
HAL Id: tel-01180879
https://hal.science/tel-01180879v1

Submitted on 1 Sep 2015 (v1), last revised 15 Oct 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms and architectures for the detection of MIMO
signals

Micaela Troglia Gamba

To cite this version:
Micaela Troglia Gamba. Algorithms and architectures for the detection of MIMO signals. Micro
and nanotechnologies/Microelectronics. Télécom Bretagne; Université de Bretagne Occidentale, 2013.
English. �NNT : �. �tel-01180879v1�

https://hal.science/tel-01180879v1
https://hal.archives-ouvertes.fr

N° d’ordre: 2011telb0000

Sous le sceau de l’ Université européenne de BretagneSous le sceau de l’ Université européenne de Bretagne

Télécom Bretagne
En accréditation conjointe avec l ’ Ecole Doctorale Sicma

Co-tutelle avec le Politecnico di Torino (Italie)

Algorithms and architectures for the detection of
MIMO signals

Thèse de Doctorat
Mention: STIC (Sciences et Technologies de l’ Information et de la Communication)

Présentée par Micaela Troglia Gamba

Département: Electronique
Laboratoire: Lab-STICC Pôle: CACS

Soutenue le 13 Avril 2011

Composition du Jury :

M. Valentino Liberali, Professeur à l’ Université de Milan Rapporteur
M. Christophe Jego, Professeur à l’ ENSEIRB-MATMECA Rapporteur
M. Leonardo Reyneri, Professeur à Politecnico di Torino Président
M. Guido Masera, Professeur à Politecnico di Torino Examinateur
M. Amer Baghdadi, Maître de conférences à Télécom Bretagne Examinateur
M. Michel Jézéquel, Professeur à Télécom Bretagne Directeur

Résumé

Les systèmes multi-antennes (Multiple-Input Multiple-Output:

MIMO) représentent incontestablement une technologie clé pour le

déploiement de systèmes de communication sans fil de haute perfor-

mance. Cependant, la complexité des détecteurs MIMO de haut débit

pose un problème sérieux de mise en œuvre. Parmi les détecteurs

MIMO existants, l’algorithme nommé détecteur à sphère (Sphere De-

coder Algorithm: SDA) a vu le jour pour réduire la complexité de

traitement par rapport à la technique de détection originale basée sur

le maximum de vraisemblance (ML). En outre, il a été démontré que

SDA atteint des performances optimales pour les systèmes non codés.

Toutefois, pour les systèmes codés, d’autres simplifications dans

l’algorithme de détection peuvent être utilisées sans altérer les per-

formances en taux d’erreur si un processus itératif de détection et

de décodage canal est adopté dans le récepteur. Un tel traitement

itératif avec un décodeur canal offre une amélioration significative

de la performance en taux d’erreur pour des faibles rapports signal

sur bruit. Dans ce contexte, le SDA peut être simplifié davantage

et modifié afin de prévoir une détection basée sur des informations

pondérées. LSD (List-Sphere Decoder) a été introduit comme une

version à entrées/sorties pondérées de la version SDA originale.

Ce travail de thèse traite les aspects algorithmique, architectural et de

mise en œuvre de la détection MIMO basée sur SDA et LSD. Le prin-

cipal objectif des travaux menés est de proposer des solutions de mise

en œuvre de faible complexité, tout en considérant les exigences des

systèmes avancés de communication numérique en termes de débit,

de flexibilité et de taux d’erreurs.

En particulier, la première contribution est représentée par une

amélioration de SDA, ce qui permet une augmentation significative

du débit avec une complexité supplémentaire très limitée et sans

dégradation en termes de performance en taux derreurs binaires. La

méthode de détection proposée, appelée LASDA (Look-Ahead SDA),

est basée sur des transformations formelles de l’algorithme, à savoir

Look-Ahead, recalage et pipeline et sur une stratégie modifiée de

recherche arborescente. Une conception efficace de type VLSI du

détecteur LASDA supportant un system MIMO 4×4 avec une modu-

lation MAQ-16 est proposée. Ciblant une technologie CMOS 130 nm,

les résultats de synthèse montrent que la solution proposée atteint un

débit moyen de 380 Mbps à un rapport signal sur bruit de 22 dB,

avec une surface occupée de 0.18mm2 de silicium. Des comparaisons

avec un certain nombre de mises en œuvre précédentes sont également

fournies.

La deuxième contribution concerne une étude détaillée sur la flex-

ibilité et la convergence de la détection itérative avec un décodage

canal. À cet égard, deux détecteurs à entrées/sorties pondérées (Soft-

Input Soft-Output: SISO) sont considérés. Le premier est basé sur

LSD et le deuxième est basé sur un filtrage linéaire de faible com-

plexité (Linear Minimum-Mean-Square-Error-Interference-Canceller

(MMSE-IC)). Pour les deux techniques, l’impact des différents

paramètres de configuration du système en termes d’ordre de modula-

tion et du nombre d’antennes est illustré et discuté. Des diagrammes

de transfert d’information mutuelle (EXIT charts) sont développés

afin d’analyser en détail le comportement et la convergence du pro-

cessus itératif. Cette analyse est orientée pour obtenir les compromis

possibles entre complexité et performance pour une implémentation

matérielle flexible.

La dernière contribution est liée à la proposition et la conception

d’un processeur à jeu d’instructions dédié à l’application (Application-

Specific Instruction-set Processor (ASIP)) pour un détecteur SISO

LSD. L’ASIP proposé supporte différentes configurations MIMO (2×

2, 3 × 3, 4 × 4) et différents ordres de modulation (QPSK, MAQ-16,

MAQ-64) en plus d’une taille de liste flexible (1 à 64 éléments). Les

résultats de synthèse sur une technologie CMOS 130 nm sont détaillés

en termes de débit et surface de silicium occupée, et comparés avec

d’autres implémentations dans ce domaine.

Abstract

Multiple Input Multiple Output (MIMO) systems are recognized as

a key enabling technology in high performance wireless communica-

tions. However the complexity of high throughput MIMO detectors

poses a serious implementation issue. Among known MIMO detec-

tors, Sphere Decoder Algorithm (SDA) has emerged to reduce the

processing complexity, with respect to the original Maximum Likeli-

hood (ML) detection. Moreover, it has been demonstrated that the

SDA achieves optimal performance for uncoded systems.

However, for coded systems, further simplifications in the detection

algorithm can be used without altering the error rate performance if

iterative detection and channel decoding is adopted in the receiver.

Such an iterative processing with a channel decoder offers significant

improvement in error-rate performance for a reduced signal-to-noise

ratio. In this context, the SDA can be further simplified and modified

in order to provide soft detection: “List Sphere Decoder” (LSD) has

been introduced as a soft version of the original SDA.

This research thesis focuses on algorithmic, architectural and im-

plementation aspects of the “ Sphere Decoder Algorithm” and the

“List Sphere Decoder”. The main objective of the conducted work

is to propose area-efficient implementation solutions while consider-

ing throughput, flexibility, and error rate performance requirements

of advanced digital communication systems.

In particular, the first contribution is represented by an improved

SDA, which enables significant throughput increase at a very limited

additional complexity and with no degradation in terms of Bit Error

Rate performance. The proposed detection method, called LASDA

(Look–Ahead SDA) is based on formal algorithm transformations,

namely look–ahead, retiming and pipelining, besides a modified tree

search strategy. An efficient VLSI design of LASDA detector sup-

porting a 4×4 MIMO channel with 16 QAM modulation is proposed.

Targeting 130 nm CMOS standard cell technology, synthesis results

show that the proposed solution achieves an average throughput of

380 Mbps at a signal to noise ratio of 22 dB, with an occupied Silicon

area of 0.18 mm2. Comparisons with a number of previous implemen-

tations are also provided.

The second contribution concerns a detailed study on flexibility and

convergence of iterative detection and channel decoding. In this re-

gard, two Soft-Input Soft-Output detectors are considered. The first

one is based on List Sphere Decoding and the second is based on a

low complexity linear filtering (Linear Minimum-Mean-Square-Error-

Interference-Canceller (MMSE-IC)). For both techniques, impact of

the different system configuration parameters in terms of modula-

tion order and number of antennas is illustrated and discussed. Ex-

trinsic Information Transfer (EXIT) charts are developed in order to

thoroughly analyze the behavior and the convergence of the iterative

process. This analysis is oriented to obtain possible performance-

complexity trade-offs for a flexible hardware implementation.

The last contribution is related to the proposal and design of an

Application-Specific-Instruction set-Processor (ASIP) for SISO List

Sphere Decoding. The proposed ASIP supports different MIMO sys-

tem configurations (2×2, 3×3, 4×4) and modulation orders (QPSK,

16QAM, 64QAM) besides a flexible list size (from 1 to 64 elements).

Synthesis results for a 130 nm technology are detailed in terms of

throughput and occupied Silicon area, and compared with other re-

lated implementations.

To my parents

Contents

List of Figures v

List of Tables ix

1 Introduction 2

I Hard MIMO detection 7

2 MIMO systems 8

2.1 MIMO functions . 8

2.2 MIMO system model . 10

2.3 MIMO detection algorithms . 11

2.4 Sphere Decoder Algorithm . 12

2.5 Other versions of Sphere Decoder Algorithm 17

3 Look-ahead Sphere Decoder Algorithm 21

3.1 State of the Art . 21

3.2 Look-ahead methodology . 22

3.3 Look–ahead optimization of SDA 25

3.3.1 DFG representation . 25

3.3.2 Linear approximation and look–ahead transformation . . . 29

3.3.3 Performance evaluation of LASDA 34

3.3.4 A modified search strategy: Test & Restart 38

3.3.5 Performance evaluation of LASDA with Test & Restart . . 39

3.4 Architecture design . 43

ii

CONTENTS

3.4.1 S block . 43

3.4.2 High level architecture . 45

3.5 Synthesis results . 48

3.6 Comparisons with the state of the art 49

3.7 Discussion of the results . 52

II Soft MIMO detection 53

4 Towards Soft Detection 54

4.1 Complexity evaluation of a soft-output MIMO detector 57

4.1.1 Description of the system 57

4.1.1.1 The algorithm of the Elementary Signal Estimator 59

4.1.2 Hardware implementation 65

4.1.2.1 Apriori stat block 67

4.1.2.2 cov block . 67

4.1.2.3 cholesky block 69

4.1.2.4 invs block . 71

4.1.2.5 f block . 72

4.1.2.6 antenna n block 72

4.1.3 Synthesis results . 74

5 Soft MIMO detection: the idea of a multi-algorithm detector 76

5.1 State of the Art . 76

5.2 Analysis . 79

6 Flexible Soft-Input Soft-Output detector: List Sphere Decoding

and Linear MMSE Detection 87

6.1 Description of the system . 87

6.1.1 List Sphere Detector (LSD) 88

6.1.2 MMSE-IC Linear Equalizer 89

6.2 Flexibility and divergence analysis of iterative LSD 90

6.2.1 Flexibility parameters . 90

6.2.2 Analysis of divergence using EXIT chart 91

iii

CONTENTS

6.3 Comparisons between LSD and MMSE-IC 97

6.3.1 Block Fading Channel . 98

6.3.2 Fast Fading Channel . 98

6.3.3 Block and Fast Fading Channel for a 2× 2-MIMO system 101

6.3.4 Complexity comparison . 102

6.4 Discussion of the results . 103

7 ASIP implementation of LSD 104

7.1 ASIP design flow . 105

7.1.1 An ADL based tool: Coware Processor Designer 107

7.2 First suboptimal ASIP of LSD . 110

7.2.1 Flexibility parameters and architectural choices 111

7.2.1.1 Babai Point selection 113

7.2.1.2 PED computation 116

7.2.1.3 ψ computation 117

7.2.1.4 SE enumeration 118

7.2.1.5 List management 119

7.2.2 Instruction Set Architecture 121

7.2.2.1 INIT instruction 124

7.2.2.2 BABAI instruction 125

7.2.2.3 CHECK instruction 126

7.2.3 Sample program . 128

7.2.4 Synthesis results . 130

7.3 Improved ASIP: increased clock frequency 130

7.3.1 Performance . 133

7.3.2 Comparison with the State of the Art 137

7.3.3 Efficient pipeline usage: the pipeline-interleaving 140

7.4 Discussion of the results . 145

8 Conclusions 146

References 149

iv

List of Figures

2.1 Graphical example of an hypersphere 13

2.2 Tree for a 2× 2-MIMO system and a QPSK modulation. 15

2.3 Schnorr–Euchner enumeration around Babai Point. 16

3.1 DFG representation of the computation y[k] = x[k] + ay[k − 1]. . 23

3.2 The two steps look-ahead DFG of computation y[k] = x[k]+ay[k−1]. 24

3.3 The two steps look-ahead DFG with pipelining and retiming of

computation y[k] = x[k] + ay[k − 1]. 24

3.4 The DFG representation of SDA (Forward processing). 26

3.5 The DFG representation of SDA (Forward processing) after pipelin-

ing. Registers D3, D4, D5 have been inserted. 28

3.6 DFG representation of LASDA (Forward processing) after look–

ahead. Retiming is applied on cut-sets CS1 and CS2. 31

3.7 DFG representation of LASDA (Forward processing) after look–

ahead, retiming and pipelining. 33

3.8 Scheme of the transmitter and the receiver. 34

3.9 BER (a) and iterations (IT)(b) of SDA and LASDA. 37

3.10 Flux diagram of the LASDA with Test & Restart strategy. 39

3.11 Example of the tree search with the Test & Restart strategy. . . . 40

3.12 BER (a) and iterations (IT)(b) of SDA and LASDA with Test &

Restart. 41

3.13 Scheme of the S block. 44

3.14 Points of a 4-PAM constellation. 45

3.15 High level implementation architectures for LASDA scheme. . . . 47

v

LIST OF FIGURES

3.16 Area-delay comparison between solutions in [1], [2], [3] and this

work, at SNR=22dB. 1/Th indicates the inverse of the average

throughput. 51

4.1 General scheme of a transmitter and a receiver with no feedback. 55

4.2 FER of a traditional Hard-Output ML Decoder and the Soft-

Output Sphere Decoder, implemented in [4](MIMO-OFDM System,4×
4MIMO, 16-QAM, 64 tones, R = 1/2 convolutional code (K = 7,

[133o, 171o]), random interleaver, 1024 bits/codeblock, TGn Type

C channel model, BCJR decoder). 56

4.3 General scheme of the receiver with feedback. 56

4.4 Scheme of transmitter and receiver of an IDSM-ST system with

B-PSK modulation . 58

4.5 Block diagram of ESE . 66

4.6 Block diagram of Apriori stat block 68

4.7 Block diagram of cov block . 69

4.8 Computation of diagonal elements in cholesky block. 70

4.9 Computation of not-diagonal elements cholesky block. 70

4.10 Computation of diagonal elements in invs block 72

4.11 Computation of non-diagonal elements in invs block 72

4.12 Block diagram of f block. 73

4.13 Block diagram of g block. 73

4.14 Block diagram of antenna n block. 74

5.1 BER, shown in [5], of a traditional Hard-Output Sphere Decoder,

the List Sphere Decoder and the Max-Log ML-APP. Coded 4 x 4

MIMO system, 16-QAM, Fast-fading channel, rate 1/2, length of

the code-block is 1024 bits and the code has constraint length K

= 7 with generator polynomials [1330,1710]. 80

5.2 FER of [6] (4 × 4MIMO, 64QAM, Frame source= 120bits, Chan-

nel matrix constant over 240bits (10 vectors of symbols), R=1/2

convolutional code). 80

vi

LIST OF FIGURES

5.3 FER of different solution, reported in [7] (4 × 4 and 64-QAM,

R = 1/2 [7 5] convolutional code, Channel matrix constant over

a frame, frame size=10 vectors (24bits per symbol, 10 symbols),

Viterbi decoder). 80

5.4 BER of a full-rate space-time block code (FR STBC) equalizer and

decoder (red curves) without iterations, shown in [8]. 81

5.5 BER of a full-rate space-time block code (FR STBC) equalizer and

decoder (red curves) with 4 iterations, shown in [8]. 81

5.6 FER of different solution, reported in [9] (IEEE 802.11n 2×2MIMO

and 64QAM, channel model D, 20 Mhz bandwidth and coding rates

5/6 and 2/3). 83

5.7 FER of [6] (4×4MIMO and 16QAM, R=1/2, Source frame=512bits). 83

6.1 Scheme of the MIMO transmitter and receiver. 88

6.2 EXIT charts and BER performance for LSD and MAP decoder

with different SNR values and a list size of 512 (a,b). 94

6.3 EXIT charts and BER performance for LSD and MAP decoder

with different SNR values and a list size of 64 (a,b). 95

6.4 Distribution of LLRs at the output of the LSD (16-QAM, 4 × 4-

MIMO, list size of 64, block-fading channel model and Eb/N0 =

10dB). 96

6.5 EXIT chart and BER performance for LSD and MAP decoder with

different SNR values and a list size of 64 (a,b) with the proposed

solution in [10]. 97

6.6 BER comparison between LSD (list size 64) and MMSE for differ-

ent modulations and block-fading channel. 99

6.7 BER comparison between LSD (list size 256 for QPSK and 512 for

16QAM and 64QAM) and MMSE for different modulations and

fast-fading channel. 100

6.8 BER comparison between LSD (list size 64) and MMSE for 2× 2-

MIMO, 16-QAM, block (a) and fast-fading channel (b). 101

7.1 A complexity-flexibility trade-offs for different approaches for im-

plementation in digital systems [11]. 105

vii

LIST OF FIGURES

7.2 LISA design flow [11]. 110

7.3 High level architecture of ASIP1. 112

7.4 Scheme of the Babai selection unit. 114

7.5 Alternative architecture for the Babai Point selection unit. 115

7.6 Area-delay graph for two implementations of the Babai Point se-

lection. 116

7.7 Schemes of the PED computation (a) and ψ computation (b) units. 117

7.8 Scheme of the SE enumeration unit. 118

7.9 Scheme of the list management unit. 121

7.10 Stages of pipeline. 123

7.11 Instruction format of LW. 123

7.12 Instruction format of BNE. 123

7.13 Instruction format of JUMP. 124

7.14 Instruction format of INIT. 124

7.15 Instruction format of BABAI. 125

7.16 BABAI instruction and stages of pipeline. 126

7.17 Instruction format of CHECK. 126

7.18 CHECK instruction and stages of pipeline. 127

7.19 Modified BABAI instruction and stages of pipeline. 131

7.20 Modified CHECK instruction and stages of pipeline. 132

viii

List of Tables

3.1 Combinational delay (tpdmin) of computational blocks in forward

processing. Rows 2 to 5 refer to processing blocks required for

SDA; row 6 refers to the additional component needed to support

LASDA . 27

3.2 Combinational delay (tpdmin) for additional architecture blocks in

Fig. 3.15 . 48

3.3 Synthesis results of computational blocks in the whole architecture:

occupied area at the maximum clock frequency fck = 487 MHz.

Rows 2 to 8 refer to processing blocks required for SDA; rows 9

and 10 refer to the additional component needed to support LASDA 49

3.4 Comparisons with other works . 50

4.1 Constants used in the computation of a priori statistics 63

4.2 Notation of 1/
√
x stored into the LUT 71

4.3 Area results of synthesis of ESE (sequential architecture) 75

4.4 Area results of synthesis of memories 75

5.1 Comparisons between works in [6], [12], [9], [13], [4], [7]. 78

5.2 Comparisons of architecture efficiency in [13] (Hard-Ouput Sphere

Decoder) and [4](Soft-Output Sphere Decoder) for SNR=18dB. . 82

5.3 Comparisons of architecture efficiency in [6] and [12] for a 2 ×
2MIMO and 64-QAM. 82

5.4 Comparisons of architecture efficiency in [6] and [7] for a 4 ×
4MIMO and 64-QAM. 82

ix

LIST OF TABLES

5.5 Area results of different implementations of QR-decomposition for

MIMO detection. 84

6.1 Setup of the conducted simulations 98

6.2 Complexity estimation with a 4× 4-MIMO and 16-QAM for LSD

(list of 64, BER of 10−6) and MMSE-IC 103

7.1 Synthesis results of LSD ASIP . 130

7.2 Synthesis results of improved LSD ASIP 133

7.3 Detailed Area results of improved LSD ASIP 133

7.4 Throughput of the improved LSD ASIP for a 2× 2 MIMO system. 134

7.5 Throughput of the improved LSD ASIP for a 3× 3 MIMO system. 135

7.6 Throughput of the improved LSD ASIP for a 4× 4 MIMO system. 136

7.7 Comparisons with the State of the Art 138

7.8 Synthesis results of improved LSD ASIP with “pipeline interleaving”140

7.9 Detailed Area results of LSD ASIP with “pipeline interleaving” . 141

7.10 Comparisons of the ASIP with “pipeline interleaving ” with the

State of the Art . 144

x

Listings

7.1 LSD assembly code . 129

7.2 LSD assembly code with “pipeline interleaving” 142

xi

Quand je vous aimerai? Ma foi, je ne sais pas,

Peut-être jamais, peut-être demain. Mais pas

aujourd’hui, c’est certain.

L’amour est un oiseau rebelle Que nul ne peut

apprivoiser, Et c’est bien en vain qu’on

l’appelle, S’il lui convient de refuser. Rien n’y

fait, menace ou prière, L’un parle bien, l’autre

se tait: Et c’est l’autre que je préfère, Il n’a

rien dit mais il me plâit. L’amour! L’amour!

L’amour! L’amour!

L’amour est enfant de Bohème, Il n’a jamais,

jamais connu de loi; Si tu ne m’aimes pas, je

t’aime: Si je t’aime, prends garde à toi! Si tu

ne m’aimes pas, Si tu ne m’aimes pas, je

t’aime! Mais, si je t’aime, Si je t’aime, prends

garde à toi! Si tu ne m’aimes pas, Si tu ne

m’aimes pas, je t’aime! Mais, si je t’aime, Si je

t’aime, prends garde à toi!

L’oiseau que tu croyais surprendre Battit de

l’aile et s’envola... L’amour est loin, tu peux

l’attendre; Tu ne l’attends plus, il est là! Tout

autour de toi, vite, vite, Il vient, s’en va, puis il

revient... Tu crois le tenir, il t’évite, Tu crois

l’éviter, il te tient. L’amour! L’amour!

L’amour! L’amour! L’amour est enfant de

Bohème, Il n’a jamais, jamais connu de loi; Si

tu ne m’aimes pas, je t’aime: Si je t’aime,

prends garde à toi!

from “Carmen” of George Bizet

1

Introduction

MIMO technology improves performance of wireless links, at the cost of high

computational complexity both at transmitter and receiver sides. In particular,

at the receiver end, the detector has to recover from the received signal vector

the original data stream corresponding to each transmitting antenna. The op-

timal receiver for uncoded MIMO systems is the Maximum Likelihood detector

(ML). However the direct implementation of ML methods has exponential com-

putational complexity, which makes this approach unattractive, except for low

order MIMO systems [14]. Sphere Decoder Algorithm (SDA) has been proposed

as an alternative method, able to guarantee ML performance, with polynomial

processing complexity [14]. SDA reduces the average computational effort by

only considering points that lie inside a hypersphere.

SDA can be formulated as a tree search algorithm, which adopts a depth–first

search strategy and results in ML performance and variable throughput (see for

example [1] [3]). Alternative search methods, such as breadth–first search strate-

gies, normally achieve fixed throughput at the cost of sub–optimal detection

performance (see for example K–best algorithms [15] [16] [17]).

All the works mentioned above have the common characteristic of showing a de-

cline in performance with respect to the optimal receiver.

While most of these solutions achieve performance that is close to ML, this re-

search work faces the problem of a high throughput full ML implementation.

The main contributions of this work are the following:

1. The traditional SDA has been modified at two levels. At the digital signal

2

processing level, look–ahead, pipelining and retiming techniques have been

exploited to enable higher clock frequency with respect to traditional SDA

implementations. At the control level, a modified search strategy has been

adopted. These modifications lead to a new SDA implementation scheme,

called LASDA (Look–Ahead SDA).

2. To show the potential of the proposed solution and to estimate its area

overhead, ASIC design has been completed for the above mentioned LASDA;

compared to direct SDA implementations, the designed detector shows higher

throughput with a small increase of occupied Silicon area. Moreover the

faster detector maintains ML Bit Error Rate (BER) performance.

More recently, the interest of researchers has focused on MIMO detection al-

gorithms providing soft–output information. Particularly, it has been shown that

near–capacity can be achieved on a multiple–antenna channel by extending the

maximum a posteriori (MAP) processing techniques developed for modern chan-

nel codes to the iterative detection and decoding of a linear space–time mapper

combined with an outer channel code [18]. Proper extensions of the SDA have

been proposed in this context [18] [19] [4] [20]: the List Sphere Decoder (LSD) was

first introduced in [18] to enable joint detection and decoding; single tree search is

exploited in [19] [4] as an alternative to repeated tree search technique to improve

computational efficiency; a smart management of the tree search is proposed in

[20] to achieve low complexity. [21] reports synthesis results for soft–in soft–out

single tree search MIMO detectors implemented with a 90 nm technology. In [12]

a soft–output detector is proposed for MIMO-OFDM systems like IEEE 802.11n

WLANs; the work exploits Layered ORthogonal Lattice Detection (LORD) to

simplify processing and achieves maxLogAPP performance. In [22] near ML per-

formance with fixed throughput is achieved for soft MIMO detection thanks to a

graph based greedy algorithm.

The high throughput ML solution given in this work is also applicable for most

soft–output detection schemes, since both hard and soft–output sphere decoders

share several key processing units.

3

The LASDA solution represents the first contribution of this work. The sec-

ond one is related to the List Sphere Decoder, first proposed in [23] as soft version

of the original SD: it finds a list of possible candidates and computes soft infor-

mation according to this list. The choice of the list size is critical as it affects

both computational complexity and Bit-Error-Rate (BER) performance. This is

particularly true in iterative Soft-Input Soft-Output (SISO) detection and chan-

nel decoding. In such systems, short lists tend to reduce the reliability of soft

outputs and this can cause the problem of divergence [24][10]. This problem can,

however, be limited by constraining the a priori information coming from the

channel decoder [10]. The main contributions are the following:

1. To illustrate the problem of divergence, adopting the Extrinsic Information

Transfer (EXIT) charts [25].

2. To compare in terms of flexibility and performance the LSD with the Minimum-

Mean-Squared-Error Interference-Canceller (MMSE-IC), which is an attrac-

tive alternative in MIMO detection mainly due to its reduced complexity

[26].

The ambitious aim of this analysis is to the design a multi-mode flexible MIMO

detector supporting both MMSE-IC and LSD with variable list size, according to

channel conditions and targeted performance.

The previous analysis on possible complexity-performance trade-offs is the

preamble of the third contribution of this thesis. Concerning the flexibility, one

of the most flexible kind of implementation, exploited in literature, is certainly

the Application-Specific-Instruction set-Processor (ASIP): it is a programmable

microprocessor, where hardware and instruction set are designed together for one

special application. It currently represents the best performance-flexibility trade-

off, being more flexible than an Application-Specific-Integrated-Circuit (ASIC)

and having better performance than a General-Purpose-Processor (GPP).

An ASIP implementation of the List Sphere Decoder is presented. In particular,

the main contributions are the following:

1. To discuss which are the most critical parts, from an architectural point of

view.

4

2. To propose at the best of our knowledge, the first ASIP of LSD,supporting

multiple modulations, number of antennas and list sizes

3. To propose some modifications to the original design to increase the through-

put, and to compare performance results with other existing implementa-

tions

This thesis is divided in two parts: the first part is dedicated to hard MIMO

detection and the second part to the soft MIMO detection. In particular, the

part I is composed of two chapters:

Chapter 2 is dedicated to present MIMO systems and MIMO functions. Some

basic concepts and the mathematical model are introduced. Then, an overview

of the most popular MIMO detection algorithms is reported and the Sphere De-

coder Algorithm is detailed, with particular emphasis for the depth–first Schnorr-

Euchner SDA, which is the starting point of this research thesis. For complete-

ness, the chapter is concluded mentioning other versions of SDA, exploited in

literature.

Chapter 3 presents a modified version of the SDA, which guarantees optimal

performance and achieves an increase of throughput, with a limited additional

complexity. All modifications applied to the SDA with the purpose of enabling a

higher throughput implementation are detailed. In particular, some formal meth-

ods, such as look–ahead, pipelining and retiming are employed and described.

Performance of this solution, called Look–Ahead SDA (LASDA) is estimated in

terms of both achieved BER and required average number of clock cycles, needed

to detect one symbol vector. The VLSI architecture design and the obtained im-

plementation results are presented and compared with other existing solutions.

The part II of this thesis is composed of four chapters:

Chapter 4 represents a link between first and second parts. It explains the dif-

ference between hard and soft detection and the advantages achieved in a channel

coded scheme, with respect to an uncoded one. Some hints on the most popular

5

detection-decoding schemes are done. A particular emphasis is given to the List

Sphere Decoder (LSD), which is one of the soft versions of SDA, and a linear

detector, such as the Minimum-Mean- Squared-Error (MMSE). Finally, to com-

plete the scenario, a complexity evaluation of a suboptimal soft-output MIMO

detector implementation is reported.

Chapter 5 is dedicated to analyze the existing hard and soft MIMO detector

implementations. Such an analysis has been conducted to explain and justify

the idea of a flexible multi-algorithm MIMO detector, supporting both LSD and

MMSE.

In Chapter 6, a detailed analysis of flexibility parameters and divergence issue

of iterative LSD is reported. The Extrinsic-Information-Transfer (EXIT) Charts

are employed to study the iterative behavior of LSD and, in particular, to have

a more precise answer to the problem of divergence, taking into account also

the effect of different parameters, such as the size of the list. Finally, LSD and

MMSE-IC are compared in terms of performance and complexity, justifying again

the idea of a flexible multi-mode detector.

Chapter 7 details a proposed ASIP implementation for LSD. The chapter

starts with an introduction to the ASIP methodology, and continues with a dis-

cussion on the architectural choices and flexibility parameters. A first suboptimal

release of the ASIP is presented, with synthesis results. Then an improved ver-

sion in terms of clock frequency is proposed. Performance, synthesis results and

comparison with state of the art implementations are also reported. In order to

increase the throughput, a more efficient usage of the pipeline has been developed

and detailed. The chapter ends with a discussion of the results, accompanied by

further possible improvements.

6

Part I

Hard MIMO detection

7

2

MIMO systems

A continuous increase in required data rate, system capacity and quality of service

characterizes wireless applications. Multiple-Input-Multiple-Output (MIMO) sys-

tems are recognized as a key enabling technology for increasing capacity and

spectral efficiency, because with multiple antennas at both sides of the wireless

link they are able to improve communication reliability [27]. MIMO technology

has been proposed to be incorporated into the fourth generation (4G) mobile

communication systems to enhance voice and data transmission. Moreover, sev-

eral current and future wireless communication standards, such as IEEE 802.11n

wireless LAN (Local Area Network), IEEE 802.16e WiMax and 3GPP-LTE [28]

already include MIMO techniques, often in combination with OFDM (Orthogonal

Frequency-Division Multiplexing).

2.1 MIMO functions

MIMO systems are characterized by three main functions: precoding, spatial mul-

tiplexing and diversity coding, which are respectively associated with array gain,

spatial gain and diversity gain.

1. Precoding: it is the multi-stream beamforming1 technique, in the narrowest

definition, and in a more general sense, the spatial processing done at the

transmitter side. In the single layer beamforming, the same signal is emitted

from each transmitting antennas, with a certain phase and gain , in order to

maximize the signal power at the receiver side. The obtained advantages are:

8

2.1 MIMO functions

to increase the received signal gain, thanks to the constructive interference,

and to reduce the multi-path fading2. But when the receiver has multiple

antennas, the beamforming cannot simultaneously maximize the signal level

for all of the receive antennas, so that the precoding is employed. It is

important to underline that this technique requires knowledge of the channel

state information (CSI) at the transmitter.

2. Spatial multiplexing: an high rate signal is split into multiple lower rate

streams and each stream is transmitted from a different transmit antenna in

the same frequency channel. If these signals reach the receiver antenna with

sufficiently different spatial signatures, they are equivalent to almost parallel

channels and it is possible to separate them. The spatial multiplexing is a

very powerful technique, able to improve the channel capacity at high signal-

to-noise (SNR) ratio values. The maximum number of spatial streams is

limited by the minimum between the number of transmitters and receivers.

Spatial multiplexing can be used with or without CSI knowledge.

3. Diversity coding: it is employed when there is no channel knowledge at

the transmitter. A single stream (unlike multiple streams in spatial mul-

tiplexing) is transmitted, but the signal is coded using techniques called

space-time coding, which exploits full or near-full orthogonality. There are

three main types of diversity: time diversity, frequency diversity and spa-

tial diversity. The spatial diversity is related to the employ of spatially

different links, affected by different fading. The time diversity ie related to

total or partial retransmission of the information in different moments. The

frequency diversity is due to frequency redundancy. The first one is very

powerful, because it does not require an increase of time and bandwidth,

and it is often employed together with the space-time coding.

The spatial multiplexing can be combined with the precoding, in presence of

channel knowledge, or with diversity coding when a better decoding reliability

is desired. Moreover, the spatial multiplexing makes the receiver very complex,

and in general it is combined with the Orthogonal Frequency-Division Multi-

plexing (OFDM)3 or with the Orthogonal Frequency-Division Multiple Access

9

2.2 MIMO system model

(OFDMA)4, where the multi-path is is well managed. 1 2 3 4

2.2 MIMO system model

Considering a Rayleigh fading channel and a complex–valued MIMO system with

Mt transmit and Mr receive antennas, the channel is represented by the Mr×Mt

matrix H:

H =

h1,1 h1,2 · · · h1,Mt

h2,1 h2,2 · · · h2,Mt

...
...

