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Abstract 

Mass-storage Secure Portable Tokens are emerging and provide a real breakthrough in 

the management of sensitive data. They can embed personal data and/or metadata 

referencing documents stored encrypted in the Cloud and can manage them under the 

holder’s control. As it develops and expands, mass on-board storage requires efficient 

embedded database techniques. 

These techniques are however very challenging to design due to a combination of 

conflicting NAND Flash constraints (for example the block-erase-before-page-rewrite 

constraint, or the limited number of erase cycles) and embedded system constraints 

(for example scarce RAM space available), disqualifying known state of the art 

solutions, as previous works overcome one constraint by relaxing the requirements of 

another (for instance, use a log in RAM to defer updates in NAND Flash). 

In this thesis, with embedded constraints in mind, we propose an alternative database 

engine that relies on two key concepts to specifically address this challenge: 

serialization and stratification of the complete database. A database fully organized 

sequentially precludes random writes and their negative side effects on Flash write cost. 

Then, the global stratification allows us to solve the inherent scalability issue of a 

serialized design and to maintain acceptable performance when this limit is reached, 

without abandoning the benefits of serialization in terms of random writes. We show 

the effectiveness of this approach through a comprehensive performance study. 
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Résumé en français 

L'émergence de dispositifs portables et sécurisés à large capacité de stockage promet 

une véritable avancée dans la gestion des données sensibles. Ces dispositifs peuvent 

héberger aussi bien des données personnelles que les métadonnées référençant des 

documents chiffrés stockés dans le nuage, et permettent d'en contrôler les droits d'accès. 

La mise à disposition de tels systèmes accroît le besoin en techniques efficaces de stockage 

et d'indexation pour les bases de données embarquées. 

Ces techniques sont très difficiles à concevoir en raison des contraintes de la Flash 

NAND (par exemple, l'effacement d'un bloc avant réécriture et le nombre limité de cycles 

d'effacement), auxquelles s'ajoutent celles des systèmes embarqués (par exemple, une très 

faible quantité de RAM disponible). Cette combinaison de contraintes disqualifie les 

travaux antérieurs de l'état de l'art qui surmontent l'une des contraintes en abaissant les 

exigences d'une autre (tel que l'usage d'un tampon en RAM pour différer les écritures en 

NAND). 

Dans cette thèse, nous proposons une nouvelle alternative spécifiquement conçue 

pour le monde embarqué et répondant aux contraintes correspondantes. Elle repose sur 

deux principes fondamentaux : la sérialisation et la stratification complète de la base de 

données. Une base de données entièrement séquentielle évite les écritures aléatoires et 

leurs effets déplorables sur les performances d'écriture de la Flash NAND. Ensuite, la 

stratification globale permet un passage à l'échelle en terme de performance des requêtes 

sans renoncer aux bénéfices de la sérialisation. Les résultats analytiques et expérimentaux 

montrent que cette nouvelle approche répond très bien aux exigences des systèmes 

embarqués. 
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Chapter 1  

Introduction 

Mass-storage Secure Portable Tokens are emerging and provide a real breakthrough in 

the management of sensitive data. They can embed personal data and/or metadata 

referencing documents stored encrypted in the Cloud and can manage them under the 

holder’s control. As it develops and expands, mass on-board storage requires efficient 

embedded database techniques. These techniques are however very challenging to 

design due to a combination of conflicting NAND Flash constraints (for example the 

block-erase-before-page-rewrite constraint, or the limited number of erase cycles) and 

embedded system constraints (for example scarce RAM space available), disqualifying 

known state of the art solutions, as previous works overcome one constraint by relaxing 

the requirements of another (for instance, use a log in RAM to defer updates in NAND 

Flash). In this thesis, with embedded constraints in mind, we propose an alternative 

database engine that specifically addresses this challenge. In this chapter, we first 

position the relevant aspects of the Personal Data Server environment for our study; 

then we list the precise objectives of the thesis. Third, we present the main difficulties 

that must be faced in order to provide an efficient implementation of the Personal 

Data Server engine. Finally, we give the main contributions of this thesis and the 

outline of this manuscript. 
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1.1 Context 

Today, many citizens receive salary forms, invoices, banking statements, etc., through 

the Internet. In their everyday life, they continuously interact with electronic devices 

(at home, at work, at hospital, while driving or shopping, taking photos, etc.) acquiring, 

producing and exchanging large volumes of personal data. Be it for backup purposes, for 

sharing them with friends, or to benefit from Personal Information Management 

applications (e.g., budget optimization, pay-per-use, health supervision, etc.), they 

would like to store them “somewhere”. Storing this data in a well organized, structured 

and queryable personal database [34] is mandatory to take full advantage of these 

applications. Recently, KuppingerCole1, a leading security analyst company promotes 

the idea of a “Life Management Platform”, a “new approach for privacy-aware sharing 

of sensitive information, without the risk of losing control of that information”. Several 

projects and startups (e.g., QiY.com, Personal.com, the French Digiposte, Project 

VRM2) are pursuing this same objective. 

Technology effectively provides several solutions to attain this laudable objective. 

Needless to say, any solution where one's data is gathered on their own computer 

would be very weak in terms of availability, fault tolerance and privacy protection 

against various forms of attacks. Solutions based on third party storage providers (e.g., 

in the Cloud) nicely answer the availability and fault tolerance requirements but users 

are concerned that the price to pay is losing the control of their own data3. This 

uncertainty is encouraged by recurrent news on privacy violations resulting from 

 
1 Cf. http://www.kuppingercole.com/ (retrieved on 2012-06-15). 
2 Cf. http://cyber.law.harvard.edu/projectvrm/Main_Page (retrieved on 2012-06-15). 
3 A recent Microsoft survey states that “58 percent of the public and 86 percent of business leaders are excited 
about the possibilities of cloud computing. But more than 90 percent of them are worried about security and 
privacy of their data as it rests in the cloud”, cf. http://news.cnet.com/8301-1009_3-10437844-83.html 
(retrieved on 2012-06-15). 
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negligence, abusive use and internal or external attacks; for instance, according to 

DataLossDB.org, since 2009, more than 50 data breaches have been accounted for each 

month, in spite of industry self regulations and standards (e.g. Visa's Cardholder 

Information Security Program) and legislations such as Health Insurance Portability 

and Accountability Act (HIPAA). 

On the other hand, the FreedomBox [58] initiative suggests the idea of a small and 

cheap data server that each individual can plug on her Internet gateway, so as to avoid 

any risk linked to the centralization of their data on remote servers. The Personal Data 

Server (PDS) vision [9] promotes an idea similar to FreedomBox, that is providing a 

fully decentralized infrastructure where personal data remains under the holder’s 

control, but with stronger guarantees. It builds upon the emergence of new devices 

combining the tamper resistance of a secure microcontroller [22] with the storage 

capacity of NAND Flash chips. Tamper-resistance provides tangible security guarantees 

missing to traditional plug computers. Availability is provided by replicating data in 

remote encrypted archive. To go more in-depth, a secure token is organized around a 

slow-clocked processor, a tiny RAM space, a small internal stable storage, and 

connected via a bus to external NAND Flash chips. These devices have different form 

factors (e.g., SIM card, USB token, Secure MicroSD, etc.) and names (e.g., Personal 

Portable Security Device [41], Smart USB Token [32], Secure Portable Token, or 

SPT [9], etc.). Despite this diversity, they share similar characteristics (low-power, 

cheap, highly portable and highly secure). 

This unprecedented conjunction of portability, secure processing and Gigabyte-sized 

storage holds the promise of a real breakthrough in the secure management of personal 

data. Moreover, a secure device capable of acquiring, storing, organizing, querying and 

sharing personal data under the holder’s control would be a step forward in translating 

the personal database vision into reality. 
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1.2 Motivation 

Capitalizing on the Personal Data Server vision, we could devise an effective secure 

Life Management Platform where personal data is stored either locally (in the Secure 

Portable Token Flash memory) or remotely (e.g., in the Cloud). In the latter case, the 

secure tokens only manage metadata (description and location attributes, keywords, 

encryption keys, etc.) of encrypted documents stored remotely. Document sharing can 

be obtained by sharing the corresponding metadata under the secure token holder’s 

control, thereby providing ultimate security and privacy to cloud data [3]. Whatever 

the approach, the amount of data/metadata to be managed by the Secure Portable 

Tokens can be rather huge, embracing potentially the complete digital history of an 

individual. 

Turning this vision into reality requires developing and embedding, in Secure Portable 

Tokens, software components capable of acquiring, storing and managing, securely, 

sensitive data, although the objective is beyond a simple secure data repository. The 

ambition, is, on the one hand, to allow the development of new, powerful, user-centric 

applications, while, on the other hand, to serve data requests in a “classical” mean 

from existing server-based applications. Around these modules, one must be able to 

control in a user-friendly way the sharing conditions concerning her data. These 

objectives, and the focus of this thesis, require solving a core technical challenge, that 

is designing a DBMS engine embedded in a Secure Portable Token providing at least 

basic storage, indexing and query facilities with acceptable performance. A more in-

depth description of the entire Personal Data Server (PDS) vision will be given in 

Chapter 3. 
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1.3 Problem statement 

Embedded devices in general are often subjected to several restrictions, be it on size, 

cost, energy consumption, shock resistance, etc. Indeed, Secure Tokens are no 

exceptions in this context, but are subject to stronger restrictions, due to their use of a 

secure microcontroller that must comply with security properties. These limitations 

force to adopt certain hardware technologies and designs, such as reducing the system 

capabilities with less RAM and processing power, or using storage systems like NAND 

Flash without any mechanical moving parts. 

As such, the scarce RAM space on Secure Tokens presents a problem to handle join 

operations. “Last resort” join algorithms (block nested loop, sort-merge, Grace hash, 

hybrid hash) are known to rapidly decrease in performance when the smallest join 

argument exceeds the RAM size [37]. In addition, security incentives (only the secure 

micro controller is trusted) preclude swapping data to the terminal or the external 

storage, because the encryption cost would be prohibitive (considering the ratio 

between the RAM size and the size of the data to be joined, the amount of swapped 

data would be consequent). This implies that not only joins but all operators involved 

in the query must minimize their RAM consumption and intermediate results 

materialization. Since applications can be dynamically downloaded in the Secure Token 

at the user convenience, materialized views should not be considered, because we 

cannot assume all applications are known in advance. Therefore, massive indexing is 

usually required in the embedded context to tackle the RAM limit and compute 

database queries with acceptable performances. 

Additionally, NAND Flash chips exhibit uncommon characteristics. First, reads and 

writes are done at the page granularity; writes, being more expensive than reads, must 

be performed sequentially within a block. Second, erase operations are done at the 

block granularity: a page previously written cannot be overwritten without erasing the 
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complete block containing it, which can be an order of magnitude slower than writes. 

On top of that may be added lifetime concerns, because a block wears out after about 

ten thousand write/erase cycles; beyond this threshold it is considered unable to hold 

data. Because a massively indexed database may generate numerous random writes on 

index updates, combining these constraints with the RAM shortage makes the design 

of a fully-fledged database engine very challenging, especially for storage and indexing 

aspects. 

State of the art indexing methods that target Flash memory (see Section 2.3) were not 

designed with both NAND Flash characteristics and embedded context in mind and 

poorly adapt to these constraints. Although many existing works have been designed 

to support NAND Flash storage models, they do not address concerns with frequently 

updated data such as indexes. Other approaches suggested adapting traditional 

structures such as B+-Trees and other tree-like structures to NAND Flash. While 

implementation decisions vary, these methods commonly rely on a batch approach: 

index updates are delayed using a log and grouped by frequency or locality, for 

example to write only once updates to the same node. This allows to mitigate one of 

the main concerns with using Flash on database, by decreasing the global write cost. 

Nevertheless, such policies require maintaining in-RAM data structures to provide 

acceptable lookup performance until the next delayed batch is written. Additionally, 

they are subject to unpredictable and low response times because they perform out-of-

place updates, leading to sub-optimal Flash usage and overheads from address 

translation and garbage collection (see Section 2.4). 

Since neither these designs nor policies are suitable for a RAM-constrained, Flash-

based storage embedded context, the objective is to abandon the traditional structures 

and open a new direction of thinking, so as to try to design new data structures that 

adapt natively to Flash memory and embedded constraints at the same time. 
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1.4 Contributions 

The objective of this thesis is to break the implication between massive indexing and 

fine-grained random writes and to design an efficient database engine under the 

embedded system constraints. The contributions of this thesis are summarized as 

follows: 

1) We show that state of the art technologies cannot handle the combination of 

hardware constraints induced by a secure embedded system, such as a Secure 

Portable Token, and we isolate key points that will form necessary design 

principles. 

2) We extend the concepts of serialization and stratification introduced for primary 

key indexes in [80] and apply them to the complete database (data, all indexes, 

logs and buffers). On a database fully organized sequentially, random writes and 

their negative side effects on Flash write cost are simply precluded. Then, the 

global stratification allows us to solve the inherent scalability issue of a 

serialized design and to maintain acceptable performance when this limit is 

reached. The objective is reorganizing the database without abandoning the 

benefits of serialization in terms of random writes. 

3) We build a cost model simulator to evaluate the performance of the 

aforementioned solutions, and show that the proposed approaches are able to 

manage large amounts of data in spite of the strict hardware constraints of 

SPTs. 

4) We implement a prototype of the Personal Data Server engine, experiment its 

behavior on several SPT's form factors, and illustrate the impact of different 

storage devices on the global performance of the system. 
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1.5 Outline 

This thesis is composed of three main parts. First, in Chapter 2, we describe the 

common hardware characteristics of SPT-like devices, so as to summarize several 

constraints that are impacting a database system design in our embedded context. 

Then, we survey, on the one hand, “Commercial-Off-The-Shelf”-like embedded 

database engines, and state of the art storage and indexing techniques on the other 

hand, to evaluate their positioning in light of the constraints we extracted. 

The second part contains Chapter 3 and introduces the Personal Data Server approach, 

whose objective is to manage (and regain control of) personal information in a secure, 

decentralized, privacy-preserved and user-controlled manner. We describe the global 

architecture of this concept, and define the features, capabilities and policies that must 

be proposed in order to provide a full-fledged personal data server engine in this 

context. 

The third part is composed of Chapters 4 and 5. Chapter 4 concentrates on the design 

of an efficient personal data server engine that could be used as a building block of the 

PDS vision. We define the notion of Sequentially Written Structures (SWS), 

cornerstone of a serialized database storage model that we introduce as a new 

paradigm called database serialization, where all database structures are maintained in 

an append-only manner. However, the performance of this sequential layout being 

linearly linked with the database size, we introduce a second principle called database 

stratification, with the objective of further improving the performance without 

violating the SWS idea. Then, in Chapter 5, we build an analytical cost model to 

analyze the impact of serialization and stratification through the performance results 

obtained. We also further evaluate the validity of the personal data server engine by 

verifying experimentally the behavior of the serialized storage model on “state-of-the-

art” real NAND Flash hardware. 
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Finally, Chapter 6 concludes and proposes some ideas for future work. 
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Chapter 2  

State of the art 

Thanks to its shock resistance, high density and read performance, NAND Flash is 

commonly used in embedded devices as the main data storage. However, combining 

Flash characteristics with resource constraints of the embedded world makes the design 

of storage and indexing models highly challenging. In this chapter, we will first 

evaluate and analyze thoroughly the hardware constraints of Secure Portable Tokens 

(SPTs) and by extension Flash-based embedded devices, and briefly review 

developments done in the embedded DBMS context. Then, we will concentrate on the 

literature related to the main dimensions of the problem addressed in our work, namely 

RAM conscious indexing schemes, Flash constraints management, Flash-based indexing 

schemes and log-structured indexing schemes. Finally, we will conclude this survey of 

the state of the art by outlining the contradictory objectives pursued by these different 

approaches and we will formulate the main challenges to be solved.  

2.1 Hardware constraints 

SPTs are emerging today with a wide variety of form factors, with smart cards and 

smart contactless passes being the most known to the public. They share many 

hardware commonalities with smaller devices such as embedded environmental and 

healthcare sensors, and handheld devices such as mobile phones or personal assistants 

(Figure 1). To a lesser extent, home routers, multimedia players and other set-top 



 

boxes are based on the same hardware platform, although they lack the security of 

smart and SIM cards. 

 
Figure 1: SPT form factors 

SPT-like devices use a System on Chip (SoC) design, where an integrated circuit 

contains all components on a single chip. Their secure microcontroller unit (MCU) is 

typically equipped with a 32-bit RISC processor (clocked at about 150 MHz today4), 

ROM memory modules to host the operating system, static RAM chips (less than 

128 KB [71]), internal stable storage (about 128 KB – 1 MB of NOR Flash), a 

cryptographic co-processor and security modules providing the tamper-resistance. 

Embedded code (in our context, the database engine and applications) is stored in the 

internal stable storage that features eXecute In Place (XIP) methods to reduce 

memory usage. Mass storage is provided by NAND Flash modules (several gigabytes of 

data), either through an external bus or an I/O port (e.g., SD cards). SPTs can include 

                                      
4 For instance, the frequency of ARM SecurCore products targeted at smart cards lies in the 50 – 275 MHz 
interval, cf. http://www.arm.com/products/processors/securcore/index.php (retrieved on 2012-06-15). 

12 
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additional controllers to communicate with the outside world through various 

standards. For instance, sensors and smart passes use wireless communication (e.g., 

RFID, IrDA, 802.11, Bluetooth), devices embedded on cars use its Controller Area 

network (CAN), whereas bigger devices propose an extended connectivity through 

physical ports such as USB, Serial (RS232) and even Ethernet. 

Hardware progress is fairly slow in the secure chip domain, because the size of the 

market (billions of units) and the requirements for high tamper-resistance lead to 

adopting cheap and proven technologies [31]. Nonetheless, microcontroller 

manufacturers forecast a regular increase of the CPU power, stable storage capacity 

and the support of high communication throughputs (up to 480 Mb/s, Hi Speed 

USB 2.0). The trend for external memory such as NAND Flash chips is to increase 

their density (TLC and MLC devices). However, due to its poor density, RAM will 

unfortunately remain a scarce resource in the foreseeable future. Indeed, the smaller 

the silicon die, the more difficult it is to snoop or tamper with its processing, and 

RAM competes for space with CPU, ROM, NOR and crypto-security modules on the 

same silicon die. 

Therefore, hardware characteristics of SPTs can be translated into four main 

constraints, relevant to the design of an embedded database engine: 

Constraint C1 – Small RAM/storage ratio 

As mentioned above, MCUs have scarce RAM resources while the capacity of the 

external NAND Flash is only limited by its price. This leads to a ratio RAM/stable 

storage smaller than in traditional platforms running a DBMS by several orders of 

magnitude, and that is constantly decreasing. 
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Constraint C2 – Vulnerability of external storage 

Due to its external connection (and removable nature in the case of SD cards), mass 

storage does not benefit from the MCU tamper-resistance. This implies that this 

memory must be protected against confidentiality and integrity attacks. 

Constraint C3 – Scarce secure stable storage 

On the other hand, internal XIP memory is protected by the MCU and can be used to 

store database metadata for confidentiality and integrity protection, as well as secret 

keys. Although its capacity regularly grows to match the needs of new embedded 

applications, it will remain limited in size for security purposes and thus a scarce 

resource in comparison with the volume of sensitive data stored in the database. 

Constraint C4 – NAND Flash behavior 

NAND Flash memory is badly adapted to fine-grain data (re)writes. The memory is 

divided in blocks, each block containing (e.g., 64) pages themselves divided in (e.g., 4) 

sectors. The write granularity is the page (or sector) and pages must be written 

sequentially within a block. A page cannot be rewritten without erasing the complete 

block containing it and a block wears out after about 104 repeated write/erase cycles. 

As mentioned above, the technology trend is to increase the density of Flash, thereby 

ever worsening the constraints. To tackle these constraints, updates are usually 

managed out of place with the following side effects: 

1. a Translation Layer (TL) is introduced to ensure the address invariance at the 

price of traversing/updating indirection tables; 

2. a Garbage Collector (GC) is required to reclaim stale data and may generate 

moves of valid pages before reclaiming a non empty block; 

3. a Wear Leveling mechanism (WL) is required to guarantee that blocks are erased 

evenly. 
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A large body of work [48] has focused on the design of Flash Translation Layers 

(FTLs), i.e., the conjunction of TL, GC and WL. However, with scarce RAM, FTL 

cannot hide NAND Flash constraints without large performance degradation 5 . In 

addition, FTL are black boxes firmware with behaviors difficult to predict and 

optimize, with the consequence that random writes can be orders of magnitude slower 

than sequential writes. 

Constraints C2 and C3 concern the security aspect of the database engine, which is 

outside the scope of our work. Therefore, the following discussion will focus on 

constraints C1 and C4. 

2.2 Embedded database systems 

Popular and full-fledged DBMSs usually propose “lightweight” versions for embedding 

purposes. For example, Microsoft SQL Server features a Compact edition (5 MB RAM 

footprint) for use on Windows phones. Similarly, IBM and Oracle provide embedded 

variants of their database engines with such requirements, respectively called DB2 

Everyplace [40] and Oracle Database Mobile Server [63]. On the other hand several 

existing database systems have been explicitly designed for embedded systems among 

other applications. For instance, SQLite [42] is a serverless transactional (ACID-

compliant) database engine that supports a reduced subset of the SQL language; its 

typical size is about 300 KB of RAM. It is widely used in embedded operating systems 

for smartphones, such as Apple iOS, Google Android and RIM Blackberry. In contrast 

to SQLite, BerkeleyDB [64] is not a relational database engine, but proposes a 

key/value store; however, its minimal RAM footprint is about 1 MB. 

