
HAL Id: tel-01191056
https://hal.science/tel-01191056

Submitted on 1 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-ASIP architectures for flexible turbo receiver
Atif Raza Jafri

To cite this version:
Atif Raza Jafri. Multi-ASIP architectures for flexible turbo receiver. Electronics. Télécom Bretagne;
Université de Bretagne-Sud, 2011. English. �NNT : �. �tel-01191056�

https://hal.science/tel-01191056
https://hal.archives-ouvertes.fr

N° d’ordre : 2011telb0170

SSoouuss llee sscceeaauu ddee ll’’UUnniivveerrssiittéé eeuurrooppééeennnnee ddee BBrreettaaggnnee

Télécom Bretagne

En habilitation conjointe avec l’Université de Bretagne-Sud

Ecole Doctorale – sicma

Architectures multi-ASIP pour turbo récepteur flexible

Thèse de Doctorat

Mention : STIC (Sciences et Technologies de l’Information et de la Communication)

Présentée par Atif Raza Jafri

Département : Electronique

Laboratoire : Lab-STICC / Pôle CACS

Directeur de thèse : Michel Jézéquel

Soutenue le 28 janvier 2011
Jury :

M. Guido Massera, Professeur à Politecnico di Torino (Rapporteur)
M. Olivier Sentieys, Professeur à l’ENSSAT (Rapporteur)
M. Guy Gogniat, Professeur à l’Université de Bretagne-Sud (Président)
M. Smail Niar, Professeur à l’Université de Valenciennes (Examinateur)
M. Christophe Moy, Professeur à SUPELEC (Examinateur)
M. Pierre Pénard, Ingénieur recherche et développement à Orange Labs (Examinateur)
M. Michel Jézéquel, Professeur à Télécom Bretagne (Directeur)
M. Amer Baghdadi, Maître de conférences à Télécom Bretagne (Encadrent)

Dedication

To my family.

i

Contents

Dedication i

Introduction 1

1 Multi Wireless Standard Requirements and Turbo Reception 5

1.1 Wireless Communication System . 6

1.2 Channel Models . 6

1.2.1 Frequency Selectivity of a Channel . 6

1.2.2 Time Selectivity of a Channel . 7

1.3 Transmitter . 7

1.3.1 Channel Coding . 7

1.3.1.1 Convolutional Code . 8

1.3.1.2 Convolutional Turbo Code . 9

1.3.1.3 Multi Standard Channel Coding Parameters 11

1.3.2 Bit Interleaved Coded Modulation -BICM 12

1.3.3 Modulation/Mapping . 14

1.3.3.1 Phase Shift Keying (PSK) . 14

1.3.3.2 Quadrature Amplitude Modulation (QAM) 15

1.3.3.3 Multi Standard Mapper Specifications 16

1.3.4 Signal Space Diversity-SSD . 16

1.3.4.1 Correlating I and Q Components 16

1.3.4.2 Independent Fading of I and Q Components 16

1.3.4.3 Multi Standard SSD Specifications 17

1.3.5 MIMO Space Time Code-STC . 17

1.3.5.1 Diversity Techniques . 18

1.3.5.2 Multiplexing Techniques . 18

1.3.5.3 ST-BICM . 19

1.3.5.4 MIMO-STC Specifications . 20

iii

iv CONTENTS

1.3.6 Data Rate Requirements . 20

1.4 Turbo Receiver . 20

1.4.1 Turbo Decoding . 21

1.4.2 Turbo Demodulation . 22

1.4.3 Turbo Equalization . 23

1.4.4 Unified Turbo Receiver . 25

1.5 Conclusion . 25

2 Turbo Reception Algorithms and Parallelism 27

2.1 Soft In Soft Out (SISO) Decoding Algorithm . 28

2.1.1 MAP Decoding Algorithm . 28

2.1.2 Log-MAP or max-log-MAP Decoding Algorithm 30

2.2 SISO Demapping Algorithm . 31

2.2.1 Log Likelihood Ratio . 32

2.2.2 Simplification of P (xt) . 32

2.2.3 The max-log Approximation . 34

2.2.4 Simplification For Gray Mapped Constellation 35

2.3 SISO Equalization Algorithm . 35

2.3.1 MMSE-IC LE Algorithm . 35

2.3.1.1 MMSE-IC1 . 38

2.3.1.2 MMSE-IC2 . 38

2.3.2 Soft Demapping . 39

2.3.3 Soft Mapping . 39

2.4 Parallelism in Turbo Receiver . 39

2.4.1 Parallelism in Turbo Decoding . 39

2.4.1.1 Metric Level Parallelism . 40

2.4.1.2 SISO Decoder Level Parallelism 41

2.4.1.3 Parallelism of Turbo Decoder . 42

2.4.2 Parallelism in Turbo Demodulation . 42

2.4.2.1 Metric Level Parallelism . 42

2.4.2.2 Demapper Component Level Parallelism 43

2.4.2.3 Turbo Demodulation Level Parallelism 43

2.4.3 Parallelism in Turbo Equalization . 44

2.4.3.1 Symbol Estimation Level Parallelism 44

2.4.3.2 Equalizer Component Level Parallelism 44

2.4.3.3 Turbo Equalization Level Parallelism 45

2.5 Parallel System Modeling and Simulation Results 45

CONTENTS v

2.5.1 Parallel Turbo Demodulation . 45

2.5.1.1 Software Model for Parallel Turbo Demodulation 45

2.5.1.2 Simulation Results . 47

2.5.2 Parallel Turbo Equalization . 51

2.5.2.1 Software Model for Parallel Turbo Equalization 51

2.5.2.2 Simulation Results . 52

2.6 Conclusion . 55

3 Heterogeneous Multi-ASIP NoC-based Approach 57

3.1 Customizable Embedded Processors . 58

3.2 ASIP Design . 59

3.2.1 Design flow overview . 59

3.2.2 CoWare’s ADL-based design tool: Processor Designer 59

3.3 NoC as communication interconnect . 61

3.3.1 Emergence of InterIP-NoC . 61

3.3.2 Network Topologies and Routing . 62

3.3.3 NoC Examples in Iterative Decoding . 63

3.4 Design Approach Illustration: Flexible Parallel Turbo Decoder 63

3.4.1 TurbASIP . 64

3.4.1.1 Building Blocks of TurbASIP . 65

3.4.1.2 Complete TurbASIP Architecture 68

3.4.1.3 Sample Program of TurbASIP . 69

3.4.2 NoC Based on Butterfly Topology . 71

3.5 Towards Heterogeneous Multi-ASIP and NoC Based Flexible Turbo Receiver 73

3.6 Conclusion . 74

4 EquASIP: ASIP-based MMSE-IC Linear Equalizer 75

4.1 State of the Art . 76

4.2 Flexibility Parameters and Architectural Choices 76

4.2.1 Flexibility Parameters . 76

4.2.2 Architectural Choices . 77

4.3 Hardware Architecture for Basic Operators . 78

4.3.1 Complex Number Operations . 78

4.3.1.1 Complex Number Addition, Subtraction, Negation and Conjugate . 78

4.3.1.2 Complex Number Multiplication 79

4.3.1.3 Complex Number Inversion . 79

4.3.2 Complex Matrix Operations . 80

4.3.2.1 Matrix Hermitian, Addition, Subtraction, Negation 80

vi CONTENTS

4.3.2.2 Matrix Multiplication . 80

4.3.2.3 Matrix Inversion . 80

4.3.2.4 Operator Reuse in Fixed-Point Representation 82

4.4 EquASIP Architecture . 82

4.4.1 Matrix Register Banks . 82

4.4.2 Complex Arithmetic Unit . 85

4.4.3 Control Unit . 85

4.5 EquASIP Instruction Set . 85

4.5.1 LOAD, MOVE, REPEAT, NOP . 85

4.5.2 Matrix Addition, Subtraction, Negation and Conjugation Instructions 85

4.5.3 MULTIPLY . 86

4.5.4 DIVIDE . 88

4.6 Sample Program . 88

4.6.1 Computation of E Matrix . 88

4.6.2 2× 2 Matrix Inversion . 89

4.6.3 Computation of pj , βj , λj . 90

4.6.4 Computation of pjλj and gj . 91

4.6.5 Symbol Estimation . 91

4.7 EquASIP Results and Performance . 92

4.7.1 Synthesis Results . 92

4.7.2 Execution Performance . 92

4.7.3 Comparison with State of the Art . 93

4.8 Conclusion . 95

5 DemASIP: ASIP-based Universal Demapper 97

5.1 State of the Art . 98

5.2 Flexibility Parameters and Architectural Choices 98

5.2.1 Flexibility Parameters . 98

5.2.2 Architectural Choices . 99

5.3 Hardware Architecture for Basic Operators . 99

5.3.1 Constellation Look Up Table (LUT) . 100

5.3.2 Euclidean Distance Calculator . 100

5.3.3 A priori Adder . 101

5.3.4 Minimum Finders . 102

5.4 DemASIP Architecture . 103

5.4.1 Registers . 104

5.4.2 Euclidean Unit . 104

CONTENTS vii

5.4.3 Control Unit (CU) . 105

5.5 DemASIP Instruction Set . 105

5.5.1 Configuration Control . 105

5.5.2 Input . 105

5.5.3 LLR Generation . 105

5.5.4 Output . 105

5.5.5 Loop . 106

5.6 Sample Program . 106

5.6.1 Inefficient Pipeline Usage Example . 106

5.6.2 Efficient Pipeline Usage Example . 107

5.7 DemASIP Results and Performance . 108

5.7.1 Synthesis Results . 108

5.7.2 Execution Performance . 108

5.7.3 Comparison with State of the Art . 110

5.8 Conclusion . 110

6 Multi-ASIP NoC Based Turbo Receiver 113

6.1 ASIP Design, Validation and Prototyping Flow . 114

6.1.1 LISA Abstraction Level . 114

6.1.2 HDL Abstraction Level . 115

6.1.3 FPGA Implementation Level . 115

6.2 EquASIP and DemASIP FPGA Prototyping . 115

6.2.1 EquASIP FPGA Prototype . 116

6.2.2 DemASIP FPGA Prototype . 117

6.3 First multi-ASIP Prototype: Parallel Turbo Decoder 117

6.3.1 Transmitter . 118

6.3.1.1 Encoder . 118

6.3.1.2 Combined Rate Control and BICM Interleaver 119

6.3.1.3 Parametrized Mapper . 119

6.3.2 Rayleigh Fading Channel . 120

6.3.3 Receiver . 121

6.3.3.1 DemASIP Integration . 121

6.3.3.2 BICM Deinterleaving and Depuncturing 122

6.3.3.3 multi-ASIP and NoC Based Turbo Decoder 123

6.3.4 Performance Results . 124

6.4 Second multi-ASIP Prototype: Parallel Turbo Demodulator and Decoder 125

6.4.1 Transmitter . 125

viii CONTENTS

6.4.2 Receiver . 126

6.4.2.1 Multi-ASIP Architecture for Parallel soft demapping 127

6.4.2.2 Modified TurbASIP Architecture 127

6.4.2.3 Communication Network Between TurbASIPs and DemASIPs . . 128

6.4.3 Performance Results . 129

6.5 Third multi-ASIP Prototype: Parallel Unified Turbo Receiver 130

6.5.1 Transmitter . 130

6.5.2 MIMO Flat Block Rayleigh Fading Channel 131

6.5.3 Receiver . 132

6.5.3.1 MIMO equalizer . 132

6.5.3.2 Soft Mapper . 133

6.5.4 Performance Results . 134

6.6 Conclusion . 137

Conclusion and perspectives 139

Glossary 141

Bibliography 145

List of publications 151

List of Figures

1.1 Transmitter functional block diagram . 8

1.2 Encoder (a) 64-state single binary code (b) 64-state single binary RSC (c) 8-state
double binary RSC . 9

1.3 Trellis diagram of encoder of Fig.1.2(c) . 10

1.4 Turbo encoder . 11

1.5 Block of data affected by channel . 13

1.6 8-PSK constellation . 14

1.7 Example of Gray mapped 16-QAM constellation 15

1.8 Example of rotated Gray mapped 16-QAM . 17

1.9 Structure of HE-LST . 19

1.10 Structure of DE-LST . 19

1.11 Structure of VE-LST . 20

1.12 Parallel concatenated convolutional turbo decoder 21

1.13 Serially concatenated convolutional turbo Decoder 22

1.14 Iterative demapping for convolution code . 23

1.15 Iterative demapping for convolution turbo code . 23

1.16 Turbo equalization for convolution code . 24

1.17 Turbo equalization in MIMO-OFDM . 24

1.18 Unified turbo receiver . 25

2.1 System diagram with turbo encoder, BPSK modulator, AWGN channel and turbo
decoder . 28

2.2 System diagram with turbo encoder, BICM interleaver, mapper (optional SSD)
Rayleigh fading channel, demapper, deinterleaver, and turbo decoder 31

2.3 Example of Gray mapped 16-QAM constellation 33

2.4 System diagram with turbo encoder, BICM interleaver, mapper (optional SSD), STC,
Rayleigh fading channel, MIMO equalizer, demapper, deinterleaver, turbo decoder
and soft mapper . 36

2.5 Example of trellis . 40

ix

x LIST OF FIGURES

2.6 (a) Forward backward scheme (b) Butterfly scheme 40

2.7 Sub-block parallelism with message passing for metric initialization 41

2.8 Shuffled turbo decoding . 42

2.9 Proposed execution of parallel turbo demodulation 43

2.10 Proposed execution of parallel turbo equalization 45

2.11 Architecture of receiver’s software model . 46

2.12 16-QAM Serial vs Parallel Turbo Demodulation . 47

2.13 256-QAM Serial vs Parallel turbo demodulation . 48

2.14 Architecture of receiver’s software model . 51

2.15 2× 2 MIMO SM Serial vs parallel turbo equalization. 52

2.16 4×4 MIMO SM Serial vs parallel turbo equalization 53

3.1 LISA architecture exploration flow . 61

3.2 NoC topologies (a) 2D-mesh direct topology (b) Ring direct topology (c) Multistage
indirect topology . 62

3.3 Multi-ASIP and Butterfly NoC architecture for parallel turbo decoder 64

3.4 Basic computational units of TurbASIP (a) Adder node (b) Modulo compare unit . . 65

3.5 Modulo algorithm extrinsic information processing 66

3.6 Forward Recursion Unit composed of 32 ANF (Adder Node Forward) and 8 4-input
Compare Unit (a) Compare Units used for state metric computation (b) Compare
Units used for extrinsic information computation 67

3.7 TurbASIP architecture . 68

3.8 Router architecture of Butterfly based NoC . 72

3.9 Heterogeneous multi-ASIP and NoC architecture for turbo receiver 73

4.1 Basic components (a) Complex adder (b) Complex subtracter, negater and conjugator 78

4.2 Combined Complex Adder Subtracter and Multiplier (CCASM) 79

4.3 Complex matrix multiplications (a) 2×2 Matrix multiplication (b) 3×3 and 4×4 Ma-
trix multiplication . 81

4.4 Quantization Parameters for Fixed-point Representation 83

4.5 Floating Point and Fixed-Point Simulation Results 83

4.6 EquASIP block diagram . 84

4.7 CAU and pipeline stages . 84

4.8 20-bit Addition, subtraction, negation and conjugate instructions 86

4.9 Complex multiplication datapath: (a) 20-bit Multiply Instruction, (b) Possible inputs
to complex multipliers, (c) 33 to 16-bit converter 87

5.1 Rotated 16-QAM Constellation with 4 sub-partitions 100

5.2 16-QAM Constellation LUT example (a) 16-QAM Constellation, (b) LUT Contents
for Gray mapped simplifications, (c) LUT Contents when using Expression (2.35) . . 101

LIST OF FIGURES xi

5.3 Euclidean distance calculator . 101

5.4 A priori adder architecture for 16-QAM . 102

5.5 Minimum Finder for One LLR . 102

5.6 Universal soft input soft output DemASIP architecture 103

5.7 Resource Allocation in Euclidean Unit . 104

6.1 Prototyping Flow: (a) LISA abstraction level, (b) HDL abstraction level, (c) FPGA
implementation level . 114

6.2 EquASIP on-board prototype . 116

6.3 DemASIP on-board prototype . 117

6.4 Turbo coded transmission system diagram . 118

6.5 Turbo encoder with random source generator . 118

6.6 Puncturing and BICM interleaving . 119

6.7 Parametrized mapper block diagram . 120

6.8 Rayleigh Fading Channel Emulator . 121

6.9 BICM deinterleaving and depuncturing implementation (a)
∏−1

2 and header (b) De-
coder memory address decoding . 122

6.10 Multi-ASIP and Butterfly NoC architecture for turbo decoding 123

6.11 Turbo coded transmission system implementation diagram 124

6.12 FER performance obtained from the First multi-ASIP FPGA prototype implementing
turbo decoding . 125

6.13 Turbo coded with SSD transmission system diagram 126

6.14 Parallel soft demapper - 3 DemASIPs generating one LLR per clock cycle to demap
QPSK symbol . 126

6.15 Unidirectional Butterfly NoC between 4 TurbASIP and 4 DemASIP 128

6.16 Turbo Coded with SSD Transmission Implementation Diagram 129

6.17 FER Obtained from the second multi-ASIP Prototype implementing turbo demodu-
lation and decoding . 131

6.18 Turbo Coded with MIMO STC Transmission Diagram 132

6.19 MIMO Rayleigh fading channel emulator . 132

6.20 Soft mapper for QPSK Configuration . 133

6.21 Turbo coded with MIMO STC transmission diagram 134

6.22 FER Obtained from Third multi-ASIP Prototype implementing the unified turbo receiver135

6.23 Unified turbo receiver’s detailed diagram . 136

6.24 FER Obtained from Third multi-ASIP FPGA Prototype Implementing Shuffled Turbo
Equalization with Perfect a priori to Equalizer . 137

List of Tables

1.1 Multi standard convolutional and turbo code parameters 12

1.2 BICM interleaver parameters for DVB-SH/T . 14

1.3 Modulation types supported in different standards 16

1.4 SSD Parameters for DVB-T2 standard . 17

1.5 Multi standard MIMO support . 20

1.6 Data rate requirement in emerging wireless communication standards 21

2.1 Parallelization efficiency results . 50

2.2 Parallelization Efficiency Results . 54

4.1 EquASIP synthesis results . 92

4.2 EquASIP computation time for MMSE-IC1 equations 93

4.3 EquASIP performance comparison . 94

5.1 DemASIP synthesis results . 109

5.2 DemASIP execution performance results . 109

5.3 DemASIP results comparison . 110

6.1 Synthesis results of encoder block . 119

6.2 Synthesis results of parametrized mapper block . 121

6.3 Synthesis results of Rayleigh fading channel block 121

6.4 Synthesis results of multi-ASIP and NoC based turbo decoder 123

6.5 Synthesis results of the first multi-ASIP prototype: parallel turbo decoder 124

6.6 Synthesis results of the multi-ASIP architecture for parallel soft demapping 127

6.7 Synthesis results of 4 modified TurbASIP and NoC based turbo decoder 128

6.8 Synthesis results of the unidirectional Butterfly NoC between decoder and demapper 129

6.9 Synthesis results of the second multi-ASIP prototype: parallel turbo demodulator and
decoder . 130

6.10 Synthesis results of MIMO Rayleigh fading channel block 133

6.11 Synthesis Results of the third multi-ASIP prototype: parallel turbo equalizer, demod-
ulator and decoder . 135

xiii

List of Sample Programs

3.1 TurbASIP: assembly code for 8-state double binary turbo code for first iteration . . . 69
3.2 TurbASIP: assembly code for 8-state double binary turbo code for iteration number 2-6 70
3.3 TurbASIP: assembly code for 8-state double binary turbo code for last iteration . . . 71
4.1 EquASIP: assembly code for E matrix computation 88
4.2 EquASIP: assembly code for 2× 2 E matrix inversion 89
4.3 EquASIP: assembly code for pj computation . 90
4.4 EquASIP: assembly code for βj computation . 90
4.5 EquASIP: assembly code for λj computation . 90
4.6 EquASIP: assembly code for pjλj and gj computation 91
4.7 EquASIP: assembly code for symbol estimation . 91
5.1 DemASIP: assembly code implementing inefficient pipeline usage 106
5.2 DemASIP: assembly code implementing efficient pipeline usage 107

xv

Introduction

LAST three decades can undoubtedly be said as the decades for wireless communications. New
data transmission techniques have been evolved in this period of time to meet a goal which can be

phrased as “achieve high data transmission rate at excessively low error rate using low transmission
power and minimal channel bandwidth”. In pursuit of achieving this goal, new state of the art data
processing techniques have been developed in this field. The new state of the art techniques target, be-
tween others, the Error Control Coding (ECC) or channel coding, Bit Interleaved Coded Modulation
(BICM), high ordered Quadrature Amplitude Modulations (QAM), Signal Space Diversity (SSD),
Multi Input Multi Output (MIMO).

The data processing before the transmission of source data in the channel includes addition of
redundant information in the original data (addition of parity during ECC), and/or rearrangement of
data stream (carried out through BICM) and/or addition of diversity of data (incorporated through
Space Time Code of MIMO). At the inputs of the receiver, the received information is corrupted by
the destructive effects of the channel. Inside the receiver, multiple processing blocks work together
to extract the original source data from the received corrupted data. These processing blocks use the
added redundancy and/or diversity to recover the original data. Before the invention of Turbo Codes,
each processing block of the receiver was used to process the data once and the output was passed
to the next processing block. Invention of Turbo Codes introduced the iterative processing concept
in the channel decoding block of the baseband receiver. With iterative processing the output results
are improved over the iterations and hence using turbo codes error rate performance close to theoret-
ical limits can be achieved. Based on the same iterative concept, other turbo principles are developed
by feeding the information back to other processing block like the demodulator and the equalizer.
These concepts, also known as turbo demodulation and turbo equalization, provide benefits when the
channel adds fading and inter symbol interference effects. Although turbo processing provides im-
provements in error rate performance, it induces high processing latency and reduces the throughput
of the receiver.

In the commercial world, using these evolved data transmission techniques in wireless commu-
nication domain, services such as cellular telephone networks, local and wide area networks, digital
video broadcast are introduced. In order to guide the industry on using these state of the art tech-
niques for different wireless communication applications, different wireless communication standards
have been emerged in recent times such as: UMTS, 3GPP2, 3GPP-LTE for mobile phones, 802.11
(WiFi) and 802.16 (WiMax) for wireless local and wide area networks, DVB-RCS, DVB-S2, DVB-
T2 for digital video broadcasting. Moreover, these wireless standards propose different parameters
of above-stated state of the art techniques to provide best performance under particular transmission
environment. Parameterization of individual components of the transmitter imposes the requirement
of flexibility of architecture both in the transmitter and receiver. Hence, this emerging flexibility need
in digital baseband design constitutes a new major challenge when added to the ever increasing re-
quirements in terms of high throughput and low area for an iterative receiver.

1

2 INTRODUCTION

Problems and Objectives

The presented context raises the question of how to implement flexible, yet high throughput digital
communication systems which can take the benefits of turbo/iterative processing? In addition, how an
architecture can provide the demanded processing power depending upon the parameters for which
the system has to be configured? Heterogeneous MPSoCs (Multi Processor System on Chip) is one of
the promising architectural solution to answer these requirements. This architecture model provides
multiple advantages: modularity of the system to control its complexity, programmability for the
adaptation of the system to the context of utilization and finally scalability of the system according
to processing power demands. The next step is to show how to integrate and adapt appropriately
the underlined processing, memory and communication units to modern wireless communication
applications especially turbo communications.

Contributions

Towards this objective, following are the proposed contribution of this thesis work in algorithmic
domain and hardware implementations:

Contributions in algorithmic domain:

Parallelism exploration of the architectures for turbo demodulation and turbo equalization:

• Classification of available parallelism techniques.

• Extension of the idea of sub-blocking to all components of the system

• Proposition of shuffled turbo demodulation and turbo equalization

Contributions on Hardware Implementations:

Design of two Application-Specific Instruction-set Processor (ASIP) for equalization and demapping
functions:

• Analysis of flexibility need in MIMO equalization and demapping functions.

• Proposal for ASIP architectures for MIMO equalizer and soft demapper.

• Individual FPGA prototyping and validation of the two proposed ASIPs.

Design of heterogeneous multi-ASIP and Network on Chip (NoC) based high-throughput flexible
and scalable turbo receiver:

• Design and FPGA prototyping of flexible transmitter.

• FPGA prototyping of a heterogeneous multi-ASIP and NoC based flexible platform capable of
implementing shuffled turbo decoding, shuffled turbo demodulation and shuffled turbo equaliza-
tion. The demonstration platform includes:

– a total of 9 ASIP of three different types.

– a total of 3 NoC instances.

INTRODUCTION 3

Thesis Breakdown

This thesis report is divided into six chapters as follows:

Chapter 1 is dedicated to present the global requirements of future wireless terminal in terms of
parameters associated with each component of the transmitter and required throughputs. To extract
these requirements emerging wireless communication standards are reviewed and transmission pa-
rameters are summarized for each component of the system. Besides laying down requirements, three
turbo principles, turbo decoding, turbo demodulation and turbo equalization are presented which pro-
vide promising solution in achieving error rate performance close to theoretical limits under different
modes of transmission.

In the first part of the Chapter 2, a detail of Soft In Soft Out (SISO) algorithms for decoding, de-
modulation and equalization is presented. To address the high latency and low throughput problems
of iterative processing, the available parallelism in these processes is investigated at different levels.
By means of a software modeling of the proposed parallelism techniques, simulation results of par-
allel turbo demodulation and parallel turbo equalization are presented. Using the obtained simulation
results expressions are deduced to obtain overall speed gain, area overhead and parallelism efficiency
of the proposed parallel systems.

Chapter 3 is dedicated to illustrate our motivation towards the multi-ASIP and NoC based ap-
proach to achieve a flexible and scalable platform for turbo receiver. The chapter starts with an intro-
duction to ASIP methodology to conceive flexible processing units required in a parametrized radio
platform. Then, NoC paradigm is discussed to address the communication needs between multiple
ASIP implementing a turbo receiver. Finally the target heterogeneous multi-ASIP and NoC based
turbo receiver architecture model is introduced.

Chapter 4 presents the proposed ASIP architecture dedicated to implement MMSE-IC linear
equalization algorithm for MIMO application, namely EquASIP. Based on the requirements laid down
in chapter 1 for MIMO STC, the flexibility parameters are obtained for EquASIP in the start of the
chapter. It is shown that how these flexibility parameters can be mapped on different basic hardware
components. Based on these basic hardware building blocks, the complete ASIP architecture is pre-
sented in detail. Finally EquASIP’s performance, synthesis results and its comparison with state of
the art implementations are discussed.

Chapter 5 details the proposed ASIP dedicated for demapping function, namely DemASIP. Sim-
ilar to chapter 4, the starting part discusses basic hardware building blocks which can be used to
achieve a flexible demapper. Complete architecture of DemASIP is then presented along with the
details of its functionalities. Finally DemASIP’s performance, synthesis results and comparison with
state of the art implementations are presented.

Chapter 6 explains the overall design and prototyping flow of the proposed heterogeneous multi-
ASIP and NoC based turbo receiver. In the start, ASIP implementation flow from LISA ADL to
on-board FPGA prototyping and its validation process are described. Later on step wise explanation
is provided about the FPGA platform which implements flexible transmitter, channel emulator and a
turbo receiver made up of 9 ASIP of three different types and 3 NoC instances.

CHAPTER

1 Multi Wireless Standard
Requirements and Turbo
Reception

THIS chapter presents an overall picture of a modern wireless communication system used for
diverse applications such as mobile cellular network, local and wide area networks and digital

video broadcasting. First of all different channel models and their effects on the transmitted data
are described. A detailed explanation of transmitter components such as channel encoder, BICM
interleaver, constellation mapper and MIMO STC is provided. An attempt is made to tabulate the
parameters related to each of these components as suggested in different wireless standards. Finally,
on the receiver side, three concepts namely turbo decoding, turbo demodulation and turbo equalization
are explained in accordance with transmitter components. The last part of the chapter is dedicated to
introduce a general model of an iterative receiver.

5

6 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

1.1 Wireless Communication System

A complete digital wireless communication system can be visualized as made up of three components
namely transmitter, channel and receiver. The construction of transmitter depends on the channel
model under consideration which reflects the transmission environment. Depending upon the channel,
redundancy and/or diversity is added into the source data to combat against destructive effects of
channel. On the receiver side the received distorted data, composed of source and redundancy, is
processed to retrieve the original source. Before going deep into transmitter and receiver components,
different channel models will be explained in the next section of this chapter.

1.2 Channel Models

A wireless channel is typically modeled with additive noise and multiplicative fading. The noise is
added to the received signal at the input of the receiver whereas the fading influences the transmitted
signal while passing through the channel. In this thesis, the additive noise is considered as white
Gaussian while a fading coefficient has a Rayleigh distribution. In addition to these two main factors
there are other parameters which are used to model the channel. One of the them is the presence
of multi path delays comparable to the time delay between two transmitted symbols. This situation
gives rise to Inter Symbol Interference (ISI) and the channel is called frequency selective. A second
parameter used in characterizing the channel is the variation of the channel in time, also referred as
selectivity in time.

1.2.1 Frequency Selectivity of a Channel

A channel is called frequency selective when its frequency response is not perfectly flat because of
echoes and reflections generated during the transmission. This causes the transmitted signal to take
paths with different attenuations and delays. The transmitted signal is then dispersed in time and
the received signal includes the ISI. For a single antenna transmission system, this channel can be
described by the equation:

y(n) =
L−1∑
l=0

hl(n)x(n− l) + w(n) (1.1)

where y and x represent received and transmitted signal respectively and w is Additive White Gaus-
sian Noise (AWGN). L is the number of paths taken by the transmitted signal, reflecting the temporal
dispersion of the channel during symbol transmission period. hl represents the fading of the path l
applied to a signal transmitted at time n− l. In this thesis we will consider the channel as frequency
non-selective or flat in nature both for single antenna and MIMO systems. This is due to the reason
that emerging wireless standards use OFDM technique to avoid ISI caused by frequency selectivity
of the channel. Hence foe single antenna case (1.1) becomes:

y(n) = h(n)x(n) + w(n) (1.2)

Similarly for a MIMO system with nt transmit antenna and nr receive antenna the relation between
channel, transmitted symbols and received symbols is given by:

y = H.x + w (1.3)

1.3. TRANSMITTER 7

where

y = [y1, . . . , ynr]
T ∈ Cnr×1

x = [x1, . . . , xnt]
T ∈ Cnt×1

w = [ω1, . . . , ωnr]
T ∈ Cnr×1

H =

 h11 · · · h1nt
...

. . .
...

hnr1 · · · hnrnt

where y and x represent the received and transmitted symbol vectors respectively, w represents the
AWGN vector and H is the channel matrix whose element hij represents the fading that characterizes
the relation between the ith receive antenna and jth transmit antenna.

1.2.2 Time Selectivity of a Channel

The time selectivity characteristic of a channel define the variation of the channel with respect to time.
It is related to the mobility of the transmitter, receiver or the obstacles between the two depending on
the nature of fading. This selectivity characterizes 3 types of channels:

• The fast fading channel, which varies at each symbol period.

• The quasi-static channel, which remains constant during the transmission of a frame.

• The block fading channel, which remains constant during transmission of a given number of
sub-blocks of the frame. The quasi-static channel is a special case of this type of channel.

1.3 Transmitter

In a transmitter different components are linked together to provide the immunity against channel ef-
fects and to optimally use the available channel bandwidth. A typical transmitter model with different
components and their associated parameters is shown in Fig.1.1. A channel encoder which can be
of a certain type provides robustness against AWGN. Similarly a bit interleaver of BICM provides
protection against burst noise which destroys multiple code words in a frame. The mapper maps a
combination of m bits on a complex plain containing 2m symbols. After mapping, single antenna or
MIMO transmissions are possible. In single antenna transmission SSD can be adopted against the
fading effects. Whereas in MIMO an STC can be used which provides different features such as time
diversity and/or spatial multiplexing. Another technique, called OFDM is used against multi path
fading and used to counter the Inter Symbol Interference (ISI). This technique is, however, out of the
scope of this thesis. The following subsections detail each component of a transmitter of Fig.1.1.

1.3.1 Channel Coding

The channel or error control coding is used to transmit information with maximum reliability. The
principle is to introduce a redundancy in the message to enable the receiver to detect and correct
the transmission errors. The coding theory, introduced by Shannon in 1948 [1], associates a channel
with its capacity represented by the maximum information that can be transmitted (expressed in bits

8 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

(TURBO)

MAPPER
(QPSK, QAM16, QAM64,

QAM256)

BICM
INTERLEAVER

SPACE TIME
CODE

ENCODER−2
(BLOCK TURBO)

ENCODER−3
(LDPC)

(CONVOLUTIONAL)
ENCODER−4

DIVERSITY
SIGNAL SPACE

CC−1

CC−2

TURBO ENCODER

Code Rate
Interleaving Rules

Code Rate
Frame Size

Code Polynomial
Interleaving Rules

Constellation

Tx. Antenna
Multiplexing

Diversity

Rotation Angle
Delay

ENCODER−1

PUNCTURING

SOURCE

Frame Size

∏
2

∏
1

d

s = d

p1

p2

Figure 1.1 — Transmitter functional block diagram

per second) over the channel. The theorem by Shannon can be stated as: If the Information flow at
the input of a channel is less than the capacity, then it is possible to transmit a digital message with
an error probability arbitrarily small. In his proof, the theorem guarantees the existence of a code
(the random code) for reliable transmission, but in practice the code is too complex to decode. Since
then the scientific community is trying to find error correcting codes of finite length with reasonable
complexity and approaching as close as possible to the channel capacity. Different codes are suggested
in communication standards such as simple convolutional codes, turbo codes, block turbo codes and
Low Density Parity Check codes. Following is the detail about simple convolutional encoder and
turbo encoder.

1.3.1.1 Convolutional Code

A convolutional code of rate r = n
l is a linear function which, at every instant i, transforms an input

symbol di of n bits into an output coded symbol ci of l bits (l > n). A code is called systematic if a
part of the output is made up of systematic bits si = di and the rest of the bits (l− n) are made up of
parity.

The structure of the convolutional code is constructed with shift registers (made up of ν flip flops)
and the modulo two adders (XOR). A code is characterized by a parameter called constraint length
K = ν + 1 where value of all ν represents one of the 2ν states of the encoder. The code can also be
called recursive if there is a feedback to the shift registers.

A convolutional code can be expressed by the generation polynomials which represents the con-
nections between output of the registers and the modulo two adders. The Fig.1.2(a) represents a
single binary non-systematic, non-recursive, 64-state encoder whose generation polynomials are:
g1(x) = 1 +x2 +x3 +x5 +x6 and g2(x) = 1 +x+x2 +x3 +x7. These generation polynomials can
be represented by their coefficients, (1011011) and (1111001) respectively in binary or (133; 171)8 in
octal. The encoder shown in Fig.1.2(b) is a single binary Recursive Systematic Convolutional (RSC)
code whereas the one shown in Fig.1.2(c) is double binary RSC code.

Trellis Representation: Although a convolutional code can be represented graphically in many
ways but the trellis representation is the most popular one. The trellis diagram is made up of nodes
and branches where a node represents the state s of the code and a branch represents a transition from

1.3. TRANSMITTER 9

+

+

+

+

+

+ + +

+
+

(a)

(b)

(c)

R1 R2 R3 R4

R2 R3 R4

R6R5

ci(1)

ci(2)

di

R6R5

ci(2) = pi

R1
di

ci(2) = di+1 = si+1

di

R1 R2 R3

di+1

ci(1) = di = si

ci(3) = pi

ci(4) = pi+1

ci(1) = di = si

Figure 1.2 — Encoder (a) 64-state single binary code (b) 64-state single binary RSC (c) 8-state double
binary RSC

one state (s) to another state (s′) due to an input d. In a trellis diagram of a convoluional code, as shown
in Fig.1.3, there are 2ν × 2n transitions, each associated to input and output vector of the encoder.
A sequence of branches connecting different states makes a path and a coded frame corresponds to a
unique path in the trellis.

1.3.1.2 Convolutional Turbo Code

It was known since a long time how to create codes with a correction power ensuring reliable trans-
mission for most applications. However, this knowledge could not be turned into implementation due
to the prohibitive complexity of decoders which are associated to such codes. Now, when a problem
is too complex, the approach of “divide and conquer” can be a good way to simplify it. Based on this
approach, the concatenation of codes has been proposed. The idea, introduced by [2], is to build a
code with a sufficient correction power from several simple codes. This section briefly introduces the
different proposed concatenation techniques of convolutional codes.

Concatenation of Codes: In the first architecture Forney concatenated the internal code to an ex-
ternal code as shown in Fig.1.4(a). This is called serial concatenation where output of outer code in
input of the inner code. Subsequently, it was observed that the addition of a function of interleaving

10 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

Figure 1.3 — Trellis diagram of encoder of Fig.1.2(c)

between the two codes will increase significantly robustness of the concatenated codes. Therefore
what is called nowadays a serial concatenated code is more like a representation of Fig.1.4(b). With
the advent of turbo codes [3], a new structure was introduced: the parallel concatenation presented
in Fig.1.4(c). This structure is associated to systematic encoders where the first encoder receives the
source data d in natural order and at the same time the second encoder receives the interleaved one.
The output is composed of source data and associated parities in natural and interleaved domains. In
this way at one instant of time parity of two different symbols are transmitted.

Turbo Code Interleaver (
∏

1): The interleaver in a digital communication system are used to tem-
porally disperse the data. The primary interest of its use in concatenated codes is to put two copies
of same symbol (coming to two encoders) at different interval of time. This enables to retrieve at
least one copy of a symbol in a situation where the other one has been destroyed by the channel. An
interleaver (

∏
) satisfying this property can be verified by studying the dispersion factor S given by

the minimum distance between two symbols in natural order and interleaved order:

S = min
i,j

(|i− j|+ |Π(i)−Π(j)|) (1.4)

1.3. TRANSMITTER 11

Outer
Code

Inner
Code

Outer
Code

Inner
Code

(a)

(b)

Code−1

Code−2

(c)

∏
1

di

di

ci

∏
1

di ci

s

p1

p2
ci

Figure 1.4 — Turbo encoder

The design of interleavers respecting a dispersion factor can be reasonably achieved through the
S-random algorithm proposed in [4]. However, even if this kind of interleaver can be sufficient to
validate the performance in the convergence zone of a code, it does not achieve a good asymptotic
performance. Therefore to improve the latter, the design of the interleaver must also take into account
the nature of component encoders. Complexity of the hardware implementation should, in addition,
be taken into account. In fact, the recent wireless standards specify performance and hardware aware
interleavling laws for each supported frame length.

1.3.1.3 Multi Standard Channel Coding Parameters

Multiple type of ECC have been proposed in different standards. The parameters associated to con-
volutional and turbo codes are detailed in the Table 1.1 for few selected standards. In following para-
graphs the interleaving functions associated to turbo codes in different standards have been described:

IEEE 802.16e (WiMax)/DVB-RCS: In both of these standards, using double binary turbo code,
two levels of interleaving is proposed.

1. The first one is the bit swapping in the alternate couples i.e (d2j , d2j+1) = (d2j+1, d2j) if
j mod 2 = 0 where j = 0, 1, ...N − 1 and N is number of couples in the frame.

2. The second one is given by the following expression:∏
1
(j) = (P0 × j + P + 1) mod N

where

P = 0 if j mod 4 = 0

P =
N

2
+ P1 if j mod 4 = 1

P = P2 if j mod 4 = 2

P =
N

2
+ P3 if j mod 4 = 3

(1.5)

Values of parameters P0, P1, P2, P3 depend upon the frame size and can be found in the corre-
sponding standard specification [5] [6].

12 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

Standard Code Type Recursive Constraint Code
Code Rate

Systematic Length Polynomial

802.11n
Convolutional

- 7
c1 = (133)8 1

2 ,
2
3 ,

3
4Single Binary c2 = (171)8

802.16e

Convolutional
- 7

c1 = (133)8 1
2 ,

2
3 ,

3
4Single Binary c2 = (171)8

Turbo
Double Binary

X 4
1p = (13)8

1
2 ,

2
3 ,

3
4 ,

5
62p = (11)8

rec = (15)8

DVB-RCS
Turbo

Double Binary
X 4

1p = (13)8
1
2 ,

2
3 ,

3
4 ,

4
5 ,

6
72p = (11)8

rec = (15)8

DVB-SH
Turbo

Single Binary
X 4

1p = (15)8 1
2 ,

1
3 ,

1
4 ,

1
5 ,

2
3 ,

2
5 ,

2
7 ,

2
9

2p = (17)8
rec = (13)8

3GPP-LTE

Convolutional
Single Binary

- 7
c1 = (133)8

1
3c2 = (171)8

c2 = (165)8
Turbo

Single Binary
X 4

1p = (15)8
1
3rec = (13)8

DVB-T
Convolutional

- 7
c1 = (133)8 1

2 ,
2
3 ,

3
4 ,

5
6 ,

7
8Single Binary c2 = (171)8

Table 1.1 — Multi standard convolutional and turbo code parameters

3GPP-LTE: The expression of interleaving for 3GPP-LTE is given by:∏
1
(j) = (f1 × j + f1 × j2) mod N

where j = 0, 1, ...N − 1, N is number of bits in the frame and values of f1 and f2 depend on N and
are given in [7].

1.3.2 Bit Interleaved Coded Modulation -BICM

First introduced by Zehavi in [8] and later on formalized by Caire et al. in [9], BICM offers an
improvement in error correcting performance of coded modulations over fading channel. BICM is
achieved by dispersing the coded binary data before mapping them to the modulated symbols. The
idea is that bits related to one encoded symbol should be dispersed on different modulated symbols.
By doing this bits from different coded symbols are affected by the fading effects and hence will
increase the error correction capability of the decoder on the receiver side. This concept is explained
with the help of Fig.1.5. In Fig. 1.5(a), bit interleaving is not applied on the bits of coded symbols (A,
B, C, D, E). While passing through the channel one of the coded symbol (C) is completely destroyed.
On the other hand, in Fig. 1.5(b), due to bit interleaving the bits of coded symbols are dispersed.
Hence, with the same fading no single coded symbol is fully destroyed.

1.3. TRANSMITTER 13

A1 A2 A3 B1 B2 C1 C2 E1 E2 E3B3 C3 D1 D2 D3

A1 B1 C1 D1 E1 C3 D3 E3A2 A3 B3

b) With Bit Interleaving

A1 B1 C1 D1 E1 B2 C2 C3 D3 E3A2 D2 E2 A3 B3

A1 A2 A3 B1 B2 E1 E2 E3B3 D2 D3

a) Without Bit Interleaving

TRANMITTED DATA

FADING FROM CHANNEL

FADING FROM CHANNEL

RECEIVED DATA

TRANMITTED DATA

RECEIVED DATA

BITS OF ONE CODED SYMBOL

Figure 1.5 — Block of data affected by channel

The construction of the interleaver is an optimization problem taking into account issues of la-
tency, memory requirements and the ability to disperse the noisy elements. The choice of an inter-
leaver must be application specific and is validated by simulation.

In the following paragraphs BICM interleaver specifications for different standards are summa-
rized.

802.11n / 802.16e: For these two standards, there is two level permutations for the interleaving. Let
k be the index of the coded bits before the first permutation; i be the index after the first and before
the second permutation, and j is the index after the second permutation.

1. The first permutation is given by:

i =
N

16
× (k mod 16) + b k

16
c (1.6)

where k = 0, 1, ..., N and N is the number of bits in the coded frame.

2. The second permutation is given by:

j = s× b i
s
c+

(
i+N − b16× i

N
c
)
mod s (1.7)

where s = max(m2 , 1) andm is the number of bits per modulated symbol(concept of modulation
is is explained in the next subsection).

DVB-SH/T: The interleaver used is a block interleaver and the expression is given by:∏
2
(j) = H(j) where j = 0, 1, 2, ..., N − 1 (1.8)

and N is the number of bits in the coded block. The details of H(j) are summarized in Table 1.2.

14 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

Code Rate Coded Block Size H(j) Function
Source Block Size = 1146 Bits

1
5 5760 H(j) = (73× j) mod 5760

Source Block Size = 12282 Bits
1
5 61440 H(j) = (247× j) mod 61440
2
9 55296 H(j) = (245× j) mod 55296
1
4 49152 H(j) = (221× j) mod 49152
2
7 43008 H(j) = (197× j) mod 43008
1
3 36864 H(j) = (185× j) mod 36864
2
5 30720 H(j) = (167× j) mod 30720
1
2 24576 H(j) = (157× j) mod 24576
2
3 18432 H(j) = (125× j) mod 18432

Table 1.2 — BICM interleaver parameters for DVB-SH/T

3GPP-LTE: In 3GPP-LTE the bit interleaving is merged in a function called Rate Matching. After
turbo encoding, systematic bits and each of the parity bits are gathered in three different sub-blocks
and then interleaved separately. The sequence of interleaving, which is quite long, is available in
reference [7].

