

Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures Mathieu Fabre

▶ To cite this version:

Mathieu Fabre. Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures. Analyse numérique [math.NA]. INSA de Lyon, 2015. Français. NNT: 2015ISAL0057. tel-01180732v2

HAL Id: tel-01180732 https://hal.science/tel-01180732v2

Submitted on 24 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

 $N^{\circ}d'ordre: 2015ISAL0057$

Thèse de Doctorat

Spécialité

Mathématiques Appliquées

Présentée par

Mathieu Fabre

Pour obtenir le grade de

Docteur de l'Institut National des Sciences Appliquées de Lyon

Sujet de thèse :

Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures

Soutenue le 10 Juillet devant le jury composé de :

Zakaria Belhachmi	Université de Haute Alsace	Rapporteur
Franz Chouly	Université de Franche-Comté	Examinateur
Serge Nicaise	Université de Valenciennes et du Hainaut Cambrésis	Rapporteur
Olivier Pantz	Ecole Polytechnique	Examinateur
Marco Picasso	École Polytechnique Fédérale de Lausanne	Examinateur
Jérôme Pousin	INSA de Lyon	Directeur
Yves Renard	INSA de Lyon	Directeur

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Douter de tout ou tout croire sont deux solutions également commodes, qui l'une et l'autre nous dispensent de réfléchir.

Henri Poincaré

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Remerciement

Je tiens à remercier, tout particulièrement, mes directeurs de thèse Jérôme Pousin et Yves Renard pour toute l'aide qu'ils m'ont apportée, leur patience et leurs conseils.

Je tiens ici à exprimer mes sentiments respectueux à Zakaria Belhachmi, Professeur des Universités au Laboratoire De Mathématiques, Informatique et Applications (LMIA), d'avoir accepté d'être rapporteurs ainsi que Serge Nicaise, Professeur des Universités à l'Institut des Sciences et Techniques (ISTV). Je voudrais de plus remercier grandement Olivier Pantz, Professeur chargé de cours à l'Ecole Polytechnique au Centre de Recherches en Mathématiques Appliquées (CMAP) et Marco Picasso, Professeur des Universités dans l'Institut MATHICSE de l'EPFL en tant qu'examinateur. Je voudrais remercier tout particulièrement Franz Chouly, Maître de Conférence au Laboratoire de Mathématiques de Besançon (LMB) pour sa participation en tant qu'examinateur ainsi que son écoute et ses conseils.

Je remercie mes collègues du Pôle de Mathématiques de l'Insa de Lyon et du laboratoire de l'Institut Camille Jordan.

Je tiens évidemment à remercier les doctorants de l'Institut Camille Jordan : Rafik Ben Hassine, Amine Karoui, Khadidja Benmansour, Rabii Mlika, Éric Dalissier, Farshid Dabaghi, Imen Mekkaoui et Saber Amdouni.

Un grand merci à toute ma famille, mes amis toulousains Moktaria Adjiri, Guillaume Lasserre, Camille Fabre et Jérémy Pidoux pour leurs soutiens, encouragement et les bons moments passés ensemble.

Une pensée à Papou, mon grand père, qui s'est éteint durant ma dernière année de thèse.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Table des matières

Pı	résen	tation	de la thèse	2	
	Problème unilatéral de contact			2	
	Mét	léthodes de domaines fictifs			
	Estimation d'erreur a priori et a posteriori				
		Estimation d'erreur a priori			
		Estimation d'erreur <i>a posteriori</i>			
		Mailla	ge adaptatif	6	
	Plan	n de thè	se	6	
1	Mét	thodes	de domaines fictifs	8	
	1.1	Métho	des de pénalisation	10	
		1.1.1	Position du problème et conditions aux bords	10	
		1.1.2	Méthodes de pénalisation à interface diffuse	11	
		1.1.3	Méthodes de pénalisation à interface fine	14	
		1.1.4	Avantages et inconvénient de la méthode avec pénalisations	16	
	1.2	Métho	de de la frontière élargie	16	
		1.2.1	Mise en place de la méthode à frontière élargie	17	
		1.2.2	Estimation de l'erreur	23	
	1.3	Métho	des de frontières immergées	24	
		1.3.1	Mise en place du problème sur le solide	25	
		1.3.2	Interaction fluide-structure	27	
		1.3.3	Discrétisation du problème	28	
		1.3.4	Conclusion	31	
1.4 Méthodes de multiplicateur de Lagrange		Métho	des de multiplicateur de Lagrange	31	
		1.4.1	Position du problème	32	
		1.4.2	Méthode avec complément de Schur projeté	35	
		1.4.3	Conclusion	36	
	1.5	Métho	des de domaines fictifs stabilisées à éléments coupés	36	
		1.5.1	Méthodes avec multiplicateur de Lagrange stabilisée par pénalisation du		
			saut de multiplicateur	36	
		1.5.2	Méthode avec multiplicateur de Lagrange stabilisée par une méthode de		
			Barbosa-Hughes	39	
		1.5.3	Une méthode de Nitsche stabilisée	45	
2	Pro	blème	unilatéral de contact	48	
	2.1	problè	me unilatéral sans frottement	48	
	2.2 formulation variationnelle				
	2.3	différe	nts types de frottement	53	

3	A fi	ctitious domain method for frictionless contact problems in elasticity using	
	Nit	sche's method 5	6
	3.1	Introduction	57
	3.2	The unilateral contact problem in a fictitious domain framework 5	58
	3.3	A Nitsche-based finite element approximation	31
		3.3.1 Nitsche's formulation $\ldots \ldots \ldots$	51
		3.3.2 Discrete Nitsche's formulation	52
		3.3.3 Consistency	;4
		3.3.4 Stabilization method $\ldots \ldots \ldots$	6
	3.4	Analysis of the Nitsche-based approximation	38
		3.4.1 Existence and uniqueness Theorems	38
		3.4.2 A priori Error analysis	7
	3.5	Numerical study	35
		3.5.1 Numerical convergence in the two dimensional case	35
		3.5.2 Influence of the parameter γ_0	36
		3.5.3 Numerical experiments in the 3D case	37
	3.6	Conclusion)1
4	Res	\mathbf{sidual} -based a posteriori error estimation for contact problems approximated	
	by I	Nitsche's method 9	4
	4.1	Introduction)5
	4.2	Setting)6
		4.2.1 The unilateral contact problem)6
		4.2.2 Finite element setting and Nitsche-based method)7
		4.2.3 Consistency and well-posedness of the Nitsche-based method 9)9
	4.3	A posteriori error analysis $\ldots \ldots \ldots$)0
		4.3.1 Definition of the residual error estimator)0
		4.3.2 Upper error bound \ldots 10)1
		4.3.3 Lower error bound \ldots 10)6
	4.4	Numerical experiments)6
		4.4.1 First example : a square with slip and separation)7
		4.4.2 Second example : Hertz's contact	.6
5	Est	imateur <i>a posteriori</i> pour un contact unilatéral approché par une méthode	
	de	Nitsche en domaine fictif 12	8
	5.1	Problème unilatéral sans frottement :	29
	5.2	Méthode de Nitsche	31
	5.3	Formulation de Nitsche discrète	32
	5.4	Formulation de Nitsche discrète stabilisée	33
	5.5	Analyse et erreur <i>a priori</i>	34
	5.6	Estimateur d'erreur <i>a posteriori</i>	35
	5.7	Nouvelle stabilisation	4
	5.8	Estimateur d'erreur <i>a posteriori</i> pour la nouvelle stabilisation	15
	5.9	Conclusion et perspectives	۶4

Annex	e		15	i 6
А	Chap	3 : Mise en oeuvre de la Méthode		56
	A.1	Adaptation des méthodes d'intégration	1!	56
	A.2	Représentation du champs éléments finis sur les deux corps en contact	15	57
	A.3	Implémentation des termes de Nitsche	1	57
В	Chap	itre 4 : Mise en oeuvre de l'estimateur $a \ posteriori$	1	58
Bibliog	Bibliographie 10		16	52

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Présentation de la thèse

Le thème de cette thèse est l'application de méthodes de domaines fictifs pour les éléments finis à un problème issu de la mécanique. Le problème étudié et considéré est le contact unilatéral de deux corps élastiques en petite déformation. On commencera par introduire un historique rapide de ce problème. Ensuite, la modélisation et la simulation étant une étape essentielle de l'analyse numérique, on se placera dans le cadre de méthodes de domaines fictifs et des éléments finis pour étudier le problème considéré. On introduira un historique non exhaustif de ces méthodes. Enfin on introduira des estimateurs d'erreurs *a priori* et *a posteriori* afin d'effectuer une analyse numérique sur le problème introduit.

Sommaire

Problème unilatéral de contact	2
Méthodes de domaines fictifs	2
Estimation d'erreur a priori et a posteriori	3
Estimation d'erreur a priori	3
Estimation d'erreur a posteriori	4
$Maillage adaptatif \dots \dots$	6
Plan de thèse	6

Problème unilatéral de contact

Le problème de contact unilatéral sans frottement a été introduit par A. Signorini en 1959 dans [1]. G. Fichera obtenu la formulation variationnelle de ce problème en 1963 dans [2]. Les premiers résultas d'unicité du problème ont été introduits par Duvaut et Lions en 1972 dans [3], ils ont de plus introduit une approximation du frottement, le frottement de Tresca. On doit le premier résultat d'unicité du problème de contact unilatéral avec frottement à l'article [4]. De plus, une étude du problème de Signorini pour des éléments finis quadratiques a été faite dans [5].Un critère d'unicité pour l'extension au frottement de Coulomb a été présenté par Y. Renard en 2006 dans [6].

Un travail similaire au problème que l'on posera a été fait dans [7, 8] sur un problème de fissures de type contact unilatéral en élasticité linéaire.

Pour une synthèse du problème de contact unilatéral entre un corps élastique et un obstacle rigide on pourra se reporter aux travaux [9, 10].

Méthodes de domaines fictifs

Les méthodes de domaines fictifs sont de plus en plus utilisées, notamment pour les problèmes d'interactions fluide/structure et plus généralement pour tous les problèmes à frontière libre. Le principe de ces méthodes est de prolonger un domaine réel ouvert régulier $\widetilde{\Omega} \subset \mathbb{R}^d$ (dans la suite

d = 2 ou 3) de bord Γ en un domaine Ω plus grand et de géométrie simple appelé domaine fictif. Lors de la discrétisation on utilisera un maillage du domaine fictif Ω non conforme par rapport au domaine réel $\tilde{\Omega}$. Le domaine ajouté est appelé le domaine extérieur Ω_e .

L'intérêt principal, dans les méthodes qui vont être décrites, est d'utiliser un maillage structuré sur le domaine fictif permettant une résolution rapide et simple du problème étendu sur le domaine fictif. La difficulté majeure consiste à bien prendre en compte les conditions aux limites sur la frontière du domaine réel (dite frontière immergée) afin de recouvrer la solution du problème initial.

On peut diviser en deux catégories les méthodes de domaines fictifs selon que la frontière immergée est approchée à l'aide d'une surface(quand d = 2)/volume(quand d = 3) qui l'entoure (méthodes à interface diffuse) ou bien que la frontière immergée est approchée grâce à une courbe(d = 2)/surface(d = 3) (méthodes à interface fine). Une liste non exhaustive de ces méthodes ainsi que leurs avantages et inconvénients seront présentés dans cette thèse.

Estimation d'erreur a priori et a posteriori

Le modélisation numérique joue un rôle croissant et devient, avec l'expérimentation et l'étude théorique, un des trois outils majeurs dans les sciences et la technologie. La simulation numérique fournit une aide peu couteuse et efficace à la compréhension des phénomènes physiques. Lors de leurs simulations, de nombreuses sources d'erreurs apparaissent (modélisation, discrétisation, méthode de résolution). La première source principale d'erreurs provient de l'approximations du problème physique par des équations aux dérivées partielles issues de la modélisation. La seconde source principale d'erreur provient de l'approximation des données du problème (structure des objets, des matériaux et de la charge). La dernière source principale est la méthode d'approximation. Une méthode classique est d'approcher de manière discrète le problème à l'aide d'une méthode d'éléments finis, par exemple, pour lequel on pourra calculer une solution discrète du problème initial.

Des techniques ont donc été mises en place afin de pouvoir estimer ces erreurs : l'estimation d'erreur *a priori* et *a posteriori*.

Estimation d'erreur a priori

Soit V un espace de Hilbert, a(.,.) la forme bilinéaire du problème associée et f les données du problème. Le problème mécanique à résoudre est de trouver $u \in V$ solution exacte telle que

$$a(u,v) = (f,v), \quad \forall v \in V.$$

Soit V^h , un espace d'approximation discret de V, le problème discret du problème revient à trouver $u^h \in V^h$ solution discrète telle que

$$a(u^h, v^h) = (f, v^h), \quad \forall v^h \in V^h$$

On prend $\|.\|$ une norme associée à la forme bilinéaire a(.,.) (par example, la norme L^2 , H^1 ou d'énergie). On note C une constante dépendante de la solution exacte u, de la méthode d'éléments finis utilisée et indépendante de la taille h des éléments du maillage. L'estimation a priori s'écrit

$$\left\|u-u^h\right\|\leqslant Ch^{\alpha}.$$

u doit être suffisamment régulier pour que la solution converge or u est inconnu. En passant au logarithme, il vient

$$log(\left\|u-u^{h}\right\|) \leq \alpha \ log(h) + log(C).$$

On obtient la pente α en traçant la courbe de convergence de $log(||u - u^h||)$ en fonction de log(h).

Cette erreur permet la prédiction du taux de convergence asymptotique, selon les éléments finis utilisés, la géométrie du domaine et le maillage associé.

Cette erreur faisant apparaître la solution exacte u, un nouvel outil a été développé par I. Babuška et W. C. Rheinboldt en 1978 [11], l'estimateur d'erreur *a posteriori*.

Estimation d'erreur a posteriori

Soit F une fonction ne dépendant explicitement que du maillage, des éléments finis et des données du problèmes f, on souhaite obtenir

$$\left\| u - u^h \right\| \leqslant F(h, u^h, f).$$

On décompose F en deux termes l'estimateur d'erreur a posteriori η et l'erreur d'approximation ζ avec

$$\eta = \left(\sum_{K \in T_h} \eta_K^2\right)^{1/2} \quad \text{et} \quad \zeta = \left(\sum_{K \in T_h} \zeta_K^2\right)^{1/2}.$$

On distingue η (resp. η_K) l'estimateur global (resp. local) d'erreur dépendant de la solution discrète et des données du problème et ζ (resp. ζ_K) l'erreur global (resp. local) dépendant du second membre et des conditions de bord du problème initial qui est négligeable devant l'estimateur. La qualité de l'estimateur d'erreur *a posteriori* dépend de quatre propriétés.

- La fiabilité est donnée par la constante $C_1 > 0$, $||u u^h|| \lesssim C_1 \eta + \zeta$, qui exprime la précision des calculs.
- L'efficacité est donnée par la constante $C_2 > 0$, $\eta \leq C_2 ||u u^h|| + \zeta$. Il représente l'optimalité de l'estimateur, il assure que l'erreur reste petite sans que le coût de calcul ne soit trop important.
- On dit de plus que l'estimateur est *robuste* lorsque les cœfficient C_1 et C_2 sont indépendants des données, du maillage et de la solution exacte. L'estimateur doit être localisé afin de localiser la distribution de l'erreur sur le maillage. Il permet ainsi de donner un outil intéressant aux méthodes d'adaptation de maillage.
- La qualité de l'estimateur est donnée par l'indice d'efficacité, en général, il est défini par

$$\frac{\eta}{\|u-u^h\|}$$

L'estimateur est optimal si l'indice d'efficacité est égal à 1 et il est asymptotiquement exact si il tend vers 1 quand h tend vers 0.

De nombreux types d'estimateurs ont été développés et étudiés (voir [12, 13, 14]).

- Estimateur de type résidu : le premier estimateur d'erreur a posteriori introduit par I. Babuška et W. C. Rheinboldt en 1978 [11], puis de manière exhaustive par R. Verführt [15, 16] (voir aussi [17, 18, 19]). Cette estimateur explicite fait intervenir les résidus des équations d'équilibre ainsi que le saut des contraintes normales aux interfaces des éléments du maillage. Des estimateurs implicites ont été aussi introduits, ils sont plus coûteux mais plus précis. Ils consistent à résoudre localement des problèmes annexes afin de reconstruire un estimateur. Dans [11], un autre estimateur implicite a été introduit "Subdomain Residual Method". On résout localement, sur un ensemble d'élément (appelé patch), des problèmes avec des conditions limites de Dirichlet homogènes. Un second estimateur d'erreur de type résiduel a été introduit par R. E. Bank et A. Weiser en 1985 [20], puis dans [21]. L'idée de cette estimateur est de résoudre le problème discret avec un espace d'éléments finis plus précis, enrichi.
- Estimateur de type dual : introduit par Johnson en 1987 [22] (voir aussi pour une revue exhaustive [13, 23]). Cette estimateur, de plus en plus étudié, consiste à étudier le problème dual afin d'estimer d'autres erreurs que dans la norme stabilisée naturelle. De plus, il permet d'éviter l'utilisation d'hypothèse de saturation. La difficulté consiste à étudier et trouver le problème dual. Dans la pratique, on utilise une solution approchée du problème dual.
- Autres estimateurs : Parmi les estimateurs les plus connus, on trouve notamment celui introduit par Zienkiewicz et Zhu [24]. Cette méthode est appelée méthodes de lissage, c'est une méthode basée sur les défauts de régularité. On constate, sur l'estimateur par résidu et sur les méthodes d'éléments finis, une discontinuité de contraintes, un saut de contraintes entre chaque éléments du maillage. Cette méthode "ZZ1" consiste donc à construire une contrainte plus régulière. Cette solution lissée est meilleure. C'est une méthode répandue et populaire dans l'ingénierie, car le coût de calcul qu'elle engendre peut être faible et elle peut s'appliquer à tout type de problème. Elle est malheureusement peu performante, en particulier lorsque le maillage est grossier ou lorsque l'ordre des éléments est élevé. Un second estimateur a été proposé [25], cette méthode "ZZ1" appelée "Superconvergence Patch Recovery". Elle combine la méthode de l'estimateur "ZZ1" et l'utilisation de patch afin de minimiser l'erreur. Cette méthode est plus coûteuse que la précédente mais elle donne de bons résultats.

Un autre estimateur introduit par Ladevèze dans [26] est aussi répandu. Le but de cette méthode est de construire un couple de déplacement et de contrainte admissible. Il vérifie donc les équations d'équilibre, les équations de liaison ainsi que les conditions initiales. Seule les relations de comportement ne sont pas vérifiées (dans le cas contraire, il s'agit de la solution exacte). On remarque que la solution approchée est admissible mais pas la contrainte (elle ne vérifie pas la relation d'équilibre). On cherche donc une contrainte vérifiant les équations d'équilibres qui est construit comme un prolongement de la solution approchée.

La qualité locale permet d'adopter une méthode d'adaptation de maillage. L'idée d'une telle méthode est d'optimiser les calculs, ces estimateurs permettent de raffiner les parties du maillage où l'erreur est localisée. L'intérêt est alors de donner des résultats numériques précis sans augmenter le coût de calcul.

Maillage adaptatif

La résolution numérique des problèmes mécaniques étant de plus en plus coûteuse en temps et en mémoire, cette méthode a été développée en parallèle des estimateurs d'erreurs *a posteriori*. L'idée de cette méthode introduite dans [27] est de raffiner les régions du maillage où l'erreur commise est la plus importante afin de diminuer le nombre de degrés de liberté par rapport à un maillage raffiné uniformément.

En utilisant la propriété locale de l'estimateur d'erreur, on peut par exemple utiliser une méthode de seuil. Cette méthode itérative consiste à raffiner les éléments T du maillage où l'estimateur local η_T est jugé trop grand et inversement déraffiner éventuellement lorsque l'estimateur local est très petit.

Plan de thèse

Cette thèse s'insère dans l'étude de méthodes de domaines fictifs pour les éléments finis sur un problème de contact unilatéral entre deux corps élastiques. La thèse se décompose de cinq chapitres.

Dans le premier chapitre, on introduira de manière non exhaustive des méthodes de domaines fictifs et notamment des méthodes de domaines fictifs stabilisées à éléments coupés introduite dans [28]. Cette stabilisation sera utilisée et mise en œuvre dans les chapitres suivants.

Dans le chapitre deux, on introduira le problème unilatéral de contact de deux corps élastiques sans frottement. On définira aussi le frottement de type Tresca et celui de type Coulomb. On utilisera une méthode basée sur celle de Nitsche définit dans [29, 30] dans la suite de la thèse afin d'approcher les conditions de contact/frottement.

Dans le chapitre suivant, on s'intéressera à la synthèse des méthodes introduites précédemment. Le but est de formuler et d'analyser le contact grâce une méthode de Nitsche. Dans le cadre domaine fictif, un taux de convergence optimal après stabilisation est démontré théoriquement. Une étude numérique exhaustive sur un contact de type Hertz en deux et trois dimensions est présentée et permet de confirmer l'analyse théorique. En effet, on a observé pour des éléments finis de Lagrange linéaires P_1 ou quadratiques P_2 , la stabilité de la méthode anti-symétrique $\theta = -1$ pour des paramètres γ_0 quelconques et la nécessité dans le cas symétrique $\theta = 1$ et non symétrique $\theta = 0$ de prendre γ_0 suffisamment petit. De plus, on a pu observer l'optimalité (et aussi une sur-optimalité) de la méthode implémentée. Les simulations numériques ont été effectuées à l'aide de la bibliothèque libre d'éléments finis Getfem++¹.

Le chapitre quatre est basé sur l'étude d'un estimateur d'erreur *a posteriori* de type résidu sur un problème unilatéral de contact entre un corps élastique et un corps rigide avec une méthode d'éléments finis et sans méthode de domaine fictif. Les résultats numériques sont validés numériquement grâce à un exemple avec glissement et séparation d'un carré élastique

^{1.} voir http://download.gna.org/getfem/html/homepage/

contre un bord rigide et un contact de type Hertz en deux et trois dimensions. En effet, après une "normalisation" de l'estimateur et pour les éléments finis de Lagrange linéaires P_1 ou quadratiques P_2 , on a observé pour les cas tests étudiés l'efficacité et la fiabilité de notre estimateur. On a observé aussi testé l'indépendance des résultats pour un γ_0 grand pour la méthode anti-symétrique $\theta = -1$.

Le dernier chapitre est consacré à l'extension théorique dans le cadre d'une approche de domaine fictif de l'estimateur *a posteriori*. Un premier estimateur de la méthode introduit dans le chapitre 3 est obtenu. L'optimalité de cet estimateur est basé sur plusieurs hypothèses de saturations dont certaines semblent peu naturelles. Une nouvelle méthode de stabilisation est alors introduite et un estimateur associé est alors définis. L'optimalité de ce second estimateur est montré avec des hypothèses de saturation plus naturelles. Une perspective de la thèse est d'implémenter et de tester numériquement les estimateurs proposés.

CHAPITRE 1 Méthodes de domaines fictifs

Ce premier chapitre expose les principales méthodes de domaines fictifs qui sont de plus en plus utilisées, notamment pour les problèmes d'interactions fluide/structure et plus généralement pour tous les problèmes à frontière libre. Le principe de ces méthodes est de prolonger un domaine réel ouvert régulier $\widetilde{\Omega} \subset \mathbb{R}^d$ (dans la suite d = 2 ou 3) de bord Γ en un domaine Ω plus grand et de géométrie simple appelé domaine fictif. Lors de la discrétisation on utilisera un maillage du domaine fictif Ω non conforme par rapport au domaine réel $\widetilde{\Omega}$. Le domaine ajouté est appelé le domaine extérieur Ω_e (voir FIGURE 1.1).

FIGURE 1.1 – Prolongements du domaine $\hat{\Omega}$ dans un domaine fictif Ω .

L'intérêt principal, dans les méthodes qui vont être décrites, est d'utiliser un maillage structuré sur le domaine fictif permettant une résolution rapide et simple du problème étendu sur le domaine fictif. La difficulté majeure consiste à bien prendre en compte les conditions aux limites sur la frontière du domaine réel (dite frontière immergée) afin de recouvrer la solution du problème initial.

On peut diviser en deux catégories les méthodes de domaines fictifs selon que la frontière immergée est approchée à l'aide d'une surface(quand d = 2)/volume(quand d = 3) qui l'entoure (méthodes à interface diffuse) ou bien que la frontière immergée est approchée grâce à une courbe(d = 2)/surface(d = 3) (méthodes à interface fine). On présentera, par la suite, une liste non exhaustive de ces méthodes ainsi que leurs avantages et inconvénients. On présentera tout d'abord une méthode de pénalisation (PM), puis la méthode de frontière élargie (FBM), développée par B. Maury. Ensuite, on présentera la méthode introduite et développée par C. S. Peskin de frontière immergée (IBM). Enfin on présentera différentes méthodes de multiplicateur de Lagrange ainsi que les méthodes utilisant des éléments coupés avec multiplicateur de Lagrange

ou une méthode de type Nitsche.

Sommaire

1.1	Mét	hodes de pénalisation	10
	1.1.1	Position du problème et conditions aux bords	10
	1.1.2	Méthodes de pénalisation à interface diffuse	11
		1.1.2.1 Cas de condition au bord de Dirichlet	12
		1.1.2.2 Condition au bord de Robin ou de Neumann	13
	1.1.3	Méthodes de pénalisation à interface fine	14
		1.1.3.1 Conditions au bord de type Dirichlet	15
		1.1.3.2 Conditions au bord de type Robin	16
	1.1.4	Avantages et inconvénient de la méthode avec pénalisations	16
1.2	Mét	hode de la frontière élargie	16
	1.2.1	Mise en place de la méthode à frontière élargie	17
		1.2.1.1 Conditions aux bords de type Dirichlet homogène	17
		1.2.1.2 Conditions aux bords de type Dirichlet non-homogène	19
		1.2.1.3 Première manière de relaxer le problème (1.7)	19
		1.2.1.4 Deuxième manière de relaxer le problème (1.7)	20
	1.2.2	Estimation de l'erreur	23
		1.2.2.1 Erreur en norme $H_0^1(\Omega)$	23
		1.2.2.2 Erreur en norme $H^1(\Omega \setminus (\overline{\Omega}_e \cup \overline{\omega}))$	23
		1.2.2.3 Erreur en norme $H^1(\omega)$	24
		1.2.2.4 Conclusion	24
1.3	Mét	hodes de frontières immergées	24
	1.3.1	Mise en place du problème sur le solide	25
	1.3.2	Interaction fluide-structure	27
	1.3.3	Discrétisation du problème	28
		1.3.3.1 Discrétisation en espace	29
		1.3.3.2 Discrétisation en temps	30
	1.3.4	Conclusion	31
1.4	Mét	hodes de multiplicateur de Lagrange	31
	1.4.1	Position du problème	32
		1.4.1.1 Problème avec condition aux bords de type Dirichlet	32
		1.4.1.2 Problème avec condition aux bords de type Neumann \ldots .	33
		1.4.1.3 Discrétisation du problème de Dirichlet	34
	1.4.2	Méthode avec complément de Schur projeté	35
		1.4.2.1 Présentation de la méthode	35
		1.4.2.2 Discrétisation du problème	36
	1.4.3	Conclusion	36
1.5	Mét	hodes de domaines fictifs stabilisées à éléments coupés	36
	1.5.1	Méthodes avec multiplicateur de Lagrange stabilisée par pénalisation du saut	
		de multiplicateur	36
	1.5.2	Méthode avec multiplicateur de Lagrange stabilisée par une méthode de	
		Barbosa-Hughes	39

	1.5.2.1	Positionnement du problème	39
	1.5.2.2	Système discret	40
	1.5.2.3	Analyse de la convergence	41
	1.5.2.4	Stabilisation	42
	1.5.2.5	Définition de \mathbb{R}^h	45
	1.5.2.6	Conclusion	45
1.5.3	Une mét	hode de Nitsche stabilisée	45
	1.5.3.1	Conclusion	47

1.1 Méthodes de pénalisation

Les méthodes de pénalisation, pour les problèmes de domaines fictifs, ont été introduites dès les années 1960 par V.K. Saul'ev [31] et V.D. Kopčenov [32], où un terme de pénalisation est ajouté au cœfficient de diffusion. ces auteurs considéraient toutefois une adaptation locale du maillage du domaine fictif (déplacement de nœuds) afin de prendre en compte les conditions aux limites immergées. Ces méthodes ont été également développées par E. Acquis [33] et J. Caltagirone [34] pour les équations de Navier-Stokes et par P. Angot en 1989 [35], où un terme de pénalisation est utilisé dans l'équation de Poisson.

L'idée des méthodes de pénalisation est d'utiliser une unique équation sur le domaine fictif Ω en perturbant le moins possible l'équation sur le domaine réel. Pour cela on introduit un terme de pénalisation. Ce terme est divisé par un paramètre de pénalisation que l'on note η , avec $0 < \eta \ll 1$ de telle sorte que le terme de pénalisation soit nul sur le domaine réel (ou une approximation) et qu'il tende vers l'infini sur le domaine extérieur (ou une approximation).

Nous allons décrire ces méthode sur un cas simple, celui des équations elliptiques scalaires avec des conditions aux bords de type Dirichlet, Neumann ou Robin, pour un maillage structuré de taille de maille h pour le domaine fictif et pour une approximation par une méthode d'éléments finis de Lagrange Q_1 pour d = 2. Les résultats présentés proviennent principalement des travaux de I. Ramière [36], [37], [38] et [39].

1.1.1 Position du problème et conditions aux bords

Soient \tilde{a} un champs de matrices de dimension $d \times d$ dont les coefficients sont dans $L^{\infty}(\Omega)$, et qui sont uniformément symétriques définies positives sur $\tilde{\Omega}$, \tilde{b} un scalaire de $L^{\infty}(\tilde{\Omega})$, strictement positif et \tilde{f} un second membre dans $L^2(\tilde{\Omega})$. Nous considérons le problème de l'équation elliptique suivante :

(1.1)
$$\begin{cases} -\operatorname{div}(\widetilde{a}\nabla\widetilde{u}) + \widetilde{b}\widetilde{u} = \widetilde{f} & \operatorname{dans} \widetilde{\Omega}, \\ \text{C.B.} & \operatorname{sur} & \Gamma, \end{cases}$$

où C.B. représente les conditions au bord sur Γ , qui peuvent-être :

- soit de Dirichlet : $\tilde{u} = u_D$ avec $u_D \in H^{1/2}(\Gamma)$,
- soit de Robin : $-(\tilde{a}.\nabla \tilde{u}).n = \alpha_R \tilde{u} + g_R$ avec $\alpha_R \in L^{\infty}(\Gamma), \alpha_R \ge 0, g_R \in L^2(\Gamma)$ et n le vecteur normal unitaire sortant,

— soit de Neumann : cas Robin avec $\alpha_R = 0$. L'idée des méthodes de pénalisation est de résoudre le système suivant sur le domaine fictif :

(1.2)
$$\begin{cases} -\operatorname{div}(a\nabla u) + bu = f \quad \operatorname{dans} \Omega, \\ \text{C.B. originale de (1)} \quad \operatorname{sur} \partial\Omega \cap \Gamma, \\ \text{C.B. nécessaire} \quad \operatorname{sur} \partial\Omega \setminus \Gamma, \end{cases}$$

avec a, b, f satisfaisant des conditions qui vont être décrites par la suite. Afin d'assurer l'existence et l'unicité de u, les coefficients a, b et f doivent vérifier les hypothèses similaires à \tilde{a}, \tilde{b} et \tilde{f} suivantes : a est un champ de matrices de dimension $d \times d$ dont les coefficients sont dans $L^{\infty}(\Omega)$ et qui sont uniformément symétriques définies positives sur Ω , b est un scalaire de $L^{\infty}(\Omega)$, strictement positif, f est dans $L^2(\Omega)$. Les conditions aux limites (celles sur Γ et celle sur $\partial\Omega$ le bord du domaine fictif) dépendent des méthodes et des conditions au bord choisies.

Dans la suite, on note n la normale unitaire sortante sur le bord de Ω et $\Psi \in H^1(\Omega \cup \Omega_e)$. On note Ψ^- (resp. Ψ^+) sur Γ la trace de $\Psi|_{\widetilde{\Omega}}$ (resp. $\Psi|_{\Omega_e}$. On définit $\llbracket \Psi \rrbracket = \Psi^+ - \Psi^-$ le saut de la trace par rapport à la normale n orientée et $\overline{\Psi} = \frac{1}{2}(\Psi^+ + \Psi^-)$ la moyenne arithmétique.

Dans les méthodes que l'on va regarder, on va dans un premier temps approcher la frontière immergée à l'aide d'une union de maille qui la traverse (méthode à interface diffuse). On considèrera ensuite la frontière immergée comme étant approchée par des faces de mailles (méthode à interface fine). Une approximation par une méthode d'éléments finis de Lagrange Q_1 est effectuée. On considère par la suite, une triangulation T_h du domaine fictif qui est composée de quadrangles et qui est de plus structurée. On introduit les notations suivantes : $h_K = \text{diam}(K)$ distance euclidienne maximale entre deux points de K, $h = \max(h_K, K \in T_h)$ la taille de maille, $\rho_K = \min_{1 \le i \le 2^d} \rho_i, \rho_i$ étant le minimum des diamètres du cercle inscrit aux triangles obtenus en joignant les 3 sommets $(a_i)_{i \ne i}$.

Définition 1.1.1. Famille Régulière

Une famille T_h d'éléments finis est régulière s'il existe une constante σ tel que

$$\forall h, \forall K \in T_h, \frac{h_K}{\rho_K} \leqslant \sigma$$

On définit $V_h = \{ v \in \mathscr{C}^0(\overline{\Omega}) \mid \forall K \in T_h, v_{\mid K} \in Q_1(K) \}$ et $V_h^0 = \{ v \in V_h \mid v_{\mid \partial\Omega} = 0 \}.$

1.1.2 Méthodes de pénalisation à interface diffuse

Ces méthodes sont décrites dans [37]. Elles consistent à approcher l'interface Γ par une interface épaisse $\omega_{h,\Gamma}$. On considère les domaines discrets suivants :

$$\widetilde{\Omega}_h = \bigcup_{K \in T_h, K \subset \widetilde{\Omega}} K, \qquad \omega_{h,\Gamma} = \bigcup_{K \in T_h, K \cap \Gamma \neq \emptyset} K \text{ et } \qquad \Omega_{e,h} = \bigcup_{K \in T_h, K \notin \widetilde{\Omega}_h \cup \omega_{h,\Gamma}} K$$

qui sont respectivement une discrétisation du domaine réel $\tilde{\Omega}$, celle de Γ (l'interface diffuse) et celle du domaine extérieur Ω_e (voir FIGURE 1.2). On impose naturellement, sur l'approximation du domaine réel :

$$a_{|\widetilde{\Omega}_h} = \widetilde{a}_{|\widetilde{\Omega}_h}, \qquad b_{|\widetilde{\Omega}_h} = \widetilde{b}_{|\widetilde{\Omega}_h}, \qquad f_{|\widetilde{\Omega}_h} = \widetilde{f}_{|\widetilde{\Omega}_h}.$$

FIGURE 1.2 – Définition des domaines pour la méthode d'interface diffuse.

1.1.2.1 Cas de condition au bord de Dirichlet

Si on prend comme condition au bord $\tilde{u} = u_D$ avec $u_D \in H^{1/2}(\Gamma)$, alors en dehors du domaine réel $\tilde{\Omega}$, on doit inclure un terme de pénalisation qui tend vers l'infini. On peut le faire de deux manières différentes : pénaliser sur $\omega_{h,\Gamma}$ ou sur $\Omega_{e,h}$.

Pour pénaliser sur $\omega_{h,\Gamma}$, on choisit un relèvement $u_{D,r}$ de u_D dans $H^1(\Omega)$ et on pose

$$a = \frac{1}{\eta}Id, \qquad b = \frac{1}{\eta}, \qquad f = \frac{1}{\eta}u_{D,r} \qquad \text{sur } \omega_{h,\Gamma},$$

 et

$$a = Id, \qquad b = 0, \qquad f = 0 \qquad \text{sur } \Omega_{e,h}.$$

Concernant les conditions au bord sur $\partial\Omega$, on doit seulement imposer la condition de Dirichlet $u = u_D$ sur $\partial\Omega \cap \partial\omega_{h,\Gamma}$. En effet, seule la condition au bord sur les nœuds liés à $\partial\Omega \cap \partial\omega_{h,\Gamma}$ concerne la solution dans le domaine réel. La condition au bord sur le reste $\partial\Omega$ peut être choisie arbitrairement.

L'autre possibilité est la pénalisation sur $\Omega_{e,h}$, qui consiste à prendre le choix de coefficients suivant :

$$a = \widetilde{a}, \qquad b = \widetilde{b}, \qquad f = \widetilde{f} \qquad \text{sur } \omega_{h,\Gamma},$$
$$a = \frac{1}{\eta} I d, \qquad b = \frac{1}{\eta}, \qquad f = \frac{1}{\eta} u_{D,r} \qquad \text{sur } \Omega_{e,h}.$$

Le système initial est préservé sur $\omega_{h,\Gamma}$ et il devient négligeable sur $\Omega_{e,h}$. La condition au bord sur $\partial\Omega$ doit être $u_{\mid\partial\Omega} = u_{D,r}$.

En considérant des conditions de Dirichlet sur $\partial\Omega$ et $0 < \eta \ll 1$, la formulation variationnelle sur le domaine fictif consiste à chercher $\phi \in H_0^1(\Omega)$ avec $\phi = u_\eta - u_{D,r}$ tel que

$$\int_{\Omega} a\nabla\phi \nabla v + \int_{\Omega} b\phi v = \int_{\Omega} fv - \int_{\Omega} a\nabla u_{D,r} \nabla v - \int_{\Omega} bu_{D,r} v \quad \forall v \in H^{1}_{0}(\Omega).$$

Le problème discret revient à chercher $\phi^h \in V_h^0$ tel que

$$\int_{\Omega} a\nabla \phi^h . \nabla v + \int_{\Omega} b\phi^h v = \int_{\Omega} fv - \int_{\Omega} a\nabla u_{D,r} . \nabla v - \int_{\Omega} bu_{D,r} v \quad \forall v \in V_h^0.$$

1.1.2.2 Condition au bord de Robin ou de Neumann

Dans ce cas, on considère la condition au bord $-(a \cdot \nabla u) \cdot n = \alpha_R u + g_R \ (\alpha_R = 0 \text{ dans le} cas Neumann)$. On suppose dans la suite que g_R est défini dans un voisinage du bord Γ . La formulation variationnelle du problème (2) sur $\tilde{\Omega}$ et Ω_e sont : $\forall v \in H^1(\Omega)$,

$$\int_{\widetilde{\Omega}} a\nabla u \cdot \nabla v \, dx + \int_{\widetilde{\Omega}} b \, u \, v \, dx - \int_{\Gamma} (a\nabla u)^{-} \cdot n \, v ds - \int_{\partial\Omega\cap\Gamma} (a\nabla u) \cdot n \, v ds = \int_{\widetilde{\Omega}} f \, v \, dx \qquad \text{dans } \widetilde{\Omega},$$
$$\int a\nabla u \cdot \nabla v \, dx + \int b \, u \, v \, dx + \int (a\nabla u)^{+} \cdot n \, v ds - \int (a\nabla u) \cdot n \, v ds = \int f \, v \, dx \qquad \text{dans } \Omega_{e}.$$

$$\int_{\Omega_e} a\nabla u \cdot \nabla v \, dx + \int_{\Omega_e} b \, u \, v \, dx + \int_{\Gamma} (a\nabla u)^+ \cdot n \, v ds - \int_{\partial\Omega/\Gamma} (a\nabla u) \cdot n \, v ds = \int_{\Omega_e} f \, v \, dx \qquad \text{dans } \Omega$$
Done la somme des deux formulations variationnelles s'écrit dans Ω :

Donc la somme des deux formulations variationnelles s'écrit dans Ω :

$$\int_{\Omega} a\nabla u \cdot \nabla v \, dx + \int_{\Omega} b \, u \, v \, dx + \int_{\Gamma} ((a\nabla u)^+ \cdot n - (a\nabla u)^- \cdot n) \, v ds - \int_{\partial\Omega} (a\nabla u) \cdot n \, v ds = \int_{\Omega} f \, v \, dx,$$

$$\int_{\Omega} a\nabla u \cdot \nabla v \, dx + \int_{\Omega} b \, u \, v \, dx - \int_{\partial\Omega} (a\nabla u) \cdot n \, v ds = \int_{\Omega} f \, v \, dx - \langle ((a\nabla u)^+ \cdot n - (a\nabla u)^- \cdot n) \delta_{\Gamma}, v \rangle \cdot Au$$
Au area dec distributions, lo prohibite our lo demains fatified quiet i.

Au sens des distributions, le problème sur le domaine fictif devient :

$$-\operatorname{div}(a\nabla u) + b \ u = f - ((a\nabla u)^+ \cdot n - (a\nabla u)^- \cdot n)\delta_{\Gamma}.$$

On a :

$$-(a\nabla u)^{-}.n = \alpha_R \widetilde{u} + g_R.$$

On va choisir $a_{|\Omega_e}$ assez petit pour que

$$(a\nabla u)^+ \cdot n \simeq 0.$$

On obtient donc

$$-\operatorname{div}(a\nabla u_{\eta}) + b \ u_{\eta} = f - (\alpha_R \widetilde{u}_{\eta} + g_R)\delta_{\Gamma}$$

Le domaine fictif est discrétisé grâce à un maillage structuré. Or la condition de Robin est définie sur le bord du domaine réel Γ . En général, le bord du domaine réel n'étant pas défini exactement, on considère une approximation de la fonction Dirac de celui-ci. Pour cela, on définit $\varepsilon > 0$ de telle manière à ce que l'on ait

$$\int_{\Gamma} \alpha_R u + g_R ds \approx \int_{\omega_{h,\Gamma}} \frac{\alpha_R u + g_R}{\varepsilon} dx$$

On prend :

$$a = \tilde{a}, \qquad b = \tilde{b} + \frac{\alpha_R}{\varepsilon}, \qquad f = \tilde{f} - \frac{g_R}{\varepsilon} \qquad \text{sur } \omega_{h,\Gamma},$$
$$a = \eta I d, \qquad b = 0, \qquad f = 0 \qquad \text{sur } \Omega_{e,h}.$$

Comme dans le cas de la condition du type Dirichlet, les conditions au bord sur la partie $\partial \Omega \cap$ $\partial \omega_{h,\Gamma}$ s'intègrent de manière standard. On se place dans la suite dans le cas de conditions au bord de type Neumann homogène. La formulation variationnelle sur le domaine fictif consiste à chercher

$$\begin{cases} u_{\eta} \in H^{1}(\Omega) \text{ tel que} \\ \int_{\Omega} a \nabla u_{\eta} \cdot \nabla v + \int_{\Omega} b u_{\eta} v = \int_{\Omega} f v - \int_{\omega_{h,\Gamma}} \frac{\alpha_{R} u_{\eta} + g_{R}}{\varepsilon} v dx \quad \forall v \in H^{1}(\Omega). \end{cases}$$

Le problème discret revient quant à lui à chercher

$$\begin{cases} u_{\eta}^{h} \in V_{h} \text{ tel que} \\ \int_{\Omega} a \nabla u_{\eta}^{h} \cdot \nabla v + \int_{\Omega} b u_{\eta}^{h} v = \int_{\Omega} f v - \int_{\omega_{h,\Gamma}} \frac{\alpha_{R} u_{\eta}^{h} + g_{R}}{\varepsilon} v dx \quad \forall v \in V_{h} \end{cases}$$

Sous les hypothèses qui ont été considérées sur \tilde{a}, \tilde{b} et sur les données \tilde{f} et u_D le théorème de Lax-Milgram assure l'existence et l'unicité de la solution de ces deux problèmes.

1.1.3 Méthodes de pénalisation à interface fine

Les méthodes de pénalisation à interface fine sont en particulier étudiées dans [38] qui présente le cas de conditions aux bord mixtes avec de plus une stratégie de raffinement local multiniveaux du maillage. A chaque niveau de raffinement, un ensemble de patchs de forme simple (rectangulaire en 2D) est généré. Ces patchs sont des sous-grilles emboîtées centrées autour d'un volume de contrôle du niveau grossier, situé autour de l'interface fine à approcher, Γ .

Soient
$$\widetilde{\Omega}_h = \bigcup_{K \in T_h, K \subset \widetilde{\Omega}, K \cap \Gamma \neq \emptyset} K$$
, $\Gamma_h = \partial \widetilde{\Omega}_h$ et $\Omega_{e,h} = \bigcup_{K \in T_h, K \notin \widetilde{\Omega}_h \cup \omega_{h,\Gamma}} K$ qui sont

respectivement une discrétisation du domaine réel, une de l'interface fine et une de Ω_e (voir FIGURE 1.3). On procède de la même manière que précédemment. On ajoute, de plus, des condi-

FIGURE 1.3 – Définition des domaines pour la méthode d'interface fine .

tions sur Γ_h , qui sont des conditions de transmissions liant les sauts de flux et de solution sur l'approximation de la frontière immergée (voir [40]) :

$$\llbracket (a.\nabla u).n \rrbracket_{\Gamma_h} = \alpha \overline{u}|_{\Gamma_h} - q \qquad sur \ \Gamma_h,$$

 et

$$\overline{(a.\nabla u).n}|_{\Gamma_h} = \beta \llbracket u \rrbracket_{\Gamma_h} - g \qquad sur \ \Gamma_h$$

avec $q, g \in L^2(\Gamma)$, α, β que l'ont déterminera ensuite. Ces conditions plus générales sont inspirées du cas modèle de fractures. Elles vont servir et seront choisies afin d'isoler la solution du domaine

physique approché du domaine fictif extérieur. Le problème que l'on souhaite donc résoudre est :

(1.3)
$$\begin{cases} -\operatorname{div}(a\nabla u) + bu = f & \operatorname{dans} \Omega, \\ C.B. \text{ original de } (1) & \operatorname{sur} \partial\Omega \cap \Gamma \\ C.B. \text{ nécessaire} & \operatorname{sur} \partial\Omega \setminus \Gamma, \\ \underline{\llbracket}(a\nabla u).n \rrbracket_{\Gamma_h} = \alpha \overline{u}|_{\Gamma_h} - q & \operatorname{sur} \Gamma_h, \\ \overline{(a\nabla u).n}|_{\Gamma_h} = \beta \llbracket u \rrbracket_{\Gamma_h} - g & \operatorname{sur} \Gamma_h. \end{cases}$$

On pose naturellement sur $\widetilde{\Omega}$:

$$a_{|\widetilde{\Omega}} = \widetilde{a}_{|\widetilde{\Omega}}, \qquad b_{|\widetilde{\Omega}} = \widetilde{b}_{|\widetilde{\Omega}}, \qquad f_{|\widetilde{\Omega}} = \widetilde{f}_{|\widetilde{\Omega}},$$

1.1.3.1 Conditions au bord de type Dirichlet

On se retrouve dans la même situation que celle décrite dans le problème à interface diffuse. Pour une condition au bord $\tilde{u} = u_D$ avec $u_D \in H^{1/2}(\Gamma)$, il existe un relèvement $u_{D,r}$ de u_D dans $H^1(\Omega)$. En dehors du domaine réel $\tilde{\Omega}$, on inclut un terme de pénalisation qui tend vers l'infini. Deux pénalisations sont possibles : pénaliser sur Γ_h ou sur Ω_e .

Si on adopte la pénalisation sur Γ_h , on pose $\eta \ll 1$ et on prend :

$$a_{|\Omega_e} = Id,$$
 $b_{|\Omega_e} = f_{|\Omega_e} = 0$ dans $\Omega_e,$
 $\alpha = 4\beta = \frac{2}{\eta},$ $\frac{q}{2} - g = \frac{1}{\eta}u_D$ sur $\Gamma_h.$

Si on adopte la pénalisation sur Ω_e , on pose $\eta \ll 1$ et on prend :

$$a_{|\Omega_e} = \frac{1}{\eta} I d,$$
 $b_{|\Omega_e} = \frac{1}{\eta},$ $f_{|\Omega_e} = \frac{1}{\eta} u_D$ dans $\Omega_e,$
 $\beta = \frac{1}{\eta},$ $\alpha = q = g = 0$ sur $\Gamma_h.$

La formulation variationnelle sur le domaine fictif consiste à chercher $\phi \in H_0^1(\Omega)$ avec $\phi = u_\eta - u_{D,r}$ tel que :

$$\begin{split} \int_{\Omega} a\nabla\phi.\nabla v + \int_{\Omega} b\phi v + \int_{\Gamma_h} (\alpha\overline{\phi}|_{\Gamma_h} + \beta[\![\phi]\!]_{\Gamma_h})vds &= \int_{\Omega} fv + \int_{\Gamma_h} (q+g)vds \\ - \int_{\Omega} a\nabla u_{D,r}.\nabla v - \int_{\Omega} bu_{D,r}v - \int_{\Gamma_h} (\alpha\overline{u}_{D,r}|_{\Gamma_h} + \beta[\![u_{D,r}]\!]_{\Gamma_h})vds \quad \forall v \in H^1_0(\Omega), \end{split}$$

Le problème approché par éléments finis consiste à chercher $\phi^h_\eta \in V^0_h$ tel que

$$(1.4) \int_{\Omega} a \nabla \phi^{h} \cdot \nabla v + \int_{\Omega} b \phi^{h} v + \int_{\Gamma_{h}} (\alpha \overline{\phi}^{h}|_{\Gamma_{h}} + \beta \llbracket \phi^{h} \rrbracket_{\Gamma_{h}}) v ds = \int_{\Omega} f v + \int_{\Gamma_{h}} (q+g) v ds$$
$$- \int_{\Omega} a \nabla u_{D,r} \cdot \nabla v - \int_{\Omega} b u_{D,r} v - \int_{\Gamma_{h}} (\alpha \overline{u}_{D,r}|_{\Gamma_{h}} + \beta \llbracket u_{D,r} \rrbracket_{\Gamma_{h}}) v ds \quad \forall v \in V_{h}^{0},$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

1.1.3.2 Conditions au bord de type Robin

On a aussi la même situation que pour le problème à interface diffuse, c'est à dire que l'on considère la condition au bord $-(a \cdot \nabla u) \cdot n = \alpha_R u + g_R$ ($\alpha_R = 0$ dans le cas Neumann). On prend :

$$\begin{split} a_{\mid\Omega_e} &= Id, \qquad b_{\mid\Omega_e} = f_{\mid\Omega_e} = 0 \qquad \text{dans } \Omega_e, \\ \alpha &= 4\beta = 2\alpha_R, \qquad \frac{q}{2} - g = g_R \qquad \text{sur } \Gamma_h. \end{split}$$

La condition au bord de Ω est la même, on prend une condition du type Neumann homogène. La formulation variationnelle sur le domaine fictif consiste à chercher

$$\begin{cases} u_{\eta} \in H^{1}(\Omega) \text{ tel que} \\ \int_{\Omega} a \nabla u_{\eta} \cdot \nabla v + \int_{\Omega} b u_{\eta} v + \int_{\Gamma} (\alpha \overline{u}_{\eta}|_{\Gamma} - q + \beta \llbracket u_{\eta} \rrbracket_{\Gamma} - g) v ds = \int_{\Omega} f v - \int_{\Gamma} (\alpha_{R} u + g_{R}) v ds, \\ \forall v \in H^{1}(\Omega). \end{cases}$$

Le problème discret consiste à chercher

(1.5)
$$\begin{cases} u_{\eta}^{h} \in V_{h} \text{ tel que} \\ \int_{\Omega} a \nabla u_{\eta}^{h} \cdot \nabla v + \int_{\Omega} b u_{\eta}^{h} v + \int_{\Gamma_{h}} (\alpha \overline{u}_{\eta}^{h}|_{\Gamma_{h}} + \beta \llbracket u_{\eta}^{h} \rrbracket_{\Gamma_{h}} + \alpha_{R} u_{\eta}^{h}) v ds \\ = \int_{\Omega} f v + \int_{\Gamma_{h}} (q + g - g_{R}) v ds, \qquad \forall v \in V_{h}. \end{cases}$$

1.1.4 Avantages et inconvénient de la méthode avec pénalisations

Les avantages de la méthode de domaine fictif avec pénalisation peuvent être résumés comme suit :

- 1. La méthode nécessite l'utilisation d'un unique maillage cartésien pour les deux approches (interface fine ou diffuse).
- 2. Les conditions limites sont simulées avec une seule formulation générique.
- 3. La méthode est facile et rapide à implémenter.

Un taux de convergence en $O(\eta^{\frac{1}{2}})$ en norme L^2 pour une pénalisation surfacique et en $O(\eta^{\frac{3}{2}})$ en norme H^1 pour une pénalisation volumique a été obtenue numériquement dans [38]. Dans [41], une étude théorique a été faite sur une équation de Darcy pour une pénalisation L^2 et une équation de Brinkmann pour une pénalisation H^1 .

Les inconvénients sont la perte de consistance et l'ordre de convergence lent en $O(h^{\frac{1}{2}})$ qui peut être considéré comme rédhibitoire pour certaines applications.

1.2 Méthode de la frontière élargie

La méthode de frontière élargie (Fat Boundary Method) est une méthode de domaine fictif initialement développée par Bertrand Maury dans [42], [43] pour des équations de Poissons dans un domaine contenant des trous et avec des conditions aux bords de type Dirichlet. Elle a été ensuite étendue à d'autres équations et largement utilisée (on citera par exemple [44, 45, 46]). Cette méthode consiste à tirer profit de l'approche de domaine fictif en utilisant un maillage structuré sur le domaine fictif Ω et un maillage volumique ω localisé autour de la frontière immergée afin d'obtenir une précision suffisante autour de la frontière immergée Ω_e (voir FIGURE 1.4). Le problème à résoudre est remplacé par deux problèmes : un premier défini localement sur ω et un second défini globalement sur le domaine fictif Ω étendu par Ω_e . Le problème est ensuite relaxé et un procédé itératif de point fixe est utilisé afin de résoudre les deux problèmes. On définit n_i la normal intérieur à Ω_e et n_e la normal extérieur à Ω_e . Le taux de convergence théorique en norme $H_0^1(\Omega)$ est d'ordre $\frac{1}{2}$, en effet u n'est en général pas régulier sur Ω_e . Dans l'article [44], il a été constaté toutefois sur des tests numériques un ordre de convergence optimal en norme $H^1(\omega)$ et $H^1(\Omega \setminus (\overline{\Omega_e} \cup \overline{\omega}))$ pour l'éléments finis utilisé, dans des exemples de dimension 1 et 2.

FIGURE 1.4 – exemple de méthodes à frontière élargie, FBM.

1.2.1 Mise en place de la méthode à frontière élargie

On définit Ω le domaine réel, Ω_e un ensemble de sous domaines réguliers et Γ leurs frontières. On définit Ω le domaine fictif que l'on suppose de forme géométrique simple. On définit ω la frontière élargie de Ω_e et $\Gamma_0 \cup \Gamma$ sa frontière. On définit les espaces de fonctions suivants :

$$H_0^1(\Omega) = \{ u \in H^1(\Omega) \mid u_{\mid \partial \Omega} = 0 \},$$
$$V = \{ \widetilde{u} \in H^1(\widetilde{\Omega}) \mid \widetilde{u}_{\mid \partial \Omega} = 0 \},$$
$$W = \{ v \in H^1(\omega) \mid v_{\mid \Gamma} = 0 \}.$$

1.2.1.1 Conditions aux bords de type Dirichlet homogène

Soit $\widetilde{f} \in L^2(\widetilde{\Omega})$, on doit trouver $\widetilde{u} \in V$ tel que

(1.6)
$$\begin{cases} -\Delta \widetilde{u} = \widetilde{f} & \text{dans } \widetilde{\Omega}, \\ \widetilde{u}|_{\Gamma} = 0. \end{cases}$$

On souhaite résoudre un problème fictif définit sur Ω , pour cela, on définit f l'extension de f définit sur $\widetilde{\Omega}$ par 0 sur Ω_e :

$$f|_{\widetilde{\Omega}} = \widetilde{f}|_{\widetilde{\Omega}}, \ f|_{\Omega_e} = 0.$$

Soit le problème suivant : trouver $(u, v) \in H_0^1(\Omega) \times W$ tel que

(1.7)
$$\begin{cases} a: \begin{cases} -\Delta v = \tilde{f} & \text{dans } \omega, \\ v_{|\Gamma_0} = u_{|\Gamma_0}, \\ b: -\Delta u = f + \frac{\partial v}{\partial n_e} \Big|_{\Gamma} \delta_{\Gamma} & \text{dans } \Omega \end{cases}$$

où $\frac{\partial v}{\partial n_e}\Big|_{\Gamma} \delta_{\Gamma} \in H^{-1}(\Omega)$ est définie par l'extension de la forme linéaire continue

$$u\in H^1_0(\Omega)\to \int_{\Gamma}\frac{\partial v}{\partial n_e}u$$

Theorem 1.2.1. Les systèmes (1.6) et (1.7) sont équivalents, c'est-à-dire :

- 1. Si $\tilde{u} \in V$ est une solution de (1.6), alors le couple $(u, \tilde{u}|_{\omega})$ est une solution de (1.7) où u est l'extension par 0 à Ω de \tilde{u} .
- 2. Si (u, v) est une solution de (1.7) alors $u_{|\tilde{\Omega}|}$ est une solution de (1.6).

Preuve :

1. Soit $\tilde{u} \in V$ la solution de (1.6), alors la fonction $v = \tilde{u}|_{\omega}$ puisque $u|_{\Gamma_0} = \tilde{u}|_{\Gamma_0}$. On définit u l'extension de \tilde{u} par 0 qui vérifie

(1.8)
$$-\Delta u = f \quad \text{dans } \tilde{\Omega},$$

(1.9)
$$-\Delta u = f|_{\Omega_e} \quad \text{dans } \Omega_e.$$

Soit une fonction test $w \in H_0^1(\Omega)$, en multipliant (1.8) par $w_{|\tilde{\Omega}|}$ et (1.9) par $w_{|\Omega_e|}$ puis en intégrant sur les domaines et en sommant, on obtient :

(1.10)
$$\int_{\Omega} \nabla u \cdot \nabla w + \int_{\Gamma} \frac{\partial u}{\partial n_i} w - \int_{\Gamma} \frac{\partial u}{\partial n_e} w = \int_{\Omega} f w.$$

Or $\frac{\partial u}{\partial n_i} = 0$ et $\frac{\partial u}{\partial n_e} = \frac{\partial \widetilde{u}}{\partial n_e}$, donc

(1.11)
$$\int_{\Omega} \nabla u \cdot \nabla w = \int_{\Omega} fw + \int_{\Gamma} \frac{\partial \widetilde{u}}{\partial n_e} w$$

Cette équation est vérifiée quelque soit w, d'où :

(1.12)
$$-\Delta u = f + \frac{\partial \widetilde{u}}{\partial n_e} \delta_{\Gamma}.$$

2. Soit $(u, v) \in H_0^1(\Omega) \times W$ une solution de (1.7). On fait de même que précédemment avec \hat{v} l'extension sur Ω_e de v par 0. On a $\hat{v} = u_{|\Omega_e \cup \omega}$ donc u = 0 dans Ω_e d'où $u_{|\Gamma} = 0$. De plus, $u_{|\tilde{\Omega}}$ est une solution de (1.6).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

1.2.1.2 Conditions aux bords de type Dirichlet non-homogène

La formulation précédente peut-être étendue à une condition de Dirichlet non-homogène sur le bord Γ (le cas de Dirichlet non-homogène sur le bord $\partial\Omega$ étant standard). Soit $g \in H^{1/2}(\Gamma)$, l'équation de Poisson dans le cas de conditions aux bords non-homogènes consiste à de trouver $\tilde{u} \in V$ tel que

(1.13)
$$\begin{cases} -\Delta \widetilde{u} = \widetilde{f} & \text{dans } \widetilde{\Omega}, \\ \widetilde{u}|_{\Gamma} = g. \end{cases}$$

Posons u_g , l'extension harmonique de g dans Ω_e . Le problème précédent est équivalent à trouver $(u, v) \in H^1_0(\Omega) \times W$ tel que

(1.14)
$$\begin{cases} a: \begin{cases} -\Delta v = \widetilde{f} & \text{dans } \omega, \\ v_{|\Gamma_0} = u_{|\Gamma_0}, \\ v_{|\Gamma} = g, \\ b: -\Delta u = f + \left(\frac{\partial v}{\partial n_e} - \frac{\partial u_g}{\partial n_e}\right) \Big|_{\Gamma} \delta_{\Gamma} & \text{dans } \Omega. \end{cases}$$

1.2.1.3 Première manière de relaxer le problème (1.7)

Dans un premier temps, on considère une relaxation du problème (1.7) introduite dans [42], qui consiste à résoudre le problème de manière itérative sur ω et Ω . On définit $\theta \in]0,1[$, le paramètre de relaxation et on considère l'opérateur

(1.15)
$$T_{\theta}: (u,v) \in H^1_0(\Omega) \times W \to (U,V) \in H^1_0(\Omega) \times W,$$

où $(U, V) \in H_0^1(\Omega) \times W$ solution de

(1.16)
$$\begin{cases} a: \begin{cases} -\Delta V = \tilde{f} & \text{dans } \omega, \\ V|_{\Gamma_0} = (\theta v + (1 - \theta)u)|_{\Gamma_0}, \\ b: -\Delta U = f + \frac{\partial V}{\partial n_e} \Big|_{\Gamma} \delta_{\Gamma} & \text{dans } \Omega, \end{cases}$$

Par définition, on a pour tout $\theta \neq 1$,

(1.17)
$$(u, v)$$
 solution de (1.7) $\iff T_{\theta}(u, v) = (u, v).$

On considère alors les itérations de point fixe

(1.18)
$$(u^{n+1}, v^{n+1}) = T_{\theta}(u^n, v^n).$$

On peut supposer que $\tilde{f} = 0$, en effet si (u_0, v_0) est solution pour $\tilde{f} \neq 0$ alors

$$(u^n, v^n) \longmapsto (u^n - u^0, v^n - v^0),$$

revient à résoudre la cas homogène.

Idée de la Preuve de la convergence de la méthode :

Le but est de prouver que la méthode par itération (1.18) converge, quite à restreindre l'opérateur θ de relaxation.