 
5 This is not the case in high-end or recent SSDs which can use relatively large onboard RAM to handle those 
constraints. For example, the Petrol SSD series from OCZ ships with a 512 MB DRAM cache, cf. 
http://www.ocztechnology.com/res/manuals/OCZ_Petrol_Product_sheet.pdf (retrieved on 2012-06-15). 



 

16 

                                     

Off-the-shelf software is targeted towards small - but comparatively - powerful devices 

(e.g., MP3 players, PDA, smartphones, set top boxes), whose storage and computation 

capabilities6 are far beyond what constrained hardware such as smartcards allows. 

Typically, they address neither the limitations of secure MCUs (Constraint C1) nor the 

specificities of NAND Flash (Constraint C4). 

Constraint C1 was partially addressed in some early work on database for secure 

MCUs. Bolchini et al. [18] analyzed algorithms, physical and logical data structures to 

ground design rules on databases for smart cards. The PicoDBMS prototype [66] 

implements a small database that requires less than 4kB of RAM and that is stored in 

the smart card’s internal storage. However, the stable storage considered at that time 

was Electrically-erasable programmable read-only memory (EEPROM), whose physical 

characteristics are quite different from NAND Flash. Like RAM and NOR memory, 

EEPROM is directly addressable at the byte granularity, thus relies on main-memory 

data management techniques that cannot fulfill constraint C4. On the other hand 

GnatDB [74], whose footprint is only 11 KB, offers a storage model ensuring secrecy 

and tamper-detection for secure MCUs connected to external stable storage (e.g., Flash 

memory). Unfortunately it does not support query processing. 

2.3 Massive indexing schemes 

In our context, database queries must be executed on Gigabytes of data with only a 

few Kilobytes of RAM; therefore, the most RAM demanding operations, i.e. Joins and 

Aggregates, are the most problematic to handle. Traditional embedded low RAM 

devices (e.g., sensors) do not support joins, yet they are an essential feature for SPTs. 

Several studies about the impact of available RAM quantity on the behavior of join 

 
6  For example, the first iPhone release in 2007 featured a 600 MHz CPU and 128 MB of RAM, cf. 
http://en.wikipedia.org/wiki/IPhone#Model_comparison (retrieved on 2012-06-15). 
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operators have been conducted; they show that performance declines sharply when the 

ratio between the RAM size and the size of the data to be processed falls below a 

certain threshold. For instance, the performance of “Last resort” join algorithms (e.g., 

block nested loop, sort-merge, Grace hash, hybrid hash) quickly deteriorates when the 

smallest join argument exceeds the RAM size [37]. In contrast to the former, Jive join 

and Slam join use join indices [55] but both require that the RAM size be of the order 

of the square root of the size of the smaller argument. Moreover swapping data in the 

terminal or in the external NAND Flash is precluded due (1) to the dramatic amount 

of swapping required considering the ratio between the RAM size and the size of the 

data to be joined and (2) to the cost of encryption (only the microcontroller is 

trusted).  

With the constraints of our embedded environment, the ratio between RAM and 

tables’ size is so small that the only efficient solution is to resort to a highly indexed 

model where all (key) joins are precomputed. Similar approaches have been devised for 

the Data Warehouse context [72]. To deal with Star queries involving very large Fact 

tables (hundreds of GB), these systems usually index the Fact table on all its foreign 

keys to precompute the joins with all Dimension tables, and on all Dimension 

attributes participating in queries [76]. 

In a relational context, Anciaux et al. [8] proposed a multiway join index called 

Subtree Key Table (SKT) and a Climbing Index (CI) allowing to speed up selections at 

the leaves of a join tree. Combined together, these indexes allow selecting tuples in any 

table, reaching any other table in the join path in a single step. Queries can then be 

executed in a pure pipeline fashion without consuming RAM or producing intermediate 

results (see Section 4.3.2). This work may be considered as a first step towards the 

definition of indexing models and query execution techniques dedicated to systems 

matching RAM Constraint C1. 
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However, a massive indexation of the database has the effect of generating a huge 

amount of fine-grain random writes at insertion time to update the indexes, which is 

problematic with respect to Flash Constraint C4. In [29], Do et al. evaluated 

traditional (i.e., designed for magnetic drives) Join algorithms on Flash-based Solid 

State Disks (SSDs). Their experiments showed that random writes result in varying 

I/O and unpredictable performance. They also emphasized that similarly to HDDs, the 

buffer allocation strategy has a critical impact on the performance of join algorithms 

for SSDs. This yet again outlines the importance of Constraint C1. 

2.4 FTLs and NAND Flash behavior 

Traditional storage devices such as tapes and hard disk drives, feature interfaces that 

allow to read and write data by fixed-size chunks (typically, a disk sector); traditional 

software was thus implemented based on a block-device interface. However, raw NAND 

Flash chips provide a different interface: data can still be accessed and written by 

sectors (i.e. Flash pages), but erase operations are required prior to updating a page. 

Moreover, only blocks (multiple contiguous pages) can be erased, and blocks have a 

limited lifetime (they wear out – are unable to retain data – after a given number of 

erasures). FTLs (Flash Translation Layers) were introduced to hide Flash 

characteristics under a block-device abstraction, in order to prevent the expensive 

write-erase-rewrite on page updates from being handled at a software level. 

The first paper about FTL concepts was written by Kawaguchi et al. in 1995 [44]. 

They present an UNIX driver for Flash memory, which manages a logical-to-physical 

address translation table, meta data related to the state of the blocks (allocated, 

written, invalid...), and a garbage collector that finds and erases invalid blocks to 

reclaim free space. Although algorithms were mainly targeted for NOR memory, which 

differs from NAND in terms of addressing, principles of FTLs were also described in a 



 

patent [49] in 1992 (only issued on 2001), and the vocabulary and the proposed 

structures have been later extended to NAND memory. 

 
Figure 2: FTL features 

One could see FTLs as a device firmware (Figure 2) that makes it possible to use Flash 

devices as drop-in replacements of traditional storage devices. Therefore an FTL must 

provide invariant logical addresses, hide the complexity of erase and update operations 

to high-level software and manage the lifetime of Flash blocks. Coherent logical 

addressing is achieved by maintaining a logical-to-physical address translation table. 

These mapping algorithms can be divided into three main categories (page-, block- and 

hybrid-mapping). They represent the FTL part that draws the most attention from 

researchers and are further detailed in the next paragraphs. To avoid the expensive in-

place updates caused by page rewrites, the FTL performs out-of-place updates by 

allocating a new physical page, updating the mapping table to keep the logical address 

invariant, and finally marking the old physical page as invalid. Reclamation of invalid 

pages (i.e., management of erase operations) is handled by a garbage collector. This 

process should identify which pages are still valid in a candidate block, copy them to a 

new block, update the mapping table and erase the old block. Erase operations affect 

all pages of a block as a whole, which means that an inefficient reclaiming policy can 

lead to either a severe degradation of performance or, when some blocks are worn out 

more quickly than others, to a reduction of the drive reliability. This is the reason why 

FTLs include wear-leveling mechanisms, in order to distribute as much as possible 

block erases. 
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Figure 3: Page-level address mapping 

Page-level mapping [12] (Figure 3) is the first algorithm designed and the most 

intuitive. The mapping table contains as many physical pages as logical ones, which 

means that if the Flash memory contains m physical pages, the size of the mapping 

table is also m. When the file system issues a request to write to a Logical Page 

Number (LPN), the translation into a Physical Page Number (PPN) is performed 

within the FTL by a lookup in the mapping table. If this page was previously written, 

the algorithm searches for a new free page, writes on it instead, and updates the 

mapping table to point to it. If no free page can be found, the garbage collector runs 

to reclaim free pages by erasing blocks that contain invalid pages. 

The problem of this algorithm is the size of the mapping table that is directly 

proportional to the number of pages on the memory: for example, a 30 GB SSD 

contains about 60000000 pages, with 64 pages per block; 4 bytes are needed to 

represent all addressable pages, which means that the mapping table requires 

4 bytes × 60000000 pages = 240 MB! Therefore, this FTL algorithm was used in low 

capacity Flash memories only, and is not used for SSDs, as it would consume an 
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unreasonable amount of onboard RAM7. Besides, rebuilding such a table is very slow 

as it requires scanning all physical pages. 

 
Figure 4: Block-level address mapping 

Block mapping (Figure 4) is used to reduce RAM requirements to maintain the 

mapping table. Instead of referencing each logical page, the idea is to keep only Logical 

Block Number (LBN) references to Physical Block Numbers (PBNs); pages are 

accessed at a fixed offset, computed from the LPNs, for instance by a modulo on the 

pages per block count. The RAM consumption of this algorithm is significantly lower 

compared to page-level mapping: the 30 GB SSD illustrated above contains about 

940000 blocks; 3 bytes are needed to represent whole blocks: the mapping table 

requires 3 bytes × 940000 blocks = 4 MB. Although the required mapping 

information is very small, the block mapping algorithm does not offer good update 

performances. Indeed, because of the fixed page offset in a block, if the file system 

frequently issues a second write command to the same page, the FTL needs to switch 

to a free block and copy the valid pages from the old block prior to successfully 

completing the request. This behavior implies a very inefficient Flash page occupation, 
                                      
7 Cf. note 5 p. 15. For a typical 512 GB high-end SSD (including 512 MB of onboard RAM), its page-level 
mapping would require several Gigabytes of RAM space. 
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as many pages are still free when the switch occurs; the introduction of replacement 

blocks [13] was proposed to alleviate page copy costs, but these blocks suffer as well 

from low occupation ratios. Besides, current generation Flash chips must be 

programmed sequentially: inside a block, the second page can only be written after the 

first one, due to floating-gate interferences [46]. This renders the fixed page offset 

approach unusable on modern Flash devices. 

 
Figure 5: Hybrid address mapping 

Hybrid mapping [21] (Figure 5) was proposed to overcome drawbacks of previous 

mapping techniques and deal with the trade-offs between RAM consumption, update 

performances and Flash usage. Its basic principle is to map m logical blocks to 

m + n physical blocks, with m data blocks and n log blocks. Logical to physical 

mapping of data blocks is performed at a block level. However, updates are handled 

out-of-place and redirected into a free page of the log blocks, which must be mapped at 

the page level in order to track internally the latest version of repeatedly updated 

pages. In other words, log blocks act as a write cache that triggers the garbage 
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collector when consumed; the trade-off is that log blocks are subtracted from the 

actual capacity of the Flash device. 

Several variants of this technique have been proposed, focusing on the associativity 

between data and log blocks. One of the first suggested hybrid techniques is called 

Block Associative Sector Translation (BAST) [45] and relies on 1:1 cardinality: each 

data block is associated to a single log block. Nonetheless, BAST performances drop 

dramatically with two special workloads. The first one is related to random writes: 

when all log blocks are allocated to data blocks, consequent random writes to new 

blocks trigger the garbage collector to reclaim a log block. The second one is inherent 

to the 1:1 policy: if the file system writes repeatedly to the same range of addresses 

(e.g., for a swap file), the corresponding data blocks will be repeatedly consumed and 

reclaimed as well, while other log blocks might be free to use. 

Therefore multiple improvements to BAST have been proposed since 2007, which aim 

at reducing the amount of calls to the garbage collector. Lee et al. [52] designed a 

Fully Associative Sector Translation (FAST) that clusters all log blocks as a big buffer 

for all data blocks to compensate for low Flash usage. Park et al. [65] created a 

reconfigurable FTL from a n:1 mapping in FAST to a n:n + k one, to make it possible 

to associate more log blocks to a group of data blocks, in order to reduce the risk of a 

garbage collector run. Kang et al. [43] proposed a FTL algorithm that regroups several 

log and data blocks inside a structure called a superblock, so that hot and cold data 

could be dynamically separated. Later, Lee et al. [53] tried to further reduce garbage 

collection costs with Locality-Aware Sector Translation (LAST), by providing a 

temporal locality detection mechanism to separate more efficiently hot and cold data in 

log blocks. 

Surprisingly, recent works such as DFTL [36] insist on using page-level mapping to 

avoid update slowdowns with hybrid mapping due to the limited number of log blocks. 

The key point is to maintain mapping tables in Flash, and selectively cache part of it 
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in RAM. On the one hand, it improves global performance thanks to the temporal 

locality in accesses that most enterprise-scale workloads exhibit; on the other hand, 

cache misses render the performance of a single operation less predictable. Another 

work [15] suggests that onboard RAM capacity should be increased to hold the 

complete page-level mapping table in RAM; although it may be suitable for high-end 

enterprise SSDs, it is not feasible in constrained embedded environments. 

However, it is important to note that FTLs remain undocumented black boxes that are 

difficult to analyze due to their proprietary and patented nature; their exact behavior 

is constructor- and device-dependent8. Bonnet et al. proposed in [19] a bimodal FTL, 

with a first interface that allows unconstrained I/Os (like current FTLs) and a second 

for constrained I/Os. This provides near-optimal performances under the condition 

that the DBMS is aware of Flash limitations (for example, no update nor random write 

in this mode). This approach would help to reduce the cost of problematic access 

patterns on FTLs without jeopardizing DBMS design, but requires that both FTLs 

and database software be adapted (or even rewritten); thus it is premature to assume 

that upcoming devices will provide these features. Besides, it is unclear whether this 

approach would be efficient on high-end enterprise SSDs, where FTLs are highly 

optimized by manufacturers to take advantage of the physical layout of Flash chips in 

their drives (such as inter-chip parallelism by the request handler). 

Accounting physical Flash characteristics without the block device abstraction layer, 

several approaches have been proposed to improve write performances on raw Flash. 

Lee et al. [51] designed In-Page-Logging (IPL), where update logs are co-located near 

original data pages (the last pages of full data blocks are reserved for the logs). This 

 
8 For instance, newer SSD products include FTLs featuring data compression and deduplication, which make 
performances dependent not solely on the workload access pattern, but also on the data content itself (i.e., 
existing benchmark suites writing constant data, e.g., zero-fill techniques, produce unrealistic optimal results).  
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method has the advantage that log pages can be found and merged back easily to 

recreate the logical data page, when the block is full and must be garbage collected. 

However, the frequency of log overflows with frequently updated pages containing 

“hot” data prevents IPL from being ideally-suited to storing indexes. 

The Page-differential Logging approach (DPL) [47] suggests to only store in update 

logs the delta between the original physical page and its updated logical counterpart. 

This approach improves “merge” performances, because the size of the differential 

cannot exceed one page; therefore at most two page reads are needed to reconstruct 

the final page. Nonetheless, DPL requires maintaining a mapping table in RAM to 

track the physical page targeted by each differential, and where this differential is 

physically written in Flash; also, due to their small size, when several differential share 

the same log page, a more complex garbage collector is mandatory, so as to separate 

valid from invalid differentials. 

All in all, although they do not rely on block device abstractions, the above techniques 

for raw Flash actually provide translation mappings, garbage collectors and similar 

FTL-like features. This makes them vulnerable to unpredictability among other issues 

such as a significant RAM consumption incompatible with secure MCU constraints. 

2.5 Indexing techniques for NAND Flash 

Conventional indexes like B+-Trees [26] have been shown to perform poorly on top of 

FTLs [77], because each insertion triggers an out-of-place update of the Flash page 

that contains the leaf node of the tree in order to add the key. Many studies address 

the problem of storage and indexing in NAND Flash, mostly by adapting traditional 

structures to avoid such updates. 

Journaling Flash File System version 3 (JFFS3) [16] keeps all file system objects 

(inodes, files, directory entries, extended attributes, etc.) in one large B+-Tree, and logs 
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updates in a journal whose index is maintained in RAM. On read requests, the journal 

index is first looked up and determines whether the data to be read is in the “real” B+-

Tree or in the journal. Thanks to this journal, writes can be deferred at a more 

appropriate time, to merge node updates and reduce the number of NAND Flash 

writes. However, the journal index needs to be reconstructed at boot time, with a scan 

of all journal Flash pages. In other words, there is a trade-off between the performance 

improvements and the mount time of the file system, depending on the journal size. 

Wu et al. [77] proposed an efficient B+-Tree Layer for Flash (BFTL) that sits between 

the FTL and the database, and consists of a reservation buffer and a translation table. 

BFTL constructs an “index unit” with each inserted primary key, and manages index 

units as a log. A large buffer is allocated in RAM to hold the various insertions related 

to the same B+-Tree node in the same log page. To maintain the logical view of the B+-

Tree, a node translation table built in RAM keeps, for each B+-Tree node, the list of 

log pages that contain index units belonging to this node. To limit scanning costs due 

to an unexpected growth of the translation table, each list is compacted when a given 

threshold is reached (e.g. 3 log pages), and dirty records are flushed to update B+-Tree 

Flash pages. Similarly to JFFS3, the efficiency of such a policy therefore depends on 

the allocated RAM size for tracking structures, on the commit frequency and on the 

size of the update batches. FlashDB [61], which is a framework based on B+-Trees and 

BFTL, was proposed to obtain optimal performance by self-tuning these indexing 

parameters. 

FD-Tree [54] is composed of a small B+-Tree on the top and a few levels of sorted runs 

of increasing sizes below. As previous measurements showed [24], it is based on the 

fact that random writes limited to a small area (512 KB – 8 MB) perform similarly to 

sequential writes; thus updates are limited to the head tree. Later, they are merged 

into the lower-level sorted runs in batches, with the benefit that these mostly trigger 

sequential I/Os. However, the FD-Tree does not obey any RAM constraint and is 
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targeted to SSD products, which furthermore ship important quantities of onboard 

RAM to be used as buffer pool. 

Agrawal et al. [4] suggested the Lazy-Adaptive Tree to minimize accesses to Flash 

memory. It uses a set of cascaded buffers: at flush time, elements are pushed to a 

lower-level buffer instead of being written directly to Flash. To overcome slowdowns in 

read operations due to buffer scanning, an online algorithm is proposed to resize 

optimally buffers depending on the workload. However, acceptable performance for 

buffer scans and memory reclamation is dependent on a low fragmentation of Flash 

buffers; therefore, LA-Trees also require more memory available in order to perform 

write coalescing techniques. The Buffer-Tree [11] also proposes a technique to design 

batched data structures for I/O efficiency and relies on a similar “lazy” approach, with 

buffers associated to internal nodes of the tree. 

To summarize, recent B+-Tree adaptations all rely on a Flash resident log to delay the 

index updates. When the log is large enough, the updates are committed into the B+-

Tree in a batch mode, so as to amortize the Flash write cost. The log must be indexed 

in RAM to ensure performance. The different proposals vary in the way the log and 

the RAM index are managed, and in the impact it has on the commit frequency. To 

mitigate the write cost by large factors, the log is seldom committed, leading to 

consume more RAM. Conversely, limiting the RAM size means increasing the commit 

frequency, thus generating more random writes. The RAM consumption and the 

random write cost are thus conflicting parameters. Under the RAM limitations of 

secure MCUs the commit frequency becomes de facto very high and the gain on 

random writes vanishes. 

2.6 Log-Structured Indexes 

Instead of adapting existing data structures to reduce Flash page updates, it has also 

been suggested in the literature to completely avoid them with sequential structures. 
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Many suggestions are based on principles from log-structured file systems [68] or older 

ones such as Differential File [70], which uses an overflow area to store new records 

and merges them later with the main data file, creating a transient log-organized 

structure. For instance, most existing Flash systems, such as JFFS/2 [16], YAFFS, and 

more recently UBIFS, rely on a log-structured approach, where the entire file system is 

organized as a log, with inodes written sequentially in segments and in-memory maps 

to maintain the current physical location of each inode. 

B-FILE [60] is a structure designed to optimize specific workloads on NAND Flash. It 

is based on an analysis of a typical workload, which shows that writes are rarely 

completely random, and introduces the concept of “semi-random writes”. It proposes to 

dispatch writes randomly across buckets (blocks), with each bucket filled sequentially. 

Therefore, the global write pattern becomes a semi-random pattern (which most of 

current FTLs support efficiently), and global write costs are further amortized as they 

are handled in bulks. 

The log-structured history data access method (LHAM) [59] proposes to divide the 

time domain into intervals, and assign each interval a storage component. Each record 

is associated with a timestamp at transaction time and stored to a different component 

depending on this timestamp. New records are always inserted to main-memory 

components first; as time goes, “old” components are archived, i.e. flushed sequentially 

to the final storage. Following the idea of the Log-Structured Merge-Tree (LSM-

Tree) [62], successive components can be merged together when archived in order to 

reduce lookup costs: a “rolling-merge” cursor walks through equal key values of the old 

and new components, emptying indexing data out from the old component to merge 

them with and fill the new component on disk. LogBase [75] also uses a log-only 

storage method (“log repository”). However, the log is abstracted as an infinite 
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sequential repository containing contiguous segments, with the underlying file system 

HDFS9. The log index – more traditional with only <IdxKey, Ptr> pairs – is entirely 

stored in RAM, although the authors state that LogBase can also employ a method 

similar to LSM-tree for merging out part of the in-memory indexes into the stable 

storage, so as to ensure persistence and avoids rescanning the log on recovery. 

These proposals differ in the way indexes are built or maintained, but they always 

make use of relatively large buffers in RAM that are inherently incompatible with the 

constraints of our embedded environment. More recently, Bernstein et al. [14] proposed 

Hyder, a log-structured, multi-version key-value database stored in raw Flash memory 

and targeted at data centers (data shared over the network with multi-core nodes). 