. . .
...

hMr,1 hMr ,2 · · · hMr ,Mt

 (2.1)

where hij ∼ Nc(0, 1) is the fading coefficient between the j-th transmitter and the

i-th receiver The Mr-dimensional received signal y is given by:

y = Hst + n (2.2)

where n ∼ Nc(0, N0) denotes the Mr-dimensional additive i.i.d. (independent

and identically distributed) white Gaussian noise vector, and st stands for the

Mt-dimensional transmit signal vector, st = [s1s2 . . . sMt
]T . Entries of st are

independently chosen from a complex constellation O, whose cardinality is |O| =
2Q, with Q equal to the number of bits per symbol. The transmission rate is

defined as R =MtQ bits per channel use (bpcu).

For QAM modulations, according to [3], the Mt-dimensional complex signal

model in (2.2) can be decomposed into an M = 2Mt-dimensional real signal

1It consists in controlling the direction and the sensitiveness of the signal, in presence of
multiple transmitters and receivers. At the receiver side, the beamforming increases the sen-
sitiveness in the direction of the signal and reduces that in the direction of the noise. At the
transmitter side, instead, it increases the power of the signal to be emitted.

2It indicates the effects of propagation of an electromagnetic wave, due to reflection, diffrac-
tion and scattering of signals, which reach the receiver as a sum of copies of the same.

3It is a multi-carrier modulation scheme, which makes use of a great number of orthogonal
sub-carriers. Each of these sub-carriers is modulated with a conventional modulation scheme,
such as amplitude or quadrature amplitude modulation, at low symbol rate. The total transmis-
sion rate is comparable with that of a single-carrier modulation schemes, keeping the bandwidth
constant. The signals are generated and detected with the Fast Fourier Transform.

4It is a multi-user version of the OFDM. The multiple access is assured granting a subset of
sub-carriers for each user.

10

2.3 MIMO detection algorithms

model: [
ℜ{y}
ℑ{y}

]
=

[
ℜ{H} −ℑ{H}
ℑ{H} ℜ{H}

] [
ℜ{st}
ℑ{st}

]
+

[
ℜ{n}
ℑ{n}

]
(2.3)

where ℜ{∗} and ℑ{∗} respectively denote real and imaginary parts of ∗. In the

real–valued model, the set of valid real–valued symbols is indicated as Ω, where

|Ω| = 2Q/2. In the rest of the thesis, a real–valued model is assumed.

2.3 MIMO detection algorithms

Assuming perfect channel knowledge at the receiver and considering systems with

space-time coding and spatial multiplexing, the algorithms to separate the data

streams, exploited in literature, can be divided into four main categories:

1. Linear Detection Methods: they simply invert the channel matrix. In

this family, there are:

• Zero Forcing (ZF): it multiplies the inverse of the channel matrix by

the received signal vector. It does not take into account the noise, and

for this reason, it has not good results in terms of performance.

• Minimum Mean Square Error (MMSE): it minimizes the square

error between the received and the transmitted vectors, taking into ac-

count the noise and operating on each component, separately. This

method is not able to reach the maximum diversity order MrMt, but it

is limited to Mr −Mt + 1. This causes a low Bit Error Rate (BER) at

high SNRs.

2. Interference Cancellation method (IC): it first detects the stronger

stream, among all received signal vectors, by means of ZF or MMSE, and

removes it before detecting the next stronger streams. Two main techniques

are exploited:

• SUccessive Cancellation (SUC): it randomly chooses a component

of the received vector and assumes the others as interference. It removes

the contribution of it from the vector: this procedure is repeated for each

symbol in the vector. This method reaches a diversity order, which is

comparable with that of MMSE.

11

2.4 Sphere Decoder Algorithm

• Ordered SUccessive Cancellation (OSUC): similarly as SUC, it

chooses the component with the highest Signal to Interference Noise

Ratio (SINR). It achieves an higher diversity order than SUC, but it

has limited performance, because ZF or MMSE is employed for the

initial choice.

3. Maximum Likelihood (ML) detector: it minimizes the difference be-

tween the received signal vector and the vector of transmitted symbols dis-

torted by the channel. The problem of deriving the ML estimation s̃ for the

transmitted signal vector is formally stated as

s̃ = arg min
s∈ΩMt

‖y−Hs‖2 (2.4)

where OMt is the set of possible values for transmitted symbol vectors s.This

method is optimal, since it minimizes the error probability and reaches the

maximum diversity order, but a direct implementation of ML detection is the

exhaustive search that explicitly computes (2.4) for all candidate symbols

s ∈ OMt . The detector has to examine 2R hypothesis for each received

symbol vector. If for low rates, such as R ≤ 8bpcu, this is feasible, for large

Mt and constellations it is practically unfeasible. As an example, for a 4× 4

with a 16QAM modulation, corresponding to R ≤ 16bpcu, the number of

candidates to be examined is 65536.

4. Sphere Decoder Algorithm (SDA): it has been introduced as a viable

alternative to the ML detector, able to guarantee optimal performance, but

only with a polynomial complexity [29]. It consists in limiting the search

to only those points, which lie inside an hypersphere, with a certain radius,

around the received vector. A detailed description of SDA is presented in

the following paragraph.

2.4 Sphere Decoder Algorithm

SDA achieves ML performance, showing a polynomial average complexity [30].

It reduces the number of candidate symbols to be considered, without excluding

the ML solution.

12

2.4 Sphere Decoder Algorithm

Figure 2.1: Graphical example of an hypersphere

Anyway, the term Sphere Decoder was born to indicate a family of algorithms:

one differs from each other, essentially for the way to visit the tree. The follow-

ing paragraph presents a complete description of a depth–first Schnorr–Euchner

SDA, which is the starting point of this research. For completeness, the section

2.5 reports other versions of the SDA, presented in literature.

The Sphere Decoder Algorithm is composed of three main steps: radius con-

straint, tree construction and tree exploration.

• Radius Constraint (RC)

The calculation of (2.4) is formulated as a tree visit problem, constrained

to only those Hs points that lie inside a hypersphere with radius r, around

the received point y. This means that:

‖y−Hs‖2 ≤ C (2.5)

where C = r2.

• Tree construction

Before computing the distance between received and transmitted vectors,

H can be triangularized using proper techniques, such as Cholesky decom-

position: H = QR, where the M ×M matrix Q has orthonormal columns

(QHQ = IM) and the M ×M matrix R is upper triangular. (2.4) can be

written as:

s̃ = arg min
s∈ΩM

‖y−QRs‖2 = arg min
s∈ΩM

‖ỹ−Rs‖2 (2.6)

13

./2/figures/RC.eps

2.4 Sphere Decoder Algorithm

where ỹ = QTy is the Zero–Forcing (ZF) solution [1] 1. Thus, (2.5) becomes:

‖ỹ−Rs‖2 ≤ C (2.7)

A tree can be constructed [1], where each node has |Ω| sons and there are

M = 2Mt levels, in a real–valued model. As an example, a 4 × 4 MIMO

system with 16 QAM modulation has M = 8 levels and |Ω| = 4 sons (Ω =

{−3,−1, 1, 3} is a real–valued constellation). At the tree root, the possible

values of entry sM of vector s are associated to |Ω| sons, while tree leaves

correspond to all possible vectors s. A node placed at intermediate tree level

l will corresponds to a partial symbol vector [sl sl+1 . . . sM]T .

The square distance d2(s) = ‖ỹ−Rs‖2 can be iteratively computed following

the tree from the root to a leaf:

Tl =

{
0 l =M + 1

Tl+1 + |ỹl −
∑M

j=lRl,jsj|2 l =M, . . . , 1
(2.8)

where l is the current level of the tree, Tl is the (squared) Partial Euclidean

Distance (PED), calculated as the squared distance between entries M to l

of the received vector and partial symbol vector [sl sl+1 . . . sM]T (distorted

by the channel). Therefore d2(s) = T1 is the (squared) Euclidean Distance

(ED). As example, figure 2.2 shows the obtained tree for a 2 × 2-MIMO

system and a QPSK modulation.

At each level, if obtained PED is larger than the specified radius, the cor-

responding node and the whole underlying sub–tree are excluded from the

search (tree pruning). The amount el = |ỹl −
∑M

j=lRl,jsj| is called Distance

Increment (DI) and can be written as:

el = |ỹl −
M∑

j=l+1

Rl,jsj − Rl,lsl| (2.9)

Symbol ψ[l] is introduced to indicate the first two terms in (2.9), which

represents the l-th received signal reduced by the interference resulting from

1Alternatively to this method, MMSE preprocessing [31] might be used on an extended
channel matrix for the Cholesky decomposition.

14

2.4 Sphere Decoder Algorithm

the already estimated symbols, sM to sl+1:

ψ[l] = ỹl −
M∑

j=l+1

Rl,jsj (2.10)

The expression above is unfolded as

ψ[l] = | (· · · ((ỹl −Rl,MsM)− Rl,M−1sM−1)− · · · −Rl,l+1sl+1) | (2.11)

The computation in (2.11) can be arranged in M − l + 1 recursive steps:

1) ψM+1[l] = ỹl
2) ψM [l] = ỹl − Rl,MsM = ψM+1[l]−Rl,MsM
3) ψM−1[l] = ỹl − Rl,MsM −Rl,M−1sM−1 = ψM [l]− Rl,M−1sM−1

· · ·
M − l + 1) ψl+1[l] = ψl+2[l]− Rl,l+1sl+1 = ψ[l]

(2.12)

where the upper index of ψ ranges between M + 1 and l + 1. At the last

recursion step, ψl+1[l] is used to compute DI:

el = |ỹl −
M∑

j=l+1

Rl,jsj − Rl,lsl| = |ψl+1[l]−Rl,lsl| (2.13)

Figure 2.2: Tree for a 2× 2-MIMO system and a QPSK modulation.

15

./2/figures/albero.eps

2.4 Sphere Decoder Algorithm

• Tree exploration

The tree exploration in SDA is depth–first: when a tree node lies inside the

hypersphere, the algorithm goes one level down (forward processing). When

a tree leaf is reached and when part of the tree is pruned, an alternative node

has to be selected going back to an upper level in the tree: this part of the

algorithm is known as backward processing [1]. In SDA, forward processing

ψl+1(l)
Rl,l

s
(2)
ls

(4)
l s

(3)
l

sl = s
(1)
l

Figure 2.3: Schnorr–Euchner enumeration around Babai Point.

proceeds along tree levels: starting from the tree root (l = M), the nearest

point to the received signal (Babai Point) [14] can be calculated by means

of a rounded division, as reported in [3] [1] [32]:

sl = s
(1)
l =

⌊
0.5

ψl+1[l]

Rl,l

+ 1

⌋
(2.14)

where ⌊0.5x+ 1⌋ rounds argument x to the nearest odd integer value (this

is equivalent to select the nearest point in a PAM constellation). In the rest

of the thesis, the Babai Point s
(1)
l is indicated as sl for simplicity. Metric

normalization with respect to Rl,l elements along the diagonal of the channel

matrix can significantly simplify this operation. However additional compu-

tational effort will be required in this case for normalization, especially in

the presence of fast fading channel. Alternatively the Babai point can also

be determined by calculating:

sl = s
(1)
l = arg min

s
|ψl+1[l]− Rl,ls| (2.15)

In this work, (2.14) is adopted.

ψ and PED metrics are then updated according to (2.12) and (2.8). Forward

processing continues at the lower tree level until either a tree leaf is reached

16

./2/figures/step.epsi

2.5 Other versions of Sphere Decoder Algorithm

or the current PED metric goes outside the hypersphere (Tl > C). In

these cases, backward processing is started to return back to the closer tree

level where not all sibling nodes have already been explored and to select

a new symbol. In the Schnorr–Euchner (SE) enumeration, the first chosen

symbol at each level is always the Babai Point, while following choices at

the same tree level are made according to a zig–zag path around it; this

enumeration technique follows the PED ascending order. Fig. 2.3 shows the

points selected at tree level l, starting from the Babai Point sl and following

the zig–zag sequence for subsequent choices, s
(2)
l , s

(3)
l , s

(4)
l . When a tree leaf

is reached, radius may be updated if T1 < C: if this is the case, T1 becomes

the new radius for the subsequent tree exploration. The tree leaf with the

minimum T1 represents the ML solution.

2.5 Other versions of Sphere Decoder Algorithm

The different versions of SDA can be classified, based on three aspects:

1. System model: complex–valued versus real–valued

The main difference between these two categories is the tree construction

and the average number of visited nodes, directly related to the throughput.

In fact, in a real–valued system, the tree has a double number of levels

than in a complex–valued one, and a number of sons, which is equal to the

root of the cardinality of the corresponding complex–valued constellation.

Considering the previous example, shown in the section 2.4, of a 4×4 MIMO

system with 16QAM modulation, the tree has Mt = 4 levels and |O| = 16

sons (O is a complex–valued constellation), in a complex-valued model. In

a real–valued one, instead, it has 2Mt = 8 levels and |
√
O| = 4 sons. Clearly,

the number of leaves is the same for both choices.

The actual number of tree nodes that are visited is directly related to the

throughput, which may also be affected by the use of a real or complex–

valued channel model. While several authors proved that complex–valued

model results in a lower number of visited nodes with respect to real–valued

one [1], it was shown in [33] [34] that the latter offers two advantages: (i)

it involves a lower global number of elementary real–valued operations and

17

2.5 Other versions of Sphere Decoder Algorithm

(ii) allows for simple enumeration techniques. For this reason real–valued

model is more suitable for practical implementation.

2. Direction of the tree exploration: breath–first versus depth–first

While the depth–first strategy (see the tree exploration in 2.4) first chooses

one symbol at each level and goes down, coming back only later for ex-

amining the other alternative points at that same level, the breath–first

concurrently selects more than one point at each level. The main exponent

of this family is theK-best: it expands theK more promising points at each

level. A big value of K avoids a great loss of BER, but it requires to expand

an high number of paths in parallel, employing a huge amount of hardware

resources. On the other hand, a small K causes a BER degradation. The

algorithm finishes when it reaches the leaf level, and the ML solution is rep-

resented by the leaf with the minimum ED, among all K leaves. In this way,

the K-best, and, more in general the breath–first strategy, is characterized

by a fixed number of visited nodes, and therefore a fixed throughput [35]. In

the depth–first, instead, the actual number of tree nodes that are visited in

the detection of a received symbol vector is a stochastic value and its average

depends on signal to noise ratio. This implies that detection throughput is

not constant.

3. Enumeration: Fincke Pohst (FP) versus Schnorr-Euchner (SE)

The FP method is the fist introduced from an historical point of view [36].

It consists in considering the nodes of a level with the natural order. For

example, in the case of a 4PAM, where sons are {−3,−1, 1, 3}, the nodes

are visited exactly with that order. Only later, a more efficient method has

been introduced, such as the SE strategy ((see the tree exploration in 2.4)).

Most algorithms are a combination of this three aspects. A short description of

the main important follows:

Statistical pruning : it is a modified version of the SDA, in particular, the

pruning is based on statistical criteria. It establishes a schedule of the radius

r1 ≤ r2 ≤ . . . ≤ rMt
and solves T1 ≤ r21,T1+T2 ≤ r22, . . .,T1+T2+ . . .+TMt

≤
r2Mt

. Since the radius is different at each level of the tree, the region D, which
limits the search, is not an hypersphere. This means that the detection is

18

2.5 Other versions of Sphere Decoder Algorithm

not exactly ML, but the performance can arbitrarily be close to ML, thanks

to the choice of the probability ε that the transmitted vector does not belong

to D , because the error probability upper bound is Pe ≤ PML
e + ε. This

solution achieves a complexity reduction of order M2
t [37].

Automatic Sphere Decoder (ASD) : it is a very efficient algorithm for a

software implementation. The nodes are stored into an ordered list, based

on their PEDs. The expanded node is the first element in the list, i.e. the

node with the smallest PED. The peculiarity of this method is that the

above node can be at each level of the tree, but since it requires a sorting

and a visiting of a list, it is not feasible for an hardware implementation.

Fixed-complexity Sphere Decoder (FSD) : it is a combination of K-best

and SDA. Independently of the noise level and the initial radius, it only

visits a fixed number of nodes for each level, based on the χ2 distribution

of the noise matrix. At the uppermost level many candidates are consid-

ered, because of the inter-level interference. At the lowest levels, instead,

the number is reduced. This produces a performance-complexity trade-off:

bigger the number of candidates, better the performance, but higher the

computational complexity. This makes FSD suitable for reconfigurable ar-

chitectures, able to adaptively change the number of candidates, according

to channel conditions [38].

Conditioned Ordered Successive Interference Cancellation (COSIC) : it

is a particular case of FSD. The idea is to simplify the search thanks to suc-

cessive interference cancellation for all nodes at the uppermost level. The

throughput can be constant or not, depending on the implementation, and

it has slightly worse performance with respect to SDA, but it reduces the

computational complexity and occupied silicon area [39].

Two techniques, which can be easily applied to all previous algorithms and

all variants of SDA in order to reduce the processing complexity, are the Early

Termination (ET) and the simplification of the mathematic norm in (2.4).

The Early Termination consists in constraining the maximum number of visited

nodes. When this limit is reached, the detection ends, returning the best found

19

2.5 Other versions of Sphere Decoder Algorithm

solution, which is not guaranteed to be ML. It can have a deep BER degrada-

tion. A variant of this method is to change the constraint, according to channel

conditions [40].

Another aspect of the SDA, which can be used in any methods, is the possibility

of employing a simplified norm. This allows to reduce the complexity, from an

implementation and algorithmic points of view, at a price of a degradation of

BER.

The radius constraint can be rewritten as:

d2(s) =
√
T 2
1 + T 2

2 + . . . T 2
Mt
≤ r (2.16)

where Ti represents the PED for the i-th level of the tree. It is possible to

approximate the Euclidean-norm with one-norm:

d2(s) ≈ d1(s) = |T1|+ |T2|+ . . .+ |TMt
| (2.17)

or with the infinity-norm:

d2(s) ≈ d∞(s) = max{|T1|, |T2|, . . . , |TMt
|} (2.18)

20

3

Look-ahead Sphere Decoder
Algorithm

3.1 State of the Art

A relatively small number of SDA architectures have been implemented with real

ML performance (e.g. the 1st implementation in [1] and [3]), mainly because

of three limitations associated with the ML approach: the high computational

complexity, resulting in a large occupied area, the variable number of visited tree

nodes, and the limited average throughput.

Some works are focused on the reduction of the implementation area: in [1] the

proposed ASIC (Application–Specific Integrated Circuit) adopts a approximated

norm (see section 2.5), which allows for small area; in [39] further techniques

are explored to even reduce Silicon area; in [41], area cost is limited resorting to

efficient searching. The second problem, the variable number of visited nodes,

has been widely investigated: in [42], a breath–first algorithm is implemented to

achieve a fixed throughput, independently of noise level; the concept of layered

orthogonal lattice detector is introduced in [43] to guarantee constant throughput;

the parallel architecture proposed in [44] achieves a small variance in the number

of visited nodes, resulting in matching run–time constraints; in [45] the number

of visited nodes is limited by means of a new search strategy. High throughput

is also the aim of the ASIC II implementation in [1] that offers a throughput up

to 169 Mbps at 20 dB on a 4×4 16QAM MIMO system, while the parallel and

pipelined VLSI architecture in [17] also guarantees a fixed decoding throughput

21

3.2 Look-ahead methodology

up to 53 Mbps for the same system. Some recent VLSI implementations for

MIMO detectors with reduced complexity are also available in [46] and [47]. All

the works mentioned above have the common characteristic of showing a decline

in performance with respect to the optimal receiver.

While most of these solutions achieve performance that is close to ML, this re-

search work faces the problem of a high throughput full ML implementation.

Some formal transformations can be applied to processing algorithms to en-

able high throughput implementation. In this work, look–ahead, pipelining and

retiming transformations [48] are employed in order to shorten critical path de-

lay and to increase throughput with respect to SDA. These techniques assume

a graphical representation of the initial algorithm, in particular the well-known

Data-Flow-Graph representation (DFG) is chosen [48].

3.2 Look-ahead methodology

This section gives an overview of formal transformation procedures that can be

applied to processing algorithms to enable high throughput implementation. In

order to clarify the employed methodology, a simple example is proposed: an IIR

(Infinite Impulse Response) filter. Eq. (3.1) describes the filter and Fig. 3.1 gives

the corresponding DFG representation:

y[k] = x[k] + ay[k − 1] (3.1)

where node with symbol + represents the addition and the node with the symbol

X the multiplication; a is a constant coefficient, x[n] and y[n] input and output

samples at time n. The edge going from addition to multiplication is associated

to a inter–iteration data dependency and for this reason it contains one unit-delay

(register), labeled with D; on the contrary, the other edge going from multiplica-

tion to addition has no delay, as it represents an intra–iteration data dependency.

With the architecture of Fig. 3.1 the critical path delay is given by the following

equation:

tcp = Tadd + Tmul (3.2)

22

3.2 Look-ahead methodology

+

x

D

y[k]

a

x[k]

Figure 3.1: DFG representation of the computation y[k] = x[k] + ay[k − 1].

The critical path delay determines the maximum clock frequency, achievable by

that architecture. In fact, fmax is exactly the inverse of tcp:

fmax =
1

tcp
(3.3)

Therefore also the processing throughput, which is directly proportional to the

clock frequency, is superior bounded to:

th <=
1

Tadd + Tmul
(3.4)

In the Look–ahead transformation a linear recursion is iterated few times to create

additional concurrency. Applying look-ahead to the iteration (3.1), the filter

equation becomes:

y[k] = x[k] + ay[k − 1] = x[k] + ax[k − 1] + a2y[k − 2] (3.5)

where two loop steps are concatenated. Fig. 3.2 shows the DFG, obtained after

look-ahead transformation. Now, the number of resources is higher with respect

to the original IIR and also the critical path is increased:

tlookcp = 2Tadd + Tmul (3.6)

But what is important is the presence of two registers in the recursive part of

the graph, allowing to apply retiming technique. It consists in changing the

location of delay elements in the datapath, without affecting the input/output

behavior of the circuit. Moreover, it is also possible to apply pipelining to the

23

./2/figures/IIR.eps

3.2 Look-ahead methodology

D D

D

a

x

+ +

x

y[k−2]

y[k]

x[k] x[k−1] a 2

Figure 3.2: The two steps look-ahead DFG of computation y[k] = x[k]+ay[k−1].

non-recursive part of the DFG, introducing registers along the datapath to reduce

the critical path delay. Applying pipelining and retiming to the DFG in Fig. 3.2,

the new DFG in Fig. 3.3 is obtained, where unit-delays shown asDp are pipelining

registers and unit-delays labeled with Dr are retiming registers. The critical path

D

Dp

Dp

D

a

x x

+ +Dr

Dr

y[k]

x[k−1]x[k] a 2

Figure 3.3: The two steps look-ahead DFG with pipelining and retiming of com-
putation y[k] = x[k] + ay[k − 1].

delay is significantly reduced and the achievable throughput becomes:

thmax =
1

max(Tadd, Tmul)
(3.7)

In general, look-ahead transformation, accompanied by pipelining and retiming,

provides an increment of throughput, and an increase of complexity. The most

important limitation of look-ahead transformation is that it is feasible only for

linear loops.

24

./2/figures/IIR_look2.eps
./2/figures/IIR_look2_pipret.eps

3.3 Look–ahead optimization of SDA

The presented methodology is applied to the SDA algorithm, described in section

2.4, as detailed in the following section.

3.3 Look–ahead optimization of SDA

3.3.1 DFG representation

Starting from equations (2.8) to (2.14), the obtained DFG is represented in Fig.

3.4 for the forward processing of SDA.

To make more readable the DFG in Fig. 3.4, main operations are grouped

in blocks: the S block implements (2.14), obtaining the Babai Point sl from the

received ψl+1[l]. DI block implements (2.13): the ED el is generated from symbol

sl and ψ
l+1[l]. Block PED in the DFG implements (2.8) to update PED metrics.

Operations performed within each block are detailed in dotted boxes.

On the left side of the DFG, computational blocks for the processing of pre-

viously defined ψ amounts are indicated. As shown in (2.12), the computation

of ψl+1[l] (i.e. the received symbol reduced by interference resulting from the

already estimated symbols) can be distributed along M − l + 1 steps: at step

k = 1, ψM+1[l] = ỹl is calculated, at step k = 2, ψM [l] is obtained from ψM+1[l]

by subtracting the Rl,MsM contribution, and at each subsequent step k a new

ψM+2−k[l] is generated. In particular, step k = 1 only needs the ZF term ỹl and

can be performed for all l before starting tree exploration. Step k = 2 makes use

of the first estimated symbol sM : as a consequence, all ψM [l] can be calculated

when exploration is at top of the tree (level M). Similarly, the following steps

k = 3, . . . ,M − l + 1 are executed at tree levels M − 1, . . . , l + 1.

The DFG in Fig. 3.4 shows the forward processing at a specific tree level (l).

ψl+1[l], calculated at the previous level l + 1, is used to compute el according to

(2.13). At the same time, ψl+1[l − 1], also computed at level l + 1, is necessary

to generate ψl[l − 1], which will be used at the lower level to obtain el−1:

ψl[l − 1] = ψl+1[l − 1]− Rl−1,lsl (3.8)

A ψ-type block consisting of one multiplier, one adder and one register is needed

to execute (3.8). Additional ψ-type blocks are necessary to concurrently generate

25

3.3 Look–ahead optimization of SDA

Block
DI

eq.

PED

eq.

Block

x

_

+

2

Block

x

− −

S
Block

eq. (2.14)

(2.13)

(2.8)

eq.(2.12)

D1[i]

sl
sl

ψl+1[l]
ψl+1[l]

ψl[i]

ψl+1[i]

ψl+1[l]

Rl,l
ψl+1[i]

Ri,l
sl

ψl[i]

⌊0.5ψ
l+1[l]
Rl,l

+ 1⌋

ψ[i]

sl
Rl,l

el

ψl+1[l]

el el

Tl+1

TlTl
Tl+1

D2

ψl+1[l]

Rl,l

Rl,l

Ri,l

i =
l −

1,
. .
. ,
1

Figure 3.4: The DFG representation of SDA (Forward processing).

the ψl[i] amounts that will be required at the lower tree levels, i < l−1. Therefore

26

./2/figures/SDA_original.epsi

3.3 Look–ahead optimization of SDA

Table 3.1: Combinational delay (tpdmin) of computational blocks in forward pro-
cessing. Rows 2 to 5 refer to processing blocks required for SDA; row 6 refers to
the additional component needed to support LASDA

Block tpdmin[ns]
S block 2.05
ψ[i] block 1.31
DI block 1.31
PED block 1.48

ψ̂[i] block 1.65

l− 1 ψ-type blocks are indicated in the DFG (Fig. 3.4), each one performing the

following update operation:

ψl[i] = ψl+1[i]−Ri,lsl i = l − 1, . . . 1 (3.9)

ψ[i] blocks also include l − 1 registers, D1[i], with i = l − 1, · · · , 1, used to accu-

mulate ψl[i] amounts. These registers are initially loaded with the corresponding

ỹi. In the adopted notation for ψl[i], the l index corresponds to the current tree

level and therefore during forward processing it decreases by one at each cycle.

As an example, input of register D1[i] is indicated as ψl[i], while the output from

the same register is ψl+1[i].

Now, the next useful step in this analysis is to identify where the critical

path is located, along the forward processing. In particular, it is interesting to

find out the delay of each block, in order to understand which is the slowest. A

VHDL description of each one has been developed and processing delays have been

derived from synthesis using Synopsys Design Compiler version Z-2007.03-SP1.

A 0.13 µm CMOS Standard Cell technology is adopted (Table 3.3, rows 2 to 5).

The first column of Table 3.3 shows the name of the block and the second column

reports the minimum delay obtained with a 0.13 µm technology. According to

synthesis results, the critical path delay in the DFG is approximately 1 given by:

tSDAc.p.
∼= tS block + t DI block + t PED block = 4.84ns (3.10)

1With automated synthesis, when multiple components are integrated, the whole critical
path delay may be different from the simple sum of component delays.

27

3.3 Look–ahead optimization of SDA

where tS block, t DI block and t PED block are the delays associated respectively to

blocks S, DI and PED. The delay along the identified critical path can be easily

Block
DI

eq.

Block

S
Block

PED

eq.

Block

eq. (2.14)

(2.13)

(2.8)

eq.(2.12)

D1[i]

D3

D4

ψl+1[l]

ψl[i]

ψ[i]

Rl,l

Ri,l

sl

sl+1

Rl+1,l+1

el+1

D2

ψl+1[i]

ψl+1[l]

D5

el+2

Tl+3 Tl+2

ψl+2[l + 1]

I

II

III

i =
l −

1,
. .
. ,
1

Figure 3.5: The DFG representation of SDA (Forward processing) after pipelin-
ing. Registers D3, D4, D5 have been inserted.

28

./2/figures/SDA_pipelining.epsi

3.3 Look–ahead optimization of SDA

reduced by inserting pipelining registers, because blocks S, DI and PED are not

part of a loop: the pipelined DFG is shown in Fig. 3.5, where registers D3, D4,

D5 have been inserted. In the new DFG, the critical path is now placed along the

loop including S block and ψ[i] blocks (loop1 = S block → ψ[i] block → S block):

in this case the insertion of pipeline registers along the loop is not allowed [48].

The other loops in the DFG, namely loop2 = PED block → PED block and

loop3 = ψ[i] block → ψ[i] block, are not critical, as they include faster operations

than loop1. Therefore loop1 is the actual throughput bottleneck of the SDA.

tpipeSDAc.p.
∼= tS block + tψ block = 3.36ns (3.11)

3.3.2 Linear approximation and look–ahead transforma-
tion

One effective technique to improve processing throughput along a critical loop is

look–ahead [48]. However the look–ahead technique can only be applied to linear

processing, while loop1 includes the non-linear operation (⌊0.5x+ 1⌋). Thus a

linear approximation is necessary. In the forward processing, according to (2.12)

and (2.14), the calculation of ψl+1[l] at level l + 1 can be written as

ψl+1[l] = ψl+2[l]−Rl,l+1sl+1 = ψl+2[l]− Rl,l+1

⌊
0.5
(
ψl+2[l+1]
Rl+1,l+1

)
+ 1
⌋

(3.12)

Round operation in (3.12) is now replaced with a simple division:

ψl+1[l] ∼= ψ̂l+1[l] = ψl+2[l]− Rl,l+1
ψl+2[l + 1]

Rl+1,l+1

(3.13)

The symbol ψ̂ is used to represent the approximate version of ψ. Amounts ψl+2[l]

and ψl+2[l + 1] in (3.12) are expressed according to (2.12) as:

ψl+2[l] = ψl+3[l]−Rl,l+2sl+2

ψl+2[l + 1] = ψl+3[l + 1]−Rl+1,l+2sl+2

Eq. (3.14) are substituted in (3.13), so obtaining:

ψ̂l+1[l] = ψl+3[l]− Rl,l+1

Rl+1,l+1
ψl+3[l + 1]− sl+2

[
Rl,l+2 −

Rl,l+1

Rl+1,l+1
Rl+1,l+2

]
(3.14)

29

3.3 Look–ahead optimization of SDA

With the following pre-calculated coefficients,

Al =
Rl,l+1

Rl+1,l+1
Bl = Rl,l+2 − Rl,l+1

Rl+1,l+1
Rl+1,l+2 (3.15)

(3.14) becomes:

ψ̂l+1[l] = ψl+3[l]−Alψl+3[l + 1]− Blsl+2 (3.16)

This is the key result that allows for breaking the SDA throughput bottleneck.

While in the first part of (3.12) the calculation of ψl+1[l] needs sl+1, (3.16) clearly

shows that the metric ψ̂l+1[l] does not depend on sl+1 any more. Instead it

requires sl+2, which is available one cycle in advance with respect to sl+1.

Since the computation of ψ̂l+1[l] does not need to wait for sl+1, we can think

to recursively used it as an input of S block, in order to accelerate the processing

in the loop1. This approach has the advantage of reducing the critical path. But,

as a consequence, the generated output symbol might be different from the Babai

Point and it must be indicated in a different way: ŝl. (3.16) has then to be written

in the form

ψ̂l+1[l] = ψl+3[l]−Alψl+3[l + 1]− Blŝl+2 (3.17)

The effects of the possible difference, due to the substitution of the Babai Point

sl with ŝl, are discussed later.

Eq. (3.17) represents now the recursion of the look–ahead SDA and a new

DFG can be drawn for the modified SDA, as shown in Fig. 3.6. It is obtained

from Fig. 3.5 by simply inserting the additional operations resulting from the

look–ahead transformation: the ψ̂ block implements (3.17), while registers D4 to

D9 introduce required delays. All other blocks perform the same operations as

in Fig. 3.5. Three of the updated ψ are now directly used: ψl+2[l+ 1] (output of

register D4) is still used by DI block, ψl+3[l] and ψl+3[l + 1], two cycles delayed

versions of ψl+1[l] and ψl+1[l + 1] (through registers D4, D6, D7 and D8), feed

the new ψ̂ block, which computes ψ̂l+1[l], according to eq. (3.17). Register D9 is

also required to generate ŝl+2 from ŝl+1.

As an effect of the applied look–ahead transformation, the outer feedback loop

in Fig. 3.6 (S block → ψ[i] block → ψ̂ block → S block) includes additional reg-

isters (D4, D6, D7 and D8) that can be properly shifted to cut the combinational

30

3.3 Look–ahead optimization of SDA

x

S
Block

Block
DI

PED

eq.

Block

Block

Block

eq.

CS1

CS2
x

_

_

eq.(2.14)

eq. (2.13)

(2.8)

eq.(2.12)

(3.10)

D1[i]

D3

̂
ψl+1[l]

ψl+1[l]

ψl+3[l] ψl+3[l + 1]

ψl+2[l + 1]

̂
ψ

ψl+1[l + 1]

ψl[i]

ψl+1[i]

ψ[i]

D4

D7

csl

csl+1

D2

D5

el+1

Tl+2

Rl,l

D6

D8

D
9

csl+2

Ri,l

Rl+1,l+1

el+2

Tl+3

̂
ψl+1[l]

Bl

i =
l −

1,
. .
. ,
1

̂
ψl+1[l]

csl+2

Bl

Al ψl+3[l]

ψl+3[l + 1]

Figure 3.6: DFG representation of LASDA (Forward processing) after look–
ahead. Retiming is applied on cut-sets CS1 and CS2.