1.3.3 Modulation/Mapping

The modulation process in a digital communication system maps a sequence of binary data onto a set
of corresponding signal waveforms. These waveforms may differ in either amplitude or phase or in
frequency, or some combination of two or more signal parameters.

−0.707

0.707

1−1 0.707

−0.707

1

−1

I

Q

110

010

011

001

000

100

101

111

(v0v1v2)

Figure 1.6 — 8-PSK constellation

1.3.3.1 Phase Shift Keying (PSK)

In this type of modulation the phase of the carrier signal is changed in accordance with the incoming
sequence of the binary data. If the phase of a carrier represent m bits, then M = 2m different phases

1.3. TRANSMITTER 15

−3 −2 −1 1 2 3

0111 0011 1011 1111

0110 0010 1010 1110

0100 0000 1000 1100

0101 0001 1001 1101

−1

−2

−3

3

2

1

I

Q

(v0v1v2v3)

Figure 1.7 — Example of Gray mapped 16-QAM constellation

are required for all possible combinations of m bits. Mathematically this procedure can be shown by
the following equation:

S(t) = Acos[2πfct+
2π
M

(i− 1)] (1.9)

where A is the magnitude of the carrier. Equation 1.9 can be expanded as:

S(t) = Acos
2π
M

(i− 1)cos2πfct−Asin
2π
M

(i− 1)sin2πfct (1.10)

where i = 1, 2, 3...M .

In the above equation the cos2πfct and sin2πfct are the two basic signals (90o a part in phase)
and the factors Acos2π

M (m− 1) and Asin2π
M (m− 1) represent the multiplicative coefficients of these

signals respectively. If we set the value of M = 2, 4, 8 then the corresponding PSK is called BPSK,
QPSK and 8-PSK. The other representation of the above equation is in the form of Signal Space
Diagram (constellation Diagram) where cos2πfct and sin2πfct can be visualized as in-phase (I) and
Quadrature (Q) axis of complex plane respectively.

Gray coding is used in constellation mapping as it gives two advantages. First, if the detection is
symbol based, the error caused by receiving the adjacent symbol as compared to transmitted symbol
will be of one bit. Second, use of Gray coding provides symmetries in the constellation. The Gray
coding and the respective I and Q components for 8-PSK are shown in the Figure 1.6.

1.3.3.2 Quadrature Amplitude Modulation (QAM)

In this type of modulation the amplitude of two carriers (90o a part in phase) are changed in accor-
dance with the incoming sequence of the digital data:

S(t) = Accos2πfct−Assin2πfct (1.11)

Here again we use the same two carrier signals as basic signals and Ac and As represent the coef-
ficients of these two signals depending upon the different symbols in the modulation scheme. The
constellation diagram of Gray mapped 16-QAM modulation is shown in Fig. 1.7.

16 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

1.3.3.3 Multi Standard Mapper Specifications

In Table 1.3, parameters related to mapping function adopted in different standards have been sum-
marized.

Standard Modulation Type Support
IEEE-802.16e QPSK, 16-QAM and 64-QAM
IEEE-802.11 BPSK, QPSK, 16-QAM and 64-QAM
3GPP-LTE QPSK, 16-QAM and 64-QAM
DVB-SH QPSK, 8PSK and 16APSK
DVB-S2 QPSK, 8PSK, 16APSK and 32APSK
DVB-T QPSK, 16-QAM and 64-QAM
DVB-T2 QPSK, 16-QAM, 64-QAM and 256-QAM

Table 1.3 — Modulation types supported in different standards

1.3.4 Signal Space Diversity-SSD

SSD is a way of adding diversity in a modulated symbol before the transmission. Two low complexity
solutions have been proposed in [10] to double the diversity order of Turbo BICM scheme (using turbo
code and BICM in the transmitter). The proposed solutions are:

• correlating the in-phase I and quadrature Q component of the transmitted signal

• making these two components to fade independently

1.3.4.1 Correlating I and Q Components

When Gray mapping is used, QAM schemes are reduced to two independent Pulse Amplitude Mod-
ulations (PAM) on every component axis represented by the I and Q channels. In Fig.1.7, bits v0 and
v1 are mapped on I channel independently of bits v2 and v3 which are mapped on Q channel. Hence
all constellation points cannot be uniquely identified in the I channel or Q channel separately.

In order to circumvent this natural independence and hope for any improvement in the diversity
order, one should correlate the I and Q channels on every constellation point. This correlation has as
purpose to uniquely identify every constellation point from any component axis. Since Gray mapping
provides best performance with and without Iterative Demapping (ID) when turbo code is used [11],
a simple solution to correlate both channels is to rotate the constellation as shown in Fig.1.8. This
rotation does not change neither the distances between constellation points nor the distance to the
origin hence no modification in transmission power or bandwidth is required.

1.3.4.2 Independent Fading of I and Q Components

When a transmitted constellation point is subject to a fading event, its I and Q coordinates fade
identically. When subject to a destructive fading, the information transmitted on I and Q channels
suffers from an irreversible loss leading to an erroneous detection of the symbol at the receiver side.
If I and Q fade independently, in most cases it is highly unlikely to have severe fading on both
components. One way to allow both components to fade independently has been proposed in [12]

1.3. TRANSMITTER 17

0111

0011

1111

0010

1010

1110

0100

0000

1000

1100

0101

1001

1101

0110

0001

1011

I

Q

(v0v1v2v3)

Figure 1.8 — Example of rotated Gray mapped 16-QAM

which is to interleave I and Q components. Another simpler way [13] is to introduce a time delay
d between I and Q component transmission. In case of uncorrelated flat fading a delay of only one
symbol period between the I component with respect to the Q component is sufficient to have these
two components suffer differently from fading amplitudes.

1.3.4.3 Multi Standard SSD Specifications

This recently developed method of adding diversity in the modulated signal is now adopted in the
emerging DVB-T2 standard. Different rotation angles α are given in Table 1.4.

Standard QPSK 16-QAM 64-QAM 256-QAM
α (Degree) 29.0 16.8 8.6 3.57

Table 1.4 — SSD Parameters for DVB-T2 standard

1.3.5 MIMO Space Time Code-STC

At the transmitter, MIMO techniques are employed to exploit the diversity issue and/or to increase
throughput. To do this, a space-time code should be implemented. The basic idea of space-time cod-
ing is to create redundancy or correlation between symbols transmitted on the spatial and temporal
dimensions. A space-time code is characterized by its rate, the order of diversity and coding gain.
The rate of space-time code is equal to the ratio between the number of symbols emitted and their
corresponding number of transmission periods. The order of diversity is the number of independent
channels at the reception. Finally, the coding gain is the gain made by the coded system, in terms of
performance, compared to non-coded system. A space-time code is said to be full rate when the rate
is equal to the number of antennas at the transmitter. A space-time code is said to have maximum
diversity when it is able to exploit a diversity equal to nt × nr.

18 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

1.3.5.1 Diversity Techniques

For the exploitation of diversity, space-time coding can be divided into two main classes : trellis and
block coding.

Space Time Trellis Code-STTC: In this technique, the symbols to be transmitted on different
antennas are encoded using a representation of a trellis (state machine). The decoding is done typically
by the Viterbi algorithm by minimizing a metric of cumulative probability to choose the most likely
path in the trellis. It is shown in [14] that trellis codes can operate at maximum diversity transmission
and reception while providing a coding gain that depends on the number of states of the trellis. On the
other hand, the decoding complexity increases exponentially with the number of transmit antennas
and modulation order. The complexity of the decoder precludes the implementation of this technique.

Space Time Block Code-STBC: The complexity of implementation of STTC codes has motivated
the construction of space-time block code. They are defined in matrix form. The symbols to be trans-
mitted is encoded by matrix operations. In [15], Alamouti has built a space-time orthogonal reaching
the maximum diversity for a MIMO system 2×1 with a rate equals to 1 (equivalent to the performance
of a single antenna system). The code in matrix form is given as:

A =
[

xi −x∗i+1

xi+1 x∗i

]
where columns in matrixA show the time and rows of the matrix indicate the data on two transmit an-
tennas. (.)∗ represents the complex conjugate operation. In [16], Tarokh generalized Alamouti code
to higher dimensions. The advantage of these orthogonal codes is their linear decoding. Moreover,
they can achieve maximum diversity but their rate is limited to 1. This constraint has motivated the
construction of space-time codes, called quasi-orthogonal, to achieve rates greater than 1. Another
family of STBC codes, known as linear dispersion [17] is generically obtained from linear combina-
tions of symbols to be transmitted. Among the codes of this family, we can cite the Golden code [18]
representing a perfect code for a 2× 2 system and is shown below as C matrix.

C =
1√

1 + r2

[
xi + jr.xi+3 r.xi+1 + xi+2

xi+1 − r.xi+2 jr.xi + xi+3

]

where r =
−1 +

√
5

2
.

1.3.5.2 Multiplexing Techniques

The limited rate of orthogonal codes has motivated the construction of codes in layers with a full
rate feature. Foschi [19] offers a first scheme called Bell Laboratories Layered Space Time (BLAST)
exploiting the spatio-temporal multiplexing in a multi-antenna system. The binary transmit frame is
divided into sub-frames. The sub-frames (layers) are then transmitted on different antennas along a
vertical (V-BLAST), horizontal (H-BLAST) or diagonal (D-BLAST) distribution. When an STC is
used in combination with channel coding and BICM the scheme is called ST-BICM.

1.3. TRANSMITTER 19

1.3.5.3 ST-BICM

At emitter side, a MIMO transmission with channel coding consists of dividing a frame of binary data
to sub-frames. The sub-frames are encoded, interleaved and modulated by one or more layers. They
are then transmitted on different antennas along a vertical, horizontal or diagonal distribution. From
the three possible distributions, we obtain the three following techniques.

Encoder−1

Encoder−2
S/PSource

1

2

Modulator
(Mapper)

Modulator
(Mapper)

Modulator
(Mapper)

Interleaver-1

Interleaver-nt

Interleaver-2

Encoder-nt
nt

Figure 1.9 — Structure of HE-LST

Horizontal Encoding - Layered Space Time (HE-LST) : Each information sub-frame is encoded,
interleaved, modulated and transmitted independently by each transmitting antenna (Fig. 1.9). The
advantage of this system is that it is flexible and simple to implement, but in return it does not exploit
the spatial diversity of the transmission system.

Encoder−1

Encoder−2

1

2
S/PSource

Sym
bol Interleaver

nt

Interleaver-1

Interleaver-nt

Interleaver-2

Encoder-nt

Modulator
(Mapper)

Modulator
(Mapper)

Modulator
(Mapper)

Figure 1.10 — Structure of DE-LST

Diagonal Encoding - Layered Space Time (DE-LST) : Each information sub-frame is encoded,
interleaved, modulated independently (Fig. 1.10). The symbols modulated on each sub-frame are then
transmitted sequentially by each antenna using a diagonal type of space-time interleaver. Thus, each
transmitted sub-frame undergoes all different fadings of MIMO channel. The advantage of this system
is that it exploits the transmit diversity, but its implementation remains difficult.

20 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

1

2

S/PEncoder−1

Space Tim
e Code

Source

nt

Interleaver-1 Modulator
(Mapper)

Figure 1.11 — Structure of VE-LST

Vertical Encoding - Layered Space Time (VE-LST) : The information frame is encoded, inter-
leaved and modulated in a single layer (Fig. 1.11). Each modulated symbol of the encoded frame is
then transmitted by a transmit antenna. It can be seen as BICM associated with space-time coding.
One can say it as ST-BICM structure (Space Time BICM), an extension of BICM using multiple
antennas at the transmission. This system offers a compromise between complexity and diversity as
firstly the frame breaking is done after modulation but before transmission, and secondly each symbol
undergoes different fading in the channel.

1.3.5.4 MIMO-STC Specifications

Diversity and/or multiplexing achieved through MIMO in different standards are summarized in Table
1.5.

MIMO Feature IEEE 802.11n IEEE 802.16e 3GPP-LTE
Time Diversity(Alamouti) X X X
Spatial Multiplexing X X X
Golden Code X
Mixed Diversity/

X X
Multiplexing

Table 1.5 — Multi standard MIMO support

1.3.6 Data Rate Requirements

The data rates requirements associated to different emerging standards are summarized in Table 1.6
which is a challenging aspect for the hardware designers.

1.4 Turbo Receiver

On the receiver side the objective is to remove the channel effects to retrieve the original source data.
This objective is achieved by exploiting the redundancy and diversity added to source data in the

1.4. TURBO RECEIVER 21

Standard Throughput Standard Throughput
(Mbps) (Mbps)

802.11 11-540 DVB-RCS 2-20
802.16 100 DVB-S2 100-200

3GPP-LTE 150 DVB-T2 10-50
DVB-T 10-25 DVB-H 10

Table 1.6 — Data rate requirement in emerging wireless communication standards

transmitter. After the introduction of turbo decoding, the receiver structure can be categorized into two
global categories: iterative/turbo receivers and non-iterative receivers. In a non-iterative receiver, each
constituent unit processes the data once and then passes the information to the next unit. In an iterative
receiver there are feedback paths in addition to forward paths, through which, constituent units can
send the information to previous units iteratively. A Soft In Soft Out (SISO) processing block of an
iterative receiver, using channel information and the information received from other units, generates
soft outputs at each iteration. Depending upon the link of feedback path in the receiver, three iterative
processes under consideration in this thesis can be categorized as turbo decoding, turbo demodulation
and turbo equalization which are explained in following subsections.

1.4.1 Turbo Decoding

Iterative/Turbo decoding of turbo codes involves an exchange of information between constituent
component decoders. This exchange is enabled by linking the a priori soft probability input port of
one component decoder to the extrinsic soft probability output port provided by the other component
decoder (Fig.1.12). Only the extrinsic information is transmitted to the other decoder, in order to
avoid the information produced by the one decoder being fed back to itself. This constitutes the basic
principle of iterative decoding. The decoding principle of Parallel Concatenation Convolutional Codes

−
+

−
+

+

+

DEC−2

DEC−1

decoded
data

decoded
data

∏
1

∏
1

soft(p1)

soft(s)

soft(p2)

a posteriori

a posteriori

soft(s)

∏−1
1

extrinisc

a priori

extrinisc

a priori

Figure 1.12 — Parallel concatenated convolutional turbo decoder

22 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

(PCCC) and Serially Concatenation Convolutional Codes (SCCC) is shown in Fig.1.12 & 1.13. The
SISO decoders are assumed to process soft values of transmitted bits at their inputs. In the PCCC
scheme of Fig.1.12, each SISO decoder computes the extrinsic information related to information
symbols, using the observation of the associated systematic and parity symbols coming from the
transmission channel and the a priori information. Since no a priori information is available from the
decoding process at the beginning of the iterations they are not used. For the subsequent iterations,
the extrinsic information coming from the other decoder are used as a priori information for the
current SISO decoder. The decisions can be computed from any of the decoders. In the original
parallel concatenation case, the turbo decoder structure is symmetrical with respect to both constituent
decoders. However, in practice, the SISO processes are executed in a sequential fashion. The decoding
process starts arbitrarily with either one decoder, DEC-1 for example. After DEC-1 processing is
completed, DEC-2 starts processing and so on.

−
+

+

Inner
DEC

Outer
DEC

decoded
data

∏
1

∏−1
1

soft(p)

soft(s)

a posteriori

extrinisc

a priori

extrinisc

a priori

Figure 1.13 — Serially concatenated convolutional turbo Decoder

In the SCCC scheme of Fig.1.13, the decoding diagram is no longer symmetrical. On one hand,
the inner SISO decoder computes extrinsic information related to the inner code information symbol,
using the observation of the associated coded symbols coming from the transmission channel and
the extrinsic information coming from the other SISO decoder. On the other hand, the outer SISO
decoder computes the extrinsic related to the outer code symbols using the extrinsic information
provided by the inner decoder. The decisions are computed as a posteriori information related to
information symbols by the outer SISO decoder. Although the overall decoding principle depends
on the type of concatenation, both turbo decoders can be constructed from the same basic building
SISO blocks. Each SISO decoder processes its own data and passes it to the other SISO decoder. One
iteration corresponds to one pass through each of all the SISO decoders. One pass through a single
SISO decoder is sometimes referred to as half an iteration of decoding.

1.4.2 Turbo Demodulation

When the transmission is coded and turbo demodulation or iterative demapping is adopted, extrin-
sic information at the output of the decoder is fed back as a priori soft information to the input of
the demapper or demodulator. The Bit Error Rate (BER) performance at the output of the demod-

1.4. TURBO RECEIVER 23

−
+

−
+

Modulated
Received

Symbols

DEC

decoded
data

Demapper
Soft

∏
2

∏−1
2

soft(s)
soft(p)

a priori extrinisc

a posteriori

Figure 1.14 — Iterative demapping for convolution code

ulator/demapper in the case of iterative demodulation tends to the one of the genie-aided demodu-
lator/demapper as the Signal to Noise Ratio (SNR) increases [10]. For a system with convolutional
code, BICM and 8PSK, iterative demapping was studied in [20] both for Rayleigh fading and AWGN
channels. The scheme is shown in Fig.1.14. One dB and 1.5dB gains were reported in this paper for
Rayleigh and AWGN channels respectively. In [13] authors studied the effects of mapping style of
16-QAM and independent fading of I and Q Component application on iterative demapping (ID) for
Rayleigh fading channel. A gain of only 0.1dB was reported in [21] when convolutional code was

−
+

−
+

−
+

−
+

+

+

Modulated
Received

Symbols

decoded
data

DEC−1

DEC−2

Demapper

Rotated
Soft

∏
1

∏−1
1

∏
1

∏
2

∏−1
2

a posteriori

soft(p1)

soft(s)

soft(p2)

a priori extrinisc

extrinisc

a priori

a priori

extrinisc

Figure 1.15 — Iterative demapping for convolution turbo code

replaced with turbo code. This result makes BICM-ID with turbo-like coding solutions unsatisfactory
even though the added complexity is relatively small. In [22], authors proposed a turbo BICM-ID ap-
proach designed for fading channels (Fig.1.15). This approach offers significant performance gains,
especially for a BER lower than 10−7 , over existing classical turbo BICM systems at the cost of a
small increase in system complexity. The proposed iterative demapper takes advantage of the intro-
duced SSD to significantly lower the error floor without sacrificing iterative process convergence.

1.4.3 Turbo Equalization

The traditional methods of data protection used in error correction code do not work well when the
channel over which the data is sent introduces additional distortions in the form of ISI. When the
channel is frequency selective or for other reasons is dispersive in nature, the receiver will need to

24 CHAPTER 1. MULTI WIRELESS STANDARD REQUIREMENTS AND TURBO RECEPTION

compensate for the channel effects prior to employing a standard decoding algorithm for the error
correction code. Such methods for channel compensation are typically referred to as channel equal-
ization. Similarly to turbo demodulation, the soft information from the decoder can be properly in-
terleaved and taken into account in the equalization process, creating a feedback loop between the
equalizer and decoder. Through this link each of the constituent algorithms communicates its beliefs
about the relative likelihood that each given bit takes on a particular value. This concept, known
as turbo equalization, was first introduced in [23] to combat the detrimental effects of ISI for digi-
tal transmission protected by convolutional code. For coded BICM system the architecture of turbo
equalization is shown in Fig.1.16. For the first time the equalizer removes the effects of ISI and the

SISO
Demapper

Modulated
Received

Symbols DEC

decoded
data

SISO
Equalizer

Mapper
SISO

∏−1
2

∏
2

soft(s)
soft(p)

a posteriori

a posterioriSymbol a priori

Figure 1.16 — Turbo equalization for convolution code

SISO demapper outputs information related to bits which are used by decoder which generates the a
posteriori information both on systematic and parity bits. This information is fed back both to SISO
equalizer. Since the equalizer is working on symbols, the a posteriori information on bits is used in
SISO mapper to create the symbols which serve as a priori for the equalizer.

In the emerging wireless standards where MIMO has been inducted, in addition to ISI, there is
co-antenna interference at the MIMO reception. To address the effects of ISI related to frequency
selectivity of the channel, OFDM is generally used in advanced communication applications. In a
MIMO-OFDM system, where a receiver should combat against the co-antenna interference, the con-
cept of turbo equalization can be used to cancel the interference caused by MIMO iteratively as shown
in Fig.1.17.

SISO
Demapper

DEC

decoded
data

SISO
Equalizer

Mapper
SISO

OFDM
Interface

Received
OFDM

Symbols

∏−1
2

∏
2

soft(s)
soft(p)

a posteriori

a posterioriSymbol a priori

Figure 1.17 — Turbo equalization in MIMO-OFDM

1.5. CONCLUSION 25

1.4.4 Unified Turbo Receiver

A unified turbo receiver block diagram is proposed in Fig. 1.18. In the proposed architecture, the three
above-described iterative concepts are combined. Depending upon the requirements imposed by the

MAPPER
SOFT

MIMO
EQUALIZER

DEC−1

DEC−2

Decoded Bits
DEINTERLEAVER

SINGLE

EQUALIZER
ANTENNA

Symbols
Channel
Received

Estimates
Soft Bit Soft Bit

Estimates

Soft Symbol
Estimates

Soft Bit
Estimates

TURBO DECODER

Estimates
Soft Bit ∏

1

DECODER

∏
1

∏−1
1

∏
2

DEMAPPER ∏−1
2

soft(s)

soft(p1)

soft(p2)

Figure 1.18 — Unified turbo receiver

nature of the channel and the target error rate performance, the feedback links can be used or not to
achieve desired performance from the proposed unified architecture.

1.5 Conclusion

In this first chapter we laid down the basic requirements of an advanced wireless digital communi-
cation system by summarizing various parameters associated with the transmitter, the channel and
the receiver. Regarding the channel, single and multiple antenna communication channels were cate-
gorized on the bases of frequency and time selectivity. Different components of the transmitter such
as channel encoder, BICM interleaver, mapper and MIMO-STC were explained. A summary of the
parameters related to each of these components, adopted in different emerging standards, has also
been tabulated together with data rate requirements. In the last part of this chapter, an effort has been
made to briefly describe the principles of three turbo processes namely turbo decoding, turbo demod-
ulation and turbo equalization. These three iterative concepts have been, finally, combined to provide
a unified turbo receiver architecture which represents the target of this thesis work.

CHAPTER

2 Turbo Reception Algorithms and
Parallelism

IN the previous chapter stringent requirements, primarily flexibility and high throughput, imposed
by upcoming wireless standards for different applications have been discussed. The other discussed

point was the introduction of advanced techniques such as turbo codes, SSD and MIMO which en-
courages the adoption of iterative processing such as turbo decoding, turbo demodulation and turbo
equalization in the receiver to acquire error rate performances near theoretical limits. However, the
conventional serial execution of these iterative processes constitutes a major issue to the throughput
requirement and thus prohibits their wide use.

To address this issue, parallelism opportunities at all levels of a turbo receiver is investigated and
presented in this chapter. To that end, first the algorithms used in different components of a turbo
receiver are presented in the start of this chapter. The simplification applied to these algorithms to
make them suitable for hardware implementation are also explained. The parallelism in these iterative
algorithms is then explored and available techniques are classified in three different levels. Finally, in
order to analyze the parallelism performance both for parallel turbo demodulation and parallel turbo
equalization, corresponding software models are created which simulate the first and second level of
parallelisms. Simulations results in terms of speed gain and parallelism efficiency are presented and
analyzed for different system configurations.

27

28 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

AWGN CHANNEL
MODULATION

BPSK Decoded Bits
CC−1

CC−2

d

S

P1

P2

TURBO ENCODER
PARALLEL CONCATENATED

SOURCE

DEC−1

DEC−2

TURBO DECODER

yxc
DECODER

∏
1

∏
1

∏
1

∏−1
1

L(p1)

L(s)

L(p2)

Figure 2.1 — System diagram with turbo encoder, BPSK modulator, AWGN channel and turbo decoder

2.1 Soft In Soft Out (SISO) Decoding Algorithm

Consider the system diagram of Fig.2.1 where source is encoded by convolutional parallel concate-
nated turbo encoder which outputs the source (systematic) and the parity bits. These encoded bits pass
through a mapper which applies Binary Phase Shift Keying (BPSK) modulation to produce modulated
symbol x. Then noise is added to these symbols due to AWGN channel. The received corrupted sym-
bols y are the input to the turbo decoder. The turbo decoder is comprised of two component decoders
DEC-1 and DEC-2 responsible for the error correction.

If we look at the history of decoding algorithms, several ones have been proposed to decode a
convolutional code. The initial algorithms are presented by Fano [24] and Viterbi [25] which have
binary inputs and outputs. The Viterbi algorithm which is better than the other was later modified
to accept the soft inputs to improve the decoding [26]. The Soft Output Viterbi Algorithm (SOVA)
[27] takes the soft input and provides the soft output as well. Among the SISO algorithms, the Cock-
Bahl-Jelinek-Raviv (BCJR) [28] also called MAP (Maximum A Posteriori) or forward backward
algorithm, is the optimal decoding algorithm which calculates the probability of each symbol from
the probability of all possible paths in the trellis between initial and final states. In practice, due
to its complexity, the BCJR algorithm is not implemented in its probabilistic form but rather used
in simplified logarithmic domain to transform multiplications into additions. Hence these simplified
versions are named as log-MAP or in sub optimal form as max-log-MAP algorithms.

2.1.1 MAP Decoding Algorithm

For each source symbol di comprised of n bits, encoded in l output bits by an encoder having ν
memory elements (i.e 2ν) states at rate r = n

l , a MAP decoder provides 2n a posteriori probabilities
with the full knowledge of the sequence y received by the decoder i.e a decision for each possible
value of symbol. The hard decision is the corresponding value j that maximizes the a posteriori
probability. These probabilities can be expressed in terms of joint probabilities.

Pr(di ≡ j|y) =
p(di ≡ j, y)

2n−1∑
k=0

p(di ≡ k, y)

(2.1)

The trellis structure of the code allows to decompose the calculation of joint probabilities between
past and future observations. This decomposition utilizes the forward recursion metric αi(s) (the
probability of a state of the trellis at instant i computed from past values), backward recursion metric
βi(s) (the probability of a state of the trellis at instant i computed from future values), and a metric

2.1. SOFT IN SOFT OUT (SISO) DECODING ALGORITHM 29

γi(s
′
, s) (the probability of a transition between two states of the trellis). Using these metrics the

expression of 2.1 becomes:

p(di ≡ j|y) =
∑

(s′,s)/di≡j

βi+1(s)α(s′)γi(s′, s) (2.2)

The forward and backward recursion metrics are calculated in following way:

αi+1(s) =
2ν−1∑
s′=0

αi(s′)γi(s′, s), for i = 0 . . . N − 1 (2.3)

βi(s) =
2ν−1∑
s′=0

βi+1(s′)γi(s, s′), for i = N − 1 . . . 0 (2.4)

The initialization of these metrics depends on the knowledge of initial and final state of the trellis, e.g
if the encoder starts at state S0 then α0(S0) has value 1 while other α0(s) will be 0. If the initial state
is unknown then all states are initialized to same equiprobable value.

Similarly the branch metric can be expressed in the following way:

γi(s′, s) = p(yi|xi).Pra(di = di(s′, s)) (2.5)

where p(yi|xi) represents the channel transition probability which can be expressed for a Gaussian
channel in following way:

p(yi|xi) =
l∏

k=1

(
1

σ
√

2π
.e−

(yi,k−xi,k)2

σ2

)
= K.e

l∑
k=1

yi,k.xi,k

σ2 (2.6)

where xi is ith transmitted modulated symbol.

The a priori probability Pra(di = di(s′, s)), to emit m-ary information corresponding to transi-
tion from s′ to s is 0 if the transition does not exist in the trellis. Otherwise its value depends upon
the statistics of the source. For an equiprobable source Pra(di = j) = 1

2n . In the context of the turbo
decoding, the a priori probability takes into account the input extrinsic information.

The extrinsic information generated by the decoder is computed in the same way as a posteriori
information (2.1) but with a modified branch metric:

Prex(di ≡ j|y) =

∑
(s′,s)/di≡j

βi+1(s)α(s′)γexi (s′, s)

∑
(s′,s)

βi+1(s)α(s
′
)γexi (s′, s)

(2.7)

Hence the branch metric does not take into account the already available information of a symbol
for which extrinsic information is being generated. For parallel convolutional turbo codes, systematic
part is removed from the branch metric computation and can be expressed as:

γexi (s′, s) = K.e

l∑
k=n+1

yi,k.xi,k

σ2 (2.8)

30 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

2.1.2 Log-MAP or max-log-MAP Decoding Algorithm

The log-MAP algorithm which is introduced by [29], is the direct transformation of MAP algo-
rithm in logarithmic domain. Hence, all the metrics M of MAP algorithm will be replaced by met-
rics σ2 lnM . This permits to transform the semi ring sum-product (R+,+,×, 0, 1) to semi ring
(R,max∗,+,−∞, 0) where the max∗ operator is defined as below:

max∗(x, y) = σ2 ln
(
e
x
σ2 + e

y

σ2

)
= max(x, y) + σ2 ln

(
1 + e−

|x−y|
σ2

)
≈ max(x, y) (2.9)

This operator can be simplified by an operator max which corresponds to max-log-MAP algorithms.
Using this approximation the branch metrics of (2.5) and (2.8) can be written as:

ci
(
s′, s

)
= σ2 ln γi

(
s′, s

)
= K ′ + Lai (j) +

l∑
k=1

yi,k.xi,k = cexi
(
s′, s

)
+ Lai (j) + Lsysi (j) (2.10)

and

cexi
(
s′, s

)
= σ2 ln γexi

(
s′, s

)
= K ′ +

l∑
k=n+1

yi,k.xi,k (2.11)

where Lai (j) is the metric of a priori information and Lsysi (j) is the metric which corresponds to
systematic part of the data. It is interesting to note that constant K ′ is not necessary in practice
because it is removed while computing (2.14) and (2.15).

In the same way the forward and backward recursion metrics can be written as:

ai+1 (s) = σ2 lnαi+1 (s) =
2υ−1

max∗
s′=0

(
ai
(
s′
)

+ ci
(
s′, s

))
pour i = 0...N − 1 (2.12)

bi (s) = σ2 lnβi (s) =
2υ−1

max∗
s′=0

(
bi+1

(
s′
)

+ ci
(
s, s′

))
pour i = N − 1...0 (2.13)

In this case the first and last metrics are initialized in following way :

• in case state S is known, a(S) = 0 while the others are a(s 6= S) = −∞.

• in case state is unknown, all the states will have a(s) = 0.

The a posteriori (2.1) and extrinsic (2.7) informations are transformed into:

Li(j) = σ2 ln Pr (di ≡ j|y) (2.14)

= max∗
(s′,s)/di≡j

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

)
−max∗

(s′,s)

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

)
Lexi (j) = max∗

(s′,s)/di≡j

(
ai
(
s′
)

+ cexi
(
s′, s

)
+ bi+1 (s)

)
−max∗

(s′,s)

(
ai
(
s′
)

+ cexi
(
s′, s

)
+ bi+1 (s)

)
(2.15)

By simplifying the terms on the right side of the metrics, using the most probable symbol ĵ in the
following way, one will have:

max∗
(s′,s)

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

)
=

n

max∗
j=0

(
max∗

(s′,s)/di≡j

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

))
(2.16)

≈ n
max
j=0

(
max∗

(s′,s)/di≡j

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

))
= max∗

(s′,s)/di≡ĵ

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

)

2.2. SISO DEMAPPING ALGORITHM 31

Decoded Bits

DEC−1

DEC−2

TURBO DECODER

MAPPER

RAYLEIGH FADING CHANNEL

INTERLEAVERSOURCE CC−1

CC−2

S

S

P1

P2

TURBO ENCODER

SSD

DEINTERLEAVER

BICM
(QPSK, 16−QAM

64−QAM, 256−QAM)

DECODER

∏
1

∏
1

∏−1
1

L(p1)

L(s)

L(p2)

∏
2

∏
2c xv

y ṽ c̃
=

L(vit;O)
=

L(cit; I)

L(cit;O)L(vit; I)
=
v̂

=̂
c

∏
1

DEMAPPER ∏−1
2

Figure 2.2 — System diagram with turbo encoder, BICM interleaver, mapper (optional SSD) Rayleigh
fading channel, demapper, deinterleaver, and turbo decoder

and by distributivity :

max∗
(s′,s)/di≡j

(
ai
(
s′
)

+ ci
(
s′, s

)
+ bi+1 (s)

)
= (2.17)

Lai (j) + Lsysi (j) + max∗
(s′,s)/di≡j

(
ai
(
s′
)

+ cexi
(
s′, s

)
+ bi+1 (s)

)
In the context of this simplification the metrics can be written in the following way:

Li(j) = Lai (j) + Lsysi (j) + Lexi (j)− Lai
(
ĵ
)
− Lsysi

(
ĵ
)

(2.18)

This simplification also known as log-MAP introduces a very low loss of performance (0.05dB)
as compared to MAP algorithm. Although sub-optimal max-log-MAP algorithms provides a loss of
0.1dB for double binary code [30] yet it provides many advantages. Firstly it eliminates the logarith-
mic term from the expression (2.9) which on one hand reduces the implementation complexity (in
practice this part is saved in Look Up Tables) and on the other hand reduces the critical path and
hence increases the operational frequency as compared to max∗ operator. Moreover, for max-log-
MAP algorithm the knowledge of σ2 is not required.

2.2 SISO Demapping Algorithm

In this section the basic system, considered in previous subsection, has been further extended to
include BICM interleaver as shown in Fig.2.2. The other enhancements to the system are higher
modulation orders (up to 256-QAM) and possibility of applying SSD (constellation rotation and time
delay between I and Q component of a symbol). The channel is Rayleigh fading which includes
fading factor ρ along with AWGN w with a variance of σ2. Hence the signal y received at time instant
t is given by:

yt = ρt.xt + w (2.19)

On the receiver side there is a demapper (also called as demodulator) which produces the probabilities
on transmit bit sequence vi, i = {0, ...,m − 1}. At time t, the probability of error on bit vit noted

32 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

P (vit = b|y;O) is expressed as follows [9]:

P (vit = b|y;O) =
∑
xt∈X ib

P (xt|yt) =
∑
xt∈X ib

P (yt|xt).P (xt) (2.20)

where b = {0, 1}, X ib is the symbol set of constellation where ith bit of xt has value b, and P (xt)
designates the a priori probability of xt. In the presence of equi-probable source the P (xt) = 1.
After BICM deinterleaving the P (vit = b|y;O), the resultant P (cit = b|y; I) is the input to the SISO
decoder. In case of BICM-ID the SISO decoder outputs the extrinsic information ĉ = P (cit = b|y;O)
which after interleaving becomes v̂ = P (vit = b|y; I) and serves as a priori information on bits
vit. Using channel values y, fading coefficient ρ and P (vit = b|y; I) the two parts of (2.20) can be
computed as follows [10]:

P (yt|xt) =
1

σ
√

2π
e
−
|yIt−d − ρIt−d.xI |2 + |yQt − ρ

Q
t .xQ|2

2σ2 (2.21)

P (xt) =
m−1∏
l=0
l 6=i

P (vlt; I) (2.22)

where d is the delay between the transmission of I and Q parts of a modulated symbol x while
implementing SSD.

These expressions are considerably complex for hardware implementation, hence certain simpli-
fications are available which are detailed in following sub sections. To better explain these simplifi-
cations for practical system implementations first a new term called Log Likelihood Ratio (LLR) is
explained below.

2.2.1 Log Likelihood Ratio

LLR is the ratio of the probability of a bit to be one to the probability of that bit to be zero in
logarithmic domain and is define as:

L(vit;O) = ln
P (vit = 1|y;O)
P (vit = 0|y;O)

= ln(P (vit = 1|y;O))− ln(P (vit = 0|y;O)) (2.23)

Consider the system of Fig.2.2 where the demapper outputs the LLRs which, after deinterleaving,
become the input to the decoder. The decoder which is also working in the logarithmic domain, takes
L(cit; I) as input and outputs extrinsic information, L(cit;O), which after interleaving, L(vit; I), serve
as a priori information to the demapper.

2.2.2 Simplification of P (xt)

To compute the expression of (2.22) from the input L(vit; I), first we need to change these LLRs back
into probability which can be done using following expression:

P (vit = 1; I) =
eL(vit;I)

1 + eL(vit;I)
(2.24)

P (vit = 0; I) =
1

1 + eL(vit;I)
(2.25)

2.2. SISO DEMAPPING ALGORITHM 33

−3 −2 −1 1 2 3

(1,3) (3,3)(−1,3)

(−3,−1)

(−1,1) (1,1) (3,1)

(−3,−3) (−1,−3) (1,−3) (3,−3)

(−1,−1) (1,−1) (3,−1)

0111 0011 1011 1111

0110 0010 1010 1110

0100 0000 1000 1100

0101 0001 1001 1101

−1

−2

−3

3

2

1

(−3,1)

(−3,3)
(I , Q)

x2 x3x1

x8

x5 x6 x7

x12 x13 x14 x15

x9 x10 x11

X (I)00 = {−3,−1} X (I)01 = {1, 3}
X (Q)20 = {−3,−1} X (Q)21 = {1, 3}

x4

(v0v1v2v3)

x0

X 2
0 = {x8, x9, x10, x11, x12, x13, x14, x15}
X 1

0 = {x1, x5, x9, x13, x2, x6, x10, x14}
X 0

0 = {x0, x4, x8, x12, x1, x5, x9, x13} X 0
1 = {x2, x6, x10, x14, x3, x7, x11, x15}
X 1

1 = {x0, x4, x8, x12, x3, x7, x11, x15}
X 2

1 = {x0, x1, x2, x3, x4, x5, x6, x7}
X 3

1 = {x0, x1, x2, x3, x12, x13, x14, x15}
X = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}

X (Q)30 = {1,−1} X (Q)31 = {3,−3}
X (I)10 = {1,−1} X (I)11 = {3,−3}

X 3
0 = {x4, x5, x6, x7, x8, x9, x10, x11}

Figure 2.3 — Example of Gray mapped 16-QAM constellation

To explain the simplification, consider a received symbol y of 16-QAM constellation and the symbol
xt with binary mapping 0101 (v0

t , v
1
t , v

2
t , v

3
t) from symbol set X 0

0 as shown in Fig.2.3. The computa-
tion of P (xt), using (2.22), is given by:

P (xt = 0101;xt ∈ X 0
0) = P (v1

t = 1; I).P (v2
t = 0; I).P (v3

t = 1; I)

Normalizing each probability with its value equal to 0, the expression becomes:

P (xt = 0101 ∈ X 0
0) ≈ P (v1

t = 1; I).P (v2
t = 0; I).P (v3

t = 1; I)
P (v1

t = 0; I).P (v2
t = 0; I).P (v3

t = 0; I)
(2.26)

≈ eL(v1t ;I).eL(v3t ;I) (2.27)

≈ eL(v1t ;I)+L(v3t ;I) (2.28)

The expression can be generalized as:

P (xt;xt ∈ X ib) ≈ e

m−1∑
l=0

l 6=i and vlt=1

L(vlt;I)

(2.29)

34 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

2.2.3 The max-log Approximation

Using (2.21) and (2.29), expression of (2.20) becomes:

P (vit = b|y;O) ≈
∑
xt∈X ib

1
σ
√

2π
e

− |yIt−d − ρIt−d.xI |2 + |yQt − ρ
Q
t .xQ|2

2σ2

.e

 m−1∑
l=0

l 6=i and vlt=1

L(vlt;I)

(2.30)

≈
∑
xt∈X ib

1
σ
√

2π
e

−
|yIt−d − ρIt−d.xI |2 + |yQt − ρ

Q
t .xQ|2

2σ2
+

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

Taking natural log of (2.30) to be used in (2.23), the expression becomes:

ln
(
P (vit = b|y;O)

)
≈ K+ln

∑
xt∈X ib

e

−
|yIt−d − ρIt−d.xI |2 + |yQt − ρ

Q
t .xQ|2

2σ2
+

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

(2.31)
Applying the log-max approximation as given in (2.9), expression in (2.31) becomes:

ln
(
P (vit = b|y;O)

)
≈ K+ max

xt∈X ib

−|yIt−d − ρIt−d.xI |2 + |yQt − ρ
Q
t .xQ|2

2σ2
+

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

(2.32)

Hence the LLR expression becomes

L(vit;O) ≈ max
xt∈X i1

−|yIt−d − ρIt−d.xI |2 + |yQt − ρ
Q
t .xQ|2

2σ2
+

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

 (2.33)

− max
xt∈X i0

−|yIt−d − ρIt−d.xI |2 + |yQt − ρ
Q
t .xQ|2

2σ2
+

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

which can be rewritten as:

L(vit;O) ≈ min
xt∈X i0

 |yIt−d − ρIt−d.xI |2 + |yQt − ρ
Q
t .xQ|2

2σ2
−

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

 (2.34)

− min
xt∈X i1

 |yIt−d − ρIt−d.xI |2 + |yQt − ρ
Q
t .xQ|2

2σ2
−

m−1∑
l=0

l 6=i and vlt=1

L(vlt; I)

2.3. SISO EQUALIZATION ALGORITHM 35

Hence by applying the max-log approximation the sum of exponentials in (2.20) reduces to minimum
operations to compute the LLRs for the decoder.

2.2.4 Simplification For Gray Mapped Constellation

In the absence of a priori information and no SSD the expression of LLR in (2.34)is :

L(vit;O) ≈ min
xt∈X i0

(
|yIt − ρIt .xI |2 + |yQt − ρ

Q
t .xQ|2

2σ2

)
− min
xt∈X i1

(
|yIt − ρIt .xI |2 + |yQt − ρ

Q
t .xQ|2

2σ2

)
(2.35)

In case of a constellation which is Gray mapped and m is even, the I and Q components are indepen-
dent of each other. A simplification has been addressed in [?] which transforms the LLR computation
expression into:

L(vit;O) ≈ 1
2σ2

[
min

xIt∈X (I)i0

(
|yIt − ρt.xIt |2

)
− min
xIt∈X (I)i1

(
|yIt − ρt.xIt |2

)]
for i = 0 . . .

m

2
−1 (2.36)

and

L(vjt ;O) ≈ 1
2σ2

[
min

x
(Q)
t ∈X (Q)j0

(
|yQt − ρt.x

Q
t |2
)
− min
xQt ∈X (Q)j1

(
|yQt − ρt.x

Q
t |2
)]

for j =
m

2
. . .m− 1

(2.37)
The X (I)ib and X (Q)jb are the point sets on I and Q-axis where ith and jth bits of symbol xt has
value equal to b.

2.3 SISO Equalization Algorithm

Let us now consider the system model of Fig. 2.4 which extend the system model of Fig. 2.2 by
including by including MIMO STC in transmitter to achieve the spatial multiplexing and/or time
diversity. The input vector y received at the input of the receiver is given by the following expression:

y = Hx + w (2.38)

where H is the MIMO channel matrix and w is AWGN noise vector. On the receiver side a MIMO
equalizer has been added which removes the co-antenna interference and provides the estimated sym-
bol vector x̃, corresponding equivalent bias vector (fading coefficient) and equivalent noise variance
to the demapper. From the demapper, the forward path works as described in previous subsection.
Regarding feedback path, the turbo decoder having the capability of producing both a a posteriori
and/or extrinsic information, provides a posteriori information to a soft mapper which provides the
a priori information to the equalizer as decoded symbol vector x̂. Inside the equalizer the two in-
formations, received channel symbol vectors and decoded symbol vectors, are used as described in
following subsections.

2.3.1 MMSE-IC LE Algorithm

The equalizer considers that a symbol of the vector x is distorted by the Nt − 1 other symbols of
the vector and the channel noise. Hence the role of the equalizer is to battle both multi antenna

36 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

MAPPER
INTERLEAVER

MIMO

CODE)
(SPACE TIME

RAYLEIGH FADING CHANNEL

DEC−1

DEC−2

TURBO DECODER

Decoded Bits
MIMO

EQUALIZER

MAPPER
SOFT

SOURCE CC−1

CC−2

d

S

P1

P2

TURBO ENCODER

SSD

DEINTERLEAVER

BICM
(QPSK, 16−QAM

64−QAM, 256−QAM)
∏

2

xvc

x =

x0

x1

.

.

x

xSSD

DECODER

∏
1

∏
1

∏−1
1

c̃

L(vit;O)
= =

L(cit; I)

x̃ =

x̃0

x̃1

.

.

∏
2

=

L(vit; I)

ĉext/apost

=

=
L(vit; I)

v̂apost

v̂ext

y

y =

y0

y1

.

.

∏
1

x̂ =

x̂0

x̂1

.

.