On peut donc supposer $\tilde{f} = 0$ et f = 0. On définit les opérateurs linéaires \mathcal{D} et \mathcal{N} tels que

(1.19)
$$\begin{aligned} \mathcal{D}: H^1_0(\Omega) &\longrightarrow W \\ u &\longmapsto \mathcal{D}u \text{ solution de (1.7 b)} \end{aligned}$$

 et

(1.20)
$$\begin{array}{ccc} \mathcal{N}: W & \longrightarrow & H_0^1(\Omega) \\ v & \longmapsto & \mathcal{N}v = U \text{ solution de (1.7 a)} \end{array}$$

On pose $Im(\mathcal{N})$, l'image de \mathcal{N} . On peut alors établir les résultats intermédiaires suivants :

Lemma 1.2.2. L'opérateur $\mathcal{ND}: H^1_0(\Omega) \longrightarrow H^1_0(\Omega)$ est continu

$$\exists C > 0, \qquad |\mathcal{N}\mathcal{D}u| \leqslant C |u|,$$

et

$$(\mathcal{N}\mathcal{D}u, u) \leqslant 0 \qquad \forall u \in r(\mathcal{N}).$$

Proposition 1.2.3. $\forall \theta \in]1 - 2/(1+C)^2, 1[, \exists k \in]0, 1[etC_{\mathcal{D}} > 0 \ telles \ que \ \forall (u, v) \in Im(T_{\theta}),$

$$|U| \leqslant k |u|,$$

et

$$|V| \leqslant \theta \, |v| + C_{\mathcal{D}} \, |u|$$

Le k optimal est obtenu pour $\theta = \theta_{opt} = 1 - 1/(1+C)^2$ et $k_{opt} = \sqrt{\theta_{opt}}$

Lemma 1.2.4. On pose $\theta \in [1 - 2/(1 + C)^2, 1[$, alors $\forall (u^0, v^0) \in H^1_0(\Omega) \times W$, la suite (u^m, v^m) définie par

$$(u^{m+1}, v^{m+1}) = T_{\theta}(u^m, v^m),$$

converge.

On a donc convergence de la méthode itérative pour $\theta \in [1 - 2/(1 + C)^2, 1[.$

1.2.1.4 Deuxième manière de relaxer le problème (1.7)

Il est introduit dans [44] une deuxième manière de relaxer le problème (1.7) qui consiste à utiliser le point fixe qui suit. Soit $u^n \in H^1_0(\Omega)$ donné, on cherche $v^n \in W$ (donc $v^n = 0$ sur Γ)

$$-\Delta v^n = f \operatorname{dans} \omega, \qquad v^n = u^n \operatorname{sur} \Gamma_0.$$

On cherche $\overline{u}^{n+1} \in H_0^1(\Omega)$,

$$-\Delta \overline{u}^{n+1} = f + \frac{\partial v^n}{\partial n_e} \Big|_{\Gamma} \delta_{\Gamma},$$

Puis on définit u^{n+1} par

(1.21)
$$u^{n+1} = \theta u^n + (1-\theta)\overline{u}^{n+1}$$

Idée de la preuve de la convergence [44] :

En pratique, la résolution numérique de ce problème s'effectue à l'aide d'une méthode de Galerkin, par exemple. On définit m_{Ω} , un maillage de taille h_{Ω} du domaine fictif Ω noté h en général. On définit aussi m_{ω} , un maillage de taille h_{ω} de la frontière élargie ω . On note $U_h \subset H_0^1(\Omega)$, une famille d'espace de discrétisation qui dépend du paramètre h. Par exemple, si on veut résoudre le système à l'aide du méthode d'éléments finis $P_1(K)$, $U_h = \{u \in \mathscr{C}^0(\overline{\Omega}) \mid u_{|\partial\Omega} = 0, \forall K \in$ $m_{\Omega}, u_{|K} \in P_1(K)\}$. Soit $\Pi_h : H_0^1(\Omega) \longrightarrow U_h$, la projection de Galerkin, définie par

$$\int_{\Omega} \nabla \Pi_h u. \nabla w_h = \int_{\Omega} \nabla u. \nabla w_h \qquad \forall w_h \in U_h$$

Soit $T_f^h: H_0^1(\Omega) \longrightarrow U_h$ définie par

$$\int_{\Omega} \nabla T_f^h u \cdot \nabla w_h = \int_{\Omega} f w_h + \int_{\Gamma} \partial_n^h v w_h \qquad \forall w_h \in U_h,$$

avec v l'unique solution de

$$-\Delta v = f \operatorname{dans} \omega, \qquad v_{|\Gamma} = 0 \operatorname{et} v_{|\Gamma_0} = \prod_h u_{|\Gamma_0}.$$

Si on réitère ce procédé, la limite u_h est le point fixe de T_f^h , c'est à dire

$$u_h = T_f^h(u_h).$$

La convergence du point fixe dépend évidement du choix de l'espace d'approximation U_h et de l'opérateur de dérivation par rapport à la normale extérieure ∂_n^h . C'est pourquoi afin d'assurer la convergence, on va faire des hypothèses que devront vérifier U_h et ∂_n^h .

Propriétés 1.2.5 (Hypothèses sur U_h). Soit G_0 , G des sphères concentriques fixées et données tel que $G_0 \subset \subset G \subset \subset \Omega$, il existe h_0 tel que pour tout $h \leq h_0$, on a pour $R \geq 1$, M > 1 fixés **A.1.** $\forall u \in H^1(G)$ (resp. $H_0^1(G_0)$), $\exists g \in U_h$ (resp. $H_0^1(G)$) tels que $\forall 0 \leq s \leq R$, $s \leq l \leq M$

$$\left\|u-g\right\|_{s,G} \lesssim h_{\Omega}^{l-s} \left\|u\right\|_{l,G}.$$

A.2. Soit $\varphi \in C_0^{\infty}(G_0)$ et $u_h \in U_h$, alors $\exists g \in U_h \cap H_0^1(G)$ tel que

$$\|\varphi u_h - g\|_{1,G} \leq C(\varphi, G, G_0) h_\Omega \|u_h\|_{1,G}.$$

A.3. $\forall h \leq h_0, \exists G_h \text{ avec } G_0 \subset \subset G_h \subset \subset G \text{ tel que si } 0 \leq t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ on a } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ on a } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ on } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ or } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ or } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ or } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ or } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ or } t \leq s \leq R \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in R \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in R \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \text{ alors } \forall u_h \in S \text{ alors } \forall u_h \in U_h, \text{ or } t \in S \text{ alors } \forall u_h \in S \text{ alo$

$$\left\|u_{h}\right\|_{s,G_{h}} \lesssim h_{\Omega} \left\|u_{h}\right\|_{t,G_{h}}$$

Ces hypothèses standards sont vérifiées par les espaces d'éléments finis définis sur un maillage quasi-uniforme. Les paramètres R et M jouent respectivement le rôle de la régularité et l'ordre de l'approximation de l'espace d'approximation U_h .

Propriétés 1.2.6 (Hypothèses sur ∂_n^h). Pour $S \ge 2$ fixé

B.1. Si $v \in W$ est tel que $\Delta v \in L^2(\omega)$ alors

$$\left\|\partial_n^h v\right\|_{-1/2,\Gamma} \lesssim \left\|\Delta v\right\|_{0,\omega} + \left\|v\right\|_{1/2,\Gamma_0}.$$

B.2. Si $v \in H^s(\omega)$, $2 \leq s \leq S$ alors

$$\left\|\partial_n v - \partial_n^h v\right\|_{-1/2,\Gamma} \lesssim h_{\omega}^{s-1} \left\|v\right\|_{s,\omega}.$$

On ne choisit pas une méthode particulière ici, on admet juste que l'on peut calculer une approximation de ∂_n sur Γ . De plus, afin de démontrer la convergence du problème discret, on a besoin que ∂_n^h soit linéaire, stable et soit une bonne approximation de la dérivée normale extérieure en norme $H^{-1/2}(\Gamma)$.

On définit l'opérateur $T_f^{\star}: H_0^1(\Omega) \longrightarrow H_0^1(\Omega)$ tel que

$$-\Delta T_f^{\star} u = f + \partial_n^h v^{\star} \delta_{\Gamma}.$$

où v^* est l'unique solution de

$$-\Delta v^{\star} = f \operatorname{dans} \omega, \qquad v^{\star}|_{\Gamma} = 0 \operatorname{et} v^{\star}|_{\Gamma_0} = \prod_h u|_{\Gamma_0}$$

Lemma 1.2.7. Soit u^* un point fixe de l'opérateur T_f^* , alors $u_h = \Pi_h u^*$ est un point fixe de T_f^h . Inversement, soit u_h un point fixe de T_f^h , alors posons $u^* \in H_0^1(\Omega)$ défini par $u^* = T_f^* u_h$, u^* est un point fixe de T_f^* . De plus, soit $u_h^0 = \Pi_h u^0$ alors si l'itération (1.21) converge alors l'itération discrétisée de (1.21) aussi.

On peut maintenant étudier la convergence de la procédure itérative. On se place dans le cas où f = 0 et on note $T^* = T^*_{f=0}$.

Lemma 1.2.8. Sous les hypothèses (A.1. - 3.) et (B.1. - 2.), soit h_{Ω} suffisamment petit, si u satisfait $\Delta u = 0$ dans $\Omega \setminus \overline{\Omega}_e$ et dans Ω_e , alors

$$\int_{\Omega} \nabla T^{\star} u. \nabla u \lesssim \left(h_{\Omega} + h_{\omega} \right) |u|_{1,\Omega}^{2}.$$

On peut maintenant prouver le résultat général, i.e. pour $f \neq 0$.

Theorem 1.2.9. On se place dans le cas des hypothèses (A.1. - 3.) et (B.1. - 2.). Il existe $h_0 \in]0, h_1[$ (h_0 suffisamment petit) et $\theta_0 \in]0, 1[$ tels que si on a $\theta_0 < \theta < 1$ et $h_\Omega + h_\omega \leq h_0$ alors la procédure itérative (1.21) converge vers une limite u^* , si le terme initial u^0 vérifie $-\Delta u^0 = f$ dans $\Omega \setminus \overline{\Omega}_e$ et dans Ω_e . De plus, u^* le point fixe de T_f^* vérifie

$$\|u^{\star}\|_{1,\Omega} \lesssim \|f\|_{-1,\Omega} + \|f\|_{0,\omega} \dots$$

Corollaire 1.2.10. Sous les hypothèses du théorème précédent, pour h_{Ω} et h_{ω} suffisamment petits, il existe θ_0 tel que si $u_h^0 = \Pi u^0$ avec u^0 qui vérifie $-\Delta u^0 = f$ et $\theta_0 < \theta < 1$ alors la séquence $\{u_h^n\}$ converge vers une limite u_h vérifiant

$$||u_h||_{1,\Omega} \lesssim ||f||_{-1,\Omega} + ||f||_{0,\omega}.$$

1.2.2 Estimation de l'erreur

1.2.2.1 Erreur en norme $H_0^1(\Omega)$

Puisque u n'est pas régulier au del à de Γ en général, alors la meilleure approximation est d'ordre $h_\Omega^{1/2-\varepsilon}.$ On a

$$||u - u_h||_{1,\Omega} \lesssim ||u - \Pi_h u||_{1,\Omega} + ||u - u^*||_{1,\Omega}.$$

L'estimation suivante provient du lemme de Céa :

$$||u - \Pi_h u||_{1,\Omega} \lesssim \inf_{v_h \in U_h} ||u - v_h||_{1,\Omega}.$$

Lemma 1.2.11. On se place sous les hypothèses (A.1. - 3.) et (B.1. - 2.), soit $h_{\Omega} + h_{\omega}$ suffisamment petit, si u satisfait $\Delta u = 0$ dans $\Omega \setminus \overline{\Omega}_e$ et dans Ω_e . Soit u^* le point fixe de la procédure itérative (1.21), alors on a

$$||u - u^{\star}||_{1,\Omega} \lesssim ||\partial_n u - \partial_n^h u||_{-1/2,\Gamma} + ||u - \Pi_h u||_{1/2,\Gamma_0}$$

Corollaire 1.2.12. Sous les hypothèses du lemme précédent, Si u la solution de (1.6) vérifie $u \in H^s(\Omega \setminus \overline{\Omega}_e) \cup H^2(\omega), \ s < 3/2, \ alors \ on \ a \ l'estimation \ d'erreur suivante :$

$$\|u - u_h\|_{1,\Omega} \lesssim \left\|\partial_n u - \partial_n^h u\right\|_{-1/2,\Gamma} + \|u - \Pi_h u\|_{1,\Omega} \lesssim h_\omega \|u\|_{2,\omega} + h_\Omega^{s-1} \|u\|_{s,\Omega}.$$

Sous les hypothèses du lemme précédent, Si u la solution de (1.6) vérifie $u_{|\Omega \setminus \overline{\Omega}_e} \in H^s(\Omega \setminus \overline{\Omega}_e)$, $s \ge 3/2$ et $u_{|\omega|} \in H^2(\omega)$ alors on a l'estimation d'erreur suivante

$$||u - u_h||_{1,\Omega} \lesssim h_\omega ||u||_{2,\omega} + h_\Omega^{1/2} \log h_\Omega ||u||_{s,\Omega}.$$

1.2.2.2 Erreur en norme $H^1(\Omega \setminus (\overline{\Omega}_e \cup \overline{\omega}))$

Puisque u est régulier sur $\Omega \setminus \overline{\Omega}_e$, on espère obtenir une meilleure approximation sur un sous domaine de ce domaine.

Proposition 1.2.13. Si on se place sous les hypothèses du théorème 1.2.9, si $u_{|\Omega \setminus \overline{\Omega}_e} \in H^s(\Omega \setminus \overline{\Omega}_e)$ pour $s \leq M$, on a

$$\|u-u_h\|_{1,\Omega\setminus(\overline{\Omega}_e\cup\overline{\omega})} \lesssim h_{\Omega}^{s-1}(|u|_{s,\Omega\setminus\overline{\Omega}_e}+\|u\|_{1,\Omega})+\left\|\partial_n u-\partial_n^h u\right\|_{-1/2,\Gamma}.$$

Corollaire 1.2.14. Sous les hypothèses de la proposition précédente, si $u \in H^s(\Omega \setminus \overline{\Omega}_e)$ pour $1 < s \leq \min(M, S)$, on a

$$\left\|u-u_{h}\right\|_{1,\Omega\setminus(\overline{\Omega}_{e}\cup\overline{\omega})} \lesssim \left(h_{\Omega}^{s-1}+h_{\omega}^{s-1}\right)\left|u\right|_{s,\Omega\setminus\overline{\Omega}_{e}}.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

1.2.2.3 Erreur en norme $H^1(\omega)$

Pour les mêmes raisons que précédemment, on ne peut pas obtenir une approximation optimale de u par u_h dans un voisinage de Γ . Mais on peut, après avoir calculé un u_h , obtenir une meilleure approximation de u dans ω en trouvant la solution v^* de l'équation

 $-\Delta v^{\star} = f \operatorname{dans} \omega, \qquad v^{\star} = u_h \operatorname{sur} \Gamma_0, \qquad v = 0 \operatorname{sur} \Gamma.$

On observe que

$$\|u - u^{\star}\|_{1,\omega} \lesssim \|u - u_h\|_{1/2,\Gamma_0} \lesssim \|u - u_h\|_{1,\Omega \setminus (\overline{\Omega}_e \cup \overline{\omega})}$$

On n'a aucun résultat de régularité sur v^* , on ne peut donc pas borner directement l'erreur d'approximation. Cependant, si on choisit une méthode stable et linéaire par rapport à H^1 , on peut obtenir une estimation de l'erreur optimale, grâce à

$$||u - \Pi_h v^*||_{1,\omega} \lesssim ||u - \Pi_h u||_{1,\omega} + ||u - v^*||_{1,\omega}.$$

1.2.2.4 Conclusion

La méthode à frontière élargie est une méthode qui à l'avantage d'avoir un ordre élevé d'approximation. Cet ordre élevé a été illustré numériquement dans [44]. L'inconvénient de cette méthode est d'utiliser un processus itératif de résolution d'un problème sur le domaine fictif et d'un autre problème à l'intérieur de la frontière élargie.

1.3 Méthodes de frontières immergées

Le terme de méthodes de frontières immergées désigne des méthodes qui traitent des problèmes d'obstacles immergés dans un domaine. Elles ont été introduites et développées par Charles S. Peskin dans [47]. L'application visée à l'origine est la modélisation des écoulements sanguins dans le cœur humain. Depuis, elles ont été utilisées pour résoudre des problèmes d'interaction fluide/structure plus généraux. On peut voir une synthèse de ses méthodes dans [48]. Dans [49], la méthode à frontières immergées est une méthode de lagrangien augmenté. Ces méthodes consistent à utiliser un terme de forçage et un maillage structuré.

Nous décrivons dans la suite la méthode de frontière immergée de C.S. Peskin récrite de manière à être plus conforme au cadre introduit dans les sections précédentes, en particulier avec l'utilisation d'une méthode d'éléments finis. Cette méthode consiste à utiliser deux maillages : un maillage structuré régulier de taille h pour le domaine fictif Ω et un maillage Lagrangien pour décrire la frontière immergé Ω_t . La prise en compte du domaine immergé se fait à l'aide d'une fonction δ de Dirac lissée qui permet de distribuer le domaine immergé sur les points voisins du maillage structuré. C'est cette fonction de Dirac lissée qui permet de lier les deux maillages (voir FIGURE 1.5). Cette frontière immergée sera notée Ω_0 quand on se place dans la configuration de référence et Ω_t quand on se place dans la configuration réelle au temps t. La discrétisation en espace des équations se fait à l'aide d'une méthode d'éléments finis par exemple de type Q_1 . La discrétisation en temps est effectuée à l'aide d'une méthode de Runge-Kutta d'ordre 2.

FIGURE 1.5 – Exemple de maillages sur un domaine fictif et sur le domaine immergé au cours du temps.

configuration de référence

configuration réel au temps t

FIGURE 1.6 – Configuration de référence et configuration réelle.

1.3.1 Mise en place du problème sur le solide

On note Ω_0 un domaine de \mathbb{R}^d correspondant à une configuration de référence (i.e. un ouvert borné connexe situé d'un même côté de la frontière supposée lipschitzienne, d=2,3). Soit X un point matériel et dX un volume infinitésimal de Ω_0 . On définit φ , une application de déformation, qui à tout temps t associe à un point X de la configuration de référence Ω_0 , un élément x de la configuration réelle. On suppose que φ reste bijective et dérivable et d'inverse φ^{-1} bijective et dérivable. On définit $\Omega_t = \varphi(\Omega_0, t)$ la configuration réelle au temps t. On note x un point matériel et dx un volume infinitésimal de Ω_t .

On définit p la pression hydrostatique, u la vitesse eulérienne, ρ la densité et μ la viscosité dynamique.

On note C le tenseur des déformations de Cauchy Green à droite, B celui à gauche, E le tenseur des déformations de Green-St Venant, $\sigma = \sigma_s - Ip$ le tenseur des contraintes de Cauchy et $\hat{\sigma}$ le second tenseur de Piola-Kirchhoff. Le tenseur des contraintes σ peut se décomposer en

déviateur σ_s et en pression isostatique, $\sigma = \sigma_s - Ip$.

$$C = \nabla \varphi^T \nabla \varphi, \qquad B = \nabla \varphi \nabla \varphi^T \text{ et } \qquad E = \frac{1}{2}(C - I),$$

$$\begin{aligned} \hat{\hat{\sigma}} &= \nabla \varphi^{-1} \sigma \nabla \varphi^{-T} det(\nabla \varphi) \\ &= \nabla \varphi^{-1} (\sigma_s - Ip) \nabla \varphi^{-T} det(\nabla \varphi) \\ &= \nabla \varphi^{-1} \sigma_s \nabla \varphi^{-T} det(\nabla \varphi) - \nabla \varphi^{-1} Ip \nabla \varphi^{-T} det(\nabla \varphi) \\ &= \nabla \varphi^{-1} \sigma_s \nabla \varphi^{-T} det(\nabla \varphi) - p \nabla \varphi^{-1} \nabla \varphi^{-T} det(\nabla \varphi) \\ &= \nabla \varphi^{-1} \sigma_s \nabla \varphi^{-T} det(\nabla \varphi) - p C^{-1} det(\nabla \varphi) \\ &= \hat{\sigma}_s - p C^{-1} det(\nabla \varphi). \end{aligned}$$

Les équations qui régissent les forces internes dans Ω_t sont les équations de la dynamique d'un matériau élastique incompressible. Celles dans la configuration lagrangienne s'écrivent :

$$\begin{cases} \rho \ddot{\varphi} - \operatorname{div}_X(\nabla_X \varphi \hat{\hat{\sigma}}) = g_0 & \operatorname{dans} \Omega_0, \\ \operatorname{det} \nabla \varphi = 1. \end{cases}$$

Soit en utilisant la décomposition de $\hat{\sigma}$:

(1.22)
$$\begin{cases} \rho \ddot{\varphi} - \operatorname{div}_X(\nabla_X \varphi \hat{\hat{\sigma}}_s) + \operatorname{div}(pC^{-1}) = g_0 \quad \operatorname{dans} \,\Omega_0, \\ \operatorname{det} \nabla \varphi = 1. \end{cases}$$

Celles dans la configuration eulérienne s'écrivent :

$$\begin{cases} \rho \frac{\mathrm{D}u}{\mathrm{D}t} - \operatorname{div}_x(\sigma) = g & \operatorname{dans} \Omega_t, \\ \operatorname{div}(u) = 0. \end{cases}$$

(1.23)
$$\begin{cases} \rho \frac{\mathrm{D}u}{\mathrm{D}t} - \operatorname{div}_x(\sigma_s) + \nabla_x p = g \quad \mathrm{dans} \ \Omega_t, \\ \operatorname{div}(u) = 0. \end{cases}$$

Pour pouvoir approcher le problème de frontière immergée, on doit apporter quelques modifications. La méthode de Peskin consiste à ajouter un terme de viscosité $\mu\Delta u$ qui permet de décrire l'évolution du saut de fluide à travers la frontière. Les forces g_0 et g sont en général négligées. La loi d'hyper-élasticité donne $\hat{\sigma}_s = \frac{\partial W}{\partial E}$ c'est à dire $\hat{\sigma}_{s,ij} = \frac{\partial W}{\partial E_{ij}}$.

Afin de pouvoir utiliser la méthode de frontière immergée, on a besoin d'exprimer les variables du problème (2) en coordonnée lagrangienne. Pour cela, on fait apparaître une masse de Dirac δ pour lier les deux maillages. Afin d'éviter d'avoir à gérer des flux de manière exacte et d'éviter des problèmes de continuité et de dérivabilité dans le système, on introduit une régularisation de la masse de Dirac. Cette régularisation sera notée δ_h avec h la taille du maillage régulier structuré du domaine fictif. Soit $(x, y, z) \in \mathbb{R}^3$, on peut prendre par exemple δ_h de la forme $\delta_h(x, y, z) = \frac{1}{h^3}\phi(\frac{x}{h})\phi(\frac{z}{h})\phi(\frac{z}{h})$ avec ϕ défini par :

$$\phi(r) = \begin{cases} \frac{1}{8}(3-2|r| + \sqrt{1+4|r| - 4r^2}) & |r| \leq 1, \\ \frac{1}{8}(5-2|r| - \sqrt{-7 + 12|r| - 4r^2}) & 1 \leq |r| \leq 2, \\ 0 & \text{sinon}, \end{cases}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés
Ce choix de la masse de Dirac est justifié dans [48]. Tout d'abord, la dérivé matérielle $\frac{Du}{Dt}(x,t)$ se récrit $\frac{\partial u}{\partial t}(x,t) + u(x,t) \cdot \nabla u(x,t)$. Ensuite, on doit exprimer ρ en fonction de δ_h :

$$\begin{aligned} \rho(x,t) &= \rho(\varphi(X,t),t) \\ &\simeq \int_{\Omega_0} \rho \circ \varphi(X,t) \delta_h(x-\varphi(X,t)) dX \\ &\simeq \int_{\Omega_0} \rho_0(X,t) \delta_h(x-\varphi(X,t)) dX. \end{aligned}$$

De plus, on introduit la fonction f(resp. F) qui est $\operatorname{div}(\sigma_s)$ (resp. $\operatorname{div}_X(\nabla \varphi \frac{\partial W}{\partial E}))$:

$$\operatorname{div}_{x}(\sigma_{s}) = \operatorname{div}_{X}(\nabla\varphi\hat{\sigma}_{s})\operatorname{det}(\nabla\varphi)^{-1}$$
$$\operatorname{div}_{X}(\nabla\varphi\hat{\sigma}_{s})$$
$$\simeq \int_{\Omega_{0}}\operatorname{div}_{X}(\nabla\varphi\hat{\sigma}_{s})\delta_{h}(x-\varphi(X,t))dX$$
$$\simeq \int_{\Omega_{0}}\operatorname{div}_{X}(\nabla\varphi\frac{\partial W}{\partial E})\delta_{h}(x-\varphi(X,t))dX$$

On a enfin, la loi comportement du solide :

$$\begin{array}{rcl} \frac{\partial \varphi}{\partial t}(X,t) &=& u(\varphi(X,t),t) \\ &\simeq& \int_{\Omega} u(x,t) \delta_h(x-\varphi(X,t)) dx. \end{array}$$

Le système que l'on va résoudre dans le domaine Ω_t pour $t \in]0, T[$ est :

(1.24)
$$\rho(\frac{\partial u}{\partial t} + u.\nabla u) + \nabla p = \mu \delta_h u + f \quad \text{dans } \Omega_t,$$

$$div(u) = 0,$$

(1.26)
$$\rho(x,t) \simeq \int_{\Omega_0} \rho_0(X,t) \delta_h(x-\varphi(X,t)) dX,$$

(1.27)
$$f(x,t) \simeq \int_{\Omega_0} \operatorname{div}_X(\nabla \varphi \frac{\partial W}{\partial E}) \delta_h(x - \varphi(X,t)) dX,$$

(1.28)
$$\frac{\partial \varphi}{\partial t}(X,t) \simeq \int_{\Omega} u(x,t) \delta_h(x-\varphi(X,t)) dx$$

1.3.2 Interaction fluide-structure

Dans cette section, on va considérer uniquement le cas lié au fluide incompressible. On écrit donc l'équation du mouvement, sur Ω_e , du fluide incompressible. La seule différence, par rapport au système précédent, est que l'on considère $\hat{\sigma}_s = 0$. Le système que l'on va résoudre sur le domaine fictif Ω pour $t \in]0, T[$ est :

(1.29)
$$\rho(\frac{\partial u}{\partial t} + u.\nabla u) + \nabla p = \mu \delta_h u + f \quad \text{dans } \Omega,$$

$$div(u) = 0.$$

Soit ρ_f , la densité du fluide.

(1.31)
$$\rho(x,t) \simeq \rho_f + \int_{\Omega} (\rho_0(X,t) - \rho_f) \delta_h(x - \varphi(X,t)) dX,$$

(1.32)
$$f(x,t) \simeq \int_{\Omega_0} \operatorname{div}_X(\nabla \varphi \frac{\partial W}{\partial E}) \delta_h(x - \varphi(X,t)) dX,$$

(1.33)
$$\frac{\partial \varphi}{\partial t}(X,t) \simeq \int_{\Omega} u(x,t)\delta_h(x-\varphi(X,t))dx.$$

Cette équation de Navier-Stokes dans le cas incompressible est complétée par la condition aux bords :

(1.34)
$$u(x,t) = 0 \quad \text{sur } \partial\Omega,$$

et la condition initiale

(1.35)
$$u(x,0) = u_0(x) \quad \text{dans } \Omega.$$

On pose évidement qu'on connait la position de la frontière à l'état initial :

(1.36)
$$\varphi(X,0) = \varphi_0(X) \quad \text{dans } \Omega_0.$$

1.3.3 Discrétisation du problème

Dans cette partie, on va décrire l'approximation numérique du problème d'interaction fluidestructure en dimension trois. On va d'abord effectuer une discrétisation en espace du système et ensuite effectuer une discrétisation en temps par un schéma de Runge-Kutta d'ordre 2.

Dans cette méthode, on utilise deux maillages indépendants (voir FIGURE 1.5). Un maillage structuré régulier de taille maille h pour le domaine fictif, par exemple des cubes, que l'on note m_C . On définit a_i , les sommets des mailles K appartenant à m_C . On définit de même, un maillage structuré régulière de taille de maille $k_1 \times k_2 \times k_3$ pour le domaine de la configuration de référence, par exemple des pavés, noté m_L . On définit A_i , les sommets des mailles K appartenant à m_L . Dans [47, 48, 50], il est pris comme condition sur le maillage m_L , k_1 , k_2 et k_3 suffisamment petit afin qu'au cours de la déformation, on ait

$$|\varphi(A_1+k_1, A_2, A_3, t) - \varphi(A_1, A_2, A_3, t)| < \frac{h}{2} \qquad \forall A_i,$$

Et de même pour k_2 et k_3 .

Définition 1.3.1. définition des différents espaces : On définit $V_h = \{v \in \mathscr{C}^0(\overline{\Omega}) \mid \forall K \in m_C, v_{|K} \in Q_1(K)\}, V_h^0 = \{v \in \mathscr{C}^0(\overline{\Omega}) \mid v_{|\partial\Omega} = 0, \forall K \in m_C, v_{|K} \in Q_1(K)\} \text{ et } Q_h^0 = \{q \in \mathscr{C}^0(\overline{\Omega}) \mid q_{|\partial\Omega} = 0, \forall K \in m_C, v_{|K} \in Q_1(K)\}.$ On définit $S_h = \{\varphi \in \mathscr{C}^0(\overline{\Omega_t}) \mid \forall K \in m_L, v_{|K} \in Q_1(K)\}.$ Pour pouvoir résoudre le système (1.29)-(1.36), à l'aide d'une méthode d'éléments finis, il faut écrire la formulation variationnelle. On définit n_0 , la normale unitaire sortante de la frontière immergée.

On cherche à trouver $(u(t), p(t)) \in H^1_0(\Omega) \times L^2_0(\Omega)$ et $\varphi : \Omega_0 \times]0, T[\to \Omega_t, \text{ tels que }:$

(1.37)
$$\int_{\Omega} \rho(\frac{\partial}{\partial t}u + u \cdot \nabla u)v + \int_{\Omega} \mu \nabla u \cdot \nabla v - \int_{\Omega} p \nabla v = \int_{\Omega} fv \qquad \forall v \in H_0^1(\Omega),$$

(1.38)
$$\int_{\Omega} \operatorname{div}(u)q = 0 \qquad \forall q \in L^2_0(\Omega),$$

(1.39)
$$f(x,t) \simeq \int_{\Omega_0} \operatorname{div}_X(\nabla \varphi \frac{\partial W}{\partial E}) \delta_h(x - \varphi(X,t)) dX \\ - \int_{\Omega_0} \nabla \varphi \frac{\partial W}{\partial E} \nabla \delta_h(x - \varphi(X,t)) dX \\ + \int_{\Gamma_0} (\nabla \varphi \frac{\partial W}{\partial E}) n_0 \delta_h(x - \varphi(X,t)) dX.$$

1.3.3.1 Discrétisation en espace

On définit $u_{0h} \in V_h^0$, l'approximation de u_0 et $\varphi_{0h} \in V_h^0$, l'approximation de φ_0 . Le problème semi-discrétisé en espace à consiste à trouver $(u_h(t), p_h(t)) \in V_h^0 \times Q_h^0$ et $\varphi_h : \Omega_0 \times]0, T[\to \Omega_t, \varphi_h \in V_h^0$ tels que :

(1.40)
$$\int_{\Omega} \rho(\frac{\partial}{\partial t}u_h + u_h \cdot \nabla u_h)v + \int_{\Omega} \mu \nabla u_h \cdot \nabla v - \int_{\Omega} p_h \operatorname{div}(v) = \int_{\Omega} fv \qquad \forall v \in V_h^0,$$

(1.41)
$$\int_{\Omega} \operatorname{div}(u_h) q = 0 \qquad \forall q \in Q_h^0,$$

(1.42)
$$\rho(a_i, t) \simeq \rho_f + \int_{\Omega} (\rho_0(X, t) - \rho_f) \delta_h(a_i - \varphi_h(X, t)) dX \quad \forall a_i,$$

(1.43)
$$f(a_i,t) \simeq -\int_{\Omega_0} \nabla \varphi_h \frac{\partial W}{\partial E} \cdot \nabla \delta_h(a_i - \varphi_h(X,t)) dX + \int_{\Gamma_0} (\nabla \varphi_h \frac{\partial W}{\partial E}) n_0 \delta_h(a_i - \varphi_h(X,t)) dX \quad \forall a_i,$$

(1.44)
$$\frac{\partial \varphi_h}{\partial t}(A_i, t) \simeq \int_{\Omega} u_h(x, t) \delta_h(x - \varphi_h(A_i, t)) dx \quad \forall A_i,$$

$$(1.45) u_h(a_i,0) = u_{0h}(a_i) \forall a_i$$

(1.46)
$$\varphi_h(A_i, 0) = \varphi_{0h}(A_i) \quad \forall A_i$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

1.3.3.2 Discrétisation en temps

Il reste à faire une discrétisation en temps par la méthode de Runge-Kutta d'ordre 2. On définit le pas de temps $\Delta t > 0$. Soit l'équation différentiel ordinaire :

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y).$$

La méthode de Runge-Kutta d'ordre 2 consiste à résoudre :

$$\frac{y^{n+\frac{1}{2}}-y^n}{\Delta t/2} = f(y^n),$$

puis

$$\frac{y^{n+1} - y^n}{\Delta t} = f(y^{n+\frac{1}{2}}).$$

Le but de ce schéma est d'améliorer la stabilité numérique par rapport aux *temps*. Tout d'abord, on effectue l'étape préliminaire en passant de l'étape $n \ge n + \frac{1}{2}$. Déterminons la position de la frontière immergée :

(1.47)
$$\varphi_h^{n+\frac{1}{2}}(A_i) = \varphi_h^n(A_i) + \frac{\Delta t}{2} \int_{\Omega} u_h^n(x) \delta_h(x - \varphi_h^n(A_i)) dx \quad \forall A_i,$$

(1.48)
$$\varphi_h(A_i, 0) = \varphi_{0h}(A_i) \quad \forall A_i.$$

Déterminons ensuite l'énergie élastique et la densité :

(1.49)
$$f^{n+\frac{1}{2}}(a_i) = -\int_{\Omega_0} \nabla \varphi_h^n \frac{\partial W}{\partial E} \cdot \nabla \delta_h(a_i - \varphi_h^n(X)) dX + \int_{\Gamma_0} (\nabla \varphi_h^n \frac{\partial W}{\partial E}) n_0 \delta_h(a_i - \varphi_h^n(X)) dX \quad \forall a_i,$$

(1.50)
$$\rho^{n+\frac{1}{2}}(a_i) = \rho_f + \int_{\Omega} (\rho_0^n(X) - \rho_f) \delta_h(a_i - \varphi_h^n(X)) dX \quad \forall a_i.$$

On peut ainsi écrire l'équation de Navier-Stokes à l'étape $n + \frac{1}{2}$:

(1.51)
$$\int_{\Omega} (\rho^{n+\frac{1}{2}} \frac{u_h^{n+\frac{1}{2}} - u_h^n}{\Delta t/2} + u_h^n \cdot \nabla u_h^n) v + \int_{\Omega} \mu \nabla u_h^{n+\frac{1}{2}} \cdot \nabla v - \int_{\Omega} p_h^{n+\frac{1}{2}} \operatorname{div}(v) = \int_{\Omega} f^{n+\frac{1}{2}} v \qquad \forall v \in V_h^0,$$

(1.52)
$$\int_{\Omega} \operatorname{div}(u_h^{n+\frac{1}{2}})q = 0 \qquad \forall q \in Q_h^0.$$

Enfin, on effectue la dernière étape afin de passer à l'étape n + 1: On a donc pour la frontière immergée :

(1.53)
$$\varphi_h^{n+1}(A_i) = \varphi_h^n(A_i) + \Delta t \int_{\Omega} u_h^{n+\frac{1}{2}}(x) \delta_h(x - \varphi_h^{n+\frac{1}{2}}(A_i)) dx \quad \forall A_i.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Il reste seulement à réécrire l'équation de Navier-Stokes à l'étape n, en effet on utilisera encore $\rho^{n+\frac{1}{2}}$ et $f^{n+\frac{1}{2}}$. On a :

(1.54)
$$\int_{\Omega} (\rho^{n+\frac{1}{2}} \frac{u_h^{n+1} - u_h^n}{\Delta t} + u_h^{n+\frac{1}{2}} \cdot \nabla u_h^{n+\frac{1}{2}}) v + \int_{\Omega} \mu \nabla u_h^{n+1} \cdot \nabla v - \int_{\Omega} \widetilde{p}_h^{n+\frac{1}{2}} \operatorname{div}(v) = \int_{\Omega} f^{n+\frac{1}{2}} v \qquad \forall v \in V_h^0$$

(1.55)
$$\int_{\Omega} \operatorname{div}(u_h^{n+1})q = 0 \qquad \forall q \in Q_h^0.$$

On a $p_h^{n+\frac{1}{2}}$ et $\tilde{p}_h^{n+\frac{1}{2}}$ car on évalue deux approximations différentes de la pression à une étape $\tilde{p}_h^{n+\frac{1}{2}}$.

Dans (1.54), $\int_{\Omega} \mu \nabla \frac{u_h^{n+1}}{2} \nabla v$ a été remplacée par

$$\int_{\Omega} \mu \nabla \frac{u_h^{n+1} + u_h^n}{2} \nabla v.$$

1.3.4 Conclusion

Cette méthode est utilisée dans de nombreux exemples d'interaction fluide-structure dans le cas incompressible (manche à air, valve dans le cœur ...). Elle a l'avantage d'utiliser deux maillages simples structurés et utilise une fonction de Dirac régularisée afin de lier ces deux maillages en "projetant" les nœuds du maillage de la frontière sur les nœuds du maillage du domaine fictif. Des cas particuliers de la méthode à frontière immergée, pour des densités de force simple (dans une direction, par exemple) avec l'approche des éléments finis, sont présentés dans des articles de D. Boffi et L. Gastaldi [51] et [52]. Une méthode d'interface immergée a été développée pour améliorer la méthode de frontière immergée, en n'utilisant pas une interface diffuse afin de prendre en compte le bord du domaine réel. Cette méthode utilise des nœuds irréguliers près de la frontière du domaine réel, en ajoutant par exemple un nœud au centre des mailles. Dans l'article de 2008 de Charles Peskin et Yoichiro Mori [50], une convergence numérique d'ordre optimal, c'est à dire d'ordre 2, a été prouvée.

1.4 Méthodes de multiplicateur de Lagrange

Les méthodes utilisant les multiplicateurs de Lagrange sont des méthodes classiques dans la résolution de problèmes de domaine fictif. Ces méthodes ont été développées en particulier par Glowinski et al. [53, 54], Haslinger, Maitre et Tomas [55] et Haslinger, Kozubek, Kunisch et Peichl [56]. Un point clé pour obtenir une convergence optimale est évidemment la satisfaction d'une condition de type inf-sup. Nous présentons tout d'abord une description générale des méthodes de domaines fictifs avec multiplicateur de Lagrange issue de [55]. Nous présentons ensuite la méthode introduite dans [56] qui assure en général un meilleur taux de convergence.

FIGURE 1.7 – exemples de domaine réel et de domaine fictif.

1.4.1 Position du problème

On pose $\widetilde{\Omega}$ un domaine régulier de \mathbb{R}^d (d = 2 ou 3), un domaine réel, on note son bord Γ . On considère un domaine fictif Ω polygonal et contenant le domaine fictif. On note par Ω_e , le domaine extérieur à $\widetilde{\Omega}$. (voir FIGURE 1.7)

1.4.1.1 Problème avec condition aux bords de type Dirichlet

On considère le problème de l'équation de Poisson avec conditions aux bords de type Dirichlet. Soient $\tilde{f} \in L^2(\tilde{\Omega})$ et $g \in H^{\frac{1}{2}}(\Gamma)$, on veut trouver $u \in H^1(\tilde{\Omega})$ tel que

(1.56)
$$\begin{cases} -\Delta u = \tilde{f} & \text{dans } \tilde{\Omega}, \\ u = g & \text{sur } \Gamma \end{cases}$$

On désigne $T_{\widetilde{\Omega}}$ l'application de trace de $H^1(\widetilde{\Omega})$ dans $H^{\frac{1}{2}}(\Gamma)$. On note $H^1_g(\widetilde{\Omega}) = \{v \in H^1(\widetilde{\Omega}) \mid T_{\widetilde{\Omega}}(v) = g\}$. La formulation variationnelle associée à (1.56) est

(1.57)
$$\begin{cases} \text{trouver } u \in H^1_g(\widetilde{\Omega}) \text{ tel que} \\ \int_{\widetilde{\Omega}} \nabla u . \nabla v \, \mathrm{d}x = \int_{\widetilde{\Omega}} \widetilde{f}v \, \mathrm{d}x \quad \forall v \in H^1_0(\widetilde{\Omega}). \end{cases}$$

Soit f une l'extension de \tilde{f} sur $L^2(\Omega)$ et la formulation variationnelle sur le domaine fictif s'écrit

(1.58)
$$\begin{cases} \text{trouver } u \in H^1_g(\Omega) \text{ tel que} \\ \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x \quad \forall v \in H^1_{0,\Gamma}(\Omega). \end{cases}$$

Pour passer du système (1.58) au système avec multiplicateur de Lagrange. On définit $R_{\tilde{\Omega}}$ la restriction de $H^1(\Omega)$ sur $H^1(\tilde{\Omega})$ et T_{Γ} l'application linéaire $T_{\Gamma} := T_{\tilde{\Omega}} o R_{\tilde{\Omega}}$. On définit enfin \tilde{g} un élément de $H^1(\Omega_e)$ tel que $\tilde{g} = g$ sur Γ .

La formulation faible sur le domaine fictif avec un multiplicateur de Lagrange réparti sur Ω_e s'écrit

(1.59)
$$\begin{cases} \text{trouver } (u,\lambda) \in H^1(\Omega) \times H^1(\Omega_e) \text{ tel que} \\ \int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x + \int_{\Omega_e} \lambda \, R_{\Omega_e}(v) \, \mathrm{d}x = \int_{\Omega} fv \, \mathrm{d}x \quad \forall v \in H^1(\Omega), \\ \int_{\Omega_e} \mu \, R_{\Omega_e}(u) \, \mathrm{d}x = \int_{\Omega_e} \mu \, \widetilde{g} \, \mathrm{d}x \quad \forall \mu \in H^1(\Omega_e). \end{cases}$$

Theorem 1.4.1. Le problème (1.59) admet une unique solution (u^*, λ^*) . De plus, $R_{\tilde{\Omega}}(u^*)$ est une solution de (1.57).

1.4.1.2 Problème avec condition aux bords de type Neumann

On considère maintenant le problème de l'équation de Poisson avec condition aux bords de type Neumann. Soient $\tilde{f} \in L^2(\tilde{\Omega}), g \in H^{-\frac{1}{2}}(\Gamma)$ et n la normale unitaire sortante à $\tilde{\Omega}$, on veut trouver $u \in H^1(\tilde{\Omega})$ tel que

(1.60)
$$\begin{cases} -\Delta u = \tilde{f} & \text{dans } \tilde{\Omega}, \\ \frac{\partial u}{\partial n} = g & \text{sur } \Gamma \end{cases}$$

On définit les espaces suivant (un exemple de définition provenant de l'article [55])

$$H(\operatorname{div}, \widetilde{\Omega}) = \{ q \in (L^2(\widetilde{\Omega}))^2 \mid \operatorname{div} q \in L^2(\widetilde{\Omega}) \} \quad \text{avec } \|q\|_{H(\operatorname{div}, \widetilde{\Omega})}^2 = \|q\|_{(L^2(\widetilde{\Omega}))^2}^2 + \|\operatorname{div} q\|_{L^2(\widetilde{\Omega})}^2,$$

 $H_0(\operatorname{div}, \widetilde{\Omega}) = \{ q \in H(\operatorname{div}, \widetilde{\Omega}) \mid q.n = 0 \text{ sur } \Gamma \}, \qquad H_g(\operatorname{div}, \widetilde{\Omega}) = \{ q \in H(\operatorname{div}, \widetilde{\Omega}) \mid q.n = g \text{ sur } \Gamma \}.$

On définit $T_{\widetilde{\Omega}}$, l'application de trace de flux de $H(\operatorname{div}, \widetilde{\Omega})$ sur $H^{-\frac{1}{2}}(\Gamma)$ avec $T_{\widetilde{\Omega}}(q) = q.n$. La formulation variationnelle associée à (1.60) est

(1.61)
$$\begin{cases} \text{trouver } p \in H_g(\operatorname{div}, \widetilde{\Omega}) \text{ tel que} \\ \int_{\widetilde{\Omega}} \operatorname{div} p \operatorname{div} q \operatorname{d} x = -\int_{\widetilde{\Omega}} \widetilde{f} \operatorname{div} q \operatorname{d} x \qquad \forall q \in H_0(\operatorname{div}, \widetilde{\Omega}). \end{cases}$$

Theorem 1.4.2. Le problème (1.61) a une unique solution p^* . De plus, $p = \nabla u$ et f + divp = 0où u est une solution de (1.60).

On définit f l'extension de \tilde{f} sur $L^2(\Omega)$. Et on considère la formulation variationnelle sur le domaine fictif suivant

(1.62)
$$\begin{cases} \text{trouver } p \in H_g(\operatorname{div}, \Omega) \text{ tel que} \\ \int_{\Omega} \operatorname{div} p \operatorname{div} q \operatorname{d} x = -\int_{\Omega} f \operatorname{div} q \operatorname{d} x \qquad \forall q \in H_0(\operatorname{div}, \Omega). \end{cases}$$

On définit, comme précédemment, $R_{\widetilde{\Omega}}$ la restriction de $H(\operatorname{div}, \Omega)$ sur $H(\operatorname{div}, \widetilde{\Omega})$ et $T_{\Gamma} = T_{\widetilde{\Omega}} o R_{\widetilde{\Omega}}$.

(1.63)
$$\begin{array}{rcl} R_{\widetilde{\Omega}}: H(\operatorname{div}, \Omega) & \to & H(\operatorname{div}, \Omega), \\ q & \mapsto & q_{|\widetilde{\Omega}}, \end{array}$$

(1.64)
$$T_{\Gamma}: H(\operatorname{div}, \Omega) \to H^{-\frac{1}{2}}(\Gamma),$$
$$q \mapsto q_{|\tilde{\Omega}}.n.$$

On note \tilde{g} un élément de $H(\operatorname{div}, \Omega_e)$ tel que $\tilde{g}.n = g \operatorname{sur} \Gamma$. La formulation faible sur le domaine fictif avec un multiplicateur de Lagrange définit sur Ω_e , s'écrit

$$(1.65) \begin{cases} \text{trouver } (p,\lambda) \in H(\text{div},\Omega) \times H(\text{div},\Omega_e) \text{ tel que} \\ \int_{\Omega} \text{div} p \text{ div} q \, dx + \int_{\Omega_e} \lambda \ R_{\Omega_e}(q) \, dx = -\int_{\Omega} f \text{div} q \, dx \qquad \forall q \in H(\text{div},\Omega), \\ \int_{\Omega_e} \mu \ R_{\widetilde{\Omega}}(u) \, dx = \int_{\Omega_e} \mu \ \widetilde{g} \, dx \qquad \forall \mu \in H(\text{div},\Omega_e). \end{cases}$$

Theorem 1.4.3. Le problème (1.65) a une unique solution (p^*, λ^*) . De plus, $R_{\tilde{\Omega}}(p^*)$ est une solution de (1.61), c'est à dire

$$R_{\widetilde{\Omega}}(p^*) = \nabla u \qquad et \qquad R_{\widetilde{\Omega}}(p^*) + f = 0$$

où u est une solution de (1.60).

1.4.1.3 Discrétisation du problème de Dirichlet

Soit T^h un maillage du domaine fictif Ω , de taille de maille h. On se place dans le cas d'un maillage non adapté au bord. On considère les espaces de discrétisation de dimension finie suivants :

$$V_h = \{ v_h \in \mathscr{C}(\overline{\Omega}) \mid v_h|_T \in P_1(T), \ \forall T \in T^h \},$$
$$W_h(\Omega_e) = V_h|_{\Omega_e}.$$

Le problème approché correspondant à (1.59) est

(1.66)
$$\begin{cases} \text{trouver } (u_h, \lambda_h) \in V_h \times W_h(\Omega_e) \text{ tel que} \\ \int_{\Omega} \nabla u_h \cdot \nabla v_h \, \mathrm{d}x + \int_{\Omega_e} \lambda_h \, R_{\Omega_e}(v_h) \, \mathrm{d}x = \int_{\Omega} f v_h \, \mathrm{d}x \quad \forall v_h \in V_h, \\ \int_{\Omega_e} \mu_h \, R_{\Omega_e}(u)_h \, \mathrm{d}x = \int_{\Omega_e} \mu_h \, \widetilde{g} \, \mathrm{d}x \quad \forall \mu_h \in W_h(\Omega_e). \end{cases}$$

Lemma 1.4.4. Soit u la solution du problème de départ (1.56) et soit (u_h, λ_h) la solution du problème discret (1.59) alors $\forall \varepsilon > 0$,

$$|u-u_h|_{1,\widetilde{\Omega}} \leqslant Ch^{\frac{1}{2}-\varepsilon}.$$

On a un ordre de convergence d'ordre $\frac{1}{2}$, en général, dans le cas d'un maillage non adapté au bord. Un ordre de convergence optimal peut-être recouvré mais uniquement au prix d'une adaptation du maillage au bord Γ .

1.4.2 Méthode avec complément de Schur projeté

1.4.2.1 Présentation de la méthode

Une nouvelle formulation avec multiplicateur de Lagrange a été introduite dans [56] pour les problèmes d'optimisation de forme. Nous allons la présenter sur le problème de Poisson avec condition aux bords de type Dirichlet (1.56), dont la formulation variationnelle est toujours donnée par (1.57). Soit $\omega \supset \tilde{\Omega}$ un domaine régulier, de bord γ continue Lipschitz tel que $\delta =$ dist $(\gamma, \Gamma) > 0$ et avec également $\overline{\omega} \subset \Omega$ (voir FIGURE 1.8). Une formulation de classique du

FIGURE 1.8 – nouvelle méthode avec multiplicateur de Lagrange.

problème sur le domaine fictif de (1.57), avec un multiplicateur de Lagrange, est la suivante

$$(1.67) \qquad \begin{cases} \text{trouver } (w,\chi) \in H_0^1(\Omega) \times H^{-\frac{1}{2}}(\Gamma) \text{ tel que} \\ \int_{\Omega} \nabla w.\nabla v \, \mathrm{d}x = \int_{\Omega} fv \, \mathrm{d}x + \langle \chi, v \rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)} & \forall v \in H^1(\Omega) \\ \langle \mu, w \rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)} = \langle \mu, g \rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)} & \forall \mu \in H^{-\frac{1}{2}}(\Gamma). \end{cases}$$

La nouvelle formulation est le problème étendu suivant

(1.68)
$$\begin{cases} \text{trouver } (u,\lambda) \in H_0^1(\Omega) \times H^{-\frac{1}{2}}(\gamma) \text{ tel que} \\ \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} fv \, dx + \langle \lambda, v \rangle_{H^{-\frac{1}{2}}(\gamma), H^{\frac{1}{2}}(\gamma)} & \forall v \in H^1(\Omega), \\ \langle \mu, u \rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)} = \langle \mu, g \rangle_{H^{-\frac{1}{2}}(\Gamma), H^{\frac{1}{2}}(\Gamma)} & \forall \mu \in H^{-\frac{1}{2}}(\Gamma). \end{cases}$$

Les deux formulations sont semblables mais la seconde est plus avantageuse. En effet, soit (w, χ) la solution de (1.67), χ est un multiplicateur de Lagrange pour la contrainte w = g sur Γ . On suppose Γ suffisamment régulier pour avoir $w_{|\tilde{\Omega}|} \in H^2(\tilde{\Omega})$ et $w_{|\Omega\setminus\overline{\tilde{\Omega}}|} \in H^2(\Omega\setminus\overline{\tilde{\Omega}})$. Pour tout $\varepsilon > 0$, on a uniquement $w \in H^{\frac{3}{2}-\varepsilon}(\Omega)$ en raison du saut de $\frac{\partial w}{\partial n}$ à travers Γ . Soit (u, λ) la solution de (1.68), λ est une variable de contrôle qui force u à être proche de g sur γ . On suppose que γ est suffisamment régulière pour avoir $u_{|\omega|} \in H^2(\omega)$ et $u_{|\Omega\setminus\overline{\omega}|} \in H^2(\Omega\setminus\overline{\omega})$. Pour tout $\varepsilon > 0$, $u \in H^{\frac{3}{2}-\varepsilon}(\Omega)$ dû au saut de $\frac{\partial u}{\partial n}$ à travers γ mais on peut s'attendre à ce que u soit plus régulière

sur $\widetilde{\Omega}$ puisque γ et Γ sont séparés d'une distance positive. Cela permet d'obtenir numériquement un taux de convergence supérieur à $\frac{1}{2}$.

1.4.2.2 Discrétisation du problème

On définit les trois espaces de dimensions finis $V_h \subset H_0^1(\Omega)$, $L_H^{\Gamma} \subset H^{-\frac{1}{2}}(\Gamma)$ et $L_H^{\gamma} \subset H^{-\frac{1}{2}}(\gamma)$ pour h, H > 0. On prend L_H^{Γ} et L_H^{γ} de même dimension. Une formulation approchée du problème (1.68) est

(1.69)
$$\begin{cases} \text{trouver } (u_h, \lambda_H) \in V_h \times L_H^{\gamma} \text{ tel que} \\ \int_{\Omega} \nabla u_h \cdot \nabla v_h \, \mathrm{d}x = \int_{\Omega} f v_h \, \mathrm{d}x + \int_{\gamma} \lambda_H v_h \mathrm{d}s \quad \forall v_h \in V_h, \\ \int_{\Gamma} \mu_H u_h \mathrm{d}s = \int_{\Gamma} \mu_H g \mathrm{d}s \quad \forall \mu \in L_H^{\Gamma}. \end{cases}$$

1.4.3 Conclusion

La méthode de domaine fictif avec multiplicateur de Lagrange est une des plus classique. Sa convergence n'est en général que d'ordre $\frac{1}{2}$. L'inconvénient de ces méthodes est que la satisfaction de la condition inf-sup est souvent problématique.

1.5 Méthodes de domaines fictifs stabilisées à éléments coupés

Ce type de méthodes de domaines fictifs qui reprennent la méthodologie des méthodes de type Xfem (voir [57]) elles-mêmes peuvent être considérées comme des méthodes de domaines fictifs, ont été principalement introduites dans [58, 59, 28, 60, 61]. Elle utilisent des méthodes de stabilisations par ailleurs utilisées par exemple dans [62, 63] en dehors du cadre des méthodes de domaines fictifs.

Une première approche consiste à utiliser une méthode de multiplicateur de Lagrange avec stabilisation (voir [60, 28]). Pour obtenir une estimation d'erreur a priori optimale, il est nécessaire d'ajouter un terme de stabilisation permettant d'obtenir une condition inf-sup satisfaisante. Dans [60] la stabilisation consiste en une pénalisation du saut des multiplicateurs à travers les faces des éléments. Dans [28] seul les éléments ayant une intersection très petite avec le domaine réel sont stabilisés en utilisant une extension de la solution sur un élément voisin convenable.

Une deuxième approche, utilisée dans [61] consiste à utiliser une méthode de Nitsche pour les conditions aux bords de type Dirichlet ou de transmission [58] afin d'éviter l'utilisation de multiplicateur de Lagrange. Il est toutefois également nécessaire d'ajouter des termes de stabilisation.

1.5.1 Méthodes avec multiplicateur de Lagrange stabilisée par pénalisation du saut de multiplicateur

Soit Ω un domaine borné polygonal et convexe de \mathbb{R}^2 (Le cas \mathbb{R}^3 en découle mais est plus difficile à présenter). On définit Γ , sa frontière, et par n_{Γ} , la normale unitaire sortante. Le

système que l'on souhaite résoudre est l'équation de Poisson avec une condition aux bords de type Dirichlet. Soient $f \in L^2(\Omega)$ et $g \in H^{\frac{1}{2}}(\Gamma)$, on veut trouver $u \in H^1(\Omega)$ tel que

(1.70)
$$\begin{cases} -\Delta u = f & \text{dans } \Omega, \\ u = g & \text{sur } I \end{cases}$$

qui vérifie qu'il existe C > 0 indépendante de f et g telle que

$$\|u\|_{1,\Omega} \leqslant C(\|f\|_{0,\Omega} + \|g\|_{\frac{1}{2},\Gamma}).$$

Soit $\langle ., . \rangle_{\Gamma}$, le produit de dualité entre $H^{\frac{1}{2}}(\Gamma)$ et $H^{-\frac{1}{2}}(\Gamma)$ et les normes discrètes suivante avec hune fonction de poids strictement positif et pour $\lambda \in H^{\frac{1}{2}}(\Gamma)$:

$$\|\lambda\|_{\frac{1}{2},h,\Gamma}^{2} = \left\langle h^{-1}\lambda,\lambda\right\rangle_{\Gamma} \quad \text{et} \quad \|\lambda\|_{-\frac{1}{2},h,\Gamma}^{2} = \left\langle h\lambda,\lambda\right\rangle_{\Gamma}.$$

L'inégalité suivante se déduit alors aisément :

(1.71)
$$\langle \lambda, \mu \rangle_{\Gamma} \leqslant \|\lambda\|_{-\frac{1}{2},h,\Gamma}^{2} \|\mu\|_{\frac{1}{2},h,\Gamma}^{2} \cdot$$

La formulation variationnelle associée à (1.70) s'écrit pour $u_D \in H^1(\Omega)$ une extension de g sur Ω $(u_D|_{\Gamma} = g)$ et en posant $\phi = u - u_D$ de la manière suivante :

(1.72)
$$\begin{cases} \text{trouver } \phi \in H_0^1(\Omega) \text{ tel que} \\ \int_{\Omega} \nabla \phi . \nabla v \, dx = -\int_{\Omega} \nabla u_D . \nabla v \, dx + \int_{\Omega} f v \, dx \qquad \forall v \in H_0^1(\Omega) \end{cases}$$

On introduit T^h une triangulation quasi-uniforme (le domaine fictif associé sera noté Ω_T), tel que $\Omega \subset \Omega_T$ et $K \cap \Omega \neq \emptyset$, $\forall K \in T^h$. Soit h la taille des mailles avec $h = \max_{K \in T^h} h_K$ avec h_K le diamètre de K. On suppose :

H 1 : La triangulation est non dégénérative, i.e. $\frac{h_K}{\rho_K} \leq C$ $\forall K \in T^h$ où ρ_K est le diamètre du plus grand cercle contenu dans K.

H 2 : Γ intersecte chaque élément du bord ∂K au plus deux fois et chaque domaine ouvert au plus une fois.

H 3 : Soit $\Gamma_{K,h}$ un segment qui approche Γ sur ∂K . On suppose que Γ_K dépend de la distance de $\Gamma_{K,h}$.

$$\Gamma_{K,h} = \{(\zeta, \eta) \mid 0 < \zeta < |\Gamma_{K,h}|, \eta = 0\}$$

 et

$$\Gamma_{K} = \{(\zeta, \eta) \mid 0 < \zeta < |\Gamma_{K,h}|, \eta = \delta(\zeta)\}.$$

On définit l'espace de discrétisation de dimension finie

$$V_h = \{ v_h \in \mathscr{C}(\Omega_T) \mid v_h |_K \in P_1(K), \ \forall K \in T^h \}.$$

On suppose que Γ est composé de N_{Γ} cotés, pouvant être courbes, $\{\Gamma_{i,h}\}_{i=1}^{N_{\Gamma}}$, séparés par des angles obtus. On définit $G_{h,i} = \{K \in T_h \mid K \cap \Gamma_i \neq \emptyset\}$ l'ensemble des éléments qui sont intersectés

par la frontière Γ_i . L'ensemble de tous les éléments qui sont intersectés par Γ , $G_h = \bigcup_{i=1}^{N_{\Gamma}} G_{h,i}$. On note \mathbf{F}_i l'ensemble des faces dans $G_{h,i}$ intersecté par la frontière Γ_i et \mathbf{F}_G , l'ensemble des faces qui intersectent la frontière Γ . On définit l'espace des multiplicateurs de Lagrange pour chaque coté Γ_i en assignant une fonction constante pour chaque élément dans $G_{h,i}$.

$$W_h^i = \{ v_h \mid \text{dom}(v_h) = G_{h,i}, v_h \mid_K \in P_0(K) \quad \forall K \in G_{h,i} \}.$$

On pose $W_h = V_h \times \prod_{i=1}^{N_{\Gamma}} W_h^i$ et $\lambda_h = \{\lambda_h^i\}$ avec λ_h^i définit sur W_h^i pour tout *i*. L'approximation de la formulation variationnelle (1.72) s'écrit :

(1.73)
$$\begin{cases} \text{trouver } (u_h, \lambda_h) \in W_h \text{ tel que} \\ A(u_h, \lambda_h; v_h, \mu_h) + J(\lambda_h, \mu_h) = F(v_h) \quad \forall (v_h, \mu_h) \in W^h, \end{cases}$$

où

$$\begin{split} A(u_h,\lambda_h;v_h,\mu_h) &= \int_{\Omega} \nabla u_h . \nabla v_h \mathrm{d}x + \sum_{i=1}^{N_{\Gamma}} \left\langle \lambda_h^i, v_h \right\rangle_{\Gamma_i} - \sum_{i=1}^{N_{\Gamma}} \left\langle u_h - g, \mu_h^i \right\rangle_{\Gamma_i}, \\ F(v_h) &= \int_{\Omega} f v_h \mathrm{d}x, \quad J(\lambda_h,\mu_h) = \sum_{i=1}^{N_{\Gamma}} j_i(\lambda_h^i,\mu_h^i), \\ j_i(\lambda_h^i,\mu_h^i) &= \sum_{F \in \mathbf{F}_i} \left\langle \gamma h[\lambda_h^i], [\mu_h^i] \right\rangle_F, \end{split}$$

avec γ un paramètre de stabilisation et [.] le saut à travers Γ . On doit vérifier quelques propriétés de consistance et de continuité de l'opérateur (A+J)[(.,.;.,.)]. On définit $|||.|||_l$ pour l = 0, 1 par

$$|\|(u,\lambda)\||_{l}^{2} = \|\nabla u\|^{2} + \|\lambda\|_{-\frac{1}{2},h,\Gamma}^{2} + \|u\|_{\frac{1}{2},h,\Gamma}^{2} + lJ(\lambda,\lambda).$$

C'est une norme bien définie pour $u \in H^1(\Omega)$, $\lambda|_{\Gamma_i} \in L^2(\Gamma_i)$ pour l = 0 et pour $l = 1, (u, \lambda) \in W_h$.