31

./2/figures/SDA_look_cut_set.epsi

3.3 Look–ahead optimization of SDA

delay (retiming). The key requirement is to split the critical path formed by S

and ψ[i] blocks in Fig. 3.6. In order to increase the throughput, the cut–set

retiming technique [48] can be exploited to move registers in suitable positions.

The one cycle delay introduced by registers D4 and D6 can be moved from the

outputs to the input of ψ[i] block by removing the two registers and feeding ψ[i]

block with signal ŝl+1, which is already available at register D3 (cut-set indicated

as CS1 in Fig. 3.6). Moreover delay introduced by registers D7, D8 and D9 can

be moved from the inputs to the output of ψ̂ block by removing D7, D8 and

D9 and inserting the new register D10 in Fig. 3.7. The ψ[i] blocks now receive

symbol ŝl+1 (output of register D3) instead of ŝl: as a consequence, all signals in

ψ[i] blocks are shifted by one cycle (cut-set indicated as CS2 in Fig. 3.6). Thus

outputs ψl+2[l] and ψl+2[l+1] are directly applied to the input of ψ̂ and DI blocks,

with no need of registers. We call this modified algorithm LASDA (Look–ahead

SDA).

The loop1 in the DFG of Fig. 3.5 includes S and ψ[i] blocks and it is distributed

along two clock cycles. The path composed by S, DI and PED blocks, instead, is

distributed along three clocks, as shown in Fig. 3.5. The outer loop in the LASDA

DFG of Fig. 3.7 contains three blocks (S, ψ[i] and ψ̂), but the whole processing is

distributed along three clock cycles, as indicated by bold dashed lines: this leads

to a potentially large processing speed-up with respect to the SDA. In order to

obtain an estimation for this speed-up, the ψ̂ block has been described in VHDL

and synthesized with the same approach adopted for the other main blocks (see

Table 3.3, last row): resulting delay is 1.65 ns. As in the new DFG, registers

are present at the input and output of each processing block, the critical path

corresponds to the longest block delay, which is equal to 2.05 ns (S block). The

critical path delay of the LASDA DFG, tLASDAc.p. , is then shorter than tSDAc.p. .

tLASDAc.p.
∼= tS block = 2.05ns < tSDAc.p. = 4.84ns (3.18)

If compared with the worst case delay estimated for SDA, this result shows a 58%

improvement in terms of clock frequency, as demonstrated in (3.18).

32

3.3 Look–ahead optimization of SDA

S

eq.
Block

Block
DI

eq.

PED

eq.

Block

eq.

Block

Block

(2.14)

(2.13)

(2.8)

eq.(2.12)

(3.10)

D1[i]

̂
ψl+1[l]

ψl+2[l]

el+2

I

II

IIÎ
ψ

el+1

ψl+2[l + 1] Tl+2

ψl+2[i]

ψl+1[i]

ψ[i]
ψl+2[l + 1]

Rl,l

csl

D3

Rl+1,l+1

D5

D2

csl+1Bl−1

csl+1

Ri,l

̂
ψl[l − 1]

i =
l −

1,
. .
. ,
1

D10

Figure 3.7: DFG representation of LASDA (Forward processing) after look–
ahead, retiming and pipelining.

33

./2/figures/SDA_look_ret_pipe.epsi

3.3 Look–ahead optimization of SDA

3.3.3 Performance evaluation of LASDA

LASDA and SDA have been compared in terms of BER performance and average

number of clock cycles (which, together with clock frequency, determines the av-

erage throughput). Fig. 3.8 shows the general scheme of transmitter and receiver,

RF
Analog/

RF
Analog/

RF
Analog/

RF
Analog/

RF
Analog/

RF
Analog/

RF
Analog/

RF
Analog/

IFFT

IFFT

IFFT

IFFT

Mapping
QAM

Source

FFT

FFT

FFT

FFT

QR
decomp

ZF
solution

search
Tree

QAM
Demapping

SDA/LASDA

Figure 3.8: Scheme of the transmitter and the receiver.

which is described as a cycle accurate model in C language. A random source of

bits is directly mapped onto a complex–valued 16 QAM constellation, using Gray

mapping. A 4× 4 MIMO system is assumed, so that the bit stream is divided in

blocks of 16 bits (4 bits per symbols per 4 transmitters). A flat i.i.d. Rayleigh

block-fading channel is assumed: the channel coefficients remain constant over a

block of 16 bits. Eq. (2.2) described the MIMO system. At the receiver side, per-

fect CSI is assumed and unsorted QR decomposition is performed. As detector,

either SDA and LASDA are employed. For both the tree search is depth–first

real-valued with SE enumeration. The 16QAM is transformed into a real–valued

4 PAM. As a consequence, the tree has M = 8 levels, with 4 sons per node. The

detector makes an hard decision on symbols, which are at last directly demapped

onto bits. In the detector, a fixed-point precision of 16 bits has been chosen, be-

cause it was adopted in most of the literature for the 16-QAM modulation, so it

represents a good choice for comparisons. In particular, 8 bits are adopted both

for integer and fractional part [49]. The signal-to-noise ratio(SNR) is defined

as SNR = MTEs/N0, with Es = E[|s|2], s ∈ O. The software model of LASDA

detector is detailed in Algorithm 2, which is derived modifying the SDA, reported

in Algorithm 1.

34

./2/figures/Scheme_system.eps

3.3 Look–ahead optimization of SDA

Algorithm 1 SDA

Require: |Ω| number of symbols in the real-valued constellation, M number of
antennas, r initial radius, ỹi (i = 1, ...,M) ZF solution

1: l ←M , kmax ← |Ω|, C ← r2 =∞
2: Forward processing :
3: compute Babai Point, s

(1)
l , set kl = 1 and sl = s

(1)
l

4: update PD, ψl(i) (i = l − 1, . . . 1)
5: update PED, Tl
6: if Tl < C and l > 1 then
7: l ← l − 1
8: goto 2
9: end if
10: Backward processing :
11: if (l = 1) and (Tl < C) then
12: C ← T1
13: end if
14: if (kl < kmax) and (Tl < C) then
15: kl ← kl + 1
16: find s

(kl)
l (next best symbol choice) and set sl = s

(kl)
l

17: goto 4
18: end if
19: if l < M then
20: l ← l + 1
21: goto 14
22: end if

35

3.3 Look–ahead optimization of SDA

Algorithm 2 LASDA

Require: |Ω| number of symbols in the real-valued constellation, M number of
antennas, r initial radius, ỹi (i = 1, ...,M) ZF solution

1: l ←M , kmax ← |Ω|, C ← r2 =∞, ψ̂M+1(M)← ỹM
2: Forward processing :
3: compute ŝl, first symbol choice from ψ̂l+1(l), and set kl = 1, sl = ŝl
4: update PD, ψl(i) (i = l − 1, ...1)
5: update PED, Tl
6: compute ψ̂l(l − 1)
7: if Tl < C and l > 1 then
8: l ← l − 1
9: goto 2
10: end if
11: Backward processing :
12: if (l = 1) and (Tl < C) then
13: C ← T1
14: end if
15: if (kl < kmax) and (Tl < C) then
16: kl ← kl + 1
17: find s

(kl)
l (next best symbol choice) and set sl = s

(kl)
l

18: goto 12
19: end if
20: if l < M then
21: l ← l + 1
22: goto 23
23: end if

36

3.3 Look–ahead optimization of SDA

In the reported simulations, the SNR (Signal-to-Noise-Ratio) ranges between

0 and 30 dB. Two measures are derived from the C model, BER and NC , average

number of clock cycles needed to detect one symbol vector (four 16QAM signals

for the considered case). In particular, NC is derived, considering a one-node-

per-cycle architecture, i.e. one clock is counted for each visited node. No error

correction code is used in the simulated transmission scheme.

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0

SD
LASDA

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

N
c

Eb/N0

SD
LASDA

(a) (b)

Figure 3.9: BER (a) and iterations (IT)(b) of SDA and LASDA.

Simulation results obtained for SDA and LASDA are reported in Fig. 3.9.

No degradation in terms of BER can be seen in Fig. 3.9(a): LASDA and SDA

BER curves are exactly superimposed. ML performance of LASDA is explained

by the fact that applied formal transformations do not modify the algorithm

behaviour but simply its execution on a hardware architecture. Approximate ψ̂

is only used by the S block in Fig. 3.7: although different from the Babai Point,

the computed symbol always is a valid constellation point. Moreover, once a

valid symbol is generated, it is used to evaluate PED metrics with no further

approximations. Since the PED calculated at a certain node is always coherent

with the selected symbol,no erroneous pruning can be decided and no decline in

the BER performance is caused by LASDA. On the other hand, an huge increase

in the number of clock cycles is shown in Fig. 3.9(b) for LASDA over SDA. This

37

./2/figures/BER_LASDA.eps
./2/figures/IT_LASDA.eps

3.3 Look–ahead optimization of SDA

increase is around 118% at SNR= 20 dB (BER 5.2 ·10−4). This is due to the fact

that, during forward processing, LASDA evaluates approximate ψ̂, which is used

to make the first symbol choice at a tree level l, ŝl. This computation provides a

processing speed-up over SDA. However the linear approximation introduced in

LASDA might cause changes in the node enumeration. In particular, ŝl might be

different from the true Babai Point, sl, and this cause the increase in the average

number of visited nodes. Next subsection presents the solution to this problem.

3.3.4 A modified search strategy: Test & Restart

The key idea is to allocate resources to calculate Babai Point sl and to compare

it against ŝl. The calculation of the Babai Point requires a separate S block

and it is carried out one clock cycle later than calculation of ŝl, while LASDA

is already processing the lower tree level: for this reason, this late Babai Point

cannot be efficiently used to drive the tree search in the forward phase. However

it can be used to detect and stop a wrong visit direction. Two symbols are then

concurrently computed at each clock cycle: ŝl, which is rapidly derived from ψ̂

metric in one single clock cycle, as illustrated in Fig. 3.7, and sl, the Babai Point,

which is derived one cycle later from ψl+1[l], by means of a separate S block. The

two symbols are exploited to control tree exploration with a strategy said Test &

Restart. This strategy involves the following three steps:

1. Symbol sl is compared to ŝl.

2. sl = ŝl means that the symbol chosen by LASDA is the Babai Point. In

this case, the SE enumeration can be based on the computed ŝl and the tree

visiting continues with the usual depth–first SE strategy.

3. sl 6= ŝl means that the symbol selected by LASDA is not the Babai Point.

This decision is not the best one and it is dropped: ŝl is substituted with sl

and the forward processing is started again with one cycle of delay. Also SE

enumeration will start from sl.

Fig. 3.10 reports the flux diagram of LASDA with Test & Restart strategy. It

is worth clarifying here that step 3 does not lead to any tree pruning, which

only occurs after obtaining a PED greater than current C. When sl 6= ŝl, the

38

3.3 Look–ahead optimization of SDA

true

false

start LASDA

LASDA

Test & Restart

sl+1 = ̂sl+1

l = l + 1

ŝl = sl
̂
ψl+1[l] = ψl+1[l]

Figure 3.10: Flux diagram of the LASDA with Test & Restart strategy.

LASDA choice is discarded and replaced by the Babai Point; the tree exploration

is then continued accordingly. However the dropped search direction could be

taken again in a later visit to the same tree level.

3.3.5 Performance evaluation of LASDA with Test & Restart

Fig. 3.11 reports an example of tree search with the Test&Restart strategy: at

levels l and l − 1, the LASDA is supposed to select symbols ŝl = 1 and ŝl = 3 in

cycles 1 and 2 respectively: this search direction is indicated with a bold dotted

line. In cycle 2, symbol sl = −1 is calculated: as this value is different from

ŝl, the current search direction is stopped and postponed to a later time. The

new direction corresponding to sl = −1 is taken and continued in cycle 3 with

a new LASDA choice (bold solid line). The example shows that one additional

39

./2/figures/FLUSSO.epsi

3.3 Look–ahead optimization of SDA

−3 −1 −131 3 31

1 3−1−3

:

:

:

−3 −1 1 3 −3 −1 1 −3

2 1

3 2

1

:2

3"

clock

"

l − 1

l

ŝl = 1

ŝl−1 = 3

sl = −1 6= ŝl

ŝl−1 = −3

Figure 3.11: Example of the tree search with the Test & Restart strategy.

clock cycle is necessary when the test on ŝl fails. Thanks to the Test & Restart

search strategy, LASDA and SDA visit the same sequence of tree nodes; the only

difference between the two algorithms is that LASDA tries to anticipate the next

node in the forward processing and returns to the best choice when a wrong

direction is taken. As a consequence, ML performance is already achieved, as

without the Test & Restart, as shown in Fig. 3.12-(a). But in the new search

strategy, some nodes might be visited twice as an effect of failed tests; as a

consequence it is expected that the average number of clock cycles needed for the

40

./2/figures/tree.epsi

3.3 Look–ahead optimization of SDA

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0

SD

LASDA with test&restart

0 5 10 15 20 25 30
0

50

100

150

200

250

N
c

Eb/N0

SD

LASDA with test&restart

(a) (b)

Figure 3.12: BER (a) and iterations (IT)(b) of SDA and LASDA with Test &

Restart.

detection of a received symbol vector is increased with respect to SDA, but also

reduced with respect to LASDA without Test & Restart. In fact, as shown in

Fig. 3.12, the described approach results into a very small number of additional

clock cycles: this increase is around 4% at SNR= 20 dB (BER 5.2 · 10−4). The

final LASDA throughput depends on both the average number of required clock

cycles and the achievable clock frequency.

The software model of LASDA with Test & Restart is detailed in Algorithm 3.

41

./2/figures/BER_IT_modified.eps
./2/figures/IT_modified.eps

3.3 Look–ahead optimization of SDA

Algorithm 3 LASDA with Test & Restart

Require: |Ω| number of symbols in the real-valued constellation, M number of
antennas, r initial radius, ỹi (i = 1, ...,M) ZF solution

1: l ←M , kmax ← |Ω|, C ← r2 =∞, ψ̂M+1(M)← ỹM
2: Forward processing :
3: compute ŝl, first symbol choice from ψ̂l+1(l), and set kl = 1, sl = ŝl
4: if l < M then
5: Test & Restart :
6: compute Babai Point at previous tree level, s

(1)
l+1, from ψl+2(l + 1)

7: if ŝl+1 6= s
(1)
l+1 then

8: l ← l + 1
9: sl ← s

(1)
l

10: ψ̂l+1(l)← ψl+1(l)
11: end if
12: end if
13: update PD, ψl(i) (i = l − 1, ...1)
14: update PED, Tl
15: compute ψ̂l(l − 1)
16: if Tl < C and l > 1 then
17: l ← l − 1
18: goto 2
19: end if
20: Backward processing :
21: if (l = 1) and (Tl < C) then
22: C ← T1
23: end if
24: if (kl < kmax) and (Tl < C) then
25: kl ← kl + 1
26: find s

(kl)
l (next best symbol choice) and set sl = s

(kl)
l

27: goto 12
28: end if
29: if l < M then
30: l ← l + 1
31: goto 23
32: end if

42

3.4 Architecture design

3.4 Architecture design

The S block is a key component in the proposed LASDA architecture. The use

of this processing block in an hardware sphere decoder was already introduced in

[3]. The behaviour of the component is described in the following sub-section.

3.4.1 S block

Before seeing the overall high level architecture, a particular attention is given to

S block, which is certainly the most critical block, in terms of time. Functions

of remaining units are clearly defined and close to HW implementation: they

process signals using adders, subtractors and multipliers. Less clear, instead, is

the direct implementation of this unit.

It receives the approximate version of the PD metric and selects the Babai Point,

according to eq. (2.14); additionally it derives the direction stepl of the first

successive element in the Schnorr-Euchner enumeration. The processing functions

of S block unit is formally defined as:

ŝl =
⌊
0.5 ψ̂

l+1[l]
Rl,l

+ 1
⌋

ŝtepl = sign (△) = sign
(
ŝl − ψ̂l+1[l]

Rl,l

) (3.19)

Fig. 2.3 shows the sequence of selected symbols at a given tree level around the

first choice. At the first visit to a level, the Babai-Point corresponds to the first

symbol to be chosen (ŝl
(1)); the ŝtepl information is set to 0 if the algorithm will

have to consider the left symbol (ŝl
(2)) at the following visit of the node, and to

1 if the next choice is on the right (ŝl
(3)). The S block simply choses the starting

direction of the SE enumeration, in the forward processing. At each new visit of

the node, i.e in the backward processing, the direction will be simply switched,

so following the Schnorr-Euchner enumeration.

The general purpose hardware implementation of numerical division is not straight-

forward and it usually leads to expensive components. However in this specific

case, a general hardware division can be avoided and an ad-hoc solution, cus-

tomized on 16QAM case, can be adopted in order to limit hardware cost and

achieve high throughput. The result returned by the S block is a signal point.

43

3.4 Architecture design

>=

1

abs

shift dx

>=

0

1

1

n_bit

cmp2

n_bit

n_bit

n_bit

n_bit

n_bit

1

1
1

1 1
abs_dividmsb_divis

msb_divid

abs_divis

abs_divid_sh

cmp1

n_bit

sh1

sh2

diff

si
gn

_r
es

m
sb

_r
es

n_bit

sh1_2

−

abs

shift sx

shift sx

̂stepl

Rl,l
̂
ψl+1[l]

ŝl

Figure 3.13: Scheme of the S block.

44

./2/figures/DIVIDER.epsi

3.4 Architecture design

−3 −1 1 3

101 111 001 011

Figure 3.14: Points of a 4-PAM constellation.

The 2’ complement representation of the points of a 4-PAM constellation is given

in Fig. 3.14 as an example. It is worth noticing that:

1. the Least Significant Bit (LSB) is equal to 1 for all points

2. the Most Significant Bit (MSB) is the sign.

Thus only the second bit must be determined [3]. Fig. 3.15 shows the imple-

mentation architecture for S block. It is composed of elementary units: left and

right shifters, a 2-to-1 demultiplexer, comparators, xor and xnor gates, and blocks

which generate the absolute value.

3.4.2 High level architecture

Fig. 3.15 shows the implementation architecture for the whole LASDA based

detector. The datapath architecture includes three fundamental components:

• Forward Unit (FU), which is the core of the detector and performs the for-

ward visit of the tree. This unit, detailed in Fig. 3.7, includes S, ψ[i], ψ̂, DI

and PED blocks described in Section 3.3. Additionally multiplexers are used

to enable replacement of ŝl with the symbols provided by either backward

processing in SE enumeration (s
(k)
l with k > 1) or Test & Restart (late Babai

point sl). It is clear that if ŝl is substituted with sl, also corresponding ŝtepl

must be replaced by stepl, computed by the additional S block in the Test &

Restart Unit, and sent to the Backward Unit. The additional multiplexer,

devoted to this aim, is not indicated only to not complicate Fig. 3.15. This

is the same also for ψ̂l+1[l]: the register at the output of the ψ̂ block should

be anticipated by another 2-to-1 multiplexer, where the alternative input is

ψl+1[l], stored into the Ψ Mem.

• Backward Unit (BU), which concurrently selects the subsequent node to be

expanded, according to SE enumeration, and updates the corresponding ψ

45

./2/figures/PAM.eps

3.4 Architecture design

metrics:

ψl[i] = ψl+1[i]− Ri,ls
k
l i = l − 1, . . . 1 k = 2, 3, . . . (3.20)

In order to ensure that a new node is expanded at each clock cycle, a new,

alternative metric must be available also after a pruning operation has taken

place. Thus, when a given node p is reached, two candidate nodes are

concurrently computed: the first one is a direct son of p and it is processed

by the FU; the second one is the first sibling node of p according to the SE

enumeration and it is concurrently computed by the BU. Both units generate

ψ terms (indicated as ψ
FU

and ψ
BU

in Fig. 3.15). ψ[i] blocks in FU and BU

share the same architecture. S block in FU and Alt block in BU also have

similar structures, however the latter does not need to perform the division

included in the S block: the following best choices for sl (s
(k)
l , with k > 1)

are generated according to the SE policy as shown in Fig. 2.3 and described

in [3].

• Test & Restart Unit (TRU), which implements the modified tree visit strat-

egy described in Section 3.3. TRU computes the Babai Point sl by means

of an additional S block and compares it (CMP block) with the symbol ŝl,

provided by the FU unit. The CMP block is a simple comparator.

The architecture is completed by three memories for the storage of channel co-

efficients (R Mem), ψ amounts (Ψ Mem) and PED metrics (PED Mem). R

memory stores the upper triangular matrix R, obtained after Cholesky decom-

position (2.6). 1/2M ×M locations are required in the Ψ memory, due to the

triangular structure of the R matrix; however an M ×M memory is allocated

to simplify the generation of addresses. The PED memory only has M locations,

so it can be implemented as a set of registers rather than using a RAM generator.

A control unit (CU) properly synchronizes the processing components. It is

implemented as a Finite State Machine (FSM). The processing flow is basically

affected by two control operations. The first one is related to tree pruning and

backward processing. PED metrics are sent to the control unit to verify radius

constraint (2.7) and signal f/b is used to control the first multiplexer in FU:

the alternative symbol s
(k)
l is selected if the test fails, while depth–first search is

46

3.4 Architecture design

CU

Mem
PED

Block
DI

PED
Block

Block

Block

S
Block

Mem
R

FU

Block

D

Block

ALT
BU

TRU
S

Block

D

CMP
Block

Mem

ψ[i]

̂

ψ

Tl+2

̂sl
s
(k)
l

R

ψ[i]
i =

1,
. .
. ,
M

ψBU

R

cmp

̂sl

R

f/b

restart

Rj,j

sl

ψFUΨ

Figure 3.15: High level implementation architectures for LASDA scheme.

continued in the opposite case. The second control operation makes use of the

restart signal: signal cmp informs the CU about the comparison between the ŝl

symbol, calculated by the FU, and the Babai point sl, and if the two symbols are

different, the CU stops the current processing flow and starts it again from the

Babai point.

47

./2/figures/BD_SD_LASDA_mod.epsi

3.5 Synthesis results

Table 3.2: Combinational delay (tpdmin) for additional architecture blocks in Fig.
3.15

Block tpdmin[ns]

ALT block 1.39
CMP block 0.34
R Mem 2.05
Ψ Mem 2.05

3.5 Synthesis results

To assess the achievable throughput and occupied area, the datapath of the pro-

posed architecture (tailored to a 4×4 MIMO channel with 16 QAM constellation)

has been synthesized on the same technology and with the same tool mentioned

in Section 3.3. The internal precision has been set to 16 bits, which guarantees

almost the same performance as the floating point model [50].

Besides running the synthesis of the whole detector, key blocks have been also

separately synthesized. Tables 3.3 reports the minimum combinational delay for

additional blocks in the whole architecture of LASDA, providing results for the

CMP block used to manage the Test & Restart search strategy, the ALT block

in the TRU and R and Ψ memories. Memories are obtained by means of a RAM

generator.

Area complexity given in Table 3.3 was derived with a target clock period

of 2.05 ns, corresponding to the delay of the S block. Given results reveal that

most of area complexity in the detector is due to the ψ[i] blocks (M blocks need

to be allocated in FU and BU), while the additional components needed in the

LASDA, namely ψ̂ block, the second S block and the CMP block in the TRU

have a limited cost, lower than 25000 µm2. It is also worth noticing here that

area cost for ψ[i] and DI blocks increases linearly with the number of levels in

the tree, and so with the number of transmit antenna. On the contrary, the area

complexity of the all other blocks reported does not depend on the assumed signal

constellation: higher order modulations result into a larger number of sons to be

considered at each tree level, but this does not affect the forward processing.

48

3.6 Comparisons with the state of the art

Table 3.3: Synthesis results of computational blocks in the whole architecture:
occupied area at the maximum clock frequency fck = 487 MHz. Rows 2 to 8
refer to processing blocks required for SDA; rows 9 and 10 refer to the additional
component needed to support LASDA

Block Area [µm2]
@ fck = 487 MHz

S block 3124
ψ[i] block 39947
DI block 6566
PED block 12331
ALT block 403
R Mem 36269
Ψ Mem 36269

ψ̂[i] block 21493
CMP block 38

3.6 Comparisons with the state of the art

To facilitate comparisons, Table 3.4 reports the main features of a number of

sphere decoder implementations: four different k–best SD implementations pro-

posed in [46] [47] [16] [15] (columns 2 to 5), the ASIC II in [1] (column 6), the

solution in [2] (available for both 0.25 um and 0.13 um technologies), which re-

sorts to ”pipeline interleaving” to improve throughput (columns 7 and 8), and an

ML serial detector implementation based on [3] (column 9). Column 10 reports

the achieved results for the LASDA implementation. The ”pipeline interleav-

ing”, described in [2], consists in cutting the combinational delay and processing

multiple independent streams of incoming symbols. Look–ahead and pipeline in-

terleaving provide the same kind of advantage, that is the achievement of higher

clock frequency with respect to the original SDA. However, the two approaches

achieve different cost - throughput trade-offs, as shown later in this discussion.

Technology and algorithm differences must be taken into account in the com-

parison: while architectures proposed in [3] and in this work offer full ML per-

formance, the other compared implementations give close to ML performance;

moreover solutions in columns 4 to 7 are related to an older Silicon technol-

ogy, and finally implementation in column 2 addresses a 64QAM modulation

49

3.6 Comparisons with the state of the art

Table 3.4: Comparisons with other works

Reference [46] [47] [16] [15] [1] [2] [3] This
work

MIMO system 4× 4
Modulation 64 QAM 16 QAM
BER Perf. Close to ML ML
Technology
[µm]

0.065 0.13 0.25 0.35 0.25 0.25 0.13 0.13 0.13

Max. fCK
[MHz]

158 150 100 100 71 180 333 250 488

Area [EG] 1760K 438K 669(1) 91K 50K 73K 90K 30K 34K
Area [mm2] 2.38(1) 2.23 13.4 5.76 1.0

(1)

1.46
(1)

0.49 (1) 0.16 0.18

Av. Through-
put [Mbps]

463 2,400 95 53.3 193 488 903 196 381

@SNR=22dB
TAR [Mbp-
s/KEG]

0.26 5.48 0.14 0.58 3.86 6.68 10.03 6.53 11.21

(1) Estimated value, obtained assuming an area occupation, of a two input NAND
gate, of 20 µm2, 5.4 µm2 and 1.35 µm2 respectively for 0.25 µm, 0.13 µm and
0.065 µm CMOS standard cell technologies

and uses a 65 nm technology. Table 3.4 gives for each implementation the cor-

responding technology, maximum clock frequency (Max. fCK), area complexity

(Area), expressed in both mm2 and equivalent gate count (EG), and average

throughput (Av. Throughput) at SNR=22 dB. To evaluate the VLSI efficiency

of the compared solutions, the last row in Table 3.4 gives the Throughput to

Area Ratio (TAR), derived as the ratio between average throughput expressed

in Mbps and occupied area evaluated as KEG. Looking, in particular, at the

achievable throughput, reported results show that pipelining [47], pipeline inter-

leaving [2] and the proposed look–ahead method are effective techniques to break

the throughput bottleneck in the forward processing of SDA and to achieve high

throughput. However different penalties in terms of complexity are paid for this

advantage. The TAR figure of merit can be used to compare these approaches:

pipelining in [47] requires a huge amount of area, which significantly affects the

50

3.6 Comparisons with the state of the art

TAR; pipeline interleaving proposed in [2] also results into a very high through-

put, but the corresponding increment in the implementation complexity is larger

than that required by look–ahead. The larger area cost of the pipeline inter-

leaving approach basically comes from the need of replicating internal memories,

which retain data over multiple iterations. On the contrary, look–ahead only

needs a few extra resources to implement Test & Restart strategy. Therefore the

two approaches provide two different trade-offs between area and throughput.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
−6

0

5

10

15
x 10

5

A
R

E
A

 [u
m

2]

1/Th [Mbps−1]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
−6

0

5

10

15
x 10

5

A
R

E
A

 [u
m

2]

1/Th [Mbps−1]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
−6

0

5

10

15
x 10

5

A
R

E
A

 [u
m

2]

1/Th [Mbps−1]

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
−6

0

5

10

15
x 10

5

A
R

E
A

 [u
m

2]

1/Th [Mbps−1]

LASDA

[1]

[2]

[2]

[3]

0.25 µm technology

0.13 µm technology

Figure 3.16: Area-delay comparison between solutions in [1], [2], [3] and this
work, at SNR=22dB. 1/Th indicates the inverse of the average throughput.

The area-delay plot in Fig. 3.16 shows how pipeline interleaving and look–

ahead span the design space. The global detector area is reported along the

vertical axis, while the per unit time processed symbols are on the x axis (inverse

of the throughput, 1/Th). Two points in the upper part of the plot indicate the

0.25 µm implementations in [1] and [2]: the slope of the arrow that links the two

points shows that pipeline interleaving provides a huge throughput advantage

at the cost of a significant area increase. Unfortunately the same comparisons

51

./2/figures/TAR_thesis.eps
./2/figures/ellisse1.eps
./2/figures/ellisse2.eps

3.7 Discussion of the results

between the two mentioned implementations cannot be done for the 0.13 µm

technology, as synthesis results are available only for the pipeline interleaved

detector in [2], which is shown as an isolated point in the left part of the plot.

Finally, in the lower part of the plot, two 0.13 µm architectures are reported:

a serial detector based on [3] and the look-ahead solution proposed in this work.

The arrow here proves the potential of the look–ahead method, which provides

large throughput gain at the cost of an almost negligible additional area.

3.7 Discussion of the results

A modified Sphere Decoder Algorithm for high throughput implementation is

proposed (LASDA). Look–ahead, pipelining and retiming techniques together

with a modified search strategy (Test & Restart) are applied to the original SDA

to increase throughput, without penalty in BER performance. Synthesis results

of the above architecture show a throughput speedup of 92% at SNR = 20

dB (BER 5.2 · 10−4) with respect to a serial unpipelined SDA solution. From

the implementation point of view, the extra resources required by LASDA with

respect to SDA introduce an overhead of 24% in terms of occupied area. The

proposed solution achieves the best throughput to area ratio among compared

SD implementations.

Moreover, this high throughput ML solution is also applicable for most soft–

output detection schemes. As shown in [18] [32], both hard and soft–output

sphere decoders share several key processing units, particularly those necessary

for tree search. As a consequence, not only hard–output, but also soft–output

sphere decoding can take advantage of the proposed approach, which achieves a

throughput gain in tree search.

52

Part II

Soft MIMO detection

53

4

Towards Soft Detection

In order to improve data rate and quality of service of wireless communications,

the information is protected, thanks to the Forward Error Correction (FEC) (also

called channel coding) at the transmitter side. It is a system of error control for

data transmission, whereby the sender adds systematically generated redundant

data to its messages, also known as an error-correcting code. The American

mathematician Richard Hamming pioneered this field in the 1940’s and invented

the first FEC code, the Hamming (7,4) code, in 1950. The carefully designed

redundancy allows the receiver to detect and correct a limited number of errors

occurring anywhere in the message without the need to ask the sender for ad-

ditional data. FEC is therefore applied in situations where retransmissions are

relatively costly, or impossible such as broadcasting to multiple receivers. Error-

correcting codes are usually distinguished between convolutional codes and block

codes. The convolutional codes are processed on a bit-by-bit basis and they

are particularly suitable for hardware implementation. The Viterbi decoder al-

lows optimal decoding for such a king of codes. The block codes are processed

on a block-by-block basis. Early examples of block codes are repetition codes,

Hamming codes and multidimensional parity-check codes. They were followed

by a number of efficient codes, like the Reed-Solomon codes, which were the

most notable due to their current widespread use. Turbo codes and Low-Density

Parity-Check codes (LDPC) are relatively new constructions that can provide

almost optimal efficiency.

In MIMO scenario, at the receiver side a MIMO detector is combined with a

54

channel decoder: the so called Turbo principle [51] [52]. In fact, the success

of iterative decoding for Turbo codes [53] [54] suggests that a new way to de-

vise high-performance wireless communications could be found by considering a

probabilistic approach where soft information, presenting the probabilities of dif-

ferent alternatives, is used in detection and decoding processes. Many detection,

decoding and estimation problems can be reduced to the estimation of certain

probabilities. There are two possible schemes of receiver:

• Scheme with no feedback: as shown in Figure 4.1, the MIMO detector re-

ceives the channel observations and the received signal vector and produces

the soft information, which becomes input of the decoder. It is also called

Soft-Output detection-decoding, and it is able to improve performance of

coded systems up to 3 dB of SNR (see Figure 4.2), with respect to the

hard-output case.

Figure 4.1: General scheme of a transmitter and a receiver with no feedback.

• Scheme with feedback: the detector and the decoder exchanges soft informa-

tion in an iterative way, as shown in Figure 4.3. It is also known as Soft-In

Soft-Out (SISO) detection-decoding, and achieves significantly better per-

formance than hard-output or soft-output only.

As MIMO detector, in literature many methods are exploited. There are linear

detectors, such as Minimum-Mean-Square-Error-Interference-Canceller (MMSE-

IC) and other more complex ones, such as the family of detectors, directly derived

from the SDA, called Soft Sphere Decoders. In fact, the Sphere Decoding Algo-

rithm (see section 2.4 in the part I) [55] achieves optimum error-rate performance

55

./4/figures/SSD_chain.eps

Figure 4.2: FER of a traditional Hard-Output ML Decoder and the Soft-Output
Sphere Decoder, implemented in [4](MIMO-OFDM System,4× 4MIMO, 16-QAM,
64 tones, R = 1/2 convolutional code (K = 7, [133o, 171o]), random interleaver,
1024 bits/codeblock, TGn Type C channel model, BCJR decoder).

Figure 4.3: General scheme of the receiver with feedback.

for systems without error-correcting code, but for the more relevant case of chan-

nel coded systems, it can be used in a modified version in order to provide soft

information.

Two main approaches are exploited, in order to modify the SDA:

1. Repeated (RTS) or Single Tree Search (STS): It restarts the SD after the ML

solution has been found, forcing the SD onto paths for which the bit is the

56

./4/figures/Soft_vs_hard.eps
./4/figures/receiver_siso.eps

4.1 Complexity evaluation of a soft-output MIMO detector

opposite of the same bit in the ML solution, the so called counter-hypothesis.

