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Résumé

A u début des années 90, les turbocodes (TCs) [18] ont révolutionné le domaine du codage de canal. Ils ont été adoptés dans plusieurs standards de télécommunications (3GPP, DVB-RCS/RCT, WiMAX, ...) [1,2,[START_REF]Third Generation Partnership Project (3GPP) Technical SpecicationGroup, Multiplexing and channel coding (FDD)[END_REF][START_REF]IEEE standard for local and metropolitan area networks. Part 16: air interface for xed broadband wireless access systems[END_REF]. Le décodage de ces codes, constitués de la concaténation parallèle de deux codes convolutifs séparés par un entrelaceur, fait appel à un processus itératif basé sur deux décodeurs élémentaires s'échangeant des informations an d'améliorer la correction au l des itérations.

Tandis que les TCs existants présentent des performances très proches des limites théoriques pour les taux d'erreurs moyens et élevés, atteindre les taux d'erreurs très faibles requis par les futures applications de diusion numérique ou de visioconférence requiert l'utilisation de codes plus puissants. Néanmoins, une complexité de décodage raisonnable doit être maintenue. L'objectif principal de la thèse consiste à investiguer de nouvelles structures dérivées des TCs classiques an d'atteindre des taux d'erreurs très faibles. Il s'agit alors de trouver des architectures qui conduisent à un compromis performance/complexité de décodage non encore atteint avec de tels codes.

Les turbocodes 3D

Une première partie de l'étude est consacrée à l'investigation d'une nouvelle structure concaténée hybride 3D combinant les principes de concaténation parallèle et série. Celleci est simplement dérivée d'un TC classique en concaténant un post-codeur de rendement 1 à sa sortie [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF]. Dans la gure 0.1, on retrouve le schéma de principe d'un turbocodeur 3D.

Comparé au TC classique, le TC 3D comporte en plus des deux codeurs élémentaires concaténés en parallèle et séparés par un entrelaceur : Un convertisseur parallèle/série (P/S) qui prend périodiquement les bits de parités à post-coder et les groupe dans un seul bloc de P bits, Une permutation Π qui permute les bits de parité avant de les envoyer au postcodeur, Et un post-codeur de rendement 1. Seule une fraction λ (0 < λ ≤ 1) des bits de parité en provenance de chaque codeur est post-codée. 

Choix du post-codeur

Le choix du post-codeur est crucial pour la performance du code. Il doit satisfaire les conditions suivantes :

1. Son décodeur doit être simple, ajoutant peu de complexité au turbo décodeur classique, tout en en étant capable de manipuler des informations pondérées en entrée et en sortie.

2. Puisque des taux d'erreurs très faibles sont recherchés, il faudra éviter les eets de bord au niveau du décodeur. Par la suite, le post-codeur doit être un code en bloc homogène.

3. À la première itération (donc sans aucune information de redondance en entrée), le pré-décodeur associé au post-codeur de rendement 1 ne doit pas entraîner une grande amplication d'erreur, an d'éviter une importante perte en convergence.

Dans notre analyse, les diagrammes EXIT [START_REF] Brink | Convergence of iterative decoding[END_REF] nous permettent de rechercher des structures de post-codeurs adaptés aux transmissions aussi bien sur canal gaussien que sur canal à évanouissements de type Rayleigh. Le post-codeur [START_REF]IEEE standard for local and metropolitan area networks. Part 16: air interface for xed broadband wireless access systems[END_REF][START_REF]Third Generation Partnership Project (3GPP) Technical SpecicationGroup, Multiplexing and channel coding (FDD)[END_REF], dont les polynômes générateurs en octal sont 5 pour la récursivité et 4 pour la redondance, a été sélectionné dans diérentes simulations du TC 3D.

Choix de λ

Comme le montre la gure 0.2, la valeur de λ à choisir est un compromis entre la perte en convergence et la distance minimale souhaitée. Le choix d'une grande valeur de λ vi pénalise le décodeur d'un point de vue seuil de convergence. Cela résulte du fait que le décodeur associé au post-codeur, ne prote d'aucune information de redondance à la première itération, et multiplie par la suite les erreurs pendant le premier traitement.

Cependant, plus λ est grand et meilleures seront les performances asymptotiques du code. 

Choix de Π

Tout d'abord, la permutation Π intervient car on se retrouve dans un schéma de codage avec concaténation de codes. Comme tout entrelacement, Π évite de perdre des données entières lorsque les erreurs sont produites en rafales. De plus, Π joue un rôle important pour décorréler l'information extrinsèque sur les bits de parités post-codées.

An d'optimiser Π , nous avons testé diérents entrelaceurs comme l'entrelaceur aléatoire et d'autres permutations plus structurées comme la permutation régulière. Nous avons constaté que le spread est la propriété la plus importante. Comme la permutation régulière atteint la borne supérieure du spread [START_REF] Boutillon | Maximum spread of D-dimensional multiple turbo codes[END_REF], c'est cette permutation qui a été sélectionnée dans diérentes simulations du TC 3D. Π est donc dénie par la relation de congruence suivante :

i = Π (j) = P 0 i + i 0 % P vii où P est le nombre de bits de parités post-codées, i (1 ≤ i ≤ P ) l'adresse dans l'ordre naturel, j (1 ≤ j ≤ P ) l'adresse dans l'ordre entrelacé, P 0 un entier premier avec P et i 0 l'indice de départ.

Vers une optimisation des turbocodes 3D

Les TCs 3D orent de meilleures performances que les TCs classiques pour des rapports signal à bruit élevés sauf dans le cas des rendements élevés. An d'améliorer les performances asymptotiques de ces codes, nous avons proposé une méthode d'optimisation du spectre de distance. Cette méthode s'applique à n'importe quelle famille de TCs du moment où le spectre de distance présente des mots de codes ayant de faibles multiplicités. Dans le cas du code 3GPP2 [3], les bits de fermeture font que le début et la n du bloc représentent des points singuliers dans le treillis et causent la troncature des mots de codes. On obtient donc des mots de codes de multiplicités faibles. L'application de la méthode proposée permet d'augmenter d'autant plus la distance minimale du code 3D en optimisant le spectre de distance.

Pour le TC 3D, on observe en revanche une dégradation du seuil de convergence et une augmentation de la complexité. La complexité additionnelle est principalement due à l'implémentation du prédécodeur (associé au post-codeur) et l'échange de l'information extrinsèque sur les bits de parités post-codées entre le prédécodeur et le turbodécodeur classique (car il faut calculer ces informations extrinsèques et les stocker). Nous avons fait une étude de la complexité et nous avons estimé la complexité calculatoire. Nous avons constaté que la complexité additionnelle relative est d'autant moins importante quand le nombre de processeurs placés en parallèle augmente. Ceci dépend à la fois du débit et de la technologie implémentée.

En ce qui concerne le seuil de convergence du TC 3D, deux axes de recherche sont proposés an de résoudre le problème de la perte en convergence: Le premier consiste à utiliser un post-codeur avec un treillis variant dans le temps.

Les premiers travaux concernant le treillis variant dans le temps datent de 1974 où Costello [START_REF] Costello | Free distance bounds for convolutional codes[END_REF] montre que cette technique permet d'améliorer le comportement des codes convolutifs. Cette voie a été explorée par la suite dans la littérature [START_REF] Hu | Some periodic time-varying convolutional codes with free distance achieving the Heller bound[END_REF][START_REF] Lee | There are many good periodically time-varying convolutional codes[END_REF][START_REF] Mooser | Some periodic convolutional codes better than any xed code[END_REF][START_REF] Palazzo | A time-varying convolutional encoder better than the best timeinvariant encoder[END_REF]. Dans notre étude, nous nous intéressons également à un postcodeur avec treillis variant dans le temps. Dans notre version du treillis variant dans le temps, le polynôme de récursivité est toujours le même c'est-à-dire 5. Cependant, deux redondances w 1 = 4 et w 2 = 7 sont alternées dans le temps au lieu d'avoir une seule. Dans le treillis du code (5, 7 : 4), nous avons observé deux chemins correspondant à la même séquence tout-zéro. An d'éviter toute ambiguité dans le processus de décodage, nous avons eectué une petite modication sur ce code: Au lieu d'alterner les redondances w 1 et w 2 au cours du temps, on remplace périodiquement w 1 par w 2 comme le montre la gure 0.3. Le choix de la période de remplacement L résulte d' un compromis convergence/distance. Ce choix peut être ané par une étude EXIT en sélectionnant la valeur de L qui donne le seuil de convergence le plus faible. L'application de la technique du treillis variant dans le temps permet de réduire la perte en convergence observée pour le TC 3D de 10% à 50% de sa valeur exprimée en dB. Nous avons systématiquement vérié que les performances asymptotiques ne sont pas dégradées. En eet, pour une mémoire de code donnée, le choix du postcodeur n'inuence pas la distance minimale du TC 3D. Cependant, plus la distance locale du post-codeur est élevée, meilleur sera le niveau de l'information extrinsèque échangée entre le prédécodeur et le turbo décodeur classique. La technique du treillis variant dans le temps accélère donc la convergence du TC 3D.

Le deuxième axe consiste à associer le TC 3D avec des modulations d'ordre élevé comme les Modulations par Déplacement de Phase (MDP)-M ou les Modulations d'Amplitude sur deux porteuses en Quadrature (MAQ)-M . Lorsque les bits systématiques et les bits de parités post-codés sont aectés aux places binaires les mieux protégées par la modulation, la perte en convergence est transformée en gain. On obtient donc un TC 3D plus performant que le TC classique à la fois en termes de seuil de convergence et de performance asymptotique.

Les turbocodes irréguliers

Dans notre étude sur les TCs 3D, nous avons constaté qu'il est intéressant d'apporter de l'irrégularité dans un code an d' en améliorer les performances. La seconde partie de la thèse est consacrée par la suite à l'étude des TCs irréguliers. Des travaux dans les années 2000 sur les codes LDPC irréguliers montrent un gain de codage signicatif lorsque les degrés des n÷uds de bits codés et les degrés des n÷uds de parités ne sont pas tous identiques [START_REF] Luby | Improved low-density parity-check codes using irregular graphs[END_REF][START_REF] Mackay | Comparison of constructions of irregular Gallager codes[END_REF]. Frey et MacKay [START_REF] Frey | Irregular turbocodes[END_REF] ont aussi introduit de l'irrégularité aux TCs. Sawaya et Boutros [START_REF] Sawaya | Irregular turbo-codes with symbol-based iterative decoding[END_REF] ont repris leurs travaux an d'améliorer les propriétés de distance des TCs irréguliers. Le problème ici est l'inverse du précédent. En eet, les TCs irréguliers ont de très bonnes performances pour des rapports signal à bruit faibles, mais leur performance asymptotique est mauvaise comparée aux TCs réguliers.

Dans un TC régulier, tous les bits d'information sont répétés un nombre identique de fois égal au nombre de codes constituants, c'est-à-dire égal au degré d'un bit d'information.

Pour rendre ce TC irrégulier, il sut, comme pour les codes LDPC, de modier le degré de certains bits. Le schéma de principe d'un TC irrégulier est donné par la gure 0.4.

Répétition (d j )

Entrelaceur Tout d'abord, le prol de degré est sélectionné à l'aide des diagrammes EXIT hiérarchiques. Comme pour les codes LDPC où la méthode de l'évolution de la densité a été utilisée pour optimiser le prol des degrés, l'EXIT représente l'outil habituel permettant de trouver les meilleurs codes élémentaires d'un TC parallèle. Nous avons donc utilisé les diagrammes EXIT pour analyser le prol des degrés.

Ensuite, une étude a été lancée pour la conception d'entrelaceurs adaptés à de tels codes an d'améliorer leur distance minimale. Ces entrelaceurs, dont la construction est basée sur la notion de graphe en utilisant l'algorithme de Dijkstra [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF] et une estimation de la distance du code (par la méthode de l'impulsion d'erreur [START_REF] Garello | The all-zero iterative decoding algorithm for turbo code minimum distance computation[END_REF]), montrent une nette amélioration des performances dans la zone du plancher d'erreur. Néanmoins, cette tâche prend beaucoup de temps pour les blocs de grande taille, et nécessite un espace mémoire pour stocker les adresses de l'entrelaceur.

Pour proter des résultats de la première partie de la thèse et an de réunir les deux études, une nouvelle structure modiée de TCs irréguliers a été proposée. Il s'agit de concaténer le post-codeur de rendement 1 à la sortie de ces codes an de gagner en distance minimale. Cette architecture permet d'avoir des TCs irréguliers plus performants que les TCs réguliers à la fois en termes de seuil de convergence et de performance asymptotique.

Par exemple, la Fig. 0.5 montre un TC irrégulier qui a une distance minimale de 50. Comparé au TC régulier ayant une distance minimale égale à 44, le gain est aussi de 0.2 dB dans la zone de convergence. Lorsque nous avons associé les TCs irréguliers avec un post-codeur de rendement 1, nous avons considéré des motifs de post-codage réguliers. Cependant, nous avons ici des classes d'irrégularité diérentes. On pourra étudier d'autres motifs de post-codage où on favorise les bits pilotes avec un degré d > 2, ou bien des motifs de postcodage où seuls les bits répétés d = 2 fois sont à prendre en compte.

Pour conclure, la conception de permutations appropriées pour les TCs irréguliers est un point de départ pour des recherches futures importantes. En eet, l'algorithme proposé est très prometteur. Cependant, il est nécessaire de trouver des techniques qui éliminent tôt dans le processus de recherche les entrelaceurs n'ayant pas de bonnes propriétés de distances. De cette façon, l'espace de recherche sera réduit et l'algorithme deviendrait applicable même pour les blocs de grande taille.
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Estimation of ξ according to L for blocks of k = 1530 bits. ξ is an additional error rate at the output of the predecoder at the rst iteration. . . . . . . . . Codes (SCCCs) [START_REF] Benedetto | Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding[END_REF][START_REF] Benedetto | Iterative decoding of serially concatenated convolutional codes[END_REF], sometimes called serial turbo codes, or concatenation of block codes, also named block turbo codes [START_REF] Benedetto | Serial concatenation of block and convolutional codes[END_REF][START_REF] Pyndiah | Near-optimum decoding of product codes: Block turbo codes[END_REF].

The near-capacity performance of turbo codes and their suitability for practical implementation explain their adoption in various communication standards as early as the late nineties : rstly, they were chosen in the telemetry coding standard by the CCSDS (Consultative Committee for Space Data Systems) [START_REF] Synchronization | Recommendation for Space Data System Standards[END_REF], and for the medium to high data rate transmissions in the third generation mobile communication 3GPP (Third Generation Partnership Project)/UMTS (Universal Mobile Telecommunications System) standard [START_REF]Third Generation Partnership Project (3GPP) Technical SpecicationGroup, Multiplexing and channel coding (FDD)[END_REF].

They have further been adopted as part of the Digital Video Broadcast -Return Channel via Satellite and Terrestrial (DVB-RCS and DVB-RCT) links [1,2], thus enabling broad-band interactive satellite and terrestrial services. More recently, they were also selected for the next generation of 3GPP2/cdma2000 wireless communication systems [3] as well as for the IEEE 802.16 standard (WiMAX) [START_REF]IEEE standard for local and metropolitan area networks. Part 16: air interface for xed broadband wireless access systems[END_REF] intended for broadband connections over long distances.

While the well-known DVB-RCS/DVB-RCT/WiMAX 8-state double-binary parallel turbo code oers performance very close to the Shannon limit in the so-called waterfall region, it suers from a attening eect around 10 The basics of turbo codes are reviewed in chapter 1. The classical structure of a turbo encoder and its dierent parameters are rst presented. In particular, an overview of the interleavers used by turbo codes is discussed. Furthermore, the decoding process as well as the usual algorithms for the iterative data processing are described. In this chapter, the reader can also nd a brief presentation of the tools used to determine the convergence and the asymptotic performance of turbo codes. This performance is illustrated in the case of the 3GPP2 turbo codes [3]. Finally, the problem related to the error oor is discussed, and methods to combate this phenomenon are enumerated.

Chapter 2 is an exploration of the 3D TCs properties. The principle of a 3D turbo encoder is presented, and its dierent parameters are discussed. In particular, the optimization of the interleaving law and the permeability rate is possible. More important, the choice of the post-encoder has to meet several requirements and can be sensibly selected by means of an EXIT analysis. In this chapter, the interest of the 3D TC is assessed through simulations. Union bounds on the minimum distance of 3D binary turbo codes with 3GPP2 interleavers are available. The decoding process is also discussed, and a detailed study of the 3D turbo decoder has been carried out in order to estimate the additional complexity.

In chapter 3, two main axes to improve 3D TCs are deepened. First, an optimization method to increase even more the minimum distance is presented. This method was applied in two particular cases of the 3GPP2 3D turbo code. Furthermore, convergence issues are discussed. In order to reduce the observable loss of convergence, a time varying post-encoder is proposed. At the end, the association of 3D TCs with specic high order modulations is analyzed to improve the performance in the waterfall region. The dierent stages are illustrated with simulation results, asymptotical bounds and EXIT charts.

Chapter 4 is an investigation of irregular turbo codes. The use of EXIT diagrams allows the search for good degrees proles to be simplied and this search to be speeded up compared with Monte Carlo simulations. Besides, the design of suitable permutations based on the Dijkstra's algorithm is detailed, and allows performance in the error oor to be improved. Finally, the association of irregular turbo codes with the same post-encoder used for 3D TCs results in irregular turbo coding schemes which perform better than regular turbo codes at low and high signal to noise ratios at the same time.

The nal conclusion summarizes the contributions of this work and discusses perspectives for future research.

Chapter 1

Turbo codes: a breakthrough in digital communications I n 1948, Claude E. Shannon proved that the fundamental limit of digital transmission on channels with white noise is given by the classic channel capacity formula C = W log 2 (1 + S /N), where C is the capacity in bit/s, W is the channel bandwidth in Hz and S /N is the signal to noise ratio at the receiver. Shannon also demonstrated the existence of an error correction system able to achieve this limit.

After more than forty years of extensive research, the concept of turbo coding developed by Claude Berrou and Alain Glavieux [START_REF] Berrou | Near optimum error correcting coding and decoding: Turbo-codes[END_REF] nally proved that it was possible to reach the limit of channel capacity with an encoding scheme that could be constructed and decoded in practice. While turbo coding is not the only technique known to be able today to attain the channel capacity limit [START_REF] Costello | Channel coding: The road to channel capacity[END_REF], it is certainly one of the most commonly used channel coding technique for data channels in contemporary mobile communication systems. According to the inventors, the turbo coding principle was born from the experimentation with the feedback concept applied to the error correcting problem using convolutional codes [START_REF] Berrou | Reections on the Prize Paper: Near optimum error correcting coding and decoding: Turbo-Codes[END_REF]. At the core of a turbo coding system there is a fundamental constitutive element called interleaver. It is a system that changes the positions of input data according to an established position permutation algorithm. Inside the turbo coding process the function of the interleaving block is to help in providing codes vectors with the highest possible level of randomness (ideally, independent vectors) [START_REF] Battail | A conceptual framework for understanding turbo codes[END_REF] so that the resulting code resembles as close as possible the concept of random coding used by Claude E.

Shannon in [START_REF] Shannon | A mathematical theory of communication[END_REF] to prove the channel capacity theorem. Therefore the interleaver is a fundamental element for the performance of a turbo code (TC) [START_REF] Schlegel | Trellis and turbo coding[END_REF] and its understanding is a subject of high interest to the specication of physical layers for both wired and wireless transmission technologies. This chapter is organized as follows : In section 1.1, we present the classical structure of a turbo encoder and its dierent parameters. In particular, an overview of the interleavers used by turbo codes is discussed. In section 1.2, the decoding process is described as well as some algorithms for the iterative data processing in section 1.3. Tools to determine the convergence and the asymptotic performance of turbo codes can be found in section 1.4 ; whereas section 1.5 illustrates the performance of the turbo codes used by the third-1. Turbo codes: a breakthrough in digital communications generation cellular standard cdma2000. Finally, section 1.6 raises some practical issues about how to combate the error oor and section 1.7 draws conclusions. 

Design of turbo code interleavers

To avoid losing the whole data when bursts of errors are produced, the interleaver allows spreading these errors in the time. Interleaving is also a key component of turbo codes.

Since it aects the distance spectrum [START_REF] Dolinar | Weight distributions for turbo codes using random and nonrandom permutations[END_REF][START_REF] Yuan | Combined turbo codes and interleaver design[END_REF], this component inuences the performance of the overall coding scheme. The interleaver is used to provide randomness to the input sequences but also to increase the weights of the codewords. In fact, input patterns which produce low-weight words in one component code should map through the interleaver to patterns which produce hopefully high-weight words in the other component code. Fig. 1.2 shows an illustrative example.

From Fig. 1.2, the input sequence x i produces output sequences s i and p i . Table 1.2

shows how it is possible to increase the weight of the codeword when an interleaver is employed. For example, the sequences x 1 and x 2 are two interleaved input sequences of x 0 . They produce codewords with higher weight: 5 and 6 respectively instead of only 3 for the input sequence x 0 . In the sequel, we present some representative interleavers commonly used in turbo code design. The approaches used in the literature vary from random interleaving to highly structured interleaving.

The random (or pseudo-random) interleaver simply performs a random permutation of the elements without any restrictions. spread low weight input patterns to generate higher weight codewords. An extension to the S-random interleaver, has been proposed by Crozier [START_REF] Crozier | New high-spread high-distance interleavers for turbo-codes[END_REF]. If Π is the interleaving law, the spread factor S is applied for any two positions i and j according to the relation:

|Π (i) -Π (j)| + |i -j| > S
The above relation states that the closer the bits i and j are before interleaving the more they should be spread apart after interleaving. It can be shown that the theoretical maximum spread is: S max = floor √ 2k [START_REF] Boutillon | Maximum spread of D-dimensional multiple turbo codes[END_REF], where k is the length of the interleaver. As 1. Turbo codes: a breakthrough in digital communications an example, for a block length of k = 20730, which is the longest interleaver length for the cdma 2000 turbo code, the theoretical maximum spread is 203 (i.e. S ≤ 203). A number of variations on the spread interleaver are presented in [START_REF] Barbulescu | Interleaver design for turbo codes[END_REF][START_REF] Ho | Interleavers for punctured turbo codes[END_REF][START_REF] Pietrobon | Interleaver Address Generator[END_REF][START_REF] Sauvé | Multibit decoding of turbo codes[END_REF].

Interleavers which are pseudorandom with constraints on spreading properties have been shown to provide good performance. But such randomlike interleavers may be hard to implement in an ecient manner especially for long data blocks, as all the addresses need to be stored in a memory. Another novel interleaver design based on the correlation between the extrinsic information is reported in [START_REF] Hokfelt | Interleaver design for turbo codes based on the performance of iterative decoding[END_REF]. Simulation results show that the correlation designed interleavers perform approximately 0.1 dB better than S-random interleavers.

In the literature, we can also nd many structured interleaver approaches that have high-spread properties, such as dithered golden interleavers [START_REF] Crozier | Performance of Turbo-codes with relative prime and golden interleaving strategies[END_REF], dithered-relative prime (DRP) interleavers [START_REF] Crozier | High-performance low-memory interleaver banks for turbo-codes[END_REF], and dithered-diagonal (DD) interleavers [START_REF] Crozier | New high-spread high-distance interleavers for turbo-codes[END_REF]. These methods are easy to implement and can be used to design interleavers with excellent spreading and good error performance. For instance, it was shown that for a block size of k = 512 data bits and an unpunctured code rate of 1 /3, the ares in the packet error rate and bit error rate (BER) 1 curves can be kept below 10 -8 and 10 -10 , respectively [START_REF] Crozier | New high-spread high-distance interleavers for turbo-codes[END_REF].