Hyder makes use of a single binary balanced tree index to find any version of any tuple 

corresponding to a given key. The binary tree is not updated in place, the path from 

the inserted or updated node being rewritten up to the root. Unfortunately, this 

technique cannot be used to implement massive indexing schemes, as binary trees are 

not adequate to index non unique keys. 

To follow up in the key-value store context, SkimpyStash [27] aims at a very low 

memory footprint, by avoiding the overhead (4 B) of RAM-to-Flash key pointers. Key-

value pairs are stored in an append-only log, alongside a pointer to the next record 

from the Hash Table (actually a previously written pair on Flash); the directory 

structure for these pairs is maintained in RAM in the form of a Hash Table, with each 

slot pointing to the head of a chain in Flash. Small Index Large Table (SILT) [56] 

organizes key-value pairs in three stores, either written sequentially or in a single batch, 

with data on Flash and indexes in RAM. Key-value pairs are first inserted in an 

append-only and write-friendly store called LogStore. It is then converted to a more 

lookup-friendly structure called HashStore, which is a hash table based on Cuckoo 
 

9 Hadoop Distributed File System, cf. http://hadoop.apache.org/hdfs (retrieved on 2012-06-15). 

http://hadoop.apache.org/hdfs
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Hashing. Eventually, several hash tables are merged together with a sorted tree called 

SortedStore. In a nutshell, these proposals both rely on log structure to exploit 

sequential writes and maintain some form of in-memory (RAM) indexing, with a size 

proportional to the database size (between 0.5 and 1.5 B per record). These 

approaches unfortunately do not scale well in the secure MCU context. 

Finally, PBFilter [81] is an indexing scheme specifically designed for Flash storage in 

the embedded context. It organizes the index in a sequential way, thereby avoiding 

random writes. The index is made of a key list compacted using a Bloom filter 

summary, which can further be partitioned. This leads to good lookup times with very 

little RAM. However, PBFilter is designed for primary keys. With secondary keys the 

Bloom filter summary becomes non selective and hardly useful, as the complete set of 

keys has to be accessed. This makes PBFilter of little interest for implementing 

massive index schemes, since most indexes are secondary keys. 

2.7 Conclusion 

In this chapter, we first analyzed hardware characteristics of Flash-based embedded 

devices (using SPT as an example) and translated them into four main constraints: 

C1 “Small RAM/storage ratio”, C2 “Vulnerability of external storage”, C3 “Scarce 

secure stable storage” and C4 “NAND Flash behavior”.  

With these constraints in mind, we then surveyed the state of the art indexing and 

storage techniques, and found that none of them could meet all the requirements of our 

embedded environment. The challenge lies in the combination of a tiny working 

memory (RAM) with a huge NAND Flash mass storage badly accommodating random 

writes. Executing queries with acceptable performance on gigabytes of data with a tiny 

RAM entails indexing massively the database. The consequence is generating a huge 

amount of fine-grain random writes at insertion time to update the indexes, which in 

turn results in an unacceptable write cost in NAND Flash. Conversely, known solutions 
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to decrease the amount of random writes in Flash require a significant amount of RAM. 

A vicious circle is then established, that lets little hope to build an embedded DBMS 

engine by assembling state-of-the-art solutions. The objective of our work is to break 

this circle. 
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Chapter 3  

The PDS approach 

In this chapter, we illustrate the Personal Data Server (PDS) vision through different 

scenarios motivating our approach, and present the hypothesis related to the security 

of PDSs and of the infrastructure surrounding them. Next, we describe in detail the 

global PDS infrastructure and review all elements that are part of it, and conclude by 

showing how this vision can help enforcing user control rules. 

3.1 Motivating examples 

3.1.1 Healthcare scenario 

Alice carries her electronic healthcare folder (along with other information) on a PDS. 

She has an account on e-Store, a Supporting Server provider. She downloaded in her 

PDS, from the Ministry of Health, a predefined healthcare database schema, an 

application to exploit it, and an access control policy defining the privileges attached 

to each role (physician, nurse, etc). Alice may manage the role assignment by herself or 

activate specific user policies predefined by e.g., a patient association. When she visits 

Bob, a new physician, she is free to provide her SPT or not, depending on her 

willingness to let Bob physically access it (this is a rough but effective way to control 

the sharing of her data, as with a paper-based folder). In the positive case, Bob plugs 

Alice’s PDS on his terminal, authenticates to the PDS server with his physician 
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credentials, queries and updates Alice’s folder through his local Web browser, 

according to the physician’s privileges.  

Bob prescribes a blood test to Alice. The test results is sent to Alice by the medical 

lab in an encrypted form, through e-Store acting here as a secure mailbox. The 

document is downloaded from e-Store and wrapped by Alice’s PDS to feed the 

embedded database. If this document contains information Alice would like to keep 

secret, she simply masks this document so that it remains hidden from any user 

querying the database except her. The lab keeps track of this medical act for 

administrative purposes but does not need anymore to keep a copy of its medical 

content. If Alice loses her PDS, its tamper-resistance renders potential attacks 

harmless. She will then recover her folder from an encrypted archive stored by e-Store 

using, e.g., a pass-phrase. 

Alice suffers from a long-term sickness and must receive care at home. Any practitioner 

can interact at home with Alice’s PDS thanks to his netbook, tablet PC or PDA 

without need for an Internet connection. To improve care coordination, Bob convinces 

Alice to make part of her folder available 24/7, during a one month period, to him and 

to Mary, a specialist physician. A1ice uploads the requested part of her folder 

encrypted on e-Store. The secret key is exchanged with Bob’s and Mary’s PDSs in 

order for them to be able to download Alice’s data on their own PDS and query it. 

While Alice’s data is now replicated on Bob’s and Mary’s PDSs, Bob and Mary cannot 

perform actions on the replica exceeding their privileges and this replica will be 

destroyed after a one month period because their PDS will enforce these controls. Bob 

and Mary’s actions are recorded by their own PDSs and sent back to Alice through e-

Store for audit purpose. To make this sharing scenario possible, patients and 

practitioners are all assumed to be equipped with PDSs and these PDSs are assumed 

to share a compliant database schema.  
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Finally, if the Ministry of Health decides to compute statistics or to build an 

anonymized dataset from a cohort of patients, the targeted PDSs will perform the 

processing and deliver the final result while preventing any leakage of sensitive data or 

identifying information. 

3.1.2 Vehicle tracking scenario 

John, a traveling salesman, drives a car from his company during working hours and 

shares his personal car with Cathy, his daughter. Both have a PDS that they plug in 

the car to register all their personal trips. Several applications are interested in the 

registered GPS locations. John’s insurance company adapts the insurance fee according 

to different criteria (e.g., the distance traveled, type of road used, and speed). Cathy 

will probably pay more than her father because she lacks enough driving experience. 

The Treasury is also interested by this information to compute John’s carbon tax 

according to similar criteria, though the computation rules are different. Finally, John’s 

company would also like to track John’s moves to organize his rounds better. GPS raw 

data is obviously highly private. Fortunately, John’s PDS externalizes only the relevant 

aggregated values to each application. In other words, each application is granted 

access to a particular view of the data registered in John’s database. 

3.1.3 BestLoan.com & BudgetOptim scenarios 

Alice needs a loan to buy an apartment. She would like to find the best rates for her 

loan and, thus, relies on the service of BestLoan.com, a mortgage broker. To assess 

Alice’s financial situation, BestLoan needs to get access to sensitive information from 

Alice’s PDS such as salary, bank statements and tax information. Alice’s data can be 

securely shared with Donald, a BestLoan employee, as follows: 

1. Alice opts in for the BestLoan application and downloads the security policy 

associated to it in her PDS; 
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2. Donald authenticates to Alice’s PDS with his credentials embedded in his own 

PDS and requests the required data; 

3. Alice agrees to share this data with Donald for a specified duration (e.g., two 

weeks); 

4. Finally Donald downloads the data in his PDS, all this by exchanging messages 

and data through the e-Store Supporting Servers. 

Donald cannot perform actions on Alice’s data exceeding their privileges or the 

retention period fixed by Alice because his PDS will preclude these actions. If Alice 

distrusts Donald, she can audit his activity and can at any moment opt out of the 

BestLoan application (with the effect of deleting Alice’s data in Donald’s PDS), all this 

again by exchanging messages through the e-Store.  

Alice now wants to optimize her budget and thus opts in for the BudgetOptim 

application. BudgetOptim runs locally on Alice’s PDS with a GUI running on the 

terminal. BudgetOptim accesses details of Alice’s invoices, telecom bills, etc. in order 

to suggest more advantageous services according to her consuming profile. With 

BudgetOptim application, Alice does not share data with anybody. This last scenario 

is typical of many private applications that can process personal data (e.g., diet 

advices, tax minimization, pension simulation, vaccine reminders, etc.). 

3.2 PDS Global architecture 

PDS is not a simple secure repository of personal documents but rather provides a well 

organized, structured, consistent and queryable representation of these documents for 

serving applications requests. The difficulty to achieve this objective comes notably 

from the variety of data sources and applications targeted by PDS. This section 

presents an initial design of the PDS architecture. 



 

37 

3.2.1 Problem statement 

As described in Section 2.1, a Secure Portable Token (SPT) can be seen as a low 

power but very cheap (a few dollars), highly portable, highly secure computer with 

reasonable storage capacity for personal use, and several form factors, ranging from 

SIM cards to various forms of pluggable secure tokens (Figure 1). 

The level of trust which can be put in the PDS comes from the following factors: 

1. The PDS software inherits the tamper resistance of the SPT making hardware 

and side-channel attacks highly difficult. 

2. The basic software (operating system, database engine and PDS generic tools), 

called hereafter PDS core, can be certified according to the Common Criteria, 

making software attacks also highly difficult. 

3. The PDS core can be made auto-administered thanks to its simplicity, in 

contrast to its traditional multi-user server counterpart. Hence, insider attacks 

(e.g., from the DBA in a traditional database server) are also precluded. 

4. Compared to a traditional server, the ratio Cost/Benefit of an attack is increased 

by observations 1 and 2 and by the fact that a successful attack compromises 

only the data of a single individual. 

5. Even the PDS holder cannot directly access the data stored locally. After 

authentication (e.g., by a pin code), she only gets the data according to her 

privileges. 

Unfortunately, a PDS cannot provide all the required database functionalities (e.g., 

durability, if the PDS is lost or destroyed, availability when the PDS is disconnected, 

global queries involving data from several PDSs) without resorting to external servers, 

called hereafter Supporting Servers. 
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Figure 6: Possible SPTs in the embedded PDS context 

We assume that Supporting Servers are Honest but Curious, a common security 

assumption regarding Storage Service Providers. This means that they correctly 

provide the services that are expected from them (typically serve store, retrieve, and 

delete data requests) but they may try to breach confidentiality of any data that is 

stored locally.  

Therefore, implementing the PDS approach requires solving the problem stated below: 

 To revisit the main database techniques to make the PDS core compliant with 

the SPT hardware constraints. 

 To reestablish the traditional functions of a central server (durability, availability, 

global queries) in a secure way using Honest but Curious Supporting Servers.  

 To provide the user with intuitive tools and underlying mechanisms helping her 

to control how her personal data is shared. 

3.2.2 Positioning 

Compared to an approach where all personal data is gathered on traditional servers, 

the benefit provided by PDS is fourfold. First, the PDS holder is his own Database 

Service Provider. Hence, abusive uses by the Database Service Provider are precluded. 
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Second, the PDS provides the holder with tangible elements of trust which cannot be 

provided by any traditional server (see factors 1 to 4 in Section 3.2.1). Third, privacy 

principles (e.g., limited retention, audit) can be enforced for the data externalized by 

the holder provided the recipient of this data is another PDS. Fourth, the holder’s data 

remains available in disconnected mode. 

However, alternatives to the traditional server exist. The Hippocratic database 

approach [5] has been precisely designed to protect personal data thanks to principles 

such as purpose specification, consent, limited collection, limited retention, audit, 

safety, etc. Part of PDS architectural ideas has been inspired by this work. But the 

Hippocratic database approach provides tangible guarantees only if the server can be 

fully trusted. In this respect, the PDS approach can be seen as a fully distributed 

implementation of a Hippocratic database where the founding Hippocratic principles 

can be definitely enforced. 

The Database as a Service approach (DAS) [38] is another option. Here data is stored 

encrypted on the server and is decrypted at the client side, making server attacks 

harmless. This time, the DAS approach makes sense only if all clients can be trusted; 

the PDS provides a way to make the clients trusted. 

Statistical databases [2] and data anonymization [33] are both motivated by the desire 

to compute statistics or to mine data without compromising sensitive information 

about individuals. Both require trusting the server, either to perform query restriction 

or data perturbation in the former case, or to produce the anonymized data set in the 

latter case. Though orthogonal to the PDS approach, these concerns still exist in the 

PDS context and must be addressed adequately. 
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3.2.3 Personal database 

The personal database is assumed to be composed of a small set of database schemas, 

typically one per application domain. We make no assumption on the granularity of 

application domains but e-health and e-administration are illustrative examples of 

domains. Database schemas are defined by DB Schema Providers. Depending on the 

domain, a DB Schema Provider can be a government agency (e.g., Ministry of Health) 

or a private consortium (e.g., a group of bank and insurance companies).  

Content Providers are external information systems that deliver personal data (e.g., 

blood test, salary form), encoded in XML. We make the simplifying assumption that 

each XML document conforms to one XML schema defined by a standardization 

organization (e.g., HL7) or by a DB Schema Provider (e.g., the Ministry of Health). To 

allow building a consistent and structured view of a set of related documents, an XML 

document (e.g., a prescription) is enriched with all referential data required to fill the 

embedded database accurately (e.g., detailed data related to the doctor who wrote the 

prescription and to the drug prescribed). Hence, the data contained in different 

documents related to a given doctor or drug can be easily queried and cross document 

processing becomes possible (e.g., get the list of current medical treatments or compute 

average blood pressure during the last month). Then the enriched document is pushed 

in an encrypted form to the recipient PDS through Supporting Servers (see 

Section 3.2.6 for a description of Supporting Servers). The recipient PDS downloads 

the XML document and wraps it into a set of records thanks to mapping rules 

provided by DB Schema Providers10. Mapping rules are declarative and interpreted by 

a generic wrapper, a certified component of the PDS core (see Section 3.2.7 for a 

deeper discussion on certification). The benefit of declarative mapping rules is not only 

 
10 The mapping rules are related to the transcription of XML documents into a structured database and are 
required even with an XML database. 



 

that it simplifies the work of the DB Schema Provider but primarily that the safety of 

these rules can be controlled. 

Figure 7 illustrates the wrapping of a prescription, enriched with doctor and drug 

referentials sent from a hospital. In this figure, we assume that the embedded database 

is relational but the choice of the database model (relational, XML, hybrid) has little 

impact in the global architecture.  The document conforms to an XML schema for 

healthcare, and is wrapped into four tables (two of them being referentials) from the 

healthcare database schema. As shown in Figure 7, not all documents are wrapped and 

integrated in the database. Some documents (e.g., an X-ray image) can stay encrypted 

in the Supporting Servers and simply be referenced by the embedded database. 
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Figure 7: Wrapping a document into the PDS database 

Note that problems incurred by the existence of several standards in a given 

application domain and the problems of data redundancy when database schemas 

overlap are orthogonal to the PDS approach and are not tackled in this thesis. 
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3.2.4 Applications 

Applications are developed by Application Providers (e.g., BestLoan.com). They are 

defined on top of the published DB schema(s) of interest and can use all database 

functionalities provided by the embedded DBMS (i.e., DDL and DML statements). 

Each application defines a set of collection rules specifying the subset of documents 

required to accomplish its purpose (e.g., the five most recent salary forms are required 

by BestLoan.com). These rules are expressed at the document level to make them 

meaningful to the PDS holder (helping her to opt in or opt out of this application) and 

are mapped at the database level to be enforced similarly to access control rules. 

Applications can run locally (on the holder’s PDS with a Graphical User Interface 

(GUI) on a terminal), on another user’s PDS (e.g., on the doctor’s one) or on an 

external server sending queries to the holder’s PDS (e.g., the Treasury server 

computing the holder’s carbon tax). While most applications are assumed to perform 

only selection queries, insertion of new documents is not precluded (e.g., a treatment 

prescribed at home by the doctor). An updating application will play the same role as 

a content provider and the insertion will follow the same process. 

3.2.5 User Control 

The prime way for the PDS holder to control the usage of her data is to opt-in/out of 

applications and to decide situations where she physically delivers her PDS to another 

individual (e.g., a doctor). Assuming that the PDS holder’s consent has been given, the 

actions that any individual can perform are regulated by a predefined access control 

policy. This policy can either be defined by the DB schema provider (e.g., the Ministry 

of Health fixes a RBAC policy stating the privileges of each category of healthcare 

professionals according to current legislation) or be defined by the Application 

Provider and be ratified by a consumer protection association or the legislator.  
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Predefined access control policies are usually far too complex11 to be understandable 

by the PDS holder. It is therefore mandatory to provide the PDS holder with simple 

tools to protect her sensitive data following her wish. A first way consists in managing 

the privileges through a simple GUI, as illustrated in the healthcare scenario. A second 

way is to give the user the ability to mask documents in the database. The records 

corresponding to a masked document are no longer considered at query execution time, 

except if the query is issued by the PDS holder herself (through an application). To 

make this process intuitive, the DB Schema Provider can predefine masking rules (e.g., 

hide documents by doctor, pathology, time period, etc.) exploiting the expressive power 

of the DBMS language and easily selectable by the user through a GUI. 

The PDS holder (called hereafter the donor) can also impose privacy preserving rules 

whenever data leaves her PDS to enter another PDS. This sharing is required when a 

donor’s data must be made available while her PDS is disconnected (see the healthcare 

scenario). This sharing must be ruled by the following principles: 

 Minimal exposure: in a nominal use, only the results of authorized queries are 

externalized by a PDS and raw data always remains confined in the PDS. When 

the donor raw data is made available to others, this must be done in such a way 

that minimal data (limited collection principle) is exchanged during a minimal 

duration (limited retention principle) and with the minimum number of recipient 

PDS (need-to-know principle) to accomplish the purpose of this externalization.  

 Secure delete: if the donor decides to delete a document before the retention 

period expires, all replicas of the corresponding raw data hosted by the recipient 

PDSs must be deleted. 

 
11 For instance, the RBAC matrix regulating the use of the French EHR contains more than 400 entries, cf. 
http://www.dmp.gouv.fr/web/dmp/matrice-d-habilitations-des-professionnels-de-sante (in French, retrieved 
on 2012-06-15). 

http://www.dmp.gouv.fr/web/dmp/matrice-d-habilitations-des-professionnels-de-sante
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 Audit: the donor must have the ability to audit the actions performed by all 

recipient PDSs on replicas. 

Minimal exposure can be implemented by a Secure Publish/Subscribe mechanism 

working as follows. The raw data to be exchanged (published) is the records belonging 

to the database view computed over the data targeted by the purpose of the sharing, 

by intersecting the collection rules of the application, the predefined access control 

rules applied to the subscribers and the donor’s masking rules. The donor publishes 

these records in an encrypted form on the Supporting Servers. The recipient PDSs 

subscribe to this data and receive the decryption key once the publisher has accepted 

the subscription. If the content of the view evolves in the publisher PDS (e.g., because 

new documents have been inserted), the update is pushed to the subscriber PDSs. We 

assume that publisher and subscriber PDSs have a compatible database schema (e.g., 

doctors and patients share a uniform healthcare DB schema).  

In the following, we denote by user control rules all rules which can be fixed by the 

PDS holder herself to protect her privacy, namely masking rules, retention rules and 

audit rules. User control rules are enforced by all PDSs, both on the PDS holder’s data 

and on the data downloaded after a subscription. 

3.2.6 Supporting Servers 

Supporting Servers Providers provide storage (for encrypted data) and timestamping 

services to implement the functions that PDSs cannot provide on their own, namely: 

 Asynchronous communication: since PDSs are often disconnected, 

documents, shared data and messages must be exchanged asynchronously 

between Content Providers and PDSs and between PDSs themselves through a 

storage area. 
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 Durability: the embedded database must be recovered in case of a PDS loss or 

destruction. The PDS holder’s personal data can be recovered from the 

documents sent by Content Providers through the Supporting Servers (assuming 

these documents are not destroyed). Data downloaded from other PDSs can be 

recovered from the data published in the Supporting Servers (assuming their 

retention limit has not been reached). Other data (user control rules definition, 

metadata built by applications, etc.) must be saved explicitly by the embedded 

DBMS on the Supporting Servers (e.g., by sending a message to itself). 

 Global processing: a temporary storage area is required to implement 

processing combining data from multiple PDSs. Statistical queries and data 

anonymization are examples of such processing. 

 Timestamping: the SPT hardware platform is not equipped with an internal 

clock since it takes electrical power from the terminal it is plugged in. Hence, a 

secure time server is required to implement auditing and limited retention. 

3.2.7 Security 

The security of the architecture lies in: 

1. the tamper-resistance of the SPT platform; 

2. the certification of the embedded code (and ratification of declarative rules); 

3. the encryption of any data externalized in the Supporting Servers.  