DEMAPPER ∏−1
2

ṽ

L(cit;O) L(p1)

L(s)

L(p2)

Figure 2.4 — System diagram with turbo encoder, BICM interleaver, mapper (optional SSD), STC,
Rayleigh fading channel, MIMO equalizer, demapper, deinterleaver, turbo decoder and soft mapper

interference and channel noise. The right side of expression (2.38) can be divided into desired symbol
xj and multi-antenna interference:

y = hj .xj︸ ︷︷ ︸
useful signal

+
∑
i 6=j

hi.xi︸ ︷︷ ︸
interference

+ w︸︷︷︸
noise

, j ∈ {0, Nt − 1} (2.39)

where hj is the jth column of H matrix. One of the low complexity techniques to achieve the equal-
ization function is the use of filter based symbol equalization [31]. An estimation of the symbol xj
can be carried out through a linear filter which minimizes the mean square error (MMSE) between
the transmitted symbol xj and the output of the equalizer x̃j . The estimated symbol can be presented
in the following form, using the optimal Wiener filter aHj = λj .pHj [32][33][34]:

x̃j = aHj (y −
∑
i 6=j

hi.x̂i)

= λj .pHj (y −Hx̂ + hj x̂j)

= λj [pHj (y −Hx̂) + βj x̂j]

= λj .pHj (y −Hx̂) + gj x̂j

(2.40)

2.3. SISO EQUALIZATION ALGORITHM 37

with :

βj = pHj hj

pj = (HUHH + σ2
w.I)−1hj

U = diag(û2
0, . . . , û

2
Nt−1)

û2
j = E

{
|xj − x̂j |2 |La

}
gj = λj .βj

λj =
σ2
x

1 + (σ2
x − û2

j)βj

(2.41)

where j ∈ {0, Nt − 1}.

• λj , βj et gj represent the MMSE equalization coefficients,

• pj refers to MMSE detection vector,

• σ2
x is the variance of the constellation of transmitted symbols,

• the coefficient û2
j represents a reliability information reflecting the residual error on the decoded

symbol x̂j as compared to the symbols of the constellation.

The diagonal matrix U = diag(û2
0, . . . , û

2
Nt−1) is made up of û2

j and is involved in the compu-
tation of pj vector. During the first iteration of turbo equalization process, no a priori information
of the transmitted symbols are available (x̂j = 0) and the symbols are equiprobable. Therefore each
term û2

j becomes equal to σ2
x, and x̃j can be written as:

x̃j = σ2
xh

H
j (σ2

xH.HH + σ2
w.I)−1y (2.42)

From the second iteration, the a priori information provided by channel decoder about transmit-
ted symbols, gradually improves over the iterations and approaches to asymptotic performance. The
asymptotic performance is achieved when the estimated data becomes equal to the transmitted data
(x̂j = xj), which is also called the ‘Geni’ case. By replacing x̂j by xj in equation (2.40), the detected
symbol can be written:

x̃j =
σ2
xh

H
j

σ2
xhHj hj + σ2

w

(hj x̂j + w)

The a priori information x̂j is calculated from the LLRs produced by channel decoder. One can divide
the (2.40) into two terms: the first one reflecting the effect of interference cancellation (IC) and the
other related to the desired symbol by using bias or equivalent fading coefficient gj . The computation
of pj = (HUHH + σ2

w.I)−1hj = E−1.hj = F .hj leads to matrix inversion [32][33]. The matrix
F of size Nr × Nr is calculated for each space time block resulting in a significant computational
complexity. It is however possible to reduce the complexity of the algorithm of MMSE-IC detection
by simplifying the calculation of matrix inversion or limiting its use. To do this, approximate versions
of MMSE-IC algorithm can be used: MMSE-IC1, MMSE-IC2.

38 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

2.3.1.1 MMSE-IC1

A first approximation of the MMSE-IC algorithm [35][36] is to simplify the inverse matrix by replac-
ing the terms û2

j by its average value û2. It has been shown in [33] that :

û2 = E
{
û2
j

}
= E

{
E
{
|xj − x̂j |2 |La

}}
= E

{
E
{
|xj |2 |La

}}
− E

{
|x̂j |2

}
= E

{
|xj |2

}
− E

{
|x̂j |2

}
= σ2

x − σ2
x̂

(2.43)

where σ2
x̂ represents the variance of the decoded symbols. By applying this approximation, the matrix

F becomes a hermitian matrix.

F = E−1 = ((σ2
x − σ2

x̂)H.HH + σ2
w.I)−1 (2.44)

and

pj = Fhj (2.45)

Likewise, in (2.41), by replacing the term û2
j by its average value û2, the coefficients λj becomes :

λj =
σ2
x

1 + σ2
x̂βj

(2.46)

This simplified version requires less computation than the original algorithm since the matrix F does
not depend on the terms û2

j , but on their average û2. Moreover, taking into account the properties of
the matrix F we can greatly simplify the matrix inversion, e.g. the determinant of a Hermitian matrix
is real. The division by the determinant is used explicitly or implicitly by the matrix inversion method
chosen. Hence, having a real determinant rather than the complex one is interesting to reduce the
complexity of the matrix inversion implementation.

2.3.1.2 MMSE-IC2

By considering one of the a priori information perfect (σ2
x̂ = σ2

x) from second iteration, the matrix
inversion is necessary only in the first iteration (see equation 2.42). For the next iterations the x̃j are
given by :

x̃j =
σ2
xh

H
j

σ2
xhHj hj + σ2

w

(y −Hx̂ + hj x̂j) (2.47)

This method [37] returns to a conventional MMSE detection information without a priori in the first
iteration and then use the same linear filtering (matched filtering type) for all subsequent iterations. It
has a lower complexity as compared to MMSE-IC1. However, this has an impact on the performance,
as out of two a priori informations (σ2

x̂ and x̂), σ2
x̂ has been forced to its maximum value. Note that the

linear filter used to detect IC-MMSE2 is equivalent to zero forcing detection with a priori information
(ZF-IC: Zero Forcing - Interference Canceler) or that of the matched filter (MF-IC: Matched Filter -
Interference Canceler) [38].

2.4. PARALLELISM IN TURBO RECEIVER 39

2.3.2 Soft Demapping

To demap an estimated symbol x̃, the expression (2.35) is used where symbol y is replaced with x̃,
ρ will be replaced with g and σ2 is replaced with g(1− g)σ2

x. In case of Gray mapped constellation,
expressions (2.36) and (2.37) will provide a simplified expression with similar replacements of y, ρ
and σ2 with x̃, g and g(1− g)σ2

x respectively.

2.3.3 Soft Mapping

The LLR to symbol conversion is carried out with the help of LLRs (ṽapost = L(vit; I)) coming out
of the BICM interleaver (

∏
2) in feedback path. The estimation of x̂ of transmitted symbol x is given

by :

x̂ = E {x|La}

=
∑
s∈X

sP {x = s|La} (2.48)

where La is the subset of LLRs (v̂apost = L(vit; I)) corresponding to bits constituting the transmitted
symbol x which is part of constellation X of size 2m. The term P {x = s|La} means the a priori
probability of symbol s. By assuming the transmitted bits statistically independent this probability
becomes:

P {x = s|La} =
m−1∏
i=0

P
{
vi = b

}
(2.49)

where vi is the ith bit of symbol s having value b = {0, 1} according to constellation mapping used
and the term P

{
vi = b

}
can be computed using (2.24) and (2.25).

2.4 Parallelism in Turbo Receiver

Iterative/turbo processing in a wireless base-band receiver ensures promising error rate performance
at the cost of high processing time for data retrieval. Exploration of parallelism in iterative processes,
while maintaining the error rate performance, contributes towards fulfilling the high transmission rate
requirements of emerging wireless communication standards. This section is dedicated to illustrate
the available parallelism in the three previously described turbo processes (turbo decoding, turbo de-
modulation and turbo equalization). A comprehensive study on parallelism levels for turbo decoding
is already conducted in [39] and will be briefly summarized in next subsection. However, regarding
turbo demodulation and turbo equalization, the study on parallelism is conducted for the first time and
presented here. Parallelism classification is presented in this section, while parallel system modeling
and simulation results are detailed in section 2.5.

2.4.1 Parallelism in Turbo Decoding

In turbo decoding with the max-log-MAP algorithm executing in the decoder, the parallelism can
be classified at three levels: (1) Metric level, (2) SISO decoder level, and (3) Turbo-decoding level.
The first (lowest) parallelism level concerns the elementary computations for LLR generation inside
a SISO decoder. Parallelism between these SISO components, inside a turbo decoding process, be-
longs to the second parallelism level. The third (highest) parallelism level duplicates the whole turbo
decoder hardware itself.

40 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

2.4.1.1 Metric Level Parallelism

The level of parallelism of BCJR metrics computation addresses the parallelism available in the cal-
culations of all the metrics required to decode each received symbol within a BCJR SISO decoder.
This level of parallelism exploits both the parallelism of inherent structure of the trellis [40][41], and
the parallel calculations of BCJR [40][42][41].

0

1

2

3

0

1

2

3

Sk1 Sk

0

1

2

3

0

1

2

3

Sk1 Sk

Figure 2.5 — Example of trellis

Parallelism of Trellis Transition: In a decoder, the first parallelism available in the max-log-
MAP algorithm is computation of the metrics associated to each transition of a trellis regarding γ,
α, β, and the extrinsic information. Trellis-transition parallelism can easily be extracted from the trel-
lis structure as the same operations are repeated for all transitions. The first metric (γ) calculation is
completely parallelizable with a degree of parallelism naturally bounded by the number of transitions
in the trellis. But in practice, the degree of parallelism associated with calculating the branch metric is
bounded by the number of possible binary combinations of input and parity bits. Thus, several transi-
tions may have the same probability in a trellis. The other metrics α, β, and extrinsic computation can
be parallelized with a bound of total number of transitions in a trellis. Furthermore this parallelism
implies low area overhead as only the computational units have to be duplicated. In particular, no
additional memories are required since all the parallelized operations are executed on the same trellis
section, and in consequence on the same data.

FRAMEFRAME

EXTRINSIC
EXTRINSIC

(a) (b)
T

α

0 0

N − 1 N − 1

β

β

α

T
2

0 0

Figure 2.6 — (a) Forward backward scheme (b) Butterfly scheme

Parallelism of BCJR Calculation: A second metric parallelism can be orthogonally extracted
from the BCJR algorithm through a parallel execution of the three BCJR computations (α, β, and
extrinsic computation). Parallel execution of backward recursion and extrinsic computations was pro-
posed with the original Forward-Backward scheme, depicted in Fig.2.6(a). So, in this scheme, we can
notice that BCJR computation parallelism degree is equal to one in the forward part and two in the
backward part.

To increase this parallelism degree, several schemes are proposed [42]. Fig.2.6(b) shows the but-
terfly scheme which doubles the parallelism degree of the original scheme through the parallelism

2.4. PARALLELISM IN TURBO RECEIVER 41

between the forward and backward recursion computations. This is performed without any mem-
ory increase and only BCJR computation resources have to be duplicated. Thus, metric computation
parallelism is area efficient but still limited in parallelism degree.

2.4.1.2 SISO Decoder Level Parallelism

The second level of parallelism concerns the SISO decoder level. It consists of the use of multiple
SISO decoders, each executing the BCJR algorithm and processing a sub-block of the same frame
in one of the two interleaving orders. At this level, parallelism can be applied either on sub-blocks
and/or on component decoders.

III

II

I

IV

FRAME

EXTRINSIC

EXTRINSIC

II III

IVI

EXTRINSIC

EXTRINSIC

3N
4

N − 1

N
2

3N
4 − 1

0

N
4 − 1

N
4

N
2 − 1

0

N − 1

T
8

α I

β
I

T
8

α I
I

β
II

βII αIII

αIV

βI

βIII

αII

αI βIV

T
8

α I
V

β
IV

T
8

α I
II

β
III

00

0 0

Figure 2.7 — Sub-block parallelism with message passing for metric initialization

Frame Sub-blocking: In sub-block parallelism, each frame is divided into M sub-blocks and
then each sub-block is processed on a BCJR-SISO decoder using adequate initializations as shown in
Fig.2.7. Besides duplication of BCJR-SISO decoders, this parallelism imposes two other constraints.
On the one hand, interleaving has to be parallelized in order to scale proportionally the communication
bandwidth. Due to the scramble property of interleaving, this parallelism can induce communication
conflicts except for interleavers of emerging standards that are conflict-free for certain parallelism
degrees. These conflicts force the communication structure to implement conflict management mech-
anisms and imply a long and variable communication time. This issue is generally addressed by
minimizing interleaving delay with specific communication networks [43]. On the other hand, BCJR-
SISO decoders have to be initialized adequately either by acquisition or by message passing.

Acquisition method has two implications on implementation. First of all extra memory is required
to store the overlapping windows when frame sub-blocking is used and secondly extra time will be
required for performing acquisition. Other method, the message passing, which initializes a sub-block
with recursion metrics computed during the previous iteration in the neighboring sub-blocks, needs
not to store the recursion metric and time overhead is negligible. In [39] a detailed analysis of the
parallelism efficiency of these two methods is presented which gives favor to the use of message
passing technique.

Shuffled Turbo Decoding : The basic idea of shuffled decoding technique [44] is to execute all
component decoders in parallel and to exchange extrinsic information as soon as it is created, so that
component decoders use more reliable a priori information. Thus the shuffled decoding technique per-
forms decoding (computation time) and interleaving (communication time) fully concurrently while

42 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

Iteration 1 Iteration 2

D2 D3 DMD1

DM+2 DM+3DM+1

D2 D3 DMD1

DM+2 DM+3DM+1D2M D2M

Figure 2.8 — Shuffled turbo decoding

serial decoding implies waiting for the update of all extrinsic information before starting the next
half iteration (Fig.2.8). Thus, by doubling the number of BCJR SISO decoders, component-decoder
parallelism halves the iteration period in comparison with originally proposed serial turbo decoding.

Nevertheless,to preserve error-rate performance with shuffled turbo decoding, an overhead of
iteration between 5 and 50 percent is required depending on the BCJR computation scheme, on the
degree of sub-block parallelism, on propagation time, and on interleaving rules [39].

2.4.1.3 Parallelism of Turbo Decoder

The highest level of parallelism simply duplicates whole turbo decoders to process iterations and/or
frames in parallel. Iteration parallelism occurs in a pipelined fashion with a maximum pipeline depth
equal to the iteration number, whereas frame parallelism presents no limitation in parallelism degree.
Nevertheless, turbo-decoder level parallelism is too area-expensive (all memories and computation
resources are duplicated) and presents no gain in frame decoding latency.

2.4.2 Parallelism in Turbo Demodulation

In a turbo demodulation system, turbo decoding parallelism presented above can be directly inherited
in the decoding part. In demodulator part, the parallelism can be categorized into same three levels as
defined in turbo decoding which are discussed below.

2.4.2.1 Metric Level Parallelism

Generation of LLR using (2.34) needs Euclidean distances between received symbol y and constel-
lation symbols x, the sum of a priori information and minimum operations. The metric level paral-
lelism concerns the concurrent computations of all of these operations. In a constellation with m bits
per symbol, one needs 2m distance and a priori addition operations which are then fed to 2m min-
imum operations each having 2m−1 inputs. This illustrates the maximum parallelism degree at this
level, which varies significantly with m, and thus, poses a real limitation while targeting a flexible,
yet efficient architecture.

If fact, having minimum operations over more than two input values will imply a cascaded hard-
ware min operators which can significantly impact the maximum achievable clock frequency. Thus
using 2-input minimum operations will improve both performance in terms of clock speed and flex-
ibility efficiency for different constellation sizes. In order to support up to 256-QAM constellation,
the parallelism degree regarding the required minimum operations (2.34) is limited to 16. In this
context, if two distances between received symbol y and two x symbols with complementary binary

2.4. PARALLELISM IN TURBO RECEIVER 43

mapping is computed, all the minimum operations related to each LLR of received symbol y can
be performed concurrently. Hence, two computational units constitute the most efficient parallelism
degree for distance calculators and a priori adders at this level.

2.4.2.2 Demapper Component Level Parallelism

Same as in turbo decoding, there are two categories at this level of parallelism: sub-block parallelism
and shuffled turbo demodulation.

Frame Sub-blocking: At this level, the feature which can be exploited for parallelism in the
demapper is the independence of a symbol from other symbols in a frame received from a memory-
less channel. Hence, in demapper there are no issue of sub-block initialization at this level of par-
allelism compared to turbo decoding. Therefore, to achieve a linear increase in throughput by the
addition of multiple distance calculators, which is limited to a parallelism degree of two at the first
parallelism level, the best choice is to demap symbols from multiple sub-blocks in parallel. This par-
allelism level also imposes the requirement of an adequate communication network to resolve the
conflicts caused by the interleaving property of BICM.

Sub Block 1
Sub Block 0

Sub Block 1
Sub Block 0

Sub Block 1
Sub Block 0

Communication
Interconnect 1

Communication
Interconnect 1

Communication
Interconnect 2

Communication
Interconnect 2

Communication
Interconnect 1

M
et

ric
 M

es
sa

ge
 P

as
sin

gSub Block 0
Sub Block 1

Sub Block 0
Sub Block 1

(Interleaved Domain)

Sub Block 0
Sub Block 1

Sub Block 0
Sub Block 1

(Interleaved Domain)

(Natural Domain)(Natural Domain)
Decoding

Decoding Decoding

Decoding

M
et

ric
 M

es
sa

ge
 P

as
sin

g

TIME

D
em

ap
pi

ng
D

ec
od

in
g

Tu
rb

o

PR
O

CE
SS

ES

nst Shuffled Iteration1st Shuffled Iteration

α

Sub Block q − 1 Sub Block q − 1Sub Block q − 1

∏
2

∏−1
2

∏
1

∏−1
1

∏
1

∏−1
1

∏
2

∏−1
2

∏−1
2

β

Sub Block p− 1

Sub Block p− 1

Sub Block p− 1

Sub Block p− 1

Figure 2.9 — Proposed execution of parallel turbo demodulation

Shuffled Turbo Demodulation: This type of parallelism is inherited from the concept of shuf-
fled turbo decoding to execute both the decoding and demodulation tasks concurrently. The proposed
scheduling of shuffled turbo demodulation process is shown in Fig.2.9. Once the demapper compo-
nents receive the input data, demapping is performed for the first time without a priori information to
fill the memories of the decoder components. After this, both processes run in a shuffled scheme and
exchange information with other SISO components.

2.4.2.3 Turbo Demodulation Level Parallelism

The highest level of parallelism duplicates the whole turbo demodulator to process iterations and/or
frames in parallel.

44 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

2.4.3 Parallelism in Turbo Equalization

The proposed three level classification of parallelism techniques is extended to turbo equalization and
detailed below.

2.4.3.1 Symbol Estimation Level Parallelism

A closer look at the expression required in MMSE-IC algorithm (2.40 to 2.47) reveals the serial nature
of the implied elementary computations. Due to this fact, the only parallelism possibility in MMSE-
IC algorithm at this level is temporal parallelism which can be achieved through pipelining technique.
Hence, at top level one can temporally parallelize equalization coefficient computations and symbol
estimation by pipelining them. Next step is to spread each of coefficient computation and symbol
estimation process on different pipeline stages depending upon the critical path requirements. Once
pipeline stages are decided one can fully parallelize each stage. The idea can be explained through
an example of HHH computation in (2.44) for an H matrix having 4 rows and 4 columns. In a
4×4 complex numbered matrix multiplication, to get one element of the resultant matrix one need to
multiply 4 elements of a row of first matrix with 4 elements of a column of second matrix and then add
the results of these four multiplications through two serial complex additions. Hence, computation of
one element of HHH needs 4 complex multipliers and three complex adders with a critical path
consisting of one complex multiplication and 2 serial complex additions. The maximum parallelism
degree for the 4×4 configuration, at this parallelism level, corresponds to the concurrent computation
of the 16 elements of HHH which requires 64 complex multipliers and 48 complex adders. Similar
parallelism degrees can be achieved at this level for other pipeline stages of equalization coefficient
computations and symbol estimation.

2.4.3.2 Equalizer Component Level Parallelism

Parallelism techniques at this level can be classified in two categories: sub-block parallelism and
shuffled turbo equalization.

Frame Sub-blocking: At this level, the feature which can be exploited for parallelism in the
equalizer is the independence of a symbol vector from other vectors in a frame received from a
memory-less channel. Hence, a linear increase in throughput can be achieved by the addition of
more equalizer components to process different sub-blocks concurrently. In consequence, multiple
demapper and soft mapper components will be required to balance the throughput of the multiple
equalizers.

Shuffled Turbo Equalization: The proposed scheduling of shuffled turbo equalization with sub-
block parallelism is shown in Fig.2.10. Once the equalizer components receive symbol vector sub-
blocks, they perform symbol estimation in the absence of a priori information. The associated demap-
per components generate the LLRs from these estimated symbols in a pipelined fashion, which are
deinterleaved before filling the input data memories of the decoder. After filling the decoder memo-
ries, all components of the parallel turbo equalizer work concurrently. Soft mappers, equalizers and
demappers work in pipeline fashion to generate LLRs for the decoder while, on the other side, decoder
components generate LLRs for the equalization side. As soon as LLRs are generated by demapper
components and decoder components they are exchanged. Computation of σ2

x̂ is carried out during
the soft mapping process and hence used in next shuffle iteration.

2.5. PARALLEL SYSTEM MODELING AND SIMULATION RESULTS 45

Demapping

Equalization

Soft Mapping
Computation

Turbo
Decoding

Sub Block 0
Sub Block 1

Sub Block 0

M
et

ric
 M

es
sa

ge
 P

as
sin

g

(Interleaved Domain)

Sub Block 1

(Interleaved Domain)

(Natural Domain)(Natural Domain)
Decoding

Decoding Decoding

Decoding

M
et

ric
 M

es
sa

ge
 P

as
sin

g

PR
O

CE
SS

ES

TIME

Communication
Interconnect 1

Sub Block 0
Sub Block 1 Sub Block 1

Sub Block 1
Sub Block 0

Sub Block 0
Sub Block 1

Sub Block 0
Sub Block 1

Sub Block 0

CommunicationCommunication

CommunicationCommunication
Interconnect 1

Interconnect 2 Interconnect 2

Interconnect 1

x̃

x̂ = 0σ2
x̂

x̃

x̂

x̃

x̂

σ2
x̂ = 0 σ2

x̂ Computed in Previous Iterationσ2
x̂ = 0

nst Shuffled Iteration1st Shuffled Iteration

α

∏
1

∏−1
1

∏−1
2

∏−1
2

∏
1

∏−1
1

∏−1
2

Sub Block q − 1 Sub Block q − 1

β

Sub Block p− 1

Sub Block p− 1

∏
2

∏
2

Sub Block q − 1

Sub Block p− 1

Sub Block p− 1

Figure 2.10 — Proposed execution of parallel turbo equalization

2.4.3.3 Turbo Equalization Level Parallelism

The highest level of parallelism duplicates the whole turbo equalization to process iterations and/or
frames in parallel.

2.5 Parallel System Modeling and Simulation Results

The parallelism performance for convolutional turbo decoder has been comprehensively studied in
[39]. In order to analyze the parallelism performance both for parallel turbo demodulation and parallel
turbo equalization, corresponding software models are created which simulate the first and second
level of parallelisms at LLR transaction level. Following subsections separately detail the software
model and simulation results of parallel turbo demodulation and parallel turbo equalization.

2.5.1 Parallel Turbo Demodulation

Regarding the software model for parallel turbo demodulation, double binary turbo code of DVB-RCS
standard, random BICM interleaver (

∏
2), mapper using QPSK, 16-QAM, 64-QAM and 256-QAM

and SSD are modeled on the transmitter side. Random BICM interleaver is implemented in such a
way that the systematic bits from coded bits are always mapped on the most protected bits of the
modulated symbols. To implement SSD delay d is taken as one and variable rotation angles can be
input to the model. The channel is implemented as Rayleigh fading.

2.5.1.1 Software Model for Parallel Turbo Demodulation

The modeled architecture of the parallel turbo demodulator is shown in Fig. 2.11. To better explain
the functioning of the parallel turbo demodulator on the receiver side, consider an example of a
frame having A source symbols where each symbol is made up of n bits encoded at a code rate
r and then modulated with m bits per symbol. In this case, there will be B = A×n

r×m modulated

46 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

IN
TERLEA

V
IN

G

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODERD

EIN
TERLEA

V
IN

G

DEMAPPER
q

DEMAPPER
1

DEMAPPER
2

Communication
Interconnect 1

Communication
Interconnect 2

TURBO DEMODULATION

TURBO DECODING

A−1

A−2

A−p B−p

B−2

B−1

/ IN
TERLEA

V
IN

G

/ D
EIN

TERLEA
V

IN
G

∏−1
2 DOMAIN

∏−1
1 DOMAIN

∏
1 DOMAIN∏

2 DOMAIN

Figure 2.11 — Architecture of receiver’s software model

symbols in the frame. In a shuffled turbo demodulation system, the ideal case is that both decoding
and demapping tasks finish at the same time. Since the demapping and decoding tasks are different
in nature, another parameter, the symbol processing throughput ratio of turbo decoder and demapper
component “tpr = Decoder throughput

Demapper throughput” is required. In this scenario the ratio of turbo decoder and
demapper components (DDr) required to finish the frame at the same time can be deduced as follows:

Time for decoding = Time for demapping (2.50)

A
No. of Decoders (p)

Decoder throughput
=

B
No. of Demappers (q)

Demapper throughput
(2.51)

DDr =
No. of Decoders (p)
No. of Demappers (q)

=
A

B × tpr
=

r ×m
n× tpr

(2.52)

Using the above expression, for a dual binary turbo encoder with code rate r = 0.5, 256-QAM system
and tpr = 1 the parameter DDr = 2, i.e, for one demapper component two decoder components on
each side of the turbo decoder are required, whereas for 16-QAM this ratio is one.

Based on this idea, the number of demappers and decoders are given to the software model and
sub-blocks of modulated and encoded symbols are assigned to these components respectively. For the
first time multiple demappers work in parallel and provide the inputs to the decoder after BICM dein-
terleaving (using communication network). Later on all demapper and decoder components execute
together. In case that tpr is one, at each time unit, each demapper component demaps one modulated
symbol. In the turbo decoder, if a decoder component is on the left side of the butterfly (Fig.2.7) each
decoder computes α and β metrics of two symbols and on the right side it computes α, β and extrin-
sic information for two symbols per unit of time. Once the LLRs are ready, exchange of information
through the interleaver/deinterleaver networks of the BICM and that of the turbo decoder takes place

2.5. PARALLEL SYSTEM MODELING AND SIMULATION RESULTS 47

which implements the second level of parallelism. To achieve a scenario where demapping and de-
coding tasks do not finish at the same time, either due to lesser components than required or due to
mismatch in throughput, the faster side will process the whole frame in an iteration while the other
will do the same job in multiple iterations.

(a) (b)

(c) (d)

Figure 2.12 — Serial vs Parallel Turbo Demodulation for 188 Source Byte, double binary encoder
, 1
2

code rate, 16-QAM, Rayleigh fading channel (a) Serial turbo Demodulation ; (b) Parallel turbo
demodulation with 4 Demappers 8 Decoders (4 Turbo Decoders); (c) Parallel turbo demodulation with
8 Demappers 16 Decoders (8 Turbo Decoders); and, (d) Parallel turbo demodulation with 16 Demappers

32 Decoders (16 Turbo Decoders).

2.5.1.2 Simulation Results

Different simulations programs were executed for the serial and parallel models of turbo demodula-
tion. For a system with 188-bytes of data at r = 0.5, with 16-QAM and 256-QAM constellations,
α = 22.5◦, d = 1 and tpr = 1, the results of serial turbo demodulation are shown in Fig. 2.12(a)
& 2.13(a) whereas parallel turbo demodulation results are shown in Fig. 2.12(b,c,d) & 2.13(b,c,d). In
Fig. 2.13(c)&2.13(d) the results of unbalanced demapping and decoding components are shown.

These system parameters (including the rotation angle) are same as opted in [10] for serial turbo
demodulation to have a comparison reference. However, the work in [10] considers original optimal
algorithms for decoding (MAP) and demapping (ML) which imply a gain of 0.2 dB as compared to
the considered algorithms with max-log simplification.

48 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

(a) (b)

(c) (d)

Figure 2.13 — Serial vs Parallel turbo demodulation for for 188 Source Byte, double binary encoder
, 1
2

code rate, 256-QAM, Rayleigh fading channel (a) Serial turbo demodulation ; (b) Parallel turbo
demodulation with 4 Demappers 16 Decoders (8 Turbo Decoders); (c) Parallel turbo demodulation with
2 Demappers 16 Decoders (8 Turbo Decoders); and, (d) Parallel turbo demodulation with 1 Demappers

16 Decoders (8 Turbo Decoders).

To establish the overall performance of the parallel turbo demodulation system two metrics, the
speed gain which is the ratio of the serial and parallel execution times and the area overhead which can
be expressed in terms of the ratio of hardware used for the parallel and serial systems, are summarized
in Table 2.1. Adem and Adec are defined as areas of one component demapper and one component
decoder. ACN1 is the area of communication interconnect between demappers and turbo decoder,
whereas ACN2 is the area of communication interconnect between decoder components of the turbo
decoder as shown in Fig. 2.11. T units of time is taken as a reference which is the decoding time of
a frame in natural or interleaved domain for the serial execution case. In a balanced scenario, for 16-
QAM the DDr is unity, hence an equal number of demapper components and decoder components
on each side of the turbo decoder are required. In 256-QAM this ratio is 2.

Considering the first system configuration of 16-QAM for which serial execution is shown in
Fig.2.12(a) and one of the parallel execution scenario with 4 demappers and 4 turbo decoders (8 de-
coder components) is shown in Fig.2.12(b). In parallel case, 12 shuffled iterations will be required to
reach the same FER performance of 8 serial turbo demodulations iterations. Regarding serial execu-
tion time, the 8 iterations of turbo decodings will take 16T units of time. For double binary encoding
at r = 0.5 and 16-QAM modulation, the number of modulated symbols in the frame will be same
as the number of encoded symbol. Hence, with a tpr = 1, demapping will also take T units of time
to demap the frame. This will result in 24T units of time for 8 turbo demodulation iterations. For

2.5. PARALLEL SYSTEM MODELING AND SIMULATION RESULTS 49

the parallel case with 4 demappers and 4 turbo decoders, first demapping will take T
4 units of time

and each of the 12 shuffled iterations will take T
4 units of time. This will result in a total time of

13T
4 = 3.25T units of time for parallel turbo demodulation. The resultant time gain is 7.38 and area

overhead is (4Adem+8Adec+ACN1+ACN2)
(Adem+Adec)

. With a reasonable assumption of ACN1&2
≤ 4Adem in area

overhead expression for this configuration, the resultant value will be less than equal to 8. Hence,
with this assumption the parallelism efficiency (ratio of the time gain and area overhead) approaches
to unity. On the same bases, using time gain and area overhead presented in Table 2.1 for other system
scenarios, parallelism efficiency can be computed.

An interesting aspect shown in Table 2.1 is the marginal increased in number of shuffled itera-
tions when the parallelism level is increased in a balanced system. This is due to the fact that if a
priori information related to even a single bit of a modulated symbol is sent to the demapper by the
decoder, all the bits related to the symbol will be updated by the demapper and hence will help in
rapid convergence. This leads to a linear increase in speed gain with parallelism degree for balanced
systems. However, for unbalanced system more iterations are required as illustrated in the last two
rows of Table 2.1).

Using the expressions of the last column of Table 2.1 and the area information of the SISO com-
ponents, a hardware designer can estimate the parallelism efficiency of an architecture to tradeoff
between throughput and area overhead.

50 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

Ta
bl

e
2.

1
—

Pa
ra

lle
liz

at
io

n
ef

fic
ie

nc
y

re
su

lts
18

8
B

yt
e

So
ur

ce
D

V
B

-R
C

S
E

nc
od

er
R

an
do

m
∏ 2

R
ay

le
ig

h
Fa

di
ng

C
ha

nn
el

16
-Q

A
M

α
=

2
2
.5
◦

r
=

0
.5

tp
r

=
1
D
D
r

=
1

Se
ri

al
E

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

D
em

ap
pi

ng
D

ec
od

in
g

N
o.

of
To

ta
l

R
es

ou
rc

es
Ti

m
e

Ti
m

e
It

er
at

io
ns

Ti
m

e

Fi
g.

2.
12

(a
)

1
D

em
1

D
ec

T
T

8
2
4
T

Pa
ra

lle
lE

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

1
s
t
D

em
ap

pi
ng

Sh
uf

fli
ng

N
o.

of
To

ta
l

Sp
ee

d
A

re
a

R
es

ou
rc

es
Ti

m
e

ite
ra

tio
n

sh
uf

fli
ng

Ti
m

e
G

ai
n

O
ve

rh
ea

d
Ti

m
e

ite
ra

tio
ns

Fi
g.

2.
12

(b
)

4
D

em
8

D
ec

2
C

N
T 4

T 4
12

1
3
T 4

7.
38

(4
A

d
e

m
+

8
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
d

e
m

+
A

d
e

c
)

Fi
g.

2.
12

(c
)

8
D

em
16

D
ec

2
C

N
T 8

T 8
12

1
3
T 8

14
.7

7
(8
A

d
e

m
+

1
6
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
d

e
m

+
A

d
e

c
)

Fi
g.

2.
12

(d
)

16
D

em
32

D
ec

2
C

N
T 1
6

T 1
6

13
1
4
T

1
6

27
.4

3
(1

6
A

d
e

m
+

3
2
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
d

e
m

+
A

d
e

c
)

25
6-

Q
A

M
α

=
2
2
.5
◦

r
=

0
.5

tp
r

=
1
D
D
r

=
2

Se
ri

al
E

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

D
em

ap
pi

ng
D

ec
od

in
g

N
o.

of
To

ta
l

R
es

ou
rc

es
Ti

m
e

Ti
m

e
It

er
at

io
ns

Ti
m

e

Fi
g.

2.
13

(a
)

1
D

em
1

D
ec

T 2
T

8
20

T

Pa
ra

lle
lE

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

1
s
t
D

em
ap

pi
ng

Sh
uf

fli
ng

N
o.

of
To

ta
l

Sp
ee

d
A

re
a

R
es

ou
rc

es
Ti

m
e

ite
ra

tio
n

sh
uf

fli
ng

Ti
m

e
G

ai
n

O
ve

rh
ea

d
Ti

m
e

It
er

at
io

ns

Fi
g.

2.
13

(b
)

4
D

em
16

D
ec

2
C

N
T 8

T 8
12

1
3
T 8

12
.3

(4
A

d
e

m
+

1
6
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
d

e
m

+
A

d
e

c
)

Fi
g.

2.
13

(c
)

2
D

em
16

D
ec

2
C

N
T 4

T 8
15

1
7
T 8

9.
41

(2
A

d
e

m
+

1
6
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
d

e
m

+
A

d
e

c
)

Fi
g.

2.
13

(d
)

1
D

em
16

D
ec

2
C

N
T 2

T 8
19

2
1
T 8

7.
61

9
(A

d
e

m
+

1
6
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
d

e
m

+
A

d
e

c
)

2.5. PARALLEL SYSTEM MODELING AND SIMULATION RESULTS 51

2.5.2 Parallel Turbo Equalization

A software model implementing a parallel turbo equalization was created in C++ programming lan-
guage. On the transmitter side, double binary turbo code, BICM interleaver, mapper and MIMO Spa-
tial Multiplexing (SM) of Wimax standard are modeled. The channel is modeled as MIMO Rayleigh
fading.

IN
TERLEA

V
IN

G

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

CHANNEL
DECODER

D
EIN

TERLEA
V

IN
G

CHANNEL
DECODER

A−1

DEMAPPER
2

DEMAPPER
1

1
SOFT MAPPER

2
SOFT MAPPER

MMSE−IC
EQUALIZER

2

DEMAPPER
q

q
SOFT MAPPER

TURBO DECODING

A−2

A−p B−p

B−2

B−1

/ IN
TERLEA

V
IN

G

/ D
EIN

TERLEA
V

IN
G

TURBO EQUALIZATION

Communication Communication
Interconnect 1 Interconnect 2

MMSE−IC
EQUALIZER

q

MMSE−IC
EQUALIZER

q

∏−1
2 DOMAIN

∏−1
1 DOMAIN

∏
1 DOMAIN∏

2 DOMAIN

Figure 2.14 — Architecture of receiver’s software model

2.5.2.1 Software Model for Parallel Turbo Equalization

The software architectural diagram of the parallel turbo equalizer is shown in Fig. 2.14. Based on the
same concept as used in parallel turbo demodulation, consider an example of a frame havingA source
symbols where each symbol is made up of n bits, encoded at a code rate r, then modulated with m
bits per symbol and finally R symbols are transmitted per STC transmission time on MIMO channel.
In this case, there will be B = A×n

r×m×R modulated symbol vectors in the frame. In a shuffled turbo
equalization system, the best case is when the receiver is balanced in a way that both decoding and
equalization tasks finish at the same time. Demapping and soft mapping are implicitly included in
the equalization task due to their pipelining in parallel execution. Since the equalization and decoding
tasks are different in nature, another parameter, the symbol processing throughput ratio of decoder and
equalizer component “tpr = Decoder throughput

Equalizer throughput” is required. In this scenario, the ratio of decoder
and equalizer components (DEr), required to finish the frame at the same time can be deduced as
follows:

Time for decoding = Time for equalization (2.53)

A
No. of Decoders (p)

Decoder throughput
=

B
No. of Equalizers (q)

Equalizer throughput
(2.54)

52 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

DEr =
No. of Decoders (p)
No. of Equalizers (q)

=
A

B × tpr
=
r ×m×R
n× tpr

(2.55)

Using the above expression, for a dual binary turbo encoder with code rate r = 0.5, 16-QAM 2 × 2
spatially multiplexed system (R = 2), and tpr = 1 the parameter DEr = 2, i.e, for one equalizer
component two decoder components on each side of the shuffled turbo decoder are required.

(a) (b)

(c) (d)

Figure 2.15 — Serial vs parallel turbo equalization for 120 Source Byte, double binary encoder , 1
2

code
rate, 2× 2 MIMO SM (a) QPSK Serial turbo equalization ; (b) 16-QAM Serial turbo equalization; (c)
QPSK parallel turbo equalization with 4 Equalizers 8 Decoders (4 Turbo Decoders) tpr = 1; and, (d)

16-QAM Parallel turbo equalization with 2 Equalizers 8 Decoders (4 Turbo Decoders) tpr = 1.

2.5.2.2 Simulation Results

For a system transmitting frames of 120 bytes at r = 0.5 using QPSK and 16-QAM, 2×2 and
4×4 MIMO SM through Fast Rayleigh fading channel, Frame Error Rate (FER) results of serial
and parallel turbo equalization are shown in Fig. 2.15 and Fig. 2.16.

Considering the first system configuration of QPSK 2×2 MIMO SM (Fig. 2.15(a) for serial turbo
equalization and Fig. 2.15(c) for parallel turbo equalization), 11 shuffled iterations using 4 equalizers
and 4 turbo decoders (8 decoder components) at tpr = 1 provide the same FER performance as 8
serial iterations. Regarding execution time in serial case, if T time units are taken by one compo-
nent decoder to process a frame, the time consumed by a turbo decoder will be 2T per iteration. For
double binary encoding at r = 0.5, QPSK modulation and 2×2 MIMO SM, the number of modu-
lated symbols vectors in the frame will be same as the number of encoded symbol. Hence, with a

2.5. PARALLEL SYSTEM MODELING AND SIMULATION RESULTS 53

(a) (b)

(c) (d)

Figure 2.16 — Serial vs parallel turbo equalization for 120 Source Byte, double binary encoder , 1
2

code
rate, 4× 4 MIMO SM (a) QPSK Serial Turbo equalization ; (b) 16-QAM Serial Turbo equalization; (c)
QPSK Parallel turbo equalization with 2 Equalizers 8 Decoders (4 Turbo Decoders) tpr = 1; and, (d)

16-QAM Parallel Turbo equalization with 2 Equalizers 8 Decoders (4 Turbo Decoders) tpr = 2.

tpr = 1, equalization and demapping tasks (where demapping is performed in pipelined way with
equalization) will also take T units of time. Soft mapping will also consume T time units per itera-
tion in order to match its throughput with equalizer and demapper in parallel case. Since in the first
iteration soft mapping is not required, the total consumed time in serial execution case becomes 31T
for 8 global iterations. In parallel execution case, using 4 equalizers and 4 turbo decoders with shuf-
fled turbo equalization, the first equalization and demapping pipelined process will take 0.25T unit
of time and the 11 shuffled iterations will take 11 × 0.25T unit of time. This results in 3T unit of
time for parallel execution. Hence it gives a speed gain (defined as the ratio of the serial and paral-
lel execution times) equals to 10.3. The area overhead which is the ratio of area of the parallel and
serial cases, are summarized in Table 2.2 where Aequ and Adec are defined as areas of one equalizer
and one decoder component respectively. ACN1 is the area of communication interconnect between
demappers/soft mappers and turbo decoder, whereasACN2 is the area of communication interconnect
between decoder components of the turbo decoder as shown in Fig. 2.14. With a reasonable assump-
tion of ACN1&2

≤ 4Aequ, parallelism efficiency (ratio of speed gain and area overhead) becomes
greater than 1.25. This parallel efficiency of more than unity can be translated as increased conver-
gence in parallel execution case. This comes from the fact that an updated a posteriori information
related to a single bit of a symbol in a vector, coming from the turbo decoder, will update LLRs re-
lated to all bits of the vector at the demapper output. Results of the other system configurations are
summarized in Table 2.2 and all of them lead to promising parallelism performance.

54 CHAPTER 2. TURBO RECEPTION ALGORITHMS AND PARALLELISM

Ta
bl

e
2.

2
—

Pa
ra

lle
liz

at
io

n
E

ffi
ci

en
cy

R
es

ul
ts

12
0

B
yt

e
So

ur
ce

D
ou

bl
e

B
in

ar
y

E
nc

od
er

an
d
∏ 2

of
W

im
ax

St
an

da
rd

2×
2

M
IM

O
SM

Q
PS

K
an

d
16

-Q
A

M
r

=
0
.5

tp
r

=
1

Se
ri

al
E

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

E
qu

al
iz

at
io

n
D

ec
od

in
g

So
ft

M
ap

pi
ng

N
o.

of
To

ta
l

R
es

ou
rc

es
Ti

m
e

Ti
m

e
Ti

m
e

It
er

at
io

ns
Ti

m
e

Fi
g.

2.
15

(a
)

1
E

qu
1

D
ec

T
T

T
8

3
1
T

Fi
g.

2.
15

(b
)

1
E

qu
1

D
ec

T 2
T

T 2
8

2
3
.5
T

Pa
ra

lle
lE

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

1
s
t
D

em
ap

pi
ng

Sh
uf

fli
ng

N
o.

of
To

ta
l

Sp
ee

d
A

re
a

R
es

ou
rc

es
Ti

m
e

ite
ra

tio
n

sh
uf

fli
ng

Ti
m

e
G

ai
n

O
ve

rh
ea

d
Ti

m
e

ite
ra

tio
ns

Fi
g.

2.
15

(c
)

4
E

qu
8

D
ec

2
C

N
T 4

T 4
11

1
2
T 4

10
.3

(4
A

e
q

u
+

8
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
e

q
u
+
A

d
e

c
)

Fi
g.

2.
15

(d
)

2
E

qu
8

D
ec

2
C

N
T 4

T 4
11

1
2
T 4

7.
8

(2
A

e
q

u
+

8
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
e

q
u
+
A

d
e

c
)

12
0

B
yt

e
So

ur
ce

D
ou

bl
e

B
in

ar
y

E
nc

od
er

an
d
∏ 2

of
W

im
ax

St
an

da
rd

4×
4

M
IM

O
SM

Q
PS

K
an

d
16

-Q
A

M
r

=
0
.5

tp
r

=
1

fo
rQ

PS
K

an
d
tp
r

=
2

fo
r1

6-
Q

A
M

Se
ri

al
E

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

E
qu

al
iz

at
io

n
D

ec
od

in
g

So
ft

M
ap

pi
ng

N
o.

of
To

ta
l

R
es

ou
rc

es
Ti

m
e

Ti
m

e
Ti

m
e

It
er

at
io

ns
Ti

m
e

Fi
g.

2.
16

(a
)

1
E

qu
1

D
ec

T 2
T

T 2
8

2
3
.5
T

Fi
g.

2.
16

(b
)

1
E

qu
1

D
ec

T 2
T

T 2
8

2
3
.5
T

Pa
ra

lle
lE

xe
cu

tio
n

R
ef

.
H

ar
dw

ar
e

1
s
t
D

em
ap

pi
ng

Sh
uf

fli
ng

N
o.

of
To

ta
l

Sp
ee

d
A

re
a

R
es

ou
rc

es
Ti

m
e

ite
ra

tio
n

sh
uf

fli
ng

Ti
m

e
G

ai
n

O
ve

rh
ea

d
Ti

m
e

ite
ra

tio
ns

Fi
g.

2.
16

(c
)

2
E

qu
8

D
ec

2
C

N
T 4

T 4
12

1
3
T 4

7.
2

(2
A

e
q

u
+

8
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
e

q
u
+
A

d
e

c
)

Fi
g.