Other deterministic interleaver design methods were suggested, such as the almost regular permutation (ARP) [START_REF] Berrou | Designing good permutations for turbo codes: towards a single model[END_REF] and the quadratic permutation polynomial (QPP) [START_REF] Sun | Interleavers for turbo codes using permutation polynomials over integer rings[END_REF] that has been adopted as an emerged solution to the requirements of the 3GPP Long Term Evolution (LTE) [START_REF] Nimbalker | ARP and QPP interleavers for LTE turbo coding[END_REF]. The previous list is not exhaustive. However, it shows that devising more sophistical internal permutations to lower the error oor is not an easy task.

Trellis termination

Convolutional encoders are a priori specied for continuous ows of information, which corresponds to an innite sequence of information bits. If the information is formated by blocks, it is necessary to plan a suitable ending of the encoding process. When the convolutional encoder has no trellis termination, the nal state is not known in advance and the corresponding decoding process nds it hard to correct the errors at the extremities of the block. To ensure that the last bits to be encoded are as well protected as the rst ones, we add to the block of information some bits which purge the register at the end of coding and allow the encoder to retrieve a known state (the all-zero state). These bits are called tail bits.

For the turbo codes many solutions are possible: no trellis termination for each encoder, only the rst encoder is terminated or both encoders are terminated. Another termination technique is to ensure the trellis start and end states are identical. This technique, referred to as tail-biting [START_REF] Weiss | Code construction and decoding of parallel concatenated tail-biting codes[END_REF], has the main advantage of not requiring any extra bits to be transmitted. Tail-biting is used in several popular communications standards, such as the Wimax (IEEE 802.16), the DVB-RCS and DVB-RCT standards. 1 The BER is simply the ratio of incorrect data bits divided by the total number of data bits transmitted.

Turbo decoding 1.1.4 Puncturing

The purpose of puncturing is to increase the overall code rate. This process, which should be fairly distributed between both encoders, consists in removing certain bits from the codeword. Puncturing must be as regular as possible and it maximizes the free distance of the code. Details about how to select the puncturing patterns that improve turbo code performance are available in [START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF][START_REF] Deshmukh | Analysis of Various Puncturing Patterns and Code Rates: Turbo Code[END_REF]. There are two elementary decoders separated by the same interleaver. They correspond to the two RSC encoders and they exchange information along the iterations. In fact, the feedback allows each decoder to take advantage of all the information available. Therefore, a SISO decoder is necessary as it processes soft decisions at its unput and tries to make them more reliable, thanks to local redundancy (i.e., y 1 or y 2 ). The information coming from the channel and referred to as intrinsic information, is used by the two decoders. An extrinsic information is produced by each decoder and transmitted to the other one. A good permutation has to guarantee a good exchange of the extrinsic information between the decoders.

Turbo decoding

The iterative decoding consists in decoding alternately both elementary codes and passing the information between the corresponding decoders. The inputs to the rst decoder are the observed systematic bits, the parity bit stream from the rst encoder and 1. Turbo codes: a breakthrough in digital communications the deinterleaved extrinsic information from the second decoder. The inputs to the second decoder are the interleaved systematic bit stream, the observed parity bit stream from the second RSC code and the interleaved extrinsic information from the rst decoder. The rst SISO decoder generates the soft output and subsequently an extrinsic information.

The extrinsic information is interleaved and used by the second SISO decoder as the estimate of the a priori probability (APP). The second SISO decoder also produces the extrinsic information and passes it after deinterleaving to the rst SISO decoder to be used during the subsequent decoding operation. To benet at best from the information produced by each decoder, it was established that the exchange of soft decisions rather than hard decisions can lead to an excellent performance.

The mathematical foundations of the decoding process with soft decisions are based on the theorem of Bayes. Let us consider a non coded transmission using a binary phase-shift keying (BPSK) modulation over an Additive White Gaussian Noise (AWGN) channel.

An information bit d = 0 is transmitted as x = -1 and an information bit d = 1 is transmitted as x = +1. The observation at the output of the noisy channel is given by : x noisy = x + n, where n represents a sample of noise having a Gaussian distribution with standard deviation σ. Let Pr(d = 0) (resp. Pr(d = 1)) the a priori probability that the transmitted bit is equal to 0 (resp. 1 ). The a posteriori probabilities or likelihoods are calculated using the the theorem of Bayes and are expressed in the following way :

P 0 = Pr(d = 0 | x noisy ) = Pr(x noisy | d=0) Pr(d=0)
Pr(x noisy )

P 1 = Pr(d = 1 | x noisy ) = Pr(x noisy | d=1) Pr(d=1) Pr(x noisy )
These likelihoods can be considered as a renement of the a priori knowledge on the value of the transmitted digit supplied by the observation of the channel. Then the optimal hard decision d in the sense of the maximum a posteriori (MAP) is :

d = 0 if P 0 > P 1 1 otherwise.
The soft decision is dened as the Logarithmic Likelihood Ratio (LLR) :

LLR = L(d | x noisy ) = ln P 1 P 0 = L c (x noisy ) + L a (d)
where L c (x noisy ) = ln

Pr(x noisy | d=1) Pr(x noisy | d=0)
is the channel LLR and L a (d) = ln Pr(d=1) Pr(d=0) is the a priori LLR. The criterion of decision can then be written :

d = 0 if LLR > 0 1 otherwise.
It follows that the sign of the soft decision determines the hard decision and that the absolute value of the soft decision determines the reliability of this decision. In particular, if the noise is Gaussian, the channel LLR has for expression :

L c (x noisy ) = ln 1 σ √ 2Π exp   -( x noisy -1 ) 2 2σ²   1 σ √ 2Π exp   -( x noisy +1 ) 2 2σ²   = 2 σ² x noisy
Until now we considered a system of non-coded transmission. For a system of coded transmission, if the a priori information is distributed in an independent way, the soft output of a decoder can be expressed in the following way [START_REF] Berrou | Near Shannon limit error-correcting coding and decoding: Turbo-codes[END_REF] :

L(d) = L c (x noisy ) + L a (d) + L e (d)
where L e (d) is the extrinsic LLR representing the knowledge acquired thanks to the decoding process.

Algorithms for iterative (turbo) data processing

Some of the major SISO decoding approaches, developed for turbo decoding are: Maxium Aposteriori Probability (MAP), Log-MAP, Max-Log-MAP and Soft Output Viterbi Algorithm (SOVA).

BCJR or MAP algorithm

Bahl, Cocke, Jelinek and Raviv presented an optimal algorithm [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)[END_REF], often referred to as the BCJR algorithm, for estimating the a posteriori probabilities of states and state transitions of a Markov source observed through a discrete memoryless channel. This algorithm was later adapted by Berrou et al. to produce a posteriori probabilities in the case of the iterative decoding of convolutional codes. The BCJR algorithm is often referred to as the maximum a posteriori (MAP) algorithm. With regard to the Viterbi algorithm which determines the most probable information sequence [START_REF] Forney | The viterbi algorithm[END_REF][START_REF] Viterbi | Convolutional codes and their performance in communication systems[END_REF][START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF], the MAP algorithm associates with every decoded bit an estimation of the reliability of this decision. This algorithm is used in general for the iterative decoding of convolutional codes. To simplify the description of the MAP algorithm, we consider a RSC encoder at coding rate R = 1 /2 with memory length M (2 M internal states). Let u k be the k th information bit and c k the corresponding parity bit. At the output of the channel, we receive the following sequence : R N

1 = (R 1 , ..., R k , ..., R N ) where R k = (x k , y k ),
x k and y k are the observations received at time k corresponding respectively to the information bit u k and the redundancy bit c k .

The MAP decoder computes the ratio of conditional probabilities :

L(u k ) = Pr(u k =1\R N 1 ) Pr(u k =0\R N 1 )
To compute L(u k ) , we introduce the densities of conditional probabilities for the state

m : 1. Turbo codes: a breakthrough in digital communications Forward a k (m) = Pr S k = m \ R N 1 and Backward β k (m) = Pr S k = m \ R N k .
We can show that :

L(u k ) = mα k-1 (m)γ 1 k (m)β k (f (1,m)) mα k-1 (m)γ 0 k (m)β k (f (0,m)) g i k (m) is the branch metric at time k corresponding to the transition from state m to state f (i, m) when the information bit is u k = i. a k (m) et b k (m) are calculated iteratively. a k (m) = i a k-1 (b(i, m))g i k (b(i, m))
Where a 0 (0) = 1 and a 0 (m) = 0 for m = 0, if the initial state is 0. In fact, each alpha metric is the sum of the previous alphas multiplied by the branch metrics along each branch from all the previous states to the current state m. The computation of the beta metrics is similar to that of the alphas but starting at the end of the trellis and going in the reverse direction :

b k (m) = i b k+1 (f (i, m))g i k (m)
Where b N (0) = 1 and b N (m) = 0 for m = 0, if the nal state is 0. f (i, m) is the nal state corresponding to a starting state m when the information bit is u k = i. b(i, m) is the starting state corresponding to a nal state m when the information bit is u k = i.

For more clarications about these notations, a trellis representation is given in Fig. Contrary to the Viterbi algorithm which concentrates on the most likely message, the MAP algorithm is one of the methods acting at the level of the information bits of the message. The advantages supplied by this algorithm are the minimization of the probability of error of every bit of the message and the estimation of the reliability of the decoding. The MAP algorithm is thus the optimal solution to estimate the state probabilities and the memory transitions of a convolutional encoder. In other words, the MAP algorithm is the optimal component decoder algorithm. However, it is complex for a hardware implementation of the decoder. In fact, the algorithm suers from numerical problems because of the exponent in probability calculations and from a need to use a very high precision in the decoder to represent small vector elements.

LogMAP algorithm

The LogMAP algorithm, which uses the notion of Jacobian Algorithm, is a transformation of MAP into the logarithmic domain. In fact, multiplication is converted to addition and addition is converted to max*(.) operation :

max * (x, y) = log (e x + e y ) = max (x, y) + log 1 + e -|x-y|
The numerical problems that occur in MAP are thus circumvented.

Max-Log-MAP algorithm

This algorithm is derived from the LogMAP algorithm, where the max*(.) operation is replaced by simply the maximum. In fact, only the path with maximum value is considered at each state in forward or backward recursions. Therefore, the Max-Log-MAP algorithm is simpler [START_REF] Hagenauer | Iterative decoding of binary block and convolutional codes[END_REF][START_REF] Robertson | A comparison of optimal and suboptimal MAP decoding algorithms operating in the log domain[END_REF] but performs worse than the MAP or the LogMAP algorithms. Compared to the LogMAP algorithm, a degradation of 0.5 dB in the error rate performance was observed in [START_REF] Robertson | A comparison of optimal and suboptimal MAP decoding algorithms operating in the log domain[END_REF].

The extrinsic information exchanged between the constituent decoders can be scaled to improve the performance of turbo decoding for sub-optimal algorithms [START_REF] Claussen | Improved max-log map turbo decoding using maximum mutual information combining[END_REF][START_REF] Vogt | Improving the max-log-MAP turbo decoder[END_REF]. Scaling factor modication has also been applied and tested on the Max-Log-Map algorithm.

Authors in [START_REF] Vogt | Improving the max-log-MAP turbo decoder[END_REF] used a constant scaling factor of 0.7 and reported a gain from 0.2 to 0.4 dB in the case of the 3GPP standard. In [START_REF] Claussen | Improved max-log map turbo decoding using maximum mutual information combining[END_REF], the best scaling factors for each iteration were calculated for dierent signal to noise ratios (SNRs) 2 by o-line computation. It was shown that a turbo decoder using the modied Max-Log-Map performs within 0.05 dB of a turbo decoder using the Log-Map algorithm [START_REF] Claussen | Improved max-log map turbo decoding using maximum mutual information combining[END_REF]. The performance improvement introduced by the scaling factor modication is explained as the correction of the accumulated bias due to maximum operation in the Max-Log-Map algorithm [START_REF] Claussen | Improved max-log map turbo decoding using maximum mutual information combining[END_REF]. 2 The SNR is computed by dividing the energy per received data bit E b by the single-sided noise spectral density N 0 of the channel. The convergence threshold dened as the minimum signal to noise ratio where the performance of a coded system becomes better compared with the non coded transmission system. A good convergence corresponds to a low convergence threshold, because the performance of the system at high and average levels of noise are close to the theoretical limit.

The asymptotic gain G A indicates the maximum gap between the coded and noncoded error rate curves. When G A is reached, the error rate curve with coding becomes parallel to the curve without coding. G A can be expressed in the following way:

G A ≈ 10 log (R d min )
where R is the coding rate and d min the Minimum Hamming Distance (MHD).

In fact, there is a compromise between good convergence and MHD. For average or high error rates, it is better to privilege the convergence threshold to the detriment of the minimum distance of the code; whereas at low error rates it is better to have a high minimum distance.

Graphical analysis of the convergence using the EXIT diagrams

To evaluate the performance of a coding scheme with iterative decoding, Monte Carlo simulations of the bit error rate can be carried out. However this means may require a lot of computing time and resources. The study of the evolution of the extrinsic information is rather an attractive solution for ner comparisons between dierent coding schemes. It allows to analyze the performance of the coding scheme, but also to supply an estimation of the bit error rate. This method was proposed at rst by Stefan Ten Brink in [START_REF] Brink | Convergence of iterative decoding[END_REF]. Berrou et al. showed in [START_REF] Berrou | Near Shannon limit error-correcting coding and decoding: Turbo-codes[END_REF] that when the decoding process converges, the extrinsic information can be modelled by a Gaussian distribution where the mean and the variance increase as the number of iterations increases. This modelling allows the extrinsic information z to be characterized only by its mean µ z and its variance σ². The Gaussian approximation is veried up to a certain number of iterations, this number increases for the low values of E b /N 0 . The Mutual Information (MI) I(z, x), as dened below, is used in EXtrinsic Information Transfer (EXIT) charts to predict the convergence behavior of iterative decoding [START_REF] Brink | Convergence of iterative decoding[END_REF][START_REF] Brink | Convergence behavior of iteratively decoded parallel concatenated codes[END_REF][START_REF] Brink | Convergence of multidimensional iterative decoding schemes[END_REF]. It measures the quantity of information provided on average by the extrinsic information z on the information bits x.

Let z ∼ N (±µ z ; σ z ²) be the a priori LLR of a SISO decoder. The associated MI is given by :

I(z, x) = 1 2 x=±1 ˆR f (z \ x) log 2 ( 2f (z \ x) f (z \ x = +1) + f (z \ x = -1)
) dz

If the channel is symmetric (i.e. f (z \ x = -1) = f (-z \ x = +1
)) and the probability density function is consistent ( i.e., f (z \ x) = f (-z \ x) e -z ), then :

I(z, x) = ˆR f (z \ x = +1) log 2 ( 2f (z \ x = +1) f (z \ x = +1) + f (z \ x = -1)
) dz

I(z, x) = ˆR f (z \ x = +1) log 2 ( 2f (z \ x = +1) f (z \ x = +1)(1 + e -z )
) dz

I(z, x) = 1 -ˆR f (z \ x = +1) log 2 (1 + e -z ) dz I(z, x) = 1 - 1 4Πµ z ˆR log 2 (1 + e -z ) exp(- (z -µ z x)² 4µ z )dz = J(µ z ) (1.1)
The hypothesis of the exponential symmetry imposes σ 2 z = 2µ z . Then, the MI I(z, x), can be expressed as follows :

I(z, x) = 1 - 1 √ 2Πσ z ˆR log 2 (1 + e -z ) exp(- (z -σz² 2 )² 2σ z ² )dz = J(sv z )
We obtain the expression of J(sv z ). This function of equation (1.1) can also be expressed in the following way :

J(sv z ) = 1 -E z (log 2 (1 + e -z )) , z ∼ N (µ z , 2µ z )
J(sv z ) is monotonically increasing in sv and therefore it has a unique inverse function, sv = J =1 (I). The J function and its inverse are important functions that are used extensively in the following chapters to compute dierent convergence thresholds. Unfortunately, they cannot be expressed in closed form, but they can be closely approximated by :

J(sv z ) ≈ 1 -2 -H 1 σ 2 H 2 H 3 (1.2) J -1 (I) ≈ - 1 H 1 log 2 1 -I 1 H 3 1 H 2
Numerical optimization to minimize the total squared dierence between equation 

EXIT charts for turbo codes

To generate the EXIT chart of a TC, we have to consider the transfer characteristics of the extrinsic information for each SISO decoder. The mutual information between the bits x and the soft output values, L, of these bits after decoding can be computed from a large number N of samples [START_REF] Hagenauer | The EXIT chart-introduction to extrinsic information transfer in iterative processing[END_REF]: when the signal to noise ratio is low. Then, the iterative process starting with a zero average mutual information in entry cannot end in a perfect determination of the message.

I(L, x) = 1 -E (1 + log 2 (1 + exp (-L))) ≈ 1 N N k=1 log 2 (1 + exp (-x k L k ))
In the case of high enough signal to noise ratio, the two curves do not have any intersection outside the point of coordinates (1,1). In Fig. 1.8, a tunnel between the two curves is observed, meaning that convergence is possible at this SNR. The convergence threshold of the turbo code is the minimum signal to noise ratio where the only intersection point is (1,1). 

Distance measurement methods for turbo codes

Consider the transmission of a linear binary turbo code over the AWGN channel using BPSK or quadrature phase-shift keying (QPSK) modulation. Applying maximum-likelihood (ML) decoding, the frame error rate and bit error rate are upper bounded by the union bounds [START_REF] Vucetic | Turbo codes: principles and applications[END_REF] :

F ER ≤ 1 2 d≥d min A d erf c d min k n E b N 0 (1.3) BER ≤ 1 2 d≥d min w d k erf c d min k n E b N 0 (1.4)
where :

n is the codeword length in bits,

k is the number of information bits, simulations the performance of a code that operates at very low error rates. Berrou et al. [START_REF] Berrou | Computing the minimum distances of linear codes by the error impulse method[END_REF] introduced the innovative error impulse method, based on iterative decoding. The approach of Garello et al. in [START_REF] Garello | The all-zero iterative decoding algorithm for turbo code minimum distance computation[END_REF] represents a modication and an improvement of the error impulse error. In this sub-section, we discuss briey Garello's distance measurement method called the all-zero iterative decoding algorithm. This technique is based on the transmission of an all-zero sequence corrupted by an error impulse and a noise. The dierence with the method in [START_REF] Berrou | Computing the minimum distances of linear codes by the error impulse method[END_REF] is that the amplitude of the error impulse is high enough to prevent the decoder from converging to the all-zero codeword. On the other hand, a Gaussian noise is added to the sequence in the entry of the decoder, which helps the decoder to converge towards non-zero codewords. It is necessary to adjust the level of noise to make the decoder converge to low weight codewords and thus to obtain a good estimation of the minimum distance, because the weight of the codeword on which the decoder converged represents a superior limit of the minimum distance. This algorithm works very well for interleavers for small and average distances, typically up to 50, and it is the algorithm we used in our study. The algorithm is the following :

d
1. Choose a value for E b /N 0 ∈ [2 dB , 8 dB] and compute the noise variance An improvement of the Garello's method was proposed by Crozier et al., at the expense of higher computation time since they introduced a second and a third error impulse [START_REF] Crozier | Estimating the minimum distance of turbocodes using double and triple impulse methods[END_REF][START_REF] Crozier | Computing the minimum distance of turbocodes using iterative decoding techniques[END_REF].

σ 2 = N 0 2 = 1 2 k n E b N 0 . 2. Fix d min = 1000.

Cdma2000 turbo code

One of the major third-generation cellular standard is cdma2000. It is one of the two most widely adopted third-generation cellular standards, the other being UMTS, and it is standardized by the Third Generation Partnership Project 2 (3GPP2) [3]. The size of the interleaver for the cdma2000 turbo code must be one of the following specic values: 378, 570, 762, 1146, 1530, 2298, 3066, 4602, 6138, 9210, 12282, or 20730 bits. The constituent RSC encoder used by the cdma2000 turbo code is shown in Fig. 1.9. As can be seen, this encoder has three output bits, one systematic and two parities, for each input bit. Thus, the code rate of this RSC encoder is R = 1 /3, neglecting the tail bits.

Figure 1.9: The rate-1 /3 RSC encoder used by the cdma2000 turbo code.

The overall code rate for the cdma2000 turbo code is R = 1 /5. Through puncturing, rates of R = 1 /2, 1 /3, and 1 /4 can be achieved. For instance, to achieve rate R = 1 /3, the encoder deletes the second parity output of each encoder and only the rst parity outputs are transmitted. The puncturing mechanisms used to achieve rates R = 1 /2 and R = 1 /4 are slightly more complicated, but the details can be found in the specication [3]. For 1. Turbo codes: a breakthrough in digital communications reasons of simplicity in our simulations, we considered only the rst parity for coding rates higher than R = 1 /3. Although the output produced by the interleaver seems to have elements of randomness, it should be noticed that the transformation between input and output positions is deterministic.

Performance of cdma2000 turbo code

This section illustrates the performance of cdma2000 turbo code. Simulations were run to determine the performance of these turbo codes in AWGN with BPSK modulation. In each case, either the MAP or Max-Log-MAP algorithm was used. For each simulation, a curve showing the bit-error rate versus the per-bit signal to noise ratio was computed.

Fig. 1.11 shows the performance of the 3GPP2 turbo code with an input frame size of k = 6138 bits. This gure shows how performance improves as the number of decoder iterations increases. After one iteration, performance is quite poor, and the decoder is unable to achieve a BER lower than 10 =1 even for high SNRs. However, as the decoder iterates, performance improves until at the tenth iteration it can achieve a BER of 10 =6 at an SNR of only 1.25 dB. Note how each subsequent iteration improves performance, but that this improvement follows a law of diminishing returns. Thus, although an eleventh (or higher) iteration would provide slightly improved performance, the extra complexity and decoding delay is not justied. Fig. 1.12 shows the performance of the 3GPP2 turbo code as a function of input frame size k. As can be seen in this gure, the performance improves with increasing k. This is due to an increase in interleaver gain as the input frame size gets larger.

Table 1.4 lists the minimum E b /N 0 required to achieve a BER of 10 =3 , a target error rate in the case of 3GPP communication systems, for each of the four frame sizes shown in Fig. 1.12. While the BER curve falls o sharply with increasing SNR for moderate error rates (e.g., BER > 10 =5 ), the BER curve begins to atten at higher SNRs. This characteristic can be observed in Fig. 1.12, where the BER was simulated down to very small values. It does not represent a problem since the 3GPP2 turbo code is used in Automatic ReQuest (ARQ) systems, which do not usually require very low error rates.

However, this is not true for other applications where the error oor hinders the ability of a turbo code to achieve required very low error rates. Table 1.4: Minimum value of E b /N 0 (in dB) to achieve a BER= 10 -3 using the 3GPP2 turbo code.

Turbo codes: a breakthrough in digital communications

How to combate the error oor ?

Turbo codes represent a huge advance in the eld of forward-error-correction channel coding. The codes make use of three simple ideas: parallel concatenation of codes to allow simpler decoding, interleaving to provide better weight distribution and soft decoding to enable decoder interaction and iterative decoding.

