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Abstract

W
hile turbo codes (TCs) o�er performance very close to the Shannon limit in the so-
called waterfall region, they su�er from a �attening e�ect due to a poor minimum

distance. In future system generations, low error rates will be required to open the way
to real-time and demanding applications, such as TV broadcasting or videoconferencing.
Therefore, state-of-the-art TCs are no longer suitable for these kinds of applications and
more powerful coding schemes are required. At the same time, a reasonable complexity
should be preserved.

The �rst part of this thesis is dedicated to explore a new hybrid concatenation struc-
ture combining both parallel and serial concatenation based on a 3-dimensional (3D) code,
simply derived from the classical TC by concatenating a rate-1 post-encoder at its output.
First, we search for e�cient post-encoder structures by means of EXtrinsic Information
Transfer (EXIT) charts, especially when transmissions over non Gaussian channels (fa-
ding channels, erasure channels) are considered. Other key parameters of the 3D TC are
sensibly selected. Various simulations show that 3D TCs have a better asymptotical be-
haviour with respect to classical TCs. An optimization method, in the case of the 3GPP2
code, allows the minimum distance of the 3D TC to be even more increased. On the
other hand, a loss in the convergence threshold and an increase in complexity are obser-
ved. In order to reduce the observable loss of convergence, a time varying post-encoder
is proposed. The time-varying technique reduces the loss of convergence by 10% to 50%
of its value expressed in dB. However, there is no need to use this technique, when the
3D TC is associated with a high order modulation such as M -PSK or M -QAM. Indeed,
a speci�c Gray mapping where the systematic bits and the post-encoded parity bits are
placed in the best protected binary positions of the modulation scheme, allows the loss
in convergence to be transformed into a gain at low signal to noise ratios (SNRs). Thus,
we obtain 3D TCs which perform better than the classical TCs in both the waterfall and
the error �oor regions.

The second part of this study deals with irregular TCs. Here, the problem is the
opposite of the precedent. Although irregular TCs can achieve performance closer to
capacity, their asymptotic performance is very poor. First of all, the degree pro�le is
selected by means of EXIT diagrams. Then, the design of powerful permutations suited
for such code structures is considered. Graph-based permutations using the Dijkstra's
algorithm and an estimation of the minimum distance, improve the distance properties of
these codes. Nevertheless, this task takes a lot of time for the large blocks, and a memory
is required to store the interleaved addresses. To take advantage of the results in the
�rst part of the thesis, and in order to combine both studies, a new modi�ed structure is
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proposed. The association of irregular TCs with the same post-encoder used for 3D TCs
results in irregular turbo coding schemes which perform better than regular TCs at low
and high SNRs at the same time.

Keywords : turbo code, 3-dimensional turbo code, 3GPP2 code, minimum distance,
convergence threshold, EXIT chart, time-varying trellis, modulation, decoding complexity,
irregular turbo code, degree pro�le, Dijkstra's algorithm, correlation graph.
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Résumé

A
u début des années 90, les turbocodes (TCs) [18] ont révolutionné le domaine du
codage de canal. Ils ont été adoptés dans plusieurs standards de télécommunications

(3GPP, DVB-RCS/RCT, WiMAX, ...) [1, 2, 4, 5]. Le décodage de ces codes, constitués de
la concaténation parallèle de deux codes convolutifs séparés par un entrelaceur, fait appel
à un processus itératif basé sur deux décodeurs élémentaires s'échangeant des informations
a�n d'améliorer la correction au �l des itérations.

Tandis que les TCs existants présentent des performances très proches des limites
théoriques pour les taux d'erreurs moyens et élevés, atteindre les taux d'erreurs très
faibles requis par les futures applications de di�usion numérique ou de visioconférence
requiert l'utilisation de codes plus puissants. Néanmoins, une complexité de décodage
raisonnable doit être maintenue. L'objectif principal de la thèse consiste à investiguer
de nouvelles structures dérivées des TCs classiques a�n d'atteindre des taux d'erreurs
très faibles. Il s'agit alors de trouver des architectures qui conduisent à un compromis
performance/complexité de décodage non encore atteint avec de tels codes.

Les turbocodes 3D

Une première partie de l'étude est consacrée à l'investigation d'une nouvelle structure
concaténée hybride 3D combinant les principes de concaténation parallèle et série. Celle-
ci est simplement dérivée d'un TC classique en concaténant un post-codeur de rendement 1
à sa sortie [20, 21]. Dans la �gure 0.1, on retrouve le schéma de principe d'un turbocodeur
3D.

Comparé au TC classique, le TC 3D comporte en plus des deux codeurs élémentaires
concaténés en parallèle et séparés par un entrelaceur :

� Un convertisseur parallèle/série (P/S) qui prend périodiquement les bits de parités
à post-coder et les groupe dans un seul bloc de P bits,

� Une permutation Π
′
qui permute les bits de parité avant de les envoyer au post-

codeur,

� Et un post-codeur de rendement 1. Seule une fraction λ (0 < λ ≤ 1) des bits de
parité en provenance de chaque codeur est post-codée.
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Figure 0.1: Schéma de principe d'un turbocode 3D.

Choix du post-codeur

Le choix du post-codeur est crucial pour la performance du code. Il doit satisfaire les
conditions suivantes :

1. Son décodeur doit être simple, ajoutant peu de complexité au turbo décodeur clas-
sique, tout en en étant capable de manipuler des informations pondérées en entrée
et en sortie.

2. Puisque des taux d'erreurs très faibles sont recherchés, il faudra éviter les e�ets de
bord au niveau du décodeur. Par la suite, le post-codeur doit être un code en bloc
homogène.

3. À la première itération (donc sans aucune information de redondance en entrée),
le pré-décodeur associé au post-codeur de rendement 1 ne doit pas entraîner une
grande ampli�cation d'erreur, a�n d'éviter une importante perte en convergence.

Dans notre analyse, les diagrammes EXIT [103] nous permettent de rechercher des struc-
tures de post-codeurs adaptés aux transmissions aussi bien sur canal gaussien que sur
canal à évanouissements de type Rayleigh. Le post-codeur (5, 4), dont les polynômes
générateurs en octal sont 5 pour la récursivité et 4 pour la redondance, a été sélectionné
dans di�érentes simulations du TC 3D.

Choix de λ

Comme le montre la �gure 0.2, la valeur de λ à choisir est un compromis entre la perte
en convergence et la distance minimale souhaitée. Le choix d'une grande valeur de λ
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pénalise le décodeur d'un point de vue seuil de convergence. Cela résulte du fait que
le décodeur associé au post-codeur, ne pro�te d'aucune information de redondance à
la première itération, et multiplie par la suite les erreurs pendant le premier traitement.
Cependant, plus λ est grand et meilleures seront les performances asymptotiques du code.

Figure 0.2: Comparaison des performances d'un TC classique et d'un TC 3D sur canal
gaussien avec un entrelacement 3GPP2 pour un bloc de k = 3066 bits, un rendement
R = 1/3 et deux valeurs de λ di�érentes: λ = 1/4 et λ = 1/8. L'algorithme de décodage est
le MAP avec 10 itérations.

Choix de Π
′

Tout d'abord, la permutation Π
′
intervient car on se retrouve dans un schéma de codage

avec concaténation de codes. Comme tout entrelacement, Π
′
évite de perdre des données

entières lorsque les erreurs sont produites en rafales. De plus, Π
′
joue un rôle important

pour décorréler l'information extrinsèque sur les bits de parités post-codées.
A�n d'optimiser Π

′
, nous avons testé di�érents entrelaceurs comme l'entrelaceur aléa-

toire et d'autres permutations plus structurées comme la permutation régulière. Nous
avons constaté que le spread est la propriété la plus importante. Comme la permutation
régulière atteint la borne supérieure du spread [24], c'est cette permutation qui a été
sélectionnée dans di�érentes simulations du TC 3D. Π

′
est donc dé�nie par la relation de

congruence suivante :
i = Π

′
(j) = P0i+ i0 %P
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où P est le nombre de bits de parités post-codées, i (1 ≤ i ≤ P ) l'adresse dans l'ordre
naturel, j (1 ≤ j ≤ P ) l'adresse dans l'ordre entrelacé, P0 un entier premier avec P et i0
l'indice de départ.

Vers une optimisation des turbocodes 3D

Les TCs 3D o�rent de meilleures performances que les TCs classiques pour des rapports
signal à bruit élevés sauf dans le cas des rendements élevés. A�n d'améliorer les per-
formances asymptotiques de ces codes, nous avons proposé une méthode d'optimisation
du spectre de distance. Cette méthode s'applique à n'importe quelle famille de TCs du
moment où le spectre de distance présente des mots de codes ayant de faibles multiplic-
ités. Dans le cas du code 3GPP2 [3], les bits de fermeture font que le début et la �n du
bloc représentent des points singuliers dans le treillis et causent la troncature des mots
de codes. On obtient donc des mots de codes de multiplicités faibles. L'application de la
méthode proposée permet d'augmenter d'autant plus la distance minimale du code 3D en
optimisant le spectre de distance.

Pour le TC 3D, on observe en revanche une dégradation du seuil de convergence et
une augmentation de la complexité. La complexité additionnelle est principalement due
à l'implémentation du prédécodeur (associé au post-codeur) et l'échange de l'information
extrinsèque sur les bits de parités post-codées entre le prédécodeur et le turbodécodeur
classique (car il faut calculer ces informations extrinsèques et les stocker). Nous avons fait
une étude de la complexité et nous avons estimé la complexité calculatoire. Nous avons
constaté que la complexité additionnelle relative est d'autant moins importante quand le
nombre de processeurs placés en parallèle augmente. Ceci dépend à la fois du débit et de
la technologie implémentée.

En ce qui concerne le seuil de convergence du TC 3D, deux axes de recherche sont
proposés a�n de résoudre le problème de la perte en convergence:

� Le premier consiste à utiliser un post-codeur avec un treillis variant dans le temps.
Les premiers travaux concernant le treillis variant dans le temps datent de 1974
où Costello [33] montre que cette technique permet d'améliorer le comportement
des codes convolutifs. Cette voie a été explorée par la suite dans la littérature
[62, 68, 76, 79]. Dans notre étude, nous nous intéressons également à un post-
codeur avec treillis variant dans le temps. Dans notre version du treillis variant dans
le temps, le polynôme de récursivité est toujours le même c'est-à-dire 5. Cependant,
deux redondances w1 = 4 et w2 = 7 sont alternées dans le temps au lieu d'avoir
une seule. Dans le treillis du code (5, 7 : 4), nous avons observé deux chemins
correspondant à la même séquence tout-zéro. A�n d'éviter toute ambiguité dans
le processus de décodage, nous avons e�ectué une petite modi�cation sur ce code:

Au lieu d'alterner les redondances w1 et w2 au cours du temps, on remplace péri-
odiquement w1 par w2 comme le montre la �gure 0.3. Le choix de la période de
remplacement L résulte d' un compromis convergence/distance. Ce choix peut être
a�né par une étude EXIT en sélectionnant la valeur de L qui donne le seuil de
convergence le plus faible.
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Figure 0.3: Post-codeur avec treillis variant dans le temps modi�é.

L'application de la technique du treillis variant dans le temps permet de réduire la
perte en convergence observée pour le TC 3D de 10% à 50% de sa valeur exprimée
en dB. Nous avons systématiquement véri�é que les performances asymptotiques ne
sont pas dégradées. En e�et, pour une mémoire de code donnée, le choix du post-
codeur n'in�uence pas la distance minimale du TC 3D. Cependant, plus la distance
locale du post-codeur est élevée, meilleur sera le niveau de l'information extrinsèque
échangée entre le prédécodeur et le turbo décodeur classique. La technique du treillis
variant dans le temps accélère donc la convergence du TC 3D.

� Le deuxième axe consiste à associer le TC 3D avec des modulations d'ordre élevé
comme les Modulations par Déplacement de Phase (MDP)-M ou les Modulations
d'Amplitude sur deux porteuses en Quadrature (MAQ)-M . Lorsque les bits systé-
matiques et les bits de parités post-codés sont a�ectés aux places binaires les mieux
protégées par la modulation, la perte en convergence est transformée en gain. On
obtient donc un TC 3D plus performant que le TC classique à la fois en termes de
seuil de convergence et de performance asymptotique.

Les turbocodes irréguliers

Dans notre étude sur les TCs 3D, nous avons constaté qu'il est intéressant d'apporter
de l'irrégularité dans un code a�n d' en améliorer les performances. La seconde partie
de la thèse est consacrée par la suite à l'étude des TCs irréguliers. Des travaux dans
les années 2000 sur les codes LDPC irréguliers montrent un gain de codage signi�catif
lorsque les degrés des n÷uds de bits codés et les degrés des n÷uds de parités ne sont
pas tous identiques [71, 74]. Frey et MacKay [51] ont aussi introduit de l'irrégularité aux
TCs. Sawaya et Boutros [92] ont repris leurs travaux a�n d'améliorer les propriétés de
distance des TCs irréguliers. Le problème ici est l'inverse du précédent. En e�et, les TCs
irréguliers ont de très bonnes performances pour des rapports signal à bruit faibles, mais
leur performance asymptotique est mauvaise comparée aux TCs réguliers.
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Dans un TC régulier, tous les bits d'information sont répétés un nombre identique de
fois égal au nombre de codes constituants, c'est-à-dire égal au degré d'un bit d'information.
Pour rendre ce TC irrégulier, il su�t, comme pour les codes LDPC, de modi�er le degré
de certains bits. Le schéma de principe d'un TC irrégulier est donné par la �gure 0.4.
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Figure 0.4: Schéma de principe d'un turbocode irrégulier.

Tout d'abord, le pro�l de degré est sélectionné à l'aide des diagrammes EXIT hiérar-
chiques. Comme pour les codes LDPC où la méthode de l'évolution de la densité a été
utilisée pour optimiser le pro�l des degrés, l'EXIT représente l'outil habituel permettant
de trouver les meilleurs codes élémentaires d'un TC parallèle. Nous avons donc utilisé les
diagrammes EXIT pour analyser le pro�l des degrés.

Ensuite, une étude a été lancée pour la conception d'entrelaceurs adaptés à de tels
codes a�n d'améliorer leur distance minimale. Ces entrelaceurs, dont la construction est
basée sur la notion de graphe en utilisant l'algorithme de Dijkstra [41] et une estimation
de la distance du code (par la méthode de l'impulsion d'erreur [55]), montrent une nette
amélioration des performances dans la zone du plancher d'erreur. Néanmoins, cette tâche
prend beaucoup de temps pour les blocs de grande taille, et nécessite un espace mémoire
pour stocker les adresses de l'entrelaceur.

Pour pro�ter des résultats de la première partie de la thèse et a�n de réunir les deux
études, une nouvelle structure modi�ée de TCs irréguliers a été proposée. Il s'agit de
concaténer le post-codeur de rendement 1 à la sortie de ces codes a�n de gagner en distance
minimale. Cette architecture permet d'avoir des TCs irréguliers plus performants que les
TCs réguliers à la fois en termes de seuil de convergence et de performance asymptotique.

Par exemple, la Fig. 0.5 montre un TC irrégulier qui a une distance minimale de 50.
Comparé au TC régulier ayant une distance minimale égale à 44, le gain est aussi de 0.2
dB dans la zone de convergence.
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Figure 0.5: Comparaison des performances d'un TC régulier et d'un TC irrégulier sur
canal gaussien pour un bloc de k = 4096 bits, un rendement R = 1/4 et λ = 1/8. Le degré
moyen est 3. Le pro�l de degré est

(
f2 = 5

6
, f8 = 1

6

)
. La taille de l'entrelaceur 3GPP2 est

12282. L'algorithme de décodage est le MAP avec 10 itérations.

Perspectives

Plusieurs perspectives d'étude sont à considérer à partir du travail présenté dans ce rapport
de thèse. Par exemple, on peut imaginer de nouvelles structures pour le TC 3D en
utilisant un post-codeur 8 états avec treillis variant dans le temps. Cette structure,
plus compliquée, est certainement plus puissante. La perte en convergence peut être
conséquente. Cependant, ceci ne pose pas problème pour les rendements élevés où on
espère gagner en distance avec cette structure nouvelle.

Comme nous avons associé les TCs 3D avec des modulations d'ordre supérieur, on
peut s'intéresser également à l'association des TCs 3D avec des techniques de diversité:
de la diversité spatiale comme dans les systèmes MIMO ou de la diversité de constella-
tions comme les constellations tournées. Puisque la technique de constellations tournées,
comme celles utilisées pour la deuxième génération de TV numérique terrestre, est par-
ticulièrement e�cace dans des mauvaises conditions de transmission, l'utilisation d'un
mapping de Gray spéci�que comme expliqué dans le manuscrit peut compenser la perte
dans le seuil de convergence et pourrait augmenter d'autant plus la valeur du gain dans le
seuil de convergence observé sur les canaux à évanouissements. Je pense que la recherche
dans cette direction donnerait des observations optimistes et des résultats intéressants.

D'un autre côté, toute l'analyse des TCs 3D a été consacrée au cas binaire. Il est
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possible de l'étendre au cas double binaire (et m-binaire en général). En e�et, les TCs
double binaires ont des performances meilleures que les TCs classiques pour tout rapport
signal-à-bruit. L'application de la méthode d'optimisation ainsi que de la technique du
treillis variant temps dans le cas des TCs 3D double binaires semble prometteuse.

Lorsque nous avons associé les TCs irréguliers avec un post-codeur de rendement 1,
nous avons considéré des motifs de post-codage réguliers. Cependant, nous avons ici des
classes d'irrégularité di�érentes. On pourra étudier d'autres motifs de post-codage où on
favorise les bits pilotes avec un degré d > 2, ou bien des motifs de postcodage où seuls les
bits répétés d = 2 fois sont à prendre en compte.

Pour conclure, la conception de permutations appropriées pour les TCs irréguliers est
un point de départ pour des recherches futures importantes. En e�et, l'algorithme proposé
est très prometteur. Cependant, il est nécessaire de trouver des techniques qui éliminent
tôt dans le processus de recherche les entrelaceurs n'ayant pas de bonnes propriétés de
distances. De cette façon, l'espace de recherche sera réduit et l'algorithme deviendrait
applicable même pour les blocs de grande taille.

Mots Clés : turbocode, turbocode 3D, code 3GPP2, distance minimale, méthode de
l'impulsion d'erreur, seuil de convergence, diagramme EXIT, treillis variant dans le temps,
modulation, complexité de décodage, turbocode irrégulier, pro�l de degré, algorithme de
Dijkstra, graphe de corrélation.
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Introduction

I
n 1971, the whole community of coding and information theory was in phase with
the famous speech of Professor Robert McEliece : �Too many equations had been

generated with too few consequences... Coding theorist professors had begotten more coding
theory Ph.D.'s in their own image... no one else cared ; it was time to see this perversion
for what it was. Give up this fantasy and take up a useful occupation... Coding is dead .�
This assertion was contradicted twenty years later by some French engineers who made
an incredible claim. They announced to have invented a method of �turbo coding� which
could come breathtaking near the Shannon limit. Their simulation curves claimed the
incredible performance, far beyond what was considered possible. During the conference,
many experts laughed ; others asserted that the simulations were wrong. But professor
McEliece said later : �What blew everyone away about turbo codes is not just that they
get so close to Shannon capacity but that they're so easy. How could we have overlooked
them? Berrou and Glavieux didn't know the problem was supposed to be hard, so they
managed to �nd a new way to go about it.�.

The invention of turbo codes (TCs)[18] was a revival for the channel coding research
community. Historical turbo codes, also sometimes called Parallel Concatenated Convo-
lutional Codes (PCCCs), are based on a parallel concatenation of two Recursive Syste-
matic Convolutional (RSC) codes separated by an interleaver. They are called �turbo�
in reference to the analogy of their decoding principle with the turbo principle of a tur-
bocompressed engine, which reuses the exhaust gas in order to improve e�ciency. The
turbo decoding principle calls for an iterative algorithm involving two component deco-
ders exchanging information in order to improve the error correction performance with
the decoding iterations. This iterative decoding principle was soon applied to other conca-
tenations of codes separated by interleavers, such as Serial Concatenated Convolutional
Codes (SCCCs) [11, 12], sometimes called serial turbo codes, or concatenation of block
codes, also named block turbo codes [14, 83].

The near-capacity performance of turbo codes and their suitability for practical im-
plementation explain their adoption in various communication standards as early as the
late nineties : �rstly, they were chosen in the telemetry coding standard by the CCSDS
(Consultative Committee for Space Data Systems) [99], and for the medium to high data
rate transmissions in the third generation mobile communication 3GPP (Third Generation
Partnership Project)/UMTS (Universal Mobile Telecommunications System) standard [4].
They have further been adopted as part of the Digital Video Broadcast - Return Channel
via Satellite and Terrestrial (DVB-RCS and DVB-RCT) links [1, 2], thus enabling broad-
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band interactive satellite and terrestrial services. More recently, they were also selected
for the next generation of 3GPP2/cdma2000 wireless communication systems [3] as well
as for the IEEE 802.16 standard (WiMAX) [5] intended for broadband connections over
long distances.

While the well-known DVB-RCS/DVB-RCT/WiMAX 8-state double-binary parallel
turbo code o�ers performance very close to the Shannon limit in the so-called waterfall
region, it su�ers from a �attening e�ect around 10−5 of Frame Error Rate (FER) due to
a poor Minimum Hamming Distance (MHD). In future system generations, lower error
rates, down to 10−8, will be required to open the way to real time and more demanding
applications, such as TV broadcasting or videoconferencing. Therefore, state-of-the-art 8-
state turbo codes are no longer suitable for these kinds of applications and more powerful
coding schemes are required. At the same time, a reasonable complexity should be preser-
ved. To solve the problem, the aim of the thesis is to explore a new hybrid concatenation
structure combining both parallel and serial concatenation based on a 3-dimensional (3D)
code, simply derived from the classical turbo code by concatenating a rate-1 post-encoder
at its output. The manuscript is divided into four chapters.

The basics of turbo codes are reviewed in chapter 1. The classical structure of a turbo
encoder and its di�erent parameters are �rst presented. In particular, an overview of the
interleavers used by turbo codes is discussed. Furthermore, the decoding process as well
as the usual algorithms for the iterative data processing are described. In this chapter, the
reader can also �nd a brief presentation of the tools used to determine the convergence
and the asymptotic performance of turbo codes. This performance is illustrated in the case
of the 3GPP2 turbo codes [3]. Finally, the problem related to the error �oor is discussed,
and methods to combate this phenomenon are enumerated.

Chapter 2 is an exploration of the 3D TCs properties. The principle of a 3D turbo
encoder is presented, and its di�erent parameters are discussed. In particular, the optimi-
zation of the interleaving law and the permeability rate is possible. More important, the
choice of the post-encoder has to meet several requirements and can be sensibly selected
by means of an EXIT analysis. In this chapter, the interest of the 3D TC is assessed
through simulations. Union bounds on the minimum distance of 3D binary turbo codes
with 3GPP2 interleavers are available. The decoding process is also discussed, and a detai-
led study of the 3D turbo decoder has been carried out in order to estimate the additional
complexity.

In chapter 3, two main axes to improve 3D TCs are deepened. First, an optimization
method to increase even more the minimum distance is presented. This method was
applied in two particular cases of the 3GPP2 3D turbo code. Furthermore, convergence
issues are discussed. In order to reduce the observable loss of convergence, a time varying
post-encoder is proposed. At the end, the association of 3D TCs with speci�c high order
modulations is analyzed to improve the performance in the waterfall region. The di�erent
stages are illustrated with simulation results, asymptotical bounds and EXIT charts.

Chapter 4 is an investigation of irregular turbo codes. The use of EXIT diagrams
allows the search for good degrees pro�les to be simpli�ed and this search to be speeded
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up compared with Monte Carlo simulations. Besides, the design of suitable permutations
based on the Dijkstra's algorithm is detailed, and allows performance in the error �oor to
be improved. Finally, the association of irregular turbo codes with the same post-encoder
used for 3D TCs results in irregular turbo coding schemes which perform better than
regular turbo codes at low and high signal to noise ratios at the same time.

The �nal conclusion summarizes the contributions of this work and discusses perspec-
tives for future research.
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Chapter 1

Turbo codes: a breakthrough in digital

communications

I
n 1948, Claude E. Shannon proved that the fundamental limit of digital transmission
on channels with white noise is given by the classic channel capacity formula C =

W log2 (1 + S/N), where C is the capacity in bit/s,W is the channel bandwidth in Hz and
S/N is the signal to noise ratio at the receiver. Shannon also demonstrated the existence
of an error correction system able to achieve this limit.

After more than forty years of extensive research, the concept of turbo coding develo-
ped by Claude Berrou and Alain Glavieux [17] �nally proved that it was possible
to reach the limit of channel capacity with an encoding scheme that could be constructed
and decoded in practice. While turbo coding is not the only technique known to be able
today to attain the channel capacity limit [32], it is certainly one of the most commonly
used channel coding technique for data channels in contemporary mobile communication
systems. According to the inventors, the turbo coding principle was born from the ex-
perimentation with the feedback concept applied to the error correcting problem using
convolutional codes [16]. At the core of a turbo coding system there is a fundamental
constitutive element called interleaver. It is a system that changes the positions of input
data according to an established position permutation algorithm. Inside the turbo coding
process the function of the interleaving block is to help in providing codes vectors with the
highest possible level of randomness (ideally, independent vectors) [9] so that the resulting
code resembles as close as possible the concept of random coding used by Claude E.

