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Abstract 

As the amount of personal data collected by governments, institutions and companies increase, 

centralized data suffer from privacy violations arising from negligence, abusive use, internal and 

external attacks. Therefore, we envision a radically different, fully decentralized vision of 

personal data managed within a Personal Data Server (PDS) where the data is let under the 

control of its owner. The PDS approach resorts to Secure Portable Token (SPT), a new device 

which combines the tamper resistance of a smart card microcontroller with the mass storage 

capacity of NAND Flash. The data will be stored, accessed and its access rights controlled using 

such devices. To support powerful PDS application requirements, a full-fledged DBMS engine 

is embedded in the device. In order to cope with the SPT’s hardware constraints, new database 

techniques have been introduced, based on pure sequential data structures to store the raw data, 

and also indexes, buffers, transaction logs, etc. To reach high scalability limits, the data 

structures must timely be stratified, i.e., reorganized into more efficient (but still sequential) 

data structures.  

    In this novel context, the current thesis addresses the security techniques required to take full 

benefits of such a decentralized vision. Indeed, only the microcontroller of the SPT is secured. 

The database stored on the NAND Flash linked to the controller by a bus, remains outside the 

security perimeter of the microcontroller. As such, it may still suffer from confidentiality and 

integrity attacks. Moreover, PDS also relies on external supporting servers to provide data 

durability, availability, or other global processing functionalities. In the study, we consider the 

supporting servers as Honest-but-Curious, i.e., they correctly provide the services that are 

expected from them (typically serve store, retrieve, and delete data requests), but they may try to 

breach the confidentiality of any data that is stored locally. Therefore, appropriate secure 

protocols must be devised to achieve the services delegated to the supporting servers without 

breach.  

This thesis aims at providing security solutions to ensure the security of personal data by 

relying on cryptography techniques, without incurring large overhead to the existing system.  

More precisely, (i) we propose a set of light-weight, secure crypto-protection building blocks by 

considering hardware constraints and PDS engine’s features, to fight against confidentiality and 

integrity attacks on Flash. (ii) We propose a preliminary design for the communication protocols 

between PDSs and supporting servers, such that the latter can serve requests correctly and 
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securely (store, retrieve or delete data). (iii) Finally, we do a set of experiments with synthetic 

data and SPT simulator to evaluate the impact of the designed building blocks on the 

performance of PDS engine. The results show the effectiveness of our proposals.  

The proposed solutions can be reusable in other (more general) context or provide more 

opportunities for the coming works combining database security and cryptography. For example, 

smart selection enable selections on encrypted data by using traditional encryption algorithms in 

a novel way, thus it opens a different direction for executing queries on encrypted database (e.g., 

traditional centralized DBMS). 
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Résumé en Français  

La quantité de données personnelles collectées par les gouvernements, les institutions et les 

entreprises augmente considérablement. Ces données sont stockées sur des serveurs et sont la 

cible de violations de confidentialité provenant de négligence, utilisation abusive, d’attaques 

internes ou externes. Nous envisageons une approche radicalement différente, une vision 

totalement décentralisée dans laquelle les données personnelles sont gérées au sein de serveurs 

personnel de données (PDS) et laissées sous le contrôle de son propriétaire. L’approche PDS 

s’appuie sur un nouveau composant matériel, le Secure Portable Token (SPT), qui combine un 

microcontrôleur de carte à puce protégé matériellement contre toute attaque avec une mémoire 

de masse de type flash NAND. Les données personnelles sont stockées, rendues disponibles et 

les droits d’accès sont contrôlés à l'aide de tels dispositifs. Un moteur de base de données est 

intégré dans ce dispositif afin de permettre le développement d’applications manipulant ces 

données personnelles. Afin de faire face aux contraintes matérielles du SPT, de nouvelles 

techniques de stockage, d’indexation et d’exécution de requêtes basées uniquement sur des 

structures de données séquentielles ont été proposées. Ces structures doivent être régulièrement 

stratifiées, i.e., réorganisées en structures plus efficaces, toujours séquentielles, afin de passer à 

l’échelle. 

    Dans ce nouveau contexte, cette thèse étudie les techniques de protection nécessaires pour 

sécuriser cette vision décentralisée. En effet, seul le microcontrôleur du SPT est matériellement 

sécurisé. La base de données, stockées sur la Flash NAND, liée au contrôleur par un bus, est 

donc en dehors du périmètre de sécurité et peut être la cible d’attaques sur la confidentialité ou 

l'intégrité des données. Par ailleurs, le PDS s'appuie également sur des serveurs externes de 

support pour offrir la durabilité et la disponibilité des données, ou d'autres traitements globaux. 

Dans cette étude, nous considérons les serveurs de support comme honnêtes-mais-curieux, c'est 

à dire qu’ils fournissent correctement les services attendus (stocker, retrouver ou supprimer des 

données ou des messages), mais qu’ils peuvent tenter d’attaquer les données stockées 

localement. Par conséquent, des protocoles sûrs doivent être conçus. 

Cette thèse vise donc à fournir des solutions pour assurer la sécurité des données personnelles 

en s'appuyant sur des techniques cryptographiques et en limitant les surcoûts générés. Plus 

précisément, (i) nous proposons un ensemble de briques de bases prenant en compte les 

contraintes matérielles et les fonctionnalités du moteur PDS, pour assurer efficacement la 
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confidentialité et l'intégrité des données stockées en mémoire Flash. (ii) Nous proposons des 

protocoles de communication entre les PDS et les serveurs de support permettant d’assurer leurs 

fonctions en toute sécurité ; (iii) Enfin, nous validons les techniques proposées par des 

évaluations avec des données synthétiques et un simulateur de SPT. L’objectif est ici d’évaluer 

l'impact des techniques de protection proposées sur la performance du moteur de PDS. Les 

résultats montrent l'efficacité de nos propositions. 

Les solutions proposées peuvent, sans doute, être réutilisées dans d'autres contextes plus 

généraux ou inspirer de nouvelles études combinant sécurité des bases de données et 

cryptographie. Par exemple, l’algorithme « smart sélection » permet de réaliser des sélections 

directement sur les données chiffrées à l'aide d'algorithmes de chiffrement traditionnels. Il ouvre 

donc une autre direction pour exécuter des requêtes directement sur les données cryptées (dans 

le contexte plus traditionnel d’un SGBD centralisé).  
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Chapter 1 

Introduction 

An increasing amount of personal data is automatically gathered and stored on central servers 

by administrations, hospitals, insurance companies, etc. Citizens have no way to opt-out of these 

applications because governments, public agencies or companies that regulate our daily life 

require them. In the meantime, citizen themselves often count on internet companies to store 

their data (salary forms, invoices, banking statements, etc) making them reliable and highly 

available through internet.   

The benefits of centralizing personal data are unquestionable in terms of data completeness, 

failure resiliency, high availability and even consistency of security polices. But these benefits 

must be weighted carefully against the privacy risks of centralization. There are many examples 

of privacy violations arising from negligence, abusive use, internal attacks, external attacks 

[CSI11], and even the most secured servers are not spared [DBLoss, Wes06]. Intensified 

concerns about security and privacy of data have caused the establishment of new legislations 

and industry standards such as Health Insurance Portability and Accountability Act (HIPAA), 

Sarbanes-Oxley Act (SOX), Gramm-Leach-Bliley Act (GLBA) and Cardholder Information 

Security Program (CISP).  

We envision a radically different, fully decentralized vision, where personal data is managed 

by a Personal Data Server (PDS). The PDS approach builds upon the emergence of new 

hardware devices called Secure Portable Tokens (SPT), as shown in Figure 1. Whatever their 

form factor (SIM card, secure USB stick, wireless secure dongle), SPTs combine the tamper 

resistance of smart card microcontrollers with the storage capacity of NAND Flash chips. The 

secure microcontroller is equipped with a 32-bit RISC processor (clocked at about 50 MHz 

today), a tiny static RAM (about 64 KB today) and a small internal stable storage (about 1 MB 

today). The internal stable storage inherits the tamper resistance of the microcontroller and can 

store sensitive metadata (securely). However, the mass NAND storage is outside the security 

perimeter provided by the microcontroller and connects the latter via bus. This unprecedented 

conjunction of portability, secure processing and Gigabytes-sized storage holds the promise of a 

real breakthrough in the secure management of personal data. Moreover, a SPT capable of 

acquiring, storing, organizing, querying and sharing personal data under the holder’s control 

would be a step forward in translating the PDS vision into a reality.  



 15 

FLASH 
(GB size)

RAM

FLASH 
NOR

CPU Crypto

PDS generic code

Relational DBMS

Operating System

Certified Encrypted

Personal
Database

SIM card Smart USB token Contactless token Smart  Badge  
 

Figure 1. Secure Portable Token  

Privacy and security being the ground of that vision, we have to endow the global PDS 

architecture with appropriate security features. This manuscript precisely focuses on the design 

of crypto-protection schemes on PDS and secure protocols to enforce the security of 

externalized data. Although the proposed solutions are suitable in the particular context of the 

SPT, endowed with a tamper-resistance microcontroller, we consider that some of the proposals 

can be extended to more general contexts (e.g. traditional DBMS), and provide more 

opportunities for the coming works combining database security and cryptography.  

In this chapter, we first sketch the relevant aspects of the PDS environment, for our security 

study. Then we give the precise objectives of the thesis. Third, we present the main difficulties 

that must be faced to provide a secure implementation of those PDS processes. Finally, we give 

the main contributions of this thesis and the outline of this manuscript.  

1 Context of the study: the PDS environment 

The objective of a PDS is to provide powerful data management capabilities (e.g. acquiring, 

organizing, querying and sharing etc) to support versatile applications (e.g. medical health care, 

epidemiological study, financial help and budget optimization), hence full-fledged embedded 

DBMS engine (called PDS engine hereafter) are required as well.  

    Based on the SPT performance parameters provided by its manufacturer (see Chapter 6), IO 

cost is dominant over cryptography (e.g., AES algorithm is implemented in hardware and is 

highly efficient compared to the cost for read/write IOs). Therefore, we first design an IO 
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optimized PDS engine, and then consider adding cryptography on the existing engine without 

changing its IO patterns. In the following, we introduce the design principles followed by the 

PDS engine and postpone the discussion on the crypto-protection design to Section 2.  

    The intrinsic hardware constraints exhibited by the SPT, especially the limited RAM size and 

particularities of NAND Flash, pose great challenges for the PDS engine design. Indeed, to 

enable computing SQL queries on GBs of data with tiny RAM, the PDS engine has to rely on a 

massively indexed model. Such a model generates fine-grain random writes at insertion time 

(typically, to update all the indexes). Unfortunately, random writes badly suits the NAND Flash 

features. To break the implication between massively indexed databases and fine-grain random 

writes, and make the global design consistent, we have proposed the database serialization 

paradigm. As its name suggests, this paradigm consists of organizing the complete database 

(data, indexes, logs and buffers) sequentially. As a result, random writes and their negative side 

effects on Flash write cost are simply precluded.  

However, a purely sequential database organization scales badly. To cope with this issue, we 

have proposed the database stratification paradigm. The objective is to timely reorganize the 

database, notably to transform non clustered sequential indexes into more efficient clustered 

ones, this without abandoning the benefit of database serialization in terms of random writes.  

In the PDS vision, other components, called supporting servers, are required, to restore the 

common database features that a pure SPT based solution could not offer. Typically, a SPT can 

be easily lost, stolen or destructed, and has an unpredictable connection activity. The PDS 

approach resorts to the external supporting servers to provide traditional DBMS features like 

availability, durability and global processing functionalities. However, in the PDS context, we 

consider that the supporting servers are Honest-but-Curious, and as such correctly implement 

the service they are supposed to offer, but may try to obtain personal data or infer participant 

(SPT) identities. Consequently, cryptographic techniques are also needed to ensure the 

supporting servers function correctly and securely.  

2 Objectives: providing security for PDS data and communication  

The first objective of the thesis is to protect the personal data stored and managed within the 

SPT. While the SPT is endowed with a secure, tamper resistant microcontroller, the NAND 

Flash memory used to store the database is external to the microcontroller and as such does not 
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inherit from its tamper resistance. Hence, Flash resident data may suffer from confidentiality 

and integrity attacks. In particular, we consider that a SPT holder may become an attacker (e.g., 

SPT can be stolen or owners may corrupt their own data, for example to self prescribe drugs). 

The following attacks may be conducted: (1) spy the Flash memory and deduce unauthorized 

information (i.e., snooping attack), (2) replay old-version of the data to accomplish undue 

objectives (e.g., get refunded several times), (3) substitute valid data items with other valid ones 

(e.g., change the name of a valid drug with another one), (4) modify the data content (e.g., forge 

new prescriptions). Cryptographic techniques have to be used to detect any tampering of the 

data.  

The second objective is to build secure communication protocols between PDSs and supporting 

servers. Since PDS have to externalize some personal data to curious supporting servers, thus 

cryptographic techniques have to be used to ensure the security of externalized data and 

communications between them, such that (a) supporting servers could serve data store, retrieve 

and delete request correctly, (b) supporting servers have no knowledge about the content of 

externalized data nor participant (PDS) identities.  

3 Challenges 

The main security advantage of the SPT is the tamper resistance of the embedded 

microcontroller. Indeed, it makes the computing environment highly secure, meaning that 

attackers have no way to spy or tamper the data resident in the microcontroller’s secure memory 

(RAM or NOR Flash), easing key management which is considered as a tricky task in many 

contexts. Moreover, internal attacks are precluded as well, given that the PDS engine can be 

certified and is auto-administered.  

Many difficulties arise when trying to extend the security perimeter of the microcontroller, 

mainly due to the intrinsic hardware constraints of the SPT and to the specific hypotheses of the 

PDS environment, listed below:   

(1) Few secure non-volatile storage (i.e., NOR) on chip. This constraint mainly causes 

challenges for version number storage: in a PDS, to fight against replay attacks, we have to 

maintain the association between each data item and its version number, stored in secure 

memory. Due to this constraint, the number of versions must to be maintained must be 

kept small.  
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(2) Database on NAND Flash memory. NAND Flash constraints, and especially its poor 

support for random write patterns, strongly impact security management. For instance, 

considering version storage, to reduce the version storage space, the state-of-the-art 

methods usually structure versions as a tree and only store the root of tree in the secure 

memory [Mer89] [ECL+07]. However, these methods generate fine-grain random writes 

which are very costly in NAND Flash (versus sequential writes) [BJB+09]. Moreover, at 

the time of retrieving versions to check integrity, the tree has to be traversed from the leaf 

level up to the root, hence incurring access latency and degrading query processing 

performance.  

(3) Fine-grain data random access. This access pattern comes from the fact that the embedded 

database design relies on a massive indexing scheme. The size of accessed data can thus be 

very small (e.g., in the order of pointer size, such as 4 bytes), and guaranteeing their 

integrity efficiently becomes a challenging problem. Indeed, traditional integrity methods 

based on cryptographic Hash functions operating at the granularity of large chunks, 

typically 512 bits. In addition, such methods also require storing an additional fixed size 

tag (e.g. 16 bytes hash value) along with the data item causing a storage penalty.  

(4) Honest-but-Curious supporting servers. Unlike in the traditional centralized approaches, 

we consider that supporting servers can threaten the confidentiality of the data and the 

anonymity of the participant PDSs. Therefore, we have to guarantee that: (a) the 

communications between PDSs and supporting servers are done in anonymous way, and (b) 

the supporting servers answer store, retrieve and delete requests without being able to learn 

any personal information nor the identity of any participant PDS.  

(5) Limited set of cryptographic primitives. SPTs (and more generally secure microcontrollers) 

typically include hardware implementation of an encryption algorithm and software 

implementations of cryptographic hash functions. For example, only AES algorithm is 

available in current platforms, due to the fact that it performs well on variety of settings, 

including 8-bit smart card [NES03]. Hash functions, implemented in software are 

extremely slow. Even hash functions, implemented in hardware, may still perform worse 

than AES-based constructions, according the numbers reported in [DHV03, NES03], 

because of its radical different implementation way. We thus consider that these 

cryptographic limitations will remain valid in the foreseeable future. Consequently, the 

design scope of crypto-protection schemes is limited and some state-of-the-art 

cryptographic techniques are precluded (e.g., exotic encryption algorithms, privacy 

homomorphism). 
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(6) Limited computing power on SPT. This intrinsic resource limitation challenges the design 

and enforcement of security solutions. The proposed solutions should take advantage of 

the IO access patterns exhibited by the PDS engine to reduce the incurred cryptography 

overhead as much as possible, such that they can cope with the limited computing power 

of SPTs.  

4 Contributions  

The objective of this thesis is to solve security problems lying in the PDS approach by resorting 

to cryptography, and cope with the challenges mentioned above. In summary, the contributions 

made in this thesis are the following:   

(1) We propose a set of lightweight crypto-protection building blocks, considering limited 

resources and hardware constraints. These building blocks can be combined and used 

together. They can achieve expected security levels, such that any attack considered in our 

threat model can be detected. In addition, we expect these building blocks to be reusable in 

other (more general) contexts and provide more opportunities for the coming works 

combining database security and cryptography. 

(2) We propose the preliminary designs for main communication protocols between PDSs and 

supporting servers, to ensure the latter could serve data store, retrieve and delete request 

correctly and securely (i.e., without leaking any information about the exchanged data nor 

participant identities), and restore availability, durability and global processing 

functionalities which are expected from PDS approach. More precisely, we give the 

protocols for exchanging messages and secure deletion, which are the basis to implement 

expected functionalities. In this manuscript, we do not go into the implementation levels 

on this aspect, and only provide sound solutions to validate the feasibility of PDS approach 

in global view. As a result, further work is required in this direction.   

(3) We enforce designed crypto-protection building blocks on existing PDS engine. 

Considering the features of engine data, we choose adequate crypto-protection building 

blocks for each of them, avoiding incurring large cryptography overhead and to change 

existing PDS engine designs.  To avoid the redundancy, in this thesis, we only focus on 

some representative data structures to illustrate such enforcement.  

(4) We conduct broad experiments both with synthetic data and SPT simulator, compare our 

security solutions with other traditional methods, and show their effectiveness and analyze 

their impact to the performance of existing PDS engine. According to the experiments, our 
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proposals have significant advantages considering crypto overhead, which gives promising 

prospects for extending our solutions to more general contexts. Moreover, the performance 

numbers obtained from SPT simulator indicate that the incurred cryptography overhead to 

the system is acceptable, and does not violate PDS user patience expectations.   

5 Outline 

This study is at the crossroad of two domains: cryptography and databases. Chapter 2 gives the 

necessary background knowledge about cryptography, to make the contributions done in this 

manuscript understandable. Chapter 3 introduces the basic technologies and related works done 

for the database encryption and integrity, which is partially based on our published book chapter 

[BoG09]. Chapter 4 focuses on the introduction on the PDS approach and on the design of the 

embedded PDS engine. It presents the serialization and stratification paradigms, the indexing 

and query processing techniques, and highlights the specificity of the PDS context in terms of 

security. This chapter is based on the published paper at VLDB’10 [AAB+10] and the working 

paper [ABG+11]. In Chapter 5, we address the security problems lying in the PDS approach. 

