,Op′(F), Op′(L)) its mini-
mal p-local subgroup of index prime to p.
If M is a Z(p)[πL]-module and if the inclusion δS induces an isomorphism

H∗(|Op′(L)|,M) ∼= H∗(Op′(F)c,M),

then δS induces an isomorphism

H∗(|L|,M) ∼= H∗(F c,M).

Proof. We have the following commutative diagram (recall that πOp′ (L) = Op′(πL)).

BS δS //

δS $$

L ω // BπL // B(Aut(M))

B
(
Op′(L)

) ω //

OO

B
(
Op′(πL)

)
OO 77

The projection π : L // F induces, by Proposition 1.3.6 and Theorem 1.3.7, an iso-
morphism

πL/O
p′(πL) ∼= π1(|F|)/π1(|Op′(F)|)

which is naturally isomorphic to AutF(S)/AutOp′ (F)(S). Then, by the two previous lem-
mas, we obtain

H∗(|L|,M) ∼= H∗(|Op′(L)|,M)πL/O
p′ (πL)

∼=

 lim←−
Op′ (F)c

H∗(−,M)

AutF (S)/Aut
Op′ (F)

(S)

∼= H∗(F c,M).

For the second isomorphism, we have to be careful on the actions of πL on the left and
AutF(S) on the right. In fact here, by De�nition 3.2.1 of F c-stable elements, we can see

it on the chain level. The map δ∗S : H∗(|Op′(L)|,M) // H∗(S,M) is induced by the

inclusion δS : BS // |Op′(L)| , which gives on the chain level,

HomZ(p)[S]

(
C∗

(
˜|Op′(L)|

)
,M
)

// HomZ(p)[πOp′ (L)
](C∗(|E(S)|),M)

f � // f |C∗(|E(S)|)

where E(S) is de�ned as in the proof of Proposition 2.4, i.e. the category with set of
object S and for each (s, s′) ∈ S, MorE(S)(s, s

′) = {ϕs,s′}. Then for ϕ ∈ AutS(F), if we
choose a lift ϕ̃ ∈ AutL(S), acts on the left by

f � // ω(ϕ̃−1)fω(ϕ̃) ,
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and on the right by,

f � // ω(ϕ̃)−1f ◦ ϕ∗ .

Finally, the action of ϕ on E(S) corresponds to the action of ω(ϕ) on |E(S)| (indeed, a
lift of ω(ϕ) join every vertex s ∈ S of |E(S)| to the vertex ϕ(s)). Hence, the two actions
coincide. �

Corollary 5.1.4. Let (S,F ,L) be a p-local �nite group and M an abelian p-group with
an action of πL.

If the action of πL on M factors through a p′-group then δS induces an isomorphism,

H∗(|L|,M) ∼= H∗(F c,M).

Corollary 5.1.5. Let (S,F ,L) be a p-local �nite group and M an abelian p-group with
an action of πL.

Assume that hypothesis (A) is satis�ed.

If the action of πL on M factors through an extension of a p-group by p′-group then δS
induces an isomorphism,

H∗(|L|,M) ∼= H∗(F c,M).

5.1.2 Remarks on actions factoring through a p′-group

Let (S,F ,L) be a p-local �nite group.

According to Corollary 5.1.4, the cohomology of |L| with coe�cients in an abelian
p-group with an action of πL factoring through a p′-group can be computed by stable
elements. That condition appears if, and only if, the action of S on the coe�cients is
trivial.

Proposition 5.1.6. Let (S,F ,L) be a p-local �nite group and M a Z(p)[πL]-module.

The action of πL on M factors through a p′-group if, and only if, the action of S on
M is trivial.

Proof. We look at the normal subgroup H of πL generated by δS(S) and we want
to show that H ≥ Op′(πL) (the other inclusion is clear). Consider the homomorphism
π∗ : πL → π1(|F c|) induced by π : L // F c . We know that π∗ is surjective with
kernel Op′(πL) (Proposition 1.3.6). Hence π∗ factors through p : πL/H → π1(|F c|). Let
construct the inverse s : π1(|F c|) → πL/H on the generators by the following way: for
α ∈ MorFc(P,Q) we write s(θ(α)) = ω(α̃) where α̃ ∈ MorL(P,Q) is such that π(α̃) = α

and θ : F // B(πF) is the natural functor (de�ned in 2.5). The application s is well-

de�ned (because the di�erence between two elements sent by π on α ∈ MorFc(P,Q) is in
CS(P ) ≤ S) and de�nes a group homomorphism (α̃1 ◦ α̃2 = α̃1 ◦ α2) which is the inverse
of p. �
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5.2 Constrained fusion systems and coe�cients with

a p-solvable action

We studied here the case of p-local �nite groups associated to constrained fusion systems.
We also give some more re�ne results about realizable p-local �nite groups when the
action factor trough a p-solvable group.

5.2.1 Constrained fusion systems

Let (S,F ,L) be a p-local �nite group. Here, we assume that F is a constrained fusion
system (see de�nition 3.5.1). An important and classical result about constrained fusion
system is the existence of a model (See [AKO] for more details).

Theorem 5.2.1. Let (S,F ,L) be a p-local �nite group.

If F is constrained, there exists a �nite group G such that

(a) S is a Sylow subgroup of G,

(b) CG(Op(G)) ≤ Op(G),

(c) FS(G) = F .

This group G is called a model of F and is unique in a precise way (see [AKO], Theorem
I.4.9, for more details). From now let G be a model of F .
Let us now study the homotopy type of |L|. For that purpose we introduce H =
{P ∈ Ob(L) | P ≥ Op(G)} and LH the full subcategory of L with set of objects H.

Lemma 5.2.2. The CW complex |LH| is a classifying space of G.

Proof. The functor

F : LH −→ L{Op(G)}

P ∈ LH 7−→ Op(G)
g ∈ TG(P,Q) 7−→ g ∈ NG(Op(G)) = G

gives us a retraction by deformation of |LH| on the geometric realization of the full
subcategory of L with unique object Op(G) ≤ S. As AutL(Op(G)) = NG(Op(G)) = G,
this last category is B(G). in particular, its geometric realization is a classifying space of
G. �

When the fusion system is constrained, we always have a retraction by deformation
from |L| to |LH|.

Proposition 5.2.3. Let (S,F ,L) be a p-local �nite group.

If F is constrained and G is a model of F , then |L| is a classifying space of G.
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Proof. As Op(G) E G, the functor

F : L −→ LH
P ∈ L 7−→ POp(G) ∈ LH

g ∈ MorL(P,Q) 7−→ g ∈ MorL(POp(G), QOp(G))

where g is the unique extension of g ∈ MorL(P,Q) in MorL(POp(G), QOp(G)) (see [AKO],
Proposition III.4.3), is well-de�ned and induces a retraction by deformation of |L| on |LH|.
We conclude with Lemma 5.2.2. �

The fundamental group of |L| is isomorphic to G and, in particular, every Z(p)[πL]-
module is naturally a Z(p)[G]-module. The problem is now to compare the cohomology
of G, a model of F , and the F c-stable elements.

Proposition 5.2.4. Let G be a �nite group and S a Sylow p-subgroup of G.
If CG(Op(G)) ≤ Op(G), then, for a Z(p)[G]-module M , the inclusion of S in G induces

a natural isomorphism
H∗(G,M) ∼= H∗(F cS(G),M).

Proof. We consider here the p-local �nite group (S,F ,L) = (S,FS(G),LcS(G)). By
assumption, FS(G) is constrained and G is a model of FS(G). Hence H∗(F c,M) is

well-de�ned. We know that ResGS : H∗(G,M) // H∗(S,M) is injective and we can

easily see that Im (ResGS ) ≤ H∗(F c,M). From Cartan-Eilenberg Theorem (Theorem
2.2.4) we know that Im (ResGS ) = lim←−

TS(G)

H∗(−,M). Consider then x ∈ H∗(F c,M) =

lim←−
Fc

S(G)

H∗(−,M) = lim←−
T c
S (G)

H∗(−,M), P ≤ S and g ∈ NG(P ). In TS(G) we have the

following commutative diagram

POp(G)
g
// gPg−1Op(G)

P

e

OO

g
// gPg−1

e

OO

where e is the trivial element of G. Hence, as the above part of the diagram is in T cS(G)
and x ∈ lim←−

T c
S (G)

H∗(−,M),

c∗g◦ResSgPg−1(x) = Res
POp(G)
P ◦c∗g◦ResSgPg−1Op(G)(x) = Res

POp(G)
P ◦ResSPOp(G)(x) = ResSP (x).

Thus x ∈ lim←−
T c
S (G)

H∗(−,M) = lim←−
Fc

S(G)

H∗(−,M). �

Corollary 5.2.5. Let (S,F ,L) be a p-local �nite group.
If F is constrained and M is a Z(p)[πL]-module, then δS induces a natural isomorphism,

H∗(|L|,M) ∼= H∗(F c,M).
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5.2.2 Realizable fusion systems and p-solvable actions

Consider here a �nite group G, S a Sylow p-subgroup of G and let (S,F ,L) be the
associated p-local �nite group. In that setting, working with Z(p)[πL]-modules with a
natural action of G, we can compare the cohomology of |L| and the cohomology of G
when the action factor through a p-solvable group. The key is the use of p-local subgroups
of index p or prime to p.
We will denote by

ρ : TS(G) // B(G)

the functor which sends each object in the source to the unique one in the target and
sends, for every P,Q ≤ S, g ∈ TG(P,Q) to g ∈ MorB(G)(oG).
Finally, let T = T cS (G) be the centric transporter category of G, Lq = LqS(G) be the

quasicentric linking system associated to G and T q = T qS (G) be the associated quasicen-
tric transporter category.

Lemma 5.2.6. Let G be a �nite group and (S,F ,L) be the associated p-local �nite group

with L a linking system which is not necessarily centric. Let T = T Ob(L)
S (G) be the

transporter category associated to G with set of objects Ob(L).
If M is a Z(p)[πL]-module, then the canonical functor δ : T → L induces a natural

isomorphism H∗(|T |,M) ∼= H∗(|L|,M).