Shannon in [96] to prove the channel capacity theorem. Therefore the interleaver is a
fundamental element for the performance of a turbo code (TC) [95] and its understan-
ding is a subject of high interest to the speci�cation of physical layers for both wired and
wireless transmission technologies.

This chapter is organized as follows : In section 1.1, we present the classical structure of
a turbo encoder and its di�erent parameters. In particular, an overview of the interleavers
used by turbo codes is discussed. In section 1.2, the decoding process is described as well
as some algorithms for the iterative data processing in section 1.3. Tools to determine
the convergence and the asymptotic performance of turbo codes can be found in section
1.4 ; whereas section 1.5 illustrates the performance of the turbo codes used by the third-
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generation cellular standard cdma2000. Finally, section 1.6 raises some practical issues
about how to combate the error �oor and section 1.7 draws conclusions.
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1.1. Parallel convolutional turbo codes

1.1 Parallel convolutional turbo codes

Turbo codes represent a class of parallel concatenation of two (or more) convolutional
codes. Several parameters a�ect the performance of turbo codes such as component de-
coding algorithms, number of decoding iterations, generator polynomials and constraint
lengths of the component encoders and the interleaver type. Turbo codes, due to their
excellent error correcting capability, have been adopted by several standards such as
CCSDS (Consultative Committee for Space Data Systems) for space communication,
DVB-RCT (Digital Video Broadcasting � Return Channel Terrestrial), DVB-RCS for
Satellite communications, 3GPP (Third Generation Partnership Project) communication
systems: cdma2000 (Code Division Multiple Access), UMTS (Universal Mobile Telecom-
munications System), W-cdma (Wideband cdma) for cellular mobile, etc. Table 1.1 pro-
vides a detailed list of practical applications of turbo codes.

Application Turbo

code

Polynomials Rate Termination Throughput

CCSDS binary,

16-state

23, 33, 25,

37

1/6 , 1/4,
1/3 , 1/2

tail bits 1.6 Mbps

3G binary,

8-state

13, 15, 17 1/4, 1/3 ,
1/2

tail bits 2 Mbps

DVB-RCS double-

binary,

8-state

15, 13 1/3 up to
6/7

circular 2 Mbps

DVB-RCT double-

binary,

8-state

15, 13 1/2 , 3/4 circular 2 Mbps

Inmarsat

(M4)

binary,

16-state

23, 35 1/2 no 64 kbps

Eutelsat

(Skyplex)

double-

binary,

8-state

15, 13 4/5 , 6/7 circular

Table 1.1: Some current known applications of convolutional turbo codes.

1.1.1 Turbo encoder structure

The turbo encoder involves a parallel concatenation of at least two elementary RSC codes
separated by an interleaver. Only one of the systematic outputs from the two component
encoders is used to form a codeword, as the systematic output from the other component
encoder is only a permuted version of the chosen systematic output. Fig. 1.1 shows
the block diagram of a turbo encoder. The �rst encoder outputs the systematic x and
recursive convolutional y1 sequences while the second encoder discards its systematic
sequence and only outputs the recursive convolutional y2 sequence. The �rst constituent
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1. Turbo codes: a breakthrough in digital communications

encoder receives input bits directly, whereas the second constituent encoder is fed with
input bits through the interleaver. For each input, three outputs are generated. The
total coding rate is 1/3. This rate is however altered depending on possible puncturing
of bits and tail bits from the second constituent encoder at termination, as described in
subsections 1.1.3 and 1.1.4.

 

 

Information 
 bits RSC 

encoder 1 

x 

y1 

y2 RSC 
encoder 2 

Interleaver 
Π 

Figure 1.1: Generic block diagram of a turbo encoder.

1.1.2 Design of turbo code interleavers

To avoid losing the whole data when bursts of errors are produced, the interleaver allows
spreading these errors in the time. Interleaving is also a key component of turbo codes.
Since it a�ects the distance spectrum [47, 113], this component in�uences the performance
of the overall coding scheme. The interleaver is used to provide randomness to the input
sequences but also to increase the weights of the codewords. In fact, input patterns which
produce low-weight words in one component code should map through the interleaver to
patterns which produce hopefully high-weight words in the other component code. Fig.
1.2 shows an illustrative example.

From Fig. 1.2, the input sequence xi produces output sequences si and pi. Table 1.2
shows how it is possible to increase the weight of the codeword when an interleaver is
employed. For example, the sequences x1 and x2 are two interleaved input sequences of
x0. They produce codewords with higher weight: 5 and 6 respectively instead of only
3 for the input sequence x0. In the sequel, we present some representative interleavers
commonly used in turbo code design. The approaches used in the literature vary from
random interleaving to highly structured interleaving.

The random (or pseudo-random) interleaver simply performs a random permutation of
the elements without any restrictions. Fig. 1.3 shows an example where the length of the
input sequence is 10. The interleaver writes in [1011001010] and reads out [1111000010].

Usually, a random interleaver yields low weight codewords caused by information
weight-2 codewords. Dolinar et al. veri�ed that the performance of a turbo coding
scheme could be improved if the interleaver succeeds in eliminating input sequences which
produce low weight codewords [47]. The S-random (or �spread�) interleavers [13, 43, 45]
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1.1. Parallel convolutional turbo codes

Figure 1.2: An illustrative example of an interleaver's capability.

Input sequence xi Output sequence si Output sequence pi Codeword weight

x0 = 1010 s0 = 1010 p0 = 1000 3
x1 = 1001 s1 = 1001 p1 = 1011 5
x2 = 1100 s2 = 1100 p2 = 1111 6

Table 1.2: Input and output sequences for encoder in Figure 1.2.

Figure 1.3: Example of random interleaver.

spread low weight input patterns to generate higher weight codewords. An extension to
the S-random interleaver, has been proposed by Crozier [34]. If Π is the interleaving
law, the spread factor S is applied for any two positions i and j according to the relation:

|Π (i)− Π (j)|+ |i− j| > S

The above relation states that the closer the bits i and j are before interleaving the
more they should be spread apart after interleaving. It can be shown that the theoretical

maximum spread is: Smax = floor
(√

2k
)
[24], where k is the length of the interleaver. As
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an example, for a block length of k = 20730, which is the longest interleaver length for
the cdma 2000 turbo code, the theoretical maximum spread is 203 (i.e. S ≤ 203). A
number of variations on the spread interleaver are presented in [8, 59, 81, 91].

Interleavers which are pseudorandom with constraints on spreading properties have
been shown to provide good performance. But such �randomlike� interleavers may be hard
to implement in an e�cient manner especially for long data blocks, as all the addresses
need to be stored in a memory. Another novel interleaver design based on the correlation
between the extrinsic information is reported in [60]. Simulation results show that the
correlation designed interleavers perform approximately 0.1 dB better than S-random
interleavers.

In the literature, we can also �nd many structured interleaver approaches that have
high-spread properties, such as dithered golden interleavers [39], dithered-relative prime
(DRP) interleavers [36], and dithered-diagonal (DD) interleavers [34]. These methods are
easy to implement and can be used to design interleavers with excellent spreading and
good error performance. For instance, it was shown that for a block size of k = 512 data
bits and an unpunctured code rate of 1/3, the �ares in the packet error rate and bit error
rate (BER)1 curves can be kept below 10−8 and 10−10, respectively [34].

Other deterministic interleaver design methods were suggested, such as the almost
regular permutation (ARP) [22] and the quadratic permutation polynomial (QPP) [97]
that has been adopted as an emerged solution to the requirements of the 3GPP Long
Term Evolution (LTE) [78]. The previous list is not exhaustive. However, it shows that
devising more sophistical internal permutations to lower the error �oor is not an easy
task.

1.1.3 Trellis termination

Convolutional encoders are a priori speci�ed for continuous �ows of information, which
corresponds to an in�nite sequence of information bits. If the information is formated by
blocks, it is necessary to plan a suitable ending of the encoding process. When the con-
volutional encoder has no trellis termination, the �nal state is not known in advance and
the corresponding decoding process �nds it hard to correct the errors at the extremities
of the block. To ensure that the last bits to be encoded are as well protected as the �rst
ones, we add to the block of information some bits which purge the register at the end
of coding and allow the encoder to retrieve a known state (the all-zero state). These bits
are called tail bits.

For the turbo codes many solutions are possible: no trellis termination for each en-
coder, only the �rst encoder is terminated or both encoders are terminated. Another
termination technique is to ensure the trellis start and end states are identical. This tech-
nique, referred to as tail-biting [112], has the main advantage of not requiring any extra
bits to be transmitted. Tail-biting is used in several popular communications standards,
such as the Wimax (IEEE 802.16), the DVB-RCS and DVB-RCT standards.

1The BER is simply the ratio of incorrect data bits divided by the total number of data bits trans-
mitted.
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1.2. Turbo decoding

1.1.4 Puncturing

The purpose of puncturing is to increase the overall code rate. This process, which should
be fairly distributed between both encoders, consists in removing certain bits from the
codeword. Puncturing must be as regular as possible and it maximizes the free distance
of the code. Details about how to select the puncturing patterns that improve turbo code
performance are available in [13, 40].

1.2 Turbo decoding

Two important innovations allowed the turbo codes to reach an excellent performance in
the history of channel coding. The �rst one, as explained above in section 1.1, is the
parallel concatenation of two RSC codes separated by an interleaver. The second being
the process of Soft Input Soft Output (SISO) iterative decoding. The block diagram of
the turbo decoder is shown in Fig. 1.4. Turbo codes get their name because the decoder
uses feedback, like a turbo engine.

Figure 1.4: A turbo decoder and a mechanical turbo engine. Source of the turbo engine image :

http://www.modpark.com/resimler/2-resim/turbo1cc.jpg.

There are two elementary decoders separated by the same interleaver. They correspond
to the two RSC encoders and they exchange information along the iterations. In fact, the
feedback allows each decoder to take advantage of all the information available. Therefore,
a SISO decoder is necessary as it processes soft decisions at its unput and tries to make
them more reliable, thanks to local redundancy (i.e., y1 or y2). The information coming
from the channel and referred to as intrinsic information, is used by the two decoders. An
extrinsic information is produced by each decoder and transmitted to the other one. A
good permutation has to guarantee a good exchange of the extrinsic information between
the decoders.

The iterative decoding consists in decoding alternately both elementary codes and
passing the information between the corresponding decoders. The inputs to the �rst
decoder are the observed systematic bits, the parity bit stream from the �rst encoder and

11
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1. Turbo codes: a breakthrough in digital communications

the deinterleaved extrinsic information from the second decoder. The inputs to the second
decoder are the interleaved systematic bit stream, the observed parity bit stream from the
second RSC code and the interleaved extrinsic information from the �rst decoder. The
�rst SISO decoder generates the soft output and subsequently an extrinsic information.
The extrinsic information is interleaved and used by the second SISO decoder as the
estimate of the a priori probability (APP). The second SISO decoder also produces the
extrinsic information and passes it after deinterleaving to the �rst SISO decoder to be
used during the subsequent decoding operation. To bene�t at best from the information
produced by each decoder, it was established that the exchange of soft decisions rather
than hard decisions can lead to an excellent performance.

The mathematical foundations of the decoding process with soft decisions are based on
the theorem of Bayes. Let us consider a non coded transmission using a binary phase-shift
keying (BPSK) modulation over an Additive White Gaussian Noise (AWGN) channel.
An information bit d = 0 is transmitted as x = −1 and an information bit d = 1 is
transmitted as x = +1. The observation at the output of the noisy channel is given by :
xnoisy = x+ n, where n represents a sample of noise having a Gaussian distribution with
standard deviation σ. Let Pr(d = 0) (resp. Pr(d = 1)) the a priori probability that the
transmitted bit is equal to 0 (resp. 1 ). The a posteriori probabilities or likelihoods are
calculated using the the theorem of Bayes and are expressed in the following way :

P0 = Pr(d = 0 |xnoisy) =
Pr(xnoisy | d=0) Pr(d=0)

Pr(xnoisy)

P1 = Pr(d = 1 |xnoisy) =
Pr(xnoisy | d=1) Pr(d=1)

Pr(xnoisy)

These likelihoods can be considered as a re�nement of the a priori knowledge on the
value of the transmitted digit supplied by the observation of the channel. Then the optimal
hard decision d̂ in the sense of the maximum a posteriori (MAP) is :

d̂ =

{
0 if P0 > P1

1 otherwise.

The soft decision is de�ned as the Logarithmic Likelihood Ratio (LLR) :

LLR = L(d |xnoisy) = ln P1

P0
= Lc(xnoisy) + La(d)

where Lc(xnoisy) = ln
Pr(xnoisy | d=1)

Pr(xnoisy | d=0)
is the channel LLR and La(d) = ln Pr(d=1)

Pr(d=0)
is the a

priori LLR. The criterion of decision can then be written :

d̂ =

{
0 if LLR > 0

1 otherwise.

It follows that the sign of the soft decision determines the hard decision and that the
absolute value of the soft decision determines the reliability of this decision. In particular,
if the noise is Gaussian, the channel LLR has for expression :
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Lc(xnoisy) = ln

1

σ
√

2Π
exp

−(xnoisy−1)
2

2σ²


1

σ
√

2Π
exp

−(xnoisy+1)
2

2σ²

 = 2
σ²
xnoisy

Until now we considered a system of non-coded transmission. For a system of coded
transmission, if the a priori information is distributed in an independent way, the soft
output of a decoder can be expressed in the following way [18] :

L(d) = Lc(xnoisy) + La(d) + Le(d)

where Le(d) is the extrinsic LLR representing the knowledge acquired thanks to the
decoding process.

1.3 Algorithms for iterative (turbo) data processing

Some of the major SISO decoding approaches, developed for turbo decoding are: Max-
ium Aposteriori Probability (MAP), Log-MAP, Max-Log-MAP and Soft Output Viterbi
Algorithm (SOVA).

1.3.1 BCJR or MAP algorithm

Bahl, Cocke, Jelinek and Raviv presented an optimal algorithm [7], often referred to
as the BCJR algorithm, for estimating the a posteriori probabilities of states and state
transitions of a Markov source observed through a discrete memoryless channel. This
algorithm was later adapted by Berrou et al. to produce a posteriori probabilities in
the case of the iterative decoding of convolutional codes. The BCJR algorithm is often
referred to as the maximum a posteriori (MAP) algorithm. With regard to the Viterbi
algorithm which determines the most probable information sequence [50, 108, 109], the
MAP algorithm associates with every decoded bit an estimation of the reliability of this
decision. This algorithm is used in general for the iterative decoding of convolutional
codes. To simplify the description of the MAP algorithm, we consider a RSC encoder
at coding rate R = 1/2 with memory length M (2M internal states). Let uk be the kth

information bit and ck the corresponding parity bit. At the output of the channel, we
receive the following sequence : RN

1 = (R1, ..., Rk, ..., RN) where Rk = (xk, yk), xk and yk
are the observations received at time k corresponding respectively to the information bit
uk and the redundancy bit ck.

The MAP decoder computes the ratio of conditional probabilities :

L(uk) =
Pr(uk=1\RN1 )
Pr(uk=0\RN1 )

To compute L(uk) , we introduce the densities of conditional probabilities for the state
m :

13



1. Turbo codes: a breakthrough in digital communications

Forward ak(m) = Pr
(
Sk = m \RN

1

)
and

Backward βk(m) = Pr
(
Sk = m \RN

k

)
.

We can show that :

L(uk) =
mαk−1(m)γ1

k(m)βk(f(1,m))

mαk−1(m)γ0
k(m)βk(f(0,m))

gik (m) is the branch metric at time k corresponding to the transition from state m to
state f(i,m) when the information bit is uk = i.

ak(m) et bk(m) are calculated iteratively.

ak(m) =
∑
i

ak−1(b(i,m))gik(b(i,m))

Where a0(0) = 1 and a0(m) = 0 for m 6= 0, if the initial state is 0. In fact, each alpha
metric is the sum of the previous alphas multiplied by the branch metrics along each
branch from all the previous states to the current state m. The computation of the beta
metrics is similar to that of the alphas but starting at the end of the trellis and going in
the reverse direction :

bk(m) =
∑
i

bk+1(f(i,m))gik(m)

Where bN(0) = 1 and bN(m) = 0 for m 6= 0, if the �nal state is 0.
f(i,m) is the �nal state corresponding to a starting state m when the information bit

is uk = i.
b(i,m) is the starting state corresponding to a �nal state m when the information bit

is uk = i.
For more clari�cations about these notations, a trellis representation is given in Fig.

1.5.

Figure 1.5: Calculation of the branch metrics.
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Contrary to the Viterbi algorithm which concentrates on the most likely message,
the MAP algorithm is one of the methods acting at the level of the information bits
of the message. The advantages supplied by this algorithm are the minimization of the
probability of error of every bit of the message and the estimation of the reliability of
the decoding. The MAP algorithm is thus the optimal solution to estimate the state
probabilities and the memory transitions of a convolutional encoder. In other words, the
MAP algorithm is the optimal component decoder algorithm. However, it is complex for
a hardware implementation of the decoder. In fact, the algorithm su�ers from numerical
problems because of the exponent in probability calculations and from a need to use a
very high precision in the decoder to represent small vector elements.

1.3.2 LogMAP algorithm

The LogMAP algorithm, which uses the notion of Jacobian Algorithm, is a transformation
of MAP into the logarithmic domain. In fact, multiplication is converted to addition and
addition is converted to max*(.) operation :

max ∗(x, y) = log (ex + ey) = max (x, y) + log
(
1 + e−|x−y|

)
The numerical problems that occur in MAP are thus circumvented.

1.3.3 Max-Log-MAP algorithm

This algorithm is derived from the LogMAP algorithm, where the max*(.) operation
is replaced by simply the maximum. In fact, only the path with maximum value is
considered at each state in forward or backward recursions. Therefore, the Max-Log-
MAP algorithm is simpler [58, 89] but performs worse than the MAP or the LogMAP
algorithms. Compared to the LogMAP algorithm, a degradation of 0.5 dB in the error
rate performance was observed in [89].

The extrinsic information exchanged between the constituent decoders can be scaled to
improve the performance of turbo decoding for sub-optimal algorithms [31, 110]. Scaling
factor modi�cation has also been applied and tested on the Max-Log-Map algorithm.
Authors in [110] used a constant scaling factor of 0.7 and reported a gain from 0.2 to 0.4 dB
in the case of the 3GPP standard. In [31], the best scaling factors for each iteration were
calculated for di�erent signal to noise ratios (SNRs)2 by o�-line computation. It was shown
that a turbo decoder using the modi�ed Max-Log-Map performs within 0.05 dB of a turbo
decoder using the Log-Map algorithm [31]. The performance improvement introduced by
the scaling factor modi�cation is explained as the correction of the accumulated bias due
to maximum operation in the Max-Log-Map algorithm [31].

2The SNR is computed by dividing the energy per received data bit Eb by the single-sided noise
spectral density N0 of the channel.
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1.4 Convergence and asymptotic performance

Two essential parameters allow estimating the performance of a concatenated error-
correcting code and its decoder:

� The convergence threshold de�ned as the minimum signal to noise ratio where the
performance of a coded system becomes better compared with the non coded trans-
mission system. A good convergence corresponds to a low convergence threshold,
because the performance of the system at high and average levels of noise are close
to the theoretical limit.

� The asymptotic gain GA indicates the maximum gap between the coded and non-
coded error rate curves. When GA is reached, the error rate curve with coding
becomes parallel to the curve without coding. GA can be expressed in the following
way:

GA ≈ 10 log (Rdmin)

where R is the coding rate and dmin the Minimum Hamming Distance (MHD).

In fact, there is a compromise between good convergence and MHD. For average or high
error rates, it is better to privilege the convergence threshold to the detriment of the
minimum distance of the code; whereas at low error rates it is better to have a high
minimum distance.

1.4.1 Graphical analysis of the convergence using the EXIT

diagrams

To evaluate the performance of a coding scheme with iterative decoding, Monte Carlo
simulations of the bit error rate can be carried out. However this means may require a lot
of computing time and resources. The study of the evolution of the extrinsic information
is rather an attractive solution for �ner comparisons between di�erent coding schemes. It
allows to analyze the performance of the coding scheme, but also to supply an estimation
of the bit error rate. This method was proposed at �rst by Stefan Ten Brink in
[103]. Berrou et al. showed in [18] that when the decoding process converges, the
extrinsic information can be modelled by a Gaussian distribution where the mean and the
variance increase as the number of iterations increases. This modelling allows the extrinsic
information z to be characterized only by its mean µz and its variance σ². The Gaussian
approximation is veri�ed up to a certain number of iterations, this number increases for
the low values of Eb/N0. The Mutual Information (MI) I(z, x), as de�ned below, is used
in EXtrinsic Information Transfer (EXIT) charts to predict the convergence behavior of
iterative decoding [103, 106, 107]. It measures the quantity of information provided on
average by the extrinsic information z on the information bits x.

Let z ∼ N (±µz;σz²) be the a priori LLR of a SISO decoder. The associated MI is
given by :

16



1.4. Convergence and asymptotic performance

I(z, x) =
1

2

∑
x=±1

ˆ
R
f(z \ x) log2(

2f(z \ x)

f(z \ x = +1) + f(z \ x = −1)
) dz

If the channel is symmetric (i.e. f(z \x = −1) = f(−z \x = +1)) and the probability
density function is consistent ( i.e., f(z \ x) = f(−z \ x) e−z), then :

I(z, x) =

ˆ
R
f(z \ x = +1) log2(

2f(z \ x = +1)

f(z \ x = +1) + f(z \ x = −1)
) dz

I(z, x) =

ˆ
R
f(z \ x = +1) log2(

2f(z \ x = +1)

f(z \ x = +1)(1 + e−z)
) dz

I(z, x) = 1−
ˆ
R
f(z \ x = +1) log2(1 + e−z) dz

I(z, x) = 1− 1√
4Πµz

ˆ
R

log2(1 + e−z) exp(−(z − µzx)²

4µz
)dz = J(µz) (1.1)

The hypothesis of the exponential symmetry imposes σ2
z = 2µz. Then, the MI I(z, x),

can be expressed as follows :

I(z, x) = 1− 1√
2Πσz

ˆ
R

log2(1 + e−z) exp(−
(z − σz²

2
)²

2σz²
)dz = J(svz)

We obtain the expression of J(svz). This function of equation (1.1) can also be expressed
in the following way :

J(svz) = 1− Ez(log2(1 + e−z)) , z ∼ N (µz, 2µz)

J(svz) is monotonically increasing in sv and therefore it has a unique inverse function,
sv = J=1(I). The J function and its inverse are important functions that are used extensi-
vely in the following chapters to compute di�erent convergence thresholds. Unfortunately,
they cannot be expressed in closed form, but they can be closely approximated by :

J(svz) ≈
(

1− 2−H1σ2H2
)H3

(1.2)

J−1(I) ≈
(
− 1

H1

log2

(
1− I

1
H3

)) 1
H2

Numerical optimization to minimize the total squared di�erence between equation
(1.1) and equation (1.2) results in the parameter values H1 = 0.3073, H2 = 0.8935, and
H3 = 1.1064 [27]. The curve in Fig. 1.6 shows equation (1.1) and the indistinguishable
approximation in equation (1.2).
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1. Turbo codes: a breakthrough in digital communications

Figure 1.6: The J function and its approximation where H1 = 0.3073, H2 = 0.8935 and
H3 = 1.1064.

1.4.2 EXIT charts for turbo codes

To generate the EXIT chart of a TC, we have to consider the transfer characteristics
of the extrinsic information for each SISO decoder. Fig. 1.7 describes how the mutual
information is measured in practice. After encoding, the information and parity bits x
and y are transmitted over a noisy channel. The decoder receives the transmitted values
at the channel output. Information bits x are also transmitted as a priori knowledge, as
if they were coming from the other decoder (lower input line to the decoder in Fig. 1.7).

Figure 1.7: Measurement of mutual information at the component decoder level.

The mutual information between the bits x and the soft output values, L, of these
bits after decoding can be computed from a large number N of samples [57]:

I(L, x) = 1− E (1 + log2 (1 + exp (−L))) ≈ 1
N

N∑
k=1

log2 (1 + exp (−xk Lk))
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1.4. Convergence and asymptotic performance

Fig. 1.8 shows that the curves have intersection points di�erent from the point (1,1)
when the signal to noise ratio is low. Then, the iterative process starting with a zero
average mutual information in entry cannot end in a perfect determination of the message.
In the case of high enough signal to noise ratio, the two curves do not have any intersection
outside the point of coordinates (1,1). In Fig. 1.8, a tunnel between the two curves is
observed, meaning that convergence is possible at this SNR. The convergence threshold
of the turbo code is the minimum signal to noise ratio where the only intersection point
is (1,1).

Figure 1.8: Turbo code EXIT charts and trajectory for di�erent values of Eb/N0.