We give our design of crypto-protection building blocks and exemplify their enforcement on the 

data structures of the embedded PDS engine. In Chapter 6, through a set of experiments, we 

compare our solutions with traditional methods and show their significant advantages. Moreover, 

we measure the system performance of the whole PDS engine and analyze the impact of 

cryptography globally. This chapter is partially based on the working paper [ABG+11]. Finally, 

Chapter 7 concludes the manuscript and opens some new research perspectives.  
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Chapter 2 

Cryptography Background 

In this chapter, we provide the required background knowledge to help making our proposal 

understandable. In the PDS approach, both symmetric and asymmetric cryptography are used. 

Their characteristics and main techniques are addressed in the first two sections respectively. In 

Section 3, we address data integrity techniques, used to detect malicious tampering on data and 

guarantee its correctness. Note that those techniques share similarities with symmetric 

cryptography. In the same section, we also introduce a specific encryption scheme called 

authenticated encryption, which provides confidentiality and integrity guarantees 

simultaneously.  

1 Symmetric Key Cryptography 

1.1 Introduction  

Symmetric key cryptosystems, also known as single key, shared key or secret key 

cryptosystems, use identical (or trivially related, i.e., related in an easily computable way) 

cryptographic keys for both encryption and decryption.  Figure 2 shows the model for such 

cryptosystems. The secret keys K1 and K2 can be hold by two distinct parties (e.g., Bob and 

Alice), or hold by a unique party. In our context, symmetric key cryptography is mainly used for 

protecting embedded data stored on PDS. The keys are confined in the SPT, and are never 

exposed to the external world. Hence, even the SPT’s owner may not have access to encryption 

keys.  

Symmetric key ciphers include block ciphers, stream ciphers, cryptographic hash functions 

and Message Authentication Codes (MAC). In this section, we focus on block ciphers and 

stream ciphers, and postpone the discussion on the last two (used for integrity purpose) to 

Section 3.  
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Figure 2. Secret Key Cryptography 

1.2 Stream Cipher vs. Block Cipher 

In a stream cipher, an arbitrary length of key stream is created to match the size of a plaintext 

for encryption. It is combined with the plaintext (e.g., usually use XOR) on byte or bit 

granularity, as shown in Figure 3. The decryption process (not shown in the figure) is the 

opposite one. 

    A block cipher operates on fixed-length groups of digits, called blocks. When targeting 

longer size of data, the data will be divided into individual blocks for encryption. If the last 

block is smaller than the defined block length (e.g., 64 bits or 128 bits, depending on the 

algorithm), the block needs to be padded before encryption to make its length up to a multiple of 

the block size. In addition, the encryption function must be one-to-one (i.e., invertible) to allow 

unique decryption. In block ciphers, such unvarying transformation depends on the 

cryptographic key and encryption algorithm. A block cipher acts as a fundamental building 

block, which can be used to construct more versatile cryptographic primitives, such as 

pseudorandom number generators, MACs and hash functions [MOV97]. Moreover, using 

specific modes of operation (i.e., the CTR mode), a block cipher can be used to implement a 

stream cipher (see Section 1.3).  
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   Stream ciphers are usually faster in hardware and have less hardware complexity than block 

ciphers. Moreover, they do not have error propagation (or very limited) since each character or 

digit is processed individually. This gives advantages when processing corrupted data (e.g., 

transmission errors) since corrupted parts does not influence uncorrupted ones [MOV97]. In 

addition, stream ciphers do not require padding data to make its length satisfy certain conditions 

(as a consequence they do not cause storage expansion after encryption).  
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Figure 3. Stream Cipher and Block Cipher 

     For stream ciphers, the key stream is generated independently from the plaintext, which is 

only used for the final exclusive-or operation. Hence, the stream cipher operations can be 

performed in advance, allowing the final step to be performed in parallel once the plaintext 

becomes available (similar for decryption) [MOV97].  

In contrast to stream ciphers, block ciphers operate at block granularity, and data often need 

to be padded before encryption. Moreover, the encryption of one block may be affected by the 

encryption of other blocks depending on the mode of operation which is chosen. This enables 

avoiding some security weakness due to repetitive patterns (see Section 1.3). Thus any bits 

change in a certain plaintext block may affect the subsequent ciphertext after encryption (e.g., 

CBC mode).  
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Numerous block ciphers have been proposed and published, and some have been 

standardized like DES [DES], Triple-DES [TDES] and AES [NIS01] algorithms. In our context, 

only AES algorithm is available on SPT, which constrains the proposal made in this thesis. 

Therefore, we only introduce the AES algorithm in this manuscript. We refer the reader to the 

literature [MOV97] for other algorithms.   

In 1997, the National Institute of Standards and Technology (NIST) abandoned their support 

for DES and launched a competition to choose its successor known as Advanced Encryption 

Standard (AES). In 2001, Rijndael algorithm was selected as AES, among other four AES 

finalists including RC6, Serpent, MARS and Twofish. AES standard includes three block 

ciphers. Each cipher has a 128-bit block size, with key sizes of 128 bits, 192 bits and 256 bits 

respectively. AES has been extensively analyzed and widely used worldwide, and is considered 

computationally secure. Moreover, AES performs well on a wide variety of settings, from 8-bit 

smart cards to high performance computers. This important fact leads the SPT manufacturers 

(e.g., Gemalto) to choose AES to be implemented within secure microcontrollers.   

1.3 Modes of Operation for Block Ciphers 

As mentioned before, for block ciphers, if the message is longer than a single block, it is divided 

into a set of blocks which are then encrypted one by one. The way to chain successive blocks 

together (called mode of operation) has an impact on the encryption security. For instance, 

encrypting identical plaintext blocks with a same key may lead to identical ciphertext blocks. 

Thus the mode of operation needs to be carefully chosen when using a block cipher in a 

cryptosystem.  

    The classical modes of operation can be classified into two categories: block modes and 

stream modes. Block modes process the message by blocks, such as Electronic Codebook Mode 

(ECB) and Cipher Block Chaining Mode (CBC), while stream modes process the message by 

bit or byte stream like Cipher FeedBack Mode (CFB), Counter Mode (CTR) and Output 

FeedBack Mode (OFB).   

    In this section, we introduce some modes of operation which are available on SPTs (including 

ECB, CBC and CTR). We analyze their characteristics and potential weaknesses. Note that we 

only address the encryption process in the following since decryption can be easily deduced.  

1.3.1 ECB mode 
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Electronic Codebook (called ECB) is the simplest mode of operation. The message is divided 

into blocks and each block is processed separately, such that each block is independent of all 

others (see Figure 4).  
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Figure 4. Electronic Codebook Mode (ECB) 

The main drawback of ECB mode is that repetitions in the plaintext can be reflected in the 

ciphertext, which would open a door to statistical attacks. This problem becomes even more 

serious for specific kind of data like particular images [Sch] or messages that change very little, 

since code-book analysis becomes feasible. Consequently, ECB mode is useful in the cases 

where each block is unique (without repetition).  

1.3.2 CBC mode 

In the CBC mode, cipher blocks are chained with plaintext during encryption (see Figure 5). 

Consequently, each ciphertext block is dependent on all the blocks encrypted before it. Thus, 

any change in the plaintext blocks affects the corresponding ciphertext blocks but also the 

subsequent ciphertext blocks.   

In addition, an Initialization Vector (IV) is required to encrypt the first block. The IV can be 

public without hurting the security of the encryption, but it should be unique if several messages 

are encrypted using the same key (to avoid generating identical ciphertext blocks when 

encrypting identical plaintext blocks).  
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Figure 5. Cipher Block Chaining Mode (CBC) 

1.3.3 CTR mode 

With stream modes like CTR, block ciphers can be used as stream ciphers. As shown in Figure 

6, plaintext blocks are only used at final step to perform an exclusive-or with the ciphered 

counter blocks. Thus, the counter blocks can be encrypted in advance or in parallel.  

 
 

Figure 6. Counter Mode (CTR) 

In CTR mode, each counter block must be unique, to avoid exhibiting security weaknesses 

which could be exploited by attackers. For example, if we consider identical counters, two 

plaintext blocks M and M’ would be encrypted into two different ciphertext blocks C and C’, 

but the whole would verify C ⊕ C’ = M ⊕ M’. This could be used by attackers to deduce 

information about plaintext.  
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2 Public Key Cryptography 

2.1 Introduction 

A significant disadvantage of symmetric key cryptography lies in the difficulty of managing the 

keys. Typically, each communicating party exchanging data must share a common key. 

Therefore, each party needs to maintain a huge number of keys to communicate with others. 

This number of keys increases with the number of participants. In addition, since two parties 

have the same knowledge about the key, there is no way to prevent one party (e.g., receiver) to 

forge a message and claim that the message was sent by another party (e.g., sender). In order to 

solve such issues, in 1976, Whitfield Diffie and Martin Hellman proposed the notion of public 

key (called asymmetric key as well) cryptography [DiH76], in which each entity has two 

different but mathematically related keys: a public key and a private key. However, it is 

computationally infeasible to compute the private key given the public one. The public key 

defines an encryption transformation, while the private key defines the associated decryption 

transformation [MOV97]. 

Figure 7 shows the model of public key cryptography. Alice intends to send a message to 

Bob. She obtains an authentic copy of Bob’s public key which is publicly known. She uses this 

key to encrypt the message and sends it to Bob. Once Bob receives the encrypted message from 

Alice, he can obtain the original message using his private key.  

Public key algorithms can be divided into three important classes: Public Key Distribution 

Schemes (PKDS), Public Key Encryption Schemes (PKS) and Digital Signatures. In PKDS, 

public key algorithms are used to exchange securely a key. This (secret) key can then be used 

(as a session key) for starting a communication using the secret-key scheme (e.g., the Diffie–

Hellman key exchange protocol, see next section). The above example (with Alice and Bob) 

explains the PKS scheme, where public key algorithms are used to encrypt messages. Regarding 

digital signatures, public key algorithms are used to create a digital signature. More precisely, 

the private key creates signatures while the public key verifies signatures.  
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Figure 7.  Model of Public Key Cryptography 

Public key cryptography eases the key management problem, and provides versatile 

applications as mentioned above. However, since public key algorithms are usually based on the 

computational complexity of “hard” problems which are often from number theory (e.g., RSA 

[RSA78] and elliptic curve cryptography [ECC]), they involve computationally expensive 

techniques such as modular multiplication and exponentiation. As a result, public key 

algorithms are slower than symmetric key algorithms. Thus, they are commonly used with 

hybrid cryptosystems, in which a symmetric key is generated by one party and used for 

encrypting the message, while a public-key algorithm is used to encrypt the symmetric key 

which is transmitted to the receiver along with the message. As a result, such cryptosystems 

inherit the advantages from both schemes. 

In the following, we will introduce two techniques based on public key cryptography, 

including Diffie–Hellman key exchange protocol and onion routing protocol, which are very 

relevant to our problems.  

2.2 Diffie-Hellman Key Exchange  

As a typical key distribution scheme, Diffie-Hellman key exchange protocol [DiH76] allows 

two parties that have no prior knowledge of each other to establish a shared secret key over an 
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un-trusted network, and the shared key could be used to ensure the security for subsequent 

communications.  

Figure 8 illustrates this protocol. Let assume two parties, Alice and Bob, who intend to 

exchange a secret key KAB over an insecure channel. This requires two system-wide constants 

named ρ and α, ρ being a very large prime number (e.g., about 200 digits), and α being a small 

integer. Note that these two numbers are only used after obtaining agreements from both two 

parties.  
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Step 2: Sends yB = αXb mod ρ

Step 2: Sends yA = αXa mod ρ

Shared Key KAB
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Step 3: Computes 
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= αXaXb mod ρ

 
 

Figure 8. Diffie-Hellman Key Exchange Protocol 

The protocol works in three main steps. (1) Alice and Bob choose a secret random number Xa 

and Xb respectively. (2) Alice sends Bob yA= αXa mod ρ, while Bob sends Alice yB =αXb mod ρ. 

Note that yA and yB are not encrypted, thus they can be observed by eavesdroppers. (3) Once 

Bob receives yA, he computes KAB = (yA)Xb mod ρ, which equals to αXaXb mod ρ. On the other 

side, once Alice receives yB, she computes KAB = (yB)Xa mod ρ = αXaXb mod ρ. As a result, a 

shared key KAB is established between Alice and Bob, while attackers can not deduce it since 

they have no knowledge about Xa and Xb, and because the discrete log ρb  is hard.  

2.3 Onion Routing  

The idea of Onion Routing is to preserve the anonymity for senders and recipients of an 

encrypted message while the message traverses over an un-trusted network. Onion Routing 
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follows the principle of Chaum’s mix cascades [Cha81]. Indeed, the messages are sent via a 

sequence of Onion Routers (OR) from sender to receiver, and each intermediary router re-routes 

the message in an unpredictable path.  
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Figure 9. Onion Routing Protocol 

Onion Routing is implemented based on public key cryptography, as shown in Figure 9. 

Suppose the sender Alice intends to send message to Bob. The message is encrypted repeatedly 

by the sender, to obtain what is called an onion (see “Normal Onion” in Figure 9), and 

transmitted via three ORs (e.g., OR A, OR B and OR C). Note that before sending the message, 

ORs have been selected and ordered by the sender Alice to form the communication chain or 

circuit.  Consequently, Alice has encrypted the message using the public key of each chosen OR 

to build necessary layers of encryption. These layers have been successively constructed, in 

reverse order of ORs in the sending path. Once an OR receives the message, it peels away a 

layer of encryption by using its private key and obtains the routing information to forward the 

message to the next OR. The last OR in the chain (e.g., OR C) peels off the last layer of 

encryption and delivers the original message to Bob. For Bob’s response, a reply onion is 

generated in a similar way.  

The advantage of onion routing is that it is not necessary to trust each intermediary OR. If a 

given OR in the communication chain is compromised, the communication can be completed 

and remains anonymous since each OR in the chain is only aware of its neighboring ORs (i.e., 

the preceding and next ones) during transmission. However, it cannot provide ultimate 
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anonymity since attackers can still observe which individuals are actually sending and receiving 

messages. In practice, the anonymity network Tor [DMS04] is the predominant technology that 

employs onion routing. It provides a flexible, low overhead, easily accessible and traffic 

analysis resistant infrastructure [GRS99].  

3 Authentication and Integrity  

3.1 Introduction  

Authentication and integrity techniques are used to detect tampering of (encrypted) messages or 

data. Techniques based on public key algorithms (e.g., digital signature) detect tampering with 

extra benefits (e.g., non repudiation). However, public key technology performs slowly, since it 

involves computationally expensive techniques as mentioned before, thus incurring expensive 

computation overheads. As a result, techniques based on symmetric key algorithms are more 

commonly used for data authentication and integrity. Typically, a message digest is computed 

from the original message with the secret key (the sender and receiver use the same key) and 

attached to the message. At reception time, the recipient computes the digest of the message 

(using the secret key). He compares it with the attached digest and deduces if the message has 

been tampered or not. When the sender and receiver are the same entity (e.g., a user protecting 

data at rest), the process is similar. 

    In this section, we introduce basic techniques used to authenticate data, like cryptographic 

hash function (e.g., MD5 and SHA-1), message authentication code, and a technique called 

Authenticated Encryption (AE) that provides confidentiality (i.e., encryption) and integrity (i.e., 

authentication) guarantees at same time. 

3.2 Cryptographic Hash Functions 

A cryptographic hash function is a deterministic procedure that takes in input a variable size 

data and returns a fixed size bit string called a cryptographic hash value (or digest). The hash 

function is one-way, meaning that given a cryptographic hash function H and a cryptographic 

hash value h, it is computationally infeasible to find a message M such that H(M) = h. This 

property is called pre-image resistance. In order to resist all known types of cryptanalytic 

attacks, it also has additional properties including: 
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• Second pre-image resistance (also called weak collision resistance). It is computationally 

infeasible to find any second input (e.g., message M’) which has the same hash value as a 

given input (e.g., message M), i.e. H(M) = H(M’). This property is sometimes referred as 

weak collision resistance.  

• Collision resistance (also called strong collision resistance). It is computationally infeasible 

to find a couple of distinct inputs (e.g. messages M and M’) which lead to the same hash 

value, i.e. H(M) = H(M’). Such a couple is called a cryptographic hash collision.  

The two most commonly used cryptographic hash functions include Message Digest 5 (MD5) 

and Secure Hash Algorithm 1 (SHA-1). Both hash functions process the data by blocks of 512 

bits, the size of the hash function output being 160 bits for SHA-1 and 128 bits for MD5. 

Regarding their security, MD5 has been broken, successful attack on SHA-1 has been reported 

as well in 2005 [WYY05, Sch05]. Consequently, more advanced members in SHA family (e.g. 

SHA-2) are required to provide better security level. To ensure the long term robustness of 

applications using hash functions, there is a competition for SHA-3 as the replacement of SHA-

2, and it will become FIPS standard in 2012 [SHA3].  

3.3 Message Authentication Code 

Cryptographic (un-keyed) hash functions used for authentication are called Modification 

Detection Codes (MDC). To achieve the authentication purpose, we have to encrypt the 

generated hash values. Otherwise, we face two problems: (1) identical messages would generate 

identical hash values; and (2) attackers could tamper the original message and generate a valid 

hash value for the forged message (cryptographic hash functions are publicly known).  

Keyed hash functions used for authentication purpose are called Message Authentication 

Codes (MAC). They take a secret key and an arbitrary-length message as input, and produce a 

fixed-size output (called authentication tag or MAC value). The same output cannot be 

produced without knowledge of the key. MAC algorithms can be based on block ciphers like 

OMAC [IwK03], CBC-MAC [BKR94] and PMAC [BlR02], or based on cryptographic hash 

functions like HMAC [HMAC]. In current SPT platform, hash functions are implemented in 

software and extremely slow, and only AES algorithms are available, thus we have to resort to 

block cipher (e.g., AES algorithm) based MAC algorithms. Moreover, only ECB, CBC and 

CTR modes of operation are supported. As a result, we choose CBC-MAC algorithm as the 

authentication method. In CBC-MAC, the message is encrypted with some block cipher (e.g., 
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AES) using the CBC mode. Such encryption produces a chain of blocks such that each block 

depends on the encryption of the previous blocks, and the last encrypted block is used as 

authentication tag. The dependency property of the CBC mode ensures that any change in the 

message will cause change in the tag. In our implementation, we use a variation called XCBC-

MAC to resist to message concatenation attacks [FrH03, Anc04].  

The method used to generate the MAC is an interesting topic. In practice, the data need to be 

encrypted and authenticated. There exist three ways to build the MAC of a data: (1) Encrypt-

and-MAC: the plaintext is encrypted; the MAC is also computed using the plaintext (2) MAC-

then-Encrypt: MAC is first built using the plaintext; then the MAC and the plaintext are 

encrypted together to produce the ciphertext. (3) Encrypt-then-MAC: the plaintext is first 

encrypted; then the MAC is built on the ciphertext. The first approach (Encrypt-and-MAC) 

exhibits several security weaknesses [BeN00]. The second one (MAC-then-Encrypt) requires 

decrypting the message before checking the MAC value which incurs extra cryptographic costs. 

The third approach (Encrypt-then-MAC) seems thus the most interesting one for our works. It is 

considered secure in our context and the integrity checking can be done in a straightforward 

way [Anc04].   

3.4 Authenticated Encryption Algorithms  

In order to provide confidentiality and integrity guarantees for protected data, a simple and 

straightforward way is to glue encryption and MAC, as stated above. However, this would 

require two independent keys, one for the encryption and one for building the MAC. Moreover, 

it would require two passes of processing on the data, which would increase the cost (the sum of 

the encryption cost and the MAC cost). 

