
HAL Id: tel-01179610
https://hal.science/tel-01179610v1

Submitted on 23 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Chaos-based crypto and joint crypto-compression
systems for images and videos

Mousa Farajallah

To cite this version:
Mousa Farajallah. Chaos-based crypto and joint crypto-compression systems for images and videos.
Engineering Sciences [physics]. UNIVERSITE DE NANTES, 2015. English. �NNT : �. �tel-01179610�

https://hal.science/tel-01179610v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat

Mousa FARAJALLAH
Mémoire présenté en vue de l’obtention du
grade de Docteur de l’Université de Nantes
sous le label de l’Université de Nantes Angers Le Mans

École doctorale : Sciences et technologies de l’information, et mathématiques

Discipline : Electronique/spécialité: Traitement du signal et des images
Unité de recherche : Institut d’Electronique et de Télécommunications de Rennes UMR CNRS 6164(IETR)

Soutenue le 30 Juin 2015

Chaos-based crypto and joint
crypto-compression systems for images and

videos

JURY

Présidente : Mme Danièle FOURNIER-PRUNARET, Professeur des universités, INSA de Toulouse
Rapporteurs : Mme Christine GUILLEMOT, Directrice de Recherche, IRISA, Rennes

M. Thomas GROSGES, Professeur des universités, Université de Technologie de Troyes
Examinateurs : M. Pascal MOLLI, Professeur des universités, Université de Nantes

M. Calin VLADEANU, Professeur des universités, University Politehnica of Bucharest
Directeur de thèse : M. Safwan EL ASSAD, Maître de Conférences, HDR, Université de Nantes
Co-encadrant de thèse : M. Olivier DEFORGES, Professeur des universités, INSA de Rennes

charlier-s
Zone de texte
ED STIM 503

charlier-s
Note
Accepted définie par charlier-s

Contents

I Chaos-Based Cryptosystems 13

1 Introduction 15
1.1 Cryptography based chaos . 16
1.2 Thesis contributions . 17

2 chaos-based cryptosystems, related work and measurement tools of perfor-
mances 19
2.1 Chaos-based cryptosystems, related work 19

2.1.1 Confusion and diffusion in chaos 20
2.1.2 State of the art . 20

2.1.2.1 Fridrich cryptosystems 20
2.1.2.2 A symmetric image encryption scheme based on 3D

chaotic cat maps . 21
2.1.2.3 Enhanced 1-D Chaotic Key-Based Algorithm for Im-

age Encryption . 21
2.1.2.4 Chaotic block ciphers: from theory to practical algo-

rithms . 21
2.1.2.5 A fast image encryption and authentication scheme based

on chaotic maps . 22
2.1.2.6 An image encryption scheme based on new spatiotem-

poral chaos . 22
2.1.2.7 A new chaos-based fast image encryption algorithm . . 22
2.1.2.8 Zhang et al cryptosystem 23

2.2 Common and standard security evaluation tools 24
2.2.1 Cryptanalysis attacks . 24
2.2.2 Plain-text sensitivity attack . 24
2.2.3 Key sensitivity attack . 26
2.2.4 Histogram analysis . 27
2.2.5 Correlation analysis . 27
2.2.6 Information entropy . 28
2.2.7 Measurement of encryption quality 28
2.2.8 Time performance . 29

3 First Contribution: Design and Realization of Efficient Chaos-based Cryp-
tosystems 31
3.1 Cryptosystem-A: Chaos-based substitution permutation network 32

3.1.1 Encryption structure . 32
3.1.1.1 Substitution layer . 32

3

4 CONTENTS

3.1.1.2 Pre-diffusion . 40
3.1.1.3 Permutation layer . 40

3.1.2 Proposed chaotic generator . 41
3.1.3 Decryption structure . 43

3.1.3.1 Reverse Permutation Layer 44
3.1.3.2 Inverse Pre-diffusion layer 45
3.1.3.3 Inverse Substitution layer 45

3.2 Cryptosystem-B: Chaos-based SPN with authentication process 45
3.3 Cryptosystem-C: Binary diffusion layer and a bit-permutation layer cryp-

tosystem . 49
3.3.1 Description of the encryption process 49

3.3.1.1 Diffusion layer . 50
3.3.1.2 Permutation Layer . 51

3.3.2 Description of the decryption process 56
3.3.2.1 Reverse of the new formulation based on the modified

2-D cat map . 56
3.3.2.2 Inverse Diffusion Layer 57

3.4 Time performance and security analysis 57
3.4.1 Performance of the speed of calculations 57
3.4.2 Plain-text sensitivity attack . 58
3.4.3 Key sensitivity attack . 59
3.4.4 Correlation analysis . 59
3.4.5 Histogram analysis . 64

3.5 Conclusion . 67

4 Second Contribution: Partial Cryptanalysis of Zhang cryptosystem and de-
sign of a very fast and secure cryptosystem 69
4.1 Partial cryptanalysis of the first Zhang cryptosystem 69

4.1.1 The first Zhang cryptosystem . 70
4.1.2 Partial cryptanalysis of the Zhang cryptosystem 71

4.1.2.1 Decreasing the dynamic key space of the whole cryp-
tosystem . 72

4.1.2.2 Chosen plaintext attack on the first Zhang cryptosystem 73
4.1.2.3 Combination of brute force and chosen plaintext attacks 80

4.1.3 Decreasing the UACI and NPCR values significantly 80
4.2 Designe and realization of very fast and secure cryptosystems 86

4.2.1 General concepts . 86
4.2.2 General differences of the proposed cryptosystem with the Zhang

one . 86
4.2.3 First proposed cryptosystem . 87

4.2.3.1 Encryption scheme of the first proposed cryptosystem . 88
4.2.3.2 Decryption scheme of the first proposed cryptosystem . 91
4.2.3.3 Analysis of the first proposed cryptosystem 93
4.2.3.4 Dynamic key space analysis of Fridrich, Zhang and our

cryptosystems . 93
4.2.3.5 Chosen-plaintext attack 94
4.2.3.6 Some specific differences in the diffusion process . . . 95

4.2.4 Second proposed cryptosystem 95

CONTENTS 5

4.2.4.1 Finite Skew Tent Map as diffusion layer 95
4.2.4.2 Analysis of the second proposed cryptosystem 97
4.2.4.3 Dynamic key space analysis 97
4.2.4.4 Chosen-plaintext attack 97

4.2.5 Time and complexity analysis 97
4.2.6 Plain-text sensitivity attack . 99
4.2.7 Key sensitivity attack . 100
4.2.8 Correlation analysis . 102
4.2.9 Histogram analysis . 103

4.3 Example of a real-time application . 106
4.3.1 Real-time computing . 106

4.3.1.1 Issues in conventional real-time computing systems . . 106
4.3.1.2 The deadline mechanism 107
4.3.1.3 Scheduling framework 107

4.3.2 Security in energy harvesting systems 107
4.3.2.1 System model . 107
4.3.2.2 The scheduling issue 108

4.4 Conclusion . 109

II Joint Crypto-Compression 111

5 Video coding and crypto-compression stat of the art 113
5.1 Video compression steps . 113

5.1.1 Prediction . 114
5.1.2 Transform . 114
5.1.3 Quantization . 114
5.1.4 Entropy coding . 114

5.2 H.264/Advance Video Coding (AVC) and scalable extension 115
5.3 High Efficiency Video Coding (HEVC) standard 116

5.3.1 HEVC partitioning . 117
5.3.2 HEVC Intra prediction . 118
5.3.3 HEVC Inter prediction . 118
5.3.4 HEVC transformation and quantization 123
5.3.5 CABAC entropy coding . 123

5.4 Video encryption algorithms - related works 126
5.4.1 MPEG Video encryption algorithms 127

5.4.1.1 I-frames encryption 128
5.4.1.2 A non-compatible four level of security 128
5.4.1.3 Zig-Zag permutation algorithms 128
5.4.1.4 Change the sign bits or the values of DCT coefficients . 128

5.4.2 AVC and SVC encryption algorithms 129
5.4.2.1 Transparent encryption techniqes for AVC and SVC . . 129
5.4.2.2 Digital video scrambling method using Intra prediction

mode . 130
5.4.2.3 Entropy coding encryption in AVC 130
5.4.2.4 Selective video encryption based on AVC 131
5.4.2.5 Fast protection of the AVC by selective encryption . . . 131

5.4.2.6 Fast protection of AVC by reduced selective encryption
of CAVLC . 131

5.4.2.7 Design of new unitary transforms for perceptual video
encryption . 132

5.4.3 HEVC encryption algorithms 132
5.5 Conclusion and discussion . 134

6 Third Contribution: Selective encryption algorithms for Video 135
6.1 Selective video encryption based on chaos system for SHVC 136

6.1.1 Encryptable bit . 137
6.1.2 Chaotic encryption system . 142
6.1.3 Synchronization problem . 144
6.1.4 Experimental configuration . 145
6.1.5 Objective quality and Encryptable Bit (EB) 145
6.1.6 Visual quality . 152
6.1.7 Security analysis . 154

6.1.7.1 Encryption Quality 154
6.1.7.2 Edge differential ratio 156
6.1.7.3 Key sensitivity test . 156
6.1.7.4 Histogram analysis 157
6.1.7.5 Known plain-text attack 158
6.1.7.6 Brute force attack . 159
6.1.7.7 Complexity analysis 159

6.2 Encryption of ROI in HEVC . 164
6.2.1 A brief state of the art . 164
6.2.2 AES in cipher feedback mode 165
6.2.3 ROI encryption solutions in the HEVC 165

6.2.3.1 TSE-HEVC EB . 166
6.2.3.2 MV restriction in the background tile 167
6.2.3.3 Encryption process based on AES-CFB mode 167

6.2.4 Results and analysis . 167
6.2.4.1 Experimental configuration 167
6.2.4.2 Results . 168

6.3 Conclusion and discussion . 169

III Conclusion and Future Works 171

7 Conclusion and Future Work 173

Appendix A: Synthèse des travaux réalisés 189

Appendix B 197

6

* Say, "Indeed, my prayer, my rites of sacrifice, my living and my dying are for Allah ,
Lord of the worlds". (Surat Al-’An ’am 6.162).

I would like to dedicate this Doctoral dissertation to my sons Mohammed and Omar, my
wife, my father , and my mother for their endless love, encouragement and help, to

Martyrs of Palestine.

7

Acknowledgements

Special thanks to my supervisor, Dr. Safwan El Assad, for instructions, guidance, and for
his efforts to orient my thinking. You have been a tremendous mentor for me. I would
like to thank you for encouraging my research and for allowing me to grow as a research
scientist. Your advice on both research has been invaluable, specially in publications.
I would like to express my special appreciation and deepest gratitude to my co-supervisor
Prof. Olivier Deforges for his support, providing me with an excellent atmosphere for
doing research.
I would like to to thank Dr. Wassim, was always help me and work hard with me specially
in the compression part.
I acknowledge and thank my IETR lab for allowing me to conduct my research and pro-
viding any assistance requested, specially image team.
I won’t forget the French government scholarship department. They gave me the oppor-
tunity to pursue my education that improve my academic. REZE municipality where they
gave me a good and comfortable accommodation during this three years. Finally, The
European Celtic-Plus project 4KREPROSYS - 4K ultraHD TV wireless REmote PRO-
duction SYStems

9

Personal Publications

Published Journal paper:

1. Farajallah Mousa, El Assad Safwan and Deforges Olivier, " Fast and secure chaos
based cryptosystem for images", International Journal of Bifurcation and Chaos
(IJBC), Accepted in 15-June-2015, (Q1 journal, H Index: 65).

2. Chetto Maryline, El Assad Safwan, and Farajallah Mousa, "A lightweight chaos-
based cryptosystem for dynamic security management in real-time overloaded ap-
plications." International Journal of Internet Technology and Secured Transactions,
5, no. 3 (2014): 262-274, (Q4 journal, H Index: 4). .

Published and accepted Conference papers:

1. Farajallah Mousa, Hamidouche Wassim, Deforges Olivier, and El Assad Safwan,
"ROI Selective Video Encryption in the HEVC Video Standard", International Con-
ference on Image Processing (ICIP) 2015 to be held from the 27th 30th September
2015, Quebec City, Canada. Accepted in 29-Avril-2015, (H Index: 40).

2. Hamidouche Wassim, Farajallah Mousa, Raulet Mickaël, Deforges Olivier, and El
Assad Safwan, "Selective video encryption using chaotic system in the SHVC ex-
tension," in 40th IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 19th 24th April 2015, Brisbane, Australia, April 2015, Bris-
bane, Australia, 5 Pages, (H Index: 70).

3. El Assad Safwan, Farajallah Mousa, and Calin Vladeanu, " Chaos-based Block
Ciphers: An Overview”, IEEE, 10th International Conference on Communications,
COMM-2014, Bucharest, Romania, May 2014, pp. 23-26.

4. Farajallah Mousa, El Assad Safwan, and Chetto Maryline, "Dynamic adjustment of
the chaos-based security in real-time energy harvesting sensors." In Green Comput-
ing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom),
IEEE International Conference on and IEEE Cyber, Physical and Social Comput-
ing, pp. 282-289. IEEE, 2013, (H Index: 2).

5. Farajallah, Mousa, Fawaz Zeinab, El Assad Safwan, and Deforges Olivier, "Effi-
cient image encryption and authentication scheme based on chaotic sequences." In
SECURWARE 2013, The Seventh International Conference on Emerging Security
Information, Systems and Technologies, pp. 150-155. 2013, (H Index: 1).

6. Fawaz Zeinab, El Assad Safwan, Farajallah Mousa, Khalil Ayman, Lozi René, and
Deforges Olivier, "Lightweight chaos-based cryptosystem for secure images." In
Information Science and Technology (ICIST), 2013 International Conference on,
pp. 26-30. IEEE, 2013.

7. Chetto Maryline, Noura Hassan, El Assad Safwan, and Farajallah Mousa, "How
to guarantee secured transactions with QoS and real-time constraints." In Internet
Technology And Secured Transactions, 2012 International Conference for, pp. 40-
44. IEEE, 2012.

10

Submitted Journal papers:

1. Hamidouche Wassim, Farajallah Mousa, Raulet Mickaël, Deforges Olivier, and El
Assad Safwan, "Real Time Selective Video Encryption based on stream cipher in
the Scalable HEVC Extension", IEEE Transactions on. Circuits and Systems for
Video Technology, Submission date:23-Dec-2014, 13 Pages.

2. Farajallah Mousa, El Assad Safwan and Deforges Olivier, "Partial cryptanalysis of
the first Zhang algorithms", International Journal of Bifurcation and Chaos (IJBC),
Submission date:27-Mar-2015, 17 Pages.

3. El Assad Safwan and Farajallah Mousa, "A New Efficient Structure of a Cryptosys-
tem based on Two Chaotic Layers: a Binary Diffusion Layer and a Bit-Permutation
Layer", IEEE Systems Journal. under submission, 13 Pages.

11

I
Chaos-Based Cryptosystems

13

1
Introduction

The root of Cryptology is coming from the Greeks; it is the science that studies the theo-
retical and practical techniques for secure communications. It is divided into two related
branches: cryptography and cryptanalysis. The cryptographer tries to find some tech-
niques to guarantee the message secrecy and sometimes to ensure the authenticity of that
message, while the cryptanalyst tries to cancel the cryptographer’s work by breaking the
secrecy of the message to retrieve the original one or by forging a message to be accepted
as authentic one.

By using cryptography many goals can be achieved, and these goals can be all achieved
at the same time in one application, or only some of them can be achieved. The main goals
are [85, 4]:

• Confidentiality: ensuring that nobody can understand the received message except-
ing the authorized persons.

• Authentication: confirming and testing the identity of an entity, by assuring that the
communicating entity is the one that it claims to be.

• Integrity: ensures that the received message has not been altered in any way from
its original form.

• Non-Repudiation: a mechanism to prove that the sender really sent the message, so
the recipient cannot claim that the message was not sent.

• Access Control: the process of preventing unauthorized use of resources, i.e., it
controls who can have access to the resources, when he can access, under which
restrictions and conditions the access can be granted, and finally, what is the per-
mission level of a given access.

• Signature: a method to link or bind information to an entity or to prove the entity
authorship.

• Authorization: the owner gives the authority for someone to do something on behalf
of him.

15

Until the 1970s, cryptography was the exclusive domain of the military and governments.
Nowadays, with the development of both computer and Internet technology, and with
the globalization of the exchanges (Internet, email, e-business,etc.) of multimedia data
such as: images, videos, audios, etc., is being used more and more widely used in many
applications, including banks, commerce, education, hospitals, mobile communications,
wireless sensor networks (WSNs), etc. These applications often include sensitive data to
be protected before transmission, and only authorized users can have access (by using a
secret key) to the useful information at any time. The confidentiality of data is mainly
assured by encryption, which transforms the data from the original form (plaintext) into
unreadable and non understandable form (ciphertext). A universal assumption of cryp-
tography established by A. Kerckhoffs in the nineteenth century is that the secrecy must
reside entirely in the secret key [108]. This means that the cryptanalyst has full access to
the cryptographic algorithm and its implementation.
The cryptography field also includes, in addition to the encryption/decryption algorithms
that can be Symmetric (Secret Key)/Asymmetric (Public-Key), protocols that deal with
the application of cryptographic algorithms. The Transport Layer Security (TLS) and its
predecessor, Secure Sockets Layer (SSL), which are used by web browsers to connect
securely to web servers, are cryptographic protocols.
In order to secure a communication over public networks, cryptography techniques, such
as symmetric and asymmetric key encryption can be used. In a few words, in the sym-
metric key encryption, the same encryption and decryption key is shared by both of the
sender and the receiver.
Asymmetric or public key encryption has a pair of public and private keys, i.e., one at the
sender and the other at the receiver. Symmetric encryption has two man advantages over
asymmetric encryption: it is faster, since it does not consume large time in the encryption
and the decryption processes, the key generation is less complex. However, the prob-
lem of sharing the secret key between the sender and the receiver is more complicated
in symmetric encryption. In fact, public key cryptography is used to solve the problem
of sharing the secret key, which is produced by symmetric key encryption. Symmetric
algorithms are divided into two types: stream and block ciphers. The former operates on
the plaintext as a single bit or byte or N-bit sample at a time. While the latter operates on
the blocks of the plaintext, having a fixed size of Nb (NB is the block size in bits) bits.
Over the time, cryptanalysis on Internet and Internet-attached systems is rapidly growing,
and attack techniques become more automated, causing significant damage. Moreover,
these days, the hackers are able to penetrate systems with less information. The designer
of a cryptosystem tries to increase its resistance against cryptanalysis techniques: the
penalty is in increasing calculus time and the complexity structure of the designed cryp-
tosystem. Besides, for many applications which demand both real-time performance and
high level of security, such as: private multimedia data exchanged by portable devices
over the wireless networks and sensitive data exchanged in wireless sensor networks, we
need to design cryptosystems with some constraints, such as: low complexity, small mem-
ory, and limited energy resources. Designing cryptosystems to secure multimedia data,
by taking into account the previous constraints, is a big challenge [70, 151, 106].

1.1 Cryptography based chaos
Today, based on some important properties of chaos, such as ergodicity, quasi-randomness,
high sensitivity to the changes of control parameters and initial conditions, etc., chaos

16

is a hot research field in secured communications. Recently, a variety of chaos-based
cryptosystems have been investigated. Most of them are based on the Fridrich structure
[44], which is based on the traditional confusion-diffusion architecture proposed by Shan-
non, [8, 28, 22, 14, 21]. Compared to the conventional cryptographic algorithms (DES,
3DES, AES, etc.), the chaos-based cryptosystems provide several advantages, such as:
very high security level, high speed especially in stream ciphers, increased flexibility,
increased modularity, low computational overheads and computational power, and eas-
ier to be implemented. These features make them more suitable for large scale-data
encryption, such as images and videos. Indeed, with a fixed block size, the advanced
encryption standard (AES) is not suitable for selective video encryption and stream ci-
phers, [108, 36, 104, 96, 49]. For example, in selective encryption of the real-time video
applications, we need to wait to have 128 bits before the starting of encryption process.
This is an inconvenience for the latency of the system. Experimental results show that the
chaos-based encryption algorithms can achieve security issues in efficient and adaptive
ways, [2, 46, 69, 52, 15, 80, 16, 22, 129, 45, 44, 165, 84, 83]
. Generally, different algorithms encrypt different data volumes and thus get different se-
curity and efficiency (computational time). In direct encryption, the multimedia content
or compressed content is encrypted directly with a novel or traditional cipher directly. In
partial encryption, only some significant parts of the multimedia content are encrypted,
while the others parts are lefts unencrypted. In joint compression encryption, the en-
cryption operation is combined with a compression operation, and they are implemented
simultaneously. Naturally, direct encryption often encrypts the largest data volumes, and
thus, it has the highest security and lowest efficiency. Partial encryption and joint com-
pression encryption, reduce the encrypted data volumes, and thus, get higher efficiency
and necessary level of security for a given application [70]. In perceptual encryption, mul-
timedia content is encrypted under the control of the encryption strength that determines
the perceptibility of the encrypted multimedia content. A typical case of perceptual en-
cryption is secure multimedia preview, in which the multimedia content is first encrypted
with slight encryption strength and decrypted after payment. In scalable encryption, the
scalable multimedia content is encrypted layer by layer, in a progressive manner, accord-
ing to the significance of the layers. It can be used in secure media trans-coding. When
the encrypted media content is transmitted from the Internet to bandwidth-limited mobile
networks, the significant layers can be cut off directly without decryption [70].

1.2 Thesis contributions
In this study, we designed, implemented, and evaluated the performance in terms of the
security level and of the structure complexity (speed of calculus) of some chaos-based
cryptosystems for images and videos. All of them have a high security level, while keep-
ing high throughput encryption compared to most chaos-based cryptosystems of the lit-
erature. We analyzed the security level of the proposed cryptosystems, relative to the
different types of well-known attacks. Normally, with enough effort, any practical cryp-
tosystem can be cryptanalyzed. The question is how much effort it takes to cryptanalyze a
system. An easy way to quantify the workload of an attack is to compare it to an exhaus-
tive search. That means the attacker tries all possible values for some target objective,
like the key. If an attack requires 2120 steps of works, then this corresponds to an ex-
haustive search for 120-bit value. Any cryptosystem designed nowadays needs at least
2128 steps in order to resists this type of trivial attacks. Notice that, for some multimedia

17

encryption applications, the encryption algorithm may be regarded as secure if the cost
for breaking it is no smaller than the one paid for the multimedia content. For example,
in broadcasting, the news may be of no value after an hour. Thus, if the attacker cannot
break the encryption algorithm over the course of an hour, then the encryption algorithm
is regarded as secure in this application [41, 70], which means the cryptanalysis should
be on the given time. Otherwise, it will be useless because is not a real-time cryptanalysis.

This thesis is organized in two parts. In the first part of this thesis, including chap-
ter 2, there are introduced the concepts, the state of the art, and the common security
evaluation tools and efficiency tools. In chapters 3 and 4, we propose four efficient chaos-
based cryptosystems, defined on finite numbers, for real-time applications on images and
videos. All of them are blocks ciphers and the first two cryptosystems are based on the
substitution-permutation network (SPN). The substitution layer is achieved by a proposed
modified Finite Skew Tent Map (FSTM) to overcome following problems: fixed point,
restriction of the key space and limitation of mapping between plaintext and ciphertext,
and vice versa. The structure of the third cryptosystem is new and efficient. It is based
on two chaotic layers: a binary diffusion layer of pixels, followed by a bit-permutation
layer. The permutation process is achieved by a proposed formulation of the 2-D cat map
that allows an efficient implementation in C code. The fourth cryptosystem, which is
4 times faster than the other cryptosystems, with a very high security level is designed,
based on a partial cryptanalysis that we performed against one of the best chaos-based
cryptosystems, recently published by Zhang in 2013. In this cryptosystem, the confusion
process (based on the modified 2D-cat map) and the diffusion process (based on the mod-
ified FSTM as a generator) are performed simultaneously, in a single scan of plain-image
pixels. In the second part, (chapter 5), we introduce all necessary concepts and defi-
nitions to understand the High Efficiency Video Coding (HEVC) and its scalable version
(SHVC), for a cryptographer researcher working on video encryption. Chapter 6 describes
in details our contribution on designing two fast and secure selective chaos-based crypto-
compression systems to encrypt and secure the HEVC and its scalable version SHVC. In
the first crypto-compression system, we propose a new algorithm to define the encrypt-
able bit in the bit stream of the HEVC and the SHVC. The proposed solution encrypts a
set of sensitive SHVC parameters with a minimum delay and complexity overheads. The
encryption process is performed at the CABAC bin string level and fulfills both constant
bit rate and format compliant video encryption requirements. It preserves all SHVC func-
tionalities, including bit stream extraction for mid-network adaptation, error resilience,
and real-time SHVC decoder. The second crypto-compression system protects the Re-
gion Of Interest (ROI) of the HEVC based on the tile concept. It performs encryption
at the bit stream level by encrypting all HEVC syntax elements within the ROI tiles, or
a selective encryption of the ROI tiles under constant bit rate and format compliant re-
quirements. To avoid temporal propagation of the encryption outside the ROI boundaries
caused by inter prediction, the motion vectors of non ROI regions are restricted inside the
non encrypted tiles in the reference frames.

18

2
chaos-based cryptosystems, related
work and measurement tools of
performances

In section 2.1 of this chapter, and also in chapter 3, we give a very brief description of
the main recent chaos-based cryptosystems of the literature, which have a direct rela-
tion to our contributions. Section 2.2 presents some metrics and measurement tools of
performances that are used to quantify the resistance of cryptosystem’s and of crypto-
compression systems against some typical attacks and for evaluating their efficiency.

2.1 Chaos-based cryptosystems, related work
In any public communication network, such as satellite, mobile-phone, and the Internet,
it is almost impossible to prevent unauthorized people from eavesdropping. To use the al-
ready existed public communication networks and to maintain the secrecy, cryptographic
techniques are applied [109]. The security of image and video content has become in-
creasingly important for many applications, including video conferencing, medical imag-
ing, industrial, military imaging systems, private multimedia messages exchanged by
portable devices over the wireless networks and sensitive data exchanged in wireless sen-
sor networks, etc.
Chaos theory has been established since 1970s [89], it is a field of mathematics and has
many applications in different branches of knowledge, including engineering, physics,
economics, philosophy, and biology.
A chaotic system is a deterministic system, but it has a pseudorandom behavior. It is a
nonlinear system that has a large sensitivity to the initial conditions and control parame-
ters [59]. Matthews has published a first paper on the derivation of a chaotic encryption
algorithm in 1989 [146].
Today, chaos-based encryption algorithms have been widely used in image and video en-
cryption systems. Research has shown that chaotic systems are extremely sensitive to the
changes of control parameters and initial conditions. They have a pseudorandom behav-

19

ior for non authorized parties [8, 57, 28, 22, 14, 150, 21]. Experimental results show that
the chaos-based encryption algorithm can achieve security issues in efficient and adap-
tive ways as compared to the classical encryption algorithms (such as DES and AES)
[2, 46, 69, 52, 15, 80, 16, 49]. Thus, chaos has become a hot research topic over the
last decades, and many chaos-based encryption algorithms have been recently introduced
[22, 129, 45, 44, 165, 84, 83, 36].
Most of described chaos-based encryption-decryption schemes are blocks ciphers and
they are based on the substitution-permutation network (SPN). In a chaos-based encryp-
tion algorithm, the substitution and the permutation operations are done in accordance
with chaotic sequences to achieve the required diffusion and confusion effects.

2.1.1 Confusion and diffusion in chaos
In order to be robust against several types of attacks, any cryptosystem must achieve
the confusion and diffusion effects. This has been explained in Shannon’s famous paper
[123] "In a strongly ideal cipher all statistics of the cryptogram are independent of the
particular key used". Confusion property aims to make the statistical relationship between
the cipher-image and the secret key as complex and involved as possible, whereas the
diffusion property aims to make the statistical relationship between the plain image and
the cipher-image as complex as possible. The confusion principle can be described as:
the key should not relate to the cipher-text and each bit/byte of the cipher-text should
depend on a complex mathematical relation of the key. The diffusion effect principle can
be described as: each plain-text byte/bit affects many cipher text bytes/bits. The former
can be achieved using chaotic maps for permutation and/or substitution, whereas the latter
can be achieved using chaotic maps to transfer the single byte/bit effect to other bytes/bits.

2.1.2 State of the art
The idea of using chaos for image encryption has become a hot research topic during the
last two decades, but in fact, the basic and the definition of this idea is very old and it
was founded in Shannon’s paper [123]. A large number of chaos-based cryptosystems for
image encryption were introduced during the last decade. The most cited and important
chaos-based stucture was introduced by Fridrich in his research from 1997 [44].

2.1.2.1 Fridrich cryptosystems

In 1997, a chaos-based encryption scheme was introduced by Fridrich [44, 45]. It became
the core structure of the most chaos-based cryptosystems and it has been widely refer-
enced since 1997. The general architecture of such cryptosystem is shown in Fig.2.1.

Figure 2.1: Encryption scheme of Fridrich

20

In Fridrich scheme, the confusion is achieved by permuting all the pixels as a whole,
using one of the three types of 2-D chaotic maps, namely, Standard map, Cat map, and
generalized Baker map. For example, using the 2-D BAKER chaotic map, the new byte
position is given by (2.1) :

B(x′, y′) = (2x, y
2
) when 0 ≤ x < 1

2

B(x′, y′) = (2x− 1, y
2

+ 1
2
) when 1

2
≤ x ≤ 1

(2.1)

The diffusion process changes sequentially the pixel values, in such a manner that the
change to a particular pixel depends on the accumulated effect of all previous pixel values.
It is implemented using the following mathematical equations:

vk = vk +G(vk−1)Mod 256
v−1 = initial value

(2.2)

The function G is an arbitrary function of the gray level. It was chosen as a fixed random
permutation, which can be implemented using a simple lookup table.

In [74], Lian et al., analyzed the security level of the Fridrich scheme. They found
some weaknesses and proposed some improvements to overcome these security failures.
In 2010, the Fridrich encryption algorithm was broken by Solak et.al., [132]. It has been
proved that the Fridrich algorithm could be broken using a chosen cipher-text attack. Us-
ing this type of attack, some secret permutation of the algorithm has been revealed.

2.1.2.2 A symmetric image encryption scheme based on 3D chaotic cat maps

Guanrong et al, introduced a symmetric image encryption scheme based on 3D chaotic
maps. They generalized the 2D into 3D chaotic maps to shuffle the pixel positions and to
confuse the relationship between the plain and the cipher images. However, the speed of
their algorithm is not high for real time applications. Also, the propagation error is large,
since it works in cubes and each cube affects all the others [22].

2.1.2.3 Enhanced 1-D Chaotic Key-Based Algorithm for Image Encryption

In [129], a robust image encryption algorithm called Enhanced 1-D Chaotic Key-Based
Algorithm for Image Encryption (ECKBA) was proposed. The algorithm performs r
rounds of an SP-network on each pixel. Two PWLCM maps are used, one in the sub-
stitution process (addition modulo 256 and bitwise operations) and the other one in the
permutation process. The permutation is of degree 8, and its index in the full symmet-
ric group S8 is sorted in lexicographical Cartesian of i order (see appendix of reference
[129]). The weakness of this algorithm is the error propagation caused by the used per-
turbation technique and the low encryption speed.

2.1.2.4 Chaotic block ciphers: from theory to practical algorithms

Masuda et al., [84] considered two classes of chaotic finite-state maps: key-dependent
chaotic S-boxes and chaotic mixing transformation. They proposed two chaotic block
ciphers, i.e., uniform and Feistel. In fact, they estimated bounds for differential and linear

21

probability to make their cryptosystems resistant to differential and linear cryptanalysis.
They proposed an interesting nonlinear map, namely "Skew tent map" and its two ver-
sions as a substitution layer. In chapter 3, we present, analyze, and point out in details
some existing drawbacks of their Skew tent map and we propose a modified version that
overcomes the previous drawbacks.

2.1.2.5 A fast image encryption and authentication scheme based on chaotic maps

Yang et al. [159] derived a fast image encryption and authentication scheme. A key hash
function is introduced to generate a 128 bit hash value from both the plain image and
the secret hash keys. The hash value plays the role of a secret key for the encryption
and the decryption processes, while the secret hash keys are used to authenticate the
decrypted image. Permutation and substitution are performed in a single scan of the plain
image pixels. The permutation process is achieved by the modified standard map and the
substitution process (based on a logistic map) is done in such a way that the change of a
particular pixel depends on the accumulated effect of all previous pixel values.

2.1.2.6 An image encryption scheme based on new spatiotemporal chaos

Song et al. presented a new image encryption scheme based on a new spatiotemporal
chaos. From the presented security resuls, it is clear that this algorithm has good security
level, but it has also a slow execution time of encryption/decryption. Indeed, they used a
sort operation, which is a time consuming operation [133].

2.1.2.7 A new chaos-based fast image encryption algorithm

In their paper, Wang et al [152] introduced the idea of mixing the two layers of permuta-
tion and diffusion into a single layer. As a result, one image scanning is required instead
of two scanning stages. The main contribution of this paper was to accelerate the encryp-
tion algorithm. This idea is translated into dependent permutation-diffusion layer in one
of our proposed cryptosystems, described in chapter 4.
The main steps of Wang et.al., cryptosystem [152] are summarized in the following:

1. Division step: The main image is divided into a number of blocks (num), each ons
is 64 pixels.

num =
L× P

64
(2.3)

Where L and P are the height and the width of the image, respectively.

2. First generation step: In this step, the used keys K0, K1, ...K15 are generated, and
each one is an 8-bit number.

3. Second generation step: 64 pseudorandom values are generated from the spatiotem-
poral chaotic map [55] (for more information on how these numbers are generated,
see [152]). These pseudorandom values are defined below as Φ(i, j).

22

4. Diffusion step: The pixel values inside each block are modified based on the fol-
lowing equation:

Gt(i, j) = cycl{X, Y }
X = [Pt(i, j)⊕ Φ(i, j) + Ct(i− 1, j)]Mod G
Y = LSB3(Ct(i− 1, (j − 1)mod 8)⊕ Φ(i, j))

(2.4)

Where:
Gt(i, j) is the number of levels in the gray image (here is 256 levels) and is per-
formed for all pixels in the tth block.
Pt(i, j) and Ct(i, j) are the plain and the ciphered pixels at i and j positions, re-
spectively.
Ct(i − 1, j), Ct(i, j − 1) and Ct(i − 1, (j − 1) mod 8) are the previous ciphered
pixels. The values of ciphered pixels at the negative indexes are set into Kj+8.
cycl{X, Y } is a function to perform a left cyclic shift of X by Y .
LSB3(f) denotes the three least significant bits of f .

5. Moving block positions: A block at the position t is moved to a new position ac-
cording to the following equation:

tnew = bX(0)× numc (2.5)

X(0) is a generated value from the used chaotic map. If the tnew is a non-visited
place, then the block is moved to this place; otherwise, the tnew is incremented until
the new value point to a non-visited place. As not all pixels inside a given block
are permuted, this step is necessary to increase the security of this model to the
statistical analysis attacks.

6. Exchanging lattice values: The pixelsC(7, i) andC(7, (i+d)mod 8) are exchanged,
where d is calculated as:

d = LSB3(C(7, 0)) (2.6)

7. First Block pixel exchange: C0(0, s) is exchanged with Ckl(7, 7) where:
s = LSB3(kl)

kl =
⌊
[K0⊕K1⊕K2⊕...K15]×num

256

⌋
Steps, 3→ 6 are performed for all blocks, and repeated R rounds until the required secu-
rity level is reached.

2.1.2.8 Zhang et al cryptosystem

Finally, two fast and secure cryptosystems were proposed by Zhang et al., [166]. To
the best of our knowledge, these cryptosystems renowned very secure against attacks,
and faster than the previous chaos-based cryptosystems. In chapter 4, first, we describe,
analyze and partially break the first Zhang cryptosystem. Second, we design and realize
a very robust and fast chaos-based cryptosystem.

23

2.2 Common and standard security evaluation tools
In this section, we give the definition of the main known attacks and then, we describe
in detail the well-known statistical security measurements and evaluation tools. These
measurements and tools are used in the chapters 3, 4, and 6.

2.2.1 Cryptanalysis attacks
Based on Kirchhoff’s principle, the security of the encryption algorithm should only be
based on the secret key and all other system parts should be known for the public [54]. A
cryptanalyst tries to break the cipher without knowing the secret key, and this with several
levels of difficulties based on the available resources:

1. Cipher-text only attack: A group of cipher-texts is available for the attacker; he
wins the game if he finds the corresponding plain-text. It is logical that this type of
complexity is based on the amount of available cipher-texts (i.e., the difficulty for
the attacker is increased when the cipher-text is decreased).

2. Known plain-text attack: It is easier for the attacker to use it. To put it simply, the
attacker has a group of plain-texts and the corresponding cipher-text; by the way,
this type includes the previous one.

3. Chosen plain-text attack (the easiest one for the attacker): The attacker has access to
the system without knowing the secret keys. Then, he has the possibility to choose
a plain-text message and to encrypt it.

4. Chosen cipher-text attack: The attacker chooses the cipher-text and obtains the
corresponding plain-text using the decryption system, without knowing the secret
key. In this type of attack, the attacker’s objective is to find the secret key.

The cryptanalysis research papers show that the security of ciphers, which is based only
on statistical analysis, can be partially or completely broken down [93, 101, 150, 132, 56,
47, 9, 131, 29, 102].

2.2.2 Plain-text sensitivity attack
A cryptosystem should be sensitive to one bit change in the plain-text. This requirement
is the most important to resist the known and the chosen plain-text attacks [74, 81]. In a
chosen plain-text attack, more than one plain-text (with one-bit changes between them) is
selected to analyze the difference between their corresponding cipher-texts. The measure-
ment tool to test the sensitivity of any cryptosystem to these attacks is carried out based
on the following procedure:

1. Select P1 as the first plain image.

2. Change one bit in P1 and name it as P2. (i.e., P1 and P2 are exactly the same except
for one bit; this bit is chosen to be located in the beginning, middle or the end of the
first block; the plain-text results are calculated as an average of these three cases).

3. Both images (P1 and P2) are encrypted using the same secret key.

4. The previous encryption process produces two cipher images C1 and C2.

24

5. Then, a group of statistical security tests is applied on the ciphered imagesC1 and
C2.

Most researchers use two security parameters to measure the resistance of any chaos-
based cryptosystem for plain-text sensitivity attacks. These parameters are: the Number
of Pixel Change Rate (NPCR) and the Unified Average Changing Intensity (UACI); they
are given by the following equations, respectively:

NPCR =
1

L× C × P
×

P∑
p=1

L∑
i=1

C∑
j=1

D(i, j, p)× 100% (2.7)

where

D(i, j, p) =

{
0, if C1(i, j, p) = C2(i, j, p)

1, if C1(i, j, p) 6= C2(i, j, p)
(2.8)

UACI =
1

L× C × P × 255
×

P∑
p=1

L∑
i=1

C∑
j=1

|C1(i, j, p)− C2(i, j, p)| × 100% (2.9)

In the previous equations, i, j and p are the row, column, and plane indexes of the image,
respectively. L, C and P are, respectively, the length, width, and plane sizes of the image.
Figure.2.2 shows a schematic view of the plain-text sensitivity attack.

Figure 2.2: Plain-text sensitivity attack

The optimal NPCR value is 99.61%, and the optimal UACI value is 33.46% [79, 157].
The above two metrics (NPCR, UACI) are usually used to measure the resistance of a
proposed cryptosystem against the differential attacks introduced by Eli Biham and Adi
Shamir [17].
The previous metrics are necessary but not sufficient to ensure that the proposed cryp-
tosystem is resistant against plain-text sensitivity attacks. Then, a new metric mea-
surement, the Hamming Distance (HD) is used to quantify the avalanche effect. The
Avalanche effect is achieved for any block cipher, when a small change (for example,
flipping a single bit) in either the plain-text or the secret key, causes a drastic change in
the cipher-text (e.g., half of the output bits are flipped), [82]. Therefore, this evaluation
test is used to measure the resistance of any cryptosystem to the plain-text and the key

25

sensitivity attacks.
The HD is defined by:

HD(C1, C2) =
1

|Ib|

|Ib|∑
K=1

(C1(K)⊕ C2(K)) (2.10)

where |Ib| = L × C × P × 8, is the size of the image in bits. The optimum HD value
is 50%. A good block cipher should produce an HD close to 50% (probability of bit
changes, which means that a one bit difference in plain-image will make every bit of the
corresponding cipher-image change with a probability of a half [150]). Therefore, the
plain-text sensitivity attack would become a useless attacking method.

2.2.3 Key sensitivity attack

Key sensitivity is extremely crucial for any cryptosystem. A cryptosystem has a high
security level relative to the key sensitivity attack if a slight change in the secret key will
produce a completely different ciphered image [94]. The scenario of the key sensitivity
attack, which is almost identical to the plain-text sensitivity attack, is as follows:

1. Only one plain-text is used for encryption process P1 = P2 = P .

2. Two secret keys (i.e., K1 and K2) which different in one bit are used.

3. P is encrypted using K1 to obtain C1.

4. P is encrypted using K2 to obtain C2.

5. Then, the equations of the NPCR, UACI and HD(2.7, 2.8 and 2.10) are used to
evaluate the key sensitivity attack.

Figure.2.3 shows a schematic view of the key sensitivity attack.

Figure 2.3: Key sensitivity attack

26

2.2.4 Histogram analysis

One of the most common cryptosystem attacks is the one based on statistical analysis.
A cryptosystem is considered to be strong against these attacks, if the encrypted image
histogram is uniformly distributed.
The visual test is necessary, but it is not sufficient. To ensure image uniformity, the chi-
square test is applied (see equation (2.11)) to statistically confirm the uniformity of the
histogram:

χ2
exp =

Q−1∑
i=0

(oi − ei)2

ei
(2.11)

In equation (2.11),Q is the number of levels (hereQ = 256), oi is the observed occurrence
frequency of each color level (0-255) on the histogram of the ciphered image, and ei
is the expected occurrence frequency of the uniform distribution, given here by ei =
L×C×P

Q
. For a secure cryptosystem, the experimental chi-square value must be less than

the theoretical chi-square one, which is 293 in case of α = 0.05 (α here is the level of
significance) and Q = 256 [66].

2.2.5 Correlation analysis

Correlation analysis is also one of the statistical attacks that are used to cryptanalyze the
cryptosystem. It should not give any information of the used secret key or any partial
information of the original plain image. This means that the encrypted image should be
greatly different from its original version. Correlation analysis is one of the regular and
standard methods to measure this property. Indeed, it is well-known that adjacent pixels in
the plain images are very redundant and correlated. So, in the encrypted images, adjacent
pixels should have a redundancy and a correlation as low as possible. To test the security
of any new algorithm, regarding to this type of attacks, first N pairs of adjacent pixels
in vertical, horizontal, and diagonal directions are selected from the plain image and its
ciphered version. Then, the following mathematical equations are used to calculate the
correlation coefficient [133]:

ρxy =
cov(x, y)√
D(x)

√
D(y)

(2.12)

Where

cov(x, y) =
1

N

N∑
i=1

([xi − E(x)][yi − E(y)]) (2.13)

D(x) =
1

N

N∑
i=1

(xi − E(x))2 (2.14)

E(x) =
1

N

N∑
i=1

(xi) (2.15)

In the above equations, xi and yi are the values of the two adjacent pixels in the plain
image or the corresponding ciphered image.

27

2.2.6 Information entropy
The image pixel values are ranging from 0 up to 255. In a robust cipher algorithm, the
occurrence probability of any pixel should be the same (or almost the same). The random
behavior of the encrypted message can be evaluated using the entropy information defined
by:

H(C) =

Q−1∑
i=0

Pro(ci)× log2

1

Pro(ci)
(2.16)

Where H(C) is the entropy of the ciphered image C, Pro(ci) is the occurrence number
of each level (i = 0, 1, 2...255).
In case of equal probability levels (Pro(ci) = 2−8), the information entropy is maximal,
H(C) =

∑256−1
i=0 2−8 × log2 256 = 8, according to (2.16).

2.2.7 Measurement of encryption quality
The difference between the frequency of occurrence for each byte level before and after
encryption is called Encryption Quality (EQ), and is defined by [6]:

EQ =

∑255
i=0 |oi(P)− oi(C)|

256
(2.17)

where oi(C) are the observed occurrence for the byte level i in the ciphered image C, and
oi(P) are the observed occurrences of the same byte level i in the plain image P .
Thus, the larger the value of EQ, the higher the level of security of the cryptosystem. For
a need of comparison, it is necessary to estimate the optimal value of EQ. For that, below
we propose a derivation from equation 2.17 to find the maximal value of EQ, denoted as
EQmax:

EQmax =
510× L× C

2562
(2.18)

where L and C are the line and the column of the gray image/frame. The maximal value
of the EQ is derived, based on the following two assumptions:

1. For an encryption algorithm, the bad original image is the one that has a very low
entropy, and the worst case is when all pixels have the same value, for example, all
pixels are black or white. Therefore, the total number of occurrences of the pixel
i1 in the original image P is oi1(P) = L × C, where i1 ∈ {0, 255}. Moreover, the
total number of occurrences of the pixel i2 (i2 is any pixel except i1) in the plain
image P is oi2(P) = 0, where i2 ∈ {0, 255} and i2 6= i1.

2. A very secure algorithm should produce a ciphered image in which all pixels are
equally distributed. Therefore, the total number of occurrences of any pixel i in the
ciphered image is oi(C) = L×C

256
, where i ∈ {0, 255}.

Based on these two assumptions and using equation (2.17), we derive EQmax as follows:

EQmax =
|L×C
256
− L× C|+ |L×C

256
− 0| × 255

256
(2.19)

After simplification, we find:

EQmax =
510× L× C

2562
(2.20)

28

2.2.8 Time performance
To quantify the time performance of any cryptosystem, first, we have to analyze the com-
plexity of the algorithm in terms of the used logical and mathematical operations, and
read-write memory operations. Second, the performance is determined by evaluating the
running speed that can be measured by: the average encryption/decryption times, the en-
cryption throughput, and the needed number of cycles to encrypt one byte. The encryption
throughput (ET) and the number of cycles, which are required to encrypt or decrypt one
byte, are defined as:

ET =
ImageSize(Byte)

EncryptionT ime(second)
(2.21)

Number of cycles per Byte =
CPU Speed(Hertz)

ET(Byte)
(2.22)

The last equation permits to compare the running speed of different cryptosystems work-
ing on different platforms.

29

3
First Contribution: Design and
Realization of Efficient Chaos-based
Cryptosystems

The process of designing and developing a chaos-based cryptosystem, starts by identi-
fying the needed requirements of the application: degree of the security level, time and
memory consuming, and if it is designed to support a real time application.
In this chapter three chaos-based cryptosystems to secure transmitted images are designed
and realized. The realized cryptosystems are very secure and they are faster than many
chaos-based cryptosystems of the literature. All of them are defined on finite numbers
and can be used for real time applications.
The first and the second cryptosystems use the same substitution process, based on Fi-
nite State Skew Tent Map (FSTM), and the same process of pixel-permutation, based
on 2-D cat map. The main difference between these two cryptosystems is that, the first
cryptosystem uses a pre-diffusion process to enhance and accelerate the process of diffu-
sion while the second cryptosystem uses a hash function. The hash function generate the
secret key of the chaotic generator that provides the dynamic keys for the substitution-
permutation layers, and the secret hash key is used to authenticate the decrypted image.
The first cryptosystem is faster than the second one, while the later is very immune against
chosen plaintext attack. The structure of the third proposed cryptosystem is new and ef-
ficient. It is based on two chaotic layers: a binary diffusion layer of pixels, followed by
a bit-permutation layer. Moreover, the permutation process is achieved by a proposed
formulation of the 2-D cat map that allows an efficient implementation in C code. The
three realized cryptosystems use an implemented simple version of a chaotic generator
published by El Assad et Noura in a Patent [37]. Below we describe in details the realized
three cryptosystems. The first cryptosystem (Crypto-A) is introduced in details in sec-
tion 3.1, [38]. the implemented chaos-based generator for all cryptosystems is presented
in section (3.1.2). The second cryptosystem, (Crypto-B) is presented in section 3.2, [39].
The third cryptosystem (Crypto-C) is described in details in section 3.3, [35]. A compara-
tive study of performance, in terms of security and calculation time, of the three proposed
cryptosystems, is given in the section 3.4, before concluding in section 3.5.

31

3.1 Cryptosystem-A: Chaos-based substitution permuta-
tion network

The proposed cryptosystem consists of four components: a substitution layer, a diffusion
layer, a permutation layer, and a chaotic generator. The structure of the cryptosystem is
shown in Figure.3.1, for the encryption part and in Figure.3.4, for the decryption part.

3.1.1 Encryption structure
During the encryption process, the plain image is divided into N blocks, with N =
imagesize/blocksize, where the block size value is chosen to be a square value. The im-
age size must be a multiple of the block size, so, in case of that image size is not a multiple
of the block size, we pad the last block by (block size−mod (image size, block size))
bytes. The divided blocks are ciphered one by one by applying the substitution layer on
the block for rs times to achieve the confusion effect. Next the diffusion layer is used to
spread a single byte effect to the other bytes in the same block, this layer is repeated rd
times. Then the output of this layer is forwarded to the permutation layer to exchange the
byte position inside the same block to add more confusion effect. The permutation layer
also is repeated rp times. These three layers are repeated r rounds to get the required
security level. For each round r, new necessary dynamic keys are produced by a robust
chaotic generator [37]

Figure 3.1: Encryption part of Crypto-A

3.1.1.1 Substitution layer

Substitution is the process of replacing a single byte value by another byte value based
on a mathematical equation. The substitution layer is based here on the Finite State Skew
Tent Map (FSTM). This layer performs a nonlinear transformation in the image data,
and so the cryptosystem becomes more resistant against differential cryptanalysis attacks.