1.4.3 Distance measurement methods for turbo codes

Consider the transmission of a linear binary turbo code over the AWGN channel using
BPSK or quadrature phase-shift keying (QPSK) modulation. Applying maximum-likelihood
(ML) decoding, the frame error rate and bit error rate are upper bounded by the union
bounds [111] :

FER ≤ 1

2

∑
d≥dmin

Ad erfc

(√
dmin

k

n

Eb
N0

)
(1.3)

BER ≤ 1

2

∑
d≥dmin

wd
k
erfc

(√
dmin

k

n

Eb
N0

)
(1.4)

where :

� n is the codeword length in bits,

� k is the number of information bits,

� dmin is the minimum distance of the code,

� the multiplicity Ad is the number of codewords with weight d,
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1. Turbo codes: a breakthrough in digital communications

� the information bit multiplicity wd is the sum of the Hamming weights of the Ad
input sequences generating the codewords with Hamming weight d,

� the complementary error function erfc(x) is given by the expression 2√
Π

´∞
x
e−t

2
dt,

� Eb is the energy per information bit,

� and N0 is the one-sided noise power spectral density.

The function erfc(
√
x) decreases exponentially with x. Thus, the �rst term or �rst few

terms of equation (1.3) and equation (1.4) can be used to approximate FER and BER
at high SNRs (i.e. at very low error rates). It is di�cult to determine by Monte Carlo
simulations the performance of a code that operates at very low error rates. Berrou
et al. [23] introduced the innovative error impulse method, based on iterative decoding.
The approach of Garello et al. in [55] represents a modi�cation and an improvement
of the error impulse error. In this sub-section, we discuss brie�y Garello's distance
measurement method called the all-zero iterative decoding algorithm. This technique is
based on the transmission of an all-zero sequence corrupted by an error impulse and a
noise. The di�erence with the method in [23] is that the amplitude of the error impulse
is high enough to prevent the decoder from converging to the all-zero codeword. On the
other hand, a Gaussian noise is added to the sequence in the entry of the decoder, which
helps the decoder to converge towards non-zero codewords. It is necessary to adjust the
level of noise to make the decoder converge to low weight codewords and thus to obtain a
good estimation of the minimum distance, because the weight of the codeword on which
the decoder converged represents a superior limit of the minimum distance. This algorithm
works very well for interleavers for small and average distances, typically up to 50, and it
is the algorithm we used in our study. The algorithm is the following :

1. Choose a value for Eb/N0 ∈ [2 dB , 8 dB] and compute the noise variance σ2 = N0

2
=

1

2 k
n

Eb
N0

.

2. Fix dmin = 1000.

3. For i = 0 to n /* i refers to the position of the impulse*/

a) Let us denote the transmitted vector by e. Put ej = −1 for all j 6= i.

b) Place an error impluse in ei. It consists of a positive real number with high
amplitude.

c) Add a white Gaussian noise with variance σ2.

d) Decode iteratively the received sequence.

e) When the decoder converges to a valid codeword ĉi, compute its Hamming
weight w (ĉi).

� If w (ĉi) < dmin and w (ĉi) > 0, a new codeword is found. Set dmin = w (ĉi),
update the multiplicity and store ĉi.
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1.5. Cdma2000 turbo code

� If w (ĉi) ≥ dmin and the codeword has not been detected yet ⇒ store it
and set its multiplicity to 1.

� If w (ĉi) ≥ dmin and the codeword has already been detected ⇒ increment
the corresponding multiplicity.

f) Increment i.

4. When the decoder does not converge to codewords:

a) Go to step 1.

b) If Eb/N0 < 8 dB, increment Eb/N0 by 0.5 dB and try another value of σ2.

An improvement of the Garello's method was proposed by Crozier et al., at the
expense of higher computation time since they introduced a second and a third error
impulse [37, 38].

1.5 Cdma2000 turbo code

One of the major third-generation cellular standard is cdma2000. It is one of the two
most widely adopted third-generation cellular standards, the other being UMTS, and it is
standardized by the Third Generation Partnership Project 2 (3GPP2) [3]. The size of the
interleaver for the cdma2000 turbo code must be one of the following speci�c values: 378,
570, 762, 1146, 1530, 2298, 3066, 4602, 6138, 9210, 12282, or 20730 bits. The constituent
RSC encoder used by the cdma2000 turbo code is shown in Fig. 1.9. As can be seen, this
encoder has three output bits, one systematic and two parities, for each input bit. Thus,
the code rate of this RSC encoder is R = 1/3, neglecting the tail bits.

Figure 1.9: The rate-1/3 RSC encoder used by the cdma2000 turbo code.

The overall code rate for the cdma2000 turbo code is R = 1/5. Through puncturing,
rates of R = 1/2, 1/3, and 1/4 can be achieved. For instance, to achieve rate R = 1/3, the
encoder deletes the second parity output of each encoder and only the �rst parity outputs
are transmitted. The puncturing mechanisms used to achieve rates R = 1/2 and R = 1/4

are slightly more complicated, but the details can be found in the speci�cation [3]. For
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1. Turbo codes: a breakthrough in digital communications

reasons of simplicity in our simulations, we considered only the �rst parity for coding
rates higher than R = 1/3. Table 1.3 gives some puncturing patterns adopted within the
framework of the study of 3GPP2 turbo codes.

Code Rate 1/2 2/3 3/4 4/5

Puncturing Period 2 4 6 8
x 11 1111 111111 11111111
y1 10 1000 100000 10000000
y2 01 0010 or 1000 000100 or 100000 00001000 or 10000000

Table 1.3: Puncturing patterns for the data bits.

1.5.1 Cdma2000 interleaving

The description of the cdma2000 turbo interleaver is detailed in Appendix A. Also, an
example is presented to illustrate the complete interleaving process de�ned by the stan-
dard. Fig. 1.10 shows the results plotted in a Cartesian plane. The x-axis represents the
index and the y-axis the position of the output data.

Figure 1.10: Input vector versus output vector before and after interleaving for blocks of
506 bits.

Although the output produced by the interleaver seems to have elements of random-
ness, it should be noticed that the transformation between input and output positions is
deterministic.

1.5.2 Performance of cdma2000 turbo code

This section illustrates the performance of cdma2000 turbo code. Simulations were run
to determine the performance of these turbo codes in AWGN with BPSK modulation. In
each case, either the MAP or Max-Log-MAP algorithm was used. For each simulation,
a curve showing the bit-error rate versus the per-bit signal to noise ratio was computed.
Fig. 1.11 shows the performance of the 3GPP2 turbo code with an input frame size of
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1.5. Cdma2000 turbo code

k = 6138 bits. This �gure shows how performance improves as the number of decoder
iterations increases. After one iteration, performance is quite poor, and the decoder is
unable to achieve a BER lower than 10=1 even for high SNRs. However, as the decoder
iterates, performance improves until at the tenth iteration it can achieve a BER of 10=6 at
an SNR of only 1.25 dB. Note how each subsequent iteration improves performance, but
that this improvement follows a law of diminishing returns. Thus, although an eleventh
(or higher) iteration would provide slightly improved performance, the extra complexity
and decoding delay is not justi�ed.

Figure 1.11: Bit-error performance of the 3GPP2 turbo code as the number of decoder
iterations varies from 1 to 10. The encoder input word length is k = 6138 bits, code
rate is 1/2, modulation is BPSK, and channel is AWGN. The simulations use the MAP
algorithm.

Fig. 1.12 shows the performance of the 3GPP2 turbo code as a function of input frame
size k. As can be seen in this �gure, the performance improves with increasing k. This is
due to an increase in interleaver gain as the input frame size gets larger.

Table 1.4 lists the minimum Eb/N0 required to achieve a BER of 10=3, a target error
rate in the case of 3GPP communication systems, for each of the four frame sizes shown
in Fig. 1.12. While the BER curve falls o� sharply with increasing SNR for moderate
error rates (e.g., BER > 10=5), the BER curve begins to �atten at higher SNRs. This
characteristic can be observed in Fig. 1.12, where the BER was simulated down to very
small values. It does not represent a problem since the 3GPP2 turbo code is used in
Automatic ReQuest (ARQ) systems, which do not usually require very low error rates.
However, this is not true for other applications where the error �oor hinders the ability
of a turbo code to achieve required very low error rates.
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1. Turbo codes: a breakthrough in digital communications

Figure 1.12: Bit-error performance of the 3GPP2 turbo code for various input code lengths
at code rate 1/2. BPSK modulation is used over an AWGN channel. All simulations use
the Max-Log-MAP algorithm with 10 decoding iterations.

Frame size k (bits) Target BER = 10−3

378 1.70
570 1.53
1530 1.24
6138 1.02

Table 1.4: Minimum value of Eb/N0 (in dB) to achieve a BER= 10−3 using the 3GPP2
turbo code.

1.6 How to combate the error �oor ?

Turbo codes represent a huge advance in the �eld of forward-error-correction channel
coding. The codes make use of three simple ideas: parallel concatenation of codes to allow
simpler decoding, interleaving to provide better weight distribution and soft decoding to
enable decoder interaction and iterative decoding.

The error rate curves of a turbo code can be divided into two main regions: the
waterfall region where the error rate decreases rapidly; and the region of error �oor where
a change in the curve slope appears when the code reaches its asymptotic gain. This
means that the error rate reaches a limit and stops improving even if the number of
iterations is increased. The error �oor is due to the presence of low-weight codewords. At
low SNR, these codewords are insigni�cant, but as SNR increases, they begin to dominate
the performance of the code [80]. It is naturally desirable to have turbo codes which have
waterfalls as closest as possible to the channel capacity and low �oors of error. Several
ways can be used to combate the error �ooring e�ects:

� One way is to use a slightly di�erent RSC encoder with a more favorable distance
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spectrum. However, in order to lower the error �oor at high SNR, performance at
low SNR will su�er. An interesting approach taken in [100] is to use two di�erent
RSC encoders. One RSC encoder is optimized to perform well at low SNR, while
the other is optimized to reduce the error �oor. The resulting asymmetric turbo
code3 provides a reasonable combination of performance at both a low and high
SNR. Unfortunately, although the error �oor has been reduced, it is still present.

� Increasing the MHD of a turbo code may involve devising more sophistical internal
permutations. This is an appealing alternative to improve the MHD, since it does
not incur any complexity penalty. Unfortunately, designing such powerful permu-
tations is not an easy task, as explained in subsection 1.1.2.

� It may also involve using component encoders with a large number of states (16-
state instead of 8-state components [15, 48]), at the price of doubling the decoding
complexity each time we increase the memory length of the code by 1. This is not an
appropriate solution because we want to raise the minimum distance and preserve
a reasonable complexity at the same time.

� Another way to reduce the error �oor is to arrange the two constituent encoders
in a serial concatenation, rather than in a parallel concatenation [11]. Such seri-
ally concatenated convolutional codes yield higher minimum distances. However,
performance at low SNR is considerably worse than it is for parallel concatenated
codes. This penalty in convergence threshold might be unacceptable for several ap-
plications. An alternative to choosing between Serial Concatenated Convolutional
Codes (SCCCs) and Parallel Concatenated Convolutional Codes (PCCCs) is to use
hybrid turbo codes, which combine features of each type of code [44]. Several di�er-
ent hybrid concatenated structures have been proposed in the literature, e.g., [46].
Mixed structures, like those proposed in [56] or [70], are also possible.

� Last but not least, multiple concatenation using an increasing number of component
encoders, can be used to eliminate low-weignt codewords and so improve the distance
properties of the code. However, this will be paid in terms of loss in convergence
and increase in complexity because each data has to be decoded more than twice.

1.7 Conclusion

The near-capacity performance of turbo codes and their suitability for practical imple-
mentation explain their adoption in various communication standards as early as the late
nineties. In future system generations, low error rates will be required to open the way
to real time and more demanding applications, such as TV broadcasting or videoconfer-
encing. The MHD may not be su�cient to ensure large asymptotic gains at very low
error rates. This phenomenon is the so-called �attening e�ect and it can be combated
in several ways previously enumerated. In [20], an inner code was used to improve the

3If the component encoders are not identical then it is called an asymmetric turbo code.
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distance properties of an outer turbo code. The idea is to mix the two last techniques
in order to obtain a hybrid concatenated structure with an increasing number of com-
ponent encoders. The next chapter focuses on this alternative. However, the techniques
implemented to improve the �oor usually degrade the convergence threshold. It is the
compromise distance-convergence well identi�ed in the literature. And in my thesis, I will
be confronted many times to �nd a good balance between the two criteria, if it is not to
be winning on both plans.
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Chapter 2

Exploring 3-Dimensional turbo codes

T
urbo codes [17] have been adopted in various communication standards [1, 2, 3, 4]
due to their near-capacity performance and low decoding complexity. But they su�er

from a �attening around 10−5 of Frame Error Rate (FER). In future system generations,
lower error rates will be required to open the way to real time and more demanding
applications, such as TV broadcasting or videoconferencing. In [20, 21], a 3-dimensional
turbo code (3D TC) was introduced, combining both parallel and serial concatenation. It
is simply derived from the classical turbo code by concatenating a rate-1 post-encoder at
its output, which encodes only a fraction l of the parity bits from the upper and lower
constituent encoders. The fraction 1− l of parity bits which is not re-encoded is directly
sent to the channel or punctured to achieve the desired code rate. The 3D TC improves
performance in the error �oor compared to the TC, at the expense of an increase in
complexity and a loss in convergence.

This chapter is organized as follows. In section 2.1, we present the 3D TC and its
di�erent parameters. The decoding process is also discussed in the same section. In
section 2.2, the interest of the 3D TC is assessed through simulations in the case of
the 3GPP2 code. Finally, a detailed study of the complexity increase of the 3D TC is
presented in section 2.3.
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2.1 Properties of 3-dimensional turbo codes

All the analysis presented below can be applied to any 3D TC in a straightforward man-
ner. However, we focused in our simulations on the 3GPP2 code, an 8-state binary turbo
code, used in the third generation (3G) cdma2000 mobile phone communication systems
(see section 1.5). We remind that the 3GPP2 turbo code is built from the parallel con-
catenation of two 8-state RSC codes, with generator polynomials 13 (recursivity) and 15
(redundancy). The overall turbo code code rate before puncturing is 1/3 since only the
�rst parity in each component code is considered (see section 1.5).

2.1.1 3D turbo encoder structure

A block diagram of the 3D turbo encoder is depicted in Fig. 2.1. A fraction l of the
parity bits from the upper and lower constituent encoders are grouped by a Parallel to
Serial (P/S) multiplexer, permuted by a permutation P', and encoded by an encoder of
unity rate whose output is denoted by w. The iterative decoding of concatenated codes in
general makes it important to have P' in order to decorrelate the extrinsic information. In
[20, 21], l is referred to as the permeability rate. Usually, very simple regular permeability
patterns are applied. For instance, if l = 1

8
the bits to be post-encoded are chosen in

a regular basis {10000000} for both the upper and the lower encoders. Note that the
permeability rate has an e�ect on the performance of the 3D TC similar to the doping
ratio concept of [105].

Figure 2.1: 3D turbo encoder structure.

2.1.2 3D turbo decoder

As depicted in Fig. 2.2, the classical turbo principle is used to decode the 3D turbo code.
We have three elementary decoders corresponding to the three constituent encoders; and
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all of them exchange extrinsic information. First, the 4-state SISO pre-decoder is activated
to feed the two SISO decoders with extrinsic information about the post-encoded parity
bits. The two decoders exchange extrinsic information about the systematic bits, as for the
classical turbo procedure. They also provide the pre-decoder with extrinsic information
about the post-encoded parity bits. The decoding process continues iteratively until
all constituent decoders have converged, or a maximum number of iterations has been
performed.

Figure 2.2: Structure of the 3D turbo decoder.

2.1.3 Choice of the permeability rate

The value of l can be used to trade-o� performance in the waterfall region with perfor-
mance in the error �oor region. The case λ = 0 corresponds to the standard parallel turbo
code and the case λ = 1 is a serial concatenation between the classical turbo code and
the post-encoder. Increasing 0 < λ < 1 turns the code into more serial, hence increasing
its minimum distance. However, a large value of λ penalizes the decoder from the conver-
gence point of view. In fact, the more redundancies are post-encoded the less redundant
information at the �rst iteration the decoder will have, then causing more errors at its
output at the �rst processing.

Let P be the number of bits that pass through the post-encoder. The fraction θ of
the codeword bits that are post-encoded is:

θ =
P

n
=

2λk

n
= 2λR
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where n = k
R
is the codeword length and R is the overall code rate of the 3D turbo code.

We denote by Ri the code rate of each constituent encoder (i.e., R1 is the code rate of
RSC1 and R2 is the code rate of RSC2). The fraction θi of the data processed by the
component decoder of each constituent encoder, that have to pass through the predecoder
can be expressed as follows:

θi = λ
k
2

k + k
2

= λ

(
k

2

)
Ri

k

The parallel concatenation, which associates two elementary codes with rates R1 and
R2, has a global coding rate: R = R1R2

R1+R2−R1R2
. Since the turbo code is symmetric (i.e.,

R1 = R2), then R =
R2
i

2×Ri−R2
i
. Thus, we obtain Ri = 2R

R+1
, and θi can be expressed in the

following way:

θi = λ
R

R + 1
(2.1)

Now, if p is the probability of error at the channel output and ϕ is the ratio of the
probability of error at the predecoder output divided by the probability of error at its
input, the average probability of error p′ at each decoder intrinsic input is:

p′ = ϕθip+ (1− θi) p = (1 + (ϕ− 1) θi) p

that is, from equation (2.1):

p′ =

(
1 + (1 + (ϕ− 1)λ)R

1 +R

)
p (2.2)

Equation (2.2) shows that the probability of error at each decoder intrinsic input is

risen by a factor
(

1+(1+(ϕ−1)λ)R
1+R

)
, inducing a loss in convergence.

Fig. 2.3 illustrates the e�ect of l on the error rate curves of a 3D TC: if we choose a
large value of l, the minimum distance is signi�cantly increased. However, performance
in the error �oor region will be paid from a convergence point of view. Thus, a trade-
o� between convergence loss and required minimum distance has to be found. In our
simulations, l = 1/8 and l = 1/4 are considered, since they represent a good trade-o�
between convergence and minimum Hamming distance.

In Fig. 2.4, we report the FER performance of the 3GPP2 3D TC to compare it with
that of the 3GPP2 TC for the block size 3066 bits, at coding rate R = 1/3 for both l = 1/4

and l = 1/8. In our simulations, the 4-state convolutional code (5,4) was selected to be
the post-encoder. Also a regular permutation Π′ was used to spread to parity bits before
feeding them to the post-encoder.

We observe a small loss of convergence in the waterfall region when the permeability
rate is l = 1/8. This loss of convergence increases with l. It is about 0.26 dB for
l = 1/4. Furthermore, the all-zero iterative decoding algorithm (see 1.4.3) is applied to
estimate performance in the error �oor region without resorting to long simulations. In
the simulated case, the use of 3GPP2 3D TC results in an increase in the MHD by 65 %,
from MHD = 23 to MHD = 38, for code rate R = 1/3, l = 1/8 and k = 3066 bits. The
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 FER / BER 

Eb/N0 (dB) 

λ1 

λ2 > λ1 

Figure 2.3: Choice of the permeability rate λ.

Figure 2.4: FER performance of the 3GPP2 3D TC with λ = 1/4 and λ = 1/8 for k = 3066
bits, R = 1/3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm
with 10 decoding iterations.

gain obtained with l = 1/4 is even larger as shown in Fig. 2.4. This example illustrates
that l is a key parameter to choose the compromise between distance and convergence.

Note:

Given λ, and without puncturing information bits, the highest achievable code rate is
Rmax = 1

1+2λ
, since the overall code rate of the 3D turbo code is given by:

R =
1

1 + 2λ+ 2 (1− λ) ρ
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where 0 ≤ ρ ≤ 1 is the fraction of the surviving bits in y1 and y2 after puncturing. In
fact we have k systematic bits, 2λk post-encoded parity bits and 2 (1− λ) ρk surviving
parity bits after puncturing. For example, if the overall coding rate is R = 4

5
, then it is

necessary to have a permeability rate l ≤ 1
8
.

2.1.4 Choice of the post-encoder

The choice of the post-encoder in�uences the performance in both the waterfall and error
�oor regions. In general, the post-encoder must be simple to limit the complexity increase
of the corresponding decoder. Low memory RSC codes satisfy this requirement. Besides,
the code is made tail-biting (see 1.1.3) to prevent from any side e�ects as the initial state
and the �nal state of the post-encoder are identical. This requirement is important for
real�time and demanding applications, such as TV broadcasting or videoconferencing,
where very low error rates are sought for. Therefore, the accumulator (i.e., the code with
memory one) has to be discarded since it cannot be made circular using tail-biting encod-
ing. Last but not least, the post-encoder must not exhibit too much error ampli�cation,
to prevent from a high loss in convergence. In practice, a 4-state binary convolutional
encoder is used. Three linear RSC codes having memory 2 are given in Fig. 2.5.

Figure 2.5: Possible linear post-encoder candidates with memory 2.

To complete the analysis in [20, 21], the choice of the post-encoder is justi�ed by means
of EXtrinsic Information Transfer (EXIT) analysis. This is one of the contributions of
the thesis.

2.1.4.1 EXIT analysis

In Fig. 2.6, we report the EXIT curves for the three linear post-encoders of Fig. 2.5. When
no a priori information is available at the input of the pre-decoder (i.e. �rst iteration),
the Mutual Information (MI) at its output is higher for post-encoder (a). In fact, code (a)
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has a corresponding decoder which only doubles the number of errors of its input at the
�rst step of the iterative process, while code (b) will roughly triple the number of errors
at the �rst step. The worst case occurs with code (c) because its decoder causes a mistake
once every two bits in its entry. In fact for code (c) the feedforward polynomial (i.e., 7
in octal or 1 +D +D²) and the feedbackward polynomial (i.e., 5 in octal or 1 +D²) are
not reciprocal1. In this case the corresponding decoder engenders 50% of errors at the
�rst step of the iterative process, since it is impossible to extract 7 from the feedbackward
polynomial, i.e., 5.

Figure 2.6: EXIT curves for di�erent linear post-encoders.

Let us assume that a post-encoder, where the MI at its output is zero when there is
no MI at its input (such as code (c)), has been selected. The worst case occurs when
all the parity bits are post-encoded, which corresponds to high coding rates such as code
rate R = 2/3 for l = 1/4 or code rate R = 4/5 for l = 1/8. In this case, the error rate at
the output of the corresponding pre-decoder at the �rst iteration will be 0.5. And the
turbo decoder will have no parity to decode with at the �rst step of the iterative process.
It will just be something catastrophic as the performance will not be improved through
the iterative process! Therefore, the EXIT analysis is a very important tool to select a
post-encoder convenient at low but also at high coding rates.

In Fig. 2.7a, we report the FER performance of the 3GPP2 3D TC to compare it with
that of the 3GPP2 TC for the block size 570 bits, at coding rate R = 1/3 and l = 1/4. We
observe a loss of convergence in the waterfall region when the post-encoder of Fig. 2.5 (a) is
used. As expected, this loss of convergence increases when the post-encoder of Fig. 2.5 (b)
is used. The largest loss of convergence is observed when the code of Fig. 2.5 (c) is used.
Similar simulations (see Fig. 2.7b) at code rate R = 2/3 for l = 1/4, con�rm that the 3D
TC does not converge when the code of Fig. 2.5 (c) is selected to be the post-encoder.

1This means that we can not express G1(D) = 1 + D + D2 as DM × G2( 1
D ) = DM ×

(
1 + 1

D²

)
or

vice-versa.
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(a) FER performance for k = 570 bits and R = 1/3. All simulations use
the Max-Log-MAP algorithm with 10 decoding iterations.

(b) BER performance for k = 1146 bits and R = 2/3. All simulations
use the MAP algorithm with 10 decoding iterations.

Figure 2.7: Error rate curves of the 3GPP2 3D TC with λ = 1/4 and comparison with the
3GPP2 TC.

Therefore, due to its better convergence, code (a) with generator polynomial 5 (recur-
sivity) and 4 (redundancy) has been selected to be the post-encoder in di�erent simulations
of the 3D TC. However, the main drawback is that code (a) cannot ensure tail-biting en-
coding in order to properly deal with blocks of data. In other words, we can not ensure
that the initial state and the �nal state of the post-encoder are identical. Thus, state
mapping encoding has been introduced in [98]. The problem can easily be resolved by
an exchange of metrics at the end of the forward and backward recursions. Details are
provided in Appendix B.
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2.1.4.2 Statistics about the predecoder corresponding to the selected
post-encoder

A thorough analysis of the 3D decoder has been carried out to determine in which cases
the pre-decoder, corresponding to the post-encoder of Fig. 2.5 (a), engenders an error in
the decoder. In other words, if the 3D decoder makes an erroneous decision, is the pre-
decoder responsible for it or not? In order to have clari�cations about this topic, statistics
have been carried out for l = 1/8. In the case of l = 1/4, similar results are obtained.
However, the simulation time is more signi�cant especially in the error �oor region since
lower error rates can be reached compared with l = 1/8

2. Also, di�erent signal to noise
ratios are taken under consideration in our analysis. Table 2.1 summarizes the results of
this investigation. First, it is observed that for a low signal to noise ratio, corresponding
to the region where the 3D TC looses in convergence compared to the classical TC, the
errors due to the pre-decoder represent less than 3.5% at the �rst and the second iteration
of the total errors committed by the 3D decoder. Then, for a medium signal to noise ratio,
corresponding to the region where the performance of the 3D TC is better than that of
the classical TC, it is similarly observed that the errors due to the pre-decoder represent
less than 2.5% at the �rst and the second iteration of the total errors committed by the
3D decoder. Finally, in the error �oor region, all the committed errors are not due to the
pre-decoder which works perfectly.