Regarding encryption, the security of data embedded in a given PDS is considered 

comparable to the security of the same data stored encrypted in the Supporting 

Servers as long as the key remains confined to this PDS. Even if any data stored in the 

Supporting Servers is encrypted, the identity of the users downloading and uploading 

this data must be obfuscated. Indeed, spying communications could lead to disclosure 

of sensitive information (e.g., the volume of data sent by a hospital may reveal a heavy 

pathology). The Supporting Servers provide the storage required to make the 



 

communication asynchronous and the PDS themselves integrate a protocol making 

these communications anonymous.  

The certification does not apply to all parts of the embedded code. Typically, assuming 

the certification of all embedded applications is unrealistic. Figure 8 shows the 

elements for which certification is mandatory, namely: (1) the core software (operating 

system, database engine), (2) the generic XML wrapper, (3) the communication 

manager, (4) the Publish/Subscribe manager and (5) the privacy manager enforcing 

the user control rules. Implementing these software pieces and certifying them is the 

responsibility of the PDS Providers (e.g., a SPT manufacturer like Gemalto). 

Declarative rules need also to be ratified to prove their conformance to a public 

specification. This data is: (1) the mapping rules consumed by the wrapper, (2) the 

predefined access control rules, the predefined masking rules and the collection rules 

enforced by the DBMS. The documents themselves are assumed to be signed to prove 

their authenticity. 
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Figure 8: PDS generic software, application and database 
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Trusting the predefined access control policies requires being able to authenticate all 

users. Depending on the application domains, PKI infrastructures already serve this 

purpose. For example, in France, all healthcare professionals have a certificate 

embedded in a smart card containing their identity and role (a strong authentication is 

mandatory to access any server hosting healthcare data). In the same spirit, several 

countries are developing infrastructures based on smart cards or on software certificate 

to allow any citizen to authenticate electronically (e.g., IdéNum in France).  

The NAND Flash remaining unprotected by the tamper-resistance of the 

microcontroller, cryptographic techniques must be used to protect the database 

footprint against confidentiality and integrity attacks. Indeed, integrity attacks make 

sense because the PDS holder herself can try to tamper the database (e.g., she could 

perform a replay attack to be refunded several times for the same drug or try to 

change an access control rule or the content of an administrative document, e.g., a 

diploma).  

A primary concern in the PDS context is the granularity of the traditional encryption 

and hashing algorithms (e.g., 128 bits for AES and 512 bits for SHA). As explained 

above, the PDS query execution engine must rely on a highly indexed model, thereby 

generating very fine grain random accesses (in the order of the size of a pointer). 

Solutions to this problem can be: (1) designing encryption and hashing techniques for 

fine grain accesses [67] compatible with the SPT resources, (2) designing clustering 

techniques so that relevant data are contiguous, in the spirit of the PAX models [6] 

and (3) encrypting the data in such a way that lookups can be done without 

decrypting the data. The idea here is different from order-preserving encryption or 

privacy-homomorphism. Roughly speaking, the idea is to exploit the sequentiality of 

the database to encrypt the data according to their insertion order (hence data having 

the same clear text get a different cipher text) but equality tests on the cipher text 

remain possible if they take this order into account. Version management, required to 
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detect replay attacks, is another complex issue. Maintaining a version number for each 

page in secure storage (i.e., in the secure stable storage of the microcontroller) is 

unrealistic considering the small size of the NOR and the fact that it is primarily 

dedicated to the storage of application code. TEC-Tree [30] overcomes this problem by 

organizing secret information as a tree. However, it incurs update propagation in the 

tree, which badly adapts to NAND Flash. Again, our expectation is that the sequential 

organization of the database can lead to smarter version management techniques. 

Hence PDS introduces specific interesting challenges in terms of cryptographic 

techniques applied to database management. 

3.3 Durability, availability and global processing 

3.3.1 Durability and Availability 

Honest but Curious Supporting Servers are assumed to correctly store, retrieve and 

delete data requests on an unbounded storage area in a durable and highly available 

way. PDSs capitalize on this to implement higher level secure functions. 

Anonymous communications between Content Providers and PDSs and between PDSs 

themselves can be implemented through the Supporting Servers using an anonymizing 

network like Tor [28], based on the Onion-routing protocol [35]. The anonymizing 

network provides a virtual circuit C from the source to the Supporting Servers. Thus, 

the latter can send data back to the source without knowing its identity, following the 

return circuit C-1 encoded in the initial message (this is called Reply Onions [35]). An 

interesting challenge is to use the secure microcontrollers of SPTs to increase the 

security of anonymous protocols, having SPTs as entry or exit point for the anonymous 

route. 

Recipient PDSs must be able to retrieve messages or data sent to them. Although 

communications are anonymous, the difficulty lies in selecting the relevant 
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message/data without disclosing any information that could help the Supporting 

Servers to infer the identity of the PDS. A protocol tagging messages with anonymous 

markers [9] can be used to this end. However, the delete request is trickier to 

implement. First, the physical image of the targeted data should be destroyed by the 

Supporting Servers (e.g., for cleaning purpose) only if the requesting PDS can exhibit 

an anonymous proof of legitimacy for this request. Second, the deletion must be 

effective even if an attacker spies all messages sent to the Supporting Servers and 

records them. Hence, there is no other solution than removing definitely the access to 

some data (i.e., by removing the way to decrypt it) even if its image has been stolen 

and cannot be physically destroyed. To tackle this problem, a protocol [9] based on the 

Diffie-Hellman key agreement can be used. Note that secure deletion is also a 

prerequisite to enforce masking and limited retention. Assuming that Supporting 

Servers guarantee the durability of all messages/data sent to them (except those 

legitimately destroyed), the log enabling PDSs to recover after a crash or a loss comes 

for free. Finally, enforcing audit requires a protocol guaranteeing that audit logs are 

produced and delivered despite unpredictable disconnections of the subscriber and the 

publisher PDSs. 

3.3.2 Global processing 

Executing global processing over a set of autonomous trusted PDSs, connecting to 

Honest but Curious Supporting Servers leads to unusual computations in order to: 

1. tackle the unpredictable nature of PDS connections; 

2. preserve PDS holders’ privacy. 

We illustrate this through examples on relational data. 

The Ministry of Health would like to prevent a pandemic. It executes a continuous-like 

query on each PDS that connects to the Supporting Server in order to select 

individuals having a given set of symptoms. If more than p individuals living in the 
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same region are at risk, they are encouraged to go to a hospital. However, the patients 

consent to this form of dynamic queries only if their anonymity is guaranteed. The 

query can then be of the form ‘SELECT pseudonym, city FROM any PDS WHERE symptom 

IN (x, y, z)’ where pseudonym and city are sent to the querier in clear text through 

the Supporting Servers. If threshold p is reached, the querier sends messages back 

tagged with the pseudonym of the individual at risk to the Supporting Servers. Thanks 

to anonymous communication, a PDS holder can get the outcome of the query for 

herself without revealing her identity. Interesting issues lie in the organization of the 

continuous querying protocol, in the classification of the queries which can be managed 

in this manner and in the conditions to preserve anonymity (i.e., anonymity could be 

breached if successive queries succeed in recomposing the association between quasi-

identifiers and sensitive attributes). 

Statistical databases [2] aim at answering aggregate queries (e.g., SELECT AVG(IQ) 

FROM … WHERE Age=10 AND Diagnosis=’Dyspraxia’) without compromising sensitive 

information about individuals. Examples of disclosure control techniques include 

analyzing the query trail to prevent compromising overlaps between successive queries 

and/or perturbing the result without affecting the global distribution [78]. An 

interesting feature of the PDS context is that successive aggregates are computed over 

a fluctuating population of PDSs (due to the unpredictable nature of PDS connections), 

making inference among runs harder and influencing the design of disclosure control 

algorithms accordingly. 

Privacy Preserving Data Publishing is another form of global processing aimed at 

publishing a set of micro-data while protecting the identity of individuals. The 

traditional process is composed of three phases: data collection, computation of 

sanitization rules based on the collected data and finally data sanitization. The 

challenge here is to design a distributed protocol that (1) allows the publisher 

(through the Supporting Servers) to collect enough data from the targeted PDSs to 
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compute the sanitization rule, and then (2) delegates the sanitization process itself to 

the PDSs (so that raw data is never exposed) while providing them a way to control 

the safety of the sanitization rules. Allard et al. suggested a preliminary solution [7] for 

a sanitization algorithm preventing record linkages through k-anonymity [73]. Much 

work remains to be done to prevent from other types of linkages (e.g., attribute linkage 

prevention through l-diversity [33]). 

3.4 User control 

Enforcing user control rules, namely masking, limited retention and audit and 

combining them with application collection rules introduce a set of interesting 

problems described below: 

3.4.1 Impedance mismatch between documents and databases 

While predefined access control rules (e.g., RBAC matrix published by an application 

or by the DB Schema Provider) and queries issued by applications are expressed at the 

database level (e.g., in SQL), user control rules as well as application collection rules 

are expressed over documents to be meaningful for the end-user. Conversely, for audit 

purposes, accesses are recorded at the database level but must be delivered to the end-

user at document level in order to interpret them. Consequently, translation structures 

must be integrated in the PDS to store document-to-record and record-to-document 

links.  

The query engine must integrate these links in the query evaluation in order to 

compute a result compliant with the application collection rules, the predefined access 

control rules and the user masking rules. The evaluation can be as follows. When a 

document D (e.g., a medical prescription) is inserted in the database, the records 

created at wrapping time reference D in the database (records related to referentials 

like doctors and drugs are not concerned). Let Sc be the set of documents targeted by 
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the collection rules of application A and Sm be the set of documents targeted by the 

user masking rules. When A queries the database, the query result includes the 

document references for each selected record r and this result is post-filtered to keep 

only the records satisfying (r  Sc  r  Sm). Post-filtering can be implemented 

efficiently in RAM constrained environments using Bloom filters [17].  

When a delete request is issued for D or when D reaches its retention limit, it must be 

removed from the database. The translation structures are used to identify all records 

related to this document. This includes the records referencing D either directly (e.g., 

prescription elements) or transitively (i.e., the referential data like the doctor who does 

the prescription and the drug prescribed). The presence of referential data in a 

personal database is sensitive and the related records must be removed as well. The 

difficulty lies in the fact that referential data may be shared by other documents. A 

garbage collector algorithm12 must be designed to tackle this problem. The deletion of 

the targeted records can be logical (following the marking process evoked in 

Section 3.3.1) or physical, the latter case being more costly due to the Flash 

constraints. 

3.4.2 Propagating user control rules to other PDSs  

If data has been uploaded on the Supporting Servers by a publisher PDS and 

downloaded by a subscriber PDS, the user control rules defined by the publisher must 

be propagated to the subscriber. Being able to implement the mechanisms presented 

above on the subscriber PDS requires sending the user control rules and the translation 

structures along with the data and forwarding to the subscriber any masking and 

delete operation performed on the fly by the publisher. Hence, the effect of user control 

 
12 Storing reference counters is badly adapted to the Flash update constraints. An option can be to recompute 
counters dynamically. 
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rules will be the same independently of the location of the data and of the number of 

replica. 

3.5 Conclusion 

The vision proposed in this chapter of a secure and portable Personal Data Server is a 

first contribution in the way people think about management and protection of 

personal data, thanks to the emergence of new hardware devices combining portability, 

secure processing and Gigabytes-sized storage. We have presented an initial design for 

this vision and have identified important technical challenges related to it. Moreover, 

there already exist experiments in the healthcare field [10] that prefigure the PDS 

approach and give some confidence about the feasibility of converting the PDS vision 

into reality. 
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Chapter 4  

Designing a purely sequential database engine 

In this chapter, we describe the design of an embedded database engine that could be 

deployed on SPTs and used within the Personal Data Server context. We propose a 

new paradigm based on database serialization (managing all database structures in a 

pure sequential way) and stratification (restructuring them into strata when a 

scalability limit is reached). We show that a complete DBMS engine can be designed 

according to this paradigm and, in the next chapter we will demonstrate the 

effectiveness of the approach through a performance evaluation. 

4.1 Design rules and problem statement 

The C1 constraint “small RAM/storage ratio” we emphasized in Section 2.1 raises the 

problem of computing complex queries on gigabytes of data with kilobytes of RAM. 

This means that not only joins but all operators involved in the query must be 

evaluated with minimal RAM consumption and intermediate results materialization. 

This leads to the first design rule: 

RULE R1: Design a massive indexing scheme allowing computation of any 

combination of selections and joins with minimal RAM. 

Rule R1 leads to define data structures having usually a fine grain read/write/rewrite 

pattern (massive indexing scheme), thereby generating a huge amount of random 
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writes. As illustrated in Section 2.4, FTLs usually incur a severe degradation of 

random writes’ performance; this is the reason why several recent works (see 

Section 2.5 and 2.6) have focused on the impact of NAND Flash constraints on DBMS 

design and more specifically on index design. Most proposals that address 

Constraint C4 “NAND Flash behavior” bypass the FTL or minimize random writes, 

but none of them have been designed to cope with the tiny RAM constraint (C1) of an 

SPT. For all these reasons, we argue that delegating the optimization of the Flash 

usage to a FTL does not make sense in our context. Our design considers that the 

secure MCU has direct access to the NAND Flash13 but can accommodate Flash access 

through FTL with minimal extension. This leads us to propose a second design rule: 

RULE R2: Design a database engine matching natively the NAND Flash constraints, 

i.e., proscribing random writes, despite scarce RAM. 

Rules R1 and R2 are thus conflicting by nature making the problem particularly 

challenging. 

4.2 Proposed approach 

4.2.1 Database Serialization 

To reconcile rule R1 with R2, we propose a new paradigm called database serialization, 

based on the notion of Sequentially Written Structures, defined as follows. 

SEQUENTIALLY WRITTEN STRUCTURE: A SWS is a data container satisfying three 

conditions: (1) its content is written sequentially within the (set of) Flash block(s) 

 
13 A first layer (the Hardware Adaptation Level) of the controller software manages Low Level Drivers (LLD), 
Error Correction (ECC) and Bad Block Management (BBM). The second layer is the FTL, and it can be 
bypassed on most platforms. 
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allocated to it (i.e., pages already written are never updated nor moved); (2) blocks can 

be dynamically added to a SWS to expand it at insertion time; (3) allocated blocks are 

fully reclaimed when obsolete and no partial garbage collection ever occurs within a 

block. 

If all database structures can be organized as SWS, including base data, logs, buffers 

and all forms of indexes required by rule R1, the net effect of database serialization 

will be to satisfy rule R2 by construction. Indeed, the SWS definition proscribes 

random (re)writes. Hence, the dramatic overhead of random writes in Flash is avoided 

and problematic FTL features are hopefully bypassed: the Translation Layer becomes 

useless, saving translation costs, the Garbage Collection is done at minimal cost on a 

block or SWS basis, and Wear Leveling mechanisms are simplified. 

The database serialization objective is easy to express but difficult to achieve. It 

requires solving the following problems: 

Base data organization 

Natural solutions can be devised to organize the base data as SWSs. Typically, a table 

can be stored as a sequence of rows in a Row Store scheme or as a set of sequences of 

attribute values in a Column Store one. Adding new base data is direct in both cases. 

Updating or deleting base data is more complex and we address this point separately. 

Join Indexes 

Join and multiway join indexes can be directly mapped into SWSs as well. Indeed, 

adding new base data incurs simply appending sequentially new entries in these 

indexes (sorted join indexes are not considered). Since they are managed is the same 

way, we call ↓DATA (↓ stands for serialized) the SWSs dedicated to both base data 

and join indexes. 
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Selection indexes 

Classical indexes (e.g., tree-based or hash-based) are proscribed since inserting new 

base data would generate random node/bucket updates. We say that an index is 

serialized if the addition of new base data leads to append data to the index. Bitmap 

index is a basic representative of serialized index. Section 4.3 discusses smarter forms 

of serialized indexes. While less efficient than classical indexes, they provide a 

significant gain compared to scanning ↓DATA. We call ↓IND the SWSs dedicated to 

serialized indexes. 

Flash Buffers 

↓DATA and particularly ↓IND being made of fine grain elements (tuples, attribute 

values or index entries), inserting without buffering would lead to waste a lot of space. 

Indeed, NAND Flash constraints impose writing a new page in a SWS for each 

elementary insertion. Moreover, the density of a SWS determines the efficiency of 

scanning it. The objective of buffering is to transform fine-grain to coarse-grain writes 

in Flash. Elements are gathered into a buffer until they can fill a complete SWS page, 

which is then flushed. But buffers cannot reside in RAM, partly because of its tiny size 

and because we cannot assume electrical autonomy and no failure. Hence, buffers must 

be saved in NAND Flash and the density of buffer pages depends on the transactions 

activity. To increase buffer density (and therefore save writes), elements from different 

SWSs are buffered together if they can be filled and flushed synchronously. For 

example, let us assume n ↓INDs indexing different attributes of a same table. They 

can be buffered together because they are filled at the same rate. When enough data 

items have been buffered to fill a complete page of each ↓IND, the buffer pages 

containing them are flushed together. Buffers must be organized themselves as SWSs 

to comply with the serialization objective. A buffer is actually managed as a sliding 
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window within its SWS, a Start and an End markers identifying its active part (i.e., 

the part not yet flushed). We call ↓BUF the SWSs implementing buffers. 

Updates/deletes 

Applying updates and deletes directly in a target SWS (↓DATA, ↓IND or ↓BUF) 

would violate the SWS definition. Instead, updates and deletes are logged in dedicated 

SWSs, respectively named ↓UPD and ↓DEL. To manage updates, the old and new 

attribute values of each updated tuple are logged in ↓UPD. At query execution time, 

↓UPD is checked to see whether its content may modify the query result. First, if a 

logged value matches a query predicate, the query is adjusted to eliminate false 

positives (i.e., tuples matching the query based on their old value but not on their new 

value) and to integrate false negatives (i.e., tuples matching the query based on their 

new value but not on their old value). Second, ↓UPD and ↓DEL are also checked at 

projection time, to project up-to-date values and to remove deleted tuples from the 

query result. Overheads are minimized by indexing ↓UPD and ↓DEL on Flash, and 

building in RAM dedicated data structures to avoid accessing Flash for each result 

tuple (see Section 4.3.3). 

Transaction atomicity 

Rolling back a transaction (we restrict ourselves to a single transaction at a time), 

whatever the reason, imposes undoing all dirty insertions to the SWSs. To avoid the 

presence of dirty data in ↓DATA and ↓IND, only committed elements of ↓BUF are 

flushed in their target SWSs as soon as a full page can be built. So, transaction 

atomicity impacts only the ↓BUF management. In addition to the Start and End 

markers of ↓BUF, a Dirty marker is needed to distinguish between committed and 

dirty pages. Rolling back insertions leads (1) to copy after End the elements belonging 

to the window [Start, Dirty] containing the committed but unflushed elements, and 
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(2) to reset the markers (Dirty = Dirty – Start + End; Start = End; End = Dirty) 

thereby discarding dirty elements. 

At first glance, database serialization is a powerful paradigm to build a robust and 

simple design for a DBMS engine complying with rules R1 and R2. However, such a 

design scales badly. A serialized index cannot compete with classical indexes (e.g., B+-

Tree) and the accumulation over time of elements in ↓UPD and ↓DEL will unavoidably 

degrade query performance. There is a scalability limit (in terms of ↓IND, ↓UPD and 

↓DEL size) after which performance expectation will be violated, this limit being 

application dependent. 

4.2.2 Database Stratification 

To tackle this scalability issue, we propose a stratification principle transforming a 

serialized database organization into a more efficient SWS database organization. Let 

us introduce the notion of Stratified SWS: 

STRATIFIED SWS: A stratified SWS denoted by *S, is an optimal reorganization of a 

SWS S given as input to the stratification process. Optimal reorganization means that 

the properties of *S are at least as good as if *S was built by a state of the art method 

ignoring Flash constraints14. 

Before any stratification occurs, the initial serialized database denoted by ↓DB is 

composed of serialized SWSs of buffers, base data, indexes, update and delete logs. 

Thus, Stratum0 = ↓DB0 = (↓BUF0, ↓DATA0, ↓IND0, ↓UPD0, ↓DEL0). 

When the scalability limit of Stratum0 is reached, Stratum1 needs to be built. The 

stratification process then starts and triggers three actions.  
 

14 E.g., as explained in Section 4.4, the stratification of a serialized index can result in an efficient B+-Tree like 
structure and can even outperform traditional B+-Tree. 
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1. ↓BUF0 elements are flushed into their target SWSs (i.e., ↓DATA0, ↓IND0, ↓UPD0, 

↓DEL0).  

2. All new insertions, updates and deletes in the database are directed to 

↓DB1 = (↓BUF1, ↓DATA1, ↓IND1, ↓UPD1, ↓DEL1) until the next stratification 

phase.  

3. The serialized database ↓DB0 (which is then frozen) is reorganized in background 

into a stratified database denoted *DB1, composed of *DATA1 and *IND1. 

*DATA1 is built by merging ↓DATA0 with all updates and deletes registered in 

↓UPD0 and ↓DEL0. *IND1 is the optimal reorganization of ↓IND0 (including 

modifications stored in ↓UPD0 and ↓DEL0). Hence, *DB1 has the same 

properties as a regular indexed database updated by random writes. 

Stratum1 of the database is thus composed of ↓DB1 (receiving new insertions, updates 

and deletes) and of *DB1, itself composed of *DATA1 and *IND1. When the 

stratification process terminates (i.e., *DATA1 and *IND1 are completely built), all 

SWSs from Stratum0 can be reclaimed. ↓DB1 keeps growing until the next stratification 

phase. The next time the scalability limit is reached, a new stratification step occurs. 