Lemma 1.5.1 (Orthogonalité de Galerkin). Soient u solution de (1.70), u_h solution de (1.73) et $\lambda|_{\Gamma} = -n_{\Gamma}.\nabla u$. Alors

$$A(u - u_h, \lambda - \lambda_h; v_h, \mu_h) = J(\lambda_h, \mu_h) \quad \forall (v_h, \mu_h) \in W_h.$$

Lemma 1.5.2. Soit $\eta \in H^1(\Omega)$, $\nu_{|\Gamma_i} \in L^2(\Gamma_i)$ alors

$$A(\eta, \nu; v_h, \mu_h) \leq |||(\eta, \nu)|||_0 |||(v_h, \mu_h)|||_0 \quad \forall (v_h, \mu_h) \in W_h.$$

Afin d'avoir une bonne propriété d'approximation, on vérifie que l'on a une condition inf-sup uniforme pour la méthode de multiplicateur de Lagrange suivante :

Theorem 1.5.3. Quelque soit $(u_h, \lambda_h) \in W_h$, il existe C > 0 indépendant de h tel que

$$|||(u_h, \lambda_h)|||_i \leq C \sup_{(v_h, \mu_h) \in W_h} \frac{A(u_h, \lambda_h; v_h, \mu_h) + J(\lambda_h, \mu_h)}{|||(v_h, \mu_h)|||_1}$$

1.5. Méthodes de domaines fictifs stabilisées à éléments coupés

On se place dans le cas de $u \in H^2(\Omega)$ et $\lambda|_{\Gamma_i} = -n_{\Gamma_i} \cdot \nabla u \in H^{\frac{1}{2}}(\Gamma_i)$.

Theorem 1.5.4 (Estimation de l'erreur en norme H^1). Soient u solution de (1.70) et u_h solution de (1.73) alors il existe C > 0 indépendant de h tel que

 $\left\| \left\| \left(u - u_h, \lambda - \lambda_h \right) \right\| \right\|_0 + J(\lambda_h, \lambda_h)^{\frac{1}{2}} \leq Ch \left| u \right|_{H^2(\Omega)}.$

Lemma 1.5.5 (Estimation de l'erreur en norme L^2). Soient u solution de (1.70) et u_h solution de (1.73) alors il existe C > 0 indépendant de h tel que

$$||u - u_h||_{L^2(\Omega)} \leq Ch^2 |u|_{H^2(\Omega)}.$$

Pour conclure, on observe qu'on a une estimation d'erreur a priori optimale. Le paramètre γ sert à diminuer les sauts dans la résultante du multiplicateur provenant de la non satisfaction d'une condition inf-sup uniforme et sert à stabiliser la formulation. Ce paramètre doit être choisi suffisamment petit pour ne pas trop perturber le problème (et tendre vers un multiplicateur constant) mais suffisamment grand pour que la stabilisation ait un effet suffisant.

1.5.2 Méthode avec multiplicateur de Lagrange stabilisée par une méthode de Barbosa-Hughes

Les méthodes introduites proviennent principalement de [28]. Le système que l'on va regarder est une équation de Poisson avec des conditions aux bords de type Neumann et de type Dirichlet. Afin de pouvoir résoudre ce système à l'aide d'une méthode d'éléments finis, on étudiera la formulation variationnelle puis on utilisera le problème mixte. Sans stabilisation l'ordre de convergence que l'on obtient n'est que de $\frac{1}{2}$ quelque soit la régularité de la solution et l'ordre des éléments finis. Afin d'obtenir un ordre de convergence optimal, une méthode de stabilisation de type Barbosa-Hughes [62, 64] est utilisées.

1.5.2.1 Positionnement du problème

Soit $\widetilde{\Omega}$ le domaine réel, un ouvert convexe borné inclu dans $\mathbb{R}^d(d=2 \text{ ou } 3)$ et n sa normale unitaire sortante. On note Γ le bord de ce domaine, que l'on divise en deux parties Γ_D et Γ_N avec Γ_D de mesure non nulles. Soit $\Omega \subset \mathbb{R}^d$ le domaine fictif, un domaine rectangulaire ou polygonal (voir FIGURE 1.9 (a)). Le système que l'on souhaite résoudre est pour $f \in L^2(\widetilde{\Omega})$ et $g \in L^2(\Gamma_N)$ de trouver u tel que

(1.74)
$$\begin{cases} -\Delta u = f \quad \text{dans } \widetilde{\Omega}, \\ u = 0 \quad \text{sur} \quad \Gamma_D, \\ \partial_n u = g \quad \text{sur} \quad \Gamma_N. \end{cases}$$

Soient

$$V = H^1(\widetilde{\Omega}), \qquad V_0 = \{ v \in V \mid v_{|\Gamma_D} = 0 \}.$$

La formulation variationnelle associée à (1.74) est

(1.75)
$$\begin{cases} \text{trouver } u \in V_0 \text{ tel que} \\ a(u,v) = l(v) \quad \forall v \in V_0, \end{cases}$$

1.5. Méthodes de domaines fictifs stabilisées à éléments coupés

FIGURE 1.9 – exemple de domaine réel et fictif et discrétisation du domaine fictif.

avec

$$a(u,v) = \int_{\widetilde{\Omega}} \nabla u \cdot \nabla v \, \mathrm{d}\Omega, \qquad l(v) = \int_{\widetilde{\Omega}} fv \, \mathrm{d}\Omega + \int_{\Gamma_N} gv \, \mathrm{d}\Gamma.$$

On peut introduire le problème mixte, qui est équivalent à (1.75)

(1.76)
$$\begin{cases} \text{trouver } u \in V, \ \lambda \in W \text{ tel que} \\ a(u,v) + \langle \lambda, v \rangle_{W,X} = l(v) \quad \forall v \in V, \\ \langle \mu, u \rangle_{W,X} = 0 \quad \forall \mu \in W, \end{cases}$$

avec

$$X = \{ w \in L^2(\Gamma_D) \mid \exists v \in V \text{ tel que } w = v_{|\Gamma_D} \}, \qquad W = X'.$$

On pose

$$V_0^{\sharp} = \{ v \in V \mid \int_{\Gamma_D} v \, \mathrm{d}\Gamma = 0 \}.$$

Alors a(.,.) est cœrcive sur sur V_0^{\sharp} , c'est-à-dire il existe $\alpha > 0$ tel que

$$a(v,v) \ge \alpha \|v\|_V^2 \qquad \forall v \in V_0^{\sharp}.$$

Et donc il existe une unique solution du système (1.76). De plus, $\lambda = -\partial_n u \operatorname{sur} \Gamma_D$. Le problème (1.76) revient à résoudre le point selle du Lagrangien sur $V \times W$

(1.77)
$$\mathcal{L}(v,\mu) = \frac{1}{2}a(v,v) + \langle \mu, u \rangle_{W,X} - l(v)$$

1.5.2.2 Système discret

On souhaite résoudre le système initial (1.74), pour cela on utilise des méthodes d'éléments finis. On introduit $\overline{V}^h \subset H^1(\Omega)$ et $\overline{W}^h \subset L^2(\Omega)$, deux espaces d'éléments finis sur le domaine fictif Ω . Puisque le domaine fictif est de forme géométrique simple, on peut choisir un maillage T^h structuré (voir FIGURE 1.9 (b)). On définit h, la taille du maillage, c'est-à-dire $h = \max_{T \in T^h} h_T$ avec h_T est le diamètre de l'élément T. On peut définir de manière classique \overline{V}^h par

$$\overline{V}^h = \{ v^h \in \mathscr{C}(\overline{\Omega}) \mid v^h |_T \in P(T), \ \forall T \in T^h \},\$$

 et

$$\overline{W}^h = \{ \mu^h \in L^2(\overline{\Omega}) \mid \mu^h \mid_T \in P(T), \ \forall T \in T^h \}.$$

On construit

$$V^h = \overline{V}^h|_{\Omega}$$
 et $W^h = \overline{W}^h|_{\Gamma_D}$

Le système approché correspondant au problème mixte (1.76) est

(1.78)
$$\begin{cases} \text{trouver } u^h \in V^h, \ \lambda^h \in W^h \text{ tel que} \\ a(u^h, v^h) + \int_{\Gamma_D} \lambda^h v^h \ \mathrm{d}\Gamma = l(v^h) \quad \forall v^h \in V^h, \\ \int_{\Gamma_D} \mu^h u^h \ \mathrm{d}\Gamma = 0 \quad \forall \mu^h \in W^h. \end{cases}$$

1.5.2.3 Analyse de la convergence

Dans cette section, on étudie la convergence de cette méthode. Cette convergence ne sera que d'ordre $\frac{1}{2}$ quelques soient les espaces \overline{V}^h et \overline{W}^h que l'on choisit et la régularité de f. On stabilisera ensuite la méthode afin d'obtenir un ordre optimal. On définit l'espace discret associé à V_0 par

$$V_0^h = \{ v^h \in V^h \mid \int_{\Gamma_D} \mu^h v^h \, \mathrm{d}\Gamma = 0 \qquad \forall \mu^h \in W^h \}.$$

On définit deux condition supplémentaire sur le choix de \overline{W}^h ,

(1.79)
$$\begin{array}{c} 1_{|\Gamma_D} \in W^h, \\ \overline{\mu}^h \in W^h \mid \int_{\Gamma_D} \overline{\mu}^h v^h \, \mathrm{d}\Gamma = 0 \qquad \forall v^h \in V^h \Longrightarrow \overline{\mu}^h = 0. \end{array}$$

Lemma 1.5.6. La forme bilinéaire a(.,.) est V_0^h -elliptique, c'est-à-dire il existe $\alpha > 0$ tel que

$$a(v^h,v^h) \geqslant \alpha \left\| v^h \right\|_V \qquad \forall v^h \in V_0^h.$$

Proposition 1.5.7. On suppose que les conditions (1.79) sont satisfaites, alors la solution (u^h, λ^h) du système (1.78) est unique et il existe une constante C > 0 indépendant de \overline{V}^h et \overline{W}^h telle que

$$\left\| u^h \right\|_V \leqslant C \left\| l \right\|_{H^{-1}(\widetilde{\Omega})}.$$

Lemma 1.5.8. Soit (u, λ) et (u^h, λ^h) les solutions respectives des problèmes (1.76) et (1.78), on suppose que les conditions (1.79) sont satisfaites. Alors il existe une constante C > 0 indépendant de \overline{V}^h et \overline{W}^h telle que

$$\left\| u - u^h \right\| \leqslant C(\inf_{v^h \in V_0^h} \left\| u - v^h \right\|_V + \sup_{v^h \in V_0^h, v^h \neq 0} \frac{\left| a(u, v^h) - l(v^h) \right|}{\|v^h\|_V}),$$

ou

(1.80)
$$\left\| u - u^h \right\| \leq C(\inf_{v^h \in V_0^h} \left\| u - v^h \right\|_V + \inf_{\mu^h \in W^h} \left\| \lambda - \mu^h \right\|_W).$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Remark 1.5.9. Le terme $\sup_{v^h \in V_0^h, v^h \neq 0} \frac{|a(u,v^h) - l(v^h)|}{\|v^h\|_V}$ est appelé une erreur de consistence.

Proposition 1.5.10. On suppose que les conditions (1.79) sont satisfaites et on suppose que les espaces $\{V_0^h\}$ et $\{W_0^h\}$ sont respectivement denses dans V^0 et $L^2(\Gamma_D)$, lorsque $h \longrightarrow 0^+$. Alors

$$u^h \longrightarrow u \qquad et \ V$$

où u et u^h sont la première composante respective du problème (1.76) et (1.78).

Pour pouvoir estimer la convergence de cette méthode, on doit estimer le premier terme du second membre de l'inégalité (1.80). Pour des raisons de simplification, on va considérer que le problème initial à une unique condition aux bords de type Dirichlet homogène ($\Gamma_D = \Gamma$) et que la solution u est dans $H^{1+\frac{1}{2}+\varepsilon}(\widetilde{\Omega}) \cap H^1_0(\widetilde{\Omega})$ avec $\varepsilon > 0$. De plus, on définit Ω_{δ} pour un δ donné

$$\Omega_{\delta} = \{ x \in \Omega \mid \operatorname{dist}(x, \Gamma) > \delta \}.$$

On définit ainsi la fonction η_h cut-off, pour pouvoir ainsi faire l'estimation, par

$$\eta_h = \begin{cases} 1 & \operatorname{dans} \widetilde{\Omega} \backslash \Omega_{2h}, \\ 0 & \operatorname{dans} \Omega_{3h}. \end{cases} \quad \text{et} \quad \left\| \nabla^j \eta_h \right\|_{\mathscr{C}(\overline{\widetilde{\Omega}})} \leqslant \frac{C}{h^j}, \ j = 1, 2 \ \operatorname{dans} \Omega_{2h} \backslash \Omega_{3h}. \end{cases}$$

On décompose u en

$$u = \eta_h u + (1 - \eta_h)u.$$

On a donc

$$\|\eta_h u\|_V^2 = \|u\|_{1,\tilde{\Omega}\setminus\Omega_{2h}}^2 + \|\eta_h u\|_{1,\Omega_{2h}\setminus\Omega_{3h}}^2$$

On en déduit que

$$\|\eta_h u\|_V \leqslant C\sqrt{h}, \ h \longrightarrow 0^+$$

Proposition 1.5.11. On suppose que les conditions (1.79) sont satisfaites et que l'on a

$$\inf_{\mu^h \in W^h} \left\| \lambda - \mu^h \right\|_W \leqslant Ch^{\beta}, \qquad pour \ certain \ \beta \geqslant \frac{1}{2}.$$

Soit u, la solution de (1.75) avec $\Gamma = \Gamma_D$ telle que $u \in H^{1+\frac{1}{2}+\varepsilon}(\widetilde{\Omega}) \cap H^1_0(\widetilde{\Omega})$ avec $\varepsilon > 0$. Alors

$$\left\| u - u^h \right\|_V \leq C\sqrt{h}, \qquad h \longrightarrow 0^+.$$

Le taux de convergence obtenu est bien $\frac{1}{2}$, afin de dépasser cette limite, une technique de stabilisation est proposée dans [28].

1.5.2.4 Stabilisation

Afin de définir un terme de stabilisation du type introduit par H.J.C. Barbosa et T.J.R. Hughes dans [62], on suppose l'existence d'un opérateur

$$R^h: V^h \longrightarrow L^2(\Gamma_D),$$

qui sera défini de telle manière à être une approximation de la dérivée normale sur Γ_D . On suppose que l'on a l'estimation suivante

(1.81)
$$h^{\frac{1}{2}} \left\| R^{h}(v^{h}) \right\|_{0,\Gamma_{D}} \leqslant \left\| \nabla v^{h} \right\|_{0,\Omega} \quad \forall v^{h} \in V^{h}, \ \forall h > 0.$$

Afin d'obtenir un problème stabilisé, on remplace le Lagrangien (1.77) par

(1.82)
$$\mathcal{L}_h(v^h, \mu^h) = \mathcal{L}(v^h, \mu^h) - \frac{\gamma}{2} \int_{\Gamma_D} (\mu^h + R^h(v^h))^2 \mathrm{d}\Gamma \qquad \forall v^h \in V^h, \ \forall \mu^h \in W^h.$$

où γ est linéairement indépendant de $h, \gamma = h\gamma_0$. Ainsi le problème discret correspondant est

(1.83) trouver
$$u^h \in V^h$$
, $\lambda^h \in W^h$ tel que

$$a(u^h, v^h) + \int_{\Gamma_D} \lambda^h v^h \, d\Gamma - \gamma \int_{\Gamma_D} (\lambda^h + R^h(u^h)) R^h(v^h) d\Gamma = l(v^h) \qquad \forall v^h \in V^h,$$

$$\int_{\Gamma_D} \mu^h u^h \, d\Gamma - \gamma \int_{\Gamma_D} (\lambda^h + R^h(u^h)) \mu^h d\Gamma = 0 \qquad \forall \mu^h \in W^h.$$

On définit la forme bilinéaire $\mathcal{B}_h : (V^h \times W^h)^2 \longrightarrow \mathbb{R}$ par

$$\mathcal{B}_{h}(u^{h},\lambda^{h};v^{h},\mu^{h}) := a(u^{h},v^{h}) + \int_{\Gamma_{D}} \lambda^{h}v^{h} \, \mathrm{d}\Gamma + \int_{\Gamma_{D}} \mu^{h}u^{h} \, \mathrm{d}\Gamma - \gamma \int_{\Gamma_{D}} (\lambda^{h} + R^{h}(u^{h}))(\mu^{h} + R^{h}(v^{h})) \mathrm{d}\Gamma$$

On a ainsi le problème équivalent suivant

(1.84)
$$\begin{cases} \text{trouver } u^h \in V^h, \ \lambda^h \in W^h \text{ tel que} \\ \mathcal{B}_h(u^h, \lambda^h; v^h, \mu^h) = l(v^h) \quad \forall (v^h, \mu^h) \in V^h \times W^h. \end{cases}$$

Ce problème est bien consistant, au sens où, si (u, λ) est une solution de (1.76) alors

$$\overline{\mathcal{B}}_h(u,\lambda;v^h,\mu^h) = l(v^h) \qquad \forall v^h \in V^h, \ \forall \mu^h \in W^h.$$

On a $\lambda \in L^2(\Gamma_D)$ avec $\overline{\mathcal{B}}_h$ définie comme \mathcal{B}_h en remplaçant $R^h(u)$ par $\partial_n u$. On pose P^h : $L^2(\Gamma_D) \longrightarrow W^h$, une projection de L^2 sur W^h . Afin d'obtenir des propriétés d'approximation de W^h , on suppose qu'il existe C > 0 une constante indépendante de h telle que

(1.85)
$$\left\| P^{h}v - v \right\|_{0,\Gamma_{D}} \leq Ch^{\frac{1}{2}} \left\| v \right\|_{1/2,\Gamma_{D}} \quad v \in H^{1/2}(\Gamma_{D}).$$

Lemma 1.5.12. Sous les hypothèses (1.79), (1.81) et (1.85), alors pour $\gamma_0 > 0$ suffisamment petit, il existe une constante C > 0 indépendant de h telle que

(1.86)
$$\sup_{(0,0)\neq(z^{h},\eta^{h})\in V^{h}\times W^{h}} \frac{\mathcal{B}_{h}(v^{h},\mu^{h};z^{h},eta^{h})}{|||(z^{h},\eta^{h})|||} \ge C \left| \left\| (v^{h},\mu^{h}) \right\| \right|$$

avec $\left| \left\| (z^{h}, \eta^{h}) \right\| \right| := \left\| z^{h} \right\|_{V}^{2} + h^{-1} \left\| z^{h} \right\|_{0, \Gamma_{D}}^{2} + h \left\| \eta^{h} \right\|_{0, \Gamma_{D}}^{2}.$

Theorem 1.5.13. On suppose les conditions (1.79), (1.81) et (1.85) satisfaites et soit $\gamma_0 > 0$ suffisamment petit. Si (u, v) est la solution de (1.76) tel que $\lambda \in L^2(\Gamma_D)$ alors il existe une constante C > 0 indépendant de h et (u^h, λ^h) telle que

$$\left| \left\| (u-u^h,\lambda-\lambda^h) \right\| \right| \leqslant C \inf_{v^h \in V^h, \mu^h \in W^h} \left(\left\| \left\| (u-v^h,\lambda-\mu^h) \right\| \right\| + h^{\frac{1}{2}} \left\| R^h(v^h) - \partial_n u \right\|_{0,\Gamma_D} \right)$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Dans la suite, on va introduire des espaces d'éléments finis standard, pour pouvoir établir une estimation d'erreur a priori optimale.

$$\widetilde{V}^{h} = \{ v^{h} \in \mathscr{C}(\overline{\Omega}) \mid v^{h}|_{T} \in P_{k_{u}}(T), \ \forall T \in T^{h} \} \qquad k_{u} \ge 1,$$
$$\widetilde{W}^{h} = \{ \mu^{h} \in L^{2}(\overline{\Omega}) \mid \mu^{h}|_{T} \in P_{k_{\lambda}}(T), \ \forall T \in T^{h} \} \qquad k_{\lambda} \ge 0.$$

Pour pouvoir estimer les termes d bord, on a besoin que l'estimation suivante soit satisfaite quelque soit $T \in T^h$ et $w \in H^1(T)$, pour Γ_D suffisamment régulière :

$$\|w\|_{0,\Gamma_D\cap T}^2 \leqslant C(h^{-1} \|w\|_{0,T}^2 + h \|w\|_{1,T}^2).$$

On définit $k = \min(k_u, k_\lambda + 1)$ et on considère les deux opérateurs d'extension continus :

$$T_u^k : H^{k+1}(\widetilde{\Omega}) \longrightarrow H^{k+1}(\Omega),$$
$$T_\lambda^k : H^{k-1/2}(\Gamma_D) \longrightarrow H^k(\Omega).$$

On peut définir ainsi les opérateurs d'interpolation de Lagrange pour des polynômes de degré inférieur ou égal à k suivants :

$$\widetilde{\Pi}_{u}^{k,h}(v) := \Pi^{k,h}(T_{u}^{k}(v)) \qquad \forall v \in H^{k+1}(\widetilde{\Omega}),$$
$$\widetilde{\Pi}_{\lambda}^{k,h}(\mu) := \Pi^{k-1,h}(T_{\lambda}^{k}(\mu)) \qquad \forall \mu \in H^{k-1/2}(\Gamma_{D}).$$

On a les inégalités suivantes :

$$\begin{split} \left\| \widetilde{\Pi}_{u}^{k,h}(v) - v \right\|_{V} \leqslant Ch^{k} \left\| v \right\|_{k+1,\widetilde{\Omega}} & \forall v \in H^{k+1}(\widetilde{\Omega}), \\ \\ \left\| \widetilde{\Pi}_{\lambda}^{k,h}(\mu) - \mu \right\|_{0,\Gamma_{D}} \leqslant Ch^{k-1/2} \left\| \mu \right\|_{k-1/2,\Gamma_{D}} & \forall \mu \in H^{k-1/2}(\Gamma_{D}). \end{split}$$

Et on suppose la propriété d'approximation suivante de \mathbb{R}^h

(1.87)
$$\left\| R^{h}(\widetilde{\Pi}_{u}^{k,h}(v)) - \partial_{n}v \right\|_{0,\Gamma_{D}} \leqslant Ch^{k-1/2} \left\| v \right\|_{k+1,\widetilde{\Omega}} \quad \forall v \in H^{k+1}(\widetilde{\Omega}).$$

On obtient donc le théorème suivant.

Theorem 1.5.14. Soit \widetilde{V}^h et \widetilde{W}^h qui sont définis précédemment, soit (u, λ) la solution de (1.76) avec $u \in H^{k+1}(\widetilde{\Omega})$ et $\lambda \in H^{k-1/2}(\Gamma_D)$ pour $k = \min(k_u, k_\lambda + 1)$. On suppose que les conditions (1.81) et (1.87) sur \mathbb{R}^h sont satisfaites. Alors on a

$$\left| \left| \left| (u - u^{h}, \lambda - \lambda^{h}) \right| \right| \leq Ch^{k} \left\| u \right\|_{k+1, \widetilde{\Omega}}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

1.5.2.5 Définition de R^h

Un choix naturel de \mathbb{R}^h est

$$R^h(v^h) = \partial_n v^h \operatorname{sur} \Gamma_D.$$

Mais ce choix ne vérifie pas les conditions (1.81) et (1.87) pour tout domaine réel. Un exemple de construction d'opérateur R^h qui vérifie ces conditions peut-être décrite de la manière suivante (exemple donné dans l'article [28]). C'est une construction locale et simple à implémenter. On note $T = \tau(\hat{T})$ pour tout $T \in T^h$ et \hat{T} , un élément de référence.

Soit $\tilde{\rho} > 0$, un rayon qui est donné et qui est suffisamment petit. Pour chaque élément $T \in T^h$ tel que $T \cap \Omega \neq \emptyset$, on désignera par T' soit l'élément T s'il existe une boule $B(x, \tilde{\rho}) \subset \tau_T^{-1}(T \cap \Omega)$ $(T \text{ est un "bon" élément) soit un élément voisin de T vérifiant cette propriété si T ne le satisfait$ pas <math>(T est un mauvais élément) (voir FIGURE 1.10). On définit R^h égal à $\partial_n \overline{v}_{T'T}^h$ où $\overline{v}_{T'T}^h$ est

FIGURE 1.10 – exemple de "bon" et de "mauvais" éléments.

soit $v^h|_T$ si T' = T soit l'extension de $v^h|_{T'}$ sur T si $T' \neq T$. On a alors le lemme suivant.

Lemma 1.5.15. On pose $R^h(v^h) = \partial_n \overline{v}^h_{T',T}$ sur Γ_D . Alors les conditions sur R^h (1.81) et (1.87) sont satisfaites.

1.5.2.6 Conclusion

Cette méthode stabilisée est une méthode qui a un ordre de convergence optimal. Dans l'article [28], des résultats numériques l'ont confirmé. De plus, la définition d'une approximation de la dérivée normale n'ajoute pas un surcoût de calcul et la méthode est exempte de paramètre de stabilisation difficile à évaluer. La paramètre γ de la méthode est un paramètre d'augmentation dont la valeur influe peu sur la solution. Le deuxième paramètre de la méthode qui est le seuil en deçà duquel un élément est considéré comme ayant une intersection trop petite avec le domaine réel, peut être choisi indépendamment du problème considéré.

1.5.3 Une méthode de Nitsche stabilisée

Soit toujours Ω un domaine borné polygonal et convexe ou suffisamment régulier de \mathbb{R}^2 . On définit Γ sa frontière et n_{Γ} la normale unitaire sortante. On souhaite résoudre une équation de Poisson avec des conditions aux bords de type Dirichlet et Neumann. Soient $f \in L^2(\Omega)$,

 $g_D\in H^{\frac{3}{2}}(\Gamma_D)$ et $g_N\in H^{\frac{1}{2}}(\Gamma_N)$, on veut trouver $u\in H^2(\Omega)$ tel que

(1.88)
$$\begin{cases} -\Delta u = f & \text{dans } \Omega, \\ u = g_D & \text{sur } \Gamma_D, \\ n_{\Gamma} \cdot \nabla u = g_N & \text{sur } \Gamma_N. \end{cases}$$

où $\Gamma = \Gamma_D \cup \Gamma_N$. On définit

$$V_g = \{ v \ H^1(\Omega) : v_{|\Gamma_D} = g_D \}$$

Sous l'hypothèse que (1.88) à une unique solution $u \in H^1(\Omega) \cap H^2(\Omega)$,

$$||u||_{1,\Omega} \leq C(||f||_{0,\Omega} + ||g_D||_{\frac{3}{2},\Gamma_D} + ||g_N||_{\frac{1}{2},\Gamma_N}).$$

La formulation variationnelle associée à (1.88) est

(1.89)
$$\begin{cases} \text{trouver } u \in V_g \text{ tel que} \\ \int_{\Omega} \nabla u . \nabla v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x + \langle g_N, v \rangle_{\Gamma_N} \quad \forall v \in V_0. \end{cases}$$

On introduit de la même manière T^h une triangulation quasi-uniforme. On définit ainsi le saut de gradient de v^h à travers une face $F = K \cap K'$ par

$$[\nabla v_h] = n_F . \nabla v_h|_K - n_F . \nabla v_h|_{K'}.$$

On définit l'espace de discrétisation de dimension finie

$$V_h = \{ v_h \in \mathscr{C}(\Omega_T) \mid v_{h \mid K} \in P_1(K), \ \forall K \in T^h \}.$$

L'approximation de la formulation variationnelle (1.89) s'écrit alors

(1.90)
$$\begin{cases} \text{trouver } u_h \in V_h \text{ tel que} \\ A(u_h, v_h) = L(v_h) \quad \forall v_h = \in V^h, \end{cases}$$

où

$$A(u_h, v_h) = a_h(u_h, v_h) + j(u_h, v_h),$$

$$\begin{aligned} a_h(u_h, v_h) &= \int_{\Omega} \nabla u_h . \nabla v_h \mathrm{d}x - \langle n_{\Gamma} . \nabla u_h, v_h \rangle_{\Gamma_D} - \langle n_{\Gamma} . \nabla v_h, u_h \rangle_{\Gamma_D} \\ &+ \langle \gamma_D h^{-1} u_h, v_h \rangle_{\Gamma_D} + \langle \gamma_N h n_{\Gamma} . \nabla u_h, n_{\Gamma} . \nabla v_h \rangle_{\Gamma_N} , \end{aligned}$$
$$L(v_h) &= \int_{\Omega} f v_h \mathrm{d}x + \langle g_D, \gamma_D h^{-1} v_h - n_{\Gamma} . \nabla v_h \rangle_{\Gamma_D} + \langle g_N, v_h + \gamma_N h n_{\Gamma} . \nabla v_h \rangle_{\Gamma_N} , \end{aligned}$$

$$j(u_h, v_h) = \sum_{F \in \mathbf{F}_G} \langle \gamma_1 h[\nabla u_h], [\nabla v_h] \rangle_F$$

avec $\gamma_1, \gamma_D, \gamma_N$ paramètres de stabilisation positif.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Lemma 1.5.16 (Orthogonalité de Galerkin). Soient u solution de (1.88), u_h solution de (1.90) alors

$$a_h(u_h - u, v_h) = -j(u_h, v_h) \qquad \forall v_h \in V_h.$$

On définit les normes suivante, pour pouvoir vérifier les propriétés d'approximation,

$$\begin{split} |\|v\||_{*}^{2} &= \|\nabla v\|_{0,\Omega}^{2} + \|n_{\Gamma} \cdot \nabla v\|_{-\frac{1}{2},h,\Gamma}^{2} + \left\|\gamma_{D}^{\frac{1}{2}}v\right\|_{\frac{1}{2},h,\Gamma_{D}}^{2}, \\ \|v\||_{h}^{2} &= \|\nabla v\|_{0,\Omega_{T}}^{2} + \left\|\gamma_{N}^{\frac{1}{2}}n_{\Gamma} \cdot \nabla v\right\|_{-\frac{1}{2},h,\Gamma_{N}}^{2} + \left\|\gamma_{D}^{\frac{1}{2}}v\right\|_{\frac{1}{2},h,\Gamma_{D}}^{2} + j(v,v). \end{split}$$

On utilise une extension de H^2 sur Ω_T définit dans [58], $E: H^2(\Omega) \to H^2(\Omega_T)$ tel que $||Eu||_{2,\Omega_T} \leq C ||u||_{2,\Omega}$ et l'operateur d'interpolation du type Clément $I^*: H^1(\Omega) \to V^h$ définit $I^*u = C_h Eu$ avec $C_h: H^1(T_h) \to V^h$.

On peut enfin regarder les résultats d'approximation nécessaire pour l'analyse de convergence.

Lemma 1.5.17. Pour tout $u \in H^2(\Omega)$

$$\begin{split} |||Eu - I^*u|||_h &\leq Ch |u|_{2,\Omega} \,, \\ |||u - I^*u|||_* + j(I^*u, I^*u) &\leq Ch |u|_{2,\Omega} \,, \\ ||u - I^*u||_{1,h} &\leq Ch |u|_{2,\Omega} \,. \end{split}$$

Theorem 1.5.18 (Estimation de l'erreur en norme H^1). Supposons que $u \in H^2(\Omega)$ est la solution de (1.88) et $u_h \in V_h$ la solution de (1.90) alors

$$|||u - u_h|||_* \leq C_{fg}h.$$

Lemma 1.5.19 (Estimation de l'erreur en norme L^2). Supposons que $u \in H^2(\Omega)$ est la solution de (1.88) et $u_h \in V_h$ la solution de (1.90) alors

$$\|u - u_h\| \leqslant C_{fg}h^2.$$

1.5.3.1 Conclusion

L'estimation d'erreur a priori obtenue pour cette méthode est optimale. Des termes de stabilisation sont nécessaires pour garantir la bonne convergence de la méthode. Comme dans la première méthode d'éléments coupés présentée, la stabilisation proposée ici est de type pénalisation du saut du gradient à la traversée des éléments. Ceci implique un choix qui peut être délicat de la valeur du paramètre de pénalisation. Bien sûr, on peut adapter dans ce cadre la stabilisation présentée dans la deuxième méthode à éléments coupés qui consiste à utiliser une extension de l'inconnue sur un élément convenable pour les éléments ayant une intersection trop petite avec le domaine réel.

Problème unilatéral de contact

Le problème unilatéral de contact sans frottement a été introduit par A. Signorini en 1959 dans [1]. G. Fichera obtenu la formulation variationnelle de ce problème en 1963 dans [2]. Les premiers résultats d'unicité du problème ont été introduits par Duvaut et Lions en 1972 dans [3], ils ont de plus introduit une première approximation du frottement, le frottement de Tresca. On doit le premier résultat d'unicité du problème de contact unilatéral avec frottement à l'article [4]. Un premier critère d'unicité pour l'extension au frottement de Coulomb a été démontré par Y. Renard en 2006 dans [6].

Pour une synthèse du problème de contact unilatéral entre un corps élastique et un obstacle rigide se reporter aux travaux [9, 10].

Sommaire

2.1	problème unilatéral sans frottement	48
2.2	formulation variationnelle	52
2.3	différents types de frottement	53

2.1 problème unilatéral sans frottement

Dans cette section, on considère le cadre général d'un problème statique de contact unilatéral sans frottement de deux corps élastiques (voir exemple Figure 2.1). On considère Ω_i , $1 \leq i \leq 2$, deux domaines pouvant se chevaucher inclus dans \mathbb{R}^d , d = 2, 3. Ils représentent la configuration de référence de deux corps élastiques en contact. Le bord Γ_1 de Ω_1 (respectivement Γ_2 de Ω_2) est divisé en trois parts distinctes : $\Gamma_{1,C}$ la zone potentielle de contact de mesure non nulle (respectivement $\Gamma_{2,C}$), $\Gamma_{1,N}$ le bord de Neumann (respectivement $\Gamma_{2,N}$) et $\Gamma_{1,D}$ le bord de Dirichlet de mesure non nulle (respectivement $\Gamma_{2,D}$).

Les deux corps sont soumis à une force volumique $f = (f_1, f_2) \in (L^2(\Omega_1))^d \times (L^2(\Omega_2))^d$ sur $\Omega_1 \times \Omega_2$, une charge surfacique $\ell = (\ell_1, \ell_2) \in (H^{-1/2}(\Gamma_{1,N}))^d \times (H^{-1/2}(\Gamma_{1,N}))^d$ sur $\Gamma_{1,N} \times \Gamma_{2,N}$ et satisfont une condition de type Dirichlet non homogène sur $\Gamma_{1,D} \times \Gamma_{2,D}$, de déplacement imposé $u_D = (u_{1,D}, u_{2,D}) \in (H^{3/2}(\Gamma_{3,N}))^d \times (H^{3/2}(\Gamma_{1,N}))^d$ donné.

On se place dans le cadre des petits déplacements et des petites déformations élastiques pour les deux corps. Le tenseur linéaire des déformations est donné par $\varepsilon(v) = \frac{1}{2}(\nabla v + \nabla v^T)$ et le tenseur des contraintes $\sigma = (\sigma_{ij})_{1 \leq i,j \leq 2}$ est donné par $\sigma(v) = A\varepsilon(v)$ où A est le tenseur d'orde quatre symétrique vérifiant les hypothèses usuelles d'ellipticité uniforme, les éléments de ce tenseur étant bornés. Pour un matériau homogène isotrope la loi de Hooke s'écrit $\sigma = 2\mu\varepsilon + \lambda \operatorname{tr}(\varepsilon)I$ avec $\lambda, \ \mu > 0$ les cœfficients Lamé, tr la trace et I le tenseur identité. On peut aussi utiliser

FIGURE 2.1 – Exemple de problème de contact unilatéral entre deux corps élastiques.

l'expression définie à l'aide du module de Young E>0 et du coefficient de poisson $1/2>\nu>0$ en utilisant

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \quad \text{et} \quad \mu = \frac{E}{2(1+\nu)},$$
$$E = \frac{\mu(3\lambda+2\mu)}{(\lambda+\mu)} \quad \text{et} \quad \nu = \frac{\lambda}{2(\lambda+\mu)}.$$

et inversement

Par conséquence, le déplacement
$$(u_1, u_2)$$
 sur $\Omega_1 \times \Omega_2$ satisfait les équations d'équilibre et aux
limites (les conditions de contact seront décrites ultérieurement) suivantes :

(2.1)
$$\begin{cases} \text{Trouver } u = (u_1, u_2) \text{ satisfait} \\ -\text{div}\sigma(u_i) = f_i & \text{dans} & \Omega_i, \\ \sigma(u_i) = A\varepsilon(u_i) & \text{dans} & \Omega_i, \\ u_i = u_{i,D} & \text{sur} & \Gamma_{i,D}, \\ \sigma(u_i)n_i = \ell_i & \text{sur} & \Gamma_{i,N}. \end{cases}$$

Pour définir les conditions de contact sur les zones potentielles de contacts $\Gamma_{i,C}$, on définit Π la projection orthogonale du bord esclave $\Gamma_{1,C}$ sur le bord maître $\Gamma_{2,C}$ (voir Figure 2.2) :

(2.2)
$$\Pi: \begin{array}{ccc} \Gamma_{1,C} & \to & \Gamma_{2,C} \\ x & \mapsto & \Pi(x) \end{array}$$

Afin de simplifier l'analyse mathématique, l'opérateur Π est supposé une bijection sur $\Pi(\Gamma_{1,C})$ de classe \mathscr{C}^1 (Par exemple, dans le cas de deux corps convexes de régularité \mathscr{C}^1). On définit de même la normale unitaire extérieure n au bord maître $\Gamma_{2,C}$:

$$n: \begin{array}{ccc} \Gamma_{1,C} & \to & \mathbb{R}^d \\ x & \mapsto & n_2(\Pi(x)). \end{array}$$

FIGURE 2.2 – Exemple illustrant la projection orthogonale Π entre les deux corps élastiques.

On définit aussi la fonction distance g entre les deux corps par :

$$g: \begin{array}{ccc} \Gamma_{1,C} & \to & \mathbb{R} \\ x & \mapsto & (x - \Pi(x)) \cdot n. \end{array}$$

Soit (v_1, v_2) un déplacement défini sur $\Omega_1 \times \Omega_2$, on définit le saut normal par :

$$\llbracket v \cdot n \rrbracket = (v_2 \circ \Pi - v_1) \cdot n.$$

La partie normale et tangentielle du déplacement est définie par :

$$v_1 = -v_{1,n}n + v_{1,t}$$
 avec $v_{1,n} = -v_1 \cdot n$

 et

 $v_2 \circ \Pi = v_{2,n}n + v_{2,t}$ avec $v_{2,n} = v_2 \circ \Pi \cdot n_2 \circ \Pi$.

La contrainte normale est définie par :

$$\sigma(v_1)n_1 = -\sigma_n(v_1)n + \sigma_t(v_1) \qquad \text{avec } \sigma_n(v_1) = -\sigma(v_1)n_1 \cdot n$$

 et

$$\sigma(v_2 \circ \Pi) n_2 \circ \Pi = \sigma_n(v_2 \circ \Pi) n + \sigma_t(v_2 \circ \Pi) \qquad \text{avec } \sigma_n(v_2 \circ \Pi) = \sigma(v_2 \circ \Pi) n_2 \circ \Pi \cdot n.$$

On définit ainsi le saut de la contrainte normale à travers la zone potentielle de contact par :

$$\llbracket \sigma(u)n \rrbracket = \sigma(u_1)n_1 + \sigma(u_2 \circ \Pi)n_2 \circ \Pi |\det(J_{\Pi})|,$$

avec J_{Π} la matrice jacobienne de Π . Cette expression provient de la seconde loi de Newton (le principe d'action-réaction) définit sur une surface élémentaire arbitraire (voir Figure 2.3) :

$$\forall \omega \subset \Gamma_{1,C}, \qquad \int_{\omega} \sigma(u_1) n_1 \, \mathrm{d}\Gamma = -\int_{\Pi(\omega)} \sigma(u_2) n_2 \mathrm{d}\Gamma = -\int_{\omega} \sigma(u_2 \circ \Pi) n_2 \circ \Pi \, \left| \det(J_{\Pi}) \right| \mathrm{d}\Gamma.$$

FIGURE 2.3 – Exemple illustrant le principe d'action-réaction entre les deux corps élastiques.

Les conditions de contact unilatéral sans frottement s'écrivent sur le bord $\Gamma_{1,C}$:

(2.3)
$$\begin{cases} \llbracket u \cdot n \rrbracket \leqslant g & (i), \\ \sigma_n(u_1) \leqslant 0 & (ii), \\ \sigma_n(u_1)(\llbracket u \cdot n \rrbracket - g) = 0 & (iii), \\ \llbracket \sigma(u)n \rrbracket = 0 & (iv), \\ \sigma_t(u_1) = 0 & (v). \end{cases}$$

Les conditions (i) - (iii) sont appelées relations de complémentarité. Elle empêche l'interpénétration des deux corps. Lorsqu'on a contact $\llbracket u \cdot n \rrbracket - g = 0$, le corps se déforme, subit une force de contrainte $\sigma_n(u_1) \leq 0$. La non-linéarité de ces conditions peut-être visualisée dans le graphe 2.4. La condition (iv) exprime le principe d'action-réaction. La condition (v) signifie qu'il n'y a pas de force tangentielle dans la zone de contact, c'est-à-dire que le contact s'effectue sans frottement.

Remark 2.1.1. En séparant la partie normale et tangentielle de la condition (iv), on obtient :

$$\sigma_n(u_1)n = \sigma_n(u_2 \circ \Pi)n |det(J_{\Pi})| \quad et \quad \sigma_t(u_1) = -\sigma_t(u_2 \circ \Pi) |det(J_{\Pi})|$$

Un résultat classique et important est l'inégalité de Korn (voir [3])

Theorem 2.1.2. Soit Ω un domaine régulier borné de \mathbb{R}^d de classe \mathscr{C}^1 . Il existe une constant C > 0 dépendant seulement de Ω telle que quelque soit $v \in (H^1(\Omega))^d$, on a :

$$\|v\|_{1,\Omega}^2 \leqslant C\left(\int_{\Omega} \varepsilon(v) \colon \varepsilon(v) + \|v\|_{0,\Omega}^2\right).$$

FIGURE 2.4 – Graphique des conditions de complémentarité.

2.2 formulation variationnelle

On introduit, tout d'abord, l'espace de Hilbert V et le cône convexe des déplacements admissibles :

$$V = H^1(\Omega_1)^d \times H^1(\Omega_2)^d,$$

 $K = \{ v = (v_1, v_2) \in V \mid v_1 = u_{1,D} \text{ on } \Gamma_{1,D} \text{ and } v_2 = u_{2,D} \text{ on } \Gamma_{2,D} \mid [\![v \cdot n]\!] - g \leqslant 0 \text{ on } \Gamma_{1,C} \}.$

Remark 2.2.1. On doit vérifier que K est bien un cône. Soient $v, w \in K$ et $\alpha \in [0, 1]$,

$$\begin{split} \llbracket (\alpha v + (1 - \alpha)w) \cdot n \rrbracket &= \alpha \llbracket v \cdot n \rrbracket + (1 - \alpha) \llbracket w \cdot n \rrbracket \\ &\leqslant \alpha g + (1 - \alpha)g \\ &\leqslant g \end{split}$$

 $d'o\dot{u} \alpha v + (1-\alpha)w \in K.$

Pour la suite, on cherche une formulation faible de (2.1). Soit u suffisamment régulière (par exemple, $u \in (H^{3/2+\nu}(\Omega_1))^d \times H^{3/2+\nu}(\Omega_2))^d$) la solution de (2.1) :

$$-\sum_{i=1,2} \int_{\Omega} \operatorname{div} \sigma(u_i) v_i \, \mathrm{d}\Omega = \sum_{i=1,2} \int_{\Omega} f_i v_i \, \mathrm{d}\Omega \qquad \forall v \in V$$

or en utilisant la formule de Green :

$$-\sum_{i=1,2} \int_{\Omega_i} \operatorname{div} \sigma(u_i) v_i \, \mathrm{d}\Omega = \sum_{i=1,2} \int_{\Omega_i} \sigma(u_i) : \varepsilon(v_i) \, \mathrm{d}\Omega - \int_{\Gamma_i} \sigma(u_i) n_i \cdot v_i \, \mathrm{d}\Gamma \qquad \forall v \in V \text{ et } i = 1, 2,$$

avec

$$-\int_{\Gamma_{i}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma = -\int_{\Gamma_{i,D}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma - \int_{\Gamma_{i,N}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma - \int_{\Gamma_{i,C}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma \qquad \forall v \in V \text{ et } i = 1, 2,$$
$$-\int_{\Gamma_{i}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma = -\int_{\Gamma_{i,D}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma - \int_{\Gamma_{i,N}} \ell_{i}v_{i} \,\mathrm{d}\Gamma - \int_{\Gamma_{i,C}} \sigma(u_{i})n_{i} \cdot v_{i} \,\mathrm{d}\Gamma \qquad \forall v \in V \text{ et } i = 1, 2,$$

d'où

$$-\sum_{i=1,2} \int_{\Omega} \operatorname{div}\sigma(u_{i})v_{i} \, \mathrm{d}\Omega = \sum_{i=1,2} \int_{\Omega_{i}} \sigma(u_{i}) : \varepsilon(v_{i}) \, \mathrm{d}\Omega - \sum_{i=1,2} \int_{\Gamma_{i,N}} \ell_{i}v_{i} \, \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,C}} \sigma(u_{i})n_{i} \cdot n \, \mathrm{d}\Gamma \\ - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_{i})n_{i} \cdot n \, \mathrm{d}\Gamma \quad \forall v \in V$$

On définit les formes bilinéaire et linéaire pour $v, w \in V$ suivante :

$$a(v,w) = \sum_{i=1,2} \int_{\Omega_i} \sigma(v_i) : \varepsilon(w_i) \, \mathrm{d}\Omega, \quad L(w) = \sum_{i=1,2} \int_{\Omega_i} f_i w_i \, \mathrm{d}\Omega + \sum_{i=1,2} \int_{\Gamma_{i,N}} \ell_i w_i \, \mathrm{d}\Gamma.$$

En utilisant le principe d'action-réaction et la définition des formes bilinéaire et linéaire, il vient :

(2.4)
$$a(u,v) - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i \, \mathrm{d}\Gamma - \int_{\Gamma_{1,C}} \sigma_n(u_1) \llbracket v \cdot n \rrbracket \, \mathrm{d}\Gamma = L(v) \qquad \forall v \in V.$$

La formulation variationnelle du problème (2.1)-(2.3) comme inégalité variationnelle

(2.5)
$$\begin{cases} \text{Trouver } u \in K \text{ tel que} \\ a(u, v - u) \ge L(v - u) \qquad \forall v \in K \end{cases}$$

Le théorème de Stampacchia assure que le problème (2.5) (voir [4]) admet une unique solution. De plus, en utilisant l'inégalité de Korn, la solution unique du cône connexe des déplacements admissibles admet une dépendance de (f, ℓ) , c'est-à-dire qu'il existe une constante C > 0 dépendant de Ω_1 et Ω_2 telle que

$$\sum_{i=1,2} \|u_i\|_{i,\Omega_i} \leqslant C\left(\sum_{i=1,2} \|f_i\|_{0,\Omega_i} + \sum_{i=1,2} \|\ell_i\|_{-1/2,\Gamma_{i,N}}\right).$$

Dans le chapitre suivant, le même travail sera effectué dans le cadre du domaine fictif. On obtient facilement les mêmes résultats notamment la forme faible 2.4 du problème de contact unilatéral sans frottement. Dans le cadre sans domaine fictif, sans perdre en généralité, on considère que la condition de type Dirichlet est homogène alors que dans le cadre de domaine fictif, pour être cohérent avec notre méthode un traitement spécifique sera apporté à cette condition.

2.3 différents types de frottement

Frottement de Tresca

On définit, afin de faciliter l'écriture, le saut du déplacement par :

$$\llbracket u_t \rrbracket = u_{1,t} - u_{2,t}.$$

La condition de frottement de Tressa sur le bord esclave $\Gamma_{1,C}$ s'écrit :

$$\begin{cases} |\sigma_t(u_1)| \leq s & \text{presque partout,} \\ \text{Si } \llbracket u_t \rrbracket = 0 & \text{alors } |\sigma_t(u_1)| < s, \\ \text{Si } \llbracket u_t \rrbracket \neq 0 & \text{alors } \sigma_t(u_1) = -s \frac{\llbracket u_t \rrbracket}{\llbracket \llbracket u_t \rrbracket}, \end{cases}$$

FIGURE 2.5 – Graphique des conditions de Tressa.

On définit un seuil s qui ne peut dépasser l'effort de frottement. Au delà de ce seuil, un glissement tangentiel est alors considéré proportionnel et opposé à l'effort tangentiel.

Sur la Figure 2.5 à droite, on peut observer le domaine d'admissibilité de la loi de Tresca. . Frottement de Coulomb

La condition de frottement de Coulomb (1785) sur le bord esclave $\Gamma_{1,C}$ s'écrit :

ſ	$\left \sigma_t(u_1)\right \leqslant -\mathbf{F}\sigma_n(u_1)$	presque partout,
ł	Si $\llbracket u_t \rrbracket = 0$	alors $ \sigma_t(u_1) < -\mathbf{F}\sigma_n(u_1),$
	Si $\llbracket u_t \rrbracket \neq 0$	alors $\sigma_t(u_1) = \mathbf{F}\sigma_n(u_1) \frac{\llbracket u_t \rrbracket}{[\llbracket u_t \rrbracket]}$

A la différence du frottement de Tresca, le seuil de glissement est dépendant de l'effort normal. Au delà de ce seuil, un glissement tangentiel est alors considéré proportionnel et opposé à l'effort tangentiel. Cette loi de frottement permet de représenter deux situations physique, l'adhérence lorsque le déplacement tangentielle est nul et le glissement lorsque celui-ci est non-nul. La forme du cône de Coulomb dépend du cœfficient \mathbf{F} de frottement. Sur la Figure 2.6 à droite, on peut observer le domaine d'admissibilité de la loi de Coulomb.

Remark 2.3.1. La seule différence entre la loi de Tresca et celle de Coulomb est de considérer le cas où le seuil $s = \mathbf{F} |\sigma_n(u_1)|$.

Remark 2.3.2. Lorsque $\mathbf{F} = 0$, on est ramèné au cas sans frottement.

FIGURE 2.6 – Graphique des conditions de Coulomb.

A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method

Dans ce chapitre, on propose, analyse et implémente une erreur *a priori* sur un problème de contact unilatéral entre deux corps élastiques. Afin d'obtenir une estimation d'erreur a priori optimale, une stabilisation de la méthode de domaine fictif est nécessaire. La stabilisation est inspirée par une méthode d'éléments finis étendus [28].

Ce travail, en collaboration avec J. Pousin et Y. Renard, A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method [65] a été soumis dans Applied Numerical Mathematics.

Sommaire

3.1	Intr	oduction	
3.2	The	unilateral contact problem in a fictitious domain framework	
3.3	A N	itsche-based finite element approximation	
	3.3.1	Nitsche's formulation	
	3.3.2	Discrete Nitsche's formulation	
	3.3.3	Consistency	
	3.3.4	Stabilization method	
3.4	Ana	lysis of the Nitsche-based approximation	
	3.4.1	Existence and uniqueness Theorems	
	3.4.2	A priori Error analysis	
3.5	Nun	nerical study	
	3.5.1	Numerical convergence in the two dimensional case	
	3.5.2	Influence of the parameter γ_0	
	3.5.3	Numerical experiments in the 3D case	
3.6	Con	clusion	

Abstract : In this paper, we develop and analyze a finite element fictitious domain approach based on Nitsche's method for the approximation of frictionless contact problems of two deformable elastic bodies. In the proposed method, the geometry of the bodies and the boundary conditions, including the contact condition between the two bodies, are described independently of the mesh of the fictitious domain. We prove that the optimal convergence is preserved. Numerical experiments are provided which confirm the correct behavior of the proposed method.

3.1 Introduction

In the vast majority of finite element software, the contact conditions between deformable solids are taken into account through the introduction of Lagrange multipliers and/or penalization terms. The multipliers, which generally approximate the contact stresses, represent some additional unknowns. The approximated problem is then solved in a coupled way or iteratively on the multiplier using Uzawa's algorithm (see e.g. [66]). Recently in [29, 30], it has been proposed an extension to the contact conditions of Nitsche's method [67, 68, 69] which was originally dedicated to Dirichlet's condition. This method combines the advantages of both the penalty and Lagrange multiplier methods since it remains consistent, optimal and avoid the use of multipliers.

In a fictitious domain framework, this paper aims to adapt Nitsche's method to the case of frictionless contact of two elastic solids with the small deformations hypothesis. Frictionless contact is considered to keep the presentation as simpler as possible. However, the analysis extends without additional difficulties to the case of Tresca friction, in a similar way as in [70]. One of the advantages of the fictitious domain approach comes from the possibility to work with structured meshes regardless of the complexity of the geometry of the bodies and of the potential contact zone. This approach is particularly advantageous in the case of free boundary problems such as shape optimization and fluid-structure interaction. In that case, it prevents the consecutive remeshing which can be very costly, in particular for three-dimensional problems, and which may also generates some instabilities. More generally, a fictitious domain method may be used in the presence of complex or moving geometries to avoid meshing them.

The fictitious domain approach we consider in this work is the one using "cut elements" which is currently a subject of growing interest and is closely related to XFem approach introduced in [57] and widely studied since then (see for instance [71, 28, 72, 61, 73]). The case of a body with a Dirichlet (or transmission) condition with the use of cut-elements is studied in [28] when Lagrange multipliers and a Barbosa-Hughes stabilization are used, and in [58, 61, 74] when Nitsche's method and an additional interior penalty stabilization are considered. This fictitious domain method is to be compared with more classical strategies (see [75, 76, 77, 48, 78] and the references therein) where the elements are not cut. These more classical strategies offer the possibility to leave unchanged the stiffness matrix of the problem. The boundary conditions are then prescribed via additional penalty and Lagrange multiplier terms. However, in classical strategies, it is often quite difficult to obtain an optimal method regarding the convergence order which easily takes into account both Dirichlet and Neumann conditions. The Fictitious domain method with cut elements allows to consider both Dirichlet and Neumann conditions in a rather standard way. The main price to pay is the adaptation of integration methods on cut elements.

In that context of cut elements, our study is focused on the case of two bodies with Nitsche's method for both the Dirichlet condition and the frictionless contact condition.

The outline of the paper is the following. In Section 3.2, we introduce the contact problem and the fictitious domain situation. Then, in Section 3.3, the finite element approximation with the use of Nitsche's method is built. In particular, a specific, parameter free stabilization technique is introduced which is necessary to guarantee the optimal rate of convergence. The properties of the approximated problem are described in Section 3.4 including the existence and uniqueness of a solution to the discrete problem, the consistency and the *a priori* error analysis. Finally, in Section 3.5, some two and three-dimensional Hertz-type numerical experiments are presented which illustrate the optimality regarding the convergence of the method.

3.2 The unilateral contact problem in a fictitious domain framework

An example of fictitious domain situation is illustrated in Figure 3.1. Let Ω_i , $1 \leq i \leq 2$, be two possibly overlapping domains with piecewise \mathscr{C}^1 boundaries included in \mathbb{R}^d , d = 2 or 3, representing the reference configurations of two elastics bodies. Let Ω be a simple shaped polygonal fictitious domain (typically allowing the use of a structured mesh) containing both Ω_1 and Ω_2 . The boundary Γ_1 of Ω_1 (respectively Γ_2 of Ω_2) is divided into three non overlapping parts : $\Gamma_{1,C}$ the slave potential zone of contact with $meas(\Gamma_{1,C}) > 0$ (respectively $\Gamma_{2,C}$ with $meas(\Gamma_{2,C}) > 0$); $\Gamma_{1,N}$ the Neumann part (respectively $\Gamma_{2,N}$) and $\Gamma_{1,D}$ the Dirichlet part with $meas(\Gamma_{1,D}) > 0$ (respectively $\Gamma_{2,D}$ with $meas(\Gamma_{2,D}) > 0$).

FIGURE 3.1 – Example of fictitious domain situation for a contact problem between two elastics bodies with an example of structured mesh.

The two elastic bodies are subjected to volume forces $f = (f_1, f_2)$ on $\Omega_1 \times \Omega_2$, to surface loads $\ell = (\ell_1, \ell_2)$ on $\Gamma_{1,N} \times \Gamma_{2,N}$ and satisfy non homogeneous boundary Dirichlet conditions on $\Gamma_{1,D} \times \Gamma_{2,D}$, the displacement being prescribed to the given value $u_D = (u_{1,D}, u_{2,D})$. We assume small elastic deformation for the two bodies. The linearized strain tensor field is given by $\varepsilon(v) = \frac{1}{2}(\nabla v + \nabla v^T)$ and the stress tensor field $\sigma = (\sigma_{ij})_{1 \leq i,j \leq 2}$ is given by $\sigma(v) = A\varepsilon(v)$ where A is the fourth order symmetric elasticity tensor satisfying the usual uniform ellipticity and boundedness properties. Consequently, the displacement (u_1, u_2) on $\Omega_1 \times \Omega_2$ has to satisfy the following set of equations, apart for the contact condition which will be described later :

(3.1)
$$\begin{cases} \text{Find } u = (u_1, u_2) \text{ satisfying} \\ -\text{div}\sigma(u_i) = f_i & \text{in } \Omega_i, \\ \sigma(u_i) = A\varepsilon(u_i) & \text{in } \Omega_i, \\ u_i = u_{i,D} & \text{on } \Gamma_{i,D}, \\ \sigma(u_i)n_i = \ell_i & \text{on } \Gamma_{i,N}. \end{cases}$$

Now, concerning the contact conditions, let us define Π the orthogonal projection from the slave boundary $\Gamma_{1,C}$ on the master boundary $\Gamma_{2,C}$:

(3.2)
$$\Pi: \begin{array}{ccc} \Gamma_{1,C} & \to & \Gamma_{2,C} \\ x & \mapsto & \Pi(x). \end{array}$$

In order to simplify the mathematical analysis, the operator Π is assumed to be a \mathscr{C}^1 one to one correspondence on $\Pi(\Gamma_{1,C})$ (this hypothesis is satisfied, for instance, when $\Gamma_{i,C}$ are convex and \mathscr{C}^1 for $i \in \{1,2\}$). The outward unit normal vector n for the contact condition is chosen to be the one of $\Gamma_{2,C}$:

$$n: \begin{array}{ccc} \Gamma_{1,C} & \to & \mathbb{R}^d \\ x & \mapsto & n_2(\Pi(x)). \end{array}$$

The initial gap g between $\Gamma_{1,C}$ and $\Gamma_{2,C}$ is defined to be the following distance function :

$$g: \begin{array}{ccc} \Gamma_{1,C} & \to & \mathbb{R} \\ x & \mapsto & (x - \Pi(x)) \cdot n. \end{array}$$

For (v_1, v_2) a displacement field defined on $\Omega_1 \times \Omega_2$, the normal jump is defined on the slave boundary Γ_1 for the normal displacement as follows :

$$\llbracket v \cdot n \rrbracket = (v_2 \circ \Pi - v_1) \cdot n.$$

Concerning the normal stress, we define

$$\sigma(v_1)n_1 = -\sigma_n(v_1)n + \sigma_t(v_1) \quad \text{with } \sigma_n(v_1) = -\sigma(v_1)n_1 \cdot n$$

and

$$\sigma(v_2 \circ \Pi) n_2 \circ \Pi = \sigma_n(v_2 \circ \Pi) n + \sigma_t(v_2 \circ \Pi) \quad \text{with } \sigma_n(v_2 \circ \Pi) = \sigma(v_2 \circ \Pi) n_2 \circ \Pi \cdot n.$$

This allows to define the normal stress jump as

$$\llbracket \sigma(u)n \rrbracket = \sigma(u_1)n_1 + \sigma(u_2 \circ \Pi)n_2 \circ \Pi |\det(J_{\Pi})|,$$

with J_{Π} the Jacobian matrix of Π . This latter expression is derived accordingly with Newton's second law (action-reaction principle) which is expressed on arbitrary elementary surfaces (see Figure 3.2) :

$$\forall \omega \subset \Gamma_{1,C}, \qquad \int_{\omega} \sigma(u_1) n_1 \, \mathrm{d}\Gamma = -\int_{\Pi(\omega)} \sigma(u_2) n_2 \mathrm{d}\Gamma = -\int_{\omega} \sigma(u_2 \circ \Pi) n_2 \circ \Pi \, \left| \det(J_{\Pi}) \right| \mathrm{d}\Gamma.$$

FIGURE 3.2 – An example illustrating the action-reaction principle between the two bodies.