Table 2.1: Statistics about the predecoder for blocks of k = 1530 bits, λ = 1/8 and more
than 1012 simulated binary samples.

As a conclusion, the relative number of errors due to the pre-decoder decreases with the
SNR. They are estimated, at the �rst and the second iteration, to be less than 3.5%. Up
to the third iteration for low and medium SNR and similarly at high SNR, the pre-decoder
is not responsible at all for the errors committed by the 3D decoder. This observation
opens the way for the use of other rate-1 post-encoders with lower correction capability
which may perform better from a convergence point of view.

2For λ = 1/8 and k = 1530 bits, the FER of the 3D TC reaches the value of 10−8. In order to have
reliable results, more than ten erroneous blocks have to be simulated. This corresponds to more than
1012 simulated binary samples.
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2.1.5 Permutations of a 3D turbo code

The 3D TC is characterized by two permutations denoted by P and P', as shown in Fig.
2.1. In theory, both permutations should be jointly optimized. However, P is the internal
permutation of the TC, and we keep P unchanged with regard to the original code for
reasons of backward compatibility. P' is used to spread a fraction l of the parity bits
before feeding them to the post-encoder. In other words, P' is used to spread P = 2λk
parity bits at the output of the turbo code before post-encoding. The main role of the
permutation P' is to avoid that the pre-decoder returns packages of errors to the entry of
the main decoder.

To illustrate the situation, let us consider a rate-1/3 turbo code with regular rectan-
gular permutation P (row-wise writing and column-wise reading). The main interest of
our choice is that it is easy to visualize the permutation P in this case. The constituent
encoders are 8-state encoders whose period is 7 and the recursivity generator is 15. The
input weight 4 square error pattern shown in Fig 2.8 is a "composite" error pattern con-
sisting of four identical input weight 2 elementary Return To Zero (RTZ) sequences:
10000001. The weight of the corresponding redundancy sequences produced before and
after permutation Π, y1 and y2, is equal to 6. The resulting total weight of this codeword,
equal to 28, allows low error rates to be reached. However, when this code is punctured
to coding rate 1/2, the resulting weight, 16, may be not high enough for some applications.

The role of 3D part of the encoder is to take a small fraction of the parity bits in y1

and y2, to interleave and then to re-encode them with the post-encoder. Hopefully, a few
1s of the redundancy part of the error pattern in Fig 2.8 will be moved away to each other
and will produce a signi�cant of additionnal 1s when post-encoded, thus increasing the
total codeword weight.

Figure 2.8: Possible error patterns of input weight 4 for a rate 1/3 turbo code.

Accordingly, a good permutation Π′ must break the regularity of rectangular composite
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patterns like those of Fig 2.8 in order to increase the weight of the elementary error
patterns and thereby the minimum distance of the 3D TC. To optimize P', di�erent
types of interleavers were tested starting from random permutations to more structured
permutations such as the regular interleaver.

Let i and j be the address in the natural order, and in the permuted order, respectively.
For the regular permutation in circular form, we assume P' to be de�ned by the following
congruence relation: i = Π′(j) = P0j + i0 %P , where i0 is the starting index, and P0 is
an integer relatively prime with P . For each block length, these parameters have to be
carefully chosen to guarantee a large spread (see 1.1.2).

In fact, it was observed through the di�erent simulations that the important property
is the spread and performance of the code associated to an interleaver is degraded by low
values of spread. The regular permutation achieves the maximum spread value of

√
2P

[24], where P is the size of the frame to be post-encoded. So it performs better than a
random interleaver in terms of MHD and convergence.

Example:

For blocks of k = 6138 bits and l = 1/4 , we have P = 2λk = 3069 bits. The parameters
of the regular permutation are: P0 ≈

√
2P ⇒ P0 = 79 and i0 ≈ P0

2
⇒ i0 = 37.

Fig. 2.9 shows the simulated FER performance of the 3GPP2 3D TC with random
and regular interleavers P' for code rate R = 1/2, l = 1/8 and k = 762 bits.

Figure 2.9: FER performance of the 3GPP2 3D TC with λ = 1/8 for k = 762 bits, R = 1/2

and comparison with the 3GPP2 TC. All simulations use the Max-Log-MAP algorithm
with 10 decoding iterations.
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The 3GPP2 3D TC using a random permutation P' does not perform well in terms
of MHD, but also in terms of convergence. However, the use of a regular permutation P'
results in an increase in the MHD of the 3GPP2 3D TC compared to the standardized
3GPP2 turbo code. In Fig. 2.9, an increase by more than 60 % is observed, which provides
a gain of more than two decades in the error �oor. These simulation results were con�rmed
with the asymptotical bounds as shown in Fig. 2.9. In fact, for transmission over the
Gaussian channel, the FER can be upperbounded by the union bound:

FER <
1

2

∑
d>=dmin

n(d) erfc

(
Rd

Eb
N0

)

where n(d) is the code multiplicity (number of codewords with weight d), and erfc(x)
is the complementary error function. Here again, the all-zero iterative decoding algorithm
(see 1.4.3) was applied to obtain the distance spectrum.

2.2 Performance of cdma2000 3D turbo codes

We have investigated the distance gain and the e�ect on turbo code convergence threshold
for di�erent block sizes, coding rates and permeability rates. Similarly to the case of
double-binary codes in [20, 21], we have observed that the addition of the post-encoder
improves the asymptotical behavior of the 3GPP2 turbo code in many cases.

Table 2.2 presents examples of MHD values obtained with this code for di�erent block
sizes and coding rates, using the all-zero iterative decoding algorithm. The authors in
[64, 65] analyzed the asymptotic weight distribution of 3D TCs and showed that their
typical minimum distance may, depending on certain parameters, asymptotically grow
linearly with the block length.

Note that there are few boxes in Table 2.2 containing the not applicable abbreviation
N/A. In fact, if the coding rate is R = 4/5, we can not insure a post-encoding with λ = 1/4

since half of the post-encoded bits are going to be punctured (see 2.1.3). To avoid the
problem, we can puncture the systematic bits but it would lead to additionnal convergence
loss.

We can observe that the direct application of the third coding dimension to the existing
code leads to an increase of its minimum distance, except in the case of high coding rates.
Table 2.2 shows that it is attractive to increase λ, since larger minimum distances are
obtained. However, this will be paid in terms of loss in convergence threshold, as explained
in 2.1.3. Also, the increase in complexity is not negligible. The aim of the next section
2.3 is to carry a thorough study in order to estimate the additional complexity. This
represents another contribution of the thesis.
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k = 570 bits R = 1
3

R = 1
2

R = 2
3

R = 4
5

3GPP2 TC 17 10 6 4
3D TC (λ = 1

4
) 29 17 13 N/A

3D TC (λ = 1
8
) 27 17 9 4

3D TC (λ = 1
16
) 25 15 8 4

k = 762 bits R = 1
3

R = 1
2

R = 2
3

R = 4
5

3GPP2 TC 19 11 6 4
3D TC (λ = 1

4
) 39 23 9 N/A

3D TC (λ = 1
8
) 30 18 8 4

3D TC (λ = 1
16
) 21 14 6 4

k = 1530 bits R = 1
3

R = 1
2

R = 2
3

R = 4
5

3GPP2 TC 28 14 8 5
3D TC (λ = 1

8
) 36 18 8 5

k = 2298 bits R = 1
3

R = 1
2

R = 2
3

R = 4
5

3GPP2 TC 25 11 8
3D TC (λ = 1

8
) 36 18 8

k = 3066 bits R = 1
3

R = 1
2

R = 2
3

R = 4
5

3GPP2 TC 23 13 7 5
3D TC (λ = 1

8
) 38 21 10 6

k = 6138 bits R = 1
3

R = 1
2

R = 2
3

R = 4
5

3GPP2 TC 30 15 9 5
3D TC (λ = 1

8
) 38 30 10 5

Table 2.2: Minimum Hamming distance values for the 3GPP2 and the 3GPP2 3D turbo
codes for di�erent coding rates and block sizes.

2.3 3D turbo codes hardware implementation issues:

decoder architecture and complexity analysis

In [20, 21], the complexity increase was estimated to be less than 10% with respect to
classical 2-dimensional TC. In this section, we propose an appropriate hardware architec-
ture of a 3D turbo decoder and the corresponding complexity analysis. In fact, compared
to a classical turbo decoder, the additional complexity of the 3D turbo decoder is mainly
due to the implementation of the binary 4-state decoder but also to the calculation of the
extrinsic information about the post-encoded parity bits.
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2.3.1 3D turbo decoder architecture

The typical overall turbo decoder architecture is composed of three modules, represented
in Fig. 2.10. First, the input module receives the input frames and transmits them to the
decoder module. It requires a double input bu�er, in order to receive the next frame while
decoding the current one. The input bu�er is divided into as many memory banks (MB)
as the number of processors placed in parallel (i.e. Proc). This parallelism allows having
di�erent throughputs according to the application. Then, the decoder module performs
I iterations on the frame stored in the input module and writes the decoded codeword
into the output module. This module contains Proc SISO processors and an extrinsic
memory decomposed into as many memory banks as the number of physical processors
(not represented in the �gure). A �nite state machine (not represented) controls the
processors. For each iteration, the set of Proc processors has to perform the decoding of
the component codes. At the end, the output module stores the hard decisions produced
by the decoder module and sends them to the output of the decoder. In the case of 3D TC,
since the pre-decoder has much less data to process than the main SISO decoders (only
l = 1/8 or l = 1/4) of the parity bits are re-encoded by the post-encoder), no parallelism
is considered for the pre-decoder.

Figure 2.10: Generic 3D turbo decoder organization for Pr processors.
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2.3.2 Max-Log-MAP decoder complexity analysis

To analyze the complexity of 3D TCs, let us consider a RSC code with the following
parameters: n is the memory length of the code, n is the number of coded bits provided
by the encoder at each trellis stage when no puncturing is performed, and k is the trellis
length. For a classical binary turbo code, k is also the length of information sequence, in
terms of binary bits.

This subsection details the di�erent steps of the decoding process and the associated
decoding complexity, in terms of arithmetic and logical operations. We assume a transmis-
sion over an AWGN channel with noise variance σ2, using BPSK modulation. However,
the same decoder is used for transmissions over fading channels. Then, the channel coef-
�cients are taken into account upstream of the decoder. The following description of the
algorithm is also valid when high order modulations are considered, in the case where a
Bit-Interleaved Coded Modulation (BICM) approach [28] is adopted.

� Computation of branch metrics mett(s', s) :

At time step t, the metric associated with trellis branch or transition (s', s) is de�ned as

mett(s
′, s) = ±xt ± yt,1 ± ...± yt,n−1 + zt (2.3)

where xt is the received systematic data, yt,1±...±yt,n−1 are the n−1 received redundant
data, and zt is the a priori incoming information. The computation of the 2n di�erent
values ±xt ± yt,1 ± ... ± yt,n−1 requires 2n+1 − 4 additions/subtractions. The addition
of the a priori term requires two extra additions. We assume that the computation of
the branch metrics is performed twice, once for the forward recursion and once for the
backward recursion.

� Computation of forward and backward state metrics for each trellis stage
s:

The state metrics are computed recursively using the following relations:
Forward recursion:

MF
t (s) = min

s′∈{0,...,2ν−1}

(
MF

t−1(s′) +mett−1(s′, s)
)

(2.4)

Backward recursion:

MB
t (s) = min

s′∈{0,...,2ν−1}

(
MB

t+1(s′) +mett−1(s, s′)
)

(2.5)

According to the equations (2.4) and (2.5) above, the update of one forward state
metric involves the comparison and selection of two concurrent paths that can be per-
formed using two additions and one comparison-selection operation, implementing a tree
structure. The update of backward state metrics requires the same number of operations.

� Computation of the soft decisions (⇔ a posteriori LLRs ) and hard deci-
sions:
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If we denote by λt(δ) the soft information de�ned as

λt(δ) = min
(s′,s)

(
MF

t (s′) +mett(s
′, s) +MB

t+1(s)
)

(2.6)

where δ ∈ {0, 1}, the a posteriori log-likelihood related to data at time step t is
computed as

Lt(δ) =
1

2

(
λt(δ)−minδ′∈{0,1} λt(δ')

)
(2.7)

Term minδ′∈{0,1} λt(δ
′) is a normalization term.

The hard decision provided by the decoder corresponds to the binary representation
of δ that minimizes λt(δ) and makes Lt(δ) equal to zero.

δ̂ = arg min
δ∈{0,1}

(Lt(δ)) = arg min
δ∈{0,1}

(λt(δ))

The computation of two a posteriori LLRs requires the computation of two values of
λt(δ), δ ∈ {0, 1}. Relation (2.6) involves two additions for each transition in the trellis.
This complexity can be reduced to one addition by observing that partial termsMF

t (s′)+
mett(s

′, s) or mett(s′, s) +MB
t+1(s) are already available through the forward or backward

recursion.
For each value of δ, the minimum value of 2ν terms MF

t (s′) + mett(s
′, s) + MB

t+1(s)
has to be computed, resulting in 2ν − 1 compare-select operations, using a tree structure.
Consequently, the computation of two values for λt(δ) requires 2ν+1 additions and 2(2ν−1)
comparisons and selections.

The computation of two a posteriori LLRs from equation (2.7) requires a compare
and select tree to compute the min term, that is one compare and select operation, two
subtractions and two divisions by 2. Actually the subtraction in the case of λt(δ̂) can be
avoided, since Lt(δ̂) = 0 and the number of subtractions can be reduced to one. Divisions
by 2 are not taken into account in the operator calculation, since they only come to remove
the least signi�cant bit.

The hard decision δ̂ can be directly inferred from the compare and select tree allowing
the minimum value of λt(δ) to be computed.

� Computation of extrinsic information Let (δ) related to information bits:

The extrinsic information computation is similar to the a posteriori log-likelihood Lt(δ),
using the extrinsic branch metrics. We compute the extrinsic soft information λet (δ)
de�ned as

λet (δ) = min
(s′,s)

(
MF

t (s′)± yt,1 ± ...± yt,n−1 +MB
t+1(s)

)
where the min operation is performed among 2ν transitions corresponding to data

value δ. Then, the extrinsic log-likelihood Let (δ) is computed as follows

Let (δ) =
1

2

(
λet (δ)− λet (δ̂)

)
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The term subtracted to λet (δ) is the extrinsic value corresponding to the hard decision
δ̂.

If we assume that terms ±xt + zk have already been made available during the branch
metrics computation step (equation (2.3)), each piece of extrinsic information is obtained
from the a posteriori LLR with two subtractions. The total extrinsic information com-
putation is then performed using 22 subtractions.

� Computation of extrinsic LLRs related to redundancy bits:

In the case of 3D TCs, additional extrinsics related to re-encoded redundancy bits have
to be computed by the main SISO decoders. Each additional extrinsic LLR is computed
from the following relation:

Lyt =
1

2

[
min

(s′,s)/yt=0

(
MF

t (s′) +mett(s
′, s) +MB

t+1(s)
)
− min

(s′,s)/yt=1

(
MF

t (s′) +mett(s
′, s) +MB

t+1(s)
)]
−yt

where y is the considered redundancy bit.
Observing that termsMF

t (s′)+mett(s
′, s)+MB

t+1(s) are already available, we only have
to compute the minimum value of these terms for value redundancy 0 and for redundancy
1. Thus two minimum values have to be computed among 2ν terms, resulting in using two
tree structures requiring 2ν − 1 compare-select operations each. Then, the extrinsic LLR
is computed by subtracting these two values, dividing by 2 and subtracting the received
redundancy bit. Consequently, the computation of each additional extrinsic redundancy
value requires two subtractions and 2 (2ν − 1) compare-select operations.

Table 2.3 summarizes the resulting complexity for the process of a trellis stage, or
equivalently of an information bit. The corresponding numerical values are given in Table
2.4. In order to compare the complexity of the di�erent families of decoders, it is assumed
that addition/subtraction and compare-select operators have similar hardware complexity.
This complexity assessment does not take the size of the operators into account.

2.3.3 Memory requirements for the 3D turbo decoder

The memory requirements for the turbo decoder are the amount of both RAM and ROM
memory. A very small amount of ROM memory is required to store the turbo code
permutation parameters. This amount of memory is the same for all coding schemes
under consideration. The RAM memory requirements are detailed below. We assume
that the data at the input of the decoder are quantized on qx bits.

� Two input bu�ers (single-port RAM) are necessary for each data sequence, including
systematic and parity bits, stemming from the transmission channel (see Fig. 2.10).
Thus, if k is the length of the information sequence, 2k

R
input samples, quantized on

qx bits, have to be stored at the decoder input.
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Add (or substract) Compare-select

Branch metrics (forward or backward recursion) 2n+1 − 2

One step of recursion (forward or backward) 2ν+1 2ν

A posteriori LLRs and hard decision 2ν+1 + 1 2ν+1 − 1

Extrinsic LLRs for information bits 4

Extrinsic LLRs for redundancy bits 2 2ν+1 − 2

Total computational requirement per information bit

for classical TC

3× 2ν+1 + 2n+2 + 1 2ν+2 − 1

Total computational requirement per information bit

for 3D TC

3× 2ν+1 + 2n+2 + 3 3× (2ν+1 − 1)

Table 2.3: Computational complexity of the Max-Log-MAP algorithm. ν is the code
memory and n is the total number of encoded bits at the decoder input, at each time
step.

� In addition, 2k extrinsics (dual-port RAM) need to be stored (quantized on qx + 1
bits). For a 3D TC, additional extrinsics (2lk) related to re-encoded redundancy
bits need to be stored.

� Then, the hardware decision at the decoder output requires k memory bits (single-
port RAM).

� Inside the SISO decoding processors, state metrics have to be stored at each it-
eration. The straightforward application of the Max-Log-MAP algorithm requires
storing state metrics (either forward or backward). This can represent an una�ord-
able amount of memory for large k. In order to overcome this limitation, sliding
window [10] processing can be implemented. The decoding length is then limited to
a given truncated length TL rather than to the frame length k. This allows the over-
all decoding delay and the memory requirement to be reduced. Only TL.2ν state
metrics have to be stored. In practice, a window size equal to TL = 32 represents
a good trade-o� between complexity and performance.

2.3.4 Summary

Table 2.4 compares the hardware complexity of the 3GPP2 turbo decoder and the cor-
responding 3D decoder when l = 1/8 is used: k = 1530 bits and R = 1/2. Table 2.4
provides the complexity of the overall hardware dedicated to SISO decoding with the
Max-Log-MAP algorithm in terms of add/compare-select operators; and the amount of
RAM memory required for the implementation in terms of equivalent single-port RAM
bit (we assume that one dual-port RAM bit is equivalent to two single-port RAM bits).

The number of SISO decoders placed in parallel, Proc, depends both on the required
data throughput and on the hardware implementation technology. Table 2.4 presents
complexity �gures for Proc = 1, Proc = 2 and Proc = 4.
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Table 2.4: Summary of complexity analysis for 3GPP2 and 3D turbo decoders for k = 1530
bits, R = 1/2 and λ = 1/8.

This complexity assessment does not take the size of the SISO internal operands into
account. The implementation of the control part (state machines) and interleavers is not
taken into account either. Note that the complexity of the state machines does not di�er
a lot between the di�erent families of decoders. To conclude, the �rst estimation of the
complexity increase in [20, 21] was optimistic. In fact, the more important the degree of
parallelism, the less the impact in terms of relative additional complexity of using a 3D
TC.

The authors in [69] provide a detailed comparison on the 3D decoder's complexity for
a double binary TC. They consider the implementation complexity on FPGA and in 65nm
ASIC technology. According to their approach, an additional complexity between 20%
and 40%, depending on the implemented technique, is required for the 3D con�guration
compared to the classical turbo decoder. Their results are coherent with what we have
obtained. This brings a complementary view of our analysis, dealing with computational
complexity and memory requirements.

2.4 Conclusion

In this chapter, we presented a detailed study of the 3-dimensional turbo code. The 3D
TC structure as well as the decoding process were discussed. This structure may be used
in any receiver already using a turbo decoder, for example for the future generation of
mobile TV, DVB-NGH. The main advantage is the potential reuse of hardware in mobile
phones, where a 3GPP or 3GPP2 decoder is already available. Given the parent turbo
code (the 3GPP2 turbo code in the case considered), the performance of the 3D TC
depends on some key parameters. The interleaving law Π′(which permutes the parity bits
before feeding them to the post-encoder) and the permeability rate λ have been properly
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optimized. Besides, we discussed the di�erent requirements that the post-encoder has to
meet and how it is possible to choose a post-encoder by means of an EXIT analysis.

The most interesting property of the 3D TC is that it signi�cantly improves perfor-
mance in the error �oor region with respect to the classical turbo code. Several upper
bounds on the minimum distance of 3D binary turbo codes with 8-state upper and lower
constituent encoders and 3GPP2 interleavers were presented. Besides, the di�erent stages
were illustrated with simulation results and asymptotical bounds. A thorough complexity
analysis of the 3D decoder has been carried out in order to estimate the additional com-
plexity. When high throughputs are required for a given application, several processors
can be placed in parallel, which decreases the relative additional complexity of the 3D
coding scheme.

In this chapter, the contributions of the thesis were the investigation of the interleaving
law Π′, the choice of a convenient post-encoder based on EXIT charts and the complexity
analysis. The next chapter focuses on how to improve 3D TCs. The aim is to reduce the
loss of convergence and to increase even more the distance especially in the case of high
coding rates.
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Chapter 3

Improving 3-Dimensional turbo codes

T
he 3-dimensional turbo code provides improved asymptotic performance for a wide
range of block lengths and coding rates, at the expense of an increase in complexity

and a loss in convergence. In section 3.1, code optimization issues are discussed and we
show that it is possible to improve even more the distance properties of the 3D TC by
introducing an irregularity in the post-encoder permeability pattern. Then in section 3.2,
we discuss convergence issues and we propose time varying 3-dimentional turbo codes as
an alternative to reduce the observable loss of convergence. Finally, we analyse the associ-
ation of 3D TCs with speci�c high order modulations in order to improve the performance
of the 3D TC in the waterfall region.
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3. Improving 3-Dimensional turbo codes

3.1 Improving the asymptotic performance of the 3D

turbo code

The use of 3D TCs results in an increase in the MHD with respect to classical TCs,
except in the case of high coding rates (see 2.2). Two di�erent study directions have
been investigated in order to optimize 3D TCs: increasing even more the minimum Ham-
ming distance and reducing the loss in convergence. In this section, we are interested
in improving the asymptotic performance of the 3D TC especially for the 3GPP2 code
family. In fact, we have observed that, for this turbo code, the error patterns with weight
MHD often have very low multiplicities. This is mainly due to the tail bits since they
represent singular points in the trellis and cause the codewords to be truncated. The
�rst step involves eliminating these codewords by means of the adoption of a non regular
post-encoding pattern. In subsection 3.1.1, the optimization method is detailed followed
by two examples in 3.1.2 and 3.1.3.

3.1.1 Optimization method

To obtain the distance spectrum of the 3D TC, we apply the all-zero iterative decoding
algorithm (see 1.4.3). We have observed in the distance spectrum that the �rst terms
have a low multiplicity. The idea is to eliminate the corresponding codewords in order
to increase the minimum distance dmin. Therefore, we have modi�ed the pattern of post-
encoding, which is no more regular, to generate more ones in the codeword with the lowest
weight. Fig. 3.1 illustrates in a simple way the principle of the method explained above.
The algorithm is the following:

1. Consider the codeword with the lowest weight.

2. Extract the addresses where the systematic bit x, the parity bit y or the post-
encoded parity bit w is equal to one.

a) If the systematic bit x is one and the corresponding parity bit y does not bene�t
from the regular post-encoding, include this address in the new post-encoding
pattern.

b) If the systematic bit x is zero, but the parity y is one, check whether the address
of the parity bit bene�ts from the regular post-encoding. If not, include this
address also in the new post-encoding pattern.

c) If the post-encoded parity w is equal to one, do not modify the pattern for the
corresponding address.

3. If there are several low weight codewords, go to step 2.

4. Finally, adapt the pattern of post-encoding in order to take into account the previous
constraints. The addresses which will not any more bene�t from the post-encoding
are randomly selected. However, it is preferable to spread the modi�cations on all
the length of the frame, not to discriminate a given region.
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3.1. Improving the asymptotic performance of the 3D turbo code

Note that each change of an address in the post-encoding pattern involves four exchanges
of parity bits. Let us assume that Ntot is the total number of modi�cations necessary to
generate the irregular pattern of post-encoding. Then, the distance of the code may be
increased or in the worst case reduced by 4Ntot.

Figure 3.1: Illustration of the optimization method.

The following subsections 3.1.2 and 3.1.3 show the application of this optimization in two
particular cases of the 3GPP2 3D code.
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3.1.2 Example 1: optimization results for k = 1530 bits, R = 1/2

and λ = 1/8

Table 3.1 provides the �rst terms of the distance spectrum of the 3GPP2 3D TC obtained
for k = 1530 bits. In this case, the post-encoding occurs regularly for the bits which
address modulo 8 is equal to 1.