Proof. This is a consequence of [BLO1], Lemma 1.3, with C = T , C ′ = L and the
functor T : Lop → Z(p)-Mod which sends each object on M , and each morphism on its
action on M . Then δ induces a natural isomorphism lim←−

T

∗(M) ∼= lim←−
L

∗(M). Then

H∗(|T |,M) = lim←−
T

∗(M) ∼= lim←−
L

∗(M) = H∗(|L|,M)

Where the �rst and last equality is just an interpretation in terms of functor cohomology
and can be found in [LR], Proposition 3.9. �

Theorem 5.2.7. Let G be a �nite group, S a Sylow p-subgroup of G, L = LcS(G) and
T = T cS (G). Let M be a Z(p)[πL]-module and assume we have the following commutative
diagram.

πL
ϕ

$$

πT

δ
>>

ρ∗
  

Aut(M)

G
ϕ

::

If ρ∗ is surjective and Γ = Im (ϕ) = Im (ϕ) is p-solvable, then δ and ρ induce natural
isomorphisms

H∗(|L|,M) ∼= H∗(|T |,M) ∼= H∗(G,M).
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Proof. By Lemma 5.2.6, we just have to show that ρ induces a natural isomorphism
H∗(|T |,M) ∼= H∗(G,M). We prove this by induction on the minimal number n of
extensions by p-groups or p′-groups we need to obtained Γ.
If n = 0, Γ = 1 and the action of πT on M is trivial then it is just Theorem 2.3.4.
Assume that, if Γ is obtained by n extensions, the result is true and suppose that Γ is

obtained with n+ 1 extensions. Consider then the last one

0→ Γn → Γ→ Q→ 0.

Denote H = ϕ−1
∗ (Γn). Thus (T,FH ,LH) = (S ∩ H,FS∩H(H),LcS∩H(H)) is a p-local

subgroup of (S,F ,L) of index a power of p or prime to p.
If Q is a p′-group:
In that case, (T,FH ,LH) is a p-local �nite subgroup of index prime to p (de�ned in

1.3.4). Then Ob(F c) = Ob(F cH), TH = T cS∩H(H) ⊂ T and, by [OV1], Proposition 4.1,
this inclusion of category induces, up to homotopy, a covering space with covering group
G/H = Q. We then have the following commutative diagram with exact row (here,

// // means onto)

0 // πTH
//

����

!!

πT //

����

��

Q // 0

0 // Γn // Γ // Q // 0

0 // H //

== ==

G //

?? ??

Q // 0

and the following �bration sequences

|TH | // |T | // BQ

BH // BG // BQ .

Moreover, ρ induces a morphism of �bration sequences between these two.
Hence, we have the following Serre spectral sequences

Hp+q(|T |,M)⇐ Hp(Q,Hq(|TH |,M)),

Hp+q(G,M)⇐ Hp(Q,Hq(H,M)),

and ρ induces a morphism ρ∗ of spectral sequences between these two. By induction,
ρ∗ gives an isomorphism on the E2 page and then induces an isomorphism of spectral
sequences. In particular, ρ induces a natural isomorphism

H∗(|T |,M) ∼= H∗(G,M).

If Q is a p-group:
In that case, (T,FH ,LH) is a p-local �nite subgroup of index a power of p (de�ned in

1.3.4). We have to be careful and work with all the quasicentric subgroups of S. However,
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this is not a problem because the inclusion T ⊂ T q induces a natural isomorphism
H∗(|T q|,M) ' H∗(|T |,M). Indeed, we have the following commutative diagram.

T
δ
��

// T q

δ
��

L // Lq

The vertical arrows induce isomorphisms in cohomology by Lemma 5.2.6 and the lower
horizontal one induces an isomorphism in cohomology because, by Theorem 1.3.11 |L| '
|Lq| . Hence the upper arrow induces an isomorphism H∗(|T q|,M) ' H∗(|T |,M). As-
sume then that, for this part, T = T q and TH = T qH .
By Proposition 1.3.4, Ob(F qH) ⊂ Ob(F q). Then, TH ⊂ T and, still with Proposition

4.1 in [OV1], this inclusion induces a covering space with covering group G/H = Q. We
then have the following diagram with exact row

0 // πTH
//

����

!!

πT //

����

��

Q // 0

0 // Γn // Γ // Q // 0

0 // H //

== ==

G //

?? ??

Q // 0

and the following �bration sequences

|TH | // |T | // BQ

BH // BG // BQ .

Moreover, ρ induces a morphism of �bration sequences between these two.
Hence, we have the following Serre spectral sequences

Hp+q(|T |,M)⇐ Hp(Q,Hq(|TH |,M)),

Hp+q(G,M)⇐ Hp(Q,Hq(H,M)),

and ρ induces a morphism ρ∗ of spectral sequences between these two. By induction,
ρ∗ gives an isomorphism on the E2 page and then induces an isomorphism of spectral
sequences. In particular, ρ induces a natural isomorphism

H∗(|T |,M) ∼= H∗(G,M).

Hence, by induction, we get the result. �

We can then use Theorem 2.5.3 to get the following.

Corollary 5.2.8. Let G be a �nite group, S a Sylow p-subgroup of G and (S,F ,L) the
associated p-local �nite group.
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Let M a Z(p)[πL]-module and assume that we have the following commutative diagram,

πL
ϕ

$$

πT

δ∗
>>

ρ∗
  

Aut(M)

G
ϕ

::

and that Γ := Im (ϕ) = Im (ϕ).
If Γ is p-solvable and all the M-centric-radical subgroups of S are p-centric, then δ and

ρ induce a natural isomorphism,

H∗(|L|,M) ∼= H∗(F c,M).

Here we use explicitly that (SH ,FH ,LH) is a p-local subgroup of index p or prime to
p of (S,F ,L) because they are the main cases where we know that TH is a transporter
category associated to a p-local subgroup of (S,F ,L) and |TH | a covering space of |T |.
But Theorem 5.2.7 might be generalized (at least with technical condition) in view of
[OV1], Proposition 4.1.
We can also conjecture that it can be generalize to any abstract p-local �nite group

and any Z(p)[πL]-module with a p-solvable action.

Conjecture 5.2.9. Let (S,F ,L) be a p-local �nite group and M a Z(p)[π1(|L|)]-module.
If the action of π1(|L|) on M is p-solvable, then the inclusion of BS in |L| induces a
natural isomorphism

H∗(|L|,M)
∼= // H∗(F c,M).

From now, we have an example (see Remark 6.3.7) which is not recovered by Corollary
5.2.8 or a previous result. One problem is the di�culty to �nd good examples which are
not too complicated for computation. Indeed, we want a p-solvable action but we also do
not want that the fusion system is constrained (in this case we already know the result)
or to be under the hypothesis of Corollary 5.2.8. This forces us to consider huge fusion
systems...





6
Studies of some constructions

In this chapter, we study some constructions of p-local �nite groups and we give some
results to study the cohomology of |L| and to compare it with the F c-stable elements.
This is motivated by the research of examples (or counter examples) in the study of
Conjecture 5.2.9.

6.1 Products of fusion systems

Let (S1,F1,L1) and (S2,F2,L2) be two p-local �nite groups. Consider the p-local �nite
group (S,F ,L) as the product of (S1,F1,L1) and (S2,F2,L2) i.e. S = S1 × S2 and F
is generated by the morphisms of the form (φ, ψ) ∈ F1 × F2 (see for example [AKO],
Section I.6). Here, we denote by F1 × F2 the category product of the categories F1 and
F2 (in particular, this is not a fusion system!) and respectively by L1 ×L2, the category
product of the categories L1 and L2. We write also, for i ∈ {1, 2}, pri : S // Si the
canonical projections.

Proposition 6.1.1. The inclusion i : F1 × F2 → F induce an homotopy equivalence on
their geometric realizations.

Proof. Let P,Q ≤ S and φ ∈ HomF(P,Q). As φ is a composite of restrictions of
morphisms of the form (ψ, γ) ∈ F1 ×F2, φ can be factored as follows.

P
φ

//

pr1
��

Q

pr1
��

pr1(P )
φ1
// pr1(Q)

P
φ

//

pr2
��

Q

pr2
��

pr2(P )
φ2
// pr2(Q)

61
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Consider then p : F → F1×F2 de�ned on objects by, for P ≤ S, p(P ) = pr1(P )×pr2(P )
and on morphisms by, for φ ∈ Mor(F), p(φ) = (φ1, φ2) where φ1 and φ2 are de�ned as
above.
It de�nes a functor and we have the following commutative diagram.

pr1(P )× pr2(P )
(φ1,φ2)

// pr1(Q)× pr2(Q)

P
φ

//

pr1×pr2

OO

Q

pr1×pr2

OO

Hence, there is a natural transformation from i ◦ p to IdF . As p ◦ i = Id, we have, by
Proposition 2.3, that |i| and |p| are homotopy equivalence. �

To study L, we �rst have to describe the F -centric subgroups of S.

Lemma 6.1.2. Let P be a subgroup of S. the following conditions are equivalent,

(i) P is F-centric,

(ii) pr1(P )× pr2(P ) is F-centric,

(iii) pr1(P ) is F1-centric and pr2(P ) is F2-centric.

Proof. We can see that CS(P ) = CS(pr1(P ) × pr2(P )) = CS1(pr1(P )) × CS2(pr2(P )),
Z(pr1(P )× pr2(P )) = Z(pr1(P ))×Z(pr2(P )) and that Z(P ) = P ∩Z(pr1(P )× pr2(P )).
Besides, if P,Q ≤ S are F -conjugate, then pr1(P )× pr2(P ) and pr1(Q)× pr2(Q) are also
F -conjugate (if ϕ sends P on Q then p(ϕ), with p as in the proof of the last proposition,
send pr1(P )× pr2(P ) on pr1(Q)× pr2(Q)).
The lemma follows easily. �

As on the fusion systems level, we can try to compare L with the product L1 × L2.
In fact, we can obtain L as the following pullback (see [CL], De�nition 2.15, for more
details)

L
π

��

// L1 × L2

π1×π2

��

F p
// F1 ×F2

where p is the retraction de�ned in the proof of Proposition 6.1.1 and, for i ∈ {1, 2},
πi : L // Fi is the canonical projection functor. Then we have the following result.

Proposition 6.1.3 ([CL], Proposition 2.17). Let, for i ∈ {1, 2}, (Si,Fi,Li) be two p-local
�nite groups and (S,F ,L) the p-local �nite group product of (S1,F1,L1) and (S2,F2,L2).
The category L1 × L2 is a full subcategory of L and the inclusion induces an homotopy
equivalence.

From this, we can deduce the homotopy type of |L|.