The error rate curves of a turbo code can be divided into two main regions: the waterfall region where the error rate decreases rapidly; and the region of error oor where a change in the curve slope appears when the code reaches its asymptotic gain. This means that the error rate reaches a limit and stops improving even if the number of iterations is increased. The error oor is due to the presence of low-weight codewords. At low SNR, these codewords are insignicant, but as SNR increases, they begin to dominate the performance of the code [START_REF] Perez | A distance spectrum interpretation of turbo codes[END_REF]. It is naturally desirable to have turbo codes which have waterfalls as closest as possible to the channel capacity and low oors of error. Several ways can be used to combate the error ooring eects:

One way is to use a slightly dierent RSC encoder with a more favorable distance 1.7. Conclusion spectrum. However, in order to lower the error oor at high SNR, performance at low SNR will suer. An interesting approach taken in [START_REF] Takeshita | A note on asymmetric turbo-codes[END_REF] is to use two dierent RSC encoders. One RSC encoder is optimized to perform well at low SNR, while the other is optimized to reduce the error oor. The resulting asymmetric turbo code 3 provides a reasonable combination of performance at both a low and high SNR. Unfortunately, although the error oor has been reduced, it is still present.

Increasing the MHD of a turbo code may involve devising more sophistical internal permutations. This is an appealing alternative to improve the MHD, since it does not incur any complexity penalty. Unfortunately, designing such powerful permutations is not an easy task, as explained in subsection 1.1.2.

It may also involve using component encoders with a large number of states (16state instead of 8-state components [START_REF] Berrou | The ten-year-old turbo codes are entering into service[END_REF][START_REF] Douillard | Turbo codes with rate-m/(m+ 1) constituent convolutional codes[END_REF]), at the price of doubling the decoding complexity each time we increase the memory length of the code by 1. This is not an appropriate solution because we want to raise the minimum distance and preserve a reasonable complexity at the same time.

Another way to reduce the error oor is to arrange the two constituent encoders in a serial concatenation, rather than in a parallel concatenation [START_REF] Benedetto | Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding[END_REF]. Such serially concatenated convolutional codes yield higher minimum distances. However, performance at low SNR is considerably worse than it is for parallel concatenated codes. This penalty in convergence threshold might be unacceptable for several applications. An alternative to choosing between Serial Concatenated Convolutional Codes (SCCCs) and Parallel Concatenated Convolutional Codes (PCCCs) is to use hybrid turbo codes, which combine features of each type of code [START_REF] Divsalar | Hybrid concatenated codes and iterative decoding[END_REF]. Several dierent hybrid concatenated structures have been proposed in the literature, e.g., [START_REF] Divsalar | Serial and hybrid concatenated codes with applications[END_REF].

Mixed structures, like those proposed in [START_REF] Gonzalez | Serial/Parallel Turbo Codes for Low Error Rates[END_REF] or [START_REF] Li | Product accumulate codes: a class of codes with near-capacity performance and low decoding complexity[END_REF], are also possible.

Last but not least, multiple concatenation using an increasing number of component encoders, can be used to eliminate low-weignt codewords and so improve the distance properties of the code. However, this will be paid in terms of loss in convergence and increase in complexity because each data has to be decoded more than twice.

Conclusion

The near-capacity performance of turbo codes and their suitability for practical implementation explain their adoption in various communication standards as early as the late nineties. In future system generations, low error rates will be required to open the way to real time and more demanding applications, such as TV broadcasting or videoconferencing. The MHD may not be sucient to ensure large asymptotic gains at very low error rates. This phenomenon is the so-called attening eect and it can be combated in several ways previously enumerated. In [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF], an inner code was used to improve the 3 If the component encoders are not identical then it is called an asymmetric turbo code.

distance properties of an outer turbo code. The idea is to mix the two last techniques in order to obtain a hybrid concatenated structure with an increasing number of component encoders. The next chapter focuses on this alternative. However, the techniques implemented to improve the oor usually degrade the convergence threshold. It is the compromise distance-convergence well identied in the literature. And in my thesis, I will be confronted many times to nd a good balance between the two criteria, if it is not to be winning on both plans.

Chapter 2

Exploring 3-Dimensional turbo codes T urbo codes [17] have been adopted in various communication standards [1, 2, 3, 4] due to their near-capacity performance and low decoding complexity. But they suer from a attening around 10 -5 of Frame Error Rate (FER). In future system generations, lower error rates will be required to open the way to real time and more demanding applications, such as TV broadcasting or videoconferencing. In [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF], a 3-dimensional turbo code (3D TC) was introduced, combining both parallel and serial concatenation. It is simply derived from the classical turbo code by concatenating a rate-1 post-encoder at its output, which encodes only a fraction l of the parity bits from the upper and lower constituent encoders. The fraction 1 -l of parity bits which is not re-encoded is directly sent to the channel or punctured to achieve the desired code rate. The 3D TC improves performance in the error oor compared to the TC, at the expense of an increase in complexity and a loss in convergence.

This chapter is organized as follows. In section 2.1, we present the 3D TC and its dierent parameters. The decoding process is also discussed in the same section. In section 2.2, the interest of the 3D TC is assessed through simulations in the case of the 3GPP2 code. Finally, a detailed study of the complexity increase of the 3D TC is presented in section 2.3.

Exploring 3-Dimensional turbo codes

Properties of 3-dimensional turbo codes

All the analysis presented below can be applied to any 3D TC in a straightforward manner. However, we focused in our simulations on the 3GPP2 code, an 8-state binary turbo code, used in the third generation (3G) cdma2000 mobile phone communication systems (see section 1.5). We remind that the 3GPP2 turbo code is built from the parallel concatenation of two 8-state RSC codes, with generator polynomials 13 (recursivity) and 15

(redundancy). The overall turbo code code rate before puncturing is 1 /3 since only the rst parity in each component code is considered (see section 1.5).

3D turbo encoder structure

A block diagram of the 3D turbo encoder is depicted in Fig. 

3D turbo decoder

As depicted in Fig. 2.2, the classical turbo principle is used to decode the 3D turbo code.

We have three elementary decoders corresponding to the three constituent encoders; and 

Choice of the permeability rate

The value of l can be used to trade-o performance in the waterfall region with performance in the error oor region. The case λ = 0 corresponds to the standard parallel turbo code and the case λ = 1 is a serial concatenation between the classical turbo code and the post-encoder. Increasing 0 < λ < 1 turns the code into more serial, hence increasing its minimum distance. However, a large value of λ penalizes the decoder from the convergence point of view. In fact, the more redundancies are post-encoded the less redundant information at the rst iteration the decoder will have, then causing more errors at its output at the rst processing.

Let P be the number of bits that pass through the post-encoder. The fraction θ of the codeword bits that are post-encoded is:

θ = P n = 2λk n = 2λR
where n = k R is the codeword length and R is the overall code rate of the 3D turbo code. We denote by R i the code rate of each constituent encoder (i.e., R 1 is the code rate of RSC1 and R 2 is the code rate of RSC2). The fraction θ i of the data processed by the component decoder of each constituent encoder, that have to pass through the predecoder can be expressed as follows:

θ i = λ k 2 k + k 2 = λ k 2 R i k
The parallel concatenation, which associates two elementary codes with rates R 1 and R 2 , has a global coding rate: R =

R 1 R 2 R 1 +R 2 -R 1 R 2
. Since the turbo code is symmetric (i.e.,

R 1 = R 2 ), then R = R 2 i 2×R i -R 2 i
. Thus, we obtain R i = 2R

R+1

, and θ i can be expressed in the following way:

θ i = λ R R + 1 (2.1)
Now, if p is the probability of error at the channel output and ϕ is the ratio of the probability of error at the predecoder output divided by the probability of error at its input, the average probability of error p at each decoder intrinsic input is:

p = ϕθ i p + (1 -θ i ) p = (1 + (ϕ -1) θ i ) p that is, from equation (2.1): p = 1 + (1 + (ϕ -1) λ) R 1 + R p (2.2) Equation (2.
2) shows that the probability of error at each decoder intrinsic input is risen by a factor 1+(1+(ϕ-1)λ)R 1+R , inducing a loss in convergence.

Fig. 2.3 illustrates the eect of l on the error rate curves of a 3D TC: if we choose a large value of l, the minimum distance is signicantly increased. However, performance in the error oor region will be paid from a convergence point of view. Thus, a tradeo between convergence loss and required minimum distance has to be found. In our simulations, l = 1 /8 and l = 1 /4 are considered, since they represent a good trade-o between convergence and minimum Hamming distance.

In Fig. 2.4, we report the FER performance of the 3GPP2 3D TC to compare it with that of the 3GPP2 TC for the block size 3066 bits, at coding rate R = 1 /3 for both l = 1 /4 and l = 1 /8. In our simulations, the 4-state convolutional code (5,4) was selected to be the post-encoder. Also a regular permutation Π was used to spread to parity bits before feeding them to the post-encoder.

We observe a small loss of convergence in the waterfall region when the permeability rate is l = 1 /8. This loss of convergence increases with l. It is about 0.26 dB for l = 1 /4. Furthermore, the all-zero iterative decoding algorithm (see 1. gain obtained with l = 1 /4 is even larger as shown in Fig. 2.4. This example illustrates that l is a key parameter to choose the compromise between distance and convergence.

Note:

Given λ, and without puncturing information bits, the highest achievable code rate is

R max = 1 1+2λ
, since the overall code rate of the 3D turbo code is given by:

R = 1 1 + 2λ + 2 (1 -λ) ρ
where 0 ≤ ρ ≤ 1 is the fraction of the surviving bits in y 1 and y 2 after puncturing. In fact we have k systematic bits, 2λk post-encoded parity bits and 2 (1 -λ) ρk surviving parity bits after puncturing. For example, if the overall coding rate is R = 4 5 , then it is necessary to have a permeability rate l ≤ 1 8 .

Choice of the post-encoder

The choice of the post-encoder inuences the performance in both the waterfall and error oor regions. In general, the post-encoder must be simple to limit the complexity increase of the corresponding decoder. Low memory RSC codes satisfy this requirement. Besides, the code is made tail-biting (see 1.1.3) to prevent from any side eects as the initial state and the nal state of the post-encoder are identical. This requirement is important for realtime and demanding applications, such as TV broadcasting or videoconferencing,

where very low error rates are sought for. Therefore, the accumulator (i.e., the code with memory one) has to be discarded since it cannot be made circular using tail-biting encoding. Last but not least, the post-encoder must not exhibit too much error amplication, to prevent from a high loss in convergence. In practice, a 4-state binary convolutional encoder is used. Three linear RSC codes having memory 2 are given in Fig. 2.5. To complete the analysis in [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF], the choice of the post-encoder is justied by means of EXtrinsic Information Transfer (EXIT) analysis. This is one of the contributions of the thesis.

EXIT analysis

In Fig. 2.6, we report the EXIT curves for the three linear post-encoders of Fig. 2.5. When no a priori information is available at the input of the pre-decoder (i.e. rst iteration), the Mutual Information (MI) at its output is higher for post-encoder (a). In fact, code (a) has a corresponding decoder which only doubles the number of errors of its input at the rst step of the iterative process, while code (b) will roughly triple the number of errors at the rst step. The worst case occurs with code (c) because its decoder causes a mistake once every two bits in its entry. In fact for code (c) the feedforward polynomial (i.e., 7 in octal or 1 + D + D²) and the feedbackward polynomial (i.e., 5 in octal or 1 + D²) are not reciprocal 1 . In this case the corresponding decoder engenders 50% of errors at the rst step of the iterative process, since it is impossible to extract 7 from the feedbackward polynomial, i.e., 5. Let us assume that a post-encoder, where the MI at its output is zero when there is no MI at its input (such as code (c)), has been selected. The worst case occurs when all the parity bits are post-encoded, which corresponds to high coding rates such as code rate R = 2 /3 for l = 1 /4 or code rate R = 4 /5 for l = 1 /8. In this case, the error rate at the output of the corresponding pre-decoder at the rst iteration will be 0.5. And the turbo decoder will have no parity to decode with at the rst step of the iterative process.

It will just be something catastrophic as the performance will not be improved through the iterative process! Therefore, the EXIT analysis is a very important tool to select a post-encoder convenient at low but also at high coding rates.

In Fig. 2.7a, we report the FER performance of the 3GPP2 3D TC to compare it with that of the 3GPP2 TC for the block size 570 bits, at coding rate R = 1 /3 and l = 1 /4. We observe a loss of convergence in the waterfall region when the post-encoder of Fig. Similar simulations (see Fig. 2.7b) at code rate R = 2 /3 for l = 1 /4, conrm that the 3D TC does not converge when the code of Fig. 2.5 (c) is selected to be the post-encoder. 1 This means that we can not express Therefore, due to its better convergence, code (a) with generator polynomial 5 (recursivity) and 4 (redundancy) has been selected to be the post-encoder in dierent simulations of the 3D TC. However, the main drawback is that code (a) cannot ensure tail-biting encoding in order to properly deal with blocks of data. In other words, we can not ensure that the initial state and the nal state of the post-encoder are identical. Thus, state mapping encoding has been introduced in [START_REF] Sun | Extended tail-biting schemes for turbo codes[END_REF]. The problem can easily be resolved by an exchange of metrics at the end of the forward and backward recursions. Details are provided in Appendix B.

G 1 (D) = 1 + D + D 2 as D M × G 2 ( 1 D ) = D M × 1 + 1 D² or vice-versa.

Statistics about the predecoder corresponding to the selected post-encoder

A thorough analysis of the 3D decoder has been carried out to determine in which cases the pre-decoder, corresponding to the post-encoder of Fig. 2.5 (a), engenders an error in the decoder. In other words, if the 3D decoder makes an erroneous decision, is the predecoder responsible for it or not? In order to have clarications about this topic, statistics have been carried out for l = 1 /8. In the case of l = 1 /4, similar results are obtained.

However, the simulation time is more signicant especially in the error oor region since lower error rates can be reached compared with l = 1 /8 2 . Also, dierent signal to noise ratios are taken under consideration in our analysis. Table 2.1 summarizes the results of this investigation. First, it is observed that for a low signal to noise ratio, corresponding to the region where the 3D TC looses in convergence compared to the classical TC, the errors due to the pre-decoder represent less than 3.5% at the rst and the second iteration of the total errors committed by the 3D decoder. Then, for a medium signal to noise ratio, corresponding to the region where the performance of the 3D TC is better than that of the classical TC, it is similarly observed that the errors due to the pre-decoder represent less than 2.5% at the rst and the second iteration of the total errors committed by the 3D decoder. Finally, in the error oor region, all the committed errors are not due to the pre-decoder which works perfectly.

Table 2.1: Statistics about the predecoder for blocks of k = 1530 bits, λ = 1 /8 and more than 10 12 simulated binary samples.

As a conclusion, the relative number of errors due to the pre-decoder decreases with the SNR. They are estimated, at the rst and the second iteration, to be less than 3.5%. Up to the third iteration for low and medium SNR and similarly at high SNR, the pre-decoder is not responsible at all for the errors committed by the 3D decoder. This observation opens the way for the use of other rate-1 post-encoders with lower correction capability which may perform better from a convergence point of view.

2 For λ = 1 /8 and k = 1530 bits, the FER of the 3D TC reaches the value of 10 -8 . In order to have reliable results, more than ten erroneous blocks have to be simulated. This corresponds to more than 10 12 simulated binary samples.

Permutations of a 3D turbo code

The 3D TC is characterized by two permutations denoted by P and P', as shown in Fig. 2.1. In theory, both permutations should be jointly optimized. However, P is the internal permutation of the TC, and we keep P unchanged with regard to the original code for reasons of backward compatibility. P' is used to spread a fraction l of the parity bits before feeding them to the post-encoder. In other words, P' is used to spread P = 2λk parity bits at the output of the turbo code before post-encoding. The main role of the permutation P' is to avoid that the pre-decoder returns packages of errors to the entry of the main decoder.

To illustrate the situation, let us consider a rate-1 /3 turbo code with regular rectangular permutation P (row-wise writing and column-wise reading). The main interest of our choice is that it is easy to visualize the permutation P in this case. The constituent encoders are 8-state encoders whose period is 7 and the recursivity generator is 15. The input weight 4 square error pattern shown in Fig 2 .8 is a "composite" error pattern consisting of four identical input weight 2 elementary Return To Zero (RTZ) sequences:

10000001. The weight of the corresponding redundancy sequences produced before and after permutation Π, y 1 and y 2 , is equal to 6. The resulting total weight of this codeword, equal to 28, allows low error rates to be reached. However, when this code is punctured to coding rate 1 /2, the resulting weight, 16, may be not high enough for some applications.

The role of 3D part of the encoder is to take a small fraction of the parity bits in y 1 and y 2 , to interleave and then to re-encode them with the post-encoder. Hopefully, a few 1s of the redundancy part of the error pattern in Fig 2 .8 will be moved away to each other and will produce a signicant of additionnal 1s when post-encoded, thus increasing the total codeword weight. Let i and j be the address in the natural order, and in the permuted order, respectively.

For the regular permutation in circular form, we assume P' to be dened by the following congruence relation: i = Π (j) = P 0 j + i 0 % P , where i 0 is the starting index, and P 0 is an integer relatively prime with P . For each block length, these parameters have to be carefully chosen to guarantee a large spread (see 1.1.2).

In fact, it was observed through the dierent simulations that the important property is the spread and performance of the code associated to an interleaver is degraded by low values of spread. The regular permutation achieves the maximum spread value of √ 2P [START_REF] Boutillon | Maximum spread of D-dimensional multiple turbo codes[END_REF], where P is the size of the frame to be post-encoded. So it performs better than a random interleaver in terms of MHD and convergence.

Example:

For blocks of k = 6138 bits and l = 1 /4 , we have P = 2λk = 3069 bits. The parameters of the regular permutation are: P 0 ≈ √ 2P ⇒ P 0 = 79 and i 0 ≈ P 0 2 ⇒ i 0 = 37. 

Exploring 3-Dimensional turbo codes

The 3GPP2 3D TC using a random permutation P' does not perform well in terms of MHD, but also in terms of convergence. However, the use of a regular permutation P' results in an increase in the MHD of the 3GPP2 3D TC compared to the standardized 3GPP2 turbo code. In Fig. 2.9, an increase by more than 60 % is observed, which provides a gain of more than two decades in the error oor. These simulation results were conrmed with the asymptotical bounds as shown in Fig. 2.9. In fact, for transmission over the Gaussian channel, the FER can be upperbounded by the union bound:

F ER < 1 2 d>=d min n(d) erf c R d E b N 0
where n(d) is the code multiplicity (number of codewords with weight d), and erfc(x)

is the complementary error function. Here again, the all-zero iterative decoding algorithm (see 1.4.3) was applied to obtain the distance spectrum.

Performance of cdma2000 3D turbo codes

We have investigated the distance gain and the eect on turbo code convergence threshold for dierent block sizes, coding rates and permeability rates. Similarly to the case of double-binary codes in [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF], we have observed that the addition of the post-encoder improves the asymptotical behavior of the 3GPP2 turbo code in many cases. sizes and coding rates, using the all-zero iterative decoding algorithm. The authors in [START_REF] Amat | Analysis of 3-dimensional turbo code ensembles[END_REF][START_REF] Amat | Stopping set analysis of 3-dimensional turbo code ensembles[END_REF] analyzed the asymptotic weight distribution of 3D TCs and showed that their typical minimum distance may, depending on certain parameters, asymptotically grow linearly with the block length.

Note that there are few boxes in Table 2.2 containing the not applicable abbreviation N/A. In fact, if the coding rate is R = 4 /5, we can not insure a post-encoding with λ = 1 /4

since half of the post-encoded bits are going to be punctured (see 2.1.3). To avoid the problem, we can puncture the systematic bits but it would lead to additionnal convergence loss.

We can observe that the direct application of the third coding dimension to the existing code leads to an increase of its minimum distance, except in the case of high coding rates.

Table 2.2 shows that it is attractive to increase λ, since larger minimum distances are obtained. However, this will be paid in terms of loss in convergence threshold, as explained in 2.1.3. Also, the increase in complexity is not negligible. The aim of the next section 2.3 is to carry a thorough study in order to estimate the additional complexity. This represents another contribution of the thesis. 

3D turbo codes hardware implementation issues: decoder architecture and complexity analysis

In [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF], the complexity increase was estimated to be less than 10% with respect to classical 2-dimensional TC. In this section, we propose an appropriate hardware architecture of a 3D turbo decoder and the corresponding complexity analysis. In fact, compared to a classical turbo decoder, the additional complexity of the 3D turbo decoder is mainly due to the implementation of the binary 4-state decoder but also to the calculation of the extrinsic information about the post-encoded parity bits.

3D turbo decoder architecture

The typical overall turbo decoder architecture is composed of three modules, represented in Fig. 2.10. First, the input module receives the input frames and transmits them to the decoder module. It requires a double input buer, in order to receive the next frame while decoding the current one. The input buer is divided into as many memory banks (MB)

as the number of processors placed in parallel (i.e. P roc). This parallelism allows having dierent throughputs according to the application. Then, the decoder module performs I iterations on the frame stored in the input module and writes the decoded codeword into the output module. This module contains P roc SISO processors and an extrinsic memory decomposed into as many memory banks as the number of physical processors (not represented in the gure). A nite state machine (not represented) controls the processors. For each iteration, the set of P roc processors has to perform the decoding of the component codes. At the end, the output module stores the hard decisions produced by the decoder module and sends them to the output of the decoder. In the case of 3D TC, since the pre-decoder has much less data to process than the main SISO decoders (only l = 1 /8 or l = 1 /4) of the parity bits are re-encoded by the post-encoder), no parallelism is considered for the pre-decoder.

Figure 2.10: Generic 3D turbo decoder organization for P r processors. analysis

Max-Log-MAP decoder complexity analysis

To analyze the complexity of 3D TCs, let us consider a RSC code with the following parameters: n is the memory length of the code, n is the number of coded bits provided by the encoder at each trellis stage when no puncturing is performed, and k is the trellis length. For a classical binary turbo code, k is also the length of information sequence, in terms of binary bits.

This subsection details the dierent steps of the decoding process and the associated decoding complexity, in terms of arithmetic and logical operations. We assume a transmission over an AWGN channel with noise variance σ 2 , using BPSK modulation. However, the same decoder is used for transmissions over fading channels. Then, the channel coefcients are taken into account upstream of the decoder. The following description of the algorithm is also valid when high order modulations are considered, in the case where a Bit-Interleaved Coded Modulation (BICM) approach [28] is adopted.

Computation of branch metrics met t (s', s) :

At time step t, the metric associated with trellis branch or transition (s', s) is dened as

met t (s , s) = ±x t ± y t,1 ± ... ± y t,n-1 + z t (2.3)
where x t is the received systematic data, y t,1 ±...±y t,n-1 are the n-1 received redundant data, and z t is the a priori incoming information. The computation of the 2 n dierent values ±x t ± y t,1 ± ... ± y t,n-1 requires 2 n+1 -4 additions/subtractions. The addition of the a priori term requires two extra additions. We assume that the computation of the branch metrics is performed twice, once for the forward recursion and once for the backward recursion.