In particular, the Repeated Tree Search first finds the ML solution, and

restarts again the SDA in order to find the counter-hypothesis. In the Single

Tree Search approach [19] [4], instead, the ML solution and all other counter-

hypothesis are concurrently found.

2. List Sphere Decoder (LSD)[18]: it first reduces the number of candidate

vector symbols to those points which are closer to the received vector.These

points are kept into a list L with a certain cardinality and only candidate

vector symbols in L are considered for the computation of soft information.

Next section shows a complexity evaluation, related to an hardware implemen-

tation of a suboptimal soft-output MIMO detector, which completes the scenario

of soft MIMO detection algorithms.

4.1 Complexity evaluation of a soft-outputMIMO

detector

The aim of this work, which is based on [56], is the study of feasibility of a

sub-optimum soft-output MIMO detector, called Elementary Signal Estimator

(ESE), which is the Suboptimal Front End mentioned in Deliverable D4.1, para-

graph 2.1.7.1 of FP7 WiMagic Project. This algorithm guarantees the best per-

formance among detectors with polynomial complexity. In [56] different digital

architectures are explored, in order to analyze possible performance-complexity

trade-offs. This report, which is the Chapter 4, titled Soft Output MIMO detec-

tor, in deliverable D7.2 ”Prototype design” of P7 WiMagic Project (December

2009), has only the aim of summarize that work, highlighting implementation

aspects and synthesis results.

4.1.1 Description of the system

The considered detector includes an outer LDPC channel decoder and a soft-

output inner detector for MIMO systems. Figure 4.4 shows the scheme of the

transmitter and the iterative structure of the receiver of an Interleave Division

Multiplexing-Space Time (IDSM-ST) system, with NT transmitters NR receivers.

57

4.1 Complexity evaluation of a soft-output MIMO detector

The role of the receiver is to estimate transmitted bits d, with respect to the re-

ceived vector y. In particular, the receiver is composed by a sub-optimal iterative

detector, called ESE, and an A Posteriori Probability Decoder (APP DEC) [57],

which exchange information, as shown in Fig. 4.4.

Figure 4.4: Scheme of transmitter and receiver of an IDSM-ST system with B-
PSK modulation

Initially the ESE computes coarse estimations Ext
(
x
(n)
j

)
of transmitting sig-

nals x
(n)
j , by means of their a priori LLR (Log-Likelihood Ratio)

−→
L x ≡

−→
L
(
x
(n)
j

)

(initially set to zero) and by means of received signals −→y , where Ext
(
x
(n)
j

)
are

58

./6/figures/sistema.eps

4.1 Complexity evaluation of a soft-output MIMO detector

defined as:

Ext
(
x
(n)
j

)
≡ log

Pr
(
x
(n)
j = d|−→y ,−→L x

)

Pr
(
x
(n)
j = d0|−→y ,

−→
L x

)

 (4.1)

The outputs of ESE are then used by APP DEC, in order to compute a posteriori

LLRs with a standard APP decoding [53], so that the ESE can refine the estima-

tions in the next iteration. This mechanism is repeated a predefined number of

iterations, here chosen equal to 10. In the last iteration, the APP DEC produces

hard decisions d̂ on d.

4.1.1.1 The algorithm of the Elementary Signal Estimator

Assuming
{
α
(n)
m , n = 1, · · · , NT , m = 1, · · · , NR

}
are the fading coefficients be-

tween the n-th transmitter and the m-th receiver, modeled as random complex

Gaussian variables with zero mean, the received vector at time j can be repre-

sented as:

y
(1)
j
...

y
(m)
j
...

y
(NR)
j

=

α
(1)
1 · · · α

(n)
1 · · · α

(NT)
1

...
. . .

...
. . .

...

α
(1)
m · · · α

(n)
m · · · α

(NT)
m

...
. . .

...
. . .

...

α
(1)
NR
· · · α

(n)
NR
· · · α

(NT)
NR

x
(1)
j
...

x
(1)
j
...

x
(NT)
j

+

n
(1)
j
...

n
(m)
j
...

n
(NR)
j

(4.2)

where n
(m)
j denotes a sample of an NR -dimensional additive i.i.d. (independent

and identically distributed) white Gaussian noise vector. Eq. (4.2) can be written

in matricial notation, as:
−→y j = [α]j

−→x j +
−→n j (4.3)

The a priori LLR of x
(n)
j is defined as:

log

Pr
{
x
(n)
j = d

}

Pr
{
x
(n)
j = d0

}

 =

(−→
L x

)
d

with d = d1 ÷ d2(m2 −1) (4.4)

59

4.1 Complexity evaluation of a soft-output MIMO detector

where m is the modulation efficiency and Pr
{
x
(n)
j = d

}
denotes the a priori

probability that x
(n)
j is equal to d and it can be computed by inverting (4.4):

Pr
{
x
(n)
j = d

}

Pr
{
x
(n)
j = d0

} = exp
((−→

L x

)
d

)
(4.5)

Keeping into account the contribution of each symbol of the constellation O to

the sum of exponentials, it can be written:

∑

d′∈O
exp

((−→
L x

)
d′

)
=

∑
d′∈O Pr

{
x
(n)
j = d′

}

Pr
{
x
(n)
j = d0

} =
1

Pr
{
x
(n)
j = d0

} (4.6)

Now, substituting (4.6) in (4.5), the following equation is obtained:

Pr
{
x
(n)
j = d

}
=

exp
((−→

L x

)
d

)

∑
d′∈O exp

((−→
L x

)
d′

) (4.7)

Let x
(n)
j be a random variable, the mean E (·) and the variance Var (·) of x(n)j can

be computed starting from (4.7):

E
(
x
(n)
j

)
=
∑

d∈O
dPr

{
x
(n)
j = d

}
=

∑
d∈O d exp

((−→
L x

)
d

)

∑
d′∈O exp

((−→
L x

)
d′

) (4.8a)

Var
(
x
(n)
j

)
= 1−

(
E
(
x
(n)
j

))2
(4.8b)

In order to avoid excessive growing of the exponential function, it is convenient

to replace the exponent with the difference between the actual LLR value and

the maximum LLR, as shown below:

E
(
x
(n)
j

)
=

∑
d d exp

((−→
L x

)
d
−−→Lmax

)

∑
d′ exp

((−→
L x

)
d′
−−→Lmax

) (4.9)

The received signal at time j has mean

E (−→y) =
NT∑

n′=1

−→α (n)
j E

(
x
(n)
j

)
(4.10)

60

4.1 Complexity evaluation of a soft-output MIMO detector

and covariance

[R]j ≡ Cov (−→y j) = E
(−→y j
−→y T

j

)
−E (−→y j) E

(−→y T
j

)
=

NT∑

n=1

Var
(
x
(n)
j

)−→α (n)
j

(−→α (n)
j

)T
+σ2 [I]

(4.11)

where T indicates the transposed vector.

For single-path channels, where each transmitted signal x
(n)
j is considered only

in one received signal, the soft estimation of x
(n)
j in (4.1) can be computed from

(4.2), as in [58]:

Ext
(
x
(n)
j

)
= (dn − d0)

−→α T
j [R]−1

j (−→y −E(−→y))+E
(
x
(n)
j

)−→α T
j [R]−1

j
−→α j

1−Var
(
x
(n)
j

)−→α T
j [R]−1

j
−→α j

+

−1
2
(d2n − d20)

−→α T
j [R]−1

j
−→α j

1−Var
(
x
(n)
j

)−→α T
j [R]−1

j
−→α j

(4.12)

Looking at (4.12), it is evident that the reverse matrix [R]−1
j for each j is

the most complex computation. A simplification of (4.12) is possible applying

Cholesky-decomposition [59]. Let [L]j be the inferior triangular matrix, obtained

by Cholesky-decomposition [R]j = [L]j [L]
T
j , and let us define g

(n)
j , [L]−1

j
−→α (n)

j

and fj , [L]−1
j (−→y − E (−→y)), (4.12) can be written as:

Ext
(
x
(n)
j

)
= (dn − d0)

(−→g (n)
j

)T−→
f j+E

(
x
(n)
j

)(−→g (n)
j

)T−→g (n)
j

1−Var
(
x
(n)
j

)(−→g (n)
j

)T−→g (n)
j

+

−1
2
(d2n − d20)

(−→g (n)
j

)T−→g (n)
j

1−Var
(
x
(n)
j

)(−→g (n)
j

)T−→g (n)
j

(4.13)

For clarity, a short description of the iterative decoding algorithm for single-

path channel with QAM modulation and multiple receivers is reported below:

61

4.1 Complexity evaluation of a soft-output MIMO detector

Algorithm for single-path channel with multiple receiver antennas

(a) Initialization: Set
−→
L (x

(n)
j = 0) ∀n, j

(b) Main iteration:

E
(
x
(n)
j

)
,Var

(
x
(n)
j

)
= Apriori stat

(−→
L x

)
(4.14a)

E (−→y j) =

2NT∑

n=1

−→α (n)
j E

(
x
(n)
j

)
(4.14b)

−−−−→
M40b1

(n)
j = Var

(
x
(n)
j

)−→α (n)
j (4.14c)

[S40b]j =

2NT∑

n=1

−−−−→
M40b1

(n)
j

(−→α (n)
j

)T
(4.14d)

[Cov (yj)] = [S40b]j + σ2 [I] (4.14e)

[L]j = Cholesky factorization ([Cov (yj)]) (4.14f)

[
L−1

]
j
=
(
[L]j

)−1

(4.14g)

−→g (n)
j =

[
L−1

]
j
−→α (n)

j (4.14h)
−−→
S14j =

−→y j − E (−→y j) (4.14i)
−→
f j =

[
L−1

]
j

−−→
S14j (4.14j)

M11
(n)
j =

(−→g (n)
j

)T −→
f j (4.14k)

M12
(n)
j =

(−→g (n)
j

)T −→g (n)
j (4.14l)

M13
(n)
j = E

(
x
(n)
j

)
M12

(n)
j (4.14m)

M14
(n)
j = Var

(
x
(n)
j

)
M12

(n)
j (4.14n)

S15
(n)
j =M11

(n)
j +M13

(n)
j (4.14o)

S16
(n)
j = 1−M14

(n)
j (4.14p)

−−→
Ext

(
x
(n)
j

)
= (sn − s0)

S15
(n)
j

S16
(n)
j

− 1

2

(
s2n − s20

)M12
(n)
j

S16
(n)
j

(4.14q)

More complex operations are detailed below.

62

4.1 Complexity evaluation of a soft-output MIMO detector

4.14a:

max apr = 0

For m = 0, . . . , M1 − 2

If
(−→
L x

)
m
> max apr

max apr =
(−→
L x

)
m

var app1 = exp
(
−max apr

fact

)

var app2 = Const[0] · var app1
var app3 = var app1

var app4 = (Const[0])2 · var app1
For m = 0, . . . , M1 − 2

var app1 = exp

(
(
−→
L x)

m
−max apr
fact

)

var app2 = var app2 + Const[m+ 1] · var app1
var app4 = var app4 + (Const[m+ 1])2 · var app1
var app3 = var app3 + var app1

E
(
x
(n)
j

)
= var app2

var app3

Var
(
x
(n)
j

)
= var app4

var app3
−
(
E
(
x
(n)
j

))2

The parameters Const [i] with i = 0, . . . , 2
m
2 − 1 are shown in Table 4.1

for a Q-PSK and a 16-QAM.

Table 4.1: Constants used in the computation of a priori statistics

Q-PSK 16-QAM
Const[0] −0.70710678118654757 −0.94868329805051377
Const[1] +0.70710678118654757 −0.31622776601683794
Const[2] +0.31622776601683794
Const[3] +0.94868329805051377

(Const[0])2 +0.5 +0.9
(Const[1])2 +0.5 +0.1
(Const[2])2 +0.1
(Const[3])2 +0.9

63

4.1 Complexity evaluation of a soft-output MIMO detector

4.14f:

For m = 1, . . . , 2NR

For i = m, . . . , 2NR

x = ([Cov (yi)])mi −
∑i−1

r=1lirlmr

If i = m

lmi =
√
x

else

lmi =
x
lii

4.14g:

For m = 1, . . . 2NR do(
[L−1]j

)
mm

= 1
lmm

For m = 1, . . . 2NR − 1 do

For i = m+ 1, . . . , 2NR do

S13 =
∑i−1

r=mlir

(
[L−1]j

)
rm(

[L−1]j

)
im

= −
(
[L−1]j

)
ii
S13

4.14h:

For m = 1, . . . , 2NR(−→g (n)
j

)
m
=
∑2NR

r=1

(
[L−1]j

)
mr

(−→α (n)
j

)
r

4.14i:

For m = 1, . . . , 2NR(−−→
S14j

)
m
= (−→y j)m − (E (−→y j))m

4.14j:

64

4.1 Complexity evaluation of a soft-output MIMO detector

For m = 1, . . . , 2NR(−→
f j

)
m
=
∑2NR

r=1

(
[L−1]j

)
mr

(−−→
S14j

)
r

4.14k:

M11
(n)
j =

∑2NR

r=1

(−→g (n)
j

)
r

(−→
f j

)
r

4.14l:

M12
(n)
j =

∑2NR

r=1

(−→g (n)
j

)
r

(−→g (n)
j

)
r

It can be mathematically demonstrated that the decoding complexity grows

linearly with the number of transmitters and with the cube of number of receivers

[60].

4.1.2 Hardware implementation

The high level block diagram of ESE is depicted in Fig. 4.5, where L0, L1 and

L2 represent the a priori probabilities for the computation of mean E and vari-

ance V ar of transmitted signals. The covariance matrix is obtained by means of

L0, L1 and L2 and CSI and stored into a Register File (RF). After Cholesky-

decomposition, the resulting upper triangular matrix replaces the original covari-

ance matrix, then it is inverted and stored in the same locations, in order to save

memory. The vector
−→
f j (4.14j), which is common to each transmitter antenna,

is used in the final computation of the a posteriori probabilities Ext0, Ext1 and

Ext2.

The architecture is composed of six main macroblocks:

1. Apriori stat : computes a priori statistics,

2. cov : computes the covariance,

3. cholesky : applies the Cholesky-decomposition,

65

4.1 Complexity evaluation of a soft-output MIMO detector

Figure 4.5: Block diagram of ESE

4. invs : inverts the input matrix,

5. f : computes the vector of auxiliary parameters
−→
f j ,

6. antenna n: computes the a posteriori probabilities Ext0, Ext1 and Ext2.

Next paragraphs contains the detailed description of each block of the archi-

tecture.

66

./6/figures/ESE.eps

4.1 Complexity evaluation of a soft-output MIMO detector

4.1.2.1 Apriori stat block

The Apriori stat block computes mean E(x
(n)
j) and variance V ar(x

(n)
j) of NT

transmitted signals. In order to avoid the excessive increase of the exponential

function, the values are normalized to the highest LLR, by means of compara-

tors and multiplexers, as shown in Fig. 4.6. The highest LLR is subtracted to

each LLR computed and the result is stored into the memory MEMORIA exp(-

x/8), which produces var app1 for one accumulator and two Multiply-Accumulate

(MAC) units. This last block has the aim of computing mean and variance of

signal coming from n-th antenna. It is important to underline that a division op-

eration is avoided by means of a multiplication and a second memory MEMORIA

1/x, which stores the inverse (precomputed) of memory address. The Apriori stat

block can be allocated 2NT times in a parallel architecture, or just once in a se-

quential one. In the following, the second case is assumed with the purpose of

saving silicon area.

4.1.2.2 cov block

The most complex task of the algorithm is the computation of the covariance

matrix, which is performed once per iteration. Moreover, the maximum dimension

established for a MIMO system is 4×4, equivalent to a 8×8 real–valued system.

Thanks to the symmetric structure of the above matrix, it is necessary to store

only 36 elements. For each column and for each row, one summation of NT

elements is applied:

[Cov (y)]ij =

2NT∑

n=1

Var
(
x(n)
) (−→α (n)

)
i

(−→α (n)
)T
j
+ σ2 [I] (4.15)

The implementation of the above equation is characterized by three counters: the

first, synchronized by the system clock, for index n, the second, synchronized by

the terminal count of the first one, for the row index j and the last, synchronized

by the terminal count of the second counter, for the column index i. The same

indexes are also used as selection signals of multiplexers, whose inputs are vari-

ances and coefficients, α and αT , of channel. The circuit is simple. In order to

avoid to lose the time (36 clock cycle) necessary to reset one MAC, two MACs

67

4.1 Complexity evaluation of a soft-output MIMO detector

Figure 4.6: Block diagram of Apriori stat block

68

./6/figures/Apriori_stat.eps

4.1 Complexity evaluation of a soft-output MIMO detector

can be alternately used: while the former is working, the latter can be reset to

zero. It is aim of an another multiplexer to choose the final result, based on if it

must be or not added to σ2.

Figure 4.7: Block diagram of cov block

4.1.2.3 cholesky block

For this block, solution in [61] is chosen, because it requires few clock cycles.

A matrix [A], defined as positive in a real–valued system and hermitian in a

complex–valued one, can be decomposed, using [A] = [L] [L]T , where the inferior

69

./6/figures/Cov.eps

4.1 Complexity evaluation of a soft-output MIMO detector

triangular matrix [L] can be computed as:

lii =

√√√√aii −
i−1∑

k=1

l2ik (4.16)

for diagonal elements and

lij =
1

ljj

(
aij −

j−1∑

k=1

likljk

)
(4.17)

for not-diagonal elements. The new values of [L] are stored in the same location

occupied by values of [A]. The division by
√
x in (4.17) can be replaced by a

multiplication for 1√
x
. When required,

√
x can be computed as

√
x = x 1√

x
.

The values of 1√
x
are stored into a Look Up Table (LUT), called rom oos.

Since simulations demonstrate that x < 16, the significant bits of input data goes

from s3 to the desired precision, with respect to the chosen signal width. For

example, if the architecture would initially implemented on FPGA, in particular

a Xilinx Virtex 5, which has memories resources of 36Kbits, a 11 bits data width

is necessary. So, input data goes from s−7 to s3. The representation of output

data is, instead, variable, because it does nott contain initial zeros, as shown in

Table. 4.2.

Fig. 4.8 and 4.9 show the block diagrams respectively for the computation of

diagonal and not-diagonal elements.

Figure 4.8: Computation of diagonal
elements in cholesky block.

Figure 4.9: Computation of not-
diagonal elements cholesky block.

70

./6/figures/diagonal.eps
./6/figures/non_diagonal.eps

4.1 Complexity evaluation of a soft-output MIMO detector

Table 4.2: Notation of 1/
√
x stored into the LUT

x 1/
√
x LUT notation

2−7 23 · · ·2−7 22 · · · 2−8

2−6 23 · · ·2−7 22 · · · 2−8

2−6 + 2−7 22 · · ·2−8 21 · · · 2−9

2−5 22 · · ·2−8 21 · · · 2−9

2−4 22 · · ·2−8 21 · · · 2−9

2−3 21 · · ·2−9 20 · · · 2−10

2−2 21 · · ·2−9 20 · · · 2−10

2−1 20 · · ·2−10 2−1 · · · 2−11

20 20 · · ·2−10 2−1 · · · 2−11

21 2−1 · · · 2−11 2−2 · · · 2−12

22 2−1 · · · 2−11 2−2 · · · 2−12

23 2−2 · · · 2−12 2−3 · · · 2−13

24 − 2−7 2−2 · · · 2−12 2−3 · · · 2−13

4.1.2.4 invs block

In the computation of [B] = [L]−1, diagonal elements are calculated, using

Cholesky-decomposition, as:

bkk = l−1
kk =

√
akk

−1
=

1√
akk

(4.18)

which is exactly the value stored into the LUT. In this way, cholesky block can

be modified as shown in Fig. 4.10. As for the not-diagonal elements, cholesky

block can be reused just changing input data. Looking at Fig. 4.11, it is evident

that, for the computation of bi,j , entire i-nth row and j-nth column are necessary

at the same time. The solution is a smart Register File, composed of 36 registers,

some control signals and concerning multiplexers, which choose between two pos-

sibilities: row j and row i for Cholesky decomposition or row i and column j for

the matrix inversion.

71

4.1 Complexity evaluation of a soft-output MIMO detector

4.1.2.5 f block

The equation for the auxiliary parameters
−→
f j is the following:

−→
f j =

[
L−1

]
j

(
−→y j −

2NT∑

n=1

)−→α (n)
j E

(
x
(n)
j

))
(4.19)

Fig. 4.12 shows the block digram of the f block: it is composed of 8 MAC units

for the computation of the parallel summation of all elements of the vector
−→
f j , 8

subtractors and a unit, called g and shown in detail in Fig.4.13, for matrix-vector

product −→g (n)
j = [L−1]j

−→α (n)
j .

4.1.2.6 antenna n block

As for Apriori stat block, also antenna n block, Fig. 4.14 , is allocated once

and works sequentially for 2NT transmitters. This block computes the auxiliary

parameter −→g (n)
j , by means of the g unit, as described before. Then last variables

are calculated:

M11
(n)
j =

(−→g (n)
j

)T −→
f j (4.20)

and

M12
(n)
j =

(−→g (n)
j

)T −→g (n)
j (4.21)

by means of 2 MAC units for M11
(n)
j and other 2 MAC for M12

(n)
j . For each

MAC couple, the two units work alternatively: while the first MAC evaluates,

Figure 4.10: Computation of diago-
nal elements in invs block

Figure 4.11: Computation of non-
diagonal elements in invs block

72

./6/figures/diagonal_modified.eps
./6/figures/non_diagonal_inversione.eps

4.1 Complexity evaluation of a soft-output MIMO detector

Figure 4.12: Block diagram of f

block.
Figure 4.13: Block diagram of g

block.

73

./6/figures/f.eps
./6/figures/g.eps

4.1 Complexity evaluation of a soft-output MIMO detector

the second one is reset to zero. Final outputs are:

−−→
Ext

(
x
(n)
j

)
= Cost

M11
(n)
j + E

(
x
(n)
j

)
M12

(n)
j

1− Var
(
x
(n)
j

)
M12

(n)
j

+ Cost2
M12

(n)
j

1− Var
(
x
(n)
j

)
M12

(n)
j

(4.22)

Thanks to the common denominator in (4.22), one memory, that as the same

structure and functionality of rom div in Apriori stat block, can replace the

divisions.

4.1.3 Synthesis results

In order to assess the achievable throughput and occupied area, the proposed

architecture, tailored to a MIMO system {2 × 2, 3 × 3, 4 × 4} and modulations

{QPSK and 16QAM}, has been synthesized on a 130 nm CMOS Standard Cell

technology, using Synopsis Design Compiler version Z-2007.03-SP1. The internal

precision has been set to 22 bits 1, which guarantees almost the same performance

as the floating point model. Tab. 4.3 shows the detailed silicon area results

for each block of the architecture. The total area, reported in the last row,

of 852194um2 is related to a sequential architecture and the maximum clock

frequency of it is fck = 100MHz. As shown in Table 4.3, the most complex units

are f and antenna n blocks, because of their strong parallelism. Memories are

Figure 4.14: Block diagram of antenna n block.

74

./6/figures/antenna_n.eps

4.1 Complexity evaluation of a soft-output MIMO detector

Unit Area um2

Apriori stat 26052
cov 43676
cholesky 134542
invs 94814
f 190059
antenna n 224748

Total 852194

Table 4.3: Area results of synthesis of
ESE (sequential architecture)

Memory n. Area um2

rom div 2 135605
rom exp 1 24412
rom exp 1 99609

Total 4 395231

Table 4.4: Area results of synthesis of
memories

generated using a RAM generator for a 130 nm technology, obtaining results in

Tab. 4.4. An estimation of throughput can be done in term of LLRs per second,

as in the following equation:

th =
NLLR

NCK
fCK (4.23)

where NLLR is the number of LLRs, depending on the topology of MIMO system

and modulation, NCK the number of clock cycles to produce outputs and fCK

the clock frequency. For the case of a 3 × 3-MIMO system and 16-QAM, the

resulting throughput for a sequential and parallel architecture is respectevely:

thseq = 6.8 · 106LLR
s

(4.24)

thpar = 9.3 · 106LLR
s

(4.25)

In the sequential architecture each block, shown in Tab. 4.3, is allocated

once and work in a sequential way, so that Apriori stat and antenna n must be

reused a number of times equal to the double of the number of transmitters.

The resulting throughput is low and silicon area is the minimum. In the parallel

scheme, instead, Apriori stat and antenna n are allocated 2NT times, obtaining

an increase of area and a further increase in term of throughput. Moreover, some

blocks contain functional units that are the same used in other blocks: in order

to optimize the area occupation, those resources could be shared, keeping into

account that the throughput decreases.

1In some block of the architecture the data width is set less than 22 bits

75

5

Soft MIMO detection: the idea
of a multi-algorithm detector

After a brief overview on the introduction of soft detection in MIMO commu-

nications presented in the previous chapter, here the idea of an multi-algorithm

detector is introduced. Such an idea is detailed and supported by an analysis of

existing hard and soft MIMO detector implementations.

5.1 State of the Art

In MIMO scenario, linear detectors are suboptimal, in terms of error rate per-

formance, with respect to Soft Sphere Decoders, but they have also a reduced

computational complexity. Therefore, it is fair to ask if it is possible to combine

in some way the high BER performance, achieved by the family of Soft Sphere

Decoders, and the low computational complexity, obtained with a linear detec-

tor, such as MMSE-IC. In order to have a precise answer, this chapter reports a

detailed analysis of hard and soft detectors, exploited in literature. It points out

the advantages of the soft detection with respect to the hard one, and represents

a feasibility study, which justifies the previous idea.

Table 5.1 shows a comparison between different solutions, presented in literature,

included [13], which is the VLSI design of the Look–ahead SDA presented in chap-

ter 3. The ASIP design in [6] is related to a Minimum-Mean-Square-Error Inter-

ference Canceller Equalizer (Soft-Input Soft-Output). The throughput results are

obtained for an iterative system, with MMSE-IC equalizer combined with Turbo

76

5.1 State of the Art

decoder, and the number of iterations is equal to 5. It is implemented as ASIC

on a 90 nm technology. Then two VLSI designs of near-ML Soft-Output MIMO

detectors are presented in [12] and [9]. The QR-decomposition is not included

in area results of the former, while it is comprised in the latter. In particular,

solution in [12] is based he Layered ORthogonal Lattice. Already mentioned in

chapter 1, the work in [4] proposes a near ML Soft-Output Single-Tree-Search

Sphere Decoder, complex-valued and with Schnorr-Euchner enumeration. The

error rate performance ranges from exact max-log soft-output to hard-output

SIC. The MMSE-SQRD stage preprocessing is not included in the area results.

Finally, a Soft-Output MIMO Detector, dynamically reconfigurable for QPSK,

16-QAM and 64-QAM modulation schemes for 4× 4 MIMO system, is presented

in [7]. The QR-decomposition is not included in the area results.

Before starting the analysis of the introduced implementations, some clarifi-

cations related to the parameters, shown in the Table 5.1 are also necessary:

• All papers, except [9], show area results in Equivalent Gate (EG) unit, as

shown in the row 11 of the Table 5.1 . The correspondent values in mm2 are

obtained, according to A1gate = 320f 2, where f = feature size, as reported

in ITRS’10.

• The unit of measurement for the throughput (row 12) in [6] is MSymbol/s.

These values must be multiplied by the number of bits per symbol, according

to the modulation (1 bit for a BPSK, 2 bits for QPSK, 4 bits for 16QAM

and 6 for 64QAM), and divided by the number of iterations (5 in this case)

in order to obtain the correspondent values in Mbps.

• Solutions in [9], [13] and [4] are characterized by a variable throughput,

depending on SNR value. [9] reports the worst case (not defined in the

paper). In order to have a direct comparison between [13] and [4] a value of

SNR = 18dB has been chosen. The remaining papers have, instead, a fixed

throughput and they cannot directly be compared to [9], [13] and [4].

• In order to have a correct comparison, a reference technology of 90nm has

been chosen, and area, frequency and throughput for different technologies

are scaled, according to ITRS’10. In particular, the normalized throughput

(row 12) and normalized clock frequency (row 10) are computed considering

77

5
.1

S
ta
te

o
f
th

e
A
rt

Ref. Baghdadi et al.
[6]

[12] [9] My work
[13]

Burg et al.
[4]

[7]

Standard IEEE 802.11n, IEEE 802.11n
802.16e, LTE

Detection Soft Hard Soft

MIMO 2×2, 3×3, 4×4 2× 2 4× 4
Modulation BPSK ,QPSK, 64QAM 16QAM QPSK, 16

16 and 64QAM and 64QAM
Receiver Turbo Convolutional Viterbi
Algorithm MMSE-IC

(ASIP)
LORD SSD LASDA STS-SESD SO

Implem. ASIC
Tech. [nm] 90 65 45 130 250 45
BER Perf. close to ML ML close to ML
fmax [MHz] 546 80 312 488 71 500
Norm.90nm 546 40 124.8 976 568 200
Area [KEG] 84.3 236 293 34 56.8 70
Area[mm2] 0.22 0.32 0.19 0.18 1.14 0.04
Norm.90nm 0.22 0.61 0.76 0.09 0.15 0.18
[mm2]
Th. [Mbps] 273MSps2×2 1642×2 307 295 40 1000QPSK

148MSps3×3 50016QAM
168MSps4×4 187.564QAM

Norm.90nm 29.6to327.6 82 122.8 590 320 75to400
Th/Area 135to1499 134 162 6556 2173 413to2205
[Mbps/mm2]

Table 5.1: Comparisons between works in [6], [12], [9], [13], [4], [7].

78

5.2 Analysis

a clock frequency increase of 2x per technology generation until 2007 (65nm)

and of 1.25x per technology generation after the same year. The normalized

throughput in [6] and [7] is given as a range, from the minimum to the

maximum values (min to max). The normalized area (row 11) is computed

according to A90 = A(f90
f
)2, where f = feature size, f90 = 90nm, A =

area in the original technology and A90 = normalized area in 90nm.

• Architecture efficiency metric has been measured through the Throughput

to Area Ratio (TAR), computed as normalized throughput divided by nor-

malized area, already defined in subsection 3.6.

5.2 Analysis

Analyzing Table 5.1, there are four points to be discussed:

1. Soft-Output vs Hard-Output: a Soft-Output Detector has a gain up to

3dB, with respect to an Hard-Output Detector, as already said. A Soft-

Output detector presents an increase of area of about 60% [4], also pointed

out comparing [13] and [4]. This is due to the higher number of symbols

to be visited and to the additional computational complexity required to

compute LLRs. The BER of solution in [13] cannot be directly compared

to that in [5], also shown in Fig. 5.1, because the former is related to the

output of MIMO detector and the latter, instead, is related to the output of

the decoder. Moreover no channel coding is assumed in the former, while a

convolutional code is employed in the latter.

Anyway the performance improvement, with a limited increase of occupied

Silicon area, justifies the recent interest towards soft-output detection in

MIMO systems.

2. Optimal Soft-Output vs Max-Log Soft-Output: as reported in [4],

the Max-Log approximation produces only up to ∼ 0.3dB loss of SNR, with

respect to Optimal Soft-Output (see Fig. 4.2), but achieves a great reduction

of computational complexity.

3. Soft-Output MMSE vs Soft-Output and fixed-throughput MIMO

Decoder: this analysis concerns solutions in [6], [12] and [7]. About FER

79

5.2 Analysis

Figure 5.1: BER, shown in [5], of a traditional Hard-Output Sphere Decoder,
the List Sphere Decoder and the Max-Log ML-APP. Coded 4 x 4 MIMO system,
16-QAM, Fast-fading channel, rate 1/2, length of the code-block is 1024 bits and
the code has constraint length K = 7 with generator polynomials [1330,1710].

0 5 10 15 20 25
10

−2

10
−1

10
0

F
E

R

Eb/N0[dB]

Sistème 4x4,64−QAM,R=0.5,K=7,Source frame=120bits

Iter1
Iter2
Iter3
Iter4
Iter5

Figure 5.2: FER of [6] (4 × 4MIMO,
64QAM, Frame source= 120bits, Chan-
nel matrix constant over 240bits (10
vectors of symbols), R=1/2 convolu-
tional code).

Figure 5.3: FER of different solution,
reported in [7] (4 × 4 and 64-QAM, R
= 1/2 [7 5] convolutional code, Chan-
nel matrix constant over a frame, frame
size=10 vectors (24bits per symbol, 10
symbols), Viterbi decoder).

80

./4/figures/Soft_vs_hard_BER.eps
./4/figures/44_64_120_FER_noideal.eps
./4/figures/6_FER.eps

5.2 Analysis

performance, [12] does not report any results, and it just states to achieve

near-ML performance. So it is not comparable to the others, because of

the absence of information. Instead, looking at Fig. 5.2 and Fig. 5.3, it

is evident that the performance of MMSE with 3 iterations is comparable

with that of LORD: in fact for a FER = 5 ∗ 10−2 both have SNR ∼ 20dB.

For more iterations MMSE has better performance. This improvement is

due to iterations: the same equalizer can achieve a gain of some dBs if it

iterates. In fact, paper [8] shows as an Iterative Full-Rate STBC equalizer

gains 2dB of SNR for a BER = 6∗10−2 with 4 iterations with respect to the

not-iterative one, as demonstrated in Fig. 5.4 and Fig. 5.5. This attests as

a sub-optimal equalizer, like MMSE, can achieve better performances than

an optimal one (optimal for not-iterative algorithms), if it becomes iterative.

Analyzing the throughput over area ratio for all three papers, [6] shows the

Figure 5.4: BER of a full-rate space-
time block code (FR STBC) equalizer
and decoder (red curves) without iter-
ations, shown in [8].

Figure 5.5: BER of a full-rate space-
time block code (FR STBC) equalizer
and decoder (red curves) with 4 itera-
tions, shown in [8].

highest among all, as shown in Tables 5.3 and 5.4.

This is due to the fact that both [12] and [7] propose a K-best strategy, guar-

anteeing a fixed throughput. They focused on increase parallelism, visiting

more points in the same time, and, clearly, requiring more area.