Table 3.1 shows that there is only one codeword with weight 18. We have noticed
that there are four ones in the systematic part for the systematic bits at addresses {498,
512, 610 and 624}. There are also fourteen ones in the redundant part for the parity bits
at addresses {350, 352, 356, 499, 501, 507, 511, 611, 613, 619, 623, 782, 784 and 788}.
However, all the post-encoded bits are equal to zero. Therefore, we have changed the
pattern of post-encoding to generate more ones and to eliminate the codeword with weight
18. Among the di�erent possible patterns, we have �nally introduced an irregularity in
the previous pattern of post-encoding in order to postcode the bits at addresses {499,
501, 507, 511, 611, 613, 619 and 623} instead of {9, 81, 241, 401, 785, 961, 1121 and
1361}. We have chosen to spread our modi�cations on all the length of the frame, not to
discriminate a given region.

Distance 18 20 21 22 23 24 25 26 27 28

Multiplicity 1 1 4 2 6 1 2 4 5 9

Table 3.1: First terms of the distance spectrum for a 3D TC where k = 1530 bits, R = 1/2

and λ = 1/8.

The codeword with weight 18 was eliminated. But, it was not possible to eliminate the
codeword with weight 20 since one of the codewords with a just higher weight becomes a
codeword with weight 20 each time we applied another possible pattern. Indeed, it was
noticed that there are many common addresses containing ones in the di�erent codewords
of this distance spectrum. In other words, one codeword di�er from the others by only
few addresses. Several codewords, initially with high weight, appear in the new distance
spectrum with a much lower weight which makes it di�cult to �nd an irregular pattern
of post-encoding that leads to a huge increase in the minimum distance. So, the search
�nally led to the increase of the minimum distance by 2 and the new distance of the
optimized 3GPP2 3D TC is 20.

To conclude, the use of 3D TC results in an increase in the minimum Hamming
distance dmin by more than 28% for code rate R = 1/2, λ = 1/8 and k = 1530 bits (where
k is the number of data bits), compared to the standardized 3GPP2 turbo code. Then,
the optimization of the post-encoding pattern results in a total increase in dmin by more
than 42 % (from dmin = 14 to dmin = 20) for code rate R = 1/2, λ = 1/8 and k = 1530
bits.

The FER performance of the 3GPP2 3D TC has been simulated with λ = 1/8. Then
one bit out of eight is regularly picked from each of the parity streams starting with the
�rst bit from each stream. For the 3D TC, the optimization of the post-encoding pattern
provides a gain of 2.5 decades in the error �oor compared with the classical TC as shown
in Fig. 3.2 with the asymptotical bounds.
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Figure 3.2: FER performance of the optimized 3D TC with λ = 1/8 for k = 1530 bits,
R = 1/2 and comparison with the 3D TC and 3GPP2 standardized TC. All simulations
use the Max-Log-MAP algorithm with 10 iterations.

3.1.3 Example 2: optimization results for k = 1146 bits, R = 2/3

and λ = 1/4

The same kind of optimization was performed with another frame length, k = 1146 bits,
R = 2/3 and λ = 1/4. Table 3.2 provides the �rst terms of the distance spectrum that
we have succeeded in detecting them by the application of all-zero iterative decoding
algorithm.

Distance 12 15 21 27 47 48

Multiplicity 1 3 ≥ 1 ≥ 2 ≥ 2 ≥ 1

Table 3.2: First terms of the distance spectrum for a 3D TC where k = 1146 bits, R = 2/3

and λ = 1/4.

Table 3.2 shows that there is only one codeword with weight 12, three codewords with
weight 15, at least one codeword with weight 21, at least two codewords with weight 27
and all the other codewords are with very high weight. In the codeword with the lowest
weight (i.e. 12), we have noticed that the ones are concentrated in the systematic part at
addresses {586, 587, 591, 650, 651,655, 763, 764, 768, 1019, 1020 and 1024}. All the parity
bits y are equal to zero and do not bene�t from the post-encoding which occurs regularly
for the bits which address modulo 4 is equal to 1. To optimize the 3GPP2 3D TC, we have
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slightly modi�ed the permeability pattern in order to postcode the bits at addresses {586,
587, 650, 651, 763 and 764} instead of {9, 101, 581, 925, 1029 and 1133}. Also, we have
chosen to spread our modi�cations on all the length of the frame, not to discriminate a
given region. The idea was easier to implement, compared with k = 1530 bits, since there
were few low weight codewords in the spectrum. The ones appear only in the systematic
part of the codeword with weight 12, and the codewords in the distance spectrum are
independant. That's why we have succeeded in eliminating all the codewords with lower
weights at once.

The new minimum distance of the optimized 3D TC is 33 (see Fig. 3.3). This value
has to be compared to 7 which is the distance of the standardized 3GPP2 TC. The use of
optimized permeability patterns resulted in a huge increase in dmin for code rate R = 2/3,
λ = 1/4 and k = 1146 bits. The spectrum has changed: some codewords disappeared and
other codewords appeared with new distances ≥ 33.

Figure 3.3: Asymptotical bounds of the optimized 3D TC, the 3D TC (with λ = 1/4) and
the 3GPP2 classical TC for blocks of k = 1146 bits at coding rate R = 2/3.

Checking the asymptotic performance for dmin = 33 by Monte Carlo simulations turns
out to be too time consuming when running the simulations on a classical PC computer.
Thus, in this particular case, we have developped a speci�c technique to check that the
new value of dmin is 33. In fact, we have exchanged six addresses in the pattern of
post-encoding, which corresponds to 24 modi�cations in the parity bits. Thus, the worst
case will be to loose 24 in the minimum Hamming distance. We have to consider all the
codewords before optimization, to apply the new irregular pattern of post-encoding and
to test whether the new weight is bigger than 33 or not. Furthermore, we have to do
this veri�cation only for the codewords with weight less than 57 before optimization. For
codewords with weight more than 57 before optimization: even if we loose 24 in dmin, the
distance remains higher than 33.
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3.1.4 Conclusion

To conclude, a slight irregular pattern of post-encoding produces an improvement in the
distance properties. These results are optimistic, and encourage to implementing the
optimization method especially for high coding rates, in order to increase even more the
MHD of the 3D turbo code.

Note that the optimization method presented above is applicable for any family of
turbo codes provided that the distance spectrum has low multiplicities at the beginning, as
for the 3GPP2 code family. If this opportunity arises, the modi�cation of a few addresses
in the pattern of post-encoding produces an improvement in the distance properties.

However, the method cannot be applied when an Almost Regular Permutation (ARP)
is used like in WiMAX mobile communications. Since the bits distribution is periodic,
the codewords multiplicity is at least equal to this period, i.e, ≥ 4. Also, better distances
are obtained compared with the 3GPP2 code as a tail biting termination is used in this
case.

3.2 Improving the convergence threshold of the 3D

turbo code

The 3D TC improves performance in the error �oor compared to the classical TC, at
the expense of a loss in convergence and an increase in complexity. In this section, we
�rst determine di�erent convergence thresholds of the 3D TC for various coding rates and
several values of λ. This allows the theoretical loss of convergence compared to classical
TCs (i.e., when λ = 0) to be calculated. Secondly, in order to reduce the observable
loss in convergence at high error rates, the current post-encoder has been replaced by a
time-varying trellis based encoder that allows the minimum distance of the post-encoder
to be increased without augmenting error multiplication at its output. Finally, we show
that there is no need to use the time varying technique when the code is associated with
a high order modulation because the observable loss of convergence is removed when a
speci�c permutation before the mapping is used.

3.2.1 Convergence threshold of binary 3D turbo codes

To generate the EXIT chart (see 1.4.2) of a TC, we have to consider the transfer charac-
teristics of the extrinsic information for each SISO decoder. In the case of 3D TC, the two
SISO decoders exchange extrinsic information about the systematic part of the received
codeword, like for classical turbo decoding. But both of them exchange also extrinsic
information about the post-encoded parity bits with the 4-state SISO pre-decoder. And
we have to take into account in the EXIT chart that the extrinsic information about
these parity bits is changing from an iteration to the other. In fact, the input MI changes
each iteration as the predecoder feeds the two SISO decoders with new extrinsic informa-
tion about the post-encoded parity bits. Consequently, the curves of mutual information
exchange between the two decoders change every iteration.
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For example, the EXIT charts of the classical turbo code and the corresponding 3D
turbo code with parametersR = 2

3
and λ = 1

8
at an Eb

N0
of 1.49 dB and 1.55 dB, respectively,

are depicted in Fig. 3.4. Note that the curves remain almost unchanged after the fourth
iteration. In both cases of Fig. 3.4, the tunnel between the two EXIT curves opens,
predicting convergence thresholds around these values. These results were con�rmed by
the simulations of the code.

Figure 3.4: EXIT charts of the classical turbo code at Eb/N0 = 1.49 dB for code rate
R = 2/3 and the corresponding 3D TC with λ = 1/8 at Eb/N0 = 1.55 dB.
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Note:

While analyzing the 3D Exit charts, it was observed that the curves remain almost un-
changed after a certain number of iterations, depending on the considered code rate. In
the future, it is possible to further explore these EXIT charts. In fact, I noticed that
the EXIT charts of the post-encoder and the classical TC intersect, meaning that the
post-encoder is no more useful after a certain number of iterations. Consequently, a new
3D decoding process can be proposed where the predecoder is activated for only few it-
erations. Afterwards, the classical turbo decoder returns in position. This decoder is
also interesting from a consumption point of view and allows the latency of the decoding
process to be reduced.

In Fig. 3.5, we have plotted the FER performance of the 3D 3GPP2 TC to compare
it with that of the 3GPP2 TC. As expected, we can observe a loss in convergence around
0.06 dB in the waterfall region. Compared with the classical TC , this value corresponds
to the loss of the convergence threshold previously predicted by the EXIT charts for the
3-dimensional TC at coding rate R = 2

3
and λ = 1

8
: 1.55 dB −1.49 dB. On the other

hand, the low error rate performance is noticeably improved: a gain of 0.8 dB at FER
= 10−5.

Figure 3.5: FER performance of the 3D 3GPP2 TC with λ = 1/8 for k = 1146 bits,
R = 2/3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm
with 10 iterations.
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In the sequel, di�erent convergence thresholds of 3GPP2 3D turbo codes are estimated
through an EXIT chart analysis over the additive white Gaussian noise channel and over
the Rayleigh fading channel as well.

Transmission over the AWGN channel:

Di�erent convergence thresholds of 3GPP2 3D turbo codes, for several code rates and
values of λ, are given in Table 3.3. As expected, for a �xed code rate R, the best conver-
gence threshold is achieved by the classical turbo code (λ = 0), while increasing λ leads
to poorer thresholds. In other words, the loss in the convergence threshold increases with
λ.

R = 1
3

R = 1
2

R = 2
3

R = 4
5

λ = 1/4 0.19 dB 0.82 dB 1.67 dB 2.58 dB
λ = 1/8 0.08 dB 0.73 dB 1.55 dB 2.45 dB
λ = 0 −0.07 dB 0.60 dB 1.49 dB 2.44 dB

Table 3.3: Convergence thresholds of 3GPP2 3D turbo codes over the AWGN channel.

Transmission over the Rayleigh fading channel:

The convergence thresholds of 3D turbo codes are also estimated through the same kind of
EXIT chart analysis over the Rayleigh fading channel [103, 106]. In Table 3.4, we show the
convergence thresholds of the 3D TCs for transmissions over the Rayleigh fading channel
and the Gaussian channel at coding rate R = 1

2
and λ = 1/8. Table 3.4 shows that the

loss of convergence is more signi�cant over the Rayleigh fading channel. Many simulations
have been carried out to con�rm this observation.

Note:

With error correcting coding and transmission over a slow �at Rayleigh fading channel,
the diversity order equals the minimum Hamming distance of the code [6].

Convergence threshold Gaussian channel Rayleigh fading channel

TC (R = 1/2) 0.6 2.54
3D TC (R = 1/2, λ = 1/8) 0.73 2.73

Loss in convergence threshold 0.13 dB 0.19 dB

Table 3.4: Convergence thresholds of 3GPP2 3D turbo codes over the Rayleigh fading
channel and comparison with the Gaussian channel.

This result represents a major drawback of 3D turbo codes. In fact, for applications
such as terrestrial mobile radio communications where the simulations are carried out
over fading channels, the loss of convergence is higher. However, the 3D turbo codes are
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adapted to transmissions over Gaussian channels. Thus, they can be used in applications
such as �xed satellite communications. In subsections 3.2.2 and 3.2.3, we propose two
techniques to remedy these convergence issues.

3.2.2 Time varying 3D turbo codes

So far, we have only considered �xed or time invariant (TI) convolutional codes. Time
varying (TV) convolutional encoders have generator polynomials which periodically vary
with time. The idea appeared for the �rst time in the paper of Costello [33]. The
author conjectured that non-systematic time varying convolutional codes have larger free
distances, dfree, than �xed convolutional codes with the same rate and constraint length.
This conjecture led to the search for periodic time varying (PTV) convolutional codes
that are better than TI convolutional codes with respect to dfree. Little progress on the
construction of such time-varying codes was reported in [76], where Mooser tried but
was not able to �nd a periodic code with a larger dfree than any �xed code at coding
rate R = 1

2
and for a constraint length ν = 4. By means of computer-aided search, Lee

found in [68] some dfree = 8 PTV convolutional codes while randomly searching for good
period-4 codes with the same set of parameters (i.e., at coding rate R = 1

2
and for a

constraint length ν = 4). Furthermore, Palazzo discovered a period-2 rate 2/3 memory
1 PTV convolutional code with dfree = 4 which is larger than dfree = 3 of best rate
2/3 TIC codes [79]. After an exhaustive search over PTV convolutional codes, Hu and
Pérez found in [62] three period-2 rate 1/2 memory 7 PTV convolutional codes with dfree
larger than any TI convolutional codes with that rate and memory. Based on the previous
studies concerning time varying convolutional codes, we decided to investigate a simple
time varying post-encoder in order to increase locally its minimum distance. This should
improve the level of the extrinsic information provided by the predecoder to the two SISO
decoders, which will hopefully reduce the observable loss of convergence threshold for 3D
TCs.

3.2.2.1 Choice of the time varying post-encoder

In 2.1.4.1, we justi�ed the choice of the post-encoder by means of EXIT analysis. Code
(7,4) of Fig. 2.5 (b) was discarded since the 3D TC has the worst behaviour in the waterfall
region with this post-encoder. Code (5,4) has a good performance in the waterfall region,
whereas code (5,7) has the highest local minimum distance. In fact, the EXIT curves in
Fig. 2.6 corresponding to the post-encoders of Fig. 2.5 (a) and 2.5 (c) cross around input
MI 0.1. For high input MI the curve related to code (c) indicates a better behaviour in
the error �oor region. For this reason, the �rst idea is to combine the two encoders and
this mixture results in a time varying post-encoder.
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Figure 3.6: 4-state post-encoder with time-varying parity construction (5, 4 :7).

As shown in Fig. 3.6, the proposed time varying encoding technique consists in al-
ternating two redundancies in time W1 = 4 and W2 = 7, instead of having only one. If
we look at the trellis of the code (5,4:7) depicted in Fig. 3.7, we can easily identify two
di�erent paths corresponding to the all�zero sequence. So the decoder will not be able
to distinguish between them and the distance of the code is only 2, compared with 3 for
the RSC code (5,4). To avoid this problem, the idea proposed in [19] was to replace some
redundancies 4 by other redundancies 7 to get closer to the code (5,7). The replacement
period is denoted by L. Fig. 3.8 illustrates the principle of this technique.

Figure 3.7: Trellis of the post-encoder (5, 4 :7). Redundancies 4 and 7 are alternated in
time.

The following analysis allows us to determine the value of L. First, code (5,4) has a
corresponding decoder which only doubles the number of errors of its input at the �rst
iteration :

BERout = 2BERin

where BERin is the channel error rate. Using a time varying post encoder increases the
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Figure 3.8: Modi�ed time-varying post-encoding with a replacement period of L.

BER at its output. The BER at the �rst step is then expressed in the following way :

BERout,TV = 2 (BERin + ξ) (3.1)

where ξ is an additinal error rate at the output of the pre-decoder at the �rst step of the
iterative process. On the other side, we have by de�nition :

BERout,TV =
Number of erroneous bits for TV TC

Number of blocks
× 1

k

Since we generate three errors each time we replace a redundancy [19], we obtain :

BERout,TV =
Number of erroneous bits without TV + 3× Number of replacements

Number of blocks × k

= BERout, without TV +
3× Number of replacements

Number of blocks × k

= 2BERin +
3× Number of replacements

Number of blocks× k
(3.2)

If we compare the last expression (3.2) to the �rst one (3.1), we can identify :

2× ξ =
3× Number of replacements

Number of blocks× k

Finally :

ξ =
3

2

Number of replacements per block
k

The number of replacements per block is equal to ceil [ (k−3)
L

] + 1. The term k − 3 is
due to the �rst replacement which occurs for the third parity (ie. instead of alternating
W1,W2,W1,W2,W1,... , we will have W1,W2,W2...).

At the end, a given bloc size k can be considered. The evolution of ξ according to L,
given in Fig. 3.9, results from the formula:
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ξ =
3

2
×

ceil [ (k−3)
L

] + 1

k

Fig. 3.9 shows that the error rate ξ decreases when L increases. ξ in�uences the loss
of convergence threshold of 3D TCs, whereas L is related to the distance properties.
The asymptotic performance of a time varying post-encoder is better for small L values
because the number of the redundancies W2 exceeds that of the redundancies W1. In this
case, the time varying encoder is closer to the code (5,7) which has the higher distance,
that is 5. However, from the convergence point of view, Fig. 3.9 shows that it is better to
choose L high in order to reduce the additive error rate ξ. In fact, high values of L mean
that the TV post-encoder gets closer to the code (5,4) which has a better behaviour in
the waterfall region (see 2.1.4.1). Thus, the optimal value of L is a convergence/distance
trade-o�.

Figure 3.9: Estimation of ξ according to L for blocks of k = 1530 bits. ξ is an additional
error rate at the output of the predecoder at the �rst iteration.

For the 3D TC, the loss in convergence is more signi�cant for low code rates (such
as for R = 1/3 or R = 1/2). In this case, we privilege a high value of L = 30 to limit
the additional error rate ξ as much as possible. For the same block size and the same
permeability rate l, we privilege a small value of L = 10 for high code rates such as for
R = 4/5.
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3.2.2.2 EXIT analysis of time varying 3D turbo codes

Similarly to the EXIT of a 3D TC, we have plotted the EXIT of a time varying 3D TC.
For the post encoder, two redundancies W1 = 4 and W2 = 7 are alternated in time, but
W1 is replaced by W2 for all the periods of L. Therefore, the transfer characteristics of
the two decoders are no more symmetric.

Fig. 3.10 shows an EXIT chart of a 3-dimensional time varying turbo code for Eb/N0 =
1.58 dB. Note that the transfer characteristics are asymmetric and remain almost un-
changed after the seventh iteration. For Eb/N0 = 1.58 dB, the tunnel between the EXIT
curves is open, and the exchange of the extrinsic information continues along the itera-
tions until we reach the intersection point (1,1). Consequently, the convergence threshold
of the 3D TV turbo code is 1.58 dB for code rate R = 2/3 and l = 1/4.

Figure 3.10: EXIT chart of the time varying 3D TC at code rate R = 2/3, λ = 1/4, L = 30
and Eb/N0 = 1.58 dB.

On the other hand, the convergence threshold of the TC at code rate R = 2/3 is
estimated around 1.49 dB and that of the 3D TC is about 1.67 dB (see Table 3.3).
As a conclusion, the EXIT analysis shows that the use of time varying 3-dimensional
3GPP2 TC reduced the loss of convergence by 50 % from 0.18 dB (1.67−1.49) to 0.09 dB
(1.58−1.49) at code rate R = 2/3 and l = 1/4. These results were con�rmed by simulations
of the code, as shown in Fig. 3.11.

In addition, we have observed that the EXIT of a time varying 3D TC changes with
the value of L. A perspective would be to use this tool to choose an optimal value of L.
The selected value can be the L that produces the lowest convergence threshold.
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Figure 3.11: FER performance of the time varying 3D 3GPP2 TC with λ = 1/4 for
k = 1146 bits, R = 2/3 and comparison with the 3GPP2 3D TC and 3GPP2 TC. All
simulations use the MAP algorithm with 10 iterations.

3.2.2.3 Error rate performance of time varying 3D turbo codes

Simulations have been carried out in order to check the results predicted by the EXIT
charts.

Example 1: simulation over the Gaussian channel

The FER performance of the time varying 3GPP2 3D TC has been simulated with l = 1/4

and L = 30. Then one bit out of four is regularly picked from each of the parity streams
starting with the �rst bit from each stream. For the post encoder, two redundancies
W1 = 4 andW2 = 7 are alternated in time, butW1 is replaced byW2 for all the periods of
L = 30. Fig. 3.11 shows that the use of time varying 3-dimensional 3GPP2 TC reduced
the loss of convergence by 50% from 0.18 dB to 0.09 dB for k = 1146 bits at code rate
R = 2/3 and l = 1/4, compared with the 3GPP2 3D TC.

Example 2: simulation over the Rayleigh fading channel

Time varying 3GPP2 3D TCs have also been simulated over a Rayleigh fading channel.
Fig. 3.12 shows the BER performance for blocks of 2298 bits at code rate R = 1/3 and
l = 1/8. In this case, the observable loss of convergence is reduced by 35% from 0.23 dB
to 0.15 dB.
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Figure 3.12: BER performance of the time varying 3GPP2 3D TC with λ = 1/8 for
k = 2298 bits, R = 1/3 and comparison with the 3GPP2 3D TC and 3GPP2 TC. All
simulations use the Max-Log-MAP algorithm with 10 iterations.

Other simulations have been carried out for di�erent block sizes and coding rates of
the 3GPP2 turbo code. Among the simulated cases, it was observed that the time varying
parity construction reduces the observable loss of convergence by 10% to 50% of the value
expressed in dB. We have systematically checked that the asymptotic performance is not
degraded. In fact, the choice of the post-encoder does not in�uence a lot the minimum
distance of the 3D TC for a �xed code memory and for a given permeability rate λ. For
the time varying post-encoder, there is no reason to improve or degrade the asymptotic
performance since we introduce few local modi�cations. However, the higher the local
minimum distance of the post-encoder, the better the level of the extrinsic information
which the predecoder supplies to the two SISO decoders. Therefore, the TV technique
acts as a convergence accelerator of the 3D TC.

3.2.3 3D turbo codes for high spectral e�ciency transmissions

Usually, when a code is associated with a modulation, the choice of the bits placed in
the best protected binary positions of the modulation scheme in�uences the convergence
threshold. What about 3D TCs? For this purpose, we have also investigated the associ-
ation of the 3D TC with high order modulations. This structure is used for applications
where high data throughputs are required such as the transmission of HD TV. In the most
recent transmission systems, high bitrates require using high order modulations such as
16-QAM for 3GPP2, 64-QAM for LTE, 256-QAM for DVB-NGH, etc.
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3.2.3.1 Transmission scheme

We consider the coded modulation scheme depicted in Fig. 3.13, based on the so-called
pragmatic or BICM approach [28]. Fig. 3.13 shows a turbo encoder and a modulator
that follows an interleaver and a Gray mapper. It is known that among the bits forming
a Gray-labeled symbol in M -QAM or M -PSK modulations for M > 4, the average prob-
ability of error is not the same for all the bits. In fact, some bits forming the symbol have
a smaller average probability of error than the others [82]. Therefore, three constellation
mappings, all compliant with Gray labelling, were investigated. First, the mapping is uni-
formly distributed on the entire constellation. In a second con�guration, the systematic
bits are mapped to better protected places as a priority, and all the other bits are uni-
formly distributed. For the third mapping, the systematic bits are �rst mapped to better
protected places as a priority. Then, if it is possible, the post-encoded parity bits are
better protected by the considered modulation than the other non re-encoded parity bits.
This choice is made because the systematic bits as well as the post-encoded parity bits are
used by both decoders during the decoding process. Thus, protecting them is expected
to reduce the loss of convergence. At the receiver side, the demapper computes the Log
Likelihood Ratio (LLR) related to each bit of the information sequence. This symbol-to-
bit LLR calculation is followed by a 3D turbo decoder using the MAP algorithm. The
following subsections show the application of the proposed transmission scheme in some
particular cases of the 3GPP2 3D code.

Figure 3.13: Transmission scheme.

3.2.3.2 Example 1: 3D TCs associated with a 16-QAM modulator for
k = 2298 bits, R = 1/3 and λ = 1/8

Transmission over the Gaussian channel

Among the four bits forming a symbol with Gray labelling in 16-QAM, the average prob-
ability of error is smaller for the �rst and the third bits than for the second and fourth
bits. Details can be found in Appendix C. To explore this property in the context of
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3.2.3.1, FER performance of 3GPP2 3D TCs has been simulated with l = 1
8
at code rate

R = 1
3
for k = 2298 bits, as shown in Fig. 3.14.