Stratification is then an iterative mechanism summarized as follows (see also Figure 9): 

Stratify(Stratumi)  Stratumi+1 

1 ↓DBi+1=       //note that *DATA0=, *IND0= 

2 Flush(↓BUFi)in ↓DATAi,↓INDi,↓UPDi,↓DELi 

3 Reclaim(↓BUFi) 

4 *DATAi+1=Merge(*DATAi,↓DATAi,↓UPDi,↓DELi) 

5 *INDi+1=StratifyIndex(*INDi,↓INDi,↓UPDi,↓DELi) 

6 Reclaim(*DATAi,*INDi,↓DATAi,↓INDi,↓UPDi,↓DELi) 
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Figure 9: The stratification process 

Rule R1 is preserved since *INDi+1 is assumed to provide an optimal indexing scheme 

and Rule R2 is preserved since random writes are never produced despite the 

reorganization (new SWSs are written sequentially and old SWSs are fully reclaimed). 

As such, stratification is very different in spirit from batch approaches deferring 

updates thanks to a log since such deferred updates produce random rewrites. The 

price to pay is however a complete reconstruction of *DBi at each step15. This raises 

three important remarks: 

Maximize the size of ↓DBi 

According to Yao’s formula [79], little locality can be expected when reporting ↓DBi 

elements into *DBi+1. Hence, the stratification cost is determined by the size of *DBi, 

considering that, after several stratifications, size(*DBi) >> size(↓DBi). There is thus 

                                      
15 Note that other solutions could be envisioned, e.g., several Strata could coexist (i.e., ↓DBi is restructured 
but not merged with *DBi) reducing stratification costs but increasing query costs. 
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a high benefit to maximize the size of ↓DBi to reduce the number of stratification steps, 

thereby decreasing the global cost of stratification. 

Allow stopping / resuming the stratification process 

The stratification is a long process that should preferably be done during idle times. 

However, the database may be queried while a stratification process is in progress. It is 

thus necessary to be able to stop and resume it with minimal overhead. The scarce 

RAM constraint actually provides a simple and efficient way to achieve this. A Brute-

force strategy consists in flushing the RAM content to Flash memory when stopping16. 

This requires a couple of milliseconds (e.g., about 20 ms for 128 KB RAM). To resume 

the process, the RAM content is read back from Flash and the Flash block used is 

erased, again at low cost (7 ms for 128 KB RAM). 

Take advantage of partial stratification 

As a consequence of the previous point, queries can be run while stratification is 

incomplete. This is not a problem because SWS from the previous stratum are 

reclaimed only at the end of stratification and can then serve to answer the query. 

Assuming that each index is stratified independently, the query can even take 

advantage of the indexes already stratified. 

4.3 Serialization techniques  

Section 4.3.1 shows how serialized indexes answer the requirement expressed by design 

rule R2. Section 4.3.2 illustrates how to build the massive indexing scheme required by 

rule R1 on this basis. Finally, Section 4.3.3 shows how updates and deletes can be 

handled without violating rule R2. 

 
16 This is similar to the Suspend-to-disk, commonly named “Hibernation” in most operating systems. 
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4.3.1 Serialized Indexes 

With no index, finding matching tuples leads to a sequential scan of the whole table 

(see Figure 10.a). Brute-force serialized indexes can be created by replicating the 

indexed attribute (called key) into a SWS called Key Area (KA) (see Figure 10.b). The 

row identifiers of matching tuples are found by a sequential scan of KA, thus the name 

Full Index Scan. Full Index Scan is trivial and works for any exact match or range 

predicate. For variable or large size keys, a collision resistant hash of the key can be 

used in place of the key itself (restricting the index use to exact match predicates). For 

keys varying on a small cardinality domain, the key can also be advantageously 

replaced by a bitmap encoding. Adequate bitmap encoding can be selected to support 

range predicates [23]. 

Smarter forms of serialized indexes can be devised to support exact-match predicates 

using Bloom Filters (BF) [17]. A Bloom Filter can represent a set of values of arbitrary 

length in a compact way and allows probabilistic membership queries with no false 

negatives and a very low rate of false positive. For example, the false positive rate 

produced by a Bloom Filter built using 3 hash functions and allocating 12 bits per 

value is 0.1, it decreases to 0.05 with 16 bits per value and to only 0.006 with 4 hash 

functions [17]. Hence, they provide a very flexible way to trade space with performance. 

In our context, Bloom Filters are used to summarize KA, by building one Bloom Filter 

for each flash page of KA. Finding matching tuples can then be achieved by a full scan 

of the KA summary (denoted SKA in Figure 10.c), followed by a direct access to the 

KA pages containing a result (or a false positive with a tiny probability). Only those 

KA pages are finally scanned, thereby saving many useless I/Os in case of selective 

predicates. For low selectivity predicates, this index, called Summary Scan, becomes 

less efficient since it qualifies a large number of KA pages. 
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Figure 10: Serialized Indexes (grey areas are effectively accessed) 

Given the sequential structure of a serialized index, Summary Scan can be further 

optimized by chaining index entries sharing the same key value. The chains are stored 

in a SWS called PTR (see Figure 10.d). To cope with the SWS constraints, the 
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chaining must be backward, i.e., the occurrence n+1 of a given key value references 

occurrence n. SKA and KA are then used only for searching the last occurrence of the 

searched key (see Figure 10.d). If a key value appears n times in the index, in average, 

1/n of SKA and 1 page of KA will be scanned. Then, the pointer chain is followed to 

find all matching tuples’ row identifiers. While this index, called Summary Skip is 

efficient for lookups, maintaining the pointer chain can however be costly when keys 

have few occurrences. It leads, in the worst case to a full scan of SKA to find the 

previous occurrence of the inserted key. 

To bound the insertion cost, a solution is to specify the maximal number of SKA pages, 

say n, that should be scanned before stopping. If the previous occurrence of the key is 

not found once this limit is reached, the new key is inserted with a preceding pointer 

set to NULL, thereby breaking the pointer chain. At query time, when a NULL pointer 

is encountered, the algorithm switches back to SKA, skipping the n next pages of SKA, 

and continues searching the preceding key occurrence according to the Summary Scan 

strategy. Indeed, by construction, the KA pages summarized by these n pages of SKA 

cannot contain the searched value (otherwise, they would have been chained). We call 

this strategy Hybrid Skip since it mixes Summary Scan and Summary Skip (see Figure 

10.e). This strategy has two positive impacts: (1) at insertion time, and contrary to 

Summary Skip, the search cost in SKA is bounded to n page accesses independently of 

the index size; (2) the pointer can be encoded on a smaller number of bits (linked to 

the number of keys summarized by n pages of SKA) thereby reducing the access cost 

of PTR. 

Thanks to their sequential structure, all serialized indexes have the property of 

producing an ordered list of matching tuples’ row identifiers (corresponding to the 

insertion order of these tuples). This property is essential to combine partial results of 

several selections because it allows efficient merges with no RAM consumption, as we 

will explain in the next section. 



 

4.3.2 Querying Serialized DB with Small RAM 

Organizing the whole database with SWSs (Rule R2), and using serialized indexes as 

basic constructs for a massive indexing scheme (Rule R1) are the cornerstones of the 

embedded engine design. This section describes a candidate massive indexing scheme 

and its associated query execution model. This model fits well our requirements in 

terms of query performance but other indexing schemes could be considered and be 

incorporated in the database serialization/stratification paradigm. For clarity, we 

illustrate the proposed model on the same database schema as the one used in the 

performance chapter. 
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Figure 11: Query processing with SKTs and climbing indexes 

As shown in Figure 11.a, we consider a tree-based medical database schema where 

table Prescription (Pre), the schema root, references tables Visit (Vis) and Drug (Dru), 

table Vis references Doctor (Doc) and table Dru references Laboratory (Lab) and 

ClassOfDrug (Cla).  

Multi-way join indexes called Subtree Key Tables (SKTs) are created for each node 

tables of the tree-based schema. Each SKT joins all tables in a subtree to the subtree 

root and stores the result sorted on the identifiers of the root table (SKT entries 

contain the ids of the matching tuples). For example, the SKTPre rooted at Pre is 

composed of the joining sets of ids {idPre, idVis, idDru, idDoc, idLab, idCla} sorted on idPre. 
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This enables a query to directly associate a prescription with, e.g., the doctor who 

prescribed it. Selection indexes called Climbing Indexes (CLI) are created on all 

attributes involved in selection predicates. A CLI created on attribute A of table T 

maps A values to lists of identifiers of T, as well as lists of identifiers of each table T’ 

ancestor of T in the tree-based schema (Figure 11.a). For example, in CLIDoc.City, the 

value ’Lyon’ is mapped to lists of idDoc, idVis, and idPre identifiers. Combined together, 

SKTs and CLIs allow selecting tuples in any table, reaching any other table in the path 

from this table to the root table in a single step and projecting attributes from any 

other table of the tree. 

Yin et al. proposed this indexing scheme in a previous work to deal with the RAM 

constraint in a read-only embedded database context [81]. Hence, the contribution here 

is not on the indexing model itself but on the way indexing models (including this one) 

can be adapted to support inserts, updates and deletes while tackling the NAND Flash 

constraints. The solution is provided by the serialization/stratification paradigm. The 

primary step is to map each concept of the considered indexing scheme into SWSs. 

Once this achieved, the model will inherit all properties of SWSs in terms of update 

management (inserts/updates/deletes) in Flash, transaction atomicity and scalability 

(stratification). 

The massive indexing scheme introduced above is mapped into SWSs as follows. Base 

tables and SKTs are directly mapped into SWSs since both kind of structures are 

sequential by nature. The climbing index structures are trickier to map. The initial 

design of the CLI structure presented in [81] relied on a B+-Tree where each key value 

was associated to a set of inverted lists of tuple identifiers (one list for each level of the 

database schema, from the table the indexed attribute belongs to up to the root table). 

The SWS mapping of CLI consists of building one serialized index for each level of CLI, 

as pictured in Figure 11.c. For example, CLIDoc.City is made of three serialized indexes 

delivering respectively the lists of idDoc, idVis, and idPre identifiers.  
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This mapping being defined, the query execution is as follows. Figure 11.d shows the 

Query Execution Plan (QEP) of a query which joins all the tables, evaluates the 

selection predicates on two indexed attributes (Doc.City=’Lyon’ AND 

Cla.Type=’AZT’), and projects some attributes. The operators required to execute this 

query are:  

1. CLIL(CLI, P, )→{idT} looks up in the climbing index CLI and delivers the list 

of sorted IDs referencing the table selected by  and satisfying a predicate P of 

the form (attribute  value) or (attribute  {value});  

2. Merge(i{j{idT}}})→{idT} performs the unions and intersections of a 

collection of sorted lists of identifiers of the same table T translating a logical 

expression over T expressed in conjunctive normal form;  

3. Sjoin({idT}, SKTT, )→{<idT, idTi, idTj …>} performs a key semi-join between a 

list of identifiers of a table T and SKTT, and projects the result on the subset of 

SKTT attributes selected by ; this result is sorted on idT; Conceptually, this 

operation implements a Join but its cost sums up to read the right SKT entries.  

4. Project({<idT, idTi, idTj … >}, ) → {< Atti, Attj, Attk … >} follows tuples 

identifiers and retrieves attributes selected by ; the attribute values are buffered 

in RAM in a hierarchical cache keeping most frequent values to avoid Flash I/Os. 

The query can be executed in a pipeline fashion as follows: 

1 Project (L4,<Doc.Name,Dru.Name, Pre.Qty> → Result 

2 SJoin (L3, SKTPre, <idPre, idDru, iddoc>) → L4 

3  Merge (L1L2}) → L3 

4   CLIL (Cla.Type, =’AZT’, Pre) → L2 

5   CLIL (Doc.City, =’Lyon’, Pre) → L1 

The RAM consumption for this query is limited to one Flash page per CLI, the rest of 

the RAM being used for projection (cache). 
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4.3.3 Processing Updates and Deletes 

As explained in Section 4.2, updates and deletes are logged in dedicated SWSs, named 

↓UPD and ↓DEL, rather than being executed in place. This virtualization implies 

compensating queries at execution time, by combining ↓DATA, ↓IND and ↓BUF with 

↓UPD and ↓DEL to compute the correct result. 

Regarding deletes, each result tuple which has been recorded in ↓DEL must be 

withdrawn from the query result. To perform this check efficiently, a dedicated 

structure DEL_RAM is built in RAM to avoid accessing ↓DEL on Flash for each 

result tuple. To limit RAM occupancy, only the identifiers of the deleted tuples, 

excluding cascading deletes, are stored in DEL_RAM. In a tree-based DB schema, 

deleting a tuple in a leaf table (e.g., one tuple d in Doctor) may incur cascading the 

deletes up to the root table (e.g., all Visit and Prescription tuples linked to d). Only d 

identifier is recorded in this case. At query execution end, the SJoin operator accesses 

the SKT of the root table of the query, to get the identifiers of all (node table) tuples 

used to form the tuples of the query result. At that time, each of these identifiers is 

probed with DEL_RAM and the tuple is discarded in the positive case, without 

inducing any additional IO. Coming back to our example, if a query applies to 

Prescription and selects a prescription p performed by the deleted doctor d, SJoin will 

return d identifier from the Prescription SKT, d identifier will be positively probed 

with DEL_RAM and p will be discarded. 

Regarding updates, old and new attribute values are logged in ↓UPD for each updated 

tuple. To compensate the query, the query processor must (i) for each projected 

attribute, check its presence in ↓UPD and get its up-to-date value in the positive case; 

(ii) compensate index accesses to eliminate false positives, i.e., tuples returned by the 

index based on their old value (in ↓BUF, ↓IND) but which should be discarded based 

on their new value (in ↓UPD); and (iii) compensate index accesses to integrate false 
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negatives, i.e., tuples matching the query based on their new value but not returned by 

the indexes based on their old value. Those three steps are detailed below: 

Projections 

Similarly to the delete case, a structure UPD_RAM is maintained in RAM to speedup 

the membership test in ↓UPD. UPD_RAM stores the addresses of modified values in 

↓DATA and is rebuilt at each session by scanning ↓UPD. Each attribute (address) to 

be projected is probed with UPD_RAM, and only when the probe is positive, ↓UPD is 

accessed on Flash. In addition, ↓UPD is indexed on the attribute addresses in a way 

similar to a ↓DATA SWS, thereby drastically reducing the overhead caused by update 

processing at project time. 

Selections – removing false positives 

The set of false positive tuples (identifiers) is extracted from ↓UPD and stored in a 

RAM structure called FP_RAM. FP_RAM is used to probe each output of the index 

scan. For example, to get the doctors living in ‘Paris’ using the index Doc.City 

excluding false positives, we (1) retrieve from ↓UPD the doctors who left ‘Paris’ (since 

the last stratification), (2) store their IDs in FP_RAM, (3) probe each result of the 

index with FP_RAM and (4) discard positive ones. Tackling climbing index accesses is 

trickier. For example, for a climbing index access on Doc.City at level Pre (i.e., the 

prescriptions of doctors living in ‘Paris’) the result is a list of prescriptions, while 

↓UPD provides doctors identifiers. Two solutions can be envisioned: (1) for each index 

result (prescription) the corresponding doctor is retrieved, e.g., by placing a SJoin after 

the index access, and is probed with FP_RAM; (2) for each element of FP_RAM 

(doctors) the corresponding prescriptions are found, e.g., by a subquery into the 

climbing index on doctors’ IDs. In practice, we favor option (2) because the number of 

updated values is likely to be much lower than the number of results returned by the 

index. To avoid executing these same subqueries at each index lookup, we execute 
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them once at update time and materialize their result in ↓UPD (hence ↓UPD contains 

the identifiers of all tuples referencing an updated tuple, by a – path of – foreign key). 

At query time, FP_RAM is built from this basis, using a serialized index on ↓UPD 

defined on the old attribute value. This drastically reduces the cost of false positives 

removal for an acceptable space overhead (only identifiers are stored). 

Selections – Integrating false negatives 

The set of false negative tuples (identifiers) is extracted from ↓UPD and must be 

merged with the index output. For example, to get the doctors living in ‘Paris’ using 

the index on Doc.City, including false negatives, we (1) retrieve from ↓UPD the doctors 

who moved to ‘Paris’ (since the last stratification) and (2) merge the results. For a 

climbing index access, we use the same technique as presented above. For example, for 

a climbing index access on Doc.City at level Pre (i.e., the prescriptions of doctors living 

in ‘Paris’), each doctor tuple in ↓UPD is linked to the (sorted) set of its prescriptions 

which have simply to be merged with the index output. Using this technique, the 

integration of false negatives into the index output generates a very small overhead, 

given that ↓UPD is also indexed on the new attribute value (speeding up the retrieval 

of false negative identifiers). 

A check of ↓UPD may return several entries when an attribute from the same record 

has been updated successively between two stratifications, and the proposed technique 

needs to be adapted to inspect all entries that match the queried attribute value. With 

our example query, a doctor who moved from ‘Paris’ and came back later will have two 

entries in the update log, a first with ‘Paris’ as old value and a second with ‘Paris’ as 

new value. In this case, the doctor should not appear in FP_RAM, because the last 

entry contains a new value identical to the queried value (‘Paris’); she should not be 

considered as a false negative either, because there’s an entry present with the queried 

value as the old value. It is also possible to resort to a simpler brute-force approach: in 
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the event of an ID being both a false positive and false negative, checking the new 

value of the last entry in ↓UPD for this attribute will resolve the ambiguity. 

The generalization of these techniques to multi-predicate queries is straightforward. 

Regarding the query processing techniques presented in Section 4.3.2, only operators 

CLIL and Project are impacted by the integration of updates and deletes, as described 

above. 

Regarding RAM consumption, three types of structures are needed: DEL_RAM stores 

the deleted tuples identifiers, UPD_RAM stores the addresses of updated attributes, 

and FP_RAM stores the identifiers of modified tuples for an index access (its size is 

negligible compared with DEL_RAM and UPD_RAM). For instance, in the 

experiments conducted in Chapter 5, the RAM consumption corresponding to 3000 

deletes and 3000 updates was about 18 KB. 

4.4 Stratification techniques 

4.4.1 Stratified Indexes 

The construction of stratified indexes at stratification time can take advantage of three 

properties: (1) stratified indexes are never updated (SWS) and can then rely on more 

space and time efficient data structures than traditional B+-Tree (100% of space 

occupancy can be reached compared to about 75%); (2) all the data items to be 

indexed are known in advance; (3) the complete RAM can be dedicated to the index 

construction since the stratification can be stopped/resumed with low overhead (see 

Section 4.2.2). 

The constraint however is to organize the stratified index in such a way that the lists 

of row identifiers associated to the index entries are kept sorted on the tuples insertion 

order. This requirement is mandatory to be able to merge efficiently lists of identifiers 



 

from multiple indexes or from a range search in one index. Moreover, this ordering 

allows combining query results in ↓INDi (serialized indexes) and in *INDi (stratified 

indexes) by a simple concatenation of the lists of matching tuples (see Figure 12). 

Indeed, *INDi tuple always precede ↓INDi tuple in their insertion order and so are the 

value of their identifiers. 
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Figure 12: Stratified index and combination of ↓DBi and *DBi 

This way of combining ↓INDi and *INDi leads to a straightforward extension of the 

query processing and update/delete management techniques to tackle a combination of 

serialized and stratified databases. Actually, all operators described in Section 4.3.2 

must be extended to consider both elements of *INDi and of ↓INDi using simple 

concatenations. 

The resulting stratified index structure is as follows. A compact ordered list of row 

identifiers (OLI in Figure 12), is built for each index entry Ki. The set of index entries 

is represented by a compact sorted list, named CSL. Finally, a compact non-dense 

index, named NDI, stores the highest key of each page of CSL in a first set of Flash 

pages, itself indexed recursively up to a root page. The index is built from the leaves to 

the root so that no pointers are required in NDI. Stratified indexes are efficient and 
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highly compact (100% of space occupancy) because they are built statically and are 

never updated. 

4.4.2 Stratification Algorithms 

In our approach, stratifying a database sums up to process the Merge and StratifyIndex 

operations introduced in Section 4.2.2. For the sake of clarity, indices are removed 

from the notations and refer to Stratumi (unless specified). We also remove the buffers 

structure (↓BUF) considering that they are flushed into ↓DB just before stratification 

starts. The stratification strategy is presented assuming the size of *DB is much 

greater than ↓DB, which is the normal case after some initial stratification steps. We 

present successively the algorithms used to stratify the index part and the data part. 

4.4.3 StratifyIndex(*IND, ↓IND, ↓UPD, ↓DEL) 

Different structures are involved in index stratification (see Figure 9). Let us first 

analyze their organization to deduce an adequate strategy given the constraints of the 

microcontroller: 

 *IND contains a set of climbing indexes organized by index key. For simplicity, 

we consider a single climbing index CLI made of a set of sorted keys, each key 

being linked to a list of sorted tuple IDs sharing that key (see *IND on Figure 

12). The extension to a set of climbing indexes each made of several lists of tuple 

IDs is straightforward. 

 ↓UPD and ↓DEL are not sorted since elements are added sequentially when 

updates and deletes are performed. 

 Finally, ↓IND contains a set of serialized indexes organized by tuple IDs (built 

sequentially). 
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These structures being organized differently, the stratification process appears to be 

complex, especially with large data structures and scarce RAM. We explain the 

strategy for each structure in isolation, and then consider the whole picture: 

Stratifying ↓IND 

For a single stratified index *I and a serialized index ↓I, StratifyIndex works as follows. 