    Authenticated Encryption (AE) algorithms provide confidentiality and integrity 

simultaneously, based on a secret-key.  Some AE algorithms perform a single-pass on the 

message, but are protected by patents [Anc04]. AE algorithms requiring two passes of 

processing (one for encryption, another one authentication) have been developed [Dwo04, 

Dwo07]. Their advantage over a basic composition of encryption and MAC is that a single 

cryptographic key is sufficient for the entire scheme, instead of two independent keys (this 

enables saving key initialization costs). We refer the readers to [BeN00, RBB+01] for more 

details. 
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Chapter 3 

Database Encryption and State-of-the-Art 

Database security encompasses three main properties: confidentiality, integrity and availability. 

Roughly speaking, the confidentiality property enforces predefined restrictions while accessing 

the protected data, thus preventing disclosure to unauthorized persons. The integrity property 

guarantees that the data cannot be corrupted in an invisible way (not refer to complying with 

defined integrity constraints). Finally, the availability property ensures timely and reliable 

access to the database.  

    To preserve data confidentiality, enforcing access control policies defined on the database 

management system (DBMS) is a prevailing method. An access control policy mainly includes 

a set of authorizations which takes different forms depending on the underlying data model (e.g., 

relational, XML). Several models can be followed to manage the authorizations, like the well 

known Discretionary Access Control (DAC), Role-Based Access Control (RBAC) and 

Mandatory Access Control (MAC) [Les08]. Whatever the access control model, the 

authorizations enforced by the database server can be bypassed in a number of ways. For 

example, an intruder may infiltrate the information system and mine the database footprint on 

disk. Another source of threats comes from the fact that many databases today are outsourced to 

Database Service Providers (DSP). In that case, data owners have no other choice than trusting 

DSPs arguing that their systems are fully secured and their employees are beyond any suspicion, 

an assumption frequently denied by facts [HIL+02a]. Finally, a database administrator (DBA) 

has enough privileges to tamper the access control definition and to spy on the DBMS behavior.  

    With the spirit of an old and important principle called defense in depth (i.e., layering 

defenses such that attackers must get through layer after layer of defense), the resort to 

cryptographic techniques to complement and reinforce the access control has received much 

attention from the database community [HIL+02, AKS+02, IBM07, Hsu08, Ora09] during the 

last decade. The purpose of database encryption is to ensure the database opacity by keeping the 

information hidden to any unauthorized persons (e.g., intruders). Even if attackers get through 

the firewall and bypass access control policies, they still need the encryption keys to decrypt 

data.  
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    Encryption can provide strong security for data at rest, but developing a database encryption 

strategy must take many factors into consideration. For example, where should the encryption 

be performed, in the storage layer, in the database, or in the application layer where the data has 

been produced? How much data should be encrypted to provide adequate security? What data 

could be kept in clear without threatening secrecy? What should be the encryption algorithm 

and mode of operation to satisfy security as well as performance requirements? Who should 

have access to the encryption keys? How to minimize the impact of database encryption on 

performance?   

    In this chapter, we do not discuss all potential solutions to answer the questions above. 

However, we provide some knowledge on encryption enforcement in traditional databases to 

help introducing the state-of-the-art techniques and the new contributions made in this 

manuscript. Section 1 provides preliminary knowledge. In this section, we first describe 

possible options for encryption enforcement, encryption algorithms and modes of operation. 

Next, we address the key management issue, which plays a critical role in securing database. 

Then, we list encryption support in well-known DBMSs and relevant products. Finally, we 

describe database encryption strategies based on Hardware Security Modules (HSM). In a 

second section, we give an overview of the previous works conducted in the database 

community about database encryption and integrity techniques.  

1 Database Encryption  

1.1 Encryption Levels  

Storage-level encryption amounts to encrypt data in the storage subsystem and thus protects the 

data at rest (e.g., from storage media theft). It is well suited for encrypting files or entire 

directories in an operating system context. From a database perspective, storage-level 

encryption has the advantage to be transparent, thus avoiding any change to existing 

applications. On the other side, since the storage subsystem has no knowledge of database 

objects and structure, the encryption strategy cannot be related with user privileges (e.g., using 

distinct encryption keys for distinct users) nor to data sensitivity. Thus, selective encryption (i.e., 

encrypting only portions of the database in order to decrease the encryption overhead) is limited 

to the file granularity. Moreover, selectively encrypting files containing sensitive data is risky 

since it must be ensured that no replica of this sensitive data remains somewhere in the clear 

(e.g., in log files, temporary files, etc).  
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    Database-level encryption allows securing the data as it is inserted to or retrieved from the 

database. The encryption strategy can thus be part of the database design and can be related with 

data sensitivity and/or user privileges. Selective encryption is possible and can be done at 

various granularities, such as tables, columns and rows. It can even be related with some logical 

conditions (e.g., encrypt salaries greater than 10K€/month). Depending on the level of 

integration of the encryption feature and the DBMS, the encryption process may incur some 

changes to applications. Moreover, it may cause DBMS performance degradation since 

encryption generally forbids the use of indexes on encrypted data. Indeed, unless using specific 

encryption algorithms or mode of operation (e.g., order preserving encryption, ECB mode of 

operation preserving equality), indexing encrypted data is useless.  

    For both strategies, data is decrypted on the database server at run time. Thus, the encryption 

keys must be transmitted or kept with the encrypted data on the server side, thereby providing a 

limited protection against the server administrator or any intruder usurping the administrator 

identity. Indeed, attackers could spy the memory and discover encryption keys or plaintext data.   

    Application-level encryption moves the encryption/decryption process to the applications that 

generate the data. Encryption being performed before introducing the data into the system, the 

data is then sent encrypted, stored and retrieved encrypted, and finally decrypted within the 

application [HIL+02a, DDJ+03, BoP02]. This approach has the benefit to separate encryption 

keys from the encrypted data stored in the database since the keys never have to leave the 

application side. However, applications need to be modified to adopt this solution. In addition, 

depending on the encryption granularity, the application may have to retrieve a larger set of data 

than the one granted to the actual user, thus opening a security breach. Indeed, the user (or any 

attacker gaining access to the machine where the application runs) may hack the application to 

access unauthorized data. Moreover, transmitting a superset of the result incurs an additional 

communication workload. Finally, such a strategy induces performance overheads (index on 

encrypted data is useless) and forbids the use of some advanced database functionalities on the 

encrypted data, like stored procedures (i.e., code stored in the DBMS which can be shared and 

invoked by several applications) and triggers (i.e., code fired when some data in the database are 

modified). In terms of granularity and key management, application-level encryption offers the 

highest flexibility since the encryption granularity and the encryption keys can be chosen 

depending on application logic. The three strategies described above are pictured in Figure 10.  
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Figure 10. Three options for database encryption level 

1.2 Encryption Algorithms and Modes of Operation 

Independently of the encryption strategy, the security of the encrypted data depends on the 

encryption algorithm, the encryption key length, and its protection. In this section, we mainly 

focus on the option of encryption algorithms and modes to achieve security goals. Since the key 

length depends on the algorithm used and is usually recommended by authorities (e.g. NIST), 

we skip this discussion. In the next section, we address specifically key management issues.  

    Even having adopted strong algorithms, such as advanced encryption standard (AES), the 

cipher text could still disclose plaintext information if an inappropriate mode is chosen. For 

example, if encryption algorithm is implemented in Electronic Codebook Mode (ECB), identical 

plaintext blocks are encrypted into identical cipher text blocks, thus disclosing repetitive 

patterns (see Section 1.3 in Chapter 2). In the database context, repetitive patterns are common 

(as many records could have same attribute value), so much care should be taken when choosing 

the encryption mode. Moreover, simple solutions that may work in other contexts, like using 

counter mode with an initialization vector based on the data address, may fail in the database 

one because data can be updated. Indeed, with the preceding example, performing an exclusive 

OR between old and new versions of the encrypted data discloses the exclusive OR between old 

and new versions of plaintext data.   

    Consequently, the choice of an adequate encryption algorithm and mode of operation must be 

guided by (or at least should take into account) the specificities of the database context: 

repetitive patterns, updates, and huge volume of encrypted data. In addition, the protection 

should be strong enough since the data may be valid for very long time periods (several years). 
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Moreover, we also need to consider performance degradation caused by cryptographic workload 

and security requirements. As in some contexts (e.g. outsourced database), exotic encryption 

algorithms (see section 2.2) which exhibit certain security weakness (at point of view of 

cryptanalysis) could be used to trade off better performance, while satisfying the security 

requirements expected in that context.   

1.3 Key Management 

Key management refers to the way cryptographic keys are generated and managed throughout 

their life. Because cryptography is based on keys that encrypt and decrypt data, the database 

protection solution is only as good as the protection of the keys. The location of encryption keys 

and their access restrictions are thus particularly important. For illustration purposes, we assume, 

in the following, database-level encryption. 

For database-level encryption, an easy solution is to store the keys in a database table or file 

with restricted access, potentially encrypted by a master key (itself stored somewhere on the 

database server). But any administrator with sufficient privileges could also access these keys 

and decrypt the data without ever being detected.  

    To overcome this problem, specialized tamper-resistant cryptographic chipsets, called 

hardware security module (HSM), can be used to provide secure storage for encryption keys 

[Hsu08, Ora09]. Generally, the encryption keys are stored on the server encrypted by a master 

key which is stored in the HSM. At encryption/decryption time, encrypted keys are dynamically 

decrypted by the HSM (using the master key) and removed from the server memory as soon as 

the cryptographic operations are performed, as shown in Figure 11a.  

An alternative solution is to move security-related tasks to distinct software running on a 

(physically) distinct server, called security server, as shown in Figure 11b. The security server 

then manages users, roles, privileges, encryption policies and encryption keys (potentially 

relying on an HSM). Within the DBMS, a security module communicates with the security 

server in order to authenticate users, check privileges, and encrypt or decrypt data. Encryption 

keys can then be linked to user or to user’s privileges. A clear distinction is also made between 

the role of the DBA, administering the database resources, and the role of the SA (Security 

Administrator), administering security parameters. The gain in confidence comes from the fact 

that an attack requires a conspiracy between DBA and SA. 
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Figure 11. Key management approaches 

While adding a security server and/or HSM minimizes the exposure of the encryption keys, it 

does not fully protect the database. Indeed, encryption keys as well as decrypted data still 

appear (briefly) in the database server memory and can be the target of attackers. 

1.4 Crypto-Protection in DBMS products  

Since several years, most DBMS manufacturers provide native encryption capabilities that 

enable application developers to include additional measures of data security through selective 

encryption of stored data. Such native capabilities take the form of encryption toolkits (e.g. 

Encryption-GENERAL for MySQL [Pac11]) or packages (Oracle8i/9i [Ora01]), functions that 

can be embedded in SQL statements (IBM DB2 [IBM07]), or extensions of SQL (Sybase 

[Syb08] and SQL Server 2005 [Hsu08]). To limit performance overhead, selective encryption 

can be generally done at the column level but may involve changing the database schema to 

accommodate binary data resulting from the encryption process [Hsu08].  

SQL Server 2008 [Hsu08] introduces Transparent Data Encryption (TDE) which is actually 

very similar to storage level encryption. The whole database is protected by a single key called 

Database Encryption Key (DEK), itself is protected by more complex means, including the 

possibility to use HSM. TDE performs all of the cryptographic operations at the I/O level, but 

within the database system, and removes any need for application developers to create custom 

code to encrypt and decrypt data. 
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TDE (same name as in SQL server 2008 but with different functionalities) has been 

introduced in Oracle 10g/11g, greatly enlarging the possibilities of using cryptography within 

the DBMS [Ora11]. Encryption keys can now be managed by an HSM or be stored in an 

external file named wallet which is encrypted using an administratively defined password. 

Selective encryption can be done at column granularity or larger (table space, i.e., set of data 

files corresponding to one or several tables and indexes). To avoid the analysis of encrypted 

data, Oracle proposes to include in the encryption process a Salt, a random 16 bytes string 

stored with each encrypted attribute value. An interesting but rather dangerous feature is the 

possibility to use encryption mode that preserves equality (typically a CBC mode with a 

constant initialization vector), thus allowing, for instance, to use indexes for equality predicates 

encrypting the searched values.  

The database-level encryption with the security server approach mentioned above is 

proposed by IBM DB2 with the Data Encryption Expert (DEE [IBM07]) and by third-party 

vendors like Protegrity [Mat04], Packet GENERAL [Pac11], RSA BSAFE [RSA02] and 

SafeNet [Saf11] (appliance-based solution). The third-party vendors’ products can adapt to most 

DBMS engines (Oracle, IBM DB2, SQL Server, MySQL and Sybase). 

1.5 Crypto-Protection Strategies using HSM 

Currently, existing architectures endowed with database encryption are not fully satisfactory 

since, as mentioned above, encryption keys appear in plaintext in the RAM of the server or on 

the client machine where the application runs. HSM acts as a safe storage to minimize the risk, 

diminishing the keys’ exposure during their lifetime. Research is being conducted to make a 

better use of HSM, avoiding exposing encryption keys during the whole process. Two 

architectures can be considered: server-HSM, when the HSM is shared by all users and is 

located on the server; client-HSM, when the HSM is dedicated to a single user and is located 

near the user, potentially on the client machine. These two architectures are pictured in Figure 

12. 
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Figure 12. HSM-based new database encryption strategies 

Logically, the server-HSM is nothing more than a database-level encryption with a security 

server embedded in the HSM. The HSM now manages users, privileges, encryption policies and 

keys. It has the same advantages as the database-level encryption with security server approach 

but does not expose encryption keys at any moment (since encryption/decryption is done within 

the HSM). Moreover, the security server cannot be tampered since it is fully embedded in the 

tamper-resistant HSM. With this approach, the only data that appears in plaintext is the query 

results that are delivered to the users. The main difficulty of this approach is its complexity, 

since a complex piece of software must be embedded in an HSM with restricted computation 

resources (due to security reasons). In Chapter 4, we give the design of embedded database 

coping with such constraints and show the feasibility of this approach. Regarding the research 

done in the database community, a simpler version of server-HSM solution has been prototyped 

in TrustedDB [BaS11], where tamper-proof trusted hardware is utilized only in critical query 

processing stages (involving sensitive operations). For non-sensitive operations, TrustedDB still 

dispatch them to the un-trusted host server (in Database-As-a-Service Model). The performance 

evaluation shows that the query cost are orders of magnitude lower than any (existing or) 

potential future software-only mechanisms.  

While the client-HSM approach seems very similar to the server-HSM one and brings the 

same benefit in terms of security, it poses several new challenges. Indeed, the HSM is now 

dedicated to a single user and is potentially far from the server, thus making difficult any tight 

cooperation between the database server and the HSM. Thus, the database server must work on 

encrypted data and provide to the HSM a super-set of the query results, decrypted and filtered in 
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the HSM. Despite these difficulties, since the HSM is dedicated to a single user, the embedded 

code is simpler and less resource demanding, making this approach practical [BoP02].   

2 State-of-the-Art 

Database encryption has received more attention from the database community in the last 

decade. Encrypted databases incur many restrictions and challenges like operations and 

computations on encrypted data, view-based protection, performance degradation etc, many 

researchers in the database community have thus investigated relevant indexing and encryption 

techniques to enable efficient queries over encrypted database, without sacrificing database 

security. In this section, we will introduce the state-of-the-art works on these two aspects 

respectively. Finally, we also introduce works done in the community to guarantee database 

integrity properties, in particular to ensure the completeness, correctness and freshness of query 

results.  

2.1 Indexing Encrypted Data 

Index structures are critical components in DBMS, in particular to evaluate efficiently selection 

and join predicates. For an encrypted database, there are basically two approaches to build 

indexes: (i) building the index on the plaintext, and (ii) indexing the ciphertext. By nature, the 

second approach cannot tackle range searches, assuming classical encryption algorithms which 

are not order preserving (see next section). Therefore, most techniques proposed are adopting 

the first approach. In the following, we will present some representative works based on this 

approach, both in traditional DBMS model and in Database-As-a-Service (DAS) model 

[HIL+02a].  

In traditional DBMS model, the server manages the data in-house and answers data requests 

from clients. Usually, the DBMS is partially trusted in this model, which means database server 

itself together with its memory and the DBMS software is trusted, while the secondary storage 

area is exposed to various attacks [SVE+09]. As a result, database encryption techniques are 

used to meet the requirements for data confidentiality and detection of unauthorized 

modifications.  

In such model, common indexing techniques like B+ tree are often used, but are encrypted to 

enforce confidentiality. In [IMM+04], the authors mentioned an indexing scheme which 

construct B-tree index on the plaintext values and encrypt each page of the index separately. 
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When a specific page of the index is required during query processing, the whole page will be 

loaded into memory and decrypted. Consequently, this approach provides full index 

functionality (e.g., range queries and selection) while keeping the index itself secure. However, 

this scheme is implemented at operating system level, thus causing difficulties when it is 

impossible to modify the operating system implementation. In addition, such scheme is not 

flexible since encrypting different portions of database using different keys is not well 

supported.  As the uniform encryption of all pages is likely to provide many cipher breaking 

clues, the indexing scheme provided in [BaM76] suggests encrypting each index page using a 

different key depending on the page number. Unfortunately, this scheme is implemented at the 

level of the operating system as well, and it is not satisfactory. 

A new structure preserving indexing encryption scheme that does not reveal any information 

on the database plaintext values was proposed in [EWS+04]. Indeed, each index value (i.e., B+ 

tree node) is the result of encrypting the corresponding plaintext value in the database 

concatenated with its row-id, such that no correlation exist between the index values and the 

database ciphertext values. Furthermore, the index does not reveal the statistics or order of the 

database values. It supports equality and range queries. The encryption scheme allows 

separation of structural data (which is left unencrypted) from database content, hence preserve 

the structure of database. Thanks to this feature, DBA could manage the indexes (i.e., B+ tree) 

without the need of decrypting its values. However, this proposal assumes that the cell 

coordinates (including table-id, row-id, and column-id) are stable and do not change at the time 

of insert, update and delete operations, which puts high restrictions to the implementation of the 

DBMS. In their subsequent work [SWE+05], they give a more comprehensive discussion on the 

challenges for designing a secure index for an encrypted database, including prevention of 

information leakage; detection of unauthorized modifications; preservation of the index 

structure; support for discretionary access control; key storage and encryption granularity. 

Moreover, they suggest a secure database index encrypted at the granularity level of individual 

values, hence obtaining performance and structure perseverance (i.e., structure data are left 

clear). [Ulr06] cryptanalyses these schemes with respect to possible instantiations, gave counter-

examples, and showed how to modify the schemes such that the original schemes lead to secure 

index encryption, i.e., by resorting to the authenticated encryption with associated data.  

    Regarding commercial database products, Oracle 8i allows encrypting values in any of the 

columns of a table. However, the encrypted column can no longer participate in indexing as the 
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encryption is not order-preserving [Ora00]. Other DBMS vendors also recommend not to 

encrypt indexed columns since it leads to full scan the encrypted column regardless of whether 

an index exist [Mat04]. 

In Database-As-a-Service (DAS) model [HIL+02a], data owners (e.g., organizations, 

companies) outsource their data in encrypted form to servers belonging to potentially un-trusted 

Application Service Providers (ASP). The main objective of this line of research is finding 

techniques for delegating data storage and the execution of queries to un-trusted servers while 

preserving efficiency [BoP02, HIL+02a]. To achieve such objective, indexes have to be built on 

server side to allow queries over encrypted database, without leaking any information about 

plaintext.   