32

This layer works on byte-by-byte transformation and it changes the value of the byte
depending on a chaotic parameter which comes from a robust chaotic generator. The
mathematical model of the FSTM as one-to-one map for the substitution is introduced
by[84, 83]:

Y = FA (X) =

⌈
Q
A
×X

⌉
if 1 ≤ X ≤ A

⌊
Q×(Q−X)
Q−A

⌋
+ 1 if A < X ≤ Q

(3.1)

with Q = 256, and X,A, Y ∈ {1, 2, ..., Q}, note that, the value 0 is not included.

The inverse of equation (3.1) was calculated as:

X = FA
−1 (Y) =

X1 if m(Y) = Y and X1

A
> Q−X2

Q−A

X2 if m(Y) = Y and X1

A
≤ Q−X2

Q−A

X1 if m(Y) = Y + 1

(3.2)

Where

X1 =

⌊
A× Y
Q

⌋
(3.3)

X2 =

⌈
(
A

Q
− 1)× Y +Q

⌉
(3.4)

m(Y) = Y +

⌊
A× Y
Q

⌋
−
⌈
A× Y
Q

⌉
+ 1 (3.5)

Note that the inverse substitution equation is introduced in this section because they are
required to describe the FSTM and its modifications.
Shifted Masuda equations
To use the previous equations for image encryption/decryption process where a byte is
represented in eight bits, the authors include 0 and exclude Q from the domain. Then, the
obtained equations are:

Y = FA (X) =

⌈
Q
A
× (X + 1)

⌉
− 1 if 0 ≤ X < A

⌊
Q×(Q−X−1)

Q−A

⌋
if A ≤ X < Q

(3.6)

with Q = 256, X, Y ∈ {0, 1, 2, ..., Q− 1}, and A ∈ {1, 2, ..., Q}.

The inverse of the shifted equation (3.6) is calculated as:

X = FA
−1 (Y) =

X1 − 1 if m(Y + 1) = Y + 1 and X1

A
> Q−X2

Q−A

X2 − 1 if m(Y + 1) = Y + 1 and X1

A
≤ Q−X2

Q−A

X1 − 1 if m(Y + 1) = Y + 2

(3.7)

Where

X1 =

⌊
A× (Y + 1)

Q

⌋
(3.8)

X2 =

⌈
(
A

Q
− 1)× (Y + 1) +Q

⌉
(3.9)

33

m(Y + 1) = Y +

⌊
A× (Y + 1)

Q

⌉
−
⌊
A× (Y + 1)

Q

⌉
+ 2 (3.10)

We found some drawbacks on the previous substitution and inverse substitution equa-
tions:

1. It is written in the original paper that A = Q is one of the possible values, but in
this case the second part of equation (3.6) has a division by zero.

2. For some output values (Y), it is easy to decrease the possibilities of guessing the
input value (X); indeed, let take the following example:

• To have Y = 0, there are only two values of the input X , these values are:
X = 0 or X = 255, because:
When X < A, then the first term of the equation (3.6)

⌈
256
A
×X

⌉
− 1 = 0,

that means, 0 < 256×X+1
A

≤ 1. The only solution of the previous inequality
equation is possible if the term X+1

A
is less than or equal to 1

256
. This is only

achievable for X = 0 and A = 256.
When A ≤ X , then the second term of the equation (3.6)

⌊
256×(256−X−1)

256−A

⌋
=

0, that means, 0 ≤ 256×(256−X−1)
256−A < 1. The only solution of the previous

inequality equation is possible if the term 256−X−1
256−A is less than 1

256
. This is

only achievable for X = 255 and any given A.

• To have Y = 1, for any given A, there are only three values of the input X ,
these values are: X = 0 at A = 256, X = 1 at A ∈ {128, 129, 130, ..., 256}
or X = 254 at A ∈ {1, 2, 3, ..., 127}.
When X < A, then the first term of the equation (3.6)

⌈
256
A
×X

⌉
− 1 = 1,

that means, 1 < 256×X+1
A

≤ 2. The only solution of the previous inequality
equation is possible if the term X+1

A
is less than or equal to 2

256
and more than

1
256

. This is only achievable for X = 0 at A ∈ {128, 129, 130, ..., 255} or
for X = 1 at A = 256.
When A ≤ X , then the second term of the equation (3.6)

⌊
256×(256−X−1)

256−A

⌋
=

1, that means, 1 ≤ 256×(256−X−1)
256−A < 2. The only solution of the previ-

ous inequality equation is possible if the term 256−X−1
256−A is less than 2

256
and

more than or equal to 1
256

. This is only achievable for X = 254 at A ∈
{1, 2, 3, ..., 127}.

• To have Y = 255, there is only one solution which is X = A− 1.

3. Some input values (X) don’t have the possibility to map them to all output values
(Y). For example when X = 255 the output can be only Y = 0 or Y = 255
because:
The first term of the equation (3.6) at X = 255 is only used with A = 256 and so
the value of the term

⌈
256×(255+1)

256

⌉
− 1 is 255.

The second term of the equation (3.6) at X = 255 is used when A ≤ X and so the
value of the term

⌊
256×(256−255−1)

256−A

⌋
is 0 for any given A.

To increase the security level of the above equations, the authors impose A and Q to
be co-prime, so, the model become:

34

Third Masuda equations

Y = FA (X) =

⌊
Q
A
×X

⌋
+ 1 if 1 ≤ X < A

Q if X = A

⌊
Q×(Q−X)
Q−A

⌋
+ 1 if A < X ≤ Q

(3.11)

The inverse of equation (3.11) was calculated as:

FA
−1 (Y) =

{
X1 if X1 × (Q− A) > A× (Q−X2)

X2 if X1 × (Q− A) ≤ A× (Q−X2)
(3.12)

Where

X1 =

⌊
A× Y
Q

⌋
(3.13)

X2 = Q−
⌊

(1− A

Q
)× Y

⌋
(3.14)

with X, Y ∈ {1, 2, ..., Q}, and in this case, the size of the secret key A is restricted to
66 odd values, defined as follows (3.15):

Ks = A = {51, 53, 55, ..., 117, 139, 141, 143, ..., 201} (3.15)

We have the following comments on the third Masuda equations:
First Comment
All used key values outside the predefined interval give less security level and in addition,
some of them don’t permit the inverse substitution (3.12):
Example 3.1:
When the used A values are outside the interval of (3.15), then the equation (3.11) is two
to one map. Indeed, assumes A = 64 using (3.11).
Y1 = F64(3) =

⌊
256
64
× 3
⌋

+ 1 = 13

Y2 = F64(247) =
⌊
256×(256−247)

256−64

⌋
+ 1 = 13.

Consequently, equation (3.11) is not invertible.
In fact, there are a large number of pairs (X1 and X2) that can be encrypted to the same
value (i.e., Y1 = Y2) if the used A values are outside the interval of (3.15).

Second Comment
For some output values (Y), it is easy to decrease the possibilities of guessing the input
value (X); indeed, let take the following example:

• To have Y = 1, for any given A, there is only one value X = 256, because:
When X < A, the first term of the equation (3.11)

⌊
Q
A
×X

⌋
+ 1 will never be one

, Indeed, assume that the first term can be 1 then:⌊
256
A
×X

⌋
+ 1 = 1 =⇒ 0 ≤ 256×X

A
< 1, based on the possible range of X and A

parameters, this inequality does not have a solution.
When X > A , the third term of the equation (3.11)

⌊
Q×(Q−X)
Q−A

⌋
+ 1 = 1, that

means, 0 ≤ 256×(256−X)
256−A < 1. The only solution of the previous inequality equation

is possible if the term 256−X
256−A is less than 1

256
. This is achievable for X = 256 and

any given A.

35

• To have Y = 2, the first term of the equation (3.11), can be 2 with probability of
32
66

, since:⌊
256
A
×X

⌋
+ 1 = 2 −→ 1 ≤ 256

A
× X < 2, this relation has only solution for

A = A1 ∈ {139, 141, 143, ..., 201}, at X = 1 where the size of A1 is |A1| = 32.
The last term of the equation (3.11), can be 2 only at X = 255, with probability of
34
66

, since:⌊
256×(256−X)

256−A

⌋
+ 1 = 2 −→ 1 ≤ 256×(256−X)

256−A < 2, this relation has only solution for
A = A2 ∈ {51, 53, 55, ..., 117}, at X = 255 and for A2 with the size of |A2| = 34.
This means that, when the output of the STM is (Y = 2), then the probability
X = 1 is 32

66
, and the probability X = 255 is 34

66
. For all other values of {X} the

probability is zero.

Third Comment
Some input values (X) don’t have the possibility to map them to all output values Y . For
example when X = 1 the output can be only Y ∈ {2, 3, ... 6} because:
Y =

⌊
256
A
× 1
⌋

+ 1, so for all A values:
1 ≤

⌊
256
A
× 1
⌋
≤ 5, then 2 ≤ Y ≤ 6, with

Pr(Y = 2) = 32
66

.
Pr(Y = 3) = 16

66
.

Pr(Y = 4) = 11
66

.
Pr(Y = 5) = 6

66
.

Pr(Y = 6) = 1
66

.
and for all other Y values there probability is zero that means, Pr(Y = i) = Zero, with
i ∈ {1, 7, 8, ... 255}.
Furthermore, using the same previous analysis, we can find that for:
X = 2, Y ∈ {3, 4, ..., 11}.
X = 254, Y ∈ {3, 4, ..., 10}.
X = 255, Y ∈ {2, 3, 4, 5}.

For overcoming the drawbacks of the first and the second Masuda equations (3.1,3.6,
3.11 and there inverse) and for expanding the size of the key, we propose the following
equations for the substitution and the inverse substitution:

Equations of the modified FSTM

Modified equation of the substitution:
The modified equations of the substitution used at the encryption part is:

U = FA (X) =

⌈
Q
A
× (X + 1)

⌉
Mod Q if 0 ≤ X < A

⌊
Q×(Q−X)
Q−A

⌋
+ 1 Mod Q if A ≤ X < Q

(3.16)

where X,U ∈ {0, 1, 2, ...255}, A ∈ {1, 2, ...255}, and Q = 256.
Then,

Y = (U +B) Mod Q (3.17)

36

where B is also a dynamic key as A, supplied by the chaotic generator, and B, Y ∈
{0, 1, 2...255}.
So, Y can be written as:

Y = FA, B (X) =

⌈
Q
A
× (X + 1)

⌉
+B Mod Q if 0 ≤ X < A

⌊
Q×(Q−X)
Q−A

⌋
+ 1 +B Mod Q if A ≤ X < Q

(3.18)

where X,B ∈ {0, 1, 2...255}, Q = 256 and A ∈ {1, 2, 3...255}.

Modified equation of the inverse substitution:

The modified equation of the inverse substitution used at the decryption part is:

X = F−1A (U) =

A if U = 1

ζ1 − 1 if θ(U) = U + 1

ζ1 − 1 if θ(U) = U and ζ1
A
> Q−ζ2

Q−A

ζ2 if θ(U) = U and ζ1
A
≤ Q−ζ2

Q−A

(3.19)

where
U = (Y −B) Mod Q (3.20)

Remark: if U = 0, then in the following equations we have to replace it by U = Q.

ζ1 =

⌊
A

Q
× U

⌋
(3.21)

ζ2 =

⌈
(
A

Q
− 1)× U +Q

⌉
(3.22)

ζ3 =

⌈
A

Q
× U

⌉
(3.23)

θ = U + ζ1 − ζ3 + 1 (3.24)

Below we give some examples to demonstrate that all previous drawbacks are over-
come:
Example 3.2:
In the encryption part, for a given A, let us take the following values for (X) and then
calculate the corresponding values (Y).
A = 64, X1 = 0, X2 = 1, X3 = 2, X4 = 3, X5 = 244, X6 = 245, X7 = 246 and
X8 = 247. Using (3.18), we obtain:
Y1 = F64,B(0) =

⌈
256
64
× 1
⌉

+B Mod 256 = (4 +B) Mod 256.
Y2 = F64,B(1) =

⌈
256
64
× 2
⌉

+B Mod 256 = (8 +B) Mod 256.
Y3 = F64,B(2) =

⌈
256
64
× 3
⌉

+B Mod 256 = (12 +B) Mod 256.
Y4 = F64,B(3) =

⌈
256
64
× 4
⌉

+B Mod 256 = (16 +B) Mod 256.

Y5 = F64,B(244) =
⌊
256×(256−244)

256−64

⌋
+ 1 +B Mod 256 = (17 +B) Mod 256.

37

Y6 = F64,B(245) =
⌊
256×(256−245)

256−64

⌋
+ 1 +B Mod 256 = (15 +B) Mod 256.

Y7 = F64,B(246) =
⌊
256×(256−246)

256−64

⌋
+ 1 +B Mod 256 = (14 +B) Mod 256.

Y8 = F64,B(247) =
⌊
256×(256−247)

256−64

⌋
+ 1 +B Mod 256 = (13 +B) Mod 256.

with the same secret key A, it is clear that there are no two input values (X1 and X2) that
give the same output (i.e., Y1 = Y2).
Now at the decryption side, for a given value Y = Y1 and a given B, such that
U1 = (Y1 −B) Mod 256 = 4
then, using equations (3.19-3.24), we obtain:
ζ1 =

⌊
64
256
× 4
⌋

= 1
ζ2 =

⌈
(64
256
− 1)× 4 + 256

⌉
= 253

ζ3 =
⌈

64
256
× 4
⌉

= 1.
θ = 4 + 1 − 1 + 1 = 5. According to the equation (3.19), only the second term is valid
and so the original value is ζ1 − 1 which gives X1 = 0.
The same procedure are used for Y ∈ {Y2, Y3, Y4}, such that U ∈ {8, 12, 16}, using
the same value of B Let us consider now Y5, and a given B, such that
U5 = (Y5 −B) Mod 256 = 17
Then using (3.19-3.24), we obtain:
U5 = (Y5 −B) Mod 256 = 17
ζ1 =

⌊
64
256
× 17

⌋
= 4

ζ2 =
⌈
(64
256
− 1)× 17 + 256

⌉
= 244

ζ3 =
⌈

64
256
× 17

⌉
= 5.

θ = 17 + 4− 5 + 1 = 17.
According to the equation (3.19), the first three terms are false, while the last term is cor-
rect, so the original value is ζ2 which gives X5 = 244.
The same procedure are used for Y ∈ {Y6, Y7, Y8}, such that U ∈ {15, 14, 13}, using
the same value of B.

The remaining drawbacks are solved by introducing the parameter B which insures
that all input values of (X) can be mapped to any output value (Y). Especially, we solve
the problem of the critical points of the input values X = 0 and X = 255, in Masuda
et.al., maps. To illustrate our says we give the following examples:
Example 3.3:
Assume X = 0, using equation (3.18):
Y =

⌈
Q
A
× (0 + 1)

⌉
+ B Mod Q, then, it is clear that all Y values are achievable in this

case.
Example 3.4:
Now assume X = Q− 1, using equation (3.18):
Y =

⌊
Q×(Q−Q+1)

Q−A

⌋
+ 1 + B Mod Q =

⌊
Q

Q−A

⌋
+ 1 + B Mod Q, also, it is clear that all

Y values are achievable.
Example 3.5:
Assume X = A− 1, using equation (3.18):
Y =

⌈
Q
A
× (A− 1 + 1)

⌉
+ B Mod Q = B, also, it is clear that all Y values are achiev-

able, since B has all possible values.
Example 3.6:
Assume X = A, using equation (3.18):
Y =

⌊
Q×(Q−X)
Q−A

⌋
+ 1 +B Mod Q = B + 1 Mod Q, all Y values are achievable.

38

In order to reduce the execution time of the substitution and the inverse substitution,
equations (3.16) and (3.19), each can be implemented as a lookup table; the first one (for
the substitution operation) is used to find U from X for a given A, and the second one
(for the inverse substitution) is used to retrieve X from U based on a given A.
The lookup function of the equation (3.16) is:

U = Lookup[A,X] (3.25)

A part of the lookup table of equation (3.16) is presented in Table (3.1).
The inverse lookup function of the equation (3.19) is:

X = Lookup−1[A,U] (3.26)

Also, a part of the inverse lookup table of equation (3.19) is presented in Table (3.2).

Table 3.1: Lookup table based on the equation (3.16)
H
HHH

HHA
X

0 1 2 . . . 149 . . . 255

1 0 1 255 2
2 128 0 1 2
3 86 171 0 . . . 109 . . . 2
.
.
.
.
255 2 3 4 1

Table 3.2: Inverse lookup table based on the equation (3.19)
HHH

HHHA
U

0 1 2 . . . 109 . . . 255

1 0 1 255 2
2 1 2 255 3
3 2 3 255 . . . 149 . . . 4
.
.
.
.
255 254 255 0 253

Example 3.7: Substitution operation:
For X = 149, A = 3, then by using equation (3.16) or lookup Table (3.1), we find
U = 109:
Now, with, B = 19, then, Y = 128 based on equation (3.17) or (3.19).
Inverse Substitution operation:
With Y = 128, A = 3 and B = 19, we find U = 109 by equation (3.20), then by using
equation (3.19) or the inverse lookup Table (3.2), we find X = 149:

39

Moreover, to increase the security level of our modified substitution/inverse substitu-
tion equations we can choose Q value to be prime (i.e., Q = 257) and shift all parameters
to meet this modification, without restricted the size of the key A. We are working on this
enhancement.
Structure of the dynamic key
The structure of the dynamic key during the substitution process and the inverse one is:

Ks =
[
Ks0 ‖ Ks1 ‖ Ks2 ‖ · · · ‖ Ksr−1

]
(3.27)

Where r is the number of rounds of each block, and inside each round the substitution
layer is repeated rs times. The proposed chaotic generator produces a 32 bit samples (this
generator is described in section 3.1.2), whereas, the substitution layer key is 8 bit for A
and 8 bits for B. Each sample of the implemented chaotic generator is used to provide
the required A and B bits for one encryption round.
In terms of time complexity, the both versions (Crypto-A1:implement the substitution
layer based on a predefined lookup table, Crypto-A2:implement the substitution layer
based on a mathematical calculations without using lookup table) are evaluated, whereas
the security evaluation results are identical for the both versions.

3.1.1.2 Pre-diffusion

Diffusion is defined as the process of spreading single bit/byte effect over other bits/byte(s).
It is needful to make the relationship between the plain and the corresponding ciphered
image as complex as possible [123]. The permutation layer alone is not sufficient for dif-
fusion effect, for that and to transfer the diffusion effect of each byte we introduce a new
simple and fast diffusion layer according to equation (3.28):

Zi = Mod ((Yi + Zi−1), Q)
Zi = (Yi + Zi−1) AND (Q− 1)
i = 0, 1, 2...M ×M − 1

(3.28)

Where Zi is the current diffused byte, Zi−1 is the previous diffused byte, Yi is the current
substituted byte (the output of equation 3.18),M is the square root of the block size, AND
is the logical and operator, Mod is the modular operator, regarding to the first byte (i.e., at
i = 0) Z−1 is equal to initial value (a dynamic key value) supported by the implemented
chaotic generator.
In our implementation, to speed up the encryption process, we replace the modulus oper-
ation by the AND operation according to the following mathematical rule:

Mod(A,B) = A AND (B − 1) if B = 2i

i = 1, 2, 3,
(3.29)

Where i is any integer value. in our implementation i = 8 since each image pixel is
represented by 8 bits. Before applying the permutation process, each block is converted
onto a square matrix of size M ×M .

3.1.1.3 Permutation layer

The permutation process changes the pixel position inside the block/image under the test
without changing its value. In our proposed cryptosystem, the permutation process is

40

based on the modified version of the basic 2-D Cat Map, given by equation (3.30), [143,
45]: [

in
jn

]
= Mod

([
1 u
v 1 + u× v

] [
i
j

]
+

[
rx + ry
ry

]
,

[
M
M

])
(3.30)

Where (i, j) and (in, jn) are the original and the permuted byte-positions of the data
pixel-matrix of the size M ×M ; and u, v, rx, and ry are the dynamic system parameters
in the range of [0,M − 1]. The last two parameters are added to the basic 2-D cat map
model to overcome the fixed point problem and to extend the key space. The structure of
the dynamic keys is:

Kp =
[
Kp0 ‖ Kp1 ‖ Kp2 ‖ · · · ‖ Kpr−1

]
(3.31)

Kpj =
[
uj ‖ vj ‖ rxj ‖ ryj

]
(3.32)

The required dynamic keys bits for the permutation layer, supplied by the chaotic gener-
ator, are giving by the following equation:

4× q × r (3.33)

Where q = log(M), is the number of required bits for each sub dynamic key.

We implemented the modified 2-D cat map, as done usually in the literature, by swap
operation as in algorithm 1, and also by copy operation as in algorithm 2. Indeed, since
the 2-D cat map is one-to-one function (bijective), which means every point of the square
matrix can be transferred to exactly one unique point, from this fact we can replace the
swap operation by the copy operation to reduce the execution time.
The swap code is shown in algorithm.1 for the encryption side:

Algorithm 1 Permutation steps of the 2-D cat map based on swap operation
1: for k = 0: rp− 1 : step = 1 do
2: for i = 0: M − 1 : step = 1 do
3: for j = 0: M − 1 : step = 1 do
4: in = (i+ u[k]× j + ri[k] + rj[k])Mod M
5: jn = (v[k]× i+ (1 + v[k]× u[k])× j + rj[k])Mod M
6: Temp = Data_matrix(i, j)
7: Data_matrix(i, j) = Data_matrix(in, jn)
8: Data_matrix(in, jn) = Temp
9: End j

10: End i
11: End k

Permutation based on copy operation instead of swap operation for fast imple-
mentation
The copy code of the 2-D cat map is shown in algorithm.2 for the encryption side: At the
beginning of each code, the initial matrix content are saved in Temp matrix.

3.1.2 Proposed chaotic generator
To generate a chaotic sequences, a process of discretization is used. Therefore, a small
periodicity of the trajectory could appear, depending on the initial conditions and the

41

Algorithm 2 Permutation steps of the 2-D cat map based on copy operation
1: for k = 0: rp− 1 : step = 1 do
2: for i = 0: M − 1 : step = 1 do
3: for j = 0: M − 1 : step = 1 do
4: in = (i+ u[k]× j + ri[k] + rj[k])Mod M
5: jn = (v[k]× i+ (1 + v[k]× u[k])× j + rj[k])Mod M
6: Data_matrix(i, j) = Temp(in, jn)
7: End j
8: End i
9: End k

parameters of the generator. This is a dangerous weakness that must be avoided. The
proposed generator of a discrete chaotic sequences in this cryptosystem (and in other
proposed ones) is a simplified version of the one proposed by El Assad and Noura in a
patent [37]. It consists of two chaotic maps (i.e., Skew tent and PWLCM), connected
in parallel as shown in Fig-3.2. Each component generator is perturbed using a Linear
Feedback Shift Register (LFSR). This ensures a very large periodicity for all generated
sequences. The discrete Skew Tent Map and the Discrete Piece-wise Linear Chaotic Map

Figure 3.2: Proposed chaotic sequence generator

(PWLCM) are respectively defined as follows [84, 72]:

X1[n] = F [X1[n− 1]] =

⌊
2N×X1[n−1]

P

⌋
if 0 < X1[n− 1] < P1

2N − 1 if X1[n− 1] = P1⌊
2N×(2N−X1[n−1])

2N−P1

⌋
if P1 < X1[n− 1] < 2N

(3.34)

Where P1 is the control parameter and is ranging from 1 to 2N−1, and the finite precision
N = 32 bits.

42

X2[n] = F [X2[n− 1]] =

⌊
2N×X2[n−1]

P2

⌋
if 0 < X2[n− 1] < P2⌊

2N×(X2[n−1]−P2)
2N−1−P2

⌋
if P2 < X2[n− 1] < 2N−1⌊

2N×(2N−X2[n−1]−P2)
2N−1−P2

⌋
if 2N−1 ≤ X2[n− 1] < 2N − P2⌊

2N×(2N−X2[n−1])
P2

⌋
if 2N − P2 ≤ X2[n− 1] < 2N − 1

2N − 1 otherwise
(3.35)

Here, the control parameter P2 of PWLCM is ranging from 1 to 2(N−1)−1. The proposed
chaotic generator has the following cryptographic properties: random pseudo mapping,
delta-like auto-correlation, nearly zero cross correlation, uniform distribution, passing
empirical statistic NIST (National Institute of Standards and Technology) tests, and hav-
ing a large size of the secret key. The size of the secret key is determined by four initial
conditions: 2 values for the Skew tent and PWLCM maps of size N and the other for
the two LFSRs, and two control parameters, i.e., P1 (for the Skew tent) and P2 (for the
PWLCM).

Figure 3.3: Proportion values of NIST test versus the index of the test

|K| = 2×N + |P1|+ |P2|+ |K1|+ |K2| = 169 bits (3.36)

with N = 32, |K1| = 23, |K2| = 19, |P1| = 32, |P2| = 31. We have performed the NIST
test (a battery of 188 tests) on 100 sequences, each containing one million bits. In Fig-3.3,
we show the obtained proportion value of sequences passing a test, versus the indice of
the test (from 1 to 188), [105]. As we can see, the proposed generator passes all the tests
and therefore, it can be used in secure communication systems.

3.1.3 Decryption structure

The decryption process of the proposed cryptosystem is just the inverse operations of the
encryption one (see Figure.3.4). However, the permutation layer works in reverse order
for each block and the dynamic keys rp, rd, rs and r are used in reverse order. For that,
all parameters of the dynamic keys must be generated and stored for all iterations and
then used in reverse order to retrieve the original matrix.

43

Figure 3.4: Decryption part of the proposed cryptosystem

3.1.3.1 Reverse Permutation Layer

It is clear from the equation (3.30) that the determinant of the Jacobean matrix is 1, and so
the 2-D cat map process is bijective. However, because of the modulo operation, the 2-D
cat map function is non-invertible one, but it is reversible by applying the permutation
loop in reverse order. This means that the beginning of the reverse permutation must be
applied on the last byte of the permuted block, so the dynamic keys must be also used in
reverse order.
Below, we give the implementations of the reverse permutation of the 2-D cat map by the
swap operation in algorithm 3 and by the copy operation in algorithm 4.

Algorithm 3 Reverse permutation steps of the 2-D cat map based on swap operation
1: for k = rp− 1: 0 : step = −1 do
2: for i = M − 1 : 0 : step = −1 do
3: for j = M − 1 : 0 : step = −1 do
4: in = (i+ u[k]× j + ri[k] + rj[k])Mod M
5: jn = (v[k]× i+ (1 + v[k]× u[k])× j + rj[k])Mod M
6: Temp = Data_matrix(i, j)
7: Data_matrix(i, j) = Data_matrix(in, jn)
8: Data_matrix(in, jn) = Temp
9: End j

10: End i
11: End k

Before applying the inverse pre-diffusion layer, each square matrix, is converted back
to block of size M ×M .

44

Algorithm 4 Reverse permutation steps of the 2-D cat map based on copy operation
1: for k = rp− 1: 0 : step = −1 do
2: for i = M − 1 : 0 : step = −1 do
3: for j = M − 1 : 0 : step = −1 do
4: in = (i+ u[k]× j + ri[k] + rj[k])Mod M
5: jn = (v[k]× i+ (1 + v[k]× u[k])× j + rj[k])Mod M
6: Data_matrix(in, jn) = Temp(i, j)
7: End j
8: End i
9: End k

3.1.3.2 Inverse Pre-diffusion layer

The inverse diffusion layer is achieved as follows:

Yi = Mod ((Zi − Zi−1), Q)
Yi = (Zi − Zi−1) AND (Q− 1)
i = 0, 1, 2...M ×M − 1

(3.37)

Equation (3.37) is used to implement the inverse diffusion layer in a fast manner.

3.1.3.3 Inverse Substitution layer

The inverse of the modified FSTM is implemented using equations (3.19-3.24), (3.26)
and by a lookup table.

Crypto-A is implemented in two versions: Crypto-A1, where the substitution/inverse
substitution layers are achieved by the implemented lookup tables, and Crypto-A2, in
which the substitution/inverse substitution layers are achieved by using the mathematical
equations.

3.2 Cryptosystem-B: Chaos-based SPN with authentica-
tion process

The general structure of the proposed cryptosystem is presented in Figure.3.5 for the
encryption and in Figure.3.6 for the decryption. The encryption schema is chaos-based
substitution permutation Network, that includes a process of source authentication. The
processes of substitution and permutation are similar to the ones used in cryptosystem-A,
and they are implemented using the same chaotic maps: the skew tent and the 2-D cat
maps. The authentication process is based on a hash function, implemented by SHA-
256 [42], whose inputs are the secret hash key and the plain image and its output is
the key of the chaotic generator. As we can see from the encryption scheme, a one bit
change in the plain image changing the dynamic keys of the processes of substitution and
permutation and then the encrypted image become completely different from the previous
encrypted one. So, the confusion-diffusion properties of the cryptosystem are reached and
the immunity against known-chosen plain-text attack is obtained.
The decryption process (see figure.3.6), is based on inverse permutation layer achieved
by the same 2-D cat map, following by the inverse substitution achieved by the inverse

45

skew tent map. During this decryption process the rounds of each layer are starting in
reverse order and also the dynamic keys are using in reverse order. Notice that, from the
estimated plain-image and the hash secret key we can determine whether the estimated
plain-image (the decrypted image) is the correct one.

Figure 3.5: Encryption Parts of Crypto-B

Figure 3.6: Decryption Parts of Crypto-B

The encryption steps are described in details in Figure.3.7. The plain image is divided
into NB blocks, each one contains BS bytes. The first step is to generate the dynamical
keys for the substitution-permutation layers. To do this, the plain image and the secret
hash key are used as input for the hash function, and then the hash function produces the
secret key of the chaotic generator, that provides the dynamic keys at each round of the
cryptosystem. After that, for each plain block, first we use the CBC mode [58] (bit-wise
XOR operation between the current plain block and the previous ciphered one, while in
the first block the previous ciphered block is the initial random block IV) and then we
apply the substitution layer rs times and the permutation layer for rp times. Finally these
processes (CBC, substitution, permutation) are repeated r rounds and for each round a
new dynamic keys are generated from the chaotic generator to be used in both layers, and
so on.

Figure.3.8, shows the decryption part of the proposed cryptosystem. The decryption
process is similar to the encryption one; the differences are in the inverse substitution and
the reverse permutation layers, first of all, the dynamic keys are used in reverse order in
both layers. Second, the permutation layer is starting the recover process from the last
byte of the current block until the first one. Third, all counters will be starting in reverse
order. Finally, the CBC mode function is used at the end of decryption of each block. The
inverse substitution layer is starting as normal from the first to the last byte. The receiver
uses the decrypted image to test the authentication source, and to test the integrity of the
message.
The decryption and authentication processes suppose that the secret hash key SK0, and
the secret key SK of the chaotic generator are known (transmitted in secret manner by

46

Figure 3.7: Encryption Components of Crypto-B

47

Figure 3.8: Decryption Components of Crypto-B

48

the sender to the receiver). The secret key of the chaotic generator is only required for
decryption process, and the secret hash key is used to authenticate the sender and to test
the integrity of the encrypted image according to Figure 3.9. Indeed, at the receiver, the

Figure 3.9: Authentication process at the decryption

same hash function is used to calculate the estimated secret key SKe from the decrypted
image and the secret hash key SK0. If the estimated secret key SKe is equal to the shared
SK, then the integrity of the transmitted encrypted image and the authentication of the
sender are valid. The required time to perform the hash operation is a part of encryption
time, while, it is not the case in the decryption process. The needed time to perform a
hash operation over an Lina image of size 256× 256× 3 is 1.27ms [30].
Crypto-B is implemented in two versions: Crypto-B1, where the substitution/inverse sub-
stitution layers are achieved by an implemented lookup tables, and Crypto-B2 in which
the substitution/inverse substitution are achieved by using the mathematical equations.

3.3 Cryptosystem-C: Binary diffusion layer and a bit-
permutation layer cryptosystem

In this section, we propose a new efficient chaos-based cryptosystem structure and we
analyze its performances. The cryptosystem uses a binary diffusion layer followed by a
bit-permutation layer, instead of byte-permutation, to shuffle the positions of the image
pixels. Moreover, the permutation layer is achieved by a new proposed formulation of the
2-D cat map that allows an efficient implementation, measured by the time complexity, in
terms of arithmetic and logic operations, and also, in terms of clock cycles, of the key-
dependent permutation process in comparison with the standard one. Hence, it provides
a fast diffusion process to spread the influence of a single bit over the others, but at the
price of a more calculation time in comparison with the pixel-permutation. The cryp-
tosystem is implemented in CBC mode, and its speed is faster than many of chaos-based
cryptosystems, while having a very high security level. The security analysis and the ob-
tained simulation results show that the proposed cryptosystem is resistant to various types
of attacks and it is efficient for hardware and software implementation (using FPGA card
or an ASIC).

3.3.1 Description of the encryption process
The encryption part of the proposed cryptosystem (see Fig-3.10) consists of: Firstly, a
diffusion layer based on a binary matrix of size 32 × 32 is considered. This process is
repeated rd times. In the next step, the data is prepared for the permutation layer using the
integer to binary number converter function Int2Bin(). The permutation layer is based
on a new modified 2-D cat map, working at the data bit level, and it gets the dynamic

49

parameters from the proposed chaotic generator (see section 3.1.2). It is iterated rp times.
The advantage of the bit permutation layer is that it produces a higher security than both
separated permutation and substitution layers based on bytes. Indeed, theoretically, when
a bit permutation layer is applied on a block, it performs, on one scan, a substitution and a
diffusion operations on the bytes. As a byte contains 8 bits, then, 8 bit permutations pos-
sibly will affect 8 bytes, and then each byte (8 bit permutations) possibly will transfer the
effects of the confusion and of the diffusion to other 8 bytes. As a result, the effects of the
confusion and of the diffusion are better than in the case of byte permutation followed by
byte substitution, because in this last case one byte affects only one byte. In the proposed
cryptosystem, 6 encryption rounds based on byte permutation and on the byte substitution
are needed to produce the same level of security as a process of bit-permutation which is
executed in only one round. At the end of the first iteration, a binary to integer converter
functionBin2Int() is used to prepare the data for the next iteration. The whole process is
repeated r times until it reaches the required avalanche effect and therefore the maximum
security level.

Figure 3.10: Description of the encryption process of Crypto-C

3.3.1.1 Diffusion layer

The diffusion layer works on blocks of 32 bytes each, it achieves a local diffusion, and it
is defined by the following equation.

Od0
Od1

...
Od31

 =
[
DM

]
�

O0

O1
...
O31

 (3.38)

Where Odi, Oi ∈ [0, 255] are the output and the input bytes of the diffusion process,[
DM

]
is the binary diffusion square matrix of 32 × 32, which must be invertible but

not self-invertible. Indeed, the self-invertible matrix is one of the weak points of any
cryptosystem. We implemented the diffusion layer using the binary matrix proposed in
[63]. The number of branches obtained from this matrix is 10 and therefore, the diffusion
power is important. Actually, the maximum branch of 32 × 32 binary matrix is regarded
to be 12, but those matrices of branch 12 do not meet the following criteria [63]: efficient
implementation in 8-bit processor; secure against truncated and impossible differential

50

attacks; the branch number is equal or bigger than 10. The branch number BDM of the
diffusion layer DM is defined by:

BDM = min
x6=0

[
wH(x) + wH(DM(x))

]
(3.39)

where wH(x) = card{i/0 ≤ i < n, yi 6= 0} is the Hamming weight of n dimentional
vector x. In order to define the � matrix operator in (3.38), we write the first output Od0
in an equivalent extended form as:
Od0 = O0 ⊕O2 ⊕O3 ⊕O4 ⊕O5 ⊕O8 ⊕O9 ⊕O10 ⊕O12 ⊕O13 ⊕O17 ⊕O18 ⊕O19 ⊕
O24 ⊕O25 ⊕O29 ⊕O31

Where ⊕ is the bitwise operator (xor).

3.3.1.2 Permutation Layer

The permutation layer here, is achieved by a new formulation of the modified 2-D cat
map. For that, from the mathematical model of the modified cat map, (3.30), first we
rewrite the 2-D cat map as (3.40) [143], and then we derive the new formulation, for an
adequate implementation in C code.

Permutation layer based on the modified 2-D cat map
The modified 2-D cat map is given by (3.40).

Mln = mod(Ml + u×Mc+ LC,MM)
Mcn = mod(v ×Ml + (v × u+ 1)×Mc+ C,MM)

(3.40)

Where Ml, Mc, LC, and C are square matrices (M ×M) given by the following forms:

Ml =

1 1 · · · 1
2 2 · · · 2
...

...
M M · M

 (3.41)

Mc =

1 2 · · · M
1 2 · · · M
...

...
1 2 · M

 (3.42)

LC =

rl + rc rl + rc · · · rl + rc
rl + rc rl + rc · · · rl + rc

...
...

rl + rc rl + rc · · · rl + rc

 (3.43)

C =

rc rc · · · rc
rc rc · · · rc
...

...
rc rc · · · rc

 (3.44)

and MM is a square matrix (M ×M), in which all its elements have the same value M .
Mln and Mcn are the permuted bit positions of the Ml and Mc matrices.

51

New formulation of the modified 2-D cat map for an adequate implementation in C
code
The mathematical form of (3.40) takes a lot of time in matrix multiplication to find the
Mln and Mcn matrices, it needs much more memory for matrix’s data. For that, we
derive a new formulation to reduce the consumed time and memory. The new formulation
is derived from (3.40) and (3.41-3.44) as follows:

Mln = mod(

1 1 · · · 1
2 2 · · · 2
...

...
M M · M

+

1× u 2× u · · · M × u
1× u 2× u · · · M × u

...
...

1× u 2× u · · · M × u

+ LC,MM)

(3.45)
Let us assume that:

Mv =
[
1 2 · · · M

]
Mv =

[
Mv(0) Mv(1) · · · Mv(M − 1)

] (3.46)

UMv = u×Mv =
[
u 2× u · · · M × u

]
UMv =

[
UMv(0) UMv(1) · · · UMv(M − 1)

] (3.47)

Then, (3.45) can be rewritten as:

Mln = mod(
Mv(0) Mv(0) · · · Mv(0)
Mv(1) Mv(1) · · · Mv(1)

...
...

Mv(M − 1) Mv(M − 1) · · · Mv(M − 1)

+

UMv(0) UMv(1) · · · UMv(M − 1)
UMv(0) UMv(1) · · · UMv(M − 1)

...
...

UMv(0) UMv(1) · · · UMv(M − 1)

+ LC,MM)

(3.48)

Now, let us suppose that:

UMvn =
[
u+ rl + rc 2u+ rl + rc · · · Mu+ rl + rc

]
(3.49)

Then
Mln(i, j) = mod(Mv(i) + UMvn(j),M) (3.50)

To save memory and time in the implementation, (3.50) can be equivalently written as:

xrow = mod(Mv(i) + UMvn(j),M) (3.51)

Mcn is derived in a similar procedure as above:

Mcn = mod(

1× v 1× v · · · 1× v
2× v 2× v · · · 2× v

...
...

M × v M × v · · · M × v

+

u× v + 1 2× u× v + 2 · · · M × u× v +M
u× v + 1 2× u× v + 2 · · · M × u× v +M

...
...

u× v + 1 2× u× v + 2 · · · M × u× v +M

+

C,MM)

(3.52)

52

Let us assume that:

VMv = v ×Mv =
[
v 2× v · · · M × v

]
VMv =

[
VMv(0) VMv(1) · · · VMv(M − 1)

] (3.53)

UVMv = (u× v + 1)×Mv =[
u× v + 1 2× u× v + 2 · · · M × u× v +M

]
UVMv =

[
UVMv(0) UVMv(1) · · · UVMv(M − 1)

] (3.54)

Also, (3.52) can be equivalently written as:

Mcn = mod(
VMv(0) VMv(0) · · · VMv(0)
VMv(1) VMv(1) · · · VMv(1)

...
...

VMv(M − 1) VMv(M − 1) · · · VMv(M − 1)

+

UVMv(0) UVMv(1) · · · UVMv(M − 1)
UVMv(0) UVMv(1) · · · UVMv(M − 1)

...
...

UVMv(0) UVMv(1) · · · UVMv(M − 1)

+

C,MM)

(3.55)

let us suppose that:

UVMvn =
[
vu+ 1 + rc 2uv + 2 + rc · · ·M × u× v +M + rc

]
(3.56)

Then
Mcn(i, j) = mod(VMv(i) + UVMvn(j),M) (3.57)

To save memory and time in the implementation, (3.57) can be equivalently written as:

ycol = mod(VMv(i) + UVMvn(j),M) (3.58)

The pseudo C code implementation of (3.51) and (3.58) is given in algorithm-5.
where data_bit_2(xrow, ycol) is the source matrix (the one contains the data bits of

the image after diffusion), and data_bit_1(i, j) is the destination matrix (the permuted
data bits).

Time Complexity Analysis
We propose below a comparative theoretical analysis of the time complexity in terms of
arithmetic, logic operations and clock cycles of our new formulation of the modified 2-D
cat map and the standard cat.
Assume X1 is the addition operation, X2 is the multiplication operation and X3 is the
modulus operation.
Remark:

1. The analysis is carried out for a block of size M×M and for one encryption round.

2. The assign operation (see line 14 in algorithm 5) is identical in both implementa-
tions. It requires M2 assign operations and M2 memory locations.

53

Algorithm 5 Pseudo C code for the implementation of the new 2-D cat map formulation
1: for i = 0 to M − 1
2: Mv[i] = i+ 1
3: End i
4: for k = 0 to r − 1
5: for i = 0 to M − 1
6: UMvn[i] = Mv[i]× u[k] + rl[k] + rc[k]
7: VMv[i] = Mv[i]× v[k]
8: UVMvn[i] = u[k]× VMv[i] +Mv[i] + rc[k]
9: End i

10: for i = 0 to M − 1
11: for j = 0 to M − 1
12: xrow = mod(Mv[i] + UMvn[j],M)
13: ycol = mod(VMv[i] + UVMvn[j],M)
14: data_bit_1(i, j) = data_bit_2(xrow, ycol)
15: End j
16: End i
17: End k

Time complexity of Eq(3.30)
The time complexity of Eq(3.30) is derived based on the following assumptions:

1. The v × u + 1 value is calculated one time per block and it is saved in a register
(Reg1) to be used.

2. The rx+ ry is calculated one time per block and it is saved in a register Reg2 .

The time complexity of Eq(3.30) is given by:
TCEq(3.30) = TCin + TCjn
where TCin and TCjn are the time complexity of calculating in and jn parameters respec-
tively:
TCin = 2M2 ×X1 +M2 ×X2 +M2 ×X3
TCjn = 2M2 ×X1 + 2M2 ×X2 +M2 ×X3
TCEq(3.30) = 4M2 ×X1 + 3M2 ×X2 + 2M2 ×X3
In terms of memory, Eq(3.30) needs M2 locations.

Time complexity of the proposed implementation given by Eq(3.51) and Eq(3.58)
Based on the previous assumptions 1) and 2) and on the following two assumptions in
algorithm 5:

1. The array Mv[i] of lines 6, 7, 8 and 12 is replaced by Reg1 = i+ 1.

2. The value rl[k] + rc[k] is calculated once for the loop begins at line 5 and saved in
a register (Reg2).

The time complexity of Eq(3.51) and Eq(3.58) is derived as follows:

1. Line 6: M addition operations are needed to calculate Mv[i], M multiplication op-
erations are needed to evaluate Mv[i]× u[k] and M addition operations are needed
to add the value of the Reg2. The total required operations are:
TC6 = 2M ×X1 +M ×X2.

54

2. Line 7: Only M multiplication operations are needed to compute Mv[i] × v[k],
because Mv[i] was already calculated in the previous line. The total needed opera-
tions are:
TC7 = M ×X2.

3. Line 8: M multiplication operations are needed to compute u[k] × VMv[i], and
2M addition operations. The total required operations are:
TC8 = 2M ×X1 +M ×X2.

4. Line 12: M addition operations are needed to calculate Mv[i], M2 addition oper-
ations are needed to calculate Mv[i] + UMvn[j], and M2 modulus operations are
needed. The total required operations are:
TC12 = M ×X1 +M2 ×X1 +M2 ×X3.

5. Line 13: M2 addition operations are needed to evaluate VMv[i]+UVMvn[j], and
M2 modulus operations are needed. The total required operations are:
TC13 = M2 ×X1 +M2 ×X3.

The time complexity TCProposed is:
TCProposed = TC6 + TC7 + TC8 + TC12 + TC13

TCProposed = (2M2 + 5M)×X1 + 3M ×X2 + 2M2 ×X3
Table 3.3, presents the comparative of the time complexity in terms of arithmetic and
logic operations. It is clear from table 3.3 that the time complexity of the proposed im-
plementation is less than the standard one given by Eq(3.30). Indeed, for the proposed
implementation, the required multiplication operations is M times less than the standard
implementation. And, the required addition operations is less than the standard imple-
mentation (for M > 2).

Table 3.3: Time complexity of arithmetic and logic operations
X1 X2 X3 TC

Eq(3.30) 4M2 3M2 2M2 4M2X1 + 3M2X2 + 2M2X3

Ours 2M2 + 5M 3M 2M2 (2M2 + 5M)X1 + 3MX2 + 2M2X3

Moreover, for a fair comparison, we give in table 3.4, the time complexity in terms of
clock cycles (TCC) for the operations: addition, multiplication, modulus, Read (R) and
Write (W). For each operation, the TCC is calculated according to the published manual

Table 3.4: Time complexity in clock cycles for all operations
X1 X2 X3 R W Total

Eq(3.30) 2M2 3M2 2M2 0 0 7M2

Ours M2 + 2.5M 3M 2M2 4M 3M 3M2 + 12.5M

of the instruction table in pages 159-160 of [43]. The Microprocessor version (Sandy
Bridge Microprocessor code) of [43] is close to the used one in our simulation tests. The
addition operation (X1) takes 0.5 clock cycle, the multiplication operation (X2) takes 1

55

clock cycle, the modulo operation (X3) takes 1 clock cycle, the read operation (R) takes
1 clock cycle, and the write operation (W) takes 1 clock cycle. Then, according to table
3.4, for M > 3, the proposed implementation consumes less number of cycles than the
standard implementation. As an example, for M = 16, the proposed implementation
requires 968 cycles while Eq(3.30) requires 1792 cycles. However, compared with the
standard implementation, the proposed implementation needs of M2 + 3M locations of
memories instead of M2 and also, 3 operations of writing (in lines, 6, 7 and 8) and 4
operations of reading (in lines 8, 12 and 13), of the algorithm-5.

3.3.2 Description of the decryption process

Figure 3.11: Description of the decryption process

The decryption process is almost similar to the encryption one. From Fig-3.11, first
of all, the bytes in a ciphered block are converted into a stream of bits using an Int2Bin()
function. Then the inverse permutation layer is applied in reverse order from the last pair
of bits into the first pair. The Bin2Int() function is used to convert the resultant bits from
permutation layer into a stream of bytes. Finally, the inverse diffusion layer, based on
the inverse matrix, is used. All previous processes are repeated r times. Furthermore, the
decryption process uses the same chaotic generator as in the encryption part.

3.3.2.1 Reverse of the new formulation based on the modified 2-D cat map

The cat map is a non-invertible function because of the modulus operation, but it is a
reversible one. For that, all the parameters of the dynamic keys Kp = u, v, rl, rc must be
generated and stored for all iterations and then used in reverse order to retrieve the original
matrix. The reverse permutation based on the derived formulas, is implemented using the
pseudo C code as in algorithm-6. As we can see, the first two parts of the code are similar
to those given by the permutation layer of algorithm-5, while the last part (nested loops)
is achieved in reverse order.

56

Algorithm 6 Algorithm in pseudo C code of the reverse operation of the new permutation
formula

1: for i = 0 to M − 1
2: Mv[i] = i+ 1
3: End i
4: for k = r − 1 to 0
5: for i = 0 to M − 1
6: UMvn[i] = Mv[i]× u[k] + rl[k] + rc[k]
7: VMv[i] = Mv[i]× v[k]
8: UVMvn[i] = u[k]× VMv[i] +Mv[i] + rc[k]
9: End i

10: for i = M − 1 to 0
11: for j = M − 1 to 0
12: xrow = mod(Mv[i] + UMvn[j],M)
13: ycol = mod(VMv[i] + UVMvn[j],M)
14: data_bit_2(xrow, ycol) = data_bit_1(i, j)
15: End j
16: End i
17: End k

3.3.2.2 Inverse Diffusion Layer

The inverse diffusion layer is achieved by the inverse binary matrix as:
O0

O1
...
O31

 =
[
DM

]−1 �

Od0
Od1

...
Od31

 (3.59)

Where Odi, Oi ∈ [0, 255] and [DM]−1 is the inverse of the binary diffusion square matrix
of size 32× 32 [68]. We develop the calculation of the first byte O0 from (3.59) as:
O0 = Od0⊕Od8⊕Od9⊕Od10⊕Od16⊕Od17⊕Od19⊕Od20⊕Od22⊕Od23⊕Od24⊕
Od25 ⊕Od27 ⊕Od29 ⊕Od31

3.4 Time performance and security analysis
In this section, we evaluate the performance of time and the level of security against
known cryptographic attacks for the realized cryptosystems and we compare the results
with some known cryptosystems in the literature. To this end, analysis methods and tools
that was described in chapter 2, will be used here.