81

./4/figures/No_it.eps
./4/figures/It.eps

5.2 Analysis

Ref. [13] [4]

Th/Area [Mbps
mm2] 6556 2173

Table 5.2: Comparisons of architecture efficiency in [13] (Hard-Ouput Sphere
Decoder) and [4](Soft-Output Sphere Decoder) for SNR=18dB.

Ref. Baghdadi et al.
[6]

[12]

Th/Area [Mbps
mm2] 1499 134

Table 5.3: Comparisons of architecture efficiency in [6] and [12] for a 2× 2MIMO
and 64-QAM.

Ref. [6] [7]

Th/Area [Mbps
mm2] 923 413

Table 5.4: Comparisons of architecture efficiency in [6] and [7] for a 4× 4MIMO
and 64-QAM.

4. Soft-Output MMSE vs Soft-Output Sphere Decoder: a Soft-Output

Sphere Decoder gets a gain of ∼ 3.2dB with rate of 2/3 and ∼ 5.2dB with

rate of 5/6 for a FER = 10−2 with respect to MMSE, as reported in [9] (see

Fig. 5.6). This is the further reason why to iterate is necessary, transforming

a Soft-Output MMSE into a Soft-Input Soft-Output MMSE. A number of

iterations from 5 to 7 is sufficient to have better performance [8]. In fact,

comparing the curve of Soft-Output ML in Fig. 4.2 and MMSE (2 itera-

tions) in Fig. 5.7, it can be seen that for a FER = 2 ∗ 10−2 the latter as a

gain of ∼ 2.3dB with respect to the former.

The reduction of area, achieved by the Soft-Output Sphere Decoder in [4] is

about 32.6% with respect to MMSE-IC in [6], but the solution in [4] is related

to a particular system and a particular constellation. The throughput and

the TAR cannot be analyzed in this comparison, because [6] has a fixed

throughput and [4] a variable one, based on channel conditions.

Also the [9] does not specify which value of SNR or FER is associated to

the reported worst case throughput, so that it is not possible to compare its

results to [4] and, therefore to [6].

82

5.2 Analysis

Figure 5.6: FER of different solution, reported in [9] (IEEE 802.11n 2× 2MIMO
and 64QAM, channel model D, 20 Mhz bandwidth and coding rates 5/6 and 2/3).

10 11 12 13 14 15 16 17 18 19 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

F
E

R

Eb/N0[dB]

Sistème 4x4,16−QAM,R=0.5,K=7,Source frame=512bits

Iter1
Iter2
Iter3
Iter4
Iter5

Figure 5.7: FER of [6] (4×4MIMO and 16QAM, R=1/2, Source frame=512bits).

83

./4/figures/3_FER.eps
./4/figures/44_16_512_FER_noideal_correct.eps

5.2 Analysis

Therefore, the comparison must be limited to [6] and [4], also because [13]

is related to Hard-Output MIMO detection. Therefore, it is necessary a

detailed analysis between this above papers.

(a) Area: in order to have a more precise comparison in term of Silicon area,

it is necessary to consider that results in [6] includes a matrix inversion,

which is performed through an analytical method. But, in many works

in literature, such as [62], [63], [64] the matrix inversion includes a QR-

decomposition and it consists of tree steps: 1) QR-decomposition, 2) a

matrix inversion (R−1) and 3) a matrix multiplication (A−1 = R−1Q)

[62]. Also the Soft-Output Sphere Decoder needs a preprocessing stage

to apply QR-decomposition to channel matrix, but area results in [4]

does not include it. The table 5.5 shows some implementations of QR-

decomposition in different technologies.

Ref. [65] [66] [67]
Matrix dimen-
sions

4× 4 complex-valued 8 × 8 real-
valued

Technology [nm] 250 180 130
Frequency
[MHz]

125 162 not shown

Area [KGE] 54 61.8 27

Table 5.5: Area results of different implementations of QR-decomposition for
MIMO detection.

It is reasonable taking into account results in [67], since it is the more

efficient and one of the most recent work among them. The normal-

ized area in 90nm technology is AQR = 0.069984mm2, and by adding it

to results in [4], a rough estimation of the total area required by QR-

decomposition and Soft SD is obtained AQR+SSD = 0.2172mm2, i.e.

∼ 6% less than MMSE in [6]. This percentage seems to be low, but the

Soft SD replaces the MMSE equalizer and the soft demapper, because

its output are estimated symbols and LLRs, as Fig. 4.1 shows. So, an

estimation of occupation of demapper is useful to have a more clear idea.

84

5.2 Analysis

Regarding this, paper [68] proposes an ASIP implementation of a univer-

sal demapper for multi-wireless standards and for one receiver. The area

result must be multiplied by the number of receivers, which is 4, obtain-

ing Ademapper = 4 ∗ 8KGE = 32KGE. Now, adding this value to that

shown in [6], a rough estimation of the total area of MMSE+demapper

is obtained, AMMSE+demapper = 116.3KGE = 0.3014mm2. The reduc-

tion achieved by the Soft Sphere Decoder is about 27.9% with respect

to MMSE. Certainly, this is the case of a 4 × 4 system and 16-QAM.

For smaller systems and constellations, the area will be furthermore

reduced. Anyway, the Soft SD has a very limited increase for higher

number of antenna and higher order system, due to the more registers,

necessary to store more visited points and related metrics. In fact, the

search along the tree is depth-first, which means that the number of

computational resources is the same, even if the number of levels and

the number of sons per father node increase. So it can be expected that

the area of the Soft SD is less or at most equal to MMSE with demapper

for all cases (2× 2, 3× 3, 4× 4, B-PSK, Q-PSK, 16-QAM, 64-QAM).

(b) Throughput: the throughput of Soft SD is variable with channel con-

ditions, number of antennas and modulation. When channel conditions

are good (high SNR), the number of visited nodes is low, and through-

put high. Otherwise the algorithm needs to visit more nodes because of

the presence of high level of noise. Moreover, usually the throughput de-

creases when number of antennas and order of constellation increase. It

would seems that Soft SD is more suitable for smaller systems and mod-

ulations. In fact, for the case of (4× 4 and 16-QAM) and FER = 10−2

Soft SD guarantees 320Mbps at SNR = 18dB, which is 5% less than

that of MMSE (336Mbps). This last value is not reported in the Table

5.1, because in this case 2 iterations are sufficient to have better perfor-

mance of FER: so it must be divided by 2 and not by 5. By the way, the

throughput of [4] is related to SNR = 18dB and this means that the

difference, between throughput of Soft SD and MMSE, reduces when

SNR increases, since throughput of Soft SD becomes much more higher.

85

5.2 Analysis

(c) Architecture efficiency: the discussion can be similar to the pre-

vious. Soft SD obtains the best efficiency for high SNR. The archi-

tecture efficiency must be computed, taking into account the area of

QR+Soft SD for [4] and MMSE+demapper for [6]. About through-

put of [6], a 4 × 4 system, with 16-QAM modulation, FER = 10−2

is considered: the original throughput must be divided by 2, as in the

previous case. Results are: TARMMSE+demapper =
336Mbps

0.3014mm2 = 1115Mbps
mm2

and TARQR+SSD = 320Mbps
0.2172mm2 = 1473Mbps

mm2 . So, Soft SD has a value of

throughput to area ratio, which is about ∼ 32% more with respect to

MMSE.

Therefore, Soft SD could be a good candidate as substitute of MMSE, under

certain conditions. Probably for low SNRs MMSE is better, because with

some iterations it achieves better performance and higher throughput than

Soft SD; instead for high SNRs Soft SD has a better architecture efficiency.

Anyway, this point can be furthermore investigated, also considering an it-

erative detection-decoding system. The key word in this research is the

flexibility, not only in terms of trade-off between performance and complex-

ity, but also meaning a detector able to fit in different numbers of antennas,

modulation orders and wireless standards. As Soft-Input Soft-Output SD,

the List Sphere Decoder has been chosen, since it is the easiest extension

of a traditional depth–first hard SDA, and offers some parameters, such as

the size of the list and the LLR clipping, which can be tuned, to obtain the

desired performance-complexity trade-off.

86

6

Flexible Soft-Input Soft-Output
detector: List Sphere Decoding
and Linear MMSE Detection

While chapter 5 justifies the idea of a multi-algorithm flexible detector, this chap-

ter illustrates a detailed analysis of a Soft-Input Soft-Output LSD in terms of

iterative behavior and flexibility parameters. BER performance and computa-

tional complexity of LSD have been also explored and compared to those of

linear MMSE-IC.

6.1 Description of the system

In order to analyze the iterative behavior of the LSD algorithm, a traditional

scheme for data transmission and reception has been adopted, as Fig. 6.1 shows.

The system model is represented by eq. (2.2), in section 2.2. A stream of bits is

encoded, randomly interleaved and mapped onto a constellation. In particular,

a convolutional code (rate 1/2, generator polynomials [1330 1710] and constraint

length 7) and an hard Gray mapper are assumed. Then the stream of symbols

is mapped onto Mt transmitters, through a serial-to-parallel block. The channel

model is assumed to be flat, i.e. all frequency components of the signal experience

the same magnitude of fading (Rayleigh). Moreover, it can be either stationary

over a frame composed by several vectors of Mt transmitted symbols (block-

fading), or it can change from vector to vector (fast-fading). Since the channel

87

6.1 Description of the system

model has a great impact on performance of the detector, in this work both

models are considered. At the receiver side, a MIMO detector is combined with

a channel decoder. They reciprocally exchange soft information. The detector

takes as inputs channel observations y and the a priori information coming from

the decoder. The soft outputs of the detector become the a priori information for

the decoder. The channel decoding is performed by means of a BCJR decoder,

with either MAP or Max-log-MAP approximation. As for MIMO detection, two

algorithms are considered: LSD and MMSE-IC. In Fig. 6.1, LD1 and LD2 repre-

sent the a posteriori Log-Likelihood Ratios (LLRs) respectively of the detector

and of the decoder, while LE1, LE2 and LA1, LA2 the correspondent extrinsic and

a priori LLRs. A description of LSD and MMSE-IC algorithms is reported in

Π

Π

Π

SOURCE ENCODER HARD

MAPPING

S
/P

L
DECODER L

L

L
MIMO

DETECTOR

LSD/MMSE−IC

−1
D1 E1

L
A2

D2

E2

L
A1

Figure 6.1: Scheme of the MIMO transmitter and receiver.

the two following subsections.

6.1.1 List Sphere Detector (LSD)

The LSD algorithm was proposed in [23], as a straightforward extension of the

sphere decoder [55]. It finds not only the ML solution, but a list of L candidates

88

./Iterative_LSD_MMSE/figures/tx_rx_scheme.epsi

6.1 Description of the system

which have the smallest distance from the received vector.

Considering a block of bits x, the a posteriori symbol probability can be expressed

by means of LLR [23] as:

LDk = log

(
P [xk = +1]|y,H
P [xk = −1]|y,H

)
(6.1)

with k = 1 . . .QMt. xk = −1 and xk = +1 represent respectively the logical zero

and the logical one. Using Bayes theorem, the a posteriori LDk can be written as:

LDk = LAk + LEk (6.2)

where LAk = log
(
P [xk=+1]
P [xk=−1]

)
represent the a priori LLR values coming from the

decoder, and LEk are the extrinsic LLRs. According to (6.2) and with the Max-log

approximation, the extrinsic LLRs can be directly computed by the detector as

[23]:

LEk ≈
1

2
max
x∈L+1

k

{− 1

σ2
‖y−Hs‖2 + xT[k]L

A
[k]} −

1

2
max
x∈L−1

k

{− 1

σ2
‖y−Hs‖2 + xT[k]L

A
[k]}

(6.3)

where s = map(x), x[k] denotes the subvector of x obtained by omitting its k-th

element xk, and LA[k] denotes the vector of all LA values omitting LAk . L+1
k and

L−1
k denote respectively the subset of candidates in the whole list with the bit

xk = +1 and the subset with xk = −1.

6.1.2 MMSE-IC Linear Equalizer

In the context of low-complexity suboptimal algorithms the Minimum-Mean-

Square-Error Interference-Canceller (MMSE-IC) was developed [69][70]. The de-

tector receives symbols corrupted by the noise of the channel and co-antenna in-

terference. Then it partially cancels the interference and symbols are demapped

into LLRs and deinterleaved. The decoder removes the noise and produces soft

information values, which are interleaved and given as feedbacks to the detector.

Since it is shown in [71] that if the decoder and the detector exchange a posteri-

ori information for the computation of symbol expectations, the receiver achieves

faster convergence rate and better performance, we use a posteriori information

89

6.2 Flexibility and divergence analysis of iterative LSD

as feedback. The detected symbols can be expressed using time invariant approx-

imation [72] as:

s̃i = λip
H
i (y−Hŝ+ ŝihi) (6.4)

where i = 1 . . .Mt, ŝ is the vector of decoded symbols, ŝi is the i-th element of

this vector, hi is the i-th column of matrix H and (.)H represent the Hermitian

operator. The parameters λi and pk are given by:

λi =
σ2
s

1 + σ2
ŝp

H
i hi

(6.5)

pi = E−1hi (6.6)

In the previous equation the matrix E is:

E = ((σ2
s − σ2

ŝ)HHH + σ2
nI) (6.7)

where σ2
s , σ

2
ŝ and σ2

n are variances respectively of transmitted symbols, received

symbols and noise of the channel. I is the identity matrix.

6.2 Flexibility and divergence analysis of itera-

tive LSD

6.2.1 Flexibility parameters

The size of the list in LSD has an impact on both performance (BER) and com-

putational complexity. If a detector has the capability to adaptively change the

list size, this can be exploited to achieve a desired trade-off between BER perfor-

mance and complexity.

In the context of iterative decoding, for a low number of antennas and low modu-

lation order, a small list is enough in order to achieve good performance. In fact

the list size is directly related to the system configuration. If a short list size is

applied for high number of antennas and/or high modulation order rather than

having an improvement of BER with iterations, a problem of divergence [24][10]

appears, so that a bigger list is necessary.

In literature two methods are mainly exploited to handle the list: the first method,

90

6.2 Flexibility and divergence analysis of iterative LSD

introduced in [23], consists in using the list obtained at the first iteration also for

all subsequent iterations; the second method updates also the list at each iteration

[73]. As showed in [24], this last method, which implies much more computations,

is equivalent to generate at the first iteration a larger list and to extract from the

same list different sub-sets at each following iteration; this technique avoids the

divergence and achieves further improvements in terms of performance. On the

other hand, from the implementation point of view, the size of the list is a param-

eter with a great impact in term of latency and requirement of memory. Thus list

size can be used to search a proper trade-off between performance and complexity.

The second key element of soft-output LSD is the ”LLR clipping” level [23]:

when one of the two sets L+1
k , L−1

k is empty, the LLR value for the bit under con-

sideration should be set to a certain value. This predefined value has an impact

on performance and convergence of the iterative process. Different choices are

proposed in literature: ±8 in [23], ±3 in [73], ±50 in [10], ±r2, where r is the

radius of the hypersphere, in [5] or ± ln 1−Pb

Pb
, where Pb is the probability of a bit

error at the detector output and it depends on the modulation, in [74].

The divergence is mainly caused by the unreliability of a smaller list [24][10], but

a better understanding of this phenomenon can be obtained via EXIT-chart, as

explained in the next subsection.

6.2.2 Analysis of divergence using EXIT chart

First proposed in [25] for parallel concatenated codes, and later extended to

iterative demapping and decoding [75], the Extrinsic Information Transfer Chart

is a powerful tool to analyze the iterative behavior of the system. The detector

can be treated as a demapper. According to LA1, LA2, LE1 and LE2 in Fig. 6.1,

IA1 and IA2 represent the a priori mutual input information respectively of the

detector and of the decoder, and IE1 and IE2 the correspondent extrinsic mutual

output information. The EXIT chart formulation is based on the fact that the

extrinsic information LE1 (i.e. LA1) coming back from the decoder, are almost

Gaussian distributed [75]. Additionally, large interleavers keep the a priori LA1

fairly uncorrelated over many iterations. Hence, the a priori input LA1 can be

91

6.2 Flexibility and divergence analysis of iterative LSD

modeled, applying an independent Gaussian random variable nA1, with variance

σ2
A1 and zero mean µA1, according to:

LA1 = µA1x+ nA1 (6.8)

where x ∈ {±1} represent the known transmitted unmapped bits. Since LA1 is

supposed to be Gaussian, µA1 = σ2
A1/2 is fulfilled. The conditional probability

density function belonging to LA1 value is:

p(LA1/X = x) =
1√

2πσ2
A1

e
−(LA1

−x
σ2
A1
2)2

2σ2
A1 (6.9)

It can be demonstrated that the Shannon’s mutual information between the

equally likely X and the respective LLRs LA1, for symmetric and consistent LA1

values, is IA1 = I(LA1;X), 0 ≤ IA1 ≤ 1[75]:

IA1 =
1

2

∑

x=+1,x=−1

∫ +∞

−∞
p(LA1/X = x)log2

(
2p(LA1/X = x)

p(LA1/X = −1) + p(LA1/X = +1)

)
dLA1

(6.10)

Then, with eq. (6.9), (6.10) becomes:

IA1 = 1−
∫ +∞

−∞

1√
2πσ2

A1

e
−(LA1

−x
σ2
A1
2)2

2σ2
A1 log2

(
1 + e−L

A1
)
dLA1 (6.11)

Moreover, for a generic standard deviation σ, defining J(σ) := IA1(σA1 = σ):

lim
σ→0

J(σ) = 0 lim
σ→∞

J(σ) = 1 with σ > 0 (6.12)

The function J(σ) is directly connected to the capacity of the AWGN channel, it

cannot be expressed in closed form. It is monotonically increasing and reversible

[76].

σA1 = J−1(IA1) (6.13)

In the same way, also extrinsic mutual output information IE1 = I(LE1;X) can

be expressed as:

IE1 =
1

2

∑

x=+1,x=−1

∫ +∞

−∞
p(LE1/X = x)log2

(
2p(LE1/X = x)

p(LE1/X = −1) + p(LE1/X = +1)

)
dLE1

(6.14)

92

6.2 Flexibility and divergence analysis of iterative LSD

Viewing IE1 as a function of IA1 and Eb/N0 values, the extrinsic information

transfer characteristics of the detector are defined as:

IE1 = T1(I
A1, Eb/N0) (6.15)

which can be computed for a desired (IA1, Eb/N0) combination, by means of

Monte Carlo simulations. The independent Gaussian random variable of eq.

(6.8), where σA1 is determined through eq. (6.13), is applied as a priori input to

the detector.

Similarly, the extrinsic transfer characteristic of the decoder is:

IE2 = T2(I
A2) (6.16)

It describes the input/output relationship between the a priori input LA2 and the

extrinsic output LE2 values. It is independent of the channel noise, and it can be

computed assuming LA2 to be Gaussian distributed and applying same equations

used for the characteristics of the detector T1.

The detector and the decoder characteristics are then plotted into a single di-

agram, called Extrinsic Information Transfer Chart. In the following graphics,

the decoder characteristic is always represented by a solid red line, while other

coloured lines are detector characteristics for different Eb/N0 values. On the y-

axis, the extrinsic information produced by the detector IE1 becomes the a priori

input for the decoder IA2. On the x-axis, instead, the extrinsic output of the de-

coder IE2 becomes the a priori input of the detector IA1. In this way, the so called

ideal or snapshot trajectory , indicated with a solid black line, approximately de-

scribes the true behavior of the iterative system. While the ideal trajectory is

obtained from a detection-decoding of a single block of bits, the average trajec-

tory (dashed black line) traces the average behavior over a certain number of

blocks. The considered system is a 4 × 4-MIMO, with a 16-QAM modulation,

code rate 0.5, a MAP decoder and Gray mapping. The model of the channel is

considered as block-fading for this analysis. Each EXIT chart is obtained for an

interleaver size of 105 bits and finite list length. The numerical method to apply

EXIT chart has been derived from [77].

Since the divergence phenomenon has to be studied here, the first method

of handling the list has been chosen, i.e. the list obtained at the first iteration

93

6.2 Flexibility and divergence analysis of iterative LSD

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
E

1
,

I
A

2

I
A1

, I
E2

4x4,16−QAM,Source frame=50000

MAP decoder
Ideal Trajectory
Average Trajectory
10 dB
12 dB
14 dB
16 dB
18 dB

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0[dB]

4x4,Source frame=240, LIST 512

Iter1
Iter2
Iter3
Iter4
Iter5

(a) (b)

Figure 6.2: EXIT charts and BER performance for LSD and MAP decoder with
different SNR values and a list size of 512 (a,b).

is also used for all subsequent iterations. In particular, the original algorithm

of LSD in [23], with LLR clipping value of ±8, has been adopted, in order to

analyze the effect of a reduction of the size of the list. The Fig 6.2(a) shows

that for list size of 512 at Eb/N0 = 10dB the ideal trajectory gets stuck after 4

iterations. This means that the system is able to converge in 4 iterations. Fig.

6.2(b), instead, shows the BER for the same system, modulation and list size, but

for an interleaver size of 480 bits (frame size of 240 bits), which is a more realistic

case, applied by wireless communications standards, such as WiMax Standard.

Similarly to EXIT Chart, also BER curves show that performance is not improved

with more than four iterations. The average trajectory in Fig. 6.2(a) is obtained

from a ”free-running” iterative detection-decoding of 1000 different blocks of 480

bits. The difference with respect to the ideal trajectory is evident [25], due to the

very smaller interleaver size (480 bits) with respect to the ideal case (105 bits),

but this decoding also gets stuck after 4 iterations. The same conclusion can be

drawn from BER curves. Then it can be concluded that a list of 512 candidates

for a 16-QAM constellation is a reliable choice, which results into a decoder that

94

./4/figures/BER_44_16_10_Block_512_unstable.eps
./4/figures/44_16_BER_list_512_no_genie.eps

6.2 Flexibility and divergence analysis of iterative LSD

improves performance with iterations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
E

1
,
I

A
2

I
A1

, I
E2

4x4,16−QAM,Source frame=50000

MAP decoder
Ideal Trajectory
Average Trajectory
10 dB
12 dB
14 dB
16 dB
18 dB

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0[dB]

4x4,16−QAM,Source frame=240,LIST 64

Iter1

Iter2

Iter3

Iter4

Iter5

(a) (b)

Figure 6.3: EXIT charts and BER performance for LSD and MAP decoder with
different SNR values and a list size of 64 (a,b).

Now, a reduction of the list size is applied: results obtained with a list size

equal to 64 are shown in Fig. 6.3. With Eb/N0 = 10dB, the effect of a short list

is to open the tunnel between detector and decoder, in particular increasing the

mutual information for low BERs. The ideal trajectory has about 3 iterations,

however Fig. 6.3(b) shows that, with an interleaver size of 480 bits, performance

gets worse after the second iteration. This phenomenon is also visible in the

average trajectory of Fig. 6.3(a): after the second iteration, even if the mutual

information at the output of the LSD slightly increases, the decoder is not able

to improve the results, and gets worse. The reason of this behavior is mainly the

unreliability of the list: smaller the list, higher the probability that one of the

two sets L−1
k , L+1

k is empty, higher the number of times you need to fix LLRs to

the clipping value. When the detector sets the output LLRs to the fixed clipping

level, it cannot take into account feedback soft inputs coming from the channel

decoder and its behavior reduces to a hard-output detector [74]. Moreover, when

the list size is reduced, the LLR distribution at the decoder output is no more

95

./4/figures/EXIT_16_44_original_10trajectory_block.eps
./4/figures/44_16_BER_list_64_no_genie_2.eps

6.2 Flexibility and divergence analysis of iterative LSD

Gaussian, as seen in Fig. 6.4. This explains why the EXIT Chart does not match

with BER Chart, since the hypothesis of Gaussian distribution of soft information

fails.

−10 −5 0 5 10
0

2000

4000

6000

8000

10000

12000

D
is

tr
ib

u
tio

n
 o

f
L

L
R

s

LLR value

4x4,16−QAM,Source frame=240

it 1
it 2
it 3
it 4
it 5

Figure 6.4: Distribution of LLRs at the output of the LSD (16-QAM, 4×4-MIMO,
list size of 64, block-fading channel model and Eb/N0 = 10dB).

After a wide research in literature, only [10] and [24] has been found, which

highlight the problem of divergence. In particular, only solution in [10] details the

employed method in order to avoid the divergence: it is based on constraining the

maximum allowable value of a priori information LA, coming from the decoder,

to prevent the value of xT[k]L
A
[k] from growing too large. The maximum value is

chosen as:

LAmax =
r

min(1, kOσ2)
(6.17)

where r is the radius of the LSD and kO =MtMrEavr. Eavr is the average energy

of the modulation (2 for Q-PSK, 10 for 16-QAM and 42 for 64-QAM). The rule

for constraining the a priori information is the following:

LAC =

{
LA max{LA} ≤ LAmax
LA
max

max{LA}L
A max{LA} > LAmax

(6.18)

Moreover, an LLR clipping value of ±50 has been chosen [10]. Results obtained

when this solution is applied to the case of 16-QAM and a list of 64 candidates,

96

./4/figures/Distr_64_10.eps

6.3 Comparisons between LSD and MMSE-IC

are shown in Fig. 6.5. The effect of constraining a priori LLRs is, in general, a

reduction and a modification of the original mutual information (see Fig.6.5(a)),

and since an empirical and conditional scaling is applied, the original transfer

functions of the detector is modified (the curve corresponding to Eb/N0 = 12dB

is below the one corresponding to Eb/N0 = 10dB for IA1 < 0.6). No divergence

appears and at Eb/N0 = 10dB both average and ideal trajectories get stuck after

3 iterations, as furthermore pointed out by the BER chart in Fig. 6.5(b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
E

1
,

I
A

2

I
A1

, I
E2

4x4,16−QAM,Source frame=50000

MAP decoder
Ideal Trajectory
Average Trajectory
10 dB
12 dB
14 dB
16 dB
18 dB

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0[dB]

4x4,16−QAM,Source frame=240,LIST 64

Iter1
Iter2
Iter3
Iter4
Iter5

(a) (b)

Figure 6.5: EXIT chart and BER performance for LSD and MAP decoder with
different SNR values and a list size of 64 (a,b) with the proposed solution in [10].

6.3 Comparisons between LSD and MMSE-IC

Adopting the solution in [10], it is interesting to explore the performance of LSD

for different modulations and systems, also compared to a low-complexity subop-

timal algorithm, such as the Minimum-Mean-Square-Error Interference-Canceller

(MMSE-IC) equalizer [78][79]. As mentioned in section 6.1 both fast and block

flat fading channel models are considered. The setup for the following simulations

is shown in Table 6.1.

97

./4/figures/EXIT_44_16_10_stable_Block.eps
./4/figures/BER_44_16_64_constrLLR_no_genie_1.eps

6.3 Comparisons between LSD and MMSE-IC

MIMO system 4× 4, 2× 2
Modulation Q-PSK,16-QAM, 64-QAM
Mapping Gray

Channel model Rayleigh fading, block and fast
List size for block-fading 64
List size for fast-fading 256, 512

Channel encoder Convolutional (rate 0.5)
Channel decoder Max-log MAP BCJR

Number of iterations 5
Coded frame 480 bits

Table 6.1: Setup of the conducted simulations

6.3.1 Block Fading Channel

In the case of block-fading, the channel matrix is constant over a frame, here a

coded frame of 480 bits is considered. As Fig. 6.6 shows, no significant improve-

ment is achieved after two LSD iterations. Moreover LSD is able to outperform

MMSE in two iterations, also with a moderate list size, such as 64 candidates.

Regarding MMSE a significant performance degradation appears for high SNRs,

due to a matrix inversion issue in the eq. (6.7) [80]. This matrix has two con-

tributes: one represented by the channel matrix and the other by the variance of

the noise. For high SNRs the main contribution comes from the channel matrix

H. Thus a bad realization of H causes the above matrix to be singular, which

results in a wrong computation of equalization coefficients. This will impact the

whole frame in case of block-fading scenario.

6.3.2 Fast Fading Channel

In the case of fast-fading channel, the matrix inversion issue in MMSE, described

in the previous section, has much less impact (Fig. 6.7(a)(b)) because a bad

channel matrix realization affects one symbol vector rather than the complete

frame. Regarding LSD, simulations have shown that the proposed solution [10] is

not able to eliminate definitively the unreliability of a small list. In the fast-fading,

with a list of 64, a performance degradation, compared to MMSE, happens and

the divergence appears early (since the third iteration). This forces to increase

98

6.3 Comparisons between LSD and MMSE-IC

0 2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

B
E

R

Eb/N0[dB]

4x4,Q−PSK,Source frame=240,Block−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

0 5 10 15 20 25
10

−6

10
−4

10
−2

10
0

B
E

R

Eb/N0[dB]

4x4,16−QAM,Source frame=240,Block−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

B
E

R

Eb/N0[dB]

4x4,64−QAM,Source frame=240,Block−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

Figure 6.6: BER comparison between LSD (list size 64) and MMSE for different
modulations and block-fading channel.

the size of the list, in order to improve BER performance and avoid the divergence

with iterations. So, for the QPSK the size of the list has been increased to 256,

and for 16QAM and 64QAM to 512.

99

./4/figures/BER_44_Q_LSD_MMSE_block.eps
./4/figures/BER_44_16_LSD_MMSE_block.eps
./4/figures/BER_44_64_LSD_MMSE_block.eps

6.3 Comparisons between LSD and MMSE-IC

0 2 4 6 8
10

−8

10
−6

10
−4

10
−2

10
0

B
E

R

Eb/N0[dB]

4x4,Q−PSK,Source frame=240,Fast−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

0 2 4 6 8 10 12 14
10

−8

10
−6

10
−4

10
−2

10
0

B
E

R

Eb/N0[dB]

4x4,16−QAM,Source frame=240,Fast−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

0 5 10 15 20
10

−8

10
−6

10
−4

10
−2

10
0

B
E

R

Eb/N0[dB]

4x4,64−QAM,Source frame=240,Fast−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

Figure 6.7: BER comparison between LSD (list size 256 for QPSK and 512 for
16QAM and 64QAM) and MMSE for different modulations and fast-fading channel.

100

./4/figures/BER_44_Q_LSD_list_256_MMSE_fast.eps
./4/figures/BER_44_16_LSD_list_512_MMSE_fast.eps
./4/figures/BER_44_64_LSD_list_512_MMSE_fast.eps

6.3 Comparisons between LSD and MMSE-IC

6.3.3 Block and Fast Fading Channel for a 2 × 2-MIMO
system

Considering flexibility requirements, it is important to see what happens also for

a different number of antennas. Fig. 6.8(a)(b) shows results for 2×2-MIMO and

16-QAM, both for block and fast-fading. As before, also for this case, LSD has

better performance for a block-fading channel. Although a list size of 64 is large

enough for a 2 × 2 system, with a fast-fading channel, the achieved BER after

two LSD iterations is comparable with that obtained with five MMSE iterations.

We can then say that LSD is more adaptable than a linear detector, such as

MMSE-IC, since changing the size of the list and the ”LLR clipping” value,

different performance-complexity trade-offs can be achieved. For what concerns

the channel model, in case of fast-fading, for small constellations and system

configurations, MMSE has similar performance to LSD. On the other hand, LSD

has better BER performance than MMSE when the estimation of the channel

conditions remain constant over a frame, like in the block-fading case.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0[dB]

2x2,16−QAM,Source frame=240,Block−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

0 2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

Eb/N0[dB]

2x2,16−QAM,Source frame=240,Fast−Fading

Iter1 LSD
Iter2 LSD
Iter3 LSD
Iter4 LSD
Iter5 LSD
Iter1 MMSE
Iter2 MMSE
Iter3 MMSE
Iter4 MMSE
Iter5 MMSE

(a) (b)

Figure 6.8: BER comparison between LSD (list size 64) and MMSE for 2 × 2-
MIMO, 16-QAM, block (a) and fast-fading channel (b).

101

./4/figures/BER_22_16_64_LSD_MMSE_Block.eps
./4/figures/BER_22_16_LSD_MMSE_fast1.eps

6.3 Comparisons between LSD and MMSE-IC

6.3.4 Complexity comparison

This section reports results on the number of operations required for the detec-

tion of a frame, in the block fading scenario. Table 6.2 shows the number of

real additions/subtractions and multiplications for detecting an encoded frame

of 480 bits, in the 4 × 4-MIMO case with 16-QAM. QR-decomposition for LSD

and matrix inversion for MMSE-IC are not considered, so that these results are

independent of the model of the channel. The complexity of MMSE-IC is fixed,

with assigned antenna number and modulation, instead, for LSD it is variable

with the SNR and Table 6.2 shows the average operation number, obtained after

1000 simulations for SNR=16dB (equivalent to a BER of 10−6).

The LSD is mainly composed of two units: list generation, performed only in the

first iteration, and LLRs computation, performed at each iteration. Similarly,

MMSE-IC includes two main processing tasks: the computation of symbol ex-

pectations, which is performed according to eq. (6.4), and the evaluation at each

iteration of soft mapper and demapper outputs. As shown in [81], the average

complexity for an hard SD is O(M3
t). Since the LSD not only finds the ML solu-

tion but a list of candidates, it is claimed that the complexity of list generation

grows also linearly with the size of the list, as O(M3
t L). Moreover the complexity

of LLR computation is O(M2
t Q

2L) [26] for one iteration. The average complexity

for MMSE-IC is reported in [26] as 2O(MtQ2
Q)+O(M3

t) for each iteration. These

complexities are for a vector of Mt symbols, so they must be multiplied for the

total number of vectors in the frame (here 30 vectors). As already known [26],

LSD complexity is 10 times higher than MMSE. However LSD complexity can be

reduced with a smaller list and adjusted clipping level. Considering, for example,

the list generation for LSD with a list size of 64 and the symbol expectation for 5

iterations for MMSE-IC, the former has a number of additions/subtractions seven

times higher than the latter. Even the difference between the LLR computation

and soft mapper and demapper is of two orders of magnitude.