Since the size of *I is much greater than ↓I, the best solution is reorganizing ↓I such 

that it complies with *I organization. This allows merging both structures to obtain a 

new stratified index *I’ without RAM consumption. Conversely, reorganizing *I to 

make it compliant with ↓I or querying ↓I for each *I element is not an option in terms 

of performance. 

Applying ↓DEL 

How logged deletes (↓DEL) can be applied on *I? We could have considered storing in 

RAM tuple IDs of deleted tuples, as it is done for queries. This would however impose 

to access the SKT for all IDs of the index since ↓DEL does not contain tuple IDs of 

cascaded deletes. Computing the cascaded version of ↓DEL is not a solution because it 

may not fit in RAM, and because accessing it in flash for each ID would be too costly. 

The only practical solution is again to reorganize ↓DEL such that it complies with *I 

organization. This means (1) ‘cascading’ ↓DEL; (2) projecting ↓DEL on all indexed 

attributes; (3) sorting the result on (TabID, AttID, Key, TupId). While this 

reorganization is costly, it is done only once for the whole stratification. 

Applying ↓UPD 

Applying logged updates on *I leads to a similar strategy as applying ↓DEL for similar 

reasons. Cascading ↓UPD is also necessary because of the structure of climbing indexes. 

Consider for instance a doctor who moved from Nice to Paris. When the index 

CLIDoc.City is stratified, all prescription IDs in the Nice entry must be removed and 
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added to the Paris entry. Thus, we build two structures, ↓UPD_FP for false positives, 

and ↓UPD_FN for false negatives. Both are organized on (TabID, AttID, Key, TupId) 

to enable an efficient merge with *I. Thus, reorganizing ↓UPD leads to (1) ‘cascading’ 

↓UPD, (2) splitting it in ↓UPD_FP (resp. ↓UPD_FN) having as key the old value 

(resp. the new value); (3) sort ↓UPD_FP and ↓UPD_FN on (TabID, AttID, Key, 

TupId). Note that this reorganization is less costly than for ↓DEL since it only 

considers 2 keys per entry in ↓UPD (while ↓DEL considers n keys, n being the number 

of indexed attributes). As for ↓DEL, this reorganization is done once per stratification. 

The following pseudo code summarizes the StratifyIndex operation considering *IND, 

↓IND, ↓DEL and ↓UPD: 

StratifyIndex(*IND,↓IND,↓UPD,↓DEL) 

1 D+= Cascade(↓DEL) 

2 D+=Project_on_all_indexed_attributes(D*) 

3 D= Sort(D+) on (TabID,AttID, Key, TupId) 

4 U+= Cascade(↓UPD) 

5 U_FP=Sort(U+)on(TabID,AttID,OldVal,TupID) 

6 U_FN=Sort(U+)on(TabID,AttID,NewVal,TupID)  

7 For T iterating on all tables 

8  For A iterating of all Attributes of T 

  For O iterating on {T}  {T.ancestors} 9 

   S = Sort(↓IND(T,A,O)) on Key, TupID 10 

11 *INDi+1(T,A,O)=PStratify(*IND(T,A,O), ↓IND(T,A,O))– D - U_FP + U_FN 

The cascade operation (lines 1 and 4) can be done thanks to the climbing indexes 

(TabID, AttID, Key, TupID). 

defined on TupIDs. In line 2, the projected value is easy to retrieve thanks to the 

TupID. The sort operations (line 3, 5, 6 and 10) are done by sort merge using the 

whole. Finally, the PStratify operation (line 11) means pipelined stratification. Indeed, 

PStratify can be performed in pipeline, key by key, since all operands are sorted on 
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*DATA and ↓DATA contain a set of tables and SKTs, each ordered by tuple ID. The 

r simple: 

e kept in 

RAM during ↓DATA stratification. The structure (DEL_RAM) and mode of 

 is the same as for queries (see 

ave been actually updated, as for queries (see Section 4.3.3). 

4.4.4 Merge(*DATA, ↓DATA, ↓UPD, ↓DEL) 

merge of *DATA with ↓DATA, ↓DEL and ↓UPD is thus rathe

1. ↓DATA is simply concatenated to *DATA. 

2. Since SKT is accessible, ↓DEL does not need to be cascaded and can b

operation to identify the deleted tuples

Section 4.3.3). 

3. Similarly, the updated tuple IDs are kept in RAM (with no cascading) during 

↓DATA stratification in the (UPD_RAM) structure and ↓UPD is only queried 

for tuples that h

The resulting algorithm is as follows: 

Merge(*DATA, ↓DATA, ↓UPD, ↓DEL) 

1 Load DEL_RAM in RAM 

2 Load UPD_RAM in RAM 

3 For T iterating on all tables 

4  For each tuple r of *DATA(T)‖↓DATA(T) 

5   Access r’s SKT attributes, check DEL_RAM, if positive, replace r by 

empty space 

6   Check UPD_RAM, if positive retrieve new values from ↓UPD and update r 

7   Add r to *DATAi+1(T) 

4.5 Conclusion 

This chapter proposed a comprehensive design for a purely sequential database engine 

with the objective to disseminate databases everywhere, up to the lightest smart 

objects. Inspired by low cost economic models, we considered the simplest and 

cheapest form of computer available today, that is a microcontroller equipped with 
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resented a new paradigm, named database 

n, tackling the conflicting NAND Flash and tiny RAM 

se devices and have shown its effectiveness to build a 

num dates performed since last stratification, and to the size of the 

 part of the database is read and written only once; 

(2) that the process can run in background, be interrupted then resumed, without 

atabase; and (3) that the stratification process is by nature 

failure-resistant (e.g., sudden power loss) since no element of ↓DB is reclaimed before 

external Flash storage. We have p

serialization and stratificatio

constraints inherent to the

complete embedded DBMS engine.  

The stratification cost is related to the size of the serialized database (↓DB), to the 

ber of deletes and up

stratified database (*DB). The essential features of the stratification proposed in this 

chapter are (1) that the stratified

hindering queries on the d

the completion of the stratification. 
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Chapter 5  

Performance evaluation 

In this chapter, we show experimentally the effectiveness of the proposed solutions 

designed for the purely sequential database engine. In the first section, we describe the 

simulation platform we implemented to evaluate the performance of the components 

from our embedded engine. Then, we measure the response time of a basic SPT 

implementation featuring our techniques. Finally, we discuss the impact of the 

serialized storage model through a performance simulation of its access pattern on 

different Flash-based devices. 

5.1 Platform Simulation 

Developing embedded software for MCU is a complex process, done in two phases: (1) 

development and validation on simulators, (2) adaptation and flashing on MCU. We 

first developed a software simulator of the target hardware platform: a MCU equipped 

with a 50 MHz CPU, 64 KB of RAM and 1 MB of NOR-Flash, connected to a 4GB 

external NAND Flash. This simulator is IO-accurate, i.e., it computes exactly the 

number of page read, write and block erase operations. In order to provide 
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performance results in seconds, we calibrated 17  (see Table 1) the output of this 

simulation with performance measurements done on a previous prototype named 

PlugDB. PlugDB has already reached phase 2 (i.e., runs on a real hardware platform), 

has been demonstrated [10] and is being experimented in the field to manage personal 

healthcare folders. While PlugDB is simpler than our database engine (simpler indexes 

and no stratification), it shares enough commonalities with our design to allow this 

calibration. 

 
Table 1: Performance parameters defined for the SPT simulator 

Category Description Value 

Flash sector size 512 B 
Flash page size 2 KB (4 sectors) 
Read one Flash sectors (transfer time included) 40 µs/IO 
Write one Flash page (transfer time included) 300 µs/IO 

Flash 

Transfer one byte from NAND register to RAM 0.025 µs/B 
CPU Frequency 50 MHz 

Number of hash functions 3 
Encoding size for each key 2 B Bloom Filter 
False positive rate 0.005 % 

5.1.1 Insertion cost and tuple lifecycle 

This section assesses the benefit of serialization and stratification in terms of write 

I/Os to the NAND Flash. 

We consider a synthetic medical database (see Figure 11 and Table 2) with 

cardinalities similar to TPC-H (with a scale factor SF = 0.5, leading to 3M tuples for 

                                      
17 This calibration is important to take into account aspects that cannot be captured by the simulator (e.g., 
synchronizations problems when accessing the Flash memory). It impacts negatively the performance shown 
here roughly by a factor of 1.4. 



 

83 

the largest table Prescription). Each of the 6 tables has 5 indexed attributes (indicated 

by an asterisk appended to the attribute name): ID, Dup10, Dup100, MS1, MS10. ID 

is the tuple identifier, Dup10, Dup100, MS1 and MS10 are all CHAR(10), populated 

 selection retrieves respectively 10 tuples, 100 tuples, 1% and 

bing indexes is implemented as Hybrid 

in italic font) and other non-indexed 

attributes, the tuple size reaches 160 bytes. Crossed cells represent non existing 

instances. We also built Subtree Key Tables on tables Prescription, Visit and Drug. The 

able  

 
Pre Vis Doc Dru Lab Cla 

such that exact match

10% of the table. The serialized part of all clim

Skip. Including the required foreign keys (

tables are populated uniformly. This massively indexed schema holds 30 climbing 

indexes, translated into 64 serialized indexes, from which 29 for the Prescription table 

(5 from each sub-table + 4 defined at Prescription level). 

 
Table 2: Synthetic medical database schema and cardinalities 

                       T
Attribute 

ID* INTEGER 3M 75K 7500 400K 5K 10K 
Dup10* CHAR(10) 300K 7500 750 40K 500 1K 
Dup100* CHAR(10) 30K 750 75 4K 50 100 
MS1* CHAR(10) 100 100 100 100 100 100 
MS10* CHAR(10) 10 10 10 10 10 10 
A1 CHAR(10) 3M 75K 7500 400K 5K 10K 
A2 INTEGER 3M 75K 7500 400K 5K 10K 
A3 DATE 3M 75K 7500 400K 5K 10K 
Comment CHAR(98) 3M   400K   
Comment CHAR(94)  75K     
Comment CHAR(90)   7500  5K 10K 
IDVIS INTEGER 75K      
IDDOC INTEGER  7500     
IDDRU INTEGER 400K      
IDLAB INTEGER    5K   
IDCLA INTEGER    10K   
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umbers of the 20 SD cards tested in [69] and evaluated the 

sertion cost of one tuple with indexes built as classical B+-Trees on top of a FTL. 

Averaging the ctor) to 4.2 s 

(P . The minimal insert SD card, table Doctor) i  

the maximal cos table Prescription) is 15 s.  

How ese st y future 

stratifications. T he i a single 

tuple during the ll  steps) 

with the same o r a FTL without stratification.   

Considering the final size of the database with SF = 0.5 (3 M tuples in Prescription) 

and a scalability  = 300 K (i.e., 300 K tuples i tion),  

is between 4 and 5, depending on 

the table. This number grows between 8 and 12 with ↓DB = 50K (the smaller the 

 is twofold: (i) during the initial insertion in ↓DB, buffers 

factorize the write cost of all elements inserted synchronously (e.g., attributes and 

proportional to its size (including indexes). In the synthetic medical database, this size 

hrough a FTL would produce between 12 (Doctor table) and 

Let us first study the insertion cost of a single tuple. The number of serialized indexes 

depends on the table, and so is the insertion cost (note that Hybrid Skip insertion cost 

is rather stable with respect to the selectivity – see Section 4.3.1 and Figure 10). 

Insertion cost varies between 1.3 ms for the Doctor table to about 7 ms for the 

Prescription table, and then does not appear as a bottleneck even for massively 

indexed tables. To illustrate the benefit with respect to state of the art techniques, we 

used the performance n

in

SD cards performance, this cost varies between 0.8 s (Do

rescription) ion cost (best s 42 ms while

t (worst SD card, 

ever, th numbers must be put in perspective with the co  incurred b

hus, we compare the write I/Os induced by t nsertion of 

 complete lifecycle of the database (i.e., through a stratification

peration ove

 limit such that ↓DB n Prescrip

the total number of I/Os induced by a single tuple 

scalability limit, the higher the number of stratifications). The reason for these 

surprisingly small numbers

entries of indexes of the same table, see Section 4.2.1); (ii) each stratification incurs the 

complete rewriting of the database, the part of this cost attributed to each tuple being 

is at maximum 300 bytes, leading to about 1/7 I/O per tuple for each stratification. 

In contrast, an insertion t
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Summarized KAs (SKAs) 

re made up of Bloom Filters (one per KA page) to speed up exact match predicates; 

finally, Pointer lue. Differently 

from conventional databases, indexes can be beneficial even with very low selectivity; 

indeed, random or sequential reads on N a it  ) e the same 

performance. Therefore, it makes sense to vary selectivity up to 100%. To this end, we 

built a single table of 300 sto in ,  1 ri s ulated with 

a varying nu istin , , p t 00 un m istributed. 

Figure 13.a the res ct ch ex up d ur .b for index 

insertions (in one single r insertions, w s d  case (i.e., 

inserting a single tuple, then committing, ther li g e  ffering). As 

expected, F Sca ery d insertio  cost and a very bad lookup 

performance it pe ll KA scan whatever the selec y.

                                     

31 (Prescription table with 29 index + 1 table + SKT) random I/Os, under the 

favorable hypothesis that each insertion in a B+-Tree index generates a single I/O. 

Each of these I/O in turn generates p physical writes, where p is the write 

amplification factor of the considered FTL18. Thus, serialization and stratification not 

only speeds-up the insertion cost at insertion time but also reduces the total write cost, 

thus reducing energy consumption and maximizing the NAND flash lifetime. 

5.1.2 Performance of serialized indexes 

We now focus on the cost of exact match lookups and insertions for the serialized 

indexes proposed in Section 4.3.1. They are composed of a combination of different 

structures: Key Areas (KAs) replicate the indexed attributes; 

a

Lists (PTRs) chain index entries that share the same va

 NA D fl sh (w h no FTL  hav

K records, red  ↓DB  with 1 att bute , pop

mber of d ct values (3 15, 30 …, u o 3 K), ifor ly d

reports ults for exa mat  ind look s an Fig e 13

index). Fo e con idere the worst

eby mitin  the b nefit of bu

ull Index n has a v  goo n

, because rforms a fu tivit  

 
18 Typical value  aroun  S 9] an  are ev  higher on simpler flash devices like SD 
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FTL features d on and c ve an estimated factor of 0.1 ]. 
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Figure 13: Performance of Serialized Indexes (simulation) 

Summary Scan reaches pretty good insertion costs but lookups do not scale well with 

low selectivity predicates. Indeed, since almost all KA pages contain the searched value, 

each Bloom Filter of the SKA will have a match, leading to the scanning of all KA 

pages; thus, Summary Scan is equivalent to a SKA scan followed by a Full Index Scan 

for low selectivity predicates. This explains the extra cost compared to Full Index Scan 

with a selectivity lower than 1 %. Conversely, Summary Skip performs better in terms 

of lookup but induces very high chaining costs when the inserted value is infrequent. In 

order to maintain the chained list, the engine must perform a simplified Summary Scan 

(the scan is interrupted when the result is found) to get the previous occurrence of the 
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ependent 

on the number of keys summarized by n SKA pages rather than the cardinality of the 

 is more compact, which leads to 

 

queries, termed Multii, involve 2 or 3 exact match predicates on MS1 or MS10. Finally, 

rganized and 

thus ↓DB = ø; (2) ↓DB = 50 K; (3) ↓DB = 300 K. Figure 14 presents the 

measurements for the 18 queries, ordered by the number of resulting tuples (X axis). 

attribute. Hybrid Skip appears as the best compromise, with a bounded insertion cost, 

and very good lookup costs. With a selectivity higher than 0.1 %, the SKA n pages’ 

scan limit is reached without finding a previous occurrence and the pointer chain is 

broken, which avoids the problematic behavior of Summary Skip. With low selectivity 

predicates, it even outperforms any other index, including Summary Skip, because 

pointers accessed in PTR are smaller in size. Indeed, the pointer size is only d

whole SKA (Summary Skip). Thus, the PTR structure

less I/Os. Finally, we verified that Hybrid Skip scales up to rather large (e.g., 0.5 M) 

number of tuples (not shown on figures). 

5.1.3 Performance of the overall system 

This section analyzes the behavior of the whole system considering the query cost of 

several types of queries, the impact of updates and deletes and the stratification cost.  

We first focus on the query cost and run a set of 18 queries: 12 queries, termed Monoi, 

involve an exact match selection predicate on a single table on attribute ID, DUP10 or 

DUP100, join this table up to Prescription and project one attribute per table. 3

3 queries, termed Rangei, involve a range predicate on ClassOfDrug.DUP100. Table 3 

presents each query used in Section 4.3.2 (in the same order) with its name, its 

number of results (given that 3000 deletes have been performed before), and, for a 

selection of representative queries, the corresponding execution plan. We measured the 

query response time with 3 settings: (1) the database has just been reo

We split the graph in two in order to have different scales for response time (0-400 ms, 

0-10 s). 
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Figure 14: Performance of 18 queries with different settings 

For selective queries (1-799 results), selection cost is relatively important with large 

↓DB (300 K) while with ↓DB = 50 K the response time is very near the stratified one. 

Considering several predicates (Multi1) increases this cost, as expected. Finally, the 

cost of Mono1 is almost zero because it retrieves a prescription having a specific ID, 

which is, in our setting, the tuple physical address. 

For less selective queries (3-60 K results), the cost is dominated by the projection step. 

Consequently, the ↓DB size has little influence. 
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Expression 

Regarding updates and deletes, measurements on ↓DB = 50 K and ↓DB = 300 K 

have been done after having deleted randomly 3000 tuples (with cascade delete option) 

and having updated 3000 tuples (uniformly distributed on DUP10, DUP100, MS1, 

MS10 and A1 attributes of each table). We observed little influence of updates and 

deletes on performance, because they are evenly distributed. Considering more focused 

updates on the queried attribute value would lead to larger degradations, which stay 

however rather limited thanks to the indexation of ↓UPD (see Section 4.4.3). 

 
Table 3: Queries and execution plans 

Name Results

Mono1 1 SELECT Pre.A1 FROM Pre WHERE ID = 1500000; 

SELECT Pre.A1, Dru.A1 FROM Pre, Dru 
WHERE Pre.idDru=Dru.ID AND Dru.ID = 20000; 
 

Mono2 8  

Project (L2, <Pre.A1, Dru.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru >) → L2 
  CLIL (CLIDru.ID, Dru.ID=20000, Pre) → L1 

Mono3 10 SELECT Pre.A1 FROM Pre WHERE Pre.DUP10 = ’VAL_150000’; 

Mono4 30 SELECT Pre.A1, Dru.A1, Cla.A1 FROM Pre, Dru, Cla 
WHERE Pre.idDru = Dru.ID AND Dru.idCla = Cla.ID AND Cla.ID = 5000;

Mono5 80 SELECT Pre.A1, Dru.A1 FROM Pre, Dru 
WHERE Pre.idDru = Dru.ID  Dru.DUP10 = ’VAL_2000’;  AND

Mono6 100 SELECT Pre.A1 FROM Prescription Pre WHERE Pre.Dup100 = ‘VAL_15000’; 

Mono7 300 
SELECT Pre.A1, Dru.A1, Cla.A1 FROM Pre, Dru, Cla 
WHERE Pre.idDru =  Dru.ID AND Dru.idCla = Cla.ID 
AND Cla.DUP10 = ’VAL_500’; 
SELECT Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1 
FROM Pre, Vis, Doc, Dru, Lab, Cla 
WHERE Pre.idVis = Vis.ID AND Vis.idDoc = Doc.ID 

AND Dru.idClaID = Cla.ID AND Doc.MS1 = ’VAL_50’ 
AND Cla.MS1 = ’VAL_50’; 
 

AND Pre.idDru = Dru.ID AND Dru.idLab = Lab.ID 

Multi1 300 
 

Project (L4, <Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1>) 
 SJoin (L3, SKTPre, <idPre, idDoc, idVis, idDru, idLab, idCla>) → L4
  Merge (L1L2}) → L3 
   CLIL (CLIDoc.MS1, Doc.MS1=’VAL_50’, Pre) → L2 
   CLIL (CLICla.MS1, Cla.MS1=’VAL_50’, Pre) → L1 



 

Mono8 599 
SELECT Pre.A1, Dru.A1, Lab.A1 FROM Pre, Dru, Lab 
WHERE Pre.idDru = Dru.ID AND Dru.idLab = Lab.ID 
AND Lab.ID = 2500; 

Mono9 799 SELECT Pre.A1, Dru.A1 FROM Pre, Dru 
WHERE Pre.idDru = Dru.ID AND Dru.DUP100 = ’VAL_200’; 

Mono10 2997 
SELECT Pre.A1, Dru.A1, Cla.A1 FROM Pre, Dru, Cla 
WHERE Pre.idDru = Dru.ID AND Dru.idCla = Cla.ID 
AND Cla.DUP100=’VAL_50’; 
SELECT Pre.A1, Dru.A1, Cla.A1 FROM Pre, Dru, Cla 
WHERE Pre.idDru = Dru.ID AND Dru.idCla = Cla.ID 
AND Cla.DUP100 > ’VAL_99’; 
 Range1 2997 
 

Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CLIL (CLICla.DUP100, Cla.DUP100>’VAL_99’, Pre) → L1 

Multi2 2996 

SELECT Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1 
FROM Pre, Vis, Doc, Dru, Lab, Cla 
WHERE Pre.idVis = Vis.ID AND Vis.idDoc = Doc.ID 
AND Pre.idDru = Dru.ID AND Dru.idLab = Lab.ID 
AND Dru.idCla = Cla.ID AND Doc.MS10 = ‘VAL_5’ 
AND Cla.MS10 = ‘VAL_5’ AND Lab.MS10 = ‘VAL_5’; 

Mono11 5995 
SELECT Pre.A1, Dru.A1, Lab.A1 FROM Pre, Dru, Lab 
WHERE Pre.idDru = Dru.ID AND Dru.idLab = Lab.ID 
AND Lab.DUP10 = ‘VAL_250’; 

Range2 14955 
SELECT Pre.A1, Dru.A1, Cla.A1 FROM Pre, Dru, Cla 
WHERE Pre.idDru = Dru.ID AND Dru.idCla = Cla.ID 
AND Cla.DUP100 > ‘VAL_95’; 

Range3 29912 
SELECT Pre.A1, Dru.A1, Cla.A1 FROM Pre, Dru, Cla 
WHERE Pre.idDru = Dru.ID AND Dru.idCla = Cla.ID 
AND Cla.DUP100 > ‘VAL_90’; 

Multi3 29

SELECT Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1 
FROM Pre, Vis, Doc, Dru, Lab, Cla 

AND Pre.idDru = Dru.ID AND Dru.idLab = Lab.ID 
913 WHERE Pre.idVis = Vis.ID AND Vis.idDoc = Doc.ID 

AND Dru.idCla = Cla.ID AND Cla.MS10 = ’VAL_5’ 
AND Lab.MS10 = ’VAL_5’; 

Mono12 59881 
SELECT Pre.A1, Dru.A1 Lab.A1 FROM Pre, Dru, Lab 
WHERE Pre.idDru = Dru.ID AND Dru.idLab = Lab.ID 
AND Lab.DUP100 = ‘VAL_25’; 

Let us now consider the stratification cost. We consider a fixed size for *DB (2.7 M 

tuples in Prescription) and vary the size of ↓DB (varying the Prescription table from 

aries linearly from 7 min (for 50 K) to 

50 K to 300 K tuples, other tables growing accordingly). The reorganization cost (see 

Section 4.4.4 for the reorganization algorithm) v
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 lifetime 

oes not appear to be a problem. 