These jumps being defined, the unilateral frictionless contact conditions can be expressed on the slave boundary $\Gamma_{1,C}$ as follows :

(3.3)
$$\begin{cases} \llbracket u \cdot n \rrbracket \leqslant g & (i), \\ \sigma_n(u_1) \leqslant 0 & (ii), \\ \sigma_n(u_1)(\llbracket u \cdot n \rrbracket - g) = 0 & (iii), \\ \llbracket \sigma(u)n \rrbracket = 0 & (iv), \\ \sigma_t(u_1) = 0 & (v). \end{cases}$$

Now, let us introduce the Hilbert space V and the convex cone K of admissible displacements :

$$V = H^1(\Omega_1)^d \times H^1(\Omega_2)^d,$$

$$K = \{ v = (v_1, v_2) \in V \mid v_1 = u_{1,D} \text{ on } \Gamma_{1,D} \text{ and } v_2 = u_{2,D} \text{ on } \Gamma_{2,D} \mid [\![v \cdot n]\!] - g \leq 0 \text{ on } \Gamma_{1,C} \}.$$

We assume that f belongs to $L^2(\Omega_1)^d \times L^2(\Omega_2)^d$, ℓ belongs to $L^2(\Gamma_{1,N})^d \times L^2(\Gamma_{2,N})^d$ and u_D belongs to $H^{\frac{3}{2}}(\Gamma_{1,D})^d \times H^{\frac{3}{2}}(\Gamma_{2,D})^d$. We define the bilinear and the linear forms a(.,.) and L(.) by

$$a(u,v) = \sum_{i=1,2} \int_{\Omega_i} \sigma(u_i) : \varepsilon(v_i) \, \mathrm{d}\Omega, \quad L(v) = \sum_{i=1,2} \int_{\Omega_i} f_i v_i \, \mathrm{d}\Omega + \sum_{i=1,2} \int_{\Gamma_{i,N}} \ell_i v_i \, \mathrm{d}\Gamma.$$

The weak formulation of Problem (3.1)-(3.3) as a variational inequality (see [2, 79, 9, 80]), reads :

(3.4)
$$\begin{cases} \text{Find } u \in K \text{ such that} \\ a(u, v - u) \ge L(v - u) \qquad \forall v \in K. \end{cases}$$

Stampacchia's Theorem ensures that Problem (3.4) admits a unique solution.

3.3 A Nitsche-based finite element approximation

3.3.1 Nitsche's formulation

In this section, we assume that both the solution u and the test functions v are sufficiently regular (for instance, $(u, v) \in (H^{3/2+\nu}(\Omega_1)^d \times H^{3/2+\nu}(\Omega_2)^d)^2$ for $\nu > 0$). From the equilibrium equations and Green's formula, we obtain :

$$a(u,v) - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i \, \mathrm{d}\Gamma - \int_{\Gamma_{1,C}} \sigma_n(u_1) \llbracket v \cdot n \rrbracket \, \mathrm{d}\Gamma = L(v).$$

In order to build Nitsche's formulations for the contact and Dirichlet conditions, the contact conditions are expressed in an equivalent way by extending to our case the formulation given in [29, 30]. Denoting $z_{+} = \max(z, 0)$ and for an arbitrary $\gamma > 0$, the contact conditions (3.3) on $\Gamma_{1,C}$ can be equivalently rewritten :

(3.5)
$$\sigma_n(u_1) = -\frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u_1)]_+$$

Let $\theta \in \mathbb{R}$ be a fixed parameter. This additional parameter for Nitsche's method determines the symmetry properties (see remarks (3.3.2) and [29, 30]). Then by using (3.5) and $[v \cdot n] = ([v \cdot n] - \theta \gamma \sigma_n(v)) + \theta \gamma \sigma_n(v))$, we obtain :

$$a(u,v) - \int_{\Gamma_{1,C}} \theta \gamma \sigma_n(u_1) \sigma_n(v_1) \, \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i \, \mathrm{d}\Gamma$$
$$+ \int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u_1)]_+ (\llbracket v \cdot n \rrbracket - \theta \gamma \sigma_n(v_1)) \, \mathrm{d}\Gamma = L(v).$$

Using contact conditions (3.3), it holds $\sigma_n(u_1) = \sigma_n(u_2 \circ \Pi) |\det(J_{\Pi})|$. In order to ensure the stability, we introduce a stabilized formulation for elements having a small contribution [58, 61, 28]. We replace $\sigma_n(u_1)$ by a convex combination of $\sigma_n(u_1)$ and $\sigma_n(u_2 \circ \Pi) |\det(J_{\Pi})|$. Namely, we define

(3.6)
$$\sigma_n(u) = t\sigma_n(u_2 \circ \Pi) |\det(J_\Pi)| + (1-t)\sigma_n(u_1),$$

for a parameter $t \in [0, 1]$ which may be different for an element to an other for the finite element approximation. Note that a similar approach has been developed in [74] where an optimal choice of the fixed parameter $t \in [0, 1]$ is proposed. We obtain :

$$a(u,v) - \int_{\Gamma_{1,C}} \theta \gamma \sigma_n(u) \sigma_n(v) \, \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u) n_i \cdot v_i \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ (\llbracket v \cdot n \rrbracket - \theta \gamma \sigma_n(v)) \, \mathrm{d}\Gamma = L(v).$$

We did not treat yet the Dirichlet conditions. In order to be coherent with the fictitious domain approach, we also describe the Dirichlet conditions thanks to Nitsche's method [58,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

61, 69]. Then, writing $v_i = (v_i - \theta \gamma \sigma(v_i)n_i) + \theta \gamma \sigma(v_i)n_i$ as in the formulation for the contact conditions, we deduce :

$$(3.7) = \int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i \, \mathrm{d}\Gamma$$
$$= \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_i - u_{i,D} - \gamma \sigma(u_i) n_i) \cdot (v_i - \gamma \theta \sigma(v_i) n_i) \, \mathrm{d}\Gamma - \int_{\Gamma_{i,D}} \theta \gamma \sigma(u_i) n_i \cdot \sigma(v_i) n_i \, \mathrm{d}\Gamma.$$

We obtain the following weak formulation :

$$a(u,v) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ (\llbracket v \cdot n \rrbracket - \theta \gamma \sigma_n(v)) \, d\Gamma$$

(3.8)
$$+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_i - u_{i,D} - \gamma \sigma(u_i)n_i) \cdot (v_i - \gamma \theta \sigma(v_i)n_i) \, d\Gamma$$

$$- \int_{\Gamma_{1,C}} \theta \gamma \sigma_n(u) \sigma_n(v) \, d\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \sigma(u_i)n_i \cdot \sigma(v_i)n_i \, d\Gamma = L(v) \quad \forall v \in V.$$

Finally, defining the bilinear form

$$A_{\theta\gamma}(u,v) = a(u,v) - \int_{\Gamma_{1,C}} \theta\gamma\sigma_n(u)\sigma_n(v) \,\mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta\gamma\sigma(u_i)n_i \cdot \sigma(v_i)n_i \,\mathrm{d}\Gamma$$

our Nitsche-based method reads :

(3.9)
$$A_{\theta\gamma}(u,v) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ (\llbracket v \cdot n \rrbracket - \theta \gamma \sigma_n(v)) \, d\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_i - u_{i,D} - \gamma \sigma(u_i)n_i) \cdot (v_i - \gamma \theta \sigma(v_i)n_i) \, d\Gamma = L(v) \quad \forall v \in V.$$

3.3.2 Discrete Nitsche's formulation

In what follows, Ciarlet's notations [81] are used. Let T_h be a family of triangulations of the fictitious domain Ω such that $\Omega = \bigcup_{K \in T_h} K$. Let h_K be the diameter of $K \in T_h$ and $h = \max_{K \in T_h} h_K$. The family of triangulations is assumed to be regular, i.e. it exists C > 0 such that $\frac{h_K}{\rho_K} \leq C$ where ρ_K denotes the radius of the ball inscribed in K. We suppose that the mesh is quasi uniform in the sense that it exists $\zeta > 0$ a constant such that $\forall K \in T_h, h_K \geq \zeta h$.

Let \hat{K} be the fixed reference element (a triangle for d = 2, a tetrahedron for d = 3) and let T_K be the geometric transformation which satisfies $T_K(\hat{K}) = K$. The family of triangulations is supposed affine, i.e. T_K reads as

$$\forall K \in T_h, \ T_K(\hat{x}) = J_K \hat{x} + b_K, \ \hat{x} \in K,$$

where $J_K \in \mathbb{R}^{d,d}$ is the Jacobian matrix of T_K being invertible and $b_K \in \mathbb{R}^d$. Thus, we have :

$$|\det(J_K)| = \frac{\operatorname{mes}(K)}{\operatorname{mes}(\hat{K})}, \qquad ||J_K|| \leq h_K / \rho_{\hat{K}}, \qquad ||J_K^{-1}|| \leq h_{\hat{K}} / \rho_K.$$
Remark 3.3.1. The family of triangulations is regular and affine, so it holds :

$$|det(J_K)| \leq Ch_K^d, \qquad ||J_K|| \leq Ch_K, \qquad ||J_K^{-1}|| \leq Ch_K^{-1}.$$

We introduce $U^h \subset H^1(\Omega)$ a family of finite element spaces indexed by h coming from some order $k \ge 1$ finite element method defined on T_h . Consequently, we suppose the existence of a global interpolation operator $\pi^h : \mathscr{C}^0(\overline{\Omega}) \to U^h$ and a local one π^h_K on each element $K \in T_h$ such that :

$$\forall u \in \mathscr{C}^0(\overline{\Omega}), \qquad \pi^h(u)|_K = \pi^h_K(u|_K) \qquad \text{and} \qquad \forall p \in P_k(K), \ \pi^h_K(p) = p_K(K),$$

We assume that the finite element method satisfies the following classical local interpolation error estimate for $k \ge l \ge 0$, $u \in H^{l+1}(\Omega)$:

$$\left\| u - \pi_K^h u \right\|_{m,K} \leqslant C h^{l+1-m} \left| u \right|_{l+1,K}, \quad \text{with } 0 \leqslant m \leqslant l \leqslant k.$$

Note that, in particular, the classical P_k Lagrange finite element method [81] satisfies this estimate. The approximation spaces for our problem are defined by

$$V_1^h = (U^h)^d|_{\Omega_1}$$
, $V_2^h = (U^h)^d|_{\Omega_2}$ and $V^h = (V_1^h \times V_2^h).$

In the same way, we define the global operators

$$\Pi_i^h: H^{k+1}(\Omega)^d \to V_i^h, i = \{1, 2\} \qquad \text{and} \qquad \Pi^h: H^{k+1}(\Omega)^d \times H^{k+1}(\Omega)^d \to V^h.$$

In order to write a discrete approximation of formulation (3.9), let us introduce the following discrete linear operators :

$$P_{\tau}^{h}: \begin{array}{ccc} V_{1}^{h} \times V_{2}^{h} & \to & L^{2}(\Gamma_{1,C}) \\ v & \mapsto & \llbracket v \cdot n \rrbracket - \tau \sigma_{n}(v), \end{array}$$
$$\overline{P}_{i,\tau}^{h}: \begin{array}{ccc} V_{i}^{h} & \to & L^{2}(\Gamma_{i,D})^{d} \\ v_{i} & \mapsto & v_{i} - \tau \sigma(v_{i})n_{i}. \end{array}$$

Then, a finite element approximation of our Nitsche-based method reads as :

(3.10)
$$\begin{cases} \text{Find } u^h \in V^h \text{ such that} \\ A_{\theta\gamma}(u^h, v^h) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P^h_{\gamma}(u^h) - g]_+ P^h_{\theta\gamma}(v^h) \, \mathrm{d}\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^h_{i,\gamma}(u^h_i) - u_{i,D}) \cdot \overline{P}^h_{i,\gamma\theta}(v^h_i) \, \mathrm{d}\Gamma = L(v^h) \qquad \forall v^h \in V^h \end{cases}$$

In the following, we define $\gamma = \gamma_0 h_K$.

Remark 3.3.2. The additional parameter θ is aimed to be chosen in [-1,1]. The following values of θ are of particular interest : for $\theta = 1$, we recover the symmetric method proposed and analyzed in [29]; for $\theta = 0$, we recover a non-symmetric version presented in [30] and for $\theta = -1$, we obtain a skew-symmetric version which has the remarkable property that convergence occurs for any value of γ_0 (see [30]).

3.3.3 Consistency

The advantage of Nitsche's method, compared to penalization, is the consistency of the approximation in the following sense.

Theorem 3.3.3. Let u be the solution to Problem (3.1)-(3.3). Assume u is sufficiently regular (typically, $(u_1, u_2) \in H^{2+\nu}(\Omega_1)^d \times H^{2+\nu}(\Omega_2)^d$, for $\nu > 0$), then u is also a solution to the discrete problem (3.10) replacing u^h by u.

Proof. Let u be the solution to (3.1)-(3.3) and take $v^h \in V^h$. We assume u sufficiently regular such that $\sigma_n(u) \in L^2(\Gamma_{1,C})$ and for $i = 1, 2, \sigma_n(u_i) \in L^2(\Gamma_{i,D})$. As a result, $P^h_{\theta\gamma}(u) \in L^2(\Gamma_{1,C})$, for $i = 1, 2, \overline{P}^h_{i,\theta\gamma}(u_i) \in L^2(\Gamma_{i,D})$ and $A_{\theta\gamma}(u, v^h)$ makes sense. On the one hand, we use the definition of $P^h_{\theta\gamma}, \overline{P}^h_{i,\theta\gamma}$, the reformulations (3.5) and (3.7) to obtain :

$$\begin{split} A_{\theta\gamma}(u,v^{h}) &+ \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h}(u) - g]_{+} P_{\theta\gamma}^{h}(v^{h}) \ \mathrm{d}\Gamma + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h}(u_{i}) - u_{i,D}) \cdot \overline{P}_{i,\gamma\theta}^{h}(v_{i}^{h}) \ \mathrm{d}\Gamma \\ &= a(u,v^{h}) - \int_{\Gamma_{1,C}} \theta \gamma \sigma_{n}(u) \sigma_{n}(v^{h}) \ \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \sigma(u_{i}) n_{i} \cdot \sigma(v_{i}^{h}) n_{i} \ \mathrm{d}\Gamma \\ &+ \int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_{n}(u)]_{+} (\llbracket v^{h} \cdot n \rrbracket - \theta \gamma \sigma_{n}(v^{h})) \ \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_{i} - u_{i,D} - \gamma \sigma(u_{i}) n_{i}) \cdot (v_{i}^{h} - \gamma \theta \sigma(v_{i}^{h}) n_{i}) \ \mathrm{d}\Gamma \\ &= a(u,v^{h}) - \int_{\Gamma_{1,C}} \theta \gamma \sigma_{n}(u) \sigma_{n}(v^{h}) \ \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} (-\gamma \sigma_{n}(u)) (\llbracket v^{h} \cdot n \rrbracket - \theta \gamma \sigma_{n}(v^{h})) \ \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (-\gamma \sigma(u_{i}) n_{i}) \cdot (v_{i}^{h} - \gamma \theta \sigma(v_{i}^{h}) n_{i}) \ \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \sigma(u_{i}) n_{i} \cdot \sigma(v_{i}^{h}) n_{i} \ \mathrm{d}\Gamma \\ &= a(u,v^{h}) - \int_{\Gamma_{1,C}} \sigma_{n}(u) \llbracket v^{h} \cdot n \rrbracket \ \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_{i}) n_{i} \cdot v_{i}^{h} \ \mathrm{d}\Gamma \\ &= a(u,v^{h}) - \int_{\Gamma_{1,C}} \sigma_{n}(u_{1}) \llbracket v^{h} \cdot n \rrbracket \ \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_{i}) n_{i} \cdot v_{i}^{h} \ \mathrm{d}\Gamma \end{split}$$

On the other hand, multiplying by v_i^h and integrating (3.1), it holds :

$$-\sum_{i=1,2}\int_{\Omega_i} \operatorname{div}\sigma(u_i)v_i^h \,\mathrm{d}\Omega = \sum_{i=1,2}\int_{\Omega_i} f_i v_i^h \,\mathrm{d}\Omega.$$

Using Green's formula, we have :

$$-\int_{\Omega_i} \operatorname{div} \sigma(u_i) v_i^h \, \mathrm{d}\Omega = \int_{\Omega_i} \sigma(u_i) : \varepsilon(v_i^h) \, \mathrm{d}\Omega - \int_{\Gamma_i} \sigma(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma \qquad i = 1, 2$$

with

$$-\int_{\Gamma_i} \sigma(u_i) n_i \cdot v_i^h \,\mathrm{d}\Gamma = -\int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i^h \,\mathrm{d}\Gamma - \int_{\Gamma_{i,N}} \sigma(u_i) n_i \cdot v_i^h \,\mathrm{d}\Gamma - \int_{\Gamma_{i,C}} \sigma(u_i) n_i \cdot v_i^h \,\mathrm{d}\Gamma \quad i = 1, 2,$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

$$-\int_{\Gamma_i} \sigma(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma = -\int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma - \int_{\Gamma_{i,N}} \ell_i v_i^h \, \mathrm{d}\Gamma - \int_{\Gamma_{i,C}} \sigma(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma \quad i = 1, 2.$$

Using the one to one correspondence of the projection, it holds :

$$\int_{\Gamma_{2,C}} \sigma(u_2) n_2 \cdot v_2^h \, \mathrm{d}\Gamma = \int_{\Gamma_{1,C}} \sigma(u_2 \circ \Pi) n_2 \circ \Pi \cdot v_2^h \circ \Pi \, \left| \det(J_{\Pi}) \right| \, \mathrm{d}\Gamma$$

Hence

$$-\sum_{i=1,2} \int_{\Omega_i} \operatorname{div}\sigma(u_i) v_i^h \, \mathrm{d}\Omega = \int_{\Omega_1} \sigma(u_1) : \varepsilon(v_1^h) \, \mathrm{d}\Omega + \int_{\Omega_2} \sigma(u_2) : \varepsilon(v_2^h) \, \mathrm{d}\Omega - \int_{\Gamma_{1,C}} \sigma(u_1) n_1 \cdot v_1^h \, \mathrm{d}\Gamma \\ - \int_{\Gamma_{1,C}} \sigma(u_2 \circ \Pi) n_2 \circ \Pi \cdot v_2^h \circ \Pi \, \left| \det(J_\Pi) \right| \, \mathrm{d}\Gamma \\ - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma - \int_{\Gamma_{1,N}} \ell_1 v_1^h \, \mathrm{d}\Gamma - \int_{\Gamma_{2,N}} \ell_2 v_2^h \, \mathrm{d}\Gamma.$$

Using (3.3), it holds :

$$-\sum_{i=1,2} \int_{\Omega_i} \operatorname{div}\sigma(u_i) v_i^h \, \mathrm{d}\Omega = a(u, v^h) - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma - \int_{\Gamma_{1,N}} \ell_1 v_1^h \, \mathrm{d}\Gamma - \int_{\Gamma_{2,N}} \ell_2 v_2^h \, \mathrm{d}\Gamma - \int_{\Gamma_{1,C}} \sigma_n(u_1) \llbracket v^h \cdot n \rrbracket \, \mathrm{d}\Gamma.$$

 So

$$a(u, v^h) - \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma_n(u_i) n_i \cdot v_i^h \, \mathrm{d}\Gamma - \int_{\Gamma_{1,C}} \sigma_n(u_1) \llbracket v^h \cdot n \rrbracket \, \mathrm{d}\Gamma = L(v^h).$$

Which ends the proof.

Moreover, formulation (3.9) is formally equivalent to (3.1) and (3.3) in the following sense.

Theorem 3.3.4. Let $u \in H^2(\Omega_1)^d \times H^2(\Omega_2)^d$ be a solution to equation (3.9) then u is a solution to (3.1) and (3.3).

Proof. For $u \in H^2(\Omega_1)^d \times H^2(\Omega_2)^d$ a solution to (3.9) and whatever $v \in H^2(\Omega_1)^d \times H^2(\Omega_2)^d$, it satisfies :

$$\int_{\Omega_i} (\operatorname{div}\sigma(u_i) + f_i) v_i \, \mathrm{d}\Omega = 0 \qquad \forall v_i \in H^2(\Omega_i)$$

i.e.

$$-\operatorname{div}\sigma(u_i) = f_i$$
 a.e. in $\Omega_i, \ 1 \leq i \leq 2$

We have, for all $v \in H^2(\Omega_1)^d \times H^2(\Omega_2)^d$:

$$\int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ \llbracket v \cdot n \rrbracket \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \sigma(u_1) n_1 \cdot v_1 \, \mathrm{d}\Gamma + \int_{\Gamma_{2,C}} \sigma(u_2) n_2 \cdot v_2 \, \mathrm{d}\Gamma = 0,$$

$$\int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ (v_1 - v_2 \circ \Pi \cdot n) \, \mathrm{d}\Gamma - \int_{\Gamma_{1,C}} \sigma_n(u_1) n \cdot v_1 \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \sigma_n(u_2 \circ \Pi) n \cdot v_2 \circ \Pi \, |\det(J_{\Pi})| \, \mathrm{d}\Gamma = 0.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Hence

$$\int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ + \sigma_n(u_1)\right) v_1 \cdot n \, \mathrm{d}\Gamma = 0 \,\,\forall v_1 \in H^2(\Omega_1)$$

and

$$\int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ - \sigma_n(u_2 \circ \Pi) |\det(J_{\Pi})| \right) v_2 \circ \Pi \cdot n \, \mathrm{d}\Gamma = 0 \, \forall v_2 \in H^2(\Omega_2).$$

Hence

$$\frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ = -\sigma_n(u_1) \qquad \text{a. e. on } \Omega_1,$$

which is a formulation equivalent to (3.3). Arguing in the same way as above the Neumann and Dirichlet conditions are recovered.

3.3.4Stabilization method

A stabilization technique is necessary to control the possible bad quality of $\sigma_n(u^h)$ on elements having very small intersection with the real domains. The stabilization used is the one proposed in [28] which consists in using extension of the normal stress on a neighbor element having a sufficiently large intersection with the real domain. The advantage of this stabilization technique is the absence of parameter to fit, except the threshold under which an intersection is considered to be too small. Note that other stabilization techniques are available, such as the so-called ghost penalty stabilization considered in [61].

For a given small radius $1 > \hat{\rho} > 0$, let $R_{\hat{\rho}}$ (respectively $\overline{R}_{\hat{\rho}}$) be an operator of approximation of the normal stress of displacements $\sigma_n(u^h)$ (respectively $\sigma(u_i^h)$) which we define thereafter. For $K \in T_h$ such that $K \cap \Gamma_{1,C}$, we note $S_K = \{K' \in T_h \mid K' \cap \Pi(K) \neq \emptyset\}$. We note also E_K , the polynomial extrapolation of an element $v^h \in V^h$ define from K to Ω .

We distinguish three cases to define the stabilized operator $R_{\hat{\rho}}$. Let $K \in T_h$ and $K \cap \Gamma_{1,C} \neq \emptyset$ then:

- if the intersection between K and Ω_1 is sufficiently large i.e. it exists $\hat{y}_K > 0$ such that $B(\hat{y}_K, \hat{\rho}) \subset T_K^{-1}(K \cap \Omega_1)$ (see Figure 3.3 *a*)), then $R_{\hat{\rho}}(v^h)|_K = \sigma_n(v_1^h|_K)$,
- otherwise, if it exists $\widetilde{K} \in S_K$ intersecting Ω_2 such that it exists $\hat{y}_{\widetilde{K}} > 0$ with $B(\hat{y}_{\widetilde{K}}, \hat{\rho}) \subset \mathcal{O}$
- $T_{\widetilde{K}}^{-1}(\widetilde{K} \cap \Omega_2) \text{ (see Figure 3.3 b)), then } R_{\hat{\rho}}(v^h)|_K = \sigma_n(E_{\widetilde{K}}(v_2^h) \circ \Pi) |\det(J_{\Pi})|,$ otherwise, we suppose that it exits a neighbor element K' of K such that it exists $\hat{y}_{K'} > 0$ with $B(\hat{y}_{K'}, \hat{\rho}) \subset T_{K'}^{-1}(K' \cap \Omega_1)$ (see Figure 3.3 c)), then $R_{\hat{\rho}}(v^h)|_K = \sigma_n(E_{K'}(v_1^h))$. In the same way, we define the operator $\overline{R}_{\hat{\rho}}$ on $\Gamma_{i,D}$ for i = 1, 2:

$$\begin{array}{cccc} V_i^h & \to & L^2(\Gamma_{i,D})^d \\ \overline{R}_{\hat{\rho}} : & \\ v_i & \mapsto & \overline{R}_{\hat{\rho}}(v_i^h) = \left\{ \begin{array}{ccc} \sigma(v_i^h)n_i & \exists \; \hat{y}_K > 0 \; \text{such that} \; B(\hat{y}_K, \hat{\rho}) \subset T_K^{-1}(K \cap \Omega_i) \\ \sigma(E_{K'}(v_i^h))n_i & \text{otherwise.} \end{array} \right.$$

Let us introduce the stabilized discrete linear operators :

$$\begin{array}{rccc} P^{h,\hat{\rho}}_{\tau}: & V^h_1 \times V^h_2 & \rightarrow & L^2(\Gamma_{1,C}) \\ v & \mapsto & \llbracket v \cdot n \rrbracket - \tau R_{\hat{\rho}}(v), \end{array}$$

a) If $\Omega_1 \cap K$ is sufficiently large

b) If $\exists \tilde{K} \in S_K$ such that $\Omega_2 \cap \tilde{K}$ is sufficiently large

c) Otherwise

FIGURE 3.3 – The different cases for the definition of $R_{\hat{\rho}}$.

$$\overline{P}_{i,\tau}^{h,\hat{\rho}}: \begin{array}{ccc} V_i^h & \to & L^2(\Gamma_{i,D})^d \\ v_i & \mapsto & v_i - \tau \overline{R}_{\hat{\rho}}(v_i). \end{array}$$

We define the discrete form of $A_{\theta\gamma}(.,.)$ as follows :

$$A^{h}_{\theta\gamma}(u^{h}, v^{h}) = a(u^{h}, v^{h}) - \int_{\Gamma_{1,C}} \theta\gamma R_{\hat{\rho}}(u^{h}) R_{\hat{\rho}}(v^{h}) \, \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta\gamma \overline{R}_{\hat{\rho}}(u^{h}_{i}) \overline{R}_{\hat{\rho}}(v^{h}_{i}) \, \mathrm{d}\Gamma$$

The stabilized version of our approximation (3.10) reads :

(3.11)
$$\begin{cases} \text{Find } u^h \in V^h \text{ such that} \\ A^h_{\theta\gamma}(u^h, v^h) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P^{h,\hat{\rho}}_{\gamma}(u^h) - g]_+ P^{h,\hat{\rho}}_{\theta\gamma}(v^h) \, \mathrm{d}\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^{h,\hat{\rho}}_{i,\gamma}(u^h_i) - u_{i,D}) \cdot \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^h_i) \, \mathrm{d}\Gamma = L(v^h) \quad \forall v^h \in V^h. \end{cases}$$

Note that strict consistency of this stabilized discrete problem do not occur. However, we have the following result.

Theorem 3.3.5. Let u be the solution to Problem (3.1)-(3.3). Assume u is sufficiently regular (typically, $(u_1, u_2) \in H^{2+\nu}(\Omega_1)^d \times H^{2+\nu}(\Omega_2)^d$ for $\nu > 0$), then u is also a solution to the following problem :

$$(3.12) \quad \begin{cases} a(u,v^{h}) - \int_{\Gamma_{1,C}} \theta \gamma \sigma_{n}(u) R_{\hat{\rho}}(v^{h}) \ d\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \sigma(u_{i}) n_{i} \cdot \overline{R}_{\hat{\rho}}(v_{i}^{h}) \ d\Gamma \\ + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h}(u) - g]_{+} P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \ d\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h}(u_{i}) - u_{i,D}) \cdot \overline{P}_{i,\gamma\theta}^{h,\hat{\rho}}(v_{i}^{h}) \ d\Gamma = L(v^{h}) \qquad \forall v^{h} \in V^{h}. \end{cases}$$

Proof. The proof can be straightforwardly deduced from the one of Theorem 3.3.3.

3.4 Analysis of the Nitsche-based approximation

3.4.1 Existence and uniqueness Theorems

Theorem 3.4.1. Let $\gamma = \gamma_0 h_K$. It exists a unique solution $v^h \in V^h$ to the discrete problem (3.11), for all $\gamma_0 > 0$ if $\theta = -1$ and for $\gamma_0 > 0$ sufficiently small if $\theta \neq -1$.

Proof. The proof is adapted from [30]. The main adaptation concerns the stabilization. For this purpose, we begin by providing some stability and approximation property for operators $R_{\hat{\rho}}$ and $\overline{R}_{\hat{\rho}}$ in lemmas 3.4.2, 3.4.5 and 3.4.6. Then a coercivity property is proved in Lemma 3.4.7. Finally, the existence and uniqueness result is deduce from the hemi-continuity of the non-linear operator which corresponds to (3.11).

Lemma 3.4.2. Let $v^h \in V^h$, there exists a constant C > 0 independent of h such that

(3.13)
$$\left\| R_{\hat{\rho}}(v^h) \right\|_{0,\Gamma_{1,C}}^2 \leq Ch^{-1} \left(\left\| v_1^h \right\|_{1,\Omega_1}^2 + \left\| v_2^h \right\|_{1,\Omega_2}^2 \right) \quad \forall v^h \in V^h.$$

Proof. First, we define the following matrix norms :

$$|||A|||_{\infty,\hat{K}} = \sup_{x \in \hat{K}} (|||A(x)|||_F) \quad \text{and} \quad |||A|||_{2,\hat{K}}^2 = \int_{\hat{K}} |||A(x)|||_F^2 \, \mathrm{d}x,$$

where $|||.|||_F$ is Frobenius' norm. If v is a fixed vector, we define the translation of a vector u, by $t_v(u) = u + v$. In the following, the constant C may vary from a line to another but is independent of h. In order to prove (3.13), we distinguish the three different cases from the definition of $R_{\hat{\rho}}$. First, by using the geometric transformation, the integral is expressed on the reference element. Then by using the equivalence of the infinity norm with the 2-norm located on a ball, we are able to deal with the 2-norm located on the current element. Finally by using the definition of the stress tensor, we obtain the result.

— If K satisfies $\exists \hat{y}_K > 0$ such that $B(\hat{y}_K, \hat{\rho}) \subset T_K^{-1}(K \cap \Omega_1)$, then $R_{\hat{\rho}}(u^h)|_K = \sigma_n(u_1^h|_K)$ and it holds :

$$\left\| R_{\hat{\rho}}(u^h) \right\|_{0,\Gamma_{1,C}\cap K}^2 = \int_{\Gamma_{1,C}\cap K} \sigma_n(u_1^h)^2 \,\mathrm{d}\Gamma.$$

We define $\hat{\Gamma}_1 = T_K^{-1}(\Gamma_{1,C} \cap K)$ and $\hat{\sigma}(u_1) = \sigma(u_1^h) \circ T_K$ and \hat{n}_1 a unit normal vector on $\hat{\Gamma}_{1,C}$.

(3.14)
$$\int_{\Gamma_{1,C}\cap K} \sigma_n(u_1^h)^2 \, \mathrm{d}\Gamma = \int_{\hat{\Gamma}_1} \hat{\sigma}_n(u_1)^2 \left| \det(J_K) \right| \left\| J_K^{-1} \hat{n}_1 \right\| \, \mathrm{d}\hat{\Gamma}$$
$$= \int_{\hat{\Gamma}_1} |\hat{\sigma}(u_1)n \cdot n|^2 \left| \det(J_K) \right| \left\| J_K^{-1} \hat{n}_1 \right\| \, \mathrm{d}\hat{\Gamma}$$
$$\leqslant Ch_K^{d-1} \left| \left\| \hat{\sigma}(u_1) \right\| \right|_{\infty,\hat{K}}^2 \left| \hat{\Gamma}_1 \right|.$$

because

$$|\hat{\sigma}(u_1)n \cdot n| \leq |||\hat{\sigma}(u_1)|||_F ||n||_2^2 = |||\hat{\sigma}(u_1)|||_F.$$

Moreover, $|\hat{\Gamma}|_1$ is bounded, indeed the operator T_K is a continuous one to one correspondence. Now using the equivalence of norms in $P^k(\hat{K})^d$, we have :

$$\begin{aligned} \|\hat{\sigma}(u_{1})\||_{\infty,\hat{K}}^{2} &\leq \|\|\hat{\sigma}(u_{1})\||_{\infty,B(\hat{y}_{K},2)}^{2} = \|\|\hat{\sigma}(u_{1}) \circ t_{-\hat{y}_{K}}\||_{\infty,B(0,2)}^{2} \\ (3.15) &\leq C \|\|\hat{\sigma}(u_{1}) \circ t_{-\hat{y}_{K}}\||_{2,B(0,\hat{\rho})}^{2} = C \|\|\hat{\sigma}(u_{1})\||_{2,B(\hat{y}_{K},\hat{\rho})}^{2} \\ &\leq C \|\|\hat{\sigma}(u_{1})\||_{2,T_{K}^{-1}(\Omega_{1}\cap K))}^{2} = C \int_{T_{K}^{-1}(\Omega_{1}\cap K)} \|\|\hat{\sigma}(u_{1})\||_{F}^{2} d\hat{x}. \end{aligned}$$

Using the upper bound of $|\hat{\Gamma}_1|$ and the previous inequalities, it holds :

$$\begin{split} \int_{\Gamma_{1,C}\cap K} R_{\hat{\rho}}(u^{h})^{2} \, \mathrm{d}\Gamma & \leqslant \quad C \frac{h_{K}^{d-1}}{h_{K}^{d}} \int_{T_{K}^{-1}(\Omega_{1}\cap K)} |\|\hat{\sigma}(u_{1})\||_{F}^{2} |\det(J_{K})| \, \mathrm{d}\hat{x} \\ & \leqslant \quad Ch_{K}^{-1} \int_{\Omega_{1}\cap K} \left| \left\| \sigma(u_{1}^{h}) \right\| \right|_{F}^{2} \, \mathrm{d}x \\ & \leqslant \quad Ch_{K}^{-1} \int_{\Omega_{1}\cap K} \left| \left\| A\nabla u_{1}^{h} \right\| \right|_{F}^{2} \, \mathrm{d}x \\ & \leqslant \quad Ch_{K}^{-1} \int_{\Omega_{1}\cap K} \left\| \nabla u_{1}^{h} \right\| _{F}^{2} \, \mathrm{d}x. \end{split}$$

— Otherwise, if $\exists \widetilde{K} \in S_K$ such as $\exists \hat{y}_{\widetilde{K}} > 0$ such that $B(\hat{y}_{\widetilde{K}}, \hat{\rho}) \subset T_{\widetilde{K}}^{-1}(\widetilde{K} \cap \Omega_2)$, then $R_{\hat{\rho}}(v^h)|_K = \sigma_n(E_{\widetilde{K}}(v_2^h) \circ \Pi) |\det(\nabla Pi)|$ and using the continuous of J_{Π} i.e. $|\det(J_{\Pi})| \leq C$, it holds:

$$\begin{split} \left\| R_{\hat{\rho}}(u^{h}) \right\|_{0,\Gamma_{1,C}\cap K}^{2} &= \int_{\Gamma_{1,C}\cap K} \sigma_{n} (E_{\widetilde{K}}(u_{2}^{h}) \circ \Pi)^{2} |\det(J_{\Pi})|^{2} d\Gamma \\ &\leqslant C \int_{\Gamma_{1,C}\cap K} \sigma_{n} (E_{\widetilde{K}}(u_{2}^{h}) \circ \Pi)^{2} |\det(J_{\Pi})| d\Gamma \\ &\leqslant C \int_{\Pi(\Gamma_{1,C}\cap K)} \sigma_{n} (E_{\widetilde{K}}(u_{2}^{h}))^{2} d\Gamma \\ &\leqslant C \int_{\bigcup_{\overline{K}\in S_{K}} \Gamma_{2,C}\cap\overline{K}} \sigma_{n} (E_{\widetilde{K}}(u_{2}^{h}))^{2} d\Gamma. \end{split}$$

We define $\hat{\Gamma}_2 = T_{\widetilde{K}}^{-1}(\bigcup_{\overline{K}\in S_K}\Gamma_{2,C}\cap\overline{K})$ and $\hat{\sigma}(u_2) = \sigma(u_2^h) \circ T_{\widetilde{K}}$ and \hat{n}_2 a unit normal vector on $\hat{\Gamma}_{2,C}$. As previously, we have $|\hat{\Gamma}_2|$ bounded. In the same way as in (3.14), we have :

$$\int_{\bigcup_{\overline{K}\in S_K}\Gamma_{2,C}\cap\overline{K}}\sigma_n(E_{\widetilde{K}}(u_2^h))^2 \,\mathrm{d}\Gamma \quad \leqslant \quad Ch_{\widetilde{K}}^{d-1} \left| \left\| \sigma(\hat{u}_2) \right\| \right|_{\infty,\hat{\Gamma}_2}^2 \left| \hat{\Gamma}_2 \right|.$$

Now using the equivalence of norms in $P^k(\hat{K})^d$ and in the same way as in (3.15), we obtain :

$$\begin{aligned} |||\sigma(\hat{u}_{2})|||_{\infty,\hat{\Gamma}_{2}}^{2} &\leqslant |||\sigma(\hat{u}_{2})|||_{\infty,B(\hat{y}_{\widetilde{K}},2}^{2} ||\Pi|| ||T_{\widetilde{K}}^{-1}||) \\ &\leqslant C \int_{T_{\widetilde{K}}^{-1}(\Omega_{1}\cap\widetilde{K})} |||\sigma(\hat{u}_{2})|||_{F}^{2} d\hat{x}. \end{aligned}$$

3.4. Analysis of the Nitsche-based approximation

Hence, using the previous inequalities, it holds :

$$\int_{\Gamma_{1,C}\cap K} R_{\hat{\rho}}(u^{h})^{2} \, \mathrm{d}\Gamma \quad \leqslant \quad C \frac{h_{\widetilde{K}}^{d-1}}{h_{\widetilde{K}}^{d}} \int_{T_{\widetilde{K}}^{-1}(\Omega_{1}\cap\widetilde{K})} \left| \|\hat{\sigma}(u_{1})\||_{F}^{2} \left| \det(J_{\widetilde{K}}) \right| \, \mathrm{d}\hat{x}$$

$$\leqslant \quad C h_{\widetilde{K}}^{-1} \int_{\Omega_{1}\cap\widetilde{K}} \left\| \nabla u_{2}^{h} \right\|_{2}^{2} \, \mathrm{d}x.$$

— Otherwise, we suppose it exits an neighbor element K' of K such that $\exists \hat{y}_{K'} > 0$ such that $B(\hat{y}_{K'}, \hat{\rho}) \subset T_{K'}^{-1}(K' \cap \Omega_1)$, then $R_{\hat{\rho}}(v^h)|_K = \sigma_n(E_{K'}(v_1^h))$. Then, it holds :

$$\left\|R_{\hat{\rho}}(u^{h})\right\|_{0,\Gamma_{1,C}\cap K}^{2} = \int_{\Gamma_{1,C}\cap K} \sigma_{n}(E_{K'}(u_{1}^{h}))^{2} \mathrm{d}\Gamma$$

We define by $\hat{\Gamma}'_1 = T_{K'}^{-1}(\Gamma_{1,C} \cap K)$ and $\hat{\sigma}'(u_1) = \sigma(u_1^h) \circ T_{K'}$ and by \hat{n}_1 a unit normal vector on $\hat{\Gamma}_{1,C}$. As previously, we have $|\hat{\Gamma}'_1|$ bounded. In the same way as in (3.14), we have :

$$\int_{\Gamma_{1,C}\cap K} \sigma_n(E_{K'}(u_1^h))^2 \, \mathrm{d}\Gamma = \int_{\hat{\Gamma}'_1} \hat{\sigma}'(u_1)^2 \left| \det(J_{K'}) \right| \left\| J_{K'}^{-1} \hat{n}_1 \right\| \, \mathrm{d}\hat{\Gamma}$$

$$\leqslant Ch_{K'}^{d-1} \left| \left\| \hat{\sigma}'(u_1) \right\| \right|_{\infty,T_{K'}^{-1}(K)}^2 \left| \hat{\Gamma}'_1 \right|.$$

Now using the equivalence of norms in $P^k(\hat{K})^d$ and in the same way as in (3.15), we have :

$$\begin{aligned} \left| \left\| \sigma(\hat{u}_{1}') \right\| \right|_{\infty, T_{K'}^{-1}(K)}^{2} &\leqslant \left| \left\| \sigma(\hat{u}_{1}') \right\| \right|_{\infty, B(\hat{y}_{K'}, 4)}^{2} \\ &\leqslant C \int_{T_{K'}^{-1}(\Omega_{1} \cap K')} \left| \left\| \sigma(\hat{u}_{1}') \right\| \right|_{F}^{2} \, \mathrm{d}\hat{x}. \end{aligned}$$

Hence, using the previous inequalities, it holds :

$$\int_{\Gamma_{1,C}\cap K} R_{\hat{\rho}}(u^{h})^{2} \, \mathrm{d}\Gamma \leqslant C \frac{h_{K'}^{d-1}}{h_{K'}^{d}} \int_{T_{K'}^{-1}(\Omega_{1}\cap K')} \left| \left\| \sigma(\hat{u}_{1}') \right\| \right|_{F}^{2} \left| \det(J_{K'}) \right| \, \mathrm{d}\hat{x} \\
\leqslant C h_{K'}^{-1} \int_{\Omega_{1}\cap K'} \left\| \nabla u_{1}^{h} \right\|_{2}^{2} \, \mathrm{d}x.$$

Finally, by iterating on all the elements K intersecting $\Gamma_{1,C}$ and using the quasi uniformity of the mesh, we obtain (3.13).

Remark 3.4.3. The following more general operator $R_{\hat{\rho}}$ could be considered :

$$R_{\hat{\rho}}(u^h)|_K = (1-t)\sigma_n(E_{K'}(u_2^h \circ \Pi)) |det(J_{\Pi})| + t\sigma_n(E_{K''}(u_1^h)),$$

with $t \in [0,1]$, the element K' being K itself or a neighbor element such as the intersection between K' and Ω_2 is large enough and the element K'' being K itself or a neighbor element such as the intersection between K'' and Ω_1 is large enough. Lemma 3.4.2 can be easily extended to this operator. When the elastic coefficients in Ω_1 and Ω_2 are equal, a proposed optimum choice is given by (see [74]):

$$t_K = \frac{mes(\Omega_1 \cap K)}{mes(\Omega_1 \cap K) + mes(\Omega_2 \cap K)}.$$

Remark 3.4.4. When the initial gap between the two bodies vanishes, for $\hat{\rho}$ sufficiently small either $K \cap \Omega_1$ or $K \cap \Omega_2$ is sufficiently large and thus it is not necessary to consider any neighbor element.

Lemma 3.4.5. Let $u^h \in V^h$, $\Gamma_{i,D}$ be Lipschitz continuous then it exits a constant C > 0 independent of h such that

$$\left\|\overline{R}_{\hat{\rho}}(u_1^h)\right\|_{0,\Gamma_{1,D}}^2 \leqslant Ch^{-1} \left\|u_1^h\right\|_{1,\Omega_1}^2,$$

and

$$\left\|\overline{R}_{\hat{\rho}}(u_{2}^{h})\right\|_{0,\Gamma_{2,D}}^{2} \leqslant Ch^{-1} \left\|u_{2}^{h}\right\|_{1,\Omega_{2}}^{2}$$

The proof of this lemma can be straightforwardly deduced from the one of Lemma 3.4.2.

Now, Let u^h , $v^h \in V^h$ and $\gamma = h_K \gamma_0$ and using lemma 3.4.2, it holds :

$$\left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}^{2} \leqslant C \gamma_{0} \sum_{i=1,2} \left\| u_{i}^{h} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2}$$
$$\left\| \gamma^{\frac{1}{2}} \overline{R}_{\hat{\rho}}(u_{i}^{h} - v_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2} \leqslant C \gamma_{0} \left\| u_{i}^{h} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2} .$$

Due to the know approximation properties of the stabilized operators on regular and quasiuniform families of meshes (see [28]), one obtains the following lemma :

Lemma 3.4.6. For any $v \in H^{k+1}(\Omega_1)^d \times H^{k+1}(\Omega_2)^d$

$$\left\| R_{\hat{\rho}}(\Pi^{h}(v)) - \sigma_{n}(v) \right\|_{0,\Gamma_{1,C}}^{2} \leqslant Ch^{2k-1} \sum_{i=1,2} \|v\|_{k+1,\Omega_{i}}^{2},$$

and

$$\sum_{i=1,2} \left\| \overline{R}_{\hat{\rho}}(\Pi_i^h(v_i)) - \sigma(v_i) n_i \right\|_{0,\Gamma_{i,D}}^2 \leqslant Ch^{2k-1} \sum_{i=1,2} \|v\|_{k+1,\Omega_i}^2.$$

Let us prove now a coercivity property.

Lemma 3.4.7. For M > 0 fixed. Then is exists $\alpha > 0$ such that for all γ with $M \ge \gamma > 0$ the following coercivity property holds :

(3.16)
$$a(v,v) + \frac{1}{2} \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1} v_i^2 \ d\Gamma \ge \alpha \sum_{i=1,2} \|v_i\|_{1,\Omega_i}^2 \qquad \forall v \in V.$$

Proof. We argue by contradiction. It is sufficient to prove the result for $\gamma = M$. Suppose there exists $(v_n)_{n \in \mathbb{N}} \subset V$ such that $\sum_{i=1,2} \|v_{i,n}\|_{1,\Omega_i}^2 = 1$, for $n \in \mathbb{N}$, which satisfies

$$a(v_n, v_n) + \frac{1}{2} \sum_{i=1,2} \int_{\Gamma_{i,D}} M^{-1} v_{i,n}^2 \, \mathrm{d}\Gamma \leqslant \frac{1}{n}$$

Hence, it holds $\lim_{n \to +\infty} \sum_{i=1,2} \int_{\Gamma_{i,D}} v_{i,n}^2 \, \mathrm{d}\Gamma = 0$ and $\lim_{n \to +\infty} a(v_n, v_n) = 0$. From the weak sequential compactness of the unit ball of V, there exits $v \in V$ and a subsequence still denoted by v_n which weakly converges to v. The compact injection of H^1 into L^2 implies that up to a subsequence, v_n converges to v strongly in $L^2(\Omega_1)^d \times L^2(\Omega_2)^d$. First, we show that v = 0 and then that v_n converges to v strongly in $H^1(\Omega_1)^d \times H^1(\Omega_2)^d$. By using the lower semi-continuity of $v \mapsto \sum_{i=1,2} \int_{\Gamma_{i,D}} v_{i,n}^2 \, \mathrm{d}\Gamma$, we have $\sum_{i=1,2} \int_{\Gamma_{i,D}} v_i^2 \, \mathrm{d}\Gamma = 0$ with $\operatorname{mes}(\Gamma_{i,D}) \neq 0$. Furthermore, due to the

 L^2 -convergence, one has $\lim_{n \to +\infty} \sum_{i=1,2} \|v_{i,n}\|_{0,\Omega_i} = \sum_{i=1,2} \|v_i\|_{0,\Omega_i}$. Similarly by using the weak lower semi-continuity of a(.,.), we deduce a(v,v) = 0 and using the property of the fourth order tensor

A, it holds :

$$0 = \int_{\Omega_i} \sigma(v_i) : \varepsilon(v_i) \, \mathrm{d}\Omega = \int_{\Omega_i} \varepsilon(v_i) : \varepsilon(v_i) \, \mathrm{d}\Omega = \|\varepsilon(v_i)\|_{0,\Omega_i}$$

Let us finally show that v = 0. Since, the tensor A is uniformly elliptic, it holds :

$$a(v_n, v_n) \ge C \sum_{i=1,2} \int_{\Omega_i} \varepsilon(v_{i,n}) : \varepsilon(v_{i,n}) \, \mathrm{d}\Omega = C \sum_{i=1,2} \|\varepsilon(v_{i,n})\|_{0,\Omega_i} \quad \text{and} \quad \lim_{n \to +\infty} a(v_n, v_n) = 0.$$

Hence

$$\lim_{n \to +\infty} \sum_{i=1,2} \left\| \varepsilon(v_{i,n}) \right\|_{0,\Omega_i} = \sum_{i=1,2} \left\| \varepsilon(v_i) \right\|_{1,\Omega_i} = 0 .$$

Moreover, thanks to Korn's inequality (see [3]), it holds :

$$\sum_{i=1,2} \|\varepsilon(v_{i,n})\|_{0,\Omega_i} + \sum_{i=1,2} \|v_{i,n}\|_{0,\Gamma_{i,D}} \ge C \sum_{i=1,2} \|v_{i,n}\|_{0,\Omega_i}.$$

We deduce :

$$\lim_{n \to +\infty} \sum_{i=1,2} \|v_{i,n}\|_{1,\Omega_i} = \sum_{i=1,2} \|v_i\|_{1,\Omega_i} = 0$$

which contradicts $\sum_{i=1,2} \|v_{i,n}\|_{1,\Omega_i}^2 = 1.$

Now, in order to get existence and uniqueness of the solution, we will define the following operator B^h from V^h to V^h :

$$(3.17) \quad (B^{h}u^{h}, v^{h})_{1,\Omega} = A^{h}_{\theta\gamma}(u^{h}, v^{h}) + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^{h,\hat{\rho}}_{i,\gamma}(u^{h}_{i}) - u_{i,D}) \cdot \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^{h}_{i}) \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P^{h,\hat{\rho}}_{\gamma}(u^{h}) - g]_{+} P^{h,\hat{\rho}}_{\theta\gamma}(v^{h}) \, \mathrm{d}\Gamma \qquad \forall u^{h}, v^{h} \in V^{h}.$$

In the following, we make frequent use of the inequality :

$$([a]_{+} - [b]_{+})(a - b) \ge ([a]_{+} - [b]_{+})^2 \ge 0 \qquad \forall a, b \in \mathbb{R}.$$

Now, to get existence and uniqueness of a solution, it is sufficient to prove that B^h is hemicontinuous (see the Corollary 15 p. 126 of [82]). B^h is hemi-continuous if for all u^h , $v^h \in V^h$ the function

$$[0,1] \ni t \mapsto (B(u^h - tv^h), v^h)$$

is continuous. First, we need to prove B^h is coercive which is a consequence of the previous lemmas. Then we establish an estimate which will imply the hemi-continuity. Let u^h , $v^h \in V^h$, it holds :

$$\begin{split} & (B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega} \\ & = A^{h}_{\theta\gamma}(u^{h} - v^{h}, u^{h} - v^{h}) \\ & + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^{h,\hat{\rho}}_{i,\gamma}(u^{h}_{i}) - \overline{P}^{h,\hat{\rho}}_{i,\gamma}(v^{h}_{i})) \cdot (\overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(u^{h}_{i}) - \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^{h}_{i})) \, \mathrm{d}\Gamma \\ & + \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P^{h,\hat{\rho}}_{\gamma}(u^{h}) - g]_{+} - [P^{h,\hat{\rho}}_{\gamma}(v^{h}) - g]_{+}) (P^{h,\hat{\rho}}_{\theta\gamma}(u^{h}) - P^{h,\hat{\rho}}_{\theta\gamma}(v^{h})) \, \mathrm{d}\Gamma \\ & = a(u^{h} - v^{h}, u^{h} - v^{h}) - \int_{\Gamma_{1,C}} \theta\gamma R_{\hat{\rho}}(u^{h} - v^{h}) R_{\hat{\rho}}(u^{h} - v^{h}) \, \mathrm{d}\Gamma \\ & - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta\gamma \overline{R}_{\hat{\rho}}(u^{h}_{i} - v^{h}_{i}) \cdot \overline{R}_{\hat{\rho}}(u^{h}_{i} - v^{h}_{i}) \, \mathrm{d}\Gamma \\ & + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^{h,\hat{\rho}}_{i,\gamma}(u^{h}_{i}) - \overline{P}^{h,\hat{\rho}}_{i,\gamma}(v^{h}_{i})) \cdot (\overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(u^{h}_{i}) - \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^{h}_{i})) \, \mathrm{d}\Gamma \\ & + \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P^{h,\hat{\rho}}_{\gamma}(u^{h}) - g]_{+} - [P^{h,\hat{\rho}}_{\gamma}(v^{h}) - g]_{+}) (P^{h,\hat{\rho}}_{\theta\gamma}(u^{h}) - P^{h,\hat{\rho}}_{\theta\gamma}(v^{h})) \, \mathrm{d}\Gamma \\ & = I + II + III \end{split}$$

with
$$I = a(u^h - v^h, u^h - v^h) - \int_{\Gamma_{1,C}} \theta \gamma R_{\hat{\rho}}(u^h - v^h) R_{\hat{\rho}}(u^h - v^h) \, d\Gamma$$

 $- \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \overline{R}_{\hat{\rho}}(u^h_i - v^h_i) \cdot \overline{R}_{\hat{\rho}}(u^h_i - v^h_i) \, d\Gamma,$
 $II = \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^{h,\hat{\rho}}_{i,\gamma}(u^h_i) - \overline{P}^{h,\hat{\rho}}_{i,\gamma}(v^h_i)) \cdot (\overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(u^h_i) - \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^h_i)) \, d\Gamma,$
 $III = \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P^{h,\hat{\rho}}_{\gamma}(u^h) - g]_+ - [P^{h,\hat{\rho}}_{\gamma}(v^h) - g]_+) (P^{h,\hat{\rho}}_{\theta\gamma}(u^h) - P^{h,\hat{\rho}}_{\theta\gamma}(v^h)) \, d\Gamma.$
Now, we need to bound I II III from below to prove the correspondence in the provestion I .

Now, we need to bound I, II, III from below to prove the coercivity. Using Young's inequality, it holds :

$$\begin{split} III &= \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) \\ &\quad (\llbracket u^{h}.n \rrbracket - \theta \gamma R_{\hat{\rho}}(u^{h}) - g - \llbracket v^{h}.n \rrbracket + \theta \gamma R_{\hat{\rho}}(v^{h}) + g) \, \mathrm{d}\Gamma \\ &= \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) (P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g - P_{\gamma}^{h,\hat{\rho}}(v^{h}) + g) \, \mathrm{d}\Gamma \\ &\quad + (1 - \theta) \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) (\gamma R_{\hat{\rho}}(u^{h}) - \gamma R_{\hat{\rho}}(v^{h})) \, \mathrm{d}\Gamma \\ &\geq \left\| \gamma^{-\frac{1}{2}} ([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \\ &\quad - |1 - \theta| \left\| \gamma^{-\frac{1}{2}} ([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}. \end{split}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Using Young's inequality for $\beta > 0$:

$$III \geq (1 - \frac{|1 - \theta|}{2\beta}) \left\| \gamma^{-\frac{1}{2}} ([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} - \frac{|1 - \theta|\beta}{2} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}^{2}$$

$$\begin{split} II &= \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_{i}^{h} - v_{i}^{h} - \gamma(\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h}))) \cdot (u_{i}^{h} - v_{i}^{h} - \gamma\theta(\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h}))) d\Gamma \\ &= \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_{i}^{h} - v_{i}^{h}) \cdot (u_{i}^{h} - v_{i}^{h}) d\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma\theta(\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \cdot (\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h})) d\Gamma \\ &- (1+\theta) \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_{i}^{h} - v_{i}^{h}) \cdot (\gamma(\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h}))) d\Gamma \\ &\geqslant \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i}^{h} - v_{i}^{h}) \right\|_{\Gamma_{i,D}}^{2} + \theta \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \right\|_{\Gamma_{i,D}}^{2} \\ &- |1+\theta| \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i}^{h} - v_{i}^{h}) \right\|_{\Gamma_{i,D}}^{2} \left\| \gamma^{\frac{1}{2}} (\overline{R}_{\hat{\rho}}(u_{i}^{h}) - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \right\|_{\Gamma_{i,D}}^{2}. \end{split}$$

Using Young's inequality for $\beta' > 0$:

$$II \geq (1 - \frac{|1 + \theta|}{2\beta'}) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i^h - v_i^h) \right\|_{\Gamma_{i,D}}^2 + (\theta - \frac{|1 + \theta|\beta'}{2}) \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\overline{R}_{\hat{\rho}}(u_i^h) - \overline{R}_{\hat{\rho}}(v_i^h)) \right\|_{\Gamma_{i,D}}^2.$$

We deduced from the estimates of II and III that :

$$\begin{split} & (B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega} \\ \geqslant & a(u^{h} - v^{h}, u^{h} - v^{h}) - \theta \left\| \gamma^{\frac{1}{2}}R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}^{2} - \theta \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}}(\overline{R}_{\hat{\rho}}(u^{h}_{i}) - \overline{R}_{\hat{\rho}}(v^{h}_{i})) \right\|_{\Gamma_{i,D}}^{2} \\ & + (1 - \frac{|1 - \theta|}{2\beta}) \left\| \gamma^{-\frac{1}{2}}([P_{\gamma}^{h,\hat{\rho}}(u^{h,\hat{\rho}}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \\ & - \frac{|1 - \theta|\beta}{2} \left\| \gamma^{\frac{1}{2}}R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}^{2} \\ & + (1 - \frac{|1 + \theta|}{2\beta'}) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}}(u^{h}_{i} - v^{h}_{i}) \right\|_{\Gamma_{i,D}}^{2} + (\theta - \frac{|1 + \theta|\beta'}{2}) \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}}(\overline{R}_{\hat{\rho}}(u^{h}_{i}) - \overline{R}_{\hat{\rho}}(v^{h}_{i})) \right\|_{\Gamma_{i,D}}^{2} \\ & \geqslant & a(u^{h} - v^{h}, u^{h} - v^{h}) + (1 - \frac{|1 + \theta|}{2\beta'}) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}}(u^{h}_{i} - v^{h}_{i}) \right\|_{\Gamma_{i,D}}^{2} \\ & - \frac{|1 + \theta|\beta'}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}}(\overline{R}_{\hat{\rho}}(u^{h}_{i}) - \overline{R}_{\hat{\rho}}(v^{h}_{i})) \right\|_{\Gamma_{i,D}}^{2} - (\theta + \frac{|1 - \theta|\beta}{2}) \left\| \gamma^{\frac{1}{2}}R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}^{2} \\ & + (1 - \frac{|1 - \theta|}{2\beta}) \left\| \gamma^{-\frac{1}{2}}([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(v^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \cdot \end{split}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

If $\theta = 1$ and $\beta' = 2$, we have :

$$\begin{aligned} & (B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega} \\ \geqslant & a(u^{h} - v^{h}, u^{h} - v^{h}) + \frac{1}{2}\sum_{i=1,2} \left\|\gamma^{-\frac{1}{2}}(u^{h}_{i} - v^{h}_{i})\right\|_{\Gamma_{i,D}}^{2} - 2\sum_{i=1,2} \left\|\gamma^{\frac{1}{2}}(\overline{R}_{\hat{\rho}}(u^{h}_{i}) - \overline{R}_{\hat{\rho}}(v^{h}_{i}))\right\|_{\Gamma_{i,D}}^{2} \\ & + \left\|\gamma^{-\frac{1}{2}}([P^{h,\hat{\rho}}_{\gamma}(u^{h}) - g]_{+} - [P^{h,\hat{\rho}}_{\gamma}(v^{h}) - g]_{+})\right\|_{0,\Gamma_{1,C}}^{2} - \left\|\gamma^{\frac{1}{2}}R_{\hat{\rho}}(u^{h} - v^{h})\right\|_{0,\Gamma_{1,C}}^{2}. \end{aligned}$$

Thus, if γ_0 is sufficiently small and using the coercivity (3.16) for I and the previous lemma 3.4.7:

$$(B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega} \ge C \sum_{i=1,2} \left\| u_{i}^{h} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2}.$$

If $\theta = -1$, choose $\beta = \frac{|1-\theta|}{2}$, it holds :

$$(B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega}$$

$$\geq a(u^{h} - v^{h}, u^{h} - v^{h}) + \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u^{h}_{i} - v^{h}_{i}) \right\|_{\Gamma_{i,D}}^{2}$$

and from the coercivity (3.16) for I, we obtain :

$$(B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega} \ge C \sum_{i=1,2} \left\| u_{i}^{h} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2}.$$

If $\theta \neq -1$, we take $\beta = \frac{|1-\theta|}{2}$ and $\beta' = |1+\theta|$, it holds :

$$(B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega}$$

$$\geq a(u^{h} - v^{h}, u^{h} - v^{h}) + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u^{h}_{i} - v^{h}_{i}) \right\|_{\Gamma_{i,D}}^{2} - \frac{(1+\theta)^{2}}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\overline{R}_{\hat{\rho}}(u^{h}_{i}) - \overline{R}_{\hat{\rho}}(v^{h}_{i})) \right\|_{\Gamma_{i,D}}^{2}$$

$$- \frac{1}{4} (1+\theta)^{2} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(u^{h} - v^{h}) \right\|_{0,\Gamma_{1,C}}^{2}.$$

So, using γ_0 sufficiently small and using the coercivity (3.16) for *I* and previous lemma 3.4.7, it holds :

$$(B^{h}u^{h} - B^{h}v^{h}, u^{h} - v^{h})_{1,\Omega} \ge C \sum_{i=1,2} \left\| u_{i}^{h} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2}.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Now, we prove the hemi-continuity of B^h . Let $t, s \in [0, 1]$ and $u^h, v^h \in V^h$, we have :

$$\begin{split} & \left| (B^{h}(u^{h} - tv^{h}) - B^{h}(u^{h} - sv^{h}), v^{h})_{1,\Omega} \right| \\ = & \left| a((s - t)v^{h}, v^{h}) - (s - t) \int_{\Gamma_{1,C}} \theta \gamma R_{\hat{\rho}}(v^{h})^{2} \, \mathrm{d}\Gamma - (s - t) \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \overline{R}_{\hat{\rho}}(v^{h}_{i}) \cdot \overline{R}_{\hat{\rho}}(v^{h}_{i}) \, \mathrm{d}\Gamma \\ & + (s - t) \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} \overline{P}^{h,\hat{\rho}}_{i,\gamma}(v^{h}_{i}) \cdot \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^{h}_{i}) \, \mathrm{d}\Gamma \\ & + \int_{\Gamma_{1,C}} \frac{1}{\gamma} (\left[P^{h,\hat{\rho}}_{\gamma}(u^{h} - tv^{h}) - g \right]_{+} - \left[P^{h,\hat{\rho}}_{\gamma}(u^{h} - sv^{h}) - g \right]_{+} \right) P^{h,\hat{\rho}}_{\theta\gamma}(v^{h}) \, \mathrm{d}\Gamma \\ & + \int_{\Gamma_{1,C}} \frac{1}{\gamma} (\left[P^{h,\hat{\rho}}_{\gamma}(u^{h} - tv^{h}) - g \right]_{+} - \left[P^{h,\hat{\rho}}_{\gamma}(v^{h}_{i}) \right]^{2} + |s - t| \left| \theta \right| \sum_{i=1,2} \int_{\Gamma_{i,D}} \left| \gamma^{\frac{1}{2}} \overline{R}_{\hat{\rho}}(v^{h}_{i}) \right|^{2} \, \mathrm{d}\Gamma \\ & + |s - t| \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} \left| \overline{P}^{h,\hat{\rho}}_{i,\gamma}(v^{h}_{i}) \right| \cdot \left| \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^{h}_{i}) \right| \, \mathrm{d}\Gamma \\ & + \left| \int_{\Gamma_{1,C}} \frac{1}{\gamma} (\left[P^{h,\hat{\rho}}_{\gamma}(u^{h} - tv^{h}) - g \right]_{+} - \left[P^{h,\hat{\rho}}_{\gamma}(u^{h} - sv^{h}) - g \right]_{+} \right) P^{h,\hat{\rho}}_{\theta\gamma}(v^{h}) \, \mathrm{d}\Gamma \right| \\ & \leq |s - t| \left| a(v^{h}, v^{h}) + |s - t| \left| \theta \right| \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h}) \right\|_{\Gamma_{1,C}}^{2} + |s - t| \left| \theta \right| \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \overline{R}_{\hat{\rho}}(v^{h}_{i}) \right\|_{\Gamma_{i,D}}^{2} \\ & + |s - t| \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} \left| \overline{P}^{h,\hat{\rho}}_{i,\gamma}(v^{h}_{i}) \right| \cdot \left| \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^{h}_{i}) \right| \, \mathrm{d}\Gamma \\ & + \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| \left[P^{h,\hat{\rho}}_{\gamma}(u^{h} - tv^{h}) - g \right]_{+} - \left[P^{h,\hat{\rho}}_{\gamma\theta}(u^{h} - sv^{h}) - g \right]_{+} \right| \left| P^{h,\hat{\rho}}_{\theta\gamma}(v^{h}) \right| \, \mathrm{d}\Gamma. \end{split}$$

For all a, b in \mathbb{R} , we have the following estimate :

$$|[a]_{+} - [b]_{+}| \leq |a - b|$$

So we deduce that

$$\begin{split} &\int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| \left[P_{\gamma}^{h,\hat{\rho}}(u^{h} - tv^{h}) - g \right]_{+} - \left[P_{\gamma}^{h,\hat{\rho}}(u^{h} - sv^{h}) - g \right]_{+} \right| \left| P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \right| \, \mathrm{d}\Gamma \\ &\leqslant \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| P_{\gamma}^{h,\hat{\rho}}(u^{h} - tv^{h}) - P_{\gamma}^{h,\hat{\rho}}(u^{h} - sv^{h}) \right| \left| P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \right| \, \mathrm{d}\Gamma \\ &\leqslant \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| \left[(u^{h} - tv^{h}) \cdot n \right] - \gamma R_{\hat{\rho}}(u^{h} - tv^{h}) - \left[(u^{h} - sv^{h}) \cdot n \right] + \gamma R_{\hat{\rho}}(u^{h} - sv^{h}) \right| \left| P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \right| \, \mathrm{d}\Gamma \\ &\leqslant \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| (s - t) \left[v^{h} \cdot n \right] - (s - t) \gamma R_{\hat{\rho}}(v^{h}) \right| \left| P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \right| \, \mathrm{d}\Gamma \\ &\leqslant |s - t| \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| \left[v^{h} \cdot n \right] - \gamma R_{\hat{\rho}}(v^{h}) \right| \left| P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \right| \, \mathrm{d}\Gamma. \end{split}$$

Hence

$$\begin{split} & \left| (B^{h}(u^{h} - tv^{h}) - B^{h}(u^{h} - sv^{h}), v^{h})_{1,\Omega} \right| \\ \leqslant & \left| s - t \right| \left(a(v^{h}, v^{h}) + \left| \theta \right| \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h}) \right\|_{\Gamma_{1,C}}^{2} + \left| \theta \right| \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \overline{R}_{\hat{\rho}}(v^{h}_{i}) \right\|_{\Gamma_{i,D}}^{2} \\ & + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} \left| \overline{P}_{i,\gamma}^{h,\hat{\rho}}(v^{h}_{i}) \right| \cdot \left| \overline{P}_{i,\gamma\theta}^{h,\hat{\rho}}(v^{h}_{i}) \right| \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left| P_{\gamma}^{h,\hat{\rho}}(v^{h}) \right| \left| P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \right| \, \mathrm{d}\Gamma \Big). \end{split}$$

Hence B^h is hemi-continuous. This ends the proof of Theorem 3.4.1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

3.4.2 A priori Error analysis

In this section some optimal *a priori* error estimates are proved for the problem under consideration. The rate of convergence is the same as for standard finite element methods.