2.
16

(d
)

2
E

qu
8

D
ec

2
C

N
T 4

T 2
12

1
4
T 4

6.
7

(2
A

e
q

u
+

8
A

d
e

c
+
A

C
N

1
+
A

C
N

2
)

(A
e

q
u
+
A

d
e

c
)

2.6. CONCLUSION 55

2.6 Conclusion

In this chapter, we have summarized three SISO algorithms related to the equalizer, demapper and
convolutional turbo decoder blocks of an iterative receiver. Simplified expressions of the considered
algorithms, suitable for hardware implementations, are also provided.

To address the issues of latency and low throughout, associated with iterative receivers, paral-
lelism in turbo decoder is recalled from previous works. For turbo demodulation and turbo equaliza-
tion, parallelism on three different level is proposed in this chapter. At the end of the chapter, through
the software model results, speed gain and parallelism efficiency for parallel turbo demodulation and
parallel turbo equalization are presented and analyzed for different system configurations. It is also
shown that for a balanced system where different tasks finish together, shuffled turbo demodulation/e-
qualization provides the benefits for convergence. In addition, the presented parallel modeling gives
the user an estimate on hardware cost and parallelism efficiency for the selection of an optimized
parallelism degree.

CHAPTER

3 Heterogeneous Multi-ASIP
NoC-based Approach

WHILE the first two chapters have addressed the algorithmic aspects of the target flexible high-
throughput iterative receiver, this chapter introduces the explored implementation approach.

Flexibility and high-throughput requirements are being widely investigated in the design of digital
receivers during the last few years. Several implementations have been proposed. Some of these im-
plementations succeeded in achieving high throughput for specific standards with a highly dedicated
architecture. However, these implementations do not take into account flexibility and scalability is-
sues. Conversely, others implementations include software and/or reconfigurable parts to achieve the
required flexibility while achieving much lower throughput.

In this PhD work our aim is to tackle flexibility and performance requirements simultaneously
by proposing multiprocessor architectures. The architecture models we are exploring are based on
Application-Specific Instruction-set Processors (ASIP) interacting through an adequate communica-
tion network in a multi-ASIP architecture platform.

The first part of this chapter introduces the evaluation of embedded processor architectures to-
wards customizable instruction-set ones. This crucial efficiency-driven evolution constitutes our main
motivation behind the selection of application-specific instruction-set (ASIP) design approach. Sec-
tion x gives an overview on existing ASIP design flows and presents the considered CoWare’s design
tool: Processor Designer.In the second part of the chapter, Network on Chip (NOC) is presented as
a solution for the communication required between SISO components in a parallel turbo receiver.
Finally, at the end of the chapter a multi-ASIP and NOC based flexible, scalable and parallel turbo
receiver architecture has been proposed which includes information about already conceived multi-
ASIP and NOC based turbo receiver.

57

58 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

3.1 Customizable Embedded Processors

The complexity of a large share of the integrated circuits manufactured today is impressive [45]:
devices with hundreds of millions of transistors are not uncommon. Unsurprisingly, the non-recurrent
engineering costs of such high-end application-specific integrated circuits is approaching a hundred
million U.S. dollars-a cost hardly bearable by many products individually. It is mainly the need to
increase the flexibility and the opportunities for modular reuse that is pushing industry to use more
and more software-programmable solutions for practically every class of devices and applications.

On the other hand, processor architecture has evolved dramatically in the last couple of decades
[45]: from microprogrammed finite state machines, processors have transformed into single rigid
pipelines; then, they became parallel pipelines so that various instructions could be issued at once;
next, to exploit the ever-increasing pipelines, instructions started to get reordered dynamically; and,
more recently, instructions from multiple threads of executions have been mixed into the pipelines of
a single processor, executed at once. However, now something completely different is changing in the
lives of these devices: on the whole, the great majority of the high-performance processors produced
today address relatively narrow classes of applications. This is related to one of the most fundamental
trends that slowly emerged in the last decade: to design tailor-fit processors to the very needs of the
application rather than to treat them as rigid fixed entities, which designers include as they are in
their products. The emergence of this trend has been made successful thanks to the development of
new adequate design methodologies and tools. Such tools enable designers to specify a customizable
processor, and in some cases completely design one, in weeks rather than months. Leading compa-
nies in providing such methodologies and tools include CoWare (acquired recently by Synopsys),
Tensilica, ARC Cores, Hewlett-Packard, and STMicroelectronics. The shape and boundaries of the
architectural space covered by the tool chain differentiate the several approaches attempted. Roughly,
these approaches can be classified in three categories [45]:

Parameterizable processors are families of processors belonging to a single family and sharing a
single architectural skeleton, but in which some of the characteristics can be turned on or off (presence
of multipliers, of floating point units, of memory units, and so forth) and others can be scaled (main
datapath width, number and type of execution pipelines, number of registers, and so forth).

Extensible processors are processors with some support for application-specific extensions. The
support comes both in terms of hardware interfaces and conventions and in terms of adaptability of the
tool chain. The extensions possible are often in the form of additional instructions and corresponding
functional pipelines but can also include application-specific register files or memory interfaces.

Custom processor development tools are frameworks to support architects in the effort to design
from scratch (or, more likely, from simple and/or classic templates) a completely custom processor
with its complete tool chain (compiler, simulator, and so forth). Ideally, from a single description
in a rich architectural description language (ADL), all tools and the synthesizable description of the
desired core can be generated.

It is worth noting that these approaches are not mutually exclusive: A parameterizable processor
may also be extensible. A template processor in a processor development framework can be easily
parameterized and is naturally extended. All these approaches fall under the name of customizable
processors and often are referred as ASIP for Application-Specific Instruction-set Processors.

3.2. ASIP DESIGN 59

3.2 ASIP Design

Application Specific Instruction-set Processors (ASIPs) are increasingly used in complex System on
Chip (SoC) designs. ASIPs are tailored to particular applications, thereby combining performance and
energy efficiency of dedicated hardware solutions with the flexibility of a programmable solution. The
main idea is to design a programmable architecture tailored to a specific application, thus preserving
a much higher degree of flexibility than a dedicated ASIC solution.

3.2.1 Design flow overview

Typically, the development flow of ASIPs starts with the analysis of the application in order to identify
its “hot spots” [46]. Then, an initial architecture is defined, in particular with special custom instruc-
tions to improve the efficiency for handling those hot spots. Afterwards the applications are run on
the processor in order to verify if the target specifications have been met. If that is not the case, the
whole flow is iterated to meet the design requirements for given applications.

From this quick overview of the design flow it is clear that some tools are required for imple-
menting it: first, an assembler and a linker are needed in order to run the application code on the
processor, together with a compiler if a high-level programming language is used; these tools are
required both for design space exploration, when the target application has to be tested in order to
improve the architecture, and for software development after the final architecture has been defined.
Moreover, an Instruction Set Simulator (ISS) has to be provided so that the application can be run
both for profiling and for verification purposes. All these tools directly depend on the instruction set
of the processor and hence they have to be retargeted each time that the instruction set is modified.
Almost all the available ASIP design suites provide these tools and the capability to retarget them
when needed, while some of them also include the further ability to automate the process of profiling
the application and identifying the instructions which are most suitable for instruction-set extension.

By looking at available commercial solutions for ASIP design , it is possible to identify three
main classes based on the degree of freedom which is left to the designer [46]:

• Architecture Description Language (ADL) based solutions (e.g. CoWare Processor Designer
[47], Target IP Designer [48]), which can be also defined as ASIP-from-scratch since every detail
of the architecture, including for instance pipeline and memory structures, can be accessed and
specified by the designer by means of a proper language. This approach results in the highest
flexibility and efficiency, but on the other hand it requires a significant design effort.

• Template architecture based solutions (e.g. Tensilica Xtensa [49], ARC ARChitect [50]), which
allow the designer to add custom ISE to a pre-defined and pre-verified core, thus restricting the
degree of freedom with respect to the previous approach to the instruction set definition only.

• Software configurable processors and reconfigurable processors (e.g. Stretch [51], ADRES [52]),
with a fixed hardware including a specific reconfigurable ISE fabric which allows the designer
to build custom instructions after the fabrication.

3.2.2 CoWare’s ADL-based design tool: Processor Designer

CoWare Processor Designer is an ASIP design environment entirely based on LISA [53]. The lan-
guage syntax provides a high flexibility to describe the instruction set of various processors, such
as SIMD (Single-Instruction Multiple-Data), MIMD (Multiple-Instruction Multiple-Data) and VLIW

60 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

(Very long instruction word)-type architectures. Moreover, processors with complex pipelines can be
easily modeled.

Processor Designer’s high degree of automation greatly reduces the time for developing the soft-
ware tool suite and hardware implementation of the processor, which enables designers to focus on
architecture exploration and development. The usage of a centralized description of the processor ar-
chitecture ensures the consistency of the Instruction-Set Simulator (ISS), software development tools
(compiler, assembler, and linker etc.) and RTL (Register Transfer Level) implementation, minimizing
the verification and debug effort.

The LISA machine description provides information consisting of the following model compo-
nents [46]:

• The memory model lists the registers and memories of the system with their respective bit widths,
ranges and aliasing.

• The resource model describes the available hardware resources, like registers, and the resource
requirements of operations. Resources reproduce properties of hardware structures which can be
accessed exclusively by a given number of operations at a time.

• The instruction set model identifies valid combinations of hardware operations and admissible
operands. It is expressed by the assembly syntax, instruction word coding, and the specification
of legal operands and addressing modes for each instruction.

• The behavioral model abstracts the activities of hardware structures to operations changing the
state of the processor for simulation purposes. The abstraction level can range widely between
the hardware implementation level and the level of high-level language (HLL) statements.

• The timing model specifies the activation sequence of hardware operations and units.

• The micro-architecture model allows grouping of hardware operations to functional units and
contains the exact micro-architecture implementation of structural components such as adders,
multipliers, etc.

By using these various model components to describe the architecture, it is then possible to generate
a synthesizable HDL representation and the complete software tool suite automatically.

The generation of the software development environment by Processor designer enables to start
application software development prior to silicon availability, thus eliminating a common bottleneck
in embedded system development. As it is shown in Fig.3.1, the design flow of Processor Designer is a
closed-loop of architecture exploration for the input applications. It starts from a LISA 2.0 description,
which incorporates all necessary processor-specific components such as register files, pipelines, pins,
memory and caches, and instructions, so that the designer can fully specify the processor architecture.
Through Processor Designer, the ISS and the complete tool suite (C-compiler, assembler, linker) are
automatically generated. Simulation is then run on the architecture simulator and the performance
can be analyzed to check whether the design metrics are fulfilled. If not, architecture specifications
are modified in LISA description until design goals are met. At the end, the final version of RTL
implementation (Verilog HDL, VHDL and SystemC) together with software tools is automatically
generated.

As previously mentioned, ASIPs are often employed as basic components of more complex sys-
tems, e.g. MPSoCs. Therefore, it is very important that their design can be embedded into the overall
system design. Processor Designer provides possibilities to generate a SystemC model for the pro-
cessor, so that it can be integrated into a virtual platform. In this way, the interaction of the processor

3.3. NOC AS COMMUNICATION INTERCONNECT 61

Figure 3.1 — LISA architecture exploration flow

with the other components in the system can be tested. Furthermore, the exploration as well as the
software development of the platform at early design stage becomes possible.

3.3 NoC as communication interconnect

Besides application algorithm optimizations and application-specific processor design, the on-chip
communication network connecting the multiple on-chip cores constitutes a major issue. Conven-
tional on-chip buses become inefficient in large systems and the nanotechnology integration issues
(propagation delay, crosstalk, etc.) make their use no more practical. In this context, Network-on-
Chip has recently emerged as a new paradigm allowing to cope with these major design issues. It
consists of adapting the modular, scalable, and flexible hardware/software architectures and design
tools of Network domain to the context of silicon integration.

In this thesis work Network on Chip (NoC) paradigm is considered for conflict free information
exchange between ASIPs. Although this work reutilizes one of the NoC architecture proposed in
[43], for the sake of continuity, some background about NoC and its application in the field of digital
communication applications are presented below.

3.3.1 Emergence of InterIP-NoC

As adequately summarized in [54], after the introduction of the NoC concept [55, 56, 57, 58] the
scientific literature focused on general purpose NoC solutions. More recently the idea of Application
Specific NoC (ASNoC) [59] was proposed as a method to improve efficiency, through a careful tai-
loring of the network features around the specific application to be supported. All ASNOC examples

62 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

available in the literature are related to fairly complex applications, which involve heterogeneous pro-
cessing tasks or IPs (Intellectual Property), occupy a fairly relevant physical area and make use of
advanced methods for routing and congestion control. Following the classification given in [60], we
call this kind of NoC InterIP-NoC. On the contrary, [60] defines as IntraIP-NoC any network whose
domain area is restricted to be internal to a single IP: in this case, the NoC extend is typically much
smaller, processing tasks are usually homogeneous and stringent constraints are posed on the NoC
overhead, which is limited resorting to simple routing methods.

One of the most recently investigated application for this emerging concept is turbo decoding
[43, 54]. In the context of a parallel multiprocessor turbo decoder with capability of supporting generic
interleavers with no collisions, the NoC (or better IntraIP-NOC [60]) is a very interesting option for
the implementation of the flexible interconnect structure. NoCs bring to this specific kind of appli-
cation several of their general advantages over traditional on-chip interconnects, such as enhanced
scalability, separation between computation and communication, modularity, regularity of physical
links and predictability of their delay [54].

3.3.2 Network Topologies and Routing

Network topologies can be classified as direct and indirect networks [54]. Direct Networks typically
consists of a set of nodes, each one being directly connected to small subset of other nodes in the
network. The required connectivity is obtained by means of routers, which are components of the
nodes and can decide the path for each data to be sent from a source node to a destination node.
Instead of providing a direct connection between two nodes, indirect networks exploit switches to
connects nodes. Few typical network topologies used in literature for NoC design are presented in
Figure 1.5 [61].

(a) (b) (c)(a) (b) (c)

Figure 3.2 — NoC topologies (a) 2D-mesh direct topology (b) Ring direct topology (c) Multistage
indirect topology

The mesh-like topologies are most common in the literature, mainly due to multiple benefits
provided by their regularity (routing geometry and limited connectivity) [62]. According to need of
average distance and connectivity, the mesh topology can be transformed in several forms (classical
mesh as in Fig.3.2.a, cylinder, ...) and in several dimensions (line, plane, cube ...). Due to direct con-
nection with neighbors, mesh topologies are well adapted for the applications which require mostly
the local data transfer. For the scenario of random communication, network latency mostly depends

3.4. DESIGN APPROACH ILLUSTRATION: FLEXIBLE PARALLEL TURBO DECODER 63

on the average distance between two nodes of the topology, which is relatively high for a 2D-mesh
topology. The ring topology (Fig.3.2.b) and indirect topologies (Fig.3.2.c), are although somewhat
less regular, allow smaller average distances between nodes. Starting with a ring topology, it is possi-
ble to reduce the average distance by adding links across the ring. This is called ring topologies with
strings. In return, these topological changes involve greater connectivity of the nodes and therefore
the resultant routing cost is high. The indirect or multistage networks allow to retain limited connec-
tivity, while maintaining a low average distance [61]. In contrast, these topologies do not allow fast
local data transfer as the traffic has to pass through intermediate stages that do not have connected
resources.

Overall, choice of a topology for the communication requirements of an application is dictated by
performance constraints (throughput, latency), by the constraints of complexity (connectivity, num-
ber of nodes and complexity of the nodes), and also by the inherent physical constraints of silicon
integration.

Regarding routing, the routers must provide transportation for packets in the network by managing
flows and congestion on the network. For this purpose, routing mechanisms, arbitration, flow control,
and control information provided with each packet is used. This control information is generally
grouped into the header of the packet, after which payload is added i.e the message to convey.

3.3.3 NoC Examples in Iterative Decoding

Communication needs in iterative decoders comes mainly due to transfer of extrinsic information
between the two component decoders according to the concerned interleaving rules. In parallel turbo
decoding, once sub-blocking and/or shuffled decoding is applied, the induced parallel transfer can rise
conflicts when two or more processing units want to write in the same memory bank. The first effort to
handle this problem is to take into account parallelism as one of the design parameter while construct-
ing an interleaver without degrading the error rate performance. Multiple publications [63][64][65]
address this problem by presenting different types of adequate interleavers for turbo codes. Although
these rules of permutation are designed in a way that sub-blocking does not generate a collision and
still offering good performance in terms of error correction, it is limited to well-defined codes and
certain parallelism degrees.

Flexible interconnection networks capable to support any interleaving rule and high parallelism
degree, while featuring low latency and low complexity can constitute a promising solution for this
application. In this context, application-specific InterIP-NoCs have been proposed for parallel turbo
decoding [43, 54]. Both direct and indirect topologies have been investigated in this domain. A general
framework for the design and simulation of NoC-based turbo decoder architectures is proposed in
[66]. An architecture based on 2D-mesh topology is presented in [67] for MPSoC turbo and LDPC
decoding. Butterfly and Benes networks are presented in [68] for flexible turbo decoders whereas a
NoC both for turbo and LDPC is proposed in [69] which is based on the topology of De Brujin Binary
Graph.

3.4 Design Approach Illustration: Flexible Parallel Turbo Decoder

In this subsection, we will illustrate the target design approach through the first effort carried out in
the Electronics Department of Télćom Bretagne to design a high throughput flexible turbo decoder.
To address high throughput requirement, first of all, a comprehensive study was made in exploring
the efficient parallelism, at different levels, within a turbo decoder. This parallelism study is detailed

64 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

NI

NI

NI

NI

NI

NI

NI

COMPONENT DECODER 0 COMPONENT DECODER 1

NI

NI

NI

NI

NI

NINI

M
Input Data

M
Input Data

NI

TurbASIP−0

TurbASIP−1

TurbASIP−2

TurbASIP−3

Init Metrics

TurbASIP−4

TurbASIP−5

TurbASIP−6

TurbASIP−7

Init Metrics

NI

R R R

RRR

R R R

R R R

R R R

R R R

RRR

R R R

Measage Passing

Measage Passing

Measage Passing

Measage Passing

Measage Passing

Measage Passing

Measage Passing

Measage Passing

M

M

M
Info Ext

M

M

M
M

Info Ext

Info Ext

Info Ext

Info Ext

Info Ext

M

Info Ext

Info Ext

M

M

M

M
Info Ext

Info Ext

Info Ext

Info Ext

M

Info Ext

Info Ext

Info Ext
M

BUTTERFLY NOC

BUTTERFLY NOC

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M

Info Ext
M

Input Data

Input Data

Input Data

Input Data

M

M

M

M

M

M
Input Data

Input Data

M
Input Data

M
Input Data

M
Init Metrics

M
Init Metrics

M
Init Metrics

M M

M

M
Init Metrics

Init Metrics

M
Init Metrics

(
∏

1)

(
∏−1

1)

Figure 3.3 — Multi-ASIP and Butterfly NoC architecture for parallel turbo decoder

in [70] and is summarized in subsection 2.4.1 of chapter 2. As the first parallelism level (BCJR metric
level) occurring inside a BCJR SISO decoder is the most area efficient, a hardware implementation
achieving high throughput should first exploit this parallelism. A dedicated processing architecture
with multiple functional units and adequate memory interfaces can be suitable to efficiently perform
all computations of a BCJR-SISO decoder. However, as the parallelism degree of this level is limited,
hence further increase of throughput should exploit the second parallelism level 2.4.1.2. This can
be done efficiently by instantiating multiple processing units with dedicated on-chip communication
interconnect.

As the flexibility requirement is also considered, besides high throughput, the processing unit and
the on-chip communication should be flexible. A tradeoff between performance and flexibility is thus
imposed for the processing unit architecture and the ASIP design approach is thus adopted. Regarding
the on-chip communication, appropriate NoC architectures are explored and designed.

In the following subsections, we will illustrate the design approach of the ASIP architecture for
turbo decoding, namely TurbASIP, and the designed NoC architecture based on Butterfly topology.
Using ASIP and NoC approach, the first 8-ASIP and NoC based turbo decoder [71], implementing
first two level of parallelism, is illustrated in Fig.3.3.

3.4.1 TurbASIP

The first step towards the ASIP design for turbo decoding was to extract the flexibility requirements
of target standards as summarized in Table 1.1. The complexity of convolutional turbo codes pro-
posed in all existing and emerging standards is limited to eight-state double binary turbo codes or

3.4. DESIGN APPROACH ILLUSTRATION: FLEXIBLE PARALLEL TURBO DECODER 65

sixteen-state simple binary turbo codes. Hence, to fully exploit trellis transition parallelism for all
standards, a parallelism degree of 32 is required. The implementation of future more complex codes
can be supported by splitting trellis sections into sub-sections of 32-parallelism degrees and by pro-
cessing sub-sections sequentially. Regarding BCJR computation parallelism, a parallelism degree of
two has been adopted, i.e. two recursion units to implement the Butterfly metric computation scheme
presented in subsection 2.4.1.1. In order to present the TurbASIP architecture, a bottom-up approach
is adopted where the basic building blocks are explained first. Based on these building blocks the
architecture of recursion units are then presented and finally the full ASIP architecture is illustrated.

3.4.1.1 Building Blocks of TurbASIP

The flexibility parameters of this ASIP are fundamentally based on supporting single and double bi-
nary turbo codes implementing the expressions (2.10), (2.12), (2.13) and (2.14) to computed γ, α, β
and extrinsic information respectively in logarithmic domain. To achieve this goal the detailed flexibil-
ity parameters are derived from these expressions of max-log-MAP algorithm. The detail of building
blocks constituting the TurbASIP is briefly discussed below:

Gamma (γ) Metric Computation: As stated in parallelism of trellis transition part of Section
2.4.1.1, all possible values of γ related to all transitions of the trellis are computed in parallel. In
hardware this is achieved by the use of simple adders and subtracters which use the input channel
LLRs and extrinsic input LLRs to generate γ metrics.

MAX(A,B)

INPUT BINPUT A

CONFIG REGISTER

0

1

1

0

or

SM/EXT

0 0121213 13

141313
14

14 013 12

S1 S2

S3

S1 S2

S3

0 1

(b)(a)

RADD REG

α/β

β/α

β + γ

α/β/z

γ

α + γ

Figure 3.4 — Basic computational units of TurbASIP (a) Adder node (b) Modulo compare unit

Alpha (α), Beta (β) and Extrinsic Information (z) Computation: The issues related to compute
α and β metrics are: (1) the successive addition of γ with α and β to compute them over all section
of the trellis and (2) selecting the maximum of α and β related to the transitions associated with each
state. Same case with extrinsic information where all three metrics α, β and γ are added on each
section of trellis. But for extrinsic information generation, the maximum operation is performed on
values related to those transitions which are occurred due to the input for which extrinsic is being
computed. In literature this operation is often referred as Add Compare Select (ACS) operation.

66 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

The basic computational units of TurbASIP providing ACS are shown in Fig.3.4. An Adder Node
(Fig.3.4(a)) can be used for addition operation required both in state metric and extrinsic information.
While computing state metrics, the adder node can be configured for one of the input state metric
(α of previous symbol or β of next symbol) and associated γ using configuration register, depending
upon the trellis selected.

While performing addition operation involved in extrinsic information computation, the already
stored sum (in RADD REG) of state metric and branch metric (α+γ or β+γ) is added with other state
metric (β, α respectively). The quantization for the state metrics and extrinsic information is based on

0

Problem

Q−1
2 MSBs = 112 MSBs = 00

Q−4

2 MSBs = 01

Q−3Q−2
2 MSBs = 10

2n−1 −2n−1 + 1

−2n

Figure 3.5 — Modulo algorithm extrinsic information processing

modulo algorithm [72] and the value are allowed to overflow. When overflow occurs, causing values to
enter from positive region to negative region, the largest value becomes the smallest. In this situation
when maximum finding operation is performed, a simple maximum operation can not be applied. To
address this issue the architecture of specialized max. operator is shown in Fig.3.4(b) which detects
the largest value even in case of overflow conditions and conforms to modulo algorithm.

With the considered modulo algorithm, particular scaling is required when the different extrinsic
informations related to one symbol lay in second and third quadrant of the 2’s complement number
representation of Fig. 3.5. In fact in case of overflow, the largest extrinsic information moves from
positive to negative region and becomes smallest which convey wrong information to other compo-
nent decoder. Hence the first issue is to detect this particular situation which can be done by analyzing
the 2 MSBs of generated extrinsic informations. As shown in Fig. 3.5, in which n bits represent the
quantization of state metrics and extrinsic information, if an extrinsic information lies in Q-2 its two
MSB’s will be “01” whereas in Q-3 they will be “10”. Hence if some of extrinsic informations related
to different combinations of a symbol lay in Q-2 and others in Q-3 this will identify the problematic
situation. In this case the second step is to correct the extrinsic information in a way that the largest
extrinsic information remains largest. This can be done simply by an unsigned right shifting of all the
extrinsic informations.

Forward Backward Recursion Units: As stated above, butterfly scheme of state metric and extrin-
sic information generation is used. Hence, two hardware recursion units, one working in forward and
the other in backward direction are used. Since there are 32 transitions in a 16-state single binary or 8
state double binary code, one recursion unit is made up of 32 adder nodes. Hence, 64 adder nodes are
used in TurbASIP. The arrangement of adder nodes in Forward recursion unit for double binary code

3.4. DESIGN APPROACH ILLUSTRATION: FLEXIBLE PARALLEL TURBO DECODER 67

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

C
O

E

U
N
I
T

M
P
A
R

MC O P A R E U N I T MC O P A R E U N I T

MC O P A R E U N I T MC O P A R E U N I T

MC O P A R E U N I T MC O P A R E U N I T

MC O P A R E U N I T MC O P A R E U N I T

(b)

00

Input

State
S0

ANF 1 ANF 2

S1 S2 S3

ANF 3

S4 S5 S6 S7

01

10

11

ANF 8 ANF 9 ANF 10 ANF 12ANF 11 ANF 13 ANF 14 ANF 15

ANF 16 ANF 17 ANF 18 ANF 20ANF 19 ANF 21 ANF 22 ANF 23

ANF 24 ANF 25 ANF 26 ANF 28ANF 27 ANF 29 ANF 30 ANF 31

ANF 4 ANF 5 ANF 6 ANF 7ANF 0

COMPARE
2−INPUT

UNIT

COMPARE
2−INPUT

UNIT

COMPARE
2−INPUT

UNIT

4−INPUT COMPARE UNIT

IN3
IN4

IN2
IN1

00

01

10

11

Input
S0

State
S1 S2 S3 S4 S5 S6 S7

ANF 24 ANF 25 ANF 26 ANF 27 ANF 28 ANF 29 ANF 30 ANF 31

ANF 23ANF 22ANF 21ANF 20ANF 18ANF 17ANF 16

ANF 8

ANF 0 ANF 1

ANF 9

ANF 2

ANF 10

ANF 3

ANF 11

ANF 19

ANF 4

ANF 12

ANF 5

ANF 13

ANF 6

ANF 14

ANF 7

ANF 15

(a)

Figure 3.6 — Forward Recursion Unit composed of 32 ANF (Adder Node Forward) and 8 4-input
Compare Unit (a) Compare Units used for state metric computation (b) Compare Units used for extrinsic

information computation

is shown in Fig.3.6. The adder nodes in the rows receive proper γ due to 4 possible inputs in a double
binary code whereas 4 adder nodes in each columns represent 4 state metrics related to each state.
Same architecture is used for backward recursion unit. As stated above using configuration register
each adder node receives its inputs according to the trellis structure.

To perform the max. operation, 24 2-input compare units are used in one recursion unit. These
24 2-input compare units can be configured to work as 8 4-input compare units. When computation
of max. operation in state metrics generation is required, 8 4-input compare units are connected to
the four outputs (output of 4 adder nodes in a column) of each column of recursion unit as shown
in Fig.3.6(a). Hence, at the output of 8 four-input max. operators, there are 8 state metrics of double
binary code. In case of extrinsic information computation, as shown in Fig.3.6(b), the 8 4-input com-
pare units are connected to adder nodes in rows in such a way that 8 elements of a row are divided
into 2 sets of 4 adder nodes (first set made up of 4 adder nodes on the left of the row and the second
set made up of 4 adder nodes on the right). These 8 sets from 4 rows are connected to same 8 4-input
compare units. Hence, with 8 4-input compare units user has two biggest candidates per row at the
output of 4-input compare units. The two largest values in a row a saved back in the RADD registers
of first two adder nodes of that row. Reusing 4 2-input compare units one can find the maximum
between these two candidates which is the extrinsic information for each combination of input bits.

68 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

Program
Memory

CO
N

TR
O

L
U

N
IT

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

FETCH DEC OPF BM2 EXE ST

Pr
og

ra
m

 C
on

tro
l

In
str

uc
tio

n
D

ec
od

M
em

or
y

A
dd

re
ss

 G
en

.

BM1

Ex
tri

ns
ic

 In
pu

t S
ca

lin
g

O
pe

ra
nd

 F
et

ch

Ex
t.

In
fo

 o
r H

ar
d

D
ec

.
N

oC
 P

ak
et

 C
on

str
uc

tio
n

32 56

Extrinsic Input
Memory

Cross Metric
Memory

D
A

TA

224

48 A
D

R

A
D

R D
A

TA 14D
A

TA

A
D

R

A
D

R

D
A

TA

D
A

TA

A
D

R

DATA

16

A
D

R

DATA 14

A
D

R

Memory Memory
Config

Memory

Config Register

RMC Register

RG Register

RADD Register

RC Register

A
D

R

D
A

TA

17

Interleaving
Memory

Input Data
Memory

Fo
rw

ar
d

Ba
ck

w
ar

d
Re

cu
rs

io
n

U
ni

ts

γ
C

om
pu

ta
tio

n
St

ag
e

1

γ
C

om
pu

ta
tio

n
St

ag
e

2

Write α β Read α β

× 16(α β)

(β α) × 16

× 32(γ)

(α β z) × 64

× 2

Figure 3.7 — TurbASIP architecture

3.4.1.2 Complete TurbASIP Architecture

TurbASIP architecture is composed of memory interface, internal registers, basic building blocks and
a control unit as shown in Fig.3.7. Regarding memory interface, the application program is saved
in the program memory. Config Memory is used to store different configuration of trellis which can
be loaded in TurbASIP to switch between different trellis structures. The input data to the ASIP
for data decoding is provided from Input and Extrinsic Data memories. To achieve butterfly scheme
these two memories are further divided into top and bottom banks. Cross metric memory is used
to store the state metrics while left side of butterfly scheme is in progress where as these stored
metrics are used to compute the extrinsic information during right side of the butterfly scheme. The
interleaving/deinterleaving tables are stored in the interleaving memories. Once TurbASIP computes
the extrinsic information, the interleaving address from these memories are read. This address is
placed as header whereas the extrinsic information is placed as payload in the packet which is sent
on the network. Finally Read/Write α, β Memories are used to store the last values of state metrics.
In the context of sub-blocking parallelism these saved state metrics are used to implement message
passing method of metrics initialization as shown in Fig.3.3.

Certain register banks are used for ASIP configuration and storage of different parameters asso-
ciated to max-log-MAP algorithm. Two configuration registers are dedicated for the configuration of
two recursion units of TurbASIP. The configuration of the ASIP is downloaded from Config. Mem-
ory into these registers. The TurbASIP work in the same configuration unless the contents of these
registers are changed. RMC registers store the state metric after max operations whereas RC registers

3.4. DESIGN APPROACH ILLUSTRATION: FLEXIBLE PARALLEL TURBO DECODER 69

are used to read state metrics during the computation of right side of butterfly scheme. Branch metric
γ are stored in RG register. RADD registers are part of ACS units as shown in Fig.3.4(a).

The function of control unit is to manage all the resources spread over seven pipelines stages.
After instruction fetch and decode pipeline stages, the third pipeline stage is dedicated to fetch the
operand from input memories. Two next stages, BM1 and BM2, are for γ computation. In execute
(EXE) pipeline stage, resources of Add Compare Select (ACS) operations are placed. The last pipeline
stage is to compute the extrinsic information and hard decisions.

3.4.1.3 Sample Program of TurbASIP

To give an explanation on how TurbASIP can be used for a decoding application, Listing 3.1 presents
the piece of code written for dual binary code of Wimax standard for the first iteration. The text after
(;) sign shows the comments.

Listing 3.1 — TurbASIP: assembly code for 8-state double binary turbo code for first iteration �
1 ; l o a d i n g c o n f i g u r a t i o n i n c o n f i g . r e g i s t e r s
2 LD CONFIG 0
3 LD CONFIG 1
4 LD CONFIG 2
5 LD CONFIG 3
6 ; s e t t i n g b l o c k l e n g t h
7 SET SIZE 48
8 ; s c a l i n g o f e x t r i n s i c i n f o r m a t i o n
9 SET SF 6

10 ; un i fo rm s t a r t v a l u e s f o r a l p h a / b e t a
11 SET RMC UNIFORM, UNIFORM
12 ; z e r o o v e r h e a d loop i n s t r u c t i o n
13 ZOLB LW1 , LW1 , RW1
14 ; l e f t b u t t e r f l y a l p h a / b e t a +gamma
15 DATA LEFT WITHOUT EXT ADD M
16 ; max f o r a l p h a / b e t a
17 LW1 : MAX2 STATE METRIC NOTHING
18 ; r i g h t b u t t e r f l y a l p h a / b e t a +gamma
19 DATA RIGHT WITHOUT EXT ADD M
20 ; max f o r a l p h a / b e t a
21 MAX2 STATE METRIC NOTHING
22 ; l e f t b u t t e r f l y a l p h a + b e t a +gamma
23 NO WITHOUT EXT ADD I
24 ; f i r s t max f o r e x t r i n s i c c o m p u t a t i o n
25 MAX2 SYSTEMATIC NOTHING
26 ; second max f o r e x t r i n s i c c o m p u t a t i o n
27 RW1 : MAX1 SYS PARITY EXT DECOD FB
28 ; message p a s s i n g i m p l e m e n t a t i o n
29 EXC REC ALPHA BETA0 0
30 EXC REC ALPHA BETA0 1
31 EXC REC ALPHA BETA0 2
32 EXC REC ALPHA BETA0 3
33 EXC REC ALPHA BETA0 4
34 EXC REC ALPHA BETA0 5

70 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

35 EXC REC ALPHA BETA0 6
36 EXC REC ALPHA BETA0 7

The program starts with LD CONFIG instruction which configure the TurbASIP for the Wimax trel-
lis. Using set size SET SIZE instruction programmer can set the number of double binary symbol
in a frame. SET SF is the command to scale the input extrinsic e.g with target double binary ap-
plication the value 6 corresponds to multiplying the input extrinsic with 0.7 before computing the
branch metrics. SET RMC UNIFORM instruction sets the RMC for zero which means all starting
states are equiprobable. ZOLB is the zero overhead loop instruction. With this single instruction, the
next two lines of code executes 24 times (half of frame size) which is in fact implementing left side
of butterfly decoding scheme for 24 symbols without using the extrinsic information. The reason of
not using the extrinsic information is due to the fact that during first shuffled iteration the extrinsic
information memories hold the data of last iteration of previous frame. After this, the next five in-
struction (from “DATA RIGHT..” instruction to “MAX1 SYS PARITY..”) execute 24 times hence,
implementing right side of the butterfly decoding scheme. During the execution of left butterfly, the
first instruction “DATA LEFT..”is used to compute state metrics related to all transitions. The next
“MAX2 STATE METRIC” perform compare operation to compute 8 state metrics both in forward
and backward directions. In the right part of the butterfly scheme, the first two instructions compute
the state metrics and next three instructions compute the extrinsic information. The first instruction to
compute extrinsic is related to performing the summation of α, β and γ while next two instructions
are used to do compare operation on the rows of recursion units in two steps. Finally at the end of
processing of the block of 48 symbols, the ASIP initializes its state metric register (RMC) using mes-
sage passing for next iteration. Hence, during one iteration, 2 clock cycles per 2 symbols are used in
left side of butterfly decoding scheme and 5 clock cycles per 2 symbols are used in right side of the
butterfly decoding scheme.

After the first iteration the extrinsic information memories hold the right extrinsic information
hence one can use them. The code for next five iterations is shown in Listing 3.2 where instructions
for DATA LEFT and DATA RIGHT with READ EXT option in place of WITHOUT EXT option of
Listing 3.1.

Listing 3.2 — TurbASIP: assembly code for 8-state double binary turbo code for iteration number 2-6 �
1 REPEAT UNTIL l o o p 5 t i m e s
2 ; z e r o o v e r h e a d loop i n s t r u c t i o n
3 ZOLB LW0 , LW0 , RW0
4 ; l e f t b u t t e r f l y a l p h a / b e t a +gamma
5 DATA LEFT READ EXT ADD M
6 ; max f o r a l p h a / b e t a
7 LW0 : MAX2 STATE METRIC NOTHING
8 ; r i g h t b u t t e r f l y a l p h a / b e t a +gamma
9 DATA RIGHT READ EXT ADD M

10 ; max f o r a l p h a / b e t a
11 MAX2 STATE METRIC NOTHING
12 ; l e f t b u t t e r f l y a l p h a + b e t a +gamma
13 NO READ EXT ADD I
14 ; f i r s t max f o r e x t r i n s i c c o m p u t a t i o n
15 MAX2 SYSTEMATIC NOTHING
16 ; second max f o r e x t r i n s i c c o m p u t a t i o n
17 RW0 : MAX1 SYS PARITY EXT DECOD FB
18 ; message p a s s i n g i m p l e m e n t a t i o n

3.4. DESIGN APPROACH ILLUSTRATION: FLEXIBLE PARALLEL TURBO DECODER 71

19 EXC REC ALPHA BETA0 0
20 EXC REC ALPHA BETA0 1
21 EXC REC ALPHA BETA0 2
22 EXC REC ALPHA BETA0 3
23 EXC REC ALPHA BETA0 4
24 EXC REC ALPHA BETA0 5
25 EXC REC ALPHA BETA0 6
26 EXC REC ALPHA BETA0 7
27 l o o p NOP

To compute the hard decision in last iteration, the assembly code is presented in Listing 3.3.

Listing 3.3 — TurbASIP: assembly code for 8-state double binary turbo code for last iteration �
1 ; z e r o o v e r h e a d loop i n s t r u c t i o n
2 ZOLB LW2 , LW2 , RW2
3 ; l e f t b u t t e r f l y a l p h a / b e t a +gamma
4 DATA LEFT READ EXT ADD M
5 ; max f o r a l p h a / b e t a
6 LW2 : MAX2 STATE METRIC NOTHING
7 ; r i g h t b u t t e r f l y a l p h a / b e t a +gamma
8 DATA RIGHT READ EXT ADD M
9 ; max f o r a l p h a / b e t a

10 MAX2 STATE METRIC NOTHING
11 ; l e f t b u t t e r f l y a l p h a + b e t a +gamma
12 NO READ EXT ADD I
13 ; f i r s t max f o r e x t r i n s i c c o m p u t a t i o n
14 MAX2 SYSTEMATIC NOTHING
15 ; second max f o r e x t r i n s i c c o m p u t a t i o n
16 RW2 : MAX1 SYS PARITY HARD FB

The hard decisions are computed by using HARD option in the last instruction of Listing 3.3 which
was EXT DECOD in Listing 3.1 & 3.2.

As far as the throughput is concerned, if the overhead caused by other instructions is neglected, 3.5
clock cycles per symbol are required to generate extrinsic information per iteration (or hard decision
during the last iteration).

3.4.2 NoC Based on Butterfly Topology

The Butterfly network is a multistage interconnection network with 2-input 2-output routers and uni-
directional links. The advantages of this topology are: first, the logarithmic diameter of the network
(log2P with P the number of network input ports) which gives a number of routers equal to P

2 log2P ;
secondly the recursive structure of the network (a network of diameter d is obtained with two net-
works of diameter d − 1) which enables high scalability; and finally a very simple routing scheme
that uses directly the bits of the destination address for the selection of the output port at each stage of
the network. However, this type of network does not have path diversity: there exists only one route
between each source and each destination, which increases the risk of conflicts in the routers. To mit-
igate this problem, queues to store the conflicting packets are used. Several architectural decisions are
made in the proposed Butterfly network according to the specificities of the supported application.

72 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

FIFO
+

FSM

FIFO
+

FSM

packet_input_1

packet_input_0

Routing a and Arbitration Matrix
Switch

4

4

valid_input_0

valid_input_1

pr
oo

rit
y_

1

po
rt_

ou
tp

ut
_1

pr
io

rit
y_

0

po
rt_

ou
tp

ut
_0 valid_output_0

packet_output_0

packet_output_1

valid_output_1

switch

em
pt

y_
0

em
pt

y_
1

re
q_

re
ad

_1
re

q_
re

ad
_0

2× 2

log2N + 4 + 40

log2N + 4 + 40

log2N + 4 + 40

log2N + 4 + 40

log2N − 1 + 4 + 40

log2N − 1 + 4 + 40

Figure 3.8 — Router architecture of Butterfly based NoC

First of all, in the considered turbo decoder architecture, the interleaving (respectively deinterleaving)
function of extrinsic information must be supported by the interconnection network. For this purpose,
it is necessary that the network can vehicle any permutation of the inputs to its outputs, which is the
case for the Butterfly network. Thus, through the packet addressing, the interleaving (respectively
deinterleaving) of the data is performed due to the identifier of destination port and the destination
memory write address containing extrinsic information. With TurbASIP implementing the butterfly
decoding scheme, a maximum of two packets will be generated by each ASIP at the inputs of the
network. This is why the number of input ports of the network is twice larger than the number of Tur-
bASIP. Fig.3.3 represents a bidirectional Butterfly network (made up of two unidirectional Butterfly
networks) that connects 4 TurbASIPs each producing 2 packets for 8 memories attached to desti-
nation TurbASIP. Network Interfaces (NI) are used between network and processor /memories. The
Destination-Tag routing technique is used. This deterministic routing uses a digit of the destination
address in the header of the packets to select the output port at each router along the path from the
source to the destination.

Besides the payload which is composed of the extrinsic information, the packets contain a sim-
ple header field. The header includes the previously defined routing information and the destination
memory address. The first field has a width of d bits, d being the diameter of the network and the
second field having a width of blog2(NP)c+ 1 bits, where N is the length of the frame to be decoded
and P the number of TurbASIPs in an interleaving domain. Router architecture (Fig.3.8) implements
a simple router with 2 input and 2 output ports with input FIFOs to store the conflicting packets. FIFO
depth is determined with respect to the worst case which is the case when all input packets have the
same network output port. Thus, FIFO depth is fixed to 2i for all routers of stage i of the Butterfly net-
work (i varies from 0 to log2(P)). The Routing and Arbitration block implements, in the considered
version, a round-robin queues serving policy. It generates the control signals for the switch matrix,
FIFOs, and output packets.

3.5. TOWARDS HETEROGENEOUS MULTI-ASIP AND NOC BASED FLEXIBLE TURBO RECEIVER 73

3.5 Towards Heterogeneous Multi-ASIP and NoC Based Flexible
Turbo Receiver

Based on the promising results obtained for the high throughput flexible turbo decoder and for the
parallel turbo demodulation/equalization study, presented in chapter 2, Fig.3.9 proposes an heteroge-
neous multi-ASIP NoC based architecture for future high throughput flexible radio platform.

EQUALIZER

ASIP−T1

ASIP−T2
DEMAP

SOFT MAPPER

TURBO DEMODULATION

TURBO EQUALIZATION

R
K

W
T

O

E
N

on

P
I
H
C

ASIP−T3

ASIP−T3

CHANNEL
DECODER

CHANNEL
DECODER

ASIP−T3

CHANNEL
DECODER

ASIP−T3

ASIP−T3

CHANNEL
DECODER

CHANNEL
DECODER

ASIP−T3

CHANNEL
DECODER

R
K

W
T

O

E
N

on

P
I
H
C

TURBO DECODING

ASIP−T1

EQUALIZER ASIP−T2
DEMAP

SOFT MAPPER

ASIP−T2
DEMAP

SOFT MAPPER

EQUALIZER

ASIP−T1

∏−1
1 DOMAIN∏

2 DOMAIN ∏−1
2 DOMAIN

∏
1 DOMAIN

Figure 3.9 — Heterogeneous multi-ASIP and NoC architecture for turbo receiver

To achieve turbo decoding, turbo demodulation and turbo equalization, three different types of
ASIPs are required. The first ASIP of type T1 is for equalization which should be efficiently flexible
for the channel characteristics mentioned in Chapter 1 and the MIMO STC codes used on transmis-
sion side. T2 type of ASIP is for demapping and should be reusable both in single antenna and MIMO
transmissions. It should be flexible for different constellation characteristics (size, mapping and rota-
tion) and should have the capability to use the a priori information in iterative demodulation context.
T3 ASIP is for max-log-MAP decoding providing flexibility for the target trellises. The soft mapping
function is only used in turbo equalization for MIMO and does not have many flexibility parameters.
Hence, some simple parameterized circuit can serve the purpose. The integration of these ASIPs is
done in such a way that the NoCs are placed between those ASIPs which are supposed to receive
interleaved/deinterleaved data during turbo processing.