Corollary 6.1.4. (a) |L| ' |L1| × |L2|.
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(b) πL ∼= πL1 × πL2

When we look at the cohomology we can use the Kunneth formula.

Proposition 6.1.5. Let, for i ∈ {1, 2}, (Si,Fi,Li) be two p-local �nite groups and
(S,F ,L) the p-local �nite group product of (S1,F1,L1) and (S2,F2,L2).
Let also M1 be a Fp[πL1 ]-module and M2 be a Fp[πL2 ]-module.
If, for i ∈ {1, 2}, δSi

induces a natural isomorphism H∗(|Li|,Mi) ∼= H∗(F ci ,Mi) then
δS induces a natural ismorphism

H∗(|L|,M1 ⊗Fp M2) ∼= H∗(F c,M1 ⊗Fp M2).

Here, ⊗Fp denotes the usual tensor product on Fp-vector spaces but the tensor product
⊗ denotes a tensor product of graded Fp-vector spaces, i.e. for two graded Fp-vector spaces
V ∗ and W ∗, V ∗ ⊗W ∗ is the graded Fp-vector space (V ∗ ⊗W ∗)n =

⊕n
i=0 V

i ⊗Fp W n−i.
Proof. As we work with Fp-modules, the Kunneth formula tells us that H∗(|L|,M1⊗Fp

M2) ∼= H∗(|L1|,M1)⊗H∗(|L2|,M2) and the following diagram commutes for each P1 ≤ S1,
P2 ≤ S2

H∗(|L1|,M1)⊗H∗(|L2|,M2)
∼= //

δP1
⊗δP2

��

H∗(|L|,M1 ⊗Fp M2)

δP1×P2

��

H∗(P1,M1)⊗H∗(P2,M2)
∼= // H∗(P1 × P2,M1 ⊗Fp M2)

Besides, as F1 ×F2 is a retract of F , using the Kunneth formula several times we get

H∗(F c,M1 ⊗Fp M2) = lim←−
Fc

1×Fc
2

H∗(−,M1 ⊗Fp M2) (because F c = 〈F c1 ×F c2〉)

∼= lim←−
P1×P2∈Fc

1×Fc
2

(H∗(P1,M1)⊗H∗(P2,M2))

∼=

(
lim←−
Fc

1

H∗(−,M1)

)
⊗

(
lim←−
Fc

2

H∗(−,M2)

)
.

Hence
H∗(|L|,M1 ⊗Fp M2) ∼= H∗(F c,M1 ⊗M2)

and this isomorphism is induced by δS. �

6.2 Cohomological coverings of p-local �nite groups

Let (S,F ,L) be a p-local �nite group.
Here we will consider general linking systems. It allows us to work with more

�exible sets of objects without changing the homotopy type of the geometric realization.
Thus for a p-local �nite group (S,F ,L), Ob(L) will be a set of F -quasicentric subgroups
of S which contains all the F -centric and F -radical subgroups. We will write Lq to
indicate that we consider all the F -quasicentric subgroups of S, Lc if we consider only
the F -centric subgroups and Lcr if we consider only the F -centric and F -radical ones.
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To explain the idea here, we start by an easy example:
(
D8,FD8(A6),LcrD8

(A6)
)
. If one

look at the linking system, it has the following form,

D8

D8

��

Q

NA6
(Q)

HH

>>

Q′

``

NA6
(Q′)

WW

where Q and Q′ are the two subgroups of D8 isomorphic to a Klein four group. We can
see this category as a union of two other linking systems, L1 and L2.

L1 : D8

D8

��

Q

NA6
(Q)

GG

OO
L2 : D8

D8

��

Q′

NA6
(Q′)

WW

OO

These two linking systems correspond to linking systems of p-local �nite groups associ-
ated to NA6(Q) and NA6(Q′) respectively, which are both constrained. Thus we can use
Van Kampen Theorem to get the fundamental group of |LcrD8

(A6)| and the Mayer-Vietoris
long exact sequence to study its cohomology.
Here we will try to generalize this idea by looking at some linking systems as union

of two others which are easier to work with and hence, using Van Kampen and Mayer-
Vietoris, get informations on the homotopy type of the initial one.

De�nition 6.2.1. Let (S,F ,L) and, for i = {1, 2}, (S,Fi,Li) be three p-local �nite
groups on the same p-group S. Let M be a Z(p)[πL]-module.
We will say that {L1,L2} is a covering of L if L = L1 ∪ L2.
We will say that {L1,L2} is an M-cohomological covering of L if it is a covering of
L and the inclusions of categories induce injective maps H∗(|L|,M) ↪→ H∗(|Li|,M) and
H∗(|Li|,M) ↪→ H∗(|L1 ∩ L2|,M) for all i.

Remark 6.2.2. If {L1,L2} is a covering of L then F1 and F2 can be seen as subsystems
of F and F = 〈F1,F2〉.

Lemma 6.2.3. If {L1,L2} is a covering of L then we have the following Pushout diagram,

|L1 ∩ L2|

��

// |L2|

��

|L1| // |L|
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Proof. Let us look at the nerves, N (L), N (L1) and N (L2) of these categories.
In L, if for example, ϕ = ψ ◦ θ with θ ∈ L1(P,Q), ψ ∈ L2(Q,R) and ϕ ∈ L1(P,R),

then, �xing an inclusion system {ιQP}P≤Q≤S, we have the following commutative diagram

R

Q
ψ

//

ψ
==

QR

ιPQR

OO

P

θ
??

θ

//

ϕ

DD

ϕ

11

PQ

ιQPQ

OO

ψ|PR
PQ

// PR

ι
QR
PR

OO

where PQ = Im (θ), QR = Im (ψ) and PR = Im (ψ ◦ θ). Thus ψ|PR
PQ

= θ
−1 ◦ ϕ so

ψ|PR
PQ
∈ L1(PQ, PR) and, by existence of extensions in L1 and unicity in L (Proposition

1.2.5), we have that ψ and ψ are in L1.
We can deduce from this that N (L) = N (L1) ∪N (L2). �

Proposition 6.2.4. Let (S,F ,L) and, for i = {1, 2}, (S,Fi,Li) be three p-local �nite
groups on the same p-group S. Let M be a Z(p)[πL]-module.
If {L1,L2} is a covering of L, then πL = πL1 ∗π1(|L1∩L2|) πL2.
Moreover, if {L1,L2} is an M-cohomological covering of L, then there is a short exact

sequence,

0 // H∗(|L|,M) // H∗(|L1|,M)⊕H∗(|L2|,M) // H∗(|L1 ∩ L2|,M) // 0.

Proof. This is just a consequence of Lemma 6.2.3. We use Van Kampen for the �rst
point and the long exact sequence of Mayer-Vietoris for the second point. �

Proposition 6.2.5. Let (S,F ,L) and, for i = {1, 2}, (S,Fi,Li) be three p-local �nite
groups on the same p-group S. Let M be a Z(p)[πL]-module.
Assume that {L1,L2} is an M-cohomological covering of L and that, for i ∈ {1, 2}, δS

induces natural isomorphisms H∗(|Li|,M) ∼= H∗(F ci ,M).
Then δS induces a natural isomorphism

H∗(|L|,M) ∼= H∗(F c,M).

Proof. By the previous proposition, we have the following short exact sequence,

0 // H∗(|L|,M) // H∗(|L1|,M)⊕H∗(|L2|,M) // H∗(|L1 ∩ L2|,M) // 0.

The maps are given by the inclusions hence, by exactness of the sequence and M -
cohomological covering hypothesis, the image of the left arrow is

H∗(|L1|,M) ∩H∗(|L2|,M) ⊆ H∗(|L1 ∩ L2|,M).
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Besides, we have the following commutative diagram.

H∗(S,M)

H∗(|L1 ∩ L2|,M)

δ∗S

OO

H∗(|L1|,M)

55

δ∗S

99

H∗(|L2|,M)

ii

δ∗S

ee

Thus, by hypothesis, δS gives the following isomorphism,

H∗(|L1|,M) ∩H∗(|L2|,M) ∼= H∗(F c1 ,M) ∩H∗(F c2 ,M).

Finally, as F = 〈F1,F2〉,we obtain that

H∗(F c,M) = H∗(F c1 ,M) ∩H∗(F c2 ,M) ⊆ H∗(S,M)

and that
H∗(|L|,M) ∼= H∗(F c,M),

where the isomorphism is induced by δS. �

Let us now look at some examples.
One case where we want to use this decomposition is when, for i ∈ {1, 2}, L1 ∩ L2 is

a linking system, L3, associated to another p-local �nite group over S, (S,F3,L3). The
example of D8 ≤ A6 is of this form. Besides, for i ∈ {1, 2, 3}, if we assume that, δS
induces the isomorphism H∗(|Li|,M) ∼= H∗(F ci ,M), then as F cr3 ⊆ F cri , we have the
following inclusion

H∗(|Li|,M) ∼= H∗(F ci ,M) ↪→ H∗(F c3 ,M) ∼= H∗(|L1 ∩ L2|,M).

Then we just have to look at, for i ∈ {1, 2}, the injectivity of

H∗(L,M) // H∗(|Li|,M)

or, equivalently the injectivity of the direct sum of these two arrows

H∗(L,M) // H∗(|L1|,M)⊕H∗(|L2|,M) .

Proposition 6.2.6. Let (S,F ,L) and, for i = {1, 2, 3}, (S,Fi,Li) be four p-local �nite
groups on the same p-group S. Let M a Z(p)[πL]-module.
Assume that {L1,L2} is a covering of L and that L1 ∩ L2 = L3.
If, for i ∈ {1, 2, 3}, δS induces an isomorphism H∗(|Li|,M) ∼= H∗(F ci ,M) then the

followings are equivalent,

(i) {L1,L2} is an M-cohomological covering of L,

(ii) H∗(|L|,M) // H∗(|L1|,M)⊕H∗(|L2|,M) is injective,
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(iii) H∗(F c3 ,M) = H∗(F c1 ,M) +H∗(F c2 ,M),

(iv) δS induces a natural isomorphism H∗(|L|,M) ∼= H∗(F c,M).

Proof. As remark before, we have, for i ∈ {1, 2} the inclusion

H∗(|Li|,M) ↪→ H∗(|L1 ∩ L2|,M).