Computation of forward and backward state metrics for each trellis stage s:

The state metrics are computed recursively using the following relations:

Forward recursion:

M F t (s) = min s ∈{0,...,2 ν -1} M F t-1 (s ) + met t-1 (s , s) (2.4)
Backward recursion:

M B t (s) = min s ∈{0,...,2 ν -1} M B t+1 (s ) + met t-1 (s, s ) (2.5)
According to the equations (2.4) and (2.5) above, the update of one forward state metric involves the comparison and selection of two concurrent paths that can be performed using two additions and one comparison-selection operation, implementing a tree structure. The update of backward state metrics requires the same number of operations.

Computation of the soft decisions (⇔ a posteriori LLRs ) and hard decisions:

If we denote by λ t (δ) the soft information dened as

λ t (δ) = min (s ,s) M F t (s ) + met t (s , s) + M B t+1 (s) (2.6)
where δ ∈ {0, 1}, the a posteriori log-likelihood related to data at time step t is computed as

L t (δ) = 1 2 λ t (δ) -min δ ∈{0,1} λ t (δ') (2.7)
Term min δ ∈{0,1} λ t (δ ) is a normalization term.

The hard decision provided by the decoder corresponds to the binary representation of δ that minimizes λ t (δ) and makes L t (δ) equal to zero.

δ = arg min δ∈{0,1} (L t (δ)) = arg min δ∈{0,1} (λ t (δ))
The computation of two a posteriori LLRs requires the computation of two values of λ t (δ), δ ∈ {0, 1}. Relation (2.6) involves two additions for each transition in the trellis. This complexity can be reduced to one addition by observing that partial terms M F t (s ) + met t (s , s) or met t (s , s) + M B t+1 (s) are already available through the forward or backward recursion.

For each value of δ, the minimum value of 2 ν terms M F t (s ) + met t (s , s) + M B t+1 (s) has to be computed, resulting in 2 ν -1 compare-select operations, using a tree structure. Consequently, the computation of two values for λ t (δ) requires 2 ν+1 additions and 2(2 ν -1) comparisons and selections.

The computation of two a posteriori LLRs from equation (2.7) requires a compare and select tree to compute the min term, that is one compare and select operation, two subtractions and two divisions by 2. Actually the subtraction in the case of λ t ( δ) can be avoided, since L t ( δ) = 0 and the number of subtractions can be reduced to one. Divisions by 2 are not taken into account in the operator calculation, since they only come to remove the least signicant bit.

The hard decision δ can be directly inferred from the compare and select tree allowing the minimum value of λ t (δ) to be computed.

Computation of extrinsic information L e t (δ) related to information bits:

The extrinsic information computation is similar to the a posteriori log-likelihood L t (δ), using the extrinsic branch metrics. We compute the extrinsic soft information λ e t (δ) dened as

λ e t (δ) = min (s ,s) M F t (s ) ± y t,1 ± ... ± y t,n-1 + M B t+1 (s)
where the min operation is performed among 2 ν transitions corresponding to data value δ. Then, the extrinsic log-likelihood L e t (δ) is computed as follows

L e t (δ) = 1 2 λ e t (δ) -λ e t ( δ)
analysis

The term subtracted to λ e t (δ) is the extrinsic value corresponding to the hard decision δ.

If we assume that terms ±x t + z k have already been made available during the branch metrics computation step (equation (2.3)), each piece of extrinsic information is obtained from the a posteriori LLR with two subtractions. The total extrinsic information computation is then performed using 2 2 subtractions.

Computation of extrinsic LLRs related to redundancy bits:

In the case of 3D TCs, additional extrinsics related to re-encoded redundancy bits have to be computed by the main SISO decoders. Each additional extrinsic LLR is computed from the following relation:

L y t = 1 2 min (s ,s)/yt=0 M F t (s ) + met t (s , s) + M B t+1 (s) -min (s ,s)/yt=1 M F t (s ) + met t (s , s) + M B t+1 (s) -y t
where y is the considered redundancy bit.

Observing that terms M F t (s )+met t (s , s)+M B t+1 (s) are already available, we only have to compute the minimum value of these terms for value redundancy 0 and for redundancy 1. Thus two minimum values have to be computed among 2 ν terms, resulting in using two tree structures requiring 2 ν -1 compare-select operations each. Then, the extrinsic LLR is computed by subtracting these two values, dividing by 2 and subtracting the received redundancy bit. Consequently, the computation of each additional extrinsic redundancy value requires two subtractions and 2 (2 ν -1) compare-select operations.

Table 2.3 summarizes the resulting complexity for the process of a trellis stage, or equivalently of an information bit. The corresponding numerical values are given in Table 2.4. In order to compare the complexity of the dierent families of decoders, it is assumed that addition/subtraction and compare-select operators have similar hardware complexity.

This complexity assessment does not take the size of the operators into account.

Memory requirements for the 3D turbo decoder

The memory requirements for the turbo decoder are the amount of both RAM and ROM memory. A very small amount of ROM memory is required to store the turbo code permutation parameters. This amount of memory is the same for all coding schemes under consideration. The RAM memory requirements are detailed below. We assume that the data at the input of the decoder are quantized on q x bits.

Two input buers (single-port RAM) are necessary for each data sequence, including systematic and parity bits, stemming from the transmission channel (see Fig. 2.10).

Thus, if k is the length of the information sequence, 2k R input samples, quantized on q x bits, have to be stored at the decoder input.

Add (or substract) Compare-select Branch metrics (forward or backward recursion) 2 n+1 -2

One step of recursion (forward or backward)

2 ν+1 2 ν
A posteriori LLRs and hard decision

2 ν+1 + 1 2 ν+1 -1
Extrinsic LLRs for information bits 4

Extrinsic LLRs for redundancy bits 2 2 ν+1 -2

Total computational requirement per information bit for classical TC

3 × 2 ν+1 + 2 n+2 + 1 2 ν+2 -1
Total computational requirement per information bit for 3D TC

3 × 2 ν+1 + 2 n+2 + 3 3 × (2 ν+1 -1)
Table 2.3: Computational complexity of the Max-Log-MAP algorithm. ν is the code memory and n is the total number of encoded bits at the decoder input, at each time step.

In addition, 2k extrinsics (dual-port RAM) need to be stored (quantized on q x + 1 bits). For a 3D TC, additional extrinsics (2lk) related to re-encoded redundancy bits need to be stored.

Then, the hardware decision at the decoder output requires k memory bits (singleport RAM).

Inside the SISO decoding processors, state metrics have to be stored at each iteration. The straightforward application of the Max-Log-MAP algorithm requires storing state metrics (either forward or backward). This can represent an unaordable amount of memory for large k. In order to overcome this limitation, sliding window [START_REF] Benedetto | Soft-output decoding algorithms in iterative decoding of turbo codes[END_REF] processing can be implemented. The decoding length is then limited to a given truncated length T L rather than to the frame length k. This allows the overall decoding delay and the memory requirement to be reduced. Only T L.2 ν state metrics have to be stored. In practice, a window size equal to T L = 32 represents a good trade-o between complexity and performance.

Summary

Table 2.4 compares the hardware complexity of the 3GPP2 turbo decoder and the corresponding 3D decoder when l = 1 /8 is used: k = 1530 bits and R = 1 /2. Table 2.4

provides the complexity of the overall hardware dedicated to SISO decoding with the Max-Log-MAP algorithm in terms of add/compare-select operators; and the amount of RAM memory required for the implementation in terms of equivalent single-port RAM bit (we assume that one dual-port RAM bit is equivalent to two single-port RAM bits).

The number of SISO decoders placed in parallel, P roc, depends both on the required data throughput and on the hardware implementation technology. Table 2.4 presents complexity gures for P roc = 1, P roc = 2 and P roc = 4.

Table 2.4: Summary of complexity analysis for 3GPP2 and 3D turbo decoders for k = 1530 bits, R = 1 /2 and λ = 1 /8.

This complexity assessment does not take the size of the SISO internal operands into account. The implementation of the control part (state machines) and interleavers is not taken into account either. Note that the complexity of the state machines does not dier a lot between the dierent families of decoders. To conclude, the rst estimation of the complexity increase in [START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF] was optimistic. In fact, the more important the degree of parallelism, the less the impact in terms of relative additional complexity of using a 3D

TC.

The authors in [START_REF] Lehngik-Emeden | 3d duo binary turbo decoder hardware implementation[END_REF] provide a detailed comparison on the 3D decoder's complexity for a double binary TC. They consider the implementation complexity on FPGA and in 65nm ASIC technology. According to their approach, an additional complexity between 20% and 40%, depending on the implemented technique, is required for the 3D conguration compared to the classical turbo decoder. Their results are coherent with what we have obtained. This brings a complementary view of our analysis, dealing with computational complexity and memory requirements.

Conclusion

In this chapter, we presented a detailed study of the 3-dimensional turbo code. The 3D TC structure as well as the decoding process were discussed. This structure may be used in any receiver already using a turbo decoder, for example for the future generation of mobile TV, DVB-NGH. The main advantage is the potential reuse of hardware in mobile phones, where a 3GPP or 3GPP2 decoder is already available. Given the parent turbo code (the 3GPP2 turbo code in the case considered), the performance of the 3D TC depends on some key parameters. The interleaving law Π (which permutes the parity bits before feeding them to the post-encoder) and the permeability rate λ have been properly

optimized. Besides, we discussed the dierent requirements that the post-encoder has to meet and how it is possible to choose a post-encoder by means of an EXIT analysis.

The most interesting property of the 3D TC is that it signicantly improves performance in the error oor region with respect to the classical turbo code. Several upper bounds on the minimum distance of 3D binary turbo codes with 8-state upper and lower constituent encoders and 3GPP2 interleavers were presented. Besides, the dierent stages were illustrated with simulation results and asymptotical bounds. A thorough complexity analysis of the 3D decoder has been carried out in order to estimate the additional complexity. When high throughputs are required for a given application, several processors can be placed in parallel, which decreases the relative additional complexity of the 3D coding scheme.

In this chapter, the contributions of the thesis were the investigation of the interleaving law Π , the choice of a convenient post-encoder based on EXIT charts and the complexity analysis. The next chapter focuses on how to improve 3D TCs. The aim is to reduce the loss of convergence and to increase even more the distance especially in the case of high coding rates.

Chapter 3

Improving 3-Dimensional turbo codes T he 3-dimensional turbo code provides improved asymptotic performance for a wide range of block lengths and coding rates, at the expense of an increase in complexity and a loss in convergence. In section 3.1, code optimization issues are discussed and we show that it is possible to improve even more the distance properties of the 3D TC by introducing an irregularity in the post-encoder permeability pattern. Then in section 3.2, we discuss convergence issues and we propose time varying 3-dimentional turbo codes as an alternative to reduce the observable loss of convergence. Finally, we analyse the association of 3D TCs with specic high order modulations in order to improve the performance of the 3D TC in the waterfall region.

Improving the asymptotic performance of the 3D turbo code

The use of 3D TCs results in an increase in the MHD with respect to classical TCs, except in the case of high coding rates (see 2.2). Two dierent study directions have been investigated in order to optimize 3D TCs: increasing even more the minimum Hamming distance and reducing the loss in convergence. In this section, we are interested in improving the asymptotic performance of the 3D TC especially for the 3GPP2 code family. In fact, we have observed that, for this turbo code, the error patterns with weight MHD often have very low multiplicities. This is mainly due to the tail bits since they represent singular points in the trellis and cause the codewords to be truncated. The rst step involves eliminating these codewords by means of the adoption of a non regular post-encoding pattern. In subsection 3.1.1, the optimization method is detailed followed by two examples in 3.1.2 and 3.1.3.

Optimization method

To obtain the distance spectrum of the 3D TC, we apply the all-zero iterative decoding algorithm (see 1.4.3). We have observed in the distance spectrum that the rst terms have a low multiplicity. The idea is to eliminate the corresponding codewords in order to increase the minimum distance d min . Therefore, we have modied the pattern of postencoding, which is no more regular, to generate more ones in the codeword with the lowest weight. Fig. 3.1 illustrates in a simple way the principle of the method explained above.

The algorithm is the following:

1. Consider the codeword with the lowest weight. 3. If there are several low weight codewords, go to step 2.

4. Finally, adapt the pattern of post-encoding in order to take into account the previous constraints. The addresses which will not any more benet from the post-encoding are randomly selected. However, it is preferable to spread the modications on all the length of the frame, not to discriminate a given region.

3.1.2 Example 1: optimization results for k = 1530 bits, R = 1 /2 and λ = 1 /8

Table 3.1 provides the rst terms of the distance spectrum of the 3GPP2 3D TC obtained for k = 1530 bits. In this case, the post-encoding occurs regularly for the bits which address modulo 8 is equal to 1. The codeword with weight 18 was eliminated. But, it was not possible to eliminate the codeword with weight 20 since one of the codewords with a just higher weight becomes a codeword with weight 20 each time we applied another possible pattern. Indeed, it was noticed that there are many common addresses containing ones in the dierent codewords of this distance spectrum. In other words, one codeword dier from the others by only few addresses. Several codewords, initially with high weight, appear in the new distance spectrum with a much lower weight which makes it dicult to nd an irregular pattern of post-encoding that leads to a huge increase in the minimum distance. So, the search nally led to the increase of the minimum distance by 2 and the new distance of the optimized 3GPP2 3D TC is 20.

To conclude, the use of 3D TC results in an increase in the minimum Hamming distance d min by more than 28 % for code rate R = 1 /2, λ = 1 /8 and k = 1530 bits (where k is the number of data bits), compared to the standardized 3GPP2 turbo code. Then, the optimization of the post-encoding pattern results in a total increase in d min by more than 42 % (from d min = 14 to d min = 20) for code rate R = 1 /2, λ = 1 /8 and k = 1530 bits.

The FER performance of the 3GPP2 3D TC has been simulated with λ = 1 /8. Then one bit out of eight is regularly picked from each of the parity streams starting with the rst bit from each stream. For the 3D TC, the optimization of the post-encoding pattern provides a gain of 2.5 decades in the error oor compared with the classical TC as shown in Fig. 3.2 with the asymptotical bounds. The same kind of optimization was performed with another frame length, k = 1146 bits, R = 2 /3 and λ = 1 /4. and all the other codewords are with very high weight. In the codeword with the lowest weight (i.e. 12), we have noticed that the ones are concentrated in the systematic part at addresses {586, 587, 591, 650, 651,655, 763, 764, 768, 1019, 1020 and 1024}. All the parity bits y are equal to zero and do not benet from the post-encoding which occurs regularly for the bits which address modulo 4 is equal to 1. To optimize the 3GPP2 3D TC, we have slightly modied the permeability pattern in order to postcode the bits at addresses {586, 587, 650, 651, 763 and 764} instead of {9, 101, 581, 925, 1029 and 1133}. Also, we have chosen to spread our modications on all the length of the frame, not to discriminate a given region. The idea was easier to implement, compared with k = 1530 bits, since there were few low weight codewords in the spectrum. The ones appear only in the systematic part of the codeword with weight 12, and the codewords in the distance spectrum are independant. That's why we have succeeded in eliminating all the codewords with lower weights at once.

The new minimum distance of the optimized 3D TC is 33 (see Fig. 3.3). This value has to be compared to 7 which is the distance of the standardized 3GPP2 TC. The use of optimized permeability patterns resulted in a huge increase in d min for code rate R = 2 /3, λ = 1 /4 and k = 1146 bits. The spectrum has changed: some codewords disappeared and other codewords appeared with new distances ≥ 33. Thus, in this particular case, we have developped a specic technique to check that the new value of d min is 33. In fact, we have exchanged six addresses in the pattern of post-encoding, which corresponds to 24 modications in the parity bits. Thus, the worst case will be to loose 24 in the minimum Hamming distance. We have to consider all the codewords before optimization, to apply the new irregular pattern of post-encoding and to test whether the new weight is bigger than 33 or not. Furthermore, we have to do this verication only for the codewords with weight less than 57 before optimization. For codewords with weight more than 57 before optimization: even if we loose 24 in d min , the distance remains higher than 33.

Conclusion

To conclude, a slight irregular pattern of post-encoding produces an improvement in the distance properties. These results are optimistic, and encourage to implementing the optimization method especially for high coding rates, in order to increase even more the MHD of the 3D turbo code.

Note that the optimization method presented above is applicable for any family of turbo codes provided that the distance spectrum has low multiplicities at the beginning, as for the 3GPP2 code family. If this opportunity arises, the modication of a few addresses in the pattern of post-encoding produces an improvement in the distance properties.

However, the method cannot be applied when an Almost Regular Permutation (ARP) is used like in WiMAX mobile communications. Since the bits distribution is periodic, the codewords multiplicity is at least equal to this period, i.e, ≥ 4. Also, better distances are obtained compared with the 3GPP2 code as a tail biting termination is used in this case.

Improving the convergence threshold of the 3D turbo code

The 3D TC improves performance in the error oor compared to the classical TC, at the expense of a loss in convergence and an increase in complexity. In this section, we rst determine dierent convergence thresholds of the 3D TC for various coding rates and several values of λ. This allows the theoretical loss of convergence compared to classical TCs (i.e., when λ = 0) to be calculated. Secondly, in order to reduce the observable loss in convergence at high error rates, the current post-encoder has been replaced by a time-varying trellis based encoder that allows the minimum distance of the post-encoder to be increased without augmenting error multiplication at its output. Finally, we show that there is no need to use the time varying technique when the code is associated with a high order modulation because the observable loss of convergence is removed when a specic permutation before the mapping is used.

Convergence threshold of binary 3D turbo codes

To generate the EXIT chart (see 1. In the sequel, dierent convergence thresholds of 3GPP2 3D turbo codes are estimated through an EXIT chart analysis over the additive white Gaussian noise channel and over the Rayleigh fading channel as well.

Transmission over the AWGN channel:

Dierent convergence thresholds of 3GPP2 3D turbo codes, for several code rates and values of λ, are given in Table 3.3. As expected, for a xed code rate R, the best convergence threshold is achieved by the classical turbo code (λ = 0), while increasing λ leads to poorer thresholds. In other words, the loss in the convergence threshold increases with Transmission over the Rayleigh fading channel:

λ. R = 1 3 R = 1 2 R = 2 3 R = 4 5 λ = 1 /
The convergence thresholds of 3D turbo codes are also estimated through the same kind of EXIT chart analysis over the Rayleigh fading channel [START_REF] Brink | Convergence of iterative decoding[END_REF][START_REF] Brink | Convergence behavior of iteratively decoded parallel concatenated codes[END_REF]. In Table 3.4, we show the convergence thresholds of the 3D TCs for transmissions over the Rayleigh fading channel and the Gaussian channel at coding rate R = 1 2 and λ = 1 /8. Table 3.4 shows that the loss of convergence is more signicant over the Rayleigh fading channel. Many simulations have been carried out to conrm this observation.

Note:

With error correcting coding and transmission over a slow at Rayleigh fading channel, the diversity order equals the minimum Hamming distance of the code [START_REF]Error correcting coding diversity for rayleigh fading channels[END_REF].

Convergence threshold Gaussian channel Rayleigh fading channel TC

(R = 1 /2) 0.6 2.54 3D TC (R = 1 /2, λ = 1 /8) 0.73 2.73
Loss in convergence threshold 0.13 dB 0.19 dB This conjecture led to the search for periodic time varying (PTV) convolutional codes that are better than TI convolutional codes with respect to d f ree . Little progress on the construction of such time-varying codes was reported in [START_REF] Mooser | Some periodic convolutional codes better than any xed code[END_REF], where Mooser tried but was not able to nd a periodic code with a larger d f ree than any xed code at coding rate R = 1 2 and for a constraint length ν = 4. By means of computer-aided search, Lee found in [START_REF] Lee | There are many good periodically time-varying convolutional codes[END_REF] some d f ree = 8 PTV convolutional codes while randomly searching for good period-4 codes with the same set of parameters (i.e., at coding rate R = 1 2 and for a constraint length ν = 4). Furthermore, Palazzo discovered a period-2 rate 2 /3 memory 1 PTV convolutional code with d f ree = 4 which is larger than d f ree = 3 of best rate 2 /3 TIC codes [START_REF] Palazzo | A time-varying convolutional encoder better than the best timeinvariant encoder[END_REF]. After an exhaustive search over PTV convolutional codes, Hu and Pérez found in [START_REF] Hu | Some periodic time-varying convolutional codes with free distance achieving the Heller bound[END_REF] three period-2 rate 1 /2 memory 7 PTV convolutional codes with d f ree larger than any TI convolutional codes with that rate and memory. Based on the previous studies concerning time varying convolutional codes, we decided to investigate a simple time varying post-encoder in order to increase locally its minimum distance. This should improve the level of the extrinsic information provided by the predecoder to the two SISO decoders, which will hopefully reduce the observable loss of convergence threshold for 3D TCs. dierent paths corresponding to the allzero sequence. So the decoder will not be able to distinguish between them and the distance of the code is only 2, compared with 3 for the RSC code [START_REF]IEEE standard for local and metropolitan area networks. Part 16: air interface for xed broadband wireless access systems[END_REF][START_REF]Third Generation Partnership Project (3GPP) Technical SpecicationGroup, Multiplexing and channel coding (FDD)[END_REF]. To avoid this problem, the idea proposed in [START_REF] Berrou | About rate-1 codes as inner codes[END_REF] was to replace some redundancies 4 by other redundancies 7 to get closer to the code [START_REF]IEEE standard for local and metropolitan area networks. Part 16: air interface for xed broadband wireless access systems[END_REF][START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)[END_REF]. The replacement period is denoted by L. The following analysis allows us to determine the value of L. First, code (5,4) has a corresponding decoder which only doubles the number of errors of its input at the rst iteration :

Choice of the time varying post-encoder

BER out = 2 BER in
where BER in is the channel error rate. Using a time varying post encoder increases the BER at its output. The BER at the rst step is then expressed in the following way :

BER out,T V = 2 (BER in + ξ) (3.1)
where ξ is an additinal error rate at the output of the pre-decoder at the rst step of the iterative process. On the other side, we have by denition : The number of replacements per block is equal to ceil [ (k-3) L ] + 1. The term k -3 is due to the rst replacement which occurs for the third parity (ie. instead of alternating

W 1 , W 2 , W 1 , W 2 , W 1, ... , we will have W 1 , W 2 , W 2 ..

.).

At the end, a given bloc size k can be considered. The evolution of ξ according to L, given in Fig. 3.9, results from the formula:

ξ = 3 2 × ceil [ (k-3) L ] + 1 k
Fig. 3.9 shows that the error rate ξ decreases when L increases. ξ inuences the loss of convergence threshold of 3D TCs, whereas L is related to the distance properties. The asymptotic performance of a time varying post-encoder is better for small L values because the number of the redundancies W 2 exceeds that of the redundancies W 1 . In this case, the time varying encoder is closer to the code (5,7) which has the higher distance, that is 5. However, from the convergence point of view, Fig. 3.9 shows that it is better to choose L high in order to reduce the additive error rate ξ. In fact, high values of L mean that the TV post-encoder gets closer to the code (5,4) which has a better behaviour in the waterfall region (see 2.1.4.1). Thus, the optimal value of L is a convergence/distance trade-o. For the 3D TC, the loss in convergence is more signicant for low code rates (such as for R = 1 /3 or R = 1 /2). In this case, we privilege a high value of L = 30 to limit the additional error rate ξ as much as possible. For the same block size and the same permeability rate l, we privilege a small value of L = 10 for high code rates such as for R = 4 /5.

EXIT analysis of time varying 3D turbo codes

Similarly to the EXIT of a 3D TC, we have plotted the EXIT of a time varying 3D TC.