3.4.1 Performance of the speed of calculations
The performance of the speed of calculations of our proposed cryptosystems (Crypto-A1,
Crypto-A2, Crypto-B1, Crypto-B2 and Crypto-C) is evaluated, on different images of
different sizes, in terms of mean encryption/decryption times, encryption throughput and
needed number of cycles per byte. All results are carried out by using a C compiler, on a

57

PC with 3.1 GHz processor Intel Core i3-2100 CPU, 4GB RAM, and Windows 7, 32-Bit
Operation System.

Table 3.5: Average encryption/decryption Time of the proposed cryptosystems and some
known cryptosystems (in milli-seconds)

Algorithm Name Encryption Decryption

Crypto-A1 6.1 6.2

Crypto-A2 9.9 32.4

Crypto-B1 7.2 5.8

Crypto-B2 10.5 31.6

Crypto-C 8.38 8.48

Zhang et al [166] 7.5 8.25

Wang et al [152] 7.79 8.39

Akhshani et al [8] 14.4 −

Wong et al [155] 15.59 16.77

Yang et al [159] 23.45 25.65

Lian et al [73] 87.25 89.5

Pareek et al [94] 160 −

Socek et al [128] 294 294.3

Table 3.5 presents the obtained average encryption/decryption times of the proposed
cryptosystems (Crypto-A, Crypto-B, and Crypto-C) on Lena color image of size (256 ×
256×3). We also give, in the same table, the average encryption/decryption times of some
known chaos-based algorithms. The average time is calculated as follows: we execute the
algorithm 100 times and for each time we compute the encryption/decryption times for
the whole image, and then, we evaluate the average time. Table 3.6 presents the obtained
results of some of the above cryptosystems in terms of encryption throughput and needed
number of cycles per byte.

From these tables, it is clear that, the efficiency of proposed cryptosystems are better
than some known cryptosystems, that are reputed very efficient.

3.4.2 Plain-text sensitivity attack
To achieve the plaintext sensitivity attack, we apply all steps of the procedure described
in section (2.2.2) of chapter 2. Table.3.7, presents the obtained results of the average
values of the NPCR, UACI and HD parameters, for 1000 different secret keys, and dif-
ferent images of various sizes, and this for various chaos-based cryptosystems including
ours. As we can see, from this table, the obtained values of the NPCR, UACI and HD
parameters by the proposed cryptosystems are very close to the optimal values, which are
NPCRoptimal = 99.61%, UACIoptimal = 33.46% and HDoptimal = 50%. .

58

Table 3.6: Encryption throughput and number of cycles per byte of the proposed cryp-
tosystems and some known cryptosystems

Type ET (MBps) Cycles per Byte

Crypto-A1 Chaos 30.737 96.2

Crypto-A2 Chaos 18.93 156.2

Crypto-B1 Chaos 26.04 113.52

Crypto-B2 Chaos 17.85 165.62

Crypto-C Chaos 22.37 132.2

Zhang et al [166] Chaos 25 122

Socek et al [129] Chaos 0.63 1977

Lian et al [73] Chaos 2.09 772

Yang et al [159] Chaos 7.31 287

Wong et al [155] Chaos 7.19 417

Pareek et al [94] NOT 0.39 2445

3.4.3 Key sensitivity attack

To evaluate the key sensitivity attack, we apply the described procedure in section (2.2.3)
of chapter 2. Three parameters : NPCR, UACI and the Hamming distance HD (2.7-
2.10) are used for this evaluation. Table 3.8, presents the results of the key sensitivity
attack, for some known cryptosystems including ours.
From Table 3.8, it is clear that all proposed cryptosystems have a high security level for
one bit change on the secret key. This result is predicable because of the properties of
chaotic signals.

3.4.4 Correlation analysis

To evaluate the security of the proposed cryptosystems regarding to the correlation analy-
sis, we randomly selected N = 10000 pairs of adjacent pixels in vertical, horizontal, and
diagonal directions from the plain image and its ciphered one. Then the correlation coef-
ficient is calculated according to the equations (2.12-2.15), of section (2.2.5) of chapter 2.
1. Figure.3.12 shows the correlation coefficients of the adjacent pixels in horizontal, ver-

1

H= Horizontal direction, V= Vertical direction, and D= Diagonal direction
1 = Barbara 512× 512× 1
2 = Lena 512× 512× 1
3 = Lena 128× 128× 1
4 = Barbara 256× 256× 1
5 = Lena 256× 256× 1
6 = Boat 256× 256× 3
7 = Boat 256× 256× 1

59

Table 3.7: NPCR and UACI for the plaintext sensitivity test

Algorithm Name Image Name Image Size UACI NPCR HD

Crypto-C Lena.bmp 512× 512× 3 33.462 99.609 0.499912

ECKBA [129] Lena.bmp 512× 512× 3 33.36 99.612

Crypto-C Lena.bmp 512× 512× 1 33.463 99.607

Ahmed et al [2] Lena.bmp 512× 512× 1 33.4 99.6

Yang et al [159] Lena.bmp 512× 512× 1 33.479 99.618

Wong et al [155] Lena.bmp 512× 512× 1 33.427 99.609

Lian et al [73] Lena.bmp 512× 512× 1 33.419 99.587

Crypto-C Barbara.bmp 512× 512× 1 33.463 99.607

Chen et al [22] Barbara.bmp 512× 512× 1 25.200 -

Crypto-C Barbara.bmp 256× 256× 1 33.452 99.597

Behnia et al [14] Barbara.bmp 256× 256× 1 33.25 0.41962

Crypto-C Boat.bmp 256× 256× 1 33.448 99.596

Crypto-A Boat.bmp 256× 256× 1 33.418 99.631 0.500009

Crypto-B Boat.bmp 256× 256× 1 33.420 99.598 0.499798

Song et al [133] Boat.bmp 256× 256× 1 33.453 99.625

Akhshani et al [8] Boat.bmp 256× 256× 1 33.200 - 0.499900

Crypto-C Lena.bmp 256× 256× 1 33.44 99.58

60

Table 3.8: NPCR and UACI for the key sensitivity test

Algorithm Name Image Name Image Size UACI NPCR HD

Crypto-C Barbara.bmp 512× 512× 1 33.465 99.609

Chen et al [22] Barbara.bmp 512× 512× 1 - 99.610

Crypto-C Lena.bmp 128× 128× 1 33.465 99.611

Zhao et al [167] Lena.bmp 128× 128× 1 - 99.568

Crypto-C Airplane.bmp 512× 512× 1 33.465 99.610

Ahmed et al [2] Airplane.bmp 512× 512× 1 33.410 99.598

Crypto-C Lena.bmp 256× 256× 1 33.463 99.609

Song et al [133] Lena.bmp 256× 256× 1 - 99.610

Crypto-C Lena.bmp 512× 512× 1 33.462 99.609 0.499941

Yang et al [159] Lena.bmp 512× 512× 1 - 99.62

Crypto-A Camerman.bmp 128× 128× 3 33.463 99.609 0.500030

Crypto-B Boat.bmp 256× 256× 3 33.466 99.615 0.500020

tical and diagonal directions for both Cameraman plain image and the corresponding ci-
phered image of size 256×256×3 for the first cryptosystem Crypto-A (similar results are
observed with Crypto-B and Crypto-C). In Figure.3.13 we show the resulst of the same
test for both Boat plain image and the corresponding ciphered image of size 256×256×3
for the second cryptosystem Crypto-B (similar results are observed also with Crypto-A
and Crypto-C).

Moreover, for the proposed cryptosystems Crypto-A, Crypto-B, Crypto-C and others
known cryptosystems, Table.3.9 presents the correlation values in the three directions for
different images of size 256×256×3. For all cryptosystems, the obtained results indicate
that the correlation coefficient, in all directions, of plaintext images is close to one, and
the correlation coefficient of the ciphered images is close to zero. Consequently, there is
no detectable correlation between plain images and their ciphered images.

8 = Lena 512× 512× 3
9 = Airplane 512× 512× 3
10 = Cameraman 256× 256× 3

61

Table 3.9: Correlation coefficient values of two adjacent pixels in the plain and the cipher
images

Algorithm Name Image Plain image correlation results Ciphered image correlation results

H V D H V D

Crypto-C 1 0.89538 0.95887 0.88304 0.00155 0.00163 0.00148

Chen et al [22] 1 0.91765 0.95415 0.90205 0.01183 0.00016 0.01480

Crypto-C 2 0.98071 0.98214 0.96547 0.00131 0.00121 0.00114

Pareek et al [94] 2 0.78200 0.59220 0.64240 0.00310 -0.00160 0.00670

Crypto-C 3 0.91019 0.96104 0.87166 -0.00622 0.00611 -0.00626

Zhao et al [167] 3 0.94800 0.88510 0.85460 0.02480 -0.00940 -0.01830

Crypto-C 4 0.92287 0.95024 0.91523 0.00317 -0.00326 -0.00309

Behnia et al [14] 4 0.95740 0.93990 0.91830 0.00380 0.00230 0.00040

Crypto-C 5 0.97165 0.98730 0.95440 0.00312 -0.00317 -0.00310

Wu et al [158] 5 - - - 0.00533 -0.00276 0.00166

Song et al [133] 5 0.96592 0.94658 0.92305 0.00550 0.00411 0.00021

Crypto-B 6 0.93622 0.94419 0.89243 0.00868 0.00864 0.00837

Crypto-C 7 0.94417 0.95263 0.90701 0.00320 -0.00309 -0.00306

Akhshani et al [8] 7 0.95160 0.94470 0.90590 0.00650 0.00550 0.00820

Crypto-C 8 0.99233 0.99649 0.98712 -0.00158 0.00159 -0.00147

Yang et al [159] 8 0.98022 0.98663 0.96468 -0.00209 -0.01618 0.01780

Wong et al [155] 8 0.97510 0.98892 0.96704 0.00681 0.00782 0.00323

Crypto-C 9 0.96606 0.96384 0.93674 0.00157 -0.00151 -0.00158

Ahmed et al [2] 9 0.96775 0.95753 0.93002 0.00247 0.00182 0.00038

Crypto-A 10 0.89849 0.92518 0.85137 0.01052 0.01065 0.01084

62

(a) Horizontal correlation of the plain image (b) Horizontal correlation of the ciphered image

(c) Vertical correlation of the plain image (d) Vertical correlation of the ciphered image

(e) Diagonal correlation of the plain image (f) Diagonal correlation of the ciphered image

Figure 3.12: Correlation analysis of Boat and its ciphered image in three
directions:Crypto-A

63

(a) Horizontal correlation of the plain image (b) Horizontal correlation of the ciphered image

(c) Vertical correlation of the plain image (d) Vertical correlation of the ciphered image

(e) Diagonal correlation of the plain image (f) Diagonal correlation of the ciphered image

Figure 3.13: Correlation analysis of Cameraman and its ciphered image in three
directions:Crypto-B

3.4.5 Histogram analysis

The histograms of the plain images and their ciphered ones are presented in Figures
(3.14) for Crypto-A (similar results are obtained with Crypto-B), and in Figures (3.15)
for Crypto-B and Crypto-C (similar results are obtained with Crypto-A). It is clear that
the pixel values show a pattern in part c), which presents the histogram of the plain image
of each figure, while in part d) the distribution of the pixel values of the ciphered image
are almost uniform and significantly different from the histogram of the plain image.

64

Remark: In figure (c) of Figures (3.15), for more clarity, we limit the maximum value of
the y-axis to 500. Indeed, the histogram values for all colors (except the black and white
colors) are less than 500. We found that the white color is repeated more than 7500 times
(16%) and the black color is repeated more than 3300 times (7%). The previous visual
test of the histogram is necessary but not sufficient for confirming the uniformity of the
ciphered histogram. For that, the chi-square test is applied (see (2.11)) for statistically
confirming the uniformity of the histogram: For the proposed cryptosystems, we present
in Table 3.10 the obtained results of the Chi square test of histograms for five ciphered
images of three different natures (i.e., Boat, Airplane, Cameraman, Peppers and Parrots).
All experimental values of the chi-square are less than the theoretical value, which is 293,
and so, the uniformity of the histograms are verified.

(a) Plain Boat image (b) Ciphered Boat image

(c) Histogram of the plain Boat image (d) Histogram of the ciphered Boat image

Figure 3.14: Plain and ciphered Boat images and their histograms:Crypto-A

65

(a) Plain Cameraman image (b) Ciphered Cameraman image

(c) Histogram of the plain Cameraman image (d) Histogram of the ciphered Cameraman image

Figure 3.15: Plain and ciphered Cameraman images and their histograms:Crypto-B

Table 3.10: Chi-Square Results

Image name Crypto-B Chi-square Crypto-A Chi-square Crypto-C Chi-square

Cameraman 255.74 255.12 /

Boat 255.43 255.12 /

Jet 253.787 253.78 /

Peppers 261.17 260.36 253.5

Parrots 260.07 259.44 /

Lena / / 252.1

Baboon / / 256.1

66

3.5 Conclusion
In this chapter, we designed, realized and tested three efficient chaos-based cryptosys-
tems, defined on finite numbers, for securing images, in real-time applications. All of
them are blocks ciphers and the two first cryptosystems crypto-A and Crypto-B are based
on the substitution-permutation network (SPN). The substitution layer is achieved by a
proposed modified Finite Skew Tent Map (FSTM) to overcome the problems of : fixed
point, restriction of the key space and limitation of mapping between plaintext and cipher-
text and vice versa. Crypto-B is rather used for some applications that need two security
requirements: confidentiality and authentication.
The structure of the third cryptosystem is new and efficient. It is based on two chaotic
layers: a binary diffusion layer of pixels, followed by a bit-permutation layer. The per-
mutation process is achieved by a proposed formulation of the 2-D cat map that allows an
efficient implementation in C code. Experimental results show that the proposed chaos-
based cryptosystems are faster than many chaos based cryptosystems of the literature,
while keeping a very high security level. Indeed, the proposed encryption/decryption
schemes are robust against all known attacks in the literature.

67

4
Second Contribution: Partial
Cryptanalysis of Zhang cryptosystem
and design of a very fast and secure
cryptosystem

In this chapter, a new category of cryptosystems, which are faster than the previous cryp-
tosystems with a very high security level, are introduced. In such cryptosystems, the
confusion and diffusion layers are combined, and then, they are performed simultane-
ously in a single scan of plain-image pixels. The chapter is splits into two related parts. In
the first part (section (4.1), we describe and partially break one of best chaos-based cryp-
tosystem recently published by Zhang in 2013, namely, the first cryptosystem of Zhang et
al., model [166]. To that end, a mathematical model is introduced to remove the dynamic
key space of the diffusion effect. In the second part (section (4.2), based on the previous
analysis a very fast and very secure cryptosystem is designed, realized with two versions
of the diffusion layer, and tested. The diffusion layer of the first version is achieved by
a discrete Logistic map, while the diffusion layer of the second version is achieved by a
finite skew tent map. In section (4.3) an example of real-time application is described.
The conclusion of this chapter is presented in section (4.4).

4.1 Partial cryptanalysis of the first Zhang cryptosystem

In this section, we address some weaknesses in the first Zhang et al., algorithm "An image
encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion",
and we propose methods for breaking it partially. Moreover, the differential attacks anal-
ysis, based on the proposed partial cryptanalysis equation, are reevaluated. As a result,
the obtained average values of NPCR and UCAI parameters become small, as compared
to the optimal values, and in addition, they are very low for specific pixel position attacks.

69

4.1.1 The first Zhang cryptosystem
In Zhang’s paper [166], two cryptosystems were designed based on Fridrich’s architec-
ture. The first one consists of a dependent diffusion layer based on the reverse 2-D cat
map. The second algorithm presents new mapping from a pseudo-random position to
another pseudo-random one for the confusion effect. The diffusion layer in the cryptosys-
tems is based on the logistic map. In these versions, Zhang tried to achieve the confusion
and the diffusion effects sequentially. Then, the effect of one ciphered pixel is transferred
to the next one and so on. From this idea, only two rounds (in the first version) and one
round (in the second version) of the diffusion-confusion process are/is needed instead of
many rounds of separated confusion and diffusion processes used in the traditional struc-
tures such as Fridrich cryptosystem and other cryptosystems. In the following, our work
is directed to the first Zhang cryptosystem. The mathematical model of the first Zhang
algorithm is:(Enc=the encryption process).

Enc =

[
x′

y′

]
=

[
1 pi
qi piqi + 1

] [
x
y

] (
ModN

)
ciph(x, y) = arr(x′, y′)⊕ f(t)

t = ciph(x, y)

(4.1)

The general block diagram of the first Zhang cryptosystem is shown in Figure. 4.1. It
consists of the following steps iterated n times (with n > 0):

Figure 4.1: Zhang image encryption cryptosystem architecture

1. Selection: this step generates a random pair arr(rxj, ryj) from the whole image.
The values of rxj and ryj are calculated using equation (4.2) and equation (4.3),
where j is a counter ranging from 0 to n− 1 encryption rounds.

rx
j = (SQ1(2000 + 100 + j)× 109)mod 512 (4.2)

ry
j = (SQ2(2000 + 100 + j)× 109)mod 512 (4.3)

2. Array exchanges: the second step is to exchange the first byte arr(0, 0) with the
random byte from the previous step arr(rxj, ryj).

3. Dependent diffusion: then the cryptosystem goes to the dependent diffusion layer
form rounds (m = 2 in the Zhang algorithm case), which also includes three stages.

(a) New position estimation: in the dependent diffusion layer the first step is to
calculate the new byte position (x′, y′) from the old byte position (x, y) using
equation (4.4). [

x′

y′

]
=

[
1 pi
qi piqi + 1

] [
x
y

] (
ModN

)
(4.4)

70

where
N is the size of the square test image.
pi and qi are calculated using the following equations:

pi = (SQ1(2000 + i)× 109)mod 512 (4.5)

qi = (SQ2(2000 + i)× 109)mod 512 (4.6)

The variable i in the last equations is a counter ranging from 0 to m− 1. The
two sequences SQ1 and SQ2 as can be seen in equations (4.2, 4.3, 4.5, and
4.6) are calculated using the following equation:

f(xn) = α× xn−1(1− xn−1) (4.7)

With the initial values x−1=0.12345678912345 for SQ1, and x−1=0.67856746347633
for SQ2. The value of α is set to 3.99999.

(b) Calculation of the local ciphered pixel: the next step of the dependent diffu-
sion layer is to calculate the ciph(x, y) value using the following equation:

ciph(x, y) = arr(x′, y′)⊕ f(t) (4.8)

where
f(t) = [α(

t

1000
)× [1− t

1000
]× 1000]mod 256 (4.9)

(c) Update of t: the last step of the dependent diffusion layer is to change the
value of the t variable using equation (4.10).

t = ciph(x, y) (4.10)

The initial value t0 is defined by the following equation:

t0 = [4× keyd × (1− keyd)× 1000]mod 256. (4.11)

Where
The initial value of the keyd=0.33456434300001.

4.1.2 Partial cryptanalysis of the Zhang cryptosystem
Our contribution in this work focuses on partial cryptanalysis of the first Zhang cryptosys-
tem. Also, in the case of one encryption round and two dependent diffusion rounds, we
have broken it completely. Moreover, the partial cryptanalysis equation will be used to
significantly decrease the robustness of the cryptosystem for two encryption rounds and
two dependent diffusion rounds. In fact, the dynamic key space of the diffusion function
f(t) (see equation 4.9)can be removed from the calculation of the total dynamic key space
independently of the used key, because the t values are clearly presented in the ciphered
image. To prove the correctness of the above assumptions, we derive the following sce-
nario: The encrypted data of the Zhang cryptosystem are obtained by equation (4.1), then
we can write the following sequence:
ciph0 = arrk′0 ⊕ f(t0)
ciph1 = arrk′1 ⊕ f(t1) = arrk′1 ⊕ f(ciph0)
ciph2 = arrk′2 ⊕ f(t2) = arrk′2 ⊕ f(ciph1)

71

ciph3 = arrk′3 ⊕ f(t3) = arrk′3 ⊕ f(ciph2)
ciph4 = arrk′4 ⊕ f(t4) = arrk′4 ⊕ f(ciph3)
ciphk = arrk′k ⊕ f(tk) = arrk′k ⊕ f(ciphk−1)
Where arrk′0 is the plain image of the current encryption round, as an example for
n = 1, m = 1 it is the original plain image (arr(x′, y′)), for n = 1, m = 2 it is
the encrypted image which is the output of equation (4.1) (i.e ciph(x, y)) and so on.
From the last equation in the previous sequences, we can write the main partial cryptanal-
ysis equation of the Zhang cryptosystem as:

arrk′k = ciphk ⊕ f(ciphk−1) (4.12)

where k = x×N + y and k′ = x′ ×N + y′ (see equation (4.4)), arrk′k is the input pixel
of the last dependent diffusion round (m) in the last encryption round (n) and ciphk is the
ciphered pixel. As the function f(t) is known, then equation (4.12) can be used to remove
the diffusion effect of the last (m and n) rounds from the ciphered pixels. This allows
recovery of a permuted version of the previous ciphered image. This removal gives the
attacker the possibility to:

1. Decrease the dynamic key space of the whole cryptosystem.

2. Perform partial cryptanalysis of the Zhang cryptosystem for (n = 1, m = 1) and
(n = 1, m = 2).

3. Decrease the UACI and NPCR values significantly.

4.1.2.1 Decreasing the dynamic key space of the whole cryptosystem

The brute-force attack is the basic attack that can be used against any cryptosystem. It
trys all possible keys until the correct one is founded. In the worst case, all possible
keys in the key space are tested[125],[108]. From equation (4.4), it is clear that the key
space of the 2-D cat map for the Zhang cryptosystem is N2 for one encryption round and
one dependent diffusion round (n=1, m=1) where N is the square root of the image size.
In equation (4.9), the key space of the function f(t) is independent of the image size,
and it is 28 for (n=1, m=1). The brute force attack time on the Zhang cryptosystem is:
KS = (S1×S2)

n×m whereKS is the total dynamic key space, S1 represents the dynamic
key space for the standard 2-D cat map, and S2 represents the dynamic key space for the
logistic map implemented by a lookup table, then S1 = N2, S2 = 28, and so, KS =
(N2× 28)n×m For one encryption round, one dependent diffusion round (n=1, m=1), and
(N = 512) KS = (218 × 28)1, then, the cryptanalysis time is: CT ime = 10 × 226 ms
≈ 186.4135 hours = 7.77 days.
Notice that equation (4.12) can be used to find the permuted plain image which means that
the dynamic key space of the t parameter can be removed from the dynamic key space
analysis as: KS = (218)1, then, the cryptanalysis time: CT ime = 10×218 ms≈ 186.4135
hours = 43.6907 minutes.
For one encryption round, two dependent diffusion rounds (n=1, m=2), and (N = 512) if
we assume that the Zhang cryptosystem encrypts P to C1 in the first dependent diffusion
round, and then encrypts C1 to C2 in the second dependent diffusion round, then using
equation (4.12) we can at least find non-order C1 pixels easily with 10 ms. To find the
original plain image (at n = 1, m = 2), the cryptanalytic system needs 10 ms to obtain
C1 from C2. Then, for each possible value of p2 and q2 the C1 is decrypted using the brute

72

force attack for all possible values of p1 and q1: KS = (S1)
2, S1 = 236, CT ime = 10× =

236 ms, CT ime ≈ 21.79 years.
For one encryption round, one dependent diffusion round (n=1, m=1), and (N = 256)

KS = (S1)
1, S1 = 216, then: CT ime = 2.5× 216 ms ≈ 39.32 seconds

For one encryption round, two dependent diffusion rounds (n=1, m=2), and (N = 256)
KS = (S1)

2 S1 = 232 CT ime = 2.5× 232 ms ≈ 124.27 days

4.1.2.2 Chosen plaintext attack on the first Zhang cryptosystem

The chosen plaintext attack is defined as a cryptanalysis model when the adversary has the
capability of choosing some plaintexts and encrypting them. Then, the adversary studies
the corresponding ciphertexts to obtain some information of the used keys or even to re-
duce the security level of the cryptosystem[11],[58]. From this well-known definition, we
can choose a plaintext and encrypt it without knowing the dynamic keys, and our objective
is to calculate the dynamic keys. The following scenario describes the proposed partial
crytpanalysis of the first Zhang cryptosystem. The chosen plain image is used to find the
dynamic keys (q1, p1) of the first dependent diffusion round and then using these keys we
can decipher any ciphered image with the same keys (this scenario is only applicable in
the case where n = 1,m = 1). We choose a specific plain image P of 512× 512× 1 size.
This plain image is chosen to help us in the process of finding the dynamic keys (q1, p1).
Indeed, we try to fill each position with a predefined value to decrease the range values
of the dynamic keys q1 and p1. For example, assuming that the decrypted value is 5, we
can be sure that only rows (1, 3, 9 or 10) contain this value. This will be helpful in the
process of finding q1 and p1 values as illustrated below. The image P is encrypted, and
the ciphered image (C1) is obtained. Then, a group of ciphered pixels is used to analyze
the encryption process and to try to recover the dynamic keys. For this we introduce the
following steps:

P =

0 1 2 ··· 254 255 ··· 509 510 511

0 0 1 1 · · · 1 1 · · · 1 1 1
1 1 2 3 · · · 255 1 · · · 255 1 2
2 2 2 2 · · · 2 2 · · · 2 2 2
3 3 4 5 · · · 2 3 · · · 2 3 4
4 1 1 1 · · · 1 1 · · · 1 1 1
5 3 3 3 · · · 3 3 · · · 3 3 3
6 3 3 3 · · · 3 3 · · · 3 3 3
7 4 4 4 · · · 4 4 · · · 4 4 4
8 4 4 4 · · · 4 4 · · · 4 4 4
9 5 5 5 · · · 5 5 · · · 5 5 5
10 5 5 5 · · · 5 5 · · · 5 5 5
11 6 6 6 · · · 6 6 · · · 6 6 6
12 6 6 6 · · · 6 6 · · · 6 6 6
...

...
...

...
...

...
...

507 254 254 254 · · · 254 254 · · · 254 254 254
508 254 254 254 · · · 254 254 · · · 254 254 254
509 255 255 255 · · · 255 255 · · · 255 255 255
510 255 255 255 · · · 255 255 · · · 255 255 255
511 1 1 1 · · · 1 1 · · · 1 1 1

73

First dynamic key calculations (q1)
To find the value of q1 (which refers to the column position) two steps are carried out:
First Step
Using the ciphered pixel at position (x = 1, and y = 0), the plain pixel position (x′, y′) is
calculated using equation (4.4):
x′ = 1× x+ p1 × y = 1 + 0 = 1 =⇒ x′ = 1
y′ = q1 × x+ (q1 × p1 + 1)× yy′ = q1 × 1 + (q1 × p1 + 1)× 0 =⇒ y′ = q1

This means that from the value of the ciphered pixel ciph(1, 0), the value of the plain
pixel arr(1, q1) can be easily calculated using equation (4.12) as:
arr(1, q1) = ciphk ⊕ f(ciphk−1)
where ciphk = ciph(1, 0) and ciphk−1 is calculated using equation (4.13).

if k is a multiple of N then
xprevious = x− 1
yprevious = N − 1
else
xprevious = x
yprevious = y − 1

(4.13)

So, arr(1, q1) = ciph(1, 0)⊕ f(ciph(0, 511))
Now, the ciphered pixels (ciph(1, 0) and ciph(0, 511)) are known, also the function f(t)
is known (see equation 4.9), and the plain pixel value arr(1, q1) is located in row number
1 of the plain image P . The only unknown parameter is the column position which is q1,
ranging from 0 to 511. The following equation (4.14) is used to decrease the key space of
the dynamic key q1.

if arr(1, q1) == 0 skip this value
else if arr(1, q1) == 1 then
q1 ∈ {0, 255, 510}
else if arr(1, q1) == 2 then
q1 ∈ {1, 256, 511}
else
q1 ∈ {arr(1, q1)− 1, arr(1, q1) + 254}

(4.14)

Firstly, assume that arr(1, q1) = 0, then it is skipped since it can be in any position
of the P image (Figure.4.1 justifies this, since the first pixel is swapped with a random
pixel from the whole image). Secondly, assume that arr(1, q1) = 1, this value can be
located in one of three positions on row number 1: [(1, 0), (1, 255) or (1, 510)]. Thirdly,
assume that arr(1, q1) = 2, this value can be located in one of three positions on row
number 1: [(1, 1), (1, 256) or (1, 511)]. Finally, assume that arr(1, q1) > 2, this
value can be located in one of two positions on row number 1: [(1, arr(1, q1) − 1) or
(1, arr(1, q1) + 254)] which are the positions containing the arr(1, q1) value.
Second Step
To further decrease the range values of q1, another ciphered pixel at (x = 3, and y = 0)
position is considered. The position (x′, y′) of the corresponding plain pixel is calculated
using equation (4.4):
x′ = 1× x+ p1 × yx′ = 3 + 0 = 3 =⇒ x′ = 3
y′ = q1 × x+ (q1 × p1 + 1)× yy′ = q1 × 3 + (q1 × p1 + 1)× 0 =⇒ y′ = 3q1

Using equations (4.12) and (4.13)
arr(3, 3q1) = ciph(3, 0)⊕ f(ciph(2, 511))

74

The second decrypted pixel arr(3, 3q1) is located at row number 3, and the column
position 3q1, with 0 ≤ 3q1 ≤ 511. Then the following equation (4.15) is used to decrease
the key space of the dynamic key q1.

if arr(3, 3q1) == 0 skip this value
else if arr(3, 3q1) == 1 then
3q1 ∈ {253, 508} =⇒ q1 ∈ {255, 340}
else if arr(3, 3q1) == 2 then
3q1 ∈ {254, 509} =⇒ q1 ∈ {426, 511}
else if arr(3, 3q1) == 3 then
3q1 ∈ {0, 255, 510} =⇒ q1 ∈ {0, 85, 170}
else if arr(3, 3q1) == 4 then
3q1 ∈ {1, 256, 511} =⇒ q1 ∈ {171, 256, 341}
else
q1 ∈ {a, b}

(4.15)

if((arr(3, 3q1)− 3) MOD 3 == 0)Then

a = arr(3, 3q1)−3
3

else if((arr(3, 3q1)− 3 + 512) MOD 3 == 0)Then

a = arr(3, 3q1)+509
3

else

a = arr(3, 3q1)−3+512+512
3

= arr(3, 3q1)+1021
3

if((arr(3, 3q1) + 252) MOD 3 == 0)Then

b = arr(3, 3q1)+252
3

else if((arr(3, 3q1) + 252 + 512) MOD 3 == 0)Then

b = arr(3, 3q1)+764
3

else

b = arr(3, 3q1)+252+512+512
3

= arr(3, 3q1)+1276
3

Equation (4.15) is used to decrease the number of possible column positions (i.e., the
range of the q1). Using the P matrix, the row of the arr(3, 3q1) is 3. Firstly, assume
that arr(3, 3q1) = 0, then, this value is skipped. Secondly, assume that arr(3, 3q1) = 1,
then, this value can be located in one of two column positions in row number 3 [(3, 253)
or (3, 508)] (see P matrix for more details). Thirdly, assume that arr(3, 3q1) = 2, then,
this value can be located in one of two column positions in row number 3 [(3, 254) or
(3, 509)]. Fourthly, assume that arr(3, 3q1) = 3, then, this value can be located in one
of three column positions in row number 3 [(3, 0), (3, 255) or (3, 510)]. Fifthly, assume
that arr(3, 3q1) = 4, this value can be located in one of three column positions in row
number 3 [(3, 1), (3, 256) or (3, 511)]. Finally, for all arr(1, q1) > 4, these values
can be located in one of two column positions in row number 3 [(3, arr(3, 3q1) − 3) or
(1, arr(1, q1)+252)]. Now, let us take the case when the arr(3, 3q1) = 4 as an example,
without loss of generality, i.e., 3q1 ∈ {1, 256, 511}
Firstly, 3q1 = 1; to solve this equation, which contains the module operation, q1 is calcu-
lated as:
q1 =the integer value of (1

3
, 1+512

3
, 1+512+512

3
) =⇒ q1 = 171.

Secondly, 3q1 = 256, then q1 =the integer value of (256
3

, 256+512
3

, 256+512+512
3

) =⇒ q1 =
256.

75

Finally, 3q1 = 511, then q1 =the integer value of (511
3

, 511+512
3

, 511+512+512
3

) =⇒ q1 =
341

For all other values (arr(3, 3q1) > 4), there is a general scheme to calculate the range
of q1 values (i.e., a and b parameters in equation (4.15)). Now, let us take arr(3, 3q1) = 5
as another example. i.e., 3q1 ∈ {2, 257}
Firstly, 3q1 = 2, then: q1 =the integer value of (2

3
, 2+512

3
, 2+512+512

3
) =⇒ q1 = 342.

Secondly, 3q1 = 257, then q1 =the integer value of (257
3

, 257+512
3

, 257+512+512
3

) =⇒ q1 =
427. From previous developments, we can deduce the following rules for equation (4.15):

1. In the case where arr(3, 3q1) ∈ {1, 2}, then we have two positions given by:
arr(3, 3q1) + 252 or arr(3, 3q1) + 507.

2. In the case where arr(3, 3q1) ∈ {3, 4}, then we have three positions given by:
arr(3, 3q1)− 3, arr(3, 3q1) + 252 or arr(3, 3q1) + 507.

3. In the case where arr(3, 3q1) > 4, then we have two positions given by: arr(3, 3q1)−
3 or arr(3, 3q1) + 252.

Now, from the four previous ciphered pixels (ciph(1, 0), ciph(0, 511), ciph(3, 0) and
ciph(2, 511)), the exact value of the dynamic key q1 is calculated by finding the overlap
values between the first and the second step.
Second dynamic key calculations (p1)
To find the value of p1 (which refers to the row position), at least two steps are needed:
First Step
From the ciphered pixel at (x = 0, and y = 1) position, the plain pixel position (x′, y′) is
calculated using equation (4.4):
x′ = 0× x+ p1 × 1x′ = 0 + p1 = p1 =⇒ x′ = p1

y′ = q1 × x+ (q1 × p1 + 1)× yy′ = q1 × 0 + (q1 × p1 + 1)× 1 =⇒ y′ = q1 × p1 + 1
Using equation (4.12), the value of arr(p1, p1q1 + 1) is calculated as:
arr(p1, p1q1 + 1) = ciph(0, 1)⊕ f(ciph(0, 0))
The decrypted pixel arr(p1, p1q1 + 1) is located at row number p1 of the plain image P .
Here we focus on finding the p1 value (p1 ranges from 0 to 511). Equation (4.16) is used
to decrease the dynamic key space p1 as:

if a == 0 skip this value
else if a == 1 then
p1 ∈ {0, 1, 3, 4, 511}
else if a == 2 then
p1 ∈ {1, 2, 3}
else
p1 ∈ {1, 3, a× 2− 1, a× 2}
where
a = arr(p1, p1q1 + 1)

(4.16)

To justify the equation (4.16), firstly, assume arr(p1, p1q1 + 1) = 1, from the plain image
P , the plain pixel value 1 is located in five rows [0, 1, 3, 4, 511], and so, the possible
values of the dynamic key p1 is: [0, 1, 3, 4, 511]. Secondly, assume the arr(p1, p1q1 +
1) = 2, then this value is located in three rows: [1, 2, 3], and so, the possible values of
the dynamic key p1 is: [1, 2, 3]. Thirdly, assume the arr(p1, p1q1 + 1) = 3, then this

76

value is located in four rows [1, 3, 5, 6], and so, the possible values of the dynamic key
p1 is: [1, 3, 5, 6]. Finally, for any value such that arr(p1, p1q1 + 1) > 2, this value can
be located in one of four rows [1, 3, arr(p1, p1q1 + 1) × 2 − 1, arr(p1, p1q1 + 1) × 2],
and so, the possible values of the dynamic key p1 is [1, 3, arr(p1, p1q1 + 1) × 2 − 1,
arr(p1, p1q1 + 1)× 2].
Second Step
To further decrease the range values of p1, another ciphered pixel at (x = 0, and y = 2)
position is considered. The position (x′, y′) of the corresponding plain pixel is calculated
using equation (4.4): x′ = 1× x+ p1 × y =⇒ x′ = 0 + 2p1 = 2p1 =⇒ x′ = 2p1

y′ = q1×x+(q1×p1+1)×y =⇒ y′ = q1×0+(q1×p1+1)×2 =⇒ y′ = 2(q1 × p1 + 1)
Again, using equation (4.12) the value of arr(2p1, 2p1q1 + 2) is calculated as:
arr(2p1, 2p1q1 + 2) = ciph(0, 2)⊕ f(ciph(0, 1))
This pixel arr(2p1, 2p1q1 + 2) is located at row 2p1 of the plain image P . The following
equation (4.17) is used to decrease the key space of the dynamic key p1 as:

if a == 0 skip this value
else if a == 1 then
p1 ∈ {0, 2, 256, 258}
else if a == 2 then
p1 ∈ {1, 257}
else
p1 ∈ {a, a+ 256}
where
a = arr(2p1, 2(p1q1 + 1))

(4.17)

To justify equation (4.17), we consider the following cases: Firstly, assume that the de-
crypted pixel is arr(2p1, 2p1q1 + 2) = 1, so from the plain image P , the plain pixel value
1 is located in five rows [0, 1, 3, 4, 511], and the possible values of the dynamic key p1
are:
2p1 = 0 =⇒ p1 ∈ {0, 256}
2p1 = 1, 2p1 = 3 and 2p1 = 511 cannot have an integer solution, since the right-hand
side is odd and the left-hand side is even and the modulus value is even. 2p1 = 4 =⇒
p1 ∈ {2, 258}. Secondly, assume the decrypted pixel is arr(2p1, 2p1q1 + 2) = 2, then
the plain pixel value 2 is located in three rows [1, 2, 3], and the possible values of p1 are:
2p1 = 1 and 2p1 = 3 cannot have an integer solution.
2p1 = 2 =⇒ p1 ∈ {1, 257}.
Thirdly, assume the decrypted pixel is arr(2p1, 2p1q1 + 2) = 3, then the plain pixel value
3 is located in four rows [1, 3, 5, 6], and the possible values of p1 are: 2p1 = 1, 2p1 = 3
and 2p1 = 5 cannot have integer solution. 2p1 = 6 =⇒ p1 ∈ {3, 259}. Finally,
for any arr(2p1, 2p1q1 + 2) > 2 the possible values of p1 are arr(2p1, 2p1q1 + 2) or
arr(2p1, 2p1q1 + 2) + 256.
Note that in most cases the first and the second steps are sufficient to find the dynamic
key value of p1. However, if the overlap between the obtained range values of p1 in the
first step and the obtained range values of p1 in the second step is not a single value, then
we use the following calculation.
Extra Step
To find the exact value of p1, the plain pixel position (x′, y′) is calculated from the ci-
phered position pixel at (x = 0, y = 3), using equation (4.4):
x′ = 1× x+ p1 × y = 0 + 3p1 = 3p1 =⇒ x′ = 3p1

77

y′ = q1× x+ (q1× p1 + 1)× y = q1× 0 + (q1× p1 + 1)× 3 =⇒ y′ = 3(q1 × p1 + 1)
Again, here the plain pixel arr(3p1, 3(q1×p1 +1)) is calculated from the ciphered pixels
ciph(0, 3) and ciph(0, 2) using equation (4.12). Now equation (4.18) is used to decrease
the dynamic key space of p1. To simplify the notation of the calculations, assume:
T = arr(3p1, 3(p1 × q1 + 1))

if T == 0 skip this value
else if T == 1 then
3p1 ∈ {0, 1, 3, 4, 511} =⇒ p1 ∈ {0, 1, 171, 172, 341}
else if T == 2 then
3p1 ∈ {1, 2, 3} =⇒ p1 ∈ {1, 171, 342}
else
3p1 ∈ {1, 3, T − 1, T} =⇒ p1 ∈ {1, 171, a, b}

(4.18)

where
if((T × 2− 1) MOD 3 == 0)Then

a = T×2−1
3

else if((T × 2 + 511) MOD 3 == 0)Then

a = T×2+511
3

else

a = T×2+1023
3

if((T × 2) MOD 3 == 0)Then

b = T×2
3

else if((T × 2 + 512) MOD 3 == 0)Then

b = T×2+512
3

else

b = T×2+1024
3

To justify equation (4.18), assume that the ciphered pixel value is one (i.e., T = 1 in
equation (4.18)). From the plain image P , the value 1 is located in five rows, actually in
positions [0, 1, 3, 4, 511], and so: 3p1 ∈ {0, 1, 3, 4}.
Firstly, 3p1 = 0; to solve this equation, which contains the module operation, p1 is calcu-
lated as: p1 =the integer value of (0

3
, 0+512

3
, 0+512+512

3
) =⇒ p1 = 0.

Secondly, 3p1 = 1, then p1 =the integer value of (1
3
, 1+512

3
, 1+512+512

3
) =⇒ p1 = 171.

Thirdly, 3p1 = 3, then p1 =the integer value of (3
3
, 3+512

3
, 3+512+512

3
) =⇒ p1 = 1.

Fourthly, 3p1 = 4, then p1 = the integer value of (4
3
, 4+512

3
, 4+512+512

3
) =⇒ p1 = 172.

Finally, 3p1 = 511, then p1 = the integer value of (511
3

, 511+512
3

, 511+512+512
3

) =⇒ p1 =
341.
p1 ∈ {0, 1, 171, 172, 341} The same analysis is used for the other values of T , where
for T = 2, there are only three possible rows, and for T > 2, there are four possible rows.
Example 4.1:calculation of p1 and q1
An original P image is encrypted using 3 random values of the secret key of the Logistic
map, namely: [x−1, SQ1], [x−1, SQ2], [keyd, t−1]. The following values are obtained
from the Lena encrypted image for: [n = 1, m = 1]
ciph(1, 0) = 190
ciph(0, 511) = 27
ciph(3, 0) = 149

78

ciph(2, 511) = 159
ciph(0, 1) = 132
ciph(0, 0) = 165
ciph(0, 2) = 140
ciph(0, 1) = 132
For the first decrypted pixel, using equation (4.12) we obtain:
arr(1, q1) = ciph(1, 0)⊕ f(ciph(0, 511))
arr(1, q1) = 190⊕ f(27)
arr(1, q1) = 190⊕ 105
arr(1, q1) = 215
Using equation (4.14), q1 values are restricted to:
q1 ∈ {215− 1, 215 + 254} =⇒ q1 ∈ {214, 469}
For the second decrypted pixel, using equation (4.12) we obtain:
arr(3, 3q1) = ciph(3, 0)⊕ f(ciph(2, 511))
arr(3, 3q1) = 149⊕ f(159)
arr(3, 3q1) = 149⊕ 22
arr(3, 3q1) = 131
Using equation (4.15), q1 ∈ {a, b}.
To find the value of the parameter a of equation (4.15), the following conditions are per-
formed:
((131− 3) MOD 3) = 2
((131 + 509) MOD 3) = 1
((131 + 1021) MOD 3) = 0
The last condition allows us to calculate the value of parameter a:
a = arr(3, 3q1)+1021

3
=⇒ a = 384

To find the value of the parameter b in equation (4.15), the following conditions are per-
formed:
((131 + 252) MOD 3) = 2
((131 + 764) MOD 3) = 1
((131 + 1276) MOD 3) = 0
The last condition allows us to calculate the value of parameter b:
b = 469, so, q1 ∈ {384, 469}
The overlap between the first range {214, 469} and the second {384, 469}range gives
the exact value of q1: q1 = 469

To calculate the exact value of the dynamic key p1, we consider the third decrypted
pixel and equation (4.12), then:
arr(p1, p1q1 + 1) = ciph(0, 1)⊕ f(ciph(0, 0))
arr(p1, p1q1 + 1) = 132⊕ f(165)
arr(p1, p1q1 + 1) = 132⊕ 39
arr(p1, p1q1 + 1) = 163
Now by using equation (4.16), p1 values are restricted to:
p1 ∈ {1, 3, 163× 2− 1, 163× 2} =⇒ p1 ∈ {1, 3, 325, 326}
Finally, the exact value of p1 is obtained by using the fourth decrypted pixel and equation
(4.12), as follows:
arr(2p1, 2p1q1 + 2) = ciph(0, 2)⊕ f(ciph(0, 1))
arr(2p1, 2p1q1 + 2) = 140⊕ f(132)
arr(2p1, 2p1q1 + 2) = 140⊕ 202

79

arr(2p1, 2p1q1 + 2) = 70
Using equation (4.17):
p1 ∈ {70, 326}
The overlap between the first range ({1, 3, 325, 326}) and the second range ({70, 326})
gives the exact value of p1: p1 = 326
Remark: the above procedure can be used to find any used p1 and q1 parameters.

4.1.2.3 Combination of brute force and chosen plaintext attacks

In the case where n = 1, m = 2 which is assumed be a secured case as it is written
in[166] at page 2074 "In Algorithm 1, the round numbers m and n as shown in Figure.7
are selected as 2 and 1, respectively", we will show that the algorithm can be partially
cryptanalyzed. A combination of the aforementioned attacks are used to find the dynamic
key pairs (p1, q1, p2, q2) and then to find any plain image, ciphered by these pairs of keys.
First, the plain image P, is encrypted in the first dependent diffusion round (n = 1, m = 1)
with the dynamic key parameters (p1, q1) to obtain the middle cipher image (C1). Then,
in the second dependent diffusion round (n = 1, m = 2), the image (C1) with parameters
(p2, q2) is ciphered to obtain (C2). The cryptanalysis scenario is carried out as follows:

1. Using equation 4.12, and (C2), we can find the permuted version of (C1) in 10 ms.

2. We guess the pairs (p2, q2), and for each guess, the image pixels C1 are reordered.
Then, the proposed chosen plaintext attack of section (4.1.2.2) is used to find the
pair (p1, q1) at (n = 1, m = 1). In the worst case, this process requires less than
one hour to find (p1, q1) and (p2, q2) (for the image of size 512× 512) since:
The number of all possible dynamic keys (p2, q2) is 218 keys. The total time to find
(p1, q1) and (p2, q2) is referred to Tn=1, m=2: Tn=1, m=2 = T1+T2+T3

T1 is the required time to calculate (C1) from (C2) which is 10 ms.
T2 is the required time to guess the second dynamic key (p2, q2) and to order C1

pixels. It is equal to 5 ms for each try. In the worst case it requires 218 × 5 ms.
T3 is the required time to achieve the proposed attack of section 4.1.2.2, which is
less than 1 ms for each guess. Tn=1, m=2 =10+218 × 5+218 × 1= 30.583 minutes.

As a result, the zhang cryptosystem is secure against the previous proposed attacks, if the
number of encryption rounds is more than or equal to (n = 2, m = 2, i.e., the dependent
diffusion round is at least equal to 4). However, in this case, the Zhang algorithm is time
consuming, because each dependent diffusion round needs 10 ms. The total time required
is 40 ms, which means that the Running Speed (RS) of 512 × 512 gray image is:RS =
512×512
0.040

= 6.25 Mega bytes per second which is not suitable for real-time application.

4.1.3 Decreasing the UACI and NPCR values significantly
A cryptosystem should be sensitive to one-bit changes in the plaintext. This requirement
is most important to resist the known plaintext and the chosen plaintext attacks[74][81].
In a chosen plaintext attack, more than one plaintext (with one-bit changes between them)
are selected to analyze the difference between their corresponding ciphertexts. The mea-
surement tool to test the sensitivity of any cryptosystem of these attacks is presented and
described in section (2.2.2) of the chapter 2. We try to reproduce the NPCR and UACI re-
sults of the Zhang cryptosystem using exactly the same tested image (i.e., Barbara 512×
512 × 1 gray-scale image), the same secret keys (i.e., x−1=0.12345678912345 for SQ1,

80

Table 4.1: Sample of NPCR and UACI results under the same parameters and conditions
in the original research paper for all pixel positions)

Row Position Column Position UACI NPCR UACIp NPCRp

0 0 33.529 99.624 31.747 93.872

14 103 33.299 98.883 11.950 35.471

26 476 33.212 98.569 07.313 21.654

39 98 32.987 97.865 05.073 14.990

97 475 32.699 96.828 03.425 10.135

125 87 33.473 99.611 33.171 98.668

296 337 32.797 97.139 04.482 13.224

471 375 33.151 98.256 07.441 22.040

511 511 33.478 99.611 33.034 98.057

x−1 =0.67856746347633 for SQ2. α is set to 3.99999, and keyd=0.33456434300001),
and with (n = 2, m = 2). We performed the following steps:

1. Encrypting the Barbara image using the first Zhang cryptosystem and using the
same secret keys mentioned above to obtain C1. Then, encrypting the Barbara
image with a one-bit change to obtain C2. Then UACI and NPCR are calculated
between C1 and C2.

2. The ciphered imagesC1 andC2 are used as input for a process based on the equation
(4.12) to remove the diffusion effect in less than 1 ms, then the UACIp and NPCRp

are calculated.

The results obtained in Table 4.1.1, measured by the UACIp and the NPCRp, show that for
some pixel positions [(511, 511), (0, 0) and (125, 87)], with a one-bit change value (the
LSB bit), the Zhang cryptosystem is not so secure. We have done the same experiment
already explained above, for two pixel positions, but in relation to the nature of the image
and also in relation to the secret key of the Logistic map. The results given in Table 4.2, of
the parameters UACIp, NPCRp, show the sensitivity of the Zhang cryptosystem regarding
the image under test and the used secret key of the Logistic map.