Hence (i) is equivalent to (ii).
Besides, by exactness of the Mayer-Vietoris long exact sequence associated to the de-

composition L = L1 ∪ L2, and as we know that, for i ∈ {1, 2, 3}, δS induces the isomor-
phism H∗(|Li|,M) ∼= H∗(F ci ,M), (ii) is equivalent to (iii).
Finally, still by exactness, the image of the arrow

H∗(|L|,M) // H∗(|L1|,M)⊕H∗(|L2|,M)

is H∗(|L1|,M) ∩H∗(|L2|,M). But, as δS induces the isomorphism

H∗(|L1|,M) ∩H∗(|L2|,M) ∼= H∗(F c1 ,M ∩H∗(F c2 ,M) = H∗(F c,M),

(ii) is equivalent to (iv). �

For example, the hypothesis of this proposition are satis�ed if F1, F2 and F3 are
constrained (as in the example of D8 ≤ A6).
As an example of how we can use this proposition, we can work with realizable fusion

systems. We write here T = T Ob(L)
S (G) the transporter category with object set Ob(L)

and πT = π1(|T |). The following corollary can be for example used with Theorem 5.2.7.

Corollary 6.2.7. Let G be a �nite group, S a Sylow p-subgroup of G and (S,F ,L) the
associated p-local �nite group. Let M be a Z(p)[πL]-module.
Assume that there are three p-local �nite subgroups, (S,Fi,Li)i∈{1,2,3}, of (S,F ,L) such

that,

(a) {L1,L2} is a covering of L,

(b) L1 ∩ L2 = L3,

(c) for i ∈ {1, 2, 3}, Fi is realized by a subgroup Gi of G containing S,

(d) there is a commutative diagram,

πL

$$

πT

δ∗
>>

ρ∗
  

Aut(M)

G

::
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(e) for i ∈ {1, 2, 3}, δS and ρ|
T
Ob(L)
S (S)

induce natural isomorphisms

H∗(|Li|,M) ∼= H∗(F ci ,M) ∼= H∗(Gi,M).

If, moreover, δ and ρ induces a natural isomorphism H∗(|L|,M) ∼= H∗(G,M), then δS
and ρ|T Ob(L)

S (S)
induces a natural isomorphism

H∗(|L|,M) ∼= H∗(F c,M) ∼= H∗(G,M).

Proof. We are in the condition of the previous proposition and we just have to show
the injectivity of the map H∗(|L|,M) // H∗(|L1|,M)⊕H∗(|L2|,M) . However, as G1

and G2 are subgroups of G containing S,

H∗(|L|,M) ∼= H∗(G,M) ↪→ H∗(G1,M)⊕H∗(G2,M) ∼= H∗(|L1|,M)⊕H∗(|L2|,M).

This gives us the corollary. �

We �nish this subsection with an example where our last result can be seen in practice.
Consider G = PΓL3(F4) the extension of PGL3(F4) with the Galois automorphism of
F4. We will study its 2-local structure (S,F ,L). We also send the reader to the article
of Oliver and Ventura [OV2] which gives some computation around these groups and in
particular the computation of the essential subgroups.
When we look at the centric-radical linking system (using GAP) which is, in fact, a

transporter system, it has the following form

P0 = S ∼= UT3(F4)o C2

P1
∼= (C2 ×Q8)o C2

C4
2 o C2

∼= P2 P3 P4 P5
∼= C4

2 o C2

P6
∼= C4

2 P7
∼= C4

2

where straight lines correspond to inclusions, waved lines to F -conjugate subgroups and
UT3(F4) denotes the subgroup of PGL3(F4) of upper triangular matrices with one on
the diagonal. We also have the following inclusions (from top to bottom) between the
normalizers, where for i ∈ {1, 2, . . . , 7}, Ni is the normalizer of Pi.

N0 = S

N1

N2 N3 N4 N5

N6 N7
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Moreover, the conjugations P2 ∼ P3 and P4 ∼ P5 are controlled by respectively N6

and N7, and N7 ∩ N6 = N1. Then we can see that L is a covering of two linking
systems L6 = LH6

S (N6) and L7 = LH7
S (N7) and the intersection L6 ∩ L7 is also a linking

system L1 = LH1
S (N1). These three linking systems correspond to constrained fusion

systems with models N6, N7, and N1 respectively (P6, P7 and P1 are centric in G).
Thus, the �rst three conditions of Corollary 6.2.7 holds here. By Proposition 6.2.4,
πL = N6 ∗N1 N7 and a quotient of this amalgamated product is naturally isomorphic to
Q = G/PSL3, (F4) ∼= C3 o C2 which is p-solvable. Hence, for every Z(p)[Q]-module, (c)
and (d) are satis�ed. Finally, by Theorem 5.2.7, we obtain the last condition and then
for every Z(p)[Q]-module M , δS induces a natural isomorphism,

H∗(|L|,M) ∼= H∗(F c,M).

Remark 6.2.8. In fact, we can also apply Corollary 5.2.8 because, for every Z(p)[Q]-module
M , the set of all M -centric-radical subgroups of S (De�nition 2.5.1) is exactly the set
of all F -centric and F -radical subgroups of S. Hence this does not give a very useful
example for Conjecture 5.2.9.

6.3 The p-local structure of wreath products by Cp

Let G0 be a �nite group, S0 a Sylow p-subgroup of G0 and (S0,F0,L0) be the associated
p-local �nite group. We are interested in the wreath product G = G0 o Cp, S = S0 o Cp
and the associated p-local �nite group (S,F ,L). By [CL], Theorem 5.2 and Remark 5.3,
we have that |L| ' |L0| oBCp = |L0|p ×Cp ECp and, in particular, πL = πL0 o Cp.

We �rst give a lemma on strongly p-embedded subgroups. Recall that, for a �nite
group G, a subgroup H < G is strongly p-embedded, if p | |H| and for each x ∈ G \ H,
H ∩ xHx−1 has order prime to p.

Lemma 6.3.1. Let G be a �nite group, G0 ≤ G a subgroup of index a power of p.
If G contains a strongly p-embedded subgroup and p | |G0|, then G0 contains a strongly

p-embedded subgroup.

Proof. Let H be a strongly p-embedded subgroup of G. By [AKO], Proposition A.7,
H contains a Sylow p-subgroup of G so, up to conjugacy, we can choose H such that H
contains a Sylow p-subgroup of G0. Hence G0 ∩ H contains a Sylow p-subgroup of G0

and p | |G0 ∩H|. We will show that G0 ∩H is a strongly p-embedded subgroup of G0.
As [G : H] is prime to p and [G : G0] is a power of p, G0 ∩H is a proper subgroup of

G0.
It remains to show that, for each x ∈ G0 \ G0 ∩ H, (G0 ∩ H) ∩ x(G0 ∩ H)x−1 has

order prime to p. But (G0 ∩H) ∩ x(G0 ∩H)x−1 ≤ H ∩ xHx−1, thus, as H is a strongly
p-embedded subgroup of G, this last subgroup has order prime to p for every x ∈ G \H.
In particular, for each x ∈ G0 \G0 ∩H, (G0 ∩H) ∩ x(G0 ∩H)x−1 has order prime to p
and G0 ∩H is a strongly p-embedded subgroup of G0. �

We give also a lemma on F1-essential subgroups for F1 ⊆ F a subsystem of index a
power of p. We recall (De�nition 1.1.7) that a proper subgroup P < S is F -essential if P
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is F -centric and fully normalized in F , and if OutF(P ) contains a strongly p-embedded
subgroup.

Lemma 6.3.2. Let (S,F ,L) be a p-local �nite group and (S1,F1,L1) a p-local subgroup
of index a power of p.
If P < S1 is F-essential, then P is F1-essential.

Proof. Let P ≤ S1 be an F -essential subgroup.
P is F1-centric:
As P is F -centric, CS(Q) = Z(Q) for all Q ∈ PF . In particular, for all Q ∈ PF1 ⊆ PF ,

CS1(Q) = Z(Q) and P is F1-centric.
P is fully normalized in F1. By [AKO] Proposition I.2.6, it is enough to show that P

is receptive and fully automized in F1. But, as P is F1-centric, it is fully centralized in
F1 and so it is receptive by [AKO] Proposition I.2.5. It remains to show that P is fully
automized in F1.
As P is fully normalized in F (P is F -essential), by [AKO] Proposition I.2.5, P is

fully automized in F . Hence AutS(P ) is a Sylow p-subgroup of AutF(P ) and then
AutS1(P ) = AutS(P ) ∩ AutF1(P ) is a Sylow p-subgroup of AutF1(P ).
OutF1(P ) contains a strongly p-embedded subgroup :
As P is F -essential, OutF(P ) contains a strongly p-embedded subgroup. As F1 is a

subsystem of F of index a power of p, OutF1(P ) is a subgroup of OutF(P ) of index
a power of p. Moreover, as P is a proper subgroup of S1, P < NS1(P ) and, as P is
F1-centric, every element of NS1(P ) induces a non trivial element in OutF1(P ). Hence
p | |OutF1(P )| and, by Lemma 6.3.1, OutF1(P ) contains a strongly p-embedded subgroup.
�

We can easily describe the essential subgroups of a product of fusion systems.

Lemma 6.3.3. Let (S1,F1,L1) and (S2,F2,L2) be p-local �nite groups and (S = S1 ×
S2,F ,L) be the product (see Section 6.1) of the two.
The F-essential subgroups of S are of the form Q1 × S2 with Q1 < S1 F1-essential or

S1 ×Q2 with Q2 < S2 F2-essential.

Proof. Let P ≤ S be a F -essential subgroup. By Proposition 1.1.8, P is F -centric and
F -radical. Thus, By [AOV], Lemma 3.1, P = P1 × P2 with Pi ≤ Si.
Remark also that, if we have two groupsG1 andG2 such that p divide |G1| and |G2| then

G1×G2 cannot contain a strongly p-embedded subgroup. Indeed, by [AKO], Proposition
A.7, if Si is a Sylow p-subgroup of Gi, every strongly p-embedded subgroup of G1 × G2

must contain H = 〈x ∈ G | x(S1 × S2)x−1 ∩ S1 × S2 6= 1〉 and it is not di�cult to
see that H contains G1 × {0} and {0} × G2 which implies that H = G. We have that
OutF(P ) = OutF1(P1)×OutF2(P2) hence, the only possibility for P to be F -essential is
that P1 = S and P2 is F2-essential or the contrary. �

The radical subgroups of a wreath product have been listed explicitly by Alperin and
Fong in [AF]. They also compute their normalizers, centralizers and outer-automorphisms
and we invite the reader to �nd the details there.
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Let G0 be a �nite group, S0 a Sylow p-subgroup of G0 and (S0,F0,L0) be the associated
p-local �nite group. We consider the wreath product G = G0 o Cp, S = S0 o Cp and the
associated p-local �nite group (S,F ,L). Here, for the direct computation, we will take the
notation of Alperin and Fong [AF]: an element of G will be represented by permutation
matrix corresponding to the powers of (1, 2, . . . , p) with entries in G0 and the composition
will follow the matrix product with the composition in G0. Denote by c ∈ G the element

e⊗ P(1,2,...,p) =


0 0 · · · 0 e
e 0 · · · 0 0
...