Figure 3.14: FER performance of the 3GPP2 3D TC with λ = 1/8 for k = 2298 bits,
R = 1/3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm
with 10 decoding iterations and 16-QAM modulation. Transmission is over the Gaussian
channel.

It was observed through these simulations that the use of the 16-QAM modulation,
where the systematic bits as well as the post-encoded parity bits are better protected
than the other non re-encoded parity bits, allows the loss of convergence of the 3GPP2
3D TC to be reduced and even be transformed into a gain in the waterfall region of 0.22
dB compared with the standardized 3GPP2 TC. Whereas, for a QPSK modulation, the
convergence loss of the 3D TC was estimated to 0.15 dB at code rate R = 1

3
and l = 1

8
.

These simulation results were con�rmed by an EXIT chart analysis. In fact, Fig.
3.15a shows that the convergence threshold of a TC with 16-QAM modulation at code
rate R = 1

3
is 2.19 dB. Besides, the convergence threshold of the 3D TC with 16-QAM

modulation, where the systematic bits and the post-encoded parity bits are protected as
a priority, is 1.97 dB at code rate R = 1

3
and l = 1

8
(see Fig. 3.15b). This con�rms the

observed gain of 0.22 dB in the waterfall region.
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(a) EXIT charts of an 8-state TC for Eb/N0 = 2.19 dB.

(b) EXIT chart of a 3D TC for Eb/N0 = 1.97 dB and λ = 1/8. Note that after the third
iteration, the transfer characteristics remain almost unchanged.

Figure 3.15: Comparison of the convergence thresholds of a classical turbo code with a
3D TC at code rate R = 1/3. A 16-QAM Gray mapping is used.

Transmission over the Rayleigh fading channel

Similar simulations over the Rayleigh fading channel, for the same block size k = 2298 at
code rate R = 1

3
and l = 1

8
, are reported in Fig. 3.16. Here also, the loss of convergence
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is transformed into a gain in the waterfall region compared to the classical TC, as shown
in Fig. 3.16.

Figure 3.16: FER performance of the 3GPP2 3D TC with λ = 1/8 for k = 2298 bits,
R = 1/3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm
with 10 decoding iterations and 16-QAM modulation. Transmission is over the Rayleigh
fading channel.

This important result can be generalized for transmissions over Gaussian and fading
channels: 3D TCs associated with a 16-QAM modulation, where the systematic bits as
well as the post-encoded parity bits are more protected than the other non re-encoded
parity bits, allows the loss of convergence threshold to be removed and a gain is observed
at all SNRs.

3.2.3.3 Example 2: 3D TCs associated with an 8-PSK modulator for
k = 1146 bits, R = 4/5 and λ = 1/8

Among the three bits forming a symbol with Gray labelling in 8-PSK, the average prob-
ability of error is smaller for the �rst and the second bits than for the third bit. Details
can also be found in Appendix C. We have simulated the FER performance of 3D TCs
with l = 1

8
at code rate R = 4

5
for k = 1146 bits. Transmission over a Rayleigh fading

channel is considered. For this coding rate, the third con�guration cannot be adopted and
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we have to implement the second con�guration1. Simulations in Fig. 3.17 show that that
the use of an 8-PSK modulation, where the systematic bits are protected as a priority,
allows the loss of convergence of the 3GPP2 3D TC to be transformed into a gain in the
waterfall region of 0.5 dB compared with the 3GPP2 standardized TC. This gain is more
signi�cant than the one obtained with 16-QAM in the previous section.

Figure 3.17: FER performance of the 3GPP2 3D TC with λ = 1/8 for k = 1146 bits,
R = 4/5 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm
with 10 decoding iterations and an 8-PSK modulation. Transmission is over the Rayleigh
fading channel.

3.2.3.4 Design rules for 3D turbo coded modulations

The investigation of the previous three Gray mappings allows some design rules to be
de�ned. In fact, a loss of convergence is still observed when the bits in a symbol are
uniformly distributed on the entire constellation. However, when the second con�guration
or the last one is used, the loss in the convergence threshold disappears and a gain in the
waterfall region is observed. When these both con�gurations can be implemented, the
con�guration 3 must be used as far as possible. Otherwise, it is necessary to implement
at least the con�guration 2, as in the example presented above for the 8-PSK.

When the systematic bits are �rst protected as a priority and, if possible, the post-
encoded bits, a signi�cant gain is obtained. The technique is all the more interesting as

1In this case, 573 8-PSK symbols are required to transmit 1146 systematic bits, 288 post-encoded
parity bits, 143 redundancies y1 as well as 143 redundancies y2. Note that the systematic bits are placed
in the �rst two bits of all the symbols (because 2×573 = 1146). Consequently, each parity is transmitted
in the third bit of a given symbol.

68



3.3. Conclusion

the coding rates are higher for the same value of λ, even for transmissions over fading
channels. In other words, the problem related to the loss in the convergence threshold of
3D TCs can be solved.

3.3 Conclusion

It is naturally desirable to have turbo codes which have waterfalls as closest as possible to
the channel capacity and low error �oors. Therefore, this chapter deals with performance
improvement of 3D TCs. One of my contributions is the optimization method introduced
in order to increase even more the minimum Hamming distance of the 3D TC. Then,
convergence issues are also discussed in this chapter. One major drawback of the 3D TC
structure is that the loss of convergence is more signi�cant for fading channels compared
with Gaussian channels. It seems all the more necessary to �nd a solution to this problem.
Another contribution consists in time varying 3-dimentional turbo codes that are proposed
as an alternative to reduce the observable loss of convergence without degrading the
asymptotic performance. This technique allows reducing the loss of convergence by 10%
to 50% of the value expressed in dB. Furthermore, we analyze the association of 3D TCs
with speci�c high order modulations to improve the performance of the 3D TC in the
waterfall region. This contribution shows that when the code is associated with high
order modulations, there is no need to use a time varying trellis and a speci�c mapping
allows obtaining even a gain in the waterfall region. Therefore, the 3D TC is adapted to
be used in high spectral e�ciency transmission schemes.

This chapter represents an important part of my research work dealing with the per-
formance improvement of a 3-dimensional turbo code based on the partial concatenation
of the 3GPP2 code with a rate-1 post-encoder. I show that it is possible to build 3GPP2
3-dimensional turbo codes which have good performance in both regions. Performance
comparisons are made between the 3GPP2 standardized turbo code and the corresponding
3D code. The di�erent stages are illustrated with simulation results, asymptotical bounds
and EXIT charts. This code structure is expected to reach a performance/complexity
trade-o� never yet attained.

To conclude, we notice that the notion of irregularity plays a major role to build 3D
turbo codes having good performance at low and high SNRs. In fact, the optimization
method is based on the use of a non regular pattern of post-encoding and allows the
minimum distance to be increased. Besides, the time varying post-encoder (5, 4:7) with a
little irregularity and also the association of the 3-dimensional turbo code with high order
modulations, where both the systematic bits and the post-encoded parity bits are more
protected than the other parity bits create a sort of irregularity in the Gray mapping.
Both represent a success in reducing or even eliminating the problem of convergence loss.
The next step of the study concerns the investigation of irregular turbo codes. The aim
is to obtain an irregular TC which performs well in both the waterfall and the error �oor
regions.
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Chapter 4

Irregular turbo codes

L
ow Density Parity Check (LDPC) codes [53], �rst proposed by Gallager in 1963, and
later rediscovered by MacKay and Neal [72, 73], have been of great interest recently.

Like turbo codes, LDPC codes can achieve near Shannon limit error performance [86, 88],
and represent a very promising prospect for error control coding. Work on irregular
LDPC codes has shown that by making the codeword bits participate in varying numbers
of parity check equations, signi�cant coding gain can be reached [71, 74, 85]. For code
length equal to n = 105, Richardson et al. [86] proposed irregular LDPC codes that
perform better than the original rate-1/2 turbo code. Their simulation results showed that
irregular LDPC codes of length one million achieved a bit error probability equal to 10−6

less than 0.13 dB away from capacity.

Two years earlier, Frey et al. [51] had already introduced irregularity to turbo codes
in order to achieve better performance. Very interesting results were found for code rates
equal to R = 1/3 and R = 1/2. For example, by making the original rate-1/2 turbo code of
Berrou et al. slightly irregular, Frey et al. obtained a coding gain of 0.23 dB (compared
with the original code) at a block length of n = 131, 072, bringing the irregular turbo
code within 0.25 dB of capacity. However, an error �oor can be observed at a bit error
rate higher than 10−4. To our knowledge, only one reference [92] deals with the problem
of lowering the error �oor of irregular TCs: Sawaya et al. introduced symbol-based
iterative decoding. Their results show that the error �oor in the performance of the rate-
1/2 irregular TC proposed by Frey et al. in [51] is lowered signi�cantly and appears at a
bit error probability equal to 6× 10−6 instead of 4× 10−4 with code length n = 131, 072
and 100 decoding iterations.

In this chapter, we begin by reviewing the basics of irregular turbo codes in section
4.1. Then, in section 4.2, a new method using the EXIT diagrams allows the search for
good degree pro�les to be simpli�ed. In section 4.3, we design and simulate irregular turbo
coding schemes with suitable interleavers in order to improve their distance properties.
Finally, we propose a modi�ed encoding procedure in section 4.4. The aim is to obtain
irregular turbo codes which perform better than regular turbo codes in both the waterfall
and the error �oor regions.
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4. Irregular turbo codes

4.1 Basics of irregular turbo codes

4.1.1 Another representation of turbo codes

In most cases, the two (or more) constituent RSC encoders of a parallel turbo code
are identical. For this reason, the authors in [25, 26] proposed a �self-concatenated�
turbo encoder depicted in Fig. 4.1. It consists of the concatenation of a repetition
code and an RSC code separated by an interleaver. In fact, it is possible to merge
the two trellis encoders and replace the initial interleaver with a double size interleaver
preceeded by a 2-fold repetition (d-fold repetition in general). The interest of this second
equivalent encoding structure of a classical TC lies in its simplicity and in the opportunity
of introducing an irregular structure. By adopting the terminology used for the LDPC
codes, a regular TC is related to the use of a uniform repetition in the equivalent encoding
structure (see Fig. 4.1). On the other side, when the repetition degree d is not identical
for all the information bits, the TC is said to be irregular.

 

d-fold 
Repetition 

Interleaver RSC 

Information bits 

Parity bits 

Figure 4.1: Equivalent encoding structure for a self-concatenated turbo encoder.

The classical turbo code corresponds to the case where all the information bits have the
same degree d = 2. The performance of this regular turbo code is identical to the one we
get using the standard turbo encoder when the interleaver length is su�ciently high. For
short and medium block sizes, a few additional iterations are necessary to achieve the same
performance as for the classical parallel turbo code. This is due to the decoding process
because the extrinsic information is not available at the �rst iteration. It is possible
to implement for example the shu�ed iterative decoding [77, 114] in order to achieve
the same performance as for the classical turbo encoder and avoid adding iterations in
practice. In shu�ed decoding, the decoder updates the extrinsic information as soon as
possible, without waiting for all the copies of a given data to be processed. In other words,
the decoder does not wait until the next iteration to send extrinsic messages. However, as
it does not represent a major problem, we have chosen to increase the number of iterations
in our simulations by two additional iterations for the classical sequential decoding.

For instance, the BER performance of the 3GPP2 turbo code has been simulated for
blocks of 2298 bits at coding rate R = 1/3. Fig. 4.2 shows that the use of the equivalent
encoding structure for a regular turbo code requires two additional iterations (i.e. twelve
instead of ten) to reach the performance of the classical parallel turbo code.
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Figure 4.2: BER performance of two equivalent encoding structures for a regular 3GPP2
turbo code. All simulations use the Max-Log-MAP algorithm for blocks of 2298 bits and
coding rate R = 1/3.

4.1.2 Irregular turbo encoder

The general structure of an irregular turbo encoder is given in Fig. 4.3. Note that the
irregular turbo code implemented in Fig. 4.3 is a generalization of Repeat-Accumulate-
Codes presented in [42]. It consists of the cascade of a non-uniform repetition, an inter-
leaver and an RSC code. In fact, the introduced irregularity makes it possible to improve
the performance of a turbo code by inserting some bits inside the RSC trellis with a degree
d > 2, called elite or pilot bits. However, making the code irregular entails an increase in
the rates of the constituent codes. Therefore, for usual coding rate values, only a small
fraction of information bits is repeated d > 2 times, e.g., d = 8 to avoid increasing the
number of low weight codewords. Thanks to their higher degree, the pilot bits include
d (i.e. eight in the example) extrinsics instead of two, and are thus extremely well pro-
tected. However, increasing the degree d of the pilot bits is a two-fold weapon. When an
error occurs, it is ampli�ed and propagated all around which multiplies the errors. This
phenomenon is called the correlation e�ect.

To construct an irregular turbo code, Fig. 4.3 shows that we need to divide the
information bits into classes, each class j having a speci�c degree dj = j. The fraction of
bits of degree dj in a class j is denoted by fj, where fj ∈ [0, 1]. A degree pro�le consists
of all the degrees dj and their corresponding non-zero fractions fj. In the sequel, we
represent a degree pro�le by the vector (f2, f3, ..., fmax) or the vector (2, 3, ...,max).
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Figure 4.3: Encoding scheme of an irregular turbo code.

The average information bits degree is:

dAverage =
max∑
j=2

dj fj

If dj < 2, there is no means to exchange extrinsic information. Thus, we keep the
minimum degree equal to two in order to refer to the classical parallel turbo code. The
maximum degree is dmax. The following simple relations are satis�ed by irregular turbo
code parameters:

max∑
j=2

fj = 1 and n =
max∑
j=2

dj fjk = k × dAverage (4.1)

where k denotes the total number of information bits and n is the interleaver size.
Let R be the code rate of the RSC code. There are k dAverage bits at the input of the
constituent code, and the number of parity bits is:

1

R
k dAverage − k dAverage = k dAverage

(
1

R
− 1

)
(4.2)

Now, the number of parity bits for the RSC code is also equal to the one for the
irregular turbo code:

n− k =
1

RIrregular

k − k = k

(
1

RIrregular

− 1

)
(4.3)

where RIrregular is the rate of the irregular turbo code and it can be expressed from
equations (4.2) and (4.3) as:
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RIrregular =
1

1 +
(

1
R
− 1
)
dAverage

We can also deduce another formula of the average degree:

dAverage =

1
RIrregular

− 1

1
R
− 1

(4.4)

Example

Let us analyse the construction of a rate-1/4 turbo code. We assume that the average
degree of information bits is equal to dAverage = 3. If we consider a degree pro�le where
only the degree d = 3 has a non-zero fraction f3, the TC is regular. To make the code
irregular, di�erent con�gurations with limited number of irregularity classes are taken
into account, namely the initial class of degree d = 2 and only one or two classes of high
degree bits. Let us examine a degree pro�le where d = 2, d = 3 and d = 4 have non-zero
fractions. We compute the corresponding fractions from equations (4.1) and we obtain:
f2 = f3 = f4 = 1

3
.

To increase the overall code rate of the irregular TC, a percentage of the parity bits
must be punctured. A high percentage of puncturing will cause the minimum distance of
the code to decrease signi�cantly and the error �oor may appear at high bit error proba-
bility. Therefore, if we have to choose between di�erent degree pro�les, it is preferable to
select only those which do not require any puncturing.

4.1.3 Irregular turbo decoder

To decode irregular turbo codes, only one SISO decoder is employed since there is only
one RSC constituent code. Fig. 4.4 shows a block diagram of the decoder.

 

Appropriate  
LLR 

repetition 

SISO 
Decoder 

Systematic part 

Channel output 

APP 

Π 

Product of Extrinsic information 

Figure 4.4: Iterative decoding principle of a self-concatenated code.

First, the decoder computes the channel output Log-Likelihood Ratios (LLRs) for all
the coded bits, and applies an appropriate repetition to each LLR. If the coded bit has
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degree d, then the corresponding likelihood is repeated d times. Next, the LLRs are fed
to the SISO decoder. As the considered code is systematic, the decoder receives also
information about the systematic part. At the �rst iteration, the a priori information
probability is �xed to 1/2. The BCJR algorithm for the convolutional code can start
and the forward-backward algorithm computes the a posteriori probability. Here again,
if the coded bit has degree d, the algorithm produces d extrinsic probabilities or LLRs.
For instance, a regular turbo decoder with dAverage = 3 computes three extrinsics for each
degree-3 bit. In general, the extrinsic information corresponding to each bit is the product
of the d−1 extrinsic pieces of information. Let ri,1 , ri,2, ..., ri,d be the d repetitions of the
current coded bit. In the probability domain, the extrinsic information can be expressed
as:

Ext(ri,j) =
d∏

k=1,k 6=j

Ext(ri,k)

The decoding process continues until convergence is reached or a maximum number of it-
erations have been performed. For irregular turbo codes, the number of iterations needed
for convergence is signi�cantly greater than the one we have for regular turbo codes. An
explanation to this phenomenon can be found by analyzing the convergence of iterative
decoding in both cases. For irregular turbo codes, the number of iterations can be in-
creased in order to get closer to the theoretical limit. This was largely discussed in [94],
where Sawaya studied an irregular TC with 100 decoding iterations instead of 20 itera-
tions for the regular TC. Nevertheless, about ten iterations are enough to run simulations
and one major advantage of irregular TCs is that better performance can be reached for
both �nite and in�nite code length.

4.2 Selecting the degree pro�le of irregular turbo

codes

The convergence threshold as well as the asymptotic performance of an irregular turbo
code strongly depends on the degree pro�le. The degree pro�le depends on the interleaver
and the generator polynomials of the RSC code. For codes with very large block lengths,
the optimization of the previous parameters can be done using the density evolution
method developed by Richardson and Urbranke [87, 88]. Using this approach, irregular
LDPC codes with performance at 0.0045 dB from the capacity were obtained [29]. The
Gaussian approximation can be used to speed up the search for good parameters. This
sub-optimal method leads to quite accurate results and was de�ned in several di�erent
ways [30, 49, 93, 104]. A Gaussian approximation based on extrinsic information transfer
functions was �rst introduced by Ten Brink [104]. Gamal and Hammons, the authors in
[49], introduced a similar Gaussian approximation based on signal-to-noise ratio match-
ing (SNRM-GA). To analyze the convergence of iterative decoding, Sawaya et al. [93]
introduced the Gaussian approximation with error probablity matching (EPM-GA).

Although the density evolution method and the Gaussian approximation approach
can be used to select a good degree pro�le for codes with large block sizes, Monte Carlo
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simulations of the bit error probability are usually carried on for �nite length. The method
consists in �xing a degree dIrreg and varying its fraction fIrreg. A fraction that achieves the
best performance can be found. The next step involves changing the degree dIrreg, while
the fraction fIrreg is �xed to the value already selected. We can then �nd optimal values
for both dIrreg and fIrreg. However, this pro�le is not automatically the best one, since
the optimization does not take into account all the possible combinations (dIrreg , fIrreg).
Also, better performance may be attained when the pro�le is not restricted to two non-zero
fractions. This method was used for irregular turbo codes [52]. The main drawback is that
Monte Carlo simulations are time consuming. An innovative method, based on the EXIT
diagrams to select a good pro�le without resorting to extensive and long simulations, is
discussed in subsection 4.2.1.

In our approach we separate the problems. First, we search for the best degree pro�le
using a random interleaver. Afterwards, we optimize the interleaver. In addition, the
number of degrees and fractions of a pro�le is equal to 2 (dmax − 1). The main di�culty
consists in having only two equations to optimize all these parameters:

max∑
j=2

fj = 1 (4.5)

dAverage =
max∑
j=2

dj fj (4.6)

Therefore, we choose few non-zero fractions. In the sequel, we just choose two non-zero
fractions: one for the degree d = 2 and another one for dIrreg > 2 in order to boost the
performance of the iterative decoder by the insertion of pilot bits [105]. Since we focus
on the optimization of irregular turbo codes with dAverage = 3, equations (4.5) and (4.6)
become:

f2 + fIrreg = 1

2 f2 + dIrreg fIrreg = dAverage = 3

The number of parameters is then reduced to only three parameters: f2, fIrreg and
dIrreg. Also, only degree pro�les without any puncturing are selected within our analysis.

4.2.1 Determination of the degree pro�le using hierarchical

EXIT charts

For TCs, EXIT charts are usually used to �nd the best component codes. Like the
density evolution method for LDPC codes, we decided to use the EXIT tool for irregular
TCs in order to select a good degree pro�le without resorting to long and extensive
simulations. For very large block lengths, we have observed that all the curves merge with
one another and we cannot distinguish between the di�erent degree pro�les. However,
we can distinguish between all these curves in practice when simulations of the error rate
performance are carried out. Therefore, an idea was to use the EXIT method for �nite
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block sizes. In this case, we have observed that the EXIT tool provides a hierarchy between
the di�erent degree pro�les. The only di�erence with a classical EXIT chart is that the
interleaver has a �nite length. We keep the hypothesis that the extrinsic information
messages are independent and identically distributed. Indeed, this hypothesis does not
raise any problem since we aim at comparing di�erent degree pro�les, not at computing
accurate convergence thresholds. This new method using the EXIT diagrams is simple
and allows many degree pro�les to be compared at the same time. Besides, we have
plotted the EXIT diagrams for di�erent values of Eb/N0. We have observed that the curves
get closer to each other as Eb/N0 increases. However, the same hierarchy between these
curves is obtained as the value of Eb/N0 varies. In order to identify easily the di�erent
curves and analyze their behaviour, it is preferable to choose a low value of Eb/N0. Thus,
comparisons between di�erent degree pro�les in terms of convergence behaviour as well
as asymptotic behaviour are made and the selection of the best degree pro�le can be
progressively re�ned.

Let be a rate-1/4 irregular TC, where the constituent code is an RSC code of unity
rate with octal generators g = (13, 15). We consider di�erent degree pro�les with two
non-zero fractions and we plot the corresponding EXIT diagrams of an irregular TC in
Fig. 4.5 for a given block length. First, the convergence threshold of an irregular turbo
code is lower when the output mutual information (OMI) is high for a zero input mutual
information (IMI). We notice that the regular turbo code has the lowest output mutual
information. Thus, it will perform worse than all the other irregular turbo codes in terms
of convergence threshold. Besides, the OMI increases with the IMI. However, the faster
the EXIT curve reaches the point of coordinates (1,1), the better the behaviour of the code
at high SNRs is. This point materializes the perfect knowledge of the received message.

Fig. 4.5 shows that some curves are lower than the others for high values of IMI. This
observation is related to an important correlation e�ect when the pilot bits are of very
high degree. In this case, the repeated bits are not spread enough after the interleaver:
this has an impact on the minimum distance and predicts a �oor at high error rates. The
EXIT diagrams of the irregular turbo code where the degree pro�le is (f2, f15) or (f2, f20)
highlight the phenomenon of the correlation e�ect and predict a bad behaviour at high
SNRs. As usual, there is a convergence/distance trade-o� to choose a degree pro�le.

If we compare two di�erent degree pro�les such as (f2, f8) and (f2, f4). Fig. 4.5 shows
that the irregular TC with degree pro�le (f2, f4) reaches the point of coordinates (1,1) for
lower values of IMI than those for irregular TC with degree pro�le (f2, f8), which predicts
a better behaviour in the error �oor. From a convergence point of view, the irregular
TC with degree pro�le (f2, f8) produces a higher OMI than the irregular TC with degree
pro�le (f2, f4) for a zero IMI , i.e. OMI = 0.7 compared to OMI = 0.35 respectively which
predicts a gain in the convergence threshold. In the next subsection 4.2.2, the behaviour
of these irregular turbo codes and the various observations through EXIT diagrams are
validated by simulations.
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Figure 4.5: EXIT diagrams of irregular turbo codes with di�erent degree pro�les for blocks
of 1146 bits, at coding rate R = 1/4 and Eb/N0 = 0.2 dB. The interleaver length is 3438.

Note

The hierarchical EXIT charts provide a compromise between asymptotic performance and
convergence for a range of degree pro�les with two non-zero fractions. It is possible to
re�ne the choice of the degree pro�le if we want to have an intermediary behaviour. In
fact, Fig. 4.5 shows a set of EXIT curves concentrated around OMI = 0.75 for IMI = 0
(i.e., degree pro�les (f2, f10), (f2, f11), (f2, f12), (f2, f13), (f2, f15) and (f2, f20)). Among
them, the irregular TC with a degree pro�le (f2, f10) reaches the point of coordinates (1,1)
for low values of IMI. Besides, the code with pro�le (f2, f6) has an OMI around OMI = 0.6
for IMI = 0 and is expected to perform the best at high SNRs among all the degree pro�les
presented in Fig. 4.5, since it reaches high values of OMI for the lowest IMI compared with
the other degree pro�les. The idea is to mix these two selected con�gurations (f2, f10)
and (f2, f6) in order to bene�t from the expected better performance of the latter in the
error �oor and that of the former in terms of convergence. Then, the new degree pro�le
can be (f2, f6, f10) and it is possible to test many other combinations based on the same
reasoning.