In Table. 4.2, the following keys are used
Key 1:x−1=0.4251533555101169 for SQ1, and x−1=0.80288094729453419 for SQ2, the
initial value of the keyd=0.2251045258949553.
Key 2:x−1=0.96368297372356337 for SQ1, and x−1=0.80925931577501753 for SQ2,
the initial value of the keyd=0.50190740684224977.
We show the Graphical User Interface (GUI) of our demonstration to test the weaknesses
of the first Zhang cryptosystem, using our cryptanalysis based on the equation (4.12). In
these Figures (4.2, 4.3 and 4.4), the results of parameters NPCR and UACI before and
after differential attack, are given in relation to the nature of the image and also in relation
to the secret key of the logistic map. Figure. 4.5, 4.6 and 4.7 concern the results of pixel
positions (511, 511), (0, 0) and (125, 87) respectively, In that figures:

81

Table 4.2: Sample of NPCR and UACI results

Row,Column Positions UACI NPCR UACIp NPCRp Key used image

511, 511

33.000 97.859 15.223 45.221

1

Barb

27.184 80.579 13.366 39.665 Lena

33.286 99.026 23.934 71.059 Boat

27.486 81.781 14.083 41.806 Baboon

0, 0

30.730 91.057 14.557 43.183

1

Barb

33.258 98.777 20.295 60.161 Lena

28.804 85.552 15.665 46.507 Boat

27.244 81.135 11.233 33.308 Baboon

125, 87

32.670 97.047 18.440 54.797

1

Barb

33.575 99.580 30.954 91.762 Lena

30.940 92.003 14.789 43.671 Boat

32.443 96.348 18.876 56.158 Baboon

511, 511

5.979 17.734 3.453 10.269

2

Barb

6.838 20.343 2.993 8.883 Lena

6.217 18.449 3.820 11.314 Boat

7.504 22.371 4.578 13.579 Baboon

0, 0

7.691 22.753 5.039 14.939

2

Barb

7.065 20.919 4.524 13.484 Lena

8.048 23.861 3.575 10.585 Boat

6.434 19.092 3.985 11.753 Baboon

125, 87

05.737 17.081 02.746 08.123

2

Barb

08.885 26.581 03.950 11.695 Lena

06.510 19.318 04.538 13.546 Boat

07.970 23.809 04.533 13.369 Baboon

82

• Number of encryption rounds n, and number of dependent diffusion rounds m.

• Image name.

• Number of planes in the image, where 1 refers to the gray-scale and 3 to color
image.

• Way of obtaining the secret key, 1, means that the user wants to use the same secret
keys of the Zhang paper, and 2, means that the user wants to insert keys manually.

• Row position, column position of the pixel that will be changed by one bit (LSB
bit).

Then, the Graphical User Interface (GUI) of the demo shows the calculated results of
parameters UACI and NPCR before and after using our cryptanalysis equation (Equation
(4.12)).

(a) Barb using the same Zhang key (b) Lena using the same Zhang key

(c) Barb using key1 (d) Lena using key1

Figure 4.2: Results concerning pixel position (511, 511)

83

(a) Barb using the same Zhang key (b) Lena using the same Zhang key

(c) Barb using key1 (d) Lena using key1

Figure 4.3: Results concerning pixel position (0, 0)

84

(a) Barb using the same Zhang key (b) Lena using the same Zhang key

(c) Barb using key1 (d) Lena using key1

Figure 4.4: Results concerning pixel position (125, 87)

85

4.2 Designe and realization of very fast and secure cryp-
tosystems

4.2.1 General concepts
The first step of designing a chaos-based encryption algorithm is to define the chaotic
maps which will be used in such a structure. These maps are used to achieve the confusion
and the diffusion effects, which are the most important properties of any cryptosystem.
The general block diagram of all proposed cryptosystems is shown in Figure 4.5. The
main objective of this structure is to achieve the dependent confusion-diffusion effects
byte by byte. All proposed cryptosystems work in the CBC mode and use the El Assad

Figure 4.5: General block diagram of the proposed cryptosystems

and Noura chaotic generator that produces 32-bit samples [37]. Figure 4.6 shows the
general diagram of the encryption part of the CBC mode. In Figure 4.6, P0 is the first

Figure 4.6: Encryption structure of the CBC mode

block from the plain image, IV is the initial vector generated by the chaotic generator, C0

is the first encrypted block which will be transferred to the receiver side. The dash boxes
represent the encryption/decryption parts of the proposed cryptosystem (see Figures 4.5,
4.7, and 4.9).

4.2.2 General differences of the proposed cryptosystem with the Zhang
one

In this section, we introduce some general differences between our proposed cryptosys-
tem, in all three versions and the Zhang’s one:

86

• In the Zhang cryptosystem, a simple implementation of the logistic map was used
to generate and manage the dynamic keys. In all versions of our proposed cryp-
tosystem, a strong and robustness tested chaotic generator [37] is used to manage
and generate the dynamic keys. These dynamic keys are used for the dependent
confusion-diffusion layer.

• To overcome the fixed-point problem of the standard 2-D cat map, the Zhang cryp-
tosystem selects a random pixel arr(rxj, ryj) and swaps it with the first pixel in
the plain image arr(0, 0). In our proposed cryptosystem this problem is solved by
using the modified 2-D cat map. This modification of the standard 2-D cat map also
enhances the security of the proposed cryptosystem. Indeed the number of dynamic
keys in the 2-D cat map increases from two dynamic keys to four. The first pixel
(0, 0) can be mapped to any new position (in, jn).

• The Zhang cryptosystem works on the whole image. It is well known that the
image encryption algorithms that work on the whole image give bad results for error
propagation. The influence of one error bit of the ciphered data (due to the channel)
on the decryption algorithm depends on the cryptographic modes. All versions of
our proposed cryptosystem perform the encryption/decryption operations based on
the Cipher-Block Chaining (CBC) mode [34].

• One of the most important differences between our proposed cryptosystems and the
Zhang cryptosystem is in the structure of the dynamic keys. In the Zhang cryp-
tosystem, the dynamic keys consist of two keys (qi, pi) for the reverse 2-D cat map.
These key values are changed just twice for the whole encryption process. For the
logistic map, t is the initial value. The value of t is changed in each byte. When
comparing with our proposed cryptosystem, in the 2-D cat map, four keys are used
(v, u, ri, and rj). These keys’ values are changed for every new encryption round
and also for every new block.

• All chaos-based cryptosystems that use more than one encryption round (i.e., r > 1)
to reach the required security level, must save their dynamic keys for all rounds in
order to use them later in the decryption process. From a security point of view, it
is normal that the security level of any cryptosystem is strongly related to the envi-
ronment where these dynamic keys have been temporarily saved. To the best of our
knowledge, the only possible method to manage the dynamic keys in the decryp-
tion process in case of more than one decryption round is to save them temporarily,
since the decryption process is achieved by starting from the last decryption round
and finishing with the first decryption round. It is important to note that the chaotic
generator has to be a non-invertible generator. To obtain the current key, the chaotic
generator should generate all previous keys and use them in the reverse order.

All previously mentioned points are taken into consideration in the design process of a
fast and secure cryptosystem, and it should use only one encryption round(r = 1), to
obtain the required security level.

4.2.3 First proposed cryptosystem
The first proposed cryptosystem has some similarity to the Zhang cryptosystem [166].
In this cryptosystem, the two dependent confusion-diffusion layers are the modified 2-D

87

cat map (used to achieve the confusion effect) followed by the discrete logistic map (to
achieve the diffusion effect). Using this structure, the required confusion-diffusion effects
are obtained by one encryption round, and hence the execution time is decreased.

4.2.3.1 Encryption scheme of the first proposed cryptosystem

In the encryption scheme (see Figure 4.7), for the first block, each pixel from the plain
block (p0(k)) is XOR-ed with the initial byte (iv(k)) from the initial vector (IV), then the
output is XOR-ed with the discrete logistic map output to carry out the diffusion process.
Then, the 8 least significant bits resulting from the diffusion process (LSB8(y0(k)) are
relocated using the modified 2-D cat map to obtain the ciphered pixel at the new position
(c0(kn))[39, 38]. It is important to note that the input of the discrete logistic map is based
on the previous ciphered pixel (since c0(kn) = LSB8(y0(k)) and the input of the discrete
logistic map is 32 bits and the ciphered pixel is 8 bits. That is why the cryptosystem takes
(y0(k− 1)) before the LSB8 function and not after. For the first encrypted byte, the input
of the discrete logistic map is Kdm, and this value is re-initialized every new encryption
round. Because the c0(kn) is only a part of the logistic map input, it is impossible to
recover y0(k− 1) from c0(kn) only. The encryption of the next blocks is almost the same.
Each pixel from the plain block (pl(k)) is XOR-ed with ciphered byte from the previous
block at the same position(i.e., cl−1(k) to achieve the CBC mode). Then the rest of the
operations are the same as in the first encryption block. The 2-D cat map was tested and

Figure 4.7: Encryption structure of the first proposed cryptosystem

analyzed by [45] and [155]. To overcome the fixed-point problem of the Arnold cat map
model, the parameters ri and rj are added to the standard model. Also, in our scheme
the elements of the square matrix and the parameters ri and rj of equation (4.19) become
dynamic, they form the dynamic keys of the permutation process.[

in
jn

]
= Mod

([
1 u
v 1 + uv

] [
i
j

]
+

[
ri+ rj
rj

]
,

[
M
M

])
(4.19)

88

Equation (4.19) is a one-to-one function, which means that each point of the square matrix
can be transferred to exactly one unique point. So, instead of exchanging the values at the
new position (in, jn) with the old one (i, j), we use a transfer operation because of its
speed compared to the swap operation that is usually used. The block size bs is M2 (M is
the square root of the block size in our proposed cryptosystem). The system parameters
u, v, ri and rj are in the range of [0, M − 1]. The structure of the dynamic keys which
are produced by the chaotic generator during the permutation process is:

Kp =
[
Kp0 ‖ Kp1 ‖ Kp2 ‖ · · · ‖ Kpr−1

]
Kpm =

[
um ‖ vm ‖ rim ‖ rjm

] (4.20)

The modulo operation of equation (4.19) makes it a non-invertible equation. But it is still
a reversible one. Thus, in the decryption part of the proposed cryptosystem, the reverse
layer is also achieved by equation (4.19).
The implementation of this modified 2-D cat map is carried out by an optimized process,
indeed:
- the value of Z1 = ri+ rj is calculated once per round.
- the value of Z2 = u× v + 1 is calculated once per round.
- the value of Z3 = v × i+ rj is calculated M times per round.
Then the modified 2-D cat map is implemented as:[

in
jn

]
= Mod

([
i+ u× j + Z1

Z3 + Z2 × j

]
,

[
M
M

])
(4.21)

The Logistic map is a non-linear chaotic discrete function that produces random se-
quences. In the proposed cryptosystem, the logistic map is used as a diffusion function to
achieve the diffusion effect, by transferring the effect from one byte in the block to other
bytes in the same block. This structure makes the proposed cryptosystem highly sensitive
to the plaintext. The mathematical model of the discrete logistic map is:

Xk+1 =

⌊
Xk×(2N−Xk)

2N−2

⌋
ifXk 6=

[
3× 2N−2, 2N

]
2N − 1 ifXk =

[
3× 2N−2, 2N

] (4.22)

where Xk+1 is the new value calculated from the previous one Xk. N is the number of
bits representing the integer output of the discrete logistic map, which is equal to 32 bits
in all versions of our proposed cryptosystem. Figure 4.7 shows the block diagram of the
encryption part of the first version of the proposed cryptosystem. From the figure, we
write the encryption mathematical model as:

cl(kn) = LSB8[yl(k)] (4.23)

yl(k) = pl(k)⊕ sl−1(k)⊕ f(yl(k − 1)) (4.24)

where yl(k) is a 32-bit variable, pl(k), sl−1(k) are 8-bit variables and f is the logistic
map. The following remarks should be considered:

1. During the encryption, equation (4.24) should be evaluated before equation (4.23),
for each byte of a block and for all blocks.

2. The input of the logistic map for k = 0 is kdm when l = 0 and it is yl−1(bs − 1) for
l > 0.

89

Algorithm 7 Encryption steps
1: Generate the IV values using the chaotic generator to encrypt the first block of the

image.
2: for m = 0: r − 1: step = 1 do
3: Generate the values of Kdm and Kpm using the chaotic generator to encrypt the

first block.
4: k = 0
5: for i = 0: M − 1: step = 1 do
6: for j = 0: M − 1: step = 1 do
7: Initialize the value of s−1(k) = iv(k)
8: Calculate (in, jn) using equation (4.19)
9: Calculate kn = in ×M + jn

10: Calculate y0(k) value using equation (4.22) and equation (4.24)
11: Calculate c0(kn) value using equation (4.23)
12: k = k + 1
13: End j
14: End i
15: End m
16: for l = 1: bn − 1: step = 1 do
17: for m = 0: r − 1: step = 1 do
18: Generate the values ofKpm using the chaotic generator to encrypt the current block

of the plain
19: image.
20: k = 0
21: for i = 0: M − 1: step = 1 do
22: for j = 0: M − 1: step = 1 do
23: Initialize the value of sl−1(k) = cl−1(k)
24: Calculate (in, jn) using equation (4.19)
25: Calculate kn = in ×M + jn
26: Calculate yl(k) value using equation (4.22) and equation (4.24)
27: Calculate cl(kn) value using equation (4.23)
28: k = k + 1
29: End j
30: End i
31: End m
32: End l

90

3. For k > 0 and for all l, the input of the logistic map is the result of equation (4.24)
and not the previous output (see equation 4.22).

Note that:
k = i×M + j
kn = in ×M + jn
in and jn are calculated using equation (4.19). The sequence sl−1(k) is given by the
following equation:

sl−1(k) =

{
iv(k) if l = 0

cl−1(k) if l > 0
(4.25)

where
l = 0, 1, 2, ...bn − 1
k = 0, 1, 2, ...bs − 1
IV = {iv(0), iv(1), iv(2), ..., iv(bs − 1)}
bs is block size in bytes
bn = image size

block size = L×C×P
bs

, is the number of blocks.
with, L, C, and P are the number of lines, the number of columns, and the number of
planes of the image respectively.
In algorithm-7, we describe in detail the exact steps to achieve the ciphering process for
all blocks.

4.2.3.2 Decryption scheme of the first proposed cryptosystem

The decryption scheme of the first proposed cryptosystem is almost identical to the en-
cryption one. Figure 4.8 shows the decryption structure of the CBC mode in all proposed
cryptosystems, while Figure 4.9 shows the decryption structure of the first proposed cryp-
tosystem.

The decryption equation resulting from the encryption equations is: (4.23) and (4.24):

Figure 4.8: Decryption structure of the CBC mode

pl(k) = cl(kn)⊕ sl−1(k)⊕ LSB8[f(yl(k − 1))] (4.26)

where
yl(k) = pl(k)⊕ sl−1(k)⊕ f(yl(k − 1)) (4.27)

As we can see, equation (4.26) is firstly evaluated followed by equation (4.27) for each
byte of a block and for all blocks.

91

Algorithm 8 Decryption steps
1: Generate Kdm, Kpm for all m values (i.e., m = 0, 1, ...r − 1) and IV using the

chaotic generator to decrypt the first ciphered block.
2: for m = r − 1: 0: step = −1 do
3: k = 0
4: for i = 0: M − 1: step = 1 do
5: for j = 0: M − 1: step = 1 do
6: Initialize the value of s−1(k) = iv(k)
7: Calculate (in, jn) using equation (4.19)
8: Calculate kn = in ×M + jn
9: Calculate p0(k) value using equation (4.26)

10: Calculate y0(k) value using equation (4.22) and equation (4.24)
11: k = k + 1
12: End j
13: End i
14: End m
15: for l = 1: bn − 1: step = 1 do
16: Generate the Kpm for all m values (i.e., m = 0, 1...r − 1)
17: using the chaotic generator to decrypt the current block from the ciphered image.
18: for m = r − 1: 0: step = −1 do
19: k = 0
20: for i = 0: M − 1: step = 1 do
21: for j = 0: M − 1: step = 1 do
22: Initialize the value of sl−1 = cl−1k
23: Calculate (in, jn) using equation (4.19)
24: Calculate kn = in ×M + jn
25: Calculate pl(k) value using equation (4.26)
26: Calculate yl(k) value using equation (4.22) and equation (4.24)
27: k = k + 1
28: End j
29: End i
30: End m
31: End l

92

Figure 4.9: Decryption structure of the first proposed cryptosystem

In reality, as we can see in Figure 4.9, equation (4.27) is implemented as follows:
yl(k) = cl(kn)⊕ sl−1(k)⊕ LSB8[f(yl(k − 1))]⊕ sl−1(k)⊕ f(yl(k − 1))

yl(k) = cl(kn)⊕ LSB8[f(yl(k − 1))]⊕ f(yl(k − 1) (4.28)

4.2.3.3 Analysis of the first proposed cryptosystem

Lian et al., in their paper [74], analyzed the Fridrich model, and they pointed out some
possible attacks on that model. We apply and analyze these attacks on our proposed
cryptosystem to ensure its robustness against them.

4.2.3.4 Dynamic key space analysis of Fridrich, Zhang and our cryptosystems

Lain in his paper assumes that the dynamic key space of the whole Fridrich cryptosystem
is Sr = (S1 × S2)

r, where S1 is the dynamic key space of the confusion layer, S2 is the
dynamic key space of the diffusion layer, and r is the number of iterations.
The total dynamic key space of the Frdirich model can be calculated as:
S1 = (N2)r

S2 = Lr

KSFridrich = (N2)r × Lr = (N2 × L)r

where M is the square root of the tested image size and L = 256, is the number of gray
levels.
In the Zhang cryptosystem, the first algorithm has q1, q2, p1 and p2 in the range [0, 511],
and also t0 which is 8 bits, so:
KSZhang1 = (N4 × 28)r.
The second algorithm has q1, q2, p1 and p2 in the range [0, 511], and also temp1 and
temp2 of 8 bits each, so:

93

KSZhang2 = (N4 × 216)r.
In our proposed cryptosystem, the total dynamic key space is defined as:
Sr = (S1 × S2)

r where S1 is the dynamic key space of the confusion layer (the modified
2-D cat map), S2 is the dynamic key space of the diffusion layer (the logistic map).
The total dynamic key space of our proposed cryptosystem can be calculated as:

1. The whole image is divided into a number of blocks and the dynamic keys are
changed for every new encryption round and every new block.

2. Dynamic keys for the confusion layer are (u, v, ri and rj: in the range of [0, M −
1]). Then, the confusion key space is M4.

3. The diffusion key space (S1) is 32 bit instead of 8 bit as in the Fridrich or the Zhang
cryptosystems.

4. The total number of blocks is bn where bn = L×C×P
bs

= L×C×P
M2 .

KS = (S1 × S2)
r × bn

S1 = M4

S2 = 232

For r = 1:
KSProposed = (M4 × 232)× L×C×P

M2

As an example and to make the comparison between cryptosystems, of Zhang, Fridrich
and ours, the gray-scale Lena image of 512 × 512 is taken, and then for one encryption
round (remark, for our proposed cryptosystem M = 32):
KSFridrich = 5122 × 256 = 226

KSZhang1 = 5124 × 28 = 244

KSZhang2 = 5124 × 216 = 252

KSProposed = (324 × 232)× (512×512
322

) = 260

It is clear from the previous calculations that the dynamic key space of our proposed
cryptosystem is 216 times more than the first Zhang cryptosystem, and 28 times more
than the second Zhang cryptosystem.

4.2.3.5 Chosen-plaintext attack

Fridrich proved that his proposed model is secure against a chosen-plaintext attack based
on the fact that the difference between the ciphertexts encrypted by the same key for
two plaintexts differs on one bit is large enough to keep a high security level against the
chosen-plaintext attack. However, Lian in [74] pointed out another kind of attack that can
be used to cryptanalyze the Fridrich model. Since the fixed-point problem was not solved
in the 2-D cat map, Baker or standard maps were used in the Fridrich model, and so the
cipher of the first plain pixel of any image will remain in the first position (that means c0
is the encryption of the p0, and so, no permutation is done on the first pixel). Then it is
easy to find the initial value of the diffusion key (Q−1) in the Fridrich model (more details
of this attack are in [74]).

In Zhang cryptosystems, a simple solution to overcome this problem is introduced,
the solution is carried out by swapping the first pixel with a random pixel from the image
before starting the encryption process.

94

In our proposed cryptosystem, the first kind of chosen-plaintext attack is solved, and it
satisfies a high security level. This is well stated by our proposed cryptosystem in section
(4.2.6).
The fixed-point problem does not exist in our proposed cryptosystem, since it is solved
by adding the ri and the rj dynamic keys to the original 2-D cat map, and the chaotic
generator insures that ri and rj will never be zero at the same time.
Our solution has two advantages, first, it increases the dynamic key space of the 2-D cat
map, second, any pixel can be mapped to any position with the same probability.

4.2.3.6 Some specific differences in the diffusion process

Zhang cryptosystems implement the logistic map based on 8 bits. This means, that the
input and the output of the logistic map for all operations are in 8 bits, whereas in our
proposed cryptosystem, the logistic map is implemented to receive 32 bits as input and to
produce 32 bits as output. As a result, the dynamic key of the logistic map is increased
from 8 bits to 32 bits, and the security level of the overall cryptosystem is increased.
Finally, it is well known that the implementation of the logistic map based on 8 bits has
some security weaknesses and failures.
Finally, as the proposed cryptosystem uses new dynamic keys for each new block, then,
the cryptosystem is secure against the chosen-plaintext attacks, according to the fact that
a chosen-plaintext attack will be useless if different keys are used to encrypt different
plaintexts in the same message.

4.2.4 Second proposed cryptosystem
The construction and design process of the following cryptosystems begins by keeping
in mind the structure of the first proposed cryptosystem. As we know, there is always a
trade off between the security level and the encryption time. Increasing the security level
in general leads to making the system more complex, and then adding some additional
delays on the encryption operations. For this reason, two sub-versions of the second
version are described in this section. These sub-versions have the same structure as the
first proposed cryptosystem, but using a different diffusion layer, namely the Finite Skew
Tent Map (FSTM) as a generator instead of the logistic map.

4.2.4.1 Finite Skew Tent Map as diffusion layer

The diffusion layer is implemented using a modified version as a generator of the original
FSTM in [84], [83], based on a lookup table of 8 bits for the first subversion and on a
mathematical calculation of 32 bits for the second subversion (see equation (4.29)). The
FSTM has a better non-linear transformation than the logistic map and so its diffusion is
stronger than that of the logistic map. This implies that the cryptosystem is more resistant
against differential cryptanalysis attacks. So, using the FSTM as a dependent diffusion
layer increases cryptosystem sensitivity to plain sensitivity attacks. The mathematical
model of the modified FSTM generator is [39]:

F (X) =

⌊
Q
Am
×X

⌋
+ A0m Mod Q 0 ≤ X ≤ Am

⌊
Q×(Q−X)
Q−Am

⌋
+ 1 + A0m Mod Q Am < X < Q

(4.29)

95

Where
A0m, X, F (X) ∈ {0, 1, 2, ..., Q− 1}, and Am ∈ {1, 2, ...Q− 1}.
In equation (4.29), Q is equal to (28) for the first subversion (lookup table), and equal to
(232) for the second subversion (the mathematical implementation of the FSTM). Rela-
tive to the first proposed cryptosystem, the input value X of equation (4.29) is equation
(4.24), while F (X) in equation (4.29) is f(yl(k− 1) and the initial value X0 is Kdm (see
Figures 4.7 and 4.9).
The structure of the dynamic keys during the diffusion process is:

Ks = bKs0 ‖ Ks1 ‖ Ks2 ‖ · · · ‖ Ksr−1c
Ksm = Am||A0m

(4.30)

where r is the number of rounds for each block. In the standard FSTM, the fixed-point
problem is not solved (i.e., when the input of the FSTM is ZERO the output is ZERO). To
overcome this problem we introduce A0m in the FSTM equation. As a result, any input
value is mapped to any output value with the same probability without any restrictions.
Moreover, introducing the dynamic key A0m increases the dynamic key space.
The first sub-version uses 8 bits to implement the FSTM generator as a lookup table, and
so it is faster than the first cryptosystem, while still having a high security level. The
lookup table is created since the input and the output of the FSTM are limited to 8 bits.
Figure 4.7 can be used to describe the encryption process of this sub-version. The first
step is to generate the dynamic keys (Kpm, X0, Am and A0m). The permutation process
is applied on the plain pixels by taking each byte, and calculating their new position ac-
cording to the equation (4.19). Then, equation (4.24) is applied to obtain the yk value
which defines the ciphered pixel as shown in equation (4.23). Note that the value of yk is
8 bit and so there is no need for the LSB function of equation (4.23). It is important to
note that equation 4.29 is implemented in lookup table of 64 KB size without the A0m,
the returned value from the lookup table is added to the A0m.

The second sub-version uses 32 bits to implement the FSTM as a generator. It is
slower than the first cryptosystem, but it has a dynamic key space greater than the first
cryptosystem and thus it is very robust against cryptanalysis. The encryption process in
this version is exactly identical to the first one, except in this version equation (4.29) is
used instead of equation (4.22).

Using the lookup table based on 8 bits for the first sub-version, the first 8 bits from
each sample of the chaotic generator are taken to be used as the dynamic key (Am or
A0m), and the remaining 24 bits are skipped. If the first 8 bits are zeros, then the next 8
bits are taken and so on. The dynamic keys of the first sub-version need two samples for
each round of each block. It is important to note that the used chaotic generator never
produces a sample of 32 bits where all of the bits are zeros. The dynamic keys Am and
A0m in the second sub-version are 32 bits each, so, two samples are also needed for each
round of each block.

Kssamples = 2× r (4.31)

So the total number of required samples in this version is:

Totalsamples = 2× r +
bs
4

+

⌈
bn × r × 4× log2

√
bs

32

⌉
(4.32)

96

4.2.4.2 Analysis of the second proposed cryptosystem

In this section, we analyze the dynamic key space and the chosen-plaintext attacks.

4.2.4.3 Dynamic key space analysis

In our proposed cryptosystem, the total dynamic key space is:
KS = (S1 × S2)

r × bn
For one encryption round (r = 1):
First subversion key space:
S1 = M4

S2 = 224, because X0, Am and A0m are 8 bits each.
KSSubversion1 = M4 × 224 × L×C×P

M2

Second subversion key space:
S1 = M4

S2 = 296, because X0, Am and A0m are 32 bits each.
KSSubversion2 = M4 × 296 × L×C×P

M2

Again, to make the same comparison between our proposed cryptosystem, the Zhang
and the Fridrich cryptosystems, the Lena image of 512× 512 bytes is taken, then for one
encryption round (remark, for our proposed cryptosystem M = 32):
KSFridrich = 226

KSZhang1 = 244

KSZhang2 = 252

KSSubversion1 = (324 × 224)× 512×512
322

= 252

KSSubversion2 = (324 × 296)× 512×512
322

= 2124

It is clear from the previous calculations that the dynamic key space of the first subver-
sion is 28 times more than the first Zhang cryptosystem, and the same as the second Zhang
cryptosystem, whereas the dynamic key space of the second subversion is 280 times more
than the first Zhang cryptosystem, and 272 times more than the second Zhang cryptosys-
tem.

4.2.4.4 Chosen-plaintext attack

In this cryptosystem version, the modified 2-D cat map is the same as before, and so the
analysis of the chosen-plaintext attack is the same. The FSTM is enhanced by adding the
parameter A0. This means that the fixed-point problem is solved also for the diffusion
layer, and so, this type of attack will be useless.

4.2.5 Time and complexity analysis
The speed evaluation of our proposed cryptosystem in all versions is carried out using the
same environment and parameters which are used in section (3.4.1). It encrypts different
images of different sizes. (256×256×3, 512×512×3 and 1024×1024×3). We compare
the speed of our proposed cryptosystems with the fastest chaos-based cryptosystems. In
particular, the security and the performance analysis of the proposed cryptosystems are
compared with [166] cryptosystem, since, to the best of our knowledge, Zhang cryptosys-
tem is the fastest chaos-based cryptosystem.
Table 4.3 presents the encryption and the decryption times for our proposed algorithms,

97

based on two different block sizes (bs = 256 and bs = 1024 bytes) and the image under
test was Lena. The time calculation process of encryption and decryption is evaluated as
follows: the test image (Lena with block size 1024) is encrypted for 1000 different secret
keys, then the average of these executions is calculated. From Table 4.4, it is clear

Table 4.3: Average encryption/decryption time of the proposed algorithm(in milliseconds)

Our Cryptosystem Ver-
sion

bs 256× 256× 3 512× 512× 3 1024× 1024×
3

Proposed V1 256 2.21/2.82 8.75/11.16 34.87/44.34

Proposed V1 1024 2.04/2.68 8.08/10.57 31.85/41.83

Proposed V2-8bit 256 1.73/1.78 6.82/7.10 27.01/28.04

Proposed V2-8bit 1024 1.38/1.45 5.42/5.74 21.17/22.39

Proposed V2-32bit 256 4.57/5.24 18.29/20.89 73.05/83.43

Proposed V2-32bit 1024 4.15/4.79 16.56/19.08 66.12/76.17

Table 4.4: Encryption/decryption time of different algorithms(in milliseconds)

Proposed Cryptosystem 256× 256× 3 512× 512× 3 1024× 1024×
3

Proposed V1 2.04/2.68 8.08/10.57 31.85/41.83

Proposed V2-8bit 1.38/1.45 5.42/5.74 21.17/22.39

Proposed V2-32bit 4.15/4.79 16.56/19.08 66.12/76.17

Zhang 1[166] 7.5/7.5 30/30 120/120

Zhang 2[166] 7.5/8.25 30/33 120/132

Wang [152] 7.79/8.39 31.16/33.54 124.64/134.16

Akhshani [8] 14.4 57.6 230.4

Wong [155] 15.59/16.77 62.37/67.11 249.48/268.44

Pareek [94] 160 920 5650

that our proposed cryptosystems are faster than both of the Zhang algorithms and other
known cryptosystems. Table 4.5 presents a comparison of performance of our proposed
cryptosystem with some known recent cryptosystems in the literature. The performance
is evaluated in terms of encryption throughput (running speed) in Mega Byte Per Second
(MBps) and number of needed cycles to encrypt/decrypt one byte. As it can be seen in
Tables (4.3-4.5), our proposed cryptosystem in all proposed versions is faster than the
other chaos-based cryptosystems.

98

Table 4.5: Encryption throughput and Number of cycles for one encrypted byte

Proposed Cryptosystem ET in MBps Number of cycles per byte

Proposed V1 93.817/71.486 31.51/41.35

Proposed V2- 8 bits 140.776/133.114 21/22.21

Proposed V2-32 bits 45.347/39.359 65.19/75.11

Zhang 1 [166] 25/25 122.07/122.07

Zhang 2[166] 25/22.72 122.07/134.27

Wang [152] 24.06/22.35 122.85/132.24

Akhshani [8] 13.02 194.83

Wong [155] 12.03/11.18 245.7/264.38

Pareek [94] 0.39 2445

4.2.6 Plain-text sensitivity attack

The mathematical equations of chapter 2 (see section 2.2.2) are used to produce the
presented results of Table 4.6. All versions of our proposed cryptosystem achieve the
avalanche effect from the first round (r = 1) and then, they overcome the plaintext sen-
sitivity attacks. The plain images under test were Lena, Barb, and Boat images of the
same size 512 × 512 gray scale images (the selected images are chosen like those in the
literature). Moreover, Lena and Peppers color images of the same size were used on the
same test. Table 4.6 presents all of these results, and it is clear that the HD value is
very close to the optimal value of 50% for the three proposed cryptosystems. Also the
UACI and NPCR values are close to optimal. These values indicate that the proposed
cryptosystems are very sensitive to one bit change in the plaintext. Hence, a high security
level is reached.

99

Table 4.6: HD, UACI and NPCR plaintext sensitivity tests

Proposed Cryp-
tosystem

Image Name Image Size HD UACI NPCR

Proposed V1 Barb 512× 512× 1 0.499630 33.438 99.532

Proposed V2-8 bit Barb 512× 512× 1 0.499975 33.462 99.611

Proposed V2-32 bit Barb 512× 512× 1 0.499978 33.460 99.609

Zhang 1 [166] Barb 512× 512× 1 / 33.475 99.663

Zhang 2 [166] Barb 512× 512× 1 / 33.420 99.582

Proposed V1 Lena 512× 512× 1 0.499587 33.437 99.521

Proposed V2-8 bit Lena 512× 512× 1 0.499986 33.463 99.611

Proposed V2-32 bit Lena 512× 512× 1 0.499975 33.459 99.609

Pareek [94] Lena 512× 512× 1 / 31.79 99.6

Wong [155] Lena 512× 512× 1 / 32.82 99.44

Wang [152] Lena 512× 512× 1 / 33.435 99.607

Proposed V1 Boat 256× 256× 1 0.499576 33.434 99.524

Proposed V2-8 bit Boat 256× 256× 1 0.499993 33.461 99.611

Proposed V2-32 bit Boat 256× 256× 1 0.499955 33.466 99.609

Song [133] Boat 256× 256× 1 33.453 99.625 /

Akhshani [8] Boat 256× 256× 1 0.499900 33.200 /

Proposed V1 Lena 512× 512× 3 0.499823 33.454 99.579

Proposed V2-8 bit Lena 512× 512× 3 0.500001 33.466 99.611

Proposed V2-32 bit Lena 512× 512× 3 0.499981 33.466 99.610

Proposed V1 Peppers 512× 512× 3 0.499853 33.451 99.576

Proposed V2-8 bit Peppers 512× 512× 3 0.500035 33.466 99.610

Proposed V2-32 bit Peppers 512× 512× 3 0.500001 33.463 99.609

4.2.7 Key sensitivity attack

To evaluate the proposed cryptosystems in terms of key sensitivity attacks, the previous
described equations of the NPCR, UACI and HD(see section 2.2.3) are used.

Table 4.7presents the results obtained from the key sensitivity attack test for the three
versions of the proposed cryptosystem using the same parameters as were used in Ta-
ble 4.6. From Table 4.7, it is clear that the proposed cryptosystem has a high security

100

Table 4.7: HD, UACI and NPCR key sensitivity tests

Proposed Cryp-
tosystem

Image Name Image Size HD UACI NPCR

Proposed V1 Barb 512× 512× 1 0.500029 33.464 99.610

Proposed V2-8 bit Barb 512× 512× 1 0.499980 33.463 99.609

Proposed V2-32 bit Barb 512× 512× 1 0.499989 33.461 99.609

Proposed V1 Lena 512× 512× 1 0.500014 33.463 99.610

Proposed V2-8 bit Lena 512× 512× 1 0.499995 33.464 99.608

Proposed V2-32 bit Lena 512× 512× 1 0.499952 33.465 99.608

Proposed V1 Boat 256× 256× 1 0.500015 33.462 99.609

Proposed V2-8 bit Boat 256× 256× 1 0.499988 33.462 99.608

Proposed V2-32 bit Boat 256× 256× 1 0.499995 33.460 99.609

Proposed V1 Lena 512× 512× 3 0.500007 33.464 99.610

Proposed V2-8 bit Lena 512× 512× 3 0.499992 33.463 99.609

Proposed V2-32 bit Lena 512× 512× 3 0.499994 33.465 99.609

Proposed V1 Peppers 512× 512× 3 0.500001 33.465 99.609

Proposed V2-8 bit Peppers 512× 512× 3 0.499987 33.461 99.610

Proposed V2-32 bit Peppers 512× 512× 3 0.499998 33.465 99.609

101

level relative to the key sensitivity attacks.

4.2.8 Correlation analysis

To test the correlation between adjacent pixels, the following procedure was carried out.
Firstly, 8000 pairs of two adjacent pixels are selected randomly in vertical, horizontal, and
diagonal directions from the original and the encrypted images. Then, the correlation co-
efficient is computed according to the equations (2.12-2.15), of section (2.2.5) of chapter
2.

(a) Horizontal correlation of the plain image (b) Vertical correlation of the plain image

(c) Diagonal correlation of the plain image (d) Horizontal correlation of the ciphered image

(e) Vertical correlation of the ciphered image (f) Diagonal correlation of the ciphered image

Figure 4.10: Correlation analysis of Lena and its ciphered image in three directions

102

One example of this extensive study is the Barb gray scale image of 512 × 512 × 1.
The obtained results are shown in Table 4.8 and Figure 4.10. These results demonstrate
that the correlation coefficient, in all directions, of the plain images is close to one (see
Figure 4.10), and the correlation coefficient of the encrypted images is close to zero. This
means that there is no detectable correlation between the original and its corresponding
ciphered image, and also, there is no relation between pixels of the ciphered image.

Table 4.8: Correlation Analysis Results

Cryptosystem Name Horizontal Vertical Diagonal

Proposed Algorithm V1 0.0085 0.0097 0.0092

Proposed Algorithm V2-8 bit 0.0087 0.0098 0.0096

Proposed Algorithm V2-32
bit

0.0087 0.0098 0.0096

4.2.9 Histogram analysis
In Figure 4.11, we show some visual results obtained with the third version of the pro-
posed cryptosystem (similar results are obtained for the other versions): a) the plain Lena
image of size 512 × 512 × 3, b) the corresponding cipher image, c) the histogram of the
plain image, and d) its corresponding cipher image. The histogram of the encrypted im-
age is very close to the uniform distribution and completely different from the plain image
histogram. This means that there is no visual information than can be observed from the
ciphered image of the proposed cryptosystem.

Table 4.9: Chi-Square Results

Crypto version Ciphered image Chi-square

Proposed V1

Lena 256.27

Boat 262.46

Baboon 259.91

Proposed V2-8bit

Lena 259.63

Boat 254.69

Baboon 258.78

Proposed V2-32bit

Lena 253.12

Boat 252.44

Baboon 253.14

The visual test is necessary but is not sufficient. To ensure uniformity, the chi-square
test is applied to statistically confirm the uniformity of the histogram.

103

(a) Plain Lena image (b) Ciphered Lena image

(c) Histogram of the plain Lena image (d) Histogram of the ciphered Lena image

Figure 4.11: Lena image and its ciphered version and their corresponding histograms

104

We present in Table 4.9 the results obtained from the chi-square test of histograms for
three ciphered images of different nature (i.e., Lena, Boat, and Baboon). All of them have
the same size of 128× 128× 3, with a significant level of 0.05. From the obtained values,
we can observe that χ2

exp < χ2
th(255, 0.05) = 293, and then the tested histograms are

uniform and do not reveal any information for statistical analysis.

105

4.3 Example of a real-time application
An example of a real-time application of all realized chaos-based cryptosystems could be
in real-time energy harvesting sensor.
A wireless sensor network consists of sensor nodes deployed over a geographical area for
monitoring physical phenomena like temperature, humidity, vibrations, seismic events,
and sensitive information such as enemy movement on the battlefield or the location of
persons in a building. Typically, a sensor node is a tiny device that includes four ba-
sic components: a sensing subsystem for data acquisition from the physical surrounding
environment, a processing subsystem for local data processing and storage, a wireless
communication subsystem for data transmission, and a power source to supply the energy
needed by all the subsystems to perform the programmed tasks. The power source often
consists of a battery with limited life time. In many applications, it is impossible or costly
to recharge the battery because nodes may be deployed in hostile or unpractical environ-
ments. The sensor network should have a lifetime long enough to fulfill the application
requirements. Therefore, the question is how to prolong the network lifetime to such a
long time [10].
Sensors communicate broadcasted messages to each other which makes them vulnerable
to different types of attack, such as eavesdropping, malicious modification on insertion
of unauthorized data in packages [151]. To prevent attacks, we should implement secu-
rity services in WSNs. Among them, the most important are confidential, authentication
of nodes as well as data integrity. Most of traditional security mechanisms are not suf-
ficiently efficient. All existing algorithms including cryptographic algorithms adapted
to WSNs aim to reduce the energy consumed and thus to maximize the lifetime of the
networks. Nevertheless, in the paradigm of energy harvesting sensor networks, the com-
puting/communication system needs to be energy-neutral i.e. to consume as much energy
as harvested. In this context, new algorithms have to be developed for power manage-
ment, routing and other networking issues.
In this section, we address the question of security in new embedded systems which are
supplied by ambient energy. A variety of techniques are available for energy harvest-
ing, including solar and wind powers, piezoelectricity, thermoelectricity, and physical
motions. Energy harvesting is perfectly convenient for wireless electronic devices that
otherwise rely on battery power. In the energy harvesting paradigm, the lifetime of a
network can be considered as infinite. A central question that remains open is about the
possibility of fully secure communications with energy harvested sensors.
We propose an on-line strategy based on software redundancy which, at any time per-
mits to select the adequate encryption algorithm so as to optimize the resulting Quality of
Service measured in terms of security and rapidity. Further, we propose a security-aware
scheduling strategy which Quality of Service measured in terms of security and rapidity.
Further, we propose a security-aware scheduling strategy which incorporates the Earliest
Deadline First (EDF) scheduling algorithm.

4.3.1 Real-time computing
4.3.1.1 Issues in conventional real-time computing systems

Data sensing and retrieval in wireless sensor systems have a widespread application. The
software on a node generally comprises a set of periodic tasks that consist of streams of
jobs. Task periods are usually set by the application requirements. Every job is char-

106

acterized by a release time, an execution requirement and a deadline. The goodness of
such real-time system depends on whether all the jobs of all the tasks can be guaranteed
to complete their executions before deadlines. If they can, then we say the task set is
feasible.
It has been established for about forty years that the EDF scheduling policy which as-
signs priorities according to urgency is optimal [75]. In case of timing constraints cannot
be met, one way is to trade computation quality for timeliness. This is often achieved
with software redundancy in order to provide a graceful degraded mode. Indeed, a real-
time system should continue to operate even in the presence of time starvation or energy
starvation with a lower but acceptable Quality of Service.

4.3.1.2 The deadline mechanism

The so-called Deadline Mechanism (DM) provides software redundancy in hard real-time
periodic task systems [24]. Each task has two versions: primary and alternate (also called
back-up). The primary version contains more functions and produces good quality re-
sults, but requires high computation time (and high energy requirement). The alternate
version contains only the minimum required functions and produces less precise results
with minimum execution requirements. However, if the primary of a task fails (due to
time or energy starvation), the execution of the associated alternate should be guaran-
teed before deadline. The challenge in the implementation of the deadline mechanism is
consequently twofold:

• How to guarantee that either the primary or the alternate version of each task be
completed in time and.

• How to complete as many primaries as possible to optimize the quality of service.

4.3.1.3 Scheduling framework

In [25] the so-called last chance strategy is proposed to maximize the number of success-
ful primaries. An offline scheduler reserves time intervals for the alternates. Each interval
is chosen so that any alternate starts execution at the latest possible time. At run-time, the
primaries are processed during the remaining intervals before their respective alternate.
Alternates can preempt any primary when a time interval reserved for the alternates over-
laps the execution interval of primaries. Whenever a primary completes successfully, the
execution of its corresponding alternate is no longer needed. Hence, the online scheduling
algorithm dynamically rearranges the alternate schedule so as to increase processor time
available for the execution of primaries (see Figure.4.13).

4.3.2 Security in energy harvesting systems
4.3.2.1 System model

Our system consists of four components: the energy source, the energy harvester, the en-
ergy storage and the sensor node as it is seen in Figure.4.12. The ambient energy source
is characterized by an instantaneous charging rate Pr(t) that incorporates all losses. We
assume that energy production times can overlap with the consumption times. The energy
produced by the source is not considered as controllable and not necessarily predictable.
Our system uses an ideal energy storage unit that has a nominal capacity, namely C. Let

107

define E(t) as the residual capacity of the storage unit at time t. We consider a uni-

Figure 4.12: Framework of the energy harvesting system

processor sensor node that consumes negligible energy in idle state. Transactions require
to be performed periodically. We assume that two encryption algorithms are available.
The first one is characterized by a very low execution time and energy requirement, called
by the alternate in energy starvation situations. The second one has a greater execution
time and greater energy requirement but provides the highest quality of security. Con-
sequently, every encryption task τi is modeled by a five-tuple (Cpi, Cai, Epi, Eai, Ti)
where it is denoted:

• Cpi respectively Cai: the Worst Case Execution Time (WCET) of the primary
respectively the alternate of τi with Cpi > Cai.

• Epi respectively Eai the Worst Case Energy Consumption (WCEC) of the primary
respectively the alternate of τi with Epi > Eai.

• Ti the period of τi.

We assume that Ei is not necessarily proportional to Ci. Moreover the average incoming
power is higher than or equal to the average power consumed by the alternates. And the
processor utilization rate due to the alternates is less than one.

4.3.2.2 The scheduling issue

The introduction of energy harvesting capabilities in sensor networks has introduced addi-
tional design questions. How to intelligently use the ambient incoming energy to optimize
the QoS of the system measured in terms of security? Furthermore, how to adapt the pro-
cessing activity so as to subsist perennially on a given energy source?
We need a scheduling algorithm which:

1. Guarantees either the primary or alternate version of each encryption task to be
completed in a time.

2. Attempts to complete as many primaries as possible.

Our basic strategy uses Earliest Deadline as late as possible to pre-allocate time intervals
to the alternates. Even if EDF is not the optimal scheduler in energy harvesting systems,
we proved recently that EDF is the optimal non idling scheduler [26]. In contrast to an

108

optimal scheduler, EDF is no clairvoyant and consequently easy to implement. Here, we
want to delay execution of alternates as much as possible to save both time and energy. At
run-time, it attempts to execute primaries first. An alternate will be executed only (1) if
its primary fails due to lack of time, lack of energy or manifestation of bugs, or (2) when
the latest time to start execution of the alternate without missing the corresponding task
deadline is reached. This algorithm has been shown to be effective and easy to implement.

Figure 4.13: The Deadline Mechanism

Figure.4.13, depicts a very simple example where two periodic tasks of respective
periods 3 and 9 have to execute before deadline. The Last chance strategy attempts to
execute the primaries first. From time 0 up to time 3, primaries execute timely because of
sufficient energy available in the storage unit. When primary τ1 succeeds at 2, the interval
reserved for the alternate is removed and additional time could be used for primaries.
Here, we do not illustrate the process for reserving energy that should guarantee feasibility
of all alternates. Second primary τ1 fails before completion due to depletion of the storage
unit. The primary is aborted and the storage starts recharging since we let the processor
inactive until the storage fully replenishes. That permits primary τ2 and alternate τ1 to
complete successively as third primary τ1.

4.4 Conclusion
In the first part of this chapter, we studied and analyzed one of the best chaos-based cryp-
tosystems of the literature, namely Zhang cryptosystems. We have partially cryptanalyzed
the first Zhang cryptosystem by using a combination of a chosen plaintext attack, and a
brute force attack, for (n = 1, m = 2). Also, after removing the diffusion effect using
equation (4.12), we succeeded in decreasing the security level, measured by means of pa-
rameters NPCR and UACI, by applying the differential attacks for (n = 2, m = 2). Then,
in the second part of the chapter, based on a similar structure of the Zhang cryptosystem,
we designed two versions, with two different implementation of the second version, of a
chaos-based cryptosystem. We have shown that all versions of our proposed cryptosys-
tem are faster and more secure than Zhang and many chaos-based cryptosystems. The

109

time performance is carried out using average encryption/decryption times, encryption
throughput, and the number of cycles needed to encrypt or decrypt one byte. The last
measure is necessary to compare different cryptosystems working on different platforms.
All versions of our proposed cryptosystem are implemented using the CBC mode and a
robust chaotic generator to produce the dynamic keys for each new encryption round and
new block. The high security level of all versions of the proposed cryptosystem is verified
by testing them for different kinds of known attacks, and by using the well-known statis-
tical analysis. Finally, all results prove the superiority of the proposed cryptosystems for
use in secure and real-time applications.

110

II
Joint Crypto-Compression

111

5
Video coding and crypto-compression
stat of the art

A general overview of the video compression is introduced in the first section, with some
details on the last two video coding standards in sections 5.2 and 5.3. Related works on
video encryption algorithms are presented in Section 5.4. Finally, section 5.5 concludes
this chapter.

5.1 Video compression steps
The video consists of successive pictures captured at a specific frequency called frame
rate. For instance, a color video in High Definition (HD) resolution captured at 24 pic-
tures per second (1920x1080p24) requires a bit-rate of around ≈ 600 Mbps in case of
4:2:0 color format. Therefore, it is difficult to deliver video in real-time over Internet and
wireless networks without compression.
Video compression consists in removing spatial and temporal redundancies in the video
and thus, it considerably decreases the required data to represent the video. The gen-
eral block diagram of video compression processes is shown in Figure 5.1. The video
compression processes can be classified into lossy and loss-less compression. The conse-
quence of the lossy compression is that it is not possible to recover, at the decoder side,
the original video. During the compression process, the loss of information is mainly due
to the quantization step. It consists in reducing the dynamics of the encoded coefficients,
and then the reconstructed video at the decoder is not identical to the original one.

Figure 5.1: General block diagram of the video compression at the encoder

In loss-less compression, the non-invertible steps are not involved (i.e., all steps during
the compression process are reversible ones). Therefore, a loss-less compression process

113

enables to recover at the decoder side the original video, without any loss of information.
In terms of compression ratio (which is defined as uncompressed over compressed video
size), the lossy compression enables higher compression ratio than the loss-less one. For
instance, typical values for compression ratio in the HEVC ranges from 300 to 1000 while
in loss-less compression scheme the compression ratio at max can be 4 [139].
In the following, we give a brief description of the video compression steps.