    Hacigümüs et al. [HIL+02b, HIM04] proposed an approach based on information hiding-

bucketization. Typically, tuples are encrypted using conventional methods, but an additional 

bucket id is built for each indexed attribute value. More precisely, the range of values in the 

specific domains of the attribute is divided into buckets, and each bucket is labeled explicitly 

using bucket id, which is then stored along with the encrypted tuples at the server. Since the 

bucket id represents the partition (i.e., bucket) to which the unencrypted value belongs, it 

replaces the constant (e.g., specific value) appearing in the query predicate during query 

processing. Bucketization could support range queries, join predicates, order by and group by 

clauses. The returned results will contain false positives, which should be filtered out by the 

data users (e.g., clients) in a post-processing step after decrypting the returned results. The 

number of false positives depends on the width of the partitions (e.g., bucket size) involved. 

Note that, each partition has the same length interval (i.e., same number of tuples are associated 

with each bucket), and there exists a trade-off between query efficiency and security levels. 

Indeed, to minimize the computation on client side, it is desirable to have more accurate results 

(few false positives) and finer bucketization. Unfortunately, such bucketization will disclose 

information about plaintext and suffer from estimation exposure, since the relative size of 

buckets reveals information about the distribution of the data, and relationships between fields 

in a tuple can be revealed as well [GeZ07a]. On the contrary, coarse bucketization improves 

security level but degrades query efficiency. In this line of research, Hore et al. [HMT04] 

analyze the bucketization technique and propose techniques to optimize the bucket sizes to 

generate privacy-preserving indices at the server side with a minimal information leakage. 

[WaD08] introduces a local overlapping bucket algorithm (LOB) achieving higher security by 
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trading off efficiency. More precisely, they propose a way to evaluate security and efficiency 

using probability distribution deviation and overlapping ratio, and a heuristic based greedy 

algorithm to determine optimal overlapping bucket. The efficiency of the proposed algorithm is 

shown under static scenario (no updates). However, the security of this algorithm is easily 

broken under dynamic scenarios.  

Damiani et al. [DDJ+03, CDP05] propose hash based indexes which balance efficiency and 

security requirements, and offers quantitative measures to model potential inference attacks by 

exploiting indexing information. More precisely, the indexes are built based on direct 

encryption (for each indexed cell, the outcome of an invertible encryption function over the cell 

value is used as index) and hashing (the outcome of secure hash function over the cell value is 

used as index). Direct encryption approach preserves plaintext distinguishability and together 

with precision and efficiency in query execution. However, this approach opens the doors to 

frequency-based attacks. Hashing approach counters such attacks and provides more protection 

as different plaintext values are mapped onto the same index. Moreover, the authors also 

provide a measure of inference exposure of the encrypted/indexed data, by modeling the 

problem in terms of graph automorphism. Such index is suitable for exact match queries. To 

enable interval based queries in DAS context, the authors suggest building a B+ tree index over 

the plaintext values and encrypting the B+ tree at the node level. Therefore, the clients have to 

perform a sequence of queries that retrieve tree nodes (one query per level of the tree) until 

reaching the leaf level. Moreover, the references between the B+ tree nodes are encrypted 

together with the index values, thus the index structure is concealed.  

In DAS model, except specially designed indexing techniques mentioned above, 

conventional index structures are also used to enable queries on encrypted database at server 

side, such as B+ tree [PaT04, LHK+06, LHK+10], bucket index [WDL+10] and R tree 

[YPD+08, MSP09, LHK+10] for multi-dimensional database etc. Moreover, to guarantee the 

correctness, completeness and freshness of returned results, authentication information is added 

to these indexes as well (see Section 2.3).  

Other index techniques used for keyword searching [SWP00, Goh03] and XML databases 

are beyond the scope of this manuscript. Moreover, specific encryption algorithms (e.g., order-

preserving) open another direction for building indexes for encrypted data, since they encrypt 

data in such a way that comparison or evaluation can be done directly on encrypted data, thus (i) 

indexes (e.g., B+ tree) could be built on ciphertext directly without need to encrypt them, (ii) or 
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they could be used to encrypt conventional indexes directly. Thanks to their specific features, 

index accesses will not incur cryptographic operation. We will introduce these algorithms in the 

next section.  

2.2 Encryption Scheme 

Many specific encryption algorithms have been investigated to enable computing queries 

directly on encrypted data, without leaking information about underlying plaintext.  

Rivest et al. [RAD78] described a first approach for solving such problem called Privacy 

Homomorphism (PH), which allow mathematical operation on ciphertext values corresponding 

to operations on plaintext values. For instance, given ciphertext E(x) and E(y) (i.e., encryption 

form of plaintext value x and y), one can obtain E(x θ y) by performing E(x) θ E(y), thus 

computation (e.g. aggregation) can be done without involving cryptographic operations (e.g. 

decryption).  

[HIM04] gives a first application of PH to aggregation queries in encrypted relational 

databases, by allowing basic arithmetic operation (+, −, ×) to be performed directly over 

encrypted tables. [OSC03] investigates a set of homomorphism encryption and decryption 

functions to encrypt integer-valued attributes while preserving their order/distance, and 

proposes a computing architecture to process simple queries (e.g., select) over an encrypted 

database. Their subsequent work [ChO06] addresses more complex SQL queries such as 

aggregate queries and nested queries. Unfortunately, since integer values preserve their order 

after encryption, thus information about the input distribution are revealed, which can be 

exploited by attackers. A simple additively homomorphic stream cipher was proposed in 

[CMT+05], it allows efficient aggregation of encrypted data in wireless sensor networks. In 

[EvG07], the authors present an encryption scheme based on PH to support an extensive set of 

relational operations (like select, projection and Cartesian product), and allows effective search 

on encrypted tables. [GeZ07a] gives a comprehensive solution for the SUM and AVG aggregate 

queries by using a secure homomorphic encryption scheme in a novel way (i.e., operates on a 

much larger (encryption) block size (e.g., 2K bits) instead of single numeric data values). 

[Cha09] introduces two symmetric-key homomorphic encryption schemes which allow the 

encrypted data to be added and multiplied by a constant. Moreover, they are secure to 

ciphertext-only attacks (an attack model where the attacker have access only to a set of cipher 
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texts) and have the nice property that the same data leads to different representations in the 

encrypted domain.  

Some encryption algorithms are proposed to tackle comparison operations specifically. 

[AKS+04] makes use of Order-Preserving Encryption Schemes (OPES) to enable comparison 

operations to be directly applied over encrypted numeric data. Therefore, equality and range 

predicates, joins, group by and order by clause, as well as aggregates (MIN, MAX and COUNT 

operations except SUM and AVG) can be computed directly over encrypted data. Moreover, the 

results of query processing using OPES are exact. However, this scheme is only secure under 

the “ciphertext-only attack” model and breaks down when the adversary possesses background 

knowledge about domain. [BCL+09] relaxes the standard security notions (indistinguishability 

against chosen-plaintext attack) for encryption which is difficult to achieve for practical OPES, 

and propose an efficient OPES which is proven secure under relaxed security notions (based on 

pseudo-randomness of an underlying block cipher). [LiO05] introduce Prefix-Preserving 

Encryption (i.e., the prefix of values are preserved after encryption) to evaluate range queries on 

encrypted numeric data. This can be used to evaluate range queries and to build efficient 

encrypted indexes. Moreover, it examines proposed scheme under both ciphertext only attack 

and known plaintext attack (i.e., an adversary gain knowledge about certain number of 

<plaintext, ciphertext> pairs). However, both order-preserving and prefix-preserving schemes 

suffer from a common problem, i.e., they preserve statistics. Ge and Zdonik [GeZ07b] proposed 

an encryption scheme called FCE which allows fast comparison through partial decryption (i.e., 

the comparison procedure stops as soon as a difference is found), hence it can be used for range 

queries and indexing. Note, in this scheme, the server is assumed trusted and has the 

cryptographic key to decrypt data, even partially. However, it exhibits security weakness 

[GuJ09] and is thus not suitable to encrypt highly sensitive data. 

In summary, the above introduced approaches based on specific encryption techniques (e.g., 

PH, order preserving or prefix preserving encryptions) aim at offering means to a query 

processor to compute results over the encrypted data. Obviously, the same arms are available to 

the attackers. Thus, by nature, those approaches can be considered as safe only under specific 

situations, when the adversary has (very) limited background knowledge. This has been 

demonstrated in [HHI+07].  
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2.3 Database Integrity 

Encrypting the data only guarantees data confidentiality, but gives no assurance on data 

integrity, i.e., on the fact that the data has not been illegally forged or modified (authenticity), or 

replaced by older versions (freshness). In this section, we give an overview of authentication 

approaches proposed in database community.  

In traditional DBMS model, [Den84] resorts to an isolated trusted filter, a security kernel 

responsible for enforcing the requirements for multilevel security in the database system (being 

a security kernel, it is nonbypassable, tamperproof, and verifiable). It computes an un-forgeable 

cryptographic checksum over the records to detect malicious modifications. The trusted 

database TDB [MVS00] uses standard cryptographic techniques (e.g., MHT), adapted to the 

underlying log-structured storage model, to prevent malicious corruption of the data. Moreover, 

it uses increment-only counters to prevent replay attacks. GnatDB [Vin02], which is a limited 

version of TDB designed for small cardinality databases, avoids building Merkle Hash Tree but 

relies on a trusted microcontroller. [SWE+05] allows protecting data against information 

leakage and unauthorized modifications by using MAC function, dummy values and pooling. 

More precisely, dummy values are inserted to the index at each insertion made by the user, thus 

reducing the adversary’s level of confidence about the position of a value within the index. In 

addition, new inserted values in the pool are extracted in random order and inserted into the 

database table and index, to cope with dynamic leakage attacks (gaining information by 

analyzing the changes performed in the database over a period of time). [Ulr06] analyze the 

security weakness lying in this scheme, and propose to use authenticated encryption with 

associated data to guarantee confidentiality and integrity properties. Other methods such as 

MAC [ECG+09] and authenticated encryption [HGX+08] are also widely used.  

Regarding the DAS model, all approaches investigated in database community could be 

divided into three classes: authenticated data structures, signature based approach and 

probabilistic approaches [WDL+10]. Authenticated data structures, such as DAGs [MND+04], 

skip list [BaP07] and Merkle Hash Tree (MHT) [Mer89] have been well investigated. In the 

following, we focus on MHT which is widely used to authenticate query results. Compared with 

signature based approach, MHT hashes are faster to compute and more concise than signatures, 

which leads to shorter construction time and smaller storage overhead [LHK+06].  
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In [DGM+00], Devanbu et al. exploited MHT to prove the completeness and authenticity of 

relational query results produced by un-trusted third party publishers. The scheme requires the 

data owner to construct MHT (i.e., binary tree constructed by using hash values) over each 

database table, and disseminate the signed root digest to users directly. [LHK+06] proposed an 

embedded Merkle B-tree (MB-tree) which combines the MHT with the B+ tree, and provides 

query authentication including freshness guarantees in dynamic environments where data is 

frequently updated. The concept of MHT also applied to R-tree for verifying the soundness and 

completeness of multi-dimensional database [YPP+09]. In [MSP09], the proposed Partially 

Materialized Digest (PMD) scheme approach is opposed to existing ones. Indeed, PMD does 

not incorporate the MHT into the data index for query processing.  Instead, it uses a main index 

(MI) solely for storing and querying the data, and a separate digest index (DI) that contains the 

MHT-based verification information in a compressed form, to guarantee the query results are 

authentic and complete.  

Regarding signature based approach, [PJR+05] introduces a signature scheme for users to 

verify that their query results are complete and authentic. The scheme supports range selection 

on key and non-key attributes, project as well as join queries on relational databases. Mykletun 

et al. [MNT04] proposed the use of two specialized signature schemes to allow aggregation of 

multiple individual signatures into one aggregated signature, thus reduce the signature size and 

verifying cost. [NaT05] developed an approach based on signature aggregation and chaining to 

provide evidence of completeness of query result set. In this research line, more works have 

been followed. [PZM09] introduces a protocol, built upon signature aggregation, for checking 

the authenticity, completeness and freshness of query answers. The propose protocol provides 

an important property, i.e., allowing new data to be disseminated immediately and detect 

outdated values (beyond a pre-set age). Moreover, the protocol caches a small number of 

strategically chosen aggregate signatures, to reduce proof construction time.   

Except authenticated data structures and signature based approaches, there exist some 

probabilistic approaches for authenticating database: challenge token [Sio05] and fake tuple 

[XWY+07]. Compared with the others two approaches, the probabilistic ones can support richer 

types of queries (e.g., range, aggregation etc) at the cost of inexact authentication.  

Unfortunately, all integrity approaches presented above are not adequate to ensure integrity 

properties for embedded PDS engine. On one side, we could take advantage of some 

specificities of PDS engine design and tamper resistance of SPT, and easy some integrity issues 
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(e.g., data freshness), instead of introducing heavyweight integrity mechanisms (e.g., signature 

based approach). On the other side, the special design and hardware limitations exhibited by 

SPT make the usage of traditional integrity methods inefficient. For instance, MHT does not 

adapt for the NAND Flash well, since the latter provides poor support for random writes. As a 

result, more efficient integrity methods have to be investigated to address integrity issues lying 

in PDS approach. We will develop them explicitly in Chapter 5.   
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Chapter 4  

PDS Architecture and Embedded Data Management 

In this chapter, we start by illustrating the Personal Data Server (PDS) vision through different 

scenarios motivating our approach. Next, we mainly focus on the PDS global architecture and 

PDS engine design, including hardware constraints, main elements (functionalities) of PDS, 

storage and indexing model, as well as query processing techniques dedicated for PDS engine. 

In the next chapter, we will address the crypto-protection for PDS data explicitly, satisfying the 

security requirements without incurring changes to existing design (presented in this chapter). 

1 Motivating Examples 

1.1 Healthcare Scenario 

Alice carries her electronic healthcare folder (along with other information) on a PDS. She has 

an account on e-Store, a Supporting Server provider. She downloaded in her PDS, from the 

Ministry of Health, a predefined healthcare database schema, an application to exploit it, and an 

access control policy defining the privileges attached to each role (physician, nurse, etc). Alice 

may manage the role assignment by herself or activate specific user policies predefined by e.g., 

a patient association. When she visits Bob, a new physician, she is free to provide her SPT or 

not, depending on her willingness to let Bob physically access it (this is a rough but effective 

way to control the sharing of her data, as with a paper-based folder). In the positive case, Bob 

plugs Alice’s PDS on his terminal, authenticates to the PDS server with his physician 

credentials, queries and updates Alice’s folder through his local Web browser, according to the 

physician’s privileges.  

    Bob prescribes a blood test to Alice. The test result is sent to Alice by the medical lab in an 

encrypted form, through e-Store acting here as a secure mailbox. The document is downloaded 

from e-Store and wrapped by Alice’s PDS to feed the embedded database. If this document 

contains information Alice would like to keep secret, she simply masks this document so that it 

remains hidden from any user querying the database except her. The lab keeps track of this 

medical act for administrative purposes but does not need anymore to keep a copy of its medical 

content. If Alice loses her PDS, its tamper-resistance renders potential attacks harmless. She 

will then recover her folder from an encrypted archive stored by e-Store using, e.g., a pass-

phrase. 
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    Alice suffers from a long-term sickness and must receive care at home. Any practitioner can 

interact at home with Alice’s PDS thanks to his netbook, tablet PC or PDA without need for an 

Internet connection. To improve care coordination, Bob convinces Alice to make part of her 

folder available 24/7, during a one-month period, to him and to Mary, a specialist physician. 

Alice uploads the requested part of her folder encrypted on e-Store. The secret key is exchanged 

with Bob’s and Mary’s PDSs in order for them to be able to download Alice’s data on their own 

PDS and query it. While Alice’s data is now replicated on Bob’s and Mary’s PDSs, Bob and 

Mary cannot perform actions on the replica exceeding their privileges and this replica will be 

destroyed after a one-month period because their PDS will enforce these controls. Bob and 

Mary’s actions are recorded by their own PDSs and sent back to Alice through e-Store for audit 

purpose. To make this sharing scenario possible, patients and practitioners are all assumed to be 

equipped with PDSs and these PDSs are assumed to share a compliant database schema. Finally, 

if the Ministry of Health decides to compute statistics or to build an anonymized dataset from a 

cohort of patients, the targeted PDSs will perform the processing and deliver the final result 

while preventing any leakage of sensitive data or identifying information. 

1.2 Vehicle Tracking Scenario 

John, a traveling salesman, drives a car from his company during working hours and shares his 

personal car with Cathy, his daughter. Both have a PDS that they plug in the car to register all 

their personal trips. Several applications are interested in the registered GPS locations. John’s 

insurance company adapts the insurance fee according to different criteria (e.g., the distance 

traveled, type of road used, and speed). Cathy will probably pay more than her father because 

she lacks enough driving experience. The Treasury is also interested by this information to 

compute John’s carbon tax according to similar criteria, though the computation rules are 

different. Finally, John’s company would also like to track John’s moves to organize his rounds 

better. GPS raw data is obviously highly private. Fortunately, John’s PDS externalizes only the 

relevant aggregated values to each application. In other words, each application is granted 

access to a particular view of the data registered in John’s database. 

1.3 BestLoan.com & BudgetOptim Scenarios 

Alice needs a loan to buy an apartment. She would like to find the best rates for her loan and, 

thus, relies on the service of BestLoan.com (BL for short), a mortgage broker. To assess Alice’s 

financial situation, BL needs to get access to sensitive information from Alice’s PDS such as 
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salary, bank statements and tax information. Alice’s data can be securely shared with Donald, a 

BL employee, as follows: (1) Alice opts in for the BL application and downloads the security 

policy associated to it in her PDS, (2) Donald authenticates to Alice’s PDS with his credentials 

embedded in his own PDS and requests the required data, (3) Alice agrees to share this data 

with Donald for a specified duration (e.g., two weeks), (4) finally Donald downloads the data in 

his PDS, all this by exchanging messages and data through the e-Store Supporting Servers. 

Donald cannot perform actions on Alice’s data exceeding their privileges or the retention period 

fixed by Alice because his PDS will preclude these actions. If Alice distrusts Donald, she can 

audit his activity and can at any moment opt out of the BL application (with the effect of 

deleting Alice’s data in Donald’s PDS), all this again by exchanging messages through the e-

Store.  

    Alice now wants to optimize her budget and thus opts in for the BudgetOptim application 

(BO for short). BO runs locally on Alice’s PDS with a GUI running on the terminal. BO 

accesses details of Alice’s invoices, telecom bills, etc. in order to suggest more advantageous 

services according to her consuming profile. With BO application, Alice does not share data 

with anybody. This last scenario is typical of many private applications that can process 

personal data (e.g., diet advices, tax minimization, pension simulation, vaccine reminders, etc.). 