4.2.2 Performance example of irregular turbo codes

Simulations have been carried out in order to see the e�ects of the irregularity and the
choice of degree pro�les on the performance in the waterfall and the error �oor regions.
In Fig. 4.6, the BER of regular and irregular turbo codes has been simulated for blocks
of 1146 bits under random interleaving. As the average degree is 3, the interleaver length
is equal to 3438. The use of random interleaving in the simulations indicates the average
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4. Irregular turbo codes

performance of the code [13]. Nevertheless, there are then means to �nd better interleavers
than this "average" one. Moreover, two degree pro�les are considered in Fig. 4.6: (f2, f4)
and (f2, f8). For pro�le (f2, f4), we have two classes of irregularity: d = 2 and d = 4. The
corresponding fractions are f2 = f4 = 1/2. The other pro�le (f2, f8) consists of two classes
of irregularity: d = 2 and d = 8. The corresponding fractions are f2 = 5/6 and f8 = 1/6.

Figure 4.6: BER performance of irregular turbo codes and comparison with regular turbo
code for block size k = 1146 bits and R = 1/4. All simulations use the MAP algorithm
with 8 decoding iterations.

In general, we observe a signi�cant gain in the waterfall region for irregular turbo codes.
For example, the irregular turbo code using pro�le (f2, f4) gives a gain in the convergence
threshold of 0.1 dB compared with regular turbo code. When a higher repetition degree
is employed, i.e. for pro�le (f2, f8), the gain in convergence is more signi�cant: 0.3 dB at
low SNR. However, the error �oor for code (f2, f8) is higher than the �oor for code (f2, f4).
These simulations con�rm what we previously analysed through the EXIT diagrams in
subsection 4.2.1.

These simulations con�rm also the observation in [51]. Although irregular TCs can
achieve performance closer to capacity, their asymptotic performance is very poor. Once
the degree pro�le is de�ned, it is then necessary to take a great deal of interest in the
permutation which plays an important role and in�uences the performance of the irregular
TC.
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4.3. Design of suitable permutations for irregular turbo codes

4.3 Design of suitable permutations for irregular

turbo codes

To our knowledge, only one reference [92] deals with the problem of lowering the error
�oor of irregular TCs: Sawaya et al. introduced symbol-based iterative decoding. Their
results show that the error �oor in the performance of the rate-1/2 irregular TC proposed
by Frey et al. in [51] is lowered signi�cantly and appears at a bit error probability equal
to 6×10−6 instead of 4×10−4 with code length n = 131, 072 and 100 decoding iterations.
This is mainly due to the use of a rate-2/3 instead of a rate-1/2 RSC constituent code, like
a double binary TC. However, no previous work focused on optimizing the interleaver,
except in [67] where Kraidy et al. use a Progressive Edge Growth (PEG)-based interleaver
for irregular TCs to lower the �oor in the case of binary erasure channels. Moreover, we are
interested not only in large block lengths but also medium and short blocks. Afterward,
the proposed solutions in [67, 92] do not seem concrete especially if only few iterations
are required during the decoding process. We explain in this section why a random
interleaver is not adapted to be used for an irregular TC and we propose a construction
of more sophisticated permutations, following the spirit of the PEG algorithm [63].

It is attractive to introduce a restricted number of bits with a very high degree, called
pilot bits, whose forward and backward metrics in the decoding process are reliable.
Thus, they propagate on both directions and in�uence the other bits with degree d = 2.
This phenomenon is behind the gain in the convergence threshold of the irregular TC.
However, a major problem is the auto-correlation introduced by these bits. If the pilot bits
are uniformly distributed, the auto-correlation e�ect can be reduced. Nevertheless, the
correlation between the di�erent groups of pilot bits is still present unless they represent
only very few bits. For this reason, the interleaver should spread these pilot bits along
the frame and a random interleaver does not take into account this important condition.
Therefore, the design of suitable permutations for irregular turbo codes is a big issue to
limit the auto-correlation to the minimum while having high MHDs.

The application of the EXIT technique leads to the choice of two degree values d = 2
and d = 8 with the following degree pro�le (f2 = 5/6 , f8 = 1/6). In the sequel, we adopt
this pro�le as working assumption. Note that the method explained below is general and
can be applied to any other degree pro�le even using more than two non-zero fractions.

4.3.1 Permutations with uniform distribution of the pilot bits

The �rst intuitive idea was to design an interleaver where all the groups of eight bits
are uniformly distributed. The objective is that they spread their reliable forward and
backward metrics along the frame. If we represent the interleaver with a circle, then the
bits inside one pilot group are separated with an angle equal to 2×Π

dmax
= Π

4
1. Each time

we place another group of eight bits, we move it with an angle of Π
4×η , where η represents

the total number of the pilot groups. Let us assume for example that we have only three

1As the circumference is 2×Π, we obtain: 2×Π
dmax

= 2×Π
8 values = Π

4
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4. Irregular turbo codes

groups of 8 bits (η = 3). Fig. 4.7 shows that the second group was placed with an angle
of Π

12
after the �rst group. The same rotation was applied to the last group.

Figure 4.7: Three pilot groups uniformly distributed along the frame.

The next step of the design involves �nding an optimal con�guration for the groups
of two bits that produces high minimum distances. We have performed both a random
and S-random permutations for the whole groups of two bits. We have also tested some
interleavers that appear to be promising in terms of minimum Hamming distance among
the numerous permutation models suggested in the literature, such as ARP interleavers.
It was observed that the minimum distance is poor (equal to 6 in the example of Fig. 4.8)
whatever the con�guration employed for the groups of two bits. As depicted in Fig. 4.8,
the spread between the pilot groups is lower than or equal to two (≤ 2). This leads to a
high correlation between the groups of eight bits even if we have solved the problem of
the correlation between the 8 bits in one pilot group since they are uniformly distributed.
Note that this spread also depends on the fraction of the pilot groups which is high (= 1

6
)

in our example.
To conclude, the �rst intuitive idea investigated was to design an interleaver where

all the groups of eight bits are uniformly distributed. The objective is that they spread
their reliable forward and backward metrics along the frame. On the other hand, the
spread between the pilot groups should be large enough to avoid correlation between
them. High correlation may dramatically degrade error correction performance and even
ruin the possible gain due to large minimum distance [61]. An empirical value for the
spread is to be at least equal to 2×(ν + 1), where ν is the memory length of the simulated
code. The condition on the spread between the pilot groups imposes a constraint on the
fraction f8 (fmax in general) of the pilot bits:

fmax ≤
dav

2dmax (ν + 1)
+

1

k
(4.7)
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4.3. Design of suitable permutations for irregular turbo codes

Figure 4.8: Visualization of an interleaver for blocks of 48 bits. We read the output of
the interleaver line by line.

where dav is the average information bits degree and k is the total number of information
bits. For usual block size values, the term 1

k
is negligible and the constraint (4.7) above

is a relation between fmax, dmax, and ν that can be expressed as follows:

fmax ≤
dav

2dmax (ν + 1)
(4.8)

For f8 = 1
6
, ν = 3 and dav = 3, this condition (4.8) can never be satis�ed.

4.3.2 Designing permutations using the Dijkstra's algorithm

In the cases where this condition is not satis�ed, we propose an algorithm in order to
jointly spread the groups of eight bits along the frame and maximize the MHD. This idea
was inspired by a procedure described in [90] where the author focuses on the optimization
of TC permutation design with the so-called ARP model.

The Dijkstra's algorithm:

The Dijkstra's algorithm [41], discovered by the pioneering mathematician and program-
mer E.W.Dijkstra, �nds the shortest path from a source vertex to all other vertices in a
weighted directed graph without negative edge weights. The algorithm can be described
in the following way: we pour some water in the starting (or initial) node and we visit the
nodes of the graph in the order where they receive the water. The algorithm keeps the
shortest distance of any vertex from the source in an array, sDist. The shortest distance
of the source to itself is zero. sDist for all other vertices is initially set to in�nity to
indicate that those vertices are not yet processed. The algorithm operates step by step,
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4. Irregular turbo codes

where at each step it updates locally the distances of certain nodes in the graph. Here
is the algorithm for a graph G with vertices V = {v1, ...vn} and edge weights wij for an
edge connecting vertex vi with vertex vj. Let the source be v1.

� Let S be a set used to keep track of all vertices that we have already computed the
shortest distance to from the source. Initialize the set S = Ø .

� Initialize the array sDist of estimates of shortest distances. sDist [1] = 0, while
sDist [i] =∞, for all other i. This means that our estimate from v1 to v1 is 0, and
all of our other estimates from v1 are in�nity.

� While S 6= V do the following:

1. Find the vertex vi, not belonging to S, that corresponds to the minimal esti-
mate of shortest distances in array sDist.

2. Add this vertex, vi into S.

3. For each vertex vj connected with vi, compute sDist [i] + wij. If this quantity
is less than sDist [j], then set sDist [j] = sDist [i] + wij.

The proposed algorithm:

To apply the Dijkstra's algorithm in our speci�c context, we reduce the space of search by
building a graph. Similarly to the procedure described in [90], the purpose is maximize
the correlation girth which is the length of a shortest cycle contained in the graph. This
criterion of selection was a priority for the author of [90]. His �rst purpose was to maximize
the correlation girth while keeping an acceptable minimum Hamming distance. However,
the minimum Hamming distance is our most important criterion of selection in order to
improve the distance properties of irregular TCs.

At the beginning, the graph exists and is empty. As we consider a tail-biting code, the
graph has the form of a ring. The nodes, empty at �rst, are connected two by two in the
ring. Thus, each node vi is connected to only one predecessor and one successor vj in the
graph. The weight of each connection wij is equal to one. The purpose of the algorithm
is to put addresses in the nodes. Before interleaving, an appropriate repetition is applied
to each bit among the k bits stemming from the source. For the k bits stemming from the
source, we assume that j is the address of the �rst copy before interleaving. As the bit is
repeated d times, j + i corresponds to the address of the (i+ 1)th copy for 1 ≤ i ≤ d− 1.
We denote by max the maximum estimate of distance in the array sDist. The addresses
that appear progressively in the graph are the interleaved addresses corresponding to the
output of the interleaver. The algorithm used to build the interleaver is the following:

� /* For each bit stemming from the source, we want to �nd the interleaved addresses
for the d copies:*/

1. For i from 0 to d− 1

a) If i = 0
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4.3. Design of suitable permutations for irregular turbo codes

� /* The algorithm searches an interleaved address for the �rst copy of the
bit:*/

� We choose P(j) at random among the available interleaved addresses.

� /* The node vP(j) is no more empty and corresponds to the interleaved
address of j.*/

b) Else

� /* The algorithm searches an interleaved address for the (i+ 1)th copy of
the bit:*/

� Initialize max to 0.

� /* We must take into account the interleaved addresses of all the copies of
the same bit already handled:*/

� For t from 0 to i− 1

� Compute the distances from vP(t) to all the neighbouring vertexes in
the actual graph by Dijkstra's algorithm.

� Find the highest distance dhigh in the array sDist.

� If the best possible value dhigh is greater than max, replace max by
dhigh.

� Increment t.

� Choose an address P(j + i) at random such as the scores for all the P(t)
are greater than α times the best possible value max, where α is a real
number satisfying 0 < α ≤ 1.

� /* The node vP(j+i) is no more empty and corresponds to the interleaved
address of j + i.*/

� Add i crossbars, of weight equal to zero, to the graph. In fact, these
crossbars connect vP(j+i) with vP(j), vP(j+1), ... vP(j+i−1) and we have
wP(j+i),P(j) = wP(j+i),P(j+1) = ... = wP(j+i),P(j+i−1) = 0 since we connect
di�erent interleaved data of the same information bit. These crossbars
update the graph and are necessary to apply correctly the Dijkstra's algo-
rithm in the next step.

c) Increment i.

2. Every time an interleaver is found, we estimate the minimum Hamming distance of
the irregular TC using the all-zero iterative decoding algorithm (see 1.4.3). Only
interleavers that improve the asymptotic performance of irregular TCs are memo-
rized.

The parameter 0 < α ≤ 1 is used to implement a random variation in the selection.
The value α = 1 corresponds to the original Dijkstra's algorithm. We noticed that if we
�x α = 1 in our algorithm, the obtained interleavers produce high values of girths but
sometimes unacceptable values of minimum distances. Therefore, di�erent values were
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4. Irregular turbo codes

tested for the parameter α and we �nally set α to 0.85, giving a reasonable space of
search.

Compared with the approach in [90] where the graph is almost cubic, the graph used
in our algorithm is not the same since we consider a self-concatenated code. In [90],
all the vertices {x1, x2, ..., xk, y1, y2, ..., yk} have exactly three neighbours apart from x1,
xk, y1 and yk. In our graph, the vertices have d + 1 neighbours: the predecessor and
the successor in the ring as well as d − 1 neighbours because each information bit has a
repetition degree d.

Example:

To apply the algorithm for the �rst information bit stemming from the source (j = 1)
with repetition degree d = 8, we choose a random interleaved address P(1) for the �rst
copy: P(1) = 565. Then, we compute the distances from P(1) for any vertex in the
actual graph by Dijkstra's algorithm. P(2), the interleaved address of the second copy,
is chosen at random such as the score for P(1) is greater than a times the best possible
value. We obtain P(2) = 273 and we add a connection in the graph between vP(1) and
vP(2), represented by a crossbar of weight equal to zero: wP(1),P(2) = 0.

Figure 4.9: Example of the placement of a pilot group with degree d = 8 in the graph
using the proposed algorithm.

Afterwards, we compute the distances from P(1) and also from P(2) for any vertex
in the actual graph by Dijkstra's algorithm. P(3), the interleaved address of the third
copy, is chosen at random such as the scores for both P(1) and P(2) are greater than
a times the best possible value. We obtain P(3) = 120 and we add two connections in
the graph between represented by crossbars of weight equal to zero: wP(1),P(3) = 0 and
wP(2),P(3) = 0. We continue to run the algorithm for all the other copies...

The algorithm constructs the graph progressively. At the end, crossbars are added to
the graph as shown in Fig. 4.9. In general, for each information bit with repetition degree
d, d×(d−1)

2
connections of weight equal to zero appear in the graph (28 connections in the

example).
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4.3. Design of suitable permutations for irregular turbo codes

Figure 4.10: Visualization of an interleaver for blocks of 48 bits.We read the output of
the interleaver line by line.

The proposed algorithm allows suitable permutations to be designed that lower the
error �oor of irregular TCs. As an example, this algorithm was run for blocks of 48 bits
with degree pro�le (f2, f8). As the average degree is 3, the interleaver length is equal to
144. Fig. 4.10 shows that the correlation e�ect between the pilot groups is reduced since
the pilot bits are distributed along the frame in a way that they guarantee a good spread
between the di�erent groups. To compare with the previous example of Fig. 4.8, the
minimum distance of the code is now 19 instead of 6. Another interleaver allowing the
irregular code to have a higher distance, i.e. 21, was found and the simulation results are
available in Fig. 4.11.

4.3.3 Error rate performance of irregular turbo codes with an

optimized interleaver

In Fig. 4.11, the FER performance of irregular turbo codes has been simulated for blocks
of 48 bits and 192 bits, under both random and optimized interleaving. The degree
pro�le consists of two degrees: d = 2 and d = 8. The corresponding fractions are f2 = 5/6

and f8 = 1/6. As the average degree is 3, the interleaver length is equal to 144 and
576 respectively. The parameter a is set to 0.85. When the optimized interleaver given
by the Dijkstra's algorithm is employed instead of a random permutation, we observe a
signi�cant gain in the error �oor: about 2.5 decades for 48 bits and 3.5 decades for 192
bits.

For medium sizes and large blocks, the algorithm may take an unacceptable com-
putational time in order to detect interleavers that improve signi�cantly the distance
properties of irregular TCs and lower the observed �oor. This computational cost grows
exponentially with the block size. It does not mean that we are not able to �nd a better
interleaver. It just means that we can improve the distance properties of irregular TCs,
without any certainty that the best possible case is reached and the optimal interleaver
is detected.
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4. Irregular turbo codes

Figure 4.11: FER performance of irregular turbo codes under both random and optimized
interleaving for short block sizes at coding rate R = 1/4. All simulations use the MAP
algorithm with 10 decoding iterations.

For instance, the algorithm was run for blocks of 1146 bits with degree pro�le (f2, f8)
and FER performance of irregular TCs has been simulated. As the average degree is
3, the interleaver length is equal to 3438. Fig. 4.12 compares the FER performance of
the code under both random and optimized interleaving. A gain of two decades in the
error �oor is observed, in favour of the optimal interleaver. This may not be the best
interleaver that has to be found. However, performance of irregular TCs at high SNRs is
also improved in this case.

Although the proposed algorithm is very fast for short block sizes, it may take unac-
ceptable computational time for medium sizes and large blocks to �nd good interleavers
and we cannot be sure of detecting all the possible cases. Like for random interleavers, one
additional drawback of this family of interleavers is the necessity to store the interleaved
addresses as no equations are available for the permutation.

4.4 Adding a post-encoder to irregular turbo codes

As previously explained, devising good interleavers for irregular TCs proves to be a dif-
�cult task. In order to ensure large asymptotic gain at very low error rates, even with
non-optimized internal permutation, we propose an irregular TC inspired by our work
about 3D TCs in order to improve the distance properties of these codes.
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Figure 4.12: FER performance of irregular turbo codes under both random and optimized
interleaving for blocks of 1146 bits at coding rate R = 1/4. All simulations use the MAP
algorithm with 8 decoding iterations.

4.4.1 Proposed modi�ed encoding procedure

A block diagram of the proposed irregular turbo code is depicted in Fig. 4.13. A fraction
λ (0 ≤ λ ≤ 1) of the parity bits are post-encoded by a rate-1 post-encoder. For the 3D
TC, the increase in minimum distance is signi�cant at the expense of a loss in convergence
threshold and an increase in complexity. Based on our analysis in the previous chapters,
the same behaviour is expected for irregular TCs. Here also, the permeability pattern is
considered to be regular. For instance, if λ = 1

5
the bits to be post-encoded are chosen in

a regular basis {10000}.

4.4.2 Performance of irregular TCs with post-encoding

We have investigated the distance gain for di�erent block sizes and permeability rates.
The values of the the minimum Hamming distance are obtained using the all-zero iterative
decoding algorithm. Similarly to the case of 3D TCs, we have observed that the addition
of the post-encoder improves the asymptotical behaviour of irregular TCs.

For example, the addition of the post-encoder results in an increase in the minimum
Hamming distance of the irregular TC by more than 50% from dmin = 33 to dmin = 50 for
code rate R = 1/4, λ = 1/8 and k = 4094 bits. This value has to be compared to dmin = 44
which is the distance of the regular TC in this case. Then, the irregular TC concatenated
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Figure 4.13: An irregular turbo code concatenated with a rate-1 post-encoder at its
output.

with a post-encoder outperforms the regular TC. These results have been validated by
simulations.

Fig. 4.14 shows the BER and FER performance of regular and irregular TCs for blocks
of 4094 bits under 3GPP2 interleaving. Thus, the interleaver length is equal to 12282. In
our simulation, a regular TC corresponds to a TC where all the bits are repeated three
times each. For the irregular TC, the degree pro�le consists of two non-zero fractions:
one for the degree d = 2 (f2 = 5

6
) and another one d = 8 (f8 = 1

6
). Like with 3D TCs,

the post-encoder improves performance at low error rates. Compared with irregular TCs,
Fig. 4.14 shows that the gain at high SNRs is nearly 2.5 decades when the post-encoding
is performed. Note that compared to the search for permutations in section 4.3 which
has limitations for medium and large block sizes, it is possible and easier here to simulate
irregular TCs for large blocks. In other words, there is no limitation on the block size.
The great advantage is that irregular TCs with post-encoding perform better than the
regular TCs at low but also at high error rates. Other simulations for di�erent bloc sizes
were carried out to con�rm these results.

Transmission over fading channels

Similar simulations have been carried out over both Gaussian and Rayleigh fading chan-
nels. In Fig. 4.15, the BER and FER performance of regular and irregular TCs have been
simulated for blocks of 2046 bits. Thus, the interleaver length is equal to 6138. Again, it
is observed that irregular TCs with post-encoding perform better than the regular TCs
in both the waterfall and error �oor regions. For a transmission on the Rayleigh channel,
the gain at high SNRs exceeds one decade, whereas for a transmission over the Gaussian
channel, the gain at high SNRs is nearly 2 decades. It is possible to increase even more
the minimum distance by the search of adapted pattern of post-encoding. Here, the post-
encoding is regular. However, it is possible to postcode only the pilot bits, or only the
bits with the lowest degree, or to �nd a balance between both of them. This perspective
is expected to give better results and can be investigated in a future work.
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Figure 4.14: BER and FER performance of 3GPP2 irregular TCs and comparison with
the corresponding regular TCs for blocks of 4094 bits. All simulations use the MAP
algorithm with 10 decoding iterations. Transmission is over the Gaussian channel.

4.5 Conclusion

In this chapter, we investigated irregular turbo codes. In order to select a good pro�le of
degrees, we used hierarchical EXIT charts instead of long Monte Carlo simulations. This
is one of the contributions of the thesis. Another contribution was to focus later on the
design of suitable permutations in order to lower the �oor. Graph-based permutations
built from a combination of the Dijkstra's algorithm with an estimation of the minimum
distance improve signi�cantly the distance properties of irregular TCs. However, it is
only practicable for short to medium blocks. It is possible to investigate the interleavers
provided by the proposed algorithm and explore them in details in order to �nd structured
interleavers, having similar properties, which can be described in an analytical way. This
perspective is interesting since the addresses do not need to be stored if it is the case.
However, it is commonly known that devising permutations for turbo codes in not an easy
task. Finally, an interesting idea was to reuse the previous analysis about 3D TCs and
to apply it in the case of irregular turbo codes. This important contribution shows that
irregular turbo codes with post-encoding perform better than regular turbo codes in both
the waterfall and error �oor regions.

91



4. Irregular turbo codes

(a) BER

(b) FER

Figure 4.15: BER and FER performance of 3GPP2 irregular TCs and comparison with
the corresponding regular TCs for blocks of 2046 bits. All simulations use the MAP
algorithm with 10 decoding iterations. Transmissions over Gaussian and Rayleigh fading
channels are considered.
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Conclusions and perspectives

I
n the early nineties, the invention of TCs was a revival for the channel coding research
community. Their near-capacity performance and their suitability for practical imple-

mentation explain the adoption of TCs in various communication standards as early as
the late nineties. However, TCs su�er from a �attening e�ect when the error rate reaches
a limit and stops improving even if the number of iterations is increased. In future sys-
tem generations, low error rates will be required to open the way to real time and more
demanding applications, such as television broadcasting or videoconferencing. The min-
imum Hamming distance may not be su�cient to ensure large asymptotic gains at very
low error rates. Therefore, more powerful coding schemes are required. At the same time,
a reasonable complexity should be preserved.

The �rst aim of the thesis was to explore a new hybrid concatenation structure combin-
ing both parallel and serial concatenation based on a 3-dimensional code, simply derived
from the classical TC by concatenating a rate-1 post-encoder at its output. Performance
of the 3D TC depends on some key parameters. The interleaving law Π′ (which permutes
the parity bits before feeding them to the post-encoder) and the permeability rate λ have
been properly optimized. Besides, I discussed the di�erent requirements that the post-
encoder has to meet and how it is possible to choose a post-encoder by means of an EXIT
analysis. The most interesting property of the 3D TC is that it signi�cantly improves
performance in the error �oor region with respect to the classical turbo code. Several
union bounds on the minimum distance of 3D binary TCs with 8-state upper and lower
constituent encoders and 3GPP2 interleavers were presented. Besides, the di�erent stages
were illustrated with simulation results and asymptotical bounds.

In the case of the 3GPP2 interleaving, I observed packets of errors at the output of
the decoder. This is one drawback of the 3D TC, as the gain in terms of BER is not as
much as the improvement in FER.

A thorough complexity analysis of the 3D decoder has been carried out in order to
estimate the additional complexity. When high throughputs are required for a given
application, several SISO processors can be placed in parallel while only one 3D predecoder
is required in most cases; which decreases the relative additional complexity of the 3D
coding scheme.

Later, I was interested in improving 3D TCs. An optimization method was introduced
in order to increase even more the minimum Hamming distance of the 3D TC and an algo-
rithm was proposed. Applying an irregular pattern of post-encoding allows the asymptotic
performance of the codes having low multiplicities at the beginning of the spectrum to be
improved. Then, convergence issues were discussed. In fact, one additional drawback of
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the 3D TC structure is that the loss of convergence is more signi�cant for fading channels
compared with Gaussian channels. Therefore, it seems more necessary to �nd a solution
to this problem. The use of a time varying post-encoder reduced the observable loss of
convergence threshold for 3D TCs by 10% to 50% of the value expressed in dB. However,
this technique requires �nding an optimal period L, in order to replace properly some
redundancies by the others. And this is not an easy task, since it is a matter of conver-
gence/distance trade-o�. Many values have to be tested, depending on the block size and
the coding rate. Another alternative was considered when the code is associated with
high order modulations. In this case, there is no need to use a time varying trellis and
a speci�c mapping allows obtaining even a gain in the waterfall region. Therefore, the
3D TC is adapted to be used in high spectral e�ciency transmission schemes. Thus, it is
possible to build 3D TCs which have good performance in both regions.