5.1.1 Prediction

The video consists of a set of pictures, with high spatial and temporal redundancies. Pre-
dictions in video are used to remove spatial (called Intra prediction) and temporal (called
Inter prediction) dependencies present in the video. Intra prediction is carried out be-
tween blocks of pixels within the same picture, while Inter prediction is carried out be-
tween the current block and the best match of the predicted or reconstructed block that
can be in the previous or the future decoded frames. The difference between the original
and the predicted blocks (i.e., prediction error) is forwarded to the transform process.

5.1.2 Transform

The transform allows to de-correlate the pixels of an image and to compact the energy
in a restricted number of coefficients. The choice of the transform method is an es-
sential step during the design process of a new compression encoder. The properties
of the chosen transform characterizes the performances and the characteristic of the en-
coder. Several reversible transform methods are used in the field of image and video com-
pression, The widespread ones are: Karhunen Lovev (KL), Discrete Cosine Transform
(DCT), Integer Wavelet Transform (IWT), Hadamard Transform (HT), also known as the
Walsh–Hadamard transform and Discrete Wavelet Transform (DWT), etc [60, 77, 99].

5.1.3 Quantization

The quantization step assigns values, taken from a finite countable set, for all of the trans-
form coefficients. Unlike the previous steps, the quantization step is irreversible and in-
troduces distortion, so this step is only applied to a lossy coding. There are several types
of quantification, such as uniform and non-uniform, Scalar Quantization (SQ) and Vector
Quantization (VQ).

5.1.4 Entropy coding

The entropy encoding operates on the statistics of the quantized coefficients to remove
the statistical redundancy between them. Moreover, an entropy coder uses the Variable
Length Code (VLC) for code-words, such that the most occurrences coefficients are rep-
resented by the short binary codes, and the lowest occurrences coefficients are represented
by the long binary codes. Consider a discrete random (unpredictable) variable X with re-
alization xi where i = 1, 2, ... n which correspond to the coefficients of the transformed
image, and P (xi) is the probability of appearance of the coefficient xi. The entropy of
the transformed image is defined by the expected value of the quantity of information

114

associated with each coefficient, known by the theoretical limit of the Shannon entropy:

H(X) = −
n∑
i=1

P (xi)log2 (P (xi)) (5.1)

There are several entropy coder who allows to approach at best the theoretical limit of the
Shannon entropy such as: Huffman Coding (HC), Arithmetic Coding (AC), Lempel-Ziv
coding.

5.2 H.264/Advance Video Coding (AVC) and scalable ex-
tension

The AVC has been introduced in 2003 as a joint project of the International Standards
Organization (ISO) and the International Telecommunications Union (ITU). The AVC is
also known as H.264 and MPEG-4 Part 10 [154]. In this thesis, for simplicity, MPEG-
4/H.264 is referred as AVC. This standard is developed to achieve low bit rate visual

Figure 5.2: Typical AVC video encoder (from [127])

communication, with better video compression efficiency than previous ITU-T and ISO
standards. The basic encoder structure of this standard is described in Figure 5.2. For
further details on the AVC standard, the reader can refer to [153].
On the one hand, the AVC encoder compresses a video to decrease the required capacity
for transmission or even for storage, while the decoder decompresses the AVC bit-stream
to reconstruct an estimation of the original video. The AVC encoder and decoder structure
is similar to the previous video coding structures (i.e., H.263, H.262...). At the encoder
side the compression steps are the following: [20, 103]:

115

1. Prediction: each frame is partitioned into a number of processing units named
Macro Blocks (MBs) of size 16 × 16 pixels. The prediction in the AVC for each
MB is carried out through:

• Intra prediction: the current MB can be encoded using coded MB within the
current frame (i.e., the both MBs are in the same frame). Intra prediction uses
(4× 4 or 16× 16) block sizes to perform the prediction.

• Inter prediction: the current MB can be encoded using similar previous coded
MBs outside the current frame. Note that previous coded MBs can be before
or even after the current frame in display order. Inter prediction uses (4 × 4,
4 × 8, 8 × 4, 8 × 8, 8 × 16, 16 × 8 or 16 × 16) block size to perform this
prediction. More details of Intra and Inter predictions are described in section
5.3.

2. Transform: the error prediction block (i.e., residual block) is transformed using
integer DCT transform to produce the transform coefficients. The residual block
size can be (4× 4, 8× 8 or 16× 16) values. One of the major enhancement of the
AVC is that the primary block size can be 4 × 4 values. Finally, the result of the
transform step is forwarded to the next step to rescale them down.

3. Quantization: this step rescale (reduce) the value of coefficients based on a Quan-
tization Parameter (QP). All coefficients of the MB (16 coefficients in case of 4×4,
64 in the case of 8 × 8 and 256 in case of 16 × 16 MB size) are mapped to the
corresponding level based on the QP value and then, they are rounded to the nearest
integer. The QP can take 52 possible values, raning from {0, 1, 2, ...51}.

4. Encoding : In the AVC two entropy coding methods are used: Context-Adaptive
Variable-Length Coding (CAVLC) and Context-Adaptive Binary Arithmetic Cod-
ing (CABAC). In this step, syntax elements (i.e., all values that should be encoded
including: coefficients after quantization, and all necessary information for the de-
coding process...) are converted into a binary representation form during the encod-
ing process.

The Scalable Video Coding (SVC) is the scalable extension of the AVC standard. SVC en-
ables temporal, spatial and quality scalability [110]. Moreover, this extension introduces
significant improvements regarding to the coding efficiency with respect to the AVC.

5.3 High Efficiency Video Coding (HEVC) standard
The first version of the HEVC standard has been finalized in January 2013 by the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG) under a partnership known as a Joint Collaborative Team on Video Coding (JCT-
VC).
The HEVC has the basic structure (see Figure 5.3) of the previous video coding standards
with new coding tools that enable up to 65% bit-rate reduction compared to the AVC stan-
dard: [100, 48, 62, 92, 138]. These new tools are listed bellow:

• More flexible and efficient block partitioning structure.

116

Figure 5.3: Typical HEVC video encoder (from [138])

• More angular Intra prediction modes.

• More flexibility in the transform block sizes.

• More acuurate interpolation filters.

• Better prediction and signaling of modes and Motion Vectors (MVs).

• New Sample Adaptive Offset (SAO) filter.

As a result of these new technologies of the HEVC, it becomes more suitable for parallel
processing and for different kinds of applications.

5.3.1 HEVC partitioning

Figure (5.4) illustrates picture partitioning process in the HEVC standard. The partition-
ing steps are detailed in the following:

• Each video picture is partitioned into N_CTU Coding Tree Units (CTU), and the
CTU size can be M ×M where M = 16, 32 or 64.

N_CTU =
Frame Size

CTU Size
(5.2)

• Each CTU has luma block, called Coding Tree Block (CTB) and also two CTB
chroma blocks. The size of luma CTB is identical to the CTU size, whereas each
chroma CTB size depends on the input video representation, and in case of 4:2:0
color format, it is equal to M/2×M/2.

117

• Each CTB is further divided into a number of Coding Blocks (CBs), where the size
of each CB can be 8× 8, 16× 16, 32× 32 or 64× 64. Then a Coding Unit (CU) is
formed using three CBs (luma CB, and two chroma CB) and their associated syntax
elements. The CUs are reading in Z-scan order as illustrated in Figure 5.5.

• Each Inter prediction CB can be one Prediction Block (PB) of M ×M size, or 2
PBs of sizes M/2×M or M ×M/2, or four PBs with size M/2×M/2 and other
PB sizes as given in Figure 5.4.
The Intra predictions CB is formed by one PB of size M ×M or four PBs of size
M/2×M/2.

• Finally, the CB has another partitioning structure relative to the transformation pro-
cess, each CB can be one TB of size M×M , or four TBs of size M/2×M/2 each,
or sixteen TB of size M/4×M/4 each.

5.3.2 HEVC Intra prediction

The intra prediction modes in the HEVC are increased from eight in the AVC up to 35
modes. These modes are classified into: 33 Intra_Angular prediction modes (from 2 →
34), and the Intra_Planer mode (mode 0) and the Intra_DC prediction mode (mode 1)
[64]. Note that with the same PB only one intra prediction mode can be used.

The Most Probable Mode (MPM) concept, in all video coding standards is usually
used to decrease the required bits during the encoding process and then, to improve the
coding efficiency. It is derived from the Intra-prediction modes of the neighboring blocks.
During the intra prediction in the AVC, only one MPM is defined, while in the HEVC,
three MPM are defined and so, the remaining Intra modes in the HEVC are 32, which
means 5 bits are required to binarize the selected mode. This binarization is carried out
using Fixed Length Coding (FLC).
Three syntax elements (prev_intra_luma_pred_flag,mpm_idx, rem_intra_luma_pred_mode)
are used to specify the Intra prediction mode for PB luma. The prev_intra_luma_pred_flag
is a syntax element used to specify if the luma intra mode is one of the MPM or not. In the
case that prev_intra_luma_pred_flag is one, then the mpm_idx parameter is parsed to
indicate which mode from the MPM list is used for the current luma intra prediction mode.
In case prev_intra_luma_pred_flag is zero, then the rem_intra_luma_pred_mode is
encoded using the FLC.
Figure 5.6 shows the derivation process of the MPM. Unlike the AVC, in the HEVC, the
chroma intra prediction mode is derived from the luma one. The derivation process of the
chroma intra prediction mode is described in Table 5.1, it works based on if the derived
chroma intra mode is identical to the initial chroma intra mode, then the Intra angular
mode (i.e., mode-34) is used for the chroma, otherwise, the derived one is used.

An adaptive scanning method is applied in the HEVC, and it is used with the block
sizes of 4× 4 and 8× 8 to benefit from the statistical distribution of the active coefficients
in 2-D transform blocks. The scan is selected according to Table 5.2.

5.3.3 HEVC Inter prediction

The inter prediction in the HEVC is carried out by:

118

Figure 5.4: Typical HEVC partitioning process

119

Figure 5.5: Z-scan order of CUs inside the CTU (from [124])

Figure 5.6: Derivation of the MPM Modes(from [124])

120

Table 5.1: Derivation process of the chroma intra prediction mode (from [124])

Intra_chroma_pred_mode
Luma Intra Pred Mode

0 26 10 1

0 (i.e., mode-0) 34 0 0 0

1 (i.e., mode-26) 26 34 26 26

2 (i.e., mode-10) 10 10 34 10

3 (i.e., mode-1) 1 1 1 34

4 (i.e., use the luma mode) 0 26 10 1

Table 5.2: Mapping between Intra prediction mode and coefficient scanning order

Intra prediction mode Coefficient scanning
for 4× 4 and 8× 8

Coefficient scanning
for 16× 16 and 32× 32

Angular (6-14) Vertical Diagonal

Angular (22-30) Horizontal Diagonal

All other modes Diagonal Diagonal

• Motion Estimation (ME): is an inter prediction process to find the best match be-
tween the current processing unit(such as PB1) and a region in a previous or a
future frames (such as PB2). The output of this process are: MV information, skip
mode information or merge mode information.

• Motion Compensation (MC): is the process of generating the identical interpicture
prediction signals using the output of the previous step (i.e., MV and the mode
information) calculating the difference between PB1 and PB2.

The MV is a vector information indicating the moving direction of the PB by calculat-
ing the offset between the current PB and the reference PB. The Inter-prediction of each
PB is predicted using a bi-prediction or a uni-prediction. In uni-prediction the smallest
PB luma size is 4 × 8 or 8 × 4 whereas for bi-directional the smallest PB luma size is
8× 8.
As this part of the HEVC compression process is used in our next contribution, the used
parameters in inter prediction step are described in details. In Inter-prediction, the main
modes are Merge and Skip, for which the MV and reference index information are derived
from spatially or temporally neighboring blocks. In merge mode, the current block and
the neighbor block(s) have a shared region that contains the required motion information,
and so, the coding efficiency is improved since no need to transmit the motion information
for each block. The equivalent structure of this mode in the AVC is the skip and direct
modes. Anyway, there are two main differences between the HEVC and the AVC for this
mode: the index information is transmitted in order to identify one of available indepen-
dent candidates. Moreover, it identifies the references of the available picture in the list
picture index, while in the AVC direct mode, part of predefined values already exist.

121

In Figure 5.7, the current PB is D, and so, the same MV information of B,C or Dt−1
prediction blocks are available. Assumes that the merged block with D is X where
X ∈ {B,C,Dt−1}, in this case only one MV information is required for the both D
and X blocks, and there is a flag used to determine that the D prediction block is merged
with block X [138].
The HEVC is divided into frames and slices, the frame can be I, P or B frame. The pre-
diction in I frames is intra prediction, while in P frames the intra and inter predictions are
used. The inter prediction in P frames uses only one MV per PB, in B frames inter and
intra predictions are used and the inter prediction uses one or two MVs for each PB. The
Motion Vector Differences (MVD) is a difference between the Motion Vector Predictor
(MVP) and the actual motion vector used to predict a current block [164].

Figure 5.7: Merge mode example

The sign of the MVD is indicated by mvd_sign_flag, when this flag is one the MVD
has a negative value, whereas the MVD has a positive value when this flag is zero. This
flag sets to zero in case of it is not signaled in the bits-stream. In P frame, there is only one
MVD in the both horizontal and vertical directions. The parameter abs_mvd_minus2
specifies the absolute value of an MVD minus 2. This means, if the absolute value of
the MVD is zero or one, the previous parameter is not signaled. Hence, two parame-
ters are used, abs_mvd_greater0_flag to specify if the absolute value of an MVD is
greater than 0 or not. abs_mvd_greater1_flag to specify if the absolute value of an
MVD is greater than 1 or not. In case the abs_mvd_greater1_flag is not present, it
is set to 0. In case of B frame, we have two MVD and for each one, we have the fol-
lowing flags: mvd_sign_flag, abs_mvd_greater0_flag and abs_mvd_greater1_flag.
Finally, in Inter prediction there are List0 and List1. The former uses the parameter
called ref_idx_l0 to indicate the reference picture index of the current prediction unit.
The later uses ref_idx_l1 for the same function. In case ref_idx_l0 or ref_idx_l1 are
not signaled, they are considered equal to 0.

122

5.3.4 HEVC transformation and quantization
According to Figure 5.3, the predicted residual values are grouped in TB to perform the
transformation process using integer transform blocks of four sizes (4× 4, 8× 8, 16× 16
and 32× 32) the last three sizes are derived from a DCT, where the derivation process of
the 4× 4 luma intra-prediction is based on the Discrete Sine Transform (DST). The used
integer transforms in the HEVC have a better approximations than the used ones in the
AVC.
The quantization process in the HEVC uses the same scheme as the one used in the AVC:
Uniform Reconstruction Quantization (URQ) scheme. This scheme is controlled by the
Quantization Parameter (QP), the QP range is defined as QP ∈ {0→ 51}.
The output of the quantization process is forward to be encoded using Entropy Coding
(EC) step.

5.3.5 CABAC entropy coding
In the HEVC, comparing to the AVC, only CABAC entropy coding is used and the main
contribution of our proposed work of the crypto-compression systems are based on the
CABAC steps, that we describe them in details. In general, CABAC process consists of
three steps as illustrated in Figure 5.8:

• Binarization is used to convert the Quantized Transform Coefficients (QTCs), into
bin strings using one of five basic binarization methods: Unary code, Truncated
Unary (TU) code, Fixed Length Code (FLC), Kth order Exp-Golomb (EGK) code
and Truncated Rice code with context p (TRp).

• Context modeling is used to perform two functions: context model selection and
context model access. It uses the statistics of the coding symbols to update their
probabilities.

• Binary Arithmetic Coding (BAC) is applied on each bin according to the selected
probability model[138], and it consists of:

1. Context coding: it provides an estimation of the conditional probabilities of
the coding symbols.

2. Bypass coding: this mode permits equal probability (0.5 for each bin).

Figure 5.8: Three main functions in the CABAC

The binarization process
The binarization process in the CABAC consists of five basic methods, that we describe
bellow:

123

1. Unary Code (U): The non-binary value Y is coded into binary form by formulating
it with Y ones and ending by zero. For example, the binary code of 4 is 11110,
while for 7 is 11111110.

2. Truncated Unary Code (TU): It is almost identical to the previous one, it is defined
for any Y value such that 0 ≤ Y ≤ S (where S = cMax in our work). For all
Y < S the TU code is exactly same as the Unary code, while for Y = cMax, the
ending bit (i.e., the 0) is removed.

3. Fixed Length Code (FLC): the inputs of this process are a syntax element and the
cMax parameter. The output is the FL binarization code based on arithmetic binary
representation(see equation 5.4). The length of the code-word, called fixedLength,
is derived from the cMax by using equation (5.3).

fixedLength = dlog2(cMax+ 1)e (5.3)

and
FLC(Y) = arithmetic binary(Y) (5.4)

Example 5.1: Assume the syntax element is Y = 3, and cMax = 4, then:
fixedLength = dlog2(4 + 1)e = 3, which means three bits is required to represent
the FLC binary value and so
FLC(3)=011.

4. Truncated Rice Code with context p (TRp): this method of binarization is intro-
duced for the first time in the HEVC. It consists of prefix and suffix terms. The
code of the prefix term is given using equation (5.5) if the condition of the equation
(5.6) is valid, otherwise, the prefix bin strings are b cMax

p
c ones. Where cMax is an

input, p is given by equation (5.8) and the cRiceParam parameter is determined
according to the algorithm 10 and its value is ranged {0, 1, 2, 3, 4}.

TRp(Y)_Prefix = Unary code(bY
p
c). (5.5)

bY
p
c < bcMax

p
c. (5.6)

p = 2cRiceParam (5.7)

The suffix code (if presents) is given using the equation (5.8). The length of this
code is calculated by the equation (5.3), in which cMax is replaced by cMaxS
defined by the equation (5.9).

TRp(Y)_Suffix = FLC(Y Mod p). (5.8)

cMaxS = p− 1 (5.9)

Finally, the code-word of the TRp is a concatenation of the prefix and the suffix
codes.
Example 5.2: Assume Y = 7, cMax = 8 and cRiceParam = 1, then:
p = 2, b7

2
c < b8

2
c:

TRp(7)_Prefix = Unary binary(b7
2
c) = 1110.

124

For the suffix, cMaxS = 21 − 1 = 1, fixedLength = dlog2(1 + 1)e = 1. which
means one bit is required to represent the arithmetic binary for the suffix value and
so,
TRp(7)_Suffix = FLC(7 Mod 2) = 1.
The word-code is 11101.
Example 5.3: Assume Y = 7, cMax = 7 and cRiceParam = 1, then:
p = 2, b7

2
c is not less than b7

2
c:

Consequently, the TRp prefix is b cMax
p
c ones=111.

For the suffix, cMaxS = 21 − 1 = 1, fixedLength = dlog2(1 + 1)e = 1. which
means one bit is required to represent the arithmetic binary for the suffix value and
so,
TRp(7)_Suffix = FLC(7 Mod 2) = 1.
The word-code is 1111.
Example 5.4: Assume Y = 8, cMax = 10 and cRiceParam = 1, then:
p = 2, b8

2
c < b10

2
c:

TRp(8)_Prefix = Unary binary(b8
2
c) = 11110.

For the suffix, cMaxS = 21 − 1 = 1, fixedLength = dlog2(1 + 1)e = 1. which
means one bit is required to represent the arithmetic binary for the suffix value and
so,
TRp(8) Suffix = FLC(8 Mod 2) = 0.
The word-code is 111100.

5. Kth Order Exp-Golomb Code (EGK): The EGk code is also a concatenation of pre-
fix and suffix terms. The prefix term of the EGk code is the U representation of
l(Y) calculated based on equation (5.10). The suffix term is the arithmetic binary
representation of the (Y + 2k(1− 2l(Y))) using k + l(Y) significant bits.

EGK(Y)_Prefix = Unary code(l(Y)).
l(Y) = blog2(

Y
2k

+ 1)c. (5.10)

Example 5.5: Assume Y = 7, and we want to binarize it using EG0 and EG1, then:
For k = 0
l(7) = blog2(

7
20

+ 1)c = 3.
Prefix of EGK(7)_Prefix = 1110.
The length of the suffix code is 0 + 3 = 3, then
EG0(7)_Suffix = arithmetic binary(7 + 20 − 20+3) = 000.
The code-word is 1110000 For k = 1.
l(7) = blog2(

7
21

+ 1)c = 2.
Prefix of EGK(7)_Prefix = 110.
The length of the suffix code is 1 + 2 = 3, then
EG1(7)_Suffix = arithmetic binary(7 + 21 − 21+2) = 001.
The code-word is 110001.

The following programming code is published in the last drift of the JCT standard
(High Efficiency Video Coding (HEVC) text specification draft 10 [61]), and is
used to simulate the previous mathematical equations.

125

Algorithm 9 [K-th order Exp-Golomb binarization process (from [61]])
Y =abs(Syntax Element)
stopLoop=0
do

{
if (Y >= (1 << K))

{
put(1)
Y = Y − (1 << K)
K + +

}
else

{
put(0)
while(K −−)

put((Y >> k) & 1)
stopLoop=1

}
}while(!stopLoop)

5.4 Video encryption algorithms - related works
Video encryption is a hot research topic in the last decades [5]. The security and confiden-
tiality of video coentent are very important in commercial applications. In this section,
related works of video encryption techniques are presented.

A traditional algorithm, such as AES and DES, were originally used to encrypt texts.
Their usage for video encryption in most of the time is done in a naive way. Thus, this
class of encryption methods is called Naive Encryption Algorithm (NEA) [12, 144]. In the
NEA, the video bit-stream is encrypted based on a straight-forward method, encrypting
each bit. In fact, the NEA manages the video bit-stream as text without using the special
structure of the compressed video [70, 156]. However, NEA is not suitable for video
encryption (a justification is given later).
To encrypt the video contents, there are three main possible approaches, see Figure 5.9:

• Encrypt the video at position 1, and then compress it.

• Compress the video and then encrypt it at position 9.

• Joint encryption-compression video between position 7 and 9 included (to have
invertable encryption).

Confidentiality of multimedia contents should be considered with a particular attention
from both point of views: compression and encryption requirements. Several encryption
solutions are used to encrypt the video, either before or after the compression process. In
general, separating encryption and compression processes is not a good solution for video.
In deed, the encryption at position 1 (before compression) has the following obstacles:

1. First of all, the compression process is usually a lossy one based on a non-reversible
operations; which led to incorrect decryption.

126

2. Secondly, encrypt the whole bit of the video is a time consuming process, whereas,
the decoder should be fast to be used for real-time applications.

3. Thirdly, when the encryption process is achieved using a robust encryption algo-
rithm, the ciphered data becomes a random or a pseudorandom data. That means
the redundancy between data bit is removed and therefore the compression scheme
becomes not efficient (i.e., the compression rate is significantly decreased).

The encryption at position 9 (after the compression process) consists of encrypting all
coded bit stream. This scenario, that usually used has the following drawbacks:

1. Firstly, the coded bit-stream are random and then the encryption scheme becomes
less efficient

2. Secondly, this solution is a time consuming since all bits must be encrypted and
then the bit-rate is increased, especially for high quality and resolution video.

3. Thirdly, the encrypted video bit-stream desynchronizes the decoder since the en-
crypted coded bit-stream is not conforming with the video bit-stream syntax stan-
dards(a non format compliant encryption scheme).

Figure 5.9: Different possible encryption positions in the video compression process

Joint Encryption compression
The joint encryption compression schemes are mainly classified into:
Selective Encryption (SE): encrypts some parts of the video content (sensitive content)
to achieve the required security level with a minimum extra computation cost during the
video compression process.
Perceptual Encryption (PE): encrypts some parts of the video content (sensitive content)
to degrade the quality of the video according to the quality requirements, with a minimum
extra computation cost. The other video content parts are left as plain video for non-
authorized users. In fact, the difference between SE and PE is depends on the target and
the application of each one, while the encryption method is almost the same, since the
both are used to encrypt some parts of the video content.
In general, encryption algorithms for video can be used for several purposes based on the
target applications.

5.4.1 MPEG Video encryption algorithms
In this section, we briefly present some encryption algorithms of the video standards
before the AVC standard.

127

5.4.1.1 I-frames encryption

The security of MPEG-I video stream was proposed by [134], and the basic idea of this
kind of algorithms is to encrypt the most important frames in the video which are I-frames,
because P and B frames are useless without knowing the corresponding I-frames. How-
ever, Agi and Gong [5], have demonstrated that some of important parts of the encrypted
video can be recovered independently of I-frames, as the encryption scheme does not
consider the I-blocks in the P and B frames, and other important factors. Moreover, the
compression ratio decreases significantly when the I-frame values are encrypted (i.e., the
I-frames coefficients are encrypted before the entropy coding stage). Finally, encryption
of I-frame values increases the bit rate significantly, while one of the most important re-
quirements of the video compression is to decrease the bit rate. To preserve the same bit
rate, the encrypted value and the original one should have the same length, and also the
encrypted value should not affect the length for the other values. This requirement (con-
stant bit rate) is more complex to achieve if the encryption process is performed outside
or independent of the entropy coding unit.

5.4.1.2 A non-compatible four level of security

Based on the previous work of Agi, Meyer and Gadegast [86] have implemented four
levels of video encryption algorithm. The first level is to apply the encryption process on
all frame headers. The second level includes the first level task and it encrypts the DC and
AC values of the I-blocks. The third level is to encrypt I-frames and I-blocks in P and B
frames. The fourth level is to encrypt all data. The implemented video encryption algo-
rithm uses DES standards to encrypt MPEG-1. One of the drawbacks of this algorithm is
the compatibility problem with the standard encoder/decoder (i.e., it is not a format com-
pliant algorithm). It needs a specific decoder to deal with the encrypted bit stream, since
the encrypted bit stream crashes the decoder. Moreover, the compression ratio decreases
significantly and the bit rate increases in this algorithm.

5.4.1.3 Zig-Zag permutation algorithms

More encryption algorithms in MPEG-1 are developed based on a permutation scanning
method instead of the zig-zag one. The main steps of this algorithm are [142]:

• Formulating a one denominational vector of 64 value , where the first value is the
DC and the remaining 63 values are the ACs and the last AC value is zero.

• The first value of the previous vector is the four Least Significant Bit of the DC,
LSB4(DC), and the last value is the Most Significant Bit of the DC, MSB4(DC).

• A random permutation process is applied on the 64 values of the previous vector.

It is proved in [98] that this algorithm is susceptible to the known plaintext attack and the
ciphertext only attack. Furthermore, it is not a format compliant, decreases the compres-
sion ratio and increases the bit rate.

5.4.1.4 Change the sign bits or the values of DCT coefficients

Tosun and Feng in [145], have designed three levels of security for the MPEG-2 video
stream. The designed algorithm is based on the 64 coefficients of the DCT. A joint en-

128

cryption and compression algorithm is proposed. It divides the 64 values into three in-
tervals: the first range is [0, ..., x1], the second range is (x1, ..., x2], and the last range is
(x2, ..., 63]. Based on the required security level, we encrypt the first range or the first two
ranges or all ranges. Since the proposed scheme encrypts coefficients before the entropy
coding, it decreases the compression ratio, increases the execution time and also the the
bit rate.

Further work on the frequency domain is carried out by Zeng and Lei [163]. They
have proposed a selective joint encryption and compression scheme (SEA) for H.263.
The proposed scheme flipping the sign of the DCT coefficients. The encryption of the
sign for any value does not affect the compression ratio and the bit rate. Moreover, it is
a format compliant encryption. However, it is not sufficient to achieve a good security
level. The proposed SEA shuffles some blocks of the DCT coefficients and/or Motion
Vectors (MV). This operation decreases the compression ratio and then increases the bit
rate. Finally, in case of performing blocking shuffling between non-zero and zero DCT
coefficients, the output bit-stream will not be format compliant.

In [15], Bharat et. al, have proposed a SEA for MPEG-1 bit-stream. The proposed
SEA uses the secret key bits to change the sign bits of the DCT coefficients and the sign
bits of the MV. This encryption method should be fast, but the authors stated, that the
coding complexity is increased by about 2.55%. Moreover, the encryption process of the
sign bit of the DCT and the MV does not enable a high security level.

Lian et. al., [72], have constructed a chaotic stream cipher to protect video content.
This work is directed to the MPEG-2 video codec. The scheme is similar to the previous
ones, encrypts the DCT coefficients and the MV sings of the MPEG-2 videos. In fact, this
kind of encryption decreases the compression ratio and corrupts the standard decoder.

5.4.2 AVC and SVC encryption algorithms
Most of the proposed schemes are developed to provide a high security level for the video
as a target. In perceptual/transparent encryption, the coded part without encryption can be
decoded for any user to get a low quality preview of the video content. While the coded
and encrypted part can not be decrypted for none authorized user.

5.4.2.1 Transparent encryption techniqes for AVC and SVC

Magli et al.,[78] have proposed a perceptual (transparent) encryption techniques for the
AVC and the SVC video. The proposed encryption algorithms were classified into three
joint encryption and compression categories:

• First category: Encoding with drift control to decrease the video quality. This can
be achieved by encrypting the DCT coefficients of I Macro Blocks (MB) in I and
P frames. The Least Significant Bit (LSB) of the chosen DCT coefficients is re-
moved by right-shift, then all removed bits are collected and compressed using the
arithmetic coding revisited [87]. At the end, the compressed file is encrypted using
stream cipher in feedback mode before sending to the decoder. One of the major
drawback of this scheme is the removing LSB bit, since this affects the compres-
sion ratio, and the side information (the collected, encrypted and compressed LSB

129

bits) must be sent to the decoder, which is not preferable in video compression and
transmission.

• Second category: is used to degrade the video quality, and two quality level of I
frames are created, one is the correct encoded and not encrypted I frames, while the
other is the incorrect (encrypted and encoded) I frames. The clear drawback of this
version is the redundancy, and also it needs a specified decoder since it corrupts the
standard decoder.

• Third category: Encryption of the enhancement layers (SVC) using AES algorithm.
The base layer is not encrypted, thus it can be used as a preview. To decode the
enhancement layers the user should have the secret key. Since the AES is used to
encrypt the enhancement layer at position 9 of the figure 5.9, as the author wrote,
the encrypted enhancement layer is not format compliance.

5.4.2.2 Digital video scrambling method using Intra prediction mode

In [7], Ahn et. al., have proposed a simple and fast scrambling method for Intra predic-
tion mode of the AVC video. The basic idea of this scheme is to change the 3-bits of the
prediction mode by x-oring them with a 3 bits of a random sequence, in case of the MB
size is 4× 4.
Indeed, the intra prediction modes are nine modes and so four bits are required to en-
code the intra prediction modes. However, only eight modes are encoded using the
prev_intra4x4_pred_mode parameter, which means one mode of the nine modes is ex-
cluded and it is signaled by MPM parameter.
In case of Intra 16×16 MB size, only four modes are available. The Intra prediction mode
is encoded using VLC, and is jointly coded with luma and chroma coded block pattern
values. The encryption process should be performed with ensuring that the Coded Block
Patterns (CBP) does not change. One bit from the random sequence is used to encrypt the
prediction mode based on: if this bit is 1 the mode is changed to the value which preserves
the CBP, otherwise the mode is not changed (for more details on the CBP refer to [7]).
The process of changing only the I-frames as discussed and proved does not guarantee a
high security level. Moreover, the process of changing the prediction mode decreases the
quality of the prediction process, but it does not cause a completely incorrect prediction.
Finally, this method can be a format compliant encryption scheme for the AVC, but not
for the HEVC decoder, because of the scanning direction.

5.4.2.3 Entropy coding encryption in AVC

AVC uses CAVLC and CABAC to accomplish the entropy coding step. Lie et. al.,[65],
have introduced a selective encryption scheme to encrypt the CABAC bit stream using a
chaotic stream cipher based on the discrete Piece-Wise Linear Chaotic Map (PWLCM).
In this proposed selective encryption scheme, each binarization process has a specific en-
cryption and decryption operation. It is a format compliant, but it affects the compression
ratio and the bit rate since it encrypts the Unary Code (UC), Truncated Unary code (TU),
and Fixed Length Code (FLC). Finally, not all parameters during the binarization process
can be encrypted while preserving the format compliance property.

130

5.4.2.4 Selective video encryption based on AVC

Lian et. al., [71], have proposed an encryption scheme for the AVC. This scheme has four
parts:

1. Partial Encryption of Intra-prediction Mode: it encrypts the suffix term of the EGK
code of the intra-prediction mode. The suffix term is encrypted using a stream
cipher algorithm [85].

2. Partial Encryption of Coefficients: the DCs are encoded with VLC and then en-
crypted using the same stream cipher algorithm proposed in [85] based on cipher-
text feedback mode. While the sign of ACs is firstly encrypted and then encoded
by VLC.

3. Partial Encryption of Motion Vectors: encryption the sign of the motion vector
differences is fast and format compliant without effecting the compression ratio.

4. Key Generator:all previous encryption methods in this scheme are controlled by
different sub-keys. The needed sub-keys are generated using key generator.

The proposed scheme has a good performance in terms of the encryption overhead which
is less than 1.1%. Moreover, it introduces a new idea to encrypt the suffix of some values
to preserve the format compliant and constant compression ratio.

5.4.2.5 Fast protection of the AVC by selective encryption

To preserve the format-compliant and for a minimal impact on the compression perfor-
mance, only the encoded suffix bits in bypass mode during the CABAC entropy encoding
process can be encrypted [135].
Shahid et. al., [118], proposed a fast protection for the AVC using selective encryption of
CABAC bin strings for I and P frames. The encryption process is performed as follows:

y = (x+ γ) mod log2(x+ 1) (5.11)

where γ is given by:
γ = rand() mod log2(x+ 1) (5.12)

The x parameter is the suffix of the exponential-Golomb code, and y is the encrypted
value of x.
Later, Shahid et. al., [115] enhanced this encryption scheme to encrypt CAVLC bit stream
and CABAC bin strings of I and P frames using Cipher feedback (CFB) mode of the AES
algorithm.
Asghar et. al., [13], present some encryptable parameters in the SVC that guarantee a
constant bit rate and format compliant video encryption, such as: UEG3 suffix (where
UEG3 is a concatenation of the Unary code and the EGK code when K = 3), UEG0
suffix and sign of all none zero QTCs.

5.4.2.6 Fast protection of AVC by reduced selective encryption of CAVLC

Fast protection of the AVC video content, based on a selective encryption for a subset of
code-words/bin-strings of the CAVLC entropy coding is introduced by Dubois et. al.,[31].
This encryption scheme, like others uses the AES based on the CFB mode to encrypt a

131

subset of equal length code-words/bin-strings in the CAVLC entropy stage. Five syntax
elements are used in the CAVLC entropy stage to code levels and runs: coeff token, signs
of trailing ones, remaining non-zero levels, total number of zeros and runs of zeros. The
encryptable parameters of this scheme are the sign of the trailing ones and the remaining
non-zero levels to preserve the format compliance.
Nothing new in this scheme except that it analyses the level of the prediction error to
decide which MB should be encrypted, but the selected encryptable parameters are not
sufficient to provide a high security level and it affects the compression ratio.

5.4.2.7 Design of new unitary transforms for perceptual video encryption

A New and different approach of applying selective encryption for the AVC content has
been proposed by Yeung et. al.,[160, 161]. The proposed scheme selects one out of
multiple transform matrices based on the secret key bits. The proposed perceptual video
encryption scheme introduced a new transformation matrices to be used instead of the
DCT and DST matrices, during the transformation stage. Moreover, the sign of DCs is
included in this encryption process. It is clear that this process requires to include these
alternating transformation matrices in the standard encoder and decoder.

5.4.3 HEVC encryption algorithms
A perceptual encryption scheme has been introduced in [148] for the HEVC to degrade the
video quality, whereas the full quality version is only permitted for authorized customers.
The proposed scheme uses a similar encryption techniques that have been proposed in
the previous video standard such as: encrypting the sign of the residual information, the
MVD, the MV prediction index and the MV reference index.

Wallendael et. al., extended their previous research [148] to identify the HEVC syntax
elements which can be changed/encrypted and preserved the format-compliant for the
HEVC decoder as[147]:

• Short-term reference picture set (RPS).

• QP information (initial QP, Chroma delta QP, Slice delta QP, CU delta QP).

• Inter information (reference picture indices, MV prediction indices, motion merge
indices, MVDs).

• Residual information.

• Deblocking filter parameters.

• Sample adaptive offset parameters.

Later, Shahid et. al., [121] proposed a selective encryption scheme to protect the HEVC.
Most of Shahid works [120, 119, 117, 3, 116, 122, 114, 113, 112] has the same idea, which
introduces a joint encryption and compression system based on CABAC bin-strings, see
Figure 5.10.
In Shahid et.al., research, the sign bit of the QTCs, the suffix of the TRp, EG0, EG1,
and the sign bit of the MVDs are the selective encryption scheme inputs. The encryption
process of the sign bit is straightforward, while the encryption process of TRp, EG0 and

132

EG1 suffix codes needs a specific attention to preserve the format-compliance and to keep
the bit ratio almost the same as compression without encryption.

Figure 5.10: Basic structure of selective encryption scheme for the HEVC

Shahid et. al., define three basic requirements for SEA [121].

1. Preserve the same bit rate: the encrypted bin strings must have the same length as
the unencrypted bin strings.

2. Preserve the format-compliant: the encrypted bin strings must be valid and decod-
able by any standard decoder.

3. Encrypt the dyadic encryption space: the author defines the dyadic encryption space
as the one that its range is multiple of 2 (i.e., 7 is not a dyadic space where 8 is a
dyadic one).

As described before, the binarization step is carried out based on five methods. Shahid
et. al., work assumes that the first two methods (unary code and truncated unary code) do
not fulfill the first requirement.
Then, they assume that the FLC does not fulfill the second requirement, since different
bits in the FLC indicate different information regarding the header. However, the FLC
binarization is not restricted to the header only, since the FLC is used in the suffix of TRp
and EGk codes.
Finally, they assume that the suffix of the fourth (TRp) and fifth (EGk) codes can be
encrypted without violation of any requirements.
The proposed encryption algorithm in Shahid et. al., [121] encrypts the suffix of the TRp
and EGk codes except two cases:

1. In case of p = 0 in the TRp code, since the binary representation is identical to the
truncated unary code, and so TR0 does not fulfill the first requirement, as a result
TR0 is not encryptable.

133

2. In case of the last equal-length group of the TRp code, in this case, two binary codes
are identical whether EG0 code is appended or not, and so, the encryption of this
bin strings violates the format compliance requirement.

The encryption and decryption schemes use the AES algorithm in CFB mode [33].The
process of encryption is done by grouping the EGk and TRp suffixes bits to prepare the
128 encryptable bits as a plaintext for the AES CFB algorithm.

Bellow, we address some comments on the Shahid et. al., work:

1. Binarization process of the residuals: Shahid et. al., in their work assume that the
binarization of residuals is carried out using TRp and EG0. However, in the HEVC
standard, as it is clear in algorithm 10, the EG0 will never be used. Consequently,
this assumption is not valid.

2. In their encryption mechanism, it is obligatory to wait until the plaintext is com-
pletely filled or the slice boundary is reached (as they wrote "we fill with Xi en-
cryptable bits until either the vector is completely filled or the slice boundary is
reached."). This mechanism includes additional delay in the latency of the system
and uses more memory to fill the plaintext vector (this is clear in the time complex-
ity analysis of Shahid et. al., paper). Notice that, the decoder is working based on
a prediction of unit by unit, and in most cases, one prediction unit is not sufficient
to obtain a plaintext vector of 128 encryptable bits. Therefore, more memory and
more delay are needed.

3. The number of encryptable bits in Shahid et. al., method is smaller than the num-
ber of encryptable bits that are obtianed in our proposed work (see algorithm 12
in chapter 6). In addition, their method does not compatible with the last HEVC
standard.

5.5 Conclusion and discussion
In this chapter, a state of the art of video encryption and compression schemes is briefly
introduced, to help researcher in cryptography to understand the critical and important
properties of the video encryption standard.
Encryption and compression should be designed jointly to make sure that the encryption
solution is compatible with any standard video decoder. In the last video standard (the
HEVC) not all parameters are encryptable (in terms of format compliant). For instance,
in the HEVC, three MPMs are defined instead of one MPM in the AVC. This difference
has an important for instance for encryption systems previously defined for the AVC, that
will be no longer compliant with the HEVC. Notice that, the encryption of some HEVC
parameters is format compliant but they affect the compression ratio and the bit-rate, so
the choosing of the HEVC parameters for encryption process depends on the target appli-
cation.
Finally, to the best of our knowledge, there is no published work to identify the encrypt-
able bin-string of the HEVC and of its scalable extension SHVC. Moreover, there is no
published work in selective encryption algorithm for the HEVC or the SHVC in real-time
applications.

134

6
Third Contribution: Selective
encryption algorithms for Video

In this chapter, two fast and secure selective chaos-based crypto-compression systems are
realized to encrypt the HEVC and its scalable version (SHVC). In the first section 6.1, we
propose a new algorithm to identify the encryptable bits in the bin-string of the HEVC
and the SHVC. Most of the encryption process is performed at the CABAC bin string
level and it preserves all SHVC functionalities.
In the second section 6.2, the Region Of Interest (ROI) of the HEVC is encrypted based
on the tile concept. The encryption is achieved at the bin-string level by encrypting all
HEVC syntax elements within the ROI tiles, or by using a selective encryption of the ROI
tiles under constant bit rate and format compliant requirements.

In fact, the design process of the video encryption algorithms should be compatible
with any standard decoder and it should be fast to meet the real time application at the
decoder side. Therefore, the most important requirements that should be taken into con-
sideration during the designing process of any selective video encryption algorithms are:

1. Format Compliance: the proposed selective encryption algorithm should not violate
the decoder, i.e., the encrypted video bit-stream must remain compliant under the
standards of the video decoder.

2. Secure and fast encryption (low delay and low complexity): the proposed selective
encryption should be secure and not increase the complexity or introduce addi-
tional delay to the original execution time of the real time encoding and decoding
processes without encryption.

3. Constant bit-rate or at least no significant increasing of the compression ratio: in
optimal video encryption, the encryption algorithm should not affect the original
bit-rate. Otherwise, the increasing of the compression ratio should be small as
possible.

4. Maintain the scalability features of the video.

135

6.1 Selective video encryption based on chaos system for
SHVC

SHVC is the scalable extension of the HEVC standard. SHVC extension enables spatial,
temporal, quality (SNR); bitdepth and color ghamut scalability. All defined technolo-
gies and techniques in the HEVC standard are also used in the SHVC: quadtree-based
block partitioning, large transforms and prediction blocks, accurate intra/inter predictions,
in-loop sample adaptive offset filter, highly adaptive entropy coding, CABAC binariza-
tion [137] and many more. Moreover, the HEVC standard uses the concept of dQP to
adapt the QP value at the coding unit level for visual quality optimization and rate con-
trol. The SHVC extension encodes the original video in several layers corresponding to
different spatial and quality representations of the video. The SHVC extension is de-
fined to provide spatial, fidelity, bit depth and color scalability with a simple and efficient
coding architecture [136, 23]. SHVC extension adopts an inter-layer prediction to take

Downsampling

Upsampling

& scaling MV

Entropy

coding

BL bitstream

EL bitstream

Original video SHVC EL encoder

 HEVC BL encoder

T/Q

T /QLoop filter

MC/Inter-layer

prediction

Picture

buffer

Intra

prediction

Entropy

coding
T/Q

T /QLoop filter

MC/Inter-layer

prediction

Picture

buffer

Intra

prediction

-1 -1

-1 -1

SHVC

bitstream

HD

4K

Figure 6.1: Block diagram of the SHVC encoder encoding two spatial scalability layers

advantage of spatial correlation and improve the rate-distortion performance compared to
independently encoding of the layers. The SHVC encoder consists of L layers HEVC
encoders, (one encoder by layer): one Base Layer (BL) and L − 1 Enhancement Layers
(EL). In the case of spatial scalability, the BL HEVC encoder encodes a down-sampled
version of the original video and feeds the first EL encoder with the decoded picture and
its MVs. The enhancement layer encoder encodes a higher resolution video with using the
decoded picture from lower layer as an additional reference picture. The inter-layer refer-
ence picture is up-sampled and its MVs up-scaled to match with the resolution of the EL
being decoded. Figure 6.1 shows an example of the SHVC encoder encoding two layers
in spatial scalability configuration. In the case of SNR scalability, the encoding process
remains unchanged except that the picture used for inter-layer prediction is used without
being up-sampled and its MVs up-scaled. The binary arithmetic coder can be performed
either by an estimated probability of a syntax element (context coded) or by considering
equal probability of 0.5 (bypass coded). The three main functions of the CABAC at each
SHVC layer are illustrated in Figure 5.8. The CABAC engine at each SHVC layer is
initialized at the start of each frame and then the frame of each layer is encapsulated in

136

independent slice. The CABAC arithmetic coder in SHVC is similar to the one in the
HEVC which is described in the previous chapter (see section 5.3.5). The proposed selec-
tive encryption algorithm is implemented using a chaos-based stream cipher (see Figure
6.2). A group of sensitive SHVC parameters is selected to be used as input for this se-
lective encryption solution, the selected parameters meet the defined requirements in the
beginning of this chapter. As it has been mentioned before, the encryption solution pre-
serves all SHVC functionalities such as bit-stream extraction for mid-network adaptation
and error resilience (i.e., enable the compressed bit-stream to resist channel errors so that
the impact on the reconstructed frame is minimal).
A selective encryption scheme of SHVC is presented in this work: and it is applied on

Figure 6.2: Encryption part of Crypto-A

three different stages: In the first stage, we encrypt only the lowest SHVC layer which
is called SE-SHVC-BL, in the second one we encrypt all layers (SE-SHVC-ALL) and in
the last stage we encrypt all layers except the base one (SE-SHVC-EL). Notice that, The
encryption of the base layer (i.e., SE-SHVC-BL) will also affect the quality of the ELs
since the decoded BL picture and its MVs are used as reference for inter-layer predic-
tion at the EL encoders. Therefore, SE-SHVC-BL stage can achieve a high security level
of encryption. The SE-SHVC-All stage achieve a very high security level of encryption
as all layers are encrypted in this stage. Only end-users holding the secret key have the
ability of the higher quality of the video. A comprehensive study is performed to assess
and evaluate the performance of the proposed scheme on the three stages: different video
encryption criteria, different scalability configurations and various High Definition (HD)
video sequences.

6.1.1 Encryptable bit

The proposed encryption solution is SHVC format compliance and does not affect the
compression ratio of the SHVC encoder. Therefore, only syntax elements binarized in
fixed code are encrypted and then bypassed. The selective encryption is performed at
position 1 in the CABAC process as illustrated in Figure 5.8.
The CABAC uses EG1 code for the binarization of MV differences which are then by-
passed. Thus, the suffix part of the MV difference is safely encrypted since:

• The EG1 suffix has a fixed number of bits and encrypt them to the same number of
bits, so this operation does not impact or violate any requirements defined require-
ments in the beginning of this chapter.

• The encrypted bins MV difference change 1 to 0 or vise verse and the result is
bypassed, and so the compression ratio does not affected.

137

The sign of the MV difference is also encrypted since it is binarized in FL code with
cMax = 1 and bypassed. The absolute value of the dQP is context coded so its en-
cryption will affect its probability and so the compression ratio. We propose to encrypt
only the dQP sign which is bypassed in the SHVC. Concerning the TCs, they are bi-
narized with a combination of TRp with cRiceParam ∈ {0, 1, 2, 3, 4} and EGk codes
(k = cRiceParam+ 1), encrypted and then bypassed.
The binarization process for non-zero QTC which is called coeff_abs_level_remaining
in the JCT standard report [61], is carried out using the Truncated Rice Code with con-
text P and (if presents) the Kth Order Exp-Golomb Code. The binarization process for
the non-zero syntax element (coeff_abs_level_remaining) is described in algorithm 10.
The binarization bin strings are formulated by a concatenation of prefix bin strings and
suffix (if it is existed) bin strings.