102

6.4 Discussion of the results

MMSE-IC ADD/SUB MUL
Symbol expectation 1 it 6.7e+03 2.9e+03
Symbol expectation 5 it 3.4e+04 1.4e+04
Soft Demapper+ Soft Mapper 1 it 1.3e+03 1.4e+03
Soft Demapper+ Soft Mapper 5 it 6.6e+03 7.2e+03

LSD ADD/SUB MUL
List generation 2.5e+05 2.3e+05
LLR comp. 1 it 3.7e+05 3.1e+04
LLR comp. 2 it 7.4e+05 6.3e+04

Table 6.2: Complexity estimation with a 4× 4-MIMO and 16-QAM for LSD (list
of 64, BER of 10−6) and MMSE-IC

6.4 Discussion of the results

The iterative behavior of LSD detector has been analyzed using EXIT charts. If

the a priori LLRs are properly constrained, the divergence problem can be miti-

gated with a relatively small list size. This last solution has been compared with

a linear detector, such as MMSE-IC, in terms of performance and complexity,

both for block and fast-fading channel models. In case of fast-fading, for small

constellations and system configurations, MMSE-IC has similar performance to

LSD. On the other hand, LSD has better BER performance than MMSE-IC when

the estimation of the channel conditions remain constant over a frame. Although

complexity of LSD is significantly higher than that of MMSE-IC, LSD outper-

forms MMSE-IC in two iterations. Solution in [82] shows how it is possible to

reduce the complexity of the LSD to one half of a traditional LSD, thanks to

Sorted QR-decomposition, MMSE preprocessing and Tuple Search. The per-

formed analysis on possible complexity-performance trade-offs can be exploited

to extend flexibility of current sphere decoders [3] and design a multi-mode flex-

ible MIMO detector supporting both MMSE-IC and LSD with variable list size.

In such a flexible detector, selection between the executed algorithm and choice

of the main parameters should be based on channel conditions and targeted per-

formance.

103

7

ASIP implementation of LSD

In chapters 5 and 6, the idea of a multi-mode flexible MIMO detector supporting

both MMSE-IC and LSD has been extensively presented and investigated. This

chapter, instead, focuses on the implementation aspects of such a kind of detec-

tor, whose main feature is the flexibility. Nowadays, one of the most flexible kind

of implementation is certainly the Application-Specific- Instruction set-Processor

(ASIP) [83] [84] [85] [86] [87].

An ASIP is a programmable microprocessor, where hardware and instruction

set are designed together for one special application. It has the main charac-

teristic of combining performance and energy efficiency of dedicated hardware

solutions with the flexibility of a programmable solution. Anyway, other popu-

lar approaches for the implementation of specific functions in digital systems are

exploited. The requirement of very high performance can be satisfied with an

Application-Specific-Integrated-Circuits (ASICs) or even a physically optimized

ICs, sacrificing completely the flexibility. On the contrary, programmable so-

lutions, such as General-Purpose Processors (GPP), offer more flexibility and

faster time-to-market. If some additional processing power is needed, there are

specific processors, optimized for signal processing, such as Digital Signal Proces-

sors (DSPs), which offer some additional specialized instructions (e.g. Multiply-

Accumulate, MAC). More flexibility is, instead, satisfied by programmable de-

vices, like Field Programmable Gate Arrays (FPGAs), which are reconfigurable,

at the price in terms of performance, power and cost, making them suitable

in particular for prototyping. Among all these alternatives, ASIPs are the best

104

7.1 ASIP design flow

trade-off between performance and flexibility, and represent an intermediate solu-

tion between DSPs and FPGAs. Their instruction sets tailored to the application

allow faster processing, while their programmability offers the flexibility needed

to adapt to changing requirements. MIMO detection is one of the many domains,

which can benefit from application-specific processors.

Several options are available to design an ASIP: it can be completely de-

scribed through an Architecture Description Language (ADL), or obtained after

a software programming of an existing processor, or using a so called transport

triggered architecture (TTA). Next section provides a description of an ASIP

design flow, accompanied by an overview of methodologies and tools.

Figure 7.1: A complexity-flexibility trade-offs for different approaches for imple-
mentation in digital systems [11].

7.1 ASIP design flow

The most popular ASIP design technologies can be divided in four main categories

[88]:

105

./ASIP_impl/figures/ASIP_ASIC_AACHEN.eps

7.1 ASIP design flow

• Architecture Description Language (ADL) based solutions: they are also

known as ASIP-from-scratch, because of the accessibility to each detail of

the architecture. Stages of pipeline, number and type of resources and mem-

ory structures are completely specified by the designer, through an high-level

language. Some example of tools, which adopt this approach, are the CoW-

are Processor Designer [89] and Target IP Designer [90]. This method has

the highest flexibility and efficiency, but also requires a significant design

effort.

• Configurable processor core based solutions: in this case, it is possible to

add custom Instruction Set Extension (ISE) to a pre-defined and pre-verified

core, so obtaining more efficiency. This approach has certainly less flexibil-

ity than ADL based solutions. Tensilica Xtensa [91] and ARC ARChitect

[92] are two examples of such a kind of technology. Moreover also trans-

port triggered architectures (TTAs) are included in this category. TTA is a

programmable architecture, where processor is a made of independent func-

tion units and register files, which are connected with transport buses and

sockets [93]. In conventional processor architectures, data transports are

consequences of operations . In this way, the data transmission may become

the bottle-neck of implementations, where high amount of data is processed.

In TTAs, the situation is reversed and operations are consequences of data

transports. In TTA design, the processor designer has free hands to built

the optimal data transmission by adding enough buses between logic and

memory. It is then programmed simply by defining the sources and desti-

nations of these transports. The TTA-based Codesign Environment (TCE)

[94] is an example of tool, employed to design TTAs.

• Software reconfigurable processors: like Stretch [95] and ADRES [96]. They

present a fixed hardware architecture with a reconfigurable ISE, which can be

modified to customize instructions. This approach has the most restricting

degree of freedom with respect to previous solutions.

Independently of the employed technology, the tipical ASIP design flow starts

with the identication of the so called “hot spots” [97] of the application and with

the definition of an initial architecture and a custom instruction set, both able to

106

7.1 ASIP design flow

efficiently support those hot spots. Then the application is run on the processor

and the designer verifies if the target requirements are met. If specifications are

not satisfied, the flow is iterated.

Next subsection provides an overview of the ASIP design flow for ADL based

solutions.

7.1.1 An ADL based tool: Coware Processor Designer

The ADL based method is the most powerful among all other above approaches,

since the processor can be completely specified in all its parts, through an high-

level language. Such a language is more abstract than hardware description

languages, such as VHDL of Verilog. This description is accepted by a special-

ized tool that automatically generates both synthesizable Register Transfer Level

(RTL) and software descriptions. Many ADLs have been introduced through the

years, like nML [98], based on a mixed structural and behavioral model, Sim-nML

[99], an extended version of the nML formalism, Instruction Set Description Lan-

guage (ISDL) [100] and Language for Instruction-Set Architecture (LISA) [101]

[102].

In this research thesis, a tool, namely CoWare Processor Designer [103], has

been employed to design an ASIP for LSD. CoWare Processor Designer is a

widespread commercial ASIP design environment, which is based on LISA [85].

Processor Designer is used to develop a wide range of processor architectures,

including architectures with DSP-specific and RISC-specific features as well as

SIMD and VLIW architectures. Moreover, processors with complex pipelines

can be easily modeled. This includes the ability to describe architectures with

complex execution schemes.

The main features of LISA are [83]:

1. to provide cycle-accurate processor models, specifying stages of pipeline and

mechanisms, like stalls, flushes, reset and operation injection;

2. extension of the target class of processors including single instruction mul-

tiple data, VLIW, and super-scalar architectures of real-world processor ar-

chitectures;

107

7.1 ASIP design flow

3. different levels of abstraction in the behavioral descriptions of parts of the

process model: detailed bit-true description for simulation and implemen-

tation and assignment to arithmetical function for the instruction selection

task of the compiler are distincted.

4. C/C++ based: LISA includes pure C/C++ behavioral operation descrip-

tion;

5. complex instruction coding schemes and instruction aliasing supported.

LISA descriptions are composed of resources and operations. The resources are

the storage objects: registers, memories and pipelines. The operations, instead,

are the basic objects in LISA. They represent the designers view of the behavior,

the structure, and the instruction set of the programmable architecture. More-

over, the high degree of automation of Processor Designer reduces the time for

developing the software tool suite and hardware implementation of the processor:

in this way, designers can mainly focus on architecture exploration and develop-

ment. The usage of a centralized description of the processor architecture ensures

the consistency of the Instruction-Set Simulator (ISS), software development tools

(compiler, assembler, and linker) and RTL implementation, minimizing the veri-

fication and debug effort.

The LISA machine description provides information consisting of the following

model components [83]:

• Memory model : lists the registers and memories of the system with their

respective bit widths, ranges, and aliasing. The compiler gets information

on available registers and memory spaces. The memory configuration is

provided to perform object code linking. During simulation, the entirety of

storage elements represents the state of the processor, which can be displayed

in the debugger. The HDL code generator derives the basic architecture

structure.

• Resource model : describes the available hardware resources and the resource

requirements of operations. Resources reflect properties of hardware struc-

tures that can be accessed exclusively by one operation at a time. The

instruction scheduling of the compiler depends on this information. The

HDL code generator uses this information for resource conflict resolution.

108

7.1 ASIP design flow

• Instruction-set model : identifies valid combinations of hardware operations

and admissible operands. It is expressed by the assembly syntax, instruction-

word coding, and the specification of legal operands and addressing modes

for each instruction. Compilers and assemblers can identify instructions

based on this model. The same information is used at the reverse process of

decoding and disassembling.

• Behavioral model : it abstracts the activities of hardware structures to op-

erations changing the state of the processor for simulation purposes. The

abstraction level of this model can range widely between the hardware im-

plementation level and the level of high-level language (HLL) statements.

• Timing model : it specifies the activation sequence of hardware operations

and units. The instruction latency information lets the compiler find an

appropriate schedule and provides timing relations between operations for

simulation and implementation.

• Microarchitecture model : it allows grouping of hardware operations to func-

tional units and contains the exact micro-architecture implementation of

structural components such as adders, multipliers, etc. This enables the

HDL generator to generate the appropriate HDL code from a more abstract

specification.

After describing the architecture, using these above models, the Processor De-

signer generates a synthesizable HDL representation and the complete software

tool suite automatically. The design flow starts from a LISA 2.0 description,

which allows to specify all components, such as stages of pipeline, memories,

register files, instructions and pins. Then Processor Designer automatically gen-

erates both ISS, complete software tool suite (C-compiler, assembler and linker)

and the RTL implementation description (Verilog HDL, VHDL and System C).

Through the simulator, the application can be run and debugged, verifying the

processor model and evaluating the performance. If the specifications are not

met, the flow comes back to the LISA description, since the design flow is a

closed-loop, as shown in Fig. 7.2. When the design goals are completely satisfied,

the HDL implementation can be synthesized, evaluating occupied Silicon area,

clock frequency and power consumption.

109

7.2 First suboptimal ASIP of LSD

Figure 7.2: LISA design flow [11].

7.2 First suboptimal ASIP of LSD

As already described in chapter 6, the LSD is composed of two main blocks:

list generation, performed only in the first iteration, and LLRs computation,

performed at each iteration. Chosen the system and the list size, the former

has the aim of finding the |L| candidates, which are nearest to the received

signal vector. The number of clock cycles needed to fulfill this object is variable,

depending on SNR value. The LLRs computation unit has to compute LLRs,

based on the list: so this activity takes a constant number of clocks. Therefore, the

complete architecture of LSD has to reflect this structure. It is composed of two

ASIPs: the first devoted to list generation and the second to LLR computation.

The rest of this thesis reports a detailed description of the ASIP1 (list generation),

while the design of the ASIP2 (LLR computation) has been left to future works.

110

./ASIP_impl/figures/LISA_flow.eps

7.2 First suboptimal ASIP of LSD

7.2.1 Flexibility parameters and architectural choices

Fig. 7.3 shows the high-level architecture of ASIP1, where memories, register

files and input parameters are indicated. The considered flexibility parameters

are three:

• Number of antennas: indicated as M in Fig. 7.3. Through this parame-

ter, the user can choose the number of transmitters and receivers. Here, the

supported values are 2, 3 and 4, which are respectively for 2× 2, 3× 3 and

4× 4 MIMO systems.

It is worth notifying that if if the number of transmitters and receivers is

different, the square channel matrix can be obtained, using a mathematical

trick [14]. This is applied in the QR-decomposition, which is not included

in the ASIP design.

• Type of modulation: indicated as PAM size. Since a real–valued system

has been employed (see section 2.2), this parameter represents the number of

PAM symbols, corresponding to a QPSK, 16QAM and 64QAM. So possible

choices are 2, 4 and 8. In fact, QPSK has {-1,1}, as corresponding PAM

symbols, the 16QAM has {-3,-1,1,3}, and the 64QAM {-7,-5,-3,-1,1,3,5,7}.

• List size: indicated as list size. Currently, the ASIP1 supports a number of

candidates up to 64, which is an acceptable range, taking into account that

the main problem of LSD is memory requirement due to list, and that a list

of 64 is a reliable choice for all the previous constellations, in particular in

the block fading scenario (see chapter 6).

Anyway, list and modulation sizes can be easily extended to other values, differ-

ent from those above indicated, just with minimal modifications, mainly related

to the size of memories.

The resources of the processor are composed of one data memory and seven reg-

ister files. The 2M × (2M + 1) Channel Data Mem stores R matrix coefficients

and ZF solutions, ỹ, obtained after QR-decomposition. When the ASIP1 starts

working, the content of the memory is load into the two corresponding register

files (R RF and PSI RF), in order to be directly read by the processor. During

the detection, the PSI RF is also used to save intermediate results, together with

111

7.2 First suboptimal ASIP of LSD

PSI
RF

RF
PED

RF
step

RF
u

LIST GENERATION

ASIP 1

R
RF

P
A

M
_size

list_size

RF
d2_list

RF

u_list

M
Channel Data

Mem

Figure 7.3: High level architecture of ASIP1.

other tree register files, namely PED RF, step RF and u RF. They contain the

current visited symbol (u RF) and related SE initial direction(step RF), partial

euclidean distance (PED RF) and ψ metric (PSI RF). All of them have 2M loca-

tions, while R RF has 2M × 2M . Finally, u list RF and d2 list RF respectively

contain the list of candidates and the related square distances. list size × 2M

locations are necessary for the former, while only list size for the latter.

The processor has to fulfill five main tasks:

• Babai point selection

• PED computation

• ψ computation

• SE enumeration

• List management

Hardware architecture of each of these processing units is described in the fol-

lowing sections. As for the implementation of SDA and LASDA, the internal

112

./ASIP_impl/figures/ASIP1.eps

7.2 First suboptimal ASIP of LSD

precision has been set to 16 bits, half of them used for the integer part and

the other half for the fractional part. Some data are represented with less than

16-bits, as specified in the next paragraphs, and in order to enable the reuse

of hardware resources, they are sign extended to 16-bit format. Moreover, a 32

to 16-bit conversion is performed at the outputs of the multipliers and to avoid

overflow or underflow problems, outputs are superior or inferior limited.

7.2.1.1 Babai Point selection

This unit has the role of selecting the Babai Point, in the forward processing,

according to eq. (2.14). The complexity , in terms of number of resources,

depends only on the cardinality of the modulation, not on the number of antennas.

It is quite similar to S block, shown in Fig. 3.13, but extended to cover also

the 64QAM modulation. This is a classical divisor, implemented with left shift

operations and subtractions, as detailed in Fig. 7.4. It takes ψl+1[l] and Rl,l, as

inputs, and computes the Babai Point, indicated as res, and the initial direction

of SE enumeration, indicated as step. If step is equal to 1, the next chosen

point will be the closest symbol at right, otherwise the closest at left. Apart

from inputs, represented on 16 bits, the Babai point can be set to 4 bits, with

a two’s complement representation, which is the maximum precision required for

the worst case, i.e. 64QAM.

Alternatively the Babai Point selection can be implemented, according to eq.

(2.15), as a network of subtractors, multipliers and comparators, as shown in

Fig. 7.5. This architecture implies to consider all symbols of the constellation.

In this way, the number of resources is directly proportional to the cardinality

of the modulation. Fig. 7.6 reports synthesis results of both architectures using

Synopsys Design Compiler version Z-2007.03-SP1. A 0.13 µm CMOS Standard

Cell technology is adopted. The occupied Silicon area is reported on y-axis, while

the x-axis shows delays, from about 4.1 ns to the minimum critical path obtained,

for each one. A quick look at those results, allow to state that the ad-hoc divisor

has better performance than the alternative architecture, both in terms of area

and in terms of clock frequency.

113

7.2 First suboptimal ASIP of LSD

−
0

1

res_tmp[3]

1

−1

0

1

step

−
0

1

−
0

1

−
0

1

abs2

abs

n_bit
n_bit

n_bit

abs

abs1

msb_2
1

1m
sb1

n_bit

shl 3

shl 2

shl 1

x

x1

0

1

>=0
x2−abs2

x2

’1’
lsb msb

res

0

1

>=0
ab1−s3

0

1

>=0
x−s2

0

1

>=0
x1−s1

s3

s2

s1

res_tmp[2]

res_tmp[1]

res_tmp[0]

Rl,lψl+1[l]

Figure 7.4: Scheme of the Babai selection unit.

114

./ASIP_impl/figures/BABAI_selection.epsi

7
.2

F
ir
st

su
b
o
p
ti
m
a
l
A
S
IP

o
f
L
S
D

−

x −

x −

x −

−

x −

x −

x −

>
0

1

>
0

1

>
0

1

>
0

1

>
0

1

>
0

1

0

1
>

0

1

1

x

3

7

5

−7

x

−5

−1

−3

abs

abs

abs

abs

abs

abs

abs

abs

abs_3

abs_1

abs1

abs3

abs5

abs7

abs_7

abs_5

diff_7

diff_5

diff_3

diff_1

diff1

diff3

diff5

diff7

d12index12
d34index34

d&index

−7 −5 −3 −1 1 3 5 7

index

m
sb_d1

step
1

−1

d1&index1

d2&index2

d3index3

d4&index4

Rl,l

ψl+1[l]

F
ig
u
r
e
7
.5
:
A
lt
er
n
at
iv
e
ar
ch
it
ec
tu
re

fo
r
th
e
B
ab

ai
P
oi
n
t
se
le
ct
io
n
u
n
it
.

11
5

./ASIP_impl/figures/BABAI_sel_alt.epsi

7.2 First suboptimal ASIP of LSD

7.2.1.2 PED computation

This unit has to compute the partial euclidean distance of the Babai Point, during

the forward processing; during the backward processing, it computes the alter-

native points, based on SE enumeration, (eq. (2.8)). It receives sl, Rl,l , ψ
l+1[l]

and Tl+1, as inputs and produces the current partial euclidean distance Tl. It is

indipendent of both cardinality of constellation and number of antennas, making

this block quite simple, composed only of two multipliers, one subtractor and

one adder. It is worth clarifying here that the two multipliers do not have the

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
1

2

3

4

5

6

7

8

9
x 10

4

A
re

a[
um

2]

delay[ns]

Babai Unit (Divisor)
Babai Unit (mul−sub−comp network)

Figure 7.6: Area-delay graph for two implementations of the Babai Point selec-
tion.

same complexity, since the precision of their inputs is different. In particular, the

multiplication at the bottom of Fig. 7.7(a) is more complex than that at the top,

since it involves two 16-bits signals, obtaining a results on 32-bits, to be brought

116

./ASIP_impl/figures/A_tcp.eps

7.2 First suboptimal ASIP of LSD

back to 16 bits.

x

x

_

+

ψl+1[l]

Tl+1

Tl

el

Rl,l

sl

x −

x −

x −

x −

x −

R2,l

ψl[2]

ψl+1[2]

Rl−2,l ψl+1[l − 2]

ψl[l − 2]

Rl−3,l ψl+1[l − 3]

ψl[l − 3]

sl

Rl−1,l ψl+1[l − 1]

ψl[l − 1]

R1,l ψl+1[1]

ψl[1]
(a) (b)

Figure 7.7: Schemes of the PED computation (a) and ψ computation (b) units.

7.2.1.3 ψ computation

The aim of this block consists in computing ψl[i] amounts that will be required at

the lower tree levels, according to eq. (3.9). At each level l of the tree, it receives

the current visited symbol sl, Ri,l and ψl+1[i] elements for i = l − 1, . . . , 1 and

gives ψl[i] as results. The basic unit is composed by a multiplier and an adder,

which are allocated a number of times equal to l − 1. The complexity of this

block is therefore dependent on number of antennas, but not on the cardinality

of the constellation. The necessary hardware to be allocated is specified by the

117

./ASIP_impl/figures/PED_computation.epsi
./ASIP_impl/figures/PSI_computation.epsi

7.2 First suboptimal ASIP of LSD

worst case: for a 4×4 system the root level of the tree is l = 7 and the maximum

number of basic units, working in parallel, is equal to 6. For smaller systems,

some units will not be employed.

7.2.1.4 SE enumeration

+

>=

−

CA2

shl 1

1

−1

1

0

sign

sk−1l

stepk−1l skl

stepkl

Figure 7.8: Scheme of the SE enumeration unit.

This unit has to compute the next alternative symbols, according to SE enu-

meration: {
skl = sk−1

l + 2stepk−1
l

stepkl = −stepk−1
l − sign(stepk−1

l)
k > 1 (7.1)

As shown in Fig. 7.8, it is a quite simple unit, composed of a multiplexer, an

adder, a subtractor, a comparator, a left shift and a two’s complement operator.

The number of resources to be allocated is indipendent of number of antennas

and cardinality of the constellation. Instead, the range of values that skl and step
k
l

can assume, clearly depends on the symbols, belonging to the modulation.

118

./ASIP_impl/figures/SE_enumeration.epsi

7.2 First suboptimal ASIP of LSD

7.2.1.5 List management

One of the main issues of LSD is the management of the list, not only in terms

of memory requirement, but also regarding how to handle it. If a large list size

is preferred, the sorting and storing of symbol vectors quickly becomes the bot-

tleneck of the algorithm. Two main approaches are exploited to maintain the

list: memory-based [104] and register-based. The former provides a more energy-

efficient but slower solution to the problem, while the latter guarantees an highly

optimized and faster hardware, even if it tends to have an high energy consump-

tion. Here the register-based approched has been adopted, since it will provide

less energy-efficient, but certainly faster solution to the problem [104].

The LSD is a generalization of the SD. Rather than finding only the best

argument, if finds the best |L| ones. It stores each of these arguments ui and

their corresponding value d2i in a list Li = {ui, d2i} for i = 1 . . . |L|. Each

time a possible argument is found, the LSD checks whether it is better than all

arguments in the list, and if so it exchanges them. This search requires an order

of |L| comparisons, and is executed for every vector checked inside the sphere.

In particular, each visited leaf, which satisfies the radius constraint, has to be

inserted. When the detection starts, the initial radius is set to infinity, i.e. the

maximum representable value with the desired precision, and only when the list

will be full it will be updated to the biggest ED stored into the list. For this

reason, it is useful to maintain the list ordered. In fact, in the ascending order,

the first candidate has the smallest ED, corresponding to the ML solution, and

the last has the biggest, corresponding to the radius. Later on, if a new leaf has

a smaller distance with respect to the radius, it must be inserted, the biggest

candidate is eliminated and the radius updated to the new largest element in the

list.

Shortly, for each candidate found, three activities can be identified:

1. Position finder: it consists in finding the right position in the list;

2. Insertion: it implies to right shift all next candidates, with respect to the

current position of the new argument, and to insert the new one. In this

way, the last element is automatically eliminated;

119

7.2 First suboptimal ASIP of LSD

3. Radius update: the radius is updated to the PED of the last element in the

list.

As the latency of inserting a new symbol to the list is very crucial for the

overall performance of the LSD algorithm, an efficient data structure is needed

for sorting and storing of symbols. Heap data structure [105] has been suggested

for LSD in [106] and [107] as an efficient algorithmic solution. The work in [104],

shows an ASIP implementations of a K-best memory-based LSD, with detailed

explanation of the heap utilization. Heap is an efficient choice for long lists:

comparator networks for constructing binary heaps, presented in [108], have a

complexity of order O(|L|log2log2|L|), in terms of number of comparators, and

O(log2|L|), in terms of delay.

The bubble sorting algorithm is more suitable for K-best approaches, since it is

shown that the cost of sorting is linear with the value of K [109] [110], and can

be employed in a sequential fashion [15]. Since the K-best is a single-direction

searching algorithm, the sorting can take more than one clock to be completed.

This is not the case of depth-first LSD, which is double-direction, and the list

must be ordered in one clock.

A sorting network proposed in [111] has a depth of O(log2|L|log2log2|L|): it makes

use of an operation called (m, k)-sort-and-shuffle, which operates on an array of

m elements, by first sorting elements in each block of size k, and then shuffling

the m/k sorted blocks together. The shuffling simply consists in moving each

element from a position to another position of the array, according to a specific

rule.

The quite complicate structure of this last solution, which also needs to apply

a “random” permutation and the recursion [111], makes it more suitable for

software application. The heap-sort-based approach is, on the contrary, a good

hardware solution, mainly addressed to low-area requirements. But if the main

purpose is high data-rate, and, therefore, high clock frequency, a tree-based net-

work of comparators, like for the heap-sort, is probably not the best answer. In

this first version of the ASIP, the very basic and straight-forward implementa-

tion of the list management unit, whose pseudocode is illustrated in Algorithm

4, has been adopted, as shown in Fig. 7.9. This highly parallel and very easy

to implement architecture is very fast, at a price of an increased occupied area,

120

7.2 First suboptimal ASIP of LSD

>> > <

SELSELSEL

d2_list[1]

16 16 16 16 16
d2_list[2] d2_list[3]

16

d2_list[63] d2_list[64]

u_list[63] u_list[64]u_list[1]

32 32 32 32 32
u_list[2] u_list[3]

32

>

SEL

CONTROL LOGIC

{snewl }

Tnew1

Figure 7.9: Scheme of the list management unit.

with respect to above described methods. This is pointed out comparing [104]

and [112]: the former solution employs heap structure for the list, while the latter

make use of our same architecture to manage the list. The list unit in [112] occu-

pies 5400 GE on a 130 nm technology and 100 MHz of clock frequency, while the

same unit, implemented with heap structure, occupies 2300 GE, for same tech-

nology and frequency. This means about 134% increase of area. On the other

hand, the maximum clock frequency obtained [104] is 150 MHz, versus 280 MHz

in [112] (86% more).

7.2.2 Instruction Set Architecture

The ASIP has 5 pipeline stages:

1. Instruction Fetch (ISTRF): it fetches the instruction from the program mem-

ory and the fetch address register is prepared for the next instruction, check-

ing if there is a jump or not;

121

./ASIP_impl/figures/List_manag.epsi

7.2 First suboptimal ASIP of LSD

Algorithm 4 List management

1: if T new1 < d2 list[|L|] then
2: if T new1 > d2 list[|L| − 1] then
3: d2 list[|L|] := T new1 , u list[|L|] := {snewl } with l = 1, . . . ,M
4: else if T new1 > d2 list[|L| − 2] then
5: d2 list[|L|] := d2 list[|L| − 1], u list[|L|] := u list[|L| − 1]
6: d2 list[|L| − 1] := T new1 , u list[|L| − 1] := {snewl } with l = 1, . . . ,M
7: else if T new1 > d2 list[|L| − 3] then
8: d2 list[|L|] := d2 list[|L| − 1], u list[|L|] := u list[|L| − 1]
9: d2 list[|L| − 1] := d2 list[|L| − 2], u list[|L| − 1] := u list[|L| − 2]
10: d2 list[|L| − 2] := T new1 , u list[|L| − 2] := {snewl } with l = 1, . . . ,M
11: else if T new1 > d2 list[|L| − 4] then
12: d2 list[|L|] := d2 list[|L| − 1], u list[|L|] := u list[|L| − 1]
13: d2 list[|L| − 1] := d2 list[|L| − 2], u list[|L| − 1] := u list[|L| − 2]
14: d2 list[|L| − 2] := d2 list[|L| − 3], u list[|L| − 2] := u list[|L| − 3]
15: d2 list[|L| − 3] := T new1 , u list[|L| − 3] := {snewl } with l = 1, . . . ,M

...
...

...
...

...
...

16: end if
17: end if

2. Operand Fetch (OPF): the instruction is decoded and the operands are

fetched from register files to pipeline registers;

3. Execution 1 (EX1): this stage is devoted to execute arithmetic and logic

operations, based on the specific instruction;

4. Memory/Execution 2 (EX2): it has been used with a double role: to load

the content of data memory locations and also as a second execution stage

for all other instructions, which do not directly communicate with memory;

5. Write Back (WB): results of the previous stage are written to register files.

The instruction set of the proposed ASIP is composed of two groups: the

former includes some traditional instructions and the latter has specialized ones,

which are properly designed for the LSD algorithm. The first group is composed

of common instructions, such as LW, ADDI, NOP, BNE and JUMP. The LW

(“load word”) is used to load the content of Channel Data Mem into R RF

and PSI RF . The instruction word is shown in Fig. 7.11. In particular, the

122

7.2 First suboptimal ASIP of LSD

P
ip

el
in

e
R

eg
is

te
rs

ISTRF

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

OPF EX1 MEM/EX2 WB

Figure 7.10: Stages of pipeline.

least significant bit is used to select either R RF or PSI RF . The reg dest

and reg adx fields represent the index for a general purpose register file, used as

pointer to other RFs: the first is related to the index of R RF or PSI RF , the

second, instead is the relative address, adjusted with an immediate value imm,

of the data memory. The ADDI (“add immediate”) adds a constant value to

31 29 22 15

1 1 1 reg_adx reg_dest

1

R/zf

0

imm

Figure 7.11: Instruction format of LW.

a relative address, while NOP instruction is employed when empty cycles are

required during the execution of the program. The jumps are managed by the

BNE (“branch if not equal”) for conditional ones, used to check a condition if

there is a loop into the program, and JUMP for those which are unconditional.

In particular, BNE is useful together with LW, in order to read the specified

number of locations from the data memory. If reg1 6= reg2 in Fig. 7.12, the

costant value number is added to the program counter. The JUMP is, instead,

31 23 16

0 1 reg1 reg2 number

30 0

Figure 7.12: Instruction format of BNE.

employed since the average number of clock cycles, needed to detect a symbol

vector, is variable with SNR value: in these case the main loop, which handles

forward and backward processing of the tree in the LSD algorithm, is repeated

123

./ASIP_impl/figures/pipeline.eps
./ASIP_impl/figures/LW.eps
./ASIP_impl/figures/BNE.eps

7.2 First suboptimal ASIP of LSD

a number of times which is not fixed and not a priori predictable. The JUMP

format is represented in Fig. 7.13. As it will be explained later, until the detection

31

0 0 address1

0

0 0 01

26 13

address2

Figure 7.13: Instruction format of JUMP.

is not finished, the program jumps to address1, otherwise to address2.

The specialized instructions, which implement the tree search and synchro-

nize the units presented in subsection 7.2.1, according to forward and backward

processing are three: INIT, BABAI and CHECK. Next paragraphs contain a

detailed description of each one.

7.2.2.1 INIT instruction

1 0

0

0 0 00 0 0 0 0 0 pam_size numb_ant list_size

2131 14 7

Figure 7.14: Instruction format of INIT.

This instruction is designed to initialize some internal registers of the ASIP.

Through the fields pam size, numb ant and list size in Fig. 7.14, the user

can choose the desired system configuration. pam size is the cardinality of the

PAM constellation, and can assume values {2, 4, 8}, corresponding respectively

to QPSK, 16QAM and 64QAM. The number of transmitters and receivers can

be fixed with numb ant, choosing among {2, 3, 4}, corresponding respectively to

2 × 2, 3 × 3 and 4 × 4 MIMO. Finally, the list can have a number of candi-

dates from 1 to 64, thanks to the list size field, which can assume integer values

{0, 1, 2, . . .63}. Since the only operation done by INIT is simply to set some

global register to a certain value, this can be done only in one stage of pipeline,

the OPF. In this way, this instruction effectively occupies only the first two stages,

and is completed in two clocks.

124

./ASIP_impl/figures/J.eps
./ASIP_impl/figures/INIT.eps

7.2 First suboptimal ASIP of LSD

0 0 1 0

2131

src1 src2 unused

28 014

Figure 7.15: Instruction format of BABAI.

7.2.2.2 BABAI instruction

This instruction has been initially thought to accomplish the forward processing,

which implies to select the Babai Point, and to compute related ψ and PED met-

rics. For this reason, fields src1 and src2 of the instruction format in Fig. 7.15

are respectively ψl+1[l] and Rl,l, which are inputs of the Babai selection unit (see

Fig. 7.4).

The whole processing has been scheduled in the stages of pipeline, as shown in

Fig. 7.16. In the OPF stage, the instruction is decode and operands are load from

register files to pipeline registers: an entire row of R RF (Ri,l with i = 1, . . . , l),

one element Tl+1 from PED RF , and one element ψl+1[l] from PSI RF . In the

EX1 stage, both Babai selection and ψ computation are performed, during the

forward processing, while the PED computation is carried out in EX2. Finally, in

the WB stage, results are written into RFs: Tl in PED RF , sl and related stepl

respectively in u RF and step RF , and all ψl[i] with i = 1, . . . , l− 1 in PSI RF .

The forward and backward processings have the common task of calculating the

PED and ψ metrics for a symbol, which is the Babai Point during the former and

another alternative sibling, according to SE enumeration, during the latter. In

order to enable the resource sharing, the BABAI instruction can be used also in

the backward processing, disabling the BABAI selection unit. In this case, the

input symbol to the ψ computation unit comes from a pipeline register and it is

generated by the CHECK instruction, as explained in the following paragraph.

The choice of performing the Babai selection and the computation of the ψ

metrics in the same stage comes from data dependency. In the forward visiting,

the Babai Point needs the proper ψ element to be computed, according to (2.14).

The idea is to design an ASIP, which is not so far from a one-node-per-cycle

architecture, also because LSD has an high and variable latency, due to the

sequential nature of the algorithm itself.