I noticed that the notion of irregularity plays a major role to build 3D TCs having
good performance at low and high SNRs. In fact, the optimization method is based on
the use on a non regular pattern of post-encoding and allows the minimum distance to
be increased. Besides, the time varying post-encoder (5, 4:7) with a little irregularity and
also the association of the 3D TC with high order modulations, where both the systematic
bits and the post-encoded parity bits are more protected than the other parity bits create
a sort of irregularity in the Gray mapping. Both represent a success in reducing or even
eliminating the problem of convergence loss. The next step of the study concerned the
investigation of irregular TCs. The aim is to obtain an irregular TC which performs well
in both the waterfall and the error �oor regions.

Work on irregular LDPC codes was encouraging to study di�erent aspects of the prob-
lem. To start, I used EXIT charts instead of long Monte Carlo simulations in order to
select a good pro�le of degrees. Afterwards, I was interested in the design of powerful
permutations suited for such code structures. Graph-based permutations built from a
combination of the Dijkstra's algorithm with an estimation of the minimum distance im-
prove signi�cantly the distance properties of irregular TCs. However, it is only practicable
for short to medium blocks. It is possible to investigate the interleavers provided by the
proposed algorithm and explore them in details in order to �nd structured interleavers,
having similar properties, which can be described in an analytical way. However, it is
commonly known that devising permutations for turbo codes is not an easy task. An
interesting idea was to reuse the previous analysis about 3D TCs and to apply it in the
case of irregular TCs. The association of irregular TCs with the same post-encoder used
for 3D TCs results in irregular turbo coding schemes which perform better than regular
TCs in both the waterfall and error �oor regions.

Of course, the techniques studied can be improved. The suggested directions for future
research work are summarized below.

� For example, it seems interesting to think about the most e�ective way to post-
encode the parity bits. The authors in [13] proposed di�erent puncturing patterns
that maximize the minimum distance of TCs under random interleaving. It is really
encouraging to apply their results for the post-encoding pattern and analyze the
impact on the performance of 3D TCs.
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4.5. Conclusion

� While improving the convergence threshold of 3D TCs, I imagined new structures
that can be applied in the future. What about using an 8-state time-varying post-
encoder? This structure is obviously more complicated, but it is certainly more
powerful. The loss in convergence can be signi�cant. However, this does not repre-
sent a major problem for high coding rates and I expect that increased minimum
distances of 3D TCs can be attained in this case.

� Also, what about the association of 3D TCs with rotated constellations, like those
used for the second generation of terrestrial digital TV? Since the rotated constel-
lations technique is particularly e�ective in bad transmission conditions, the use of
the speci�c Gray mapping explained in the manuscript may compensate the loss
in the convergence threshold and could increase even more the gain in convergence
threshold observed over fading channels. I think that the search in this direction
would give optimistic observations and interesting results.

� Moreover, all the analysis of 3D TCs was dedicated to the case of binary TCs. What
about double binary (and m-binary in general) 3D TCs? It is known that double
binary TCs perform better than classical TCs at both high and low error rates. It is
attractive to apply the optimization method as well as the time-varying technique
in the case of double binary 3D TCs.

Last but not least, the design of suitable permutations for irregular TCs is an important
future research work. In fact, the proposed algorithm is very promising. However, it
is necessary to �nd techniques that eliminate the interleavers producing low minimum
distances early in the search process. In this way, the space of search would be reduced
and the algorithm would become promising even for large blocks.
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Appendix A

Cdma2000 interleaver

T
he cdma2000 interleaver is based on the principle of generating the interleaving posi-
tions through a counter that generates addresses which are modi�ed through a preset

table and a function that reverses the order of the bits. The resulting address vectors
determine the permutation of the input data. In cdma2000, the input to the interleaver
and the output data from the interleaver are de�ned as arrays (vectors) of length Nturbo.
The values that the Nturbo variable can take are de�ned by the standard. Fig. A.1 shows
the �ow diagram of the interleaver used by the cdma2000 turbo encoder, which has as
input the packet size variable which is used to determine from Table A.1 both the n and
Nturbo parameters. The value of n is an interleaving parameter de�ned as an integer in the
range 3 ≤ n ≤ 7. Nturbo is the actual number of information bits in the interleaving block
and must satisfy the relationship Nturbo ≤ 2n+5. The packet size is six bit longer than
Nturbo because the six tail bits are used to force the turbo encoder to the initial state.

The parameters in Table A.1 are de�ned for reverse link channels i.e., channels going
from the mobile station to the base station. For forward link channels (base station to
mobile), n is in the range 5 ≤ n ≤ 7 and the values of packet size and Nturbo are di�erent.
The interleaving algorithm is the same for the reverse link as well as the direct link.

Packet_size n Nturbo

256 3 250
512 4 506
1024 5 1018
2048 6 2042
4096 7 4090

Table A.1: Turbo interleaver parameter.

The sequence of the interleaver output addresses is generated by the procedure illus-
trated in Fig. A.1 and described below:

1. First, the MSB address is calculated by taking the n least signi�cant bits of the
value of the address counter n most signi�cant bits plus one.
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A. Cdma2000 interleaver

Figure A.1: Flow diagram for the cdma2000 standard's turbo interleaver algorithm.

2. Then, Table A.2 is indexed using the counter's �ve least signi�cant bits. This lookup
table indexing provides an LSB address of n bits.

3. The next step is to multiply the values obtained in steps 1 and 2, and to discard all
except the n least signi�cant bits. This will constitute the lower part (or LSB) of
the �nal address.

4. The higher part (or MSB) of the �nal address is obtained by bit-reversing the �ve
least signi�cant bits of the counter.

5. The tentative of the output address is accepted only if it is less thanNturbo, otherwise
the address is discarded.

The counter is increased by one and steps 1 through 5 are repeated until all Nturbo inter-
leaving addresses are obtained.
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Index n = 3 n = 4 n = 5 n = 6 n = 7

0 1 5 27 3 15
1 1 15 3 27 127
2 3 5 1 15 89
3 5 15 15 13 1
4 1 1 13 29 31
5 5 9 17 5 15
6 1 9 23 1 61
7 5 15 13 31 47
8 3 13 9 3 127
9 5 15 3 9 17
10 3 7 15 15 119
11 5 11 3 31 15
12 3 15 13 17 57
13 5 3 1 5 123
14 5 15 13 39 95
15 1 5 29 1 5
16 3 13 21 19 85
17 5 15 19 27 17
18 3 9 1 15 55
19 5 3 3 13 57
20 3 1 29 45 15
21 5 3 17 5 41
22 5 15 25 33 93
23 5 1 29 15 87
24 1 13 9 13 63
25 5 1 13 9 15
26 1 9 23 15 13
27 5 15 13 31 15
28 3 11 13 17 81
29 5 3 1 5 57
30 5 15 13 15 31
31 3 5 13 33 69

Table A.2: Cdma2000 turbo interleaver lookup table.

Example of operation

In this example a packet size of 512 bits is used. Following the algorithm described in
Fig. A.1 we have:

1. From Table A.1 n = 4 and Nturbo = 506.

2. Start the counter of n+ 5 = 9 bits at zero, i.e. counter = 000000000.
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A. Cdma2000 interleaver

3. Save the four most signi�cant bits of counter in the MSB variable.

4. Save the �ve least signi�cant bits of counter in the LSB variable.

5. Add one to MSB, i.e. MSB = 0001 for the �rst iteration.

6. Use Table A.2 with the �ve LSBs of counter and column n (index = 00000 for
the �rst iteration) and store the n-bit result in LSB, i.e., LSB = 0001 for the �rst
iteration.

7. Take the n least signi�cant bits of the MSB × LSB product and store it.

8. Bit reverse the �ve least signi�cant bits of counter to obtain the higher part, i.e.,
the MSB.

9. Form a tentative output address that has its MSBs equal to the value obtained in
step 8 and its LSBs equal to the value obtained in step 7.

10. Accept the output address if it is less than Nturbo.

11. Add one to counter.

12. Go to Step 3.

For this example, the input vector has 506 data, whose values for simplicity are numbered
from one to �ve hundred and six. As the input vector is relatively large in size, only some
positions with their values are shown in Table A.3. Fig. A.2 shows the interleaved output
data vector.

1 2 3 ... 505 506

Table A.3: Cdma2000 example input vector.

{6 272 134 400 66 330 202 464 46 304 168 428 112 356 240 486 30 288 154 404 82 340 224 466 62 306 186 448 124
372 256 502 11 271 139 399 67 323 195 463 43 303 175 423 111 359 239 491 27 287 147 407 83 343 223 467 59 307
179 447 119 375 255 16 270 144 398 68 332 204 462 40 302 166 418 110 362 238 496 24 286 156 410 84 346 222
468 56 308 188 446 114 378 254 5 269 133 397 69 325 197 461 37 301 173 429 109 365 237 485 21 285 149 413 85
349 221 469 53 309 181 445 125 381 253 501 10 268 138 396 70 3 34 206 460 34 300 164 424 108 368 236 490 18
284 158 416 86 352 220 470 50 310 190 444 120 384 252 506 15 267 143 395 71 327 199 459 47 299 171 419 107
355 235 495 31 283 151 403 87 339 219 471 63 311 183 443 115 371 251 4 266 132 394 72 336 208 458 44 298 162
430 106 358 234 484 28 282 160 406 88 342 218 472 60 312 192 442 126 374 250 500 9 265 137 393 73 329 201 457
41 297 169 425 105 361 233 489 25 281 153 409 89 345 217 473 57 313 185 441 121377 249 505 14 264 142 392 74
322 194 456 38 296 176 420 104 364 232 494 22 280 146 412 90 348 216 474 54 314 178 440 116 380 248 3 263 131
391 75 331 203 455 35 295 167 431 103 367 231 483 19 279 155 415 91 351 215 475 51 315 187 439 127 383 247 49
9 8 262 136 390 76 324 196 454 48 294 174 426 102 354 230 488 32 278 148 402 92 338 214 476 64 316 180 438
122 370 246 504 13 261 141 389 77 333 205 453 45 293 165 421 101 357 229 493 29 277 157 405 93 341 213 477
61 317 189 437 117 373 245 2 260 1 30 388 78 326 198 452 42 292 172 432 100 360 228 482 26 276 150 408 94 344
212 478 58 318 182 436 128 376 244 498 7 259 135 387 79 335 207 451 39 291 163 427 99 363 227 487 23 275 159
411 95 347 211 479 55 319 191 435 123 379 243 503 12 258 140 386 80 328 200 450 36 290 170 422 98 366 226 492
20 274 152 414 96 350 210 480 52 320 184 434 118 382 242 1 257 129 385 65 321 193 449 33 289 161 417 97 353
225 481 17 273 145 401 81 337 209 465 49 305 177 433 113 369 241 497}

Figure A.2: Cdma2000 output data after interleaving.
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As depicted in Fig.A.2, the input data has been totally interleaved from their original
positions. For instance at position 501 is the element 177 and at position 177 is the
element 151, whereas at the same positions in the input vector in Table A.3 are the data
501 and 177 respectively.

Although the output produced by the interleaver seems to have elements of random-
ness, it should be noticed that the the transformation between input and output positions
is both deterministic and bijective. Also, the interleaving process does not mean all po-
sitions must change at the output. In the previous example of Fig. A.2, positions 68, 84
and 338 appear at the same positions at the interleaver's output.
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Annexe B

State mapping encoding

F
or the 3D turbo code, the choice of the post-encoder has to meet several requirements
detailed in chapter 3. We have chosen the code (5,4) as a convenient post-encoder

(from the convergence point of view) in di�erent simulations. Unfortunately, this code
cannot be made circular directly in order to properly deal with blocks of data. This
appendix explains how the state mapping encoding allows to solve easily the problem.

B.1 Circular (tail-biting) encoding

Let si and di be the state of the encoder register, and the encoder data input, respectively,
at discrete time i. The encoder state at time i+ 1 is given by the following equation :

si+1 = Gsi + di

whereG is the state matrix of the linear feedback register (LFR). For instance, considering
the LFR in Fig. B.1, whose binary input is denoted di , we have :

si =

[
s1,i

s2,i

]
, di =

[
di
0

]
, G =

[
0 1
1 0

]
where s1,i and s2,i are the content of the �rst and the second memory cell of the LFR,

respectively.
More generally, for a memory v register, vectors si and di have v components and G

is of size v × v. After the encoding of the data sequence {di}, of length P , the �nal state
sP can be expressed as a function of initial state s0 and {di} :

sP = GP s0 +
P∑
j=1

GP−j dj−1 (B.1)

If it is possible to �nd a circulation state, denoted sc, such that sc = s0 = sp, this is
given by :

sc =
[
I + GP

]−1
P∑
j=1

GP−j dj−1 (B.2)
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B. State mapping encoding

Figure B.1: Selected post-encoder: code (5,4) with memory 2. The recursivity polynomial
is 5 and the redundancy polynomial is 4.

where I is the v × v identity matrix.
Note that sc exists if and only if I + GP is invertible. This condition is never satis�ed

for some matrixes G, whatever P . For this reason, the LFR of Fig. B.1 cannot directly
be made circular.

Before the encoding of {di}, the knowledge of sc requires a preliminary step. The
encoder is �rst set up in the all-zero state, and then fed by the data sequence {di}. The
�nal state is denoted s0

P . From equation (B.2), we have

s0
P =

P∑
j=1

GP−j dj−1

and sc can then be related to s0
P by :

sc =
[
I + GP

]−1
s0
P

Finally, the encoder being initialized to the circulation state, the encoding process can
really start to provide the redundancy sequence.

B.2 State mapping encoding

State mapping encoding is introduced for cases where standard circular (tail-biting) en-
coding is not possible. The core of this encoding is a mapping that maps the �nal state
sP to the state s′P = AsP using a state mapping matrix A [98]. Mapping the �nal state
yields the equation :

s′P = AGP s0 + A
P∑
j=1

GP−j dj−1

Under these conditions, a mapping state sm with (sm = s0
P = s′P ) always exists, and

it is given by :

106



B.2. State mapping encoding

sm = B
P∑
j=1

GP−j dj−1 = Bs0
P (B.3)

with

B =
[
I + AGP

]−1
A (B.4)

In other words, if the encoding starts in the state sm, the encoding will end in the
state se with sm = A se.

Because G =

[
0 1
1 0

]
, and thanks to the values assigned to A, I + AGP is always

invertible. The encoding procedure can be summarized in the following steps :

� set up the encoder at the all-zero state. Feed it with {di} and compute the �nal
state s0

P ,

� calculate sm through equations (B.3) and (B.4),

� encode {di} starting from sm. If needed, map the �nal state se using A, in order to
verify that the result is sm (i.e., sm = Ase ).

The post-encoder of Fig. B.1, with generator polynomial 5, can be encoded using A =[
1 1
0 1

]
if P is odd, and A =

[
1 1
1 0

]
if P is even.

The decoding process has to take into account the mapping described above. This is
done by an exchange of metrics after having processed last address during the forward
recursion, and after having processed �rst address during the backward recursion, when
the MAP algorithm or a simpli�ed version is employed. Table B.1 provides the values of
s′P obtained through the mapping of sP . The table also provides the values of sm for each
s0
P using equations (B.3) and (B.4). We can observe that only two (if P is odd) or three
(if P is even) metrics need to be swapped during the decoding process, at the extremity
of the block, which represents a very small additional complexity for the 4-state decoder.

P odd P even P odd P even
sP s′P sP s′P s0

P sm s0
P sm

0 0 0 0 0 0 0 0
1 3 1 2 1 1 1 3
2 2 2 3 2 3 2 1
3 1 3 1 3 2 3 2

Table B.1: Corresponding values sP of and s′P , and of s0
P and sm.
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B. State mapping encoding

B.3 Example

Let us assume that we have P = 384 bits to postcode. The post-encoder is then initialized
to the all-zero state. For reasons of simpli�cation, we assume also that all the data to be
post-encoded are equal to one (di = 1). The data {di} in the entry of the pre-decoder
allow to calculate the �nal state s0

P . Here, we obtain s0
P = 1. As P is even, the circulation

state is sm = 3 according to Table B.1. Therefore, the data {di} are coded starting from
the state 3, and we check that the �nal state is state 2.

At the end of the backward recursion of the pre-decoding process (i.e. after after
having processed �rst address i = 1), three metrics have to be exchanged. The minimum
metric of state 2 is replaced by that of state 3, the minimum metric of state 1 is replaced
by that of state 2 and the minimum metric of state 2 is replaced by that of state 1 as
follows : 

2← 3

1← 2

3← 1

By this way, the smallest metric is transposed from state 3 into state 2. And it is as
if the code, having started the backward recursion from state 2, reached at the end the
same state (2 instead of the state 3).

Besides, at the end of the forward recursion of the pre-decoding process (i.e. after after
having processed last address i = P ), three metrics have to be exchanged. The minimum
metric of state 2 is replaced by that of state 1, the minimum metric of state 1 is replaced
by that of state 3 and the minimum metric of state 3 is replaced by that of state 2 :

2← 1

1← 3

3← 2

Now, the smallest metric is transposed from state 2 into state 3. And it is as if the
code, having started the forward recursion from state 3, reached at the end the same state
(3 instead of the state 2).

Note that the metrics need to be swapped during the decoding process, at the extremity
of the block, for each iteration. So, the pre-decoder is updated in a convenient state to
begin the following iteration.
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Appendix C

About 16-QAM and 8-PSK

modulations

L
et us consider a 16-QAM scenario. Each constellation point can represent log2 (16) = 4
bits, with two bits on the I axis and two on the Q axis. For 16-QAM, the values taken

by the I and Q axes are {−3,−1,+1,+3}. The two bits on the I and Q arms can be Gray
coded as shown in the table below.

I b0 b1 Q b3 b2

−3 01 −3 01
−1 00 −1 00
+1 10 +1 10
+3 11 +3 11

Table C.1: Gray coded constellation mapping for 16-QAM.

The corresponding constellation diagram with the bit mapping is shown in Fig. C.1.
As can be observed from the �gure, the adjacent constellation symbols di�er by only one
bit. Consequently, if the noise causes the constellation to cross the decision threshold,
only one out of four bits will be in error. Then, the relation between the bit error rate Pb
and symbol error rate Ps can be expressed in the following way : Pb ≈ Ps

4
.

Let us consider a transmission over a zero-mean Gaussian channel with variance σ2.
The probability density function is:

p(x) =
1√
2Πσ

e−
x2

2

We are interested in the error probability of each bit in the symbol. As the axes I and Q
are independently coded, the results obtained for an axis can be directly applied to the
other one. In the sequel, we only consider the I axis represented in Fig C.2.

In fact, the easiest way of obtaining the approximate BER is to view 16-QAM as two
orthogonal independent 4-PAM schemes with 4 levels each. Note that this analysis is only
valid for square QAM modulation schemes such as the 16-QAM example of Fig. C.1.
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C. About 16-QAM and 8-PSK modulations

 

0001          0011                  0010                0000 

1001              1011                 1010                  1000 

1101              1111                 1110                  1100 

0101              0111                 0110                  0100 

-3 -1 +1 +3 

Figure C.1: 16-QAM constellation with Gray coded mapping.

Figure C.2: In-phase axis of a 16-QAM modulation with Gray mapping.

Let xI be the coordinate of the emitted symbol on the I axis. The probabilities to
be considered in the di�erent positions are expressed according to the Marcum function
Q(x)1 :

Pe (b3�xI = ±3) =

+∞ˆ

0

1√
2Πσ

e
− (x+3/σ)2

2×σ2 dx =
1√
2Πσ

+∞ˆ
3/σ

e
− x2

2×σ2 = Q

(
3

σ

)

Pe (b3�xI = ±1) =

+∞ˆ

0

1√
2Πσ

e
− (x+1/σ)2

2×σ2 dx =
1√
2Πσ

+∞ˆ
1/σ

e
− x2

2×σ2 dx = Q

(
1

σ

)

Pe (b2�xI = ±3) =

+2/σˆ
−2/σ

1√
2Πσ

e
− (x+3/σ)2

2×σ2 dx =
1√
2Πσ

 +∞ˆ
−2/σ

e
− (x+3/σ)2

2×σ2 dx−
+∞ˆ

+2/σ

e
− (x+3/σ)2

2×σ2 dx


1Q(x) = 1√

2Π

´ +∞
x

e−
u2

2 du = 1√
2Πσ

´ +∞
x/σ

e
− x2

2×σ2 dx = 1
2erfc

(
x√
2σ

)
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=
1√
2Πσ

 +∞ˆ
+1/σ

e
− x2

2×σ2 dx−
+∞ˆ

+5/σ

e
− x2

2×σ2 dx

 = Q

(
1

σ

)
−Q

(
5

σ

)

Pe (b2�xI = ±1) =
1√
2Πσ

 −2/σˆ

−∞

e
− (x+1/σ)2

2×σ2 dx+

+∞ˆ
+2/σ

e
− (x+1/σ)2

2×σ2 dx



=
1√
2Πσ

 −1/σˆ

−∞

e
− x2

2×σ2 dx+

+∞ˆ
+3/σ

e
− x2

2×σ2 dx



=
1√
2Πσ

 +∞ˆ
+1/σ

e
− x2

2×σ2 dx+

+∞ˆ
+3/σ

e
− x2

2×σ2 dx

 = Q

(
1

σ

)
+Q

(
3

σ

)

By noticing that Q
(

1
σ

)
� Q

(
3
σ

)
� Q

(
5
σ

)
, these probabilities can be approximated

as follows :

Pe (b3�xI = ±3) = Q

(
3

σ

)
Pe (b3�xI = ±1) = Q

(
1

σ

)
' Pe (b2�xI = ±3) ' Pe (b2�xI = ±1)

Then, we can conclude that in the 16-QAM modulation the binary positions b3 and
b1 are better protected than the binary positions b2 and b0. We took advantage of this
property to protect the systematic bits as well as the post-encoded parity bits as a priority.
And this con�guration reduced the loss of convergence of 3D turbo codes.

The reasoning is similar in the case of an 8-PSK modulation.We can also show that
among the three bits forming a symbol in 8-PSK, the average probability of error is smaller
for the �rst and the second bits than for the third bit. Nevertheless, this properties can
be directly deduced from the constellation in Fig. C.3. The represented decision zones
already predict that the average probability of error is smaller for bits b2 and b1 than for
the bit b0.
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C. About 16-QAM and 8-PSK modulations

(a) Decision zones for bits b2 and b1.

(b) Decision zones for the LSB bit b0.

Figure C.3: Decision zones for an 8-PSK constellation with Gray coded mapping.
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Appendix D

Basics and properties of LDPC codes

L
ow density parity check (LDPC) codes were originally invented by Robert Gallager in
1963 [54]. Although they perform near the Shannon limit for standard additive white

Gaussian noise channels, LDPC codes were ignored for a long time due to the requirement
of high complexity computation and the introduction of Reed-Solomon codes [84]. They
were rediscovered in the mid-1990's by MacKay and Neal[72].

D.1 Encoding and iterative decoding of LDPC codes

Like all linear block codes, the structure of LDPC codes can be described by the generator
matrix G or the parity check matrix H with dimension n×m. H is sparse and contains
only a few 1's in each row and column (in comparison to the amount of 0's). Let wr be
the number of 1's in each row and wc for the columns. For a low-density matrix, two
conditions must be satis�ed: wc � m and wr � n. In this case large minimum distance
is expected, as it represents the least number of columns in H that sum up to zero.

An alternative approach to simpli�ed encoding is to design the LDPC codes via al-
gebric or geometric methods. Tanner introduced an e�ective graphical representation for
LDPC codes [102]. Tanner graphs are bipartite graphs. That means that the nodes of
the graph are separated into two classes, where edges only connect two nodes of di�erent
classes. The two types of nodes in a Tanner graph are called variable nodes (v-nodes)
and check nodes (c-nodes). In other words, nodes of the same type cannot be connected
(e.g. a c-node cannot be connected to another c-node).

Let us look at an example for a low-density parity-check matrix H de�ned in equation
(D.1) for a (8,4) product code. Fig. D.1 represents the corresponding Tanner graph. It
consists of m = 4 check nodes (the number of parity bits) and n = 8 variable nodes (the
number of bits in a codeword). Check node fi is connected to variable node cj if the
element hij of H is equal to 1.

H =


1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1

 (D.1)
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D. Basics and properties of LDPC codes

Figure D.1: Tanner graph corresponding to the parity check matrix of equation (D.1).

Like turbo codes, LDPC can be decoded iteratively. Instead of a trellis, the decoding
takes place on a Tanner graph where messages are exchanged between the v-nodes and c-
nodes. The edges of the graph act as information pathways. Many graph-based algorithms
are used in the decoding process. The most common ones are the sum-product algorithm
used for general graph-based codes, the MAP (BCJR) algorithm for trellis graph-based
codes and the message passing algorithm for bipartite graph-based codes.

D.2 Irregular LDPC codes

A LDPC code is called regular if wc is constant for every column and H contains exactly
wr = wc (n/m) 1's per row. Otherwise, the code is irregular (i.e. H is low density but the
rows and columns have non-uniform weight).

It's also possible to see the regularity of this code while looking at the graphical
representation. There is the same number of incoming edges for every v-node and also
for all the c-nodes.

Although regular codes have impressive performance, they are still about 1 dB from
capacity and generally perform worse than turbo codes. Irregular LDPC codes tend to
outperform turbo codes for large block lengths (of more than 105 bits).
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