Algorithm 10 [Binarization process for non-zero coefficient, [61]]
if this process is invoked for the first time for the current sub-block scan index i then

cLastAbsLevel = 0.
cLastRiceParam = 0

else
cLastAbsLevel = cAbsLevel.
cLastRiceParam = cRiceParam

end if

cAbsLevel = baseLevel + coeff_abs_level_remaining
if cLastAbsLevel > (3× (1 << cLastRiceParam)) then

cLastRiceParam+ +
end if
cRiceParam = Min(cLastRiceParam, 4)
cMax = 4 << cRiceParam
prefixV al = Min(cMax, coeff_abs_level_remaining)
Called Trp function for prefixV al using cMax and cRiceParam
if Binarization(prefixV al) = 1111 then

suffixV al = coeff_abs_level_remaining − cMax
Called EGK function for suffixV al using K = cRiceParam+ 1

end if

The suffix of the EGk code can be safely encrypted, while encrypt the TRp suffix is not
a format compliance since, it affects the cRiceParam parameter value and consequently
the compression ratio.
A proposed algorithm is introduced to accurately determine the bins of the TRp suffix that
can be encrypted without changing/updating the value of the cRiceParam. The proposed
algorithm is tested and evaluated to be sure that the defined bins are safe to encrypt while
preserving the defined requirements. The cRiceParam parameter value is updated after
the binarization of each TC depending on its absolute value cAbsLevel, based on the
following algorithm.

where cRiceParam is initialized to 0 at the start of each transform sub-block [1].
The absolute value of the QTC (which is here cAbsLevel) is composed of the base
level named baseLevel plus the remaining part of the QTC named Coef (i.e., Coef =
cAbsLevel−baseLevel). The value of the baseLevel is computed depending on the value

138

Algorithm 11 [Update the cRiceParam parameter in TRp code]
if (cAbsLevel > 3× 2cRiceParam) then

cRiceParam = min(cRiceParam+ 1, 4)
end if

cAbsLevel and the position of the QTC in the transform sub-block where baseLevel ∈
{1, 2, 3} before applying the previous equation. The base level value is first signaled in
the bit-stream with a specific syntax elements and then only Coef different from 0 is bi-
narized in TRp and EGk codes.
We propose Algorithm 12 to identify the bit positions (from the least significant bin) of
the encryptable bins in the TRp suffix. This algorithm is compatible with all encoder
versions of the HEVC standard. In general, the original and the encrypted QTC, both
should be less than the threshold (i.e., 3 × 2cRiceParam) or both should be more than
the threshold.
In the case of base level equals to 1, the whole suffix of the binarized QTC can be en-
crypted since the Coef value plus 1 (the baseLevel here is 1) never exceeds the threshold
to update the cRiceParam for all possible suffix values. Indeed
3 × 2cRiceParam − baselevel gives the maximum possible suffix of the cAbsLevel value
(see tables 1-5 of appendix Appendix 2). The cRiceParam parameter (see algorithm
11) is never updated in case of the baseLevel is 1 since the encrypted Coef plus 1 is
≤ 3 × 2cRiceParam. The following examples are given to illustrate that when the base-
Level is 1 then the whole suffix part of the QTC is encrypted safely, the binarization of
the QTC is based on the algorithm 10 using TRp and EGK binarization methods.
Example6.1: Assume that cAbsLevel = 6, cRiceParam = 1 and baselevel = 1 (note
that the threshold in this case is 6), then the binary code-word of 6 is 1101 (see line 6 of
Table 1 in the appendix 2) with one bit as suffix, so the possible encryption of the suffix bit
is 1 or 0, and consequently binary code-word are:{1101 or 1100}. As the both encrypted
values less than the threshold there is no update on the cRiceParam. The same producer
can be applied for cAbsLevel = {1, 2, 3, 4, 5}.
Now under the same previous parameter but with cAbsLevel = 7, then the binary code-
word of 7 is 11100 (see line 7 of Table 1 in the appendix 2) with one bit as suffix, so
the possible encryption of the suffix bit is 1 or 0, and consequently binary code-word
are:{11100 or 11101}. As the both encrypted values more than the threshold there is no
update on the cRiceParam. The same producer can be applied for cAbsLevel > 7.
The same derivation of Example6.1 can be used when the cRiceParam is 2, 3 or 4.

In the following we discuss the encryption configurations provided in Table 6.1 for
base level different from 1. Table 6.1 provides the encryptable bins in the suffix of the TC
binarized in TRp code with cRiceParam = 3. The threshold computed by Algorithm 11
to update the parameter cRiceParam = 3 is equal to 24 (i.e., 3 × 2cRiceParam). When
the Coef value is less than 16 or greater than 23 the three bins of the suffix can be safely
encrypted since, in the first case (Coef less than 16) then the encryption is less less than
16 which is less than the threshold, while in the second case (Coef more than 23), then
the encryption is more than 23 which is more than the threshold.
When the Coef value is equal or bigger than 16 and less than 20, only the first two bins
of the suffix can be encrypted for the baseLevel ∈ {2, 3}. Because encrypting the third
bin (the not bold one) can increase the cABsLevel to be greater than the threshold which
means the cRiceParam parameter is updated in this case, while the non encrypted value

139

Algorithm 12 [Encryptable bins in the TRp suffix of TCs]
if (baseLevel == 1) then

The whole suffix is encryptable.
else if (cRiceParam == 1) then

if (baseLevel == 2 AND (Coef == 4 OR Coef == 5)) then
No encryption.

else
The whole suffix is encryptable.

end if
else if (cRiceParam == 2) then

if (Coef ≤ 7 OR Coef ≥ 12) then
The whole suffix is encryptable.

else if (baseLevel == 2 AND (Coef == 10 OR Coef == 11)) then
No encryption.

else
The first bin of the suffix is encryptable.

end if
else if (cRiceParam == 3) then

if (Coef ≤ 15 OR Coef ≥ 24) then
The whole suffix is encryptable.

else if (Coef ≤ 19) then
The first two bins of the suffix are encryptable.

else if (baseLevel == 2 AND (Coef == 22 OR Coef == 23)) then
No encryption.

else
The first bin of the suffix is encryptable.

end if
else if (cRiceParam == 4) then

if (Coef ≤ 31 OR Coef ≥ 48) then
The whole suffix is encryptable.

else if (Coef ≤ 39) then
The first three bins of the suffix are encryptable.

else if (Coef ≤ 43) then
The first two bins of the suffix are encryptable.

else if (baseLevel == 2 AND (Coef == 46
OR Coef == 47)) then

No encryption.
else

The first bin of the suffix is encryptable.
end if

end if

140

Table 6.1: Encryptible bins in bold font of the TC suffix binarized in TRp code with
cRiceParam = 3 and cABsLevel=baseLevel+Coef

Coef

baseLevel

Preffix Suffix2 3

cAbsLevel

14 16 17 10 110

15 17 18 10 111

16 18 19 110 000

17 19 20 110 001

18 20 21 110 010

19 21 22 110 011

20 22 23 110 100

21 23 24 110 101

22 24 - 110 110

22 - 25 110 110

23 25 - 110 111

23 - 26 110 111

24 26 27 1110 000

141

cABsLevel is less than the threshold (see Table 3 in appendix 2). As an example, assumes
the binary code-word of the original cABsLevel is 110001 which is 19 or 20 based on
the baseLevel = 2 or = 3. The suffix consists of the last three bits, now assumes that
the encryption of the last three bits is 111, then the encrypted cABsLevel is 25 or 26 (the
both are bigger than threshold which is 24), which means, the both encrypted cABsLevel
update the cRiceParam while the original cABsLevel (less than the threshold) does not
update the cRiceParam.
In case of the Coef is 20 or 21, only the first bit (LSB) is safely encryptable. The possible
encryption of Coef = 20 is 20 or 21 and the possible encryption of the Coef = 21 is
also 20 or 21. To justify the restriction (only one encryptable bit) on the encryption
of Coef = 20 or Coef = 21, let us consider the suffix part [100,101] of each one
respectively. We have three possible encryption scenario:

• Encrypt one bit (the LSB one), this is a safe encryption since, the both cABsLevel
and the encrypted cABsLevel are less than the threshold.

• Encrypt 2 bits, the possible encryption of the suffix term is [100,101,110,111], then
as the last term (111) gives an encrypted cABsLevel = 25 which is bigger than 24
consequently, this scenario of encryption is rejected.

• Encrypt 3 bits, this scenario is rejected, because scenario two is is included in it.

In the case of Coef value is equal to 22 or 23 with base level equals to 2, the two suffixes
can not be encrypted since, changing one bin in the suffix producesa cABsLevel on the
other side of the threshold.
Algorithm 12 enables to encrypt in a format compliance all possible bins of the suffix of
the TCs binarized in TRp code, which maximize the number of the encryptable bits.

Table 6.2: Encrypted syntax elements in the proposed SHVC selective encryption solu-
tion, all theses syntax elements are bypass coded

Syntax elements Binarization Encrypted part

MV dif. EG1 Suffix

MV dif. sign FL 1 bin

TCs TRp and EGk
EGk suffix and TRp

suffix as in Alg. 12

TC sign FL 1 bin

dQP sign FL 1 bin

Finally, the sign of the TC is encryptable. Table 6.2 summarizes the encryptable
parameters in the proposed selective encryption solution of the SHVC.

6.1.2 Chaotic encryption system
The principle of the chaotic encryption/decryption stream cipher system is illustrated in
Figure 6.3. The encryption process is carried-out, syntax element by syntax element using
a simple xor and addition operations.

142

(a) Encryption process

(b) Decryption process

Figure 6.3: Chaos-based video encryption/decryption stream cipher

143

ci = pi ⊕ (xi + ci−1) (6.1)

Where pi is a vector of the encryptable bins which is a part of the syntax element, ci−1
is a vector of the encrypted bins of the previous syntax element, and xi is the generated
bits (keystream) from the chaotic generator described in chapter 3, section 3.1.2. The first
encrypted value (c0) is computed as follows:

c0 = p0 ⊕ (x0 + IV) (6.2)

with IV is an a Initial Vector of 32 bit size (the IV size is justified bellow).
The confusion effect is obtained by mixing the plain vector pi with the key stream, while
the diffusion effect is obtained by using the previous ciphered value ci−1.
At the decoder side, the decryption is performed as follows:

pi = ci ⊕ (xi + ci−1) (6.3)

with p0 = c0 ⊕ (x0 + IV).

6.1.3 Synchronization problem
Synchronization between the encoder and the decoder is a challenging issue when the
selective encryption algorithm is used with a stream cipher system. Moreover, the en-
cryption must be robust to packet losses (i.e., enable re-synchronization of the decryption
even after packet loss occurs in the network). Therefore, the joint compression/encryption
system should be carefully designed to enable a secure encryption while preserving all
SHVC video features including sub-stream extraction and error resilience; and also with
introducing a minimum bitrate overhead.
To preserve all SHVC functionalities, the dependency of the chaotic generator will follow
the SHVC coding dependency, including temporal dependency (inter prediction) between
frames of the same layer and dependency between SHVC layers (inter-layer prediction).
We consider one independent version of the chaotic generator for each SHVC layer, where
each version will generate the keystream (xi of the equation 6.1) used to encrypt the syn-
tax elements of the corresponding SHVC layer. This enables an independent encryption
and decryption of the L SHVC layers. L different secret keys must be shared between
the encoder and the decoder to initialize the L versions chaotic generator. The end-to-end
transmission of the secret key is out of the scope of this work and can be carried-out with
any usual method (a symmetric algorithms and quantum cryptography) . Each chaotic
generator is initialized with the same secret key and a new IV at each new Clean Ran-
dom Access (CRA) frame [126]. This enables a safe sub-stream extraction with a correct
decryption of the BL and the corresponding ELs, even when previous frames are not ex-
tracted and decoded. The IV is generated by a pseudo random generator of 32 bits, the
maximum size of one syntax element binstring in the HEVC standard. The pseudo ran-
dom IV is encrypted with AES encryption algorithm in block cipher mode and then is
inserted in the SHVC bit-stream as Supplemental Enhancement Information (SEI) at the
start of each CRA frame of the corresponding layer. Figure 6.4 illustrates the structure of
the encrypted SHVC bit-stream with two layers using SE-SHVC-All encryption scheme.
The Video Parameter Set (VPS) header contains information related to the whole video
then, the Sequence Parameter Set (SPS) and Picture Parameter Set (PPS) headers con-
taining information of the BL are signaled. The SEI message containing the IV of the

144

VPS SPS PPS SEI BL SPS PPS EL

BL ELBL EL

Video headers

Frame 1

Frame n-1 Frame n

Encrypted data

SEI

BL

Figure 6.4: Structure of the encrypted SHVC bit-stream with two layers using SE-SHVC-
All encryption scheme

first BL frame is inserted before the BL slice. The SPS and PPS headers of the EL are
signaled before the SEI message containing the IV of the second chaotic generator then
followed by the first EL slice. The encrypted data at both the BL and EL slices in the
SE-SHVC-All stage is highlighted by red segments, referring to the selective encryption.
Therefore, the proposed selective encryption scheme does not encrypt the video headers
including slice headers, information usually used for mid-network adaptation. The SEI
messages containing the IV of 32 bits introduces rate distortion overhead. However, this
overhead remains very low since the SEI are inserted only before CRA frames and the
size of this SEI message is much lower than the size of the BL plus EL slices.

6.1.4 Experimental configuration
The proposed encryption scheme is implemented in the Scalable Reference software
Model (SHM) encoder version 4.1 [51]. The decryption algorithm is implemented under
the optimized 1 SHVC decoder OpenHEVC [50]. This allows to assess the complexity
overhead of the decryption process in the context of the real time SHVC decoder. We
consider the common SHVC test conditions [111]. The configuration of the test video
sequences is provided in Table 6.3. These video sequences are encoded in low delay P
configuration (I frame followed by P frames), with two layers (L = 2) and three scalabil-
ity configurations: two spatial configurations with ratios 2x, 1.5x and one fidelity (SNR)
configuration. We consider three QP configurations: EL QP is QPEL ∈ {22, 26, 34} and
the corresponding BL QP which is equal to the QPEL in spatial scalability configurations
and QPBL ∈ {26, 30, 38} in SNR scalability. We use both Peak Signal to Noise Ration
(PSNR) and the Structural SIMilarity (SSIM) criteria to assess the quality of the decoded
of the correct and incorrect decryption of the videos.

6.1.5 Objective quality and Encryptable Bit (EB)
Tables (6.4-6.6) present the average performance in terms of PSNR of the Y component,
SSIM and EB respectively, using the proposed encryption scheme of the three stages, for

1Optimized software refers in this work to a code-source written in Single Instruction Multiple Data
(SIMD) operations.

145

Table 6.3: Video sequences considered in the experiments

Class Sequences Resolution Frame duration

rate (Hz) (second)

B

Kimono

1920x1080

24 10

ParkScene 24 10

Cactus 50 10

BasketBallDrive 50 10

BQTerrace 60 10

A
Traffic

2560x1600
30 5

PeopleOnStreet 30 5

video classes A and B at one particular EL QP configuration (QPEL=22). The encryp-
tion of the BL of both stages SE-SHVC-BL and SE-SHVC-All, encrypting only the BL
and both layers respectively, drastically decrease the objective quality of the video se-
quences. Indeed, the obtained average PSNR Y values are below 10 dB and their average
SSIM values are below 0.2 in all scalability configurations. The encryption scheme SE-
SHVC-BL considerably decreases the objective quality of both layers since the inter-layer
prediction used in the SHVC extension propagates errors that resulted from the encrypted
information of the base layer.

Table 6.4: Video quality PSNR Y of the proposed SHVC encryption scheme of the three
stages

Class Scalability QPBL-QPEL No Enc
BL

PSNR

ALL

PSNR

EL

PSNR

A

SNR 26-22 41.12 8.28 8.25 23.69

2X 22-22 41.3 9.04 8.96 17.72

HEVC .-22 41.25 - - 8.55

B

SNR 26-22 39.54 9.18 9.13 25.77

2X
22-22

39.6 9.82 9.66 18.65

1.5X 39.57 9.11 9.03 21.97

HEVC .-22 39.6 - - 9.29

In fact, the EL decoder uses reconstructed samples of the BL picture as reference for
the inter-layer prediction and also uses the encrypted BL MVs in the inter layer merge

146

Table 6.5: Video quality (SSIM) of the proposed SHVC encryption scheme of the three
stages

Class Scalability QPBL-QPEL No Enc
BL

SSIM

ALL

SSIM

EL

SSIM

A

SNR 26-22 0.95 0.16 0.13 0.69

2X 22-22 0.95 0.14 0.1 0.48

HEVC .-22 0.95 - - 0.1

B

SNR 26-22 0.91 0.18 0.15 0.69

2X
22-22

0.91 0.19 0.14 0.42

1.5X 0.91 0.18 0.15 0.6

HEVC .-22 0.91 - - 0.14

Table 6.6: Video quality (EB) of the proposed SHVC encryption scheme of the three
stages

Class Scalability QPBL-QPEL No Enc
BL

PSNR

ALL

PSNR

EL

ES

A

SNR 26-22 0 7.27 15.06 7.79

2X 22-22 0 5.62 16.61 10.98

HEVC .-22 0 - - 17.83

B

SNR 26-22 0 6.23 15.72 9.49

2X
22-22

0 4.11 17 12.89

1.5X 0 6.31 16.41 10.1

HEVC .-22 0 - - 18.27

147

mode2. We can also notice that the SE-SHVC-All encryption scheme enables to further
decrease the objective quality of the SHVC video by 0.1 dB to 0.2 dB with respect to the
SE-HEVC-BL encryption scheme.
The SE-SHVC-EL encryption scheme (encrypting only the EL) slightly decreases the
objective quality of the EL video. This is because the most part of the information is pre-
dicted from the clear BL while only details (difference between BL and EL) of the video
are encoded and encrypted at the EL.
The EB of the SE-SHVC-BL remains in average less than 8% of the whole SHVC video
bit-stream including BL and EL. This low ES is obtained thanks to the selective encryp-
tion and the proposed algorithm 12, where only the most sensitive syntax elements are
encrypted and also because of the size of the BL bit-stream which is lower than the size
of the non-encrypted EL, particularly in spatial scalability configurations. The EB in the
SE-HEVC-EL stage is around 11% of the whole SHVC video bit-stream and encryption
of both layers with SE-SHVC-All stage increases the EB to 16% in average. The increas-
ing in the EB (from 8% to 11% to 16%) introduces an extra complexity regarding the
brute force attack.
The PSNR Y and the SSIM performance of the three considered scheme in all scalability
configurations is provided in Table 6.7 for the 1920 × 1080p50 Cactus video sequence
at different QP configurations. We can notice, that the proposed encryption scheme of
the three stages decreases the objective quality of the video to the same low quality level,
whatever the QP values and the corresponding initial quality of the video.

Table 6.8, presents the EB of the same parameter that used in the previous Table(6.7).
We observe that, the EB is slightly decreased with high QP values in SE-SHVC-All
encryption scheme since less syntax elements are present at low bit-rate configuration.
Moreover, in the SE-SHVC-BL and SE-SHVC-EL encryption stages, the EB depends,
not only on the QP but also on the scalability configuration which changes the resolution
of the BL and the correlation degree between the two layers (related to the video sequence,
the scalability configuration and the QP used at each layer). Tables (6.9-6.10) show the
BL and the EL PSNR of the three color components (Y, U and V) of the 2560× 1600p30
Traffic video sequence, encrypted with the SE-SHVC-BL encryption stage at different
scalability and QP configurations. Table6.10 shows that the SE-SHVC-BL encryption
stage decreases the PSNR of both layers to the same PSNR value in different QP and
scalability configurations. The PSNR of the BL and EL is decreased to around 8.5 dB for
luminance Y component and 13 dB and 15 dB for U and V color components, respec-
tively.

Table 6.11 gives the contributed of the EB of each SHVC syntax elements for the
three stages of the Traffic video sequence in two QP configurations. for high and low bit
rate configurations, the TC sign represents the most encrypted syntax element with more
than 85% and 73% in the two cases of the bit rate configurations for the SE-SHVC-All
encryption scheme.

2Merge mode in the SHVC inter-layer prediction uses the MVs from the BL for motion compensation.

148

Table 6.7: Video quality of the three proposed SHVC encryption schemes for the 1080p50
Cactus video sequence

QPBL-QPEL Sca.
No encryption SE-SHVC-BL SE-SHVC-All SE-SHVC-EL

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

26-22 SNR 38.65 0.9 8.69 0.19 8.65 0.16 24.68 0.7

22-22
2x 38.68 0.9 8.72 0.2 8.63 0.14 17.5 0.47

1.5x 38.66 0.9 9.27 0.21 9.17 0.16 20.25 0.6

.-22 HEVC 38.68 0.9 - - - - 9.04 0.14

30-26 SNR 37.09 0.87 8.78 0.25 8.73 0.21 23.25 0.66

26-26
2x 37.16 0.88 8.99 0.27 8.83 0.18 17.79 0.49

1.5x 37.10 0.88 8.68 0.2 8.67 0.17 21.76 0.64

.-26 HEVC 37.15 0.88 - - - - 8.81 0.2

38-34 SNR 33.66 0.82 7.75 0.29 7.75 0.27 24.51 0.69

34-34
2x 33.78 0.82 8.28 0.23 8.28 0.2 19.73 0.55

1.5x 33.66 0.82 9.61 0.25 9.59 0.24 22.97 0.66

.-34 HEVC 33.92 0.83 - - - - 8.31 0.26

149

Table 6.8: Encryptable bit of the proposed SHVC encryption scheme for the 1080p50
Cactus video sequence

QPBL-QPEL Scalability SE-SHVC-BL SE-SHVC-All SE-SHVC-EL

26-22 SNR 4.97 14.99 10

22-22
2x 3.38 16.39 13.01

1.5x 5.23 15.6 10.37

.-22 HEVC - - 16.91

30-26 SNR 6.86 14.16 7.3

26-26
2x 4.92 15.61 10.69

1.5x 7.28 14.64 7.36

.-26 HEVC - - 16.66

38-34 SNR 6.66 12.41 5.74

34-34
2x 4.69 13.63 8.93

1.5x 6.69 12.58 5.61

.-34 HEVC - - 14.69

Table 6.9: BL PSNR of the Traffic video sequence in different scalability and QP con-
figurations: SE-SHVC-BL encryption scheme

QPBL-QPEL Scalability

BL PSNR (dB)

No encryption SE-SHVC-BL

Y U V Y U V

26-22 SNR 39.46 39.98 42.45 8.29 12.78 14.12

22-22 2x 40.77 42.42 44.25 8.78 13.96 14.42

.-22 HEVC - - - - - -

30-26 SNR 37.37 38.87 41.3 8.96 12.36 13.7

26-26 2x 38.04 40.55 42.51 8.46 15.68 17.15

.-26 HEVC - - - - - -

38-34 SNR 33.06 36.92 39.28 8.36 14.52 20.29

34-34 2x 32.98 37.46 39.76 9.11 16.36 18.11

.-34 HEVC - - - - - -

150

Table 6.10: EL PSNR of the Traffic video sequence in different scalability and QP
configurations:SE-SHVC-BL encryption scheme

QPBL-QPEL Scalability

EL PSNR (dB)

No encryption SE-SHVC-BL

Y U V Y U V

26-22 SNR 41.60 41.46 43.86 8.08 13.53 14.62

22-22 2x 41.67 41.50 43.96 9.44 12.49 14.61

.-22 HEVC 41.69 41.52 44.05 8.39 13.19 14.66

30-26 SNR 39.31 39.85 42.24 8.40 14.01 19.92

26-26 2x 39.41 39.91 42.32 9.21 16.97 17.54

.-26 HEVC 39.46 39.98 42.45 8.29 12.78 14.12

38-34 SNR 34.96 37.47 39.83 8.40 14.01 19.92

34-34 2x 35.06 37.50 39.84 8.84 14.03 14.83

.-34 HEVC 35.23 37.66 40.00 8.08 16.41 19.68

Table 6.11: Repartition of the encrypted SHVC syntax elements in the proposed scheme
for Traffic video sequence

Syntax element QPEL
SE-SHVC-BL SE-SHVC-All SE-SHVC-EL

SNR 2x SNR 2x SNR 2x HEVC

MV diff.

22

2 0.68 3.15 2.88 1.15 2.2 3.22

MV diff. sign 3.45 1.75 6.61 6.91 3.15 5.1 6.36

TCs 3.66 3.01 3.67 3.4 0.01 0.38 7.39

TC sign 34.53 24.17 85.74 86.28 51.2 62.06 82.52

dQP sign 0.33 0.11 0.81 0.55 0.48 0.44 0.49

Sum 43.98 29.73 100 100 56.01 70.26 100

Bitrate (Mbit/s) 12.6 9.4 28.66 31.63 16.05 22.22 29.03

MV diff.

34

5.67 2.73 9.59 9.27 3.91 6.53 7.62

MV diff. sign 5.94 4.33 12.06 13.48 6.11 9.14 9.37

TCs 2.94 1.76 2.94 1.79 0 0.02 6.39

TC sign 44.89 32.75 73.56 74.05 28.66 41.3 75.53

dQP sign 0.86 0.31 1.83 1.39 0.96 1.07 1.07

Sum 60.32 41.90 100 100 39.67 58.09 100

Bitrate (Mbit/s) 1.8 1.25 2.99 3 1.18 1.74 3.28
151

The proportion of the TC sign is higher than the TC, since the most part of the TC
values x are different from zero and lower than the base level (baseLevel) which are not
binarized (i.e., remaining part Coef is equal to 0) while their sign is signaled. We can
also notice that the proportion of the MVs difference sign and the MVs difference are
slightly increased at low bit rate configuration. The EB of the encryption scheme for
SE-SHVC-BL and SE-SHVC-EL shows that the scalability configuration impacts the ES
re-partition, mostly caused by the resolution of the BL and the correlation between these
two layers. Finally, the dQP sign represents less than 1% and 2% of the encrypted syntax
elements in SE-SHVC-All scheme at high and low bit rate configurations, respectively.

6.1.6 Visual quality

Figure 6.5 shows the visual quality of the frame #9 of BasketballDrive video sequence. It
is encrypted by the proposed scheme for the BL and the EL. Figure 6.5(a) shows the effect

(a) BL PSNR Y = 8.97 dB (b) EL PSNR Y = 8.98 dB

(c) BL PSNR Y = 8.97 dB (d) EL PSNR Y = 8.88 dB

(e) BL PSNR Y = 39.35 dB (f) EL PSNR Y= 17.59 dB

Figure 6.5: Visual quality of frame #9 of the BasketballDrive video sequence in SNR
scalability configuration (a) (b) SE-SHVC-BL, (c) (d) SE-SHVC-ALL and (e) (f) SE-
SHVC-EL)

152

of applying the encryption scheme (SE-SHVC-BL) on the base layer, while Figure 6.5(b)
shows the effect of applying the same encryption scheme (SE-SHVC-BL) on the en-
hancement layer. Figure 6.5(c) shows the effect of applying the encryption scheme (SE-
SHVC-ALL) on the base layer, while Figure 6.5(d) shows the effect of applying the same
encryption scheme (SE-SHVC-ALL) on the enhancement layer. Figure 6.5(e) shows the
effect of applying the encryption scheme (SE-SHVC-EL) on the base layer, while Fig-
ure 6.5(f) shows the effect of applying the same encryption scheme (SE-SHVC-EL) on
the enhancement layer. It is clear that, applying the encryption scheme (SE-SHVC-EL)
does not affect the base layer (see Figure 6.5(f)) and it remains without encryption.
We can notice that SE-SHVC-BL scheme encrypts only the BL which affects the visual
quality of the EL. The inter-layer prediction using the decoded BL picture and its MVs
propagates the errors to the EL. However, SE-SHVC-EL scheme encrypts only the EL,
while the BL remains clear and the quality of the EL is slightly decreased compared to
the BL. This is because the most part of information is predicted from the base layer and
only details (encrypted data) are encoded at the level of the EL. We can notice that the
proposed SE-SHVC-EL encryption scheme leads to a perceptual (transparent) encryption
solution by decreasing the visual quality of EL below the quality of the BL while the EL
video is still recognized. However, the SE-SHVC-BL encrypting scheme enables a more
secure encryption solution by drastically decreasing the visual quality of all layers. Ad-
ditional analysis on security parameters of these proposed selective encryption scheme of
the three stages are investigated in the next paragraph.

153

6.1.7 Security analysis

The evaluation process of the selective encryption is a little bit different from the evalua-
tion process of the standard encryption algorithms. Normally, the expected security level
of the stream selective encryption algorithm is less than the expected security level of the
full stream encryption algorithms (and also, it is less than block encryption algorithm).
In this section different types of attacks and security parameters are used to evaluate the
robustness of the proposed stream selective encryption scheme.

6.1.7.1 Encryption Quality

The difference between the frequency of occurrence for each byte with and without en-
cryption is called Encryption Quality (EQ), which is defined in section 2.2.7 of chapter 2.
Based on the equation (2.20), we calculate the maximum EQ value for a frame of Kimono
and PeopleOnStreet video sequences which are equal to 16136.7 and 31875, respectively
(all frames for each video sequence have the same maximum EQ) . We can notice from Ta-
ble 6.12 that SE-SHVC-BL and SE-SHVC-All reach in average EQ value around the half
of the maximum EQ value in all scalability configurations for the both video sequences.
However, the SE-SHVC-EL gives low EQ value, that corresponds to the perceptual video
encryption target. In Figure 6.6, we give the curves of the Cumulative Distribution Func-
tion (CDF) of the EQ for Kimono (a) and PeopleOnStreet (b) video sequences. We can
notice that all frames of Kimono video sequence have an EQ higher than 38.69% of its
maximum EQ. While all frames of the PeopleOnStreet video sequence have an EQ value
higher than 41.08% of its maximum EQ.

Table 6.12: Encryption Quality forKimono andPeopleOnStreet video sequences at
QPEL=22

Video Sca. SE-SHVC- SE-SHVC- SE-SHVC-

BL All EL

K
im

on
o

SNR 9025 8996 684

2x 7651 7675 1101

1.5x 9895 9900 571

HEVC - - 9355

Pe
op

le
-

O
nS

tr
ee

t SNR 14833 14884 3355

2x 14528 14739 5161

HEVC - - 14129

154

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
X: 70.44
Y: 0.9958

Encryption Quality (EQ)−The scale is 1:161.367

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

X: 55.71
Y: 0.4991

X: 38.69
Y: 0.004167

X:70.44
Y:0.9999

X:55.71
Y:0.4999

X:38.69
Y:0.0004

(a) Kimono

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
X: 57.69
Y: 0.9933

Encryption Quality (EQ)−The scale is 1:318.75

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

X: 46.68
Y: 0.4998

X: 41.08
Y: 0.0006669

X:57.69
Y:0.9999

X:46.68
Y:0.4999

X:41.08
Y:0.0006

(b) PeopleOnStreet

Figure 6.6: CDF of the EQ for Kimono and PeopleOnStreet video sequences in SNR
scalability, QPEL=22 and SE-SHVC-BL encryption scheme

155

6.1.7.2 Edge differential ratio

Edge Differential Ratio (EDR) evaluates the edges differences between the original and
the encrypted frame [141, 140]. The encryption solution is more efficient when the the
edges of the encrypted frames are not detectable. The EDR is calculated as:

EDR =

∑h−1
i=0

∑w−1
j=0 |PE(i, j)− CE(i, j)|∑h−1

i=0

∑w−1
j=0 |PE(i, j) + CE(i, j)|

(6.4)

Where PE andCE are the edge detected binary matrix for the plain-frame and the ciphered-
frame, respectively, produced by using the Laplacian of Gaussian method [53].
Table 6.13 presents the average evaluation results of the EDR for the proposed scheme of
all stages.
When the average EDR values are close to 1, means that the encryption solution of SE-
SHVC-BL and SE-SHVC-All have a high ability to hide the edges of the encrypted frames
and so a high security level is reached.
In fact, the structural information (edges...) of the encrypted frame by the SE-SHVC-BL
and SE-SHVC-All are completely hidden and becoming useless by the attacker.
Figure 6.7 shows the edges of frame #8 of Kimono video sequences. It confirms the
obtained results of Table 6.13, calculated based on the equation (6.4).

(a) Original (b) SE-SHVC-BL

(c) SE-SHVC-All (d) SE-SHVC-EL

Figure 6.7: Edges illustration of frame #8 Kimono video sequence of the proposed en-
cryption scheme with SNR scalability and QPEL=22

6.1.7.3 Key sensitivity test

The testing scenario of the key sensitivity is described in section 2.2.3 based on equa-
tions that given in section 2.2.2. As it is mentioned before, the optimal values of the

156

Table 6.13: Edge differential ratio for Kimono and PeopleOnStreet video sequences at
QPEL=22

Video Scalability SE-SHVC-BL SE-SHVC-ALL SE-SHVC-EL
K

im
on

o
SNR 0.95 0.95 0.78

2x 0.96 0.95 0.88

1.5x 0.96 0.95 0.78

HEVC - - 0.95

Pe
op

le
-

O
nS

tr
ee

t SNR 0.93 0.93 0.54

2x 0.93 0.92 0.81

HEVC - - 0.92

block encryption algorithms of the NPCR and the UACI are 99.61% and 33.46%, respec-
tively [162]. While theoretically, in the selective encryption algorithms achieving these
results is impossible.

Table 6.14: Average performance of Key sensitivity attack over all frames of Kimono
and PeopleOnStreet video sequences: SE-SHVC-BL, QPEL=22

Sca.
Kimono PeopleOnStreet

UACI NPCR UACI NPCR

SNR 31.74 97.02 35.36 98.29

2x 36.75 98.98 39.34 98.37

HEVC 34.87 98.44 36.06 97.76

The obtained values of the UACI and the NPCR given in Table 6.14 by SE-SHVC-BL
are not so far from the optimal. Moreover, the average Hamming Distance (HD) between
the two encrypted frames are 49.69 and 50.87 for Kimono and PeopleOnStreet, re-
spectively. These HD values are too close to the optimal value of 50%. All these results
indicate that the proposed chaos-based stream selective encryption is sensitive to the one
bit change in the secret key.

6.1.7.4 Histogram analysis

Figure 6.8 shows the histograms of the frame #8 of the PeopleOnStreet video sequence at
QPEL=22 in SNR scalability for the proposed selective encryption scheme of all stages: In
Figure 6.8(a), we present the histogram of the original frame; in Figures 6.8(b) and 6.8(c)
we present the histograms of the frame encrypted by SH-SHVC-BL and SE-SHVC-All,
respectively. As we can see, the previous histograms are more uniform and different
from the original one. However, the histogram given in Figure 6.8(d) representing the
encrypted frame by SH-SHVC-EL is not uniform since the total number of the encrypted

157

bits is smaller than the total number of the encrypted bits of the other stages. This result
is compatible to the transparent encryption.

(a) Original (b) SE-SHVC-BL

(c) SE-SHVC-All (d) SE-SHVC-EL

Figure 6.8: Histograms of frame #8 Kimono video sequence in the three encryption
schemes with SNR scalability and QPEL=22

6.1.7.5 Known plain-text attack

This kind of attack is described in details in chapter 2 for full encryption algorithm. When
it is used to cryptanalysis the selective encryption algorithms for video, the Known plain-
text attack is evaluated using PSNR and SSIM values over the whole frames of the tested
video. For that, we calculate the average of the PSNR and SSIM for three cases:

1. PSNR1 and SSIM1 between the original video (the not compressed video) and the
decoded video (without encryption).

2. PSNR2 and SSIM2 between the original video and the decoded hacking bit-stream,
where the hacking bit-stream consists of replacing each encrypted bit by zero.

3. PSNR3 and SSIM3 between the original video and the decoded of the encrypted
bit-stream (Tables (6.4-6.5) present the average over the both classes of the PSNR3
and SSIM3 respectively).

In Table 6.15, we present the average of PSNR1, SSIM1, PSNR2 and SSIM2 values
(using the VQMT tools from [88]) over the whole frames of Kimono and PeopleOnStreet
video sequences after replacing all encrypted bits by zeros for the BL.

158

Table 6.15: Average PSNR and SSIM for replacing encrypted bits by zero: QPEL=22,
SE-SHVC-BL

Sca. Kimono PeopleOnStreet

PSNR1 PSNR2 PSNR1 PSNR2

PSNR (dB)

SNR 41.55 7.82 40.64 9.2

2x 41.63 7.87 40.92 9.05

1.5x 41.51 8.47 - -

HEVC 41.66 8.75 40.8 9.01

SSIM1 SSIM2 SSIM1 SSIM2

SSIM

SNR 0.93 0.17 0.95 0.17

2x 0.93 0.24 0.95 0.16

1.5x 0.93 0.2 - -

HEVC 0.92 0.2 0.95 0.09

It is clear from Table 6.15, that the average of PSNR2 and SSIM2 values remain low
compared to PSNR1 and SSIM1. This results confirm the robustness of the proposed
schemes against this scenario of the known plain-text attacks.

6.1.7.6 Brute force attack

It breaks the cryptosystem by trying a large number of possible keys until the correct one is
found. In the worst case, all possible keys in the practical key space are tested [125], [108].
Encryption of MVD and residual signs was classified by [107] to be secure selective
encryption algorithms. In our proposed cryptosystem extra parameters as the sign of dQP
together with suffixes of the MVD and residuals are increasing the complexity of the brute
force attack.

6.1.7.7 Complexity analysis

In this section, we assess the computational complexity of the encryption scheme in the
context of a real time SHVC decoder. We use a computer fitted with an Intel Core i5
processor running at 2.5 GHz.
Table 6.16 presents the Decoding Time (DT) and the Complexity Overhead (CO) of the
proposed encryption scheme, and Table 6.17 presents the results obtained by the AES
algorithm in Counter (CTR) mode. The CO is defined by the difference between DT with
encryption and DT without encryption over the DT without encryption.
The both implementations are carried out using 1080p50 Cactus video sequence at differ-
ent QP configurations.

We can notice the high CO at high bitrate configuration (QPEL=22) with respect to low
bitrate configuration (QPEL=34). This is mainly caused by the encryption of more syn-
tax elements, including the complexity introduced by Algorithm 12 to safely encrypt the

159

Table 6.16: Decoding Time (DT) in second and Complexity Overhead (CO) in % of the
proposed chaos-based SE solution for the Cactus video sequence in different scalability
and QP configurations

QPBL-QPEL Scalability DT
SE-SHVC-BL SE-SHVC-All SE-SHVC-EL

Chaotic Chaotic Chaotic

DT CO% DT CO% DT CO%

26-22 SNR 19.25 19.88 3.27 20.01 3.94 19.88 3.27

22-22
2x 17.30 17.58 1.16 17.91 3.52 17.92 3.58

1.5x 18.74 19.19 2.4 19.37 3.36 19.19 2.4

.-22 HEVC 13.53 - - - - 14.24 5.2

30-26 SNR 12.19 12.57 3.11 12.32 1.06 12.35 1.31

26-26
2x 10.02 10.10 0.79 10.32 2.99 10.23 2.09

1.5x 11.35 11.73 3.34 11.71 3.17 11.59 2.11

.-26 HEVC 7.14 - - - - 7.24 1.4

38-34 SNR 7.63 7.73 1.31 7.99 4.71 7.63 0

34-34
2x 6.09 6.09 0 6.28 3.11 6.13 0.65

1.5x 7.1 7.22 1.69 7.18 1.12 7.27 2.39

.-34 HEVC 4.07 - - - - 4.13 1.47

160

Table 6.17: Decoding Time (DT) in second and Complexity Overhead (CO) in % of
the proposed SE solution for the Cactus video sequence in different scalability and QP
configurations based on AES in CRT mode

QPBL-QPEL Scalability DT
SE-SHVC-BL SE-SHVC-All SE-SHVC-EL

AES AES AES

DT CO% DT CO% DT CO%

26-22 SNR 19.25 19.71 2.38 20.02 4 19.97 3.74

22-22
2x 17.30 17.53 1.32 17.95 3.75 17.84 3.12

1.5x 18.74 19.20 2.45 19.48 3.94 19.33 3.14

.-22 HEVC 13.53 - - - - 14.06 3.9

30-26 SNR 12.19 12.28 0.73 12.38 1.55 12.67 3.93

26-26
2x 10.02 10.57 5.48 10.33 3.09 10.31 2.89

1.5x 11.35 11.79 3.87 12 5.72 11.63 2.46

.-26 HEVC 7.14 - - - - 7.27 1.82

38-34 SNR 7.63 8 4.84 7.69 0.78 7.76 1.7

34-34
2x 6.09 6.2 1.8 6.18 1.47 6.34 4.1

1.5x 7.1 7.25 2.11 7.32 3.09 7.48 5.35

.-34 HEVC 4.07 - - - - 4.18 2.7

161

TCs, which are increasing at high bitrate. The encryption scheme SE-SHVC-BL enables
the lowest CO since only syntax elements of the BL are encrypted; and more especially
in spatial scalability configurations where the resolution of the BL is lower than the EL
resolution. On the other hand, the CO using either chaotic or AES encryption systems
remains low in the context of real time SHVC decoder and varies between 0% to 5% ac-
cording to: the bitrate, the scalability configuration and the used encryption scheme. This
CO performance is obtained thanks to the low EB of the proposed selective encryption
solution where less than 17% of the whole video size is encrypted. The maximum bitrate
in Table 6.11 of the encryptable bits for the high resolution 2Kp30 Traffic video sequence
are 31.63 Mbit/s and 28.66 Mbit/s in 2x and SNR scalability configurations, respectively,
with the encryption scheme SE-SHVC-All at high bitrate (QPEL=22). These bitrates re-
main very low with respect to the Chaotic and AES generators bitrates which are equal to
823.9 Mbit/s and 888 Mbit/s 3, respectively. The low EB not only decreases the complex-
ity of the encryption/decryption (which is convenient for battery-operated devices) but
also decreases the end-to-end delay for live and real time video streaming applications.
Table 6.18 compares the SE-SHVC-BL and SE-SHVC-EL encryption schemes with the
state of the art on different video encryption criteria. The proposed schemes fulfill for-
mat compliance and constant bitrate video encryption requirements. Moreover, the pro-
posed encryption scheme is compatible with any stream cipher encryption algorithm. The
SE-SHVC-BL and SE-SHVC-EL enable secured and perceptual video encryption, re-
spectively; and can be applied on different SHVC scalability configurations: temporal,
spatial, fidelity, bit depth and color gamut. In respect to transcoding capability, the SE-
HEVC-BL scheme is robust to transcoding on all ELs while the SE-HEVC-EL encryption
scheme is robust for BL transcoding. Finally, the SE-HEVC-EL encryption scheme can
also be applied to the single layer HEVC standard corresponding to simulcast HEVC
configuration.

3This performance is obtained on a Core-i5-4300M CPU @ 2.6 GHz, using the Cryptopp [91] imple-
mentation of the AES encryption algorithm

162

Ta
bl

e
6.

18
:C

om
pa

ri
so

n
of

th
e

pr
op

os
ed

en
cr

yp
tio

n
sc

he
m

e
fo

r(
SE

-S
H

V
C

-B
L

an
d

SE
-S

H
V

C
-E

L
)w

ith
th

e
st

at
e

of
th

e
ar

t

SE
sc

he
m

es
Fo

rm
at

C
on

st
an

t
E

nc
ry

pt
io

n
E

nc
ry

pt
io

n
R

ob
us

tt
o

V
id

eo
Su

pp
or

t

co
m

pl
ia

nc
e

bi
tr

at
e

al
go

ri
th

m
do

m
ai

n
tr

an
sc

od
in

g
st

an
da

rd
sc

al
ab

ili
ty

L
ie

ta
l.

[6
7]

N
o

Y
es

L
ea

k
E

xt
ra

ct
io

n
N

A
L

N
o

H
.2

64
/S

V
C

Y
es

(S
tr

ea
m

ci
ph

er
)

C
ar

ri
llo

et
al

.[
19

]
Y

es
N

o
Ps

eu
do

ra
nd

om
Pi

xe
l

Y
es

In
de

pe
nd

en
t

R
O

I
pi

xe
lp

er
m

ut
at

io
n

V
an

et
al

.[
14

7]
Y

es
N

o
A

E
S

as
Tr

an
sf

or
m

N
o

H
E

V
C

N
o

st
re

am
ci

ph
er

Sh
ah

ed
et

al
.[

11
6]

Y
es

Y
es

A
E

S
B

in
st

ri
ng

s
N

o
H

E
V

C
N

o
(b

lo
ck

ci
ph

er
)

SE
-S

H
V

C
-B

L
Y

es
Y

es
C

ha
ot

ic
B

in
st

ri
ng

s
Y

es
fo

rE
L

s
SH

V
C

Y
es

(s
tr

ea
m

ci
ph

er
)

SE
-S

H
V

C
-E

L
Y

es
Y

es
C

ha
ot

ic
B

in
st

ri
ng

s
Y

es
fo

rB
L

H
E

V
C

&
Y

es
(s

tr
ea

m
ci

ph
er

)
SH

V
C

163

6.2 Encryption of ROI in HEVC
In this section, we investigate the protection of Region Of Interest (ROI), (privacy) for the
HEVC standard based on the tile concept. Tiles in the HEVC enable the video to be split
into independent rectangular regions. Two solutions are proposed to encrypt the tiles con-
taining the Region Of Interest (ROI). The first solution encrypts the whole bit-stream of
the ROI. The second solution enables a selective encryption for the encryptable bits (ver-
ifying constant bitrate and format compliant requirements) of the ROI tiles. The HEVC
standard was designed with a particular attention to complexity, where several steps can
be easily performed in parallel. Three high level parallel processing approaches, including
independent slice, tile, and wavefront, can be used in the HEVC to simultaneously process
multiple regions of a single picture [27]. The tile concept splits the picture into rectangu-
lar groups of CTBs, called tiles. The ROI is included in a set of Tiles (called ROI tiles)
and the background is within the rest of non ROI tiles. Tiles break the CABAC and the
intra prediction dependencies that each tile can be independently processed. Figure 6.9
illustrates a HEVC picture composed of 15 tiles (red rectangles), where each tile consists
of 9 CTBs. These tiles represent independent and contiguous regions of the HEVC frame.
Figure 6.10 illustrates the same idea composed of 4 tiles.

Figure 6.9: Tile concept in the HEVC standard composed of 15 tiles (red rectangles)

6.2.1 A brief state of the art
Usually the most important part of the video (ROI). In some special application, fast en-
cryption algorithms are required to preserve the privacy of the moving objects in the video
with a lower overhead charge. The ROI encryption can be treated in the same manner as
the video encryption in the previous chapter (i.e., is it a NEA or Selective encryption,
a format compliance encryption, a constant bit-rate encryption, a fast and a secure en-
cryption, etc). Authors in [95] proposed a selective encryption solution of ROI based on
Flexible Macroblock Ordering (FMO) concept in the H.264/AVC and chaos encryption
system. The macroblocks of each frame are mapped into two slices, one regroups mac-
roblocks within the ROI and the other slice regroups the macroblocks outside the ROI.

164

Figure 6.10: Tile concept in the HEVC standard composed of 4 tiles with ROI

Therefore, only the ROI slice is encrypted with a selective encryption solution based on
chaos system. The ROI represents human faces which are detected in the video based on
the skin color model [76].
Dufaux et al. [32] proposed a solution to hide ROI in MPEG-4 video content for privacy
protection in video surveillance. This encryption solution is carried out at the transform
domain by pseudo-randomly flipping the selected Transform Coefficient (TC) signs. To
avoid the propagation of the encryption outside of the ROI, the macroblocks using the
encrypted ROI as reference for inter prediction are rather Intra coded.
Work in [90] enables rectangular region privacy by de-identifying faces. This solution
guarantees that, face recognition software cannot reliably recognize the de-identified faces
even though if part of the facial details are preserved.
Authors in [130] investigated privacy protection in the H.264/SVC (Scalable Video Cod-
ing). This solution first detects face regions (ROI) and then encrypts these ROI in the
transform domain by scrambling the sign of the non-zero TCs at all SVC layers.

6.2.2 AES in cipher feedback mode
The AES encryption system [40] is used in cipher feedback (CFB) mode to encrypt the
HEVC syntax elements. As shown in Figure 6.11, the AES in CFB mode introduces
internal diffusion inside the cipher block encryption and external diffusion by using the
previous ciphered block as input for the encryption of the current plain block. The AES
in CFB mode enables to produce the 128 bits (Xi) which can be than used to perform the
selective encryption of the HEVC syntax element by syntax element on the fly and then
send to the Bypass coding step. However, the size of the ciphertext Ci that is required for
the encryption of the next block is 128 bits,

6.2.3 ROI encryption solutions in the HEVC
As mentioned before, we propose two solutions based on the tile concept to protect pri-
vacy in the HEVC standard. The first common step of the both solutions consists of the

165

Initialization Vector (IV)

Block cipher
encryption

Plaintext

Key

Ciphertext

Block cipher
encryption

Plaintext

Key

Ciphertext

External diffusion

(P0)

(C0)

(X0) (X1)(P1)

(C1)

Figure 6.11: AES encryption system in CFB mode

identification and tracking of the ROI in the video. This can be done in real time by any
existing algorithm such as face identification and tracking for video surveillance applica-
tions [76, 97]. The second common step uses information of ROI localization in the frame
provided by the first step to split the HEVC frame into tiles where all ROI are included in
ROI tiles and the background in separated non ROI tiles. In Figure 6.9, tiles 1, 2, 6 and 7
including human face represent the ROI tiles and the other tiles represent the background
tiles. Note that the tile repartition provided in Figure 6.9 with red edges is not optimal
in terms of coding rate-distortion performance. In fact, more efficient tile repartition can
be defined to minimize the number of tiles in the frame where all ROI and background
regions are included in a minimum number of tiles. For this example, the human face
can be represented in one ROI tile which regroups only parts of tiles 1, 2, 6, 7 and the
rest of tiles will represent the background. This repartition will provide more efficient
coding performance since it reduces the number of tiles from 15 to only 6 tiles in the new
repartition illustrated in Figure 6.9: ROI tile is highlighted in green dashed rectangle and
non ROI tiles in blue dashed rectangles.
The first proposed encryption solution, called Tile Naive Encryption - HEVC (TNE-
HEVC), encrypts all syntax elements coded in CABAC within the ROI tiles. The en-
cryption is performed at the bit-stream level while the video headers, including VPS,
SPS, PPS, and slice headers are not encrypted since they are not entropy coded with the
CABAC.
The second proposed encryption solution, called Tile Selective Encryption - HEVC (TSE-
HEVC), performs a selective encryption of ROI tiles in format compliant and at constant
bitrate. The encryption is performed at the CABAC binstring level (see Figure 5.8) by
encrypting only the most sensitive HEVC syntax elements to decrease the visual quality
of the ROI.

6.2.3.1 TSE-HEVC EB

The TSE-HEVC solution encrypts only syntax element binarized in FL code and then
bypassed. This restriction enables the TSE-HEVC solution to perform at the CABAC
binstring level constant bitrate and format compliant encryption. The proposed algorithm
(algorithm 12) is used to select the encryptable bits under the format compliance and the
constant bit-rate. The selected syntax parameter for the encryption process inside the ROI

166

are:

• MVD suffix.

• MVD sign.

• TC sign.

• TC based on algorithm 12.