For the post encoder, two redundancies W 1 = 4 and W 2 = 7 are alternated in time, but W 1 is replaced by W 2 for all the periods of L. Therefore, the transfer characteristics of the two decoders are no more symmetric. On the other hand, the convergence threshold of the TC at code rate R = 2 /3 is estimated around 1.49 dB and that of the 3D TC is about 1.67 dB (see Table 3.

3).

As a conclusion, the EXIT analysis shows that the use of time varying 3-dimensional 3GPP2 TC reduced the loss of convergence by 50 % from 0.18 dB (1.67 -1.49) to 0.09 dB (1.58 -1.49) at code rate R = 2 /3 and l = 1 /4. These results were conrmed by simulations of the code, as shown in Fig. 3.11.

In addition, we have observed that the EXIT of a time varying 3D TC changes with the value of L. A perspective would be to use this tool to choose an optimal value of L.

The selected value can be the L that produces the lowest convergence threshold. 

Error rate performance of time varying 3D turbo codes

Simulations have been carried out in order to check the results predicted by the EXIT charts.

Example 1: simulation over the Gaussian channel

The FER performance of the time varying 3GPP2 3D TC has been simulated with l = 1 /4 and L = 30. Then one bit out of four is regularly picked from each of the parity streams starting with the rst bit from each stream. For the post encoder, two redundancies W 1 = 4 and W 2 = 7 are alternated in time, but W 1 is replaced by W 2 for all the periods of L = 30. Fig. 3.11 shows that the use of time varying 3-dimensional 3GPP2 TC reduced the loss of convergence by 50% from 0.18 dB to 0.09 dB for k = 1146 bits at code rate R = 2 /3 and l = 1 /4, compared with the 3GPP2 3D TC.

Example 2: simulation over the Rayleigh fading channel Time varying 3GPP2 3D TCs have also been simulated over a Rayleigh fading channel. Fig. 3.12 shows the BER performance for blocks of 2298 bits at code rate R = 1 /3 and l = 1 /8. In this case, the observable loss of convergence is reduced by 35% from 0.23 dB to 0.15 dB. Other simulations have been carried out for dierent block sizes and coding rates of the 3GPP2 turbo code. Among the simulated cases, it was observed that the time varying parity construction reduces the observable loss of convergence by 10% to 50% of the value expressed in dB. We have systematically checked that the asymptotic performance is not degraded. In fact, the choice of the post-encoder does not inuence a lot the minimum distance of the 3D TC for a xed code memory and for a given permeability rate λ. For the time varying post-encoder, there is no reason to improve or degrade the asymptotic performance since we introduce few local modications. However, the higher the local minimum distance of the post-encoder, the better the level of the extrinsic information which the predecoder supplies to the two SISO decoders. Therefore, the TV technique acts as a convergence accelerator of the 3D TC.

3D turbo codes for high spectral eciency transmissions

Usually, when a code is associated with a modulation, the choice of the bits placed in the best protected binary positions of the modulation scheme inuences the convergence threshold. What about 3D TCs? For this purpose, we have also investigated the association of the 3D TC with high order modulations. This structure is used for applications where high data throughputs are required such as the transmission of HD TV. In the most recent transmission systems, high bitrates require using high order modulations such as 16-QAM for 3GPP2, 64-QAM for LTE, 256-QAM for DVB-NGH, etc.

Transmission scheme

We consider the coded modulation scheme depicted in Fig. 3.13, based on the so-called pragmatic or BICM approach [START_REF] Caire | Bit-interleaved coded modulation[END_REF]. Fig. 3.13 shows a turbo encoder and a modulator that follows an interleaver and a Gray mapper. It is known that among the bits forming a Gray-labeled symbol in M -QAM or M -PSK modulations for M > 4, the average probability of error is not the same for all the bits. In fact, some bits forming the symbol have a smaller average probability of error than the others [START_REF] Proakis | Digital communications[END_REF]. Therefore, three constellation mappings, all compliant with Gray labelling, were investigated. First, the mapping is uniformly distributed on the entire constellation. In a second conguration, the systematic bits are mapped to better protected places as a priority, and all the other bits are uniformly distributed. For the third mapping, the systematic bits are rst mapped to better protected places as a priority. Then, if it is possible, the post-encoded parity bits are better protected by the considered modulation than the other non re-encoded parity bits. This choice is made because the systematic bits as well as the post-encoded parity bits are used by both decoders during the decoding process. Thus, protecting them is expected to reduce the loss of convergence. At the receiver side, the demapper computes the Log Likelihood Ratio (LLR) related to each bit of the information sequence. This symbol-tobit LLR calculation is followed by a 3D turbo decoder using the MAP algorithm. The following subsections show the application of the proposed transmission scheme in some particular cases of the 3GPP2 3D code. Transmission over the Gaussian channel Among the four bits forming a symbol with Gray labelling in 16-QAM, the average probability of error is smaller for the rst and the third bits than for the second and fourth bits. Details can be found in Appendix C. To explore this property in the context of It was observed through these simulations that the use of the 16-QAM modulation, where the systematic bits as well as the post-encoded parity bits are better protected than the other non re-encoded parity bits, allows the loss of convergence of the 3GPP2 3D TC to be reduced and even be transformed into a gain in the waterfall region of 0.22 dB compared with the standardized 3GPP2 TC. Whereas, for a QPSK modulation, the convergence loss of the 3D TC was estimated to 0.15 dB at code rate R = 1 3 and l = 1 8 .

These simulation results were conrmed by an EXIT chart analysis. In fact, Fig. This important result can be generalized for transmissions over Gaussian and fading channels: 3D TCs associated with a 16-QAM modulation, where the systematic bits as well as the post-encoded parity bits are more protected than the other non re-encoded parity bits, allows the loss of convergence threshold to be removed and a gain is observed at all SNRs.

3.2.3.3 Example 2: 3D TCs associated with an 8-PSK modulator for k = 1146 bits, R = 4 /5 and λ = 1 /8

Among the three bits forming a symbol with Gray labelling in 8-PSK, the average probability of error is smaller for the rst and the second bits than for the third bit. Details can also be found in Appendix C. We have simulated the FER performance of 3D TCs with l = 1 8 at code rate R = 4 5 for k = 1146 bits. Transmission over a Rayleigh fading channel is considered. For this coding rate, the third conguration cannot be adopted and the coding rates are higher for the same value of λ, even for transmissions over fading channels. In other words, the problem related to the loss in the convergence threshold of 3D TCs can be solved.

Conclusion

It is naturally desirable to have turbo codes which have waterfalls as closest as possible to the channel capacity and low error oors. Therefore, this chapter deals with performance improvement of 3D TCs. One of my contributions is the optimization method introduced in order to increase even more the minimum Hamming distance of the 3D TC. Then, convergence issues are also discussed in this chapter. One major drawback of the 3D TC structure is that the loss of convergence is more signicant for fading channels compared with Gaussian channels. It seems all the more necessary to nd a solution to this problem.

Another contribution consists in time varying 3-dimentional turbo codes that are proposed as an alternative to reduce the observable loss of convergence without degrading the asymptotic performance. This technique allows reducing the loss of convergence by 10% to 50% of the value expressed in dB. Furthermore, we analyze the association of 3D TCs with specic high order modulations to improve the performance of the 3D TC in the waterfall region. This contribution shows that when the code is associated with high order modulations, there is no need to use a time varying trellis and a specic mapping allows obtaining even a gain in the waterfall region. Therefore, the 3D TC is adapted to be used in high spectral eciency transmission schemes.

This chapter represents an important part of my research work dealing with the performance improvement of a 3-dimensional turbo code based on the partial concatenation of the 3GPP2 code with a rate-1 post-encoder. I show that it is possible to build 3GPP2 3-dimensional turbo codes which have good performance in both regions. Performance comparisons are made between the 3GPP2 standardized turbo code and the corresponding 3D code. The dierent stages are illustrated with simulation results, asymptotical bounds and EXIT charts. This code structure is expected to reach a performance/complexity trade-o never yet attained.

To conclude, we notice that the notion of irregularity plays a major role to build 3D turbo codes having good performance at low and high SNRs. In fact, the optimization method is based on the use of a non regular pattern of post-encoding and allows the minimum distance to be increased. Besides, the time varying post-encoder (5, 4:7) with a little irregularity and also the association of the 3-dimensional turbo code with high order modulations, where both the systematic bits and the post-encoded parity bits are more protected than the other parity bits create a sort of irregularity in the Gray mapping.

Both represent a success in reducing or even eliminating the problem of convergence loss.

The next step of the study concerns the investigation of irregular turbo codes. The aim is to obtain an irregular TC which performs well in both the waterfall and the error oor regions.

Basics of irregular turbo codes 4.1.1 Another representation of turbo codes

In most cases, the two (or more) constituent RSC encoders of a parallel turbo code are identical. For this reason, the authors in [START_REF] Boutros | Asymptotic behavior study of irregular turbo codes[END_REF][START_REF] Boutros | Turbo code at 0.03 dB from capacity limit[END_REF] proposed a self-concatenated turbo encoder depicted in Fig. 4.1. It consists of the concatenation of a repetition code and an RSC code separated by an interleaver. In fact, it is possible to merge the two trellis encoders and replace the initial interleaver with a double size interleaver preceeded by a 2-fold repetition (d-fold repetition in general). The interest of this second equivalent encoding structure of a classical TC lies in its simplicity and in the opportunity of introducing an irregular structure. By adopting the terminology used for the LDPC codes, a regular TC is related to the use of a uniform repetition in the equivalent encoding structure (see Fig. 4.1). On the other side, when the repetition degree d is not identical for all the information bits, the TC is said to be irregular.

d-fold

Repetition Interleaver RSC

Information bits

Parity bits The classical turbo code corresponds to the case where all the information bits have the same degree d = 2. The performance of this regular turbo code is identical to the one we get using the standard turbo encoder when the interleaver length is suciently high. For short and medium block sizes, a few additional iterations are necessary to achieve the same performance as for the classical parallel turbo code. This is due to the decoding process because the extrinsic information is not available at the rst iteration. It is possible to implement for example the shued iterative decoding [START_REF] Muller | On the parallelism of convolutional turbo decoding and interleaving interference[END_REF][START_REF] Zhang | Shued iterative decoding[END_REF] in order to achieve the same performance as for the classical turbo encoder and avoid adding iterations in practice. In shued decoding, the decoder updates the extrinsic information as soon as possible, without waiting for all the copies of a given data to be processed. In other words, the decoder does not wait until the next iteration to send extrinsic messages. However, as it does not represent a major problem, we have chosen to increase the number of iterations in our simulations by two additional iterations for the classical sequential decoding.

For instance, the BER performance of the 3GPP2 turbo code has been simulated for blocks of 2298 bits at coding rate R = 1 /3. 

Irregular turbo encoder

The general structure of an irregular turbo encoder is given in Fig. 4.3. Note that the irregular turbo code implemented in Fig. 4.3 is a generalization of Repeat-Accumulate-Codes presented in [START_REF] Divsalar | Coding theorems for" turbo-like" codes[END_REF]. It consists of the cascade of a non-uniform repetition, an interleaver and an RSC code. In fact, the introduced irregularity makes it possible to improve the performance of a turbo code by inserting some bits inside the RSC trellis with a degree d > 2, called elite or pilot bits. However, making the code irregular entails an increase in the rates of the constituent codes. Therefore, for usual coding rate values, only a small fraction of information bits is repeated d > 2 times, e.g., d = 8 to avoid increasing the number of low weight codewords. Thanks to their higher degree, the pilot bits include d (i.e. eight in the example) extrinsics instead of two, and are thus extremely well protected. However, increasing the degree d of the pilot bits is a two-fold weapon. When an error occurs, it is amplied and propagated all around which multiplies the errors. This phenomenon is called the correlation eect.

To construct an irregular turbo code, Fig. 4.3 shows that we need to divide the information bits into classes, each class j having a specic degree d j = j. The fraction of bits of degree d j in a class j is denoted by f j , where f j ∈ [0, 1]. A degree prole consists of all the degrees d j and their corresponding non-zero fractions f j . In the sequel, we represent a degree prole by the vector (f 2 , f 3 , ..., f max ) or the vector (2, 3, ..., max). where k denotes the total number of information bits and n is the interleaver size. Let R be the code rate of the RSC code. There are k d Average bits at the input of the constituent code, and the number of parity bits is:

1 R k d Average -k d Average = k d Average 1 R -1 (4.2)
Now, the number of parity bits for the RSC code is also equal to the one for the irregular turbo code:

n -k = 1 R Irregular k -k = k 1 R Irregular -1 (4.3)
where R Irregular is the rate of the irregular turbo code and it can be expressed from equations (4.2) and (4.3) as:

R Irregular = 1 1 + 1 R -1 d Average
We can also deduce another formula of the average degree:

d Average = 1 R Irregular -1 1 R -1 (4.4)

Example

Let us analyse the construction of a rate-1 /4 turbo code. We assume that the average degree of information bits is equal to d Average = 3. If we consider a degree prole where only the degree d = 3 has a non-zero fraction f 3 , the TC is regular. To make the code irregular, dierent congurations with limited number of irregularity classes are taken into account, namely the initial class of degree d = 2 and only one or two classes of high degree bits. Let us examine a degree prole where d = 2, d = 3 and d = 4 have non-zero fractions. We compute the corresponding fractions from equations (4.1) and we obtain:

f 2 = f 3 = f 4 = 1 3 .
To increase the overall code rate of the irregular TC, a percentage of the parity bits must be punctured. A high percentage of puncturing will cause the minimum distance of the code to decrease signicantly and the error oor may appear at high bit error probability. Therefore, if we have to choose between dierent degree proles, it is preferable to select only those which do not require any puncturing.

Irregular turbo decoder

To decode irregular turbo codes, only one SISO decoder is employed since there is only one RSC constituent code. First, the decoder computes the channel output Log-Likelihood Ratios (LLRs) for all the coded bits, and applies an appropriate repetition to each LLR. If the coded bit has degree d, then the corresponding likelihood is repeated d times. Next, the LLRs are fed to the SISO decoder. As the considered code is systematic, the decoder receives also information about the systematic part. At the rst iteration, the a priori information probability is xed to 1 /2. The BCJR algorithm for the convolutional code can start and the forward-backward algorithm computes the a posteriori probability. Here again, if the coded bit has degree d, the algorithm produces d extrinsic probabilities or LLRs. For instance, a regular turbo decoder with d Average = 3 computes three extrinsics for each degree-3 bit. In general, the extrinsic information corresponding to each bit is the product of the d -1 extrinsic pieces of information. Let r i,1 , r i,2 , ..., r i,d be the d repetitions of the current coded bit. In the probability domain, the extrinsic information can be expressed as:

Ext(r i,j ) = d k=1,k =j Ext(r i,k )
The decoding process continues until convergence is reached or a maximum number of iterations have been performed. For irregular turbo codes, the number of iterations needed for convergence is signicantly greater than the one we have for regular turbo codes. An explanation to this phenomenon can be found by analyzing the convergence of iterative decoding in both cases. For irregular turbo codes, the number of iterations can be increased in order to get closer to the theoretical limit. This was largely discussed in [START_REF] Sawaya | Performance optimization for capacity-approaching channel coding schemes[END_REF],

where Sawaya studied an irregular TC with 100 decoding iterations instead of 20 iterations for the regular TC. Nevertheless, about ten iterations are enough to run simulations and one major advantage of irregular TCs is that better performance can be reached for both nite and innite code length.

Selecting the degree prole of irregular turbo codes

The convergence threshold as well as the asymptotic performance of an irregular turbo code strongly depends on the degree prole. The degree prole depends on the interleaver and the generator polynomials of the RSC code. For codes with very large block lengths, the optimization of the previous parameters can be done using the density evolution method developed by Richardson and Urbranke [START_REF] Richardson | Ecient encoding of low-density parity-check codes[END_REF][START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF]. Using this approach, irregular LDPC codes with performance at 0.0045 dB from the capacity were obtained [START_REF] Chung | On the design of lowdensity parity-check codes within 0.0045 dB of the Shannon limit[END_REF]. The Gaussian approximation can be used to speed up the search for good parameters. This sub-optimal method leads to quite accurate results and was dened in several dierent ways [START_REF] Chung | Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[END_REF][START_REF] Gamal | Analyzing the turbo decoder using the Gaussian approximation[END_REF][START_REF] Sawaya | Performance Limits of Compound Codes with Symbol-Based Iterative Decoding[END_REF][START_REF] Brink | Iterative decoding trajectories of parallel concatenated codes[END_REF]. A Gaussian approximation based on extrinsic information transfer functions was rst introduced by Ten Brink [START_REF] Brink | Iterative decoding trajectories of parallel concatenated codes[END_REF]. Gamal and Hammons, the authors in [START_REF] Gamal | Analyzing the turbo decoder using the Gaussian approximation[END_REF], introduced a similar Gaussian approximation based on signal-to-noise ratio matching (SNRM-GA). To analyze the convergence of iterative decoding, Sawaya et al. [START_REF] Sawaya | Performance Limits of Compound Codes with Symbol-Based Iterative Decoding[END_REF] introduced the Gaussian approximation with error probablity matching (EPM-GA).

Although the density evolution method and the Gaussian approximation approach can be used to select a good degree prole for codes with large block sizes, Monte Carlo simulations of the bit error probability are usually carried on for nite length. The method consists in xing a degree d Irreg and varying its fraction f Irreg . A fraction that achieves the best performance can be found. The next step involves changing the degree d Irreg , while the fraction f Irreg is xed to the value already selected. We can then nd optimal values for both d Irreg and f Irreg . However, this prole is not automatically the best one, since the optimization does not take into account all the possible combinations (d Irreg , f Irreg ).

Also, better performance may be attained when the prole is not restricted to two non-zero fractions. This method was used for irregular turbo codes [START_REF] Frey | Irregular turbo-like codes[END_REF]. The main drawback is that Monte Carlo simulations are time consuming. An innovative method, based on the EXIT diagrams to select a good prole without resorting to extensive and long simulations, is discussed in subsection 4.2.1.

In our approach we separate the problems. First, we search for the best degree prole using a random interleaver. Afterwards, we optimize the interleaver. In addition, the number of degrees and fractions of a prole is equal to 2 (d max -1). The main diculty consists in having only two equations to optimize all these parameters:

max j=2 f j = 1 (4.5) d Average = max j=2 d j f j (4.6) 
Therefore, we choose few non-zero fractions. In the sequel, we just choose two non-zero fractions: one for the degree d = 2 and another one for d Irreg > 2 in order to boost the performance of the iterative decoder by the insertion of pilot bits [START_REF] Brink | Code doping for triggering iterative decoding convergence[END_REF]. Since we focus on the optimization of irregular turbo codes with d Average = 3, equations (4.5) and (4.6) become:

f 2 + f Irreg = 1 2 f 2 + d Irreg f Irreg = d Average = 3
The number of parameters is then reduced to only three parameters: f 2 , f Irreg and d Irreg . Also, only degree proles without any puncturing are selected within our analysis.

Determination of the degree prole using hierarchical EXIT charts

For TCs, EXIT charts are usually used to nd the best component codes. Like the density evolution method for LDPC codes, we decided to use the EXIT tool for irregular TCs in order to select a good degree prole without resorting to long and extensive simulations. For very large block lengths, we have observed that all the curves merge with one another and we cannot distinguish between the dierent degree proles. However, we can distinguish between all these curves in practice when simulations of the error rate performance are carried out. Therefore, an idea was to use the EXIT method for nite block sizes. In this case, we have observed that the EXIT tool provides a hierarchy between the dierent degree proles. The only dierence with a classical EXIT chart is that the interleaver has a nite length. We keep the hypothesis that the extrinsic information messages are independent and identically distributed. Indeed, this hypothesis does not raise any problem since we aim at comparing dierent degree proles, not at computing accurate convergence thresholds. This new method using the EXIT diagrams is simple and allows many degree proles to be compared at the same time. Besides, we have plotted the EXIT diagrams for dierent values of E b /N 0 . We have observed that the curves get closer to each other as E b /N 0 increases. However, the same hierarchy between these curves is obtained as the value of E b /N 0 varies. In order to identify easily the dierent curves and analyze their behaviour, it is preferable to choose a low value of E b /N 0 . Thus, comparisons between dierent degree proles in terms of convergence behaviour as well as asymptotic behaviour are made and the selection of the best degree prole can be progressively rened.

Let be a rate-1 /4 irregular TC, where the constituent code is an RSC code of unity rate with octal generators g = [START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF][START_REF] Berrou | The ten-year-old turbo codes are entering into service[END_REF]. We consider dierent degree proles with two non-zero fractions and we plot the corresponding EXIT diagrams of an irregular TC in Fig. 4.5 for a given block length. First, the convergence threshold of an irregular turbo code is lower when the output mutual information (OMI) is high for a zero input mutual information (IMI). We notice that the regular turbo code has the lowest output mutual information. Thus, it will perform worse than all the other irregular turbo codes in terms of convergence threshold. Besides, the OMI increases with the IMI. However, the faster the EXIT curve reaches the point of coordinates (1,1), the better the behaviour of the code at high SNRs is. This point materializes the perfect knowledge of the received message. Fig. 4.5 shows that some curves are lower than the others for high values of IMI. This observation is related to an important correlation eect when the pilot bits are of very high degree. In this case, the repeated bits are not spread enough after the interleaver: this has an impact on the minimum distance and predicts a oor at high error rates. The EXIT diagrams of the irregular turbo code where the degree prole is (f 2 , f 15 ) or (f 2 , f 20 ) highlight the phenomenon of the correlation eect and predict a bad behaviour at high SNRs. As usual, there is a convergence/distance trade-o to choose a degree prole.

If we compare two dierent degree proles such as (f 2 , f 8 ) and (f 2 , f 4 ). Fig. 4.5 shows that the irregular TC with degree prole (f 2 , f 4 ) reaches the point of coordinates (1,1) for lower values of IMI than those for irregular TC with degree prole (f 2 , f 8 ), which predicts a better behaviour in the error oor. From a convergence point of view, the irregular TC with degree prole (f 2 , f 8 ) produces a higher OMI than the irregular TC with degree prole (f 2 , f 4 ) for a zero IMI , i.e. OMI = 0.7 compared to OMI = 0.35 respectively which predicts a gain in the convergence threshold. In the next subsection 4.2.2, the behaviour of these irregular turbo codes and the various observations through EXIT diagrams are validated by simulations. performance of the code [START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF]. Nevertheless, there are then means to nd better interleavers than this "average" one. Moreover, two degree proles are considered in Fig. 4.6: (f 2 , f 4 ) and (f 2 , f 8 ). In general, we observe a signicant gain in the waterfall region for irregular turbo codes.

For example, the irregular turbo code using prole (f 2 , f 4 ) gives a gain in the convergence threshold of 0.1 dB compared with regular turbo code. When a higher repetition degree is employed, i.e. for prole (f 2 , f 8 ), the gain in convergence is more signicant: 0.3 dB at low SNR. However, the error oor for code (f 2 , f 8 ) is higher than the oor for code (f 2 , f 4 ).

These simulations conrm what we previously analysed through the EXIT diagrams in subsection 4.2.1.

These simulations conrm also the observation in [START_REF] Frey | Irregular turbocodes[END_REF]. Although irregular TCs can achieve performance closer to capacity, their asymptotic performance is very poor. Once the degree prole is dened, it is then necessary to take a great deal of interest in the permutation which plays an important role and inuences the performance of the irregular TC.