125

./ASIP_impl/figures/BABAI.eps

7.2 First suboptimal ASIP of LSD

R
RF

PSI
RF RF

PED
RF
step

RF
u

PED
computation

OPFISTRF MEM/EX2 WB

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

selection

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

computation

BABAI

0
1

EX1

up/down

up/down

up/down
ψ
l+

1
[l
]

R
l,
l

Rl−1,l
Rl−2,l

R1,l

ψ
l [l
−
1]

ψ
l [1
]

stepl

sl
Tl

ψ ψ
l [l
−
2]

Rl,l

ψl+1[l]

sl

Tl+1

Figure 7.16: BABAI instruction and stages of pipeline.

7.2.2.3 CHECK instruction

0 1 1 1

31 28 0

unused

Figure 7.17: Instruction format of CHECK.

The CHECK instruction has the aim of managing the tree search: through

the radius constraint verification, it can decide which will be next level of the

tree to be visited. For these purpose, two global registers are allocated: level

and up/down. As their names suggests, level contains the current level of the

126

./ASIP_impl/figures/BABAI_pipe.epsi
./ASIP_impl/figures/CHECK.eps

7.2 First suboptimal ASIP of LSD

tree, while up/down indicates the direction of the visit. Fig. 7.18 shows how the

P
ip

el
in

e
R

eg
is

te
rs

RC

SE

enumeration

up/down

level

RF
PED

RF
step

RF
u

d2_list
RF

u_list
RF

ISTRF WB

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

EX1

up/down

update_list

management

List

MEM/EX2OPF
lnew

skl

stepkl
stepk−1l

sk−1l

l

Tl

T1

Figure 7.18: CHECK instruction and stages of pipeline.

CHECK instruction works along the pipeline. In the OPF, operands are loaded:

one element Tl from PED RF , the current symbol and related step respectively

from u RF and step RF , and the current level of the tree from the level register.

Then, all operations are concentrated in one clock. RC block verifies the radius

constraint, according to (2.7) and, based on this, the up/down bit is set to 0 if the

forward processing has to be accomplished, also enabling the BABAI selection in

127

./ASIP_impl/figures/CHECK_pipe.epsi

7.2 First suboptimal ASIP of LSD

the BABAI instruction, or to 1, activating the SE enumeration block otherwise.

When the algorithm reaches a leaf, the update list signal enables the list man-

agement unit, which directly reads and writes d2 list RF and u list RF . Finally,

in the MEM/EX2 stage, proper elements of u RF and step RF are updated, and

lnew and up/down are written in the respective global registers.

As shown in Fig. 7.17, only opcode bits are used in the instruction format. Noth-

ing else is necessary, since the addresses for reading RFs are directly derived from

the content of level register.

7.2.3 Sample program

In this subsection sample program to implement the LSD algorithm is described.

The assembly code line starting with “;” denotes a comment line.

The user can choose the desired configuration through the INIT instruction:

this sample code is for a 4× 4 MIMO, 64QAM and |L| = 64. After the initializa-

tion of the ASIP, the first M locations of data memory, containing ZF solutions,

are loaded into PSI RF , using a loop (line 4). Then the program loads the

remaining 2M × 2M locations, containing channel coefficients, into R RF (loop

at line 9). After that the LSD can first start to process the highest level of the

tree, and continues the tree search jumping back to “check up down”, until the

detection is not complete, and to “finish” otherwise.

128

7.2 First suboptimal ASIP of LSD

Listing 7.1: LSD assembly code

1 ;Initialization, choosing respectively pam_size,numb_ant and list_size

2 INIT $8 $4 $63

3 ;Load the first M locations of Channel Data Memory into PSI RF

4 load_zf:ADDI $0, $0 , 1

5 LW $0,0,$0 ,0

6 BNE $0, $1, load_zf

7 NOP

8 ;Load the successive 2M*2M locations of Channel Data Memory into R RF

9 load_R: ADDI $0, $0 , 1

10 ADDI $3, $3 , 1

11 LW $3,0,$0 ,1

12 BNE $3, $2, load_R

13 ;Compute Babai Point at the level M

14 BABAI $4,$5

15 NOP

16 NOP

17 ;Continue LSD untill it has not finished

18 check_up_down: CHECK

19 NOP

20 BABAI $4,$5

21 J check_up_down, finish

22 NOP

23 NOP

24 finish: NOP

129

7.3 Improved ASIP: increased clock frequency

7.2.4 Synthesis results

The Coware Processor Designer has been adopted to design the ASIP, describing

the processor with LISA language. The tool provides software development suite

(simulator, compiler, assembler, debugger and linker), so that, executing the

application program, performance can be verified. Moreover, the VHDL code is

automatically generated for hardware synthesis. The generated RTL description

has been synthesized as ASIC, using Synopsys Design Compiler version Z-2007.03-

SP1, on a 0.13 µm CMOS Standard Cell technology. In Table 7.1, the results of

synthesis are summarized. The clock frequency is quite low. Before comparing

Table 7.1: Synthesis results of LSD ASIP

Technology ST 130nm
Frequency 92 MHz
Area 816113 um2 (151 KGE)

the proposed ASIP with the state of art implementations, next paragraph reports

an improved design, faced to increase the clock frequency.

7.3 Improved ASIP: increased clock frequency

Analyzing the LSD in the Listing 7.1 (from line 14 to the end), it can be derived

that the current application is able to visit one node per 6 clock cycles. This

is due to the sequential nature of the algorithm, which implies data dependency

between the results provided by the BABAI instruction and the radius verification

of the CHECK. Therefore, the first modification that can be applied to the ASIP

in order to increase clock frequency is to distribute the processing in a better

way along the pipeline, just breaking each potential critical path. The main

modifications involve BABAI and CHECK instructions, as Fig. 7.19 and 7.20

show :

1. BABAI: the PD computation can be moved in the MEM/EX2 stage;

2. CHECK: the list management can be shifted in the MEM/EX2 stage.

130

7.3 Improved ASIP: increased clock frequency

R
RF

PSI
RF RF

PED
RF
step

RF
u

computation

PED
computation

OPFISTRF WB

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

selection

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

BABAI

0
1

EX1

up/down

up/down

up/down MEM/EX2

ψ

ψ
l+

1
[l
]

R
l,
l

stepl

sl

ψ
l [1
]

R1,l

Rl−2,l

Rl−1,l

sl

Rl,l

ψl+1[l]

Tl+1

ψ
l [l
−
2]

Tl

ψ
l [l
−
1]

Figure 7.19: Modified BABAI instruction and stages of pipeline.

In Table 7.1, the results of synthesis are summarized. Now, the clock fre-

quency is more than doubled, with respect to the previous ASIP design, while

the occupied area is almost the same. Then, Table 7.3 details the area for each

block. The external data memory is not included in these results. The architec-

ture can be partitioned in three main units: the pipeline, the register files and

the interface for external memory. While interface for channel data memory, indi-

cated as AreaMemoryF ile is negligible, the area of register files (AreaRF) represents

more than the half (59.5 %) of the whole architecture. In fact, the high memory

requirement, mainly due to the list, is one of the major problem of LSD. The

131

./ASIP_impl/figures/BABAI_mod_pipe.epsi

7.3 Improved ASIP: increased clock frequency

RC

up/down

level

RF
PED

RF
step

RF
u

SE

enumeration

P
ip

el
in

e
R

eg
is

te
rs

WB

P
ip

el
in

e
R

eg
is

te
rs

d2_list
RF

u_list
RF

management

List

ISTRF

P
ip

el
in

e
R

eg
is

te
rs

P
ip

el
in

e
R

eg
is

te
rs

EX1 MEM/EX2OPF

update_listupdate_list

up/down

l

Tl

stepk−1l

sk−1l

lnew

skl

stepkl

T1

Figure 7.20: Modified CHECK instruction and stages of pipeline.

remaining 40.4 % is due to the pipeline (Areapipe) and Table 7.3 also reports the

area of all sub-blocks of it. At each pipeline stage corresponds one block, so it

is quite easy to analyze these results. Most of the complexity is concentrated in

the MEM stage (32.8 %). In fact, it is devoted to compute PED and ψ metrics,

and to manage the list, besides loading the content of the external memory into

proper registers.

132

./ASIP_impl/figures/CHECK_mod_pipe.epsi

7.3 Improved ASIP: increased clock frequency

Table 7.2: Synthesis results of improved LSD ASIP

Technology ST 130nm
Frequency 228 MHz
Area 888575 um2 (164 KGE)

Table 7.3: Detailed Area results of improved LSD ASIP

AreaMemoryF ile 231 um2 (0%)
AreaRF 528625 um2 (59.5 %)
Areapipe 359323 um2 (40.4%)
AreaISTRF 480 um2 (0.1%)
AreaISTRF OPF 1676 um2 (0.2%)
AreaOPF 21747 um2 (2.4%)
AreaOPF EX 5862 um2 (0.7%)
AreaEX 25396 um2 (2.9%)
AreaEX MEM 7238 um2 (0.8%)
AreaMEM 291516 um2 (32.8%)
AreaMEM WB 4309 um2 (0.5%)
AreaWB 1059 um2 (0.1%)

7.3.1 Performance

The throughput of the ASIP is detailed for different system configurations in

Tables 7.4, 7.5 and 7.6. The values, reported for each SNR, are average numbers,

obtained after 106 simulations, according to [21]:

Th =
RQMt

E(Nen)
fclk [bit/s] (7.2)

with R being the code rate, Q the number of bits per symbol, Mt the number

of transmitters fclk the clock frequency and E(Nen) the average number of clock

cycles Nen, needed to detect one symbol vector . Here a convolutional code

R = 0.5 has been adopted.

Chosen system and modulation, the throughput has not a big variation with

SNRs, on the contrary it is almost constant. A traditional SDA, instead, has

variation of about 80 % between low and high SNRs, as already shown in Fig.

3.12. This is due to the fact that, once the ML solution has been found, SDA

stops the search, and if the noise level is high it requires more time to complete

133

7.3 Improved ASIP: increased clock frequency

Table 7.4: Throughput of the improved LSD ASIP for a 2× 2 MIMO system.

2× 2

QPSK

SNR [dB] Th [Mbps]
|L| = 4 |L| = 8 |L| = 16 |L| = 32 |L| = 64

0 3,07 2.51 2.27 2.27 2.27
6 3,21 2.57 2.30 2.30 2.30
12 3,25 2.59 2.31 2.31 2.31
18 3,29 2.60 2.31 2.32 2.31
24 3,28 2.59 2.32 2.32 2.32
30 3,27 2.59 2.32 2.32 2.32

16QAM

0 3.79 2.76 1.96 1.41 1.04
6 4.46 2.96 2.09 1.47 1.07
12 4.60 3.08 2.12 1.50 1.08
18 4.63 3.14 2.18 1.49 1.08
24 4.54 3.14 2.15 1.50 1.08
30 4.59 3.11 2.12 1.50 1.08

64QAM

0 3.25 2.52 1.88 1.32 0.93
6 4.15 3.06 2.19 1.50 1.01
12 4.81 3.40 2.32 1.56 1.04
18 4.96 3.55 2.34 1.60 1.06
24 5.12 3.46 2.36 1.58 1.06
30 5.01 3.49 2.31 1.56 1.05

his work. The LSD has the additional role of filling a list, whose size is fixed:

this makes the throghput almost indipendent of the SNR.

134

7.3 Improved ASIP: increased clock frequency

Table 7.5: Throughput of the improved LSD ASIP for a 3× 3 MIMO system.

3× 3

QPSK

SNR [dB] Th [Mbps]
|L| = 4 |L| = 8 |L| = 16 |L| = 32 |L| = 64

0 1.85 1.39 1.06 0.87 0.79
6 2.05 1.46 1.10 0.89 0.80
12 2.14 1.51 1.12 0.89 0.80
18 2.15 1.51 1.12 0.90 0.80
24 2.17 1.53 1.13 0.90 0.80
30 2.17 1.53 1.14 0.90 0.80

16QAM

0 1.50 1.12 0.81 0.57 0.39
6 2.16 1.45 0.98 0.65 0.43
12 2.50 1.62 1.05 0.70 0.46
18 2.64 1.65 1.10 0.71 0.46
24 2.64 1.73 1.10 0.73 0.47
30 2.62 1.67 1.11 0.72 0.47

64QAM

0 0.62 0.51 0.41 0.35 0.25
6 0.91 0.69 0.50 0.35 0.23
12 1.38 0.90 0.62 0.42 0.27
18 1.53 1.04 0.68 0.44 0.29
24 1.60 1.06 0.68 0.47 0.29
30 1.56 1.02 0.69 0.45 0.30

135

7.3 Improved ASIP: increased clock frequency

Table 7.6: Throughput of the improved LSD ASIP for a 4× 4 MIMO system.

4× 4

QPSK

SNR [dB] Th [Mbps]
|L| = 4 |L| = 8 |L| = 16 |L| = 32 |L| = 64

0 1.15 0.84 0.62 0.45 0.35
6 1.35 0.94 0.66 0.48 0.36
12 1.35 0.94 0.66 0.48 0.36
18 1.49 1.01 0.69 0.49 0.36
24 1.56 1.04 0.71 0.50 0.37
30 1.56 1.06 0.72 0.50 0.37

16QAM

0 0.56 0.41 0.33 0.25 0.17
6 1.01 0.73 0.50 0.35 0.22
12 1.01 0.73 0.50 0.35 0.22
18 1.43 0.93 0.62 0.39 0.25
24 1.58 1.03 0.68 0.43 0.27
30 1.68 1.07 0.69 0.44 0.27

64QAM

0 0.09 0.08 0.07 0.06 0.05
6 0.36 0.29 0.22 0.18 0.13
12 0.36 0.29 0.22 0.18 0.13
18 0.74 0.52 0.39 0.29 0.19
24 1.14 0.75 0.51 0.34 0.21
30 1.32 0.86 0.57 0.36 0.23

136

7.3 Improved ASIP: increased clock frequency

7.3.2 Comparison with the State of the Art

To facilitate comparisons, Table 7.7 reports the main features of a number of soft

MIMO detector implementations: three different ASIC implementations proposed

in [113], [21] and [15] (columns 2 to 4), and two ASIPs of K-Best LSD in [114]

and [112] (columns 5 and 6). Column 7 reports the achieved results for the LSD

ASIP implementation.

The soft-output sphere decoder architecture, presented in [113], avoids the com-

plexity related to PED calculation and sorting, employing a close-to Schnorr-

Euchner order, with a simple look-up table. Work in [21] proposes a VLSI ar-

chitecture for Soft-In-Soft-Out Single-Tree-Search SD, following the one-node-

per-cycle (ONPC) paradigm, while a modified K-Best SE decoding algorithm is

proposed in [15] to improve the performance of the soft-output KSE with low com-

plexity and low-power features incorporated the VLSI architecture. The ASIP

implementation of K-best list sphere detector in [114] makes use of the trans-

port triggered architecture (TTA): it is based on using memory and heap data

structure for symbol vector sorting. This architecture has been improved and

presented in [112], showing low hardware and design complexities, together with

various general-purpose properties.

Table 7.7 gives for each implementation the corresponding technology, maximum

clock frequency (fCK), area complexity (Area), expressed in equivalent gate count

(EG), and average throughput (Av. Throughput). For our work and [21] the

throughput depends on SNRs, as specified in the comments to the table, while

all others presented a fixed one. To evaluate the efficiency of the compared solu-

tions, row 11 gives the Throughput to Area Ratio (TAR).

In order to have a fair comparison, last two rows report respectively throughput

and TAR for the processing of the considered system configuration on our ASIP.

137

7
.3

Im
p
ro
v
e
d

A
S
IP

:
in
c
re
a
se
d

c
lo
ck

fre
q
u
e
n
c
y

Table 7.7: Comparisons with the State of the Art

Reference [113] [21] [15] [114] [112] This work

Imp. ASIC ASIP
Type of detec. SO SD SISO SO MKSE K-LSD SO K-Best LSD SE LSD
MIMO system 2× 2 4× 4 2× 2 2× 2-3× 3-4× 4
Modulation B,Q,16,64-QAM 16 QAM 64-QAM Q,16,64-QAM
BER Perf. Close to ML
Tech [µm] 0.045 0.09 0.13 0.13 0.13 0.13
fCK [MHz] 312 250 200 100 280 228
Area [EG] 262K 96K 97K 170K 25K 164K

Av. Th.[Mbps] 374 10-90 106.6 (6) 5.3(6) 7.6 (6)

@12-17dB L=7,N=5(1) L=16,N=1(1)

TAR 1.43 0.1-0.9 1.1 0.03 0.3
[Mbps/KEG] @12-17dB

Our Th.(4) 0.93-5.16(8) 0.25-1.58 0.93-5.16(7) 12.6-32.3(2)(7) 3.75-4.86(3)(7)

Our TAR(4) 0.01-0.04 0.001-0.01 0.01-0.03 0.02-0.06(5) 0.03-0.04

(1)N=number of symbol vectors, detected in parallel.
(2)Worst case (0dB) and best case(30dB). Also a reduction in the number of clock cycles per node from 6 to about
2.2 has been considered since pipelining-interleaving (see subsection 7.3.3) has been applied.
(3)Worst case (0dB) and best case(26dB).
(4)Throughput and TAR evaluated for SE LSD on our ASIP are reported in the last two rows of each column. The
system configurations change from column to column according to the references.
(5) This TAR value has been computed considering an estimated area of 556KGE = ARF ∗5+Apipe+AreaMemoryF ile
(6) This work doesn not take into account the code rate in the computation of the throughput.
(7) R has been eliminated in eq. (7.2) for the computation of this value.
(8) Worst case (64QAM, L = 64 and 0dB) and best case (64QAM, L = 4 and 26dB). See Table 7.4.

138

7.3 Improved ASIP: increased clock frequency

Looking at Table 7.7, it is clear that having a precise comparison is not easy

at all, due to differences especially in the algorithm and in the type of the im-

plementation. In particular, the efficiency of ASIC is at least ten times higher

than ASIP. [113]-[21]-[15] are better than our work by a factor 100, but, apart

from [113] which supports more than one modulation, they are not flexible in

terms of number of antennas and constellations. Our work is, instead, compa-

rable with that in [114]: for low SNR (0dB) 7 of our ASIPs would be necessary

to reach the same efficiency, while for high SNR (30dB) it is better by a fac-

tor 2. It is worth noticing that results in [114] are for 5 processors working in

parallel. Therefore, as clarified by notes (2) and (5) of the table, in the compu-

tation of our throughput, a reduction in the number of clock cycles per node

has been considered, since the pipeline can be exploited in a better way, filling

empty cycles. A reduction from 6 to 2.2 has been estimated, and clearly the

throughput has been multiplied by a factor 5. The increase in terms of area has

been considered, using ARF ∗ 5 + Apipe + AreaMemoryF ile. Finally, solution [112]

is better than our ASIP by a factor between 7.5 and 10. They state to visit a

fixed number of 328 nodes to detect one symbol vector, while our ASIP is able

to visit an average number of nodes per SNR value that is smaller (less than

the half (122@0dB-99@30dB)) for the same case (2 × 2, 64QAM and L = 16).

Therefore, this factor is not due to the number of visited nodes, but to the fact

that [112] is able to almost meet the one-node-per-cycle constraint (0.74 node

per cycle), while our processor needs 6 clocks per node. Moreover, it is impor-

tant to highlight that the implementation in [112] is targeted for 2 × 2 MIMO

system, while our ASIP, when also works for a 2× 2, is targeted for a 4× 4, and

this produce certainly an effect on complexity. If our ASIP would be designed

to support only a 2 × 2 MIMO, the area should be reduced. In particular, it is

possible to estimate a reduction of the area of register files by a factor 2. Also the

Areapipe should have a reduction, in the ψ computation unit, but it is not easy

to estimate it. Therefore, to have a comparison with [112] and also [113], an area

value of 115KGE = Areapipe + 0.5AreaRF + AreaMemoryF ile has been adopted

(see TAR values in column 2 and 6). It is worth noticing that, [112], together

with [15] and [114], do not take into account the code rate in the computation of

the throughput, so, also for our reported throughput, R has been eliminated in

139

7.3 Improved ASIP: increased clock frequency

eq. (7.2).

Anyway, it is evident that the current design has to be furthermore improved

in order to be more competitive with other ASIP implementations of LSD. Next

subsection explains a good idea to additionally refine the proposed architecture.

7.3.3 Efficient pipeline usage: the pipeline-interleaving

Another important observation, which can be derived looking at Listing 7.1 (from

line 14 to the end), is that the pipeline is not exploited at 100 %, but only around

the 40%. A good method to have a more efficient usage of the pipeline is the well-

known “pipeline interleaving”[2]. This solution consists in detecting two or more

symbol vectors in parallel, and not allocating as many processors as necessary,

but only with one ASIP, exploiting at maximum the pipeline.

The LISA description of the ASIP has been modified in order to support 5 symbol

vectors to be detected. Each register file has been allocated 5 times, one for each

vector, except for the R RF , since a block-fading scenario has been assumed.

Also the interfaces between register files and the pipeline have been modified, so

that each instruction can select the right resource at each time. In Table 7.8, the

results of synthesis are summarized. Table 7.9 reports the area results of each

block of the architecture.

Table 7.8: Synthesis results of improved LSD ASIP with “pipeline interleaving”

Technology ST 130nm
Frequency 210 MHz
Area 2809788 um2 (520 KGE)

The Listing 7.2 reports the assembly code for the ASIP with “pipeline inter-

leaving”. The INIT instruction initializes some configuration parameters: this

sample code is for a 4 × 4 MIMO, 64QAM and |L| = 4. From line 4 to line 26,

five loops are dedicated to load the first 5M locations of data memory, contain-

ing ZF solutions for each vector, into the corresponding register file (PSI RF 1,

PSI RF 2, PSI RF 3, PSI RF 4 and PSI RF 5). The remaining 2M × 2M

locations, containing channel coefficients, are, then, loaded into R RF (loop at

140

7.3 Improved ASIP: increased clock frequency

Table 7.9: Detailed Area results of LSD ASIP with “pipeline interleaving”

AreaMemoryF ile 231 um2 (0%)
AreaRF 2134751 um2 (76 %)
Areapipe 674806 um2 (24 %)
AreaISTRF 494 um2 (0%)
AreaISTRF OPF 1646 um2 (0%)
AreaOPF 25888 um2 (0.9%)
AreaOPF EX 6542 um2 (0.2%)
AreaEX 48943 um2 (1.7%)
AreaEX MEM 22593 um2 (0.8%)
AreaMEM 556062 um2 (19.8%)
AreaMEM WB 4875 um2 (0.2 %)
AreaWB 5729 um2 (0.2 %)

line 28). After that the LSD can first start to process the highest level of each

tree. The search continues jumping back to “check up down”, until the detection

of each symbol vector is not complete, and to “finish” otherwise.

Now the ASIP is able to visit 2.6 node per cycle (5 nodes per 13 cycles). More-

over, the pipeline is exploited at about 85 %. A neglibile reduction of the clock

frequency of about 0.7 % with respect to the ASIP without “pipeline-interleaving”

has to be noticed. This is mainly due to the additional complexity as interface

towards the register files. It can be estimated an increase in terms of throughput

by a factor 5 6
2.6

0.92 = 10.6, and in terms of occupied area by a factor 3.2. There-

fore, the TAR is improved by a factor 3.3. Table 7.10 reports the comparison of

this new results with the state of the art. The advantage of throughput is quite

evident. In fact, our ASIP is better than other ASIPs: by a factor from 2 and 5,

with respect to [114], and between 5 and 7, with respect to [112]. Moreover, the

gap with ASIC implementations is not any more so large. The work in [21], which

is the most similar to our solution, since it adopts a depth–first Schnrorr Euch-

ner policy, is now better than ours by a factor between 4 and 5, against 40 and

56 of the previous version. We claim that the “pipeline interleaving” is a good

approach to be competitive also with ASIC implementations. For example, with

10 symbol vector detected in parallel, it is possible have comparable results. The

main drawback is the increase of area, which makes the ASIP not yet competi-

tive with ASICs in terms of TAR. For what concerns ASIPs solutions, our work is

141

7.3 Improved ASIP: increased clock frequency

Listing 7.2: LSD assembly code with “pipeline interleaving”

1 ;Initialization choosing respectively pamsize numbant and listsize

2 INIT $8 $4 $3

3 ; Load the first M locations of Channel Data Memory into PSI RF 1

4 load_zf1 : ADDI $0 , $0 , 1

5 LW $0,0,$0 ,0,$1

6 BNE $0 , $1 , load_zf1

7 ; Load the successive M locations of Channel Data Memory into PSI RF 2

8 ADDI $0, $0 , -8

9 load_zf2 : ADDI $3 , $3 , 1

10 LW $3,8,$3 ,0,$2

11 BNE $3 , $1 , load_zf2

12 ; Load the successive M locations of Channel Data Memory into PSI RF 3

13 ADDI $3, $3 , -8

14 load_zf3 : ADDI $0 , $0 , 1

15 LW $0,16,$0 ,0,$3

16 BNE $0 , $1 , load_zf3

17 ; Load the successive M locations of Channel Data Memory into PSI RF 4

18 ADDI $0, $0 , -8

19 load_zf4 : ADDI $3 , $3 , 1

20 LW $3,24,$3 ,0,$4

21 BNE $3 , $1 , load_zf4

22 ; Load the successive M locations of Channel Data Memory into PSI RF 5

23 ADDI $3, $3 , -8

24 load_zf5 : ADDI $0 , $0 , 1

25 LW $0,32,$0 ,0,$5

26 BNE $0 , $1 , load_zf5

27 ; Load the successive 2M *2M locations of Channel Data Memory into R RF

28 load_R : ADDI $0 , $0 , 1

29 ADDI $3 , $3 , 1

30 LW $3,32,$0 ,1,$1

31 BNE $3,$2, load_R

142

7.3 Improved ASIP: increased clock frequency

32 highest_level: BABAI $4,$5, $1

33 BABAI $6,$7, $2

34 BABAI $9,$10, $3

35 BABAI $11,$12, $4

36 BABAI $13,$14, $5

37 check_up_down: CHECK $1

38 CHECK $2

39 CHECK $3

40 CHECK $4

41 CHECK $5

42 BABAI $4,$5, $1

43 BABAI $6,$7, $2

44 BABAI $9,$10, $3

45 BABAI $11,$12, $4

46 BABAI $13,$14, $5

47 J check_up_down, finish

48 NOP

49 NOP

50 NOP

51 finish: NOP

better of about 67 % with respect to [114], showing that the estimation reported

in Table 7.7 was quite good. The work in [112] is now better only by a factor

between 1.87 and 2.5, with an improvement of 75 %, with respect to the ASIP

without “pipeline interleaving”. As in Table 7.7, to have a comparison with [112]

and also [113], an area value of 323KGE = Areapipe+0.5AreaRF+AreaMemoryF ile

has been adopted (see TAR values in column 2 and 6 of Table 7.10).

We can then state that the “pipeline-interleaving” provides a significant increase

of throughput, since now our ASIP has the highest throughput among the other

two ASIPs in [114] and [112]. The price for the flexibility is, in this case, repre-

sented by the area, which is already too much high. This aspect can be certainly

improved: probably a better way to manage a such high memory requirement is

to have external memories and use a stack to access to them. Moreover, it has

to be noticing that 2.6 node per cycle is achieved when all vectors are processed

in parallel, i.e. the best case. The detection of one vector can finish before than

another one, this means a reduction of the throughput, which can be in part

limited with an improved assembly program.

143

7
.3

Im
p
ro
v
e
d

A
S
IP

:
in
c
re
a
se
d

c
lo
ck

fre
q
u
e
n
c
y

Table 7.10: Comparisons of the ASIP with “pipeline interleaving ” with the State of the Art

Reference [113] [21] [15] [114] [112] This work

Imp. ASIC ASIP
Type of detec. SO SD SISO SO MKSE K-LSD SO K-Best LSD SE LSD
MIMO system 2× 2 4× 4 2× 2 2× 2-3× 3-4× 4
Modulation B,Q,16,64-QAM 16 QAM 64-QAM Q,16,64-QAM
BER Perf. Close to ML
Tech [µm] 0.045 0.09 0.13 0.13 0.13 0.13
fCK [MHz] 312 250 200 100 280 210
Area [EG] 262K 96K 97K 170K 25K 520K

Av. Th.[Mbps] 374 10-90 106.6 (6) 5.3(6) 7.6 (6)

@12-17dB L=7,N=5(1) L=16,N=1(1)

TAR 1.43 0.1-0.9 1.1 0.03 0.3
[Mbps/KEG] @12-17dB

Our Th.(4) 9.8-54.6(8) 2.6-16.7 9.8-54.6(7) 9.8-25.1(2)(7) 39.7-51.5(3)(7)

Our TAR(4) 0.03-0.17 0.005-0.03 0.02-0.10 0.02-0.05(5) 0.12-0.16

(1)N=number of symbol vectors, detected in parallel.
(2)Worst case (0dB) and best case(30dB). The actual reduction in the number of cycles per node is 6 to 2.6.
(3)Worst case (0dB) and best case(26dB).
(4)Throughput and TAR evaluated for SE LSD on our ASIP are reported in the last two rows of each column. The
system configurations change from column to column according to the references.
(5) This TAR value has been computed considering an actual area of 520 KGE.
(6) This work doesn not take into account the code rate in the computation of the throughput.
(7) R has been eliminated in eq. (7.2) for the computation of this value.
(8) Worst case (64QAM, L = 64 and 0dB) and best case (64QAM, L = 4 and 26dB).

144

7.4 Discussion of the results

7.4 Discussion of the results

A first suboptimal ASIP implementation of the list generation unit of LSD has

been presented. A description of architectural choices and flexibility parameters

is detailed. Results of synthesis are also provided. Then, an improved version

of the ASIP in terms of clock frequency is given and compared with other state

of the art implementations. At the best of our knowledge, this is the first ASIP

of LSD, supporting multiple antennas, modulation orders and list sizes. But

this flexibility is paid in terms of lower throughput and lower throughput to

area ratio, than other implementations. In order to enable high throughput and

to provide a more efficient usage of the pipeline, the “pipeline-interleaving” of

5 symbol vectors has been developed. Targeting 130 nm CMOS standard cell

technology, synthesis results show that the proposed solution achieves the best

throughput among other ASIPs of LSD. It is even better than other methods, with

a comparable flexibility, such as the reconfigurable MIMO detector implemented

using a Graphic Processor Unit (GPU) in [115]. Moreover, throughput results

are of the same order of magnitude of most ASIC solutions, able to satisfy many

standard requirements. This demonstrates the feasibility of the ASIP approach,

which has not been sufficiently exploited up to now. Certainly, further aspects

could be investigated and improved, in particular some efforts could already be

spent to manage the memory requirement in a more efficient way, with respect

to a register-based implementation. This probably enables a reduction of area,

improving the TAR.

145

8

Conclusions

This research thesis deals with the theme of MIMO detection, both hard and soft.

It focuses on algorithmic, architectural and implementation aspects of the Sphere

Decoder Algorithm and one of its soft versions, the List Sphere Decoder. From a

detailed analysis on the state of the art, software models and architectural issues,

some critical aspects become relevant: the throughput and the flexibility. This

PhD thesis has the purpose to find solutions to this two problems.

In the hard detection scenario, a detailed study on state of the art MIMO de-

tection algorithms has been conducted. The description of the depth–first Schnorr

Euchner Sphere Decoder Algorithm, which represents the starting point of this

research thesis, has been presented. Also, other versions of SDA, exploited in

literature, are introduced. Then a modified Sphere Decoder Algorithm has been

proposed. While most of state of the art solutions achieve performance that is

close to ML, this research work faces the problem of a high throughput full ML

implementation. The look-ahead, pipelining and retiming techniques, combined

with a modified search strategy (Test & Restart), produce a significant increase

of throughput, with no loss of error rate performance. The VHDL design of the

presented solution, called LASDA (Look–ahead SDA), has been targeted for 4×4
MIMO system and 16QAM modulation. Synthesis results on a 130 nm technol-

ogy show a throughput speedup of 92% at SNR = 20 dB , with respect to a

serial unpipelined SDA solution, and a limited additional complexity of 24% in

terms of occupied area.

146

It is important to underline that this high throughput ML solution can easily be

applied for most soft-output detection schemes. The main advantage that can be

obtained is an increase of about 50 % of the initial clock frequency.

In the soft detection scenario, the idea of a multi-mode flexible MIMO detec-

tor has been presented. This idea is supported by a detailed analysis of existing

hard and soft MIMO detector implementations. The key word in this context

is the flexibility, which can be seen in three different meanings: performance-

complexity trade-offs, the capability of supporting multiple antennas and modu-

lation orders, and the adaptability to change the detection algorithm according

to channel condition and targeted performance. In order to achieve the maximum

degree of flexibility, among the soft versions of SDA, the List Sphere Decoder has

been chosen. In fact, it is the easiest extension of a traditional depth-first hard

SDA, and offers some parameters, such as the size of the list and the LLR clip-

ping, which can be easily tuned, to obtain the desired performance-complexity

trade-off. The idea is a multi-algorithm detector, able to combine performance of

LSD and complexity of a linear detector, such as Minimum-Mean-Squared-Error-

Interference-Canceller (MMSE-IC).

To exploit the previous idea, a detailed convergence and flexibility analysis on

LSD has been conducted. In particular, the iterative behavior of LSD detector

has been analyzed using EXIT charts, in order to deeply understand the problem

of divergence. Moreover, the LSD has been compared with MMSE-IC, in terms

of performance and complexity, both for block and fast-fading channel models.

MMSE-IC has similar performance to LSD for small constellations and system

configurations, in the fast-fading scenario. On the other hand, LSD has better

BER performance than MMSE-IC when the estimation of the channel conditions

remain constant over a frame. Although the complexity of LSD is at least ten

times higher than that of MMSE-IC, LSD is able to outperform MMSE-IC in

two iterations. There are solutions in literature, showing how it is possible to

reduce the complexity of the LSD. Therefore, the performed analysis on possible

complexity-performance trade-offs can be furthermore exploited to extend flexi-

147

bility and to support again the idea of a multi-mode detector.