Theorem 3.4.8. Let u be a solution of the stabilized problem (3.4) belonging to $H^{\frac{3}{2}+\nu}(\Omega_1)^d \times H^{\frac{3}{2}+\nu}(\Omega_2)^d$ with $\nu > 0$.

1. If $\theta \neq -1$, we suppose $\gamma_0 > 0$ is sufficiently small. The solution u^h of the stabilized problem (3.11) satisfies the following error estimate :

$$\begin{split} &\sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 + \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+) \right\|_{0,\Gamma_{1,C}}^2 \\ &+ \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (\overline{P}_{i,\gamma}^h(u_i) - \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i)) \right\|_{0,\Gamma_{i,D}}^2 \\ &\leq C \inf_{v^h \in V^h} \Big(\sum_{i=1,2} \left\| u_i - v_i^h \right\|_{1,\Omega_i}^2 + \left\| \gamma^{-\frac{1}{2}} (u - v^h) \right\|_{0,\Gamma_{1,C}}^2 + \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) - R_{\hat{\rho}}(v^h)) \right\|_{0,\Gamma_{1,C}}^2 \\ &+ \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - v_i^h) \right\|_{0,\Gamma_{i,D}}^2 + \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_i) - \overline{R}_{\hat{\rho}}(v_i^h)) \right\|_{0,\Gamma_{i,D}}^2 \Big) \end{split}$$

with C > 0 a constant independent of h, u and γ_0 .

2. If $\theta = -1$, then for all $\gamma_0 > 0$, the solution u^h of the stabilized problem (3.11) satisfies the error estimate (3.18) with C > 0 a constant independent of h and u.

Proof. Let $v^h \in V^h$, using the coercivity inequality (3.16) and continuity of the form $a(.,.) + \frac{1}{2} \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1}(.)^2 \, d\Gamma$ and Young's inequality, it holds :

$$\begin{split} \alpha \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 &\leqslant a(u - u^h, u - u^h) + \frac{1}{2} \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1} (u_i - u_i^h)^2 \, \mathrm{d}\Gamma \\ &= a(u - u^h, (u - v^h) + (v^h - u^h)) + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &\leqslant C \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i} \left\| u_i - v_i^h \right\|_{1,\Omega_i} + a(u - u^h, v^h - u^h) \\ &+ \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &\leqslant \frac{\alpha}{2} \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 + \frac{C^2}{2\alpha} \sum_{i=1,2} \left\| u_i - v_i^h \right\|_{1,\Omega_i}^2 \\ &+ \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 + a(u, v^h - u^h) - a(u^h, v^h - u^h). \end{split}$$

Hence

$$(3.19) \frac{\alpha}{2} \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 \leqslant \frac{C^2}{2\alpha} \sum_{i=1,2} \left\| u_i - v_i^h \right\|_{1,\Omega_i}^2 + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 + a(u, v^h - u^h) - a(u^h, v^h - u^h).$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Let u be the solution to (3.4), it verifies the stabilized formulation (3.12), thus we have :

$$a(u, v^{h} - u^{h}) - a(u^{h}, v^{h} - u^{h}) = \int_{\Gamma_{1,C}} \theta \gamma(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})) R_{\hat{\rho}}(v^{h} - u^{h}) d\Gamma$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

$$(3.20)$$

First, using Cauchy-Schwarz and Young's inequalities for $\beta_1>0,$ it holds :

$$\int_{\Gamma_{1,C}} \theta \gamma(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})) R_{\hat{\rho}}(v^{h} - u^{h}) \, d\Gamma = \int_{\Gamma_{1,C}} \theta \gamma R_{\hat{\rho}}(v^{h} - u^{h})^{2} \, d\Gamma \\
+ \int_{\Gamma_{1,C}} \theta \gamma(\sigma_{n}(u) - R_{\hat{\rho}}(v^{h})) R_{\hat{\rho}}(v^{h} - u^{h}) \, d\Gamma$$
(3.21)
$$\leq \theta \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}}^{2} \\
+ |\theta| \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) - R_{\hat{\rho}}(v^{h})) \right\|_{0,\Gamma_{1,C}} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}} \\
\leq \frac{\theta^{2}}{2\beta_{1}} \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) - R_{\hat{\rho}}(v^{h})) \right\|_{0,\Gamma_{1,C}}^{2} + (\theta + \frac{\beta_{1}}{2}) \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}}^{2}.$$

For all $a, b \in \mathbb{R}$, we have the following estimate :

(3.22)
$$([a]_+ - [b]_+)(b-a) \leq -([a]_+ - [b]_+)^2.$$

Then, set :

$$\begin{aligned} \tau_1 &= \int_{\Gamma_{1,C}} \frac{1}{\gamma} ([P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ - [P_{\gamma}^h(u) - g]_+) P_{\theta\gamma}^{h,\hat{\rho}}(v^h - u^h) \, \mathrm{d}\Gamma \\ &= \int_{\Gamma_{1,C}} (\sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+) P_{\theta\gamma}^{h,\hat{\rho}}(v^h - u^h) \, \mathrm{d}\Gamma. \end{aligned}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Using Cauchy-Schwarz and Young's inequalities for $\beta_2 > 0$ and $\beta_3 > 0$ and (3.22), it holds :

$$\begin{aligned} \tau_{1} &= \int_{\Gamma_{1,C}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) (P_{\gamma}^{h}(u) - g + g - P_{\gamma}^{h,\hat{\rho}}(u^{h})) \, \mathrm{d}\Gamma \\ &+ \int_{\Gamma_{1,C}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) (P_{\gamma}^{h,\hat{\rho}}(v^{h}) - P_{\gamma}^{h}(u)) \, \mathrm{d}\Gamma \\ &+ (1 - \theta) \int_{\Gamma_{1,C}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) \gamma R_{\hat{\rho}}(v^{h} - u^{h}) \, \mathrm{d}\Gamma \\ \leqslant &- \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \\ &+ \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}} \left\| \gamma^{-\frac{1}{2}} (P_{\gamma}^{h,\hat{\rho}}(v^{h}) - P_{\gamma}^{h}(u)) \right\|_{0,\Gamma_{1,C}} \\ &+ |1 - \theta| \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}} \\ \leqslant & \left(-1 + \frac{1}{2\beta_{2}} + \frac{|1 - \theta|}{2\beta_{3}} \right) \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \\ &+ \frac{\beta_{2}}{2} \left\| \gamma^{-\frac{1}{2}} (P_{\gamma}^{h,\hat{\rho}}(v^{h}) - P_{\gamma}^{h}(u)) \right\|_{0,\Gamma_{1,C}}^{2} \\ + \frac{|1 - \theta|}{2\beta_{3}} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}}^{2}. \end{aligned}$$

Moreover, set :

$$\begin{split} \tau_{2} &= -\sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1}(\overline{P}_{i,\gamma}^{h}(u_{i}) - \overline{P}_{i,\gamma}^{h,\rho}(u_{i}^{h})) \cdot \overline{P}_{i,\gamma\theta}(v_{i}^{h} - u_{i}^{h}) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma(\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(u_{i}^{h})) \cdot \overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h}) \, \mathrm{d}\Gamma \\ &= -\sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1}(u_{i} - u_{i}^{h}) \cdot (v_{i}^{h} - u_{i}^{h}) \, \mathrm{d}\Gamma \\ &+ \theta \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot \overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h}) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} (v_{i}^{h} - u_{i}^{h}) \cdot (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(u_{i}^{h})) \, \mathrm{d}\Gamma \\ &= -\sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}}(u_{i} - u_{i}^{h}) \cdot (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} (v_{i}^{h} - u_{i}) \cdot (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot (\overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot (\overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot (\overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ (1 + \theta) \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot (\overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \left\|_{0,\Gamma_{i,D}}^{2} - \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1}(v_{i}^{h} - u_{i}) \cdot (\overline{P}_{i,\gamma}^{h}(u_{i}) - \overline{P}_{i,\gamma}^{h,\rho}(u_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ (1 + \theta) \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot (\overline{\sigma}(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \, \mathrm{d}\Gamma \\ &+ (1 + \theta) \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_{i} - u_{i}^{h}) \cdot (\overline{\sigma}(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \, \mathrm{d}\Gamma \end{split}$$

Using Young's inequality for $\beta_4 > 0$, it holds :

$$(3.24) \quad \begin{aligned} & -\sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1} (v_i^h - u_i) \cdot (\overline{P}_{i,\gamma}^h(u_i) - \overline{P}_{i,\gamma}^{h,\rho}(u_i^h)) \, \mathrm{d}\Gamma \\ & \leqslant \quad \frac{\beta_4}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (v_i^h - u_i) \right\|_{0,\Gamma_{i,D}}^2 + \frac{1}{2\beta_4} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (\overline{P}_{i,\gamma}^h(u_i) - \overline{P}_{i,\gamma}^{h,\rho}(u_i^h)) \right\|_{0,\Gamma_{i,D}}^2 \\ & \leqslant \quad \frac{\beta_4}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (v_i^h - u_i) \right\|_{0,\Gamma_{i,D}}^2 + \frac{1}{\beta_4} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ & \quad + \frac{1}{\beta_4} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_i)n_i - \overline{R}_{\hat{\rho}}(u_i^h)) \right\|_{0,\Gamma_{i,D}}^2, \end{aligned}$$

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

and for $\beta_5 > 0$

(3.25)
$$\sum_{i=1,2} \int_{\Gamma_{i,D}} (u_i - u_i^h) \cdot (\sigma(u_i)n_i - \overline{R}_{\hat{\rho}}(v_i^h)) \, d\Gamma$$
$$\leqslant \frac{1}{2\beta_5} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 + \frac{\beta_5}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}}(\sigma(u_i)n_i - \overline{R}_{\hat{\rho}}(v_i^h)) \right\|_{0,\Gamma_{i,D}}^2,$$

and for $\beta_6 > 0$

$$(3.26) \quad (1+\theta) \sum_{i=1,2} \int_{\Gamma_{i,D}} (u_i - u_i^h) \cdot (\overline{R}_{\hat{\rho}}(v_i^h - u_i^h)) \, \mathrm{d}\Gamma \\ \leqslant \frac{|1+\theta|}{2\beta_6} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 + \frac{\beta_6 |1+\theta|}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}}(\overline{R}_{\hat{\rho}}(v_i^h - u_i^h)) \right\|_{0,\Gamma_{i,D}}^2.$$

Using inequalities (3.24), (3.25) and (3.26) in $\tau_2 + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2$, it holds :

$$\tau_{2} + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2}$$

$$\leq \left(-\frac{1}{2} + \frac{1}{\beta_{4}} + \frac{1}{2\beta_{5}} + \frac{|1 + \theta|}{2\beta_{6}} \right) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2}$$

$$+ \frac{\beta_{4}}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (v_{i}^{h} - u_{i}) \right\|_{0,\Gamma_{i,D}}^{2} + \frac{1}{\beta_{4}} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(u_{i}^{h})) \right\|_{0,\Gamma_{i,D}}^{2}$$

$$+ \frac{\beta_{5}}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \right\|_{0,\Gamma_{i,D}}^{2} + \frac{\beta_{6} |1 + \theta|}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h})) \right\|_{0,\Gamma_{i,D}}^{2}$$

Gathering (3.20), (3.21), (3.23) and (3.27) in (3.19), it holds :

$$\begin{aligned} \frac{\alpha}{2} \sum_{i=1,2} \left\| u_{i} - u_{i}^{h} \right\|_{1,\Omega_{i}}^{2} &\leqslant \frac{C^{2}}{2\alpha} \sum_{i=1,2} \left\| u_{i} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2} \\ &+ \frac{\theta^{2}}{2\beta_{1}} \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) - R_{\hat{\rho}}(v^{h})) \right\|_{0,\Gamma_{1,C}}^{2} \\ &+ \left(\theta + \frac{\beta_{1}}{2} \frac{|1 - \theta| \beta_{3}}{2} \right) \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}}^{2} \\ &+ \left(-1 + \frac{1}{2\beta_{2}} + \frac{|1 - \theta|}{2\beta_{3}} \right) \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\rho}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \\ &+ \left(-1 + \frac{1}{2\beta_{2}} + \frac{|1 - \theta|}{2\beta_{3}} \right) \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\rho}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} \\ &+ \left(-1 + \frac{1}{2\beta_{2}} + \frac{1}{2\beta_{3}} + \frac{|1 + \theta|}{2\beta_{3}} \right) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2} \\ &+ \left(-\frac{1}{2} + \frac{1}{\beta_{4}} + \frac{1}{2\beta_{5}} + \frac{|1 + \theta|}{2\beta_{6}} \right) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2} \\ &+ \frac{\beta_{4}}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (v_{i}^{h} - u_{i}) \right\|_{0,\Gamma_{i,D}}^{2} \\ &+ \frac{\beta_{5}}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \right\|_{0,\Gamma_{i,D}}^{2} \\ &+ \frac{\beta_{6} |1 + \theta|}{2} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\overline{R}_{\hat{\rho}}(v_{i}^{h} - u_{i}^{h})) \right\|_{0,\Gamma_{i,D}}^{2}. \end{aligned}$$

Using lemmas 3.4.2 and 3.4.5, we obtain :

$$\left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}}^{2} \leq C_{1} \gamma_{0} \sum_{i=1,2} \left\| v_{i}^{h} - u_{i}^{h} \right\|_{1,\Omega_{i}}^{2}$$
$$\leq 2C_{1} \gamma_{0} \left(\sum_{i=1,2} \left\| v_{i}^{h} - u_{i} \right\|_{1,\Omega_{i}}^{2} + \sum_{i=1,2} \left\| u_{i} - u_{i}^{h} \right\|_{1,\Omega_{i}}^{2} \right),$$

$$\sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v_i^h - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \leqslant C_2 \gamma_0 \sum_{i=1,2} \left\| v_i^h - u_i^h \right\|_{1,\Omega_i}^2 \leqslant 2C_2 \gamma_0 \left(\sum_{i=1,2} \left\| v_i^h - u_i \right\|_{1,\Omega_i}^2 + \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 \right),$$

and we know

$$\left\|\gamma^{-\frac{1}{2}}P_{\gamma}^{h,\rho}(v^{h}) - P_{\gamma}^{h}(u)\right\|_{0,\Gamma_{1,C}}^{2} \leq 2\left\|\gamma^{-\frac{1}{2}}(v^{h}-u)\right\|_{0,\Gamma_{1,C}}^{2} + 2\left\|\gamma^{\frac{1}{2}}(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u))\right\|_{0,\Gamma_{1,C}}^{2},$$

and using Young's inequality for $\beta > 0$, it holds :

(3.29)
$$-\sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \leq -(1 - \frac{1}{\beta}) \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \sigma(u_i) n_i - R_{\hat{\rho}}(u_i^h) \right\|_{0,\Gamma_{i,D}}^2 -(1 - \beta) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} \overline{P}_{\gamma}^h(u) - \overline{P}_{\gamma}^{h,\rho}(u^h) \right\|_{0,\Gamma_{i,D}}^2.$$

Let $\theta \in \mathbb{R}$ be fixed, if β_2 , β_3 , β_4 , β_5 and β_6 are chosen sufficiently large such that : $1 \qquad |1 - \theta| \qquad 1$

$$-1 + \frac{1}{2\beta_2} + \frac{|1-\theta|}{2\beta_3} < -\frac{1}{2},$$

$$-\frac{1}{2} + \frac{1}{\beta_4} + \frac{1}{2\beta_5} + \frac{|1+\theta|}{2\beta_6} < -\frac{1}{4}$$

And if γ_0 is sufficiently small and $\beta < 1$, we get the inequality (3.18).

In the case $\theta = -1$, thanks to (3.28), it holds :

$$\frac{\alpha}{2} \sum_{i=1,2} \left\| u_{i} - u_{i}^{h} \right\|_{1,\Omega_{i}}^{2} \leq \frac{C^{2}}{2\alpha} \sum_{i=1,2} \left\| u_{i} - v_{i}^{h} \right\|_{1,\Omega_{i}}^{2} + \frac{1}{2\beta_{1}} \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) - R_{\hat{\rho}}(v^{h})) \right\|_{0,\Gamma_{1,C}}^{2} + (-1 + \frac{\beta_{1}}{2} + \beta_{3}) \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^{h} - u^{h}) \right\|_{0,\Gamma_{1,C}}^{2} + \left(-1 + \frac{1}{2\beta_{2}} + \frac{1}{\beta_{3}} \right) \left\| \gamma^{\frac{1}{2}} (\sigma_{n}(u) + \frac{1}{\gamma} [P_{\gamma}(u^{h}) - g]_{+}) \right\|_{0,\Gamma_{1,C}}^{2} + \frac{\beta_{2}}{2} \left\| \gamma^{-\frac{1}{2}} P_{\gamma}^{h,\rho}(v^{h}) - P_{\gamma}^{h}(u) \right\|_{0,\Gamma_{1,C}}^{2} + \left(-\frac{1}{2} + \frac{1}{\beta_{4}} + \frac{1}{2\beta_{5}} \right) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2} + \frac{\beta_{4}}{2} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (v_{i}^{h} - u_{i}) \right\|_{0,\Gamma_{i,D}}^{2} + \frac{\beta_{4}}{\beta_{4}} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_{i})n_{i} - \overline{R}_{\hat{\rho}}(v_{i}^{h})) \right\|_{0,\Gamma_{i,D}}^{2} .$$

Let $\eta_1 > 0$ and $\eta_2 > 0$, we take $\beta_1 = 2\eta_1$, $\beta_2 = 1 + 1/\eta_1$, $\beta_3 = 1 + \eta_1$, $\beta_4 = 2(1 + \eta_2)$, $\beta_5 = 2(1 + 1/\eta_2)$, then it holds :

$$\begin{split} \frac{\alpha}{2} \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 &\leqslant \quad \frac{C^2}{2\alpha} \sum_{i=1,2} \left\| u_i - v_i^h \right\|_{1,\Omega_i}^2 \\ &\quad + \frac{1}{4\eta_1} \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) - R_{\hat{\rho}}(v^h)) \right\|_{0,\Gamma_{1,C}}^2 + 2\eta_1 \left\| \gamma^{\frac{1}{2}} R_{\hat{\rho}}(v^h - u^h) \right\|_{0,\Gamma_{1,C}}^2 \\ &\quad - \frac{\eta_1}{2(1+\eta_1)} \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}(u^h) - g]_+) \right\|_{0,\Gamma_{1,C}}^2 \\ &\quad + \frac{1+\eta_1}{2\eta_1} \left\| \gamma^{-\frac{1}{2}} P_{\gamma}^{h,\rho}(v^h) - P_{\gamma}^h(u) \right\|_{0,\Gamma_{1,C}}^2 \\ &\quad - \frac{\eta_2}{4(1+\eta_2)} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &\quad + (1+\eta_2) \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (v_i^h - u_i) \right\|_{0,\Gamma_{i,D}}^2 \\ &\quad + \frac{1}{2(1+\eta_2)} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} (\sigma(u_i)n_i - \overline{R}_{\hat{\rho}}(u_i^h)) \right\|_{0,\Gamma_{i,D}}^2 . \end{split}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Using (3.29) and
$$\beta = \frac{\eta_2}{2 + \eta_2} < 1$$
, we have :

$$-\frac{\eta_2}{4(1 + \eta_2)} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \leq \frac{1}{2(1 + \eta_2)} \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \sigma(u_i) n_i - R_{\hat{\rho}}(u_i^h) \right\|_{0,\Gamma_{i,D}}^2 - \frac{\eta_2}{2(1 + \eta_2)(2 + \eta_2)} \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} \overline{P}_{\gamma}^h(u) - \overline{P}_{\gamma}^{h,\rho}(u^h) \right\|_{0,\Gamma_{i,D}}^2$$

and

$$\sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \sigma(u_i) n_i - R_{\hat{\rho}}(u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \leqslant 2 \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \sigma(u_i) n_i - R_{\hat{\rho}}(v_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ + 2 \sum_{i=1,2} \left\| \gamma^{\frac{1}{2}} \sigma(R_{\hat{\rho}}(v_i^h - u_i^h)) \right\|_{0,\Gamma_{i,D}}^2.$$

Let γ_0 be positive. If we take $\eta_1 = \alpha/(32C_1\gamma_0)$ and $\eta_2 = C_2\gamma_0/(32\alpha)$, then we get the inequality (3.18). This ends the proof of Theorem 3.4.8

Theorem 3.4.9. Let u be a solution of the variational problem (3.4). Suppose that u belongs to $(H^{\frac{3}{2}+\nu}(\Omega_1))^d \times (H^{\frac{3}{2}+\nu}(\Omega_2))^d$ with $1/2 \ge \nu > 0$ if k = 1 and with $1 > \nu > 0$ if k = 2. Then, if additionally $\gamma_0 > 0$ is sufficiently small when $\theta \ne -1$, the solution u^h of the stabilize problem (3.10) satisfies the following a priori error estimate :

(3.31)
$$\sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 + \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+) \right\|_{0,\Gamma_{1,C}}^2 \\ + \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - \overline{P}_{i,\gamma}^h(u_i)) \right\|_{0,\Gamma_{i,D}}^2 \leqslant Ch^{1+2\nu} \sum_{i=1,2} \left\| u \right\|_{\frac{3}{2}+\nu,\Omega_i}^2$$

with C > 0 a constant independent of h and u.

Proof. Now let us establish the inequality (3.31). Set $v_i^h = \prod_i^h(u_i)$, we have the following estimates :

$$\begin{split} \left\| u_i - \Pi_i^h(u_i) \right\|_{m,\Omega_i} &\leqslant C h^{k+1-m} \left\| u_i \right\|_{k+1,\Omega_i}, \\ \left\| R_{\hat{\rho}}(\Pi^h(u)) - \sigma_n(u) \right\|_{0,\Gamma_{1,C}}^2 &\leqslant C h^{2k-1} \sum_{i=1,2} \left\| u \right\|_{k+1,\Omega_i}^2, \end{split}$$

and

$$\sum_{i=1,2} \left\| \overline{R}_{\hat{\rho}}(\Pi_{i}^{h}(u_{i})) - \sigma(u_{i})n_{i} \right\|_{0,\Gamma_{i,D}}^{2} \leqslant Ch^{2k-1} \sum_{i=1,2} \|u\|_{k+1,\Omega_{i}}^{2}$$

If we replace v_i^h by $\Pi_i^h(u_i)$ in (3.18), $\gamma = \gamma_0 h$ and we use the previous inequalities, we get (3.31). We can write :

(3.32)
$$\sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i} + \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+) \right\|_{0,\Gamma_{1,C}} + \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^h_i) - \overline{P}_{i,\gamma}^h(u_i)) \right\|_{0,\Gamma_{i,D}} \leqslant Ch^{1/2+\nu} \sum_{i=1,2} \| u \|_{\frac{3}{2}+\nu,\Omega_i}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

3.5 Numerical study

This section is dedicated to some numerical experiments with isoparametric Lagrange P1 or P2 finite element methods. The accuracy of the method is discussed for the different cases with respect to the finite element used, the mesh size and the value of the parameter γ_0 . Note that the following results are obtained without the stabilization introduced in Section 3.3.4. From a numerical viewpoint, the stabilization seems not strictly necessary to obtain an optimal rate of convergence. This has already been observed in a linear case in [28]. The numerical tests in two dimensions (resp. three dimensions) are performed on a fictitious domain $\Omega =] - 0.5, 0.5[^2$ (resp. $\Omega =] - 0.5, 0.5[^3$ which contains the first body Ω_1 , a circle of radius 0.25 and center (0,0) (resp. a sphere of radius 0.25 and center (0,0,0)), and the second $\Omega_2 =] - 0.5, 0.5[\times] - 0.5, -0.25[$ (resp. $\Omega_2 =] - 0.5, 0.5[^2 \times] - 0.5, -0.25[$). A Dirichlet condition is prescribed on the bottom of the rectangle (resp. parallelepiped).

The projector Π is defined from the lower part of the boundary of Ω_1 (i.e. for $\Gamma_{1,C} = \{x \in \partial \Omega_1 : x_d \leq 0\}$) onto its projection on the top boundary of Ω_2 . All remaining parts of the boundaries of Ω_1 and Ω_2 are considered traction free.

Since no Dirichlet condition is applied on Ω_1 , the problem is only semi-coercive. In order to recover the uniqueness of the solution, it is needed to prescribe the horizontal rigid translation in 2D and two horizontal translations and one rotation in 3D. This is done by prescribing the displacement on some given convenient points.

We use a generalized Newton's method to solve the discrete problem (3.10) (see [66] for more details) on the finite element library Getfem $++^{1}$.

For simplicity, we consider a dimensionless situation with Lamé coefficients $\lambda = 1$ and $\mu = 1$ and a vertical volume density of force -0.1.

The situation studied is not strictly speaking of Hertz type due to the fact that Ω_2 is bounded. The expression of the exact solution being unknown, the convergence is studied with respect to a reference solution computed with a P_2 isoparametric element on a very fine mesh (h = 1/200in 2D and h = 1/30 in 3D) with the skew-symmetric method $\theta = -1$ (see Figures 3.4 and 3.5).

3.5.1 Numerical convergence in the two dimensional case

We perform a numerical convergence study on the three methods $\theta = 1$, $\theta = 0$ and $\theta = -1$ for a fixed parameter $\gamma_0 = 1/200$ (chosen small in order to have the convergence for the three cases). On figures 3.6, 3.7 and 3.8, the relative error in percentage in L^2 and H^1 -norms on each bodies for P_1 Lagrange finite elements are plotted. As expected the optimal convergence is obtained in H^1 -norm for all methods in good accordance with Theorem 3.4.9. The rate of convergence in L^2 -norm is slightly sub-optimal on Ω_2 if one refers to Aubin-Nitsche lemma in the linear case. However, such a result is not available for the nonlinear contact problem. Moreover, this slight sub-optimal convergence may be caused by the Neumann-Dirichlet transition at the bottom of Ω_2 .

On figures 3.9, 3.10 and 3.11, the same experiments are reported but for P_2 isoparametric Lagrange finite elements. The convergence rate for the three cases is close to 1.6 on Ω_1 and 1.3 on Ω_2 . This is also close to optimality if one takes into account that the expected maximal

^{1.} see http://download.gna.org/getfem/html/homepage/

FIGURE 3.4 – 2D numerical reference solution with contour plot of Von Mises stress. Parameters h = 1/400, $\gamma_0 = 1/200$, $\theta = -1$ and P_2 elements.

regularity of the displacement next to the transition between contact and non-contact should be $H^{5/2-\eta}$ for any $\eta > 0$ (However, this result has only been proved in a scalar case in [83]). Accordingly, one could expect that the convergence rate in the L^2 -norm would be close to 2.5. This is approximately the case with again some sub-optimal rates which may due to the nonlinear characteristic of the contact condition or to the presence of non-regularities on the transition between the Dirichlet and the Neumann condition.

3.5.2 Influence of the parameter γ_0

The influence of γ_0 on the H^1 -norm of the error is plotted in Figure 3.12 for P_1 elements and on Figure 3.13 for P_2 elements. The most affected method is the one for $\theta = 1$. Indeed, it converges only for γ_0 very small. The large oscillation in the error norm comes from the fact that Newton's algorithm do not fully converge for all numerical experiments probably because there is no solution to the discrete problem in some cases. The method for $\theta = 0$ gives a more regular error with respect to γ_0 . It is still important to have γ_0 small to keep a good solution but a larger value is allowed. Accordingly to the theoretical result of Theorem 3.4.9, the influence of γ_0 on the method $\theta = -1$ is more limited. There is only a slight increase of the error for large values of γ_0 . Note that the nonlinear discrete system (3.10) becomes very stiff when γ_0 is very small. Thus, the possibility to have a large γ_0 is an advantage.

FIGURE 3.5 – Cross-section of 3D numerical reference solution with contour plot of Von Mises stress. Parameters h = 1/30, $\gamma_0 = 1/200$, $\theta = -1$ and P_2 elements.

FIGURE 3.6 – Convergence curves in 2D for the method $\theta = 1$, with $\gamma_0 = 1/200$ and P1 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

3.5.3 Numerical experiments in the 3D case

Due to the high number of degrees of freedom in 3D, it obviously has not been possible to produce convergence curves with a mesh size as small as in 2D. The convergence curves for 3D are shown in Figures 3.14, 3.15 and 3.16 only for P_1 elements. Although we also made some tests with P_2 elements and on the influence of γ_0 , we do not reproduce them for brevity of the paper. Indeed, the conclusions that can be drawn are were very similar to the 2D case.

FIGURE 3.7 – Convergence curves in 2D for the method $\theta = 0$, with $\gamma_0 = 1/200$ and P1 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.8 – Convergence curves in 2D for the method $\theta = -1$, with $\gamma_0 = 1/200$ and P1 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.9 – Convergence curves in 2D for the method $\theta = 1$, with $\gamma_0 = 1/200$ and P2 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.10 – Convergence curves in 2D for the method $\theta = 0$, with $\gamma_0 = 1/200$ and P2 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.11 – Convergence curves in 2D for the method $\theta = -1$, with $\gamma_0 = 1/200$ and P2 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.12 – Influence of γ_0 on the relative H^1 -norm of the error on Ω_1 (on the left) and on Ω_2 (on the right) in 2D for h = 1/90 and P_1 elements.

FIGURE 3.13 – Influence of γ_0 on the relative H^1 -norm of the error on Ω_1 (on the left) and on Ω_2 (on the right) in 2D for h = 1/90 and P_2 elements.

FIGURE 3.14 – Convergence curves in 3D for the method $\theta = 1$, with $\gamma_0 = 1/100$ and P1 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.15 – Convergence curves in 3D for the method $\theta = 0$, with $\gamma_0 = 1/100$ and P1 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

FIGURE 3.16 – Convergence curves in 3D for the method $\theta = -1$, with $\gamma_0 = 1/100$ and P1 finite elements for the relative L^2 -norm of the error (on the left) and the relative H^1 -norm of the error (on the right).

3.6 Conclusion

In this paper, we developed a fictitious domain approach for the approximation in small deformations of the frictionless contact with nonzero initial gap of two elastic bodies. The main ingredients are the adaptation of Nitsche's method for the contact condition introduced in [29, 30] and the fictitious domain method (inspired by the X-fem) developed in [28] including the stabilization proposed for the elements having a small intersection with the real domains.

Perspective of this works would be to weakened the conditions on the projection operator Π to include for instance non regular situations such as the one illustrated in Figure 3.17 where Π is only piecewise regular. Another possibility would be to consider a non-orthogonal projection.

FIGURE 3.17 – Example of non regular situation on $\Gamma_{1,C}$.

As already mentioned, the analysis can be easily adapted to Tresca friction similarly as it has been done in [70] for the non-fictitious domain situation.

From this study we conclude that the presented method allow an optimal approximation of unilateral contact problems for affine and quadratic finite element methods. The method for $\theta = 1$ is symmetric which can be an advantage for the numerical solving but requires a very small parameter γ_0 which may lead to a very stiff discrete problem (3.10). The method for $\theta = 0$ has the advantage of the simplicity and allows the use of a moderate γ_0 . Finally, the skew-symmetric method $\theta = -1$ allows the use of larger value of γ_0 which can be a real advantage for the solving of the discrete problem.

Chapitre 4

Residual-based *a posteriori* error estimation for contact problems approximated by Nitsche's method

Ce chapitre traite des estimateurs d'erreur par résidu pour les approximations par éléments finis des problèmes de contact sans frottement puis prolongé au cas du frottement de type Tresca dans l'appendix. On propose, étudie et implémente un estimateur d'erreur *a posteriori* dans le cas d'un contact avec glissement et séparation, ainsi qu'un cas de contact de type Hertz entre un disque ou une sphère et un obstacle rigide.

Ce travail, en collaboration avec F. Chouly, P. Hild, J. Pousin et Y. Renard, Residual-based *a posteriori* error estimation for contact problems approximated by Nitsche's method [84].

a	•
Som	maire

4.1	Intro	oduction
4.2	Sett	ing
	4.2.1	The unilateral contact problem
	4.2.2	Finite element setting and Nitsche-based method
	4.2.3	Consistency and well-posedness of the Nitsche-based method
4.3	A po	steriori error analysis 100
	4.3.1	Definition of the residual error estimator
	4.3.2	Upper error bound
	4.3.3	Lower error bound
4.4	Nun	nerical experiments
	4.4.1	First example : a square with slip and separation
		4.4.1.1 Description
		4.4.1.2 Numerical convergence 109
		4.4.1.3 The case of a very large γ_0
	4.4.2	Second example : Hertz's contact
		4.4.2.1 Description
		4.4.2.2 Numerical convergence in 2D
		4.4.2.3 Numerical convergence in 3D

Abstrac: We introduce a residual-based *a posteriori* error estimator for contact problems in two and three dimensional linear elasticity, discretized with linear and quadratic finite elements

and Nitsche's method. Efficiency and reliability of the estimator are proved under a saturation assumption. Numerical experiments illustrate the theoretical properties and the good performance of the estimator.

4.1 Introduction

The computations of contact problems between deformable bodies are usually obtained with the finite element method [85, 86]. An important aspect for the user is to quantify the quality of the simulations by evaluating the discretization errors coming from the finite element approximation. This quantification requires the definition of *a posteriori* error estimators which can be of different types (residual based, equilibrated fluxes, smooting of the stress fields ...). The main aim of the estimators is to furnish some information on the local error in order to adapt or refine the mesh and to reduce the computational costs.

Among the finite element discretizations for contact problems, a recent effort was devoted to Nitsche's method which can be seen as a consistent penalty formulation with only one primal unknown (like the penalty or the variational inequality formulation) : the displacement field. In contrast to the Nitsche method, the Lagrange (stabilized or standard) methods admit the contact pressure as a supplementary unknown. The Nitsche method was introduced for the unilateral contact problem in a simple (symmetric) form in [29] then generalized and numerically investigated in [70, 30]. In the latter references the theoretical results deal with well-posedness of the discrete problems and a priori error estimates in two and three space dimensions with linear and quadratic finite elements. A numerical generalization to frictional contact problems is carried out in [66, 70]. To our knowledge the *a posteriori* quantification of the discretization errors committed by the Nitsche finite element approximation has not been considered for unilateral contact problems up to now.

Nevertheless there are several studies concerning a posteriori error analyses for frictionless or frictional contact problems in [87, 88, 89, 90] (residual approach using a penalization of the contact condition or the normal compliance law), in [91, 92, 93, 94, 95] (equilibrated residual method), in [96, 97] (residual approach for BEM-discretizations), in [98, 99] (error technique measure developed in [100]). Moreover a residual type estimator for the Signorini problem in its common formulation (variational inequality or mixed method) can be found in [18, 19, 101] and in the recent work [102].

Finally we mention that only few works are devoted to a posteriori error estimates for Nitsche's method, and all concern linear boundary / interface conditions. For interface conditions and elliptic problems, Hansbo and Hansbo [58] introduce a residual type estimator for a Nitsche's unfitted treatment of the interface condition. They prove an upper bound on a linear functional of the error, in the spirit of Becker and Rannacher [23]. Note as well an early work of Becker [103] in the context of optimal control for Navier-Stokes equations, with a Nitsche treatment of Dirichlet boundary condition and an *a posteriori* error estimate for the functional to minimize. Residual error estimates are introduced as well by Becker, Hansbo and Stenberg in [104] for a Nitsche-based domain decomposition with non-matching meshes. Upper bounds both in H^1 - and L^2 -norms are established, with help of a saturation assumption (as in [105]) for the H^1 -norm. In the context of composite grids two variants of residual-based error estimates are proposed by Hansbo, Hansbo and Larson in [106]. Upper bounds in H^1 -norm without any saturation assumption are proposed for both of them. Later on Juntunen and Stenberg provide in [107] a residual-based error estimator for the stabilized Bassi-Rebay discontinuous Galerkin method, that relies on Nitsche's treatment of continuity. Upper and lower bounds are proven for this method. The same authors in [69] introduce a Nitsche's method for a general boundary condition, and an associated residual error estimator. They prove an upper bound in H^1 -norm under a saturation assumption (as in [108]), and they establish a lower bound too. Finally let us mention two recent papers on the Brinkman problem by Juntunen, Könnö and Stenberg [109, 110].

The paper is outlined as follows : in Section 2 the Nitsche's finite element discretization for contact problems in linear elasticity is described and the results dealing with well-posedness are recalled from [30]. In Section 3 a residual *a posteriori* error estimator is introduced, and we prove its reliability and efficiency. In Section 4 numerical experiments in 2D and 3D illustrate the theoretical results and allow to assess the quality of the estimator, for different values of the numerical parameters.

Let us introduce some useful notations. In what follows, bold letters like \mathbf{u}, \mathbf{v} , indicate vector or tensor valued quantities, while the capital ones (e.g., $\mathbf{V}, \mathbf{K} \dots$) represent functional sets involving vector fields. As usual, we denote by $(H^s(.))^d$, $s \in \mathbb{R}$, d = 1, 2, 3, the Sobolev spaces in one, two or three space dimensions (see [111]) with the convention $H^0 = L^2$. The usual norm (resp. semi-norm) of $(H^s(D))^d$ is denoted by $\|\cdot\|_{s,D}$ (resp. $|\cdot|_{s,D}$) and we keep the same notation for any d = 1, 2, 3. In the sequel the symbol $|\cdot|$ will either denote the Euclidean norm in \mathbb{R}^d , or the measure of a domain in \mathbb{R}^d . The letter C stands for a generic constant, independent of the discretization parameters. For two scalar quantities a and b, the notation $a \leq b$ means there exists a constant C, independent of the mesh size parameters and of the Nitsche parameter γ_0 (see Section 4.2.2), such that $a \leq Cb$. Moreover, $a \sim b$ means that $a \leq b$ and $b \leq a$.

4.2 Setting

4.2.1 The unilateral contact problem

We consider an elastic body whose reference configuration is represented by the domain Ω in \mathbb{R}^d with d = 2 or d = 3. Small strain assumptions are made, as well as plane strain when d = 2. The boundary $\partial\Omega$ of Ω is polygonal or polyhedral and we suppose that $\partial\Omega$ consists in three nonoverlapping parts Γ_D , Γ_N and the contact boundary Γ_C , with meas $(\Gamma_D) > 0$ and meas $(\Gamma_C) > 0$. The contact boundary is supposed to be a straight line segment when d = 2 or a polygon when d = 3 to simplify. The unit outward normal vector on $\partial\Omega$ is denoted **n**. In its initial stage, the body is in contact on Γ_C with a rigid foundation (the extension to two elastic bodies in contact can be easily made, at least for small strain models) and we suppose that the unknown final contact zone after deformation will be included into Γ_C . The body is clamped on Γ_D for the sake of simplicity. It is subjected to volume forces $\mathbf{f} \in (L^2(\Omega))^d$ and to surface loads $\mathbf{g} \in (L^2(\Gamma_N))^d$.

The unilateral contact problem in linear elasticity consists in finding the displacement field

 $\mathbf{u}: \Omega \to \mathbb{R}^d$ verifying the equations and conditions (4.1)–(4.2) :

(4.1)
$$\begin{aligned} \operatorname{div} \boldsymbol{\sigma}(\mathbf{u}) + \mathbf{f} &= \mathbf{0} & \text{in } \Omega, \\ \boldsymbol{\sigma}(\mathbf{u}) &= \mathbf{A} \, \boldsymbol{\varepsilon}(\mathbf{u}) & \text{in } \Omega, \\ \mathbf{u} &= \mathbf{0} & \text{on } \Gamma_D, \\ \boldsymbol{\sigma}(\mathbf{u})\mathbf{n} &= \mathbf{g} & \text{on } \Gamma_N, \end{aligned}$$

where $\boldsymbol{\sigma} = (\sigma_{ij}), \ 1 \leq i, j \leq d$, stands for the stress tensor field and **div** denotes the divergence operator of tensor valued functions. The notation $\boldsymbol{\varepsilon}(\mathbf{v}) = (\nabla \mathbf{v} + \nabla \mathbf{v}^T)/2$ represents the linearized strain tensor field and **A** is the fourth order symmetric elasticity tensor having the usual uniform ellipticity and boundedness property. For any displacement field **v** and for any density of surface forces $\boldsymbol{\sigma}(\mathbf{v})\mathbf{n}$ defined on $\partial\Omega$ we adopt the following notation

$$\mathbf{v} = v_n \mathbf{n} + \mathbf{v}_t$$
 and $\boldsymbol{\sigma}(\mathbf{v})\mathbf{n} = \sigma_n(\mathbf{v})\mathbf{n} + \boldsymbol{\sigma}_t(\mathbf{v}),$

where \mathbf{v}_t (resp. $\boldsymbol{\sigma}_t(\mathbf{v})$) are the tangential components of \mathbf{v} (resp. $\boldsymbol{\sigma}(\mathbf{v})\mathbf{n}$). The conditions describing unilateral contact without friction on Γ_C are :

(4.2)
$$u_n \leq 0, \quad (i)$$
$$\sigma_n(\mathbf{u}) \leq 0, \quad (ii)$$
$$\sigma_n(\mathbf{u}) u_n = 0, \quad (iii)$$
$$\sigma_{\mathbf{t}}(\mathbf{u}) = 0. \quad (iv)$$

We introduce the Hilbert space \mathbf{V} and the convex cone \mathbf{K} of admissible displacements which satisfy the noninterpenetration on the contact zone Γ_C :

$$\mathbf{V} := \left\{ \mathbf{v} \in (H^1(\Omega))^d : \mathbf{v} = \mathbf{0} \text{ on } \Gamma_D \right\}, \quad \mathbf{K} := \left\{ \mathbf{v} \in \mathbf{V} : v_n = \mathbf{v} \cdot \mathbf{n} \leqslant 0 \text{ on } \Gamma_C \right\}.$$

We define also

$$a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\varepsilon}(\mathbf{v}) \ d\Omega, \qquad \quad L(\mathbf{v}) := \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ d\Omega + \int_{\Gamma_N} \mathbf{g} \cdot \mathbf{v} \ d\Gamma.$$

for any **u** and **v** in **V**. From the previous assumptions, we deduce that $a(\cdot, \cdot)$ is bilinear, symmetric, **V**-elliptic and continuous on **V** × **V**. We see also that $L(\cdot)$ is a continuous linear form on **V**. The weak formulation of Problem (4.1)-(4.2), as a variational inequality (see [2, 79, 9]), reads as :

(4.3)
$$\begin{cases} \text{Find } \mathbf{u} \in \mathbf{K} \text{ such that } :\\ a(\mathbf{u}, \mathbf{v} - \mathbf{u}) \ge L(\mathbf{v} - \mathbf{u}), \quad \forall \mathbf{v} \in \mathbf{K}. \end{cases}$$

Stampacchia's Theorem ensures that Problem (4.3) admits a unique solution.

4.2.2 Finite element setting and Nitsche-based method

To approximate problem (4.3) we fix a family of meshes $(T_h)_{h>0}$, regular in Ciarlet's sense (see [112]), made of closed elements and assumed to be subordinated to the decomposition of the boundary $\partial\Omega$ into Γ_D , Γ_N and Γ_C . For $K \in T_h$ we recall that h_K is the diameter of K and $h := \max_{K \in T_h} h_K$. The regularity of the mesh implies notably that for any edge (or face when d = 3) E of K one has $h_E := |E| \sim h_K$.

Let us define E_h as the set of edges (or faces when d = 3) of the triangulation and define $E_h^{int} = \{E \in E_h : E \subset \Omega\}$ as the set of interior edges/faces of T_h (the edges/faces are supposed to be relatively open). We denote by $E_h^N = \{E \in E_h : E \subset \Gamma_N\}$ the set of boundary edges/faces included into the part of the boundary with Neumann conditions, and similarly $E_h^C = \{E \in E_h : E \subset \Gamma_C\}$ is the set of boundary edges/faces included into the contact boundary.

For an element K, we will denote by E_K the set of edges/faces of K and according to the above notation, we set $E_K^{int} = E_K \cap E_h^{int}$, $E_K^N = E_K \cap E_h^N$, $E_K^C = E_K \cap E_h^C$. For an edge/face Eof an element K, introduce $\boldsymbol{\nu}_{K,E}$ the unit outward normal vector to K along E. Furthermore, for each edge/face E, we fix one of the two normal vectors and denote it by $\boldsymbol{\nu}_E$. The jump of some vector valued function \boldsymbol{v} across an edge/face $E \in E_h^{int}$ at a point $\boldsymbol{y} \in E$ is defined as

$$\llbracket \boldsymbol{v} \rrbracket_E(\boldsymbol{y}) = \lim_{\alpha \to 0^+} \boldsymbol{v}(\boldsymbol{y} + \alpha \boldsymbol{\nu}_E) - \boldsymbol{v}(\boldsymbol{y} - \alpha \boldsymbol{\nu}_E).$$

Note that the sign of $[\![v]\!]_E$ depends on the orientation of ν_E . Finally we will need local subdomains (also called patches). As usual, let ω_K be the union of all elements having a nonempty intersection with K. Similarly for a node x and an edge/face E, let $\omega_x = \bigcup_{K:x \in K} K$ and $\omega_E = \bigcup_{x \in \overline{E}} \omega_x$.

The chosen finite element space $\mathbf{V}^h \subset \mathbf{V}$ involves standard Lagrange finite elements of degree k with k = 1 or k = 2 (see [112, 14, 113]) *i.e.* :

(4.4)
$$\mathbf{V}^{h} := \left\{ \mathbf{v}^{h} \in (\mathscr{C}^{0}(\overline{\Omega}))^{d} : \mathbf{v}^{h}|_{K} \in (P_{k}(K))^{d}, \forall K \in T^{h}, \mathbf{v}^{h} = \mathbf{0} \text{ on } \Gamma_{D} \right\}.$$

Let us introduce the notation $[\cdot]_+$ for the positive part of a scalar quantity $a \in \mathbb{R}$: $[a]_+ = a$ if a > 0 and $[a]_+ = 0$ otherwise. The monotonicity property below holds :

(4.5)
$$([a]_+ - [b]_+)(a - b) \ge ([a]_+ - [b]_+)^2 \ge 0.$$

Note that the condition (4.5) can be straightforwardly extended to real valued functions.

Let γ be a positive piecewise constant function on the contact interface Γ_C which satisfies

(4.6)
$$\gamma_{|_{K\cap\Gamma_C}} = \gamma_0 h_K,$$

for every K that has a non-empty intersection of dimension d-1 with Γ_C , and where γ_0 is a positive given constant which we call the "Nitsche parameter". Note that the value of γ on element intersections has no influence.

We introduce the discrete linear operator

$$P_{\gamma}: \begin{array}{ccc} \mathbf{V}^h & \to & L^2(\Gamma_C) \\ \mathbf{v}^h & \mapsto & v_n^h - \gamma \ \sigma_n(\mathbf{v}^h) \end{array},$$

Where $\theta \in \mathbb{R}$ is a fixed parameter and also the bilinear form :

(4.7)
$$A_{\theta\gamma}(\mathbf{u}^h, \mathbf{v}^h) := a(\mathbf{u}^h, \mathbf{v}^h) - \int_{\Gamma_C} \theta\gamma \,\sigma_n(\mathbf{u}^h) \sigma_n(\mathbf{v}^h) \,d\Gamma.$$
Our Nitsche-based method then reads :

(4.8)
$$\begin{cases} \text{Find } \mathbf{u}^h \in \mathbf{V}^h \text{ such that } :\\ A_{\theta\gamma}(\mathbf{u}^h, \mathbf{v}^h) + \int_{\Gamma_C} \frac{1}{\gamma} \left[P_{\gamma}(\mathbf{u}^h) \right]_+ P_{\theta\gamma}(\mathbf{v}^h) \, d\Gamma = L(\mathbf{v}^h), \quad \forall \, \mathbf{v}^h \in \mathbf{V}^h. \end{cases}$$

We consider the quasi-interpolation (regularization) operator introduced in [114, formula (4.11)] and its straightforward extension to the vectorial case, that we denote $R^h : \mathbf{V} \to \mathbf{V}^h$. This operator has the following approximation and stability properties :

Lemma 4.2.1. For any $v \in \mathbf{V} \cap (H^l(\Omega))^d$, $1 \leq l \leq k+1$, the following estimates hold

(4.9) $\|\boldsymbol{v} - R^h \boldsymbol{v}\|_{0,K} \lesssim h_K^l |\boldsymbol{v}|_{l,\omega_K}, \quad \forall K \in T_h,$

(4.10)
$$\|\boldsymbol{v} - R^h \boldsymbol{v}\|_{0,E} \lesssim h_E^{l-1/2} |\boldsymbol{v}|_{l,\omega_E}, \quad \forall E \in E_h.$$

Moreover \mathbb{R}^h is stable in the H^1 -norm, i.e.

(4.11)
$$\|R^h \boldsymbol{v}\|_{1,\Omega} \lesssim \|\boldsymbol{v}\|_{1,\Omega}, \quad \forall \boldsymbol{v} \in \mathbf{V}.$$

Proof: Estimates (4.9) and (4.10) are provided in [114, Theorem 4.8, Remark 8]. The stability of \mathbb{R}^h in H^1 -norm is proven in [114, Theorem 4.4] (in all cases, it suffices to apply the results of [114] component-wise).

We next define a useful mesh dependent norm which is in fact a weighted $L^2(\Gamma_C)$ -norm (since $\gamma/\gamma_0 = h_K$).

Définition 4.2.2. For any $v \in L^2(\Gamma_C)$, we set

$$\|v\|_{-1/2,h,\Gamma_C} := \left\| \left(\frac{\gamma}{\gamma_0}\right)^{\frac{1}{2}} v \right\|_{0,\Gamma_C}.$$

We end this subsection with a discrete trace inequality, that will be useful for the analysis (for the proof, see, e.g., [30]) :

Lemma 4.2.3. For any $\mathbf{v}^h \in \mathbf{V}^h$, we have

(4.12)
$$\|\sigma_n(\mathbf{v}^h)\|_{-1/2,h,\Gamma_C} \lesssim \|\mathbf{v}^h\|_{1,\Omega}$$

4.2.3 Consistency and well-posedness of the Nitsche-based method

We recall two theoretical properties for the Nitsche-based method (4.8) : consistency and well-posedness. These properties, together with optimal *a priori* error estimates in $H^1(\Omega)$ -norm, are proven in [30].

Like Nitsche's method for second order elliptic problems with Dirichlet boundary conditions or domain decomposition [104], our Nitsche-based formulation (4.8) for unilateral contact is consistent :

Lemma 4.2.4. The Nitsche-based method for contact is consistent : suppose that the solution **u** of (4.1)-(4.2) lies in $(H^{\frac{3}{2}+\nu}(\Omega))^d$ with $\nu > 0$ and d = 2, 3. Then **u** is also solution of

$$A_{\theta\gamma}(\mathbf{u}, \mathbf{v}^h) + \int_{\Gamma_C} \frac{1}{\gamma} \left[P_{\gamma}(\mathbf{u}) \right]_+ P_{\theta\gamma}(\mathbf{v}^h) \, d\Gamma = L(\mathbf{v}^h), \quad \forall \, \mathbf{v}^h \in \mathbf{V}^h.$$

Problem (4.8) is well-posed in the following sense and under the assumptions below :

Theorem 4.2.5. Suppose that either $\theta \neq -1$ and $\gamma_0 > 0$ is sufficiently small, or $\theta = -1$ and $\gamma_0 > 0$. Then Problem (4.8) admits one unique solution \mathbf{u}^h in \mathbf{V}^h .

Remark 4.2.6. When γ_0 is large and $\theta \neq -1$ we can neither conclude to uniqueness, nor to existence of a solution. In reference [30] there are some simple explicit examples of nonexistence and nonuniqueness of solutions.

4.3 A posteriori error analysis

4.3.1 Definition of the residual error estimator

The element residual of the equilibrium equation in (4.1) is defined by

$$\operatorname{div} \boldsymbol{\sigma}(\mathbf{u}^h) + \mathbf{f} \text{ in } K.$$

Remark 4.3.1. For linear elements (k = 1), the term div $\sigma(\mathbf{u}^h)$ vanishes.

As usual this element residual can be replaced by some finite dimensional approximation, called approximate element residual (see, e.g., [13])

div
$$\boldsymbol{\sigma}(\mathbf{u}^h) + \mathbf{f}_K$$
, $\mathbf{f}_K \in (P_k(K))^d$.

A current choice is to take $\mathbf{f}_K = \int_K \mathbf{f}(\mathbf{x}) d\mathbf{x}/|K|$ since for $\mathbf{f} \in (H^1(\Omega))^d$, scaling arguments yield $\|\mathbf{f} - \mathbf{f}_K\|_{0,K} \lesssim h_K \|\mathbf{f}\|_{1,K}$ and it is then negligible with respect to the estimator η defined hereafter. In the same way \mathbf{g} is approximated by a computable quantity denoted \mathbf{g}_E on any $E \in E_h^N$.

Définition 4.3.2. The local error estimators η_K and the global estimator η are defined by

$$\begin{split} \eta_{K} &= \left(\sum_{i=1}^{4} \eta_{iK}^{2}\right)^{1/2}, \\ \eta_{1K} &= h_{K} \| \mathbf{div} \, \boldsymbol{\sigma}(\mathbf{u}^{h}) + \mathbf{f}_{K} \|_{0,K}, \\ \eta_{2K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{int} \cup E_{K}^{N}} \| J_{E,n}(\mathbf{u}^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{3K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \sigma_{t}(\mathbf{u}^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{4K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \sigma_{t}(\mathbf{u}^{h}) \|_{1}^{2} + \sigma_{n}(\mathbf{u}^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta &= \left(\sum_{K \in T_{h}} \eta_{K}^{2}\right)^{1/2}, \end{split}$$

where $J_{E,n}(\mathbf{u}^h)$ means the constraint jump of \mathbf{u}^h in the normal direction, *i.e.*,

(4.13)
$$J_{E,n}(\mathbf{u}^h) = \begin{cases} \left[\left[\boldsymbol{\sigma}(\mathbf{u}^h) \boldsymbol{\nu}_E \right] \right]_E, & \forall E \in E_h^{int}, \\ \boldsymbol{\sigma}(\mathbf{u}^h) \boldsymbol{\nu}_E - \mathbf{g}_E, & \forall E \in E_h^N. \end{cases}$$

The local and global approximation terms are given by

$$\zeta_{K} = \left(h_{K}^{2} \sum_{K' \subset \omega_{K}} \|\mathbf{f} - \mathbf{f}_{K'}\|_{0,K'}^{2} + h_{E} \sum_{E \subset E_{K}^{N}} \|\mathbf{g} - \mathbf{g}_{E}\|_{0,E}^{2}\right)^{1/2},$$

$$\zeta = \left(\sum_{K \in T_{h}} \zeta_{K}^{2}\right)^{1/2}.$$

4.3.2 Upper error bound

First we state a "saturation" assumption that we need in order to prove the estimate (see also [104] in the case of Nitsche for domain decomposition, and [105] for mortar methods).

Assumption 4.3.3. The solution \mathbf{u} of (4.3) and the discrete solution \mathbf{u}^h of (4.8) are such that :

(4.14)
$$\left\|\sigma_n(\mathbf{u}-\mathbf{u}^h)\right\|_{-1/2,h,\Gamma_C} \lesssim \|\mathbf{u}-\mathbf{u}^h\|_{1,\Omega}$$

Remark 4.3.4. Note that for a Nitsche's treatment of (linear) interface conditions, an upper bound for a residual-based estimator has been derived without such an assumption in [106]. Similarly for some classes of mixed non-conforming finite element approximations, an assumption such as 4.3.3 has revealed to be superfluous, see, e.g., references [115, 116]. However for the method (4.8) the derivation of an upper bound without such kind of saturation assumption remains an open issue.