Design of suitable permutations for irregular turbo codes

To our knowledge, only one reference [START_REF] Sawaya | Irregular turbo-codes with symbol-based iterative decoding[END_REF] for irregular TCs to lower the oor in the case of binary erasure channels. Moreover, we are interested not only in large block lengths but also medium and short blocks. Afterward, the proposed solutions in [START_REF] Kraidy | Capacity-approaching irregular turbo codes for the binary erasure channel[END_REF][START_REF] Sawaya | Irregular turbo-codes with symbol-based iterative decoding[END_REF] do not seem concrete especially if only few iterations are required during the decoding process. We explain in this section why a random interleaver is not adapted to be used for an irregular TC and we propose a construction of more sophisticated permutations, following the spirit of the PEG algorithm [START_REF] Hu | Regular and irregular progressive edge-growth Tanner graphs[END_REF].

It is attractive to introduce a restricted number of bits with a very high degree, called pilot bits, whose forward and backward metrics in the decoding process are reliable.

Thus, they propagate on both directions and inuence the other bits with degree d = 2.

This phenomenon is behind the gain in the convergence threshold of the irregular TC.

However, a major problem is the auto-correlation introduced by these bits. If the pilot bits are uniformly distributed, the auto-correlation eect can be reduced. Nevertheless, the correlation between the dierent groups of pilot bits is still present unless they represent only very few bits. For this reason, the interleaver should spread these pilot bits along the frame and a random interleaver does not take into account this important condition.

Therefore, the design of suitable permutations for irregular turbo codes is a big issue to limit the auto-correlation to the minimum while having high MHDs.

The application of the EXIT technique leads to the choice of two degree values d = 2 and d = 8 with the following degree prole (f 2 = 5 /6 , f 8 = 1 /6). In the sequel, we adopt this prole as working assumption. Note that the method explained below is general and can be applied to any other degree prole even using more than two non-zero fractions.

Permutations with uniform distribution of the pilot bits

The rst intuitive idea was to design an interleaver where all the groups of eight bits are uniformly distributed. The objective is that they spread their reliable forward and backward metrics along the frame. If we represent the interleaver with a circle, then the bits inside one pilot group are separated with an angle equal to 2×Π dmax = Π 4

1 . Each time we place another group of eight bits, we move it with an angle of Π 4×η

, where η represents the total number of the pilot groups. Let us assume for example that we have only three 1 As the circumference is 2 × Π, we obtain:

2×Π dmax = 2×Π 8 values = Π
groups of 8 bits (η = 3). The next step of the design involves nding an optimal conguration for the groups of two bits that produces high minimum distances. We have performed both a random and S-random permutations for the whole groups of two bits. We have also tested some interleavers that appear to be promising in terms of minimum Hamming distance among the numerous permutation models suggested in the literature, such as ARP interleavers.

It was observed that the minimum distance is poor (equal to 6 in the example of Fig. 4.8) whatever the conguration employed for the groups of two bits. As depicted in Fig. 4.8, the spread between the pilot groups is lower than or equal to two (≤ 2). This leads to a high correlation between the groups of eight bits even if we have solved the problem of the correlation between the 8 bits in one pilot group since they are uniformly distributed.

Note that this spread also depends on the fraction of the pilot groups which is high (=

in our example.

To conclude, the rst intuitive idea investigated was to design an interleaver where all the groups of eight bits are uniformly distributed. The objective is that they spread their reliable forward and backward metrics along the frame. On the other hand, the spread between the pilot groups should be large enough to avoid correlation between them. High correlation may dramatically degrade error correction performance and even ruin the possible gain due to large minimum distance [START_REF] Hokfelt | A turbo code interleaver design criterion based on the performance of iterative decoding[END_REF]. An empirical value for the spread is to be at least equal to 2×(ν + 1), where ν is the memory length of the simulated code. The condition on the spread between the pilot groups imposes a constraint on the fraction f 8 (f max in general) of the pilot bits: 

f max ≤ d av 2d max (ν + 1) + 1 k (4.7)

Designing permutations using the Dijkstra's algorithm

In the cases where this condition is not satised, we propose an algorithm in order to jointly spread the groups of eight bits along the frame and maximize the MHD. This idea was inspired by a procedure described in [START_REF] Saouter | Selection procedure of turbocode parameters by combinatorial optimization[END_REF] where the author focuses on the optimization of TC permutation design with the so-called ARP model.

The Dijkstra's algorithm:

The Dijkstra's algorithm [START_REF] Dijkstra | A note on two problems in connexion with graphs[END_REF], discovered by the pioneering mathematician and programmer E.W.Dijkstra, nds the shortest path from a source vertex to all other vertices in a weighted directed graph without negative edge weights. The algorithm can be described in the following way: we pour some water in the starting (or initial) node and we visit the nodes of the graph in the order where they receive the water. The algorithm keeps the shortest distance of any vertex from the source in an array, sDist. The shortest distance of the source to itself is zero. sDist for all other vertices is initially set to innity to indicate that those vertices are not yet processed. The algorithm operates step by step, where at each step it updates locally the distances of certain nodes in the graph. Here is the algorithm for a graph G with vertices V = {v 1 , ...v n } and edge weights w ij for an edge connecting vertex v i with vertex v j . Let the source be v 1 .

Let S be a set used to keep track of all vertices that we have already computed the shortest distance to from the source. Initialize the set S = Ø .

Initialize the array sDist of estimates of shortest distances. sDist [1] = 0, while sDist [i] = ∞, for all other i. This means that our estimate from v 1 to v 1 is 0, and all of our other estimates from v 1 are innity.

While S = V do the following:

1. Find the vertex v i , not belonging to S, that corresponds to the minimal estimate of shortest distances in array sDist.

2. Add this vertex, v i into S.

3. For each vertex v j connected with v i , compute sDist

[i] + w ij . If this quantity is less than sDist [j], then set sDist [j] = sDist [i] + w ij .
The proposed algorithm:

To apply the Dijkstra's algorithm in our specic context, we reduce the space of search by building a graph. Similarly to the procedure described in [START_REF] Saouter | Selection procedure of turbocode parameters by combinatorial optimization[END_REF], the purpose is maximize the correlation girth which is the length of a shortest cycle contained in the graph. This criterion of selection was a priority for the author of [START_REF] Saouter | Selection procedure of turbocode parameters by combinatorial optimization[END_REF]. His rst purpose was to maximize the correlation girth while keeping an acceptable minimum Hamming distance. However, the minimum Hamming distance is our most important criterion of selection in order to improve the distance properties of irregular TCs.

At the beginning, the graph exists and is empty. As we consider a tail-biting code, the graph has the form of a ring. The nodes, empty at rst, are connected two by two in the ring. Thus, each node v i is connected to only one predecessor and one successor v j in the graph. The weight of each connection w ij is equal to one. The purpose of the algorithm is to put addresses in the nodes. Before interleaving, an appropriate repetition is applied to each bit among the k bits stemming from the source. For the k bits stemming from the source, we assume that j is the address of the rst copy before interleaving. As the bit is repeated d times, j + i corresponds to the address of the (i + 1) th copy for 1 ≤ i ≤ d -1.

We denote by max the maximum estimate of distance in the array sDist. /* We must take into account the interleaved addresses of all the copies of the same bit already handled:*/ For t from 0 to i -1

Compute the distances from v P(t) to all the neighbouring vertexes in the actual graph by Dijkstra's algorithm.

Find the highest distance d high in the array sDist.

If the best possible value d high is greater than max, replace max by d high .

Increment t.

Choose an address P(j + i) at random such as the scores for all the P(t) are greater than α times the best possible value max, where α is a real number satisfying 0 < α ≤ 1.

/* The node v P(j+i) is no more empty and corresponds to the interleaved address of j + i.*/ Add i crossbars, of weight equal to zero, to the graph. In fact, these crossbars connect v P(j+i) with v P(j) , v P(j+1) , ... v P(j+i-1) and we have w P(j+i),P(j) = w P(j+i),P(j+1) = ... = w P(j+i),P(j+i-1) = 0 since we connect dierent interleaved data of the same information bit. These crossbars update the graph and are necessary to apply correctly the Dijkstra's algorithm in the next step. c) Increment i.

2. Every time an interleaver is found, we estimate the minimum Hamming distance of the irregular TC using the all-zero iterative decoding algorithm (see 1.4.3). Only interleavers that improve the asymptotic performance of irregular TCs are memorized.

The parameter 0 < α ≤ 1 is used to implement a random variation in the selection.

The value α = 1 corresponds to the original Dijkstra's algorithm. We noticed that if we x α = 1 in our algorithm, the obtained interleavers produce high values of girths but sometimes unacceptable values of minimum distances. Therefore, dierent values were tested for the parameter α and we nally set α to 0.85, giving a reasonable space of search.

Compared with the approach in [START_REF] Saouter | Selection procedure of turbocode parameters by combinatorial optimization[END_REF] where the graph is almost cubic, the graph used in our algorithm is not the same since we consider a self-concatenated code. In [START_REF] Saouter | Selection procedure of turbocode parameters by combinatorial optimization[END_REF],

all the vertices {x 1 , x 2 , ..., x k , y 1 , y 2 , ..., y k } have exactly three neighbours apart from x 1 , x k , y 1 and y k . In our graph, the vertices have d + 1 neighbours: the predecessor and the successor in the ring as well as d -1 neighbours because each information bit has a repetition degree d.

Example:

To apply the algorithm for the rst information bit stemming from the source (j = 1)

with repetition degree d = 8, we choose a random interleaved address P(1) for the rst copy: P(1) = 565. Then, we compute the distances from P(1) for any vertex in the actual graph by Dijkstra's algorithm. P(2), the interleaved address of the second copy, is chosen at random such as the score for P(1) is greater than a times the best possible value. We obtain P(2) = 273 and we add a connection in the graph between v P(1) and v P(2) , represented by a crossbar of weight equal to zero: w P(1),P(2) = 0. Afterwards, we compute the distances from P(1) and also from P(2) for any vertex in the actual graph by Dijkstra's algorithm. P(3), the interleaved address of the third copy, is chosen at random such as the scores for both P(1) and P(2) are greater than a times the best possible value. We obtain P(3) = 120 and we add two connections in the graph between represented by crossbars of weight equal to zero: w P(1),P(3) = 0 and w P(2),P(3) = 0. We continue to run the algorithm for all the other copies... For instance, the algorithm was run for blocks of 1146 bits with degree prole (f 2 , f 8 )

and FER performance of irregular TCs has been simulated. As the average degree is 3, the interleaver length is equal to 3438. Fig. 4.12 compares the FER performance of the code under both random and optimized interleaving. A gain of two decades in the error oor is observed, in favour of the optimal interleaver. This may not be the best interleaver that has to be found. However, performance of irregular TCs at high SNRs is also improved in this case.

Although the proposed algorithm is very fast for short block sizes, it may take unacceptable computational time for medium sizes and large blocks to nd good interleavers and we cannot be sure of detecting all the possible cases. Like for random interleavers, one additional drawback of this family of interleavers is the necessity to store the interleaved addresses as no equations are available for the permutation.

Adding a post-encoder to irregular turbo codes

As previously explained, devising good interleavers for irregular TCs proves to be a difcult task. In order to ensure large asymptotic gain at very low error rates, even with non-optimized internal permutation, we propose an irregular TC inspired by our work about 3D TCs in order to improve the distance properties of these codes. TC, the increase in minimum distance is signicant at the expense of a loss in convergence threshold and an increase in complexity. Based on our analysis in the previous chapters, the same behaviour is expected for irregular TCs. Here also, the permeability pattern is considered to be regular. For instance, if λ = 1 5 the bits to be post-encoded are chosen in a regular basis {10000}.

Performance of irregular TCs with post-encoding

We have investigated the distance gain for dierent block sizes and permeability rates.

The values of the the minimum Hamming distance are obtained using the all-zero iterative decoding algorithm. Similarly to the case of 3D TCs, we have observed that the addition of the post-encoder improves the asymptotical behaviour of irregular TCs.

For example, the addition of the post-encoder results in an increase in the minimum Hamming distance of the irregular TC by more than 50% from d min = 33 to d min = 50 for code rate R = 1 /4, λ = 1 /8 and k = 4094 bits. This value has to be compared to d min = 44

which is the distance of the regular TC in this case. Then, the irregular TC concatenated ). Like with 3D TCs, the post-encoder improves performance at low error rates. Compared with irregular TCs, Fig. 4.14 shows that the gain at high SNRs is nearly 2.5 decades when the post-encoding is performed. Note that compared to the search for permutations in section 4.3 which has limitations for medium and large block sizes, it is possible and easier here to simulate irregular TCs for large blocks. In other words, there is no limitation on the block size.

The great advantage is that irregular TCs with post-encoding perform better than the regular TCs at low but also at high error rates. Other simulations for dierent bloc sizes were carried out to conrm these results.

Transmission over fading channels

Similar simulations have been carried out over both Gaussian and Rayleigh fading channels. In Fig. 4.15, the BER and FER performance of regular and irregular TCs have been simulated for blocks of 2046 bits. Thus, the interleaver length is equal to 6138. Again, it is observed that irregular TCs with post-encoding perform better than the regular TCs in both the waterfall and error oor regions. For a transmission on the Rayleigh channel, the gain at high SNRs exceeds one decade, whereas for a transmission over the Gaussian channel, the gain at high SNRs is nearly 2 decades. It is possible to increase even more the minimum distance by the search of adapted pattern of post-encoding. Here, the postencoding is regular. However, it is possible to postcode only the pilot bits, or only the bits with the lowest degree, or to nd a balance between both of them. This perspective is expected to give better results and can be investigated in a future work. 

Conclusion

In this chapter, we investigated irregular turbo codes. In order to select a good prole of degrees, we used hierarchical EXIT charts instead of long Monte Carlo simulations. This is one of the contributions of the thesis. Another contribution was to focus later on the design of suitable permutations in order to lower the oor. Graph-based permutations built from a combination of the Dijkstra's algorithm with an estimation of the minimum distance improve signicantly the distance properties of irregular TCs. However, it is only practicable for short to medium blocks. It is possible to investigate the interleavers provided by the proposed algorithm and explore them in details in order to nd structured interleavers, having similar properties, which can be described in an analytical way. This perspective is interesting since the addresses do not need to be stored if it is the case.

However, it is commonly known that devising permutations for turbo codes in not an easy task. Finally, an interesting idea was to reuse the previous analysis about 3D TCs and to apply it in the case of irregular turbo codes. This important contribution shows that irregular turbo codes with post-encoding perform better than regular turbo codes in both the waterfall and error oor regions.

Conclusions and perspectives

I n the early nineties, the invention of TCs was a revival for the channel coding research community. Their near-capacity performance and their suitability for practical implementation explain the adoption of TCs in various communication standards as early as the late nineties. However, TCs suer from a attening eect when the error rate reaches a limit and stops improving even if the number of iterations is increased. In future system generations, low error rates will be required to open the way to real time and more demanding applications, such as television broadcasting or videoconferencing. The minimum Hamming distance may not be sucient to ensure large asymptotic gains at very low error rates. Therefore, more powerful coding schemes are required. At the same time, a reasonable complexity should be preserved.

The rst aim of the thesis was to explore a new hybrid concatenation structure combining both parallel and serial concatenation based on a 3-dimensional code, simply derived from the classical TC by concatenating a rate-1 post-encoder at its output. Performance of the 3D TC depends on some key parameters. The interleaving law Π (which permutes the parity bits before feeding them to the post-encoder) and the permeability rate λ have been properly optimized. Besides, I discussed the dierent requirements that the postencoder has to meet and how it is possible to choose a post-encoder by means of an EXIT analysis. The most interesting property of the 3D TC is that it signicantly improves performance in the error oor region with respect to the classical turbo code. Several union bounds on the minimum distance of 3D binary TCs with 8-state upper and lower constituent encoders and 3GPP2 interleavers were presented. Besides, the dierent stages were illustrated with simulation results and asymptotical bounds.

In the case of the 3GPP2 interleaving, I observed packets of errors at the output of the decoder. This is one drawback of the 3D TC, as the gain in terms of BER is not as much as the improvement in FER.

A thorough complexity analysis of the 3D decoder has been carried out in order to estimate the additional complexity. When high throughputs are required for a given application, several SISO processors can be placed in parallel while only one 3D predecoder is required in most cases; which decreases the relative additional complexity of the 3D coding scheme.

Later, I was interested in improving 3D TCs. An optimization method was introduced in order to increase even more the minimum Hamming distance of the 3D TC and an algorithm was proposed. Applying an irregular pattern of post-encoding allows the asymptotic performance of the codes having low multiplicities at the beginning of the spectrum to be improved. Then, convergence issues were discussed. In fact, one additional drawback of the 3D TC structure is that the loss of convergence is more signicant for fading channels compared with Gaussian channels. Therefore, it seems more necessary to nd a solution to this problem. The use of a time varying post-encoder reduced the observable loss of convergence threshold for 3D TCs by 10% to 50% of the value expressed in dB. However, this technique requires nding an optimal period L, in order to replace properly some redundancies by the others. And this is not an easy task, since it is a matter of convergence/distance trade-o. Many values have to be tested, depending on the block size and the coding rate. Another alternative was considered when the code is associated with high order modulations. In this case, there is no need to use a time varying trellis and a specic mapping allows obtaining even a gain in the waterfall region. Therefore, the 3D TC is adapted to be used in high spectral eciency transmission schemes. Thus, it is possible to build 3D TCs which have good performance in both regions.

I noticed that the notion of irregularity plays a major role to build 3D TCs having good performance at low and high SNRs. In fact, the optimization method is based on the use on a non regular pattern of post-encoding and allows the minimum distance to be increased. Besides, the time varying post-encoder (5, 4:7) with a little irregularity and also the association of the 3D TC with high order modulations, where both the systematic bits and the post-encoded parity bits are more protected than the other parity bits create a sort of irregularity in the Gray mapping. Both represent a success in reducing or even eliminating the problem of convergence loss. The next step of the study concerned the investigation of irregular TCs. The aim is to obtain an irregular TC which performs well in both the waterfall and the error oor regions.

Work on irregular LDPC codes was encouraging to study dierent aspects of the problem. To start, I used EXIT charts instead of long Monte Carlo simulations in order to select a good prole of degrees. Afterwards, I was interested in the design of powerful permutations suited for such code structures. Graph-based permutations built from a combination of the Dijkstra's algorithm with an estimation of the minimum distance improve signicantly the distance properties of irregular TCs. However, it is only practicable for short to medium blocks. It is possible to investigate the interleavers provided by the proposed algorithm and explore them in details in order to nd structured interleavers, having similar properties, which can be described in an analytical way. However, it is commonly known that devising permutations for turbo codes is not an easy task. An interesting idea was to reuse the previous analysis about 3D TCs and to apply it in the case of irregular TCs. The association of irregular TCs with the same post-encoder used for 3D TCs results in irregular turbo coding schemes which perform better than regular TCs in both the waterfall and error oor regions.

Of course, the techniques studied can be improved. The suggested directions for future research work are summarized below.

For example, it seems interesting to think about the most eective way to postencode the parity bits. The authors in [START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF] proposed dierent puncturing patterns that maximize the minimum distance of TCs under random interleaving. It is really encouraging to apply their results for the post-encoding pattern and analyze the impact on the performance of 3D TCs.

While improving the convergence threshold of 3D TCs, I imagined new structures that can be applied in the future. What about using an 8-state time-varying postencoder? This structure is obviously more complicated, but it is certainly more powerful. The loss in convergence can be signicant. However, this does not represent a major problem for high coding rates and I expect that increased minimum distances of 3D TCs can be attained in this case.

Also, what about the association of 3D TCs with rotated constellations, like those used for the second generation of terrestrial digital TV? Since the rotated constellations technique is particularly eective in bad transmission conditions, the use of the specic Gray mapping explained in the manuscript may compensate the loss in the convergence threshold and could increase even more the gain in convergence threshold observed over fading channels. I think that the search in this direction would give optimistic observations and interesting results.

Moreover, all the analysis of 3D TCs was dedicated to the case of binary TCs. What about double binary (and m-binary in general) 3D TCs? It is known that double binary TCs perform better than classical TCs at both high and low error rates. It is attractive to apply the optimization method as well as the time-varying technique in the case of double binary 3D TCs.

Last but not least, the design of suitable permutations for irregular TCs is an important future research work. In fact, the proposed algorithm is very promising. However, it is necessary to nd techniques that eliminate the interleavers producing low minimum distances early in the search process. In this way, the space of search would be reduced and the algorithm would become promising even for large blocks. 2. Then, Table A.2 is indexed using the counter's ve least signicant bits. This lookup table indexing provides an LSB address of n bits.

3. The next step is to multiply the values obtained in steps 1 and 2, and to discard all except the n least signicant bits. This will constitute the lower part (or LSB ) of the nal address.

4. The higher part (or MSB ) of the nal address is obtained by bit-reversing the ve least signicant bits of the counter.

5. The tentative of the output address is accepted only if it is less than N turbo , otherwise the address is discarded.

The counter is increased by one and steps 1 through 5 are repeated until all N turbo interleaving addresses are obtained.

Index n = 3 n = 4 n = 5 n = 6 n = 7 

Example of operation

In this example a packet size of 512 bits is used. Following the algorithm described in 2. Start the counter of n + 5 = 9 bits at zero, i.e. counter = 000000000.

3. Save the four most signicant bits of counter in the MSB variable.

4. Save the ve least signicant bits of counter in the LSB variable.

5. Add one to MSB, i.e. M SB = 0001 for the rst iteration.

6. Use Table A.2 with the ve LSB s of counter and column n (index = 00000 for the rst iteration) and store the n-bit result in LSB, i.e., LSB = 0001 for the rst iteration.

7. Take the n least signicant bits of the M SB × LSB product and store it.

8. Bit reverse the ve least signicant bits of counter to obtain the higher part, i.e., the MSB.

9. Form a tentative output address that has its MSB s equal to the value obtained in step 8 and its LSB s equal to the value obtained in step 7.

10. Accept the output address if it is less than N turbo .

11. Add one to counter.

12. Go to Step 3.

For this example, the input vector has 506 data, whose values for simplicity are numbered from one to ve hundred and six. As the input vector is relatively large in size, only some positions with their values are shown in Although the output produced by the interleaver seems to have elements of randomness, it should be noticed that the the transformation between input and output positions is both deterministic and bijective. Also, the interleaving process does not mean all positions must change at the output. In the previous example of where I is the v × v identity matrix. Note that s c exists if and only if I + G P is invertible. This condition is never satised for some matrixes G, whatever P . For this reason, the LFR of Before the encoding of {d i }, the knowledge of s c requires a preliminary step. The encoder is rst set up in the all-zero state, and then fed by the data sequence {d i }. The nal state is denoted s 0 P . From equation (B.2), we have s 0 P = P j=1 G P -j d j-1 and s c can then be related to s 0 P by : s c = I + G P -1 s 0 P Finally, the encoder being initialized to the circulation state, the encoding process can really start to provide the redundancy sequence.