. . .
...

...
...

. . . 0 0
0 · · · · · · e 0


where e is the trivial element of G0. Here, we are interested in the F -essential subgroups.

Lemma 6.3.4. Let P ≤ S be an F-essential subgroup.

(E1) If P ≤ Sp0 , then either P = Sp0 and NG(P ) = NG0(S0) oCp or P is Fp0 -essential and
NG(P ) = NGp

0
(P ).

(E2) If P � Sp0 , then P
∼=F Q o Cp where Q is F0-essential and NG(P )/P ∼= NG0(Q)/Q

through the diagonal map G0 ↪→ Gp
0.

Proof. Let P ≤ S be an F -essential subgroup.
Assume �rst that P < Sp0 . By Lemma 6.3.2, we know that P is Fp0 -essential and the

computation of NG(P ) and NG(Sp0) are direct.
Secondly, assume that P � Sp0 . All choices of a splitting Cp → G are conjugate in

G and hence we can assume that P = 〈P0, c〉 where P0 = P ∩ Sp0 . If we write P
(i)
0 the

projection of P0 on its ith factor, as c normalizes P0, we have that P
(i)
0 = P

(j)
0 for all i, j

and if we denote Q = P
(1)
0 , then P0 ≤ Qp. A direct computation give that

CG(P ) ∼= CG0(Q)⊗ Id =




g 0 · · · 0

0 g
. . .

...
...

. . .
. . . 0

0 · · · 0 g

 ; g ∈ CG0(Q)


and as P is p-centric, Q is G0-centric.
Let us now look at the normalizers. We have that NG(P ) = 〈NGp

0
(P ), c〉 so we just

have to study NGp
0
(P ). If g = (g1, . . . , gp) ∈ NGp

0
(P ), as g normalizes P ∩ Gp

0 = P0, we
have, for all i, gi ∈ NG0(Q). Moreover, if we denote h = (h1, . . . , hp) = gcg−1c−1 ∈ P0,
we have, for all i, gihi = gi−1 (with g0 = gp) and then, there is h′ ∈ Qp such that
g = (g1, g1, . . . , g1).h ∈ 〈NG0(Q)⊗ Id, Qp〉 ≤ NG(Q o Cp). Hence, every automorphism
cg ∈ AutF(P ) can be extended to an automorphism of Q o Cp. As P is F essential, by
Proposition 1.1.8.(b), P = QoCp and NG(P )/P = NG0(Q)/Q⊗Id ∼= NG0(Q)/Q. Then, as
NG(P )/P = OutF(P ) contains a strongly p-embedded subgroup, OutF0(Q) = NG0(Q)/Q
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as well. Finally, up to conjugacy, we can also assume that Q is fully normalized in F0

and thus Q is F0-essential. �

Let us now look at some cohomological results. Recall that for a group G, a subgroup
H ≤ G, and M a Fp[H]-module, we de�ne the induced and coinduced Fp[G]-module by,

IndGH(M) = M ⊗Fp[H] Fp[G] coIndGH(M) = HomFp[H](Fp[G],M).

Recall also that, when the index of H in G is �nite, these two Fp[G]-modules are iso-
morphic (by [We], Lemma 6.3.4).

Lemma 6.3.5. Let X be a CW complex and denote by G its fundamental group.
If X0 is a covering space of X with fundamental group G0 E G of �nite index, then,

for every Fp[G0]-module M , we have a natural isomorphism of Fp[G/G0]-modules,

H∗(X0,Res
G
G0
IndGG0

(M)) ∼= H∗(X0,M)⊗Fp Fp[G/G0].

This induces the wanted isomorphism in cohomology.

Proof. This can be easily seen on the chain level. Let X̃ be the universal covering
space of X. As Fp[G/G0]-modules, we have the following

HomFp[G0](C∗(X̃),ResGG0
IndGG0

(M)) =
⊕

g∈[G/G0]

HomFp[G0](C∗(X̃), g.M)

∼= HomFp[G0](C∗(X̃),M)⊗Fp Fp[G/G0].

�

Proposition 6.3.6. Let G0 be a �nite group and (S0,F0,L0) be the associated p-local
�nite group. Consider G = G0 o Cp, S = S0 o Cp a Sylow p-subgroup of G and (S,F ,L)
the associated p-local �nite group. Denote also by G∆

0
∼= G0 and S∆

0
∼= S0 the diagonal

subgroups of Gp
0 and S

p
0 and consider the associated p-local �nite subgroup (S∆

0 ,F∆
0 ,L∆

0 ) ∼=
(S0,F0,L0). If, for M an Fp[π∆

L0
]-module, δS∆

0
and δSp

0
induce natural isomorphisms

H∗(|L∆
0 |,M) ∼= H∗((F∆

0 )c,M) and H∗(|Lp0|, coInd
πp
L0
πL∆

0

(M)) ∼= H∗((Fp0 )c, coInd
πp
L0
πL∆

0

(M))

then δS induces a natural isomorphism

H∗(|L|, coIndπLπL∆
0

(M)) ∼= H∗(F c, coIndπLπL∆
0

(M)).

Proof. Write N = coIndπLπL∆
0

(M) and, for i ∈ {1, 2}, denote by H∗(FEi , N) the stable

elements ofH∗(S,N) under the full subcategory of F with objects S and all the subgroups
of S of type (Ei) de�ned in Lemma 6.3.4.
By Shapiro (see for example [Ev], Proposition 4.1.3), for every P = Q oCp of type (E1),

we have a natural isomorphism H∗(Q o Cp, N) ∼= H∗(Q,M) and, by the computation of
normalizers in Lemma 6.3.4,

H∗(Q o Cp, N)AutF (QoCp) ∼= H∗(Q∆,M)AutF0
(Q).
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Hence, applying this to all the subgroups of type (E1) and, by naturality of the Shapiro
isomorphisms, we have that,

H∗(FE1 , N) ∼= H∗((F∆
0 )c,M).

On the topological side, as |L0| is a covering space of |Lp0| which is also a covering space
of |L| (by [CL], Theorem 5.2 and Remark 5.3), |L0| is a covering space of |L|. Then, if
we denote by X the universal covering space of |L| (which is also the universal covering
space of |L0|), we have the following isomorphism on the chain level (because Res and
coInd are adjoint functors)

HomZ(p)[π
∆
L0

](C∗(X),M) ∼= HomZ(p)[πL](C∗(X), N)

which is analogue to the Shapiro isomorphism (see [Ev], Proposition 4.1.3). It gives us
the following isomorphism on cohomology

H∗(|L∆
0 |,M) ∼= H∗(|L|, N)

and give the following commutative diagram

H∗(S∆
0 ,M)

∼= //(
δ
S∆

0

)∗
��

H∗(S,N)

δ∗S
��

H∗(|L∆
0 |,M) ∼=

// H∗(|L|, N)

Thus by hypothesis, δS induces an isomorphism

H∗(FE1 , N) ∼= H∗((F∆
0 )c,M) ∼= H∗(|L∆

0 |,M) ∼= H∗(|L|, N).

Secondly, by factoring the Shapiro isomorphism (see [Ev], Proposition 4.1.3), the in-
clusion of Sp0 in S induces an injection H∗(S,N) ↪→ H∗(Sp0 , N). Hence

H∗(FE2 , N) ∼= H∗(Fp0 , N)Cp ≤ H∗(Sp0 , N).

By assumption, δSp
0
induces an isomorphism

H∗((Fp0 )c, N) = H∗((Fp0 )c, coIndπLπL∆
0

(M)p) ∼= H∗(|Lp0|, coIndπLπL∆
0

(M)p)H∗(|Lp0|, N)

and, by Lemma 6.3.5, this is isomorphic, as Fp[Cp]-module, to the following

H∗(|Lp0|, coIndπLπL∆
0

(M))⊗ Fp[Cp].

In particular it is a projective Fp[Cp]-module.
Consider now the Serre spectral sequence associated to the �bration sequence

|L0|p // |L| // BCp
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with coe�cients in N . The E2 page is the following,

Ep,q
2 = Hp(Cp, H

q(|LO|p, N))

and, by the previous computation, the E2 page is concentrated in the �rst row. Hence,
we have that, H∗(|Lp0|, N)Cp = E0,∗

2
∼= H∗(|L|, N).

In conclusion,

H∗(F c, N) = H∗(FE1 , N) ∩H∗(FE2 , N) ∼= H∗(|L|, N)

and the theorem follows. �

This proposition is a bit technical but we will use it in a speci�c case. Consider p = 5,
the group G0 = GL20(F2), the wreath product G = G0 oC5 and (S0,F0,L0) and (S,F ,L)
the associated 5-local �nite groups. By [Ru], Theorem 6.3, we know that (S0,F0,L0)
admits a 5-local subgroup of index 4 which is exotic (Se,Fe,Le) and that we have a
�bration sequence

|Le| // |L| // BC4.

In particular, we have πL/πL0 = C4 oC5 and we can be interested in comparing H∗(|L|, N)
and H∗(F c, N) for N = F5[C4 o C5] = IndπLπL∆

0

(M) ∼= coIndπLπL∆
0

(M) (the action factors

through a �nite group) with M = F5[C4].
By Corollary 5.1.4, we have that δS∆

0
and δSp

0
induce natural isomorphisms

H∗(|L∆
0 |,M) ∼= H∗((F∆

0 )c,M) and

H∗(|Lp0|, coInd
πp
L0
πL∆

0

(M)) ∼= H∗((Fp0 )c, coInd
πp
L0
πL∆

0

(M)),

(Ind
πp
L0
πL∆

0

(M) = F5[C5
4 ]).

Hence, all the hypothesis of Proposition 6.3.6 are satis�ed and

H∗(|L|, N) ∼= H∗(F c, N).