2 The PDS approach 

The idea lying in the PDS approach is to embed in Secure Portable Tokens (SPT for short) 

software components capable of acquiring, storing and managing personal data. However, it 

does not amount to a simple secure repository of personal documents. Instead, the objectives of 

this approach are:  

• Allow the development of new, powerful, user-centric applications and serve data requests 

from existing server-based applications managing personal data. Consequently, it requires a 

well organized, structured, consistent and queryable representation of personal documents;  

• Provide the user of the SPT with a friendly control over the sharing conditions related to her 

data and with tangible guarantees about the enforcement of these conditions 

These two objectives lead to the definition of a real secure and portable Personal Data Server 

(PDS for short). Unfortunately, a SPT cannot provide on its own all the required database 

functionalities of a PDS (e.g., durability, if the SPT is lost or destroyed, availability when the 
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SPT is disconnected, global queries involving data from several SPTs), thus we have to resort to 

external servers, called hereafter supporting servers, to rebuild such functionalities.  
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Figure 13. The Personal Data Server Approach 

Figure 13 shows various applications that could be built based on this approach (supporting 

servers are not explicitly shown). Typically, Bob’s personal data, delivered by different sources, 

is sent to his PDS which can then serve data requests from private applications (serving Bob’s 

interest, e.g. Budget optimization), secure multi-actors applications (accessed through actors’ 

PDS, e.g. medical care) and external applications (e.g. financial help). Bob’s PDS can also take 

part in secure global processing (e.g. epidemiological study).  

    In order to support such powerful applications, a first requirement is to embed a full-fledged 

database engine (PDS engine) in the SPT (we assume the database model is relational in this 

manuscript but this choice has little impact on the global architecture). However, as SPT 

exhibits intrinsic limitations (e.g. limited RAM, NAND Flash constraints), thus the database 

engine design has cope with these constraints (refer to Section 4).  

In addition, the SPT microcontroller only provides limited security perimeter, such that (i) 

data stored on NAND Flash in SPT is vulnerable to confidentiality and integrity attacks, (ii) 

some (shared) data or message have to be externalized to supporting servers for durability, 

availability, global processing purpose, thus leading to potential information exposure. 
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Consequently, corresponding protection schemes have to be devised by resorting to 

cryptography technology (see Chapter 5).  

3 PDS Global Architecture 

3.1 Problem Statement  

SPTs appear today in a wide variety of form factors ranging from SIM cards to various forms of 

pluggable secure tokens (but this manuscript makes no assumption on the form factor), see 

Figure 1. As mentioned before, whatever the form factor, SPTs share several hardware 

commonalities. Their secure microcontroller is typically equipped with a 32-bit RISC processor 

(clocked at about 50 MHz today), a cryptographic coprocessor, a tiny static RAM (about 64 KB 

today), a small internal stable storage (about 1 MB today) and security modules providing the 

tamper-resistance. The internal stable storage provides Execute-In-Place (XiP) capability to the 

embedded code and can store sensitive metadata. 

The microcontroller is connected by a bus to a large external mass storage (Gigabytes of 

NAND Flash) dedicated to the data. However, this mass storage cannot benefit from the 

microcontroller tamper resistance. SPTs can communicate with the outside world through 

various standards (e.g., USB2.0, Bluetooth, 802.11).  

    In the secure chip domain, hardware progresses are fairly slow, because the size of the market 

(billions of units), and because the requirement for high tamper-resistance leads to adopt cheap 

and proven technologies [Eur08]. Nonetheless, SPT manufacturers forecast a regular increase of 

the CPU power, stable storage capacity and the support of high communication throughputs (up 

to 480 Mb/s). RAM will unfortunately remain a scarce resource in the foreseeable future due to 

its poor density. Indeed, the smaller the silicon die, the more difficult it is to snoop or tamper 

with its processing, but RAM competes with CPU, ROM and NOR in the same silicon die. 

In summary, a SPT can be seen as a low power but very cheap (a few dollars), highly 

portable, highly secure computer with reasonable storage capacity for personal use. Regarding 

the design of an embedded DBMS engine, the mentioned hardware characteristics can be 

translated into four main constraints [ABG+11]: 

• Constraint C1 “Poor RAM/stable storage ratio”: the RAM capacity is rather low and must 

be shared between the operating system, the DBMS and the applications. Conversely, fewer 
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constraints exist on the external stable storage and the ratio RAM/stable storage has 

decreased by two orders of magnitude in the last years. The trend that this ratio continues to 

decrease makes this constraint even severe. 

• Constraint C2 “Scarce secure stable storage”: only the internal XiP stable memory benefits 

from the tamper-resistance of the microcontroller. Although its capacity is regularly 

growing in order to tackle the pressure of embedded applications, it still remains a scarce 

resource for other usages like storing sensitive data.  

• Constraint C3 “External stable storage vulnerability”: external memory must be protected 

against confidentiality and integrity attacks since it is beyond the secure perimeter of 

tamper-resistance rendered by microcontroller. Indeed, a secure microcontroller cannot 

embed large stable storage due to the silicon die size constraint mentioned above. 

• Constraint C4 “NAND Flash update behavior”: the NAND Flash is badly adapted to fine-

grain data (re)writes. The memory is divided in blocks, containing (e.g., 64) pages 

themselves containing (e.g., 4) sectors. The write granularity is the page (or sector) and 

pages must be written sequentially within a block. A page cannot be rewritten without 

erasing the complete block containing it and a block wears out after about 104 repeated 

write/erase cycles. To tackle these constraints, updates are usually managed out of place 

with the following side effects: (1) a Translation Layer (TL) is introduced to ensure the 

address invariance at the price of traversing/updating indirection tables, (2) a Garbage 

Collector (GC) is required to reclaim stale data and may generate moves of valid pages 

before reclaiming a non empty block and (3) a Wear Leveling (WL) mechanism is required 

to guarantee that blocks are erased evenly. TL, GC and WL are black-box firmware. Their 

behavior is difficult to predict and optimize with the consequence that random writes can be 

up to order(s) of magnitude more costly than sequential writes [BJB+09]. In particular 

settings, these components can be deactivated. The technology trend is to increase the 

density of Flash (e.g., MLC vs. SLC), thereby ever worsening these constraints. Other stable 

storage technology could be envisioned in the future, like Phase-change memory (PCM), 

but the term of their appearance is still unclear, especially for such kind of devices. Hence, 

according to SPT manufacturers, all four constraints will remain effective in the foreseeable 

future. 

Among above constraints, C1 and C4 mainly impact the PDS engine design, thus specific 

storage and indexing model need to be devised to cope with such constraints (see Section 4). C2 
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and C3 have greater influence on the crypto-protection designs, which is the core contribution 

made by this manuscript, and we address them explicitly in the next chapter.  

3.2 Personal Database  

The Personal Database is assumed to be composed of a small set of relational database schemas, 

typically one per application domain (e.g. e-health, e-administration etc). Database schemas are 

defined by DB Schema Providers. Depending on the domain, a DB Schema Provider can be a 

government agency (e.g., Ministry of Health) or a private consortium (e.g., a group of banks and 

insurances). Content Providers are external information systems (e.g. administrations or 

companies) that deliver personal data (e.g., blood test, salary form), encoded in XML.  

We make the simplifying assumption that each XML document conforms to one XML 

schema defined by a standardization organization (e.g., HL7) or by a DB Schema Provider (e.g., 

the Ministry of Health). To allow building a consistent and structured view of a set of related 

documents, an XML document (e.g., a prescription) is enriched with all referential data required 

to fill the embedded database accurately (e.g., detailed data related to the doctor who wrote the 

prescription and to the drug prescribed). Hence, the data contained in different documents 

related to a given doctor or drug can be easily retrieved by SQL queries and cross documents 

processing becomes possible (e.g., get the list of current medical treatments or compute average 

blood pressure during the last month). Then the enriched document is pushed in an encrypted 

form to the recipient PDS through supporting servers. The recipient PDS downloads the XML 

document and wraps it into a set of tuples thanks to mapping rules. The benefit of declarative 

mapping rules is not only that it simplifies the work of the DB Schema Provider but primarily 

that the safety of these rules can be controlled. 

Figure 14 illustrates the wrapping of a prescription, enriched with doctor and drug 

referentials sent from a hospital. The document conforms to an XML schema for healthcare, and 

is wrapped into four tables (two of them being referentials) from the healthcare database schema. 

However, not all documents are wrapped and integrated in the database. Some documents (e.g., 

an X-ray image) can stay encrypted in the supporting servers and simply be referenced by the 

embedded database. 
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Figure 14. Wrapping a document into the PDS database 

3.3 Applications  

Applications are developed by Application Providers (e.g., BestLoan.com), they are defined on 

top of the published DB schema(s) of interest and can use all database functionalities provided 

by the embedded DBMS (i.e., DDL and DML statements). Each application defines a set of 

collection rules specifying the subset of documents required to accomplish its purpose (e.g., the 

five most recent salary forms are required by BestLoan.com). These rules are expressed at the 

document level to make them meaningful to the PDS holder (helping him to opt in or opt out of 

this application) and are mapped at the database level to be enforced similarly to access control 

rules.  

Most applications are assumed to perform only selection queries, insertion of new documents 

is not precluded (e.g., a treatment prescribed at home by the doctor). An updating application 

will play the same role as a Content Provider and the insertion will follow the same process. 
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3.4 Embedded Software Architecture 
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Figure 15. PDS generic software, application, and database 

• The Communication Manager implements communications with the outside world through 

supporting servers. On one side, it receives various personal documents (e.g. salary forms, 

insurance forms, invoices, phone call sheets, banking statements, etc) from external sources. 

On the other side, it sends shared data or messages to other PDSs or external applications 

through supporting servers. The Communication Manager integrates a protocol such as 

Onion-routing [GRS99] to implement anonymous communications like in TOR [DMS04], 

hence the PDS can send/receive shared data/messages or participate to global query without 

revealing her identity.  

• The XML Wrapper wraps the downloaded XML documents into a set of tuples based on 

mapping rules provided by DB Schema Provider, these mapping rules define the 

transcription of documents into a structured database.   

• The Pub/Sub Manager implements secure Publish/Subscribe mechanism addressing 

minimal exposure issue (see Section 3.5) for users’ control over the shared data. Indeed, 

PDS holders (i.e. publishers) publish shared data in encrypted form on the supporting 

servers, the recipient PDSs (i.e. subscribers) have to subscribe to this data first, then receive 

the decryption key if the publisher accepts this subscription.  

• The Privacy Manager is used to enforce user’s control rules, which can be fixed by the PDS 

holder herself to protect her privacy, namely masking rules, retention rules and audit rules. 
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User’s control rules are enforced by all PDSs, both on the PDS holder’s data and on the data 

downloaded after a subscription. 

• Cached Documents: Considering that some applications may need to view original XML 

documents, thus PDS store them in a local cache. PDS could also retrieve them from 

supporting servers in the case of cache misses.  

3.5 User Control 

The prime way for the PDS holder to control the usage of her data is to opt-in/out of 

applications and to decide situations where she physically delivers her PDS to another 

individual (e.g., a doctor). Assuming that the PDS holder’s consent has been given, the actions 

that any individual can perform are regulated by a predefined access control policy.  

    Predefined access control policies are usually far too complex to be understandable by the 

PDS holder (e.g., the RBAC matrix regulating the use of the French EHR contains more than 

400 entries). It is therefore mandatory to provide the PDS holder with simple tools to protect her 

sensitive data following her wish. A first way consists in managing the privileges through a 

simple GUI, as illustrated in the healthcare scenario. A second way is to give the user the ability 

to mask documents in the database. The records corresponding to a masked document are no 

longer considered at query execution time, except if the query is issued by the PDS holder 

herself (through an application). To make this process intuitive, the DB Schema Provider can 

predefine masking rules (e.g., hide documents by doctor, pathology, time period, etc.) exploiting 

the expressive power of the DBMS language and easily selectable by the user through a GUI. 

    The PDS holder (called hereafter the donor) can also impose privacy preserving rules 

whenever data leaves her PDS to enter another PDS. This sharing is required when a donor’s 

data must be made available while her PDS is disconnected (see the healthcare scenario). This 

sharing must be ruled by the following principles: 

• Minimal exposure: in a nominal use, only the results of authorized queries are externalized 

by a PDS and raw data always remains confined in the PDS. When donor’s raw data is 

made available to others, this must be done in such a way that minimal data (limited 

collection principle) is exchanged during a minimal duration (limited retention principle) 

and with the minimum number of recipient PDSs (need-to-know principle) to accomplish 

the purpose of this externalization. 
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• Secure delete: if the donor decides to delete a document before the retention period expires, 

all replicas of the corresponding raw data hosted by the recipient PDSs must be deleted. 

• Audit: the donor must have the ability to audit the actions performed by all recipient PDSs 

on replicas.  

3.6 Supporting Server 

Supporting servers are essential part in PDS global architecture, they provide storage and 

timestamp services to implement the functions that PDSs cannot provide on their own, namely: 

• Asynchronous communication: since PDSs are often disconnected, documents, shared data 

and messages must be exchanged asynchronously between Content Providers and PDSs and 

between PDSs themselves through a storage area, these communications are anonymous.   

• Durability: the embedded database must be recovered in case of PDS loss or destruction. 

The PDS holder’s personal data can be recovered from the documents sent by Content 

Providers through the supporting servers (assuming these documents are not destroyed). 

Data downloaded from other PDSs also can be recovered from the data published in the 

supporting servers (assuming their retention limit has not been reached). Other data (user’s 

control rules definition, metadata built by applications, etc.) must be saved explicitly by the 

embedded DBMS on the supporting servers (e.g., by sending a message to itself).  

• Global processing: a temporary storage area is required to implement processing combining 

data from multiple PDSs, such as statistical queries and data anonymization. 

• Timestamping: the SPT hardware platform is not equipped with an internal clock since it 

takes electrical power from the terminal it is plugged in. Hence, a secure time server is 

required to implement auditing and limited retention. 

4 Embedded Database Design 

4.1 Design Guidelines  

The hardware constraints discussed above induce two challenges for the PDS engine design. In 

this section, we address both challenges and deduce corresponding design rules.  

Challenge 1: Computing complex queries on Gigabytes of data with tiny RAM 

This challenge is a direct consequence of constraint C1. Select-Project-Join-Aggregate queries 

must be executed on Gigabytes of data with Kilobytes of RAM. It is well known that the 
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performance of “last resort” join algorithms (block nested loop, sort-merge, hybrid hash) 

quickly deteriorates when the smallest join argument exceeds RAM size [HCL+97]. Jive join 

and Slam join use join indices [LiR99] but both require that the RAM size is of the order of the 

square root of the size of the smaller table. In addition, swapping data in the terminal or in the 

external NAND Flash is precluded in the PDS context due (1) to the dramatic amount of 

swapping required considering the ratio between the RAM size and the potential size of the 

tables to be joined and (2) to the cost of encryption (only the microcontroller is trusted). This 

means that not only joins but all operators involved in the query must be evaluated in a pipeline 

fashion, in order to minimize RAM consumption and intermediate results’ materialization. 

Materialized views are not an option considering applications are not known in advance since 

they can be dynamically downloaded in the SPT. This leads to the first design rule:  

Rule R1: Design a massive indexing scheme where all (key) joins are precomputed and 

allowing pipeline computation of any combination of selections and joins.  

    Multi-way join indexes called Sub-tree Key Table, and Climbing Indexes, allowing to 

speedup selections at the leaves of a join tree were proposed in [ABB+07]. Combined together, 

these indexes allow selecting tuples in any table, reaching any other table in the join path in a 

single step. Queries can then be executed in a pure pipeline fashion without consuming RAM or 

producing intermediate results. This work must be considered as a first step towards the 

definition of indexing models and query execution techniques dedicated to PDS engine.  

Unfortunately, such massive indexing scheme adapts badly on NAND Flash due to its fine 

grain access pattern (e.g. read, write and rewrite), hence, implementing them effectively on 

Flash becomes another challenge: 

Challenge 2: Implement a massive indexing scheme compatible with the NAND Flash 

constraint 

Traditional indexing techniques (e.g., B+ Tree) are poorly adapted to NAND Flash because of 

the high number of random writes they incur [WCK03]. All improvements we are aware of (e.g., 

BFTL [WCK03], Lazy-Adaptive Tree [AGS+09], In Page Logging [LeM07]) rely on the idea to 

defer index updates using a log (or Flash-resident cascaded buffers) and batch them to decrease 

the number of writes. The side effect is a higher RAM consumption (to index the log or to 
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implement write-coalescing of buffers) and a waste of Flash memory space, which is 

incompatible with constraint C1. This leads to the second design rule: 

Rule R2: Design a dedicated storage and indexing model matching natively the NAND 

Flash constraints, i.e., proscribing random writes. 

The problem addressed here is to find a global design matching rules R1 and R2 

simultaneously, tackling both rules together is mandatory to guarantee the design consistency. 

Unfortunately, these two rules are conflicting by nature. Indeed, rule R1 leads to define data 

structures having usually a fine grain read/write/rewrite pattern thereby hurting R2. 

Consequently, we introduce two main principles to tackle this challenge, namely database 

serialization and database stratification. These two principles impact all components of a DBMS 

engine: storage, indexing, buffering, transaction management, query processing, we will 

introduce them respectively in the following.  

In the following, we first sketch in Section 4.2 the main lines of the global design and 

postpone to the next section a detailed discussion about the principal challenge that is, how to 

build efficient sequential indexes in Flash. Finally, Section 4.4 shows query processing 

(including integrating updates and deletes) using the designed storage and indexing model.  

4.2 Database Serialization and Stratification 

To reconcile rule R1 with R2, we have to break the implication between massive indexing and 

fine-grain (re)write pattern, this is precisely the objective pursued by database serialization.  

4.2.1 Database serialization 

The database serialization paradigm is based on the notion of Sequentially Written Structures 

defined as follows:  

Definition A Sequentially Written Structure (SWS) is a data container satisfying three 

conditions: (1) its content is written sequentially within the (set of) flash block(s) allocated to it 

(i.e., pages already written are never updated nor moved); (2) blocks can be dynamically added 

to a SWS to expand it at insertion time; (3) allocated blocks are fully reclaimed when obsolete 

and no partial garbage collection ever occurs within a block. 
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If all database structures are organized as SWS, including all forms of indexes required by 

rule R1, base data, logs and buffers, rule R2 would be satisfied since the SWS definition 

proscribes random (re)writes, hence the dramatic overhead of random writes in Flash would be 

avoided. Moreover, the TL cost would be saved and the GC could be implemented for free on a 

block basis.  

However, the database serialization objective is easy to express but difficult to achieve. It 

requires solving the following problems: 

1. Base data organization: natural solutions can be devised to organize the base data as SWSs. 

Typically, a table can be stored as a sequence of rows in a Row Store scheme or as a set of 

sequences of attribute values in a Column Store one. In this thesis, we consider Row Store 

scheme.  

2. Join Indexes: join and multiway join indexes [ABB+07] can be directly mapped into SWSs 

as well. Indeed, inserting new base data incurs simply inserting sequentially new entries in 

these indexes (sorted join indexes are not considered). Since they are managed is the same 

way, we call DATA the SWSs dedicated to both base data and join indexes. 

3. Selection indexes: any form of clustered index (e.g., tree-based or hash-based) is proscribed 

since inserting new base data would generate random node/bucket updates. We say that an 

index is cumulative if the insertion of new base data incurs the strict adjunction of new 

index entries (e.g. Bitmap index). In Section 4.3, we propose smarter forms of cumulative 

indexes, by deriving new information improving the lookup process from the previous state 

of an index and the current data to be inserted. Although cumulative indexes are less 

efficient than their clustered counterpart, they can provide a significant gain compared to 

scanning DATA. We call IND the SWSs dedicated to cumulative indexes. 