As a final remark, the FTL approach, which was already disqualified due to its write 

beha oes not appear to be a good option in terms of query performance either. 

Indeed, except for highly selectiv h can 

perform slightly better  overhead incurred by 

tra trans ion tables makes the performance of less selective (then costly) 

queries much worse tha he high number of I/Os 

generated at pro ion time dominates the cost of these queries. 

5.2 Hardware

In a second phase, we d  

real hardware p rm ded by Gemalto, 

our industrial partner.  with a smart card like secure MCU, 

powered by a 20 MHz  64 KB of RAM (with half of 

it reserved to the opera of 1 MB of NOR 

Flash memory and its odule, connected 

by a Serial Pe ral nterface (SPI) bus (for our experiments the token used a 

128 MB Samsung K9F e a 

Gigabyte-sized one). U ial products, it offers a direct access to 

9.6 min (for 300 K). It is worth noting that stratification runs in background, and 

does not block queries. The stratification cost results from (1) reorganizing ↓IND, 

↓DEL and ↓UPD and (2) reading *DBi and rewriting *DBi+1. The flash “consumption”, 

i.e., the quantity of flash memory written during the stratification, varies between 

1.5 GB (for 50 K) and 2,1 GB (for 300 K). However, 60 stratification steps are 

required to reach 3 M tuples in Prescription with a ↓DB of 50 K, while only 10 

stratification steps are necessary with a ↓DB of 300 K. In any case, the flash

d

vior, d

e (then cheap) queries where the FTL approac

than serialization/stratification, the FTL

versing lat

n serialization/stratification. Indeed, t

ject

 prototype 

eveloped a partial implementation of our database engine on a

latfo , i.e. on a secure USB device (Figure 15) provi

This platform is equipped

32-bits RISC CPU and containing

ting system). Its secure storage is composed 

external storage is a NAND Flash memory m

riphe  I

1G08X0A module, but in the near future it should us

nlike most commerc
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Flash memory, i.e., the s 512 B sectors, 

each page contains 4 se k is formed by 64 pages. 

 FTL can be bypassed. This Flash chip contain

ctors, and each bloc

 
Figure 15: vice 

Due to the limited st  our test platform, we focused on 

eva  the rm ments from the 

clustered database layo s we estimated in Section 5.1.3 that 

the stratification proce  of storage. Our 

implementation compr ifferent 

operators required to x variants (Full Index Scan, 

Summary Scan H lts suggested that 

Summary Skip brings ort for delete and 

up  

It was not possible, however, to reproduce the simulation with the exact same 

 Logical and physical layouts of the secure USB de

orage space available on

luating  perfo ance of our serialized indexes. As such, ele

ut were not considered, a

ss would require at least one free gigabyte

ised the sequential database storage model, the d

implement the three main inde

 and ybrid Skip only, as the simulation resu

no advantage over Hybrid Skip), the supp

date operations and the I/O glue to handle direct Flash accesses. 

parameters (Section 5.1.2). Instead of 300 K records, the maximum number of tuples 

that could be stored in ↓DB was 90 K, with 10 attributes, populated with a varying 

number of distinct values uniformly distributed. The execution time was measured by 

calculating the number of CPU ticks elapsed while inside the index operators 
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(additionally, I/Os were performed synchronously, no multithreading involved). The 

selection results are summarized in Figure 16. 
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Figure 16: Selection performance of serialized indexes (secure USB device) 

A comparison with the simulation results shows that the indexes perform globally in 

ed. Summary Scan performs well for high 

selectivity predicates, but do not scale well when the selectivity decreases, because of 

the extra cost incurred to scan the whole KA and SKA; it is already outperformed by 

(90 K instead of 300 K), although the execution times were mostly similar, either for 

selections or insertions. This implies that hardware-specific problems  we estimated 

accordance with the behavior predict

a greedy Full Index Scan when the selectivity reaches 1%. Again, we verified that 

Hybrid Skip appears as the best compromise, due to the small size of PTR. It is worth 

noting that the database size was about three times smaller in these experiments 

19

                                      
19 Cf. note 17 p. 82. Due to clock constraints for bus synchronization between the MCU and the NAND Flash 
chip, the CPU had to be down-clocked from 50 to 20 MHz. 
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d the consequently 

slower CPU clock increased the execution time by a factor of x3-4 instead. Although 

we thesize that the 

sync r frequency (CLK signal 

at 10 at SPI commands 

can be sent t aiting for the 

acknowledgmen ort) is also 

increased. As I/Os are sync ottleneck with 

respect to the Flash p

5.3 

Many embedded platforms do not provide a direct interface to raw Flash chips 

during the calibration of the simulator to degrade the engine performance by a factor 

of x1.4 have a greater impact, because the synchronization issues an

 are not able to confirm with a fully working platform, we hypo

hronization issues lead to use the SPI interface at a lowe

MHz instead of 25 MHz by default). This basically means th

wice less often, and the time spent by the controller w

t after each byte transfer (no Direct Memory Access supp

hronous, the SPI bus on this prototype is a b

erformance, at least by a factor of x2.  

Storage layout 

anymore. For example, embedded boards available to system developers often feature a 

MicroSD connector for Flash memory cards only. Similarly to SSDs, Secure Digital (SD) 

cards use an abstraction layer to hide the peculiarities of Flash memory; however, due 

to their different form factor and much lower price, one can assume that their FTLs 

have less available “resources” (less powerful controller and reduced onboard RAM 

space because of the smaller form factor). Our serialized database was designed to 

work around problematic I/O patterns of raw Flash memory, which may already be 

hidden behind a basic SD card’s FTL. In this section, we evaluate the impact of 

changing the storage interface on the database layout. 

The second test platform selected was an ARM-based development board 

(STM32F217ZGT620), whose System on Chip design was similar to the secure USB 

                                      
20 Datasheet available at http://www.st.com/internet/mcu/product/250172.jsp (retrieved on 2012-06-15). 
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M, 1 MB of NOR, and a crypto co-

processor. Although it uses a different form factor (10 x 10 cm board), it shares the 

 

 

device we previously evaluated. The STM32F217 series of MCUs feature an ARM 

Cortex M3 CPU (120 MHz), 128 KB of RA

hardware commonalities of SPTs and can be considered as such. However, this MCU 

does not provide direct NAND access, but a SPI bus with a MicroSD port, requiring 

the use of MicroSD cards as external storage devices. The exact physical layout of

Flash-based SD cards is unknown: it might be identical to the secure USB device’s chip, 

but the page size varies with the card capacity (large block Flash chips feature 4 KB 

pages and 512 KB blocks 21 ). Therefore, any existing assumption of the Flash

organization beyond the logical view the FTL provides is not safe to apply to several 

SD cards and should be discarded. 

 

Preliminary performance tests with the MicroSD card on the platform produced the 

following results: a read operation takes 1 ms, and a write operation less than 10 ms. 

As such, I/Os on this platform are about x25 times slower than our calibrated 

Figure 17: STM32F217 test platform 

                                      
21  For instance, the following white paper related to bad block management, available at 
http://www.nxp.com/documents/application_note/AN10860.pdf (retrieved on 2012-06-15), considers three 
different block sizes. 
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UFLIP [20] is a benchmark designed to measure the response time of Flash-based 

devices to different I/O patterns (distributions of reads and writes over time and 

ts complex Flash devices such as SSDs, we considered a 

light eight version of its test plan and only selected a few tests to reproduce the 

 SWSs, for example writing a 

                                     

simulator, and x10 times slower than the secure USB device experimented previously. 

These results were corroborated by the fact that the complete experiment used to 

evaluate the selection performance of the serialized indexes took more than 24 hours to 

complete (instead of 2 hours on the secure USB device). To determine whether SD 

cards in general exhibit low performances, whether our implementation was sub-

optimized, or whether the serialized design is badly adapted to these storage devices, 

we evaluated the performance of several SD cards in isolation by reproducing the 

serialized data access pattern with the uFLIP benchmark tool. 

device space). Although it targe

w

behaviour of our serialized layout. First, uFLIP performs by default a random format 

of the device, covering its entire surface with random writes of varying sizes, so as to 

place all devices to be tested in a “neutral” state22. 

However, an SD card used in the context of our database engine would only receive 

sequential writes. Therefore, we assumed that a “neutral” state in our context would 

be when a card has already been filled completely with data from SWSs, which we 

simulated by an initial sequential format operation. Then a classic uFLIP run measures 

the impact of several I/O patterns, such as: granularity, alignment, locality, circularity, 

partitioning, ordering and parallelism – most of them being excluded by our serialized 

design. An insert implies appending data sequentially in

tuple in ↓DATA and ↓IND for all its associated indexes’ structures (e.g. for Summary 

Skip: KA, SKA and PTR). If we consider several SWSs, then a typical serialized 

 
22 All SSDs are not sold in identical states: for instance, they can be preformatted for Windows, or may have 
already experienced several write-erase cycles as part of the manufacturer’s quality assurance process. 



 

workload can be simulated by the partitioning pattern of uFLIP, where the device 

space is divided into partitions, accessed sequentially in a round-robin fashion 

(similarly to, for instance, a merge operation of several buckets during external sort). 

As illustrated in Figure 18, if we assume that Wij represents the jth write operation to 

the ith partition, then m sequential writes to a single partition are represented with the 

sequence {W11, W12, W13,…,W1m}. Thus, with m sequential writes to n partitions, 

uFLIP will submit the following pattern: 

{W11, W21, …, Wn1, W12, W22, …, Wn2, …, W1m, W2m, …, Wnm}. 

 

In our con

associated indexes. Since eac  an index insert, the round-

robin partiti erations that occur 

into SWSs on insert queries. erify whether a 

pseudo-sequen w Flash chips is 

well supp ormance issues, we 

hope this experimen viors among the tested 

cards, in order to refine th s. 

are included for reference in Table 4; random writes were performed after the 

Figure 18: uFLIP’s partitioning I/O pattern 

text, the first partition can represent a table and the next partitions its 

h tuple insert is followed by

oning pattern of uFLIP actually simulates the write op

As such, this benchmark allows us to v

tial pattern that provides satisfying performances on ra

orted on SD cards. Nonetheless, if the cards exhibit perf

t will enable us to isolate reproducible beha

e design rules with their peculiaritie

We ran our benchmark on a set of 10 SD cards, of various sizes (from 1 to 32 GB), 

manufacturers and form factors (3 of them are MicroSD cards), both for sequential 

partitioned reads and writes, from 1 up to 256 partitions. Basic read and write costs 

sequential and read-only experiment to avoid disturbing the “neutral state” of each 

card. 

97 



 

98 

 
Table 4: SD cards performance results for basic patterns 

Reads (512 B, in ms) Writes (512 B, in ms)  
sequential random sequential random 

KINSTON 4GB 0.9 2.1 5.9 300 
SILICON POWER 4GB 0.7 0.8 1.8 100 
SILICON POWER 4GB 0.7 1.3 14 600 
SONY 4GB 1.2 1.5 3 700 
KINSTON 8GB 0.7 1.1 9 400 
SAMSUNG 8GB 0.9 1.2 2.4 400 
SAMSUNG 32GB 0.7 0.9 1 40 
KINGSTON 4GB (MicroSD) 1.1 1.4 6 500 
SAMSUNG 8GB (MicroSD) 1 1.1 4 400 
Noname 1GB (MicroSD) 0.6 0.8 3 100 

As it could be expected by the absence of mechanical parts in NAND Flash, the access 

pattern (sequential, random) has little to no influence on read performance, which is 

only dependent on the data size; although the fa toc r varies between cards. Also, these 

tested, the response time remained mostly constant. This suggests that successive and 

significantly the performances of the database engine. 

results confirm the better efficiency of a storage design avoiding random writes, 

because they are several orders of magnitude slower than sequential ones. 

Unfortunately, I/Os are indeed much more costly with SD cards than with a direct 

NAND Flash access, be it the poor quality of Flash chips used inside SD cards, the 

included FTL, or overall that heavy I/Os are not the intended market usage for them;  

for instance, a single sequential write is x3-35 times faster on raw NAND Flash, 

depending on the SD card considered. 

As we can observe on Figure 19 for one MicroSD card, the duration of read operations 

is not, once more, affected by the number of partitions read from; whichever card was 

sequential reads to different structures, e.g. SKA then KA then PTR do not degrade 
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Figure 19: Response time of partitioned sequential I/Os (Samsung microSD 8GB) 

Partitioned sequential writes appear, however, to be more problematic to handle by all 

partitions) is reached; beyond this point their performances degrade to random writes 

(several orders of magnitude slower depending on the card). The actual FTL 

algorithms implemented on our tested samples being unknown, we can only 

possibly a garbage collection of the affected blocks, which would explain the sudden 

tested cards. A common pattern is illustrated on Figure 19: partitioned sequential 

writes perform as quickly as sequential writes until a certain threshold (number of 

hypothesize that the request allocator fails to “detect” that writes are sequential 

within each partition, and therefore each subsequent write triggers a remapping and 

performance degradation, and why raw Flash chips are not affected. If we consider the 

design described previously (with one SWS for the table and a second SWS for its 

associated indexes), these results suggest that our serialized design becomes inefficient 

on SD cards for database schemas containing more than two tables. 
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The thresholds for all tested cards are summarized in Figure 20, which shows an 

authors on SSDs. Neither the form factor nor the capacity has a significant impact on 

the device’s performance (with the exception of the 32 GB card that performs 

check whether a given card will perform best in our SWS context (for example, these 

results would suggest to use SAMSUNG cards only with the serialized database). 

 do not support any partitioned write at all 

without performance degradation. This implies that our design is not adapted to SD 

unknown, or at best tied to the database schema the user intends to deploy. However, 

the design can be made compatible with minor adjustments to more cards by reducing 

4GB POWER 4GB POWER 4GB
NY 4GB SAMS

8G
KI

(M

NG Non

SD)

Figure 20: S ort ed wr

important heterogeneity of the results, similarly to what was observed by uFLIP 

exceptionally well); worse, cards from a single manufacturer do not exhibit the same 

limit. This behavior makes it difficult to build a “catch-all” solution for FTL-over-

Flash devices, by opposition to raw NAND Flash chips, although it is still possible to 

Furthermore, half of the cards tested

cards, because its efficiency with a random card bought from a classic retailer would be 

the number of concurrent SWSs. For instance, a single SWS for the current serialized 
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still be performed in a degraded mode that cannot be interrupted, during which 

factors underlined 

the importance of avoiding unsupported I/O patterns and isolated new design issues 

that were not present with raw NAND Flash. 

database instead of one per table can be achieved by adding structures to track the

position of tuples and sharing buffers among them. Then, it is possible to use at most 

4 SWSs for the whole database: ↓DBi+1, *DBi+1, ↓DBi, and *DBi. *DBi is the 

reorganized database resulting from the previous stratification, and ↓DBi is the

serialized database that reached its scalability limit; as such, both of them are

invariant, and accessed in read-only mode. Conversely, ↓DBi+1 is the current serialized 

database where insertions occur, and *DBi+1 is the new reorganized database which is 

being produced by merging ↓DBi, and *DBi. Therefore, at any time, there are 4 SWS

read (partitioned reads are well supported), but only 2 SWSs written concurrently 

(hence 2 RW partitions), which fits most SD cards. However, low-end cards with a

single write partition remain problematic to handle efficiently with respect to the

stratification process without a loss of functionality. For example, the stratification can 

normal database interactions are suspended (no concurrent insertions to ↓DBi, hence 

only one SWS is written at any time). 

5.4 Conclusion 

In this chapter, we first built a simulator for our platform using analytical cost models 

and calibrations from an existing similar prototype. The performance results showed 

that the purely sequential database design was fully adapted to the hardware 

constraints of the Secure Portable Token context. The behavior of the engine was 

further confirmed with an experiment on real hardware of our reference 

implementation, whose results suggested that the performances of the storage system, 

rather than the CPU clock speed, are the main bottleneck on SPT platforms. Finally, 

our experiment to evaluate the database performance on other form 
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 the accumulation of one’s complete digital 

history in servers. Although data centralization has unquestionable benefits in terms of 

even consistency of security policies, they must be weighted 

the token security constraints and not 

Chapter 6  

Conclusion and future work 

The number of information systems gathering personal data on servers is escalating at 

a tremendous pace. Citizens have no way to opt-out because governments or companies 

that regulate our daily life require them. Administrations and companies deliver an 

increasing amount of personal data in electronic form, which often ends up as well in 

servers at the user convenience. Indeed, the user expects her data to be available, 

resilient to failure and easily manageable – a service that many internet companies 

provide. All these situations result in

resiliency, availability and 

carefully against the privacy risks. 

The approach promoted in this thesis is part of the global Personal Data Server vision. 

As described in [9], it outlines an individual-centric architecture whose aim is to enable 

powerful personal data applications and at the same time provide user-friendly control 

over one’s data with tangible enforcement guarantees. This vision is based on a Secure 

Portable Token that embeds a software suite, allowing it to provide a full-fledged 

database engine, which acts as an interoperable data hub (e.g., acquire personal data 

from servers, share them with other personal data servers) while enforcing the 

Hippocratic privacy principles [5] (e.g., limited collection, limited retention, audit). 

These features must take into consideration 
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isrupt its portability. Although its scope is not limited to the above vision, the 

embedded data server engine proposed in this thesis fits in the personal data server 

architecture and shows that managing a gigabyte-sized database within a secure token 

is not pure utopia. 

This chapter concludes the thesis. We synthesize the work conducted, and close the 

manuscript by opening exciting research perspectives. 

6.1 Synthesis 

Be it on size, cost, energy consumption or shock resistance, embedded devices are 

subjected to many restrictions. Due to their use of a secure microcontroller that must 

comply with security properties, Secure Portable Tokens are even more constrained. 

These limitations force to adopt certain hardware technologies and designs, such as 

reducing the system capabilities with less RAM and processing power, or using storage 

systems without any mechanical moving parts. NAND Flash has become the most 

popular stable storage medium for embedded systems. Therefore, efficient storage 

models and indexing techniques are needed to cope with the ever-growing storage 

capacity. Designing these methods is complex because embedded systems combine their 

own design limitations with the peculiarities of NAND Flash, whereas state of the art 

work focuses on addressing each of them independently. In this thesis, we addressed 

specifically the combination of both aspects. 

We analyzed hardware peculiarities of Flash-based embedded devices and identified a 

comprehensive set of key constraints applying, in our context, to Secure Portable 

Tokens. We found that existing Flash-based storage models and batch indexing 

methods are inadequate to answer all requirements at once. Then we proposed a new 

approach based on serialization and stratification to adapt naturally the defined 

constraints. 

d
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In the serialized data storage model, all structures of the database (data, indexes, 

buffers and update and delete logs) are organized by Sequentially Written Structures 

(SWSs). In order to solve the scalability issues inherent to the sequential layout, we 

t of database stratification. We illustrated both concepts by 

model simulator to evaluate the 

l system. Experiments of our 

prototype on several embedded devices have showed the predictability and adaptability 

of the proposed solutions. Considering that our embedded engine is able to manage a 

Current Flash trends [1] predict an increase of the bits stored per Flash cell, 

introduced the concep

applying them to the whole database, and built a cost 

performance of each component and of the overal

complete database without generating any random write, it seems to be applicable to a 

wider context, as long as random writes are detrimental in terms of I/O cost, energy 

consumption, space occupancy or memory lifetime. 