Remark 6.3.7. This gives us an example of isomorphism between the cohomology of |L|
and the stable elements when the action factors through a p-solvable group which cannot
be recovered by a previous result. It helps us to settle Conjecture 5.2.9.



7
Examples

In this chapter we study some counter-examples. More precisely, we are looking at p-local
�nite groups (S,F ,L) and Z(p)[πL]-modules M such that H∗(|L|,M) � H∗(F c,M).

7.1 A linking system with a non Fp-acyclic universal

covering space

We give here a condition on F such that the free module Fp[πL] gives a counter-example.

Proposition 7.1.1. Let (S,F ,L) be a p-local �nite group. Assume that we have the
following

1. The universal covering space |̃L| of |L| is not Fp-acyclic,

2. πL is �nite.

3. δS induces an inclusion S ≤ πL.

Then we have

H∗(|L|,Fp[πL]) ∼= H∗(|̃L|,Fp) 6∼= H∗(F c,Fp[πL]).

Proof. As πL is �nite, Fp[πL] = IndπL1 Fp ∼= coIndπL1 Fp. Then, we have the following
isomorphism on the chain level,

HomFp[πL](C∗(|̃L|),Fp[πL]) ∼= HomFp(C∗(|̃L|),Fp)

which induces the �rst isomorphism. As |̃L| is not Fp-acyclic, H i(|̃L|,Fp) 6= 0 for some
i. However, as S is a subgroup of πL, Fp[πL] is also an Fp[S]-projective module. As
S is �nite, H∗(S,Fp[πL]), and thus H∗(F c,Fp[πL]) ⊆ H∗(S,Fp[πL]), are concentrated in
degree 0. �

75
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7.2 Projective linear groups

Here we study the p-local structure of the group PGLn(Fq) for q a power of p.

7.2.1 Tits buildings and radical subgroups

Let G = PGLn(Fq) and V = Fnq be the natural Fq-vector space on which G acts.

De�nition 7.2.1. The Tits building of G, denoted by ∆, is the poset of proper nontrivial
subspaces of V .

De�nition 7.2.2. A �ag of V is a sequence of proper nontrivial subspaces of V , D =
(W1 < W2 < · · · < Wk) with W1 6= 0 and Wk < V .

For two �ags, D = (W1 < W2 < · · · < Wk) and D′ = (W ′
1 < W ′

2 < · · · < W ′
l ), we

will write D ≤ D′ if k ≤ l and if there is an injective increasing map σ : {1, 2, . . . , k} →
{1, 2, . . . , l} such that Wi = W ′

σ(i). It gives to the set of �ags of V a poset structure.

We will denote by UD the set of all g ∈ G satisfying g(Wi) = Wi which induces identity
on W1, Wi/Wi−1 and V/Wk. It de�nes a subgroup of G.

We will denote by Rad the poset of these subgroups.

Remark 7.2.3. (a) For a �ag D, UD is a p-group.

(b) Each Sylow p-subgroup of G is equal to UD for a maximal �ag D.

(c) If D = (W1 < W2 < · · · < Wk), for every i and every g ∈ UD, Wi is stable by g.

(d) If D = (W1 < W2 < · · · < Wk), W1 = V UD and Wk is the smallest subspace of V
such that every g ∈ UD induces the identity on V/Wk (or, by duality, Wk = V UD

where V is identi�ed with its dual V ∗ using the dual of a basis adapted to UD and
U∗D = {g∗ | g ∈ UD}).

Proposition 7.2.4. Let D = (W1 < W2 < · · · < Wk) be a �ag of V . We have the
following

(a) NG(UD) = {g ∈ G | ∀i, g(Wi) = Wi},

(b) CG(UD) ≤ UD (UD is a centric subgroup of G),

(c) Op(NG(UD)/UD) is trivial (UD is a radical p-subgroup of G).

Proof. To show the �rst point we can remark that, for a subgroup H ≤ G and g ∈ G,
V gHg−1

= g(V H). In particular gUDg
−1 = Ug(D) for every g ∈ NG(UD).

For the point (b), in a basis associated to D, the matrix of an element of UD is an upper
triangular block matrix with identity block on the diagonal and the matrix of an element
of NG(UD) in the same base is just an upper triangular block matrix. Hence, using matrix
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arguments, we can show that CG(UD) ≤ UD. Indeed, if g ∈ CG(UD), it normalizes UD
and thus its block matrix (in a basis adapted to D) has the following form,

A1 ? · · · ?

0 A2

. . .
...

...
. . .

. . . ?
0 · · · 0 Ak


and commutes for example with matrices of the form

Id R 0 · · · 0
0 Id 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 Id

 ∈ UD.

In other words, A1R = RA2 for every matrix R. Then the endomorphism

R ∈Mn1,n2(Fq) 7→ A1R−RA2 ∈Mn1,n2(Fq)

(where n1 and n2 are respectively the dimension of A1 and A2) is null. In particular, by
looking at elementary matrices, we get that A1 and A2 are identity matrices. Finally,
with the same arguments (changing the position of R), for every i, Ai = Id.
For the third point, we can �rst remark that, if we write for i > 1, di = dim(Wi) −

dim(Wi−1) and d1 = dim(W1),

NG(UD)/UD ∼= PGLd1(Fq)× PGLd2(Fq)× · · · × PGLdk(Fq).

As Op(PGLk(Fq)) = 1 for every k > 1, UD is a radical p-subgroup of G. �

Proposition 7.2.5. Let D and D′ be two �ags.
The following are equivalent,

(i) D ≤ D′

(ii) UD ≤ UD′.

Proof. (i)⇒ (ii) is clear using the matrix representation in a basis adapted to D′.
Conversely, let D = (W1 < · · · < Wk) and D′ = (W ′

1 < · · · < W ′
l ) and assume that

UD ≤ UD′ . By Remark 7.2.3, W ′
1 = V UD′ ≤ V UD = W1 and Wk ≤ W ′

l . If l = 1 then
W ′

1 ≤ W1 ≤ Wk ≤ W ′
l = W ′

1 and thus k = 1 and W1 = W ′
1. Assume now that l ≥ 2

(i.e. W ′
1 < W ′

k) and assume there is a i ∈ {1, . . . , k} such that, for every j, Wi 6= W ′
j . As

W ′
1 < Wi < W ′

l , there is j0 ∈ {1, . . . , l− 1} such that W ′
j0
< Wi and W

′
j0+1 � Wi. But we

have W ′
j0+1/W

′
j0

= (V/W ′
j0

)UD′ ≤ (V/W ′
j0

)UD ≤ Wi/W
′
j0

and hence, Wj0+1 ≤ Wi which
contradicts the de�nition of j0. �
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Corollary 7.2.6. The application D 7→ UD ∈ Rad induces a G-equivariant homeomor-
phism between the two CW complexes |Rad| and |∆|.

Proof. The G-poset of �ags of V corresponds to the G-poset of the simplexes of |∆|.
Then the geometric realization of the nerve of Rad is the barycentric subdivision of |∆|.
As the action of G on the �ags and Rad coincide, the action of G on |Rad| and |∆|
coincide. �

These subgroups of G are also important in the study of the radical p-subgroups of G.

Proposition 7.2.7. Let P be a proper nontrivial p-subgroup of G.
There is a �ag DP such that,

(a) P ≤ UDP

(b) NG(P ) ≤ NG(UDP
).

Proof. P acts on V , and, as we are in characteristic p and P is a p-group, V P 6= {0}.
Moreover, P 6= {Id}, thus V P 6= V and we can de�neW1 = V P . By induction, we assume
that for i ≤ 0, the proper nontrivial subspace Wi is de�ned. If (V/Wi)

P < (V/Wi), we
set Wi < Wi+1 < V such that Wi+1/Wi = (V/Wi)

P , else we stop.
We obtain by this process a �ag DP = (W1 < W2 < · · · < Wk) such that P ≤ UDP

and
NG(P ) ≤ NG(UDP

) (using the fact that, for a subgroup H of G and g ∈ G, V gHg−1
=

g(V H)). �

In particular, we can show that Rad corresponds to the set of all the radical p-subgroups
of G.

Corollary 7.2.8. The set of all the radical p-subgroups of G is Rad.

Proof. We already know that, for a �ag D, UD is a radical p-subgroup of G. Consider
then H a radical p-subgroup of G and assume that H < UDH

where DH is the �ag from
the last proposition. Hence H < NUDH

(H) ≤ UDH
(each subgroup of a p-group is strictly

contains in its normalizer) and as UDH
is normal in NG(H), H < Op(NG(H)) which

contradicts the de�nition of radical p-subgroup. �

7.2.2 The homotopy type of the linking system

Let G = PGLn(Fq) and (S,F ,L) be the associated p-local �nite group.
We are interested in the homotopy type of |L|. As we know, it has the homotopy

type of the geometric realization of the subcategory of |L| with objects the F -centric and
F -radical subgroups of S.

Lemma 7.2.9. Let G be a �nite group, S a Sylow p-subgroup of G and (S,F ,L) the
associated p-local �nite group.
If a subgroup P of S is F-centric and F-radical, then P is a radical p-subgroup of G.
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Proof. Let P ≤ S be an F -centric and F -radical subgroup of S. We have, if we write
Op(CG(P )) = C ′G(P ), Op(NG(P )/PC ′G(P )) = 1. If P is not a radical p-subgroup of G,
then K = Op(NG(P )/P ) > 1 and then 1 < K/C ′G(P ) ≤ NG(P )/PC ′G(P ) is a normal
p-subgroup of NG(P )/PC ′G(P ) which leads to a contradiction. Hence P is a radical
p-subgroup of G. �

Corollary 7.2.10. Let G = PGLn(Fq) and S a Sylow p-subgroup of G.
If we denote by Lcr the subcategory of LcS(G) with set of objects all the F-centric and
F-radical subgroups of S and T r the subcategory of TS(G) with set of objects all the
subgroups of S which are radical p-subgroups of G, then

Lcr = T r.

Proof. From the corollary 7.2.8, every radical p-subgroup of G is centric, the set of
F -radical and F -centric subgroups of S is the set of subgroups of S which are radical
p-subgroups. Thus Ob(Lcr) = Ob(T r) and, as they are all centric, Lcr = T r. �

Proposition 7.2.11. |Rad| is a covering space of |LcrS (G)| with covering group G.