4. Flash Buffers: DATA and particularly IND being made of fine grain elements (tuples, 

attribute values or index entries), inserting without buffering would lead to waste a lot of 

space. Indeed, constraint C4 imposes adding a new page in a SWS for each elementary 

insertion. Moreover, the density of a SWS determines the efficiency of scanning it. The 

objective of buffering is to transform fine-grain to coarse-grain writes in Flash. Elements 

are gathered into a buffer until they can fill a complete SWS page, which is then flushed. 

But buffers cannot reside in RAM, partly because of constraint C1 and because the SPT has 

no electrical autonomy. Hence, buffers must be saved in NAND Flash and the density of 

buffer pages depends on the transactions activity. To increase buffer density (and therefore 
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save writes), elements from different SWSs are buffered together. Having one buffer per 

insertion rate is a simplifying factor (e.g., n IND indexing different attributes of a same 

DATA can be grouped together and be filled and flushed synchronously). When enough 

data items have been buffered to fill a complete page of each IND, buffers are flushed. 

Buffers must be organized themselves as SWS to comply with the serialization objective. A 

buffer is actually managed as a sliding window within its SWS, a Start and a End markers 

identifying its active part (i.e., the part not yet flushed). We call BUF the SWSs 

implementing buffers. 

5. Updates/deletes: applying updates and deletes directly in a target SWS (DATA, IND or 

BUF) would violate the SWS definition. Instead, updates and deletes are logged in 

dedicated SWSs, respectively named UPD and DEL. To manage updates, the old and new 

attribute values of each updated tuple are logged in UPD. At query execution time, UPD is 

checked to see whether its content may modify the query result (i.e., if a logged value 

matches a query predicate). If so, the query is adjusted to eliminate false positives (i.e., 

tuples matching the query based on their old value but not on their new value) and to 

integrate false negatives (i.e., tuples matching the query based on their new value but not on 

their old value). UPD and DEL are also checked at projection time, to project up-to-date 

values and to remove deleted tuples from the query result. To avoid accessing UPD and 

DEL on Flash for each result tuple during query processing, dedicated structures are built in 

RAM at each session (see Section 4.4.2).   

6. Transaction atomicity: rollbacking a transaction, whatever the reason, imposes undoing all 

dirty insertions to the SWSs. To avoid the presence of dirty data in DATA and IND, only 

committed elements of BUF are flushed in their target SWSs as soon as a full page can be 

built. Hence, transaction atomicity impacts only the BUF management. In addition to the 

Start and End markers of BUF, a Dirty marker is needed to distinguish between committed 

and dirty pages. Rollback insertions leads (1) to copyback the elements belonging to the 

window [Start, Dirty], that is the committed but unflushed elements, after End and (2) to 

reset the markers (Dirty=Dirty-Start+End, Start=End, End=Dirty) thereby discarding dirty 

data. 

At first glance, database serialization is a powerful paradigm to build a robust and simple design 

for an embedded DBMS engine complying with rules R1 and R2. However, such a design 

scales badly. Indeed, a cumulative index cannot compete with its clustered counterpart and the 

accumulation over time of elements in UPD and DEL will unavoidably degrade query 
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performance. There is a scalability limit (in terms of IND, UPD and DEL size) after which the 

user’s performance expectation will be violated. To tackle this issue, we propose database the 

stratification paradigm addressed below.  

4.2.2 Database stratification 

This section describes the stratification process which transforms a SWS database organization 

into a more efficient SWS database organization. Let us call DB0 the initial serialized database, 

i.e., stratum 0. DB0 is composed of (1) the SWSs materializing the buffer part and (2) the SWSs 

storing the base data, the indexes, the update and delete logs. For simplicity, we call this latter 

part SDB which stands for Sequential Database. Thus, DB0 = BUF0 ∪ SDB0 where SDB0 = 

DATA ∪ IND ∪ UPD ∪ DEL.  

When the scalability limit is reached, a new stratum DB1 is built such that DB1 = BUF1 ∪ 

SDB1 ∪ CDB1 where BUF1 and SDB1 are initially empty and CDB1, which stands for Clustered 

Database, is the optimal restructuring of DB0. The data part of CDB1, denoted by CDB1.DATA, 

results from the integration in SDB0.DATA of all updates and deletes registered in SDB0.UPD 

and SDB0.DEL and of all data items currently buffered in BUF0. The index part of CDB1, 

denoted by CDB1.IND, corresponds to a clustered reorganization of SDB0.IND. For instance, 

cumulative indexes in SDB0 can be replaced by B-Tree like indexes in CDB1 (see Section 4.3).  

Hence, at the time DB1 is built, it corresponds to the best database organization we may expect. 

As soon as reorganization starts, new insertions occur in BUF1 and SDB1, thus CDB1 remains 

stable. The next time the scalability limit is reached, a new stratification step occurs. 

Stratification is then an iterative mechanism summarized as follows: 

Stratify(DBi) →  DBi+1 
// CDB0=∅; 
CDBi+1.DATA = Merge (CDBi.DATA, BUFi.DATA, SDBi.DATA, SDBi.UPD, SDBi.DEL); 
CDBi+1.IND      = ClusterIndex (CDBi.IND, BUFi.IND, SDBi.IND, SDBi.UPD, SDBi.DEL); 
Reclaim (BUFi, SDBi, CDBi); 
BUFi+1= ∅; 
SDBi+1= ∅; 

    At each stratification step, CDBi+1.DATA and CDBi+1.IND are built, as new SWSs, and BUFi, 

SDBi and CDBi are totally reclaimed. Hence, rule R1 is preserved since CDBi+1.IND is assumed 

to provide an optimal indexing scheme; R2 is preserved since random writes are never produced 

despite the reorganization (new SWSs are written sequentially and old SWSs are fully 

reclaimed). Hence, stratification is very different in spirit from batch approaches deferring 



 70 

updates thanks to a log since such deferred updates produce random rewrites. The price to pay 

however is a complete reconstruction of CDBi at each step. This raises the following remarks: 

• According to Yao’s formula [Yao77], the cost of producing CDBi is (almost) independent 

of the size of SDBi since little locality can be expected when reporting SDBi elements into 

CDBi. Hence, there is a high benefit to maximize the size of SDBi in order to reduce the 

number of stratification steps, thereby decreasing the global cost of stratification. 

• According to the duration of each stratification step, there is a high benefit to perform it 

incrementally in order to run this process in background (not in parallel). The consequence 

is that the query processing must accommodate data which coexist in two strata at a 

particular point of time. 

4.3 Indexing Techniques  

With no index, finding matching tuples leads to sequential scan of the whole table (see Figure 

16.a). Simple cumulative indexes can be created by replicating the indexed attribute (called key) 

into a SWS called Key Area (KA) (see Figure 16.b). The row identifiers of matching tuples are 

found by a sequential scan of KA, thus the name Full Index Scan. Full Index Scan is simple and 

works for any exact match or range predicate. For variable or large size keys, a collision 

resistant hash [MOV97] of the key can be used in place of the key itself.  However, this restricts 

the index use to exact match predicates. For keys varying on a small cardinality domain, the key 

can also be advantageously replaced by a bitmap encoding. Adequate bitmap encoding can be 

selected to support range predicates [ChI99].   

Smarter forms of cumulative indexes can be devised to support exact-match predicates. In 

[YPM09], Yin et al. propose to summarize a sequential index using Bloom Filters (BF) [Blo70]. 

A BF represents a set of arbitrary length values in a compact way and allows probabilistic 

membership queries with no false negatives and a very low rate of false positives. For example, 

the false positive rate produced by a BF built using 3 hash functions and 12 bits per value is 0.1, 

it decreases to 0.05 with 16 bits per value and to only 0.006 with 4 hash functions. Hence, BF 

provides a very flexible way to trade space with performance. 

In our context, BFs are used to summarize KA, by building one BF for each flash page of KA. 

Finding matching tuples can then be achieved by a full scan of the KA summary (denoted SKA 

in Figure 16.c), followed by a direct access to the KA pages containing a result (or a false 
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positive with a low probability). Only those KA pages are finally scanned, thereby saving many 

useless IOs in case of selective predicates. For low selectivity predicates, this index, called 

Summary Scan, becomes less efficient since it qualifies a large number of KA pages.  

Given the sequential structure of a cumulative index, Summary Scan can still be optimized 

by chaining index entries sharing the same key value. The chains are stored in a SWS called 

PTR (see Figure 16.d). To cope with the SWS constraints, the chaining must be backward, i.e., 

the occurrence n+1 of a given key value points to occurrence n. SKA and KA are then used only 

for searching the last occurrence of the searched key (see Figure 16.d). If a key value appears n 

time in the index, in average, 1/n of SKA and 1 page of KA will be scanned. Then, the pointer 

chain is followed to find all matching tuples’ row identifiers. While this index, called Summary 

Skip is efficient for lookups, however, maintaining such pointer chain can be very costly when 

keys have few occurrences. It leads, in the worst case to a full scan of SKA to find the previous 

occurrence of the inserted key. 

(b) Full Index
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Table             KA (80 P)
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Figure 16. Cumulative and clustered index  

(in all figures, grey parts are the ones that are effectively accessed) 

In order to bound the insertion cost, a solution is to specify the maximal number of SKA 

pages (e.g. n pages), that should be scanned before stopping. If the previous occurrence of the 

key is not found once this limit is reached, the new key is inserted with a preceding pointer set 

to NULL, thereby breaking the pointer chain. At query time, when a NULL pointer is found, the 
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algorithm switches back to SKA, skipping the n next pages of SKA, and continues searching the 

preceding key occurrence according to the Summary Scan strategy. Indeed, by construction, the 

KA pages summarized by these n pages of SKA cannot contain the searched value (otherwise, 

they would have been chained). We call this strategy Hybrid Skip since it mixes Summary Scan 

and Summary Skip (See Figure 16.e). This strategy has two positive impacts: (1) at insertion 

time, contrary to Summary Skip, the search cost in SKA is bounded to n pages independently of 

the index size; (2) the pointer can be encoded on a smaller number of bits (linked to the number 

of keys summarized by n pages of SKA), thereby reducing the access cost of PTR. 

Thanks to their sequential structure, all cumulative indexes have the property of producing an 

ordered list of matching tuples’ row identifiers (corresponding to the insertion order of these 

tuples). This property is essential to combine partial results of several (low selectivity) 

selections because it allows efficient merges, with no RAM consumption (see Section 4.4). 

The construction of clustered indexes at stratification time can take advantage of three 

properties: (1) clustered indexes are never updated (SWS) and can then rely on more space and 

time efficient data structures than traditional B-Tree, typically filled at 75% to support updates; 

(2) all the data items to be indexed are known in advance; (3) the complete RAM can be 

dedicated to the index construction. However, the constraint is to organize the clustered index in 

such a way that the lists of row identifiers associated to the index entries are kept sorted on the 

tuples insertion order. This requirement is mandatory to be able to merge efficiently lists of 

identifiers issued from multiple indexes or from a range search in one index. Moreover, this 

ordering allows combining query results in SDBi (cumulative indexes) and in CDBi (clustered 

indexes) by a simple concatenation of the lists of matching tuples (see Figure 16.f). Indeed, 

CDBi tuples always precede SDBi in their insertion orders. 

The resulting clustered index structure is as follows. A compact ordered list of row identifiers 

(OLI in Figure 16.f), is built for each index entry Ki. The set of index entries is represented by a 

compact sorted list, named CSL. Finally, a compact non-dense index, named NDI, stores the 

highest key of each page of CSL in a first set of flash pages, itself indexed recursively up to a 

root page. The index is built from the leaves to the root so that no pointers are required in NDI. 

Clustered indexes are efficient and highly compact because they are built statically and are 

never updated. 
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4.4 Query Processing  

This section instantiates the techniques presented above to implement a massive indexing 

scheme and its associated query execution model which has been proposed earlier [ABB+07], 

thus satisfying rule R1. Then we explain how to integrate updates and deletes in the query 

processing.  

4.4.1 Query Execution Model 

In the following, we consider a tree-based database schema which is also used in the 

performance section, as shown in Figure 17.a. It represents a medical database where table 

Prescription (Pre) is the root of the schema referencing tables Visit (Vis) and Drug (Dru), table 

Vis references Doctor (Doc) and table Dru references Laboratory (Lab) and ClassOfDrug (Cla).  
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Figure 17. Query processing with SKT and climbing indexes 

Generalized join indexes called Subtree Key Tables (SKTs) are created for each node tables 

of the tree-based schema. Each SKT joins all tables in a subtree to the subtree root and stores 

the result sorted on the identifiers of the root table (SKT entries contain the ids of the matching 

tuples). For example, the SKTPre rooted at Pre is composed of the joining sets of ids {idPre, idVis, 

idDru, idDoc, idLab, idCla} sorted on idPre. This enables a query to associate a prescription directly 

with, e.g., the doctor by whom it was prescribed. Selection indexes called Climbing Indexes (CI) 

are created on all attributes involved in selection predicates. A CI created on attribute A of table 

T maps A values to lists of identifiers of T, as well as lists of identifiers of each table T’ 

ancestor of T in the tree-based schema (Figure 17.a). For example, in CIDoc.City, the value ’Lyon’ 

is mapped to lists of idDoc, idVis, and idPre identifiers. Combined together, SKTs and CIs allow 
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selecting tuples in any table, reaching any other table in the path from this table to the root table 

in a single step and projecting attributes from any other table of the tree. 

Base tables and SKTs are implemented as simple SWSs. A CI is implemented by one 

cumulative/clustered index for each level of the CI up to the root. For example, CIDoc.City is made 

of three cumulative/clustered indexes delivering respectively lists of idDoc, idVis, and idPre 

identifiers. 

Figure 17.d shows the Query Execution Plan (QEP) of a query which joins all the tables, 

evaluates the selection predicates on two indexed attributes (Doc.City=’Lyon’ AND 

Cla.Type=’AZT’), and projects some attributes (similar to Multi1 query in performance section, 

but with meaningful attribute name to ease understanding). The operators required to execute 

this query are the following: 

• CIL(CI, P, π) → {idT}↓ looks up in the climbing index CI and delivers the list of sorted IDs 

referencing the table selected by π and satisfying a predicate P of the form (attribute θ value) 

or (attribute ∈{value}); 

• Merge(∩i{∪j{idT}↓}) →{idT}↓ performs the unions and intersections of a collection of 

sorted lists of identifiers of the same table T translating a logical expression over T 

expressed in conjunctive normal form; 

• SJoin({idT}, SKTT, π) → {< idT, idTi, idTj … >}↓ performs a key semi-join between a list of 

identifiers of a table T and SKTT, and projects the result on the subset of SKTT attributes 

selected by π; this result is sorted on idT; Conceptually, this operation implements a Join but 

its cost sums up to read the right SKT entries. 

• Project({< idT, idTi, idTj … >}, π) → {< Atti, Attj, Attk … >} follows tuples identifiers and 

retrieves attributes selected by π; the attribute values are buffered in RAM in a hierarchical 

cache keeping most frequent values to avoid Flash IOs.  

The query can be executed as follows in a pipeline fashion: 

Project (L4, <Doc.Name, Dru.Name, Pre.Qty> → Result 
  SJoin (L3, SKTPre, <idPre, idDru, iddoc>) → L4 
    Merge (L1∩L2}) → L3 
      CIL (Cla.Type, =’AZT’, Pre) → L2 
      CIL (Doc.City, =’Lyon’, Pre) → L1 
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The RAM consumption for this query is limited to one Flash page per CI, the rest of the 

RAM being used for projection (cache).  

4.4.2 Updates/Deletes Integration 

As mentioned before, updates and deletes are logged in dedicated SWSs, named UPD and DEL, 

rather than being executed in place. This virtualization implies compensating queries at 

execution time, by combining DATA, IND and BUF with UPD and DEL to compute the correct 

result. In the following, we present techniques used to integrate updates and deletes for single 

predicate query, but generalize these techniques to multi-predicate queries is straightforward.  

Regarding global query processing presented in previous section, only operators CIL and 

Project are impacted by the integration of updates and deletes (see below). 

• Deletes Integration 

Regarding deletes, each result tuple which has been recorded in DEL must be withdrawn from 

the query result. To perform this check efficiently, a dedicated structure DEL_RAM is built in 

RAM to avoid accessing DEL on Flash for each result tuple.  

To limit RAM occupancy, only the identifiers of the deleted tuples, excluding cascading 

deletes, are stored in DEL_RAM. Indeed, in a tree based DB schema, deleting a tuple in a leaf 

table (e.g., one tuple d in Doctor) may incur cascading the deletes up to the root table (e.g., all 

Visit and Prescription tuples linked to d). Only d identifier is recorded in this case.  

At query execution time, the SJoin operator accesses the SKT of the root table of the query, 

to get the identifiers of all (node table) tuples used to form the tuples of the query result. At that 

time, each of these identifiers is probed with DEL_RAM and the tuple is discarded in the 

positive case, without inducing any additional I/O. In above example, if a query applies to 

Prescription and selects a prescription p performed by the deleted doctor d, SJoin will returns d 

identifier from the Prescription SKT, d identifier will be positively probed with DEL_RAM and 

p will be discarded. 

• Updates Integration 
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Regarding updates, old and new attribute values are logged in UPD for each updated tuple. For 

the sake of conciseness, we ignore the case of successive updates of the same attribute of the 

same record in this thesis, but the proposed techniques can be easily adapted. To compensate the 

query, the query processor must (1) for each projected attribute, check its presence in UPD and 

get its up-to-date value in the positive case (2) compensate index accesses to eliminate false 

positives, i.e., tuples returned by the index based on their old value (in BUF, IND) but which 

should be discarded based on their new value (in UPD), and (3) compensate index accesses to 

integrate false negatives, i.e., tuples matching the query based on their new value but not 

returned by the indexes based on their old value. Those three steps are detailed below. 

• Projection. Similarly to the delete case, a structure UPD_RAM is maintained in RAM to 

speedup the membership test in UPD. UPD_RAM stores the addresses of modified values 

in DATA and is rebuilt at each session by scanning UPD. Each attribute (address) to be 

projected is probed with UPD_RAM, and only when the probe is positive, UPD is accessed 

on Flash. In addition, UPD is indexed on the attribute addresses in a way similar to a DATA 

SWS (i.e. using BF), thereby drastically reducing the overhead caused by update processing 

at project time. 

• Selections – removing false positives. False positives are elements of UPD which match the 

query predicate based on their old value and does not match it anymore based on their new 

value. The set of tuples (identifiers) matching this criteria is extracted from UPD and stored 

in a RAM structure called FP_RAM. FP_RAM is used to probe each output of the index 

scan. For example, to get the doctors living in ‘Paris’, excluding false positives, using the 

index Doc.City, we first retrieve from UPD the doctors who left ‘Paris’ (since the last 

stratification), store their IDs in FP_RAM, then probe each result of the index with 

FP_RAM and discard positive ones.  

Tackling climbing index accesses is trickier. For example, for a climbing index access on 

Doc.City at level Pre (i.e, the prescriptions of doctors living in ‘Paris’) the result is a list of 

prescriptions, while UPD provides doctors identifiers. To address this issue, we propose such 

solution: For each element of FP_RAM (doctors) the corresponding prescriptions are found, 

e.g., by a sub-query into the climbing index on doctors’ IDs, since the number of updated 

values is likely to be much lower than the number of results returned by the index.  

• Selections – Integrating false negatives. False negatives are elements of UPD which does 

not match the query predicate based on their old value and match it based on their new 
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value. The set of tuples identifiers matching this criterion is extracted from UPD and must 

be merged with the index output. For example, to get the doctors living in ‘Paris’, including 

false negatives, using the index on Doc.City, we first retrieve from UPD the doctors who 

moved to ‘Paris’ (since the last stratification) and merge them with the results.  