In this platform requirements and their proposed solution are mapped on hardware components
in following way:

• Flexibility parameters for a processing block and efficient metric generation level parallelism is
implemented inside the ASIP.

74 CHAPTER 3. HETEROGENEOUS MULTI-ASIP NOC-BASED APPROACH

• Component level parallelism is achieved through the use of multiple instances of heterogeneous
ASIPs.

• Solution to memory access conflicts, caused by the component level parallelism and interleaving
rules, and shuffled turbo processing is mapped on NoCs.

• Utilization of desired processing power for a specific system configuration can be achieved by
switching on/off required number of ASIPs in the architecture and hence providing a simple way
to achieve an energy-efficient platform.

To conceive a turbo receiver having qualities of offering flexibility and scalability in processing power,
proposed in Fig. 3.9, the work in this thesis is focused on implementing other ASIPs for equalization
and demapping tasks. The other issue is to modify the TurbASIP to generate the extrinsic and a pos-
teriori information for the demapper and soft mapper. The final task is to integrate all the processing
units through NoCs. The next three chapters are dedicated individually for equalizer ASIP, Demapper
ASIP and prototyping of a flexible and scalable turbo receiver.

3.6 Conclusion

In this chapter an effort is made to present an architecture conforming to the requirement laid down
in chapter 1 which are: flexibility for transmission parameters, error rate performance approaching
theoretical limit and use of required processing power of the system for specific system configurations.
To address these requirements we discussed them gradually and proposed their possible hardware
solution. Taking the example of turbo processing which manages error rate performance at the cost
of high latency and low throughput. The solution to the problem of latency and low throughput,
associated with iterative processing, is addressed by studying the parallelism in chapter 2. The first
issue is the best use of metric generation level parallelism while retaining the flexibility of a processing
unit. For this ASIP methodology is discussed and multi ASIP architecture is presented to implement
sub-blocking. Although sub blocking parallelism provides gain in throughput but it gives birth to the
communication conflicts among the processing units due to the presence of interleavers. Use of NoC
is an efficient method to counter the communication conflicts. For design approach illustration, a
multi-ASIP NoC based architecture is presented as a case study for the realization of a turbo decoder
is also presented. Finally a global heterogeneous multi-ASIP NoC based architecture is presented for
a high throughput flexible turbo receiver.

CHAPTER

4 EquASIP: ASIP-based
MMSE-IC Linear Equalizer

THIS chapter presents the ASIP architecture dedicated for MMSE-IC linear equalization algo-
rithm, namely EquASIP. The presented ASIP exploits the first level of parallelism available in

equalization application, introduced in chapter 2 as Symbol Estimation Level Parallelism. Proposed
EquASIP architecture can be used for multiple MIMO space time codes both in an iterative and a non-
iterative context and provides support for Alamouti Code, 2×2 Golden code, and 2×2, 3×3 and 4×4
spatially multiplexed MIMO-OFDM environment using BPSK, QPSK, 16-QAM and 64-QAM mod-
ulation schemes. Furthermore, EquASIP is designed to be modular in order to facilitate its integration
in a scalable multiprocessor platform (exploiting the second parallelism level).

This chapter is organized in the following order. First of all, a brief state of the art section is
provided to summarize the available hardware implementations related to this domain. Flexibility
parameters are then analyzed to make a choice about the hardware resource allocation and sharing.
The third section presents in a bottom-up approach the detailed architecture of the required complex
number operators. Based on these operators, the complete EquASIP architecture together with the
proposed instruction set and sample programs are presented in the subsequent three sections. Finally,
the last section provides synthesis results, execution performance and comparison with state of the art
implementations.

75

76 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

4.1 State of the Art

State of the art MIMO detection techniques can be classified in three categories [73]: ML detection,
Sphere Decoding (SD) and linear filtering based detection. The complexity of ML detection increases
exponentially with the number of antennas and modulation order. The SD approach has a polyno-
mial complexity. To perform SD, first a QR decomposition of channel matrix is carried out and then
tree exploration is performed. This tree search is further categorized as depth-first and breadth-first
methods. The depth-first has a reduced area complexity and optimal performance, but has variable
throughput with SNR. In breath-first case, the most famous algorithm is the K-best in which K best
nodes are visited at each level. Hence, the complexity depends on K. A large value of K results
in high complexity and good performance. Linear filtering based solutions such as MMSE-IC, con-
siderably reduce the complexity of the hardware implementation of a MIMO detector. Whereas the
compensation for sub-optimality can be achieved using turbo equalization.

In linear filtering based solution, matrix inversion implying complex numbered operations is the
most demanding computational task. Hence, most of the existing work has been focused on the in-
version of variable-sized complex-numbered matrices. Matrix inversion based on QR Decomposition
Recursive Least Square (QRD-RLS) algorithm has been proposed [74]. In [75], authors have pro-
posed a Coordinate Rotation Digital Computer (CORDIC) and Squared Givens Rotation (SGR) based
Linear MMSE detector while in [76] a linear array architecture for SGR implementation has been in-
troduced. Matrix inversion through block-wise analytical method has been implemented in [77]. Two
separate MMSE-IC2 equalizers for 4×4 turbo MIMO SM environment using QPSK and QAM-16
modulations, implementing CORDIC method of QR decomposition, have been proposed in [78] for
fast fading applications. Using analytic method of matrix inversion, a fully dedicated architecture for
MMSE-IC1 LE for 2×2 turbo MIMO system with pre-coding used in quasi static channel has been
proposed in [79]. The other work carried out in [80] shows exciting results in terms of throughput for
802.11n MIMO-OFDM application. The implementation is based on a inverse free architecture using
square-root MMSE formulation.

To the best of our knowledge all the available implementations target a specific STC with lim-
ited modulation support. In the following sections, the process of developing a flexible MMSE-IC
equalizer using the ASIP approach and conforming to multi-standard requirements is explained. Per-
formance comparison of the proposed ASIP with above referenced state of the art works is provided
at the end of this chapter.

4.2 Flexibility Parameters and Architectural Choices

The flexibility parameters influencing the equalizer architecture, based on MMSE-IC equalization
algorithm, comes from different sources. Depending upon these parameters, architectural choices can
be made for efficient hardware resource allocation and sharing.

4.2.1 Flexibility Parameters

Following are the three considered sources in extracting the flexibility parameters:

• MIMO STC supported at the transmitter

• Time diversity of the channel

• Possibility of iterative equalization in the receiver

4.2. FLEXIBILITY PARAMETERS AND ARCHITECTURAL CHOICES 77

MIMO STC: MIMO Spatial multiplexing (SM), Alamouti code and Golden code are the STCs
adopted in emerging wireless standards. For MIMO SM with different antenna dimensions, such as
2×2, 3×3 and 4×4, the expressions (2.41 to 2.47) can directly be implemented using channel matrix
and received vector inputs. Hence, a hardware capable of implementing variable sized complex matrix
operation involved in the algorithm can address MIMO SM from 2 to 4 antennas. As far as Golden
code and Alamouti code are concerned, MMSE-IC algorithm can be used by applying equivalent
channel transformations on the inputs prior to their use. In case of 2×2 Golden code, the equivalent
channel transformation is presented in [81]. The idea is to treat two transmitted vectors (each having
two elements) as one transmission of four symbols. By applying equivalent channel transformation,
the inputs to the MMSE-IC equalizer are y of four elements and an equivalent channel matrix H̆
of size 4×4. The equivalent channel transformation of Alamouti code is presented in [82] which
transforms a 2×1 channel matrix into a 2×2 equivalent matrix and 2×2 channel matrix into a 4×4
equivalent matrix. Hence, supporting MIMO SM with an additional capability of equivalent channel
transformation, addresses this first source of flexibility parameters.

Time Diversity: The time diversity of the channel decides how frequent the computations of equal-
ization coefficients (2.41, 2.44 and 2.46) is required. For quasi static channel these coefficients are
computed once per iteration whereas for fast fading channel they are computed for each received vec-
tor per iteration. In case of block fading, these coefficients are computed for a set of received vectors
for which channel matrix is considered as constant.

Iterative Equalization: The last source of flexibility is the iterative/non-iterative nature of the
equalizer. In an iterative context the equalizer must incorporate the a priori information.

4.2.2 Architectural Choices

In the MMSE-IC algorithm, presented in subsection 2.3.1, one can note that the expressions com-
puting equalization coefficients and symbol estimation exhibit similar arithmetic operations. Now
considering the flexibility need related to time diversity of the channel, allocating separate resources
for equalization coefficients computation will result in an inefficient architecture in case of quasi
static and block fading channel. For this reason, and targeting flexibility as well as efficiency, our first
architectural choice is based on hardware resource sharing between these two tasks.

Out of these two distinctive parts of the algorithm, the one related to equalization coefficient com-
putation is more resource demanding. In fact, in this part of the algorithm, the implied computations
can only be done in a serial order. For example, to compute matrix F (2.44), one need to compute:

• Hermitian of H

• Matrix multiplication HHH

• Scaler-Matrix multiplication

• Matrix addition

• Matrix inversion

The other metrics (such as βk, λk and gk) are computed with a similar pattern. For this kind of se-
rial computations, temporal parallelism implementation through pipelining can be applied to increase

78 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

throughput. Now considering the flexibility need related to STC, allocating hardware resources ac-
cording to the requirements of the most complex STC configuration will result in an inefficient archi-
tecture for the low complexity configurations. For this reason, our second architectural choice is based
on dimensioning the hardware resources in order to be fully used in all STC configurations. In this
regard, the implied complex matrix operations are analyzed and broken down into basic arithmetic
operations. Then adequate hardware operators are constructed considering the best tradeoff between
flexibility, parallelism and hardware efficiency.

4.3 Hardware Architecture for Basic Operators

In this section, a bottom-up presentation approach is adopted to explain the proposed hardware archi-
tecture capable of performing complex operations through the basic arithmetic operators.

4.3.1 Complex Number Operations

In MMSE-IC algorithms, the complex matrix operations can be broken down into basic complex
number operation such as addition, subtraction, negation, conjugation and inversion. To perform each
operation the architecture of the operator is detailed below.

� �

+

−

+

−

or
or or

or

(a) (b)

X = a + bj

c

a

0

a

b

0

d

b

Y = c + dj

(X
−
Y

) r
e

(X
−
Y

) i
mb

d

c

a

(X
+
Y

) r
e

(X
+
Y

) i
m

(−
X

) r
e

(X
∗)

r
e

(−
X

) i
m

(X
∗)

im

Figure 4.1 — Basic components (a) Complex adder (b) Complex subtracter, negater and conjugator

4.3.1.1 Complex Number Addition, Subtraction, Negation and Conjugate

The complex number addition needs two real adders whereas a complex numbered subtraction needs
two real subtracters. Using two real subtracters, negation of a complex number can be performed.
Similarly, conjugate of a complex number, required in calculating the hermitian of a matrix can also
share the real subtracter. Fig.4.1(a) shows hardware architecture for addition of two complex numbers
X = a + jb and Y = c + jd whereas Fig.4.1(b) shows combined architecture of subtraction of X
and Y and negation/hermitian of a complex number X .

4.3. HARDWARE ARCHITECTURE FOR BASIC OPERATORS 79

4.3.1.2 Complex Number Multiplication

By applying the classical formula (4.1) of multiplication of complex numbers, a complex numbers
multiplier must perform 4 real multiplications and 2 real additions/subtractions.

X × Y = (a+ jb)(c+ jd) = (ac− bd) + j(ad+ bc) (4.1)

A rearrangement may be proposed to reduce the number of multiplications required, as:

X × Y = (a+ jb)(c+ jd) = a(c+ d)− d(a+ b) + j [a(c+ d) + c(b− a)] (4.2)

By applying this reformulation, a complex number multiplier must perform only three real multipli-
cations and 5 real additions/subtractions. Reducing one real multiplier per complex multiplier at the
cost of three adders significantly reduces the complexity of the complex number multiplier. In addi-
tion the adders and subtracters of first stage of pipelined multipliers can also be used for complex
number addition, subtraction, negation and conjugation. A Combined Complex Adder Subtracter and
Multiplier (CCASM) is shown in Fig.4.2. This architecture is capable of performing all basic opera-
tion of complex number addition, subtraction, negation, conjugation (output at first stage of pipeline)
and multiplication (output at third stage of pipeline).

� � �� � �

+

−

or

or

or

or

+

−
or

+

−

R
E
G

E
G

E
G

R

R

R

R

G

R

R
E

E
G

E
G

E

R
E
G

E
G

R

G

c
a

X = a + bj Y = c + dj

d

a

b

b

c

c
(a+ c)

(a+ b)

(b+ d)

(c+ d)a
b
0

(a− c)

(b− a)

b

0

d

b

d(a+ b)

a(c+ d)

c(b− a)

(−a)

(b− d)

(−b)

a

c

d

(X × Y)im

(X × Y)re

Figure 4.2 — Combined Complex Adder Subtracter and Multiplier (CCASM)

4.3.1.3 Complex Number Inversion

The inverse of a complex number can be computed using following expression:

1
a+ bj

=
a

a2 + b2
− b

a2 + b2
j (4.3)

80 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

The architecture for this inverter can be obtained by reusing the real multipliers and one adder of the
CCASM to compute a2 + b2. Pre-computed LUT can then be used to find inversion value of 1

a2+b2
.

Finally, two real multipliers and one subtracter are required for final result computation.

4.3.2 Complex Matrix Operations

In this subsection we propose the use of basic operators, developed in previous part, to achieve com-
plex numbered matrix operations such as matrix hermitian, multiplication and inversion.

4.3.2.1 Matrix Hermitian, Addition, Subtraction, Negation

To perform hermitian operation on a matrix, at first, one need to copy the rows of the matrix into
columns of an intermediate matrix. Then by taking complex conjugate of each element of this inter-
mediate matrix, the resultant matrix will be the required hermitian matrix. Using 4 instances of the
architecture presented in Fig.4.1 with some control logic, provides a fully parallel and flexible ar-
chitecture to perform Matrix Hermitian, Addition, Subtraction and Negation operations for 2×2 and
4×4 matrices. In case of 3×3 matrix this architecture will be 75% efficient. Hence, to perform any of
these operation on 2×2, 3×3 and 4×4 matrices, 1, 3 and 4 clock cycles will be required.

4.3.2.2 Matrix Multiplication

To perform a multiplication of two 2×2 matrices, 8 complex multiplications are required whereas for
3×3 and 4×4 matrices the number of complex multiplications required are 27 and 64 respectively.
Use of four CCASM (Fig.4.2), can efficiently perform all operations (matrix hermitian, addition,
subtraction, negation and multiplication) required for 2×2 and 4×4 matrices. For 2×2 matrix multi-
plications, two complex adders will be required to sum up the multiplication results whereas in 4×4
case, in addition to two complex adders, one more adder will be required. The architecture of 2×2
and 4×4 matrix multiplications is shown in Fig.4.3. The number of cycles required to perform 2×2,
3×3 and 4×4 matrix multiplications will be 2, 9 and 16 respectively.

4.3.2.3 Matrix Inversion

The matrix inversion can be achieved through one of the following methods:

• based on matrix triangulation

• based on analytical method

The first method based on matrix triangulation can realized using systolic architecture through the LU
decomposition, Cholesky decomposition or QR decomposition. The method based on QR decompo-
sition is the most interesting due to its numerical stability and its practical feasibility. It consists
of decomposing decompose a matrix A of size N × N as A = QR where Q is an orthogonal
matrix (QQH = I) and R an upper triangular matrix. This decomposition allows to compute the
inverse of the matrix A after a simple inversion of the triangular matrix R and a matrix multiplica-
tion as A−1 = R−1Q. There are several methods [83] to achieve this decomposition, such as the
Givens method or the method of Gram-Schmidt. Hardware designers give special attention to the
Givens method due to its practical feasibility, its parallelism and its numerical stability [84][76]. The
method of Givens consists of triangularization of matrix A by applying a series of plane rotations

4.3. HARDWARE ARCHITECTURE FOR BASIC OPERATORS 81

COMPLEX ADDER COMPLEX MULTIPLIER

Matrix Multiplication

(a) (b)
For 3× 3

b

e

a

f
a

g

b

h

x

y

z

b

e

a

f
c

g

d

h

d = h = 0

B =

[
e f
g h

]
A =

[
a b
c d

]

A×B =

[
x y
. .

]
A =

a b c d
. . . .
. . . .
. . . .

B =

e . . .
f . . .
g . . .
h . . .

A×B =

z . . .
. . . .
. . . .
. . . .

Figure 4.3 — Complex matrix multiplications (a) 2×2 Matrix multiplication (b) 3×3 and 4×4 Matrix
multiplication

called Givens rotations. Each rotation is designed to cancel an element of A. The standard method of
Givens uses operations that are not easily implementable, including square root and division. There-
fore, there are several variants of this method to avoid these operations. The SGR (Squared Givens
Rotations) [85] and CORDIC method [86] are the best known methods. A comparison between the
two approaches: SGR and CORDIC has been made by Myllyla et al. [84] through MMSE detector.
The results show that the CORDIC-based architecture is more expensive in hardware cost and is 1.5
times slower than those based on SGR. In his thesis work , Edman [87] used SGR method to achieve
matrix inversion and studied both triangular and linear architectures. For this type of architecture there
are dedicated Processing Elements (PEs) which are used as boundary elements and internal elements
of a systolic array or linear array [76]. Although linear array architecture is flexible for variable sized
matrix inversion, it is dedicated to matrix inversion only.

The analytic method of matrix inversion is good candidate, not only for variable sized matrix
inversion but also for resource reuse for other matrix computations. The expression for the inversion
of 2×2 matrix through analytical method is given by:

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
(4.4)

To implement (4.4) the resources required are a complex number negater and a complex divider. For
a 4×4 matrix, the matrix is divided into four 2×2 matrix and inversion can be achieved block wise.

[
A B
C D

]−1

=
[
W X
Y Z

]
(4.5)

82 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

where

W = A−1 +A−1B(D − CA−1B)−1CA−1

X = −A−1B(D − CA−1B)−1

Y = −(D − CA−1B)−1CA−1

Z = (D − CA−1B)−1

The inversion of a 3×3 matrix is performed by extending it to a 4×4 matrix. This can be done by
copying all three rows of 3×3 matrix into first three rows of 4×4 matrix and then putting zeros in
all elements of fourth row and fourth column where a 1 should be put on the intersection of fourth
row and fourth column. The inversion can then be performed using the method mentioned above. The
final result lies in first three elements of first three rows (or column). All the expressions involved in
the inversion of up to 4×4 matrix can be achieved through already described matrix operations and
will be used in the EquASIP.

4.3.2.4 Operator Reuse in Fixed-Point Representation

To find the required data width for fixed-point representation of the parameters involved in MMSE-IC
algorithm, long simulations have been conducted for all supported system configurations (STC and
modulation type). Results analysis have shown that at maximum 16-bit signed representation with
different bits for integer and fractional part is sufficient for all the parameters involved during the
different computational steps of MMSE-IC LE algorithm to ensure a performance loss below 0.2dB.
To enable the reuse of hardware resources for these different computations, involving operands with
different fixed-point representations, certain rules have been set. First of all, while reading input data
from memories, the data which is represented in less than 16-bits, is sign extended to 16-bit. Secondly,
a programmable 33 to 16-bit conversion is performed at the outputs of the multipliers. Last of all, to
avoid the hazards caused by overflow/underflow during an arithmetic operation, a control mechanism
is provided to fix the output at its maximum/minimum limit. Fig. 4.4 shows the 16-bit quantization in
signed 2’s complement representation of the different implied parameters. In Fig. 4.4, notation (x dot
y) designates a singed number where x represents the number of bits for integer part and y represents
the number of bits for fractional part. Furthermore, Fig.4.5(a) shows the FER performance of 2×2
MIMO SM with QPSK and Fig.4.5(b) shows the FER performance of 4×4 MIMO SM with 64-QAM.

4.4 EquASIP Architecture

The proposed ASIP architecture is mainly composed of Matrix Register Banks (MRB), Complex
Arithmetic Unit (CAU) and Control Unit (CU) besides its memory interfaces. The input to the
EquASIP are through “Channel Data Memory” and the soft mapper as shown in Fig. 4.6. The data bus
of all inputs is set to 16 (32 bit for complex number). This provides flexibility to use up to 16 bit data
representation and in case of smaller data widths, signed/unsigned extension can be done externally.
The ASIP has 7 pipeline stages named as: FETCH, AD SU MUL1, MUL2, MUL3, 2ADD, 1ADD
and OUT.

4.4.1 Matrix Register Banks

To store a complex number two separate 16-bit registers have been used, one storing the real and
the other imaginary part. Based on the requirements of the expression (2.40) for a 4×4 spatially

4.4. EQUASIP ARCHITECTURE 83

H Matrix (5 dot 7) Inverse Function

Mult/Div

(7 dot 9)

real(g) = Bais (4 dot 6)

ADD

Estimated Symbols

(7 dot 9)

(6dot10) (7 dot 9)

(4 dot 6)

(8 dot 8)

(6 dot 10)

(10 dot 6)
pHk λk

pHk λk

HHH

λk = σ2
x

1+σ2
x̂βk

(σ2
x, σ

2
x̂)

βk
gk

gk

x̃

y −Hx̂

βkλk

gk x̂k

(y −Hx̂)

pHk hk

((σ2
x − σ2

x̂)HH
H + σ2

wI)
−1hk

pHk

y (6 dot 6)

((σ2
x − σ2

x̂)HH
H + σ2

wI)

pk

x̂ (4 dot 6)

βk

λk

pHk

Figure 4.4 — Quantization Parameters for Fixed-point Representation

(a) (b)

Figure 4.5 — Floating point vs Fixed-point turbo equalization for 120 Source Byte, double binary
encoder , 1

2
code rate, Rayleigh fading channel (a) 2×2 QPSK ; (b) 4×4 64-QAM

multiplexed MIMO system, 13 MRBs have been proposed, where each MRB can store 4 complex
numbers (Fig. 4.6). H-MRB (H0, H1, H2, and H3) which are connected to the memory, can store 4
rows or columns of Channel Matrix. Four V-MRB (V0, V1, V2, and V3) store 16 entries of λkpk.
GP0, GP1, GP2, GP3 and GP4 are assigned to the storage of gj , x̂j , y, gj x̂j and the estimated
symbols x̃ respectively. Other than this specific use, these GP registers save the intermediate results
of equalization coefficients. Among other registers there are three registers to store the variances
of noise, modulation symbol and decoded symbols besides pipeline registers and the registers for

84 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

GP1 GP2 GP3 GP4

ADR

Matrix Register Banks

H0_0 H0_1 H0_2 H0_3

GP0

V0 V1 V2 V3

H0 H1 H2 H3
FE

TC
H

A
D

_S
U

_M
U

L1

M
U

L2

M
U

L3

1A
D

D

O
U

T

H
V

GP

128 128 32 64/3264128

ADR

DATA
DATA

to Demapper

20 24

Program
Memory Memory

ADR
DATA

from Mapper

Complex
Arithmatic

Unit

CO
N

TR
O

L
U

N
IT

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

2A
D

D

REAL PART (16 BIT SIGNED)

Channel Data

10
12

15 15

LUT

Pi
pe

lin
e

Re
gi

ste
rs

IMAGINARY PART (16 BIT SIGNED)

x̂ and σ2
x̂

x̃ and g

1
x

Figure 4.6 — EquASIP block diagram

A EDCB

FROM LUT

RM3

2ADD

RM4

AD_SU_MUL1 MUL2FETCH OUT

CA8

CA9

CS5

CS6

MUL3 1ADD

CONV9
CONV10

CA1 /CS1 /
CM1 STAGE 1

CA2 /CS2 /
CM2 STAGE 1

CA3 /CS3 /
CM3 STAGE 1

CA4 /CS4 /
CM4 STAGE 1 CM4 STAGE 2

CM3 STAGE 2

CM2 STAGE 2

CM1 STAGE 2 CM1 STAGE 3

CM2 STAGE 3

CM3 STAGE 3

CM4 STAGE 3

CA5

CA6

CA7

@Gen

CS = COMPLEX SUBTRACTOR
CM = COMPLEX MULTIPLIER
RM = REAL MULTIPLIER

A = RESULT OF 4 COMPLEX

B = RESULT OF 4

C =

E =

D =
CONV = 33 to 16−Bit Converter

CA = COMPLEX ADDER ADDITIONS/SUBTRACTIONS

COMPLEX MULTIPLICATIONS

6
PI

PE
LI

N
E

R
EG

IS
TE

R
S

10
 P

IP
EL

IN
E

R
EG

IS
TE

R
S

14
 P

IP
EL

IN
E

R
EG

IS
TE

R
S

26
 P

IP
EL

IN
E

R
EG

IS
TE

R
S

2
PI

PE
LI

N
E

R
EG

IS
TE

R
S

6
PI

PE
LI

N
E

R
EG

IS
TE

R
S

CONV1
CONV2

CONV3
CONV4

CONV5
CONV6

CONV7
CONV8

b
a2 + b2

In
ve

rs
io

n
C

om
pl

ex
N

um
be

r

a + bj

a2

b2
(a2 + b2) 1

a2 + b2

a
a2 + b2

REULT OF MULTIPLICATION OF 1 ROW AND 2 COLUMNS OF 2× 2 MATRIX

RESULT OF MULTIPLICATION OF 1 ROW AND 1 COLUMN OF 4× 4 MATRIX

(y − Hx̂) or x̃ or 1
a + bj

−b
a2 + b2

Figure 4.7 — CAU and pipeline stages

REPEAT instruction.

4.5. EQUASIP INSTRUCTION SET 85

4.4.2 Complex Arithmetic Unit

The computational resources of the Complex Arithmetic Unit (CAU) of EquASIP are shown in Fig.
4.7. After fetch pipeline stage, 4 CCASM units (Fig. 4.2) are spread over three pipeline stages to
perform 4 concurrent complex additions, complex subtractions/negation, complex conjugation and
complex multiplications. The results of complex addition, subtraction, negation and conjugate oper-
ations are copied into destination registers in AD SU MUL1 pipeline stage. In MUL3 stage, 33-bit
to 16-bit transformation is performed according to the information provided in multiply instruction.
The results of four complex multiplication (16-bits for each of real and imaginary part of the complex
number) are saved in the target registers. To perform 2×2 matrix multiplication one row/column of
first matrix is introduced twice at first input of CCASMs and two columns/rows of second matrix are
exposed to the second input of CCASMs. Providing the results of four complex multiplication to two
complex adders in 2ADD pipeline stage, the output will give one resultant row/column of multipli-
cation of 2×2 matrix. In case of 4×4 matrix multiplication, one row/column from each matrix goes
to the inputs of four CCASM. The results of four multiplications are added together using 2 adders
of 2ADD and one adder of 1ADD pipeline stage to output one element of 4×4 matrix multiplication.
Complex adders/subtracters in last pipeline stage are used in the computation of Eq. (2.40). The in-
version process of a complex number in different pipeline stages is shown as dotted area in Fig. 4.7.
For this particular operation, additional resources are required as Look-Up Tables (LUT), two 33 to
16-bit converters, and two real multipliers.

4.4.3 Control Unit

The EquASIP control unit works as administrator of the 7-stage pipelined CAU as mentioned above
and shown in (Fig. 4.6). It controls the flow of the program instructions over the designed datapath
(MRBs, CAU) during the different stages of the pipeline. The functioning of the control unit will be
reflected during the instruction set presentation which is detailed in the next section.

4.5 EquASIP Instruction Set

The instructions of the proposed ASIP are categorized as follows:

4.5.1 LOAD, MOVE, REPEAT, NOP

LOAD instruction is used to load channel matrix into H-MRB from memory. While loading data
there are possibilities for loading directly or loading after applying conjugation to support equivalent
channel transformation. LOAD CODE instruction is used to initialize the V-MRBs for values which
are used in equivalent channel transformation for Golden code. The MOVE instruction is used to
transfer data between MRBs whereas REPEAT instruction repeats a block of code as many times as
given in REPEAT SIZE Register. NOP instruction is used to add empty cycles during the execution
of the program when required.

4.5.2 Matrix Addition, Subtraction, Negation and Conjugation Instructions

The instruction format for addition, subtraction, negation and conjugation operation is shown in
Fig.4.8. Besides opcode, the other fields are the “OPERATION” field and two “SOURCE” fields to in-
put two register banks in complex adders and subtracters. The “OPERATION” field of 3-bits indicates

86 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

V_0
V_1
V_2
V_3

H_0
H_1
H_2
H_3

SOURCE1OPERATIONUNUSEDOPCODE SOURCE2

7 2 041619 ADD
SUBTRACT
CONJUGATE
NEGATE

Figure 4.8 — 20-bit Addition, subtraction, negation and conjugate instructions

the following six different operations: ADD, SUBTRACT, CONJUGATE, NEGATE, MOV REC and
MOV MOD.
ADD: Using ADD instruction, programmer can select any of the H-MRB as source1 and any of V-
MRB as source2. The result of an addition is always saved in GP 0 MRB.
SUBTRACT: Using SUBTRACT instruction, any one of selected H-MRB and any of V-MRB are
subtracted and result is always saved in GP 0 MRB.
CONJUGATE/NEGATE: In this single source instruction all four elements of one of the selected
H-MRB are conjugated/negated and the results are copied in respective V-MRB i.e V-MRB(n) =
Conjugate/Negate(H-MRB(n)) where n can be any integer from 0 to 3.
MOV REV: This instruction copies the elements of H-MRB(0), in reverse order, into V-MRB(0) with
second element in negative form. This is used to align the elements of 2×2 matrix (to be inverted)
for a multiplication which results in its determinant. For example if H-MRB(0) has a matrix A with
elements a, b, c and d (4.4) then V-MRB(0) will have elements d,−c, b and a after the execution of
this instruction. To obtain determinant of A (det(A) = ad − bc), one can multiply H-MRB(0) with
V-MRB(0) and add the results of first two complex multiplications.
MOV MOD:This instruction is to copy and rearrange the matrix A (saved in H-MRB(0)) in V-
MRB(0) to a form required in the inversion of a 2 × 2 matrix (4.4) i.e. if H-MRB(0) has a matrix
A with elements a, b, c and d then V-MRB(0) will have elements d,−b,−c and a after the execution
of this instruction

4.5.3 MULTIPLY

This category is the most demanding one in EquASIP instruction set. Different fields of the mul-
tiply instruction are detailed in Fig. 4.9(a). Eight different opcodes fall under this category to use
complex multipliers for multiplication of 4×4 and 2×2 matrices (MULT4X4 and MULT2X2), multi-
plication of 4 complex numbers (MULT CMPLX), 3 different MAC instructions (MAC1, MAC2 and
MAC3)and two instructions to compute the output symbols x̃(OUT1 and OUT2). The 3×3 matrix
multiplication is achieved by 4×4 matrix multiplication by providing zero at the input lines of fourth
CCASM.

Different possible sources to complex multipliers are shown in the Fig. 4.9(b). Depending upon
the fields “Source1” and “Source2” of the instruction, 4 operands are selected as source1 and 4 as
source2 for 4 complex multipliers. To obtain different 16-bit fixed-point representations from 33-bit
output of complex multipliers, 33 to 16-bit converters are designed. These converters (Fig. 4.9(c))
select 16 consecutive bits from 33-bit multiplication result depending upon the “16-Bit Control” field
of the instruction. A combinational logic has also been provided to detect overflow/underflow with
each choice of bit selection and consequently saturate the output value to maximum/minimum bounds.
The “Destination” field of instruction selects the destination for the result.

4.5. EQUASIP INSTRUCTION SET 87

4−Bit 4−Bit 4−Bit 4−Bit
Opcode Source 1 Source 2 Destination16Bit Select

4−Bit

(b32 ..b0)

Multiplier Output (33−bit)

0 0 0 0

Underflow1
Overflow1
(b17 ..b2)

(b31 ..b17)

b32
Underflow2
Overflow2
(b18 ..b3)

(b31 ..b16)

b32

(b31 ..b17)

Overflow

Underflow

Selected 16 Bit
16 Bit Result

(b31 ..b16)

b32

b32

Underflow16 = 0
Overflow16 = 0 0x7FFF

0x8000

16Bit Select

(b32 ..b17)
4

16Bit Select

33−bit Complex Multiplication Result Syntax

456 127814 13 12 11 91516172022232425272829303132 26 21 19 18 10 0

Binary
Mapping

456 0127814 13 12 11 91516172022232425272829303132 26 21 19 18 10
4 356 0127814 13 12 11 91516172022232425272829303132 26 21 19 18 10 0 0 0 1

0 0 1 0
0 0 1 1

16DOT0

1DOT15
2DOT14
3DOT13
4DOT12

1 1 1 14 356 0127814 13 12 11 91516172022232425272829303132 26 21 19 18 10

456 0127814 13 12 11 91516172022232425272829303132 26 21 19 18 10
3
3

3

12
8

12
8

12
8

G
P1V3_0

V3_2
V3_0

V3_1
V3_1
V3_3

V3_2

V3_0
V3_2

V3_3
V3_1
V3_3

V0_0
V0_0
V0_2

V0_1
V0_1
V0_3

V0_2
V0_0
V0_2

V0_3
V3_1
V0_3

R
EA

L
N

U
M

BE
R

 O
N

 A
LL

 4
 L

IN
ES

GP0GP2

128 Bits = 4 Complex numbers
128

128
128

128128

H
0_

0

H
0_

1

H
0_

2

H
0_

2

H
0_

1

H
0_

3

4 SAME PARAMETERS

12
8

Bi
ts

=
4

Co
m

pl
ex

 N
um

be
rs

12
8

12
8

12
8

32

32

32

32
32

32

32

32

33

33

33

H
3_

0

H
3_

1

H
3_

2

H
3_

2

H
3_

1

H
3_

3

H
0_

0

H
0_

1

H
0_

2

H
0_

3
So

ur
ce

 2

Source 1

COMPLEX MULTIPLIER 1

COMPLEX MULTIPLIER 2

COMPLEX MULTIPLIER 3

COMPLEX MULTIPLIER 4

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

33 to 16 Converter

16

16

16

16

16

16

16

16

33

33

33

33

33

128

33 to 16 Converter

(a)

(c)

(b)

Figure 4.9 — Complex multiplication datapath: (a) 20-bit Multiply Instruction, (b) Possible inputs to
complex multipliers, (c) 33 to 16-bit converter

88 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

4.5.4 DIVIDE

Two divide instructions have been defined. The first one is the division of a real number while the
second one is used to invert a complex number. The first operation during execution of complex
number division starts in the third stage of the pipeline to use the real multipliers. LUTs have been
used to store the inversion values. The overall operation is shown as dotted area of Fig. 4.7.

4.6 Sample Program

In this section sample program to implement different parts of MMSE-IC2 equalization algorithm are
described. The assembly code line starting with “;” designates a comment line.

4.6.1 Computation of E Matrix

The commented assembly program to compute E matrix of (2.44) is given in Listing 4.1.

Listing 4.1 — EquASIP: assembly code for E matrix computation �
1 ; l o a d i n g H m a t r i x from c h a n n e l d a t a memory i n t o 4

e l e m e n t s o f H0 MRB
2 LOAD H0 0 0 x001
3 LOAD H0 1 0 x002
4 LOAD H0 2 0 x003
5 LOAD H0 3 0 x004
6 ; l o a d i n g v a r i a n c e o f decoded symbols (x h a t) from

i n p u t l i n e s
7 MOVE SIG X TILD SIG X TILD REG
8 ; H e r m i t i a n o f H m a t r i x
9 CONJUGATE OF H0

10 ; 2 x2 m a t r i x m u l t i p l i c a t i o n t o m u l t i p l y H wi th i t
h e r m i t i a n

11 MULT2X2 3DOT13 H0 V0 SU GP0 01
12 MULT2X2 3DOT13 H0 V0 SL GP0 23
13 ; l o a d i n g v a r i a n c e o f c o n s t e l l a t i o n used
14 LOAD SIG1 0 x400
15 ; l o a d i n g n o i s e v a r i a n c e saved a t a d d r e s s 0 o f c h a n n e l

d a t a memory
16 LOAD SIG W 0 x000
17 ; t a k i n g d i f f e r e n c e o f v a r i a n c e o f c o n s t e l l a t i o n used

and v a r i a n c e o f decoded symbols and s a v i n g t h e
d i f f e r e n c e i n SIGMA1 r e g i s t e r

18 MOVE SIG DIFF SIGMA1
19 ; r e s u l t s o f m u l t i p l i c a t i o n o f H wi th i t s h e r m i t i a n

a r e r e a d y i n GP0 which a r e c o p i e d i n H0
20 MOVE GP0 H0
21 ; f i n a l E m a t r i x c o m p u t a t i o n which i s
22 ; 1 . m u l t i p l i c a t i o n o f each e l e m e n t o f H0−MRB wi th

SIGMA1 r e g

4.6. SAMPLE PROGRAM 89

23 ; 2 . a d d i t i o n o f v a r i a n c e o f n o i s e a t t h e d i a g o n a l
p o s i t i o n s

24 ; 3 . o f m u l t i p l i c a t i o n r e s u l t s o f s t e p 1 .
25 MAC3 1DOT15 H0 SIGMA GP0
26 NOP
27 NOP
28 ; E m a t r i x r e a d y i n GP0
29 NOP
30 ; copy ing E m a t r i x i n H0
31 MOVE GP0 H0

4.6.2 2× 2 Matrix Inversion

The commented assembly program for 2× 2 E matrix inversion is given in Listing 4.2.

Listing 4.2 — EquASIP: assembly code for 2× 2 E matrix inversion �
1 ; a r r a n g i n g c o n t e n t s o f H0 (E m a t r i x) i n r e v e r s e o r d e r

i n V0
2 MOVE REVERSE H0
3 ; comput ing d e t e r m i n a n t o f E m a t r i x
4 MULT2X2 11DOT5 H0 V0 GP0 01
5 ; a r r a n g i n g c o n t e n t s o f H0 (E m a t r i x) i n an o r d e r

r e q u i r e d f o r m a t r i x i n v e r s i o n i n V0 i . e swapping
t h e p l a c e s o f e l e m e n t s i n f i r s t d i a g o n a l o f (E
m a t r i x) and i n v e r t i n g t h e s i g n s o f t h e e l e m e n t s i n
t h e second d i a g o n a l o f E m a t r i x

6 MOVE MOD COL H0
7 NOP
8 NOP
9 ; t a k i n g r e c i p r o c a l o f d e t e r m i n a n t o f E saved i n GP0 0

10 DIV GP0 0
11 NOP
12 NOP
13 ; s a v i n g r e c i p r o c a l o f d e t e r m i n a n t o f E i n H0 0
14 MOVE GP0 H0
15 ; a n a l y t i c method f o r m a t r i x i n v e r s i o n
16 MULT CMPLX 8DOT8 H0 0 V0 GP0
17 NOP
18 NOP
19 ; s a v i n g i n v e r s e o f E m a t r i x i n H−MRB(0)
20 MOVE GP0 H0

To achieve 4 × 4 and 3 × 3 matrix inversions, above described 2 × 2 matrix inversion routine with
2×2 matrix addition, subtraction and multiplication instructions can be used as required in (4.5).

90 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

4.6.3 Computation of pj , βj, λj

The parameter pj of (2.45) and its hermitian can be computed using the assembly code presented in
Listing 4.3.

Listing 4.3 — EquASIP: assembly code for pj computation �
1 ; l o a d i n g H m a t r i x column wise i n H−MRB(1)
2 LOAD H1 0 0 x001
3 LOAD H1 1 0 x003
4 LOAD H1 2 0 x002
5 LOAD H1 3 0 x004
6 NOP
7 MOVE H1 V1
8 ; c o m p u t a t i o n o f pk where H0 ha v i ng i n v e r s e o f E and V1

ha v i ng two columns of H m a t r i x
9 MULT2X2 6DOT10 H0 V1 SU GP0 01

10 MULT2X2 6DOT10 H0 V1 SL GP0 23
11 NOP
12 NOP
13 NOP
14 MOVE GP0 H0
15 ; c o m p u t a t i o n o f pk h e r m i t i a n saved i n MRB−V(0)
16 CONJUGATE OF H0

Computation of βj is carried out as pHj hj which is shown in Listing 4.4:

Listing 4.4 — EquASIP: assembly code for βj computation �
1 MULT2X2 6DOT10 H1 V0 GP0 01
2 MULT2X2 6DOT10 H1 V0 GP0 23
3 NOP
4 NOP
5 NOP
6 ; s a v i n g b e t a i n GP1 and H0
7 MOVE GP0 GP1
8 MOVE GP0 H0

The parameter λj of the expression (2.46) is computed in three steps (Lisitng 4.5): denominator is
computed first, then divide instruction is used to find its inverse and finally it is multiplied with
constellation variance.

Listing 4.5 — EquASIP: assembly code for λj computation �
1 LOAD SIG1 0 x0000
2 LOAD SIG2 0 x0100
3 ; c o m p u t a t i o n o f d e n o m i n a t o r o f lambda
4 MAC2 7DOT9 H0 SIGMA GP0
5 NOP
6 NOP
7 NOP
8 ; c o m p u t a t i o n o f i n v e r s e o f d e n o m i n a t o r o f lambda

4.6. SAMPLE PROGRAM 91

9 DIV GP0 0
10 DIV GP0 1
11 DIV GP0 2
12 DIV GP0 3
13 NOP
14 NOP
15 NOP
16 NOP
17 NOP
18 MOVE GP0 H0
19 ; c o m p u t a t i o n o f LAMBDA
20 LOAD SIG2 0
21 LOAD SIG1 0 x200
22 MAC2 7DOT9 H0 SIGMA GP0
23 NOP
24 NOP
25 NOP
26 MOVE GP0 H0

4.6.4 Computation of pjλj and gj

These parameters are required in the computation of symbol estimation equation presented in expres-
sion 2.40. The assembly code for this computation is shown in Lisitng 4.6.

Listing 4.6 — EquASIP: assembly code for pjλj and gj computation �
1 ; lambda1 t i m e s p1 h e r m i t i a n & p2 h e r m i t i a n
2 MULT CMPLX 10DOT6 H0 0 V0 SU GP0
3 ; lambda2 t i m e s p1 h e r m i t i a n & p2 h e r m i t i a n
4 MULT CMPLX 10DOT6 H0 1 V0 SL GP0
5 ; g (j) c o m p u t a t i o n
6 MULT CMPLX 10DOT6 H0 GP1 GP0
7 ; s a v i n g p1 . lambd1
8 MOVE GP0 H01 01
9 ; s a v i n g p2 . lambd2

10 MOVE GP0 H01 23
11 MOVE H0 V0

4.6.5 Symbol Estimation

Listing 4.7 is the set of instructions to find the estimated symbols:

Listing 4.7 — EquASIP: assembly code for symbol estimation �
1 ; c o m p u t a t i o n o f y−H∗ x h a t
2 OUT1 2X2 7DOT9 H0 GP1 SU GP2 0
3 OUT1 2X2 7DOT9 H0 GP1 SL GP2 1
4 ; c o m p u t a t i o n o f g∗ x h a t
5 MULT CMPLX 3DOT13 GP0 GP1 GP3

92 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

6 ; l o a d i n g y v e c t o r from memory
7 LD GP2
8 NOP
9 NOP

10 ; c o m p u t a t i o n o f e x p r e s s i o n o f 2 . 4 0
11 OUT2 2X2 5DOT11 GP2 SU V0 GP3
12 OUT2 2X2 5DOT11 GP2 SL V0 GP3

4.7 EquASIP Results and Performance

In this thesis work we used the Processor Designer tool suite from CoWare for ASIP . This tool
allows to describe a processor in the LISA ADL to automatically generate the models of the processor
(VHDL, Verilog or SystemC) for logic synthesis and system integration. On the other hand it provides
software development tools (simulator, compiler, assembler, debugger and linker). By performing
hardware synthesis and executing the application programs, performance of this ASIP is ascertained
for different configurations and presented below.

Table 4.1 — EquASIP synthesis results

ASIC Synthesis Results (Synopsis Design Compiler)
Technology ST 90nm
Conditions Worst Case (0.9V ; 105oC)
Area 0.37mm2 (84 K Gate)
Frequency 546 MHz
FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)

Slice Registers 3,174 out of 207,360 (1%)
Slice LUTs 11,299 out of 207,360 (5%)
DSP48Es 14 out of 192(7%)
Frequency 130 MHz

4.7.1 Synthesis Results

From the generated RTL description of EquASIP, logic synthesis has been conducted both on ASIC
and FPGA. For ASIC target, the processor has been synthesized with Design Compiler tool from
Synopsys. For FPGA target, Xilinx ISE tool has been used. In Table 4.1, the results of synthesis are
summarized.