The following statement guarantees the reliability of the *a posteriori* error estimator given in Definition 4.3.2:

Theorem 4.3.5. Let \mathbf{u} be the solution to the variational inequality (4.3), with $\mathbf{u} \in (H^{\frac{3}{2}+\nu}(\Omega))^d$ ($\nu > 0$ and d = 2,3), and let \mathbf{u}^h be the solution to the corresponding discrete problem (4.8). Assume that, for $\theta \neq -1$, γ_0 is sufficiently small, and otherwise that $\gamma_0 > 0$ for $\theta = -1$. Assume that the saturation assumption (4.14) holds as well. Then we have

$$\|\mathbf{u} - \mathbf{u}^{h}\|_{1,\Omega} + \left\|\sigma_{n}(\mathbf{u}) + \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+}\right\|_{-1/2,h,\Gamma_{C}} + \|\sigma_{n}(\mathbf{u}) - \sigma_{n}(\mathbf{u}^{h})\|_{-1/2,h,\Gamma_{C}} \lesssim (1 + \gamma_{0})\eta + \zeta.$$

Proof: Let $\mathbf{v}^h \in \mathbf{V}^h$. To lighten the notation, we denote $\mathbf{e}_{\mathbf{u}} := \mathbf{u} - \mathbf{u}^h$. We first use the **V**-ellipticity of $a(\cdot, \cdot)$, together with the Green formula, equations (4.1) and (4.8) to obtain :

$$\begin{aligned} \alpha \| \mathbf{e}_{\mathbf{u}} \|_{1,\Omega}^{2} &\leq a(\mathbf{u} - \mathbf{u}^{h}, \mathbf{u} - \mathbf{u}^{h}) \\ &= a(\mathbf{u}, \mathbf{u} - \mathbf{u}^{h}) - a(\mathbf{u}^{h}, \mathbf{u} - \mathbf{v}^{h}) - a(\mathbf{u}^{h}, \mathbf{v}^{h} - \mathbf{u}^{h}) \\ &= L(\mathbf{u} - \mathbf{u}^{h}) + \int_{\Gamma_{C}} \sigma_{n}(\mathbf{u})(u_{n} - u_{n}^{h}) \, d\Gamma - a(\mathbf{u}^{h}, \mathbf{u} - \mathbf{v}^{h}) \\ &- L(\mathbf{v}^{h} - \mathbf{u}^{h}) + \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} P_{\theta\gamma}(\mathbf{v}^{h} - \mathbf{u}^{h}) \, d\Gamma - \theta \int_{\Gamma_{C}} \gamma \sigma_{n}(\mathbf{u}^{h}) \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}^{h}) \, d\Gamma \end{aligned}$$

$$(4.15) \qquad = \mathcal{T}_{1} + \mathcal{T}_{2}$$

where α is the **V**-ellipticity constant of $a(\cdot, \cdot)$ and

$$\begin{aligned} \mathcal{T}_{1} &:= L(\mathbf{u} - \mathbf{v}^{h}) - a(\mathbf{u}^{h}, \mathbf{u} - \mathbf{v}^{h}) + \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} (v_{n}^{h} - u_{n}) \, d\Gamma \\ \mathcal{T}_{2} &:= \int_{\Gamma_{C}} \sigma_{n}(\mathbf{u})(u_{n} - u_{n}^{h}) \, d\Gamma + \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} P_{\theta\gamma}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma \\ &- \theta \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} \gamma \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma - \theta \int_{\Gamma_{C}} \gamma \sigma_{n}(\mathbf{u}^{h}) \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}^{h}) \, d\Gamma. \end{aligned}$$

The quantity \mathcal{T}_1 is an expression which is handled hereafter in a classical way. Namely, by integrating by parts on each triangle K, using the definition of $J_{E,n}(\mathbf{u}^h)$ in (4.13) and splitting

up the integrals on Γ_C into normal and tangential components we get :

$$\mathcal{T}_{1} = \sum_{K \in T_{h}} \int_{K} (\operatorname{\mathbf{div}} \boldsymbol{\sigma}(\mathbf{u}^{h}) + \mathbf{f}) \cdot (\mathbf{u} - \mathbf{v}^{h}) d\Gamma + \sum_{E \in E_{h}^{C}} \int_{E} \left(\frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}^{h}) \right) (v_{n}^{h} - u_{n}) d\Gamma + \sum_{E \in E_{h}^{C}} \int_{E} \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}^{h}) \cdot (\mathbf{v}_{\mathbf{t}}^{h} - \mathbf{u}_{\mathbf{t}}) d\Gamma - \sum_{E \in E_{h}^{int} \cup E_{h}^{N}} \int_{E} J_{E,n}(\mathbf{u}^{h}) \cdot (\mathbf{u} - \mathbf{v}^{h}) d\Gamma (4.16) + \sum_{E \in E_{h}^{N}} \int_{E} (\mathbf{g} - \mathbf{g}_{E}) \cdot (\mathbf{u} - \mathbf{v}^{h}) d\Gamma.$$

We now need to estimate each term of this right-hand side. For that purpose, we take

(4.17)
$$\mathbf{v}^h = \mathbf{u}^h + R^h(\mathbf{u} - \mathbf{u}^h),$$

where R^h is the quasi-interpolation operator defined in Section 4.2.2.

We start with the integral term on elements K. Cauchy-Schwarz's inequality implies

$$\sum_{K \in T_h} \int_K \left(\operatorname{\mathbf{div}} \boldsymbol{\sigma}(\mathbf{u}^h) + \mathbf{f} \right) \cdot \left(\mathbf{u} - \mathbf{v}^h \right) d\Gamma \leqslant \sum_{K \in T^h} \| \operatorname{\mathbf{div}} \boldsymbol{\sigma}(\mathbf{u}^h) + \mathbf{f} \|_{0,K} \| \mathbf{u} - \mathbf{v}^h \|_{0,K},$$

and it suffices to estimate $\|\mathbf{u} - \mathbf{v}^h\|_{0,K}$ for any triangle K. From the definition of \mathbf{v}^h and (4.9) we get :

$$\|\mathbf{u}-\mathbf{v}^h\|_{0,K}=\|\mathbf{e}_{\mathbf{u}}-R^h\mathbf{e}_{\mathbf{u}}\|_{0,K}\lesssim h_K\|\mathbf{e}_{\mathbf{u}}\|_{1,\omega_K}.$$

As a consequence

$$\left|\int_{\Omega} \left(\operatorname{\mathbf{div}} \boldsymbol{\sigma}(\mathbf{u}^{h}) + \mathbf{f}\right) \cdot \left(\mathbf{u} - \mathbf{v}^{h}\right) d\Gamma\right| \lesssim (\eta + \zeta) \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}.$$

We now consider the interior and Neumann boundary terms in (4.16). As we previously noticed, the application of Cauchy-Schwarz's inequality leads to

$$\sum_{E \in E_h^{int} \cup E_h^N} \int_E J_{E,n}(\mathbf{u}^h) \cdot (\mathbf{u} - \mathbf{v}^h) \, d\Gamma \bigg| \leq \sum_{E \in E_h^{int} \cup E_h^N} \|J_{E,n}(\mathbf{u}^h)\|_{0,E} \|\mathbf{u} - \mathbf{v}^h\|_{0,E}.$$

Therefore using expression (4.17) and estimate (4.10), we obtain

$$\|\mathbf{u}-\mathbf{v}^h\|_{0,E} = \|\mathbf{e}_{\mathbf{u}}-R^h\mathbf{e}_{\mathbf{u}}\|_{0,E} \lesssim h_E^{1/2}\|\mathbf{e}_{\mathbf{u}}\|_{1,\omega_E}.$$

Inserting this estimate in the previous one we deduce that

$$\left|\sum_{E\in E_h^{int}\cup E_h^N}\int_E J_{E,n}(\mathbf{u}^h)\cdot (\mathbf{u}-\mathbf{v}^h)\ d\Gamma\right|\lesssim \eta \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}.$$

103

Moreover,

$$\left|\sum_{E \in E_h^N} \int_E (\mathbf{g} - \mathbf{g}_E) \cdot (\mathbf{u} - \mathbf{v}^h) \ d\Gamma\right| \lesssim \zeta \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}$$

The two following terms are handled in a similar way as the previous ones so that

$$\left|\sum_{E\in E_h^C}\int_E \left(\frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^h)]_+ + \sigma_n(\mathbf{u}^h)\right) (v_n^h - u_n) \, d\Gamma\right| \lesssim \eta \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega},$$

and

$$\left|\sum_{E\in E_h^C}\int_E \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}^h)\cdot (\mathbf{v}^h_{\mathbf{t}}-\mathbf{u}_{\mathbf{t}}) \ d\Gamma\right| \lesssim \eta \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}.$$

Collecting the previous results, we deduce :

(4.18)
$$\mathcal{T}_1 \lesssim (\eta + \zeta) \| \mathbf{e}_{\mathbf{u}} \|_{1,\Omega}.$$

The first two terms in \mathcal{T}_2 are split using the definition of $P_{\gamma}(\cdot)$ and $P_{\theta\gamma}(\cdot)$, and the last one is split using relationship $\sigma_n(\mathbf{v}^h - \mathbf{u}^h) = \sigma_n((\mathbf{v}^h - \mathbf{u}) + (\mathbf{u} - \mathbf{u}^h))$. This leads to :

$$\begin{aligned} \mathcal{T}_{2} &= \int_{\Gamma_{C}} \sigma_{n}(\mathbf{u}) P_{\gamma}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma + \int_{\Gamma_{C}} \sigma_{n}(\mathbf{u}) \gamma \sigma_{n}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma \\ &+ \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} P_{\gamma}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma + (1 - \theta) \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} \gamma \sigma_{n}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma \\ &- \theta \int_{\Gamma_{C}} \frac{1}{\gamma} \left([P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}^{h}) \right) \gamma \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma - \theta \int_{\Gamma_{C}} \gamma \sigma_{n}(\mathbf{u}^{h}) \sigma_{n}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma. \end{aligned}$$

Then we split the second term in the above expression using $1 = \theta + (1 - \theta)$ and we gather the resulting terms :

$$\mathcal{T}_{2} = \int_{\Gamma_{C}} \left(\frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}) \right) P_{\gamma}(\mathbf{u} - \mathbf{u}^{h}) d\Gamma + (1 - \theta) \int_{\Gamma_{C}} \frac{1}{\gamma} \left(\sigma_{n}(\mathbf{u}) + [P_{\gamma}(\mathbf{u}^{h})]_{+} \right) \gamma \sigma_{n}(\mathbf{u} - \mathbf{u}^{h}) d\Gamma - \theta \int_{\Gamma_{C}} \left(\frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}^{h}) \right) \gamma \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) d\Gamma + \theta \| \gamma^{1/2} \sigma_{n}(\mathbf{u} - \mathbf{u}^{h}) \|_{0,\Gamma_{C}}^{2}.$$

Now we substitute $\sigma_n(\mathbf{u})$ using the reformulation of contact conditions (4.2) (*i*)-(*iii*) as $\sigma_n(\mathbf{u}) = -\frac{1}{\gamma}[P_{\gamma}(\mathbf{u})]_+$ (see for instance [117, 29]). This reformulation makes sense in $L^2(\Gamma_C)$ due to the regularity assumption $\mathbf{u} \in (H^{\frac{3}{2}+\nu}(\Omega))^d$. Afterwards we apply the bound (4.5) in the first term as well as Cauchy-Schwarz inequality in the second one :

$$\begin{aligned} \mathcal{T}_{2} &\leq - \|\gamma^{\frac{1}{2}}(\sigma_{n}(\mathbf{u}) + \frac{1}{\gamma}[P_{\gamma}(\mathbf{u}^{h})]_{+})\|_{0,\Gamma_{C}}^{2} + |\theta - 1|\|\gamma^{\frac{1}{2}}(\sigma_{n}(\mathbf{u}) + \frac{1}{\gamma}[P_{\gamma}(\mathbf{u}^{h})]_{+})\|_{0,\Gamma_{C}}\|\gamma^{1/2}\sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}} \\ &- \theta \int_{\Gamma_{C}} \left(\frac{1}{\gamma}[P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}^{h})\right)\gamma\sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma + \theta \|\gamma^{1/2}\sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2}. \end{aligned}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

The expression $ab \leq a^2 + b^2/4$ yields, for any $\beta > 0$:

$$\begin{split} \mathcal{T}_{2} &\leq \frac{|\theta - 1|^{2}}{4} \|\gamma^{1/2} \sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2} \\ &\quad -\theta \int_{\Gamma_{C}} \left(\frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}^{h})\right) \gamma \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma + \theta \|\gamma^{1/2} \sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2} \\ &= \frac{(\theta + 1)^{2}}{4} \|\gamma^{1/2} \sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2} - \theta \int_{\Gamma_{C}} \left(\frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} + \sigma_{n}(\mathbf{u}^{h})\right) \gamma \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma \\ &\leq \frac{(\theta + 1)^{2}}{4} \|\gamma^{1/2} \sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2} + |\theta|\gamma_{0}^{1/2} \eta\|\gamma^{1/2} \sigma_{n}(\mathbf{v}^{h} - \mathbf{u})\|_{0,\Gamma_{C}}^{2} \\ &\leq \frac{(\theta + 1)^{2}}{4} \|\gamma^{1/2} \sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2} + \beta \theta^{2} \gamma_{0} \eta^{2} + \frac{1}{2\beta} \|\gamma^{1/2} \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}^{h})\|_{0,\Gamma_{C}}^{2} + \frac{1}{2\beta} \|\gamma^{1/2} \sigma_{n}(\mathbf{u}^{h} - \mathbf{u})\|_{0,\Gamma_{C}}^{2} \\ &= \left(\frac{1}{2\beta} + \frac{(\theta + 1)^{2}}{4}\right) \gamma_{0} \|\sigma_{n}(\mathbf{u} - \mathbf{u}^{h})\|_{-1/2,h,\Gamma_{C}}^{2} + \beta \theta^{2} \gamma_{0} \eta^{2} + \frac{\gamma_{0}}{2\beta} \|\sigma_{n}(\mathbf{v}^{h} - \mathbf{u}^{h})\|_{-1/2,h,\Gamma_{C}}^{2}. \end{split}$$

Using (4.12) and the H^1 -stability of \mathbb{R}^h (see (4.11) in Lemma 4.2.1) we bound :

$$\|\sigma_n(\mathbf{v}^h - \mathbf{u}^h)\|_{-1/2,h,\Gamma_C} \le C \|\mathbf{v}^h - \mathbf{u}^h\|_{1,\Omega} = C \|R^h(\mathbf{u} - \mathbf{u}^h)\|_{1,\Omega} \le C \|\mathbf{u} - \mathbf{u}^h\|_{1,\Omega}.$$

We combine this last bound with the saturation assumption (4.14) and get

(4.19)
$$\mathcal{T}_2 \leq C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}\right) \|\mathbf{u} - \mathbf{u}^h\|_{1,\Omega}^2 + \beta \theta^2 \gamma_0 \eta^2.$$

Now we combine estimates (4.15), (4.18) and (4.19):

$$\alpha \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}^2 \leqslant C(\eta+\zeta) \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega} + C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}\right) \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}^2 + \beta \theta^2 \gamma_0 \eta^2.$$

We treat the first term on the right-hand side with Young's inequality and obtain :

$$\left(\frac{\alpha}{2} - C\gamma_0\left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}\right)\right) \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}^2 \leqslant \frac{C}{\alpha}(\eta^2 + \zeta^2) + \beta\theta^2\gamma_0\eta^2.$$

When $\theta \neq -1$, we choose γ_0 sufficiently small, and for $\theta = -1$, we can choose for instance $\beta = \frac{4C\gamma_0}{\alpha}$ (for a fixed value of $\gamma_0 > 0$, that does not need to be small in this case). We obtain the upper bound on the error in natural norm :

$$\|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega} \lesssim (1+\gamma_0)\eta + \zeta.$$

The saturation assumption (4.14) provides directly a bound on the contact stress error :

$$\|\sigma_n(\mathbf{u}-\mathbf{u}^h)\|_{-1/2,h,\Gamma_C} \lesssim \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}.$$

For the contact error we make use of the triangle inequality, and of the above inequality :

$$\left\| \sigma_n(\mathbf{u}) + \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^h)]_+ \right\|_{-1/2,h,\Gamma_C} \leq \left\| \sigma_n(\mathbf{u} - \mathbf{u}^h) \right\|_{-1/2,h,\Gamma_C} + \left\| \sigma_n(\mathbf{u}^h) + \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^h)]_+ \right\|_{-1/2,h,\Gamma_C} \\ \lesssim \left\| \mathbf{e}_{\mathbf{u}} \right\|_{1,\Omega} + \eta.$$

Collecting the three previous results allows to prove the theorem.

4.3.3 Lower error bound

We now consider the local lower error bounds of the discretization error terms.

Theorem 4.3.6. For all elements $K \in T_h$, the following local lower error bounds hold :

(4.20)
$$\eta_{1K} \lesssim \|\mathbf{u} - \mathbf{u}^h\|_{1,K} + \zeta_K,$$

(4.21)
$$\eta_{2K} \lesssim \|\mathbf{u} - \mathbf{u}^h\|_{1,\omega_K} + \zeta_K.$$

For all elements K such that $K \cap E_h^C \neq \emptyset$, the following local lower error bounds hold :

(4.22)
$$\eta_{3K} \lesssim \|\mathbf{u} - \mathbf{u}^h\|_{1,K} + \zeta_K,$$

(4.23)
$$\eta_{4K} \lesssim \sum_{E \in E_K^C} h_K^{1/2} \left(\left\| \sigma_n(\mathbf{u}) + \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^h)]_+ \right\|_{0,E} + \left\| \sigma_n(\mathbf{u} - \mathbf{u}^h) \right\|_{0,E} \right).$$

Proof: The estimates of η_{1K} , η_{2K} in (4.20)–(4.21) are standard (see, e.g., [16]). The estimate η_{3K} is handled in a standard way as in [19].

The estimate of η_{4K} in (4.23) is obtained from the Definition 4.3.2 and triangular inequality.

Remark 4.3.7. Remark that, from Theorem 4.3.6, optimal convergence rates of order $O(h^{\min(k,\frac{1}{2}+\nu)})$ are expected for the estimator of Definition 4.3.2.

Remark 4.3.8. An extension of the above analysis for the Tresca friction case is sketched in Appendix 1.

4.4 Numerical experiments

We illustrate numerically the theoretical properties of the error estimator η given in Definition 4.3.2 and compute its convergence order when h vanishes. To study separately global contributions of each component of η we introduce the notation

$$\eta_i = \left(\sum_{K \in T_h} \eta_{iK}^2\right)^{1/2} \quad 1 \leqslant i \leqslant 4,$$

where the expressions of η_{iK} are provided in Definition 4.3.2. In all examples below Hooke's law is considered : E and P will denote respectively Young's modulus and Poisson's ratio. Moreover a dimensional analysis allows to deduce that γ_0 is the inverse of a stiffness parameter. Consequently we choose in our discussion $\gamma_0 = C/E$ where C is a constant which does not depend on E. The finite element method (4.8) as well as the residual estimator η are implemented under the open source finite element library GetFEM++¹. For details on numerical solving we refer to [66, 30].

To measure the quality of the estimator η we introduce the effectivity index :

$$eff_E = \frac{\eta/E}{\|\mathbf{u} - \mathbf{u}^h\|_{1,\Omega}}$$

^{1.} see http://download.gna.org/getfem/html/homepage/

As in [19] this index has been normalized with respect to Young's modulus E. Indeed, we remark that if $\mathbf{u}(E)$ denotes the solution of a (linear) Lamé system with a Young modulus E then $\mathbf{u}(mE) = \mathbf{u}(E)/m$ whereas $\sigma(\mathbf{u}(mE)) = \sigma(\mathbf{u}(E))$. Thus the error estimator η is independent of E (for η_4 this property comes from the scaling $\gamma_0 = C/E$). In contrast there holds $\|\mathbf{u}(mE) - \mathbf{u}^h(mE)\|_{1,\Omega} = \|\mathbf{u}(E) - \mathbf{u}^h(E)\|_{1,\Omega}/m$ that becomes independent of E for the choice m = 1/E.

4.4.1 First example : a square with slip and separation

4.4.1.1 Description

We first consider a test case taken from [118] (see also [119] in the frictional case). We consider the domain $\Omega = (0, 1) \times (0, 1)$ with material characteristics $E = 10^6$ and P = 0.3. A homogeneous Dirichlet condition on $\Gamma_D = \{0\} \times (0, 1)$ is prescribed to clamp the body. The body is potentially in contact on $\Gamma_C = \{1\} \times (0, 1)$ with a rigid obstacle and $\Gamma_N = (0, 1) \times (\{0\} \cup \{1\})$ is the location of a homogeneous Neumann condition. The body Ω is acted on by a vertical volume density of force $\mathbf{f} = (0, f_2)$ with $f_2 = -76518$ such that there is coexistence of a slip zone and a separation zone with a transition point between both zones. For error computations, since we do not have a closed-form solution, a reference solution is computed with Lagrange P_2 elements, h = 1/160, $\gamma_0 = 1/E$ and $\theta = -1$.

First of all we illustrate in Figure 4.1 the difference between uniform and adaptive refinement. For the latter we refine only the mesh elements K in which the local estimator η_K is below a given threshold $s = 2.5 \times 10^{-3}$. The minimal (respectively maximal) size of the adaptive mesh is equal to 1/160 (respectively h = 1/40). As expected the rate of convergence with respect to the number of degrees of freedom is far better in the case of adaptive refinement than with uniform refinement.

FIGURE 4.1 – Rate of convergence for uniform and adaptive refinement methods. Parameters $\gamma_0 = 1/E$, $\theta = -1$ and Lagrange P_2 elements.

The solution obtained with adaptive refinement with $\theta = -1$ is depicted in Figure 4.2. We observe that the error is concentrated at both left corners (transition between Dirichlet

FIGURE 4.2 – Left panel : mesh with adaptive refinement and contact boundary (in red and bold) on the right. Right panel : plot of Von Mises stress. Parameters $\gamma_0 = 1/E$, $\theta = -1$ and Lagrange P_2 elements.

FIGURE 4.3 – Left panel : mesh with adaptive refinement and contact boundary (in red and bold) on the right. Right panel : plot of Von Mises stress. Parameters $\gamma_0 = 1/E$, $\theta = 1$ and Lagrange P_2 elements.

and Neumann conditions) and near the transition point between contact and separation. As expected we observe that all the nodes on Γ_C have a negative tangential displacement and that Γ_C is divided into two parts : the upper part where the body remains in contact (slipping nodes) and the lower part where it is separated, with a transition point near (1,0.685). The value is close to the transition point (1,0.65) found in [119] and (1,0.65 \pm 0.01) found in [19]. The slight difference with [119] should be due to Coulomb friction that was taken into account in [119].

Remark 4.4.1. Note that the reference solution in the case $\theta = 1$ (see Figure 4.3) has an error estimator on the contact zone which is larger than in the case $\theta = -1$. In the case $\theta = -1$, the

discrete solution is less dependent on the parameter γ_0 than for the other methods (see [30]) and we obtain a better approximation of the problem on the contact boundary Γ_C .

4.4.1.2 Numerical convergence

We perform a numerical convergence study for three variants of method (4.8) corresponding to $\theta = 1$, $\theta = 0$ and $\theta = -1$. The Nitsche parameter γ_0 is fixed to 1/E, which should ensure well-posedness and optimal convergence in each case. Lagrange P_1 finite elements are chosen. The reference solution for error computations corresponds to the one described in Section 4.4.1.1 and depicted in Figure 4.2 (P_2 finite elements, $\theta = -1$ and adaptive finest mesh). No mesh adaptation is carried out anymore and only uniform refinement is imposed, with a sequence of decreasing mesh sizes h.

First the estimator η , the L^2 and the H^1 -norms of the error $\mathbf{u} - \mathbf{u}^h$ are depicted in Figure 4.4. One can note a sub-optimality of the convergence rate in L^2 and H^1 - norms of the error. They are caused by the Neumann-Dirichlet transition on the left corners of Ω (the same observation has been reported in [65]).

Then the different contributions of η are reported on Tables 4.1, 4.2 and 4.3. The convergence rate of η_1 is strictly equal to 1 since, for piecewise linear finite elements, the expression of this estimator reduces to $\eta_{1K} = h_K ||f_K||_{0,K}$. More generally, all the estimators η_i converge towards zero as h vanishes, and they behave identically whatever the value of θ is (this is due to the low value of γ_0). The main part of the error estimator is located near the corners where transition between Neumann and Dirichlet boundary conditions. For this value of the Nitsche parameter γ_0 , the three methods $\theta = 1$, $\theta = 0$ and $\theta = -1$ have a very similar behavior. Moreover, the convergence rate of η_2 is slightly less than the one of the H^1 -norm of the error whereas the convergence rates of η_3 and η_4 are far greater, and higher than 1 (we do not have a clear interpretation of this). In the case $\theta = 1$, the rate of convergence of the term η_2 is sub-optimal and the rate of the terms η_3 and η_4 are optimal. In the case $\theta = 0$, the rate of convergence of the term η_2 is sub-optimal and the rate of the terms η_3 and η_4 are optimal. We obtain a good approximation of the term η_4 . In the case $\theta = -1$, the rate of convergence of the term η_2 is sub-optimal and the rate of the terms η_3 and η_4 are optimal. In all cases, we obtain an effectivity index between 1.2 and 1.6 (the average is close to 1.45 and the standard deviation is close to 0.12). These overall results are quite similar to those presented in [119] with a Lagrange multiplier method.

We obtain the same norms of the error in L^2 and H^1 -norms. The results are quite similar to those presented in [119] with a Lagrange multiplier method. The main part of the error estimator is located near the corners where transition between Neumann and Dirichlet boundary conditions. For this value of the Nitsche parameter γ_0 , the three methods $\theta = 1$, $\theta = 0$ and $\theta = -1$ have a very similar behavior. The estimator η_i and the rate of convergence are better for the method $\theta = -1$.

FIGURE 4.4 – First example. Convergence curves of the error estimator η , the L^2 and H^1 -norms of the error $\mathbf{u} - \mathbf{u}^h$, for $\gamma_0 = 1/E$.

On Figure 4.5, the same experiment is performed for a smaller parameter $\gamma_0 = 1/(1000E)$. The convergence rates are similar to the case $\gamma_0 = 1/E$ and even more uniform with respect to the chosen method ($\theta = -1$, 0 or 1).

$\frac{1}{1} + \frac{1}{1} + \frac{1}$							
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	104.7551	48.2436	17.3689	5.9666	2.0366	1.4262	1.4589
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	51.3896	28.8563	16.1335	9.0627	4.9777	4.1489	0.8412
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1.0000
η_2	60779.5	38076.7	22698	13222.3	7724.01	6507.89	0.7522
η_3	7626.32	3209.18	1207.19	427.694	157.242	118.467	1.4107
η_4	13501	4604.89	1395.58	370.912	100.73	77.2	1.7646
η	64916.4	39385.6	23153.3	13398.4	7796.61	6562.89	0,7779
Effectivity index Eff_E	1.2632	1.3649	1.4351	1.4784	1.5661	1.5816	

TABLE 4.1 – First example, $\theta = 1$ and $\gamma_0 = 1/E$.

TABLE 4.2 – First example, $\theta = 0$ and $\gamma_0 = 1/E$.

Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	113.6807	47.1350	17.0780	5.9262	2.0312	1.4229	1.4757
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	48.8181	28.0213	15.9877	9.0359	4.9716	4.1459	0.8251
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	57305.3	37374.7	22547.2	13200.7	7720.86	6505.24	0.7356
η_3	3938.22	1852.35	720.951	256.135	95.0474	71.047	1.3686
η_4	11946.5	4002.56	1154.11	324.915	89.6552	61.026	1.7809
η	61005.6	38551.4	22971.7	13371.5	7792.35	6559.4	0,7779
Effectivity index Eff_E	1.2496	1.3758	1.4368	1.4798	1.5672	1.5819	

On Figure 4.6 the numerical experiment is performed for a larger parameter $\gamma_0 = 1000/E$. In the case $\theta = 1$ and in the case $\theta = 0$ the convergence rate is degraded compared to the case $\gamma_0 = 1/E$. Conversely, in the case $\theta = -1$, the convergence is not deteriorated which confirms the theoretical results obtained in both the *a priori* analysis in [30] and the *a posteriori* analysis in Section 4.3 (see Theorem 4.3.5).

TABLE 4.3 – First example, $v = -1$ and $\gamma_0 = 1/E$.							
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	120.9371	48.9718	17.3613	5.9619	2.0360	1.4255	1.4952
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	49.3705	28.1269	16.0087	9.0385	4.9714	4.1467	0.8283
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	58846.3	37649.9	22607.7	13213.2	7723.58	6506.99	0.7428
η_3	2690.5	1464.81	558.637	192.194	70.7559	53.7733	1.3544
η_4	9202.06	2854.93	832.228	229.683	62.842	44.0949	1.8004
η	61922.2	38700.1	23012.7	13380.8	7794.52	6560.84	0,7779
Effectivity index Eff_E	1.2542	1.3759	1.4375	1.4804	1.5677	1.5820	

TABLE 4.3 – First example, $\theta = -1$ and $\gamma_0 = 1/E$.

TABLE 4.4 – Method $\theta = 1$ and $\gamma_0 = 1/(1000E)$

Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	143.4912	52.3859	17.8515	6.0213	2.0437	1.4296	1.5445
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	52.2462	28.3440	16.0198	9.0380	4.9710	4.1458	0.8429
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1.0000
η_2	58655.8	37782	22624	13210	7722.13	6506.38	0.7426
η_3	4472.2	1759.28	716.64	251.302	94.5722	73.4649	1.3869
η_4	27393	8555.21	2550.86	702.063	192.308	143.018	1.7799
η	67010.7	39669.3	23159	13395.1	7795.47	6561.83	0.7779
Effectivity index Eff_E	1.2826	1.3996	1.4456	1.4821	1.5678	1.5825	

4.4.1.3 The case of a very large γ_0

Additionally we present a numerical convergence study for $\theta = 1, 0, -1$ and for a very large value of the parameter $\gamma_0 = 10^6/E$, far from its reference value of 1/E. In this case for $\theta = 1$ and $\theta = 0$ there is no more guarantee of well-posedness and optimal convergence (see [30]). The error estimator η , the L^2 and H^1 -norms of the error are plotted in Figure 4.7, while Tables 4.10, 4.11 and 4.12 present the different contributions of η .

For the method $\theta = 0$ the solution does not converge while the effectivity index Eff_E tends to

FIGURE 4.5 – Convergence curve of the error estimator and the L^2 and H^1 -norms of the error, for $\gamma_0 = 1/(1000E)$ and Lagrange P_1 finite elements.

0. This is consistent with our theoretical results since Theorem 4.3.5 is no more applicable and no upper bound is guaranteed. The estimator η converges despite of the term η_4 , slightly increasing but still very small. For the method $\theta = 1$, even though γ_0 is large, the method converges in L^2 and H^1 -norms of the error with an acceptable effectivity index, however with a deteriorated convergence rate. Conversely, for the method $\theta = -1$, both convergence and effectivity index are optimal and are not deteriorated compared to the case $\gamma_0 = 1/E$. This supports its theoretical property of robustness with respect to γ_0 .

The previous experiment for $\theta = 0$ reveals the bad behaviour of η for a very large γ_0 . An heuristics to recover a meaningful estimator is to decouple the value of γ_0 for the problem and for the estimator η_4 . A last experiment shows in Figure 4.8 the convergence curves in the same case $\gamma_0 = 10^6/E$ yet with an error estimator that makes use of a Nitsche's parameter $\tilde{\gamma}_0 = 1/E$. For the methods $\theta = 1$ and $\theta = -1$ this has no visible influence on the effectivity index Eff_E . For the method $\theta = 0$, a better effectivity index is obtained : at least the estimator does not tend to

TABLE 4.5 – Method $v = 0$ and $\gamma_0 = 1/(1000L)$								
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope	
Degrees of freedom	32	128	512	2048	8192	12800		
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	143.4917	52.3831	17.8508	6.0212	2.0437	1.4296	1.5445	
$\left\ \mathbf{u}-\mathbf{u}^{h}\right\ _{1,\Omega}\ (\times 10^{-}3)$	52.2466	28.3439	16.0197	9.0380	4.9710	4.1458	0.8429	
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1	
η_2	58655.8	37782.2	22624	13210	7722.14	6506.38	0.7426	
η_3	4469.98	1758.56	716.406	251.201	94.5357	73.4421	1.3869	
η_4	27399.2	8554.46	2550.61	701.96	192.277	143.018	1.7800	
η	67013	39669.3	23159	13395.1	7795.47	6561.83	0.7779	
Effectivity index Eff_E	1.2826	1.3996	1.4456	1.4821	1.5678	1.5825		

TABLE 4.5 – Method $\theta = 0$ and $\gamma_0 = 1/(1000E)$

TABLE 4.6 – Method $\theta = -1$ and $\gamma_0 = 1/(1000E)$

Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	143.4923	52.3804	17.8502	6.0211	2.0437	1.4296	1.5445
$\left\ \mathbf{u}-\mathbf{u}^{h}\right\ _{\Omega}(\times 10^{-}3)$	52.2470	28.3437	16.0197	9.0380	4.9710	4.1458	0.8429
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1.0000
η_2	58655.7	37782.4	22624.1	13210	7722.14	6506.38	0.7426
η_3	4467.75	1757.84	716.172	251.1	94.4993	73.4193	1.3869
η_4	27405.5	8553.71	2550.37	701.857	192.247	143.018	1.7801
η	67015.5	39669.3	23159	13395.1	7795.47	6561.84	0.7779
Effectivity index Eff_E	1.2827	1.3996	1.4456	1.4821	1.5678	1.5825	

zero for a non-convergent solution, in contrast with what happens in Figure 4.7. To summarize, this study for a large γ_0 confirms the analysis provided in Section 4.3 which requires a sufficiently small parameter γ_0 to obtain a reliable and efficient *a posteriori* estimator when $\theta \neq -1$.

FIGURE 4.6 – First example. Convergence curves of the error estimator η , the L^2 and H^1 -norms of the error, for $\gamma_0 = 1000/E$ and Lagrange P_1 finite elements.

The influence of the estimator η_4 is no revealing in this example. We test to keep $\gamma_0 = 10^6/E$ for the method and to set $\gamma_0 = 1/E$ for the estimator (see Figure 4.8). We remark that we have a good evaluation of the error for the methods $\theta = 1$ and $\theta = -1$, all errors and estimators converge. In the case $\theta = 0$, we rise the influence of the estimator η_4 so the estimator η does not converge. We obtain a good *a posteriori* error estimator.

	INDED IN	memou e	$\gamma = 1$ and	10 = 1000	/ В		
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	122.8290	58.5433	44.7353	9.5345	2.2580	1.9750	1.4520
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	57.7901	30.5725	34.2135	13.1699	7.3150	7.1129	0.7175
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1.0000
η_2	62058	38341.9	44306.9	19010.9	10305.2	9464.45	0.6432
η_3	21.4458	10.2418	2.73973	1.98274	3.62772	4.23742	0.5616
η_4	25.1854	5.72711	27.7467	10.1031	4.64266	4.26148	0.4687
η	64270.9	39242.7	44503.6	19125.4	10358.1	9501.3	0.6530
Effectivity index Eff_E	1.1121	1.2836	1.3008	1.4522	1.4135	1.3314	

TABLE 4.7 – Method $\theta = 1$ and $\gamma_0 = 1000/E$

TABLE 4.8 – Method $\theta = 0$ and $\gamma_0 = 1000/E$

Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	303.6785	333.7074	174.5422	48.0262	10.8161	6.6257	1.3765
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	125.4399	122.2683	64.7008	23.8110	8.7007	6.3645	1.0750
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	74475.2	44350.1	23596.6	13212.4	7691.3	6484.07	0.8244
η_3	2505.2	1111.88	500.804	210.295	81.0268	59.2376	1.2492
η_4	192.998	282.681	184.027	76.9563	30.6396	23.062	0.8117
η	76370.2	45145.7	23969.9	13378.6	7762.45	6538.05	0.8296
Effectivity index	0.6088	0.3692	0.3705	0.5619	0.8921	1.0272	
Eff_E							

4.4.2 Second example : Hertz's contact

4.4.2.1 Description

We consider Hertz's contact problems of a disk/a sphere with a plane rigid foundation (see, e.g., the numerical examples in [30, 19]). The parameters have been fixed as $\theta = -1$ and $\gamma_0 = 10^{-3}/E$.

	IADLE I	.5 WICOIN	JUV = 1	and $n = 1$	000/12		
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$ig\ \mathbf{u} - \mathbf{u}^h ig\ _{0,\Omega}$	110.5676	47.6294	16.9825	5.9095	2.0291	1.4217	1.4709
$(\times 10^{-4})$							
$\left\ \mathbf{u} - \mathbf{u}^h ight\ _{1,\Omega}$	50.6235	29.1107	16.2369	9.0858	4.9803	4.1564	0.8385
$(\times 10^{-3})$							
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1.0000
η_2	62281.5	38200.3	22808.2	13249.2	7731.97	6512.95	0.7582
η_3	14.2993	8.34107	2.66569	0.868753	0.304663	0.236045	1.4403
η_4	16.8753	6.7433	1.42615	0.39603	0.117113	0.0945657	1.8038
η	64486.7	39104.3	23188.1	13413	7802.26	6566.38	0.7665
Effectivity index	1.2738	1.3433	1.4281	1.4763	1.5663	1.5796	
Eff_E							

TABLE 4.9 – Method $\theta = -1$ and $\gamma_0 = 1000/E$

The disc (resp. the sphere) is of center (0, 20) (resp. of center (0, 0, 20)) and radius 20. The lower part of the boundary Γ_C is potentially in contact with the rigid support; the remaining (upper part) of the boundary Γ_N is subjected to a homogenous Neumann condition. To overcome the non-definiteness coming from free rigid motions, the horizontal displacement is prescribed to be zero on the two points of coordinates (0, 20) and (0, 25) (resp. the horizontal displacement components u_1 and u_2 on the point (0,0,20), the component u_1 on the point (0,5,20) and the component u_2 on the point (5,0,20)) : this blocks the horizontal translation and the rigid rotation. Young's modulus is fixed at E = 25 and Poisson's ratio is P = 0.25. A vertical density of volume forces of intensity 20 is applied on the body. The reference solutions are depicted Figure 4.9. There are a refined solutions with an average mesh size h = 0.099 for the disc (resp. h = 1.27for the sphere), Lagrange P_2 elements, $\theta = -1$ and $\gamma = 10^{-3}/E$.

The initial gap between Γ_C and the obstacle is computed as $gap(\mathbf{x}) := \mathbf{x} \cdot \mathbf{n}_{obs}$, where $\mathbf{x} \in \Gamma_C$ and with \mathbf{n}_{obs} the unit outward normal vector on the boundary of the plane obstacle. The error estimator associated to the contact condition on Γ_C is then slightly modified :

$$\eta_{4K} = h_K^{1/2} \left(\sum_{E \in E_K^C} \left\| \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^h) - gap]_+ + \sigma_n(\mathbf{u}^h) \right\|_{0,E}^2 \right)^{1/2}.$$

117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

FIGURE 4.7 – First example. Convergence curves of the error estimator η , the L^2 and H^1 -norms of the error, for $\gamma_0 = 10^6/E$.

4.4.2.2 Numerical convergence in 2D

The error curves in the 2D case are depicted in Figure 4.10, both for linear and quadratic finite elements. In the case of P_1 finite elements, and as in [30], a slight super-convergence is observed in the H^1 -norm of the error (1.5 instead of 1). This behaviour is not recovered by the error estimator η , that converges with a rate close to 1. The origin of this difference is unknown. For P_2 finite elements the agreement between η and the error in H^1 -norm is better : for the H^1 -norm, the convergence rate is close to 1.7, while of approximately 1.5 for η . We observe the same results for the variants $\theta = 0, 1$.

In Table 4.16 the contribution of each component η_i of η is detailed. Each term of the error estimator converges towards zero when h becomes smaller. Note however the increasing values of the efficitivity index, due to the super-convergence in H^1 -norm and the convergence rate of the contribution η_4 , that is close to 1.5.

	TADLE 4.10	J I HOUCA	ample, v =	- i and 70 -	- 10 / 12.		
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$ig\ \mathbf{u} - \mathbf{u}^h ig\ _{0,\Omega}$	122.6500	58.4959	46.4511	16.6143	3.0112	2.0808	1.3628
$(\times 10^{-4})$							
$ig\ \mathbf{u} - \mathbf{u}^h ig\ _{1,\Omega}$	57.7770	30.5558	30.8275	15.1381	7.5190	7.2669	0.6963
$(\times 10^{-3})$							
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	62073.4	38335.4	41033.3	22552.4	10916.7	9635.48	0.6172
$\eta_3(\times 10^{-2})$	2.13709	1.01961	0.63268	0.768462	0.414401	0.42499	0.4878
$\eta_4(\times 10^{-2})$	2.52415	0.571842	2.55605	1.38494	0.525521	0.446467	0.4177
η	64285.7	39236.3	41245.6	22649	10966.6	9671.68	0.6272
Effectivity index	1.1127	1.2841	1.3380	1.4962	1.4564	1.3266	
Eff_E							

TABLE 4.10 – First example, $\theta = 1$ and $\gamma_0 = 10^6/E$.

4.4.2.3 Numerical convergence in 3D

The error curves in the 3D case are depicted in Figure 4.11, both for linear and quadratic finite elements. For P_1 finite elements the convergence rates for η and for the error in H^1 -norm are close (around 1.3) and slightly above the expected rate of 1. For P_2 finite elements we observe a sub-optimality of the error estimator η , which converges but with a rate of 1, while the error in H^1 -norm remains optimal, with a convergence rate around 1.5.

	1110000 1111	1 1150 011	ampio, o	0 ana /0	10/21		
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h ight\ _{0,\Omega}$	321.9223	518.2042	592.2560	635.8190	615.1016	577.5225	-0.1689
$(\times 10^{-4})$							
$\left\ \mathbf{u} - \mathbf{u}^h ight\ _{1,\Omega}$	130.6775	175.6706	192.4574	203.4624	197.2235	186.4225	-0.1058
$(\times 10^{-3})$							
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	75562.4	49342.9	29582.9	17606.7	10284.5	8546.95	0.7339
η_3	2468.7	908.957	316.586	107.411	38.2804	28.2145	1.5045
$\eta_4 \; (\times 10^{-1})$	2.00548	3.65123	5.58251	8.52101	1.38006	1.37438	-0.6465
η	77429.5	50054.3	29878.5	17730.7	10337.5	8587.78	0.7399
Effectivity index	5.9252	2.8493	1.5525	0.8714	0.5242	0.4607	
$Eff_E \ (\times 10^{-1})$							

TABLE 4.11 – First example, $\theta = 0$ and $\gamma_0 = 10^6/E$.

TABLE 4.12 – First example, $\theta = -1$ and $\gamma_0 = 10^6/E$.

Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	110.5852	47.6266	16.9809	5.9093	2.0290	1.4216	1.4709
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	50.6403	29.1195	16.2386	9.0861	4.9803	4.1565	0.8386
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	62292.2	38204	22809.5	13249.4	7732.01	6512.98	0.7582
$\eta_3(\times 10^{-4})$	143.671	83.7405	26.7592	8.72031	3.05775	0.0236947	1.4405
$\eta_4 \; (\times 10^{-4})$	168.808	67.5774	14.2866	3.96942	1.17445	0.948677	1.8030
η	64497	39108	23189.4	13413.2	7802.31	6566.42	0.7666
Effectivity index Eff_E	1.2736	1.3430	1.4280	1.4762	1.5663	1.5796	

Appendix 1. Extension to the Tresca friction case

We extend in this appendix the analysis of Section 4.3 to the case of unilateral contact with Tresca friction. About *a posteriori* error estimates for the Tresca friction problem one may refer,

FIGURE 4.8 – First example. Convergence curves of the error estimator η , the L^2 and H^1 -norms of the error, with $\gamma_0 = 10^6/E$ in the Nitsche's method and $\tilde{\gamma}_0 = 1/E$ in the error estimator and Lagrange P_1 finite elements.

e.g., to [120] and references therein.

Setting and Nitsche-based finite element method for Tresca

Let $g \in L^2(\Gamma_C)$, $g \geq 0$ be a given threshold. The Tresca friction problem with unilateral contact consists in finding the displacement field $\mathbf{u} : \Omega \to \mathbb{R}^d$ verifying the equations and conditions (4.1)–(4.2 (i,i,iii))–(4.24), with (4.24) given by :

(4.24)
$$\begin{cases} |\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u})| \leq g, & \text{if } \mathbf{u}_{\mathbf{t}} = \mathbf{0}, \quad (i) \\ \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}) = -g \frac{\mathbf{u}_{\mathbf{t}}}{|\mathbf{u}_{\mathbf{t}}|} & \text{otherwise,} \quad (ii) \end{cases}$$

where $|\cdot|$ stands for the euclidean norm in \mathbb{R}^{d-1} .

IADLE 4.10	Micinou v .	-1, 0 -		Countator	$1011 \ 10 - 1$		
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-4})$	122.6500	58.4959	46.4511	16.6143	3.0112	2.0808	1.3628
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-3})$	57.7770	30.5558	30.8275	15.1381	7.5190	7.2669	0.6963
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	62073.4	38335.4	41033.3	22552.4	10916.7	9635.48	0.6172
$\eta_3(\times 10^{-2})$	2.13709	1.01961	0.63268	0.768462	0.414401	0.42499	0.4878
η_4	15478.1	4151.57	8709.89	5218.17	3512.73	3410.52	0.3920
η	66122.8	39455.4	42155.2	23242.4	11515.5	10255.4	0.6148
Effectivity index Eff_E	1.1444	1.2913	1.3675	1.5354	1.5293	1.4067	

TABLE 4.13 – Method $\theta = 1$, $\gamma_0 = 10^6/E$ and estimator with $\gamma_0 = 1/E$

TABLE 4.14 – Method $\theta = 0$, $\gamma_0 = 10^6/E$ and estimator with $\gamma_0 = 1/E$

Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{0,\Omega} (\times 10^{-3})$	0.0322	0.0518	0.0592	0.0636	0.0615	0.0578	-0.1690
$\left\ \mathbf{u} - \mathbf{u}^h \right\ _{1,\Omega} (\times 10^{-4})$	0.1307	0.1757	0.1925	0.2035	0.1972	0.1864	-0.1057
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	75562.4	49342.9	29582.9	17606.7	10284.5	8546.95	0.7339
η_3	2468.7	908.957	316.586	107.411	38.2804	28.2145	1.5045
η_4	73498.1	105972	150395	214208	311611	355889	-0.5229
η	106758	117198	153334	214940	311782	355993	-0.4199
Effectivity index Eff_E	0.8170	0.6671	0.7967	1.0564	1.5809	1.9096	

For any $\alpha \in \mathbb{R}^+$, we introduce the notation $[\cdot]_{\alpha}$ for the orthogonal projection onto $\mathscr{B}(\mathbf{0}, \alpha) \subset \mathbb{R}^{d-1}$, where $\mathscr{B}(\mathbf{0}, \alpha)$ is the closed ball centered at the origin **0** and of radius α . The following property holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d-1}$:

(4.25)
$$(\mathbf{y} - \mathbf{x}) \cdot ([\mathbf{y}]_{\alpha} - [\mathbf{x}]_{\alpha}) \ge |[\mathbf{y}]_{\alpha} - [\mathbf{x}]_{\alpha}|^2,$$

where \cdot is the euclidean scalar product in \mathbb{R}^{d-1} .

Let us introduce the discrete linear operator $\mathbf{P}_{\gamma}^{\mathbf{t}}: \mathbf{v}^{h} \mapsto \mathbf{v}_{\mathbf{t}}^{h} - \gamma \, \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{v}^{h})$ and the bilinear form :

			1.5 1		10		
Meshsize h	1/4	1/8	1/16	1/32	1/64	1/80	slope
Degrees of freedom	32	128	512	2048	8192	12800	
$\ \mathbf{u}-\mathbf{u}^h\ _{0,\Omega}$	0.0111	0.0048	0.0017	0.0006	0.0002	0.0001	1.5421
$(\times 10^{-3})$							
$ig\ \mathbf{u} - \mathbf{u}^h ig\ _{1,\Omega}$	0.0506	0.0291	0.0162	0.0091	0.0050	0.0042	0.8355
$Eff_E \ (\times 10^{-4})$							
η_1	16719.8	8359.9	4179.95	2089.97	1044.99	835.99	1
η_2	62292.2	38204	22809.5	13249.4	7732.01	6512.98	0.7582
$\eta_3(\times 10^{-2})$	1.43671	0.837405	0.267592	0.0872031	0.0305775	0.0236947	1.4405
η_4	14390.2	4089.31	1282.11	334.666	88.4182	74.2248	1.7948
η	66082.9	39321.2	23224.8	13417.4	7802.81	6566.84	0.7731
Effectivity index	1.3049	1.3503	1.4302	1.4767	1.5664	1.5797	
Eff_E							

TABLE 4.15 – Method $\theta = -1$ and $\gamma_0 = 10^6/E$ and estimator with $\gamma_0 = 1/E$

FIGURE 4.9 – Reference solutions with von Mises stresses, in 2D (left) and 3D (right).

 $A_{\theta\gamma}(\mathbf{u}^h, \mathbf{v}^h) := a(\mathbf{u}^h, \mathbf{v}^h) - \int_{\Gamma_C} \theta\gamma \,\boldsymbol{\sigma}(\mathbf{u}^h) \mathbf{n} \cdot \boldsymbol{\sigma}(\mathbf{v}^h) \mathbf{n} \, d\Gamma.$ The extension of our Nitsche-based method

FIGURE 4.10 – Hertz's contact in 2D. Error estimator η and the H^1 -norm of the error, for Lagrange P_1 (left) and P_2 (right) finite elements.

Meshsize h	6.04766	5.23002	2.7327	1.64637	0.482414	0.246359	slope
$\left\ \mathbf{u} - \mathbf{u}^h ight\ _{1,\Omega}$	50.5984	12.3996	4.1083	1.5561	0.3399	0.1534	1.6392
η_1	7781.84	7376.92	4066.11	2379.44	728.236	359.817	0.9715
η_2	18000.7	12350.7	9279.79	5866.83	2009.88	1029.86	0.8525
η_3	2523.15	1055.64	852.542	458.121	90.2956	38.1934	1.2132
η_4	21999.5	10276.6	2537.53	1735.77	321.871	152.501	1.4597
η	29579.2	17711.1	10479.2	6580.59	2163.73	1102.18	0.9643
Effectivity index Eff_E	0.2338	0.5713	1.0203	1.6916	2.5467	2.8735	

TABLE 4.16 – Hertz's contact in 2D, $\theta = -1$, $\gamma_0 = 10^{-3}/E$ and Lagrange P_1 elements

for unilateral contact with Tresca friction then reads : $(4\ 26)$

$$\begin{cases} \text{Find } \mathbf{u}^h \in \mathbf{V}^h \text{ such that } : \\ A_{\theta\gamma}(\mathbf{u}^h, \mathbf{v}^h) + \int_{\Gamma_C} \frac{1}{\gamma} \left[P_{\gamma}(\mathbf{u}^h) \right]_{+} P_{\theta\gamma}(\mathbf{v}^h) \, d\Gamma + \int_{\Gamma_C} \frac{1}{\gamma} \left[\mathbf{P}^{\mathbf{t}}_{\gamma}(\mathbf{u}^h) \right]_{\gamma g} \cdot \mathbf{P}^{\mathbf{t}}_{\theta\gamma}(\mathbf{v}^h) \, d\Gamma &= L(\mathbf{v}^h), \\ \forall \, \mathbf{v}^h \in \mathbf{V}^h. \end{cases}$$

Consistency, well-posedness and *a priori* error estimates for the method (4.26) are established in [70].

TABLE 4.17 – Hertz	TABLE 4.17 – Hertz's contact in 2D, $\theta = -1$, $\gamma_0 = 1/1000E$, Lagrange P_2 elements							
Meshsize h	6.662	5.85759	4.18172	2.24004	1.70313	0.438752	slope	
$\left\ \mathbf{u} - \mathbf{u}^h ight\ _{1,\Omega}$	4.3636	2.3253	2.2378	0.5679	0.1988	0.0438	1.7025	
η_1	6967.41	5532.28	4006.83	2052.96	1351.61	340.931	1.1017	
η_2	5180.58	4358.83	3773.2	1497.45	1070.72	173.725	1.2588	
η_3	456.608	654.508	491.636	228.537	172.885	23.5877	1.1738	
η_4	26670.8	11938.6	17559.7	4071.09	372.629	53.6303	2.3377	
η	28052.2	13876.7	18408.6	4804.48	1772.58	387.101	1.5727	
Effectivity index Eff_E	2.5715	2.3871	3.2905	3.3842	3.5663	3.5316		

FIGURE 4.11 – Hertz's contact in 3D. Error estimator η and H^1 -norm of the error, for Lagrange P_1 (left) and P_2 (right) finite elements.

Residual error estimator, upper and lower bound

The Definition 4.3.2 still holds for problem (4.26), except for η_{3K} chose expression is now :

$$\eta_{3K} = h_K^{1/2} \left(\sum_{E \in E_K^C} \left\| \frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^h) \right]_{\gamma g} + \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}^h) \right\|_{0,E}^2 \right)^{1/2}$$

First we provide counterparts of the Assumption 4.3.3 and of the discrete trace inequality of Lemma 4.2.3.

Assumption 4.4.2. The solution \mathbf{u} of (4.1)-(4.2(i,ii,iii))-(4.24) and the discrete solution \mathbf{u}^h of (4.26) are such that :

(4.27)
$$\left\|\sigma_{n}(\mathbf{u}-\mathbf{u}^{h})\right\|_{-1/2,h,\Gamma_{C}}+\left\|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}-\mathbf{u}^{h})\right\|_{-1/2,h,\Gamma_{C}}\lesssim\|\mathbf{u}-\mathbf{u}^{h}\|_{1,\Omega}.$$

TABLE 4.18 – Hertz	TABLE 4.18 – Hertz's contact in 3D, $\theta = -1$, $\gamma_0 = 1/1000E$, Lagrange P_1 elements							
Meshsize h	6.99992	6.48188	5.50504	4.95584	4.04204	3.16207	slope	
$\left\ \mathbf{u} - \mathbf{u}^h ight\ _{1,\Omega}$	145.5261	146.1777	80.9980	72.8654	70.3068	56.9181	1.2175	
η_1	63195.6	63786.9	58218	50778.4	47260.1	35050.5	0.7432	
η_2	130398	130152	107003	96631.9	101191	80077.5	0.5911	
η_3	9404.94	9276.75	15015.9	7973.6	6642.56	5246.94	0.8664	
η_4	246585	242981	98555	84586.1	68588.5	39314.2	2.3401	
η	286164	283080	157409	138328	131231	95990	1.3910	
Effectivity index Eff_E	0.7866	0.7746	0.7773	0.7594	0.7466	0.6746		

TABLE 4.19 – Hertz's contact in 3D, $\theta = -1$, $\gamma_0 = 1/1000E$, Lagrange P_2 elements

Meshsize h	8.60341	8.42192	6.09033	4.72471	4.72145	3.69153	slope
$ig\ \mathbf{u} - \mathbf{u}^h ig\ _{1,\Omega}$	261.2041	248.7847	142.4049	121.5570	124.0673	59.6301	1.5405
η_1	80200.8	78955.6	58608	40699.3	40816.2	28237.3	1.2090
η_2	98066.1	98430	78979.6	65528.8	65304.7	54911.2	0.6951
η_3	5824.05	5734.21	6074.19	3196.26	3159.32	2468.21	1.0548
η_4	166077	165873	57204.1	90815.3	91107.4	62615.7	1.0431
η	208960	208493	113938	119198	119336	87973.9	0.9753
Effectivity index Eff_E	0.3200	0.3352	0.3200	0.3922	0.3847	0.5901	

Lemma 4.4.3. For any $\mathbf{v}^h \in \mathbf{V}^h$, we have

(4.28)
$$\|\sigma_n(\mathbf{v}^h)\|_{-1/2,h,\Gamma_C} + \|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{v}^h)\|_{-1/2,h,\Gamma_C} \lesssim \|\mathbf{v}^h\|_{1,\Omega}.$$

For contact with Tresca friction, the following statement guarantees the reliability of the a*posteriori* error estimator :

Theorem 4.4.4. Let **u** be the solution to $(4.1)-(4.2 \ (i,ii,iii))-(4.24)$, with $\mathbf{u} \in (H^{\frac{3}{2}+\nu}(\Omega))^d$ $(\nu > 0 \text{ and } d = 2,3)$, and let \mathbf{u}^h be the solution to the corresponding discrete problem (4.26). Assume that, for $\theta \neq -1$, γ_0 is sufficiently small, and otherwise that $\gamma_0 > 0$ for $\theta = -1$. Assume that the saturation assumption (4.27) holds as well. Then we have

(4.29)
$$\|\mathbf{u} - \mathbf{u}^{h}\|_{1,\Omega} + \left\|\sigma_{n}(\mathbf{u}) + \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+}\right\|_{-1/2,h,\Gamma_{C}} + \left\|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}) + \frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^{h})\right]_{\gamma g}\right\|_{-1/2,h,\Gamma_{C}} \\ + \|\sigma_{n}(\mathbf{u}) - \sigma_{n}(\mathbf{u}^{h})\|_{-1/2,h,\Gamma_{C}} + \|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}) - \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}^{h})\|_{-1/2,h,\Gamma_{C}} \lesssim (1 + \gamma_{0})\eta + \zeta.$$

Proof: The proof is a direct adaptation of Theorem 4.3.5. Let $\mathbf{v}^h \in \mathbf{V}^h$. To lighten the notation, we denote $\mathbf{e}_{\mathbf{u}} := \mathbf{u} - \mathbf{u}^h$. We start as in Theorem 4.3.5 and get

$$\alpha \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}^2 \leqslant \mathcal{T}_1 + \mathcal{T}_2$$

where α is the **V**-ellipticity constant of $a(\cdot, \cdot)$ and

$$\begin{split} \mathcal{T}_{1} &:= L(\mathbf{u} - \mathbf{v}^{h}) - a(\mathbf{u}^{h}, \mathbf{u} - \mathbf{v}^{h}) + \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} (v_{n}^{h} - u_{n}) \, d\Gamma + \int_{\Gamma_{C}} \frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^{h}) \right]_{\gamma g} \cdot (v_{\mathbf{t}}^{h} - u_{\mathbf{t}}) \, d\Gamma \\ \mathcal{T}_{2} &:= \int_{\Gamma_{C}} \boldsymbol{\sigma}(\mathbf{u}) \mathbf{n} \cdot (\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma + \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} P_{\theta \gamma}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma + \int_{\Gamma_{C}} \frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^{h}) \right]_{\gamma g} \cdot \mathbf{P}_{\theta \gamma}^{\mathbf{t}}(\mathbf{u} - \mathbf{u}^{h}) \, d\Gamma \\ &- \theta \int_{\Gamma_{C}} \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^{h})]_{+} \gamma \sigma_{n}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma - \theta \int_{\Gamma_{C}} \frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^{h}) \right]_{\gamma g} \cdot \gamma \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{v}^{h} - \mathbf{u}) \, d\Gamma \\ &- \theta \int_{\Gamma_{C}} \boldsymbol{\sigma}(\mathbf{u}^{h}) \mathbf{n} \cdot \boldsymbol{\sigma}(\mathbf{v}^{h} - \mathbf{u}^{h}) \mathbf{n} \, d\Gamma. \end{split}$$

The quantity \mathcal{T}_1 is bounded almost exactly as in Theorem 4.3.5, except for the new Tresca friction term, that is bounded as follows :

$$\left|\sum_{E\in E_h^C}\int_E \left(\frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^h)\right]_{\gamma g} + \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}^h)\right) \cdot (\mathbf{v}_{\mathbf{t}}^h - \mathbf{u}_{\mathbf{t}}) \ d\Gamma\right| \lesssim \eta \|\mathbf{e}_{\mathbf{u}}\|_{1,\Omega}.$$

Note that the remaining terms in \mathcal{T}_2 can be splitted as

$$\mathcal{T}_2 = \mathcal{T}_2^C + \mathcal{T}_2^T,$$

where \mathcal{T}_2^C represents the contact terms and \mathcal{T}_2^T contains the Tresca friction terms. The contact terms \mathcal{T}_2^C are holded the same as in Theorem 4.3.5. Moreover, we can bound the friction terms \mathcal{T}_2^T in a similar fashion, following step by step the proof of Theorem 4.3.5 and using the bound (4.25). We get finally for any $\beta > 0$:

$$\mathcal{T}_2^T \le \left(\frac{1}{2\beta} + \frac{(\theta+1)^2}{4}\right) \gamma_0 \|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}-\mathbf{u}^h)\|_{-1/2,h,\Gamma_C}^2 + \beta \gamma_0 \theta^2 \eta^2 + \frac{\gamma_0}{2\beta} \|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{v}^h-\mathbf{u}^h)\|_{-1/2,h,\Gamma_C}^2.$$

Using (4.28) and the H^1 -stability of R^h (see (4.11) in Lemma 4.2.1) we bound :

$$\|\boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{v}^{h}-\mathbf{u}^{h})\|_{-1/2,h,\Gamma_{C}} \leq C \|\mathbf{v}^{h}-\mathbf{u}^{h}\|_{1,\Omega} = C \|R^{h}(\mathbf{u}-\mathbf{u}^{h})\|_{1,\Omega} \leq C \|\mathbf{u}-\mathbf{u}^{h}\|_{1,\Omega}.$$

We combine this last bound with the saturation assumption (4.27) and get (remembering that the same result holds for the contact terms \mathcal{T}_2^C too) :

$$\mathcal{T}_2 \le C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}\right) \|\mathbf{u} - \mathbf{u}^h\|_{1,\Omega}^2 + \beta\gamma_0 \theta^2 \eta^2.$$

 \square

From now on the proof is exactly the same as in Theorem 4.3.5.

Remark 4.4.5. An extension of Theorem 4.3.6 holds as well for Problem (4.26) and similar local lower error bounds can be derived following the same method. The only difference is that the term η_{3K} is bounded as follows :

(4.30)
$$\eta_{3K} \lesssim \sum_{E \in E_K^C} h_K^{1/2} \left(\left\| \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u}) + \frac{1}{\gamma} \left[\mathbf{P}_{\gamma}^{\mathbf{t}}(\mathbf{u}^h) \right]_{\gamma g} \right\|_{0,E} + \left\| \boldsymbol{\sigma}_{\mathbf{t}}(\mathbf{u} - \mathbf{u}^h) \right\|_{0,E} \right).$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Chapitre 5

Estimateur *a posteriori* pour un contact unilatéral approché par une méthode de Nitsche en domaine fictif

Le but de ce chapitre est d'étendre l'estimateur d'erreur *a posteriori* de type résidu à la méthode de domaine fictif décrite dans le chapitre 3. A notre connaissance, il n'existe pas dans la littérature de résultats d'estimation d'erreur *a posteriori* pour un problème de contact avec une approche de type domaine fictif et une méthode de Nitsche. L'approche de domaine fictif considérée est une méthode proche de l'approche X-fem introduite dans [57] et depuis étudiée à de nombreuses reprises [71, 28, 72, 61, 73]. De nombreuses autres méthodes existent [121] pour des éléments finis adaptés et des méthodes plus classiques [75, 76, 77, 48, 78]. L'étude d'estimateurs *a posteriori* a été effectuée dans de nombreux domaines, notamment pour des problèmes de contact avec et sans frottement (voir [88, 89, 97, 99, 100]), pour des problèmes de plaques de type Mindlin-Reissner [122, 123], pour une équation de Laplace [124, 125] et a fait l'objet d'une thèse pour un problème similaire, le problème de fissure en élasticité [8]. Les estimateurs que l'on va présenter sont inspirés d'estimateurs de type résidu pour un problème de signorini définis dans [18, 19, 101] et plus récemment [102].

Tout d'abord, on rappellera le problème unilatéral sans frottement de deux corps élastiques ainsi que la méthode discrète définie dans le chapitre 3. Ensuite, on définira un estimateur d'erreur *a posteriori* de type résidu pour le problème défini dans le chapitre 3. On définira enfin une autre méthode et son estimateur d'erreur *a posteriori* qui semble plus naturel et avec des hypothèses de saturations également plus naturelles.