For a climbing index access, we use the same technique presented above. For example, 

for a climbing index access on Doc.City at level Pre (i.e, the prescriptions of doctors living 

in ‘Paris’), each doctor tuple in UPD is linked to the (sorted) set of its prescriptions which 

have simply to be merged with the index output. Using this technique, the integration of 

false negatives into the index output generates a very small overhead, given that UPD is 

also indexed on the new attribute value (speeding up the retrieval of false negative 

identifiers). 

To conclude about RAM consumption, three types of structures are needed: DEL_RAM stores 

the deleted tuples identifiers, UPD_RAM stores the addresses of updated attributes, and 

FP_RAM stores the identifiers of modified tuples for an index access (its size is negligible 

compared with DEL_RAM and UPD_RAM). In the experiments conducted in Chapter 6, the 

RAM consumption corresponding to the 3000 deletes and 3000 updates was about 18KB.  

5 Conclusion  

In this chapter, we have introduced PDS approach, the motivation examples, the PDS global 

architecture, and we have detailed its main elements and functionalities. We have also described 

the main challenges to implement the approach. One of them is implementing a PDS database 

engine coping with the intrinsic constraints of the hardware platform (the SPT). Two design 

rules derived from those constraints (namely RAM limitation and NAND Flash constraints) 

have driven the conception of the embedded PDS database engine.  

In order to protect personal data stored within the PDS or externalized on supporting servers, 

we have to devise adequate protection schemes relying on cryptography techniques. This is a 

main contribution of this manuscript, presented in the next chapter. Note that the security 

expectations will be reached without modifying the IO patterns and execution model which are 

already optimized according to the constraints of the platform.    
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Chapter 5  

Cryptography Protection in PDS 

1 Introduction 

As a radical different way to manage personal data, the PDS approach provides the 

functionalities rendered by a traditional DBMS server by relying on a secure hardware 

component called SPT. The level of trust which can be put in the PDS comes from the 

following factors: 

1) The PDS software inherits the tamper resistance of the SPT making hardware attacks highly 

difficult. 

2) The basic software including operating system, database engine and PDS generic tools, can 

be certified according to the Common Criteria (all declarative rules are ratified as well), 

making software attacks also highly difficult.  

3) The PDS basic software can be made auto-administered thanks to its simplicity, in contrast 

to its traditional multi-user server counterpart. Hence, DBA attacks are also precluded. 

4) Compared to a traditional server, the ratio Cost/Benefit of an attack is increased by 

observations 1) and 2) and by the fact that a successful attack compromises only the data of 

a single individual.  

5) Even the PDS holder cannot directly access the data stored locally. After authentication 

(e.g., by a pin code), she only gets the data according to her privileges thanks to enforced 

user’s control rules.  

Unfortunately, the security perimeter provided by the SPT is limited. As stated in Section 3.1 

of Chapter 4, the external massive stable storage (i.e., NAND Flash) is beyond the protection 

scope of the SPT microcontroller, hence Flash resident data suffer from confidentiality and 

integrity attacks. Integrity attacks make sense because the PDS holder herself can try to tamper 

the database (e.g., she could perform a replay attack to be refunded several times for the same 

drug, or try to change an access control rule or the content of an administrative document, e.g., a 

diploma). More formally, we consider four kinds of threats in our context:  

• Data Snooping. An attacker examines (encrypted) data to deduce some unauthorized 

information 

• Data Altering. An attacker deletes or modifies (even randomly) some data 
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• Data Substituting. An attacker replaces valid data with another valid data 

• Data Replaying. An attacker replaces valid data with its older version 

In addition, personal data also have to be externalized on supporting servers for availability, 

durability and global processing purpose. Regarding supporting servers, we assume they are 

Honest but Curious, a common assumption regarding Storage Service Providers. This means 

that they correctly provide the services that are expected from them (typically serve store, 

retrieve, and delete data requests) but they may try to breach confidentiality of any data that is 

stored locally. Therefore, care must be taken to ensure that the traditional functions of a central 

server (durability, availability, global queries) can be implemented using supporting servers in a 

secure manner, that is without violating confidentiality and integrity properties of externalized 

data and without revealing the participant PDSs’ identities (e.g., publishers or subscribers 

participating into a data exchange).  

To address the above mentioned security issues, we investigate some protection schemes, by 

resorting to cryptography techniques. The main objectives are: (a) enforcing data confidentiality 

(for Flash resident data and data externalized on supporting servers), i.e., preventing any 

information disclosure, (b) detecting any tampering (e.g., substituting, altering, replaying) on 

the data, (c) enabling supporting servers to serve users requests (e.g., store, retrieve and delete 

data) without any information leakage about externalized data and PDSs’ identities. To remain 

efficient, the proposed crypto-protection schemes should not impact data organization (storage 

and index structure) nor query execution strategy, which have been designed to minimize the 

number of IOs in NAND Flash (and thus the query response time, since IO cost is dominant).  

The PDS context poses many challenges to the crypto-protection design and enforcement. To 

cite a few: (a) scarce secure non-volatile storage is available on chip (e.g., hundreds of 

Kilobytes for code and metadata) which challenges the management of versions numbers 

(required when addressing replay attacks); (b) the PDS engine relies on a massive indexing 

scheme, leading to many fine granularity data access, which incurs a high cryptography 

overhead with traditional integrity methods (which are adapted to protect coarse grain text 

messages); (c) the limited computing capabilities offered by the SPT requires efficient design 

and enforcement of cryptographic techniques; (d) supporting servers are not considered as 

trusted, but as Honest-but-Curious, and may threaten the anonymity of the participating PDSs; 

and (e) the cryptography module of existing SPTs have limited cryptographic capabilities which 

constrains the choice of cryptography techniques to be used in practice.  
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In section 2, we focus on the crypto-protection of the data stored within the SPT (i.e., in the 

external NAND Flash). To make the explanation illustrative and concise, we first select some 

representative data structures used in the PDS engine and introduce their characteristics. Next, 

we propose a set of crypto-protection building blocks to counter the potential attacks mentioned 

above, adapted to the hardware constraints of the SPT. Finally, we illustrate explicitly how to 

enforce proposed building blocks on the selected data structures. In Section 3, we give a 

preliminary design of the main communication protocols between the PDSs and the supporting 

servers, and show the feasibility of PDS approach in terms of global architecture.  

2 Crypto-Protection for Embedded Data  

2.1 Data Structures and Access Patterns 

We present here the main data structures designed for the PDS engine, which are considered as 

indispensable components for efficient on board query processing. Storage structures are made 

of base tables, join indices (called Sub-tree Key Tables or SKTs) and selections indexes (see 

Chapter 4). Selections indexes are of two kinds: Cumulative Indexes and Clustered Indexes. We 

present here representatives of each data structure and corresponding access patterns. The study 

of their characteristics is important to derive the adequate security countermeasures (i.e., crypto-

protection building blocks).  

• Cumulative Index - Hybrid Skip 

We choose Hybrid Skip as the representative of cumulative indexes, used for indexing 

Sequential Database (SDB for short). This is reasonable because (i) it is a combination of all the 

data structures that we have proposed as forms of cumulative indexes (see Chapter 4, Section 

4.3) and (ii) it performs well on both insertion and query aspects.  

    As shown in Figure 16, Hybrid Skip index includes three structures: KA, SKA and PTR. KA 

stores the replicated indexed attribute values or their hash values (i.e., key). SKA is a summary 

of KA using Bloom Filters [Blo70]: one Bloom Filter (BF) is built for each KA page. SKA 

enables membership test before searching KA, which leads to access only the KA pages which, 

with very high probability, do contain expected results. PTR stores the chains which link index 

entries sharing the same key value together. In Hybrid Skip, the pointer in the chain is encoded 

in a small number of bits depending on the number of keys summarized by n pages of SKA (n is 

the maximal number of SKA pages that should be scanned before stopping in Hybrid Skip). For 
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example, if n = 2, the pointer size is 11 bits. Moreover, the chains is backward due to SWS 

definition, and is broken if the n next pages of SKA (in reverse order, as chaining is backward) 

do not contain the expected value. The end of chain value is noted NULL. 

During query execution, SKA is accessed in reversed order, and each BF is tested 

(sequentially) until finding a positive one. At that time, the corresponding KA page is accessed. 

It is scanned until the last occurrence of the searched key in the page is reached (the keys are 

placed sequentially at insertion inside the page). If no occurrence is found (i.e., false positive 

cases), the execution process goes back to SKA and continues searching (by testing BFs 

sequentially) in the reverse order. On the other hand, if the last occurrence is found in KA page, 

according to its location, corresponding PTR page is loaded to get the tail of pointer chain. 

Furthermore, more PTR pages are loaded to obtain all row identifiers of tuples sharing the 

searched value by traversing the chain (row identifiers are deduced from the position of the 

pointers in the chain). Once a NULL pointer is reached, the execution process switches to SKA, 

skips next n pages and continues searching (in reverse order as well) as described in previous 

steps. Finally, we could obtain a complete ordered list of matching tuples’ row identifiers in 

Sequential Database (i.e., SDB).  

• Clustered Index 

For clustered indexes, we have proposed a sort-based structure made of three components: OLI, 

CSL and NDI (see Section 4.3, Chapter 4). All row identifiers of tuples sharing the same value 

are clustered together based on their insertion order and constitute a list named OLI (Ordered 

List of Identifiers). The key value (i.e., index entry) for each OLI is stored in a sorted list of key 

values. Since this sorted list of keys is compact (no free spaces are required on the contrary of 

B-Tree leaves) it is called CSL (Compact Sorted List). In order to speedup lookups in this list, 

we index it with a Tree-like structure forming a Non-Dense Index (at current level, we only 

store the highest key for each page at inferior level) named NDI. Different from B-Tree, (i) CSL 

and NDI pages are fully filled since there is no updates/inserts/deletes in-place, thus no need to 

allocate space to alleviate the overhead of tree adjustment incurred by such changes; (ii) since 

NDI is static and built from the leaves to the root in recursive way, there is no need to store 

pointers in NDI to locate its children.  

    During the lookup process of equality query, we use binary search algorithm into NDI pages 

(keys are sorted) and deduce the child NDI page given the position of the key resulting from 
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that binary search. The process is repeated until reaching the CSL level, like traversing the 

nodes of a B-Tree. Binary search is used as well in the target CSL page, and once reaching the 

searched key, OLI is accessed to obtain the ordered list of matching tuples’ row identifiers in 

Clustered Database (CDB for short). For the inequality query (e.g., range), the lookup process is 

similar but all CSL pages containing key values that qualifies the inequality predicates are 

accessed, and the corresponding (maybe several) OLI are retrieved as well to obtain the row 

identifiers of resulting tuples (for equality query, a single OLI is accessed only).   

• Join Index - SKT 

A SKT acts as a join index. It joins all the tables in a subtree to the subtree root, each index 

entry containing the row identifiers for the matching tuples in subtree tables (see chapter 4). The 

entries in a SKT are naturally sorted on the row identifiers of the subtree root table.  

If a query requires projecting the data values from tables in the subtree, corresponding SKT 

entries will be accessed according to the row identifiers of root table obtained from traversing 

cumulative and clustered indexes as mentioned above. Such access is often considered as 

random since the row identifiers obtained from indexes, although sorted, are not clustered in 

same SKT pages (note: full scan SKT also makes sense, but it is not a common case). In 

addition, the query processor only retrieves useful identifiers, required for projecting the tuples 

from a SKT entry instead of the whole part of the entry.     

• Base Table   

Tables could be stored using the Row Storage scheme or Column Storage one. In our context, 

we used the Row Storage one but this has little impact on cryptographic protection. Indeed, (1) 

only tuples from the query result are accessed, based on the row identifiers obtained from SKT 

entries, or partially sequentially using the row identifiers obtained from a selection index 

(indexing the root table); (2) only the subset of columns (required for projection) are accessed. 

Thus, similar to the SKT, the access is partial, i.e., only retrieve the data of interest.  

2.2 Crypto-Protection Building Blocks  

In this section, we introduce the designs of crypto-protection building blocks, considering the 

limited resource and the hardware constraints (e.g., NAND Flash particularities). The building 

blocks include smarter version management strategy by taking advantage of database 
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serialization and stratification paradigms, authenticated encryption for fine granularity data 

generated by massive indexing scheme, smart selection scheme which enables searching 

directly on encrypted data, data placement strategy which allows decrypting only the data-of-

interest during processing.  

Note that the proposed building blocks do not necessarily rely on cryptography techniques 

(e.g., data placement), but all of them aim at constructing an efficient and secure crypto-

protection scheme for embedded PDS engine and can be potentially combined depending on the 

data structure and its access patterns (see Section 2.3).  

2.2.1 Version Management 

Fighting against replay attacks imposes to include a version number when computing the 

cryptographic hash of the protected plaintext, or when encrypting the plaintext. We have to 

securely store this version number, and maintain the association between each data item and its 

version number. At the time of checking integrity (e.g., check version), we obtain the good 

version from the secure store and compare it with the one stored along with the data.  

    The main difficulties related to version management are the choice of the granularity at which 

a structure must be protected (i.e., the number of data items protected using a same version 

number) and poor update support on NAND Flash (in the cases of version update). Indeed, if a 

version number is shared by few data items (e.g., each data item has its own version), then a 

huge amount of version numbers have to be maintained. Storing these versions within the secure 

memory (e.g., internal memory like NOR) becomes impossible due to its limited size. 

Maintaining a hierarchy of versions in the external storage and only storing its root in secure 

memory, in the spirit of Merkle Hash Trees [Mer89] and TEC Tree [ECL+07], generates fine-

grain random writes for each level of hierarchy, thus disturbs NAND Flash optimal write 

patterns (i.e., sequential write) [BJB+09]. Moreover, such tree structures bring side effects on 

query processing. As we have to traverse all tree levels from the leaf up to the root when 

checking the version for each data item, access latency and extra crypto overhead (e.g., decrypt 

Flash pages) are generated.  

In our context, we can take advantage of the serialization and stratification principles adopted 

by PDS engine and design a smarter version management strategy. More precisely, the 

following specificities exhibited by the PDS engine can be exploited: (i) in all SWSs, obsolete 



 86 

blocks can only be reclaimed during stratification, and they can only be reallocated to later 

strata. Hence when stratification starts, all SWSs of the current stratum are frozen; and (ii) no 

updates in-place exist, but updates are logged in a dedicated SWS called UPD and processed 

using specific algorithms during query execution.  

The above features enable a simple version management strategy where: (i) the whole 

stratum remaining valid or becoming obsolete altogether, the stratum number (allocated 

incrementally and kept unique) stands for the version number, which means maintaining 

versions at stratum granularity (only that number is stored in secure memory) thus avoiding the 

storage problem; (ii) data are never updated in-place within one stratum thanks to UPD, but are 

updated only after stratification (data with different versions locate in different strata) thus 

avoiding the problem of version update on NAND Flash.  

Based on such a version management strategy, we have to store the current stratum number 

in the secure memory. At the time of query processing, in order to check if the data items are 

used in the correct stratum (i.e. check version) or not, we have to obtain the stratum number 

from secure memory. Note that accessing secure memory is direct and efficient (typically, 

secure memory is NOR with access times comparable to RAM), making the proposed version 

management strategy highly efficient.   

2.2.2 Granularity of encryption and integrity checking  

In our context, personal data stored on NAND Flash suffer from snooping, substituting, altering 

and replaying attacks, thus adequate cryptographic techniques have to be used to fight against 

such attacks. Typically, snooping attacks could be precluded thanks to encryption, while illicit 

integrity violations (e.g., substituting, altering, replaying attacks) are traditionally detected by 

computing a Message Authentication Code (MAC), or using hash value [MOV97], or use 

authenticated encryption algorithms to encrypt and authenticate data simultaneously. At the time 

of checking integrity, we usually regenerate the MAC (or hash value) and compare it with the 

one stored with the data. If they match, the integrity of data item is not violated. Otherwise, the 

data item has been tampered.   

However, SPT only provides limited cryptography capabilities and disfavors some traditional 

methods. Indeed, only AES algorithm is available on SPT, hash function is implemented in 

software and is extremely slow. According to their performance (both in hardware and in 
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software) reported in [NES03], such limitation will remain valid in the foreseeable future. As a 

result, some efficient methods such as authenticated encryption algorithms (e.g., OCB, EAX, 

CCM etc) are precluded and the options of cryptographic techniques are constrained as well.   

Moreover, the granularity of traditional encryption and hashing algorithms (e.g., 128 bits for 

AES and 512 bits for SHA family) is not compliant with the database granularity (e.g., in the 

order of pointer size, such as 3 bytes) since the engine relies on a massive indexing scheme, 

hence using traditional methods will cause prohibitive cryptographic cost. For instance, the 

potential way to encrypt and authenticate data in our platform is using MAC method based on a 

block cipher (AES encryption can be done efficiently in hardware while software-based 

cryptographic hash computation is extremely slow) with the granularity of MAC depending on 

the block size of underlying block cipher (e.g., 16 bytes in our case). For very small data item 

(e.g. a pointer encoded in 3 bytes within the PTR structure), if we use MAC method and 

encrypt-then-MAC composition way (any composition methods have similar cost since they all 

have encryption and MAC two steps), first we have to pad the data to reach one block size 

before encrypting, then perform MAC algorithm on encrypted data. Therefore, it requires two 

passes of cryptographic processing and incurs significant crypto overhead.  

In addition, MAC size is not negligible even after truncation (e.g., 10 bytes). According to 

[MOV97], smaller MAC size will lead to security weakness (i.e., collision problems). In order 

to reduce MAC storage space, several data items could share the same MAC (e.g., all the 

pointers inside one page share one MAC). However, the drawback of this method is that it 

incurs significant crypto cost at the time of integrity checking. For instance, when we only 

retrieve one pointer randomly (e.g., following inverted list) and check its integrity, we have to 

perform MAC computation on the whole page accessed, which is clearly sub-optimal.   

Based on above statement, the problem of building MAC mainly comes from two aspects: (i) 

Storage expansion. For small granularity data, the storage expands significantly after encryption 

due to padding. Moreover, extra MAC storage is required. (ii) Two passes of cryptographic 

operation. MAC based approach needs two passes of processing regardless of data size, one for 

encryption and one for authentication. Hence the cryptographic overhead increases 

approximately by a factor of 2, which is significant in an embedded environment. Due to these 

reasons, we investigate a more efficient method that could solve or avoid such problems.  
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In literature [ECL+07], Elbaz et al. propose an authenticated encryption method based on 

block cipher, which provides confidentiality and integrity guarantees simultaneously and named 

Block-Level Added Redundancy Explicit Authentication (AREA). This method only requires one 

pass of processing and provides integrity guarantees at low cost, operates at the granularity of 

traditional block cipher and does not involve complex algorithms. It is, thus quite suitable to 

encrypt and authenticate data in our context. This method works as follows: a Nonce (Number 

used only once) is concatenated to small granularity plaintext data (e.g., 4 bytes), and then is 

padded potentially in order to obtain a complete block (e.g. 16 bytes) before encryption. After 

decryption, the Nonce obtained should match its initial value. Otherwise, at least one bit in the 

data item (including Nonce or padding bits) has been modified or tampered.   