4.7.2 Execution Performance

To estimate the throughput of the EquASIP for different system configurations, the number of cycles
required to compute the expressions involved in MMSE-IC1 are summarized in Table 4.2. Using
this information, the user can estimate the throughput of the system under different channel’s time
diversity conditions and used STC. In case of quasi static conditions, after equalization coefficient
computation, the throughput in terms of symbols per clock cycle is described in the last row of Table

4.7. EQUASIP RESULTS AND PERFORMANCE 93

Table 4.2 — EquASIP computation time for MMSE-IC1 equations

Expression MIMO 2×2 MIMO 3×3 MIMO 4×4
(Cycles) (Cycles) (Cycles)

E (Ref. eq. 2.44) 18 33 50
E−1 14 68 68
pj (Ref. eq. 2.45) 12 26 39
βj (Ref. eq. 2.41) 7 19 27
λj (Ref. eq. 2.46) 23 22 23
λjpH

j , gj (Ref. eq. 2.40, 2.41) 7 12 14

Total 81 180 221
Symbol x̃ Throughput (Ref. eq. 2.40) 4 symbols/8 cycles 3 symbol/11 cycles 4 symbol/13 cycles
ASIC M Symbols/sec (@ 546 MHz) 273 149 168
FPGA M Symbols/sec (@ 130 MHz) 65 35.45 40

4.2. For a 3×3 MIMO SM configuration the symbol throughput is less than a 4×4 MIMO SM. This
is due to the fact that for a 3×3 MIMO SM system 25% of the resources are not used. This illustrates
a typical tradeoff between flexibility, resource utilizations and system performance. The throughput
for 2×2 Golden code is same as 4×4 SM.

4.7.3 Comparison with State of the Art

In Table 4.3, different architectural parameters of state of the art implementations are summarized
and compared with EquASIP implementation results. All of the referenced implementations present
dedicated architecture for a specific system configuration except [77] where the proposed architec-
ture supports 2×2 and 4×4 matrix inversion. Table 4.3 is organized in such a way that first of all
comparison is made with [78], [80] and [88] which provide a complete solution to generate estimated
symbol vectors. Then comparison with [75] (providing solution to compute only the coefficient ma-
trix of (2.3)) is tabulated. Finally, the EquASIP is compared with [76], [74] and [77] which provide
architectures only for matrix inversion. Furthermore, in order to make a fair comparison, the EquASIP
was synthesized with the same target technology as used in the implementation with which it is being
compared.

The work presented in [78] is aimed at achieving fast fading 4×4 MIMO SM using MMSE-IC.
This implementation uses σ2

x̂ = 0 in first iteration and σ2
x̂ = σ2

x in later iterations to simplify the archi-
tecture. However, while using in iterative context this assumption of perfect σ2

x̂ information induces
a performance loss. Due to a fully pipelined architecture it outputs a vector containing four estimated
symbols at every 38 clock cycle. Hence, the throughput is 1.31 Mega vectors at presented frequency.
With EquASIP, working on same configuration, the cycles required for one symbol vector estimation
are 234. This results in a throughput of 0.5 Mega vectors per second at considered frequency. Hence,
the flexibility of EquASIP to support 5 different STC comes at the cost of 2.4 times less throughput,
53% more slice registers and 16 more dedicated multipliers compared to [78].

94 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

Ta
bl

e
4.

3
—

E
qu

A
SI

P
pe

rf
or

m
an

ce
co

m
pa

ri
so

n

O
pe

ra
tio

n
R

ef
.

A
lg

or
ith

m

O
pe

ra
te

.
H

ar
dw

ar
e

R
es

ou
rc

es
T

hr
ou

gh
pu

t
Sy

st
em

Ta
rg

et
Fr

eq
ue

nc
y

FP
G

A
A

SI
C

C
lo

ck
(M

eg
a

C
on

fig
ur

at
io

n
D

ev
ic

e
(M

H
z)

Sl
ic

e/
L

og
ic

E
le

m
en

t
D

ed
ic

at
ed

A
re

a
C

yc
le

O
pe

ra
tio

ns
R

eg
is

te
rs

L
U

T
M

ul
tip

lie
rs

(K
G

at
es

)
pe

rs
ec

)
4×

4
SM

[7
8]

Q
R

C
O

R
D

IC
St

ar
tix

50
86

70
12

-
38

1.
31

Fa
st

Fa
di

ng
E

qu
A

SI
P

A
na

ly
tic

al
12

0
13

27
2

28
-

23
4

0.
5

M
IM

O
4×

4
SM

[8
0]

Q
R

C
O

R
D

IC
V

ir
te

x-
II

14
0

14
16

6
10

3
-

38
8

17
.3

1
Sy

m
bo

l
B

lo
ck

Fa
di

ng
E

qu
A

SI
P

A
na

ly
tic

al
83

84
77

14
-

84
5

4.
71

V
ec

to
r

2×
2

[7
9]

B
lo

ck
w

is
e

60
81

7
27

15
60

-
1

12
0

E
st

im
at

io
n

PC
A

na
ly

tic
al

V
ir

te
x-

V
Q

ua
si

St
at

ic
E

qu
A

SI
P

13
0

31
74

11
29

9
14

-
3.

25
40

2×
2

[7
5]

Q
R

C
O

R
D

IC
-

11
91

0
20

-
68

5
-

M
IM

O
SM

Q
R

SG
R

-
63

05
59

-
41

5
-

p
j

E
qu

A
SI

P
A

na
ly

tic
al

83
84

77
14

-
42

1.
97

E
q.

2.
3

4×
4

[7
5]

Q
R

C
O

R
D

IC
V

ir
te

x-
II

-
16

80
5

44
-

30
00

-
M

IM
O

SM
Q

R
SG

R
-

-
-

-
-

-
E

qu
A

SI
P

A
na

ly
tic

al
83

84
77

14
-

15
7

0.
53

[7
6]

Q
R

SG
R

V
ir

te
x-

II
10

0
22

24
22

12
-

-
17

5
0.

57
E

qu
A

SI
P

A
na

ly
tic

al
83

31
77

15
99

7
14

-
68

1.
2

[7
4]

Q
R

D
-R

L
S

V
ir

te
x-

IV
11

5
91

17
22

-
93

3
0.

15
M

at
ri

x
4×

4
[7

7]
V

ir
te

x-
IV

10
0

17
16

20
94

8
-

12
0

0.
83

In
ve

rs
io

n
M

at
ri

x
B

lo
ck

w
is

e
90
n
m

50
0

-
-

-
43

92
5.

43

E
qu

A
SI

P
A

na
ly

tic
al

V
ir

te
x-

IV
11

7
32

32
16

09
1

14
-

68
1.

7
90
n
m

54
6

-
-

-
85

68
8.

02

4.8. CONCLUSION 95

When comparing EquASIP’s throughput with , In [80], the architecture implements 4×4 MIMO
SM detector for 802.11n standard. In this application the design is made for a worst case scenario
where for 48 vectors channel remains constant. To decode a frame of 48 vectors, the work in [80]
takes 388 clock cycles. Which results in 17.3 M vectors per second at a frequency of 140 MHz.
When comparing with our work, this EquASIP consumes 221 clock cycles to compute equalization
coefficient for a frame and 13 clock cycles for each vector estimation. Hence the total consumed
clock cycles for 48 vectors estimation are 221 + 13×48 = 845 which results in a throughput of 4.7 M
vectors per second at a frequency of 83 MHz. Hence, throughput of the dedicated architecture of [80]
is almost 3.6 times more at a cost of almost twice the FPGA slice used and 7.5 times more multipliers.
Again this implementation is not flexible for variable antenna size, time selectivity of the channel and
iterative nature of equalization.

The realization of 2×2 MMSE-IC equalizer in [79] includes pre-coding (PC). The equivalent
channel matrix becomes a 4×4 matrix shown below:

H =

h11 h12 0 0
h21 h22 0 0
0 0 h11 h12

0 0 h21 h22

The inversion of this matrix needs execution of two 2×2 matrix inversions. Other than this, to map
this PC on the EquASIP, one 4×4 matrix multiplication is required to incorporate the PC matrix. The
rest of the computations are same as required in 4×4 MIMO SM. Hence, to compute the equalization
coefficients on EquASIP, 197 clock cycles will be consumed. For a target quasi-static environment,
the EquASIP takes 197 cycles at 130 MHz as compared to the dedicated architecture taking 20 cycles
at 61 MHz [79]. This part is not crucial because it is computed once for a frame. The throughput of
EquASIP is 40 Mega symbols per second and hence 3 times less than the dedicated architecture. The
3 times faster output of dedicated architecture comes at 5 times multipliers used and this architecture
used 4 times less slice registers and LUTs.

The EquASIP is better both in area and performance when compared with [75]. While comparing
with [76], [74] and [77], EquASIP outperforms these architectures in throughput. EquASIP occu-
pies more area as compared to these dedicated implementations for matrix inversion as, besides its
flexibility, EquASIP supports all functions required in MMSE-IC equalization algorithm.

In the above analysis, an attempt is made to compare dedicated and flexible architectures for
MMSE-based equalization. In the presence of multiple system configurations and different variants
of algorithms in the equalizer, EquASIP provides a promising flexible solution compared to dedicated
implementations.

4.8 Conclusion

In this chapter, the first flexible ASIP implementing an MMSE-IC linear equalizer for turbo equaliza-
tion application has been presented. Analysis and simulation of mathematical equations involved in
MMSE-IC LE allowed to identify potential complex-numbered operations which lead to device the
instruction set for the proposed EquASIP. The specific instructions for complex number arithmetic en-
able to efficiently perform computations on variable sized complex numbered matrices which in turn
provide required flexibility in MMSE-IC and promote its reuse for other MMSE-based applications.

Flexibility of the presented EquASIP architecture allows its reuse for each of Alamouti code,
Golden code, 2×2, 3×3 or 4×4 spatially multiplexed turbo MIMO application with BPSK, QPSK,

96 CHAPTER 4. EQUASIP: ASIP-BASED MMSE-IC LINEAR EQUALIZER

16-QAM, and 64-QAM. When targeting 90 nm technology, the proposed architecture enables a max-
imum throughput of 273 MSymbol/sec for 2×2, 148 MSymbol/sec for 3×3 and 168 MSymbol/sec
for 4×4 MIMO systems. The presented original contribution demonstrates promising results using
the ASIP approach to implement flexible, yet efficient, MMSE-based iterative MIMO equalizer.

CHAPTER

5 DemASIP: ASIP-based
Universal Demapper

THIS chapter presents the ASIP architecture dedicated for demapping function, namely De-
mASIP. The presented ASIP exploits the first level of parallelism available in demapping ap-

plication, introduced in chapter 2 as Metric Level Parallelism. Proposed DemASIP architecture can
be used for LLR generation for multiple modulation schemes adopted at the transmitter side with or
without SSD . The DemASIP can work both in an iterative and a non-iterative context and provides
support for BPSK to 256-QAM constellation for any mapping style used. Furthermore, DemASIP
is designed to be modular in order to facilitate its integration in a scalable multiprocessor platform
(exploiting the second parallelism level).

This chapter is organized in the following order. First of all, a brief state of the art section is
provided to summarize the available hardware implementations related to this domain. Flexibility
parameters are then analyzed to make a choice about the hardware resource allocation and sharing.
The third section presents the hardware architecture for basic operators. Based on these operators,
the complete DemASIP architecture together with the proposed instruction set and sample programs
are presented in the subsequent three sections. Finally, the last section provides synthesis results,
execution performance and comparison with state of the art implementations.

97

98 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

5.1 State of the Art

In the past, due to the use of low modulation order with Gray mapped constellation in wireless com-
munication application, the part of demapping function contributes very little in a radio platform as
compared to other modules such as equalizer and decoder. Most of the implementations such as the
demapping function for QPSK in [79] and for QPSK and 16-QAM in [78] are based on the simplified
expressions presented in [89]. The simplified expressions are only valid for Gray mapped constel-
lation for QPSK, 16-QAM and 64-QAM. The architecture presented in [90] is also based on same
approximate expressions which is only valid for the specific Gray mapped constellations of WiMax
standard. A recent one, targeting DVB-T2 standard has been presented in [91]. This demapper takes
into account the constellation rotation parameter associated with mapping function. The presented
solution incorporates the increased demapping complexity caused by the constellation rotation which
breaks the independence between the I and Q components of the QAM. Consequently, the ML QAM
detector cannot apply two independent Pulse Amplitude Modulation (PAM) detectors anymore. In-
stead, both I and Q signal components are needed for the computation of the demapper metrics. In
this case two dimensional distances as presented in (2.35) will be required. In case of small rotation
angles such as required for 64-QAM and 256-QAM in DVB-T2 Standard, sub-partitioning of the con-
stellation as presented in [91] can be applied. This reduces the search of closest constellation point
complexity order from 2m to (2

m−2
2 + 1)2.

5.2 Flexibility Parameters and Architectural Choices

The flexibility parameters influencing the demapper architecture, implementing ML solution, comes
from the expressions (2.34) to (2.37) presented in Chapter 2. The parameters to these expressions
come from target constellation parameters presented in Table 1.3 and 1.4 of Chapter1. Depending
upon these parameters, architectural choices can be made for efficient hardware resource allocation
and sharing.

5.2.1 Flexibility Parameters

Following are the considered sources which play role in extracting the flexibility parameters towards
a flexible demapper:

• Constellation definition

• Constellation sub partitioning

• Iterative demodulation

Constellation Definition: The number of bits per symbol (m) defines the constellation X having
M = 2m symbols where each symbol represent a unique combination (binary mapping µ) of m bits.
Hence m is the first flexibility parameter which comes from constellation definition. For our target
ASIP m ranges from 1 to 8 for BPSK to 256-QAM respectively with any binary mapping.

Another flexibility parameter related to constellation definition is the mapping style which can be
either Gray or non-Gray. In case of Gray mapped constellation without rotation and m being an even
number, one can exploit the simplifications presented in 2.36 and 2.37 to compute one dimensional
distances rather than the original two dimensional distances. Thus in order to exploit this simplifica-
tion, the flexible demapper should efficiently support one and two dimensional distance computations.

5.3. HARDWARE ARCHITECTURE FOR BASIC OPERATORS 99

Constellation Sub-partitioning: In order to exploit constellation sub-partitioning simplification
technique another flexibility parameter can be considered. This flexibility parameter imposes the need
to identify the constellation points associated to a region depending upon the sign of input received
symbol.

Iterative Demodulation: The last considered flexibility parameter concerns the iterative/non-
iterative nature of the demapper. In an iterative context the demapper must support the use of a priori
information sent from the channel decoder.

5.2.2 Architectural Choices

In order to accommodate the constellation definition flexibility parameters (number of bits per sym-
bol and their binary mapping µ on I and Q components of the symbol), a constellation LUT storing
constellation parameters can be used. One possibility of achieving the flexibility is to change the con-
tent of the constellation LUT when system configuration changes. The other possible way is to save
parameters of all target constellations in a single LUT where each constellation has a different stating
offset address in the LUT. Hence, in this case, offset address information is sufficient to change the
configuration. Our first architectural choice is based on this approach and the size of the constellation
LUT is dimensioned to support the biggest target constellation, i.e 256-QAM.

To support sub-partitioning, information of symbols related to each sub-partition can be stored
at four different offset addresses in the constellation LUT. The identification to use a particular sub-
partition can be provided with the help of sign bits of the received channel symbol y.

Other than constellation definition and sub-partitioning, two basic mathematical operations, Eu-
clidean distance computation and minimum finding, are required in LLR computation expressions
(section 2.2). In case of turbo demapping, add operation on a priori information is also required. As
explained in Chapter 2, the metric level parallelism will be efficient if two distance calculators are
used to compute the distance between received symbol y and two constellation points x having com-
plementary binary mapping (Section 2.4.2). Application of this parallelism is possible when all the
constellation symbols are considered. This process can be explained with the help of Fig.5.1 where
a 16-QAM rotated constellation is presented with 4 sub-partitions. Consider an example of taking
two Euclidean distances using x3 and x9, having complementary binary mapping, then with this we
can update all 4 LLRs as x3 ∈ X i1 and x9 ∈ X i0 where i = 0, 1, 2, 3. In case of sub-partitioning
implementation, it can not be guaranteed that each symbol in a sub-region with a binary mapping µ
has another a point in same sub-region with complementary binary mapping µ′. In this situation only
one distance calculation will be mandatory and hence resources will be under utilized. For example
in Q1 only (x3, x9) and (x1, x11) exist in pair with complementary mapping. For the rest of 5 symbol
i.e x2, x5, x6, x7 and x10, the parallelism use will be 50% efficient.

As far as minimum operations are concerned, to support up to 256-QAM 16 minimum operations
are required. By applying 16 minimum operators, parallelism efficiency decreases from 100% (for
256-QAM) to 12.5% (for BPSK) for these operations.

5.3 Hardware Architecture for Basic Operators

This section provides the details of the specific hardware components proposed to implement the
architectural choices for flexibility support, established in the previous section.

100 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

Q1
Q2

Q4

Q3

0111
0011

1111

0010
1010

1110

0100
0000

1000
1100

0101

1001
1101

0110

0001

1011

I

Q

X (I)00 = {−3,−1} X (I)01 = {1, 3}
X (Q)20 = {−3,−1} X (Q)21 = {1, 3}

X 2
0 = {x8, x9, x10, x11, x12, x13, x14, x15}
X 1

0 = {x1, x5, x9, x13, x2, x6, x10, x14}
X 0

0 = {x0, x4, x8, x12, x1, x5, x9, x13} X 0
1 = {x2, x6, x10, x14, x3, x7, x11, x15}
X 1

1 = {x0, x4, x8, x12, x3, x7, x11, x15}
X 2

1 = {x0, x1, x2, x3, x4, x5, x6, x7}
X 3

1 = {x0, x1, x2, x3, x12, x13, x14, x15}
X = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15}

X (Q)30 = {1,−1} X (Q)31 = {3,−3}
X (I)10 = {1,−1} X (I)11 = {3,−3}

X 3
0 = {x4, x5, x6, x7, x8, x9, x10, x11}

x0

x6

x5

x4

x7

x8

x9

x10

x11

x12

x13

x14

x15

(v0v1v2v3)

x1

x2

x3

Figure 5.1 — Rotated 16-QAM Constellation with 4 sub-partitions

5.3.1 Constellation Look Up Table (LUT)

Fig.5.2 illustrates the proposed organization of the constellation LUT. In Fig.5.2(b), the constellation
LUT contents represent the 16-QAM constellation of Fig.5.2(a) when Gray mapped simplifications
of expressions (2.36) and (2.37) are used. Fig.5.2(c) represents the same constellation if the general
demapping expression (2.35) is used. To support till 256-QAM, the µ part of the LUT will require 8
bits to store v0 (MSB) to v7 (LSB) and two slots will be required for I and Q parts of the symbol. Fi-
nally, to store all constellation symbols of the biggest target constellation i.e 256-QAM, 256 locations
will be required. To support sub-partitioning, information of symbols related to each sub-partition can
be stored at four different offset addresses. The identification to use a particular sub-partition can be
provided with the help of sign bits of the received channel symbol y.

5.3.2 Euclidean Distance Calculator

For hardware efficiency over all possible scenario , we have adopted to use one distance calculator
which is able to deliver one two dimensional and two one dimensional distances as shown in Fig.5.3.
This unit takes channel data y, fading coefficient ρ and variance σ2 of noise in case of single antenna
transmission system. In case of MIMO this unit takes corresponding input from the equalizer as
explained in Section 2.3.2. The value of x is read from the Constellation LUT described above.
By visiting through the complete Constellation LUT, holding constellation information of the target
modulation, all distances to generate LLRs will be available.

5.3. HARDWARE ARCHITECTURE FOR BASIC OPERATORS 101

−3 −2 −1 1 2 3

(1,3) (3,3)(−1,3)

(−3,−1)

(−1,1) (1,1) (3,1)

(−3,−3) (−1,−3) (1,−3) (3,−3)

(−1,−1) (1,−1) (3,−1)

0111 0011 1011 1111

0110 0010 1010 1110

0100 0000 1000 1100

0101 0001 1001 1101

−1

−2

−3

3

2

1
(−3,1)

(−3,3)
(I , Q)

−3

−1 −1

−1 −3

−1 1

3−1

−3 −1

−3

−3

−3

1

3

0100

0101

0110

0111

0000

0001

0010

0011

1100

1101

1110

1111

1000

1001

1010

1011

−1

−3

1

3

−1

−3

1

3

1

3

1

1

1

3

3

3

(c)
−1 −1

−3 −3

1

3 3

1

0000

0101

1111

1010

(b)

(a)

xI

x2 x3x1

x8

x5 x6 x7

x12 x13 x14 x15

x9 x10 x11

x4

(v0v1v2v3)

x0

xQxIxIµ µxQ

xQµ
(v0v1v2v3)

Figure 5.2 — 16-QAM Constellation LUT example (a) 16-QAM Constellation, (b) LUT Contents for
Gray mapped simplifications, (c) LUT Contents when using Expression (2.35)

1
σ2

1
σ2

xI

yI

xQ
Distance 2D

Distance 1D

Distance 1D

yQ

ρQ

ρI

Figure 5.3 — Euclidean distance calculator

5.3.3 A priori Adder

To generate LLRs in case of turbo demodulation the a priori information, coming from decoders,
is also used along with Euclidean distance computed from channel information as given in (2.34).

102 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

� � �� � �

� � �� � �

−

+

−

+

−

+

−

+

v2

v3

v1

1

1

1

00

00

00

v0

1

00

L0
t

v2

1

00

v1

1

00

v3

1

00

v0

1

00

L0
t

L1
t

L2
t

L3
t

L1
t

L2
t

L3
t

Apr Sumi
t =

3∑
l=0

l 6=i and vl=1

L(vlt)

Figure 5.4 — A priori adder architecture for 16-QAM

The summation of a priori information for a bit i of the subject symbol x is computed by adding
the corresponding LLRs of bits which are one in x and not the corresponding LLR of the bit. The
implementation of this summation for 16-QAM is shown in Fig. 5.4. The input to this unit is LLRs
generated by the channel decoder and the binary mapping µ from Constellation LUT.

10 10

1

S

0

S

SIGN = S

LLR(bi)

D −minReg X (i)
c

D

minReg X i
0 minReg X i

1

vivi

vi

Figure 5.5 — Minimum Finder for One LLR

5.3.4 Minimum Finders

In the expressions (2.34) to (2.37), there are two minimum finding functions associated with two
different symbol sets (X i0,X i1). The idea is that when the Euclidean distance with or without a priori
information sum is computed, the distance can be used in one of the minimum finding functions of all
the m LLR computational expressions. Exploiting this property, an architecture of a minimum finder
is shown in Fig. 5.5. The inputs to this unit are the Euclidean distance (D) and one of the mapping

5.4. DEMASIP ARCHITECTURE 103

16

8

8

8
8

ADR DATA

LUT
inv. Sigma

2

CONTRL
LUT

Memory
Program

ADR

DATA
10 16 12 16

ADR

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

Pi
pe

lin
e

Re
gi

ste
rs

FEC DEC OPF MUL1

Pi
pe

lin
e

Re
gi

ste
rs

SUB1

Pi
pe

lin
e

Re
gi

ste
rs

MUL2

Pi
pe

lin
e

Re
gi

ste
rs

1D/2D

Pi
pe

lin
e

Re
gi

ste
rs

MUL3

CO
N

TR
O

L
U

N
IT

EU
CL

ID
EA

N
 U

N
IT

DATA

Pi
pe

lin
e

Re
gi

ste
rs

MIN

Apriori Info
Memory

LLR(apr)

LLR OUT

LLR READY

FRAME DONE

Sigma

Memory

DATA
12

20
ADR

Rx. Symbol
Memory

DATA
12

8
ADR

Fading Coeff.
Pi

pe
lin

e
Re

gi
ste

rs

SUB2

Constellation
LUT

10
24

ADR

DATA

Filled by data coming from channle

APR REGISTER

σ

σ REGISTER

ρt−d ρt yIt−d yQt

y REGISTER

×16

BUFminReg X i
v

minReg X i
v

ρ REGISTER

v̂1
tv̂6

tv̂7
t v̂3

t ×16v̂0
tv̂2

tv̂4
tv̂5

t

Figure 5.6 — Universal soft input soft output DemASIP architecture

bits (vi) stored in constellation LUT. Two registers minReg X i0 and minReg X i1, are initialized to
the maximum value at the start. Once an Euclidean distance is introduced at the input, depending
upon the value of vi, one of these register is updated if its current value is greater than the distance
introduced. Total of m such units are required to support a modulation type. Hence, if a distance is
computed using I and Q values of a symbol x stored in constellation LUT (Fig.5.2) at address a, the
bits vi of µ will serve as selection bits for minimum finders.

5.4 DemASIP Architecture

The proposed DemASIP architecture is constructed using one Constellation LUT, one Euclidean Dis-
tance Calculator, one a priori Adder capable of supporting 8 LLRs and eight Minimum Finders to sup-
port efficiently any constellation till 256-QAM with no restriction on mapping style, rotation angle,
sub-partitioning along with turbo demodulation. The overall DemASIP diagram is shown in Fig.5.6.
The input memory interface to the ASIP is comprised of “Rx. Symbol Memory” holding y, “Fading
Coeff. Memory” holding ρ and “Apriori Input Memory” holding v̂it generated by channel decoder.
Two LUTs one for constellation definition and the other for 1

σ2
w

are also part of memory interface.
The noise variance σ2

w is provided through a dedicated input port. The output interface is made up
of LLR output, ready signals for individual LLRs availability at the output lines, frame completion
and finally 2 bits to identify the received symbol location in the constellation diagram to support sub-
partitioning. Besides this memory and I/O interface, DemASIP integrate registers, an Euclidean Unit
(EU) and a control unit (CU). EU is spread over ten pipeline stages administered by the CU.

104 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

� �� �

� � �� �

� �� �

0

0

0

0
−

+

Finder
Min

Finder
Min

Finder
Min

Finder
Min

Finder
Min

Finder
Min

Finder
Min

Finder
Min

Total A
pr Sum

1D/2D

From
 Constellation LU

T

SUB1MUL1OPFDECFEC MUL2 1D/2D MUL3 SUB2 MIN

−

+

+

+

IN
STRU

CTIO
N

 D
ECO

D

PRO
G

RA
M

 CO
N

TRO
L

M
EM

O
RY

 A
D

D
RESS G

EN

−

−

1D
I/2D

1D
Q

L
0t

L
1t

L
6t

L
7t

0 0

1

v7

v0

1

00

L0
t

L7
t

min
X 0

0

(D)

min
X 0

1

(D)

min
X 1

0

(D)

min
X 1

1

(D)

min
X 2

0

(D)

min
X 2

1

(D)

min
X 3

0

(D)

min
X 3

1

(D)

min
X 4

0

(D)

min
X 4

1

(D)

min
X 5

0

(D)

min
X 5

1

(D)

min
X 6

0

(D)

min
X 6

1

(D)

min
X 7

0

(D)

min
X 7

1

(D)

v0

v1

v6

v7

D13/D2

v3

D14/D2

v4

D15/D2

v5

D16/D2

v6

D17/D2

v7

A
pr

S
u
m
it

1
2σ2

1
2σ2

y
Qt
−
ρ
t .x

Q

|y
Qt
−
ρ
t .x

Q| 2
|y
It−
d −

ρ
t−
d .x

I| 2

y
It−
d −

ρ
t−
d .x

I

yIt−d

yQtρt

x
Q

ρ
t .x

Q

(x
I,x

Q) ρ
t−
d .x

I

x
I

D
1

D
10
...
D

17
D

2
D11/D2

D12/D2

v0

v1

v2

D10

(v
7v

0)

(v
7v

0)

(v
7v

0)

(v
7v

0)

(v
7v

0)

(v
7v

0)

(v
7v

0)

Apr Sum0
t

Apr Sum7
t

ρt−d

D
2

Figure 5.7 — Resource Allocation in Euclidean Unit

5.4.1 Registers

The channel data values related to a transmitted symbol i.e y and ρ are saved in their respective
registers during the process of LLR generation. The a priori LLRs related to a symbol (up to 8 for
256-QAM) are copied in APR register. Two a priori LLRs are copied with one access to “Apriori
Input Memory”. There are 16 minReg X ic registers which are associated to the 8 Minimum Finders
of Fig.5.5. Another set of 16 buffer registers (BUFminReg X ic) are placed to serialize the output
hence avoiding a very big output interface. In fact when parts of LLRs of a symbol are ready in the
(minReg X ic), they are copied in buffer registers and LLRs go out one by one while minReg X ic are
used for the next symbol.

5.4.2 Euclidean Unit

The EU of DemASIP is shown in Fig.5.6. Arithmetic operators are placed in ten pipeline stages in
an order to achieve all possible expressions required for LLR generation. The basic operators are
distributed in different pipeline stages to reduce the critical path. Operand fetches are performed till
OPF pipeline stage. The Euclidean distance calculator and a priori Adder are spread from SUB1
to MUL3 stage. The a priori Adder part only works in case when turbo demodulation context is
under consideration. In 1D/2D stage the possibility of calculating one dimensional (1DI, 1DQ) and
two dimensional (2D) distances is provided. The values of a priori information sum and Euclidean
distance computed from channel data are combined in SUB2 stage. With two dimensional distance
(D1), by incorporating the a priori information, there are maximum eight possible distances (D10 to
D17) related to each LLR. Finally eight minimum finders are placed in MIN pipeline stage. The input
to this Minimum Finders are the vi bits of binary mapping µ and the one or two dimensional distances
with or without a priori content.

5.5. DEMASIP INSTRUCTION SET 105

5.4.3 Control Unit (CU)

The DemASIP control unit works as the administrator of the 10-stage pipeline EU as mentioned above
and shown in (Fig. 5.6). The CU enables the data path to achieve required flexibility parameters. The
functioning of the control unit will be reflected during instruction set presentation which is detailed
in the next section.

5.5 DemASIP Instruction Set

The instructions of the proposed ASIP are categorized as follows.

5.5.1 Configuration Control

Configuration control instruction (SET CONFIG) is used to configure the ASIP for different param-
eters such as modulation type, constellation coding, turbo/non-turbo demodulation, and SSD.

5.5.2 Input

Using different input instructions the parameters such as (y) from Rx. Symbol Memory, (ρ) from Fad-
ing Coeff. Memory, a priori information from Apriori Info. Memory (in turbo demodulation context),
and variance of noise (σ) from input port are copied in respective registers. Implementation of sub-
regions selection is added by analyzing the sign of I and Q components of y and then outputting two
bit information to use four Look Up Tables (LUT) holding information for different sub-regions.

5.5.3 LLR Generation

The behavior of the core instruction of LLR generation (PROCESS) executes in 10 pipeline stages
of the EU. It implements the LLR expressions depending upon the selected configuration. After the
instruction fetch and decode, the address for Constellation LUT, storing constellation symbols x,
is provided in DEC pipeline stage and data is read in OPF stage. Two one-dimensional Euclidean
distances are computed using I and Q components of x, y, and ρ in MUL1, SUB1, and MUL2
pipeline stages. Two-dimensional Euclidean distance is computed by adding two one-dimensional
distances in 1D/2D pipeline stage. This is required for the cases where the constellation is non-Gray
or rotated and the cases where bits per symbol is odd or iterative demodulation is considered. In
turbo demodulation context, depending upon the contents read from Apriori Update LUT, the sum of
relevant a priori LLRs is computed as explained in EU description. After multiplying the distances
with 1

2σ2 in MUL3 stage, there are three possibilities in SUB2 stage: (1) Two-dimensional distance
minus a priori content, (2) Two-dimensional distance only (if a priori is zero), and (3) two one-
dimensional distances. These distances are compared, in last pipeline stage, with the contents of one
of each pair of minReg X i0 and minReg X i1 registers to update them for the minimum values. The
minimum value update is controlled by µ value associated to x under consideration.

5.5.4 Output

Once having final values for all minReg X ic registers, the OUTPUT instruction transfers them to
BUFminReg X ic registers in DEC stage and each pair is sequentially subtracted in subsequent

106 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

pipeline stages to produce LLRs at output interface. This buffering and serial transmission serves
two purposes, first of all it infers smaller output interface and secondly while DemASIP sends LLRs
at output, new instruction to process next symbol is launched.

5.5.5 Loop

ASIP can support one nested loop using two different types of loop instructions. First one is REPEAT
instruction, which executes the set of instructions to process a symbol as many time as there are
symbols in a frame. The other one is SIR (Single Instruction Repeat) which executes single instruction
as many times as given in the instruction. The purpose of this instruction is to repeat LLR generation
instruction for large constellations to reduce the program memory size at the cost of one cycle penalty
per symbol.

5.6 Sample Program

This section illustrates the DemASIP instruction set use through two sample programs. The first sub-
section demonstrates an inefficient instruction scheduling in terms of resources utilization. Avoiding
this issue, through an adequate use of the proposed instruction set and hardware resources is then
illustrated in the second sub-section. The assembly code line starting with “;” designates a comment
line.

5.6.1 Inefficient Pipeline Usage Example

The assembly code shown in Listing 5.1 is an application program to implement (2.35) for QPSK. In
this configuration the Constellation LUT has the information of four constellation symbols. After in-
putting variance σ2 and setting the DemASIP configuration, the code repeats between start and end.
This piece of code has an INPUT instruction to input y and ρ. Then four PROCESS instructions are
used to generate the LLRs. Since the pipeline has 10 stages therefore one has to wait 9 cycles after the
execution of last PROCESS instruction to use OUTPUT instruction. In this way of implementation,
besides the required 6 instructions per symbol, there is a penalty of 9 cycles per symbol (9 NOPs)
which significantly impacts the throughput.

Listing 5.1 — DemASIP: assembly code implementing inefficient pipeline usage �
1 ; l o a d i n g sigma
2 LOAD SIGMA
3 ; s e t t i g c o n f i g u r a t i o n f o r QPSK, no Gray s i m p l i f i c a t i o n

, n o t u s i n g a p r i o r i and no SSD
4 SET CONFIG 2 bps Non Gray no A p r i o r i No SSD
5 ; r e p e a t i n g code between s t a r t and end f o r 192

symbols
6 LOAD REPEAT 191
7 REPEAT UNTIL s t a r t end
8 ; I n p u t i n g wi th no sub p a r t i t i o n
9 s t a r t : INPUT SINGLE LUT

10 ; Four PROCESS i n s t r u c t i o n f o r QPSK wi th 4
c o n s t e l l a t i o n symbols i n c o n s t e l l a t i o n LUT

11 PROCESS

5.6. SAMPLE PROGRAM 107

12 PROCESS
13 PROCESS
14 PROCESS
15 ; w a i t i n g f o r 9 c y c l e s f o r l a s t PROCESS i n s t r u c t i o n t o

f i n i s h
16 SIR NEXT 8
17 NOP
18 ; o u t p u t t i n g d a t a
19 OUTPUT
20 end : NOP
21 NOP
22 NOP
23 ; Frame p r o c e s s i n g f i n i s h e d i n d i c a t i o n
24 FRAME PROCESSED

5.6.2 Efficient Pipeline Usage Example

The sample program shown in Listing 5.2 also implements (2.35) for QPSK but with this code there
is no need to wait for LLR to be ready. Instead, instructions to process next symbol is launched in
pipelines and after three symbols the program code is repeated for the coming symbols. At the end
there will be few NOPs for the LLRs of last two symbols of a frame (total 9 NOPs per frame). In this
way the programmer saves the penalty of 9 cycles per symbol as no NOP is required.

Listing 5.2 — DemASIP: assembly code implementing efficient pipeline usage �
1 LOAD SIGMA
2 SET CONFIG 2 bps Non Gray no A p r i o r i No SSD
3 LOAD REPEAT 188
4 REPEAT UNTIL s t a r t end
5 ; f i r s t symbol
6 INPUT SINGLE LUT
7 PROCESS
8 PROCESS
9 PROCESS

10 PROCESS
11 ; second symbol
12 INPUT SINGLE LUT
13 PROCESS
14 PROCESS
15 PROCESS
16 PROCESS
17 ; t h i r d symbol
18 INPUT SINGLE LUT
19 PROCESS
20 PROCESS
21 ; LLRs r e a d y f o r f i r s t symbol
22 OUTPUT
23 PROCESS
24 PROCESS

108 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

25 ; f o u r t h and n e x t symbol
26 s t a r t : INPUT SINGLE LUT
27 PROCESS
28 ; LLRs r e a d y f o r second and n e x t symbols
29 OUTPUT
30 PROCESS
31 PROCESS
32 end : PROCESS
33 SIR NEXT 2
34 NOP
35 ; o u t p u t t i n g LLRs f o r second l a s t symbol
36 OUTPUT
37 SIR NEXT 5
38 NOP
39 ; o u t p u t t i n g LLRs f o r l a s t symbol
40 OUTPUT
41 NOP
42 ; Frame p r o c e s s i n g f i n i s h e d i n d i c a t i o n
43 FRAME PROCESSED

The same program can be used for the 16-QAM Gray mapped constellation having Constellation
LUT contents shown in Fig.5.2(a) by changing the SET CONFIG instruction as follows:

SET_CONFIG 4bps Gray no Apriori No SSD

By this change expressions (2.36) and (2.37) will be executed for 16-QAM constellation.

5.7 DemASIP Results and Performance

As for EquASIP, we used the Processor Designer tool suite from CoWare to implement the proposed
DemASIP. This tool allows to describe a processor in the LISA ADL to automatically generate the
models of the processor (VHDL, Verilog or SystemC) for logic synthesis and system integration. On
the other hand it provides software development tools (simulator, compiler, assembler, debugger and
linker). By performing hardware synthesis and executing the application programs, performance of
this ASIP is ascertained for different configurations and presented below.

5.7.1 Synthesis Results

From the generated RTL description of DemASIP, logic synthesis has been conducted both on ASIC
and FPGA. For ASIC target, the processor has been synthesized with Design Compiler tool from
Synopsys. For FPGA target, Xilinx ISE tool has been used. Results of synthesis are summarized in
Table 5.1.

5.7.2 Execution Performance

The throughput of the DemASIP under different system configurations is summarized in Table 5.2.
The number of cycles for the demapping of one symbol are calculated as one cycle each for INPUT

5.7. DEMASIP RESULTS AND PERFORMANCE 109

Table 5.1 — DemASIP synthesis results

ASIC Synthesis Results (Synopsis Design Compiler)
Technology ST 90nm
Conditions Worst Case (0.9V ; 105oC)
Area 0.1mm2 (23.5 K Gate)
Frequency (f) 537 MHz
FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)

Slice Registers 1,918 out of 207,360 (1%)
Slice LUTs 3,201 out of 207,360 (1%)
DSP48Es 6 out of 192(3%)
Frequency (f) 186 MHz

Table 5.2 — DemASIP execution performance results

Modulation
Bits per Clock Cycles Throughput
Symbol to demapp one (MLLRs/sec)

(m) Symbol (c) ASIC FPGA
For Gray Mapped Simplified Expression (2.36 and 2.37)Implementation

QPSK (Gray) 2 4 269 93
16-QAM (Gray) 4 6 358 124
64-QAM (Gray) 6 10 322 112
256-QAM (Gray) 8 18 239 83

For (2.34 or 2.35) Implementation
QPSK 2 6 179 62
8PSK 3 10 161 56

16-QAM,16APSK 4 18 120 42
32-APSK 5 34 79 27
64-QAM 6 66 49 17
64-QAM

6 27 119 41
(using sub partitioning)

256-QAM 8 258 17 6
256-QAM

8 83 52 18
(using sub partitioning)

and OUTPUT instructions and rest of the cycles are those when PROCESS instruction is launched
(which is equal to the number of constellation entries used from Constellation LUT). Few cycles re-
quired for instructions such as configuration instruction, loop instruction in the start of the application
program and NOPs at the end of the program are neglected. The throughput in Mega LLR/sec is
computed as follows:

Throughput =
f

c
×m (5.1)

110 CHAPTER 5. DEMASIP: ASIP-BASED UNIVERSAL DEMAPPER

Table 5.3 — DemASIP results comparison

Ref. [90] Ref. [91] DemASIP
Wireless Wimax DVB-T2 WiFi, Wimax,
Standard UMB, LTE,

DVB-SH,S2,T2
Modulation QPSK,16-QAM QPSK,16-QAM From BPSK
Support 64-QAM (Gray 64-QAM, to 256-QAM (Any

Mapped Wimax 256-QAM (DVB Constellation) and
Constellation) Constellation) Iterative Demapping

Frequency 224 62 186
(MHz)
Throughput MLLR/sec MLLR/sec MLLR/sec
64-QAM
-Gray 224 - 112
-With SSD (Sub partitioning) - 124 41
Area
-Slice Registers 741 791 1,918
-Slice LUTs 378 4,667 3,201
-DSP48Es 0 20 6
-BRAM 0 0 8

5.7.3 Comparison with State of the Art

Result comparison with state of the art solutions has been summarized in Table 5.3 as per available
information. The flexibility of [90] is limited not only to three types of modulation but also to Gray
mapped Wimax constellation without the support for iterative demodulation. Due to approximate
LLR computation expressions and very limited flexibility, the architecture achieves better frequency
and throughput as compared to our solution. Similarly, the demapper proposed in [91], targets the
DVB-T2 parameters and does not support iterative demapping. Their dedicated architecture, comput-
ing 9 Euclidean distances per cycle using 9 parallel computation units, achieves high throughput at
the cost of high hardware resource occupation. In fact, our proposed DemASIP architecture consti-
tutes the first solution to the best of our knowledge, where it provides full flexibility to support any
modulation adopted in multiple wireless standards with reduced hardware resource occupation. The
salient features of DemASIP, such as low area and high flexibility, promise its use to address low and
high throughput demands using single and multi-ASIP architectures.

5.8 Conclusion

In this chapter, we have presented the first flexible ASIP implementing a universal demapper for
multi wireless communications standards. With analyzed LLR computational expressions presented
in chapter 2, flexibility parameters and common operators are identified. These flexibility parame-
ters are then assigned to efficient hardware components and a specialized instruction set has been
designed. The architecture proposed addresses all the complexity levels associated with demapping
functionality through the arrangement of certain LUTs and EU which allows its reuse both in an it-
erative and a non-iterative context and provides support for BPSK to 256-QAM constellation for any

5.8. CONCLUSION 111

mapping style used. The specialized instruction set provides liberty to generate the LLRs in differ-
ent system configurations. When targeting 90 nm technology, the proposed architecture enables a
maximum throughput of 358 Mega LLRs per second for 16-QAM Gray mapped constellation.The
presented original contribution demonstrates promising results using ASIP approach to implement
the universal demapper.

CHAPTER

6 Multi-ASIP NoC Based Turbo
Receiver

THIS chapter is dedicated to the presentation of the prototyping flow of the individual proposed
ASIPs and the proposed heterogeneous multi-ASIP NoC based architecture for turbo reception.

In the first part of the chapter LISA to FPGA prototyping flow is detailed. Based on this flow, design,
validation and prototyping of EquASIP and DemASIP (presented in the two previous chapters) are
described. Besides individual component verification, proof of concept of multi-ASIP and NoC based
architectural solution towards a unified turbo receiver is another important aspect of this thesis. To that
end, three incremental complexity multi-ASIP prototypes have been realized and will be presented
in last three sections of this chapter. The first one demonstrates parallel turbo decoding, the second
demonstrates parallel turbo demodulation and decoding and the third one demonstrates parallel turbo
demodulation, equalization and decoding. The proposed multi-ASIP architectures demonstrate the
efficient exploitation of the second level of parallelism available in turbo equalization, demodulation
and decoding applications, introduced in chapter 2 as Component Level Parallelism (sub-blocking and
shuffled parallelism techniques). For all of these three multi-ASIP prototypes, hardware implemen-
tation of functional blocks of transmitter, channel and receiver are described. With each prototype
the results of synthesis and FER results, for different system configurations, acquired from FPGA
platform are also presented.

113

114 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

6.1 ASIP Design, Validation and Prototyping Flow

While selecting ASIP as the implementation approach, an ASIP design flow integrating hardware gen-
eration and corresponding software development tools (assembler, linker, debugger, etc.) is manda-
tory. In our work we have used Processor Designer framework from Coware Inc. which enables the
designer to describe the ASIP at LISA [53] abstraction level and automates the generation of RTL
model along with software development tools. ASIP design, validation and prototyping flow has been
divided into 3 levels of abstraction as shown in Fig.6.1 and is detailed in the following subsections.