6.2 Perspectives 

The work conducted in this thesis can be pursued in various directions. We identify 

below some challenging issues and outline possible lines of thought to tackle them. 

Tolerance limits of NAND Flash memory 

compacter dies (their size already shrinks faster than Moore’s law) and a decrease of 

the block endurance23. This means that next-generation SD cards (which often use low 

quality and multi-level cells) are unlikely to change the poor performance observed in 

Chapter 5 with respect to partitioned sequential writes (only one partition is well 

supported, writes to two partitions degrade to random writes). Although our design 

can be adapted to generate less SWSs, the stratification process remains suboptimal on 

these SD cards, because it requires two SWSs to proceed (↓DB for new insertions and 

                                      
23 New generation TLC (Triple-Level Cells) Flash supports less than 5000 erase cycles per block. 
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ps. Although this increases the number of writes performed on 

insertions and reads on selections, the overall performance loss is minor because 

ccupancy, and a single 

 *DB implies that their lifetimes are tied, because the SWS 

(whereas previously a small ↓DB could be 

 mount option) alongside the file node. A 

further study could assess the relevancy of these approaches, how to enable efficient file 

ove, Flash memory evolves towards more density and more capacity but 

less endurance [1]. These trends imply that more and more error correction 

*DB for the stratum being reorganized). A merge of these two distinct SWSs into one 

can be achieved by maintaining tracking structures to identify whether a tuple comes 

from ↓DB or *DB and pointer lists to link elements from e.g. the same table in order 

to speed up looku

random writes still remain two or three orders of magnitude more costly. Note that 

maintaining tracking structures will increase RAM and Flash o

SWS for both ↓DB and

principle forbids any partial reclamation 

reclaimed as early as possible). 

Document retrieval in Personal Data Servers 

In the PDS vision, the user is supposed to be able to store permanently files or 

documents on the Secure Tokens or on the Supporting Servers. She may need to access 

them later, without remembering their file names or in which directory they were saved. 

Several approaches can be envisaged to tackle this use case, such as full text indexing. 

However, maintaining these indexes with the embedded constraints seems to be 

challenging, additionally to being very space consuming. An alternate solution is to 

rely on the file system implementation to support more file metadata. For example, on 

Linux, the Unsorted Block Image File System (UBIFS), targeted at Flash memory, is 

able to store 4 KB user metadata (user_xattr

and tag search with our low RAM constraint, and finally, how to handle file moves, 

deletions or tags updates with the Flash constraints. 

Emerging memory and storage technologies 

As written ab



 

107 

embedded devices [57]. Unlike Flash memory, PCM is directly bit-alterable, which 

means that no block erase operation is required; furthermore, it does not suffer from 

the extra addressing cost on the first block access, enabling performance greater than 

gnitude. As such, in many aspects, it can be compared to 

v latile memory technologies such as DRAM, although PCM still shows an asymmetry 

AM 

with PCM, include PCM alongside DRAM, or demote DRAM as a simple cache for 

g PCM-friendly algorithms [25]. 

on restart), its use provides promising insights in term of transaction management 

( f running 

mechanisms (ECC) will be required to ensure correct data retention. Several new non-

volatile memories, such as SONOS (Silicon-Oxide-Nitride-Oxide-Silicon), aim at 

providing higher quality replacements by using more efficient components to store data 

in their cells. Conversely, other technologies are emerging, that do not inherit Flash 

constraints (see Chapter 2), such as MEMRISTOR, Magnetoresistive random-access 

memory (MRAM) or Ferroelectric RAM (FeRAM). 

Phase Change Memory (PCM), whose high-volume production has been announced in 

July 2012, seems to be the technology preferred by the industry to replace Flash in 

Flash by several orders of ma

o

between reads and writes, in terms of speed and energy consumption. Several usages of 

PCM are being envisioned with respect to main memory organization (replace DR

PCM), and database researchers are already suggestin

In the embedded context, PCM may be a good candidate for two usages. First, it may 

replace NAND Flash, due to the lack of moving parts and the great shock resistance. 

Although implementing PCM as the main storage device is unlikely for now (it offers 

less capacity than Flash as of today), its use would be interesting to free embedded 

devices from the burden of Flash constraints. Second, it may replace DRAM as the 

main memory unit thanks to their similarities. Its larger density over DRAM makes it 

particularly relevant for devices where the die size is a deciding factor, for instance 

Secure Portable Tokens. Furthermore, as PCM is a non-volatile memory (not cleared 

atomicity and durability) and recovery (automatic post-crash resuming o
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queries). However, these aspects should be weighted with its higher power consumption 

during write operations, especially on autonomous devices (e.g. sensors). A further 

study could assess the need for both PCM-friendly and energy-efficient database 

algorithms. 



 

109 

[4] Agrawal, D., Ganesan, D., Sitaraman R., Diao Y. and Singh S. Lazy-Adaptive Tree: 

An Optimized Index Structure for Flash Devices. VLDB, 2009. 

[5] Agrawal, R., Kiernan, J., Srikant, R. and Xu, Y. Hippocratic Databases. VLDB, 2002. 

Bibliography 

[1] Abraham, M. (Micron Technology, Inc), “NAND Flash trends for SSD/Enterprise”, 

http://ftp.bswd.com/FMS10/FMS10-Abraham.pdf, Flash Memory Summit, 2010, retrieved 

on 2012-06-15. 

[2] Adam, N. R. and Worthmann, J. C. Security-control methods for statistical 

databases: a comparative study. ACM Comput. Surv., 1989. 

[3] Agrawal D., Abbadi A. E., Wang S., “Secure Data Management in the Cloud”, DNIS, 

2011. 

 

[6] Ailamaki, A., DeWitt, D.J. and Hill, M. D. Data page layouts for relational databases 

on deep memory hierarchies. The VLDB Journal, 2002. 

[7] Allard, T., Nguyen, B. and Pucheral, P. Safe Anonymization of Data Hosted in Smart 

Tokens, PRiSM Technical Report n° 526, 2010. 

[8] Anciaux, N., Benzine, M., Bouganim, L., Pucheral, P. and Shasha, D. GhostDB: 

Querying Visible and Hidden data without leaks. ACM SIGMOD, 2007. 

[9] Allard T., Anciaux N., Bouganim L., Guo Y., Le Folgoc L., Nguyen B., Pucheral P., 

Ray I., Ray I., Yin S., “Secure Personal Data Servers: a Vision Paper”, PVLDB, 2010. 



 

110 

 

es”, Algorithmica, 2003. 

2] Ban, A.: Flash file system. United States Patent, no. 5,404,485 (1995). 

[13] Ban, A.: Flash file system optimized for page-mode flash technologies. United States 

Patent, no. 5,937,425 (1999). 

[14] Bernstein P., Reid C., Das S., “Hyder - A Transactional Record Manager for Shared 

Flash”, CIDR, 2011. 

[15] Birrell, A., Isard, M., Thacker, C., and Wobber T.: A design for high-performance 

flash disks. Operating Systems Review 41(2): 88-93 (2007). 

[16] Bityutskiy A. B., “JFFS3 Design Issues”, Tech. report, 2005. 

[17] Bloom, B. H. Space/time trade-offs in hash coding with allowable errors. 

Communications of the ACM, 1970. 

[18] Bolchini C., Salice F., Schreiber F., Tanca L., “Logical and Physical Design Issues for 

Smart Card Databases”, TOIS, 2003. 

[19] Bonnet, P., Bouganim, L.: Flash Device Support for Database Management. CIDR 

2011: 1-8. 

[20] Bouganim, L., Jónsson, B. Þ. and Bonnet P. uFLIP: Understanding Flash IO Patterns. 

CIDR, 2009. 

[21] Bum-soo Kim, G.y.L.: Method of driving remapping in flash memory and flash 

memory architecture suitable therefor. United States Patent, no. 6,381,176 (2002). 

[10] Anciaux, N., Bouganim, L., Guo, Y., Pucheral, P., Vandewalle J-J. and Yin, S. 

Pluggable Personal Data Servers. ACM SIGMOD, 2010. 

[11] Arge L., “The Buffer Tree: A Technique for Designing Batched External Data 

Structur

[1



 

111 

[22] Bursky D., “Secure Microcontrollers Keep Data Safe”, PRN Engineering Services, 

http://tinyurl.com/secureMCU, 2012, retrieved on 2012-06-15. 

 Y. E., “An Efficient Bitmap Encoding Scheme for Selection 

99. 

[24] Chen, F., Koufaty, D., and Zhang, X., Understanding intrinsic characteristics and 

system implications of flash memory based solid state drives. In SIGMETRICS, 2009. 

[25] Chen, S., Gibbons, P. B., and Nath, S., “Rethinking Database Algorithms for Ph

CIDR, 2011. 

Skimpy Key-Value Store 

ine, R., N. Mathewson, and Syverson P. Tor: The Second-Generation Onion 

ering past lessons. In 

Hardware (DaMoN '09). ACM, New York, NY, USA, 1-8. 

d Guillemin P. 

TEC-Tree: A Low-Cost, Parallelizable Tree for Efficient Defense Against Memory 

[31] Emmit Solutions, “Microcontroller Market and Technology Analysis Report”, 2008. 

[23] Chan C. Y., Ioannidis

Queries”, SIGMOD, 19

 ase 

Change Memory”, 

[26] Comer, D., “The Ubiquitous B-Tree”, ACM Computing Surveys 11(2): 121-137(1979). 

[27] Debnath B., Sengupta S., Li J., “SkimpyStash: RAM Space 

on Flash”, SIGMOD, 2011. 

[28] Dingled

Router. USENIX, 2004. 

[29] Do, J., Patel, J. M.: Join processing for flash SSDs: rememb

Proceedings of the Fifth International Workshop on Data Management on New 

[30] Elbaz, R., Champagne, D., Lee, R. B., Torres, L., Sassatelli G. an

Replay Attacks. CHES, 2007. 

[32] Eurosmart. Smart USB token. White paper, Eurosmart, 2008. 

[33] Fung, B. C. M., Wang K., Chen R. and Yu P. S. Privacy-preserving data publishing: 

A survey on recent developments. ACM Computing Surveys, 2010. To appear. 



 

112 

tions of the ACM, 1999. 

yer Employing 

Demand-based Selective Caching of Page-level Address Mappings. ACM ASPLOS, 

[37] Haas, L. M., Carey, M. J., Livny, M. and Shukla, A. Seeking the truth about ad hoc 

[38] Hacıgümüş, H., Iyer, B., and Mehrotra, S. Providing Database as a Service. ICDE, 

[39] Hu X., Eleftheriou E., Haas R., Iliadis I., Pletka R.: "Write amplification analysis in 

 

[41] IDC, “IDC Defines the Personal Portable Security Device Market”, 

[42] J. A. Kreibich, “Using SQLite”, O'Reilly Media, 2011. 

o, H., Kim, J., Lee, J.: A superblock-based flash translation layer for 

NAND flash memory. In: Proceedings of the 6th ACM & IEEE International 

[44] Kawaguchi, A., Nishioka, S., Motoda, H.: A flash-memory based file system. In: 

Association (1995) 13–13. 

[34] Gemmell J., Bell G., Lueder R., “MyLifeBits: a personal database for everything”, 

Commun. ACM 49(1), 2006. 

[35] Goldschlag, D., M. Reed, and Syverson P. Onion Routing for Anonymous and Private 

Internet Connections. Communica

[36] Gupta, A., Kim, Y. and Urgaonkar B.: DFTL: A Flash Translation La

Washington, 2009. 

join costs. VLDB Journal, 1997. 

 

2002. 

flash-based solid state drives", SYSTOR 2009. 

[40] IBM Corporation, “IBM DB2 Everyplace Version 9 Release 1", 2009. 

 

http://tinyurl.com/IDC-PPSD, 2007, retrieved on 2012-06-15. 

 

[43] Kang, J., J

conference on Embedded software, ACM New York, NY, USA (2006) 161–170. 

TCON’95: Proceedings of the USENIX 1995 Technical Conference Proceedings on 

USENIX 1995 Technical Conference Proceedings, Berkeley, CA, USA, USENIX 



 

113 

onics 48(2) (2002) 366–

375. 

., Schuetz, R., Gillingham, P.: Low Stress Program and 

Single Wordline Erase Schemes for NAND Flash Memory. In: Non-Volatile 

[47] Kim, Y. R., Whang, K. Y., and Song, I. Y., Page-differential logging: an efficient and 

onal Conference on Management of data (SIGMOD 

ethod and system for file system management using a 

Lee, D., Park, S., Song, H.: A log buffer-based flash 

on 

Embedded Computing Systems 6(3) (2007). 

[53] Lee, S., Shin, D., Kim, Y., Kim, J.: LAST: locality-aware sector translation for NAND 

[45] Kim, J., Kim, J., Noh, S., Min, S., Cho, Y.: A space-efficient flash translation layer for 

compactflash systems. IEEE Transactions on Consumer Electr

[46] Kim, J., Pyeon, H., Oh, H

Semiconductor Memory Workshop, 2007 22nd IEEE. (2007) 19–20. 

DBMS-independent approach for storing data into flash memory. In Proceedings of 

the 2010 ACM SIGMOD Internati

'10). ACM, New York, NY, USA, 363-374. 

[48] Koltsidas I., Viglas S. D., “Data management over flash memory”, SIGMOD, 2011. 

[49] Krueger, W., Rajagopalan, S.: M

flash-erasable, programmable, read-only memory. United States Patent, no. 6,256,642 

(2001). 

[50] Ku, A., “Intel SSD 520 Review: Taking Back The High-End With SandForce”, 

http://www.tomshardware.com/reviews/ssd-520-sandforce-review-benchmark,3124-

11.html, retrieved on 2012-06-15. 

[51] Lee, S. and Moon, B. Design of flash-based DBMS: an in-page logging approach. ACM 

SIGMOD, 2007. 

[52] Lee, S., Park, D., Chung, T., 

translation layer using fully-associative sector translation. ACM Transactions 

flash memory-based storage systems. (2008). 



 

114 

[56] Lim H., Fan B., Andersen D., Kaminsky M., “SILT: a memory-efficient, high-

nc., "Micron Announces Availability of Phase Change Memory for 

Mobile Devices", http://investors.micron.com/releasedetail.cfm?ReleaseID=692563, 

[58] Moglen E., “FreedomBox”, http://freedomboxfoundation.org, retrieved on 2012-06-15. 

Pick A., Weikum G., “The LHAM log-structured history data 

access method”, VLDB Journal, 2000. 

 flash 

storage. Proc. VLDB Endow. 1, 1 (August 2008), 970-983. 

[61] Nath, S., Kansal, A. FlashDB: dynamic self-tuning database for NAND flash. In 

g-structured merge-tree (LSM-

tree)”, Acta Informatica, 1996. 

[64] Oracle Corporation, “Oracle Berkeley DB,” June 2011. 

[54] Li Y., He B., Yang R. J., Luo Q., Yi K., “Tree Indexing on Solid State Drives,” 

PVLDB, 2010. 

[55] Li, Z. and Ross, K. A. Fast joins using join indices. VLDB Journal, 1999. 

performance key-value store”, SOSP, 2011. 

[57] Micron Technology, I

2012, retrieved on 2012-07-30. 

[59] Muth P., O'Neil P., 

[60] Nath, S., Gibbons, P. B.: Online maintenance of very large random samples on

Proceedings of the 6th international conference on Information processing in sensor 

networks (IPSN '07). ACM, New York, NY, USA, 410-419. 

[62] O’Neil P., Cheng E., Gawlick D., O’Neil E., “The lo

[63] Oracle Corporation, “Database Lite 10gR3,” 2008. 

[65] Park, C., Cheon, W., Lee, Y., Jung, M., Cho, W., Yoon, H.: A Re-configurable FTL 

(Flash Translation Layer) Architecture for NAND Flash based Applications. In: 



 

115 

[66] Pucheral P., Bouganim L., Valduriez P., Bobineau C. “PicoDBMS: Scaling down 

EAM Finalists, 

LNCS 4986, 2008. 

y Cards, Rounded Up And Benchmarked”, 

 

2012-06-15. 

 ACM TODS, 1976. 

xes”, US. Patent n° 5870747, 1999. 

t, 2002. 

nvironments”, Technical Report, 2012. 

Proceedings of the 18th IEEE/IFIP International Workshop on Rapid System 

Prototyping, IEEE Computer Society Washington, DC, USA (2007) 202–208. 

Database Techniques for the Smart card”, VLDB Journal, 2001. 

[67] Robshaw, M., Billet, O. New Stream Cipher Designs - The eSTR

[68] Rosenblum M., Ousterhout J., “The Design and Implementation of a Log-Structured 

File System”, ACM TOCS, 1992. 

[69] Schmid P., Roos A., “SDXC/SDHC Memor

http://www.tomshardware.com/reviews/sdxc-sdhc-uhs-i,2940-10.html, retrieved on

[70] Severance D., Lohman G., “Differential files: their application to the maintenance of 

large databases”.

[71] STMicroelectronics, “STM32 F-2 Series 32-bits Microcontrollers”, 

http://www.st.com/internet/mcu/product/245085.jsp, retrieved on 2012-06-15. 

[72] Sundaresan P., “General Key Inde

[73] Sweeney, L. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness 

Knowl.-Based Sys

[74] Vingralek, R.: GnatDb: a small-footprint, secure database system, In VLDB '02: 

Proceedings of the 28th international conference on Very Large Data Bases (2002), pp. 

884-893. 

[75] Vo H. T., Wang S., Agrawal D., Chen G., Ooi B. C., “LogBase: Scalable Log-

Structured Storage System for Write-heavy E



 

116 

[77] Wu, C., Chang, L., and Kuo, T. An Efficient B-Tree Layer for Flash-Memory Storage 

[79] Yao S., “Approximating the Number of Accesses in Database Organizations”, 

et d’indexation pour des données embarquées en 

mémoire Flash”. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines, 2011. 

[81] Yin, S., Pucheral, P. and Meng, X. A Sequential Indexing Scheme for flash-based 

[76] Weininger, A., “Efficient execution of joins in a star schema”, SIGMOD, 2002. 

Systems. RTCSA, 2003. 

[78] Xiao, X. and Tao, Y. Output perturbation with query relaxation. VLDB, 2008. 

Communication of the ACM, 1977. 

[80] Yin, S., “Un modèle de stockage 

embedded systems. EDBT, 2009. 


	Personal Data Server Engine
	Chapter 1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem statement
	1.4 Contributions
	1.5 Outline

	Chapter 2 State of the art
	2.1 Hardware constraints
	Constraint C1 – Small RAM/storage ratio
	Constraint C2 – Vulnerability of external storage
	Constraint C3 – Scarce secure stable storage
	Constraint C4 – NAND Flash behavior

	2.2 Embedded database systems
	2.3 Massive indexing schemes
	2.4 FTLs and NAND Flash behavior
	2.5 Indexing techniques for NAND Flash
	2.6 Log-Structured Indexes
	2.7 Conclusion

	Chapter 3 The PDS approach
	3.1 Motivating examples
	3.1.1 Healthcare scenario
	3.1.2 Vehicle tracking scenario
	3.1.3 BestLoan.com & BudgetOptim scenarios

	3.2 PDS Global architecture
	3.2.1 Problem statement
	3.2.2 Positioning
	3.2.3 Personal database
	3.2.4 Applications
	3.2.5 User Control
	3.2.6 Supporting Servers
	3.2.7 Security

	3.3 Durability, availability and global processing
	3.3.1 Durability and Availability
	3.3.2 Global processing

	3.4 User control
	3.4.1 Impedance mismatch between documents and databases
	3.4.2 Propagating user control rules to other PDSs 

	3.5 Conclusion

	Chapter 4 Designing a purely sequential database engine
	4.1 Design rules and problem statement
	4.2 Proposed approach
	4.2.1 Database Serialization
	Base data organization
	Join Indexes
	Selection indexes
	Flash Buffers
	Updates/deletes
	Transaction atomicity

	4.2.2 Database Stratification
	Maximize the size of ↓DBi
	Allow stopping / resuming the stratification process
	Take advantage of partial stratification


	4.3 Serialization techniques 
	4.3.1 Serialized Indexes
	4.3.2 Querying Serialized DB with Small RAM
	4.3.3 Processing Updates and Deletes
	Projections
	Selections – removing false positives
	Selections – Integrating false negatives


	4.4 Stratification techniques
	4.4.1 Stratified Indexes
	4.4.2 Stratification Algorithms
	4.4.3 StratifyIndex(*IND, ↓IND, ↓UPD, ↓DEL)
	Stratifying ↓IND
	Applying ↓DEL
	Applying ↓UPD

	4.4.4 Merge(*DATA, ↓DATA, ↓UPD, ↓DEL)

	4.5 Conclusion

	Chapter 5 Performance evaluation
	5.1 Platform Simulation
	5.1.1 Insertion cost and tuple lifecycle
	5.1.2 Performance of serialized indexes
	5.1.3 Performance of the overall system


	Name
	Results
	Expression
	5.2 Hardware prototype
	5.3 Storage layout
	5.4 Conclusion

	Chapter 6 Conclusion and future work
	6.1 Synthesis
	6.2 Perspectives
	Tolerance limits of NAND Flash memory
	Document retrieval in Personal Data Servers
	Emerging memory and storage technologies


	Bibliography


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