6.2.3.2 MV restriction in the background tile

In the two ROI encryption solutions, the decoding of the background tiles can use some
information (inter layer prediction) of the encrypted tiles. Moreover, the encrypted MVs
can also be used by the background tiles for inter layer prediction in the HEVC merge
mode. Merge mode in the HEVC derives the MVs information from a list of spatial
neighbor and temporal candidates [137]. Therefore, when of the ROI is not correctly
decrypted, the two decoding operations can propagate the effect of the encrypted tiles to
the background tiles. In the case of merge mode, we restrict the temporal candidates of
the background tiles to be inside the background zone in the reference frame. In the case
of regular inter prediction, the MVs differences are signaled. Therefore, we restrict the
research window of the temporal candidates to be in the background tiles of the reference
frames. Note that the boundary of the research window is equal to non ROI boundaries
narrowed by 3 pixels and 1 pixel in luma and chroma components, respectively. This
enables to perform a safe interpolation process at the tiles boundaries. Finally, the in-loop
filters (deblocking and SAO) are disabled at the tiles boundaries.

6.2.3.3 Encryption process based on AES-CFB mode

In the TNE-HEVC solution, the bit-stream within the ROI tiles is encrypted block by
block (Pi of 128 bits) as follows:

Ci = Ek(Ci−1)⊕ Pi (6.5)

where C−1 = IV , Ci is the encrypted bits in the current ciphered block, Ci−1 is the
previous ciphered-block and Ek is the encryption function. The decryption at the decoder
side is achieved with XOR operation in reverse using the same encryption algorithm:

Pi = Ek(Ci−1)⊕ Ci (6.6)

cj = xj ⊕ pj (6.7)

6.2.4 Results and analysis
6.2.4.1 Experimental configuration

The HEVC reference software model version 15 (HM 15.0) is used to encode and decode
the video sequences. Encryption and decryption algorithms are integrated into the codec.
We consider three HD video sequences (Kimono, ParkScene and BQTerrace) from the
common HEVC text conditions [18]. These video sequences are coded in the low delay
P-configuration at different quantization parameters QP ∈ {22, 27, 32, 37} with enabling
the tile tools.

167

6.2.4.2 Results

Figure 6.12 shows the average Rate Distortion (RD) performance of the three video se-
quences in three coding configurations: 1, 15 and 6 tiles with MVs limitations and dis-
abling the in-loop filters across the tile edges. The RD loss of the two tiles configurations
is provided in Table 6.19 in terms of Bjontegaard’s difference (Matlab function). In the 6
tiles repartition, the RD loss, caused by these limitations, remains low and does not exceed
2.5% in the three video sequences. Figures 6.13(a) and 6.13(b) illustrate the visual quality

Figure 6.12: Rate distortion performance

of frame #1 of Kimono video sequence where the ROI is encrypted with the TNVE-HEVC
and TSE-HEVC solutions, respectively. In both solutions, the visual quality is drastically
decreased with a PSNR value of the ROI less than 11 dB, while the background region
remains clear. However, the TNE-HEVC solution is not HEVC format compliant, thus

Table 6.19: Bjontegaard’s difference of HEVC tile repartitions

Schemes 15 tiles per frame Optimal (6 tiles)

Y U V Y U V

Kimono -3.27% -3.26% -3.03% -1.49% -1.63% -1.56%

ParkScene -1.41% -2.34% -2.07% -0.51% -1.21% -1.09%

BQTerrace -1.37% -3.89% -5.09% - 0.5% -1.64% -2.54%

the encryption desynchronizes the decoder inside the ROI (the desynchronization of the
CABAC is presented in the green part of the ROI in Figure 6.13(a)). The decoder is re-
synchronized at the next not encrypted tile thanks to the access points at the non encrypted
slice header signaling tiles position in the bit-stream.

168

(a) TNE-HEVC PSNR1=10.95, PSNR2=42.07,
PSNR3= 21.15(dB)

(b) TSE-HEVC PSNR1=7.78, PSNR2=42.07,
PSNR3=18.01 (dB)

Figure 6.13: Visual quality of frame #1 in the Kimono video sequence QP = 27
(PSNR1: PSNR Y ROI, PSNR2: PSNR Y background, PSNR3: PSNR Y frame).

Table 6.20 gives the average PSNR Y and the EB of the three video sequences. The
average PSNR inside the ROI remains low for all sequences and does not exceed 11.5
dB. The EB of the TNVE-HEVC solution on average is equal to 14.28% since all syntax
elements in the ROI are encrypted while it represents on average only 2.5% in the TSE-
HEVC solution.

Finally, face recognition in the Kimono video sequence is assessed with using Princi-
pal Components Analysis (PCA) algorithm [149] based on Mahalanobis Cosine (MAH-
COS) distance using the first rank. This rank corresponds to the best match of the test
image compared to the training one. The recognition rate decreases from 68% in the
original video to 0.5% in the video encrypted with TSE-HEVC solution.

Table 6.20: EB and PSNR of the ROI encryption solutions

Schemes TNVE-HEVC TSE-HEVC PSNR2

QP=22 PSNR 1 (dB) ES (%) PSNR1 (dB) ES(%) (dB)

Kimono 9.04 9.82 10.18 2.05 41.67

ParkScene 10.91 12.7 11.27 2.02 39.81

BQTerrace 10.79 20.32 10.89 3.42 38.72

6.3 Conclusion and discussion
In the first section, we have investigated a selective video encryption based on chaotic
system in the scalable HEVC extension. A selective encryption solution is proposed to
encrypt the most sensitive syntax elements in the SHVC bit-stream at the CABAC bin
string level. This encryption solution is SHVC format compliant and does not impact the
SHVC compression ratio. The encryption is applied on the SHVC bit-stream in three dif-
ferent configurations: encryption of only the BL, encryption of all layers and encryption
of only the highest EL resulting in three encryption stages SE-SHVC-BL, SE-SHVCAll

169

and SE-SHVC-EL, respectively. The first two stages enable a high security level with
drastically decreasing the visual quality of the video, while the third stage performs per-
ceptual video encryption. The three stages preserves all SHVC functionalities including
bit-stream extraction and error resilience. This enables the untrusted milde-box to per-
form network adaptation on the bit-stream and further decrease the end-to-end delay. The
EB of SE-SHVC-BL stage remains low and does not exceed 8% of the whole SHVC bit-
stream and this stage also passes all security encryption tests. In terms of computational
complexity, the SE-SHVC-BL encryption stage introduces a low complexity overhead,
which remains lower than 3% of the whole SHVC decoding time of HD video sequences
at high bitrate.
In the second section, two encryption solutions are proposed based on the HEVC tile con-
cept and the AES algorithm in CFB mode to protect privacy in the HEVC video content.
The first solution performs encryption at the bit-stream level while the second solution
carries out format compliant encryption at the CABAC binstring level. Restrictions are
introduced in the HEVC coding process to prevent the propagation of the encryption out-
side the ROI region but at the expense of rate-distortion loss. Experimental results showed
that both solutions perform a secure protection of privacy in the HEVC video content; and
the TSE-HEVC solution has a low EB and prevents unexpected behavior of the decoder
while TNE-HEVC is not format compliant solution.

170

III
Conclusion and Future Works

171

7
Conclusion and Future Work

In this thesis, we mainly study the problem of achieving the confidentiality of transmitted
images and videos over public channels, by using chaos-based cryptosystems and joint
crypto-compression systems. These systems are designed and implemented for real-time
applications with a very high security level.
In chapter one, we introduced the context of the study, the main goals of the cryptography,
the concept of the chaos-based cryptography, the motivation of this study, and the thesis
contributions.
In chapter 2, first, we presented in a brief manner the main recent chaos-based cryptosys-
tems of the literature that have a direct relation to our contributions. Then, we intro-
duced some metrics and measurement tools, which permit to quantify the performance of
the proposed crypto and joint crypto-compression systems in terms of robustness against
known and statistical attacks, and in terms of average encryption/decryption times, en-
cryption throughput, and the needed number of cycles to encrypt/decrypt one byte.
The main contributions of the thesis are described in two parts.
In the first part (chapter 3 and chapter 4), we designed, implemented, and tested four effi-
cient chaos-based cryptosystems, defined on finite numbers, for real-time applications of
image and video transmissions. All of them are blocks ciphers and the two first cryptosys-
tems (crypto A and crypto B) are based on the substitution-permutation network (SPN).
We proposed a modified Finite Skew Tent Map (FSTM) that permitted to overcome the
problems of the classic FSTM, namely: fixed point, restriction of the key space and lim-
itation of mapping between plaintext and ciphertext and vice versa. The structure of the
proposed third cryptosystem (crypto C) is new and efficient. It is based on two chaotic
layers: a binary diffusion layer of pixels, followed by a bit-permutation layer. We pro-
posed a new formulation of the 2-D cat map that allows an efficient implementation in
C code of the permutation process. The fourth cryptosystem (chapter 4), which is faster
than the other cryptosystems with a very high security level, is implemented based on a
partial cryptanalysis that we performed for one of best chaos-based cryptosystems, re-
cently published by Zhang in 2013. In this cryptosystem, the confusion process (based
on the modified 2D-cat map) and the diffusion process (based on the modified FSTM as
a generator) are performed simultaneously in a single scan of plain-image pixels.
In chapter 5 of the second part, we have introduced the main notions of the selective en-

173

cryption of the High Efficiency Video Coding (HEVC) and its scalable version (SHVC).
Then, in chapter 6, we realized two fast and secure selective chaos-based crypto compres-
sion systems to encrypt and secure the HEVC and its scalable version SHVC. In the first
crypto-compression, we proposed a new algorithm to define the encrypt-able bit in the
bit stream of the HEVC and the SHVC. The proposed solution encrypts a set of sensi-
tive SHVC parameters with a minimum delay and complexity overheads. The encryption
process is performed at the CABAC bin string level and fulfills both constant bit rate and
format compliant video encryption requirements. It preserves all SHVC functionalities
including bit stream extraction for mid-network adaptation, error resilience, and real-time
SHVC decoder. The second proposed crypto-compression system protects the Region Of
Interest (ROI) of the HEVC based on the tile concept. It performs encryption at the bit
stream level by encrypting all HEVC syntax elements within the ROI tiles, or a selective
encryption of the ROI tiles under constant bit rate and format compliant requirements. To
avoid temporal propagation of the encryption outside the ROI boundaries caused by inter-
prediction, the motion vectors of non ROI regions are restricted inside the non encrypted
tiles in the reference frames.

Our future works will focus on:

• A prime reversible chaotic map (as FSTM) to be used as substitution and irre-
versible, i.e., to be used as generator.

• Designing a separated and selective joint encryption-compression system.

• Designing chaos-based stream ciphers.

• A joint compression and watermarking solution for the new generation of video
coding systems (HEVC, SHVC, MVHEVC and 3D-HEVC).

174

Bibliography

[1] High Efficiency Video Coding. In Rec. ITU-T H.265 and ISO/IEC 23008-2. Sap-
poro, JP, January 2013. 138

[2] Ahmed A Abd El-Latif, Xiamu Niu, and Mohamed Amin. A new image cipher in
time and frequency domains. Optics Communications, 2012. 17, 20, 60, 61, 62

[3] Ala Abu-Zahra, Zafar Shahid, Amjad Rattrout, and William Puech. Independent
protection of different layers in spatially scalable video coding. procedia computer
science, 10:240–246, 2012. 132

[4] Mohammed AbuTaha, Mousa Farajallah, Radwan Tahboub, and Mohammad Odeh.
Survey paper: cryptography is the science of information security. International
Journal of Computer Science and Security (IJCSS), 5(3):298, 2011. 15

[5] Iskender Agi and Li Gong. An empirical study of secure mpeg video transmissions.
In Network and Distributed System Security, 1996., Proceedings of the Symposium
on, pages 137–144. IEEE, 1996. 126, 128

[6] H. E H Ahmed, H. M. Kalash, and O.S.F. Allah. Encryption Efficiency Analysis
and Security Evaluation of RC6 Block Cipher for Digital Images. In International
Conference on Electrical Engineering (ICEE), pages 1–7, April 2007. 28

[7] Jinhaeng Ahn, Hiuk Jae Shim, Byeungwoo Jeon, and Inchoon Choi. Digital video
scrambling method using intra prediction mode. In Advances in Multimedia Infor-
mation Processing-PCM 2004, pages 386–393. Springer, 2005. 130

[8] A Akhshani, A Akhavan, S-C Lim, and Z Hassan. An image encryption scheme
based on quantum logistic map. Communications in Nonlinear Science and Nu-
merical Simulation, 17(12):4653–4661, 2012. 17, 20, 58, 60, 62, 98, 99, 100, 190

[9] Gonzalo Alvarez and Shujun Li. Some basic cryptographic requirements for
chaos-based cryptosystems. International Journal of Bifurcation and Chaos,
16(08):2129–2151, 2006. 24

[10] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella.
Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks,
7(3):537–568, 2009. 106

[11] Ross Anderson. Security engineering: A guide to building dependable distributed
systems. 2001, 2001. 73

175

[12] Mamoona N Asghar, Mohammed Ghanbari, Martin Fleury, and Martin J Reed.
Confidentiality of a selectively encrypted h. 264 coded video bit-stream. Journal
of Visual Communication and Image Representation, 25(2):487–498, 2014. 126

[13] M.N. Asghar, M. Ghanbari, and M.J. Reed. Sufficient encryption with codewords
and bin-strings of h.264/svc. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2012 IEEE 11th International Conference on, pages
443–450, June 2012. 131

[14] S Behnia, A Akhshani, H Mahmodi, and A Akhavan. A novel algorithm for im-
age encryption based on mixture of chaotic maps. Chaos, Solitons & Fractals,
35(2):408–419, 2008. 17, 20, 60, 62, 190

[15] Bharat Bhargava, Changgui Shi, and Sheng-Yih Wang. MPEG video encryption
algorithms. Multimedia Tools and Applications, 24(1):57–79, 2004. 17, 20, 129

[16] Gaurav Bhatnagar and QM Jonathan Wu. Selective image encryption based on
pixels of interest and singular value decomposition. Digital Signal Processing,
22(4):648–663, 2012. 17, 20

[17] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of CRYPTOLOGY, 4(1):3–72, 1991. 25

[18] Frank Bossen. Common Conditions and Software Reference Configurations. Doc-
ument JCTVC-H1100, JCT-VC of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, San Jose, CA, February 2012. 167

[19] Paula Carrillo, Hari Kalva, and Spyros Magliveras. Compression Independent Re-
versible Encryption for Privacy in Video Surveillance. EURASIP Journal on Infor-
mation Security, 2009(5):1–13, 2009. 163

[20] SGXV CCITT and H Recommendation. 261-video codec for audiovisual services
at px64 kbit/s. The International Telegraph and Telephone Consultative Committee,
1990. 115

[21] Wei-Der Chang. Digital secure communication via chaotic systems. Digital Signal
Processing, 19(4):693–699, 2009. 17, 20, 190

[22] Guanrong Chen, Yaobin Mao, and Charles K Chui. A symmetric image encryption
scheme based on 3d chaotic cat maps. Chaos, Solitons & Fractals, 21(3):749–761,
2004. 17, 20, 21, 60, 61, 62

[23] J. Chen, J. Boyce, M. Hannuksela Y. Ye, G. J. Sullivan, and Y. K. Wang. HEVC
Scalable Extensions (SHVC) Draft Text 7. In Document JCTVCR100. Sapporo, JP,
July 2014. 136

[24] Houssine Chetto and Maryline Chetto. Some results of the earliest deadline
scheduling algorithm. IEEE Transactions on Software Engineering, 15(10):1261–
1269, 1989. 107

[25] Houssine Chetto and Maryline Chetto. An adaptive scheduling algorithm for fault-
tolerant real-time systems. Software Engineering Journal, 6(3):93–100, 1991. 107

176

[26] Maryline Chetto and Audrey Queudet. A note on edf scheduling for real-time en-
ergy harvesting systems. IEEE TRANSACTIONS ON COMPUTERS, 63(4):1037–
1040, 2013. 108

[27] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, and
T. Schier. Parallel Scalability and Efficiency of HEVC Parallelization Approaches.
IEEE TCSVT, 22:1827–1838, December 2012. 164

[28] Franco Chiaraluce, Lorenzo Ciccarelli, Ennio Gambi, Paola Pierleoni, and Maur-
izio Reginelli. A new chaotic algorithm for video encryption. Consumer Electron-
ics, IEEE Transactions on, 48(4):838–844, 2002. 17, 20

[29] Cahit Cokal and Ercan Solak. Cryptanalysis of a chaos-based image encryption
algorithm. Physics Letters A, 373(15):1357–1360, 2009. 24

[30] Wei Dai. Crypto++ 5.6.0 benchmarks. http://www.cryptopp.com/
benchmarks.html. Accessed: 2015-04-08. 49

[31] Loïc Dubois, William Puech, Jacques Blanc-Talon, et al. Fast protection of h.
264/avc by reduced selective encryption of cavlc. In EUSIPCO’11: 19th European
Signal Processing Conference, 2012. 131

[32] F. Dufaux and T. Ebrahimi. Scrambling for Privacy Protection in Video Surveil-
lance Systems. IEEE Transactions on Circuits and Systems for Video Technology,
18(8):1168–1174, 2008. 165

[33] Morris J Dworkin. Sp 800-38c. recommendation for block cipher modes of opera-
tion: the ccm mode for authentication and confidentiality. NIST Special Publication
800-38C, 2004. 134

[34] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L Tuchman. Mes-
sage verification and transmission error detection by block chaining, February 14
1978. US Patent 4,074,066. 87

[35] Safwan El Assad and Mousa Farajallah. A simple introduction to the klt
(karhunen—loève transform). A New Efficient Structure of a Cryptosystem based
on Two Chaotic Layers: a Binary Diffusion Layer and a Bit-Permutation Layer,
page 13 Pages, under submission. 31

[36] Safwan El Assad, Mousa Farajallah, and Calin Vladeanu. Chaos-based block ci-
phers: An overview. In Communications (COMM), 2014 10th International Con-
ference on, pages 1–4. IEEE, 2014. 17, 20

[37] Safwan El Assad and Hassan Noura. Generator of chaotic sequences and corre-
sponding generating system, March 28 2011. US Patent App. 13/638,126. 31, 32,
42, 86, 87

[38] Mousa Farajallah, Safwan El Assad, and Maryline Chetto. Dynamic adjustment
of the chaos-based security in real-time energy harvesting sensors. In Green
Computing and Communications (GreenCom), 2013 IEEE and Internet of Things
(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical
and Social Computing, pages 282–289. IEEE, 2013. 31, 88

177

http://www.cryptopp.com/benchmarks.html
http://www.cryptopp.com/benchmarks.html

[39] Mousa Farajallah, Zeinab Fawaz, Safwan El Assad, and Olivier Deforges. Effi-
cient image encryption and authentication scheme based on chaotic sequences. In
SECURWARE 2013, The Seventh International Conference on Emerging Security
Information, Systems and Technologies, pages 150–155, 2013. 31, 88, 95

[40] N. Ferguson, B. Schneier, and T. Kohno. Cryptography Engineering: Design Prin-
ciples and Practical Applications. In Wiley Publishing Inc.,. ISBN 978-0-470-
47424-2, 2010. 165

[41] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineer-
ing: Design Principles and Practical Applications: Design Principles and Practi-
cal Applications. John Wiley & Sons, 2011. 18

[42] PUB FIPS. 180-1. secure hash standard. National Institute of Standards and Tech-
nology, 17, 1995. 45

[43] A Fog. Lists of instruction latencies, throughputs and micro-operation breakdowns
for intel, amd and via cpus. Copenhagen University College of Engineering, 2012.
55

[44] Jiri Fridrich. Image encryption based on chaotic maps. In Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE Inter-
national Conference on, volume 2, pages 1105–1110. IEEE, 1997. 17, 20, 190

[45] Jiri Fridrich. Symmetric ciphers based on two-dimensional chaotic maps. Inter-
national Journal of Bifurcation and Chaos, 8(06):1259–1284, 1998. 17, 20, 41,
88

[46] B Furht and D Socek. Multimedia security: Encryption techniques. IEC Compre-
hensive Report on Information Security, pages 335–349, 2003. 17, 20

[47] Xin Ge, Fenlin Liu, Bin Lu, and Wei Wang. Cryptanalysis of a spatiotemporal
chaotic image/video cryptosystem and its improved version. Physics Letters A,
375(5):908–913, 2011. 24

[48] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya Itzhaky, and Ofer Hadar. Per-
formance comparison of h. 265/mpeg-hevc, vp9, and h. 264/mpeg-avc encoders. In
PCS 2013 30th Picture Coding Symposium, San Jose, California, Dec 8-11, 2013.
116

[49] W. Hamidouche, M. Farajallah, M. Raulet, O. Déforges, and S. El Assad. Selective
Video Encryption using Chaotic System in the SHVC extension. In 40th IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brisbane Australia, April 2015. 17, 20

[50] Wassim Hamidouche, Mickael Raulet, and Olivier Deforges. Real time SHVC
Decoder: Implementation and Complexity Analysis. In IEEE International Con-
ference on Image Processing (ICIP), October 2014. 145

[51] Fraunhofer Heinrich Hertz Institute. Shvc reference software model (shm).
https://hevc.hhi.fraunhofer.de/svn/svn_SHVCSoftware/.
145

178

https://hevc.hhi.fraunhofer.de/svn/svn_SHVCSoftware/

[52] Guo J.-I and Yen J.-C. A new chaotic key-based design for image encryption and
decryption. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The
2000 IEEE International Symposium on, volume 4, pages 49–52. IEEE, 2000. 17,
20

[53] Rajan L Joshi and Thomas R Fischer. Comparison of generalized gaussian and
laplacian modeling in dct image coding. Signal Processing Letters, IEEE, 2(5):81–
82, 1995. 156

[54] David Kahn. The Codebreakers: The comprehensive history of secret communica-
tion from ancient times to the internet. Simon and Schuster, 1996. 24

[55] Kunihiko Kaneko. Pattern dynamics in spatiotemporal chaos: Pattern selection,
diffusion of defect and pattern competition intermettency. Physica D: Nonlinear
Phenomena, 34(1):1–41, 1989. 22

[56] Lutful Karim, Alagan Anpalagan, Nidal Nasser, Jalal Almhana, and Isaac Woun-
gang. Fault tolerant, energy efficient and secure clustering scheme for mobile
machine-to-machine communications. Transactions on Emerging Telecommuni-
cations Technologies, 25(10):1028–1044, 2014. 24

[57] Ali Kassem, Hussein Al Haj Hassan, Youssef Harkouss, and Rima Assaf. Efficient
neural chaotic generator for image encryption. Digital Signal Processing, 25:266–
274, 2014. 20

[58] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
Press, 2008. 46, 73

[59] Stephen H Kellert. In the wake of chaos: Unpredictable order in dynamical sys-
tems. University of Chicago press, 1994. 19

[60] Syed Ali Khayam. The discrete cosine transform (dct): theory and application.
Michigan State University, 2003. 114

[61] IK Kim, K McCann, K Sugimoto, B Bross, WJ Han, and GJ Sullivan. High ef-
ficiency video coding (hevc) test model 10 (hm10) encoder description. In Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 12th Meeting: Geneva, 2013. 125, 126, 138

[62] Il-Koo Kim, Junghye Min, Tammy Lee, Woo-Jin Han, and JeongHoon Park. Block
partitioning structure in the hevc standard. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, 22(12):1697–1706, 2012. 116

[63] Bon Wook Koo, Hwan Seok Jang, and Jung Hwan Song. On constructing of a 32×
32 binary matrix as a diffusion layer for a 256-bit block cipher. In Information
Security and Cryptology–ICISC 2006, pages 51–64. Springer, 2006. 50

[64] J. Lainema, F. Bossen, Woo-Jin Han, Junghye Min, and K. Ugur. Intra coding of
the hevc standard. Circuits and Systems for Video Technology, IEEE Transactions
on, 22(12):1792–1801, Dec 2012. 118

179

[65] Bai-Ying Lei, Kwok-Tung Lo, and Jian Feng. Encryption techniques for h. 264
video. The Handbook of MPEG Applications: Standards in Practice, page 151,
2010. 130

[66] Michael S. Lewis-Beck. Data analysis: An introduction. Number 103. Sage, 1995.
27

[67] Chunhua Li, Xinxin Zhou, and Yuzhuo Zhong. NAL Level Encryption for Scalable
Video Coding. Advances in Multimedia Information Processing (PCM), 5353:496–
505, 2008. 163

[68] Ruilin Li, Bing Sun, and Chao Li. Impossible differential cryptanalysis of spn
ciphers. Information Security, IET, 5(2):111–120, 2011. 57

[69] Shujun Li, Guanrong Chen, and Xuan Zheng. Chaos-Based Encryption for Digi-
tal Image and Video. Multimedia Encryption and Authentication Techniques and
Applications, page 129, 2006. 17, 20

[70] Shiguo Lian. Multimedia content encryption: techniques and applications. CRC
Press, 2008. 16, 17, 18, 126, 189, 190

[71] Shiguo Lian, Zhongxuan Liu, Zhen Ren, and Zhiquan Wang. Selective video en-
cryption based on advanced video coding. In Advances in Multimedia Information
Processing-PCM 2005, pages 281–290. Springer, 2005. 131

[72] Shiguo Lian, Jinsheng Sun, Jinwei Wang, and Zhiquan Wang. A chaotic stream
cipher and the usage in video protection. Chaos, Solitons & Fractals, 34(3):851–
859, 2007. 42, 129

[73] Shiguo Lian, Jinsheng Sun, and Zhiquan Wang. A block cipher based on a suitable
use of the chaotic standard map. Chaos, Solitons & Fractals, 26(1):117–129, 2005.
58, 59, 60

[74] Shiguo Lian, Jinsheng Sun, and Zhiquan Wang. Security analysis of a chaos-based
image encryption algorithm. Physica A: Statistical Mechanics and its Applications,
351(2):645–661, 2005. 21, 24, 80, 93, 94

[75] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973. 107

[76] E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences,
20:130 – 141, 1963. 165, 166

[77] Claudio Maccone. A simple introduction to the klt (karhunen—loève transform).
Deep Space Flight and Communications: Exploiting the Sun as a Gravitational
Lens, pages 151–179, 2009. 114

[78] Enrico Magli, Marco Grangetto, and Gabriella Olmo. Transparent encryption
techniques for h. 264/avc and h. 264/svc compressed video. Signal Processing,
91(5):1103–1114, 2011. 129

180

[79] Farhad Maleki, Ali Mohades, S Mehdi Hashemi, and Mohammad E Shiri. An
image encryption system by cellular automata with memory. In Availability, Re-
liability and Security, 2008. ARES 08. Third International Conference on, pages
1266–1271. IEEE, 2008. 25

[80] Ismail Mansour, Gerard Chalhoub, and Bassem Bakhache. Evaluation of a fast
symmetric cryptographic algorithm based on the chaos theory for wireless sen-
sor networks. In Trust, Security and Privacy in Computing and Communications
(TrustCom), 2012 IEEE 11th International Conference on, pages 913–919. IEEE,
2012. 17, 20

[81] Yaobin Mao, Guanrong Chen, and Shiguo Lian. A novel fast image encryption
scheme based on 3D chaotic Baker maps. International Journal of Bifurcation and
Chaos, 14(10):3613–3624, 2004. 24, 80

[82] Phyu Phyu Mar and Khin Maung Latt. New analysis methods on strict avalanche
criterion of S-boxes. World Academy of Science, Engineering and Technology,
48:150–154, 2008. 25

[83] Naoki Masuda and Kazuyuki Aihara. Cryptosystems with discretized chaotic
maps. Circuits and Systems I: Fundamental Theory and Applications, IEEE Trans-
actions on, 49(1):28–40, 2002. 17, 20, 33, 95

[84] Naoki Masuda, Goce Jakimoski, Kazuyuki Aihara, and Ljupco Kocarev. Chaotic
block ciphers: from theory to practical algorithms. Circuits and Systems I: Regular
Papers, IEEE Transactions on, 53(6):1341–1352, 2006. 17, 20, 21, 33, 42, 95

[85] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 1996. 15, 131

[86] Jürgen Meyer and Frank Gadegast. Security mechanisms for multimedia data with
the example mpeg-1 video. Project Description of SECMPEG, Technical Univer-
sity of Berlin, Germany, 1995. 128

[87] Alistair Moffat, Radford M Neal, and Ian H Witten. Arithmetic coding revisited.
ACM Transactions on Information Systems (TOIS), 16(3):256–294, 1998. 129

[88] Lausanne Switzerland Multimedia Signal Processing Group, Swiss Federal Insti-
tute of Technology (EPFL). Vqmt: Video quality measurement tool. http:
//mmspg.epfl.ch/vqmt. 158

[89] Dhinaharan Nagamalai, Eric Renault, and Murugan Dhanuskodi. Trends in Com-
puter Science, Engineering and Information Technology: First International Con-
ference, CCSEIT 2011, Tirunelveli, Tamil Nadu, India, September 23-25, 2011,
Proceedings, volume 204. Springer Science & Business Media, 2011. 19

[90] E. M. Newton, L. Sweeney, and B. Malin. Preserving Privacy by de-identifying
Face Images. IEEE Transactions on Knowledge and Data Engineering, 17:232 –
243, February 2005. 165

[91] NIST and CSE-FIPS 140-2 level 1 conformance. Cryptopp: C++ software encryp-
tion library. http://www.cryptopp.com. Accessed: 2014-06-30. 162

181

http://mmspg.epfl.ch/vqmt
http://mmspg.epfl.ch/vqmt
http://www.cryptopp.com

[92] J Ohm, Gary J Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas Wiegand.
Comparison of the coding efficiency of video coding standards-including high ef-
ficiency video coding (hevc). Circuits and Systems for Video Technology, IEEE
Transactions on, 22(12):1669–1684, 2012. 116

[93] Fatih Ozkaynak, Ahmet Bedri Ozer, and Sirma Yavuz. Cryptanalysis of a novel im-
age encryption scheme based on improved hyperchaotic sequences. Optics Com-
munications, 285(24):4946–4948, 2012. 24

[94] Narendra K Pareek, Vinod Patidar, and Krishan K Sud. Diffusion–substitution
based gray image encryption scheme. Digital Signal Processing, 23(3):894–901,
2013. 26, 58, 59, 62, 98, 99, 100

[95] Fei Peng, Xiao wen Zhu, , and Min Long. An ROI Privacy Protection Scheme
for H.264 Video Based on FMO and Chaos. IEEE Transactions on Circuits and
Systems for Video Technology, 8(10):1688–1699, October 2013. 164

[96] Fei Peng, Xiao-wen Zhu, and Min Long. A roi privacy protection scheme for h.
264 video based on fmo and chaos. Information Forensics and Security, IEEE
Transactions on, 8(10):1688–1699, 2013. 17

[97] M. Qi, X. Chen, J. Jiang, and S. Zhan. Face Protection of H.264 Video Based on
Detecting and Tracking. In International Conference on Electronic Measurement
and Instruments (ICEMI), pages 172 – 177, July 2007. 166

[98] Lintian Qiao and Klara Nahrstedt. Comparison of mpeg encryption algorithms.
Computers & Graphics, 22(4):437–448, 1998. 128

[99] Julien Reichel, Gloria Menegaz, Marcus J Nadenau, and Murat Kunt. Integer
wavelet transform for embedded lossy to lossless image compression. Image Pro-
cessing, IEEE Transactions on, 10(3):383–392, 2001. 114

[100] Martin Řeřábek and Touradj Ebrahimi. Comparison of compression efficiency be-
tween hevc/h. 265 and vp9 based on subjective assessments. In SPIE Optical En-
gineering+ Applications, pages 92170U–92170U. International Society for Optics
and Photonics, 2014. 116

[101] Rhouma Rhouma and Safya Belghith. Cryptanalysis of a new image encryption
algorithm based on hyper-chaos. Physics Letters A, 372(38):5973–5978, 2008. 24

[102] Rhouma Rhouma, Ercan Solak, and Safya Belghith. Cryptanalysis of a new
substitution–diffusion based image cipher. Communications in Nonlinear Science
and Numerical Simulation, 15(7):1887–1892, 2010. 24

[103] Iain E Richardson. The H. 264 advanced video compression standard. John Wiley
& Sons, 2011. 115

[104] Ronald L Rivest, Matt JB Robshaw, Ray Sidney, and Yiqun L Yin. The rc6 block
cipher. In in First Advanced Encryption Standard (AES) Conference. Citeseer,
1998. 17

182

[105] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A
statistical test suite for random and pseudorandom number generators for crypto-
graphic applications. Technical report, DTIC Document, 2001. 43

[106] El Assad Safwan. Master 2. Nantes University, 2015. 16, 189

[107] A. Said. Measuring the Strength of Partial Encryption Schemes. In IEEE In-
ternational Conference on Image Processing (ICIP), volume 2, pages II–1126–9,
September 2005. 159

[108] Bruce Schneier et al. Applied cryptography: protocols, algorithms, and source
code in C, 1996. 16, 17, 72, 159

[109] Daniel Schonberg, Stark C Draper, Chuohao Yeo, and Kannan Ramchandran. To-
ward compression of encrypted images and video sequences. Information Foren-
sics and Security, IEEE Transactions on, 3(4):749–762, 2008. 19

[110] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the scalable
video coding extension of the h. 264/avc standard. Circuits and Systems for Video
Technology, IEEE Transactions on, 17(9):1103–1120, 2007. 116

[111] V. Seregin and Y. He. Common SHM test conditions and software reference con-
figurations. In document JCTVC-O1009. Geneva, Switzerland, November 2013.
145

[112] Zafar Shahid, Marc Chaumont, and William Puech. Fast protection of h. 264/avc
by selective encryption of cabac. In Multimedia and Expo, 2009. ICME 2009. IEEE
International Conference on, pages 1038–1041. IEEE, 2009. 132

[113] Zafar Shahid, Marc Chaumont, and William Puech. Selective and scalable encryp-
tion of enhancement layers for dyadic scalable h. 264/avc by scrambling of scan
patterns. In Image Processing (ICIP), 2009 16th IEEE International Conference
on, pages 1273–1276. IEEE, 2009. 132

[114] Zafar Shahid, Marc Chaumont, and William Puech. Selective encryption of c2dvlc
of avs video coding standard for i & p frames. In Multimedia and Expo (ICME),
2010 IEEE International Conference on, pages 1655–1660. IEEE, 2010. 132

[115] Zafar Shahid, Marc Chaumont, and William Puech. Fast protection of h. 264/avc
by selective encryption of cavlc and cabac for i and p frames. Circuits and Systems
for Video Technology, IEEE Transactions on, 21(5):565–576, 2011. 131

[116] Zafar Shahid, Marc Chaumont, and William Puech. Fast protection of h. 264/avc
by selective encryption of cavlc and cabac for i and p frames. Circuits and Systems
for Video Technology, IEEE Transactions on, 21(5):565–576, 2011. 132, 163

[117] Zafar Shahid, Marc Chaumont, and William Puech. Considering the reconstruction
loop for data hiding of intra-and inter-frames of h. 264/avc. Signal, Image and
Video Processing, 7(1):75–93, 2013. 132

[118] Zafar Shahid, Marc Chaumont, William Puech, et al. Fast protection of h. 264/avc
by selective encryption of cabac for i & p frames. In EUSIPCO’09: European
Signal Processing Conference, 2009. 131

183

[119] Zafar Shahid, Marc Chaumont, William Puech, et al. Joint entropy coding and
encryption in avs video codec. Recent Trends in Image and Video Processin, 2013.
132

[120] Zafar Shahid and William Puech. Investigating the structure preserving encryption
of high efficiency video coding (hevc). In IS&T/SPIE Electronic Imaging, pages
86560N–86560N. International Society for Optics and Photonics, 2013. 132

[121] Zafar Shahid and William Puech. Visual protection of hevc video by selective
encryption of cabac binstrings. IEEE Transactions on Multimedia, 16(1):24–36,
2014. 132, 133

[122] Zafar SHAHID, William Puech, and Marc Chaumont. Real-time selective encryp-
tion of avs for i & p frames. In European Signal Processing Conference. Aalborg
University, 2010. 132

[123] Claude E Shannon. Communication theory of secrecy systems. Bell system tech-
nical journal, 28(4):656–715, 1949. 20, 40

[124] Riabtsev Shevach. Detailed overview of hevc/h.265. 2013. 120, 121, 205, 208

[125] Simon Singh. The code book: the science of secrecy from ancient Egypt to quantum
cryptography. Random House Digital, Inc., 2011. 72, 159

[126] R. Sjoberg, Y. Chen, A. Fujibayashi, M. M. Hannuksela, J. Samuelsson, T. K.
Tan, Y.-K. Wang, and S. Wenger. Overview of HEVC High-Level Syntax and
Reference Picture Management. IEEE Transactions on Circuits and Systems for
Video Technology, 22:1969–1684, December 2012. 144

[127] snipview. H.264/avc. http://www.snipview.com/q/H.264/AVC. Ac-
cessed: 2015-03-25. 115, 207

[128] Daniel Socek, Shujun Li, Spyros S Magliveras, and Borko Furht. Short paper: En-
hanced 1-d chaotic key-based algorithm for image encryption. In Security and Pri-
vacy for Emerging Areas in Communications Networks, 2005. SecureComm 2005.
First International Conference on, pages 406–407. IEEE, 2005. 58

[129] Daniel Socek, Shujun Li, Spyros S.Maglivera, and Borko Furht. Short Paper: En-
hanced 1-D Chaotic Key Based Algorithm for Image Encryption, Sep. 2005. 17,
20, 21, 59, 60

[130] H. Sohn, E.T. AnzaKu, W. De Neve, and Y. M. Ro. Privacy Protection in Video
Surveillance Systems Using Scalable Video Coding. In IEEE International Con-
ference on Advanced Video and Signal Based Surveillance (AVSS), pages 424 –
429, September 2009. 165

[131] Ercan Solak and Cahit Çokal. Algebraic break of image ciphers based on dis-
cretized chaotic map lattices. Information Sciences, 181(1):227–233, 2011. 24

[132] Ercan Solak, Cahit Çokal, Olcay Taner Yildiz, and Türker Biyikoğlu. Cryptanalysis
of Fridrich’s chaotic image encryption. International Journal of Bifurcation and
Chaos, 20(05):1405–1413, 2010. 21, 24

184

http://www.snipview.com/q/H.264/AVC

[133] Chun-Yan Song, Yu-Long Qiao, and Xing-Zhou Zhang. An image encryption
scheme based on new spatiotemporal chaos. Optik-International Journal for Light
and Electron Optics, 2012. 22, 27, 60, 61, 62, 100

[134] George A Spanos and Tracy Bradley Maples. Performance study of a selective
encryption scheme for the security of networked, real-time video. In icccn, page
0002. Published by the IEEE Computer Society, 1995. 128

[135] Thomas Stutz and Andreas Uhl. A survey of h. 264 avc/svc encryption. Circuits
and Systems for Video Technology, IEEE Transactions on, 22(3):325–339, 2012.
131

[136] G. J. Sullivan, J. M. Boyce, Y. Chen, J. R. Ohm, and A. Vetro. Standardized
Extensions of High Efficiency Video Coding (HEVC). IEEE Journal of Selected
Topics in Signal Processing, 7(6):1001–1016, 2003. 136

[137] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. Overview of the high
efficiency video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology, 22:1648–1667, December 2012. 136, 167

[138] Gary J Sullivan, Jens Ohm, Woo-Jin Han, and Thomas Wiegand. Overview of
the high efficiency video coding (hevc) standard. Circuits and Systems for Video
Technology, IEEE Transactions on, 22(12):1649–1668, 2012. 116, 117, 122, 123,
207

[139] GJ Sullivan and JR Ohm. Meeting report of the 13th meeting of the joint collabora-
tive team on video coding (jct-vc), incheon, kr. doc. jctvc-m1000. In 13th meeting:
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG, volume 16,
2013. 114

[140] Nidhi Taneja, Balasubramanian Raman, and Indra Gupta. Chaos Based Partial En-
cryption of SPIHT Compressed Images. International Journal of Wavelets, Mul-
tiresolution and Information Processing, 9(02):317–331, 2011. 156

[141] Nidhi Taneja, Balasubramanian Raman, and Indra Gupta. Selective Image Encryp-
tion in Fractional Wavelet Domain. AEU-International Journal of Electronics and
Communications, 65(4):338–344, 2011. 156

[142] Lei Tang. Methods for encrypting and decrypting mpeg video data efficiently.
In Proceedings of the fourth ACM international conference on Multimedia, pages
219–229. ACM, 1997. 128

[143] Relu Laurentiu Tataru, Dalia Battikh, S El Assad, Hassan Noura, and Olivier Dé-
forges. Enhanced adaptive data hiding in spatial lsb domain by using chaotic
sequences. In Intelligent Information Hiding and Multimedia Signal Processing
(IIH-MSP), 2012 Eighth International Conference on, pages 85–88. IEEE, 2012.
41, 51

[144] Lo’ai Tawalbeh, Moad Mowafi, and Walid Aljoby. Use of elliptic curve cryptogra-
phy for multimedia encryption. IET Information Security, 7(2):67–74, 2013. 126

185

[145] Ali Saman Tosun and W-C Feng. Efficient multi-layer coding and encryption of
mpeg video streams. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE
International Conference on, volume 1, pages 119–122. IEEE, 2000. 128

[146] J Vahidi, M Gorji, and Iran Mazandaran. The confusion-diffusion image encryption
algorithm with dynamical compound chaos. Journal of Mathematics and Computer
Science (JMCS), 9(4):451–457, 2014. 19

[147] Glenn Van Wallendael, Andras Boho, Jan De Cock, Adrian Munteanu, and Rik
Van de Walle. Encryption for high efficiency video coding with video adaptation
capabilities. IEEE Transactions on Consumer Electronics, 59(3):634–642, 2013.
132, 163

[148] Glenn Van Wallendael, Jan De Cock, Sebastiaan Van Leuven, Andras Boho, Peter
Lambert, Bart Preneel, and Rik Van de Walle. Format-compliant encryption tech-
niques for high efficiency video coding. In Image Processing (ICIP), 2013 20th
IEEE International Conference on, pages 4583–4587. IEEE, 15-18 Sept, 2013.
132

[149] V. Štruc and N. Pavešić. The complete gabor-fisher classifier for robust face recog-
nition. EURASIP Advances in Signal Processing, 2010:26, 2010. 169

[150] Xingyuan Wang, Dapeng Luan, and Xuemei Bao. Cryptanalysis of an image en-
cryption algorithm using chebyshev generator. Digital Signal Processing, 25:244–
247, 2014. 20, 24, 26

[151] Yong Wang, G. Attebury, and B. Ramamurthy. A survey of security issues in
wireless sensor networks. Communications Surveys Tutorials, IEEE, 8(2):2–23,
Second 2006. 16, 106, 189

[152] Yong Wang, Kwok-Wo Wong, Xiaofeng Liao, and Guanrong Chen. A new chaos-
based fast image encryption algorithm. Applied soft computing, 11(1):514–522,
2011. 22, 58, 98, 99, 100

[153] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview
of the h. 264/avc video coding standard. Circuits and Systems for Video Technology,
IEEE Transactions on, 13(7):560–576, 2003. 115

[154] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview
of the H.264/AVC Video Coding Standard. IEEE Transactions on Circuit and
Systems for Video Technology, 13(7):560–576, July 2003. 115

[155] Kwok-Wo Wong, Bernie Sin-Hung Kwok, and Wing-Shing Law. A fast image en-
cryption scheme based on chaotic standard map. Physics Letters A, 372(15):2645–
2652, 2008. 58, 59, 60, 62, 88, 98, 99, 100

[156] Chung-Ping Wu and C-CJ Kuo. Design of integrated multimedia compression and
encryption systems. Multimedia, IEEE Transactions on, 7(5):828–839, 2005. 126

[157] Yue Wu, Joseph P Noonan, and Sos Agaian. NPCR and UACI randomness tests
for image encryption. Cyber Journals: Multidisciplinary Journals in Science and
Technology, Journal of Selected Areas in Telecommunications (JSAT), pages 31–
38, 2011. 25

186

[158] Yue Wu, Yicong Zhou, Joseph P Noonan, and Sos Agaian. Design of image cipher
using latin squares. Information Sciences, 264:317–339, 2014. 62

[159] Huaqian Yang, Kwok-Wo Wong, Xiaofeng Liao, Wei Zhang, and Pengcheng Wei.
A fast image encryption and authentication scheme based on chaotic maps. Com-
munications in Nonlinear Science and Numerical Simulation, 15(11):3507–3517,
2010. 22, 58, 59, 60, 61, 62

[160] Siu-Kei Au Yeung, Shuyuan Zhu, and Bing Zeng. Partial video encryption based
on alternating transforms. Signal Processing Letters, IEEE, 16(10):893–896, Oct
2009. 132

[161] Siu-Kei Au Yeung, Shuyuan Zhu, and Bing Zeng. Design of new unitary trans-
forms for perceptual video encryption. Circuits and Systems for Video Technology,
IEEE Transactions on, 21(9):1341–1345, 2011. 132

[162] Wu Yue, Noonan Joseph P, and Agaian Sos. NPCR and UACI randomness tests
for image encryption. Cyber Journals: Multidisciplinary Journals in Science and
Technology, Journal of Selected Areas in Telecommunications (JSAT), pages 31–
38, 2011. 157

[163] Wenjun Zeng and Shawmin Lei. Efficient frequency domain selective scrambling
of digital video. Multimedia, IEEE Transactions on, 5(1):118–129, 2003. 129

[164] Li Zhang, Ying Chen, and Marta Karczewicz. Disparity vector construction method
for 3d-hevc, March 13 2013. US Patent App. 13/802,344. 122

[165] Linhua Zhang, Xiaofeng Liao, and Xuebing Wang. An image encryption approach
based on chaotic maps. Chaos, Solitons & Fractals, 24(3):759–765, 2005. 17, 20

[166] Wei Zhang, Kwok-wo Wong, Hai Yu, and Zhi-liang Zhu. An image encryption
scheme using reverse 2-dimensional chaotic map and dependent diffusion. Com-
munications in Nonlinear Science and Numerical Simulation, 2013. 23, 58, 59, 69,
70, 80, 87, 97, 98, 99, 100

[167] Liang Zhao, Avishek Adhikari, Di Xiao, and Kouichi Sakurai. On the security
analysis of an image scrambling encryption of pixel bit and its improved scheme
based on self-correlation encryption. Communications in Nonlinear Science and
Numerical Simulation, 17(8):3303–3327, 2012. 61, 62

187

Appendix A: Synthèse des travaux
réalisés

A.1 Crypto-systèmes basés chaos et systèmes de crypto-compression conjoints pour
les images et les vidéos

La cryptologie est divisée en deux branches liées: la cryptographie et la cryptanalyse.
Le cryptographe tente de trouver des techniques pour garantir le secret de messages trans-
mis et parfois assurer aussi leur authenticité. A l’inverse, le cryptanalyste tente de casser
le cryptosystème pour récupérer le message original, ou bien élabore un faux message et
cherche à le faire passer comme authentique par le destinataire. En utilisant la cryptogra-
phie, plusieurs services (confidentialité, authentification de source, intégrité des données,
non-répudiation, contrôle d’accès, signature numérique, etc.,) peuvent être, tous ou un
certain nombre, réalisés en même temps dans une application donnée. Jusqu’aux années
1970, la cryptographie était le domaine exclusif des militaires et des gouvernements. De
nos jours, avec le développement de la technologie tant informatique qu’Internet, nous
assistons à l’explosion et à la mondialisation des échanges (Internet, courrier électron-
ique, commerce électronique, . . .). Des données multimédia: fichiers audio, images, et
vidéos, sont fréquemment utilisées dans des domaines d’applications diverses: banques,
commerce, éducation, santé, communications mobiles, réseaux de capteur sans fil, etc.
De nos jours, un nombre croissant d’applications requièrent de la protection en temps réel
sous contraintes (faible complexité, petite mémoire, ressources énergétiques limitées), et
avec un niveau de sécurité élevé comme par exemple des données multimédia privées
échangées par des dispositifs portables sur les réseaux mobiles et des données sensibles
échangées entre réseaux de capteur sans fil. Concevoir et réaliser de cryptosystèmes ca-
pables de protéger (par chiffrement) des données multimédia (images et vidéos), tout en
tenant compte des contraintes précédentes, est un grand défi et constitue l’objectif princi-
pal de ce travail [70, 151, 106].
Récemment, pour la protection des données, de nombreux travaux de recherche ont mon-
tré l’apport et l’intérêt d’utiliser des signaux chaotiques. En effet, des caractéristiques
très intéressantes de ces séquences telles que bonnes propriétés cryptographiques, repro-
ductibilité à l’identique, large bande, et surtout très grande sensibilité à la clé secrète, in-

189

citent à leur utilisation en cryptographie. Un nombre important de cryptosystèmes basés
chaos ont ainsi été publiés récemment. La plupart d’entre eux sont basés sur la struc-
ture de Fridrich [44], qui intègre les propriétés de diffusion et de confusion définies par
Shannon, [8, 14, 21]. Comparée à la cryptographie classique, la cryptographie basée
chaos peut apporter quelques avantages en termes de robustesse et de rapidité, surtout en
chiffrement symétrique par flux. De plus, la cryptographie basée chaos est plus flexibles,
plus modulaire, et facile à mettre en œuvre, ce qui la rend appropriée pour le chiffrement
des images et des vidéos.
Généralement, les algorithmes de chiffrement traitent différents volumes de données, et
obtiennent ainsi des efficacités modulables en termes de degré de sécurité et de temps de
calculs. Contrairement au chiffrement dit direct où tout le contenu multimédia compressé
ou pas est chiffré, le chiffrement partiel opère seulement sur quelques données significa-
tives du contenu multimédia compressé, les autres données étant laissées en clair. Dans
un schéma de crypto-compression conjoint, l’opération de chiffrement est combinée avec
l’opération de compression, avec une mise en œuvre simultanée. Le chiffrement partiel et
le crypto-compression conjoint réduisent le volume de données à chiffrer, et permettent
ainsi d’obtenir pour un niveau de sécurité exigé et pour une application donnée, une ef-
ficacité plus importante en terme calculatoire [70]. Le chiffrement vidéo scalable a pour
objectif de fournir un contenu multimédia adaptable ou échelonnable (scalable).