VERIFICATION

FILE
LINKER COMMAND

NOT OK

lvcdgen

LISA VCD FILE
.dump FILES

MEMORY LAYOUT
FILE

HDL SIMULATION
MEMORY MODELS

MEMORY CONTENTS
.mmap FILES

ASIP
HDL MODEL OF

VERIFICATION

VERIFIED SYSTEM

NOT OK

HDL BEHAVIORAL LEVEL

mmap2coe

VERIFIED SYSTEM

VERIFICATION
NOT OK

HDL SYNTHESIS LEVEL

XILINX
VIRTEX 5

FPGA

USER CONSTRAINT
.ucf FILE

VERIFIED SYSTEM

LISA LEVEL exefile PROCESSOR
DEBUGGERLINKER

&

OBJECT

(LISA FILES)

DYNAMIC SIMULATOR

PROCESSOR DEBUGGER
ASSEMBLER , LINKER &PROCESSOR

DESIGNER

ASSEMBLER
(memory contents)

(code)
.ASM FILE

SIMULATOR
HDL

exe2txt

RTL VCD FILE
.dump FILES

PROCESSOR
GENERATOR

lvcdcmp

LISA MODEL OF ASIP

OPTIONS
HDL GENERATION

(b) HDL ABSTRACTION LEVEL

SPECIFICATIONS
MEMORY

SYNTHESIZABLE
MEMORY

(c) FPGA IMPLMENTATION LEVEL

(a) LISA ABSTRACTION LEVEL

SYNTHESIS
ROUTE

&
PLACE

CORE
GENERATOR

.

Figure 6.1 — Prototyping Flow: (a) LISA abstraction level, (b) HDL abstraction level, (c) FPGA
implementation level

6.1.1 LISA Abstraction Level

The first step towards the ASIP implementation is the LISA ADL modeling of the proposed architec-
ture and the application program writing (.asm file) to be executed on the ASIP. To simulate the input
data memories the contents of these memories, taken from the software reference model of the target
application, are written in different sections of the assembly file as defined in the linker command file.
With ADL model of the ASIP, Processor Designer framework generates tools like assembler, linker,

6.2. EQUASIP AND DEMASIP FPGA PROTOTYPING 115

processor debugger and simulator. Assembler and linker process the application program (.asm file)
to generate the executable file (.out file) which is used in Processor Debugger to verify both the ASIP
model and the application program. Once the ASIP is verified, a special utility “lvcdgen” can be used
to generate Value Change Dump (VCD) file which store all registers content and ASIP output values
during the application program execution. The generated VCD file can be used at lower abstraction
levels for verification purpose. The “lvcdgen” utility uses Dynamic Simulator Object and executable
file of the application to produce this reference VCD file. The complete flow is shown in Fig.6.1(a).

6.1.2 HDL Abstraction Level

Processor Designer framework provides the Processor Generator tool which is configured to generate
HDL (VHDL/Verilog) model of the ASIP from LISA model, simulation models of memories and the
memory layout file as shown in figure Fig.6.1(b). The quality of the generated HDL depends upon the
LISA modeling and the configuration options of Processor Generator. It is highly recommended that
LISA modeling should be as close as possible to HDL, e.g if in one pipeline stage we want resource
sharing, that resource should be declared once. Otherwise, due to inability to detect sharing, resources
will be duplicated in HDL. Other issue is the use of high level operators of LISA which may not be
produced by the Processor Generator e.g modulo two operation (“variable % 2” in LISA) should
be rather implemented by the LSB manipuation of the considered variable. For memory interface
generation, different Memory Interface Definition Files (MIDF) are provided which define the number
of ports and latencies.

Once memory layout file and executable application program file is available, “exe2bin” utility
inputs them to generate the contents of memories in separate .mmap files. With these three inputs
(VHDL model, memory model and .mmap files), the VHDL model can be simulated behaviorally
using an HDL simulator, e.g ModelSim by Mentor Graphics.

To run HDL simulation, Processor Generator produces ready-to-use Makefile which can be exe-
cuted to see either the waveforms or to generate VCD file. To verify the generated ASIP HDL model,
the VCD file generated through HDL model and the one generated through LISA model (in previous
subsection) can be compared using “lvcdcmp” utility.

6.1.3 FPGA Implementation Level

At this level, the only missing elements are the synthesizable memory models. Depending upon the
FPGA selected, equivalent synthesizable memories are generated through FPGA vendor specific tools
and at the same time .mmap memory content files have to be translated, if necessary, in required for-
mat for compatibility. With Xilinx devices,“Core Generator” tool can be used to generate the synthe-
sizable memories and “mmaptocoe translator” converts .mmap files into required .coe format. With
this complete synthesizable HDL model, synthesis can be performed as shown in Fig.6.1(c). After
successful synthesis, the placement and routing is performed as per the user constraints file (.ucf file).
Inside .ucf file, the user inputs the platform dependent timing and location constraints, e.g the opera-
tional frequency and input/output pins. The final step is the generation of the configuration file which
can be used to configure the FPGA for the final ASIP prototype model.

6.2 EquASIP and DemASIP FPGA Prototyping

On board validation is a crucial step in order to demonstrate the feasibility, resolve any eventual sys-
tem and/or environment issue, and measure the exact performance of the designed architecture. In

116 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

our case, a logic emulation board (DN9000K10PCI) integrating 6 Xilinx Virtex 5 devices was avail-
able and has been used to validate the designed ASIPs. With this board, appropriate communication
controllers are available and can be added to the design in order to read/write various output/input
memories from a host computer using a USB interface.

PC

20

6

ADR

DATA

Main Bus

CTRL

DATA

FPGA XC5VLX330

Memory

Mapper

Output

Memory

Output

Equalizer

Memory

LUT
x
_1

DN9000K10PCI LOGIC EMULATION BOARD

USB

MB[35:0]

DATA

ADR

ADR

10

12
DATA

15

Equalizer

ASIP

24

40

5

20
Program

Memory

Channel Data

Memory

6

A
D

R

D
A

T
A

2
0

ADR

DATA

ADR

16

Figure 6.2 — EquASIP on-board prototype

6.2.1 EquASIP FPGA Prototype

Using the Xilinx tool suite ISE, a new project was created integrating the ASIP, corresponding mem-
ories, and a board communication controller as shown in Fig.6.2. The contents of the input memories
i.e Channel Data Memory, 1

x LUTs and Mapper Output Memory were generated automatically from
the fixed-point software reference model in .coe file format along with a reference result file contain-
ing the output of the equalizer. In this prototype, except Channel Data Memory and 1

x LUT which
are synchronous, rest of the memories are asynchronous. Xilinx Virtex 5 device provides two type
of memories, Distributed and Block Memories which can be customized for asynchronous and syn-
chronous respectively. In order to record ASIP’s results and to compare them with reference result
file, a dual port Equalizer Output Memory has been created. One port of this memory is written with
equalization results from EquASIP side and the other port is read by external host computer through
USB interface. On this host computer, a graphical user interface with adapted parameters is used in
order to setup the various parameters of the board and to download the output memory contents for
comparison with reference result file.

6.3. FIRST MULTI-ASIP PROTOTYPE: PARALLEL TURBO DECODER 117

Main Bus

CTRL

20

Memory

Output

Demapper

2

CONTRL
LUT

8

Address

Generator

PC

DATA

USB

8

DATA

LLR OUT

Memory
Rx. Symbol

Memory
Fading Coeff. Apriori Info

MemoryMemory
Program

Constellation
LUT

16
ADR

10
DATA

Inv Sigma

LUT

ADR

8 8

DATA

DN9000K10PCI LOGIC EMULATION BOARD

MB[35:0]

8

A
D

R

D
A

T
A

8

FPGA XC5VLX330

ASIP

FRAME DONE

LLR READY

ADR

8we
Sigma Soft Demapper

16
10

DATA DATA

ADR

12
DATA

20
12

8ADR ADR

12

ADR

Figure 6.3 — DemASIP on-board prototype

6.2.2 DemASIP FPGA Prototype

Using the same principle as adopted in EquASIP, the contents of the inputs memories to the DemASIP
were generated from quantized reference software model and the output results of the DemASIP were
compared with reference software output results. The prototype diagram of DemASIP is shown in
Fig.6.3.

Besides individual component verification, proof of concept of multi-ASIP and NoC architecture
implementing a unified turbo receiver is another important aspect of this thesis. To that end, three
incremental complexity multi-ASIP prototypes have been realized. The first one demonstrates parallel
turbo decoding, the second demonstrates parallel turbo demodulation and decoding and the third
one demonstrates parallel turbo demodulation, equalization and decoding. These three multi-ASIP
prototypes will be presented in the three following sections.

6.3 First multi-ASIP Prototype: Parallel Turbo Decoder

In this section we present the first multi-ASIP prototype realized to demonstrate parallel turbo de-
coding. A first effort towards this objective has been started through the work presented in [39]. The
proposed prototype at that time was missing few components (code rate control, BICM and higher
order modulation functionalities) for its integration towards a unified turbo receiver. To add these
functionalities, on transmitter side the puncturing, bit interleaving and mapping functions are de-
signed and integrated. Channel is modified to include the fading effects and hence Rayleigh fading

118 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

channel is implemented. On the receiver side demapping, bit deinterleaving, depuncturing is added
with decoding functions. The target system block diagram for this first multi-ASIP prototype is shown
in Fig.6.4.

RAYLEIGH FADING CHANNEL

ENCODER

DEPUNCTURING

MAPPERPUNCTURING

DEINTERLEAVER
Decoded Bits

BICM
INTERLEAVER∏

2

L(vit;O)

∏−1
2

DECODER

L(cit; I)

y

x

c̃

vc

=

DEMAPPER

ṽ
=

Figure 6.4 — Turbo coded transmission system diagram

6.3.1 Transmitter

The specifications of the transmitter system are taken from Wimax standard and the hardware archi-
tecture of each sub-system is given below.

ADR GEN

1P0
1P1

2P0
2P1

Generator
Pseudo Random

RESET
START

CLK

Turbo Encoder

WE DATA

ADR

7

4

Double Binary

FRAME DONE

SOURCE
VECTOR

192

DATA

ADR

7

4
2 SOURCE

MEMORY

ADR

CONVOLUIONAL
ENCODER 1

V
A

LID
D

A
TA

EN

Controller ADR_NAT

ADR_INT

A
D

R_
N

A
T

SOURCE
MEMORY

ADR

CONVOLUIONAL
ENCODER 2

A
D

R_
IN

T

2P01P0S1S0

CODED
DATA

MEMORY

S0
S1

7
SIZE

Figure 6.5 — Turbo encoder with random source generator

6.3.1.1 Encoder

The first element of the transmitter is shown in Fig.6.5. This block includes random bit generator, two
encoders of double binary turbo codes and a controller. For this platform the encoder is configured
for 24 byte random source which is generated by a Pseudo Random Generator unit after receiving the
START pulse. Each of the 2-bit source symbol are saved in two source memories. After this source
generation, the controller enables the encoder block and provides the natural and interleaved addresses
(using a LUT storing the interleaving table of used turbo code) to the source memories on their read
ports. Using 2-bit source symbol, both in natural and interleaved order, each encoder generates two
parity signals. To support code rates greater and equal to 0.5 given in Wimax standard, two source

6.3. FIRST MULTI-ASIP PROTOTYPE: PARALLEL TURBO DECODER 119

bits (S0,S1) and one parity from each encoder is copied in the Coded Data Memory. At the end of the
encoding, the controller puts all the components in idle state and generates an active high pulse on
FRAME DONE output line. This pulse can be used to start the next process which can use encoded
data by reading the Coded Data Memory. To change the frame size one needs to give the frame size
information on SIZE input port and updates the interleaving LUT with the corresponding values.
Source bit vector is also provided at the output for its comparison with receiver’s output results for
error rate performance computation. The FPGA synthesis results of this encoder are shown in Table
6.1.

Table 6.1 — Synthesis results of encoder block

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 505 out of 207,360 (<1%)
Slice LUTs 163 out of 207,360 (<1%)
DSP48Es 0 out of 192(0%)
Frequency (f) 300 MHz

2P01P0S1S0

CODED
DATA

MEMORY DATA

4

ADR

7 (8....2)

(1..0)

INTERLEAVED
BIT

MEMORY

ADR
9

DATA

9

ADRINTERLEAVE

∏
2

Figure 6.6 — Puncturing and BICM interleaving

6.3.1.2 Combined Rate Control and BICM Interleaver

The puncturing and BICM interleaving are achieved using a LUT, called
∏

2 Memory, storing the
BICM interleaving table with puncturing details. The process is shown in Fig.6.6. To retrieve an
interleaved bit, the corresponding interleaved address is read from

∏
2 Memory. This address has two

parts, the 7 MSBs (2 to 8) represent the coded symbol index whereas the 2 LSBs (0 and 1) are used to
select one of the bits in the coded symbol to achieve puncturing along with interleaving. One needs
to change the contents of the

∏
2 Memory to support other configurations. The hardware cost of this

element is a memory having 512 address spaces of 9-bits. In the system under study the contents of∏
2 Memory are generated using (1.6 and 1.7).

6.3.1.3 Parametrized Mapper

The mapping function is achieved by designing a parametrized mapper as shown in Fig.6.7. The
parameters provided to this hardware block are bits per symbolm, the number of symbols to map and
information about Gray or non-Gray mapping style. To support up to 256-QAM, 4 bits are reserved

120 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

MAX_SYMBOL_CNT

SYMBOL_CNT

MOD_BIT_CNT

MAX_MOD_BIT_CNT

START

CLK

RESET

PARAMETERS
16 LOOK

UP
TABLE

LOOK
UP

TABLE

INTERLEAVED
BIT

\prod_2 Memory

9

ADR

ADDRESS GENERATOR FOR
FRAME
DONE

ADR_REG

ADR_REG

SPLITTER

MAP STYLE

8

8

SYMBOL BITS (µ)

xI

xQ

xI

xQ

xI

xQ

Figure 6.7 — Parametrized mapper block diagram

to represent m. 11 bits are reserved to indicate the number of symbols to map. Finally 1 bit is used to
indicate mapping style.

With reset pin at zero and a valid clock edge, the mapper starts up in idle state. On receiving
active high pulse on start pin, the parameters such as m is saved in MAX MOD BIT CNT regis-
ter and the number of symbols to map in MAX SYMBOL CNT register. The value to be stored in
MAX SYMBOL CNT register can be computed using the number of source bits (s), code rate r and
m as follows:

Max. Symbols =
s

r ×m
(6.1)

After parameter saving, the mapper enters in processing phase which is comprised of bit gath-
ering state and symbol construction state. In bit gathering state, to acquire an interleaved bit, an
address is sent to

∏
2 Memory of Fig.6.6 which generates the interleaved address for the required

bit saved in Coded Data Memory. The acquired bit goes in SYMBOL BIT (µ) register and the
MOD BIT CNT register is incremented. This bit gathering process continues till MOD BIT CNT
is equal to MAX MOD BIT CONT register, i.e equal to m. Using these symbol bits, in case of Gray
mapped constellation, the splitter sends half of the bits on the address lines of xI LUT and the rest half
on the address lines of xQ LUT to have a modulated symbol. In case of rotated, non-Gray or m is an
odd number, all gathered bits are sent both to the xI and xQ LUTs. After each symbol mapping, SYM-
BOL CNT register is incremented by one and mapping process continues till SYMBOL CNT register
is equal to MAX SYMBOL CNT register. After the mapping of all the symbols, this parametrized
mapper outputs a FRAME DONE pulse and goes back to idle state. The FPGA resource used for this
block are summarized in Table 6.2. In the system under study the mapper is configured for QPSK and
a total number of 192 symbols.

6.3.2 Rayleigh Fading Channel

To emulate a Rayleigh fading transmission channel, a hardware model has been developed in the
Electronics Department of Telecom Bretagne which is used in this prototype. This generic channel

6.3. FIRST MULTI-ASIP PROTOTYPE: PARALLEL TURBO DECODER 121

Table 6.2 — Synthesis results of parametrized mapper block

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 127 out of 207,360 (<1%)
Slice LUTs 130 out of 207,360 (<1%)
DSP48Es 0 out of 192(0%)
Frequency (f) 336 MHz

10

10

88

8

CLK

RESET

ENABLE

25
RAYLEIGH FADING CHANNEL

EMULATOR

yI

ρ

yQ

xI

xQ

σ2
w

Figure 6.8 — Rayleigh Fading Channel Emulator

model can be used both in single antenna and MIMO channel emulation. For single antenna config-
uration the I/O interface of this channel model is shown in Fig.6.8. Besides clock and reset, channel
model takes modulated symbol x(I,Q) with its enable signal (showing its availability on input line)
and noise variance σ2

w. y(I,Q) and fading coefficient ρ are the output of this module which are saved
in Rx. Symbol Memory and Fading Coeff. Memory respectively. The synthesis results of this channel
emulator are tabulated in Table 6.3.

Table 6.3 — Synthesis results of Rayleigh fading channel block

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 4532 out of 207,360 (2%)
Slice LUTs 4406 out of 207,360 (2%)
DSP48Es 30 out of 192(15%)
Frequency (f) 65 MHz

6.3.3 Receiver

The receiver part is comprised of DemASIP used for demapping function, combined architecture for
BICM deinterleaving and depuncturing, and finally multiple TurbASIP interconnected by means of
two unidirectional Butterfly NOC for turbo decoding.

6.3.3.1 DemASIP Integration

The DemASIP of Fig.5.6 is used in the receiver for demapping function. The ASIP is configured to
implement Gray mapped simplified expression (2.36) and (2.37) with no SSD and no turbo demodu-
lation context for the demapping of QPSK symbol. Using DemASIP, to demap a Gray coded QPSK

122 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

modulated symbol, 4 clock cycles are required to generate two LLRs as given in 5.2. Hence a total of
768 clock cycles are required for the demapping of 192 symbols. Additional 16 cycles are required
for system configuration in the start of demapping and NOP instructions at the end of the demapping
process.

LLR

LLR VALID

w
e_

1P
0

w
e_

2P
0

w
e_

S1

w
e_

S0

8

VALID

VALID

VALIDDONT CARE
VALID
VALID

VALID

DONT CARE

0 0

11
01

0 1

2P0
1P0
S1
S0

Interleaved AddressNatural Address
(Ad_I)(Ad_N)

ID

LLR_S0 LLR_S1 LLR_1P0

INPUT DATA MEM
(NATURAL)

LL
R

LL
R

LL
R

A
d_

N

A
d_

N

A
d_

N

w
e_

S0

w
e_

S1

w
e_

1P
0

LLR_S0 LLR_S1 LLR_2P0

INPUT DATA MEM
(INTERLEAVED)

LL
R

LL
R

LL
R

A
d_

I

A
d_

I

A
d_

I

w
e_

S0

w
e_

S1

w
e_

2P
0

(INTERLEAVED)

(b)

(a)

LLR and Valid LLR singal coming from demapper

ID

HEADER

MEM

(NATURAL)

ADR

DATA

24 24

DATA

ADR

(
∏

1)

DECODER-2

∏
1

DECODER-1

∏
1 +
∏−1

2

(Fig. ??)

∏
1∏−1
1

Figure 6.9 — BICM deinterleaving and depuncturing implementation (a)
∏−1

2 and header (b) Decoder
memory address decoding

6.3.3.2 BICM Deinterleaving and Depuncturing

After having LLRs at the output of DemASIP, the next step is to implement deinterleaving and
depuncturing function. To implement this function, one needs to first identify the bit (which can
be either source or parity) and then to identify the location of this LLR in the coded symbol block.
In case the LLR is related to source bit then it will go both to the memory of the decoder working in
natural domain and the memory of decoder working in interleaved domain (

∏
1). Hence for source

bits BICM deinterleaving (
∏−1

2) and (
∏

1) will be applied. In case of LLR related to parity, the LLR
will be stored in the memory attached to the ASIP which is either working in natural domain or the
one which is working in interleaved domain (not both).

To implement this, like other interleaving/deinterleaving functions, precomputed LUT stored in∏−1
2 +

∏
1 Mem. is used. Once LLR is available at the output, a header coming from

∏−1
2 Mem. is

attached with this LLR as shown in Fig. 6.9(a). This header contains first two bits reserved to identify
if the LLR is related to S0, S1, 1P0 or 2P0. Two addresses, adr N and adr I, are provided in next
two fields of the header. The first one contains the memory address for the input data memory of
the decoder working in natural domain whereas the other is for the memory related to the decoder
working in

∏
1 domain. In case the LLR is related to the parity of the first encoder, only adr N will

6.3. FIRST MULTI-ASIP PROTOTYPE: PARALLEL TURBO DECODER 123

be valid and vice versa for the LLR related to the second encoder working in
∏

1 domain as shown in
Fig.6.9(b).

M
Info Ext

M
Info Ext

NI

NI

NI

NI

M
Info Ext

MInfo Ext

M
Info Ext

M
Info Ext

NI

NI

NI

NI

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Input Data

M
Info Ext

M
Info Ext

DOMAINNATURAL DOMAIN

R R

R R

R R

R R

BUTTERFLY NOC

M
Init Metrics

M
Init Metrics

M
Init Metrics

M
Init Metrics

TurbASIP 0

TurbASIP 1

TurbASIP 2

TurbASIP 3

BUTTERFLY NOC

∏
1

(Fig.6.9b)

(Fig.3.7)

(
∏

1)

(
∏−1

1)

Figure 6.10 — Multi-ASIP and Butterfly NoC architecture for turbo decoding

6.3.3.3 multi-ASIP and NoC Based Turbo Decoder

Initially, the TurbASIP presented in Fig.3.7 is designed to take 4-bit LLR to support BPSK. To make
this ASIP capable to support 256-QAM, the input interface of the ASIP is modified to handle the
8-bit LLR generated by the demapper. Consequently the datapath is proportionally increased to sup-
port increased input data quantization. A turbo decoding platform composed of 4 TurbASIP and 2
unidirectional Butterfly NoC, shown in Fig.6.10, is automatically generated using the Auto Genera-
tion Tool presented in the thesis work of [43]. In this platform, each ASIP takes 7 cycles to produce
extrinsic information (or hard decision) related to 2 double binary code symbols per iteration (i.e. 3.5
clock cycles per symbol per iteration). With 24-byte source, there are 96 double binary coded symbols
equally divided in 2 sub-blocks, i.e 48 symbol for each ASIP on each side of the turbo decoder. Hence
one shuffled iteration takes around 176 cycles (3.5*48 = 168 cycles for BCJR processing + 8 cycles
for state metric exchange). As far as the area of this architecture is concerned, the FPGA synthesis
results of 4-ASIPs and Butterfly NoC are shown in Table.6.4.

Table 6.4 — Synthesis results of multi-ASIP and NoC based turbo decoder

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 18094 out of 207,360 (8%)
Slice LUTs 59784 out of 207,360 (28%)
DSP48Es 0 out of 192(0%)
Frequency (f) 163 MHz

124 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

BICM
INTERLEAVER

RAYLEIGH FADING CHANNEL

ENCODER MAPPERPUNCTURING

COMPARISON
UNITDEPUNCTURINGDEINTERLEAVER

Decoded Bits

∏
2

(Fig.6.8)

xvcs

(Fig.6.6)

(Fig.6.7)

(Fig.6.5)

∏−1
2y c̃ṽ

DEMAPPER DECODER

(Fig.6.12)
(Fig.6.9)

(Fig.6.10)

Figure 6.11 — Turbo coded transmission system implementation diagram

6.3.4 Performance Results

Using the components stated above, the complete block diagram of the communication system is
shown Fig.6.11. In the implemented prototype the components of the communication system work in
sequence, i.e after source generation and encoding, encoder saves data in output memories. Mapper
reads output memory of encoder bit by bit, after applying

∏
2, to construct the modulated or mapped

symbols. Each mapped symbol passes through the channel emulator and resultant symbols y and
fading coefficients ρ are saved in input memories of the demapper. LLRs of each symbol y are copied
into input memories of the decoders after applying

∏−1
2 and

∏
1 on the fly. After the memory filling,

the multi-ASIP and NoC based turbo decoder architecture execute 10 shuffled iterations to produce the
decoded bits. It is worth mentioning that in first shuffled iteration, the decoders only use channel data
(no extrinsic information). This is due to the fact that with a new frame under process, the extrinsic
information memories hold the extrinsic data produced in the last iteration of the previous frame and
thus can not be used. The comparison on the source bits and decoded bits is performed to see if the
frame is correct or erroneous. The complete FPGA synthesis results of the communication system
having a heterogeneous multi-ASIP platform receiver with a parallel turbo decoder are presented
in Table6.5. The decoder takes 1760 cycles to decode a frame in 10 iterations. Hence, it gives a

Table 6.5 — Synthesis results of the first multi-ASIP prototype: parallel turbo decoder

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 24877 out of 207,360 (11%)
Slice LUTs 64469 out of 207,360 (31%)
DSP48Es 36 out of 192(18%)
Frequency (f) 65 MHz

throughput of 7 Mbps at a frequency of 65 MHz after 10 shuffled iterations. In fact the frequency of
65 MHz comes from the critical path of Rayleigh fading channel emulator. In practical systems one
needs to implement transmitter and receiver and in this case the critical path lies in turbo decoder unit.
Hence one can run the platform at 163 MHz which will result in a throughput of 17.55 Mbps after
10 shuffled decoding iterations. The acquired Frame Error Rate performance for 24-Byte source data

6.4. SECOND MULTI-ASIP PROTOTYPE: PARALLEL TURBO DEMODULATOR AND DECODER 125

transmitted at r = 0.5 and modulated on QPSK Gray mapped constellation is shown in Fig.6.12. It
has been verified that it matches the exact performance of the reference software model.

Figure 6.12 — FER performance obtained from the First multi-ASIP FPGA prototype implementing
turbo decoding

6.4 Second multi-ASIP Prototype: Parallel Turbo Demodulator and
Decoder

In this section we present the second multi-ASIP prototype realized to demonstrate parallel turbo
demodulation and decoding. To that end, the SSD is added on the transmitter whereas on the receiver
side a feed back is required in the demapper from the decoder. These all changes are shown in Fig.6.13
and will be illustrated in the following sub-sections.

6.4.1 Transmitter

On the transmitter side, to implement SSD two changes are implemented in transmitter: constellation
rotation and delay d between I and Q components of symbol x. First of all contents of xI and xQ
LUTs (Fig.6.7) are changed for a QPSK constellation rotated at angle α = 22.5◦ and last bit of the
parameters (MAP STYLE) of soft mapper is set for non-Gray configuration. To implement d = 1,

126 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

BICM
INTERLEAVER

BICM
INTERLEAVER

MAPPERENCODER PUNCTURING

SSD

COMPARISON
UNITDEPUNCTURINGDEINTERLEAVER

Decoded Bits

RAYLEIGH FADING CHANNEL

∏
2

∏
2

D
E

L
A

Y
d

DELAY d

vcs
x

xIr,t xQr,t

∏−1
2ṽ

yIt yQt

v̂ ĉ

DECODER

c̃

y

DEMAPPER

Figure 6.13 — Turbo coded with SSD transmission system diagram

193 symbols are transmitted in place of 192 symbol where the last symbol is dummy. A delay register
is added for xQ, which makes xQ = 0 for the first symbol and xI = 0 for the last symbol. These
symbols pass through the channel and a total of 193 y and ρ are saved in demapper input memories.

6.4.2 Receiver

Multiple changes are made on the receiver side and will be detailed in this sub-section.

2 3 8 9

4 cycles

6 70 1

2 3 4 50 1

8

LLR

Fading Coeff.Rx. Symbol &

0

4 5

Data1

Data2

Data3

Data4

Adr1

Adr3

Adr4

Adr2

Data

Adr
SELCECT
OFFSET

LLR

VALID

LLR

VALID

LLR

VALID

VALID

2

Channel
Data From

Memory

0

OFF SET ASIP 1
OFF SET ASIP 2
OFF SET ASIP 3
OFF SET ASIP 4

Data From Apr.Mem

4 cycles

4 cycles

11 12

DemASIP 0

DemASIP 1

DemASIP 2

DemASIP 3

VALID

LLR

yI
0 ρ0

yI
1 yQ

1 ρ1

ρ191yQ
191yI

191

(Fig.5.6)

(Fig.6.8)

ρ192yQ
192

Figure 6.14 — Parallel soft demapper - 3 DemASIPs generating one LLR per clock cycle to demap
QPSK symbol

6.4. SECOND MULTI-ASIP PROTOTYPE: PARALLEL TURBO DEMODULATOR AND DECODER 127

6.4.2.1 Multi-ASIP Architecture for Parallel soft demapping

Two changes are made in the demapper part of the receiver. First of all, the configuration of the
DemASIP is changed to implement (2.34) expression for turbo demodulation context. Due to the
implementation of SSD in transmitter, the data in Rx. Symbol and Fading coeff. Memories will be
in an order shown in Fig.6.14. To input fading coefficient, one needs to read ρ0 (as ρt−d) and ρ1 (as
ρt) for first symbol y0(yIt−d, y

Q
t). This is implemented by first reading ρ value at 0 address of Fading

Coeff. and saving it in ρt Register of DemASIP (Fig.5.6). Then with each input instruction, to demap
an ath symbol ya, contents of ρt Register goes to ρt−d Register, ρt Register is filled by reading ρ value
at address a+ 1 from Fading Coeff. Memory. Finally yIt−d and yQt Registers are filled by reading two
banks of Rx. Symbol Memory at location a and a+ 1 respectively.

The other issue is the processing complexity related to the used demapping expression (2.34).
To implement this expression for QPSK, DemASIP takes 6 clock cycles to generate two LLRs as
given in Table5.2. With non-turbo demodulation context, demapping is performed once and takes 768
cycles using one demapper and decoding takes 1408 cycles for 8 iterations (176 cycles per iteration)
with 4 TurbASIPs. Hence to use DemASIP for complex expression and perform multiple demapping
iterations in parallel to shuffled turbo decoding iterations, more DemASIP are required to implement
shuffled turbo demodulation. One of the simple way is that if three ASIPs are used in parallel on dif-
ferent received symbols, implementing frame sub-blocking, one can achieve one LLR per clock cycle.
Similarly with 16-QAM one need 18 clock cycles to generate 4 LLRs. Hence four ASIP will produce
16 LLRS in 18 clock cycles. The issue related to this scheme is that if all ASIPs start simultaneously,
they will access the input data memories together and will produce output LLRs together.

In our case we have used a strategy which is shown in Fig.6.14. We have used 4 DemASIPs and
each DemASIP starts with a delay of two clock cycles. This is achieved by adding as many NOPs in
the start of the assembly code as much clock cycle delay is required. In this way the ASIPs access the
input memory at different instants of time with an offset representing start address of each sub-block.
At the output, with three ASIPs (the last one is switched off for the considered QPSK configuration),
the throughput for QPSK will be one LLR per clock cycle whereas for 16-QAM with 4 ASIPs it will
be 16 LLRs per 18 clock cycles (0.89 LLR/cycle). Hence, using three DemASIPs to demap block
of 192 QPSK symbols, 384 clock cycles per iteration will be required with no memory conflict at
decoder input memories. The combined synthesis results of the architecture presented in Fig.6.14 are
provided in Table 6.6. With achievable frequency of 171 MHz the throughput for implemented case

Table 6.6 — Synthesis results of the multi-ASIP architecture for parallel soft demapping

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 6801 out of 207,360 (3%)
Slice LUTs 11244 out of 207,360 (5%)
DSP48Es 24 out of 192(12%)
Frequency (f) 171 MHz

of QPSK is 171 MLLR/sec and for 16-QAM it will be 152 MLLR/sec.

6.4.2.2 Modified TurbASIP Architecture

The TurbASIP used in turbo decoding application is capable of generating extrinsic information to be
used inside the turbo decoder. To implement concepts of turbo demodulation and turbo equalization,

128 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

extrinsic and a posteriori information on bits is required. To achieve this, the max. operators avail-
able in TurbASIP are reutilized to perform the maximum operations to generate LLRs for individual
systematic and parity bits. New instructions, related to these operations are added to the existing Tur-
bASIP instruction-set. Using these instructions, the assembly program is modified. With this modified
application program, 11 cycles are required to generate extrinsic related to the systematic bits of two
coded symbol for turbo decoders and extrinsic related to individual systematic and parity bits for the
demapper. With this new application program and for 24-byte source having 96 double binary coded
symbols equally divided in 2 TurbASIPs, i.e 48 for each TurbASIP on each side of turbo decoder,
one iteration takes around 272 cycles (5.5*48=264 cycles for BCJR processing + 8 cycles for state
metric exchange). The FPGA implementation results of 4 TurbASIPs and Butterfly NoC are shown
in Table.6.7.

Table 6.7 — Synthesis results of 4 modified TurbASIP and NoC based turbo decoder

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 19709 out of 207,360 (9%)
Slice LUTs 63624 out of 207,360 (30%)
DSP48Es 0 out of 192(0%)
Frequency (f) 135 MHz

NI

NI

NI

NI

NI

NI

NI

M
Apriori

M

M

M

M

M

M
M

Apriori

Apriori

Apriori

Apriori

Apriori

Apriori

Apriori

TurbASIP 3

TurbASIP 2

TurbASIP 1

TurbASIP 0

NI

R R R

R R R

R R R

R R R

BUTTERFLY NOC DemASIP−0

DemASIP 1

DemASIP 2

DemASIP 3

∏
2

∏
2

∏
2

∏
2

Figure 6.15 — Unidirectional Butterfly NoC between 4 TurbASIP and 4 DemASIP

6.4.2.3 Communication Network Between TurbASIPs and DemASIPs

As stated above, the TurbASIP produce LLRs related to systematic and parity bits. For a code rate
r = 0.5, LLRs related to source bits (So,S1) and parity bit (1P0) generated by TurbASIP 0 and

6.4. SECOND MULTI-ASIP PROTOTYPE: PARALLEL TURBO DEMODULATOR AND DECODER 129

TurbASIP 1 and parity bit (2P0) generated by TurbASIP 2 and TurbASIP 3 are sent to the demapper.
To achieve this, a header is added to each LLR. This header contains the interleaving information
related to perform

∏
2 interleaving in feed back path from decoder to demapper. A one way butterfly

network is added for the transportation of LLRs from decoder to demapper as shown in Fig.6.15. On
the demapper side each DemASIP has its own “Apriori Input Memory” which is divided into two
banks. One bank stores the LLRs with even

∏
2 index whereas the other store the odd index. Hence

“Apriori Input Memory” related to each DemASIP has two input data ports, each capable of storing
one LLR, whereas the read port enables the DemASIP to read two LLRs during INPUT instruction.
The synthesis results of the required communication network are summarized in Table 6.8.

Table 6.8 — Synthesis results of the unidirectional Butterfly NoC between decoder and demapper

FPGA Synthesis Results (Xilinx Virtex5 xc5vlx330)
Slice Registers 1860 out of 207,360 (<1%)
Slice LUTs 1289 out of 207,360 (<1%)
DSP48Es 0 out of 192(0%)
Frequency (f) 265 MHz

BICM
INTERLEAVER MAPPER

RAYLEIGH FADING CHANNEL

ENCODER PUNCTURING

SSD

COMPARISON
UNITDEPUNCTURINGDEINTERLEAVER

Decoded Bits

∏
2

(Fig.6.7)

DELAY d
(Fig.6.8)

y

D
E

L
A

Y
d

vcs

(Fig.6.6)(Fig.6.5)

x

xIr,t xQr,t

∏−1
2 c̃ṽ

DEMAPPER DECODER

(Fig.6.14)
(Fig.6.9)

(Fig.6.10)

yIt yQt

v̂ ĉ∏
2

(Fig.6.15)

Figure 6.16 — Turbo Coded with SSD Transmission Implementation Diagram

6.4.3 Performance Results

With the proposed changes the new implementation with shuffled turbo demodulation is shown in
Fig.6.16. After the serial execution of transmitter components and transmission of data from the
channel, data is stored in the input memories of of the DemASIPs. The DemASIPs generates LLRs
which after deinterleaving (

∏−1
2) and depuncturing with (

∏
1) are saved to the input memories of

130 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

parallel turbo decoder. After this step, DemASIPs stop and TurbASIPs start working for 10 shuffled
iterations where during the first iteration, the decoders only use the LLRs generated by demapper.
Once “Apriori Info. Memories ” of DemASIPs are filled after the first shuffled iteration of turbo
decoding, DemASIPs start working again in turbo demodulation context. The reason of stopping
DemASIPs during first shuffled iteration of turbo decoding is again that, during this time “Apriori
Info. Memories ” contain data related to the last shuffled demodulation iteration of previous processed
frame.

The complete FPGA synthesis results of the communication system integrating a heterogeneous
multi-ASIP platform receiver implementing turbo demodulation and decoding are shown in Table6.9.
As stated above, the parallel DemASIPs architecture takes 384 clock cycles to process the frame

Table 6.9 — Synthesis results of the second multi-ASIP prototype: parallel turbo demodulator and
decoder

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 33525 out of 207,360 (16%)
Slice LUTs 78016 out of 207,360 (37%)
DSP48Es 54 out of 192(28%)
Frequency (f) 65 MHz

whereas the parallel TurbASIPs architecture takes 272 cycles for the same frame. Hence during shuf-
fled turbo demodulation process there will be 9 shuffled turbo decoding iterations and almost 6.3
shuffled turbo demodulation iterations. The total number of cycles required to process a frame of 24
byte source data will be 3104 (384 + 272 × 10) which will result in a throughput of 4 MBits/sec
at 65 MHz clock frequency. But again this 65 MHz is due to channel’s critical path. However, the
critical path of this receiver lies in the modified TurbASIP architecture and enables a maximum clock
frequency of 135 MHz. With this frequency the throughput of the receiver will be 8.3 MBits/sec. The
acquired Frame Error Rate performance for 24-Byte source data transmission at r = 0.5 and modu-
lated on QPSK rotated constellation with SSD is shown in Fig.6.17. The results shown a gain of 0.5
dB with the inclusion of SSD in transmitter and turbo demodulation in receiver as compared to the
FER results of turbo decoding presented in Fig.6.12.

6.5 Third multi-ASIP Prototype: Parallel Unified Turbo Receiver

In this section we present the first multi-ASIP prototype realized to demonstrate parallel turbo decod-
ing.

By adding the concept of turbo equalization to the second multi-ASIP prototype presented above,
we conclude with this third heterogeneous multi-ASIP prototype which can implement all three con-
cepts of turbo decoding, demodulation and equalization. The complete block diagram is shown in
Fig.6.18. STC of 2×2 MIMO SM is added on the transmitter side whereas MIMO MMSE-IC ASIP
equalizer and soft mapper is added in the receiver.

6.5.1 Transmitter

On transmitter side, SSD is removed and 2×2 MIMO SM is added. It is done in a way that when
two symbols are produced by the mapper, the two symbols with a flag of vector ready is given at the

6.5. THIRD MULTI-ASIP PROTOTYPE: PARALLEL UNIFIED TURBO RECEIVER 131

Figure 6.17 — FER Obtained from the second multi-ASIP Prototype implementing turbo demodula-
tion and decoding

output of the transmitter.

6.5.2 MIMO Flat Block Rayleigh Fading Channel

For the prototyping of the MIMO system, the channel which is used in the previous two systems is
replaced with a MIMO channel. The inputs and outputs of this channel emulator is shown in Fig.6.19.
The channel model is configured for flat block Rayleigh Fading Channel, in which channel remains
constant for two transmitted vectors. The input to the channel are two symbols x1 and x2 having I
and Q components each composed of 8 bits. H REFRESH is toggled after each two received vectors
to have new values of channel matrix. The rest of the inputs i.e. σ2

w, CLK, RESET and ENABLE are
same as described in previous channel model. The outputs on the channel are y1 and y2 having I
and Q components each having 12 bits. Four elements of channel matrix H are represented with h11,
h12, h21 and h22. The individual components of H is composed of I andQ components each having
12 bits. The output ready gives an indication to save the channel output in the input memories of the
equalizer. The FPGA resources of the channel emulator are summarized in Table 6.10.

132 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

COMPARISON
UNIT

ENCODER PUNCTURING

Decoded Bits

DEINTERLEAVER

DEPUNCTURING
MIMO

EQUALIZER

SOFT
MAPPER

MIMO

CODE)
(SPACE TIME

SSD

MAPPER

SINGLE ANTENNA RAYLEIGH FADING CHANNEL

MIMO SM RAYLEIGH FADING CHANNEL

BICM
INTERLEAVERs

c̃

∏
2

v̂ext

y

ṽ

ĉext/apostv̂apost

DEMAPPER ∏−1
2

DECODER
y =

[
y0

y1

]

x̂ =

[
x̂0

x̂1

]

x̃ =

[
x̃0

x̃1

]

∏
2

x

x =

[
x0

x1

]x

xSSD

c v

2× 2

Figure 6.18 — Turbo Coded with MIMO STC Transmission Diagram

RAYLEIGH FADING CHANNEL

EMULATOR

MIMO

OUTPUT READY16

25

16

CLK
RESET

H_REFRESH
INPUT READY

24

24

24

24

24

24
y2I,Q

y1I,Q

σ2
w

x2I,Q

h12I,Q

h11I,Q

h22I,Q

h21I,Qx1I,Q

Figure 6.19 — MIMO Rayleigh fading channel emulator

6.5.3 Receiver

On the receiver side, a MIMO equalizer and a soft mapper (Fig.6.18) is added to complete the path
for all possible loops in a complete turbo receiver.

6.5.3.1 MIMO equalizer

To perform MIMO equalization, one EquASIP of Fig.4.6 is integrated in the receiver. The application
program for this ASIP is written for 2×2 MIMO SM. For the application of a block fading channel
where channel is constant for two vectors, the throughput of the EquASIP is two estimated vectors
(x̃) and bias vector (g) i.e 4 x̃ symbols and associated bias g per 80 clock cycles. These output go in
the demapper for symbol to LLR conversion. A change is made in the contents of inv. Sigma LUT of
DemASIP (Fig. 5.6). This change is related to the explanation presented in subsection 2.3.2 where σ2

w

6.5. THIRD MULTI-ASIP PROTOTYPE: PARALLEL UNIFIED TURBO RECEIVER 133

Table 6.10 — Synthesis results of MIMO Rayleigh fading channel block

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 6036 out of 207,360 (2%)
Slice LUTs 6203 out of 207,360 (2%)
DSP48Es 96 out of 192(50%)
Frequency (f) 65 MHz

is replaced with g(1−g)σ2
x. Hence in MIMO case, the address line of LUT is g (not σ2

w) and contents
of inv. Sigma LUT represent g(1 − g)σ2

x. The TurbASIP’s program is also modified to generate a
posteriori LLRs for the soft mapper. During first iteration of equalizer the x̂ and σ2

x̂ are zero whereas
MMSE-IC2 is implemented for the sake of simplicity where σ2

x̂ = σ2
x.

LOOK
UP

TABLE

LOOK
UP

TABLE

M
Apriori

M
Apriori

M
Apriori

M
Apriori

M
Apriori

M
Apriori

M
Apriori

M
Apriori

256 WORDS

256 WORDS

16

APR Memory Banks 8

8

8

8
10

10

Memory

LLR2n

LLR2n+1

x̂I

x̂Q

x̂

Figure 6.20 — Soft mapper for QPSK Configuration

6.5.3.2 Soft Mapper

For the demonstration purpose a dedicated architecture of QPSK soft mapper is written in VHDL.
The architecture is simple as shown in Fig.6.20. The input to soft mapper comes from the APR
memory banks of Fig.6.15. The soft mapper reads 16 bits which contain two a posteriori LLRs of
8 bits. The LLR at even numbered address (LLR2n) constructs x̂I while the LLR at odd numbered
address (LLR2n+1) is involved in computing x̂Q. The both look up tables contain the values related
to following expression for soft mapping.

x̂n(I) = −tanhLLR2n

2
and x̂n(Q) = −tanhLLR2n+1

2

Using input LLRs, the components of x̂ are read from LUT and are saved in the x̂ Memory which is
read by EquASIP.

134 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

COMPARISON
UNIT

MIMO SM RAYLEIGH FADING CHANNEL

Decoded Bits

DEINTERLEAVER

DEPUNCTURING
MIMO

EQUALIZER

SOFT
MAPPER

SINGLE ANTENNA RAYLEIGH FADING CHANNEL

MIMO

CODE)
(SPACE TIME

SSD

MAPPERENCODER PUNCTURING
BICM

INTERLEAVER

2× 2 (Fig.6.19)

c̃

∏
2

v̂ext

y

ṽ

ĉext/apostv̂apost

DEMAPPER

(Fig.6.14)

∏−1
2

DECODER

(Fig.4.6)
y =

[
y0

y1

]

x̂ =

[
x̂0

x̂1

]

x̃ =

[
x̃0

x̃1

]
(Fig.6.10)

(Fig.6.9)

(Fig.6.15)(Fig.6.20)

(Fig.6.8)

∏
2

x

x =

[
x0

x1

]x

xSSD

c v

(Fig.6.5) (Fig.6.6) (Fig.6.7)

s

Figure 6.21 — Turbo coded with MIMO STC transmission diagram

6.5.4 Performance Results

With the proposed changes the new implementation with shuffled turbo equalization is shown in
Fig.6.21. After the serial execution of transmitter components and transmission of data from the
channel, data is stored in the input memories of EquASIPs. The EquASIP produces estimated sym-
bols x̃. One of the demapper in DemASIPs architecture generates LLRs which after deinterleaving
(
∏−1

2) and depuncturing with (
∏

1) are saved in input memories of the turbo decoder. After this step
EquASIP and DemASIPs architecture stops and TurbASIPs architecture works for 10 shuffled itera-
tions where during first iteration decoders only use LLRs generated by demapper. Once “Apriori Info.
Memories ” is filled after the first shuffled iteration of turbo decoding function, soft mapper produces
decoded symbols x̂. Once all soft symbols are produced, soft mapper, EquASIP and DemASIPs ar-
chitecture starts to work again in turbo equalization context and hence system implements shuffled
turbo equalization. The reason of stopping soft mapper, EquASIP and DemASIPs architecture dur-
ing first shuffled iteration of turbo decoding architecture is again that, during this time “Apriori Info.
Memories ” contain data related to last shuffled equalization iteration of previous processed frame.