B.2 State mapping encoding

State mapping encoding is introduced for cases where standard circular (tail-biting) encoding is not possible. The core of this encoding is a mapping that maps the nal state s P to the state s P = A s P using a state mapping matrix A [START_REF] Sun | Extended tail-biting schemes for turbo codes[END_REF]. Mapping the nal state yields the equation : The decoding process has to take into account the mapping described above. This is done by an exchange of metrics after having processed last address during the forward recursion, and after having processed rst address during the backward recursion, when the MAP algorithm or a simplied version is employed. Table B.1 provides the values of s P obtained through the mapping of s P . The table also provides the values of s m for each s 0 P using equations (B.3) and (B.4). We can observe that only two (if P is odd) or three (if P is even) metrics need to be swapped during the decoding process, at the extremity of the block, which represents a very small additional complexity for the 4-state decoder. Then, we can conclude that in the 16-QAM modulation the binary positions b 3 and b 1 are better protected than the binary positions b 2 and b 0 . We took advantage of this property to protect the systematic bits as well as the post-encoded parity bits as a priority.

And this conguration reduced the loss of convergence of 3D turbo codes.

The reasoning is similar in the case of an 8-PSK modulation.We can also show that among the three bits forming a symbol in 8-PSK, the average probability of error is smaller for the rst and the second bits than for the third bit. Nevertheless, this properties can be directly deduced from the constellation in 
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 01 Figure 0.1: Schéma de principe d'un turbocode 3D.

Figure 0 . 2 :

 02 Figure 0.2: Comparaison des performances d'un TC classique et d'un TC 3D sur canal gaussien avec un entrelacement 3GPP2 pour un bloc de k = 3066 bits, un rendement R = 1 /3 et deux valeurs de λ diérentes: λ = 1 /4 et λ = 1 /8. L'algorithme de décodage est le MAP avec 10 itérations.

Figure 0 . 3 :

 03 Figure 0.3: Post-codeur avec treillis variant dans le temps modié.

Figure 0 . 4 :

 04 Figure 0.4: Schéma de principe d'un turbocode irrégulier.

Figure 0 . 5 : 6 .

 056 Figure 0.5: Comparaison des performances d'un TC régulier et d'un TC irrégulier sur canal gaussien pour un bloc de k = 4096 bits, un rendement R = 1 /4 et λ = 1 /8. Le degré moyen est 3. Le prol de degré est f 2 = 5 6 , f 8 = 1 6 . La taille de l'entrelaceur 3GPP2 est 12282. L'algorithme de décodage est le MAP avec 10 itérations.
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 1 Parallel convolutional turbo codes Turbo codes represent a class of parallel concatenation of two (or more) convolutional codes. Several parameters aect the performance of turbo codes such as component decoding algorithms, number of decoding iterations, generator polynomials and constraint lengths of the component encoders and the interleaver type. Turbo codes, due to their excellent error correcting capability, have been adopted by several standards such as CCSDS (Consultative Committee for Space Data Systems) for space communication, DVB-RCT (Digital Video Broadcasting Return Channel Terrestrial), DVB-RCS for Satellite communications, 3GPP (Third Generation Partnership Project) communication systems: cdma2000 (Code Division Multiple Access), UMTS (Universal Mobile Telecommunications System), W-cdma (Wideband cdma) for cellular mobile, etc.

Figure 1 . 1 :

 11 Figure 1.1: Generic block diagram of a turbo encoder.

Fig. 1 .Figure 1 . 2 :Table 1 . 2 :

 11212 scheme could be improved if the interleaver succeeds in eliminating input sequences which produce low weight codewords[START_REF] Dolinar | Weight distributions for turbo codes using random and nonrandom permutations[END_REF]. The S-random (or spread ) interleavers[START_REF] Benedetto | Unveiling turbo codes: Some results on parallel concatenated coding schemes[END_REF][START_REF] Divsalar | Multiple turbo codes for deep-space communications[END_REF][START_REF] Divsalar | Multiple turbo codes[END_REF] 

Figure 1 . 3 :

 13 Figure 1.3: Example of random interleaver.

  Two important innovations allowed the turbo codes to reach an excellent performance in the history of channel coding. The rst one, as explained above in section 1.1, is the parallel concatenation of two RSC codes separated by an interleaver. The second being the process of Soft Input Soft Output (SISO) iterative decoding. The block diagram of the turbo decoder is shown in Fig. 1.4. Turbo codes get their name because the decoder uses feedback, like a turbo engine.

Figure 1 . 4 :

 14 Figure 1.4: A turbo decoder and a mechanical turbo engine. Source of the turbo engine image :

1. 5 .

 5 

Figure 1 . 5 :

 15 Figure 1.5: Calculation of the branch metrics.

1 .

 1 Turbo codes: a breakthrough in digital communications1.4 Convergence and asymptotic performanceTwo essential parameters allow estimating the performance of a concatenated errorcorrecting code and its decoder:

( 1 . 1 )

 11 and equation (1.2) results in the parameter values H 1 = 0.3073, H 2 = 0.8935, and H 3 = 1.1064 [27]. The curve in Fig. 1.6 shows equation (1.1) and the indistinguishable approximation in equation (1.2).

Figure 1 . 6 :

 16 Figure 1.6: The J function and its approximation where H 1 = 0.3073, H 2 = 0.8935 and H 3 = 1.1064.

Fig. 1 .

 1 7 describes how the mutual information is measured in practice. After encoding, the information and parity bits x and y are transmitted over a noisy channel. The decoder receives the transmitted values at the channel output. Information bits x are also transmitted as a priori knowledge, as if they were coming from the other decoder (lower input line to the decoder in Fig.1.7).
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 17 Figure 1.7: Measurement of mutual information at the component decoder level.

Fig. 1 .

 1 Fig.1.8 shows that the curves have intersection points dierent from the point(1,1) 

Figure 1 . 8 :

 18 Figure 1.8: Turbo code EXIT charts and trajectory for dierent values of E b /N 0 .

3 .

 3 For i = 0 to n /* i refers to the position of the impulse*/ a) Let us denote the transmitted vector by e. Put e j = -1 for all j = i. b) Place an error impluse in e i . It consists of a positive real number with high amplitude. c) Add a white Gaussian noise with variance σ 2 . d) Decode iteratively the received sequence. e) When the decoder converges to a valid codeword ĉi , compute its Hamming weight w ( ĉi ). If w ( ĉi ) < d min and w ( ĉi ) > 0, a new codeword is found. Set d min = w ( ĉi ), update the multiplicity and store ĉi . If w ( ĉi ) ≥ d min and the codeword has not been detected yet ⇒ store it and set its multiplicity to 1. If w ( ĉi ) ≥ d min and the codeword has already been detected ⇒ increment the corresponding multiplicity. f ) Increment i. 4. When the decoder does not converge to codewords: a) Go to step 1. b) If E b /N 0 < 8 dB, increment E b /N 0 by 0.5 dB and try another value of σ 2 .

1. 5 . 1

 51 Cdma2000 interleavingThe description of the cdma2000 turbo interleaver is detailed in Appendix A. Also, an example is presented to illustrate the complete interleaving process dened by the standard. Fig.1.10 shows the results plotted in a Cartesian plane. The x-axis represents the index and the y-axis the position of the output data.
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 110 Figure 1.10: Input vector versus output vector before and after interleaving for blocks of 506 bits.

Figure 1 .

 1 Figure 1.11: Bit-error performance of the 3GPP2 turbo code as the number of decoder iterations varies from 1 to 10. The encoder input word length is k = 6138 bits, code rate is 1 /2, modulation is BPSK, and channel is AWGN. The simulations use the MAP algorithm.

Figure 1 .

 1 Figure 1.12: Bit-error performance of the 3GPP2 turbo code for various input code lengths at code rate 1 /2. BPSK modulation is used over an AWGN channel. All simulations use the Max-Log-MAP algorithm with 10 decoding iterations.

  2.1. A fraction l of the parity bits from the upper and lower constituent encoders are grouped by a Parallel to Serial (P/S) multiplexer, permuted by a permutation P', and encoded by an encoder of unity rate whose output is denoted by w. The iterative decoding of concatenated codes in general makes it important to have P' in order to decorrelate the extrinsic information. In[START_REF] Berrou | Adding a rate-1 third dimension to turbo codes[END_REF][START_REF] Berrou | Improving the distance properties of turbo codes using a third component code: 3D turbo codes[END_REF], l is referred to as the permeability rate. Usually, very simple regular permeability patterns are applied. For instance, if l = 1 8 the bits to be post-encoded are chosen in a regular basis {10000000} for both the upper and the lower encoders. Note that the permeability rate has an eect on the performance of the 3D TC similar to the doping ratio concept of[START_REF] Brink | Code doping for triggering iterative decoding convergence[END_REF].

Figure 2 . 1 :

 21 Figure 2.1: 3D turbo encoder structure.

2. 1 .

 1 Properties of 3-dimensional turbo codes all of them exchange extrinsic information. First, the 4-state SISO pre-decoder is activated to feed the two SISO decoders with extrinsic information about the post-encoded parity bits. The two decoders exchange extrinsic information about the systematic bits, as for the classical turbo procedure. They also provide the pre-decoder with extrinsic information about the post-encoded parity bits. The decoding process continues iteratively until all constituent decoders have converged, or a maximum number of iterations has been performed.

Figure 2 . 2 :

 22 Figure 2.2: Structure of the 3D turbo decoder.

1 λ 2 > λ 1 Figure 2 . 3 :

 12123 Figure 2.3: Choice of the permeability rate λ.

Figure 2 . 4 :

 24 Figure 2.4: FER performance of the 3GPP2 3D TC with λ = 1 /4 and λ = 1 /8 for k = 3066 bits, R = 1 /3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm with 10 decoding iterations.

Figure 2 . 5 :

 25 Figure 2.5: Possible linear post-encoder candidates with memory 2.

Figure 2 . 6 :

 26 Figure 2.6: EXIT curves for dierent linear post-encoders.

  2.5 (a) is used. As expected, this loss of convergence increases when the post-encoder of Fig. 2.5 (b) is used. The largest loss of convergence is observed when the code of Fig. 2.5 (c) is used.

  (a) FER performance for k = 570 bits and R = 1 /3. All simulations use the Max-Log-MAP algorithm with 10 decoding iterations. (b) BER performance for k = 1146 bits and R = 2 /3. All simulations use the MAP algorithm with 10 decoding iterations.

Figure 2 . 7 :

 27 Figure 2.7: Error rate curves of the 3GPP2 3D TC with λ = 1 /4 and comparison with the 3GPP2 TC.

Figure 2 . 8 :

 28 Figure 2.8: Possible error patterns of input weight 4 for a rate 1 /3 turbo code.

Fig. 2 .

 2 Fig.2.9 shows the simulated FER performance of the 3GPP2 3D TC with random and regular interleavers P' for code rate R = 1 /2, l = 1 /8 and k = 762 bits.

Figure 2 . 9 :

 29 Figure 2.9: FER performance of the 3GPP2 3D TC with λ = 1 /8 for k = 762 bits, R = 1 /2 and comparison with the 3GPP2 TC. All simulations use the Max-Log-MAP algorithm with 10 decoding iterations.

2. 3 .

 3 3D turbo codes hardware implementation issues: decoder architecture and complexity analysis

2 .

 2 Extract the addresses where the systematic bit x, the parity bit y or the postencoded parity bit w is equal to one. a) If the systematic bit x is one and the corresponding parity bit y does not benet from the regular post-encoding, include this address in the new post-encoding pattern. b) If the systematic bit x is zero, but the parity y is one, check whether the address of the parity bit benets from the regular post-encoding. If not, include this address also in the new post-encoding pattern. c) If the post-encoded parity w is equal to one, do not modify the pattern for the corresponding address.

Figure 3 . 2 :

 32 Figure 3.2: FER performance of the optimized 3D TC with λ = 1 /8 for k = 1530 bits, R = 1 /2 and comparison with the 3D TC and 3GPP2 standardized TC. All simulations use the Max-Log-MAP algorithm with 10 iterations.

Figure 3 . 3 :

 33 Figure 3.3: Asymptotical bounds of the optimized 3D TC, the 3D TC (with λ = 1 /4) and the 3GPP2 classical TC for blocks of k = 1146 bits at coding rate R = 2 /3.

4 . 2 ) 3 and λ = 1 8 at an E b N 0 of 1 .

 42301 of a TC, we have to consider the transfer characteristics of the extrinsic information for each SISO decoder. In the case of 3D TC, the two SISO decoders exchange extrinsic information about the systematic part of the received codeword, like for classical turbo decoding. But both of them exchange also extrinsic information about the post-encoded parity bits with the 4-state SISO pre-decoder. And we have to take into account in the EXIT chart that the extrinsic information about these parity bits is changing from an iteration to the other. In fact, the input MI changes each iteration as the predecoder feeds the two SISO decoders with new extrinsic information about the post-encoded parity bits. Consequently, the curves of mutual information exchange between the two decoders change every iteration.For example, the EXIT charts of the classical turbo code and the corresponding 3D turbo code with parameters R = 2 49 dB and 1.55 dB, respectively, are depicted in Fig.3.4. Note that the curves remain almost unchanged after the fourth iteration. In both cases of Fig.3.4, the tunnel between the two EXIT curves opens, predicting convergence thresholds around these values. These results were conrmed by the simulations of the code.

Figure 3 . 4 :

 34 Figure 3.4: EXIT charts of the classical turbo code at E b /N 0 = 1.49 dB for code rate R = 2 /3 and the corresponding 3D TC with λ = 1 /8 at E b /N 0 = 1.55 dB.

In 2 . 1 . 4 . 1 ,

 2141 Fig. 2.6 corresponding to the post-encoders of Fig. 2.5 (a) and 2.5 (c) cross around input MI 0.1. For high input MI the curve related to code (c) indicates a better behaviour in the error oor region. For this reason, the rst idea is to combine the two encoders and this mixture results in a time varying post-encoder.

Figure 3 . 6 : 4 -

 364 Figure 3.6: 4-state post-encoder with time-varying parity construction (5, 4 :7).

Fig. 3 .

 3 8 illustrates the principle of this technique.

Figure 3 . 7 :

 37 Figure 3.7: Trellis of the post-encoder (5, 4 :7). Redundancies 4 and 7 are alternated in time.

Figure 3 . 8 :

 38 Figure 3.8: Modied time-varying post-encoding with a replacement period of L.

BER 1 k 3 ×= 2 3 ×( 3 . 2 )2 × ξ = 3 ×

 1323323 out,T V = Number of erroneous bits for TV TC Number of blocks × Since we generate three errors each time we replace a redundancy [19], we obtain : BER out,T V = Number of erroneous bits without TV + 3 × Number of replacements Number of blocks × k = BER out, without T V + Number of replacements Number of blocks × k BER in + Number of replacements Number of blocks × k If we compare the last expression (3.2) to the rst one (3.1), we can identify : Number of replacements Number of blocks × k

Figure 3 . 9 :

 39 Figure 3.9: Estimation of ξ according to L for blocks of k = 1530 bits. ξ is an additional error rate at the output of the predecoder at the rst iteration.

Fig. 3 .

 3 Fig. 3.10 shows an EXIT chart of a 3-dimensional time varying turbo code for E b /N 0 = 1.58 dB. Note that the transfer characteristics are asymmetric and remain almost unchanged after the seventh iteration. For E b /N 0 = 1.58 dB, the tunnel between the EXIT curves is open, and the exchange of the extrinsic information continues along the iterations until we reach the intersection point (1,1). Consequently, the convergence threshold of the 3D TV turbo code is 1.58 dB for code rate R = 2 /3 and l = 1 /4.

Figure 3 .

 3 Figure 3.10: EXIT chart of the time varying 3D TC at code rate R = 2 /3, λ = 1 /4, L = 30 and E b /N 0 = 1.58 dB.

Figure 3 .

 3 Figure 3.11: FER performance of the time varying 3D 3GPP2 TC with λ = 1 /4 for k = 1146 bits, R = 2 /3 and comparison with the 3GPP2 3D TC and 3GPP2 TC. All simulations use the MAP algorithm with 10 iterations.

Figure 3 .

 3 Figure 3.12: BER performance of the time varying 3GPP2 3D TC with λ = 1 /8 for k = 2298 bits, R = 1 /3 and comparison with the 3GPP2 3D TC and 3GPP2 TC. All simulations use the Max-Log-MAP algorithm with 10 iterations.
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 313 Figure 3.13: Transmission scheme.

3. 2 . 3 . 2

 232 Example 1: 3D TCs associated with a 16-QAM modulator for k = 2298 bits, R = 1 /3 and λ = 1 /8

3. 2 . 1 8 at code rate R = 1 3

 211 Improving the convergence threshold of the 3D turbo code 3.2.3.1, FER performance of 3GPP2 3D TCs has been simulated with l = for k = 2298 bits, as shown in Fig. 3.14.

Figure 3 . 14 :

 314 Figure 3.14: FER performance of the 3GPP2 3D TC with λ = 1 /8 for k = 2298 bits, R = 1 /3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm with 10 decoding iterations and 16-QAM modulation. Transmission is over the Gaussian channel.

3 . 3 is 2 . 3 and l = 1 8

 33231 15a shows that the convergence threshold of a TC with 16-QAM modulation at code rate R = 1 19 dB. Besides, the convergence threshold of the 3D TC with 16-QAM modulation, where the systematic bits and the post-encoded parity bits are protected as a priority, is 1.97 dB at code rate R = 1 (see Fig.3.15b). This conrms the observed gain of 0.22 dB in the waterfall region.

  (a) EXIT charts of an 8-state TC for E b/N 0 = 2.19 dB. (b) EXIT chart of a 3D TC for E b/N 0 = 1.97 dB and λ = 1 /8. Note that after the third iteration, the transfer characteristics remain almost unchanged.

Figure 3 . 15 : 3 and l = 1 8

 31531 Figure 3.15: Comparison of the convergence thresholds of a classical turbo code with a 3D TC at code rate R = 1 /3. A 16-QAM Gray mapping is used.

Figure 3 . 16 :

 316 Figure 3.16: FER performance of the 3GPP2 3D TC with λ = 1 /8 for k = 2298 bits, R = 1 /3 and comparison with the 3GPP2 TC. All simulations use the MAP algorithm with 10 decoding iterations and 16-QAM modulation. Transmission is over the Rayleigh fading channel.
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 41 Figure 4.1: Equivalent encoding structure for a self-concatenated turbo encoder.

Fig. 4 .

 4 2 shows that the use of the equivalent encoding structure for a regular turbo code requires two additional iterations (i.e. twelve instead of ten) to reach the performance of the classical parallel turbo code.

Figure 4 . 2 :

 42 Figure 4.2: BER performance of two equivalent encoding structures for a regular 3GPP2 turbo code. All simulations use the Max-Log-MAP algorithm for blocks of 2298 bits and coding rate R = 1 /3.

Figure 4 . 3 :

 43 Figure 4.3: Encoding scheme of an irregular turbo code.

Fig. 4 .

 4 [START_REF]Third Generation Partnership Project (3GPP) Technical SpecicationGroup, Multiplexing and channel coding (FDD)[END_REF] shows a block diagram of the decoder.

Figure 4 . 4 :

 44 Figure 4.4: Iterative decoding principle of a self-concatenated code.

Figure 4 . 5 :

 45 Figure 4.5: EXIT diagrams of irregular turbo codes with dierent degree proles for blocks of 1146 bits, at coding rate R = 1 /4 and E b /N 0 = 0.2 dB. The interleaver length is 3438.

  For prole (f 2 , f 4 ), we have two classes of irregularity: d = 2 and d = 4. The corresponding fractions are f 2 = f 4 = 1 /2. The other prole (f 2 , f 8 ) consists of two classes of irregularity: d = 2 and d = 8. The corresponding fractions are f 2 = 5 /6 and f 8 = 1 /6.

Figure 4 . 6 :

 46 Figure 4.6: BER performance of irregular turbo codes and comparison with regular turbo code for block size k = 1146 bits and R = 1 /4. All simulations use the MAP algorithm with 8 decoding iterations.

Fig. 4 .

 4 [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate (Corresp.)[END_REF] shows that the second group was placed with an angle of Π 12 after the rst group. The same rotation was applied to the last group.

Figure 4 . 7 :

 47 Figure 4.7: Three pilot groups uniformly distributed along the frame.

Figure 4 . 8 :For f 8 = 1 6 ,

 4886 Figure 4.8: Visualization of an interleaver for blocks of 48 bits. We read the output of the interleaver line by line.

  The addresses that appear progressively in the graph are the interleaved addresses corresponding to the output of the interleaver. The algorithm used to build the interleaver is the following: /* For each bit stemming from the source, we want to nd the interleaved addresses for the d copies:*/ 1. For i from 0 to d -1 a) If i = 0 /* The algorithm searches an interleaved address for the rst copy of the bit:*/ We choose P(j) at random among the available interleaved addresses. /* The node v P(j) is no more empty and corresponds to the interleaved address of j.*/ b) Else /* The algorithm searches an interleaved address for the (i + 1) th copy of the bit:*/ Initialize max to 0.

Figure 4 . 9 :

 49 Figure 4.9: Example of the placement of a pilot group with degree d = 8 in the graph using the proposed algorithm.

  The algorithm constructs the graph progressively. At the end, crossbars are added to the graph as shown in Fig.4.9. In general, for each information bit with repetition degree d, d×(d-1)2connections of weight equal to zero appear in the graph (28 connections in the example).

Figure 4 . 11 :

 411 Figure 4.11: FER performance of irregular turbo codes under both random and optimized interleaving for short block sizes at coding rate R = 1 /4. All simulations use the MAP algorithm with 10 decoding iterations.

Figure 4 . 12 :

 412 Figure 4.12: FER performance of irregular turbo codes under both random and optimized interleaving for blocks of 1146 bits at coding rate R = 1 /4. All simulations use the MAP algorithm with 8 decoding iterations.

Figure 4 . 13 :Fig. 4 . 6 )

 41346 Figure 4.13: An irregular turbo code concatenated with a rate-1 post-encoder at its output.

Figure 4 . 14 :

 414 Figure 4.14: BER and FER performance of 3GPP2 irregular TCs and comparison with the corresponding regular TCs for blocks of 4094 bits. All simulations use the MAP algorithm with 10 decoding iterations. Transmission is over the Gaussian channel.

Figure A. 1 :

 1 Figure A.1: Flow diagram for the cdma2000 standard's turbo interleaver algorithm.

Fig. A.1 we have: 1 .

 1 Fig. A.1 we have: 1. From Table A.1 n = 4 and N turbo = 506.

Figure A. 2 :

 2 Figure A.2: Cdma2000 output data after interleaving.

Fig. A. 2 ,

 2 positions[START_REF] Lee | There are many good periodically time-varying convolutional codes[END_REF][START_REF] Reed | Polynomial codes over certain nite elds[END_REF] and 338 appear at the same positions at the interleaver's output.

Figure B. 1 :

 1 Figure B.1: Selected post-encoder: code (5,4) with memory 2. The recursivity polynomial is 5 and the redundancy polynomial is 4.

  Fig. B.1 cannot directly be made circular.

(B. 4 )

 4 s P = A G P s 0 + A P j=1 G P -j d j-1Under these conditions, a mapping state s m with (s m = s 0 P = s P ) always exists, and it is given by :s m = B P j=1 G P -j d j-1 = B s 0 P (B.3) with B = I + A G P -1 AIn other words, if the encoding starts in the state s m , the encoding will end in the state s e with s m = A s e . to the values assigned to A, I + A G P is always invertible. The encoding procedure can be summarized in the following steps : set up the encoder at the all-zero state. Feed it with {d i } and compute the nal state s 0 P , calculate s m through equations (B.3) and (B.4), encode {d i } starting from s m . If needed, map the nal state s e using A, in order to verify that the result is s m (i.e., s m = A s e ). The post-encoder of Fig. B.1, with generator polynomial 5, can be encoded using A

Table B. 1 :

 1 Corresponding values s P of and s P , and of s 0 P and s m .

Figure

  Figure C.1: 16-QAM constellation with Gray coded mapping.