A.2 Résumé des travaux

En résumé, dans cette thèse nous nous sommes intéressés à la problématique de la sécu-
rité des images et des vidéos pour les applications qui nécessitent du temps réel et un haut
niveau de sécurité. Dans ce contexte, dans la première partie de ce travail, quatre cryp-
tosystèmes basés chaos flexibles, efficaces et très robustes contre la cryptanalyse, sont
conçus et réalisés.
Les deux premiers s’appuient sur le réseau de substitution-permutation (SPN). La sub-
stitution est réalisée par une carte Skew tent (FSTM) modifiée pour surmonter différents
problèmes : point fixe, restriction de la taille de la clé et limitation de la cartographie entre
les textes d’origines et chiffrés. Le troisième cryptosystème est de structure nouvelle et
également efficace. Il est basé sur une couche de diffusion binaire de pixels, suivi par une
couche de permutation des bits. La permutation est réalisée par une nouvelle formulation
efficace de la carte 2-D Cat.
Le quatrième cryptosystème est plus rapide que les autres avec un niveau de sécurité
très élevé. Sa conception s’appuie sur une cryptanalyse partielle que nous avons réal-
isée, de l’algorithme de Zhang. Dans la deuxième partie de ce travail, deux crypto-
compression basés chaos sélectifs et rapides sont réalisés pour sécuriser le flux HEVC
et SHVC. Dans le premier crypto-compression, un nouvel algorithme pour définir les bits
chiffrables dans le flux binaire du "High Efficiency Video Coding" (HEVC) et sa version
"Scalable" (SHVC) est proposé. La solution proposée chiffre un ensemble de paramètres
SHVC sensibles au niveau du codeur entropique (CABAC), tout en préservant l’ensemble
des fonctionnalités SHVC.
Basé sur le concept de tuile, le deuxième crypto-compression proposé permet une protec-
tion de la vidéo au niveau d’une Région d’Intérêt (ROI) définie dans le standard HEVC.

190

A.3 Contributions

Dans la suite, nous résumons l’essentiel de notre contribution.
Première contribution : Equations améliorées de la substitution par la carte Skew
tent, utilisées dans les crypto A et crypto B
La première contribution concerne la modification des équations de la substitution directe
et de la substitution inverse, réalisées par la carte Skew tent. Par rapport aux équations de
base, les améliorations apportées par les équations modifiées sont l’ajout d’un paramètre
supplémentaire dans la clé secrète, permettant ainsi de résoudre le problème de la divi-
sion par zéro, d’augmenter la taille de la clé secrète, et de réduire significativement la
limitation de la cartographie entre les textes d’origines et chiffrés. Nous donnons et com-
mentons ci dessous les équations de base et celles modifiées utilisées dans les crypto A et
Crypto B.
Equations de bases : carte Skew tent
Les équations de base de la carte Skew tent sont rappelées ci dessous, réf 1. L’équation
de substitution directe est donnée par:

Y = FA (X) =

⌈
Q
A
× (X + 1)

⌉
− 1 if 0 ≤ X < A

⌊
Q×(Q−X−1)

Q−A

⌋
if A ≤ X < Q

(1)

Avec Q = 256, X, Y ∈ {0, 1, 2, ..., Q− 1}, and A ∈ {1, 2, ..., Q}.
A est le paramètre de la substitution, la "clé dynamique".
L’équation de substitution inverse est donnée par:

X = FA
−1 (Y) =

X1 − 1 if m(Y + 1) = Y + 1 and X1

A
> Q−X2

Q−A

X2 − 1 if m(Y + 1) = Y + 1 and X1

A
≤ Q−X2

Q−A

X1 − 1 if m(Y + 1) = Y + 2

(2)

Où:

X1 =

⌊
A× (Y + 1)

Q

⌋
(3)

X2 =

⌈
(
A

Q
− 1)× (Y + 1) +Q

⌉
(4)

m(Y + 1) = Y +

⌊
A× (Y + 1)

Q

⌉
−
⌊
A× (Y + 1)

Q

⌉
+ 2 (5)

Commentaires des équations précédentes:

1. Dans le cas où A = Q, qui est une des valeurs possibles, il Y a une division par
zéro dans le deuxième terme de l’équation (1).

2. Pour quelques valeurs de la sortie Y , il est facile de monter, que seules quelques
valeurs de l’entrée X sont possibles. Exemples:

• Pour avoir Y = 0, il existe seulement deux valeurs possibles pour l’entrée X ,
et ces valeurs sont:
X = 0 ou X = 255. En effet : Quand X < A, alors le premier terme de

191

l’équation (1),
⌈
256
A
×X

⌉
− 1 = 0, cela signifie que 0 < 256×X+1

A
≤ 1, et la

seule solution possible est que le terme X+1
A

soit inférieur ou égale à 1
256

. Ceci
peut se réaliser seulement pour X = 0 et A = 256.
Quand A ≤ X , alors le second terme de l’équation (1),

⌊
256×(256−X−1)

256−A

⌋
= 0,

cela signifie que 0 ≤ 256×(256−X−1)
256−A < 1, et la seule solution possible est que

le terme 256−X−1
256−A soit inférieur ou égale à 1

256
. Ceci peut se réaliser seulement

pour X = 255, quelque soit A.

• Pour avoir Y = 1, quelque soit la valeur de A, nous pouvons montrer (en
utilisant le même raisonnement que précédemment) que seules 3 valeurs dif-
férentes pour l’entrée X sont possibles, à savoir: X = 0 et A = 256, X = 1
et A ∈ {128, 129, ... , 256} ou X = 254 et A ∈ {1, 2, ..., 127}. Et ainsi de
suite, pour d’autres valeurs de Y .

3. Certaines valeurs de X ne produisent que quelques valeurs possibles de Y . Par
exemple pour X = 255, les valeurs possibles de Y sont seulement, Y = 0 ou
Y = 255. En effet:
Pour X = 255:

• le premier terme de l’équation (1) est seulement valide pour A = 256, et donc
la valeur du terme en question est

⌈
256×(255+1)

256

⌉
− 1 = 255.

• le second terme de l’équation (1) est valide pour A ≤ X < Q et donc, la
valeur du terme

⌊
256×(256−255−1)

256−A

⌋
est 0, quelque soit la valeur de A. Et ainsi

de suite, pour d’autres valeurs de X .

Equations modifiées proposées de la carte Skew tent Afin de résoudre les problèmes
précédents causés par les équations de base, nous avons proposé, les équations modifiées
de la carte Skew tent.

U = FA (X) =

⌈
Q
A
× (X + 1)

⌉
Mod Q if 0 ≤ X < A

⌊
Q×(Q−X)
Q−A

⌋
+ 1 Mod Q if A ≤ X < Q

(6)

Avec X,U ∈ {0, 1, 2, ...255}, A ∈ {1, 2, ...255}, et Q = 256.
Puis,

Y = (U +B) Mod Q (7)

où B est comme A, un paramètre ajouté, faisant partie de la "clé dynamique", et qui est
aussi fourni par le générateur chaotique. B, Y ∈ {0, 1, 2...255}.
L’équation de substitution proposée précédente, peut s’écrire:

Y = FA, B (X) =

⌈
Q
A
× (X + 1)

⌉
+B Mod Q if 0 ≤ X < A

⌊
Q×(Q−X)
Q−A

⌋
+ 1 +B Mod Q if A ≤ X < Q

(8)

192

L’équation de substitution inverse proposée s’écrit:

X = F−1A (U) =

A if U = 1

ζ1 − 1 if θ(U) = U + 1

ζ1 − 1 if θ(U) = U and ζ1
A
> Q−ζ2

Q−A

ζ2 if θ(U) = U and ζ1
A
≤ Q−ζ2

Q−A

(9)

où:
U = (Y −B) Mod Q (10)

Remarque: si U = 0, nous remplaçons dans les équations suivantes U = Q

ζ1 =

⌊
A

Q
× U

⌋
(11)

ζ2 =

⌈
(
A

Q
− 1)× U +Q

⌉
(12)

ζ3 =

⌈
A

Q
× U

⌉
(13)

θ = U + ζ1 − ζ3 + 1 (14)

Deuxième contribution: Crypto C, basé une matrice de diffusion binaire et une
couche de permutation, réalisé par une nouvelle formulation de la carte 2D Cat pour
une implantation optimale en code C
Le troisième cryptosystème conçu et réalisé, est basé sur une couche de diffusion bi-
naire suivie par une couche de permutation des bits, au lieu d’une permutation des pixels
(octets). La structure est nouvelle et efficace. En effet, la couche de permutation est réal-
isée par une nouvelle formulation proposée de la carte 2D cat, qui permet une mise en
œuvre efficace, mesurée en termes d’opérations arithmétiques et de logique, mais aussi
en termes de cycles d’horloge, en comparaison avec l’implantation de la carte 2D stan-
dard. Avec cette structure, le processus de diffusion, qui étale l’influence d’un bit sur les
autres bits, devient plus rapide et plus efficace, mais au prix de plus de temps de calcul
en comparaison avec la permutation des pixels. Ci dessous nous donnons l’équation de la
carte 2D cat standard, incluant les paramètres rx, ry permettant de contourner le problème
de la permutation du point (0, 0), mais aussi d’augmenter l’espace de la clé dynamique
formée par les paramètres dynamiques de la carte: {u, v, rx et ry}, et dont l’intervalle
de variation de chacun d’eux est [0, M − 1]:[

in
jn

]
= Mod

([
1 u
v 1 + u× v

] [
i
j

]
+

[
rx + ry
ry

]
,

[
M
M

])
(15)

où (i, j) et (in, jn) sont les positions originales et permutées des bits des données mises
sous forme matricielle de taille M ×M .
La nouvelle formulation proposée de l’équation précédente, pour une implantation opti-
male en code C, est donné par:

xrow = mod(Mv(i) + UMvn(j),M) (16)

193

ycol = mod(VMv(i) + UVMvn(j),M) (17)

avec
Mv = [1, 2, 3, ... M]

UMvn = [u+ rx + ry, 2u+ rx + ry, 3u+ rx + ry, ..., Mu+ rx + ry]

VMv = v ×Mv

UVMvn = [uv + 1 + ry, 2uv + 2 + ry, 3uv + 3 + ry, ..., Muv +M + ry]

Troisième contribution : Cryptanalyse partielle du premier algorithme de Zhang et
réalisation d’un cryptosystème encore plus efficace que les autres
Dans cette contribution, nous avons d’abord partiellement cryptanalysé un des meilleurs
algorithmes de la littérature récente, à savoir le premier algorithme de Zhang. En se bas-
ant sur cette cryptanalyse, nous avons ensuite réalisé un cryptosystème (avec plusieurs
variantes) qui est plus robuste contre les attaques cryptographiques que le premier algo-
rithme de Zhang, et aussi plus rapide.
Partie 1 : Cryptanalyse partielle du premier algorithme de Zhang
L’algorithme de Zhang utilise une structure basée sur une permutation 2D inverse des pix-
els, suivie par une diffusion non linéaire, réalisée par une carte Logistique dont les échan-
tillons sont quantifiés sur seulement 8 bits. Nous avons proposé une équation de crypt-
analyse partielle permettant d’enlever l’effet de la diffusion de l’algorithme de Zhang.
Suite à cette attaque, l’image obtenue n’est autre qu’une version permutée de l’image
d’origine. Aussi, basée sur cette équation de cryptanalyse partielle, nous avons réalisé
une attaque différentielle, qui a permis de réduire les valeurs moyennes des paramètres
NPCR et UCAI.
Partie 2 : Réalisation d’un cryptosystème très efficace avec 3 variantes
La structure du cryptosystème proposé en mode CBC (voir figure ci-dessous) est com-
posée d’une couche de permutation réalisée par la nouvelle formulation de la carte 2D
cat, suivie par une couche de diffusion non linéaire réalisée en tant que générateur, selon
la variante : soit par une carte Logistique discrétisée sur 32 bits, soit par une carte Skew
tent discrétisée sur 8 bits (pour une implantation par une table de correspondance), soit
par une carte Skew tent discrétisée sur 32 bits. Même si la structure semble similaire
à celle proposée par Zhang, l’équation de chiffrement donnée ci dessous est néanmoins
nettement plus robuste.

cl(kn) = LSB8[yl(k)] (18)

yl(k) = pl(k)⊕ sl−1(k)⊕ f(yl(k − 1)) (19)

Avec:
yl(k) est une variable à 32 bits, pl(k) et sl−1(k) sont des variables à 8 bits, f est la fonction
non linéaire qui peut être la carte Logistique ou la carte Skew tent.
La séquence sl−1(k) est donnée par:

sl−1(k) =

{
iv(k) if l = 0

cl−1(k) if l > 0
(20)

où
IV = {iv(0), iv(1), iv(2), ..., iv(bs−1)} est le vecteur initial, fournit par le générateur
de séquences chaotique. Quatrième contribution: Chiffrement des flux vidéos HEVC
et SHVC

194

Figure 1: Encryption structure of the first proposed cryptosystem

Dans cette contribution, nous avons réalisé deux crypto-compression basés chaos, sélec-
tifs, rapides, et robustes pour chiffrer les flux HEVC et sa version scalable SHVC. Les
deux crypto-compression développés, satisfont les exigences suivantes:

• Conformité de Format: le chiffrement ne doit pas violer le décodeur, le flux chiffré
des bits de la vidéo doit rester conforme aux normes du décodeur vidéo.

• Rapidité (latence faible) et sécurité: le chiffrement/déchiffrement ne dois pas aug-
menter la complexité du système avant chiffrement et assuré la protection des flux
binaires.

• Peu d’ impact de l’altération de taux de compression.

• Taux de compression constant: le chiffrement ne doit pas affecter le taux de com-
pression vidéo original.

• Scalabilité maintenue du flux binaire de la vidéo d’origine.

Dans le premier crypto-compression, un nouvel algorithme pour définir les bits chiffrables
dans le flux binaire de HEVC et du SHVC est proposé. La solution de base proposée
de chiffre un ensemble de paramètres HVC sensibles au niveau du codeur entropique
(CABAC), tout en préservant l’ensemble des fonctionnalités citées ci-dessus. Pour l’extension
scalable SHVC , qui est considère généralement une couche de base (SE-SHVC-BL) et
une couche de rehaussement (SE-SHVC-EL), trois scénarii ont été proposés pour répon-
dre à différents objectifs applicatifs : le cryptage uniquement de la couche de base, le
cryptage uniquement de la couche de rehaussement, le cryptage des deux couches. Basé
sur le concept de tuile, le deuxième crypto-compression proposé permet aussi une protec-
tion de la vidéo au niveau d’une Région d’Intérêt (ROI) définie dans le standard HEVC.
Il permet d’éviter la propagation du chiffrement à l’extérieur des frontières ROI.

195

Appendix B

Tables (1-5) present the the decimal value of residuals and their binarization format. The
first column (named as 3) contains the cAbsLevel value, where cAbsLevel = baseLevel+
Coef , and the baseLevel = 3. The second column (named as 2) contains the cAbsLevel
value, where cAbsLevel = baseLevel+Coef , and the baseLevel = 2. The third column
(named as 1) contains the cAbsLevel value, where cAbsLevel = baseLevel+Coef , and
the baseLevel = 1. Coef column contains the remaining value of the residuals. R con-
tains the cRiceParam value, P contains 2cRiceParam, Pre column represents the decimal
form of the prefix part, BPre represents the binary form of the prefix part, Suf represents
the decimal form of the suffix part, EGK represents the EGK value (if it is present), BSuf
represents the binary form of the Trp suffix part (if it is present). Finally, Binary column
represents the binary representation of the cAbsLevel value (i.e., the residual). To illus-
trate the presented tables, some examples are given.
Example1: Assume the residual is: cAbsLevel = 4 , cRiceParam = 1 and the baseLevel =
2, According to the TRp , EGk and algorithm-10:
Coef = 4− 2 = 2.
Pre = b2

2
c = 1

BPre =Unary binary of(1) = 10
Suf = (2 Mod 2) = 0
The rice parameter is 1, and so the length (number of bits) of the suffix is 1 bit then:
BSuf = FLC(0) = 0
Since the BPre is not 1111, the EGK code is not exist.
The Binary representation of (4) is:100, to verify see line 3 of Table 1.

Example2: Assume the residual is: cAbsLevel = 7 , cRiceParam = 1 and the baseLevel =
1, According to the TRp , EGk and algorithm 10:
Coef = 7− 1 = 6.
Pre = b6

2
c = 3

BPre =Unary binary of(3) = 1110
Suf = (6 Mod 2) = 0
The rice parameter is 1, and so the length (number of bits) of the suffix is 1 bit then:
BSuf = FLC(0) = 0

197

Since the BPre is not 1111, the EGK code is not exist.
The Binary representation of(7) is:11100, to verify see line 7 of Table 1.

Example3: Assume the residual is: cAbsLevel = 11 , cRiceParam = 1 and the
baseLevel = 3, According to the TRp , EGk and algorithm 10:
Coef = 11− 3 = 8.
Pre = b8

2
c = 4

BPre =Unary binary of(4) = 1111
Since the BPre is 1111, as a result the EGK code is invoked with the remainder (in this
case the remainder is 0).
EGK(0)=000.
The Binary representation of(11) is:1111000, to verify see line 9 of Table 1. Note in this
case there is no TRp suffix.

198

Table 1: The binary of residuals for Rice=1
3 2 1 Coef R P Pre BPre Suf EGK BSuf Binary
3 2 1 0 1 2 0 0 0 NO 0 00
4 3 2 1 1 2 0 0 1 NO 1 01
5 4 3 2 1 2 1 10 0 NO 0 100
6 5 4 3 1 2 1 10 1 NO 1 101
7 6 5 4 1 2 2 110 0 NO 0 1100
8 7 6 5 1 2 2 110 1 NO 1 1101
9 8 7 6 1 2 3 1110 0 NO 0 11100
10 9 8 7 1 2 3 1110 1 NO 1 11101
11 10 9 8 1 2 4 1111 0 000 No 1111000
12 11 10 9 1 2 4 1111 1 001 No 1111001
13 12 11 10 1 2 5 1111 2 010 No 1111010
14 13 12 11 1 2 5 1111 3 011 No 1111011
15 14 13 12 1 2 6 1111 4 10000 No 111110000
16 15 14 13 1 2 6 1111 5 10001 No 111110001
17 16 15 14 1 2 7 1111 6 10010 No 111110010
18 17 16 15 1 2 7 1111 7 10011 No 111110011
19 18 17 16 1 2 8 1111 8 10100 No 111110100
20 19 18 17 1 2 8 1111 9 10101 No 111110101
21 20 19 18 1 2 9 1111 10 10110 No 111110110
22 21 20 19 1 2 9 1111 11 10111 No 111110111
23 22 21 20 1 2 10 1111 12 1100000 No 11111100000
24 23 22 21 1 2 10 1111 13 1100001 No 11111100001
25 24 23 22 1 2 11 1111 14 1100010 No 11111100010
26 25 24 23 1 2 11 1111 15 1100011 No 11111100011
27 26 25 24 1 2 12 1111 16 1100100 No 11111100100
28 27 26 25 1 2 12 1111 17 1100101 No 11111100101
29 28 27 26 1 2 13 1111 18 1100110 No 11111100110
30 29 28 27 1 2 13 1111 19 1100111 No 11111100111
31 30 29 28 1 2 14 1111 20 1101000 No 11111101000
32 31 30 29 1 2 14 1111 21 1101001 No 11111101001
33 32 31 30 1 2 15 1111 22 1101010 No 11111101010
34 33 32 31 1 2 15 1111 23 1101011 No 11111101011
35 34 33 32 1 2 16 1111 24 1101100 No 11111101100
36 35 34 33 1 2 16 1111 25 1101101 No 11111101101
37 36 35 34 1 2 17 1111 26 1101110 No 11111101110
38 37 36 35 1 2 17 1111 27 1101111 No 11111101111
39 38 37 36 1 2 18 1111 28 111000000 No 1111111000000
40 39 38 37 1 2 18 1111 29 111000001 No 1111111000001
41 40 39 38 1 2 19 1111 30 111000010 No 1111111000010
42 41 40 39 1 2 19 1111 31 111000011 No 1111111000011
43 42 41 40 1 2 20 1111 32 111000100 No 1111111000100

199

Table 2: The binary of residuals for Rice=2
3 2 1 V R P Pre BPre Suf EGK BSuf Binary
3 2 1 0 2 4 0 0 0 NO 00 000
4 3 2 1 2 4 0 0 1 NO 01 001
5 4 3 2 2 4 0 0 2 NO 10 010
6 5 4 3 2 4 0 0 3 NO 11 011
7 6 5 4 2 4 1 10 0 NO 00 1000
8 7 6 5 2 4 1 10 1 NO 01 1001
9 8 7 6 2 4 1 10 2 NO 10 1010
10 9 8 7 2 4 1 10 3 NO 11 1011
11 10 9 8 2 4 2 110 0 NO 00 11000
12 11 10 9 2 4 2 110 1 NO 01 11001
13 12 11 10 2 4 2 110 2 NO 10 11010
14 13 12 11 2 4 2 110 3 NO 11 11011
15 14 13 12 2 4 3 1110 0 NO 00 111000
16 15 14 13 2 4 3 1110 1 NO 01 111001
17 16 15 14 2 4 3 1110 2 NO 10 111010
18 17 16 15 2 4 3 1110 3 NO 11 111011
19 18 17 16 2 4 4 1111 0 0000 No 11110000
20 19 18 17 2 4 4 1111 1 0001 No 11110001
21 20 19 18 2 4 4 1111 2 0010 No 11110010
22 21 20 19 2 4 4 1111 3 0011 No 11110011
23 22 21 20 2 4 5 1111 4 0100 No 11110100
24 23 22 21 2 4 5 1111 5 0101 No 11110101
25 24 23 22 2 4 5 1111 6 0110 No 11110110
26 25 24 23 2 4 5 1111 7 0111 No 11110111
27 26 25 24 2 4 6 1111 8 100000 No 1111100000
28 27 26 25 2 4 6 1111 9 100001 No 1111100001
29 28 27 26 2 4 6 1111 10 100010 No 1111100010
30 29 28 27 2 4 6 1111 11 100011 No 1111100011
31 30 29 28 2 4 7 1111 12 100100 No 1111100100
32 31 30 29 2 4 7 1111 13 100101 No 1111100101
33 32 31 30 2 4 7 1111 14 100110 No 1111100110
34 33 32 31 2 4 7 1111 15 100111 No 1111100111
35 34 33 32 2 4 8 1111 16 101000 No 1111101000
36 35 34 33 2 4 8 1111 17 101001 No 1111101001
37 36 35 34 2 4 8 1111 18 101010 No 1111101010
38 37 36 35 2 4 8 1111 19 101011 No 1111101011
39 38 37 36 2 4 9 1111 20 101100 No 1111101100
40 39 38 37 2 4 9 1111 21 101101 No 1111101101
41 40 39 38 2 4 9 1111 22 101110 No 1111101110
42 41 40 39 2 4 9 1111 23 101111 No 1111101111
43 42 41 40 2 4 10 1111 24 11000000 No 111111000000

200

Table 3: The binary of residuals for Rice=3
3 2 1 V R P Pre BPre Suf EGK BSuf Binary
3 2 1 0 3 8 0 0 0 NO 000 0000
4 3 2 1 3 8 0 0 1 NO 001 0001
5 4 3 2 3 8 0 0 2 NO 010 0010
6 5 4 3 3 8 0 0 3 NO 011 0011
7 6 5 4 3 8 0 0 4 NO 100 0100
8 7 6 5 3 8 0 0 5 NO 101 0101
9 8 7 6 3 8 0 0 6 NO 110 0110
10 9 8 7 3 8 0 0 7 NO 111 0111
11 10 9 8 3 8 1 10 0 NO 000 10000
12 11 10 9 3 8 1 10 1 NO 001 10001
13 12 11 10 3 8 1 10 2 NO 010 10010
14 13 12 11 3 8 1 10 3 NO 011 10011
15 14 13 12 3 8 1 10 4 NO 100 10100
16 15 14 13 3 8 1 10 5 NO 101 10101
17 16 15 14 3 8 1 10 6 NO 110 10110
18 17 16 15 3 8 1 10 7 NO 111 10111
19 18 17 16 3 8 2 110 0 NO 000 110000
20 19 18 17 3 8 2 110 1 NO 001 110001
21 20 19 18 3 8 2 110 2 NO 010 110010
22 21 20 19 3 8 2 110 3 NO 011 110011
23 22 21 20 3 8 2 110 4 NO 100 110100
24 23 22 21 3 8 2 110 5 NO 101 110101
25 24 23 22 3 8 2 110 6 NO 110 110110
26 25 24 23 3 8 2 110 7 NO 111 110111
27 26 25 24 3 8 3 1110 0 NO 000 1110000
28 27 26 25 3 8 3 1110 1 NO 001 1110001
29 28 27 26 3 8 3 1110 2 NO 010 1110010
30 29 28 27 3 8 3 1110 3 NO 011 1110011
31 30 29 28 3 8 3 1110 4 NO 100 1110100
32 31 30 29 3 8 3 1110 5 NO 101 1110101
33 32 31 30 3 8 3 1110 6 NO 110 1110110
34 33 32 31 3 8 3 1110 7 NO 111 1110111
35 34 33 32 3 8 4 1111 0 00000 No 111100000
36 35 34 33 3 8 4 1111 1 00001 No 111100001
37 36 35 34 3 8 4 1111 2 00010 No 111100010
38 37 36 35 3 8 4 1111 3 00011 No 111100011
39 38 37 36 3 8 4 1111 4 00100 No 111100100
40 39 38 37 3 8 4 1111 5 00101 No 111100101
41 40 39 38 3 8 4 1111 6 00110 No 111100110
42 41 40 39 3 8 4 1111 7 00111 No 111100111
43 42 41 40 3 8 5 1111 8 01000 No 111101000

201

Table 4: The binary of residuals for Rice=4
3 2 1 V R P Pre BPre Suf EGK BSuf Binary
3 2 1 0 4 16 0 0 0 NO 0000 00000
4 3 2 1 4 16 0 0 1 NO 0001 00001
5 4 3 2 4 16 0 0 2 NO 0010 00010
6 5 4 3 4 16 0 0 3 NO 0011 00011
7 6 5 4 4 16 0 0 4 NO 0100 00100
8 7 6 5 4 16 0 0 5 NO 0101 00101
9 8 7 6 4 16 0 0 6 NO 0110 00110
10 9 8 7 4 16 0 0 7 NO 0111 00111
11 10 9 8 4 16 0 0 8 NO 1000 01000
12 11 10 9 4 16 0 0 9 NO 1001 01001
13 12 11 10 4 16 0 0 10 NO 1010 01010
14 13 12 11 4 16 0 0 11 NO 1011 01011
15 14 13 12 4 16 0 0 12 NO 1100 01100
16 15 14 13 4 16 0 0 13 NO 1101 01101
17 16 15 14 4 16 0 0 14 NO 1110 01110
18 17 16 15 4 16 0 0 15 NO 1111 01111
19 18 17 16 4 16 1 10 0 NO 0000 100000
20 19 18 17 4 16 1 10 1 NO 0001 100001
21 20 19 18 4 16 1 10 2 NO 0010 100010
22 21 20 19 4 16 1 10 3 NO 0011 100011
23 22 21 20 4 16 1 10 4 NO 0100 100100
24 23 22 21 4 16 1 10 5 NO 0101 100101
25 24 23 22 4 16 1 10 6 NO 0110 100110
26 25 24 23 4 16 1 10 7 NO 0111 100111
27 26 25 24 4 16 1 10 8 NO 1000 101000
28 27 26 25 4 16 1 10 9 NO 1001 101001
29 28 27 26 4 16 1 10 10 NO 1010 101010
30 29 28 27 4 16 1 10 11 NO 1011 101011
31 30 29 28 4 16 1 10 12 NO 1100 101100
32 31 30 29 4 16 1 10 13 NO 1101 101101
33 32 31 30 4 16 1 10 14 NO 1110 101110
34 33 32 31 4 16 1 10 15 NO 1111 101111
35 34 33 32 4 16 2 110 0 NO 0000 1100000
36 35 34 33 4 16 2 110 1 NO 0001 1100001
37 36 35 34 4 16 2 110 2 NO 0010 1100010
38 37 36 35 4 16 2 110 3 NO 0011 1100011
39 38 37 36 4 16 2 110 4 NO 0100 1100100
40 39 38 37 4 16 2 110 5 NO 0101 1100101
41 40 39 38 4 16 2 110 6 NO 0110 1100110
42 41 40 39 4 16 2 110 7 NO 0111 1100111
43 42 41 40 4 16 2 110 8 NO 1000 1101000
44 43 42 41 4 16 2 110 9 NO 1001 1101001
45 44 43 42 4 16 2 110 10 NO 1010 1101010
46 45 44 43 4 16 2 110 11 NO 1011 1101011
47 46 45 44 4 16 2 110 12 NO 1100 1101100
48 47 46 45 4 16 2 110 13 NO 1101 1101101
49 48 47 46 4 16 2 110 14 NO 1110 1101110
50 49 48 47 4 16 2 110 15 NO 1111 1101111

202

Table 5: The binary of residuals for Rice=4
3 2 1 V R P Pre BPre Suf EGK BSuf Binary
51 50 49 48 4 16 3 1110 0 NO 0000 11100000
52 51 50 49 4 16 3 1110 1 NO 0001 11100001
53 52 51 50 4 16 3 1110 2 NO 0010 11100010
54 53 52 51 4 16 3 1110 3 NO 0011 11100011
55 54 53 52 4 16 3 1110 4 NO 0100 11100100
56 55 54 53 4 16 3 1110 5 NO 0101 11100101
57 56 55 54 4 16 3 1110 6 NO 0110 11100110
58 57 56 55 4 16 3 1110 7 NO 0111 11100111
59 58 57 56 4 16 3 1110 8 NO 1000 11101000
60 59 58 57 4 16 3 1110 9 NO 1001 11101001
61 60 59 58 4 16 3 1110 10 NO 1010 11101010
62 61 60 59 4 16 3 1110 11 NO 1011 11101011
63 62 61 60 4 16 3 1110 12 NO 1100 11101100
64 63 62 61 4 16 3 1110 13 NO 1101 11101101
65 64 63 62 4 16 3 1110 14 NO 1110 11101110
66 65 64 63 4 16 3 1110 15 NO 1111 11101111
67 66 65 64 4 16 4 1111 0 000000 No 1111000000
68 67 66 65 4 16 4 1111 1 000001 No 1111000001
69 68 67 66 4 16 4 1111 2 000010 No 1111000010
70 69 68 67 4 16 4 1111 3 000011 No 1111000011
71 70 69 68 4 16 4 1111 4 000100 No 1111000100
72 71 70 69 4 16 4 1111 5 000101 No 1111000101
73 72 71 70 4 16 4 1111 6 000110 No 1111000110
74 73 72 71 4 16 4 1111 7 000111 No 1111000111
75 74 73 72 4 16 4 1111 8 001000 No 1111001000
76 75 74 73 4 16 4 1111 9 001001 No 1111001001
77 76 75 74 4 16 4 1111 10 001010 No 1111001010
78 77 76 75 4 16 4 1111 11 001011 No 1111001011
79 78 77 76 4 16 4 1111 12 001100 No 1111001100
80 79 78 77 4 16 4 1111 13 001101 No 1111001101
81 80 79 78 4 16 4 1111 14 001110 No 1111001110
82 81 80 79 4 16 4 1111 15 001111 No 1111001111
83 82 81 80 4 16 5 1111 16 010000 No 1111010000
84 83 82 81 4 16 5 1111 17 010001 No 1111010001
85 84 83 82 4 16 5 1111 18 010010 No 1111010010
86 85 84 83 4 16 5 1111 19 010011 No 1111010011
87 86 85 84 4 16 5 1111 20 010100 No 1111010100
88 87 86 85 4 16 5 1111 21 010101 No 1111010101
89 88 87 86 4 16 5 1111 22 010110 No 1111010110
90 89 88 87 4 16 5 1111 23 010111 No 1111010111
91 90 89 88 4 16 5 1111 24 011000 No 1111011000
92 91 90 89 4 16 5 1111 25 011001 No 1111011001
93 92 91 90 4 16 5 1111 26 011010 No 1111011010
94 93 92 91 4 16 5 1111 27 011011 No 1111011011
95 94 93 92 4 16 5 1111 28 011100 No 1111011100
96 95 94 93 4 16 5 1111 29 011101 No 1111011101

203

List of Tables

3.1 Lookup table based on the equation (3.16) 39
3.2 Inverse lookup table based on the equation (3.19) 39
3.3 Time complexity of arithmetic and logic operations 55
3.4 Time complexity in clock cycles for all operations 55
3.5 Average encryption/decryption Time of the proposed cryptosystems and

some known cryptosystems (in milli-seconds) 58
3.6 Encryption throughput and number of cycles per byte of the proposed

cryptosystems and some known cryptosystems 59
3.7 NPCR and UACI for the plaintext sensitivity test 60
3.8 NPCR and UACI for the key sensitivity test 61
3.9 Correlation coefficient values of two adjacent pixels in the plain and the

cipher images . 62
3.10 Chi-Square Results . 66

4.1 Sample of NPCR and UACI results under the same parameters and con-
ditions in the original research paper for all pixel positions) 81

4.2 Sample of NPCR and UACI results . 82
4.3 Average encryption/decryption time of the proposed algorithm(in mil-

liseconds) . 98
4.4 Encryption/decryption time of different algorithms(in milliseconds) . . . 98
4.5 Encryption throughput and Number of cycles for one encrypted byte . . . 99
4.6 HD, UACI and NPCR plaintext sensitivity tests 100
4.7 HD, UACI and NPCR key sensitivity tests 101
4.8 Correlation Analysis Results . 103
4.9 Chi-Square Results . 103

5.1 Derivation process of the chroma intra prediction mode (from [124]) . . . 121
5.2 Mapping between Intra prediction mode and coefficient scanning order . . 121

6.1 Encryptible bins in bold font of the TC suffix binarized in TRp code with
cRiceParam = 3 and cABsLevel=baseLevel+Coef 141

6.2 Encrypted syntax elements in the proposed SHVC selective encryption
solution, all theses syntax elements are bypass coded 142

6.3 Video sequences considered in the experiments 146
6.4 Video quality PSNR Y of the proposed SHVC encryption scheme of the

three stages . 146
6.5 Video quality (SSIM) of the proposed SHVC encryption scheme of the

three stages . 147
6.6 Video quality (EB) of the proposed SHVC encryption scheme of the three

stages . 147

205

6.7 Video quality of the three proposed SHVC encryption schemes for the
1080p50 Cactus video sequence . 149

6.8 Encryptable bit of the proposed SHVC encryption scheme for the 1080p50
Cactus video sequence . 150

6.9 BL PSNR of the Traffic video sequence in different scalability and QP
configurations: SE-SHVC-BL encryption scheme 150

6.10 EL PSNR of the Traffic video sequence in different scalability and QP
configurations:SE-SHVC-BL encryption scheme 151

6.11 Repartition of the encrypted SHVC syntax elements in the proposed scheme
for Traffic video sequence . 151

6.12 Encryption Quality forKimono andPeopleOnStreet video sequences at
QPEL=22 . 154

6.13 Edge differential ratio for Kimono and PeopleOnStreet video sequences
at QPEL=22 . 157

6.14 Average performance of Key sensitivity attack over all frames ofKimono
and PeopleOnStreet video sequences: SE-SHVC-BL, QPEL=22 157

6.15 Average PSNR and SSIM for replacing encrypted bits by zero: QPEL=22,
SE-SHVC-BL . 159

6.16 Decoding Time (DT) in second and Complexity Overhead (CO) in % of
the proposed chaos-based SE solution for the Cactus video sequence in
different scalability and QP configurations 160

6.17 Decoding Time (DT) in second and Complexity Overhead (CO) in % of
the proposed SE solution for the Cactus video sequence in different scal-
ability and QP configurations based on AES in CRT mode 161

6.18 Comparison of the proposed encryption scheme for (SE-SHVC-BL and
SE-SHVC-EL) with the state of the art 163

6.19 Bjontegaard’s difference of HEVC tile repartitions 168
6.20 EB and PSNR of the ROI encryption solutions 169

1 The binary of residuals for Rice=1 . 199
2 The binary of residuals for Rice=2 . 200
3 The binary of residuals for Rice=3 . 201
4 The binary of residuals for Rice=4 . 202
5 The binary of residuals for Rice=4 . 203

206

List of Figures

2.1 Encryption scheme of Fridrich . 20
2.2 Plain-text sensitivity attack . 25
2.3 Key sensitivity attack . 26

3.1 Encryption part of Crypto-A . 32
3.2 Proposed chaotic sequence generator . 42
3.3 Proportion values of NIST test versus the index of the test 43
3.4 Decryption part of the proposed cryptosystem 44
3.5 Encryption Parts of Crypto-B . 46
3.6 Decryption Parts of Crypto-B . 46
3.7 Encryption Components of Crypto-B . 47
3.8 Decryption Components of Crypto-B . 48
3.9 Authentication process at the decryption 49
3.10 Description of the encryption process of Crypto-C 50
3.11 Description of the decryption process 56
3.12 Correlation analysis of Boat and its ciphered image in three directions:Crypto-

A . 63
3.13 Correlation analysis of Cameraman and its ciphered image in three directions:Crypto-

B . 64
3.14 Plain and ciphered Boat images and their histograms:Crypto-A 65
3.15 Plain and ciphered Cameraman images and their histograms:Crypto-B . . 66

4.1 Zhang image encryption cryptosystem architecture 70
4.2 Results concerning pixel position (511, 511) 83
4.3 Results concerning pixel position (0, 0) 84
4.4 Results concerning pixel position (125, 87) 85
4.5 General block diagram of the proposed cryptosystems 86
4.6 Encryption structure of the CBC mode 86
4.7 Encryption structure of the first proposed cryptosystem 88
4.8 Decryption structure of the CBC mode 91
4.9 Decryption structure of the first proposed cryptosystem 93
4.10 Correlation analysis of Lena and its ciphered image in three directions . . 102
4.11 Lena image and its ciphered version and their corresponding histograms . 104
4.12 Framework of the energy harvesting system 108
4.13 The Deadline Mechanism . 109

5.1 General block diagram of the video compression at the encoder 113
5.2 Typical AVC video encoder (from [127]) 115
5.3 Typical HEVC video encoder (from [138]) 117
5.4 Typical HEVC partitioning process . 119

207

5.5 Z-scan order of CUs inside the CTU (from [124]) 120
5.6 Derivation of the MPM Modes(from [124]) 120
5.7 Merge mode example . 122
5.8 Three main functions in the CABAC . 123
5.9 Different possible encryption positions in the video compression process . 127
5.10 Basic structure of selective encryption scheme for the HEVC 133

6.1 Block diagram of the SHVC encoder encoding two spatial scalability layers136
6.2 Encryption part of Crypto-A . 137
6.3 Chaos-based video encryption/decryption stream cipher 143
6.4 Structure of the encrypted SHVC bit-stream with two layers using SE-

SHVC-All encryption scheme . 145
6.5 Visual quality of frame #9 of the BasketballDrive video sequence in

SNR scalability configuration (a) (b) SE-SHVC-BL, (c) (d) SE-SHVC-
ALL and (e) (f) SE-SHVC-EL) . 152

6.6 CDF of the EQ for Kimono and PeopleOnStreet video sequences in
SNR scalability, QPEL=22 and SE-SHVC-BL encryption scheme 155

6.7 Edges illustration of frame #8 Kimono video sequence of the proposed
encryption scheme with SNR scalability and QPEL=22 156

6.8 Histograms of frame #8 Kimono video sequence in the three encryption
schemes with SNR scalability and QPEL=22 158

6.9 Tile concept in the HEVC standard composed of 15 tiles (red rectangles) . 164
6.10 Tile concept in the HEVC standard composed of 4 tiles with ROI 165
6.11 AES encryption system in CFB mode 166
6.12 Rate distortion performance . 168
6.13 Visual quality of frame #1 in the Kimono video sequence QP = 27

(PSNR1: PSNR Y ROI, PSNR2: PSNR Y background, PSNR3: PSNR Y
frame). 169

1 Encryption structure of the first proposed cryptosystem 195

208

Thèse de Doctorat

Mousa FARAJALLAH

Crypto-systèmes basés chaos et systèmes de crypto-compression

Chaos-based crypto and joint crypto-compression systems for images and
videos

Résumé
La sécurité des données images et vidéos est
importante pour beaucoup d’applications qui exigent
du temps réel et un haut niveau de sécurité. Dans la
première partie de ce travail, quatre cryptosystèmes
basés chaos flexibles, efficaces et très robustes contre
la cryptanalyse sont conçus et réalisés. Les deux
premiers s’appuient sur le réseau SPN. La substitution
est réalisée par une carte Skew tent (FSTM) modifiée
pour surmonter différents problèmes : point fixe,
restriction de la taille de la clé et limitation de la
cartographie entre les textes d’origines et chiffrés. Le
troisième cryptosystème est de structure nouvelle et
également efficace. Il est basé sur une couche de
diffusion binaire de pixels, suivi par une couche de
permutation des bits. La permutation est réalisée par
une nouvelle formulation efficace de la carte 2-D Cat.
Le quatrième cryptosystème, est plus rapide que les
autres avec un niveau de sécurité très élevé. Sa
conception s’appuie sur une cryptanalyse partielle,
que nous avons réalisée, de l’algorithme de Zhang.
Dans la deuxième partie, deux crypto-compression
basés chaos sélectifs et rapides sont utilisés pour
sécuriser le flux HEVC et SHVC. Dans le premier
crypto-compression, un nouvel algorithme pour définir
les bits chiffrables dans le flux binaire du HEVC et du
SHVC est proposé. La solution proposée chiffre un
ensemble de paramètres SHVC sensibles au niveau
du codeur entropique (CABAC), tout en préservant
l’ensemble des fonctionnalités SHVC. Basé sur le
concept de tuile, le deuxième crypto-compression
proposé permet une protection de la vidéo au niveau
d’une Région d’Intérêt (ROI) définie dans le standard
HEVC.

Abstract
The security of image and video data is important for
many applications which require in real-time a high
security level. In the first part of this work, four
chaos-based cryptosystems, flexible, efficient, and
more robust against cryptanalysis, are designed and
realized. The first two cryptosystems are based on the
substitution-permutation network. The substitution is
achieved by a proposed modified Finite Skew Tent
Map (FSTM) to overcome various problems: fixed
point, key space restriction, and limitation of mapping
between plaintext and ciphertext. The third
cryptosystem is a new and efficient structure. It is
based on a binary diffusion layer of pixels, followed by
a bit-permutation layer. The permutation is achieved
by an efficient proposed formulation of the 2-D cat
map. The fourth cryptosystem is faster than the
others, having a very high security level. The
confusion and the diffusion are performed in a single
scan. Its design is based on a partial cryptanalysis
that we performed on the Zhang algorithm. In the
second part, two fast and secure selective
chaos-based crypto-compressions are designed and
realized to secure the High Efficiency Video Coding
(HEVC) and its scalable version. In the first
crypto-compression, a new algorithm is proposed to
define the encryptable bits in the bit stream of the
HEVC and the SHVC systems. The proposed solution
encrypts a set of sensitive SHVC parameters at the
entropy encoder (CABAC), while preserving all SHVC
functionalities. Based on the tile concept, the second
proposed crypto-compression provides protection of
the ROI defined in the standard HEVC.

Mots clés
Cryptosystèmes basés chaos, Systèmes de
crypto-compression conjoints, HEVC, SHVC,
Chiffrement sélectif basé chaos, Performances

Key Words
Chaos-based cryptosystems, Chaos-based joint
crypto-compression systems, HEVC, SHVC,
Chaos-based selective encryption, Performances

L’UNIVERSITÉ NANTES ANGERS LE MANS

	I Chaos-Based Cryptosystems
	Introduction
	Cryptography based chaos
	Thesis contributions

	chaos-based cryptosystems, related work and measurement tools of performances
	Chaos-based cryptosystems, related work
	Confusion and diffusion in chaos
	State of the art
	Fridrich cryptosystems
	A symmetric image encryption scheme based on 3D chaotic cat maps
	Enhanced 1-D Chaotic Key-Based Algorithm for Image Encryption
	Chaotic block ciphers: from theory to practical algorithms
	A fast image encryption and authentication scheme based on chaotic maps
	An image encryption scheme based on new spatiotemporal chaos
	A new chaos-based fast image encryption algorithm
	Zhang et al cryptosystem

	Common and standard security evaluation tools
	Cryptanalysis attacks
	Plain-text sensitivity attack
	Key sensitivity attack
	Histogram analysis
	Correlation analysis
	Information entropy
	Measurement of encryption quality
	Time performance

	First Contribution: Design and Realization of Efficient Chaos-based Cryptosystems
	Cryptosystem-A: Chaos-based substitution permutation network
	Encryption structure
	Substitution layer
	Pre-diffusion
	Permutation layer

	Proposed chaotic generator
	Decryption structure
	Reverse Permutation Layer
	Inverse Pre-diffusion layer
	Inverse Substitution layer

	Cryptosystem-B: Chaos-based SPN with authentication process
	Cryptosystem-C: Binary diffusion layer and a bit-permutation layer cryptosystem
	Description of the encryption process
	Diffusion layer
	Permutation Layer

	Description of the decryption process
	Reverse of the new formulation based on the modified 2-D cat map
	Inverse Diffusion Layer

	Time performance and security analysis
	Performance of the speed of calculations
	Plain-text sensitivity attack
	Key sensitivity attack
	Correlation analysis
	Histogram analysis

	Conclusion

	Second Contribution: Partial Cryptanalysis of Zhang cryptosystem and design of a very fast and secure cryptosystem
	Partial cryptanalysis of the first Zhang cryptosystem
	The first Zhang cryptosystem
	Partial cryptanalysis of the Zhang cryptosystem
	Decreasing the dynamic key space of the whole cryptosystem
	Chosen plaintext attack on the first Zhang cryptosystem
	Combination of brute force and chosen plaintext attacks

	Decreasing the UACI and NPCR values significantly

	Designe and realization of very fast and secure cryptosystems
	General concepts
	General differences of the proposed cryptosystem with the Zhang one
	First proposed cryptosystem
	Encryption scheme of the first proposed cryptosystem
	Decryption scheme of the first proposed cryptosystem
	Analysis of the first proposed cryptosystem
	Dynamic key space analysis of Fridrich, Zhang and our cryptosystems
	Chosen-plaintext attack
	Some specific differences in the diffusion process

	Second proposed cryptosystem
	Finite Skew Tent Map as diffusion layer
	Analysis of the second proposed cryptosystem
	Dynamic key space analysis
	Chosen-plaintext attack

	Time and complexity analysis
	Plain-text sensitivity attack
	Key sensitivity attack
	Correlation analysis
	Histogram analysis

	Example of a real-time application
	Real-time computing
	Issues in conventional real-time computing systems
	The deadline mechanism
	Scheduling framework

	Security in energy harvesting systems
	System model
	The scheduling issue

	Conclusion

	II Joint Crypto-Compression
	Video coding and crypto-compression stat of the art
	Video compression steps
	Prediction
	Transform
	Quantization
	Entropy coding

	H.264/Advance Video Coding (AVC) and scalable extension
	High Efficiency Video Coding (HEVC) standard
	HEVC partitioning
	HEVC Intra prediction
	HEVC Inter prediction
	HEVC transformation and quantization
	CABAC entropy coding

	Video encryption algorithms - related works
	MPEG Video encryption algorithms
	I-frames encryption
	A non-compatible four level of security
	Zig-Zag permutation algorithms
	Change the sign bits or the values of DCT coefficients

	AVC and SVC encryption algorithms
	Transparent encryption techniqes for AVC and SVC
	Digital video scrambling method using Intra prediction mode
	Entropy coding encryption in AVC
	Selective video encryption based on AVC
	Fast protection of the AVC by selective encryption
	Fast protection of AVC by reduced selective encryption of CAVLC
	Design of new unitary transforms for perceptual video encryption

	HEVC encryption algorithms

	Conclusion and discussion

	Third Contribution: Selective encryption algorithms for Video
	Selective video encryption based on chaos system for SHVC
	Encryptable bit
	Chaotic encryption system
	Synchronization problem
	Experimental configuration
	Objective quality and Encryptable Bit (EB)
	Visual quality
	Security analysis
	Encryption Quality
	Edge differential ratio
	Key sensitivity test
	Histogram analysis
	Known plain-text attack
	Brute force attack
	Complexity analysis

	Encryption of ROI in HEVC
	A brief state of the art
	AES in cipher feedback mode
	ROI encryption solutions in the HEVC
	TSE-HEVC EB
	MV restriction in the background tile
	Encryption process based on AES-CFB mode

	Results and analysis
	Experimental configuration
	Results

	Conclusion and discussion

	III Conclusion and Future Works
	Conclusion and Future Work
	Appendix A: Synthèse des travaux réalisés
	Appendix B