The complete FPGA synthesis results of the communication system integrating a heteroge-
neous multi-ASIP platform receiver implementing turbo equalization, demodulation and decoding
are shown in Table6.11. As stated above, one EquASIP takes 80 cycles to process two received vec-
tors (on average 40 cycles per vector). With a 24 bytes source transmitted at r = 0.5 using QPSK with
2×2 MIMO SM, there are 96 vectors to be processed. Hence, the total time for equalization process
is 3840. Since demapping can work in pipeline fashion, demapping runs in pipeline with equaliza-
tion. As stated before the turbo decoder architecture consumes 272 cycles per shuffled iteration (2720
cycles for 10 shuffled iterations). Hence during shuffled turbo equalization process there will be less
than one shuffled turbo equalization iteration. This provides no significant gain in turbo equalization
process.

6.5. THIRD MULTI-ASIP PROTOTYPE: PARALLEL UNIFIED TURBO RECEIVER 135

Figure 6.22 — FER Obtained from Third multi-ASIP Prototype implementing the unified turbo re-
ceiver

Table 6.11 — Synthesis Results of the third multi-ASIP prototype: parallel turbo equalizer, demodulator
and decoder

FPGA Synthesis Results(Xilinx Virtex5 xc5vlx330)
Slice Registers 36751 out of 207,360 (17%)
Slice LUTs 88387 out of 207,360 (42%)
DSP48Es 132 out of 192(68%)
Frequency (f) 65 MHz

The total number of cycles required to process a frame of 24 byte source data will be 6560
(3840 + 2720) which will result in a throughput of 1.9 MBits/sec at 65 MHz clock frequency. But
again this 65 MHz is due to channel’s critical path. However, if we only consider the critical path of
the receiver, it lies in EquASIP i.e 130 MHz. With this frequency the throughput of the receiver will be
3.8 MBits/sec. The acquired Frame Error Rate performance for 24-Byte source data transmitted at r =
0.5, using QPSK modulation and 2×2 MIMO SM is shown in Fig.6.22. Since sub-block parallelism
in equalization is simple hence, with the addition of three more EquASIPs the first equalization time
will reduce to 960 cycles and hence total cycles required will be 3680. This will result in a throughput
of 6.75 MBits/sec and more shuffled turbo equalization iterations.

136 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

Fa
di

ng
 C

oe
ff.

Rx
. S

ym
bo

l &

1
0

2
3

5
4

6
7

12
13

14
15

16
17

18
19

N
I

N
IN
IN
I

N
I

N
I

N
IN
I

R
R

R

R
R

R

R
R

R

R
R

R

BU
TT

ER
FL

Y
 N

O
C

M
In

fo
 E

xt

M
In

fo
 E

xt

N
IN
I

N
I N
I

M
In

fo
 E

xt

M
In

fo
 E

xt

M
In

fo
 E

xt

M
In

fo
 E

xt

N
I

N
IN
I

N
I

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

pu
t D

at
a

M
In

fo
 E

xt

M
In

fo
 E

xt

D
O

M
A

IN
N

A
TU

RA
L

D
O

M
A

IN

R
R

R
R

R
R

R
R

BU
TT

ER
FL

Y
 N

O
C

M
In

it
M

et
ric

s

M
In

it
M

et
ric

s

M
In

it
M

et
ric

s

M
In

it
M

et
ric

s

Tu
rb

A
SI

P
0

Tu
rb

A
SI

P
1

Tu
rb

A
SI

P
2

Tu
rb

A
SI

P
3

BU
TT

ER
FL

Y
 N

O
C

1
2

3
4

5
6

2
3

8
9

4
cy

cl
es

Fa
di

ng
 C

oe
ff.

Rx
. S

ym
bo

l
&

4
56

7

1
2

3
4

5
6

V
A

LI
D

LL
R

D
at

a1

D
at

a2

D
at

a3

D
at

a4

A
dr

1

A
dr

3

A
dr

4

A
dr

2

D
at

a

A
dr

SE
LC

EC
T

O
FF

SE
T

LL
R

V
A

LI
D

LL
R

V
A

LI
D

LL
R

V
A

LI
D

2

M
em

or
y

O
FF

 S
ET

 A
SI

P
1

O
FF

 S
ET

 A
SI

P
2

O
FF

 S
ET

 A
SI

P
3

O
FF

 S
ET

 A
SI

P
4

D
at

a
Fr

om
 A

pr
.M

em

4
cy

cl
es

4
cy

cl
es

11
12

D
em

A
SI

P
1

D
em

A
SI

P
2

D
em

A
SI

P
3

V
A

LI
D

LL
R

Si
ng

le
 A

nt
en

na
D

at
a

Fr
om

Ch
an

ne
l

or
M

IM
O

Eq

ua
liz

er

0
1

D
em

A
SI

P
0

M
IM

O
EQ

U
A

LI
ZE

R
D

ec
od

ed
 B

its

D
EI

N
TE

RL
EA

V
ER

D
EP

U
N

CT
U

RI
N

G

D
at

a1

D
at

a2

D
at

a3

D
at

a4

A
dr

1

A
dr

3

A
dr

4

A
dr

2

D
at

a

A
dr

SE
LC

EC
T

O
FF

SE
T

V
A

LI
D

2

M
em

or
y

O
FF

 S
ET

 A
SI

P
1

O
FF

 S
ET

 A
SI

P
2

O
FF

 S
ET

 A
SI

P
3

O
FF

 S
ET

 A
SI

P
4

D
at

a
Fr

om
 S

of
t M

ap
pe

r

Eq
uA

SI
P

1

Eq
uA

SI
P

2

Eq
uA

SI
P

3

M
IM

O

D
at

a
Fr

om

Ch
an

ne
l

11
10

9
8

80
 c

yc
le

s
V

A
LI

D

Es
tim

at
ed

 S
ym

bo
ls

Es
tim

at
ed

 S
ym

bo
ls

Es
tim

at
ed

 S
ym

bo
ls

V
A

LI
D

V
A

LI
D

or Demapper
To Soft Mapper

From TurbASIP 0, 1, 2, 3

SO
FT

M
A

PP
ER

Sy
m

bo
ls

V
A

LI
D

Es
tim

at
ed

Eq
uA

SI
P

0

∏ 2∏ 2∏ 2∏ 2

∏ 1

(F
ig

.3
.7

)

(∏ 1)

(∏ −1 1
)

ρ
0

ρ
1

y 0 y 1 y n
ρ

n

(F
ig

.5
.6

)

c̃

∏ 2

v̂ e
x
t

ṽ

ĉ e
x
t/
a
po
st

D
E

C
O

D
E

R
y

=

[y 0 y 1

]

v̂ a
po
st

D
E

M
A

PP
E

R

∏ −1 2

x̃
=

[x̃ 0 x̃
1

]

h
1
1

h
1
2

h
2
1

h
2
2

y 1 y 2

x̂
=

[x̂ 0 x̂
1

]
y

(F
ig

.6
.2

0)

(F
ig

.6
.9

)

(F
ig

.4
.6

)

Fi
gu

re
6.

23
—

U
ni

fie
d

tu
rb

o
re

ce
iv

er
’s

de
ta

ile
d

di
ag

ra
m

6.6. CONCLUSION 137

With more EquASIPs one can see the effect of more equalization iteration in the shape of FER
performance improvement. The detailed diagram of unified turbo receiver with 4 instances of each of
EquASIP, DemASIP and TurbASIP with 3 Butterfly based NoCs is shown in Fig.6.23.

Figure 6.24 — FER Obtained from Third multi-ASIP FPGA Prototype Implementing Shuffled Turbo
Equalization with Perfect a priori to Equalizer

Due to shortage of time, required for the integration of more EquASIPs, an indirect approach
is used to validate the platform. In the adopted approach the perfect information is provided to the
equalizer and in Fig.6.24 one can see a gain of almost 1.5 dB which validates the EquASIP in iterative
equalization context.

6.6 Conclusion

In this chapter, original heterogeneous multi-ASIP prototypes are proposed towards the design of a
unified iterative receiver. These prototypes demonstrate the efficient exploitation of the second level
of parallelism available in turbo equalization, demodulation and decoding applications, introduced in
chapter 2 as Component Level Parallelism. The first level of parallelism (Metric or Symbol Estimation
Level Parallelism) has been efficiently exploited inside each one of the individual proposed ASIPs as
explained in Chapters 4 and 5.

The chapter has started by illustrating the design, validation and prototyping flow for individual
ASIPs. These ASIP are initially described in LISA ADL and then went through the processes of

138 CHAPTER 6. MULTI-ASIP NOC BASED TURBO RECEIVER

VHDL generation and FPGA validation. Once having these ASIPs validated on FPGA, a step by step
integration process is described. The system started with shuffled turbo decoding through the first
multi-ASIP prototype. SSD on transmitter and turbo demodulation on receiver side is then demon-
strated by means of a second multi-ASIP prototype. With the implementation of of turbo demodu-
lation flexibility of DemASIP is demonstrated by using it in iterative context. In addition, the NoC
solution is adopted to feedback the interleaved information from decoder to demapper. Finally a third
heterogeneous multi-ASIP architecture is presented as a unified iterative receiver which integrates
parallel turbo demodulation, equalization and decoding. These final FPGA prototype implements
flexible transmitter, channel emulator and a turbo receiver made up of 9 ASIP of three different types
and 3 NoC instances using Butterfly topology. With each prototype the results of synthesis and FER
results, for different system configurations, acquired from FPGA platform are presented and verified
to match the exact performance of the corresponding reference software model.

Conclusion and perspectives

THE work accomplished in this PhD thesis considers flexibility and throughput requirements of
future wireless standards in a context where turbo processing is applied in the receiver to attain

error rate performance close to theoretical limits.

Firstly, throughput and flexibility parameters associated to different functional blocks of the trans-
mitter have been extracted from multiple emerging wireless communication standards. In the presence
of techniques such as turbo codes, SSD and MIMO on the transmitter side, there is an encouragement
for iterative processing implementation in the receiver to target error rate performance issue. Hence,
at the end of chapter 1, a scheme for a unified turbo receiver is proposed.

As high throughput and serial iterative processing are contrary to each other, a parallelism study is
conducted on turbo demodulation and turbo equalization at different levels by inheriting the available
results of parallel turbo decoding. Based on the study about the first two parallelism levels (met-
ric/symbol generation level and component level), simulation results are presented to quantify the
effects of parallelism implementation.

While targeting efficient hardware implementation, the ASIP approach is adopted to exploit the
first parallelism level and to achieve the required tradeoff between flexibility and performance. In this
context two original Soft-In Soft-Out ASIP architectures have been proposed and designed, namely
EquASIP and DemASIP. EquASIP has been presented as the first flexible ASIP implementing an
MMSE-IC linear equalizer for turbo equalization application. Analysis and simulation of mathemat-
ical equations involved in MMSE-IC LE allowed to identify potential complex-numbered operations
which lead to device the instruction set. The specific instructions for complex number arithmetic
enable to efficiently perform computations on variable sized complex numbered matrices which in
turn provide required flexibility in MMSE-IC and promote its reuse for other MMSE-based appli-
cations. EquASIP flexibility allows its reuse for each of Alamouti code, Golden code, 2×2, 3×3
or 4×4 spatially multiplexed turbo MIMO application with BPSK, QPSK, 16-QAM, and 64-QAM.
When targeting 90 nm technology, the proposed architecture enables a maximum throughput of 273
MSymbol/sec for 2×2, 148 MSymbol/sec for 3×3 and 168 MSymbol/sec for 4×4 MIMO systems.

The second proposed ASIP architecture, DemASIP, constitutes the first flexible ASIP implement-
ing a universal demapper for multi wireless communications standards. Following a first step of LLR
computational expressions analysis and identification of flexibility parameters and common operators,
a specialized instruction set has been designed. The architecture proposed addresses all the complex-
ity levels associated with demapping functionality through the arrangement of certain LUTs and the
Euclidean Unit which allows its reuse both in an iterative and a non-iterative context and provides
support for BPSK to 256-QAM constellation for any mapping style used. The specialized instruction
set provides ability to generate the required LLRs for different system configurations. When targeting
90 nm technology, the proposed architecture enables a maximum throughput of 358 Mega LLRs per
second for 16-QAM Gray mapped constellation.

The two proposed ASIPs have been also validated by means of an FPGA prototype using a logic
emulation board (DN9000K10PCI) integrating Xilinx Virtex 5 devices. The adopted design, valida-
tion and prototyping flow, using Processor Designer Framework from CoWare Inc., has been detailed.

139

140 CONCLUSION AND PERSPECTIVES

These ASIPs are initially described in LISA ADL and then went through the processes of VHDL gen-
eration and on-board FPGA validation.

Exploiting the second level of parallelism (Component Level Parallelism) in turbo equalization,
demodulation and decoding is then done through the proposal of original heterogeneous multi-ASIP
prototypes towards the design of a unified iterative receiver. To that end, three incremental complexity
multi-ASIP prototypes have been realized. The first one demonstrates parallel turbo decoding, the sec-
ond demonstrates parallel turbo demodulation and decoding and the third one demonstrates parallel
turbo demodulation, equalization and decoding. The proposed multi-ASIP architectures demonstrate
the efficient exploitation of sub-blocking and shuffled techniques of the second level of parallelism.
For all of these three multi-ASIP prototypes, hardware implementation of functional blocks of trans-
mitter, channel and receiver were described. The final (third) FPGA prototype implements flexible
transmitter, channel emulator and a unified turbo receiver made up of 9 ASIPs of three different types
and 3 NoC instances using Butterfly topology. For all realized prototypes, the results of synthesis and
FER results, for different system configurations, acquired from FPGA platform were also presented
and verified to match the exact performance of the corresponding reference software model.

The presented original contributions demonstrate promising results using a heterogeneous multi-
ASIP and NoC based approach to implement flexible, yet efficient, unified iterative receiver.

Perspective

Regarding work perspectives, for the short term, as memory look up tables are used for interleav-
ing/deinterleaving functions, it would be interesting to investigate their replacement with a flexible
hardware implementing the mathematical expression for interleaving/deinterleaving functions. This
will give two benefits in the shape of reduced memory use and relative high reconfiguration speed.

For the long/mean term work perspective, the low-power requirement should be considered as
another optimizing design dimension to the multi-ASIP NoC solution for wireless communications
applications. As in the second level parallelism implementation, the required processing power can be
achieved by switching on the required number of ASIPs, the proposed architecture provides a natural
power management scheme at this level. However, inside each ASIP a room is still available to apply
power reduction techniques. By inheriting the relevant low-power design techniques from already
established low-power implementation schemes for programmable architectures, the conceived ASIPs
can be optimized for power consumption. Furthermore, in this thesis work an attempt is made to
provide maximum flexibility within the two designed ASIPs for demapping and equalization. This
upper bound for flexibility implies similar bound for power consumption. Hence by examining the
exact required flexibility for a particular system a tradeoff can be achieved between flexibility and
power demands.

Since a unified architecture of turbo receiver is now available, the other possible direction is the
study of overall optimality of the architecture under different channel conditions. This includes the
study of stopping criteria of different processing units according to considered channel conditions to
reach the required error rate performance. With the information of such criteria, the receiver can be
further optimized for energy consumption.

Finally, other flexible functional blocks can be conceived to complete the baseband part of the
receiver. These flexible blocks are required to perform functions such as synchronization, OFDM
interfacing and channel estimation.

Glossary

3GPP 3rd Generation Partnership Project

ACS Addition Comparaison Selection
ADL Architectural Description Language
ASIC Application Specific Integrated Circuit
ASIP Application Specific Instruction-set Processor
AWGN Additive White Gaussian Noise

BCJR Bahl-Cock-Jelinek-Raviv
BICM Bit Interleaved Coded Modulation
BPSK Binary Phase Shift Keying

CAD Computer Aided Design
CAU Complex Arithmetic Unit
CCASM Combined Complex Adder Subtracter Multiplier
CORDIC Coordinate Rotation Digital Computer

DE-LST Diagonal Encoding - Layered Space Time
DVB-RCS Digital Video Broadcasting Return Channel Satellite
DVB-T Digital Video Broadcasting Terrestrial
DSP Digital Signal Processor

ECC Error Control Coding
EU Euclidean Unit

FER Frame Error Rate
FIFO First In First Out
FPGA Field Programmable Gate Array
FSK Frequency Shift Keying

HDL Hardware Description Language
HE-LST Horizontal Encoding - Layered Space Time

ID Iterative Demapping
ISI Inter Symbol Interference

LDPC Low-Density Parity-Check

141

142 GLOSSARY

LLR Log Likelihood Ratio
LTE Log Term Evolution
LUT Look Up Table

MAP Maximum A Posteriori
MIMO Multiple Input Multiple Output
ML Maximum Likelihood
MMSE-IC Minimum Mean Square Error-Interference Canceller
MPSoC Multiple Processor System on Chip
MRB Matrix Register Bank

NI Network Interface
NoC Network on Chip

OCP Open Core Protocol
OFDM Orthogonal Frequency Division Multiplexing

PC Pre-coding
PCCC Parallel Concatenated Convolutional Codes
PCI Peripheral Component Interconnect
PE Processing Element
PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying

RAM Random Access Memory
RISC Reduced Instruction Set Computer
RTL Register Transfert Level

SCCC Serially Concatenated Convolutional Codes
SD Sphere Decoding
SGR Standard Givens Rotation
SISD Soft In Soft Out
SM Spatial Multiplexing
SNR Signal to Noise Ratio
SRD Software Defined Radio
SoC System on Chip
SOVA Soft Output Viterbi Algorithm
SSD Signal Space Diversity
STBC Space Time Block Code
STC Space Time Code
STTC Space Time Trellis Code

UMTS Universal Mobile Telecommunications System
USB Universal Serial Bus

VCI Virtual Component Interface
HE-LST Vertival Encoding - Layered Space Time

GLOSSARY 143

ZOL Zero Overhead Loop

BIBLIOGRAPHY 145

Bibliography

[1] C. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, Tech.
Rep., 1948.

[2] G. J. Forney, ”Performance of concatenated codes”, Key papers in the development of coding
theory, E. Berlekamp, Ed. IEEE Press, 1974.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-correcting coding and
decoding: Turbo-codes. 1,” in IEEE International Conference on Communications, ICC 93.,
vol. 2, 1993, pp. 1064–1070 vol.2.

[4] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random and nonrandom
permutations,” The Telecommunications and Data Acquisition Report, Tech. Rep. pp. 56-65.,
1995.

[5] C. Douillard, M. Jezequel, C. Berrou, J. Tousch, N. Pham, and N. Brengarth, “The Turbo Code
Standard for DVB-RCS,” in 2nd International Symposium on Turbo Codes and Related Topics,
Brest, France. ELEC - Dépt. Electronique (Institut Télécom-Télécom Bretagne), 2000, pp. 535
– 538.

[6] 802.16 IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for
Fixed Broadband Wireless Access Systems, Std., 2004.

[7] 3GPP Technical Specifications 36.212, Multiplexing and Channel Coding (Release 8), Std.,
2008.

[8] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol. 40, no. 5,
pp. 873–884, May 1992.

[9] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inform.
Theory, vol. 44, no. 3, pp. 927–946, May 1998.

[10] C. Abdel Nour, “Spectrally Efficient Coded Transmission for Wireless and Satellite Applica-
tions,” Ph.D. dissertation, TELECOM Bretagne, Department of Electronics, Brest, France, 2008.

[11] J. Tan and G. Stuber, “Analysis and design of symbol mappers for iteratively decoded BICM,”
IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 662–672, Mar. 2005.

[12] S. Al-Semari and T. Fuja, “I-Q TCM: reliable communication over the Rayleigh fading channel
close to the cutoff rate,” IEEE Trans. Inform. Theory, vol. 43, no. 1, pp. 250–262, 1997.

[13] A. Chindapol and J. Ritcey, “Design, analysis, and performance evaluation for BICM-ID with
square QAM constellations in Rayleigh fading channels,” IEEE J. Select. Areas Commun.,
vol. 19, no. 5, pp. 944–957, May 2001.

[14] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless
communication: performance criterion and code construction,” IEEE Transactions on Informa-
tion Theory, vol. 44, no. 2, pp. 744–765, March 1998.

[15] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE
Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, October 1998.

[16] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal de-
signs,” IEEE Transcations in Information Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.

146 BIBLIOGRAPHY

[17] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space and time,” IEEE
Transactions on Information Theory, vol. 48, pp. 1804–1824, 2002.

[18] J. C. Belfiore, G. Rekaya, and E. Viterbo, “The Golden code: a 2 × 2 full-rate space-time code
with non-vanishing determinants,” in ISIT’04, IEEE International Symposium on Information
Theory, June-July 2004, pp. 310–310.

[19] G. J. Foschini, “Layered space-time architecture for wireless communication in fading environ-
ments when using multi-element antennas,” Bell Labs Technical Journal, pp. 41–59, 1996.

[20] X. Li and J. Ritcey, “Bit-interleaved coded modulation with iterative decoding,” IEEE Commun.
Lett., vol. 1, no. 6, pp. 169–171, Nov. 1997.

[21] I. Abramovici and S. Shamai, “On turbo encoded BICM,” Ann. Telecommun., vol. 54, no. 3, pp.
225–234, Mar. 1999.

[22] C. Abdel Nour and C. Douillard, “On lowering the error floor of high order turbo BICM schemes
over fading channels,” in IEEE Global Telecommun. Conf., GLOBECOM, Nov. 2006, pp. 1–5.

[23] C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, “”Iterative correction
of inter symbol interference : Turbo equalization”,” European Trans. on Telecom., vol. vol. 6,
pp. pp. 507–511, Sept-Oct 1995.

[24] R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Transactions on Information
Theory, vol. 9, no. 2, pp. 64–74, 1963.

[25] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2, pp. 260–269, 1967.

[26] J. Forney, G.D., “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–278,
1973.

[27] J. Hagenauer and P. Hoeher, “A viterbi algorithm with soft-decision outputs and its applications,”
in IEEE Global Telecommunications Conference, 1989, and Exhibition. ’Communications Tech-
nology for the 1990s and Beyond’. GLOBECOM ’89., 1989, pp. 1680–1686 vol.3.

[28] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing
symbol error rate (corresp.),” IEEE Transactions on Information Theory, vol. 20, no. 2, pp.
284–287, 1974.

[29] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal map de-
coding algorithms operating in the log domain,” in IEEE International Conference on Commu-
nications, 1995. ICC 95 Seattle, Gateway to Globalization, vol. 2, 1995, pp. 1009–1013 vol.2.

[30] C. Douillard and C. Berrou, “Turbo codes with rate-m/(m+1) constituent convolutional codes,”
IEEE Transactions on Communications, vol. 53, no. 10, pp. 1630–1638, 2005.

[31] C. Berrou, Codes and Turbo Codes. Springer, 2010.

[32] M. Tuchler, A. C. Singer, and R. Koetter, “Minimum mean squared error equalization using a
priori information,” IEEE Transactions on Signal Processing, vol. 50, no. 3, pp. 673–683, March
2002.

[33] R. Le Bidan, “Turbo-equalization for bandwidth-efficient digital communications over
frequency-selective channels,” Ph.D. dissertation, INSA Rennes - Institut National des Sciences
Appliquées de Rennes, SC - Dépt. Signal et Communications, TELECOM Bretagne, 2003.

BIBLIOGRAPHY 147

[34] J. Le Masson, “Systèmes de transmission avec précodage linéaire et traitement itératif,” Ph.D.
dissertation, ELEC - Dépt. Electronique, TELECOM Bretagne, 2005.

[35] M. Tuchler, R. Koetter, and A. C. Singer, “Turbo equalization: principles and new results,” IEEE
Transactions on Communications, vol. 50, no. 5, pp. 754–767, May 2002.

[36] C. Laot, R. Le Bidan, and D. Leroux, “Low-complexity MMSE turbo equalization: a possible
solution for EDGE,” IEEE Transactions on Wireless Communications, vol. 4, no. 3, pp. 965–
974, May 2005.

[37] H. Omori, T. Asai, and T. Matsumoto, “A matched filter approximation for SC/MMSE iterative
equalizers,” IEEE Communications Letters, vol. 5, no. 7, pp. 310–312, July 2001.

[38] P. J. Bouvet, “Récepteurs itératifs pour systèmes multi-antennes,” Ph.D. dissertation, INSA
Rennes - Institut National des Sciences Appliquées de Rennes, Laboratoire Broadband Wire-
less Access, France Telecom division R&D, 2005.

[39] O. Muller, “Architectures multiprocesseurs monopuces génériques pour turbo-communications
haut-débit,” Ph.D. dissertation, TELECOM Bretagne, Department of Electronics, Brest, France,
2008.

[40] G. Masera, G. Piccinini, M. Roch, and M. Zamboni, “Vlsi architectures for turbo codes,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,, vol. 7, no. 3, pp. 369–379, Sept.
1999.

[41] E. Boutillon, W. Gross, and P. Gulak, “Vlsi architectures for the map algorithm,” IEEE Trans-
actions on Communications,, vol. 51, no. 2, pp. 175–185, Feb. 2003.

[42] Y. Zhang and K. Parhi, “Parallel turbo decoding,” in Proceedings of the 2004 International
Symposium on Circuits and Systems, 2004. ISCAS ’04., vol. 2, 23-26 May 2004, pp. II–509–
12Vol.2.

[43] H. Moussa, “Architecture de Réseaux sur Puce Pour Décodeur Canal Multiprocesseurs,” Ph.D.
dissertation, ELEC - Dépt. Electronique, TELECOM Bretagne, 2009.

[44] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on Communica-
tions, vol. 53, no. 2, pp. 209–213, Feb. 2005.

[45] P. Ienne and R. Leupers, Customizable Embedded Processors–Design Technologies and Appli-
cations, ser. Systems on Silicon Series. San Mateo, Calif.: Morgan Kaufmann, 2006.

[46] W. D. NEWCOM++ (NoE FP7), “Report on the state for the art on hardware architectures
for flexible radio and intensive signal processing,” http://www.newcom-project.eu:8080/Plone/
public-deliverables/research/DR.C.1 final.pdf .

[47] “Coware processor designer homepage,” http://www.coware.com/products/processordesigner.
php.

[48] “Target ip designer homepage,” http://www.retarget.com/resources.php.

[49] “Tensilica xtensa 7 homepage,” http://www.tensilica.com/products/x7 processor generator.
htm.

[50] “Arc configurable cores homepage,” http://www.arc.com/configurablecores/ .

http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf
http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf
http://www.coware.com/products/processordesigner.php
http://www.coware.com/products/processordesigner.php
http://www.retarget.com/resources.php
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.arc.com/configurablecores/

148 BIBLIOGRAPHY

[51] “Stretch software-configurable processors homepage,” http://www.stretchinc.com/ technology/ .

[52] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauwereins, “Architecture explo-
ration for a reconfigurable architecture template,” IEEE Design Test of Computers, vol. 22, no. 2,
pp. 90 – 101, 2005.

[53] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr, “A methodology for
the design of application specific instruction set processors (ASIP) using the machine descrip-
tion language lisa,” in IEEE/ACM International Conference on Computer Aided Design 2001.
ICCAD 2001., 2001, pp. 625–630.

[54] M. Martina, G. Masera, H. Moussa, and A. Baghdadi, “On chip interconnects for
multiprocessor turbo decoding architectures,” Microprocessors and Microsystems, pp. –,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/B6V0X-50X2NGR-1/
2/1a18b1777c8fb83f10b914b819d92ba9

[55] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched interconnec-
tions,” in Design, Automation and Test in Europe Conference and Exhibition, 2000, pp. 250–
256.

[56] W. J. Dally and B. Towels, “Route packets, not wires: On-chip interconnection networks,” in
Design Automation Conference, 2001, pp. 684–689.

[57] L. Benini and G. D. Micheli, “Networks on chips: a new soc paradigm,” IEEE Computer, vol. 35,
no. 1, pp. 70–78, Jan 2002.

[58] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja, and A. He-
mani, “A network on chip architecture and design methodology,” in IEEE Computer Society
Annual Symposium on VLSI, 2002, pp. 105–112.

[59] L. Benini, “Application specific NoC design,” in Design, Automation and Test in Europe Con-
ference and Exhibition, 2006, pp. 1330–1335.

[60] F. Vacca, H. Moussa, A. Baghdadi, and G. Masera, “Flexible architectures for LDPC decoders
based on network on chip paradigm,” in Euromicro Conference on Digital System Design, 2009,
pp. 582–589.

[61] W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San Francisco,
CA, USA: Morgan Kaufmann Publishers, 2003.

[62] A. Jantsch and H. Tenhunen, Eds., Networks on chip. Hingham, MA, USA: Kluwer Academic
Publishers, 2003.

[63] A. Giulietti, L. van der Perre, and A. Strum, “Parallel turbo coding interleavers: avoiding col-
lisions in accesses to storage elements,” Electronics Letters, vol. 38, no. 5, pp. 232 –234, 28
2002.

[64] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel, “Designing good permu-
tations for turbo codes: towards a single model,” in Communications, 2004 IEEE International
Conference on, vol. 1, 20-24 2004, pp. 341 – 345.

[65] A. Nimbalker, T. Blankenship, B. Classon, T. Fuja, and D. Costello, “Contention-free inter-
leavers for high-throughput turbo decoding,” IEEE Transactions on Communications,, vol. 56,
no. 8, pp. 1258 –1267, august 2008.

http://www.stretchinc.com/technology/
http://www.sciencedirect.com/science/article/B6V0X-50X2NGR-1/2/1a18b1777c8fb83f10b914b819d92ba9
http://www.sciencedirect.com/science/article/B6V0X-50X2NGR-1/2/1a18b1777c8fb83f10b914b819d92ba9

BIBLIOGRAPHY 149

[66] M. Martina and G. Masera, “Turbo noc: A framework for the design of network-on-chip-based
turbo decoder architectures,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 10, pp.
2776 – 2789, 2010.

[67] M. Scarpellino, A. Singh, E. Boutillon, and G. Masera, “Reconfigurable architecture for ldpc and
turbo decoding: A noc case study,” in IEEE 10th International Symposium on Spread Spectrum
Techniques and Applications, 2008. ISSSTA ’08., 25-28 2008, pp. 671 –676.

[68] H. Moussa, O. Muller, A. Baghdadi, and M. Jezequel, “Butterfly and benes-based on-chip com-
munication networks for multiprocessor turbo decoding,” in Design, Automation Test in Europe
Conference Exhibition, 2007. DATE ’07, 16-20 2007, pp. 1 –6.

[69] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de bruijn interconnection network for a
flexible ldpc/turbo decoder,” in IEEE International Symposium on Circuits and Systems, 2008.
ISCAS 2008., 18-21 2008, pp. 97 –100.

[70] O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing levels for convolu-
tional turbo decoding,” Information and Communication Technologies, ICTTA ’06., vol. 2, pp.
2353–2358, 0-0 2006.

[71] H. Moussa, O. Muller, A. Jafri, O. Al-Aseel, G. Le Mestre, A. Baghdadi, and M. Jezequel,
“Prototyping of multi-ASIP NoC-based architecture for exible turbo decoder,” in in Proc. of the
conference on Design, Automation and Test in Europe, DATE’09, April 2009.

[72] A. Hekstra, “An alternative to metric rescaling in viterbi decoders,” IEEE Transactions on Com-
munications, vol. 37, no. 11, pp. 1220–1222, 1989.

[73] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “Vlsi imple-
mentation of mimo detection using the sphere decoding algorithm,” IEEE Journal of Solid-State
Circuits, vol. 40, no. 7, pp. 1566 – 1577, 2005.

[74] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA Implementation of Matrix Inversion Using
QRD-RLS Algorithm,” in Conference Record of the Thirty-Ninth Asilomar Conference on Sig-
nals, Systems and Computers, October-November 2005, pp. 1625–1629.

[75] M. Myllyla, J. Hintikka, J. Cavallaro, and M. Juntti, “Complexity analysis of MMSE detec-
tor architecture for MIMO OFDM systems,” ”in Proc. Asilomar Conf. on Signal, Systems and
Computers.”, 2005.

[76] F. Edman and V. Öwall, “A scalable pipelined complex valued matrix inversion architecture,” in
ISCAS’05, IEEE International Symposium on Circuits And Systems, 2005, pp. 4489–4492.

[77] J. Eilert, D. Wu, and D. Liu, “Efficient complex matrix inversion for MIMO Software Defined
Radio,” in Proc. IEEE International Symposium on Circuits and Systems., 2007.

[78] L. Boher, R. Rabineau, and M. Hélard, “Architecture and implmentation of an iterative receiver
for MIMO systems,” ”5th International Symposium on Turbo Codes and Realted Topics”, Aug
2008.

[79] D. Karakolah, “Conception et prototypaged’un récepteur itératif pour des systèmes de transmi-
sion MIMO avec précodage linéaire,” Ph.D. dissertation, ELEC - Dépt. Electronique (Institut
Télécom-Télécom Bretagne), UBS - Université de Bretagne Sud (.), 2009.

150 BIBLIOGRAPHY

[80] H. Kim, W. Zhu, J. Bhatia, K. Mohammad, A. Shah, and B. Danesrad, “A Practical Hardware
Friendly MMSE Detector for MIMO-ODFM-Based Systems,” EURASIP Journal on Advances
in Signal Processing, 2008.

[81] K. A. Cavalec, G. Sicot, and D. Leroux, “Reduced complexity near-optimal iterative receiver for
Wimax full-rate space time code,” in 5th international symposium on Turbo Codes and related
topics, 2008.

[82] P.-J. BOUVET, “Récepteurs itératifs pour systèmes multi-antennes,” Ph.D. dissertation, INSA
de Rennes France, 2005.

[83] G. H. Golub and C. F. Van Loan, Matrix Computations. JohnsHopkinsPress, 1989.

[84] M. Myllyla, J. M. Hintikka, J. R. Cavallaro, M. Juntti, M. Limingoja, and A. Byman, “Com-
plexity Analysis of MMSE Detector Architectures for MIMO OFDM Systems,” in Asilomar,
Conference on Signals, Systems and Computers, 2005, pp. 75–81.

[85] R. Döhler, “Squared Givens rotation,” IMA Journal of Numerical Analysis, vol. 11, no. 1, pp.
1–5, 1991.

[86] J. E. Volder, “The Cordic Trigonometric Computing Technique,” IEEE Transactions on Elec-
tronic Computers, vol. 8, no. 3, pp. 330–334, 1959.

[87] F. Edman, “Digital Hardware Aspects of Multiantenna Algorithms,” Ph.D. dissertation, Lund
University, Department of Electroscience, Lund, Sweden, 2006.

[88] D. Karakolah, C. Jégo, C. Langlais, and M. Jézéquel, “Design of an iterative receiver for linearly
precoded mimo systems,” ISCAS09 : IEEE International Symposium on Circuits And Systems,
Taiwan, May 2009.

[89] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary interleaved COFDM with
application to HIPERLAN/2,” IEEE International Conference on Communications, 2002., pp.
664–668 vol.2, 2002.

[90] Altera, “Constellation mapper and demapper for wimax,” http://www.altera.com/ literature/an/
an439.pdf , May 2007.

[91] L. Meng, C. Abdel Nour, C. Jégo, and C. Douillard, “Design of rotated QAM mapper/demapper
for the DVB-T2 standard,” SiPS 2009 : IEEE workshop on Signal Processing Systems, Oct.
2009.

http://www.altera.com/literature/an/an439.pdf
http://www.altera.com/literature/an/an439.pdf

List of publications

Book Chapter

[1] Abstract of book chapter “ASIP Design and Prototyping for Wireless Communication Applica-
tions”, In “Rapid Prototyping” book, InTech Open Access Publisher, accepted, 2011.

Journals

[2] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “ASIP-based Universal Demapper for Multiwireless
Standards”, The inauguration issue of IEEE Embedded Systems Letters, vol. 1, no. 1, pp. 9-13,
May 2009.

[3] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “Parallel MIMO Turbo Equalization”, IEEE Commu-
nication Letters, accepted for publication, to appear, 2010.

[4] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “EquASIP: A Universal MMSE-IC Linear Equalizer
for Multi Wireless Standards”, IEEE Transactions on Circuits and Systems I, submitted, under
revision, 2010.

[5] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “From Parallelism to Heterogeneous multi-ASIP and
NoC based Implementation of Turbo Demodulation”, under preparation.

[6] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “A Heterogeneous multi-ASIP and NoC based Unified
Turbo Receiver for Multi Wireless Standards”, under preparation.

Conferences

[7] A.R. Jafri, D. Karakolah, A. Baghdadi, and M. Jézéquel, “ASIP-based Flexible MMSE-IC Linear
Equalizer for MIMO Turbo-Equalization Applications”, In Proc. IEEE/ACM Design, Automa-
tion and Test in Europe Conference & Exhibition, DATE’09, Nice, France, 21-23 April 2009.

[8] H.Moussa, O. Muller, A.R. Jafri,A. Baghdadi, J. Le Mestre, and M. Jézéquel, “FPGA Prototypes
For Turbo Communication Applications”, Poster and Demonstration at the University Booth of
the IEEE/ACM Design, Automation and Test in Europe Conference & Exhibition, DATE’09,
Nice, France, 21-23 April 2009.

[9] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “Rapid Prototyping of ASIP-based flexible MMSE-IC
Linear Equalizer”, In Proc. IEEE/IFIP 20th International Symposium on Rapid System Proto-
typing, RSP’09, Paris, France, 23-26 June 2009.

151

152 LIST OF PUBLICATIONS

[10] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “Rapid Design and Prototyping of Universal Soft
Demapper”, In Proc. IEEE International Symposium on Circuits and Systems, ISCAS’10, Paris,
France, 30 May - 2 June 2010.

[11] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “DemASIP : Universal Demapper for Multiwireless
Standards”, In GDR SoC-SiP: Groupe de recherche System on Chip - System in Package, Col-
loque National, Paris, France, 9-11 June 2010.

[12] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “Exploring Parallel Processing Levels in Turbo De-
modulation”, In Proc. IEEE 6th International Symposium on Turbo Codes and Iterative Infor-
mation Processing, Brest, France, 6-10 Sept 2010.

[13] A.R. Jafri, A. Baghdadi, and M. Jézéquel, “FPGA Prototypes of Heterogeneous multi-ASIP
and NoC based Unified Turbo Receiver for Multi Wireless Standards”, accepted, Poster and
Demonstration at the University Booth of the IEEE/ACM Design, Automation and Test in Europe
Conference & Exhibition, DATE’11, Grenoble, France, 14-18 March 2011.

	Dedication
	Introduction
	Multi Wireless Standard Requirements and Turbo Reception
	Wireless Communication System
	Channel Models
	Frequency Selectivity of a Channel
	Time Selectivity of a Channel

	Transmitter
	Channel Coding
	Convolutional Code
	Convolutional Turbo Code
	Multi Standard Channel Coding Parameters

	Bit Interleaved Coded Modulation -BICM
	Modulation/Mapping
	Phase Shift Keying (PSK)
	Quadrature Amplitude Modulation (QAM)
	Multi Standard Mapper Specifications

	Signal Space Diversity-SSD
	Correlating I and Q Components
	Independent Fading of I and Q Components
	Multi Standard SSD Specifications

	MIMO Space Time Code-STC
	Diversity Techniques
	Multiplexing Techniques
	ST-BICM
	MIMO-STC Specifications

	Data Rate Requirements

	Turbo Receiver
	Turbo Decoding
	Turbo Demodulation
	Turbo Equalization
	Unified Turbo Receiver

	Conclusion

	Turbo Reception Algorithms and Parallelism
	Soft In Soft Out (SISO) Decoding Algorithm
	MAP Decoding Algorithm
	Log-MAP or max-log-MAP Decoding Algorithm

	SISO Demapping Algorithm
	Log Likelihood Ratio
	Simplification of P(xt)
	The max-log Approximation
	Simplification For Gray Mapped Constellation

	SISO Equalization Algorithm
	MMSE-IC LE Algorithm
	MMSE-IC1
	MMSE-IC2

	Soft Demapping
	Soft Mapping

	Parallelism in Turbo Receiver
	Parallelism in Turbo Decoding
	Metric Level Parallelism
	SISO Decoder Level Parallelism
	Parallelism of Turbo Decoder

	Parallelism in Turbo Demodulation
	Metric Level Parallelism
	Demapper Component Level Parallelism
	Turbo Demodulation Level Parallelism

	Parallelism in Turbo Equalization
	Symbol Estimation Level Parallelism
	Equalizer Component Level Parallelism
	Turbo Equalization Level Parallelism

	Parallel System Modeling and Simulation Results
	Parallel Turbo Demodulation
	Software Model for Parallel Turbo Demodulation
	Simulation Results

	Parallel Turbo Equalization
	Software Model for Parallel Turbo Equalization
	Simulation Results

	Conclusion

	Heterogeneous Multi-ASIP NoC-based Approach
	Customizable Embedded Processors
	ASIP Design
	Design flow overview
	CoWare's ADL-based design tool: Processor Designer

	NoC as communication interconnect
	Emergence of InterIP-NoC
	Network Topologies and Routing
	NoC Examples in Iterative Decoding

	Design Approach Illustration: Flexible Parallel Turbo Decoder
	TurbASIP
	Building Blocks of TurbASIP
	Complete TurbASIP Architecture
	Sample Program of TurbASIP

	NoC Based on Butterfly Topology

	Towards Heterogeneous Multi-ASIP and NoC Based Flexible Turbo Receiver
	Conclusion

	EquASIP: ASIP-based MMSE-IC Linear Equalizer
	State of the Art
	Flexibility Parameters and Architectural Choices
	Flexibility Parameters
	Architectural Choices

	Hardware Architecture for Basic Operators
	Complex Number Operations
	Complex Number Addition, Subtraction, Negation and Conjugate
	Complex Number Multiplication
	Complex Number Inversion

	Complex Matrix Operations
	Matrix Hermitian, Addition, Subtraction, Negation
	Matrix Multiplication
	Matrix Inversion
	Operator Reuse in Fixed-Point Representation

	EquASIP Architecture
	Matrix Register Banks
	Complex Arithmetic Unit
	Control Unit

	EquASIP Instruction Set
	LOAD, MOVE, REPEAT, NOP
	Matrix Addition, Subtraction, Negation and Conjugation Instructions
	MULTIPLY
	DIVIDE

	Sample Program
	 Computation of E Matrix
	22 Matrix Inversion
	Computation of pj ,j, j
	Computation of pjj and gj
	Symbol Estimation

	EquASIP Results and Performance
	Synthesis Results
	Execution Performance
	Comparison with State of the Art

	Conclusion

	DemASIP: ASIP-based Universal Demapper
	State of the Art
	Flexibility Parameters and Architectural Choices
	Flexibility Parameters
	Architectural Choices

	Hardware Architecture for Basic Operators
	Constellation Look Up Table (LUT)
	Euclidean Distance Calculator
	A priori Adder
	Minimum Finders

	DemASIP Architecture
	Registers
	Euclidean Unit
	Control Unit (CU)

	DemASIP Instruction Set
	Configuration Control
	Input
	LLR Generation
	Output
	Loop

	Sample Program
	Inefficient Pipeline Usage Example
	Efficient Pipeline Usage Example

	DemASIP Results and Performance
	Synthesis Results
	Execution Performance
	Comparison with State of the Art

	Conclusion

	Multi-ASIP NoC Based Turbo Receiver
	ASIP Design, Validation and Prototyping Flow
	LISA Abstraction Level
	HDL Abstraction Level
	FPGA Implementation Level

	EquASIP and DemASIP FPGA Prototyping
	EquASIP FPGA Prototype
	DemASIP FPGA Prototype

	First multi-ASIP Prototype: Parallel Turbo Decoder
	Transmitter
	Encoder
	Combined Rate Control and BICM Interleaver
	Parametrized Mapper

	Rayleigh Fading Channel
	Receiver
	DemASIP Integration
	BICM Deinterleaving and Depuncturing
	multi-ASIP and NoC Based Turbo Decoder

	Performance Results

	Second multi-ASIP Prototype: Parallel Turbo Demodulator and Decoder
	Transmitter
	Receiver
	Multi-ASIP Architecture for Parallel soft demapping
	Modified TurbASIP Architecture
	Communication Network Between TurbASIPs and DemASIPs

	Performance Results

	Third multi-ASIP Prototype: Parallel Unified Turbo Receiver
	Transmitter
	MIMO Flat Block Rayleigh Fading Channel
	Receiver
	MIMO equalizer
	Soft Mapper

	Performance Results

	Conclusion

	Conclusion and perspectives
	Glossary
	Bibliography
	List of publications