Sommaire

5.1	Problème unilatéral sans frottement :
5.2	Méthode de Nitsche
5.3	Formulation de Nitsche discrète
5.4	Formulation de Nitsche discrète stabilisée
5.5	Analyse et erreur a priori 134
5.6	Estimateur d'erreur a posteriori 135
5.7	Nouvelle stabilisation
5.8	Estimateur d'erreur a posteriori pour la nouvelle stabilisation 145
5.9	Conclusion et perspectives

5.1 Problème unilatéral sans frottement :

On se place, dans ce chapitre, dans le même cadre qu'au chapitre 3. On considère un problème statique de contact unilatéral sans frottement de deux corps élastiques (voir exemple Figure 5.1). On considère Ω_i , $1 \leq i \leq 2$, deux domaines pouvant se chevaucher inclus dans \mathbb{R}^d , d = 2, 3. Ils représentent la configuration de références de deux corps élastiques en contact. Le bord Γ_1 de Ω_1 (respectivement Γ_2 de Ω_2) est divisé en trois parts distinctes : $\Gamma_{1,C}$ la zone potentielle de contact de mesure non nulle (respectivement $\Gamma_{2,C}$), $\Gamma_{1,N}$ le bord de condition de Neumann (respectivement $\Gamma_{2,N}$) et $\Gamma_{1,D}$ le bord de condition de Dirichlet de mesure non nulle (respectivement $\Gamma_{2,D}$).

FIGURE 5.1 – Exemple de problème de contact unilatéral entre deux corps élastiques.

Les deux corps sont soumis à une force volumique $f = (f_1, f_2) \in (L^2(\Omega_1))^d \times (L^2(\Omega_2))^d$ sur $\Omega_1 \times \Omega_2$, une charge surfacique $\ell = (\ell_1, \ell_2) \in (H^{-1/2}(\Gamma_{1,N}))^d \times (H^{-1/2}(\Gamma_{1,N}))^d$ sur $\Gamma_{1,N} \times \Gamma_{2,N}$ et satisfont une condition de type Dirichlet non homogène sur $\Gamma_{1,D} \times \Gamma_{2,D}$, de déplacement imposé $u_D = (u_{1,D}, u_{2,D}) \in (H^{3/2}(\Gamma_{3,N}))^d \times (H^{3/2}(\Gamma_{1,N}))^d$ donné.

On se place dans le cadre des petits déplacements et des petites déformations élastiques pour les deux corps. Le tenseur linéaire des déformations est donné par $\varepsilon(v) = \frac{1}{2}(\nabla v + \nabla v^T)$ et le tenseur des contraintes $\sigma = (\sigma_{ij})_{1 \leq i,j \leq 2}$ est donné par $\sigma(v) = A\varepsilon(v)$ où A est le tenseur d'orde quatre symétrique vérifiant les hypothèses usuelles d'ellipticité uniforme. Les composantes de ce tenseur sont bornés. Par conséquence, le déplacement (u_1, u_2) sur $\Omega_1 \times \Omega_2$ satisfait les équations

129

d'équilibre et aux limites (les conditions de contact seront décrites ultérieurement) suivantes :

(5.1)
$$\begin{cases} \text{Trouver } u = (u_1, u_2) \text{ qui satisfait} \\ -\text{div}\sigma(u_i) = f_i & \text{dans} & \Omega_i, \\ \sigma(u_i) = A\varepsilon(u_i) & \text{dans} & \Omega_i, \\ u_i = u_{i,D} & \text{sur} & \Gamma_{i,D}, \\ \sigma(u_i)n_i = \ell_i & \text{sur} & \Gamma_{i,N}. \end{cases}$$

Pour définir les conditions de contact sur les zones potentielles de contacts $\Gamma_{i,C}$, on définit Π la projection orthogonale du bord esclave $\Gamma_{1,C}$ sur le bord maître $\Gamma_{2,C}$

(5.2)
$$\Pi: \begin{array}{ccc} \Gamma_{1,C} & \to & \Gamma_{2,C} \\ x & \mapsto & \Pi(x). \end{array}$$

Afin de simplifier l'analyse mathématique, l'opérateur Π est supposé une bijection sur $\Pi(\Gamma_{1,C})$ de classe \mathscr{C}^1 (par exemple, dans le cas de deux corps convexes de régularité \mathscr{C}^1). On définit de même la normale unitaire extérieure n au bord maître $\Gamma_{2,C}$

$$n: \begin{array}{ccc} \Gamma_{1,C} & \to & \mathbb{R}^d \\ x & \mapsto & n_2(\Pi(x)). \end{array}$$

On définit aussi la fonction distance g entre les deux corps par

$$\begin{array}{rcccc} g: & \Gamma_{1,C} & \to & \mathbb{R} \\ & & \\ & x & \mapsto & (x - \Pi(x)) \cdot n \end{array}$$

Soit (v_1, v_2) un déplacement défini sur $\Omega_1 \times \Omega_2$, on définit le saut normal par

$$[v \cdot n] = (v_2 \circ \Pi - v_1) \cdot n.$$

La partie normale et tangentielle du déplacement est définie par

$$v_1 = -v_{1,n}n + v_{1,t}$$
 avec $v_{1,n} = -v_1 \cdot n$

 et

$$v_2 \circ \Pi = v_{2,n}n + v_{2,t} \qquad \text{avec } v_{2,n} = v_2 \circ \Pi \cdot n_2 \circ \Pi.$$

La contrainte normale est définie par

$$\sigma(v_1)n_1 = -\sigma_n(v_1)n + \sigma_t(v_1) \qquad \text{avec } \sigma_n(v_1) = -\sigma(v_1)n_1 \cdot n$$

 et

$$\sigma(v_2 \circ \Pi)n_2 \circ \Pi = \sigma_n(v_2 \circ \Pi)n + \sigma_t(v_2 \circ \Pi) \qquad \text{avec } \sigma_n(v_2 \circ \Pi) = \sigma(v_2 \circ \Pi)n_2 \circ \Pi \cdot n.$$

On définit ainsi le saut de la contrainte normale à travers la zone potentielle de contact par

$$\llbracket \sigma(u)n \rrbracket = \sigma(u_1)n_1 + \sigma(u_2 \circ \Pi)n_2 \circ \Pi |\det(J_{\Pi})|,$$

avec J_{Π} la matrice jacobienne de Π .

Ce saut nous permet d'écrire les conditions unilatérales de contact sans frottement sur le bord $\Gamma_{1,C}$ comme suit :

(5.3)
$$\begin{cases} [[u \cdot n]] \leqslant g & (i), \\ \sigma_n(u_1) \leqslant 0 & (ii), \\ \sigma_n(u_1)([[u \cdot \sigma_n]] - g) = 0 & (iii), \\ [[\sigma(u)n]] = 0 & (iv), \\ \sigma_t(u_1) = 0 & (v). \end{cases}$$

On introduit l'espace de Hilbert V et le cône convexe K des déplacements admissibles :

$$V = H^1(\Omega_1)^d \times H^1(\Omega_2)^d,$$

 $K = \{ v = (v_1, v_2) \in V \mid v_1 = u_{1,D} \text{ on } \Gamma_{1,D} \text{ and } v_2 = u_{2,D} \text{ on } \Gamma_{2,D} \mid \llbracket v \cdot n \rrbracket - g \leq 0 \text{ sur } \Gamma_{1,C} \}.$ On suppose que *f* appartient à $L^2(\Omega_1)^d \times L^2(\Omega_2)^d$, ℓ appartient à $L^2(\Gamma_{1,N})^d \times L^2(\Gamma_{2,N})^d$ et u_D appartient à $H^{\frac{1}{2}}(\Gamma_{1,D})^d \times H^{\frac{1}{2}}(\Gamma_{2,D})^d$.

On définit les formes bilinéaire et linéaire a(.,.) et L(.) par

$$a(u,v) = \sum_{i=1,2} \int_{\Omega_i} \sigma(u_i) : \varepsilon(v_i) \, \mathrm{d}\Omega \quad ; \quad L(v) = \sum_{i=1,2} \int_{\Omega_i} f_i v_i \, \mathrm{d}\Omega + \sum_{i=1,2} \int_{\Gamma_{i,N}} \ell_i v_i \, \mathrm{d}\Gamma.$$

La formulation faible du problème (5.1)-(5.3) comme in équation variationnelle (voir $[2,\ 79,\ 9])$, s'écrit :

(5.4)
$$\begin{cases} \text{Trouver } u \in K \text{ tel que} \\ a(u, v - u) \ge L(v - u) \quad \forall v \in K \end{cases}$$

Le théorème de Stampacchia assure l'existence d'une unique solution au problème (5.4).

5.2 Méthode de Nitsche

On rappelle la formulation équivalente classique des conditions de contact 5.3, pour un paramètre de Nitsche $\gamma>0$:

(5.5)
$$\sigma_n(u_1) = -\frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u_1)]_+.$$

On définit aussi

(5.6)
$$\sigma_n(u) = t\sigma_n(u_2 \circ \Pi) |\det(J_{\Pi})| + (1-t)\sigma_n(u_1).$$

On définit la forme bilinéaire suivante

$$A_{\theta\gamma}(u,v) = a(u,v) - \int_{\Gamma_{1,C}} \theta\gamma\sigma_n(u)\sigma_n(v) \, \mathrm{d}\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta\gamma\sigma(u_i)\sigma(v_i) \, \mathrm{d}\Gamma.$$

On peut ainsi définir la formulation suivante basée sur une méthode de Nitsche

(5.7)
$$A_{\theta\gamma}(u,v) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [\llbracket u \cdot n \rrbracket - g - \gamma \sigma_n(u)]_+ (\llbracket v \cdot n \rrbracket - \theta \gamma \sigma_n(v)) \, \mathrm{d}\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (u_i - u_{i,D} - \gamma \sigma(u_i)n_i) \cdot (v_i - \gamma \theta \sigma(v_i)n_i) \, \mathrm{d}\Gamma = L(v) \quad \forall v \in V.$$

5.3 Formulation de Nitsche discrète

On se place dans le cadre de la section 3.3.2. On prend T_h une triangulation régulière et affine d'un maillage quasi-uniforme.

Pour simplifier les notations, on notera les ensembles

/

$$E_K^{1,C} = \{ E = K \cap \Gamma_{1,C} \text{ tel que } K \cap \Gamma_{1,C} \neq \emptyset \},\$$

$$E_K^{i,N} = \{ E = K \cap \Gamma_{i,N} \text{ tel que } K \cap \Gamma_{i,N} \neq \emptyset \} \text{ et } E_K^N = E_K^{1,N} \cup E_K^{2,N},\$$

$$E_K^{i,int} = \{ E = \partial(K \cap \Omega_i) \text{ tel que } E \subset \Omega_i \} \text{ et } E_K^{int} = E_K^{1,int} \cup E_K^{2,int}.$$

L'ensemble E_K^{int} est l'ensemble des coté d'éléments contenues dans les deux domaines. De plus, nous avons besoin de définir des sous-domaines locaux, aussi appelé patchs. Si $K \in T_h$, on note par ω_K l'union de tous les éléments de T_h ayant une intersection non vide avec K ayant une intersection avec Ω_1 ou Ω_2 .

On peut ainsi définir une version discrète de (5.7). On introduite les opérateurs linéaires discrets :

$$P_{\tau}^{h}: \begin{array}{ccc} V_{1}^{h} \times V_{2}^{h} & \rightarrow & L^{2}(\Gamma_{1,C}) \\ & v & \mapsto & \llbracket v \cdot n \rrbracket - \tau \sigma_{n}(v) \\ \\ \overline{P}_{i,\tau}^{h}: & \begin{array}{c} V_{i}^{h} & \rightarrow & L^{2}(\Gamma_{i,D})^{d} \\ & v_{i} & \mapsto & v_{i} - \tau \sigma(v_{i})n_{i} \end{array} \end{array}$$

,

La forme discrète d'une méthode basée sur une méthode de Nitsche généralisée s'écrit :

(5.8)
$$\begin{cases} \text{trouver } u^h \in V^h \text{ tel que} \\ A_{\theta\gamma}(u^h, v^h) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P^h_{\gamma}(u^h) - g]_+ P^h_{\theta\gamma}(v^h) \, \mathrm{d}\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^h_{i,\gamma}(u^h_i) - u_{i,D}) \cdot \overline{P}^h_{i,\gamma\theta}(v^h_i) \, \mathrm{d}\Gamma = L(v^h) \quad \forall v^h \in V^h. \end{cases}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

5.4 Formulation de Nitsche discrète stabilisée

Afin d'obtenir un taux de convergence d'erreur *a priori* optimale, il est nécessaire de stabiliser les contraintes normales sur les bords de contact et de conditions de type Dirichlet (voir l'article [28]).

On définit un rayon $1 > \hat{\rho} > 0$ petit donné. On définit les opérateur stabilisés $R_{\hat{\rho}}$ (resp. $\overline{R}_{\hat{\rho}}$) des contraintes normales de déplacement $\sigma_n(u^h)$ (resp. $\sigma(u_i^h)$).

On utilise la méthode de stabilisation proposée proposé dans l'article [28]. Cette stabilisation consiste juste à poser une hypothèse sur le maillage. En quelques mots, on suppose pour toutes mailles qui intersectent le bord d'un des corps, que cette intersection est assez grande ou qu'il existe un élément voisin de celui-ci qui vérifie ceci. Cette méthode a deux avantages, elle ne nécessite pas l'utilisation d'un nouveau paramètre et est asymptotiquement vérifiée.

On peut sinon utilisé la stabilisation définie dans l'article [61].

On définit pour $K \in T_h$ telle que $K \cap \Gamma_{1,C}$, $S_K = \{K' \in T_h \mid K' \cap \Pi(K) \neq \emptyset\}$.

On note E_K , une extrapolation polynomiale d'un élément $v^h \in V^h$ définit de K dans Ω .

On distingue 3 cases afin de définir l'opérateur stabilisé $R_{\hat{\rho}}$, soit $K \in T_h$ et $K \cap \Gamma_{1,C} \neq \emptyset$ tels que :

- Si l'intersection de K et Ω_1 est suffisamment grande i.e. $\exists \hat{y}_K > 0$ tel que $B(\hat{y}_K, \hat{\rho}) \subset T_K^{-1}(K \cap \Omega_1)$ (voir Figure 3 a)), alors $R_{\hat{\rho}}(v^h)|_K = \sigma_n(v_1^h|_K)$,
- Sinon $\exists \widetilde{K} \in S_K$ qui intersecte Ω_2 telle que $\exists \ \hat{y}_{\widetilde{K}} > 0$ tel que $B(\hat{y}_{\widetilde{K}}, \hat{\rho}) \subset T_{\widetilde{K}}^{-1}(\widetilde{K} \cap \Omega_2)$ (voir Figure 3 b)), alors
 - $R_{\hat{\rho}}(v^h)|_K = \sigma_n(E_{\widetilde{K}}(v_2^h) \circ \Pi) |\det(\nabla \Pi)|,$
- Sinon on suppose l'existence d'un élément voisin K' de K tel que $\exists \hat{y}_{K'} > 0$ tel que $B(\hat{y}_{K'}, \hat{\rho}) \subset T_{K'}^{-1}(K' \cap \Omega_1)$ (see Figure 3 c)), alors $R_{\hat{\rho}}(v^h)|_K = \sigma_n(E_{K'}(v_1^h))$.

a) If $\Omega_1 \cap K$ is sufficiently large b) If $\exists K \in S_K$ such that $\Omega_2 \cap \tilde{K}$ is sufficiently large

FIGURE 5.2 – Les différents cas d'intersection de $K \in T_h$ avec Ω .

De même, on définit $\overline{R}_{\hat{\rho}}$ sur $\Gamma_{i,D}$ pour i = 1, 2:

$$\begin{array}{rcl} V_i^h & \to & L^2(\Gamma_{i,D})^d \\ \overline{R}_{\hat{\rho}}: & & \\ v_i & \mapsto & \overline{R}_{\hat{\rho}}(v_i^h) = \left\{ \begin{array}{cc} \sigma(v_i^h)n_i & \exists \; \hat{y}_K > 0 \; \text{tel que } B(\hat{y}_K, \hat{\rho}) \subset T_K^{-1}(K \cap \Omega_i) \\ \\ \sigma(E_{K'}(v_i^h))n_i & \quad \text{sinon }. \end{array} \right. \end{array}$$

On définit de même les opérateurs linéaires stabilisés discrets :

$$P_{\tau}^{h,\hat{\rho}}: \begin{array}{ccc} V_{1}^{h} \times V_{2}^{h} & \rightarrow & L^{2}(\Gamma_{1,C}) \\ & v & \mapsto & \llbracket v \cdot n \rrbracket - \tau R_{\hat{\rho}}(v), \end{array}$$
$$\overline{P}_{i,\tau}^{h,\hat{\rho}}: \begin{array}{ccc} V_{i}^{h} & \rightarrow & L^{2}(\Gamma_{i,D})^{d} \\ & v_{i} & \mapsto & v_{i} - \tau \overline{R}_{\hat{\rho}}(v_{i}). \end{array}$$

La version stabilisé de (5.8) s'écrit :

1

(5.9)
$$\begin{cases} \text{Trouver } u^h \in V^h \text{ tel que} \\ A^h_{\theta\gamma}(u^h, v^h) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P^{h,\hat{\rho}}_{\gamma}(u^h) - g]_+ P^{h,\hat{\rho}}_{\theta\gamma}(v^h) \, \mathrm{d}\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}^{h,\hat{\rho}}_{i,\gamma}(u^h_i) - u_{i,D}) \cdot \overline{P}^{h,\hat{\rho}}_{i,\gamma\theta}(v^h_i) \, \mathrm{d}\Gamma = L(v^h) \quad \forall v^h \in V^h. \end{cases}$$

Notons que ce problème stabilisé discret n'est pas strictement consistent. Cependant, nous avons le résultat suivant.

Theorem 5.4.1. On pose u la solution (5.1)-(5.3). On suppose u sufficient régulier (typiquement, $(u_1, u_2) \in H^{2+\nu}(\Omega_1)^d \times H^{2+\nu}(\Omega_2)^d$ pour $\nu > 0$), alors u est solution du problème suivant :

$$(5.10) \quad \begin{cases} a(u,v^{h}) - \int_{\Gamma_{1,C}} \theta \gamma \sigma_{n}(u) R_{\hat{\rho}}(v^{h}) \ d\Gamma - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \sigma(u_{i}) n_{i} \cdot \overline{R}_{\hat{\rho}}(v_{i}^{h}) \ d\Gamma \\ + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h}(u) - g]_{+} P_{\theta\gamma}^{h,\hat{\rho}}(v^{h}) \ d\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h}(u_{i}) - u_{i,D}) \cdot \overline{P}_{i,\gamma\theta}^{h,\hat{\rho}}(v_{i}^{h}) \ d\Gamma = L(v^{h}) \qquad \forall v^{h} \in V^{h}. \end{cases}$$

5.5 Analyse et erreur a priori

On a tout d'abord un théorème d'existence et d'unicité de notre problème discret.

Theorem 5.5.1. On pose $\gamma = \gamma_0 h_K$. Il existence une unique solution $v^h \in V^h$ de notre problème discret 5.9), pour tout $\gamma_0 > 0$ si $\theta = -1$ et pour $\gamma_0 > 0$ suffisamment petit si $\theta \neq -1$.

On a, de plus, les propriétés des opérateurs de stabilisé sur les maillages régulières et quasiuniforme suivantes :

Lemma 5.5.2. On pose $v^h \in V^h$, il existe une constante C > 0 indépendante de h telle que

(5.11)
$$\left\| R_{\hat{\rho}}(v^h) \right\|_{0,\Gamma_{1,C}}^2 \leqslant Ch^{-1} \left(\left\| v_1^h \right\|_{1,\Omega_1}^2 + \left\| v_2^h \right\|_{1,\Omega_2}^2 \right) \quad \forall v^h \in V^h.$$

134
Lemma 5.5.3. On pose $u^h \in V^h$ et $\Gamma_{i,D}$ lipschitzienne alors il existe une constante C > 0indépendante de h telle que

$$\left\|\overline{R}_{\hat{\rho}}(u_1^h)\right\|_{0,\Gamma_{1,D}}^2 \leqslant Ch^{-1} \left\|u_1^h\right\|_{1,\Omega_1}^2,$$

et

$$\left\|\overline{R}_{\hat{\rho}}(u_2^h)\right\|_{0,\Gamma_{2,D}}^2 \leqslant Ch^{-1} \left\|u_2^h\right\|_{1,\Omega_2}^2.$$

Lemma 5.5.4. Pour tout $v \in H^{k+1}(\Omega_1)^d \times H^{k+1}(\Omega_2)^d$

$$\left\| R_{\hat{\rho}}(\Pi^{h}(v)) - \sigma_{n}(v) \right\|_{0,\Gamma_{1,C}}^{2} \leqslant Ch^{2k-1} \sum_{i=1,2} \|v\|_{1,\Omega_{i}}^{2},$$

and

$$\sum_{i=1,2} \left\| \overline{R}_{\hat{\rho}}(\Pi_{i}^{h}(v_{i})) - \sigma(v_{i})n_{i} \right\|_{0,\Gamma_{i,D}}^{2} \leqslant Ch^{2k-1} \sum_{i=1,2} \|v\|_{k+1,\Omega_{i}}^{2}$$

On doit prouver ensuite une propriété de cœrcitivité :

Lemma 5.5.5. Pour M > 0 fixé. Alors il existe $\alpha > 0$ tel que pour tout γ avec $M \ge \gamma > 0$, il vient la propriété de cærcivité suivante :

(5.12)
$$a(v,v) + \frac{1}{2} \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma^{-1} v_i^2 \ d\Gamma \ge \alpha \sum_{i=1,2} \|v_i\|_{1,\Omega_i}^2 \qquad \forall v \in V.$$

On a donc notre erreur *a priori* optimale suivante :

Theorem 5.5.6. On pose u une solution du problème variationnel (5.4). On suppose u appartient à $(H^{\frac{3}{2}+\nu}(\Omega_1))^d \times (H^{\frac{3}{2}+\nu}(\Omega_2))^d$ avec $1/2 \ge \nu > 0$ si k = 1 et avec $1 > \nu > 0$ si k = 2. Alors, si de plus $\gamma_0 > 0$ est suffisamment petit lorsque $\theta \ne -1$, la solution u^h du problème stabilisé (5.8) satisfait l'estimateur d'erreur a priori suivant :

(5.13)
$$\sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2 + \left\| \gamma^{\frac{1}{2}} (\sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+) \right\|_{0,\Gamma_{1,C}}^2 \\ + \sum_{i=1,2} \left\| \gamma^{-\frac{1}{2}} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - \overline{P}_{i,\gamma}^h(u_i)) \right\|_{0,\Gamma_{i,D}}^2 \leqslant Ch^{1+2\nu} \sum_{i=1,2} \| u \|_{\frac{3}{2}+\nu,\Omega_i}^2$$

avec C > 0 une constante indépendante de h et u.

5.6 Estimateur d'erreur a posteriori

Le résidu de l'équation d'équilibre (5.1) est défini par

div
$$\sigma(u_i^h) + f_i$$
 sur K.

Remarque 5.6.1. Pour le cas d'éléments finis linéaire (k = 1), le terme div $\sigma(u_i^h)$ s'annule.

Habituellement, cette quantité est remplacée par une approximation polynomiale (voir [13])

div
$$\sigma(u_i^h) + f_{i,K}, \quad f_{i,K} \in (P_k(K))^d.$$

Un choix classique est de prendre $f_{i,K} = \int_K f_i(x) / |K| \, dx$ puisque pour $f_i \in (H^1(\Omega_i))^d$, on a $\|f_i - f_{i,K}\|_{0,K} \lesssim h_K \|f_i\|_{1,K}$ qui est négligeable devant l'estimateur η que l'on va définir. De même, ℓ_i est approchée par la quantité notée $\ell_{i,E}$ pour tout $E \in E_K^{i,N}$.

Définition 5.6.2. On introduit l'estimateur d'erreur local η_K et global η qui sont définis par

$$\begin{split} \eta_{K} &= \left(\sum_{i=1}^{4} \eta_{iK}^{2}\right)^{1/2}, \\ \eta_{1K} &= h_{K} \| \operatorname{div} \sigma(u_{i}^{h}) + f_{i,K} \|_{0,K}, \\ \eta_{2K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{int} \cup E_{K}^{N}} \| J_{E,n}(\mathbf{u}^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{3K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \sigma_{t}(u^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{4K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + \sigma_{n}(u^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{5K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_{i}^{h}) - u_{i,D} + \sigma(u_{i}^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta &= \left(\sum_{K \in T_{h}} \eta_{K}^{2}\right)^{1/2}, \end{split}$$

où $J_{E,n}(\mathbf{u}^h)$ est le saut de contraintes de u^h dans la direction normale, c'est-à-dire

(5.15)
$$J_{E,n}(\mathbf{u}^h) = \begin{cases} \llbracket \sigma(u^h)\nu_E \rrbracket, \quad \forall E \in E_h^{int}, \\ \sigma(u_i^h)\nu_E - \ell_{i,E}, \quad \forall E \in E_h^N. \end{cases}$$

Les termes d'approximation locaux et globaux sont donnés par

$$\zeta_{K} = \left(h_{K}^{2} \sum_{K' \subset \omega_{K}} \|f_{i} - f_{i,K'}\|_{0,K'}^{2} + h_{E} \sum_{E \in E_{K}^{N}} \|\ell_{i} - \ell_{i,E}\|_{0,E}^{2}\right)^{1/2},$$
$$\zeta = \left(\sum_{K \in T_{h}} \zeta_{K}^{2}\right)^{1/2}.$$

Nous devons, tout d'abord, considérer une hypothèse de "saturation" afin de prouver l'estimation (5.20) (voir [104] dans le cas d'une méthode de Nitsche pour une méthode de décomposition de domaines et [105] pour des méthodes de mortar) :

Hypothèse 5.6.3. La solution u du problème variationnel (5.4) et la solution u^h du problème discret (5.8) sont supposées vérifier :

(5.16)
$$\left\| \sigma_n(u-u^h) \right\|_{0,\Gamma_{1,C}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2 \\ \left\| \sigma_n(u) - R_{\hat{\rho}}(u^h) \right\|_{0,\Gamma_{1,C}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2,$$

(5.17)
$$\sum_{i=1,2} \left\| \sigma(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2 \\ \sum_{i=1,2} \left\| \sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2,$$

(5.18)
$$\sum_{i=1,2} \left\| \sigma(u_i) n_i - \sigma(u_i^h) n_i \right\|_{0,\Gamma_{i,N}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2,$$

(5.19)
$$\sum_{i=1,2} \left\| \sigma(u_i) - \sigma(u_i^h) \right\|_{0,\Omega_i}^2 \lesssim h^{-2} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2.$$

Remarque 5.6.4. Dans les articles [115, 116], ces hypothèses sont levées pour certaines classes d'approximations en éléments finis non conformes mixtes.

Définition 5.6.5. On définit les normes suivantes pour tout $v \in L^2(\Gamma_{1,C})$

$$\|v\|_{-1/2,h,\Gamma_{1,C}} := \left\|h^{\frac{1}{2}} v\right\|_{0,\Gamma_{1,C}},$$

 $et \; \forall v \in L^2(\Gamma_{1,D}) \times L^2(\Gamma_{2,D})$

$$\sum_{i=1,2} \|v_i\|_{-1/2,h,\Gamma_{i,D}} := \sum_{i=1,2} \left\| h^{\frac{1}{2}} v_i \right\|_{0,\Gamma_{i,D}}.$$

Le théorème suivant garantie la fiabilité de l'estimateur d'erreur a posteriori donné dans la définition 5.6.2.

Theorem 5.6.6. Borne supérieure : On pose u la solution du problème variationnel (5.4) avec $u \in (H^{\frac{3}{2}+\nu}(\Omega_1))^d \times (H^{\frac{3}{2}+\nu}(\Omega_2))^d$ ($\nu > 0$ et d = 2,3) et u^h la solution du problème discret (5.8). On suppose que $\gamma_0 > 0$ est suffisamment petit. On suppose que les hypothèses de saturation (5.16)-(5.19) sont vérifiées. Alors on obtient

$$\sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i} + \left\| \sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ \right\|_{-1/2,h,\Gamma_{1,C}}$$

$$(5.20) \quad + \|\sigma_n(u) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} + \sum_{i=1,2} \left\| \sigma(u_i) + \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} \right\|_{-1/2,h,\Gamma_{i,D}}$$

$$+ \sum_{i=1,2} \|\sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h)\|_{-1/2,h,\Gamma_{i,D}} \lesssim (1+\gamma_0)\eta + \zeta.$$

Preuve : Soit $v^h \in V^h$. On note $e_i := u_i - u_i^h$. En Utilisant le lemme 5.5.5, l'équation (5.10), la formule de Green et l'équation (5.8), il vient :

$$\begin{split} \alpha \sum_{i=1,2} \|e_i\|_{1,\Omega_i}^2 &\leqslant a(u-u^h, u-u^h) + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &= a(u, u-u^h) - a(u^h, u-v^h) - a(u^h, v^h - u^h) + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &= L(u-u^h) + \int_{\Gamma_{1,C}} \sigma_n(u)(u_n - u_n^h) d\Gamma + \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) \cdot (u_i - u_i^h) d\Gamma \\ &\quad -a(u^h, u-v^h) - L(v^h - u^h) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ P_{\theta\gamma}^{h,\hat{\rho}}(v^h - u^h) d\Gamma \\ &\quad -\theta \int_{\Gamma_{1,C}} \gamma R_{\hat{\rho}}(u^h) R_{\hat{\rho}}(v^h - u^h) d\Gamma \\ &\quad + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^h) - u_{i,D}) \cdot \overline{P}_{i,\theta\gamma}^{h,\hat{\rho}}(v^h - u^h) d\Gamma \\ &\quad -\theta \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma \overline{R}_{\hat{\rho}}(u_i^h) \overline{R}_{\hat{\rho}}(v_i^h - u_i^h) d\Gamma + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &= \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 \end{split}$$

avec

$$\begin{aligned} \mathcal{T}_{1} &:= L(u - v^{h}) - a(u^{h}, u - v^{h}) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}(v_{n}^{h} - u_{n}) \, \mathrm{d}\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_{i}^{h}) - u_{i,D}) \cdot (v^{h} - u) \, \mathrm{d}\Gamma \\ \mathcal{T}_{2} &:= \int_{\Gamma_{1,C}} \sigma_{n}(u)(u_{n} - u_{n}^{h}) \, \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}(P_{\theta\gamma}^{h}(u) - P_{\theta\gamma}^{h,\hat{\rho}}(u^{h})) \, \, \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \gamma (R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)) \, \, \mathrm{d}\Gamma - \theta \int_{\Gamma_{1,C}} \gamma \, R_{\hat{\rho}}(u^{h}) R_{\hat{\rho}}(v^{h} - u^{h}) \, \, \mathrm{d}\Gamma \end{aligned}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

$$\begin{aligned} \mathcal{T}_{3} &:= \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u) \cdot (u - u^{h}) \ \mathrm{d}\Gamma + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^{h}) - u_{i,D}) \cdot (\overline{P}_{i,\theta\gamma}^{h}(u) - \overline{P}_{i,\theta\gamma}^{h,\hat{\rho}}(u^{h})) \ \mathrm{d}\Gamma \\ &- \theta \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^{h}) - u_{i,D}) \cdot \gamma (\overline{R}_{\hat{\rho}}(v^{h}) - \sigma(u)) \ \mathrm{d}\Gamma \\ &- \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma \, \overline{R}_{\hat{\rho}}(u^{h}) \cdot \overline{R}_{\hat{\rho}}(v^{h} - u^{h}) \ \mathrm{d}\Gamma + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2} \end{aligned}$$

La quantité \mathcal{T}_1 est traitée de la même manière que précédemment. On intègre par partie sur chaque triangle K, on utilise la définition des ensembles préalablement définie et de $J_{E,n}(\mathbf{u}^h)$ dans (5.15) et on sépare l'intégrale du bord de contact en partie normale et tangentielle, on obtient

$$\begin{aligned} \mathcal{T}_{1} &= \sum_{K \in T_{h} \cap (\Omega_{1} \cup \Omega_{2})} \int_{K} (\operatorname{div} \sigma(u_{i}^{h}) + f_{i}) \cdot (u_{i} - v_{i}^{h}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{D}} \int_{E} \left(\frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_{i}^{h}) - u_{i,D} + \sigma(u_{i}^{h}) \right) \cdot (v_{i}^{h} - u_{i}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{C}} \int_{E} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + \sigma_{n}(u^{h}) \right) (v_{n}^{h} - u_{n}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{C}} \int_{E} \sigma_{t}(u^{h}) \cdot (v_{t}^{h} - u_{t}) \, \mathrm{d}\Gamma - \sum_{E \in E_{K}^{int} \cup E_{K}^{N}} \int_{E} J_{E,n}(u^{h}) \cdot (u - v^{h}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{N}} \int_{E} (\ell - \ell_{E}) \cdot (u - v^{h}) \, \mathrm{d}\Gamma \end{aligned}$$

On peut maintenant estimer terme à terme. On prend

(5.21)
$$v^h = u^h + \Pi^h (u - u^h),$$

où Π^h est l'opérateur de quasi interpolation défini dans [114, formula (4.11)] On commence par le premier terme définit sur les éléments K. L'inégalité de Cauchy-Schwarz donne

$$\left|\sum_{K\in T_h\cap(\Omega_1\cup\Omega_2)}\int_K (\operatorname{div}\sigma(u_i^h) + f_i)\cdot(u_i - v_i^h) \, \mathrm{d}\Gamma\right| \leq \sum_{K\in T_h\cap(\Omega_1\cup\Omega_2)} \left\|\operatorname{div}\sigma(u_i^h) + f_i\right\|_{0,K} \left\|u_i - v_i^h\right\|_{0,K}$$

or en utilisant la définition 5.21 de v^h

$$||u_i - v_i^h||_{0,K} = ||e_i - \Pi^h e_i||_{0,K} \lesssim h_K ||e||_{1,\omega_K}.$$

Par conséquence, en utilisant l'hypothèse de saturation (5.19), on obtient

$$\left| \int_{\Omega_1 \cup \Omega_2} (\operatorname{div} \sigma(u_i^h) + f_i) \cdot (u_i - v_i^h) \mathrm{d}\Omega \right| \lesssim (\eta + \zeta) \sum_{i=1,2} \|e_i\|_{1,\Omega_i}$$

On considère le frontière de bords intérieur et Neumann dans (5.21). De même que précédemment , l'inégalité de Cauchy-Schwarz mène à

$$\sum_{E \in E_K^{int} \cup E_K^N} \int_E J_{E,n}(\mathbf{u}^h) \cdot (u - v^h) \, \mathrm{d}\Gamma \bigg| \leq \sum_{E \in E_K^{int} \cup E_K^N} \|J_{E,n}(\mathbf{u}^h)\|_{0,E} \|u - v^h\|_{0,E}.$$

En utilisant l'expression (5.21), il vient

$$||u - v^h||_{0,E} = ||e - \Pi^h e||_{0,E} \lesssim h_E^{1/2} \sum_{i=1,2} ||e_i||_{1,\omega_E}.$$

En insérant cette estimation dans celle précédente et en utilisant l'hypothèse de saturations (5.18), on en déduit

$$\left| \sum_{E \in E_K^{int} \cup E_K^N} \int_E J_{E,n}(\mathbf{u}^h) \cdot (u - v^h) \, \mathrm{d}\Gamma \right| \lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}.$$

De plus,

 et

ī

$$\left|\sum_{E \in E_K^N} \int_E (\ell - \ell_E) \cdot (u - v^h) \, \mathrm{d}\Gamma\right| \lesssim \zeta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}.$$

De même que précédemment et les hypothèses de saturations (5.16)-(5.17), on obtient facilement

.

$$\begin{split} \left| \sum_{E \in E_K^C} \int_E \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ + \sigma_n(u^h) \right) (v_n^h - u_n) \, \mathrm{d}\Gamma \right| &\lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}, \\ \left| \sum_{E \in E_K^D} \int_E \left(\frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} + \sigma(u_i^h) \right) \cdot (v_i^h - u_i) \, \mathrm{d}\Gamma \right| &\lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}, \\ \left| \sum_{E \in E_K^C} \int_E \sigma_t(u^h) \cdot (v_t^h - u_t) \, \mathrm{d}\Gamma \right| &\lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}. \end{split}$$

En utilisant les résultats précédents, on obtient

(5.22)
$$\mathcal{T}_1 \lesssim (\eta + \zeta) \sum_{i=1,2} \|e_i\|_{1,\Omega_i}.$$

En utilisant les définitions de $P^h_{\gamma}(\cdot)$, $P^h_{\theta\gamma}(\cdot)$, $P^{h,\hat{\rho}}_{\gamma}(\cdot)$, $P^{h,\hat{\rho}}_{\theta\gamma}(\cdot)$, le terme \mathcal{T}_2 s'écrit :

$$\mathcal{T}_{2} = \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h}(u) - g]_{+} \right) \left(P_{\gamma}^{h}(u) - P_{\gamma}^{h,\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma \\ - \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma \\ - \theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) \gamma R_{\hat{\rho}}(v^{h} - u^{h}) \, \mathrm{d}\Gamma.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

On peut le réécrire de la façon suivante :

$$\begin{split} \mathcal{T}_{2} &= \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h}(u) - g]_{+} \right) \left(P_{\gamma}^{h}(u) - P_{\gamma}^{h,\hat{\rho}}(u^{h}) \right) \ \mathrm{d}\Gamma \\ &+ (\theta - 1) \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \ \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) \gamma \left(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u) \right) \ \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \ \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \ \mathrm{d}\Gamma. \end{split}$$

On remarque que les deux derniers termes peuvent être regroupés, en utilisant $([a]_+ - [b]_+)(b - a) \leq -([a]_+ - [b]_+)^2$ puis la condition de contact ainsi que l'inégalité de Cauchy-Schwarz :

$$\begin{split} \mathcal{T}_{2} &\leqslant - \|\gamma^{\frac{1}{2}}(\sigma_{n}(u) + \frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+})\|_{0,\Gamma_{1,C}}^{2} \\ &+ (\theta - 1)\int_{\Gamma_{1,C}} \frac{1}{\gamma}\left([P_{\gamma}^{h,\hat{\rho}}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}\right)\gamma\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right) d\Gamma \\ &- \theta\int_{\Gamma_{1,C}} \left(\frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h})\right)\gamma\left(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)\right) d\Gamma \\ &+ \theta\|\gamma^{1/2}\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &\leqslant - \|\gamma^{\frac{1}{2}}(\sigma_{n}(u) + \frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+})\|_{0,\Gamma_{1,C}}^{2} \\ &+ |\theta - 1|\|\gamma^{\frac{1}{2}}(\sigma_{n}(u) + \frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+})\|_{0,\Gamma_{1,C}}\|\gamma^{1/2}\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &- \theta\int_{\Gamma_{1,C}} \left(\frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h})\right)\gamma\left(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)\right) d\Gamma \\ &+ \theta\|\gamma^{1/2}\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2}. \end{split}$$

En utilisant l'expression $ab \leq a^2 + b^2/4$ et l'inégalité de Young pour $\beta > 0$:

$$\begin{split} \mathcal{T}_{2} &\leq \frac{|\theta-1|^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} \\ &\quad -\theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h})-g]_{+} + R_{\hat{\rho}}(u^{h})\right) \gamma(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)) \ \mathrm{d}\Gamma \\ &\quad +\theta \|\gamma^{1/2} \left(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &= \frac{(\theta+1)^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} \\ &\quad -\theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h})-g]_{+} + R_{\hat{\rho}}(u^{h})\right) \gamma(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)) \ \mathrm{d}\Gamma \\ &\leq \frac{(\theta+1)^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} \\ &\quad + \|\theta\|\|\gamma^{1/2}\sigma_{n}(v^{h}-u)\|_{0,\Gamma_{1,C}} \left(\gamma_{0}^{1/2}\eta + \left\|\gamma^{1/2}(\sigma_{n}(u^{h})-R_{\hat{\rho}}(u^{h}))\right\|_{0,\Gamma_{1,C}}\right) \\ &\leqslant \frac{(\theta+1)^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} + \beta\gamma_{0}\eta^{2}|\theta|^{2} + \beta |\theta|^{2} \left\|\gamma^{1/2}(\sigma_{n}(u^{h})-R_{\hat{\rho}}(u^{h}))\right\|_{0,\Gamma_{1,C}}^{2} \\ &\quad + \frac{1}{2\beta} \|\gamma^{1/2}R_{\hat{\rho}}(v^{h}-u^{h})\|_{0,\Gamma_{1,C}}^{2} + \frac{1}{2\beta} \|\gamma^{1/2} \left(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &= \left(\frac{1}{2\beta} + \frac{(\theta+1)^{2}}{4}\right) \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} + \beta\gamma_{0}\eta^{2}|\theta|^{2} + \beta |\theta|^{2} \left\|\sigma_{n}(u^{h})-R_{\hat{\rho}}(u^{h})\right\|_{0,\Gamma_{1,C}}^{2} \\ &\quad + \beta |\theta|^{2}\gamma_{0} \left\|\sigma_{n}(u^{h})-R_{\hat{\rho}}(u^{h})\right\|_{-1/2,h,\Gamma_{1,C}}^{2} + \frac{\gamma_{0}}{2\beta} \left\|R_{\hat{\rho}}(v^{h}-u^{h})\right\|_{-1/2,h,\Gamma_{1,C}}^{2}. \end{split}$$

En utilisant la H^1 -stabilité de Π^h , l'hypothèse de saturation (5.16), on a :

$$\|R_{\hat{\rho}}(v^h - u^h)\|_{-1/2, h, \Gamma_{1, C}} \le \sum_{i=1, 2} C \|v_i^h - u_i^h\|_{1, \Omega_i} = C \sum_{i=1, 2} \|\Pi^h (u_i - u_i^h)\|_{1, \Omega_i} \le C \sum_{i=1, 2} \|u_i - u_i^h\|_{1, \Omega_i}$$

$$\begin{aligned} \|\sigma_n(u^h) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} &\leq \|\sigma_n(u^h) - \sigma_n(u)\|_{-1/2,h,\Gamma_{1,C}} + \|\sigma_n(u) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} \\ &\leq C \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i} \end{aligned}$$

On obtient donc

(5.23)
$$\mathcal{T}_2 \le C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta} + \beta |\theta|^2 \right) \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2 + \beta \gamma_0 |\theta|^2 \eta^2.$$

Pour le terme, en \mathcal{T}_3 , on utilise

$$\sum_{i=1,2} \left\| \gamma^{-1/2} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \leqslant C \gamma_0 \sum_{i=1,2} \left\| u_i - u_i^h \right\|_{1,\Omega_i}^2.$$

De même que précédemment, il vient pour $\beta_1>0$

(5.24)
$$\mathcal{T}_{3} \leq C\gamma_{0} \left(\frac{(\theta+1)^{2}}{4} + \frac{1}{\beta_{1}} + \beta_{1} |\theta|^{2} + 1 \right) \|u - u^{h}\|_{1,\Omega}^{2} + \beta\gamma_{0} |\theta|^{2} \eta^{2}.$$

Maintenant, en combinant (5.21), (5.22), (5.23) et (5.24):

$$\alpha \sum_{i=1,2} \|e_i\|_{1,\Omega_i}^2 \leqslant C(\eta+\zeta) \sum_{i=1,2} \|e_i\|_{1,\Omega_i} + C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta} + \beta |\theta|^2\right) \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2 + \beta \gamma_0 |\theta|^2 \eta^2 + C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}_1 + \beta_1 |\theta|^2 + 1\right) \|u - u^h\|_{1,\Omega}^2 + \beta \gamma_0 |\theta|^2 \eta^2.$$

En utilisant l'inégalité de Young pour α sur le premier terme, il vient

$$\left(\frac{\alpha}{2} - C\gamma_0 \left(\frac{(\theta+1)^2}{2} + \frac{1}{\beta} + \beta |\theta|^2 + \frac{1}{\beta_1} + \beta_1 |\theta|^2 + 1\right)\right) \sum_{i=1,2} \|e_i\|_{1,\Omega_i}^2 \leqslant \frac{C}{\alpha} (\eta^2 + \zeta^2) + \beta \gamma_0 |\theta|^2 \eta^2.$$

En prenant, γ_0 suffisamment petit, il vient la borne supérieure :

$$\sum_{i=1,2} \|e_i\|_{1,\Omega_i} \lesssim (1+\gamma_0)\eta^2 + \zeta^2.$$

L'hypothèse de saturation fournit directement une borne de l'erreur de la contrainte sur le bord de contact et le bord de condition de Dirichlet :

$$\|\sigma_n(u) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} \lesssim \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i},$$
$$\sum_{i=1,2} \|\sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h)\|_{-1/2,h,\Gamma_{i,D}} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}.$$

Pour l'erreur de contact et celle du bord de condition de Dirichlet, on utilise l'inégalité triangulaire, on obtient :

$$\left\| \sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ \right\|_{-1/2,h,\Gamma_{1,C}} \leq \|\sigma_n(u - u^h)\|_{-1/2,h,\Gamma_{1,C}} + \left\| \sigma_n(u^h) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ \right\|_{-1/2,h,\Gamma_{1,C}} \leq \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i} + \eta.$$

$$\begin{split} \sum_{i=1,2} \left\| \sigma(u_i) + \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} \right\|_{-1/2,h,\Gamma_{i,D}} &\leq \sum_{i=1,2} \| \sigma(u-u^h) \|_{-1/2,h,\Gamma_{i,D}} \\ &+ \sum_{i=1,2} \left\| \sigma(u_i^h) + \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} \right\|_{-1/2,h,\Gamma_{i,D}} \\ &\lesssim \sum_{i=1,2} \| u_i - u_i^h \|_{1,\Omega_i} + \eta. \end{split}$$

En assemblant les cinq dernières, on obtient l'inégalité (5.20)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Theorem 5.6.7. Borne inférieure : Pour tous éléments $K \in T_h$, les erreurs locales suivantes sont bornées inférieurement :

(5.25)
$$\eta_{1K} \lesssim \|u_i - u_i^h\|_{1,K} + \zeta_K,$$

(5.26)
$$\eta_{2K} \lesssim \|u_i - u_i^n\|_{1,\omega_K} + \zeta_K$$

Pour tous éléments K tels que $K \cap E_K^C \neq \emptyset$, les erreurs locales suivantes sont bornées inférieurement :

(5.27)
$$\eta_{3K} \lesssim \|u_i - u_i^h\|_{1,K} + \zeta_K,$$

(5.28)
$$\eta_{4K} \lesssim \sum_{E \in E_K^C} h_K^{1/2} \left(\left\| \sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^h(u^h) - g]_+ \right\|_{0,E} + \left\| \sigma_n(u - u^h) \right\|_{0,E} \right)$$

Pour tous éléments K tels que $K \cap E_K^D \neq \emptyset$, les erreurs locales suivantes sont bornées inférieurement :

(5.29)
$$\eta_{5K} \lesssim \sum_{E \in E_K^D} h_K^{1/2} \left(\left\| \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} + \sigma(u_i) \right\|_{0,E} + \left\| \sigma(u_i - u_i^h) \right\|_{0,E} \right)$$

Preuve : Les estimations de η_{1K} , η_{2K} dans (5.25), (5.26) sont standards (voir [16]). L'estimations η_{3K} dans (5.27) est similaire à [19]. Les estimations de η_{3K} , η_{4K} dans (5.28), (5.29) grâce à une inégalité triangulaire.

5.7 Nouvelle stabilisation

Contrairement à l'estimateur prouvé dans le cas sans domaine fictif dans le chapitre précédent, on est obligé de rajouter des hypothèses de saturations sur la contrainte normale et la contrainte normale stabilisée. De plus les estimateurs d'erreur η_{4K} et η_{5K} font intervenir les contraintes non stabilisées sur le bord de contact et celui de Dirichlet. Ce qui ne semble pas cohérent. Elles interviennent lorsqu'on utilise la formule de Green. De plus, on n'obtient pas un estimateur indépendant de γ_0 lorsque $\theta = -1$, pour la même raison. Une idée est donc de modifier l'équation (5.9) On définit l'opérateur de stabilité R par

$$\begin{array}{rcl} V^h & \to & L^2(\Omega_i) \\ R: & & \\ & v^h & \mapsto & R(v^h_i) = \left\{ \begin{array}{l} \sigma(v^h_i), & \exists \; \hat{y}_K > 0 \; \text{tel que } B(\hat{y}_K, \hat{\rho}) \subset T_K^{-1}(K \cap \Omega_i) \\ & \sigma(E_{K'}(v^h_i)), \text{sinon.} \end{array} \right. \end{array}$$

Remarques 5.7.1. Tout d'abord, pour tous éléments du maillages strictement inclus dans l'un des deux corps, la stabilisation n'est pas nécessaire.

De plus, on remarque que pour tous éléments du maillage qui intersectent le bord de contact, nos stabilisations coïncides, c'est-à-dire pour tout K tel que $K \cap \Gamma_{1,C} \neq \emptyset$, on a $R(v_i^h) \cdot n = R_{\hat{\rho}}(v^h)$. De même, pour $K \cap \Gamma_{i,D} \neq \emptyset$, on a $R(v_i^h) \cdot n = \overline{R}_{\hat{\rho}}(v_i^h)$.

Enfin, on peut décomposer R sur le bord de contact en partie normal est tangentielle :

$$R(\cdot) = R_n(\cdot) + R_t(\cdot) \text{ avec } R_n(\cdot) = (R \cdot n(\cdot))n = R_{\hat{\rho}}(\cdot)n \text{ et } R_t(\cdot) = R(\cdot) - R_n(\cdot) \cdot n = R(\cdot) - R_{\hat{\rho}}(\cdot).$$

On peut ainsi définir notre nouvelle version stabilisée :

$$(5.30) \begin{cases} \text{Trouver } u^h \in V^h \text{ tel que} \\ \sum_{i=1,2} \int_{\Omega_i} R(u^h_i) : \varepsilon(v^h_i) \, \mathrm{d}\Omega - \int_{\Gamma_{1,C}} \theta \gamma R_{\hat{\rho}}(u^h) R_{\hat{\rho}}(v^h) \, \mathrm{d}\Gamma \\ - \sum_{i=1,2} \int_{\Gamma_{i,D}} \theta \gamma \overline{R}_{\hat{\rho}}(u^h_i) \cdot \overline{R}_{\hat{\rho}}(v^h_i) \, \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_{+} P_{\theta\gamma}^{h,\hat{\rho}}(v^h) \, \mathrm{d}\Gamma \\ + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^h_i) - u_{i,D}) \cdot \overline{P}_{i,\gamma\theta}^{h,\hat{\rho}}(v^h_i) \, \mathrm{d}\Gamma = L(v^h) \quad \forall v^h \in V^h. \end{cases}$$

On définit l'opérateur stabilisé $a_R(\cdot, \cdot)$ par

$$a_R(u, v) = \sum_{i=1,2} \int_{\Omega_i} R(u_i) : \varepsilon(v_i) \, \mathrm{d}\Omega.$$

5.8 Estimateur d'erreur a posteriori pour la nouvelle stabilisation

Définition 5.8.1. L'estimateur d'erreur local η_K et global η est défini par

$$\begin{split} \eta_{K} &= \left(\sum_{i=1}^{4} \eta_{iK}^{2}\right)^{1/2}, \\ \eta_{1K} &= h_{K} \| div \, R(u_{i}^{h}) + f_{i,K} \|_{0,K}, \\ \eta_{2K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{int} \cup E_{K}^{N}} \| J_{E,n}(\mathbf{u}^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{3K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| R_{t}(u^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{4K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta_{5K} &= h_{K}^{1/2} \left(\sum_{E \in E_{K}^{C}} \| \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^{h}_{i}) - u_{i,D} + \overline{R}_{\hat{\rho}}(u^{h}_{i}) \|_{0,E}^{2}\right)^{1/2}, \\ \eta &= \left(\sum_{K \in T_{h}} \eta_{K}^{2}\right)^{1/2}. \end{split}$$

où $J_{E,n}(\mathbf{u}^h)$ est le saut de contraintes de u^h dans la direction normale, c'est-à-dire

(5.32)
$$J_{E,n}(\mathbf{u}^h) = \begin{cases} [[R(u^h)\nu_E]], \quad \forall E \in E_h^{int}, \\ R(u_i^h)\nu_E - \ell_{i,E}, \quad \forall E \in E_h^N. \end{cases}$$

Les termes d'approximation local et global sont donnés par

$$\zeta_{K} = \left(h_{K}^{2} \sum_{K' \subset \omega_{K}} \|f_{i} - f_{i,K'}\|_{0,K'}^{2} + h_{E} \sum_{E \in E_{K}^{N}} \|\ell_{i} - \ell_{i,E}\|_{0,E}^{2}\right)^{1/2},$$
$$\zeta = \left(\sum_{K \in T_{h}} \zeta_{K}^{2}\right)^{1/2}.$$

Nous devons, tout d'abord, établir une hypothèse de "saturation" afin de prouver l'estimation (voir [104] dans le cas d'une méthode de Nitsche pour une méthode de décomposition de domaines et [105] pour des méthodes de mortar) :

Hypothèse 5.8.2. La solution u du problème variationnel (5.4) et la solution u^h du problème discret (5.30) sont telles que :

(5.33)
$$\left\| \sigma_n(u) - R_{\hat{\rho}}(u^h) \right\|_{0,\Gamma_{1,C}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2$$

(5.34)
$$\sum_{i=1,2} \left\| \sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2,$$

(5.35)
$$\sum_{i=1,2} \left\| \sigma(u_i) n_i - R(u_i^h) n_i \right\|_{0,\Gamma_{i,N}}^2 \lesssim h^{-1} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2,$$

(5.36)
$$\sum_{i=1,2} \left\| \sigma(u_i) - R(u_i^h) \right\|_{0,\Omega_i}^2 \lesssim h^{-2} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2.$$

Le théorème suivant garantie la fiabilité de l'estimateur d'erreur a posteriori donné dans la définition 5.8.1.

Theorem 5.8.3. Borne supérieure : On pose u la solution du problème variationnel (5.4) avec $u \in (H^{\frac{3}{2}+\nu}(\Omega_1))^d \times (H^{\frac{3}{2}+\nu}(\Omega_2))^d$ ($\nu > 0$ et d = 2,3) et u^h la solution du problème discret (5.30). On suppose que si $\theta \neq -1$ alors $\gamma_0 > 0$ est suffisamment petit sinon $\gamma_0 > 0$ pour $\theta = -1$. On suppose que les hypothèses de saturation (5.33)-(5.34) sont vérifiées. Alors on obtient

$$\sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i} + \left\| \sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ \right\|_{-1/2,h,\Gamma_{1,C}}$$

$$(5.37) \quad + \|\sigma_n(u) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} + \sum_{i=1,2} \left\| \sigma(u_i) + \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} \right\|_{-1/2,h,\Gamma_{i,D}}$$

$$+ \sum_{i=1,2} \|\sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h)\|_{-1/2,h,\Gamma_{i,D}} \lesssim (1+\gamma_0)\eta + \zeta.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Preuve : Soit $v^h \in V^h$. Afin de faciliter les notations, on note $e_i := u_i - u_i^h$. En Utilisant le lemme 5.5.5, l'équation (5.10), la formule de Green et l'équation (5.30), il vient :

$$\begin{split} \alpha \sum_{i=1,2} \|e_i\|_{1,\Omega_i}^2 &\leqslant a(u-u^h, u-u^h) + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &= a(u, u-u^h) - a(u^h, u-v^h) - a(u^h, v^h - u^h) + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &= L(u-u^h) + \int_{\Gamma_{1,C}} \sigma_n(u)(u_n - u_n^h) d\Gamma + \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u_i) \cdot (u_i - u_i^h) d\Gamma \\ &- a(u^h, u-v^h) - L(v^h - u^h) + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ P_{\theta\gamma}^{h,\hat{\rho}}(v^h - u^h) d\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \gamma R_{\hat{\rho}}(u^h) R_{\hat{\rho}}(v^h - u^h) d\Gamma \\ &+ \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^h) - u_{i,D}) \cdot \overline{P}_{i,\theta\gamma}^{h,\hat{\rho}}(v^h - u^h) d\Gamma \\ &- \theta \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma \overline{R}_{\hat{\rho}}(u_i^h) \overline{R}_{\hat{\rho}}(v_i^h - u_i^h) d\Gamma + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2}(u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 \\ &= \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 \end{split}$$

avec

$$\begin{split} \mathcal{T}_{1} &:= L(u - v^{h}) - a_{R}(u^{h}, u - v^{h}) + a_{R}(u^{h}, u - v^{h}) - a(u^{h}, u - v^{h}) \\ &+ \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}(v_{n}^{h} - u_{n}) \ \mathrm{d}\Gamma + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_{i}^{h}) - u_{i,D}) \cdot (v^{h} - u) \ \mathrm{d}\Gamma \\ \mathcal{T}_{2} &:= \int_{\Gamma_{1,C}} \sigma_{n}(u)(u_{n} - u_{n}^{h}) \ \mathrm{d}\Gamma + \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} (P_{\theta\gamma}^{h}(u) - P_{\theta\gamma}^{h,\hat{\rho}}(u^{h})) \ \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \gamma (R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)) \ \mathrm{d}\Gamma - \theta \int_{\Gamma_{1,C}} \gamma R_{\hat{\rho}}(u^{h}) R_{\hat{\rho}}(v^{h} - u^{h}) \ \mathrm{d}\Gamma \end{split}$$

$$\begin{aligned} \mathcal{T}_{3} &:= \sum_{i=1,2} \int_{\Gamma_{i,D}} \sigma(u) \cdot (u - u^{h}) \ \mathrm{d}\Gamma + \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^{h}) - u_{i,D}) \cdot (\overline{P}_{i,\theta\gamma}^{h}(u) - \overline{P}_{i,\theta\gamma}^{h,\hat{\rho}}(u^{h})) \ \mathrm{d}\Gamma \\ &- \theta \sum_{i=1,2} \int_{\Gamma_{i,D}} \frac{1}{\gamma} (\overline{P}_{i,\gamma}^{h,\hat{\rho}}(u^{h}) - u_{i,D}) \cdot \gamma (\overline{R}_{\hat{\rho}}(v^{h}) - \sigma(u)) \ \mathrm{d}\Gamma \\ &- \sum_{i=1,2} \int_{\Gamma_{i,D}} \gamma \, \overline{R}_{\hat{\rho}}(u^{h}) \cdot \overline{R}_{\hat{\rho}}(v^{h} - u^{h}) \ \mathrm{d}\Gamma + \frac{1}{2} \sum_{i=1,2} \left\| \gamma^{-1/2} (u_{i} - u_{i}^{h}) \right\|_{0,\Gamma_{i,D}}^{2} \end{aligned}$$

La quantité \mathcal{T}_1 est traitée de la même manière que précédemment. On intègre par partie sur chaque triangle K, on utilise la définition des ensembles préalablement définie et de $J_{E,n}(\mathbf{u}^h)$ dans (5.32) et on sépare l'intégrale du bord de contact en partie normale et tangentielle, on obtient

i.

$$\begin{split} \mathcal{T}_{1} &= \sum_{K \in T_{h} \cap (\Omega_{1} \cup \Omega_{2})} \int_{K} (\operatorname{div} R(u_{i}^{h}) + f_{i}) \cdot (u_{i} - v_{i}^{h}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{D}} \int_{E} \left(\frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_{i}^{h}) - u_{i,D} + \overline{R}_{\hat{\rho}}(u_{i}^{h}) \right) \cdot (v_{i}^{h} - u_{i}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{C}} \int_{E} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) (v_{n}^{h} - u_{n}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{C}} \int_{E} R_{t}(u^{h}) \cdot (v_{t}^{h} - u_{t}) \, \mathrm{d}\Gamma - \sum_{E \in E_{K}^{int} \cup E_{K}^{N}} \int_{E} J_{E,n}(u^{h}) \cdot (u - v^{h}) \, \mathrm{d}\Gamma \\ &+ \sum_{E \in E_{K}^{N}} \int_{E} (\ell - \ell_{E}) \cdot (u - v^{h}) \, \mathrm{d}\Gamma \\ &+ a_{R}(u^{h}, u - v^{h}) - a(u^{h}, u - v^{h}) \end{split}$$

On peut maintenant estimer terme à terme. On prend

(5.38)
$$v^h = u^h + \Pi^h (u - u^h),$$

où Π^h est l'opérateur de quasi interpolation défini dans [114, formula (4.11)] On commence par le premier terme définit sur les éléments K. L'inégalité de Cauchy-Schwarz donne

$$\left|\sum_{K\in T_h\cap(\Omega_1\cup\Omega_2)}\int_K (\operatorname{div} R(u_i^h) + f_i)\cdot(u_i - v_i^h) \, \mathrm{d}\Gamma\right| \leqslant \sum_{K\in T_h\cap(\Omega_1\cup\Omega_2)} \left\|\operatorname{div} R(u_i^h) + f_i\right\|_{0,K} \left\|u_i - v_i^h\right\|_{0,K},$$

or en utilisant la définition 5.38 de \boldsymbol{v}^h

$$||u_i - v_i^h||_{0,K} = ||e_i - \Pi^h e_i||_{0,K} \lesssim h_K ||e||_{1,\omega_K}$$

Par conséquence, en utilisant l'hypothèse de saturation (5.36), on obtient

$$\left| \int_{\Omega_1 \cup \Omega_2} (\operatorname{div} R(u_i^h) + f_i) \cdot (u_i - v_i^h) \mathrm{d}\Omega \right| \lesssim (\eta + \zeta) \sum_{i=1,2} \|e_i\|_{1,\Omega_i}$$

On considère le frontière de bords intérieur et Neumann dans (5.38). De même que précédemment , l'inégalité de Cauchy-Schwarz mène à

$$\sum_{E \in E_K^{int} \cup E_K^C} \int_E J_{E,n}(\mathbf{u}^h) \cdot (u - v^h) \, \mathrm{d}\Gamma \bigg| \leq \sum_{E \in E_K^{int} \cup E_K^N} \|J_{E,n}(\mathbf{u}^h)\|_{0,E} \|u - v^h\|_{0,E}.$$

En utilisant l'expression (5.38) et en utilisant l'hypothèse de saturation (5.35), il vient

$$||u - v^h||_{0,E} = ||e - \Pi^h e||_{0,E} \lesssim h_E^{1/2} \sum_{i=1,2} ||e_i||_{1,\omega_E}.$$

En insérant cette estimation dans celle précédente, on en déduit

$$\left|\sum_{E \in E_K^{int} \cup E_K^N} \int_E J_{E,n}(\mathbf{u}^h) \cdot (u - v^h) \, \mathrm{d}\Gamma\right| \lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}.$$

.