Proof. By Corollary 7.2.10, Lcr = T r and in particular |LcS(G)| ∼= |Lcr| = |T r|. Also,
we can easily see that |T r| has the homotopy type of the Borel construction |EG×GRad|.
The result then follows as a consequence. �

Let us �nish with a result of Tits on the homotopy type of the geometric realization of
the Tits building ∆G.

Proposition 7.2.12 (Tits). Let G = PGLn(Fq).
The geometric realization of the Tits Building of G has the homotopy type of a wedge

of (n− 2)-spheres. In particular, H∗(|∆|;Fp) = H0(|∆|;Fp)⊕Hn−2(|∆|;Fp).

Then, the action of G on ∆ induces a structure of Fp[G]-module on Hn−2(|∆|;Fp),
which de�nes the Steinberg representation of G denoted StG. This representation have
been well studied and for example, we have the following.

Proposition 7.2.13. The Fp[G]-module StG is projective.

7.2.3 The case n ≥ 4

Let G = PGLn(Fq).
In that case, by Proposition 7.2.12, |∆| is simply connected but not Fp-acyclic and,

π1(|LcS(G)|) = G. Hence, as a direct corrolary of Proposition 7.2.11, we have the following
proposition.

Proposition 7.2.14. Let G = PGLn(Fq) and S a Sylow p-subgroup of G.

(a) The universal cover of |LcS(G)| has the homotopy type of |Rad|.
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(b) πL := π1(|LcS(G)|) ∼= G.

Thus, for S a Sylow p-subgroup of G, the p-local �nite group (S,FS(G),LcS(G)) satis�es
the assumption of 7.1.1 and then, the Fp[G]-module Fp[G] gives a counter-example.
Moreover, the Steinberg module gives also another counter-example.

Proposition 7.2.15. Let G = PGLn(Fq) and S a Sylow p-subgroup of G.
If StG is the Steinberg representation of G, then

Hn−2(|LcS(G)|, StG) 6= 0 but Hn−2(F cS(G), StG) = 0.

Proof. First, as the Steinberg representation StG is Fp[G]-projective, it is Fp[S]-
projective and then Hn−2(F cS(G), StG) ≤ Hn−2(S, StG) = 0 is trivial. Secondly, still
as StG is Fp[G]-projective and |Rad| is the universal cover of Lcr = T by Proposition
7.2.14 (by using the notation of 7.2.10), for every m ≥ 0,

Hm(|Lcr|, StG) = Hm(HomFp[G](C∗(|Rad|), StG)) ∼= HomFp[G](Hm(|Rad|,Fp), StG).

Thus, by Corollary 7.2.6,

Hn−2(|Lcr|, StG) ∼= HomFp[G](Hn−2(|∆|), StG) = HomFp[G](StG, StG) 6= 0.

Finally, as |LcS(G)| = |Lcr|, we get the result. �

7.2.4 The case n = 3

Let G = PGL3(Fq).
When n = 3, |∆| is a wedge of circles but the linking system restricted to F -centric

and F -radical subgroups of S has the same form as in the case of D8 ≤ A6 (which, by
the way, corresponds to the p-local �nite group of G = PGL3(F2)!).
Let S be the Sylow p-subgroup of G of upper triangular matrices with ones on the

diagonal. Then, by Corollary 7.2.8, the proper F -centric and F -radical subgroups of S
are the following ones,

P =


1 0 a

0 1 b
0 0 1

 ; (a, b) ∈ F2
q

 and Q =


1 a b

0 1 0
0 0 1

 ; (a, b) ∈ F2
q

 .

Moreover, the normalizers are the followings,

NG(S) = S, NG(P )/P ∼= PGL2(Fq) and NG(Q)/Q ∼= PGL2(Fq).

Hence, |Lcr| ∼= B (NG(P ) ∗S NG(Q)) and, for M = Fp[G], we have, by Mayer Vietoris,
the following exact sequence,

0 // H0(|L|,M) // H0(NG(P ),M)⊕H0(NG(Q),M) // H0(S,M) // H1(|L|,M) // 0.

Finally, looking at the indexes of S, NG(P ) and NG(Q) in G, we can verify that,

H1(|L|,M) 6= 0 = H1(FS(G)c,M)︸ ︷︷ ︸
by projectivity of M

.



Appendices

81





The Geometric realization of a category

1 Simplicial sets and their realizations

De�nition 1.1. The simplicial category ∆ is the category whose objects are the sets
[n] = {0, 1, . . . , n} for n ≥ 0 and whose morphisms are the order preserving maps between
objects.
A simplicial set is a functor K : ∆op // Sets , and a morphism of simplicial sets

between two simplicial sets K1 and K2 is a natural transformation of functors.

For K a simplicial set, we often write Kn = K([n]), which is regarded as the set of �n-
simplices� and an n-simplex σ of K is degenerated if σ ∈ Im (χ∗) for some χ ∈ Mor(∆).
More precisely, the morphisms in ∆ are generated by the face and degeneracy morphisms.
For each n,

(i) there are n + 1 face morphisms din ∈ Mor∆([n − 1], [n]) for 0 ≤ i ≤ n where din is
the (unique) injective morphism whose image does not contains i,

(ii) there are n degeneracy morphisms sin ∈ Mor∆([n], [n− 1]) for 0 ≤ i ≤ n− 1 where
sin is the (unique) surjective morphism such that sin(i) = sin(i+ 1) = i.

Thus, an n-simplex σ of K is degenerate if, and only if, there exists i ∈ {0, . . . , n − 1}
such that σ ∈ Im (sin

∗).
Let, for n ≥ 0, ∆n be the n-simplex of Rn. This can be seen as a covariant functor

∆ : ∆ // Top . We de�ne then the geometric realization of a simplicial set as follows.

De�nition 1.2. Let K be a simplicial set.
The geometric realization of K is the space

|K| =

(∐
n≥0

Kn ×∆n

)/
∼

where (σ, ϕ∗(τ)) ∼ (ϕ∗(σ), τ) for all σ ∈ Km, τ ∈ ∆n and all ϕ ∈ Mor∆([n], [m]).

The geometric realization of a simplicial set K has a natural structure of CW complex
with one vertex for each σ ∈ K0, an edge for each non degenerate element of K1, a 2-cell
for each non degenerated element of K2, etc.
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The geometric realization de�nes a functor from the category S of simplicial sets to
the category of topological spaces. It is more precisely the left adjoint of the singular
simplicial set functor

S : Top // S

de�ned, for a space X, by Sn(X) as the set of all continuous maps ∆ // X .
We can also de�ne the product of two simplicial sets K and L by the simplicial set

given by (K ×L)n = Kn×Ln and respectively on morphisms. The following proposition
shows that geometric realization behaves nicely with respect to products.

Proposition 1.3. Let K,L be two simplicial sets.
The application

|K × L| // |K| × |L|
induced by the projections of simplicial sets is a continuous bijection.

It is also a homeomorphism under certain conditions (for example if K or L has �nitely
many non degenerate simplices). See [GZ], Section III.3, for more details about this and
a proof.

2 The nerve of a category and its geometric

realization

De�nition 2.1. Let C be a small category.
The nerve of C is the simplicial set N (C) de�ne on objects by

N (C)0 = Ob(C)
and for n > 0, N (C)n = {c0

α1−→ c1
α2−→ · · · αn−→ cn | ci ∈ Ob(C), αi ∈ Mor(C)}

and on morphisms by, for n ≥ 0 and i ∈ {0, . . . , n},

din
∗
(c0

α1−→ c1
α2−→ · · · αn−→ cn)

=


c1

α2−→ · · · αn−→ cn if i = 0

c0
α1−→ · · · αi−1−→ ci−1

αi+1◦αi−→ ci+1
αi+2−→ · · · αn−→ cn if 0 < i < n

c0
α1−→ c1

α2−→ · · · αn−1−→ cn−1 if i = n

sin
∗
(c0

α1−→ c1
α2−→ · · · αn−→ cn) = c0

α1−→ · · · αi−→ ci
Idci−→ ci

αi+1−→ · · · αn−→ cn

The geometric realization of C is then the geometric realization of N (C)

|C| = |N (C)|

The nerve de�ne a functor from the category of small categories to S and thus, the
geometric realization of a category de�ne a functor from the category of small categories
to Top. We can now look at natural transformation of functors. We have the following
result at �rst proved by Segal.
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Proposition 2.2. Let C and D be two small categories and f, g two functors from C to
D.
If there is a natural transformation u between f and g, then the induced application |f |

and |g| are homotopic.

Proof. Denote I = 0 // 1 the category with two objects and a unique non identity
morphism between the two objects.
By de�nition of u, for all c, c′ ∈ C and all α ∈ Mor(C), we have the following commu-

tative diagram.

f(c)
f(α)
//

u(c)
��

f(c′)

u(c′)
��

g(c)
g(α)

// g(c′)

We can then de�ne a functor û : C ×I → D given on objects by, ∀c ∈ C, û(c, 0) = f(c)
and û(c, 1) = g(c), and on morphisms by, ∀c, c′ ∈ C and ∀α ∈ MorC(c, c

′), û(α, Id0) =
f(α), û(α, Id1) = g(α) and û(α, 0 // 1 ) = u(c′) ◦ f(α) = g(α) ◦ u(c).
As |I| = I, we have, by Proposition 1.3, |C × I| is homeomorphic to |C| × I. Thus |û|

de�ne a homotopy between |f | and |g|. �

Corollary 2.3. (a) If C is a category with an initial or a terminal object, then |C| is
contractible.

(b) Let f : C → D and g : D → C be functors. If there are natural transformations
u : f ◦ g → IdD and v : g ◦ f → IdC then |f | : |C| → |D| and |g| : |D| → |C| are
homotopy equivalences.

Proof. For (a), denote by Fc0 the constant functor which send each object to c0,
the initial (or terminal) object of C, and each morphisms on Idc0 . We have a natural
transformation between Fc0 and IdC which send c ∈ C on the unique morphism from c0

to c (or c to c0). Thus |Fc0| and |IdC| = Id|C| are homotopic. Then |Fc0| is a retraction by
deformation of |C| on |c0| which is a point.
For (b), this is clear by functoriality and Proposition 2.2. �

One important example is given by the construction of a classifying space of a �nite
group G from the category B(G).

Proposition 2.4. Let G be a �nite group. Let B(G) be the category with one object oG
and such that MorB(G)(oG) = G.
Then |BG| is a classifying space of G.