The implementation of LSD is the first step towards the achievement of the

presented idea and the ASIP approach has been adopted, to obtain the required

trade-off between flexibility and performance. After a first suboptimal ASIP ar-

chitecture of the list generation unit of LSD, an improved version in terms of

clock frequency has been presented. The ASIP flexibility allows its reuse for a

2 × 2, 3 × 3 and 4 × 4 MIMO systems, with QPSK, 16QAM, and 64QAM, and

list size from 1 to 64. At the best of our knowledge, this is the first ASIP of LSD,

supporting multiple antennas, modulation orders and list sizes. When targeting

a 130 nm technology, the proposed architecture enables lower throughput and

lower throughput to area ratio than other dedicated (ASIC based) state of the

art implementations. The “pipeline interleaving” of 5 symbol vectors has been

developed, obtaining an increase of throughput by a factor 10.6, by far exceeding

other ASIPs, exploited in literature. Moreover, this results are also of the same

order of magnitude of those of ASICs. This shows the effectiveness of the ASIP

approach, combined with the “pipeline interleaving” method. It even allows to

exceed ASICs performance, with many more symbols vector in parallel, but pay-

ing with an increased area. This is the price for the flexibility.

From short term perspectives, further aspects of the presented ASIP archi-

tecture could be investigated and improved. In particular some additional efforts

should be spent to manage the memory requirement in a more efficient way, with

respect to a register-based implementation. For example, the memory-based ap-

proach could be employed in combination with a data structure, like a FIFO. This

methods probably allows a reduction of area, making the solution more compet-

itive with the state of the art.

From the mean and long term work perspective, the LLR generation unit has

to be designed, in order to complete the LSD detector. After that, the possibility

that LSD and MMSE-IC share some resource has to be investigated, in order to

modify the architecture, supporting both algorithms. This is, probably, another

possible solution to increase the throughput.

148

References

[1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichter, and

H. Bolcskei, “VLSI implementation of MIMO detection using the sphere

decoding algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, pp.

1566–1577, Jul. 2005. vi, 2, 14, 16, 17, 21, 49, 50, 51

[2] A. Burg, M. Wenk, and W. Fichtner, “VLSI implementation of pipelined

sphere decoding with early termination,” in Proc. of European Signal Proc.

Conf. (EUSIPCO 2006), Florence, Italy, Sep. 2006. vi, 49, 50, 51, 52, 140

[3] B. Cerato, G. Masera, and E. Viterbo, “Decoding the golden code: a VLSI

design,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 17, no. 1, pp. 156–160, Jan. 2009. vi, 2, 10, 16, 21, 43, 45, 46, 49,

50, 51, 52, 103

[4] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding: Algo-

rithms and VLSI implemention,” IEEE Journal on Selected Areas in Com-

munications, vol. 26, no. 2, pp. 290–300, Feb. 2008. vi, ix, 3, 56, 57, 77, 78,

79, 82, 84, 85, 86

[5] M. Wenk, A. Burg, M. Zellweger, C. Studer, and W. Fichtner, “VLSI im-

plementation of the list sphere algorithm,” in the 24th Norchip Conference,

Nov. 2006, pp. 107–110. vi, 79, 80, 91

[6] A. R. Jafri, A. Baghdadi, and M. Jézéquel, “A universal mmse-ic linear

equalizer for multi wireless standards.” vi, vii, ix, 76, 77, 78, 79, 80, 81, 82,

83, 84, 85, 86

[7] P. Bhagawat, R. Dash, and C. Gwan, “Dynamically reconfigurable soft

output mimo detector,” in Computer Design, 2008. ICCD 2008. IEEE In-

149

REFERENCES

ternational Conference on, Oct. 2008, pp. 68–73. vii, ix, 77, 78, 79, 80, 81,

82

[8] K. Amis, G. Sicot, and D. Leroux, “Reduced complexity near-optimal it-

erative receiver for Wimax full-rate space-time code,” in Turbo Codes and

Related Topics, 2008 5th International Symposium on, Sept. 2008, pp. 102–

106. vii, 81, 82

[9] O. Paker, S. Eckert, and A. Bury, “A low cost multi-standard near-optimal

soft-output sphere decoder: Algorithm and architecture,” in Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE’10). vii, ix,

77, 78, 82, 83

[10] J. Liu and J. Li, “Turbo processing for an OFDM-based MIMO system,”

IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 1988–

1993, Sept. 2005. vii, 4, 90, 91, 96, 97, 98

[11] T. Noll, EECS, RWTH Aachen. [Online]. Available:

http://www.eecs.rwth-aachen.de vii, viii, 105, 110

[12] T. Cupaiuolo, M. Siti, and A. Tomasoni, “Low-complexity and high

throughput VLSI architecture of soft-output ML MIMO detector,” in De-

sign, Automation & Test in Europe Conference & Exhibition (DATE’10).

ix, 3, 77, 78, 79, 81, 82

[13] M. T. Gamba and G. Masera, “Look–ahead Sphere Decoding: Algorithm

and VLSI Architecture,” IET communications, accepted on 6th of Decem-

ber 2010. ix, 76, 77, 78, 79, 82, 84

[14] H. Bolcskei, D. Gesbert, C. B. Papadias, and A. J. Van Der Veen (Editors),

Space-time wireless systems : from array processing to MIMO communica-

tions. Cambridge University Press, 2006. 2, 16, 111

[15] Z. Guo and P. Nilsson, “Algorithm and implementation of the k-best sphere

decoding for MIMO detection,” IEEE Journal on Selected Areas in Com-

munications, vol. 24, no. 3, pp. 491 – 503, 2006. 2, 49, 50, 120, 137, 138,

139, 144

[16] Jin Jie, Chi-ying Tsui, and Wai-ho Mow, “A threshold-based algorithm

and VLSI architecture of a k-best lattice decoder for MIMO systems,”

150

http://www.eecs.rwth-aachen.de

REFERENCES

in IEEE International Symposium on Circuits and Systems, 2005. ISCAS

2005, vol. 4, May 2005, pp. 3359 – 3362. 2, 49, 50

[17] Z. Guo and P. Nilsson, “VLSI implementation issues of lattice decoders for

MIMO systems,” in Proceedings of the 2004 International Symposium on

Circuits and Systems, 2004. ISCAS ’04, vol. 4, May 2004, pp. 477–480. 2,

21

[18] B. M. Hochwald and S. T. Brink, “Achieving near-capacity on a multiple-

antenna channel,” IEEE Transactions on Communications, vol. 51, no. 3,

pp. 389–399, March 2003. 3, 52, 57

[19] C. Studer, M. Wenk, A. Burg, and H. Bolcskei, “Soft-output MIMO de-

tection algorithms: Performance and implemention aspects,” in Proc. 40h

Asilomar Conf. on Signals, Systems, and Computers, Oct. 2006, pp. 2071–

2076. 3, 57

[20] P. Marsch, E. Zimmermann, and G. Fettweis, “Smart candidate adding: A

new low-complexity approach towards near-capacity MIMO detection,” in

Proc. 13h European Signal Processing Conf. (EUSIPCO), Sep. 2005. 3

[21] E. M. Witte, F. Borlenghi, G. Ascheid, R. Leupers, and H. Meyr, “A

scalable VLSI architecture for Soft-Input Soft-Output Single Tree-Search

Sphere Decoding,” Circuits and Systems II: Express Briefs, IEEE Trans-

actions on, vol. 57, no. 9, pp. 706 –710, Sep. 2010. 3, 133, 137, 138, 139,

141, 144

[22] Y. Sun and J. R. Cavallaro, “High throughput VLSI architecture for soft-

output MIMO detection based on a greedy graph algorithm,” in Proceedings

of the ACM Great Lakes Symposium on VLSI, GLSVLSI’09, New York,

USA, Mar. 2009, pp. 445 – 450. 3

[23] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-

antenna channel,” IEEE Transactions on Communications, vol. 51, no. 3,

pp. 389–399, March 2003. 4, 88, 89, 91, 94

[24] Y. Dai, S. Sun, Z. Lei, and Y. Li, “A list sphere decoder based turbo receiver

for groupwise space time trellis coded (GSTTC) systems,” in Proceedings of

151

REFERENCES

the 59th IEEE Vehicular Technology Conference, VTC 2004-Spring, vol. 2,

May 2004, pp. 804–808 Vol.2. 4, 90, 91, 96

[25] S. ten Brink, “Convergence behavior of iteratively decoded parallel con-

catenated codes,” IEEE Transactions on Communications, vol. 49, no. 10,

pp. 1727–1737, Oct 2001. 4, 91, 94

[26] X. Wang, K. Niu, Z. He, W. Wu, and X. Zhang, “List sphere decoding

combined with linear detection-based iterative soft interference cancellation

via exit chart,” Proceedings of the 17th IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications, pp. 1–5, 2006. 4, 102

[27] D. Gesbert, M. Shafi, Da-shan Shiu, P. Smith, and A. Naguib, “From theory

to practice: An overview of MIMO space-time coded wireless systems,”

IEEE Journal on Selected Areas in Communications, vol. 21, pp. 281–302,

Apr. 2003. 8

[28] Multiple-input multiple-output in UTRA (Release 7), 3GPP Std. TR25.876,

2006. 8

[29] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading

channels,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp.

1639–1642, 1999. 12

[30] C. Schnorr and M. Euchner, “Lattice basis reduction: improved practical

algorithms and solving subset sum problems,” Math. Computat., vol. 66,

no. 2, pp. 181–191, 2004. 12

[31] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “MMSE extension

of V-BLAST based on sorted QR decomposition,” vol. 1, oct. 2003, pp. 508

– 512 Vol.1. 14

[32] B. Mennenga and G. Fettweis, “Search sequence determination for

tree search based detection algorithms,” in IEEE Sarnoff Symposium,

SARNOFF ’09, Mar. 2009, pp. 1–6. 16, 52

[33] S. Lee, J. Lee, S. Seo, and S. C. Park, “VLSI implementation of area-

efficient list sphere decoder,” in International Symposium on Intelligent

Signal Processing and Communications, ISPACS 2006, Dec. 2006, pp. 610

– 613. 17

152

REFERENCES

[34] M. Myllyla, M. Juntti, and J. Cavallaro, “Implementation aspects of list

sphere detector algorithms,” in IEEE Global Telecommunications Confer-

ence, GLOBECOM ’07, Nov. 2007, pp. 3915 – 3920. 17

[35] R. S. C. K. Wong, C. Tsui and W. Mow, “A VLSI architecture of a Kbest

lattice decoding algorithm for MIMO channels,” vol. 1, 2002, pp. 273 – 276.

18

[36] U. Fincke and M. Pohst, “Improved methods for calculating vectors of

short lenght in a lattice, including a complexity analysis,” Math. Computat.,

vol. 40, no. 170, pp. 463–471, 1985. 18

[37] R. Gowaikar and B. Hassibi, “Efficient near-ml decoding via statistical

pruning,” in Information Theory, 2003. Proceedings. IEEE International

Symposium on, 2003. 19

[38] L. Barbero and J. Thompson, “A fixed-complexity MIMO detector based

on the complex sphere decoder,” in Signal Processing Advances in Wireless

Communications, 2006. SPAWC ’06. IEEE 7th Workshop on, 2006, pp. 1

–5. 19

[39] C. Hess, M. Wenk, A. Burg, P. Luethi, C. Studer, N. Felber, and W. Fichter,

“Reduced complexity MIMO detector with close-to ML error rate per-

formance,” in Proceedings of the ACM Great Lakes Symposium on VLSI,

GLSVLSI’07, Stresa-Lago Maggiore, Italy, Mar. 2007. 19, 21

[40] A. Burg, M. Borgmanr, M. Wenk, C. Studer, and H. Bolcskei, “Advanced

receiver algorithms for mimo wireless communications,” in Design, Automa-

tion and Test in Europe, 2006. DATE ’06. Proceedings, vol. 1, 2006, p. 6

pp. 20

[41] L. Hsin-Lei, R. Chang, and C. Hung-Lien, “A high-speed SDM-MIMO de-

coder using efficient candidate searching for wireless communication,” IEEE

Transactions on Circuits and Systems—Part II: Analog and Digital Signal

Processing, vol. 55, no. 3, pp. 289–293, 2008. 21

[42] L. Barbero and J. Thompson, “Performance analysis of a fixed-complexity

sphere decoder in high-dimensional MIMO systems,” in Proceedings of the

153

REFERENCES

IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP 2006, May 2006. 21

[43] M. Siti and M. Fitz, “On layer ordering techniques for near-optimal MIMO

detectors,” in Proceedings of the IEEE Wireless Communications and Net-

working Conference, WCNC 2007, Mar. 2007, pp. 1199–1204. 21

[44] Jin Lee, Hyung Soon Kim, and Sin-Chong Park, “Parallel architecture

for sphere decoder with runtime constraint,” in Proceedings of the IEEE

Consumer Communications and Networking Conference, CCNC 2008, Jan.

2008, pp. 181–184. 21

[45] L. Barbero and J. Thompson, “Fixing the complexity of the sphere decoder

for MIMO detection,” IEEE Transactions on Wireless Communications,

vol. 7, no. 6, pp. 2131–2142, June 2008. 21

[46] S. Mondal, A. Eltawil, C. A. Shen, and K. N. Salama, “Design and imple-

mentation of a Sort-Free K-Best Sphere Decoder,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, May 2010, to be published.

22, 49, 50

[47] Tae Ho Im, Insoo Park, Jinmin Kim, Joohyun Yi, Jaekwon Kim, Sungwook

Yu, and Yong Soo Cho, “A new signal detection method for spatially multi-

plexed MIMO systems and its VLSI implementation,” IEEE Transactions

on Circuits and Systems—Part II: Analog and Digital Signal Processing,

vol. 56, no. 5, pp. 399 – 403, 2009. 22, 49, 50

[48] K. Parhi, VLSI Digital Signal Processing Systems. USA: John Wiley and

Sons, Inc., 1959. 22, 29, 32

[49] B. Cerato, “Design of digital architectures for telecommunication systems

with special emphasys in integrated circuits for MIMO-OFDM wireless

channels,” Ph.D. dissertation, Politecnico di Torino, Torino, 2007. 34

[50] B. Cerato, G. Masera, and E. Viterbo, “Enabling VLSI processing blocks

for MIMO-OFDM communications,” VLSI Design Journal, vol. 8, no. 2,

pp. 1–10, Jan. 2008. 48

154

REFERENCES

[51] S. Le Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral

efficiency modulation,” in Communications, 1994. ICC ’94, SUPERCOM-

M/ICC ’94, Conference Record, ’Serving Humanity Through Communica-

tions.’ IEEE International Conference on, May 1994, pp. 645 –649 vol.2.

55

[52] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in Communications,

1993. ICC 93. Geneva. Technical Program, Conference Record, IEEE In-

ternational Conference on, vol. 2, May 1993, pp. 1064 –1070 vol.2. 55

[53] C. Berrou and A. Glavieux, “Near optimum error correcting coding and

decoding: turbo-codes,” Communications, IEEE Transactions on, vol. 44,

no. 10, pp. 1261 –1271, Oct. 1996. 55, 59

[54] C. Berrou, R. Pyndiah, P. Adde, C. Douillard, and R. Le Bidan, “An

overview of turbo codes and their applications,” in Wireless Technology,

2005. The European Conference on, 2005, pp. 1 –9. 55

[55] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for space-

time codes,” Communications Letters, IEEE, vol. 4, no. 5, pp. 161 –163,

may 2000. 55, 88

[56] D. Sorrenti, “Architetture digitali per ricevitori multi-antenna,” M. Eng.

thesis, Politecnico di Torino, Torino, Italia, May 2009. 57

[57] L. Ping, L. Liu, K. Wu, andW. Leung, “Interleave division multiple-access,”

IEEE Transactions on Wireless Communications, vol. 5, no. 4, pp. 938–947,

April 2006. 58

[58] L. Liu, W. Leung, and L. Ping, “Simple iterative chip-by-chip multiuser

detection for CDMA systems,” in Vehicular Technology Conference, 2003.

VTC 2003-Spring. The 57th IEEE Semiannual, vol. 3, 2003, pp. 2157–2161.

61

[59] B. N. Datta, Numerical Linear Algebra. California: Brooks/Cole Publish-

ing Company, 2004. 61

155

REFERENCES

[60] W. Keing, “Semi-random forward error correction codes and space-time

codes,” Ph.D. dissertation, City University of Hong Kong, Hong Kong,

2005. [Online]. Available: http://hdl.handle.net/2031/4738 65

[61] P. Salmela, A. Happonen, T. Jarvinen, A. Burian, and J. Takala, “DSP

implementation of Cholesky decomposition,” in Mobile Future, 2006 and

the Symposium on Trends in Communications. SympoTIC ’06. Joint IST

Workshop on, 2006, pp. 6–9. 69

[62] F. Echman and V. Owall, “A scalable pipelined complex valued matrix

inversion architecture,” in Circuits and Systems, 2005. ISCAS 2005. IEEE

International Symposium on, vol. 5, May 2005, pp. 4489–4492. 84

[63] M. Myllyla, J.-H. Hintikka, J. Cavallaro, M. Juntti, M. Limingoja, and

A. Byman, “Reduced complexity near-optimal iterative receiver for Wimax

full-rate space-time code,” in Signals, Systems and Computers, 2005. Con-

ference Record of the Thirty-Ninth Asilomar Conference on, Nov. 2005, pp.

75–81. 84

[64] M. Karkooti, J. Cavallaro, and C. Dick, “FPGA implementation of matrix

inversion using QRD-RLS algorithm,” in Signals, Systems and Computers,

2005. Conference Record of the Thirty-Ninth Asilomar Conference on, Nov.

2005, pp. 1625–1629. 84

[65] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, “VLSI

implementation of a high-speed iterative sorted MMSE QR decomposition,”

in Circuits and Systems, 2007. ISCAS 2007. IEEE International Sympo-

sium on, May 2007, pp. 1421–1424. 84

[66] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber, and

W. Fichtner, “Gram-Schmidt-based QR decomposition for MIMO detec-

tion: VLSI implementation and comparison,” in Circuits and Systems,

2008. APCCAS 2008. IEEE Asia Pacific Conference on, Dec. 2008, pp.

830–833. 84

[67] L. Kuang-Hao, R. Chang, H. Chien-Lin, C. Feng-Chi, and L. Shih-Chun,

“Implementation of QR decomposition for MIMO-OFDM detection sys-

tems,” in Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE

International Conference on, Sept. 2008, pp. 57–60. 84

156

http://hdl.handle.net/2031/4738

REFERENCES

[68] A. R. Jafri, A. Baghdadi, and M. Jezequel, “ASIP-Based Universal Demap-

per for Multiwireless Standards,” Embedded Systems Letters, IEEE, vol. 1,

no. 1, pp. 9–13, 2009. 85

[69] M. Tuchler, A. Singer, and R. Koetter, “Minimum mean squared error

equalization using a priori information,” Signal Processing, IEEE Transac-

tions on, vol. 50, no. 3, pp. 673 –683, Mar 2002. 89

[70] H. Xiaodong Wang, Poor, “Iterative (turbo) soft interference cancellation

and decoding for coded CDMA,” IEEE Transactions on Communications,

vol. 47, no. 7, pp. 1046 –1061, Jul 1999. 89

[71] Q. Chen, H. Wang, M. Chen, and S. Cheng, “An improved turbo-BLAST

system for quasistatic channel,” vol. 3, Sept. 2004, pp. 1588 – 1591. 89

[72] C. Laot, R. Le Bidan, and D. Leroux, “Low-complexity MMSE turbo

equalization: a possible solution for EDGE,” IEEE Transactions on Wire-

less Communications, vol. 4, no. 3, pp. 965 – 974, May 2005. 90

[73] Y. de Jong and T. Willink, “Iterative tree search detection for MIMO

wireless systems,” in Proceedings of the 56th IEEE Vehicular Technology

Conference, VTC 2002-Fall., vol. 2, 2002, pp. 1041–1045 vol.2. 91

[74] E. Zimmermann, D. Milliner, J. Barry, and G. Fettweis, “Optimal LLR

clipping levels for mixed hard/soft output detection,” in Proceedings of the

IEEE Global Telecommunications Conference, GLOBECOM 2008, 30 2008-

Dec. 4 2008, pp. 1–5. 91, 95

[75] S. ten Brink, “Designing iterative decoding schemes with the extrinsic in-

formation transfer chart,” AËU Int. J. Electron. Commun., vol. 54, no. 6,

pp. 389–398, Dec 2000. 91, 92

[76] T. Cover and J. Thomas, Elements of Information Theory. New York:

Wiley, 1991. 92

[77] J. Hagenauer, “The exit chart - introduction to extrinsic information trans-

fer,” in in Iterative Processing, In Proc. 12th Europ. Signal Proc. Conf

(EUSIPCO, 2004, pp. 1541–1548. 93

157

REFERENCES

[78] C. Laot, R. Le Bidan, and D. Leroux, “Low-complexity MMSE turbo

equalization: a possible solution for EDGE,” IEEE Transactions on Wire-

less Communications, vol. 4, no. 3, pp. 965–974, May 2005. 97

[79] X. Wang and H. Poor, “Iterative (turbo) soft interference cancellation

and decoding for coded CDMA,” IEEE Transactions on Communications,

vol. 47, no. 7, pp. 1046–1061, Jul 1999. 97

[80] A. Jafri, D. Karakolah, A. Baghdadi, and M. Jezequel, “ASIP-based flex-

ible MMSE-IC linear equalizer for MIMO turbo-equalization applica-

tions,” in Proceedings of the Europe Conference Exhibition on Design and

Automation Test, DATE ’09., 20-24 2009, pp. 1620 –1625. 98

[81] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm i. expected

complexity,” Signal Processing, IEEE Transactions on, vol. 53, no. 8, pp.

2806 – 2818, aug. 2005. 102

[82] B. Mennenga, R. Fritzsche, and G. Fettweis, “Iterative soft-in soft-out

sphere detection for MIMO systems,” in Proceedings of the 69th Vehic-

ular Technology Conference, VTC Spring 2009., 26-29 2009, pp. 1 –5. 103

[83] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,

A. Wieferink, and H. Meyr, “A novel methodology for the design of

application-specific instruction-set processors (ASIPs) using a machine de-

scription language,” Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, vol. 20, no. 11, pp. 1338 –1354, Nov. 2001.

104, 107, 108

[84] H. Meyr, “Application specific instruction-set processors (ASIP’s) for wire-

less communications: design, cost, and energy efficiency vs. flexibility,”

in System-on-Chip, 2004. Proceedings. 2004 International Symposium on,

2004, pp. 1 – 2. 104

[85] A. Hoffmann, O. Schliebusch, A. Nohl, G. Braun, O. Wahlen, and H. Meyr,

“A methodology for the design of application specific instruction set pro-

cessors (ASIP) using the machine description language lisa,” in Computer

Aided Design, 2001. ICCAD 2001. IEEE/ACM International Conference

on, 2001. 104, 107

158

REFERENCES

[86] D. Liu, “ASIP (Application Specific Instruction-set Processors) design,” in

ASIC, 2009. ASICON ’09. IEEE 8th International Conference on, 2009,

p. 16. 104

[87] A. Jafri, A. Baghdadi, and M. Jezequel, “Rapid Prototyping of ASIP-based

Flexible MMSE-IC Linear Equalizer,” in Rapid System Prototyping, 2009.

RSP ’09. IEEE/IFIP International Symposium on, 2009, pp. 130 –133. 104

[88] R. Leupers, “From ASIP to MPSoC - Architectures and Design Tools for

Communication and Multimedia systems,” in Computer Engineering Col-

loquium at TU Delft, 2006. 105

[89] CoWare Processor Designer Homepage. [Online]. Available:

http://www.coware.com/products/processordesigner.php 106

[90] Target IP Designer Homepage. [Online]. Available:

http://www.retarget.com/resources.php 106

[91] Tensilica Xtensa 7 Homepage. [Online]. Available:

http://www.tensilica.com/products/x7 processor generator.htm 106

[92] ARC Configurable Cores Homepage. [Online]. Available:

http://www.arc.com/configurablecores/ 106

[93] H. Corporaal, Microprocessor Architectures: from VLIW to TTA. John

Wiley and Sons, Ltd., 1998. 106

[94] TTA-based Codesign Environment (TCE) Homepage. [Online]. Available:

http://tce.cs.tut.fi 106

[95] Stretch Software-Configurable Processors Homepage. [Online]. Available:

http://www.stretchinc.com/technology/ 106

[96] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauwereins, “Ar-

chitecture exploration for a reconfigurable architecture template,” Design

Test of Computers, IEEE, vol. 22, no. 2, pp. 90 – 101, 2005. 106

[97] W. D. NEWCOM++(FP7). Report on the state for

the art on hardware architectures for flexible ra-

dio and intensive signal processing. [Online]. Available:

http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1

final.pdf 106

159

http://www.coware.com/products/processordesigner.php
http://www.retarget.com/resources.php
http://www.tensilica.com/products/x7_processor_generator.htm
http://www.arc.com/configurablecores/
http://tce.cs.tut.fi
http://www.stretchinc.com/technology/
http://www.newcom-project.eu:8080/Plone/public-deliverables/research/DR.C.1_final.pdf

REFERENCES

[98] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set pro-

cessors using nML,” in European Design and Test Conference, 1995. ED

TC 1995, Proceedings., Mar. 1995, pp. 503 –507. 107

[99] V. Rajesh and R. Moona, “Processor modeling for hardware software code-

sign,” in VLSI Design, 1999. Proceedings. Twelfth International Conference

On, Jan. 1999, pp. 132 –137. 107

[100] G. Hadjiyiannis, S. Hanono, and S. Devadas, “Isdl: An instruction set

description language for retargetability,” in Design Automation Conference,

1997. Proceedings of the 34th, Jun. 1997, pp. 299 –302. 107

[101] V. Zivojnovic, S. Pees, and H. Meyr, “LISA-machine description language

and generic machine model for HW/SW co-design,” in VLSI Signal Pro-

cessing, IX, 1996., [Workshop on], 1996. 107

[102] A. Hoffmann, H. Meyr, , and R. Leupers, Architecture Exploration for Em-

bedded Processors with LISA. Springer, 1st edition November 2002. 107

[103] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “LISA-machine de-

scription language for cycle-accurate models of programmable DSP archi-

tectures,” in Design Automation Conference, 1999. Proceedings. 36th, 1999.

107

[104] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myl-

lyla, “Application-specific instruction set processor implementation of list

sphere detector,” in Signals, Systems and Computers, 2007. ACSSC 2007.

Conference Record of the Forty-First Asilomar Conference on, 2007, pp.

943 –947. 119, 120, 121

[105] R. L. Rivest, T. H. Cormen, C. E. Leiserson, and C. Stein, Introduction to

Algorifhnis (Second Edition). MIT Press and McGraw-Hill, 2002. 120

[106] A. Wiesel, X. Mestre, A. Pages, and J. Fonollosa, “Efficient implementa-

tion of sphere demodulation,” in Signal Processing Advances in Wireless

Communications, 2003. SPAWC 2003. 4th IEEE Workshop on, 2003, pp.

36 – 40. 120

160

REFERENCES

[107] B. Widdup, G. Woodward, and G. Knagge, “A highly-parallel VLSI archi-

tecture for a list sphere detector,” in Communications, 2004 IEEE Inter-

national Conference on, vol. 5, 2004, pp. 2720 – 2725 Vol.5. 120

[108] G. S. Brodal and M. Pinotti, “Comparator networks for binary heap con-

struction,” Theoretical Computer Science, vol. 250, no. 1-2, pp. 235 – 245,

2001. 120

[109] K. wai Wong, C. ying Tsui, R.-K. Cheng, and W. ho Mow, “A VLSI ar-

chitecture of a K-best lattice decoding algorithm for MIMO channels,” in

Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium

on, 2002. 120

[110] P. Bengough and S. Simmons, “Sorting-based VLSI architectures for the

M-algorithm and T-algorithm trellis decoders,” Communications, IEEE

Transactions on, vol. 43, no. 234, pp. 514 –522, 1995. 120

[111] T. Leighton, Y. Ma, and T. Suel, “On probabilistic networks for

selection, merging, and sorting,” in Proceedings of the seventh annual

ACM symposium on Parallel algorithms and architectures, ser. SPAA

’95. New York, NY, USA: ACM, 1995, pp. 106–118. [Online]. Available:

http://doi.acm.org/10.1145/215399.215429 120

[112] J. Antikainen, P. Salmela, O. Silveny, M. Juntti, J. Takala, and M. Myllyla,

“Fine-grained application-specific instruction set processor design for the k-

best list sphere detector algorithm,” in Embedded Computer Systems: Ar-

chitectures, Modeling, and Simulation, 2008. SAMOS 2008. International

Conference on, 2008, pp. 108 –115. 121, 137, 138, 139, 141, 143, 144

[113] O. Paker, S. Eckert, and A. Bury, “A low cost multi-standard near-optimal

soft-output sphere decoder: Algorithm and architecture,” in Design, Au-

tomation Test in Europe Conference Exhibition (DATE), 2010, 2010, pp.

1402 –1407. 137, 138, 139, 143, 144

[114] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala, and M. Myl-

lyla, “Application-specific instruction set processor implementation of list

sphere detector,” in Signals, Systems and Computers, 2007. ACSSC 2007.

Conference Record of the Forty-First Asilomar Conference on, 2007, pp.

943 –947. 137, 138, 139, 141, 143, 144

161

http://doi.acm.org/10.1145/215399.215429

REFERENCES

[115] M. Wu, Y. Sun, and J. Cavallaro, “Reconfigurable real-time MIMO detector

on GPU,” in Signals, Systems and Computers, 2009 Conference Record of

the Forty-Third Asilomar Conference on, 2009, pp. 690 –694. 145

162

List of Publications

Journal

[1] M. Troglia Gamba and G. Masera, “Look–ahead Sphere Decoding: Algorithm

and VLSI Architecture”, IET communications, accepted for publication on De-

cember 2010.

Proceedings of International Conferences

[1]M. Troglia Gamba and G. Masera, “Look-ahead Sphere Decoding: Algorithm

and Performance Evaluation”, Proceedings of the 6th International Symposium

on Wireless Communication Systems (ISWCS’09), Siena, Italy, September 7-10,

2009.

[2]M. Troglia Gamba, G. Masera and A. Baghdadi, “Iterative MIMO Detec-

tion: Flexibility and Convergence Analysis of Soft-Input Soft-Output List Sphere

Decoding and Linear MMSE Detection”, Proceedings of the 18th International

Conference on Software Telecommunications and Computer Networks (SoftCOM

2010), Bol-Split, Croatia, September 23-25, 2010.

163

Workshop Presentations

[1]Workshop FIRB-2008, Title of the presentation: “VLSI architectures for high

throughput detection of MIMO signals”, Politecnico di Torino, November 25,

2008.

[2]NEWCOM++ Winter School on ”Flexible Radio and related technologies, Ti-

tle of the presentation: “VLSI architectures for high throughput detection of

MIMO signals”, UMIC Research Centre, Aachen, Germany, 5 February 2009.

[3]NEWCOM ++ Dissemination Day, Title of the poster: “An Application Spe-

cific Instruction Set processor for Signal Detection in Multiple Antenna Systems”,

Firenze, June 18, 2010.

[4]Workshop FIRB-2010, Title of the presentation: “Iterative MIMO Detection:

Flexibility and Convergence Analysis”, Universita’ degli studi di Pavia, Settem-

ber 28, 2010.

164

	List of Figures
	List of Tables
	1 Introduction
	I Hard MIMO detection
	2 MIMO systems
	2.1 MIMO functions
	2.2 MIMO system model
	2.3 MIMO detection algorithms
	2.4 Sphere Decoder Algorithm
	2.5 Other versions of Sphere Decoder Algorithm

	3 Look-ahead Sphere Decoder Algorithm
	3.1 State of the Art
	3.2 Look-ahead methodology
	3.3 Look–ahead optimization of SDA
	3.3.1 DFG representation
	3.3.2 Linear approximation and look–ahead transformation
	3.3.3 Performance evaluation of LASDA
	3.3.4 A modified search strategy: Test & Restart
	3.3.5 Performance evaluation of LASDA with Test & Restart

	3.4 Architecture design
	3.4.1 S block
	3.4.2 High level architecture

	3.5 Synthesis results
	3.6 Comparisons with the state of the art
	3.7 Discussion of the results

	II Soft MIMO detection
	4 Towards Soft Detection
	4.1 Complexity evaluation of a soft-output MIMO detector
	4.1.1 Description of the system
	4.1.1.1 The algorithm of the Elementary Signal Estimator

	4.1.2 Hardware implementation
	4.1.2.1 Apriori_stat block
	4.1.2.2 cov block
	4.1.2.3 cholesky block
	4.1.2.4 invs block
	4.1.2.5 f block
	4.1.2.6 antenna_n block

	4.1.3 Synthesis results

	5 Soft MIMO detection: the idea of a multi-algorithm detector
	5.1 State of the Art
	5.2 Analysis

	6 Flexible Soft-Input Soft-Output detector: List Sphere Decoding and Linear MMSE Detection
	6.1 Description of the system
	6.1.1 List Sphere Detector (LSD)
	6.1.2 MMSE-IC Linear Equalizer

	6.2 Flexibility and divergence analysis of iterative LSD
	6.2.1 Flexibility parameters
	6.2.2 Analysis of divergence using EXIT chart

	6.3 Comparisons between LSD and MMSE-IC
	6.3.1 Block Fading Channel
	6.3.2 Fast Fading Channel
	6.3.3 Block and Fast Fading Channel for a 22-MIMO system
	6.3.4 Complexity comparison

	6.4 Discussion of the results

	7 ASIP implementation of LSD
	7.1 ASIP design flow
	7.1.1 An ADL based tool: Coware Processor Designer

	7.2 First suboptimal ASIP of LSD
	7.2.1 Flexibility parameters and architectural choices
	7.2.1.1 Babai Point selection
	7.2.1.2 PED computation
	7.2.1.3 computation
	7.2.1.4 SE enumeration
	7.2.1.5 List management

	7.2.2 Instruction Set Architecture
	7.2.2.1 INIT instruction
	7.2.2.2 BABAI instruction
	7.2.2.3 CHECK instruction

	7.2.3 Sample program
	7.2.4 Synthesis results

	7.3 Improved ASIP: increased clock frequency
	7.3.1 Performance
	7.3.2 Comparison with the State of the Art
	7.3.3 Efficient pipeline usage: the pipeline-interleaving

	7.4 Discussion of the results

	8 Conclusions
	References