De plus,

$$\left| \sum_{E \in E_K^N} \int_E (\ell - \ell_E) \cdot (u - v^h) \, \mathrm{d}\Gamma \right| \lesssim \zeta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}.$$

De même que précédemment et en utilisant les hypothèses de saturation (5.33)-(5.34), on obtient facilement

$$\begin{aligned} \left| \sum_{E \in E_K^C} \int_E \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ + R_{\hat{\rho}}(u^h) \right) (v_n^h - u_n) \, \mathrm{d}\Gamma \right| &\lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}, \\ \left| \sum_{E \in E_K^D} \int_E \left(\frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} + \overline{R}_{\hat{\rho}}(u_i^h) \right) \cdot (v_i^h - u_i) \, \mathrm{d}\Gamma \right| &\lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}, \\ \left| \sum_{E \in E_K^C} \int_E \sigma_t(u^h) \cdot (v_t^h - u_t) \, \mathrm{d}\Gamma \right| &\lesssim \eta \sum_{i=1,2} \|e_i\|_{1,\Omega_i}. \end{aligned}$$

 et

Enfin, pour le terme en $a_R(\cdot, \cdot) - a(\cdot, \cdot)$, on utilise l'inégalité de Cauchy-Schwarz, les propriétés de l'opérateur de stabilisation :

$$a_{R}(u^{h}, u - v^{h}) - a(u^{h}, u - v^{h}) = \sum_{i=1,2} \int_{\Omega_{i}} \left(R(u^{h}_{i}) - \sigma(u^{h}_{i}) \right) : \varepsilon(u_{i} - v^{h}_{i}) \, \mathrm{d}\Omega$$

$$\leq \sum_{i=1,2} \left\| R(u^{h}_{i}) - \sigma(u^{h}_{i}) \right\|_{0,\Omega_{i}} \left\| u_{i} - v^{h}_{i} \right\|_{1,\Omega_{i}}$$

$$\leq h_{K}^{-1} \sum_{i=1,2} \left\| u^{h}_{i} \right\|_{1,\Omega_{i}} \times h_{K} \sum_{i=1,2} \| e_{i} \|_{1,\Omega_{i}}$$

$$= \sum_{i=1,2} \left\| u^{h}_{i} \right\|_{1,\Omega_{i}} \sum_{i=1,2} \| e_{i} \|_{1,\Omega_{i}}$$

$$\leq (\eta + \zeta) \sum_{i=1,2} \| e_{i} \|_{1,\Omega_{i}}$$

En utilisant les résultats précédents, on obtient

(5.39)
$$\mathcal{T}_1 \lesssim (\eta + \zeta) \sum_{i=1,2} \|e_i\|_{1,\Omega_i}$$

En utilisant les définitions de $P^h_{\gamma}(\cdot)$, $P^h_{\theta\gamma}(\cdot)$, $P^{h,\hat{\rho}}_{\gamma}(\cdot)$, $P^{h,\hat{\rho}}_{\theta\gamma}(\cdot)$, le terme \mathcal{T}_2 s'écrit :

$$\mathcal{T}_{2} = \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h}(u) - g]_{+} \right) \left(P_{\gamma}^{h}(u) - P_{\gamma}^{h,\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma$$
$$- \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma$$
$$- \theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) \gamma R_{\hat{\rho}}(v^{h} - u^{h}) \, \mathrm{d}\Gamma.$$

On peut le réécrire de la façon suivante :

$$\begin{aligned} \mathcal{T}_{2} &= \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} - [P_{\gamma}^{h}(u) - g]_{+} \right) \left(P_{\gamma}^{h}(u) - P_{\gamma}^{h,\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma \\ &+ (\theta - 1) \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) \gamma \left(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u) \right) \, \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h}) \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma \\ &- \theta \int_{\Gamma_{1,C}} \frac{1}{\gamma} \left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} \right) \gamma \left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h}) \right) \, \mathrm{d}\Gamma. \end{aligned}$$

On remarque que les deux derniers termes peuvent être regroupés, en utilisant $([a]_+ - [b]_+)(b - a) \leq -([a]_+ - [b]_+)^2$ puis la condition de contact ainsi que l'inégalité de Cauchy-Schwarz :

$$\begin{split} \mathcal{T}_{2} \leqslant &- \|\gamma^{\frac{1}{2}}(\sigma_{n}(u) + \frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+})\|_{0,\Gamma_{1,C}}^{2} \\ &+ (\theta - 1)\int_{\Gamma_{1,C}} \frac{1}{\gamma}\left([P_{\gamma}^{h}(u) - g]_{+} - [P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+}\right)\gamma\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right) \ \mathrm{d}\Gamma \\ &- \theta\int_{\Gamma_{1,C}} \left(\frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h})\right)\gamma\left(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)\right) \ \mathrm{d}\Gamma \\ &+ \theta\|\gamma^{1/2}\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ \leqslant &- \|\gamma^{\frac{1}{2}}(\sigma_{n}(u) + \frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+})\|_{0,\Gamma_{1,C}}^{2} \\ &+ |\theta - 1|\|\gamma^{\frac{1}{2}}(\sigma_{n}(u) + \frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+})\|_{0,\Gamma_{1,C}}\|\gamma^{1/2}\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &- \theta\int_{\Gamma_{1,C}} \left(\frac{1}{\gamma}[P_{\gamma}^{h,\hat{\rho}}(u^{h}) - g]_{+} + R_{\hat{\rho}}(u^{h})\right)\gamma\left(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)\right) \ \mathrm{d}\Gamma \\ &+ \theta\|\gamma^{1/2}\left(\sigma_{n}(u) - R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2}. \end{split}$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

En utilisant l'expression $ab \leq a^2 + b^2/4$ et l'inégalité de Young pour $\beta > 0$:

$$\begin{split} \mathcal{T}_{2} &\leq \frac{|\theta-1|^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} + \theta \|\gamma^{1/2} \left(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &\quad -\theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h})-g]_{+} + R_{\hat{\rho}}(u^{h})\right) \gamma(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)) \ \mathrm{d}\Gamma \\ &= \frac{(\theta+1)^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} \\ &\quad -\theta \int_{\Gamma_{1,C}} \left(\frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^{h})-g]_{+} + R_{\hat{\rho}}(u^{h})\right) \gamma(R_{\hat{\rho}}(v^{h}) - \sigma_{n}(u)) \ \mathrm{d}\Gamma \\ &\leq \frac{(\theta+1)^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} + |\theta| \|\gamma^{1/2}\sigma_{n}(v^{h}-u)\|_{0,\Gamma_{1,C}} \gamma_{0}^{1/2}\eta \\ &\leq \frac{(\theta+1)^{2}}{4} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} + \beta\gamma_{0}\eta^{2}|\theta|^{2} + \frac{1}{2\beta} \|\gamma^{1/2}R_{\hat{\rho}}(v^{h}-u^{h})\|_{0,\Gamma_{1,C}}^{2} \\ &\quad + \frac{1}{2\beta} \|\gamma^{1/2} \left(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h})\right)\|_{0,\Gamma_{1,C}}^{2} \\ &= \left(\frac{1}{2\beta} + \frac{(\theta+1)^{2}}{4}\right) \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{0,\Gamma_{1,C}}^{2} + \beta\gamma_{0}\eta^{2}|\theta|^{2} + \frac{1}{2\beta} \|\gamma^{1/2}R_{\hat{\rho}}(v^{h}-u^{h})\|_{0,\Gamma_{1,C}}^{2} \\ &= \left(\frac{1}{2\beta} + \frac{(\theta+1)^{2}}{4}\right) \gamma_{0} \|\gamma^{1/2}(\sigma_{n}(u)-R_{\hat{\rho}}(u^{h}))\|_{-1/2,h,\Gamma_{1,C}}^{2} + \beta\gamma_{0}\eta^{2}|\theta|^{2} \\ &\quad + \frac{\gamma_{0}}{2\beta} \left\|R_{\hat{\rho}}(v^{h}-u^{h})\right\|_{-1/2,h,\Gamma_{1,C}}^{2}. \end{split}$$

En utilisant la H^1 -stabilité de Π^h , l'hypothèse de saturation (5.33), on a :

$$\|R_{\hat{\rho}}(v^h - u^h)\|_{-1/2, h, \Gamma_{1, C}} \le \sum_{i=1, 2} C \|v_i^h - u_i^h\|_{1, \Omega_i} = C \sum_{i=1, 2} \|\Pi^h (u_i - u_i^h)\|_{1, \Omega_i} \le C \sum_{i=1, 2} \|u_i - u_i^h\|_{1, \Omega_i}$$

On obtient donc

(5.40)
$$\mathcal{T}_{2} \leq C\gamma_{0} \left(\frac{(\theta+1)^{2}}{4} + \frac{1}{\beta} \right) \sum_{i=1,2} \|u_{i} - u_{i}^{h}\|_{1,\Omega_{i}}^{2} + \beta\gamma_{0}|\theta|^{2}\eta^{2}.$$

Pour le terme, en \mathcal{T}_3 , en utilisant le fait que $u_i = u_{i,D}$ sur $\Gamma_{i,D}$, il vient :

(5.41)
$$\sum_{i=1,2} \left\| \gamma^{-1/2} (u_i - u_i^h) \right\|_{0,\Gamma_{i,D}}^2 = \sum_{i=1,2} \left\| \gamma^{1/2} \left(\gamma^{-1} (u_i^h - u_{i,D}) - \overline{R}_{\hat{\rho}}(u_i^h) + \overline{R}_{\hat{\rho}}(u_i^h) \right) \right\|_{0,\Gamma_{i,D}}^2$$

(5.42)
$$= \sum_{i=1,2} \left\| \gamma^{1/2} \left(\frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\rho}(u_i^h) - u_{i,D} + \overline{R}_{\hat{\rho}}(u_i^h) \right) \right\|_{0,\Gamma_{i,D}}$$

$$(5.43) \qquad \leqslant C\gamma_0\eta^2$$

De même que précédemment, il vient pour $\beta_1>0$

(5.44)
$$\mathcal{T}_{3} \leq C\gamma_{0} \left(\frac{(\theta+1)^{2}}{4} + \frac{1}{\beta_{1}} \right) \|u - u^{h}\|_{1,\Omega}^{2} + (\beta_{1}\gamma_{0}|\theta|^{2} + \frac{C\gamma_{0}}{2})\eta^{2}.$$

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf © [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Maintenant, en combinant (5.38), (5.39), (5.40) et (5.44):

$$\begin{aligned} \alpha \sum_{i=1,2} \|e_i\|_{1,\Omega_i}^2 &\leqslant C(\eta+\zeta) \sum_{i=1,2} \|e_i\|_{1,\Omega_i} + C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}\right) \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}^2 + \beta\gamma_0 |\theta|^2 \eta^2 \\ &+ C\gamma_0 \left(\frac{(\theta+1)^2}{4} + \frac{1}{\beta}\right) \|u - u^h\|_{1,\Omega}^2 + (\beta_1\gamma_0 |\theta|^2 + \frac{C\gamma_0}{2})\eta^2. \end{aligned}$$

En utilisant l'inégalité de Young pour α sur le premier terme, il vient

$$\left(\frac{\alpha}{2} - C\gamma_0 \left(\frac{(\theta+1)^2}{2} + \frac{1}{\beta} + \frac{1}{\beta}_1\right)\right) \sum_{i=1,2} \|e_i\|_{1,\Omega_i}^2 \leqslant \frac{C}{\alpha} (\eta^2 + \zeta^2) + (\beta\gamma_0|\theta|^2 + \beta_1\gamma_0|\theta|^2 + \frac{C\gamma_0}{2})\eta^2.$$

Lorsque $\theta \neq -1$, on choisit γ_0 suffisamment petit. Lorsque $\theta = -1$, on peut choisir $\beta = \frac{8C\gamma_0}{\alpha}$ et $\beta_1 = \frac{8C\gamma_0}{\alpha}$. On obtient la borne supérieure :

$$\sum_{i=1,2} \|e_i\|_{1,\Omega_i} \lesssim (1+\gamma_0)\eta^2 + \zeta^2.$$

L'hypothèse de saturation fournit directement une borne de l'erreur de la contrainte sur le bord de contact et le bord de condition de Dirichlet :

$$\|\sigma_n(u) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} \lesssim \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i},$$
$$\sum_{i=1,2} \|\sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h)\|_{-1/2,h,\Gamma_{i,D}} \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i}.$$

Pour l'erreur de contact et celle du bord de condition de Dirichlet, on utilise l'inégalité triangulaire, on obtient :

$$\begin{split} \left\| \sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ \right\|_{-1/2,h,\Gamma_{1,C}} &\leq \|\sigma_n(u) - R_{\hat{\rho}}(u^h)\|_{-1/2,h,\Gamma_{1,C}} \\ &+ \left\| R_{\hat{\rho}}(u^h) + \frac{1}{\gamma} [P_{\gamma}^{h,\hat{\rho}}(u^h) - g]_+ \right\|_{-1/2,h,\Gamma_{1,C}} \\ &\lesssim \sum_{i=1,2} \|u_i - u_i^h\|_{1,\Omega_i} + \eta. \end{split}$$

$$\begin{split} \sum_{i=1,2} \left\| \sigma(u_i) + \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} \right\|_{-1/2,h,\Gamma_{i,D}} &\leqslant \sum_{i=1,2} \| \sigma(u) - \overline{R}_{\hat{\rho}}(u^h) \|_{-1/2,h,\Gamma_{i,D}} \\ &+ \sum_{i=1,2} \left\| \overline{R}_{\hat{\rho}}(u_i^h) + \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} \right\|_{-1/2,h,\Gamma_{i,D}} \\ &\lesssim \sum_{i=1,2} \| u_i - u_i^h \|_{1,\Omega_i} + \eta. \end{split}$$

En assemblant les cinq dernières, on obtient l'inégalité (5.37)

Theorem 5.8.4. Borne inférieure : Pour tous éléments $K \in T_h$, les erreurs locales suivantes sont bornées inférieurement :

(5.45)
$$\eta_{1K} \lesssim \|u_i - u_i^h\|_{1,K} + \zeta_K,$$

(5.46)
$$\eta_{2K} \lesssim \|u_i - u_i^h\|_{1,\omega_K} + \zeta_K.$$

Pour tous éléments K tels que $K \cap E_K^C \neq \emptyset$, les erreurs locales suivantes sont bornées inférieurement :

(5.47)
$$\eta_{3K} \lesssim \|u_i - u_i^h\|_{1,K} + \zeta_K,$$

(5.48)
$$\eta_{4K} \lesssim \sum_{E \in E_K^C} h_K^{1/2} \left(\left\| \sigma_n(u) + \frac{1}{\gamma} [P_{\gamma}^h(u^h) - g]_+ \right\|_{0,E} + \left\| \sigma_n(u) - R_{\hat{\rho}}(u^h) \right\|_{0,E} \right).$$

Pour tous éléments K tels que $K \cap E_K^D \neq \emptyset$, les erreurs locales suivantes sont bornées inférieurement :

$$(5.49) \quad \eta_{5K} \lesssim \sum_{E \in E_K^D} h_K^{1/2} \left(\left\| \frac{1}{\gamma} \overline{P}_{i,\gamma}^{h,\hat{\rho}}(u_i^h) - u_{i,D} + \sigma(u_i) \right\|_{0,E} + \left\| \sigma(u_i) - \overline{R}_{\hat{\rho}}(u_i^h) \right\|_{0,E} \right).$$

Preuve : Les estimations de η_{1K} , η_{2K} dans (5.45), sont standards (voir [16]). Pour l'estimations de η_{1K} , on utilise l'élasticité linéaire, une inégalité inverse et l'hypothèse de saturation (5.36), il vient :

$$\begin{aligned} \|\operatorname{div} R(u_i^h) + f_{i,K}\|_{0,K}^2 \lesssim & \int_K (\sigma(u) - R(u^h)) : \varepsilon(\operatorname{div} R(u_i^h) + f_{i,K}) \, \mathrm{d}\Omega \\ & - \int_K (f - f_K) \cdot (\operatorname{div} R(u_i^h) + f_{i,K}) d\Gamma \\ & - \int_{\Gamma_{i,N}} (\ell - \ell_K) \cdot (\operatorname{div} R(u_i^h) + f_{i,K}) d\Gamma \\ & \lesssim \left(h_K^{-1} \left\| u_i - u_i^h \right\|_{1,K} + h_K^{-1} \zeta_K \right) \|\operatorname{div} R(u_i^h) + f_{i,K} \|_{0,K}, \end{aligned}$$

d'où on obtient l'inégalité (5.45). Pour l'estimation de η_{2K} , on sépare la partie saut intérieure et bord de condition de Neumann. Pour $E \in E_K^{int}$, il vient :

$$\|[R(u^{h})\nu_{E}]\|_{0,E}^{2} \lesssim \left(h_{E}^{-1} \left\|u-u^{h}\right\|_{1,\omega_{E}} + \|f-f_{E}\|_{\omega_{E}} + \sum_{T'\omega_{E}} \left\|\operatorname{div}R(u^{h})+f_{T}\right\|_{0,T'}\right) \|[R(u^{h})\nu_{E}]\|_{0,E}$$

De même pour $E \in E_K^N$, on obtient :

$$\begin{aligned} \|R(u^{h})\nu_{E} - \ell_{E}\|_{0,E}^{2} \lesssim \left(h_{E}^{-1} \left\|u - u^{h}\right\|_{1,\omega_{E}} + \|f - f_{E}\|_{\omega_{E}} + \|\ell - \ell_{E}\|_{E}\right) \|R(u^{h})\nu_{E} - \ell_{E}\|_{0,E} \\ + \sum_{T'\omega_{E}} \left\|\operatorname{div}R(u^{h}) + f_{T}\right\|_{0,T'} \|R(u^{h})\nu_{E} - \ell_{E}\|_{0,E}. \end{aligned}$$

D'où

$$h_E^{1/2} \| J_{E,n}(\mathbf{u}^h) \|_{0,E}^2 \lesssim \| u - u^h \|_{1,\omega_T} + \zeta_T$$

Pour estimer η_{3K} définit dans (5.48), il suffit d'utiliser les propriétés de l'opérateur de stabilisation et une inégalité triangulaire. L'estimations de η_{4K} dans (5.49) se fait grâce à une inégalité triangulaire.

5.9 Conclusion et perspectives

Dans ce chapitre, on propose l'analyse numériques deux estimateurs d'erreur par résidu associé respectivement à deux méthodes basées sur une méthode Nitsche. On obtient des bornes supérieurs et inférieurs pour l'erreur de discrétisation. Le second estimateur défini semble plus naturel et nécessite moins d'hypothèse de saturations.

Une perspective possible de mon travail est d'obtenir un résultat numérique sur mes estimateurs théoriques. On envisage de plus l'extension aux problèmes unilatéral avec frottement.

Annexe

Sommaire

Α	Cha	apitre 3 : Mise en oeuvre de la Méthode	
	A.1	Adaptation des méthodes d'intégration	
	A.2	Représentation du champs éléments finis sur les deux corps en contact 157	
	A.3	Implémentation des termes de Nitsche 157	
В	Cha	apitre 4 : Mise en oeuvre de l'estimateur <i>a posteriori</i> 158	

A Chapitre 3 : Mise en oeuvre de la Méthode

Dans cette section, on présente la mise en oeuvre de la partie numérique de la partie 3.5. On pourra trouver le code matlab demo_contact_fictitious_domain_nitsche.m dans le dossier getfem/interface/tests/matlab et la brique de Nitsche dans getfem_contact_and_friction_integral.cc dans le dossier getfem/src du logiciel libre Getfem++¹.

A.1 Adaptation des méthodes d'intégration

La stratégie de l'approche de domaine fictif impose de devoir intégrer la formulation faible sur des domaines non-conformes par rapport au maillage ainsi que sur leurs bords (voir FIGURE E.3).

Dans Getfem $++^1$, la géométrie des domaines est représentée par une courbe de niveau 0 d'une fonction distance signée au bord approchée par un élément de Lagrange P_1 ou P_2 sur le maillage du domaine fictif.

Afin de construire une méthode d'intégration conforme au domaine réel, un traitement spécial est effectué sur chaque élément coupé par la courbe de niveau (level-set).

Ce traitement spécial consiste à sous-découper l'élément de manière conforme à la levelset (voir FIGURE E.4). Pour cela, des points sont placés sur la level-set et en particulier aux intersections avec les bords des éléments. Un algorithme de Delaunay permet alors de récupérer un maillage conforme de l'élément. Si la fonction level-set est de degré 2 des éléments courbes sont utilisés pour mieux approcher la level-set.

Une fois ce maillage de l'élément produit, une méthode d'intégration sur l'intersection de l'élément et du domaine réel est construit en associant une méthode d'intégration classique à chaque sous-élément qui est à l'intérieur du domaine réel. De la même manière, une méthode d'intégration sur le bord de la level-set est construite à partir des arrêtes des sous-éléments se trouvant sur la level-set (voir FIGURE E.4).

L'implémentation faite dans $\text{Getfem}++^1$ est très général et permet de gérer les cas de levelsets multiples en dimension 2 ou 3.

^{1.} voir http://download.gna.org/getfem/html/homepage/

A. Chapitre 3 : Mise en oeuvre de la Méthode

FIGURE E.3 – Exemple de problème de contact unilatéral entre deux corps élastiques.

FIGURE E.4 – Méthode d'intégration conforme au domaine réel sur un élément coupé.

A.2 Représentation du champs éléments finis sur les deux corps en contact

Conformément à une méthode de domaine fictif, on définit une méthode d'éléments finis sur un maillage structuré du domaine fictif. Pour chacun des corps, on obtient un champ d'éléments avec degré de liberté. On élimine ensuite les degrés de liberté dont le support de la fonction de forme n'intersecte pas le domaine réel. Dans l'implémentation actuelle, il n'y a pas de traitement particulier lorsque cette intersection est trop petite (mise à part la méthode de stabilisation).

A.3 Implémentation des termes de Nitsche

La résolution du problème discret se faisant à l'aide d'une méthode de Newton-Raphson, il a été nécessaire d'implémenter sur Getfem $++^1$ (en C++) le problème tangent.

Le problème tangent implémenté est plus général que le problème considéré dans la thèse. En effet, il peut être utilisé pour un problème avec frottement de Coulomb ou de Tresca et dans le cas d'une élasticité non-linéaire.

On pose $P_{n,F}(x) = -(x \cdot n)_{-}n + P_{B(0,F(x \cdot n)_{-})}(x - (x \cdot n)_{-}n)$ avec F le coefficient de friction. La vitesse de glissement est approchée par $u_T - \omega_T$ avec ω_T dépendant du schéma d'intégration considéré. On définit aussi

$$\zeta(u_1, u_2) = \sigma_n(u_1) + \frac{u_1}{\gamma} - \frac{u_2 \circ \Pi}{\gamma} + \frac{g}{\gamma} + \frac{\omega_T}{\gamma}$$

Le terme de Nitsche pour le contact avec ou sans frottement considéré s'écrit :

$$-\int_{\Gamma_{1,C}} \theta \gamma \sigma_n(u_1) \cdot D_u \sigma_n(u_1)[v_1] \, \mathrm{d}\Gamma +\int_{\Gamma_{1,C}} \gamma P_{n,F}(\zeta(u_1, u_2)) \cdot (\theta D_u \sigma_n(u_1)[v_1] + \frac{v_1 - v_2 \circ \Pi}{\gamma}) \, \mathrm{d}\Gamma,$$

avec v_1 une fonction test.

Remark A.1. Dans le cas d'une élasticité linéaire, on a

$$D_u \sigma_n(u_1)[v_1] = \sigma_n(v_1).$$

Le problème tangent associé à notre terme de Nitsche est :

$$\begin{split} &\int_{\Gamma_{1,C}} \gamma(P_{n,F}(\zeta(u_1,u_2)) - \sigma_n(u_1)) \cdot (\theta D_{uu}^2 \sigma_n(u_1)[v_1, \delta u_1]) \, \mathrm{d}\Gamma \\ &- \int_{\Gamma_{1,C}} \theta \gamma D_u \sigma_n(u_1)[\delta u_1] \cdot D_u \sigma_n(u_1)[v_1] \, \mathrm{d}\Gamma \\ &+ \int_{\Gamma_{1,C}} \gamma \nabla P_{n,F}(\zeta(u_1,u_2))[D_u \sigma_n(u_1)[\delta u_1] - \frac{\delta u_1}{\gamma}] \cdot (\theta D_u \sigma_n(u_1)[v_1] - \frac{v_1}{\gamma}) \, \mathrm{d}\Gamma \\ &+ \int_{\Gamma_{1,C}} \gamma \nabla P_{n,F}(\zeta(u_1,u_2))[D_u \sigma_n(u_1)[\delta u_1] - \frac{\delta u_1}{\gamma}] \cdot (\frac{v_2 \circ \Pi}{\gamma}) \, \mathrm{d}\Gamma \\ &+ \int_{\Gamma_{1,C}} \gamma \nabla P_{n,F}(\zeta(u_1,u_2))[\frac{\delta u_2 \circ \Pi}{\gamma}] \cdot (\theta D_u \sigma_n(u_1)[v_1] - \frac{v_1}{\gamma}) \, \mathrm{d}\Gamma \\ &+ \int_{\Gamma_{1,C}} \gamma \nabla P_{n,F}(\zeta(u_1,u_2))[\frac{\delta u_2 \circ \Pi}{\gamma}] \cdot (\frac{v_2 \circ \Pi}{\gamma}) \, \mathrm{d}\Gamma \end{split}$$

avec δu_1 une fonction test du terme d'ordre 2.

B Chapitre 4 : Mise en oeuvre de l'estimateur a posteriori

On présente dans cette section, l'estimateur définit dans 4.4. On pourra trouver le code dans getfem_error_estimate.cc dans le dossier getfem/src. L'estimateur considéré est définit pour une force verticale définit dans la direction $-e_N$ avec N la dimension du problème.

```
//vertical force
base_small_vector F(N);
for (unsigned ii=0; ii < N-1; ++ii)
    F[ii]=0;
    F[N-1]=-vertical_force;</pre>
```

On obtient le résidu par élément $\eta_{1K}^2 = h_K^2 \| \operatorname{div} R(u_i^h) + f_{i,K} \|_{0,K}^2$, qui mesure la non vérification de l'équation d'équilibre. On utilise la loi de Hooke pour les matériaux homogènes, isotropes.

```
// Residual on the element
for (unsigned ii=0; ii < pail->nb_points_on_convex(); ++ii) {
    base_small_vector res(N);
    ctx1.set_xref(pail->point(ii));
    pf1->interpolation_hess(ctx1, coeff1, hess1, dim_type(qdim));
    for (size_type i = 0; i < N; ++i)
        for (size_type j = 0; j < N; ++j)
            res[i] += (lambda + mu) * hess1(j, i*N+j) + mu * hess1(i, j*N+j)+F[i];
ERR[cv] += radius*radius*ctx1.J()*pail->coeff(ii)*gmm::vect_norm2_sqr(res);
    eta1 += (radius*radius*ctx1.J()*pail->coeff(ii)*gmm::vect_norm2_sqr(res));
    }
```

On définit ensuite le terme de discontinuité du vecteur de contraintes à l'interface de deux éléments, c'est à dire $h_K \| \left\| \sigma(\mathbf{u}^h) \boldsymbol{\nu}_E \right\|_E \|_{0,E}^2$.

```
// jump of the stress between the element ant its neighbours.
       for (short type f1=0; f1 < m.structure of convex(cv) > nb faces(); ++f1) {
       size type cvn = m.neighbour of convex(cv, f1);
       if (cvn = size type(-1)) continue;
       bgeot::pgeometric trans pgt2 = m.trans of convex(cvn);
       getfem :: pfem pf2 = mf u.fem of element(cvn);
       bgeot::vectors to base matrix(G2, m.points of convex(cvn));
       coeff2.resize(mf u.nb basic dof of element(cvn));
       gmm::copy(gmm::sub_vector(U,
       gmm::sub\_index(mf\_u.ind\_basic\_dof\_of\_element(cvn))), coeff2);
       getfem::fem interpolation context ctx2(pgt2, pf2, base node(N), G2, cvn);
       gic.init(m.points of convex(cvn), pgt2);
       for (unsigned ii=0; ii < pail->nb points on face(f1); ++ii) {
         ctx1.set xref(pai1->point on face(f1, ii));
         gmm::mult(ctx1.B(), pgt1 \rightarrow normals()[f1], up);
         scalar type norm = gmm::vect norm2(up);
         up /= norm;
         scalar\_type \ coefficient \ = \ pail \rightarrow coeff\_on\_face(fl \ , \ ii) \ * \ ctx1.J() \ * \ norm;
         pf1->interpolation_grad(ctx1, coeff1, grad1, dim_type(qdim));
         gmm::copy(grad1, E); gmm::add(gmm::transposed(grad1), E);
         \operatorname{gmm}::\operatorname{scale}(\mathrm{E}, 0.5);
         scalar type trace = gmm::mat trace(E);
         gmm::copy(gmm::identity_matrix(), S1);
         gmm::scale(S1, lambda * trace);
         gmm:: add(gmm:: scaled(E, 2*mu), S1);
         bool converged;
         gic.invert(ctx1.xreal(), xref2, converged);
         GMM ASSERT1(converged, "geometric transformation not well inverted !");
         ctx2.set_xref(xref2);
```

```
pf2->interpolation_grad(ctx2, coeff2, grad2, dim_type(qdim));
gnm::copy(grad2, E); gnm::add(gnm::transposed(grad2), E);
gnm::scale(E, 0.5);
trace = gnm::mat_trace(E);
gnm::copy(gnm::identity_matrix(), S2);
gnm::scale(S2, lambda * trace);
gnm::add(gnm::scaled(E, 2*mu), S2);
gnm::mult(S1, up, jump);
gnm::mult_add(S2, gnm::scaled(up, -1.0), jump);
ERR[cv] +=radius * coefficient * gnm::vect_norm2_sqr(jump);
eta2 += (radius * coefficient * gnm::vect_norm2_sqr(jump));
}
```

On définit aussi l'estimateur d'erreur qui mesure la non vérification des conditions sur le bord de type Neumann, c'est-à-dire $h_K \|\boldsymbol{\sigma}(\mathbf{u}^h)\boldsymbol{\nu}_E - \mathbf{g}_E\|_{0,E}^2$.

```
for (unsigned ii=0; ii < pail->nb points on face(f); ++ii) {
         ctx1.set xref(pai1->point on face(f, ii));
         gmm::mult(ctx1.B(), pgt1 \rightarrow normals()[f], up);
         scalar type norm = gmm::vect norm2(up);
         up /= norm;
         scalar type coefficient = pail \rightarrow coeff on face(f, ii) * ctx1.J() * norm;
         pf1->interpolation_grad(ctx1, coeff1, grad1, dim type(qdim));
         gmm::copy(grad1, E); gmm::add(gmm::transposed(grad1), E);
         \operatorname{gmm}::\operatorname{scale}(\mathrm{E}, 0.5);
         scalar_type trace = gmm::mat_trace(E);
         gmm::copy(gmm::identity_matrix(), S1);
         gmm::scale(S1, lambda * trace);
         gmm:: add(gmm:: scaled(E, 2*mu), S1);
         gmm::mult(S1, up, jump);
         ERR[v.cv()] +=radius * coefficient * gmm::vect norm2 sqr(jump);
         eta2 += (radius * coefficient * gmm::vect norm2 sqr(jump));
       }
```

Il reste enfin à définir les deux estimateurs sur le bord de contact $h_K \left\| \frac{1}{\gamma} [P_{\gamma}(\mathbf{u}^h)]_+ + \sigma_n(\mathbf{u}^h) \right\|_{0,E}^2$ puis $h_K \|\sigma_t(\mathbf{u}^h)\|_{0,E}^2$.

```
//normale de l'obstacle
base_small_vector n2(N);
for (unsigned ii=0; ii < N-1; ++ii)
n2[ii]=0;
n2[N-1]=1;
scalar_type radius = m.convex_radius_estimate(v.cv());
scalar_type gamma=radius*gamma0;
short_type f = v.f();
for (unsigned ii=0; ii < pail->nb_points_on_face(f); ++ii) {
ctx1.set xref(pail->point on face(f, ii));
```

```
gmm::mult(ctx1.B(), pgt1 \rightarrow normals()[f], up);
scalar type norm = gmm::vect norm2(up);
up /= norm;
scalar_type coefficient = pail->coeff_on_face(f, ii) * ctx1.J() * norm;
pf1->interpolation_grad(ctx1, coeff1, grad1, dim_type(qdim));
pf1->interpolation(ctx1, coeff1, U1, dim type(qdim));
//gap test
base node x0 =ctx1.xreal();
scalar type gap = 0;
for (size type i=0; i<N; ++i)
     gap += (x0[i])*n2[i];
gmm::copy(grad1, E); gmm::add(gmm::transposed(grad1), E);
\operatorname{gmm}::\operatorname{scale}(\mathrm{E}, 0.5);
scalar type trace = gmm::mat trace(E);
gmm::copy(gmm::identity matrix(), S1);
gmm::scale(S1, lambda * trace);
gmm:: add(gmm:: scaled(E, 2*mu), S1);
gmm::mult(S1, up, sig); // sig = sigma(u)n
 Un = gmm::vect sp(U1, -n2); // un = u n = -u.n2
\operatorname{sign} = \operatorname{gmm}::\operatorname{vect\_sp}(\operatorname{sig},-\operatorname{n2}); // \operatorname{sign} = \operatorname{sigma\_n}(u) = -\operatorname{sigma}(u)n.n2
scal = (Un-gap)-gamma*sign;
if (scal < 0)
Pr = sign;
else
\Pr = (\operatorname{scal}/\operatorname{gamma} + \operatorname{sign});
ERR[v.cv()] += coefficient*radius*Pr*Pr;
eta4 += coefficient*radius* Pr*Pr;
\operatorname{gmm}::\operatorname{copy}(n2,\operatorname{sigt});
gmm::scale(sigt, sign);
gmm::add(sig,sigt);
ERR[v.cv()] += coefficient *radius*gmm::vect norm2 sqr(sigt);
eta3 += coefficient *radius*gmm::vect norm2 sqr(sigt);
```

}

Bibliographie

- [1] A. Signorini. questioni di elasticita non linearizzata e semi-linearizzata. *Rend de Matematica*, 1959. (Cited on pages 2 and 48.)
- [2] G. Fichera. Problemi elastostatici con vincoli unilaterali : Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8), 7 :91–140, 1963/1964. (Cited on pages 2, 48, 60, 97 and 131.)
- [3] Georges Duvaut and Jacques-Louis Lions. Les inéquations en mécanique et en physique. Travaux et recherches mathématiques. Dunod, Paris, 1972. (Cited on pages 2, 48, 51 and 72.)
- [4] J. Haslinger, J. Jarušek, and J. Nečas. On the solution of variational inequality to the signorini problem with smal l frictio. *Bolletino dell'Unione Matematica Italiana*, 1980. (Cited on pages 2, 48 and 53.)
- [5] Z. Belhachmi and F. Ben Belgacem. Quadratic finite element approximation of the Signorini problem. Math. Comp., 72(241) :83–104, 2003. (Cited on page 2.)
- [6] Y. Renard. A uniqueness criterion for the signorini problem with coulomb friction. *Applied* and *Computational Mechanics*, 27:161–169, 2006. (Cited on pages 2 and 48.)
- [7] Z. Belhachmi, J. M. Sac-Epée, and J. Sokolowski. Mixed finite element methods for smooth domain formulation of crack problems. SIAM J. Numer. Anal., 43(3) :1295–1320, 2005. (Cited on page 2.)
- [8] Souad Tahir. Méthodes d'approximation par éléments finis et analyse a posteriori d'inéquations variationnelles modélisant des problèmes de fissures en élasticité linéaire. PhD thesis, Metz, 2006. (Cited on pages 2 and 128.)
- [9] N. Kikuchi and J. T. Oden. Contact problems in elasticity : a study of variational inequalities and finite element methods, volume 8 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. (Cited on pages 2, 48, 60, 97 and 131.)
- [10] P. Wriggers. Computational Contact Mechanics. Wiley, 2002. (Cited on pages 2 and 48.)
- [11] I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite element method. Internat. J. Numer. Methods Engrg., 12 :1597–1615, 1978. (Cited on pages 4 and 5.)
- [12] Mark Ainsworth and J.Tinsley Oden. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1 88, 1997. (Cited on page 4.)
- [13] Mark Ainsworth and J. Tinsley Oden. A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2000. (Cited on pages 4, 5, 100 and 136.)
- [14] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004. (Cited on pages 4 and 98.)

- [15] Rüdiger Verführt. A review of a posteriori estimation and adaptive mesh-refinement techniques. Wiley, 1996. (Cited on page 5.)
- [16] R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems. *Comput. Methods Appl. Mech. Engrg.*, 176(1-4) :419–440, 1999. (Cited on pages 5, 106, 144 and 153.)
- [17] Rudi Beck, Ralf Hiptmair, Ronald Hoppe, and Barbara Wohlmuth. Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal., 34(1):159–182, 2000. (Cited on page 5.)
- [18] P. Hild and S. Nicaise. A posteriori error estimations of residual type for signorini's problem. Numer. Math., 101 :523–549, 2005. (Cited on pages 5, 95 and 128.)
- [19] P. Hild and S. Nicaise. Residual a posteriori error estimators for contact problems in elasticity. ESAIM : Mathematical Modelling and Numerical Analysis, 41 :897–923, 2007. (Cited on pages 5, 95, 106, 107, 108, 116, 128 and 144.)
- [20] R. E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. *Math. Comp*, 44(170) :283–301, avril 1985. (Cited on page 5.)
- [21] Randolph E. Bank and R. Kent Smith. A posteriori error estimates based on hierarchical bases. SIAM J. Numer. Anal., 30(4):921–935, 1993. (Cited on page 5.)
- [22] C. Johnson. Numerical solution of partial differential equations by the finite element method. Cambridge University Press, New York, 1987. (Cited on page 5.)
- [23] Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica, 10 :1–102, 2001. (Cited on pages 5 and 95.)
- [24] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery (spr) and adaptive finite element refinement. *Comput. Methods Appl. Mech. Engrg.*, 101 :207–224, 1992. (Cited on page 5.)
- [25] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. *Internat. J. Numer. Methods Engrg.*, 24 :337–357, 1987. (Cited on page 5.)
- [26] P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal., 20 :485–509, 1983. (Cited on page 5.)
- [27] W. C. Rheinboldt. On a theory of mesh-refinement processes. SIAM J. Numer. Anal., 38:452–467, 1980. (Cited on page 6.)
- [28] J. Haslinger and Y. Renard. A new fictitious domain approach inspired by the extended finite element method. *SIAM J. Numer. Anal.*, 47 :1474–1499, 2009. (Cited on pages 6, 36, 39, 42, 45, 56, 57, 61, 66, 71, 85, 91, 128 and 133.)
- [29] F. Chouly and P. Hild. A Nitsche-based method for unilateral contact problems : numerical analysis. SIAM J. Numer. Anal., 51(2) :1295–1307, 2013. (Cited on pages 6, 57, 61, 63, 91, 95 and 104.)
- [30] Franz Chouly, Patrick Hild, and Yves Renard. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity : theory and numerical experiments.

Math. Comp, 84 :1089–1112, 2015. (Cited on pages 6, 57, 61, 63, 68, 91, 95, 96, 99, 100, 106, 109, 111, 112, 116 and 118.)

- [31] V.K. Saul'ev. On the solution of some boundary value problems on high performance computers by fictitious domain method. *Siberian Math. Journal*, 4(4) :912–925, 1963. (Cited on page 10.)
- [32] V.D. Kopčenov. Approximate solutions of the dirichlet problem by the method of fictive domains. *Differential Equations*, 4(1), 1968. (Cited on page 10.)
- [33] E.P. Arquis. Convection mixte dans une couche poreuse verticale non confinée. Application à l'isolation perméodynamique. PhD thesis, Université de Bordeaux I, 1984. (Cited on page 10.)
- [34] J. Caltagirone and E. Arquis. Recirculating flow in porous media. Comptes Rendus -Academie des Sciences, 302(14):843–846, 1986. (Cited on page 10.)
- [35] Ph. Angot. Contribution à l'étude des transferts thermiques dans des systèmes complexes; Application aux composants électroniques. PhD thesis, Université de Bordeaux I, 1989. (Cited on page 10.)
- [36] I. Ramière. Convergence analysis of the Q₁-finite element method for elliptic problems with non-boundary-fitted meshes. *International Journal for Numerical Methods in Engineering*, 75 :1007–1052, 2007. (Cited on page 10.)
- [37] I. Ramière, P. Angot, and M. Belliard. A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. *Computer Methods in Applied Mechanics and Engineering*, 196 :766–781, 2007. (Cited on pages 10 and 11.)
- [38] I. Ramière, P. Angot, and M. Belliard. A general fictitious domain method with immersed jumps and multilevel nested structured meshes. *Journal of Computational Physics*, 225 :1347–1387, 2007. (Cited on pages 10, 14 and 16.)
- [39] I. Ramière. Méthodes de domaine fictif pour des problèmes elliptiques avec conditions aux limites générales en vue de la simulation numérique d'écoulements diphasiques. PhD thesis, Université d'Aix-Marseille I, 2006. (Cited on page 10.)
- [40] Ph. Angot. A unified fictitious domain model for general embedded boundary conditions. Comptes Rendus Mathématique, 341(11):683–688, december 2005. (Cited on page 14.)
- [41] Philippe Angot, Charles-Henri Bruneau, and Pierre Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. *Numerische Mathematik*, 1999. (Cited on page 16.)
- [42] B. Maury. A fat boundary method for the poisson problem in a domain with holes. Journal of scientific computing, 16(3):319–339, 2001. (Cited on pages 16 and 19.)
- [43] S. Bertoluzza, M. Ismail, and B. Maury. Domain decomposition methods in science and engineering. *Journal of scientific computing*, 40:513–520, 2005. (Cited on page 16.)
- [44] S. Bertoluzza, M. Ismail, and B. Maury. Analysis of the fully discrete fat boundary method. *Numerische Mathematik*, 118 :49–77, 2011. (Cited on pages 16, 17, 20, 21 and 24.)
- [45] S. Del Pino and Olivier Pironneau. A fictitious domain based general pde solver. Numerical methods for scientific computing variational problems and Applications, 2003. (Cited on page 16.)

- [46] M. Ismail. Méthode de la frontière élargie pour la résolution de problèmes elliptiques dans des domaines perforés. Application aux écoulements fluides tridimensionnels. PhD thesis, Université Pierre et Marie Curie - Paris VI, 2004. (Cited on page 16.)
- [47] C. S. Peskin. Flow patterns around heart valves : A numerical method. Journal of Computational Physics, 10(2):252–271, 1972. (Cited on pages 24 and 28.)
- [48] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002. (Cited on pages 24, 27, 28, 57 and 128.)
- [49] R. Glowinski, T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Period. A distributed lagrange multiplier / fictitious domain method for particulate flows. *International Journal* of Multiphase Flow, 25(5):755-794, 1999. (Cited on page 24.)
- [50] C. S. Peskin and Y. Mori. implicit second-order immersed boundary methods with boundary mass. *Comput. Methods Appl. Mech. Engorge*, 197 :2049–2067, 2008. (Cited on pages 28 and 31.)
- [51] D. Boffi, L. Gastaldi, and L. Heltai. A finite element approach to the immersed boundary method. *Comput. and Structures*, 81:491–501, 2003. (Cited on page 31.)
- [52] D. Boffi, L. Gastaldi, and L. Heltai. The finite element immersed boundary method : Model, stability, and numerical results. Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, 2005. (Cited on page 31.)
- [53] E.J. Dean, Q.V. Dinh, R. Glowinski, J. He, T.W. Pan, and J. Périaux. Least squares/domain imbedding methods for neumann problems : application to fluid dyna- mics. *Domain Decomposition Methods for Partial Differential Equations*, pages 451–475, 1992. (Cited on page 31.)
- [54] R. Glowinski and T-W Pan et J. Periaux. A lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies :
 (i) case where the rigid body motions are known a priori. Comptes Rendus de l'Académie des Sciences Series I Mathematics, 324 :361–369, 1999. (Cited on page 31.)
- [55] J. Haslinger, F. Maitre, and L. Tomas. Fictitious domains methods with distributed lagrange multipliers. part i : Application to the solution of elliptic state problems. part ii : Application to the solution of shape optimization problems. *Mathematical Models and Methods in Applied Sciences*, 11(3):521–547, 2001. (Cited on pages 31 and 33.)
- [56] J. Haslinger, T. Kozubek, K. Kunisch, and G. Peichl. Projected schur complement method for solving non-symmetric systems arising from a smooth fictitious domain approach. *Numerical Linear Algebra with Applications*, 14:713–739, 2007. (Cited on pages 31 and 35.)
- [57] N. Moës, E. Béchet, and T. Belytschko. A finite element for crack growth without remeshing. *Internat. J. Numer. Methods Engrg.*, 46 :131–150, 1999. (Cited on pages 36, 57 and 128.)
- [58] A. Hansbo and P. Hansbo. An unfitted finite element method, based on nitsche's method, for elliptic interface problems. *Computer Methods in Applied Mechanics and Engineering*, 191 :5537–5552, 2002. (Cited on pages 36, 47, 57, 61, 62 and 95.)
- [59] Peter Hansbo, Carlo Lovadina, Ilaria Perugia, and Giancarlo Sangalli. A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. *Numer. Math.*, 100(1) :91–115, 2005. (Cited on page 36.)

- [60] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements : I. a stabilized lagrange multiplier method. *Computer Methods in Applied Mechanics and Engineering*, 199 :2680–2686, October 2010. (Cited on page 36.)
- [61] E. Burman and P. Hansbo. Fictitious domain finite element methods using cut elements:
 II. a stabilized nitsche method. Computer Methods in Applied Mechanics and Engineering, 62(4):328–341, April 2012. (Cited on pages 36, 57, 61, 62, 66, 128 and 133.)
- [62] Helio J. C. Barbosa and Thomas J. R. Hughes. The finite element method with Lagrange multipliers on the boundary : circumventing the Babuška-Brezzi condition. *Computer Methods in Applied Mechanics and Engineering*, 85(1) :109–128, 1991. (Cited on pages 36, 39 and 42.)
- [63] P. Hild and Y. Renard. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. *Numer. Math.*, 115(1):101–129, 2010. (Cited on page 36.)
- [64] Helio J. C. Barbosa and Thomas J. R. Hughes. Boundary Lagrange multipliers in finite element methods : error analysis in natural norms. *Numerische Mathematik*, 62(1) :1–15, 1992. (Cited on page 39.)
- [65] Mathieu Fabre, Jérôme Pousin, and Yves Renard. A fictitious domain method for frictionless contact problems in elasticity using nitsche's method. *submitted*, mars 2014. (Cited on pages 56 and 109.)
- [66] Y. Renard. Generalized Newton's methods for the approximation and resolution of frictional contact problems in elasticity. *Comp. Methods Appl. Mech. Engrg.*, 256 :38–55, 2013. (Cited on pages 57, 85, 95 and 106.)
- [67] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36 :9–15, 1971. (Cited on page 57.)
- [68] A. Fritz, S. Hüeber, and B. I. Wohlmuth. A comparison of mortar and Nitsche techniques for linear elasticity. *Calcolo*, 41(3) :115–137, 2004. (Cited on page 57.)
- [69] M. Juntunen and R. Stenberg. nitsche's method for general boundary conditions. Math. Comp, 78 :1353–1374, 2009. (Cited on pages 57, 62 and 96.)
- [70] Franz Chouly. An adaptation of Nitsche's method to the Tresca friction problem. J. Math. Anal. Appl., 411 :329–339, 2014. (Cited on pages 57, 91, 95 and 124.)
- [71] N. Möes, E. Béchet, and M. Tourbier. Imposing dirichlet boundary conditions in the extended finite element method. *Internat. J. Numer. Methods Engrg.*, 67(12):1641–1669, 2006. (Cited on pages 57 and 128.)
- [72] E. Pierres, M.C. Baietto, and A. Gravouil. A two-scale extended finite element method for modeling 3d crack growth with interfacial contact. *Comput. Methods Appl. Mech. Eng.*, 199 :1165–1177, 2010. (Cited on pages 57 and 128.)
- [73] S. Nicaise, Y. Renard, and E. Chahine. Optimal convergence analysis for the extended finite element. *Method. Int. J. Numer. Meth. Engng*, 86 :528–548, 2011. (Cited on pages 57 and 128.)

- [74] C. Annavarapu, M. Hautefeuille, and J. E. Dolbow. A robust nitsche's formulation for interface problems. *Comput. Methods Appl. Mech. Engrg.*, pages 44–54, 2012. (Cited on pages 57, 61 and 70.)
- [75] G.I. Marchuk. Methods of numerical mathematics, volume vol.2 of Applications of Mathematics. Springer-Verlag, 1982. (Cited on pages 57 and 128.)
- [76] V. Girault and R. Glowinski. Error analysis of a fictitious domain method applied to a dirichlet problem. Japan J. Indust. Appl. Math., 12(3):487–514, 1995. (Cited on pages 57 and 128.)
- [77] R. Glowinski and Y. Kuznetsov. On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Paris Sér. I Math., 327(7) :693–698, 1998. (Cited on pages 57 and 128.)
- [78] S. Bertoluzza, M. Ismail, and B. Maury. The fat boundary method : Semi-discrete scheme and some numerical experiments. *Domain Decomposition Methods in Science and Engineering*, 40 :513–520, 2005. (Cited on pages 57 and 128.)
- [79] J. Haslinger, I. Hlaváček, and J. Nečas. Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), volume IV, chapter 2. "Numerical methods for unilateral problems in solid mechanics", pages 313–385. North Holland, 1996. (Cited on pages 60, 97 and 131.)
- [80] Barbara Wohlmuth. Variationally consistent discretization schemes and numerical algorithms for contact problems. *Acta Numerica*, pages 569–734, 2011. (Cited on page 60.)
- [81] Philippe G. Ciarlet. The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, Vol. 4. (Cited on pages 62 and 63.)
- [82] H. Brezis. Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble), 18(fasc. 1) :115–175, 1968. (Cited on page 72.)
- [83] M. Moussaoui and K. Khodja. Regularité des solutions d un problème mêlé dirichletsignorini dans un domaine polygonal plan. Commun. Partial Differential Equations, 17:805–826, 1992. (Cited on page 86.)
- [84] F. Chouly, M. Fabre, P. Hild, J. Pousin, and Y. Renard. Residual-based a posteriori error estimation for contact problems approximated by nitsche's method. *submitted*, avril 2015. (Cited on page 94.)
- [85] P. Wriggers. Computational Contact Mechanics, Second Edition. Springer-Verlag, Berlin 2006. (Cited on page 95.)
- [86] Tod A. Laursen. Computational Contact and Impact Mechanics. Springer-Verlag, Berlin 2003. (Cited on page 95.)
- [87] C. Carstensen, O. Scherf, and P. Wriggers. Adaptive finite elements for elastic bodies in contact. SIAM J. Sci. Comput., 20(1605–1626), 1999. (Cited on page 95.)
- [88] J. R. Fernández and P. Hild. A posteriori error analysis for the normal compliance problem. Appl. Numer. Math., 60(1-2):64–73, 2010. (Cited on pages 95 and 128.)
- [89] C.Y. Lee and J.T. Oden. A posteriori error estimation of h^p finite élément approximations of frictional contact problems. *Comput. Methods Appl. Mech. Engrg.*, 113 :11–45, 1994. (Cited on pages 95 and 128.)

- [90] P. Wriggers and O. Scherf. Different a posteriori error estimators and indicators for contact problems. *Math. Comput. Modelling*, 28(437–447), 1998. (Cited on page 95.)
- [91] P. Coorevits, P. Hild, and M. Hjiaj. A posteriori error control of finite element approximations for coulomb's frictional contact. SIAM J. Sci. Comput., 23 :976–999, 2001. (Cited on page 95.)
- [92] P. Coorevits, P. Hild, and J.-P. Pelle. A posteriori error estimation for unilateral contact with matching and nonmatching meshes. *Comput. Methods Appl. Mech. Engrg.*, 186:65–83, 2000. (Cited on page 95.)
- [93] F. Louf, J.-P. Combe, and J.-P. Pelle. Constitutive error estimator for the control of contact problems involving friction. *Comput. Struct.*, 81 :1759–1772, 2003. (Cited on page 95.)
- [94] A. Weiss and B. I. Wohlmuth. A posteriori error estimator and error control for contact problems. *Math. Comp.*, pages 1237–1267, 2009. (Cited on page 95.)
- [95] B. I. Wohlmuth. An a posteriori error estimator for two body contact problems on nonmatching meshes. J. Sci. Comput, 33:25–45, 2007. (Cited on page 95.)
- [96] C. Eck and W. Wendland. A residual-based error estimator for bem-discretizations of contact problems. *Numer. Math.*, 95:253–282, 2003. (Cited on page 95.)
- [97] M. Maischak and E. Stephan. Adaptive hp-versions of BEM for Signorini problems. Appl. Numer. Math., 54 :425–449, 2005. (Cited on pages 95 and 128.)
- [98] H. Blum and F. Suttmeier. An adaptive finite element discretization for a simplified Signorini problem. *Calcolo*, 37:65–77, 2000. (Cited on page 95.)
- [99] A. Schröder and A. Rademacher. Goal-oriented error control in adaptive mixed FEM for Signorini's problem. Comp. Methods Mech. Engrg., 200(1–4) :345–355, 2011. (Cited on pages 95 and 128.)
- [100] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods : basic analysis and examples. *East-West J. Numer. Math.*, 4 :237–264, 1996. (Cited on pages 95 and 128.)
- [101] A. Schröder. A posteriori error estimates of higher-order finite elements for frictional contact problems. *Comput. Methods Appl. Mech. Engrg.*, 249–252(151–157), 2012. (Cited on pages 95 and 128.)
- [102] R. Krause, A. Veeser, and M. Walloth. An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. *Numer. Math.*, 130(1) :151–197, 2015. (Cited on pages 95 and 128.)
- [103] R. Becker. Mesh adaptation for Dirichlet flow control via Nitsche's method. Comm. Numer. Methods Engrg., 18(9) :669–680, 2002. (Cited on page 95.)
- [104] R. Becker, P. Hansbo, and R. Stenberg. A finite element method for domain decomposition with non-matching grids. M2AN Math. Model. Numer. Anal., 37(2):209–225, 2003. (Cited on pages 95, 99, 101, 137 and 146.)
- [105] Barbara I. Wohlmuth. A residual based error estimator for mortar finite element discretizations. Numer. Math., 84(1):143–171, 1999. (Cited on pages 95, 101, 137 and 146.)

- [106] Anita Hansbo, Peter Hansbo, and Mats G. Larson. A finite element method on composite grids based on Nitsche's method. M2AN Math. Model. Numer. Anal., 37(3):495–514, 2003. (Cited on pages 96 and 101.)
- [107] Mika Juntunen and Rolf Stenberg. On a mixed discontinuous Galerkin method. Electron. Trans. Numer. Anal., 32 :17–32, 2008. (Cited on page 96.)
- [108] D. Braess and R. Verfürth. A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal., 33(6) :2431–2444, 1996. (Cited on page 96.)
- [109] Mika Juntunen and Rolf Stenberg. Analysis of finite element methods for the Brinkman problem. *Calcolo*, 47(3) :129–147, 2010. (Cited on page 96.)
- [110] Juho Könnö and Rolf Stenberg. H(div)-conforming finite elements for the Brinkman problem. Math. Models Methods Appl. Sci., 21(11) :2227–2248, 2011. (Cited on page 96.)
- [111] Robert A. Adams. Sobolev spaces. Academic Press, New York-London, 1975. Pure and Applied Mathematics, Vol. 65. (Cited on page 96.)
- [112] Philippe G. Ciarlet. Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), volume II, chapter 1. "The finite element method for elliptic problems", pages 17–352. North Holland, 1991. (Cited on pages 97 and 98.)
- [113] S.-C. Brenner and L.-R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 2007. (Cited on page 98.)
- [114] C. Bernardi and V. Girault. A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal., 35(5) :1893–1916 (electronic), 1998. (Cited on pages 99, 139 and 148.)
- [115] Carsten Carstensen. A posteriori error estimate for the mixed finite element method. Math. Comp., 66(218) :465–476, 1997. (Cited on pages 102 and 137.)
- [116] Kwang Y. Kim. A posteriori error analysis for locally conservative mixed methods. Math. Comp., 76(257) :43–66, 2007. (Cited on pages 102 and 137.)
- [117] Pierre Alart and Alain Curnier. A generalized newton method for contact problems with friction. J. Mech. Theor. Appl., 7(1):67–82, 1988. (Cited on page 104.)
- [118] Patrick Hild and Vanessa Lleras. Residual error estimators for Coulomb friction. SIAM J. Numer. Anal., 47(5) :3550–3583, 2009. (Cited on page 107.)
- [119] Vanessa Lleras. Modélisation, analyse et simulation de problèmes de contact en mécanique des solides et des fluides. PhD thesis, Besançon, 2009. (Cited on pages 107, 108 and 109.)
- [120] Philipp Dörsek and Jens Markus Melenk. Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity : The primal-dual formulation and a posteriori error estimation. Appl. Numer. Math., 60(7) :689–704, 2010. (Cited on page 121.)
- [121] (Cited on page 128.)
- [122] Emmanuel Creusé, Serge Nicaise, and Emmanuel Verhille. Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system. *Calcolo*, 48(4) :pp 307–335, 2011. (Cited on page 128.)

- [123] Emmanuel Creusé, Serge Nicaise, and Emmanuel Verhille. Robust residual a posteriori error estimators for the Reissner-Mindlin eigenvalues system. *Journal of Numerical Mathematics*, 21(2):89–134, 2013. (Cited on page 128.)
- [124] Z. Belhachmi. A posteriori error estimates for the 3d stabilized mortar finite element method applied to the laplace equation. ESAIM : Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 37(6) :991–1011, 2003. (Cited on page 128.)
- [125] Emmanuel Creusé, Mohamed Farhloul, and Luc Paquet. A posteriori error estimation for the dual mixed finite element method for the p-Laplacian in a polygonal domain. *Computer Methods in Applied Mechanics and Engineering*, 196:2570–2582, 2007. (Cited on page 128.)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf

© [M. Fabre], [2015], INSA de Lyon, tous droits réservés
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2015ISAL0057/these.pdf @ [M. Fabre], [2015], INSA de Lyon, tous droits réservés

Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures

Résumé : Cette thèse est consacrée à l'étude de méthodes de domaines fictifs pour les éléments finis. Ces méthodes, initialement conçues pour l'approximation de problèmes d'interactions fluide/structure, consistent à prolonger un domaine réel par un domaine de géométrie simple appelé domaine fictif. On applique ces méthodes à un problème de contact unilatéral sans frottement en petite déformation entre deux corps élastiques séparés par une distance initiale non nulle et possédant par ailleurs des conditions aux bord de type Dirichlet et Neumann. Les deux premiers chapitres sont consacrés à l'introduction des méthodes de domaines fictifs et du problème unilatéral de contact de deux corps élastiques. Le chapitre 3 est consacré à l'analyse a priori et à l'étude numérique de ce problème de contact en domaine fictif avec les conditions aux bords de Dirichlet et de contact qui sont prises en compte à l'aide d'une méthode de type Nitsche. Des résultats théoriques de consistance de la méthode discrète, d'existence et d'unicité sont présentés. Afin d'obtenir une estimation d'erreur a priori optimale, une stabilisation de la méthode de domaine fictif est nécessaire. Ces résultats sont validés numériquement sur des cas tests en dimensions deux et trois. Le chapitre 4 est consacré à l'étude d'un estimateur d'erreur de type résidu d'un problème de contact sans domaine fictif entre un corps élastique et un corps rigide. Les résultats théoriques sont également validés sur deux cas tests numériques : un domaine rectangulaire avec seulement une partie de la zone de contact en contact effectif ainsi qu'un contact de type Hertz en dimensions deux et trois. Le chapitre 5 est une généralisation du chapitre 4 à l'approche domaine fictif et au cas de deux corps élastiques.

Mots clés : Méthodes de domaines fictifs, méthodes d'éléments finis, problème de contact unilatéral, élasticité, méthode de Nitsche, stabilisation, estimateur d'erreur *a priori*, estimateur d'erreur *a posteriori*, résidu.

Fictitious domain methods for finite element methods, application to structural mechanics

Abstract : This thesis is dedicated to the study of the fictitious domain methods for the finite element method. These methods, initially designed for the fluid-structure interaction, consist in immersing the real domain in a simply-shaped and a geometrically bigger domain called the fictitious domain. We apply these methods to a unilateral frictionless contact problem in small deformation of two deformable elastics bodies separated by an initial gap and satisfying boundary Dirichlet and Neumann conditions. The first two chapters are devoted to the introduction of these methods and to the unilateral contact problem. The chapter 3 is dedicated to a theoretical study for Dirichlet and contact boundary conditions taken into account with a Nitsche type method. Some theoretical results are presented : the consistency of the discrete method, existence and uniqueness results. To obtain an optimal *a priori* error estimate, a stabilized fictitious domain method is necessary. These results are numerically validated using Hertz contact in two and three dimensions. The chapter 4 is devoted to the study of a residual-based a posteriori error estimator, without the fictitious domain approach, between an elastic body and rigid obstacle. The numerical study of two tests cases will be performed : a rectangular domain with only a part of the potential zone of contact in effective contact as well as a Hertz contact in two and three dimensions. The chapter 5 is a generalization of the chapitre 4 to the fictitious domain approach and the care of to two elastics bodies.

Keywords : fictitious domain method, finite element method, unilateral contact problem, elasticity, Nitsche's method, stabilization, *a priori* error estimate, *a posteriori* error estimate, residual-based.