Proof. Consider the category E(G) with set of objects G and for each (g, h) ∈ G×G,
MorE(G)(g, h) = {ϕg,h}. As every object of EG is initial and terminal, by 2.3, EG = |EG|
is contractible.
Consider then the functor pG : EG → BG which send each object on oG and for all

(g, h) ∈ G×G, send ϕg,h on hg−1.
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We have an action of G on EG by multiplication on objects and morphisms (g.ϕh,k =
ϕgh,gk). This action induces a free G-action on the geometric realization EG = |EG|
and |pG| is the orbit map for this action. Hence, EG is the universal cover of |BG| and
π1(|BG|) ∼= G. Then |BG| is a classifying space of G. �

We �nish with the fundamental group and some covering space constructions of the
geometric realization of a category with a special form (which contains all the categories
we consider here).

Proposition 2.5 ([AKO], Proposition III.2.8). Let C be a small category and c0 ∈ Ob(C).
Assume we can choose morphisms ιc ∈ MorC(c, c0), for each c ∈ Ob(C), where ιc0 =

Idc0. De�ne the functor

θ : C // B(π1(|C|, c0)

by sending each object c ∈ Ob(C) to the unique object and, for c, d ∈ Ob(C), each α ∈
MorC(c, d) to the class of loop ιd.α.ιc.
Then θ induces an isomorphism of π1(|C|, c0) with the free group on generators [α] for

each α ∈ Mor(C), modulo the relation [ιc] = 1 for each c ∈ Ob(C) and [β ◦ α] = [β][α] for
each composable pair α, β ∈ Mor(C).

Proposition 2.6 ([AKO], Proposition III.2.9). Let C be a small category, c0 ∈ Ob(C), G
be a �nite group and F : C // B(G) be a functor.

Assume , for each c ∈ Ob(C) and each g ∈ G, there are d ∈ Ob(C) and ψ ∈ IsoC(c, d)
such that F (ψ) = g.
For each H ≤ G, let CH ⊆ C be the subcategory with the same objects, where for all

ψ ∈ Mor(C), ψ ∈ Mor(CH) if and only if F (ψ) ∈ H.
Then, For each H ≤ G, |CH | is homotopy equivalent to the covering space of |C| with

fundamental group |F |−1
∗ (H).



The Bous�eld-Kan p-completion

The Bous�eld-Kan p-completion functor is a functor from spaces to spaces, denoted (−)∧p ,

together with a natural transformation λ : Id // (−)∧p . We refer to [BK] for a precise

de�nition of this functor and its properties. We also refer to [AKO] for some of the
properties which are more clearly proved.

De�nition 0.7. A continuous map f : X // Y is a p-equivalence if f induces an
isomorphism from H∗(X,Fp) to H∗(Y,Fp) (or, equivalently, f induces an isomorphism
from H∗(X,Fp) to H∗(Y,Fp)).

Many of the important properties of p-completions hold only for certain classes of
spaces. But the next proposition holds for all spaces.

Proposition 0.8 ([BK], Lemma I.5.5). A continuous map f : X // Y induces a ho-

motopy equivalence f∧p : X∧p // Y ∧p if, and only if, it is a p-equivalence.

When we work with p-completion, the classes of p-complete spaces and p-good spaces
play a central role.

De�nition 0.9. Let X be a space.

(i) The space X is p-complete if λX : X // X∧p is a homotopy equivalence.

(ii) The space X is p-good if λX : X // X∧p is a p-equivalence. X is called p-bad

otherwise.

One important family of examples of p-complete spaces are the classifying spaces of
p-groups (See [AKO], Proposition III.1.10).
We can show ([BK], Proposition I.5.2) that a space X is p-good if, and only if, X∧p is

p-complete (i.e. X∧p ' (X∧p )∧p ). On the other hand, if a space is p-bad, then all of its
iterated p-completions are also p-bad ([BK], Proposition I.5.2).
The most important criterion for checking if a space is p-good, at least for the type of

spaces we work with in this thesis, is given by the following proposition. Recall that a
�nite group G is call p-perfect if G is generated by its commutators and p-th powers.
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Proposition 0.10. Let X be a space.
If π1(X) contains a p-perfect subgroup of �nite index, then X is p-good and if K is the

maximal p-perfect group of π1(X), then π1(X∧p ) = π1(X)/K.
In particular, if π1(X) is �nite, then X is p-good and π1(X∧p ) = π1(X)/Op(π1(X)).

A proof is sketched in [AKO], Proposition III.1.11. Remark that, in particular, this
implies that, if X is p-good then π1(X∧p ) is a p-group.

The next proposition states that when X is p-good, λX : X // X∧p is universal

among all p-equivalence X // Y .

Proposition 0.11. For every p-good space X, and every p-equivalence f : X // Y ,

there is a map g : Y // X∧p unique up to homotopy, such that g ◦ f ' λX . Thus

λX : X // X∧p is a �nal object among homotopy classes of p-equivalences de�ned on

X.

This is just a direct consequence of [BK], Lemma I.5.5.

Corollary 0.12. If X and Y are two spaces, and one of them is p-good, then their p-
completions are homotopy equivalent if, and only if, there exists some space Z and maps

X
f
// Z Y

g
oo such that f and g are p-equivalences.
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Résumé

Nous présentons une étude de la cohomologie à coe�cients tordus de la réalisation géométrique des

systèmes de liaison. Plus précisément, si (S,F ,L) est un groupe �ni p-local, nous travaillons sur la coho-
mologie H∗(|L|,M) de la réalisation géométrique de L, avec un Z(p)[π1(|L|)]-module M en coe�cients,

et ses liens avec les éléments Fc-stables H∗(Fc,M) ⊆ H∗(S,M) à travers l'inclusion de BS dans |L|.
Après avoir donné la dé�nition des éléments Fc-stables, nous étudions l'endomorphisme de H∗(S,M)

induit par un (S, S)-bi-ensemble Fc-caractéristique et nous montrons que, sous certaine hypothèse et

si l'action est nilpotent, alors on a un isomorphisme naturel H∗(|L|,M) ∼= H∗(Fc,M). Ensuite, nous

regardons les actions p-résolubles à travers la notion de sous-groupe p-local d'index premier à p ou une

puissance de p. Nous montrons que si l'action de π1(|L|) sur M se factorise par un p′-groupe alors on a

aussi un isomorphisme naturel. Pour une action p-résoluble plus général, nous obtenons un résultat dans

le cas des systèmes réalisables. Ces résultats nous conduisent à la conjecture qu'on a un isomorphisme

naturel pour tout groupe �ni p-local et toute action p-résoluble.
Nous donnons quelque outils pour étudier cette conjecture. Nous travaillons sur les produits de groupes

�nis p-locaux avec la formule de Kunneth et les systèmes de liaison que se décomposent bien vis-à-vis

de la suite exacte longue de Mayer-Vietoris. Finalement, nous étudions les sous-groupes essentiels d'un

produit couronné par Cp.

Nous �nissons par des exemples qui soulignent, qu'en général, on ne peut espérer un isomorphisme

entre H∗(|L|,M) et H∗(Fc,M).

Abstract

The aim of this work is to study the cohomology with twisted coe�cients of the geometric realization

of linking systems. More precisely, if (S,F ,L) is a p-local �nite group, we work on the cohomology

H∗(|L|,M) of the geometric realization of L with coe�cients in a Z(p)[π1(|L|)]-module M and its links

with the Fc-stable elements H∗(Fc,M) ⊆ H∗(S,M) through the inclusion of BS in L.
After we give the de�nition of Fc-stable elements, we study the endomorphism of H∗(S,M) induced

by an Fc-characteristic (S, S)-biset and we show that, if the action is nilpotent and we assume an

hypothesis, we have a natural isomorphism H∗(|L|,M) ∼= H∗(Fc,M). Secondly, we look at p-solvable
actions of π1(|L|) on M through the notion of p-local subgroups of index a power of p or prime to p. If
the action factors through a p′-group, we show that there is also a natural isomorphism. We then work

on extending this to any p-solvable action and we get some positive answers when the p-local �nite group
is realizable. Theses leads to the conjecture that it is true for any p-local �nite group and any p-solvable
actions.

We also give some tools to study this conjecture on examples. We look at products of p-local �nite
groups with Kunneth Formula and linking systems which can be decomposed in a way which behaves

well with Mayer-Vietoris long exact sequence. Finally, we study essential subgroups of wreath products

by Cp.

We �nish with some examples which illustrate that, in general, we cannot hope an isomorphism

between H∗(|L|,M) and H∗(Fc,M).

Rémi Molinier

molinier@math.univ-paris13.fr

Université Paris 13, Sorbonne Paris Cité,

LAGA, UMR 7539 du CNRS,

99, Av. Jean-Baptiste Clément,

93430 Villetaneuse,

FRANCE.

mailto:molinier@math.univ-paris13.fr

	Introduction
	Notation

	Fusion systems and Lg-local finite groups
	Fusion systems
	Linking systems
	Homotopy properties of linking systems
	Fundamental groups and covering spaces
	Homotopy properties of classifying spaces


	Cohomology and stable elements
	Group cohomology and Lg-functors
	Cartan-Eilenberg Theorem
	Stable elements with trivial coefficients
	Stable elements with an action of Lg
	Realizable fusion systems and stable elements

	Idempotents problems
	Left-free Lg-bisets
	Lg-characteristic bisets and trivial coefficients
	Bisets and twisted coefficients
	Idempotents and twisted coefficients
	Idempotents and constrained fusion systems
	A Lg-functor

	The cohomology of classifying spaces of fusion systems 
	Cohomology of Lg-good spaces
	Cohomology of Lg with nilpotent coefficients

	Cohomology with coefficients twisted by a Lg-solvable action
	Extension by a Lg-group
	The minimal Lg-local subgroup of index prime to Lg
	Remarks on actions factoring through a Lg-group

	Constrained fusion systems and coefficients with a Lg-solvable action
	Constrained fusion systems
	Realizable fusion systems and Lg-solvable actions


	Studies of some constructions
	Products of fusion systems
	Cohomological coverings of Lg-local finite groups
	The Lg-local structure of wreath products by Lg

	Examples
	A linking system with a non Lg-acyclic universal covering space
	Projective linear groups
	Tits buildings and radical subgroups
	The homotopy type of the linking system
	The case Lg
	The case Lg


	Appendices
	The Geometric realization of a category
	Simplicial sets and their realizations
	The nerve of a category and its geometric realization

	The Bousfield-Kan Lg-completion