Figure C. 2 :- 5 σ

 25 Figure C.2: In-phase axis of a 16-QAM modulation with Gray mapping.

Fig. C. 3 .

 3 The represented decision zones already predict that the average probability of error is smaller for bits b 2 and b 1 than for the bit b 0 .

  (a) Decision zones for bits b 2 and b 1 . (b) Decision zones for the LSB bit b 0 .

Figure C. 3 :

 3 Figure C.3: Decision zones for an 8-PSK constellation with Gray coded mapping.
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x y 1 y 2 RSC encoder 2 Interleaver Π

  

  information bit multiplicity w d is the sum of the Hamming weights of the A d input sequences generating the codewords with Hamming weight d,

	the complementary error function erfc(x) is given by the expression	2 √ Π ´∞ x e -t 2 dt,
	E b is the energy per information bit,
	and N 0 is the one-sided noise power spectral density.
	The function erfc(	√	x) decreases exponentially with x. Thus, the rst term or rst few
	terms of equation (1.3) and equation (1.4) can be used to approximate FER and BER
	at high SNRs (i.e. at very low error rates). It is dicult to determine by Monte Carlo

min is the minimum distance of the code, the multiplicity A d is the number of codewords with weight d, the
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 1 3 gives some puncturing patterns adopted within the framework of the study of 3GPP2 turbo codes.

	Code Rate	1 /2	2 /3	3 /4	4 /5
	Puncturing Period	2	4	6	8
	x	11	1111	111111	11111111
	y 1	10	1000	100000	10000000
	y 2	01 0010 or 1000 000100 or 100000 00001000 or 10000000
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 1 3: Puncturing patterns for the data bits.
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 2 2 presents examples of MHD values obtained with this code for dierent block
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 2 

2: Minimum Hamming distance values for the 3GPP2 and the 3GPP2 3D turbo codes for dierent coding rates and block sizes.
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 3 1 shows that there is only one codeword with weight 18. We have noticed that there are four ones in the systematic part for the systematic bits at addresses {498, 512, 610 and 624}. There are also fourteen ones in the redundant part for the parity bits at addresses {350, 352, 356, 499, 501, 507, 511, 611, 613, 619, 623, 782, 784 and 788}.However, all the post-encoded bits are equal to zero. Therefore, we have changed the pattern of post-encoding to generate more ones and to eliminate the codeword with weight 18. Among the dierent possible patterns, we have nally introduced an irregularity in the previous pattern of post-encoding in order to postcode the bits at addresses {499,

	501, 507, 511, 611, 613, 619 and 623} instead of {9, 81, 241, 401, 785, 961, 1121 and
	1361}. We have chosen to spread our modications on all the length of the frame, not to
	discriminate a given region.										
	Distance	18	20	21	22	23	24	25	26	27	28
	Multiplicity	1	1	4	2	6	1	2	4	5	9
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 3 

1: First terms of the distance spectrum for a 3D TC where k = 1530 bits, R = 1 /2 and λ = 1 /8.
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 3 

	.2 provides the rst terms of the distance spectrum that
	we have succeeded in detecting them by the application of all-zero iterative decoding
	algorithm.				
	Distance	12 15 21	27	47	48

Multiplicity 1 3 ≥ 1 ≥ 2 ≥ 2 ≥ 1
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 3 2: First terms of the distance spectrum for a 3D TC where k = 1146 bits, R = 2 /3 and λ = 1 /4.

Table 3 .

 3 2 shows that there is only one codeword with weight 12, three codewords with weight 15, at least one codeword with weight 21, at least two codewords with weight 27

Table 3 .

 3 4 0.19 dB 0.82 dB 1.67 dB 2.58 dB λ = 1 /8 0.08 dB 0.73 dB 1.55 dB 2.45 dB λ = 0 -0.07 dB 0.60 dB 1.49 dB 2.44 dB

3: Convergence thresholds of 3GPP2 3D turbo codes over the AWGN channel.

Table 3 .

 3 4: Convergence thresholds of 3GPP2 3D turbo codes over the Rayleigh fading channel and comparison with the Gaussian channel. transmissions over Gaussian channels. Thus, they can be used in applications such as xed satellite communications. In subsections 3.2.2 and 3.2.3, we propose two techniques to remedy these convergence issues.3.2.2 Time varying 3D turbo codesSo far, we have only considered xed or time invariant (TI) convolutional codes. Time varying (TV) convolutional encoders have generator polynomials which periodically vary with time. The idea appeared for the rst time in the paper of Costello[START_REF] Costello | Free distance bounds for convolutional codes[END_REF]. The author conjectured that non-systematic time varying convolutional codes have larger free distances, d f ree , than xed convolutional codes with the same rate and constraint length.

This result represents a major drawback of 3D turbo codes. In fact, for applications such as terrestrial mobile radio communications where the simulations are carried out over fading channels, the loss of convergence is higher. However, the 3D turbo codes are adapted to

  deals with the problem of lowering the error oor of irregular TCs: Sawaya et al. introduced symbol-based iterative decoding. Their results show that the error oor in the performance of the rate-1 /2 irregular TC proposed by Frey et al. in[START_REF] Frey | Irregular turbocodes[END_REF] is lowered signicantly and appears at a bit error probability equal to 6 × 10 -6 instead of 4 × 10 -4 with code length n = 131, 072 and 100 decoding iterations. This is mainly due to the use of a rate-2 /3 instead of a rate-1 /2 RSC constituent code, like a double binary TC. However, no previous work focused on optimizing the interleaver, except in[START_REF] Kraidy | Capacity-approaching irregular turbo codes for the binary erasure channel[END_REF] where Kraidy et al. use a Progressive Edge Growth (PEG)-based interleaver

Table A .

 A 2: Cdma2000 turbo interleaver lookup table.

	0	1	5	27	3	15
	1	1	15	3	27	127
	2	3	5	1	15	89
	3	5	15	15	13	1
	4	1	1	13	29	31
	5	5	9	17	5	15
	6	1	9	23	1	61
	7	5	15	13	31	47
	8	3	13	9	3	127
	9	5	15	3	9	17
	10	3	7	15	15	119
	11	5	11	3	31	15
	12	3	15	13	17	57
	13	5	3	1	5	123
	14	5	15	13	39	95
	15	1	5	29	1	5
	16	3	13	21	19	85
	17	5	15	19	27	17
	18	3	9	1	15	55
	19	5	3	3	13	57
	20	3	1	29	45	15
	21	5	3	17	5	41
	22	5	15	25	33	93
	23	5	1	29	15	87
	24	1	13	9	13	63
	25	5	1	13	9	15
	26	1	9	23	15	13
	27	5	15	13	31	15
	28	3	11	13	17	81
	29	5	3	1	5	57
	30	5	15	13	15	31
	31	3	5	13	33	69

  Table A.3. Fig. A.2 shows the interleaved output data vector. 1 2 3 ... 505 506 Table A.3: Cdma2000 example input vector. {}

	355 235 495 31 283 151 403 87 339 219 471 63 311 183 443 115 371 251 4 266 132 394 72 336 208 458 44 162
	430 106 358 234 484 28 282 160 406 88 342 218 472 60 312 192 442 126 374 250 500 9 265 137 393 73 329 457
	41 297 169 425 105 361 233 489 25 281 153 409 89 345 217 473 57 313 185 441 121377 249 505 14 264 142 392 74
	322 194 456 38 296 176 420 104 364 232 494 22 280 146 412 90 348 216 474 54 314 178 440 116 380 248 3 131
	391 75 331 203 455 35 295 167 431 103 367 231 483 19 279 155 415 91 351 215 475 51 315 187 439 127 383 247 49 9 8 262 136 390 76 324 196 454 48 294 174 426 102 354 230 488 32 278 148 402 92 338 214 476 64 316 438
	122 370 246 504 13 261 141 389 77 333 205 453 45 293 165 421 101 357 229 493 29 277 157 405 93 341 477
	61 317 189

1.5. Cdma2000 turbo code
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Note that each change of an address in the post-encoding pattern involves four exchanges of parity bits. Let us assume that N tot is the total number of modications necessary to generate the irregular pattern of post-encoding. Then, the distance of the code may be increased or in the worst case reduced by 4N tot . The following subsections 3.1.2 and 3.1.3 show the application of this optimization in two particular cases of the 3GPP2 3D code.

Note:

While analyzing the 3D Exit charts, it was observed that the curves remain almost unchanged after a certain number of iterations, depending on the considered code rate. In the future, it is possible to further explore these EXIT charts. In fact, I noticed that the EXIT charts of the post-encoder and the classical TC intersect, meaning that the post-encoder is no more useful after a certain number of iterations. Consequently, a new 3D decoding process can be proposed where the predecoder is activated for only few iterations. Afterwards, the classical turbo decoder returns in position. This decoder is also interesting from a consumption point of view and allows the latency of the decoding process to be reduced.

In Fig. 3.5, we have plotted the FER performance of the 3D 3GPP2 TC to compare it with that of the 3GPP2 TC. As expected, we can observe a loss in convergence around 0.06 dB in the waterfall region. Compared with the classical TC , this value corresponds to the loss of the convergence threshold previously predicted by the EXIT charts for the 3-dimensional TC at coding rate R = 2 we have to implement the second conguration 1 . Simulations in Fig. 3.17 show that that the use of an 8-PSK modulation, where the systematic bits are protected as a priority, allows the loss of convergence of the 3GPP2 3D TC to be transformed into a gain in the waterfall region of 0.5 dB compared with the 3GPP2 standardized TC. This gain is more signicant than the one obtained with 16-QAM in the previous section. 

Design rules for 3D turbo coded modulations

The investigation of the previous three Gray mappings allows some design rules to be dened. In fact, a loss of convergence is still observed when the bits in a symbol are uniformly distributed on the entire constellation. However, when the second conguration or the last one is used, the loss in the convergence threshold disappears and a gain in the waterfall region is observed. When these both congurations can be implemented, the conguration 3 must be used as far as possible. Otherwise, it is necessary to implement at least the conguration 2, as in the example presented above for the 8-PSK.

When the systematic bits are rst protected as a priority and, if possible, the postencoded bits, a signicant gain is obtained. The technique is all the more interesting as 1 In this case, 573 8-PSK symbols are required to transmit 1146 systematic bits, 288 post-encoded parity bits, 143 redundancies y 1 as well as 143 redundancies y 2 . Note that the systematic bits are placed in the rst two bits of all the symbols (because 2 × 573 = 1146). Consequently, each parity is transmitted in the third bit of a given symbol.

Chapter 4

Irregular turbo codes L ow Density Parity Check (LDPC) codes [53], rst proposed by Gallager in 1963, and later rediscovered by MacKay and Neal [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF][START_REF] Mackay | Near Shannon limit performance of low density parity check codes[END_REF], have been of great interest recently.

Like turbo codes, LDPC codes can achieve near Shannon limit error performance [START_REF] Richardson | Design of capacity-approaching irregular low-density parity-check codes[END_REF][START_REF] Richardson | The capacity of low-density parity-check codes under message-passing decoding[END_REF], and represent a very promising prospect for error control coding. Work on irregular LDPC codes has shown that by making the codeword bits participate in varying numbers of parity check equations, signicant coding gain can be reached [START_REF] Luby | Improved low-density parity-check codes using irregular graphs[END_REF][START_REF] Mackay | Comparison of constructions of irregular Gallager codes[END_REF][START_REF] Richardson | Design of provably good low-density parity check codes[END_REF]. For code length equal to n = 10 5 , Richardson et al. [START_REF] Richardson | Design of capacity-approaching irregular low-density parity-check codes[END_REF] proposed irregular LDPC codes that perform better than the original rate-1 /2 turbo code. Their simulation results showed that irregular LDPC codes of length one million achieved a bit error probability equal to 10 -6 less than 0.13 dB away from capacity. Two years earlier, Frey et al. [START_REF] Frey | Irregular turbocodes[END_REF] had already introduced irregularity to turbo codes in order to achieve better performance. Very interesting results were found for code rates equal to R = 1 /3 and R = 1 /2. For example, by making the original rate-1 /2 turbo code of Berrou et al. slightly irregular, Frey et al. obtained a coding gain of 0.23 dB (compared with the original code) at a block length of n = 131, 072, bringing the irregular turbo code within 0.25 dB of capacity. However, an error oor can be observed at a bit error rate higher than 10 -4 . To our knowledge, only one reference [START_REF] Sawaya | Irregular turbo-codes with symbol-based iterative decoding[END_REF] deals with the problem of lowering the error oor of irregular TCs: Sawaya et al. introduced symbol-based iterative decoding. Their results show that the error oor in the performance of the rate-1 /2 irregular TC proposed by Frey et al. in [START_REF] Frey | Irregular turbocodes[END_REF] is lowered signicantly and appears at a bit error probability equal to 6 × 10 -6 instead of 4 × 10 -4 with code length n = 131, 072 and 100 decoding iterations.

In this chapter, we begin by reviewing the basics of irregular turbo codes in section 4.1. Then, in section 4.2, a new method using the EXIT diagrams allows the search for good degree proles to be simplied. In section 4.3, we design and simulate irregular turbo coding schemes with suitable interleavers in order to improve their distance properties.

Finally, we propose a modied encoding procedure in section 4.4. The aim is to obtain irregular turbo codes which perform better than regular turbo codes in both the waterfall and the error oor regions.

Note

The hierarchical EXIT charts provide a compromise between asymptotic performance and convergence for a range of degree proles with two non-zero fractions. It is possible to rene the choice of the degree prole if we want to have an intermediary behaviour. In fact, Fig. 4.5 shows a set of EXIT curves concentrated around OMI = 0.75 for IMI = 0 (i.e., degree proles (f 2 , f 10 ), (f 2 , f 11 ), (f 2 , f 12 ), (f 2 , f 13 ), (f 2 , f 15 ) and (f 2 , f 20 )). Among them, the irregular TC with a degree prole (f 2 , f 10 ) reaches the point of coordinates (1,1) for low values of IMI. Besides, the code with prole (f 2 , f 6 ) has an OMI around OMI = 0.6 for IMI = 0 and is expected to perform the best at high SNRs among all the degree proles presented in Fig. 4.5, since it reaches high values of OMI for the lowest IMI compared with the other degree proles. The idea is to mix these two selected congurations (f 2 , f 10 ) and (f 2 , f 6 ) in order to benet from the expected better performance of the latter in the error oor and that of the former in terms of convergence. Then, the new degree prole can be (f 2 , f 6 , f 10 ) and it is possible to test many other combinations based on the same reasoning.

Performance example of irregular turbo codes

Simulations have been carried out in order to see the eects of the irregularity and the choice of degree proles on the performance in the waterfall and the error oor regions.

In Fig. 4.6, the BER of regular and irregular turbo codes has been simulated for blocks of 1146 bits under random interleaving. As the average degree is 3, the interleaver length is equal to 3438. The use of random interleaving in the simulations indicates the average The proposed algorithm allows suitable permutations to be designed that lower the error oor of irregular TCs. As an example, this algorithm was run for blocks of 48 bits with degree prole (f 2 , f 8 ). As the average degree is 3, the interleaver length is equal to 144. Fig. 4.10 shows that the correlation eect between the pilot groups is reduced since the pilot bits are distributed along the frame in a way that they guarantee a good spread between the dierent groups. To compare with the previous example of Fig. 4.8, the minimum distance of the code is now 19 instead of 6. Another interleaver allowing the irregular code to have a higher distance, i.e. 21, was found and the simulation results are available in Fig. 4.11.

Error rate performance of irregular turbo codes with an optimized interleaver

In Fig. 4.11, the FER performance of irregular turbo codes has been simulated for blocks of 48 bits and 192 bits, under both random and optimized interleaving. The degree prole consists of two degrees: d = 2 and d = 8. The corresponding fractions are f 2 = 5 /6 and f 8 = 1 /6. As the average degree is 3, the interleaver length is equal to 144 and 576 respectively. The parameter a is set to 0.85. When the optimized interleaver given by the Dijkstra's algorithm is employed instead of a random permutation, we observe a signicant gain in the error oor: about 2.5 decades for 48 bits and 3.5 decades for 192 bits.

For medium sizes and large blocks, the algorithm may take an unacceptable computational time in order to detect interleavers that improve signicantly the distance properties of irregular TCs and lower the observed oor. This computational cost grows exponentially with the block size. It does not mean that we are not able to nd a better interleaver. It just means that we can improve the distance properties of irregular TCs, without any certainty that the best possible case is reached and the optimal interleaver is detected. T he cdma2000 interleaver is based on the principle of generating the interleaving posi- tions through a counter that generates addresses which are modied through a preset table and a function that reverses the order of the bits. The resulting address vectors determine the permutation of the input data. In cdma2000, the input to the interleaver and the output data from the interleaver are dened as arrays (vectors) of length N turbo . The values that the N turbo variable can take are dened by the standard. the ow diagram of the interleaver used by the cdma2000 turbo encoder, which has as input the packet size variable which is used to determine from Table A.1 both the n and N turbo parameters. The value of n is an interleaving parameter dened as an integer in the range 3 ≤ n ≤ 7. N turbo is the actual number of information bits in the interleaving block and must satisfy the relationship N turbo ≤ 2 n+5 . The packet size is six bit longer than N turbo because the six tail bits are used to force the turbo encoder to the initial state.

The parameters in Table A.1 are dened for reverse link channels i.e., channels going from the mobile station to the base station. For forward link channels (base station to mobile), n is in the range 5 ≤ n ≤ 7 and the values of packet size and N turbo are dierent.

The interleaving algorithm is the same for the reverse link as well as the direct link. 1. First, the MSB address is calculated by taking the n least signicant bits of the value of the address counter n most signicant bits plus one.

Annexe B

State mapping encoding F or the 3D turbo code, the choice of the post-encoder has to meet several requirements detailed in chapter 3. We have chosen the code (5,4) as a convenient post-encoder (from the convergence point of view) in dierent simulations. Unfortunately, this code cannot be made circular directly in order to properly deal with blocks of data. This appendix explains how the state mapping encoding allows to solve easily the problem.

B.1 Circular (tail-biting) encoding

Let s i and d i be the state of the encoder register, and the encoder data input, respectively, at discrete time i. The encoder state at time i + 1 is given by the following equation :

where G is the state matrix of the linear feedback register (LFR). For instance, considering the LFR in Fig. B.1, whose binary input is denoted d i , we have :

where s 1,i and s 2,i are the content of the rst and the second memory cell of the LFR, respectively.

More generally, for a memory v register, vectors s i and d i have v components and G is of size v × v. After the encoding of the data sequence {d i }, of length P , the nal state s P can be expressed as a function of initial state s 0 and {d i } :

If it is possible to nd a circulation state, denoted s c , such that s c = s 0 = s p , this is given by :

B.3 Example

Let us assume that we have P = 384 bits to postcode. The post-encoder is then initialized to the all-zero state. For reasons of simplication, we assume also that all the data to be post-encoded are equal to one (d i = 1). The data {d i } in the entry of the pre-decoder allow to calculate the nal state s 0 P . Here, we obtain s 0 P = 1. As P is even, the circulation state is s m = 3 according to Table B.1. Therefore, the data {d i } are coded starting from the state 3, and we check that the nal state is state 2.

At the end of the backward recursion of the pre-decoding process (i.e. after after having processed rst address i = 1), three metrics have to be exchanged. The minimum metric of state 2 is replaced by that of state 3, the minimum metric of state 1 is replaced by that of state 2 and the minimum metric of state 2 is replaced by that of state 1 as follows :

By this way, the smallest metric is transposed from state 3 into state 2. And it is as if the code, having started the backward recursion from state 2, reached at the end the same state (2 instead of the state 3).

Besides, at the end of the forward recursion of the pre-decoding process (i.e. after after having processed last address i = P ), three metrics have to be exchanged. The minimum metric of state 2 is replaced by that of state 1, the minimum metric of state 1 is replaced by that of state 3 and the minimum metric of state 3 is replaced by that of state 2 :

Now, the smallest metric is transposed from state 2 into state 3. And it is as if the code, having started the forward recursion from state 3, reached at the end the same state (3 instead of the state 2).

Note that the metrics need to be swapped during the decoding process, at the extremity of the block, for each iteration. So, the pre-decoder is updated in a convenient state to begin the following iteration. As can be observed from the gure, the adjacent constellation symbols dier by only one bit. Consequently, if the noise causes the constellation to cross the decision threshold, only one out of four bits will be in error. Then, the relation between the bit error rate P b and symbol error rate P s can be expressed in the following way : P b ≈ Ps

4

.

Let us consider a transmission over a zero-mean Gaussian channel with variance σ 2 .

The probability density function is:

We are interested in the error probability of each bit in the symbol. As the axes I and Q are independently coded, the results obtained for an axis can be directly applied to the other one. In the sequel, we only consider the I axis represented in Fig C. 

Appendix D

Basics and properties of LDPC codes L ow density parity check (LDPC) codes were originally invented by Robert Gallager in 1963 [54]. Although they perform near the Shannon limit for standard additive white Gaussian noise channels, LDPC codes were ignored for a long time due to the requirement of high complexity computation and the introduction of Reed-Solomon codes [START_REF] Reed | Polynomial codes over certain nite elds[END_REF]. They were rediscovered in the mid-1990's by MacKay and Neal [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF].

D.1 Encoding and iterative decoding of LDPC codes

Like all linear block codes, the structure of LDPC codes can be described by the generator matrix G or the parity check matrix H with dimension n × m. H is sparse and contains only a few 1's in each row and column (in comparison to the amount of 0's). Let w r be the number of 1's in each row and w c for the columns. For a low-density matrix, two conditions must be satised: w c m and w r n. In this case large minimum distance is expected, as it represents the least number of columns in H that sum up to zero.

An alternative approach to simplied encoding is to design the LDPC codes via algebric or geometric methods. Tanner introduced an eective graphical representation for LDPC codes [START_REF] Tanner | A recursive approach to low complexity codes[END_REF]. Tanner graphs are bipartite graphs. That means that the nodes of the graph are separated into two classes, where edges only connect two nodes of dierent classes. The two types of nodes in a Tanner graph are called variable nodes (v-nodes) and check nodes (c-nodes). In other words, nodes of the same type cannot be connected (e.g. a c-node cannot be connected to another c-node).

Let us look at an example for a low-density parity-check matrix H dened in equation (D.1) for a [START_REF] Barbulescu | Interleaver design for turbo codes[END_REF][START_REF]Third Generation Partnership Project (3GPP) Technical SpecicationGroup, Multiplexing and channel coding (FDD)[END_REF] product code. 

D.2 Irregular LDPC codes

A LDPC code is called regular if w c is constant for every column and H contains exactly w r = w c ( n /m) 1's per row. Otherwise, the code is irregular (i.e. H is low density but the rows and columns have non-uniform weight).

It's also possible to see the regularity of this code while looking at the graphical representation. There is the same number of incoming edges for every v-node and also for all the c-nodes.

Although regular codes have impressive performance, they are still about 1 dB from capacity and generally perform worse than turbo codes. Irregular LDPC codes tend to outperform turbo codes for large block lengths (of more than 10 5 bits).