The security of this construction is based on (i) the diffusion property of the block cipher, (ii) 

the uniqueness of the Nonce, (iii) the Nonce size. Property (i) means that one bit-flip in the 

input block will cause change for each bit of the output blocks with reasonable probability (e.g., 

50%). Property (ii) makes sure that data items with same value will be padded with different 

Nonce values and be encrypted into different ciphertext to resist to statistical attacks. Property 

(iii) concerns the probability of a successful attack. Indeed, for a block with n bits, the Nonce 

size being m bits, the chance of an attacker to modify the block without being detected (i.e., the 

Nonce remaining valid) is 1/2m.  Therefore, the larger the Nonce size, the more difficult it is to 

breach the security. The side effect is that the size of the payload becomes smaller (as stated 

below). 

To fight against Data Substituting and Data Replaying attacks, the Nonce value should 

contain the absolute address and the version number of the data items. This information does not 

require being kept secret to guarantee integrity (with reasonable Nonce size). Consequently, 

AREA can be used to authenticate large quantity of data (e.g., several GBs) without generating 

secure storage overheads. This point is very important in our environment where the amount of 

secure memory is limited.   

Compared to traditional Encrypt-then-MAC methods, the advantages of using AREA are: (i) 

it operates at fine granularity (e.g., several bytes), which is suitable to our massive indexed PDS 

engine; and (ii) it offers integrity checking at low cost. Indeed, we just have to compare the 

decrypted Nonce value with the good one to detect tampering, without performing any extra 

cryptographic operation. Compared with traditional MAC method which requires two passes 
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over the data, AREA is still thus a preferable option (in terms of cryptographic cost) for any size 

data and whatever be the access pattern (sequential or random).  

However, AREA has an intrinsic drawback: compared with traditional MAC methods, it has 

larger storage expansion. For instance, for x bytes data (assuming x is multiple of the block size, 

i.e., the block size of the cipher, like 16 bytes), using AREA would require x*(m/n) bytes (block 

size being n bits, and the Nonce size being m bits) for storing the Nonce. The storage expansion 

is thus proportional to the size of the plaintext. With MAC method, only a fixed size space (e.g., 

16 bytes) is required for storing MAC regardless of the plaintext size. In practice, we have to 

take the storage expansion factor into consideration as well (including other factors such as 

introduced cryptographic overhead, implementation feasibility and complexity etc), and choose 

adequate solutions (to ensure confidentiality and integrity guarantees) for the data to be 

protected.  

2.2.3 Searching on Encrypted Data 

According to the storage and indexing model of PDS engine (presented in Chapter 4), at query 

time the execution engine often requires searching within a set of values those values matching 

certain conditions (e.g., when accessing the KA built on city attribute to find out row identifiers 

of tuples with value ‘Lyon’). If we encrypt these values in traditional way (e.g., assuming using 

the CBC mode), identical values are encrypted into different ciphertexts to resist to statistical 

attacks. Each value requires then to be decrypted to identify the qualified values, inducing many 

(costly) decryption operations. To conduct the search more efficiently, we have to enable 

searching over encrypted data without decryption.  

The state-of-the-art works done in the database community have opened some avenues in this 

direction (see section 2, Chapter 3). Hacigümüs et al. [HIL+02b] propose exploiting 

bucketization indices to compute queries over encrypted database in DAS model, and many 

other following studies have been made to design indices that have a good trade-off between 

privacy and efficiency [DDJ+03, HMT04]. Another famous avenue to enable searching on 

encrypted data using exotic encryption algorithms, such as Order-Preserving Encryption 

[AKS+04], Prefix-Preserving Encryption [LiO05], Privacy Homomorphism (PH) [OSC03, 

HIM04, EvG07, GeZ07a].  
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Figure 18. Smart Selection Scheme 

    Unfortunately, the state-of-the-art techniques are not able to solve our problem due to the 

following reasons: (i) the computing environment in our context is trusted, thus we only need to 

do some evaluation (i.e., selection) on ciphertext instead of computing whole query on them, 

hence the complexity of the problem is eased. (ii) The results returned by the searching process 

should be exact and accurate (i.e., no false positives). As the searched results have to be joined 

and projected in the following processing, thus accurate selection improves query efficiency 

(without wasting time on processing non-resulting tuples). (iii) Limited computing capabilities 

do not provide support for using exotic encryption algorithms (i.e., only AES algorithm is 

available on SPT).  

In this manuscript, we propose a new method called Smart Selection to evaluate equality 

predicates without decryption (and without security breach). The idea is to encrypt each key 

according to its value and the number of occurrences of that key that are already present (in the 

set). At query time, the next encrypted text to search for can be deduced from the key value of 

the search and the current number of matching results. In the following, we will present in 

details how encryption and integrity are performed while enabling Smart Selection.  
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• Encryption  

As shown in Figure 18, to speedup the retrieval of n occurrences of a given value v within a set 

of p values, the successive occurrences of the same value are concatenated with additional 

information before encryption (note, to avoid the same values producing several identical cipher 

blocks, the values are concatenated after additional information). This information makes each 

occurrence unique thus precluding that the same values generate the same ciphertext, thus 

resisting to statistical attacks. Indeed, such information includes: (i) Set Identifier. This field 

intends to preclude statistical attacks among different sets because other fields are local and are 

within the scope of a set (e.g., assuming one KA page is a set, without set identifier, the first 

occurrence of value ‘Lyon’ in different KA pages would lead to the same ciphertext). (ii) 

Occurrence Number. This field indicates the occurrence order of value in a set. It starts from 0 

and is incremented. The objective of this field is to make each occurrence distinct and to prevent 

integrity attacks such as substitution. (iii) Address of Previous Occurrence. This field indicates 

the address of the previous occurrence in the set. Through this field, it chains all occurrences of 

value v in reverse order (called address chain hereafter), and provides benefits for integrity 

checking (see the following). For the first occurrence, since it has no previous occurrence with 

values v, this field is set to NULL. 

• Building MAC  

In the previous section, we have introduced AREA, an efficient authenticated encryption 

method that provides integrity guarantee at low cost. Unfortunately, we can not combine AREA 

with smart selection since they are conflicting by nature. Indeed, using AREA requires 

embedding the absolute address (e.g. physical address) in Nonce to resist to substituting and 

altering attacks. However, if we embed this information in the encryption process of the smart 

selection scheme, we cannot anymore search on encrypted data (see next part). Consequently, 

we have no better solution than building MAC for encrypted values.  

In order to reduce the cost for (re)building and checking the MAC, we build the MAC as 

follows: (i) we use the Encrypt-then-MAC composition way. According to [BeN00], this 

composition method is secure and efficient. Indeed, we can check MAC for data items and 

verify their integrity without decrypting the data. (ii) In order to fight against altering, 

substituting and replaying attacks, we integrate the absolute address (e.g., physical address) and 

the version number in the MAC building process. This also brings extra benefits. Indeed, if 
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version or address information have been updated (e.g., moving one data item to elsewhere), we 

only need to rebuild the MAC without decrypting data values, since they (e.g., absolute address, 

version number) are not encrypted with data values.  

Based on the above statement, the input for MAC algorithm includes (i) ciphertext to 

authenticate, (ii) physical address of ciphertext, (iii) version information. As shown in Figure 

18, except the above items, it also includes (iv) Tag field, which intends to identify the last 

occurrence of value v in the set. For example, only Tag field of the chain tail (e.g., vn) has been 

set, while other occurrences have unset Tag. This field is used to check the completeness of 

results. For instance, if we have found the chain tail and prove its correctness by checking MAC 

(see next part), we can infer that there is no other occurrence of value v after this tail in the set. 

Obviously, this objective could also be achieved by adding Tag as input for encryption instead 

of MAC process. Since both ways lead to the same cryptographic cost, thus we only consider 

the former approach in this manuscript. 

• Searching and Integrity Checking 

In this part, we present the search process and explain how to detect tampering by taking 

advantage of the encryption and MAC techniques mentioned above.  

To retrieve the p occurrences of a given value v within a set of n values, the searched value v 

is concatenated before encryption with the Set Identifier (e.g., S10), the Occurrence Number 

(initially set to 0) and the Address of Previous Occurrence (initially set to NULL) as defined 

above. The item: Set Identifier || Occurrence Number || Address of Previous Occurrence || v is 

then encrypted. The result of this encryption is then compared with the ciphertext of the p 

values in the set. If a match occurs, it means that the first occurrence has been found. Then, the 

Set Identifier1 (e.g., S10), the incremented Occurrence Number (e.g., set to 1) and the Address of 

Previous Occurrence (e.g., @160 in Figure 18), concatenated with the value v, is encrypted 

again. The result of this second encryption is then compared with the elements of the set after 

the first occurrence. The same process is repeated until the last element of the list is reached.  

At the end of the search, the MAC (with Tag set) of the last occurrence is checked to verify 

its integrity. Checking the MAC of the last occurrence is sufficient to guarantee the 

completeness and correctness properties (i.e., integrity) of the whole result. For example, 
                                                
1 Note that the value of Set Identifier is unchanged inside a same set 
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altering attack is detected, because if any occurrence in the chain has been tampered, the 

comparison fails at the time of the search and subsequent matching values are omitted; the last 

value reached by the search is thus not the last one in the chain, and its MAC is generated with 

the Tag unset; the tampering can thus be detected. Besides, substitution or swapping attacks are 

detected as well since all occurrences are chained and their Occurrence Numbers are allocated 

incrementally. For example, assuming this field does not exist, the completeness properties of 

the results can be violated without being detected. In the above example, if we swap v0 and vn-1 

(the 1st and n-1th occurrence of value v, note, the Occurrence Numbers are not included), we can 

find the v0 (at the position of vn-1) and vn, while the integrity checking for vn succeed as well, 

thus we missed v1 … vn-1 and obtain incomplete results. Therefore, the Occurrence Number field 

is mandatory to detect missing occurrences.  

However, there exist some exceptional cases: (1) the first occurrence has been tampered; (2) 

no occurrence in that set is qualified. In both cases, the search returns an empty result. To detect 

any potential tampering, the integrity for the whole set must be checked. Exceptional case (1) is 

scarce by nature, but case (2) may incur a significant overhead depending on the frequency of 

empty result. When adapting Smart Selection to storage and indexation structures, this case 

must be carefully taken into account (See Section 2.3.2). 

In summary, Smart Selection scheme has the important advantages of only generating one 

encryption per qualified result (to locate the last occurrence, an extra encryption is required for 

searching vn+1) and one MAC checking (in the general case) independently of the size p of the 

set. However, this scheme only supports equality query.  

2.2.4 Data Placement  

As block cipher (e.g., AES algorithm) operates at a block granularity, it makes sense to cluster 

data-of-interest (according to the query processor) within same blocks to reduce 

encryption/decryption overheads.  

Previous works on databases encryption take data placement into consideration. The 

Partition Attributes Across (PAX) storage model [ADH02] groups all values of each attribute 

together inside the page to minimize the number of decryption operations when accessing to a 

given set of attributes. In the same spirit, [IMM+04] proposes the Partition Plaintext and 

Ciphertext (PPC) storage model to separate sensitive and non-sensitive data within disk pages 
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(disk page are split into two mini-pages), thus reducing the cryptographic operations (only 

sensitive data is encrypted). Note that in most contexts, IO is the dominant factor (over 

cryptographic costs). This leads to propose adaptations of the existing storage and indexing 

models (optimized for IOs) which enable cryptographic protections at a lower cost, but without 

impacting the IO patterns and causing storage penalties.  

In the PDS context, this will also be the case; the data placement strategy will aim at 

reducing the amount of cryptographic operations and improve the performance of the query 

processing, without violating the design rules of the PDS engine (thus without incurring any 

changes to the IO access patterns). Details are given in the next section.  

2.3 Instantiating the building blocks in the PDS case 

In this section, we give a description of how the crypto-protection building blocks that we 

proposed can be transposed to the case of the PDS engine. We first instantiate the building 

blocks in the specific context of the PDS engine (for both AREA and Smart Selection). Next, we 

show how those instances (of AREA and Smart Selection) can be used on the data structures of 

PDS (as introduced in Section 2.1).  

2.3.1 Instantiating the Crypto-Protection Building Blocks for the PDS 

• AREA for the PDS  

For the implementation of AREA method, the major problem is designing the Nonce value. In 

the above sections, we have pointed out that Nonce value should contain absolute address (e.g., 

physical address) and version information (using stratum number in our context) for the data 

item to be authenticated, as shown in Figure 19. The stratum number takes 2 bytes, hence the 

number of strata could reach up to 65536, while the physical address takes 4 bytes, thus support 

4 GB sized database (to support larger database, we can increase the Nonce size). Such design 

ensures the uniqueness of Nonce values, indeed, same values will produce different ciphertext 

after encryption (prevent snooping attack), hence statistical attacks are precluded. Thanks to the 

Nonce, integrity attacks such as substituting, replaying, altering can be detected as well (see 

following). Therefore, AREA achieves expected security levels in our context.  
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data Stratum Number

(2B)
padding

Absolute Address

for Data Item

(4B)

payload (10 bytes) Nonce (6 bytes)

  

Figure 19. Nonce Design in AREA 

    At the time of checking integrity, more precisely, (i) we compare retrieved stratum number in 

Nonce with the current stratum number stored in secure memory (i.e., internal NOR Flash), to 

check if they are coherent and to detect replay attack, (ii) we check the absolute address (since 

the physical address is known when accessing the data item) for the targeted data item to detect 

substituting and altering attacks.  

    The total size for the Nonce value is 6 bytes. The probability of conducting a successful 

attack without being detected is 1/248, which is considered secure in our context. Using AES, it 

leads to a payload of 10 bytes only, since the block size for the AES cipher is 16 bytes.   

• Smart Selection for the PDS 

In the PDS context, the choice for the granularity of the set of items protected with Smart 

Selection is the page. Indeed, for any SDBi part of the database (i.e., the sequential part of the 

database storing tables, indexes, update and delete information), choosing a multi-page 

granularity would lead to break the SWS precept. Actually, SDBi must be filled page by page 

sequentially; considering a multi-page granularity would require updating previous pages (to 

modify tag values from 1 to 0 for all items sharing an existing value).  

When instantiating the Smart Selection scheme at the page granularity (see Figure 20), hence 

the Set Identifier is represented by the absolute address of the page. In Figure 20.a, the counter 

stands for the occurrence number of the targeted data item, and in Figure 20.b the stratum 

number acts as a version number.  

To build the MAC, we have chosen the CBC-MAC based on the AES algorithm (which is 

available on current chips). Note that, since CBC-MAC suffers from message concatenation 

attack, we use its variants called XCBC-MAC [FrH03] in practice. At the time of checking 

integrity, for the targeted data item, we get the stratum number from the secure memory, 
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concatenated to the absolute address and tag (set), to regenerate MAC. Then we compare the 

generated MAC with the one stored with data item retrieved, and verify if its integrity has been 

violated or not.  

As mentioned above, during the lookup process in the Smart Selection scheme, we do not 

decrypt data and only do equality evaluation on ciphertext. When the size of the encrypted value 

(See Figure 20.a) is small, we can easily use the ciphertext when searching and building MAC. 

However, if the data is large (e.g., 100 bytes), the process becomes more costly for two reasons: 

(i) the storage footprint of the ciphertext is larger, i.e., more than 100 bytes after encryption, and 

(ii) the overhead of MAC algorithm for large data thus leads to double the overall cryptographic 

cost. In order to solve this, we propose using a cryptographic hash representation of the data as 

ciphered data (e.g., 16 bytes only) for Smart Selection. Selection becomes then more efficient, 

but at the cost of proscribing projections. Given the considered data structures in PDS, 

projection is often only required when running the stratification process. However, the 

projections steps involved in the stratification process can be performed differently, as exposed 

later, and without any strong impact on the performance (see Chapter 6), making this 

optimization acceptable is most cases.  

Data
Absolute Address 

for Page

(3B)

Address of Previous 
Data Item inside Page

(1B)

counter

(1B)

ciphered 
data

Stratum Number 

(2B)

tag

(1 bit)

(a) Input for Encryption

(b) Input for MAC Building

Absolute Address of 
Ciphertext

(4B)

 

Figure 20.  Smart Selection scheme for PDS (page granularity) 

2.3.2 Protecting the PDS structures  

For conciseness, we only consider the most representative data structures of the PDS, and 

consider that techniques for the other data structures can be deduced easily. Typically, we only 

describe the protection of the Hybrid Skip index, since the other indexes exhibit a similar but 

simpler format. 
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• Cumulative Index - Hybrid Skip 

SKA is built based on the BF technology, which allows membership test with low false positive 

rate, as introduced above. Before discussing its protection, we investigate a better data 

placement (inside the page) for BFs, considering the following facts. (i) Each BF is a bit array 

(e.g., m bits). We only check few bits (e.g., 3 bits) in the array during the testing. The position 

and number of bits we need to check are determined by the hash functions used to build BF (e.g., 

3 hash functions). (ii) BFs inside the page are retrieved sequentially without skipping. As a 

result, relevant bits (i.e., bits at the same position) from all BFs inside the page can be grouped, 

and encrypted together (called cluster, see Figure 21), in order to save decryption cost. During 

scanning, we only decrypt clusters of interest, hence the number of cryptographic operations is 

reduced largely (depends on the number of bits to check in the BF array).   

It is preferable to use AREA (instead of Smart Selection Scheme) to ensure the security for 

SKA because (i) AREA provides integrity guarantees at low cost, (ii) the size of a cluster is 

small (e.g. k bits), because the number of BFs that can be stored inside one SKA page is small 

(e.g., k = 8), considering each BF summarizes one KA page and reaches rather large size. (iii) 

AREA is adequate for fine granularity data. In addition, in order to save crypto overhead further 

(and space as well), we can group adjacent clusters and encrypt them within one AES block 

(since each cluster is small). However, we do not allow the case that one cluster crosses two 

different AES blocks, because accessing such cluster leads to two cryptographic operations.  

BF11 BF21 ... BFk1 BF12 BF22 … BFk2 …… BF1m BF2m … BFkm

BF1

Cluster1 Clusterm  

Figure 21.  Data Placement for SKA 

Thanks to SKA, we only access KA pages potentially containing results. Inside the KA page, 

we search for all keys sequentially (they are stored based on their insertion orders).  Each key is 

mapped to its corresponding SKT entry, as well as the tuple inside the table. Hence, the data 
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layout inside the KA page should be kept unchanged, otherwise, the functionalities of 

cumulative indexes becomes invalid. 

To protect each KA page, we use Smart Selection scheme, because all keys inside the KA 

page are accessed sequentially. As mentioned before, in the case of no results inside the page, 

we have to check the integrity for the whole page, leading to significant cryptographic overhead. 

In the PDS context, thanks to the BF technology used in the SKA (membership test is done 

before searching), the probabilities of such cases are reduced to extremely low level (amounts to 

false positives rate of BF).  

Regarding the PTR structure, it is randomly accessed and the size of each pointer is small 

(e.g., 11 bits). Since AREA suits for fine granularity data very well, while traditional Encrypt-

then-MAC method leads to significant storage expansion and checking cost. Hence it is 

preferable to use AREA to ensure its confidentiality and integrity,  

• Clustered Index 

Since we need to do inequality evaluation on NDI (presented in Section 2.1), it precludes the 

application of Smart Selection, which only supports equality predicates. In addition, AREA 

adapts for fine granularity accessing and random accessing, thus NDI is protected using AREA. 

To speedup searching, we use dichotomy algorithm during searching (since keys are sorted). 

For the same reason, OLI are protected using AREA as well.  

For CSL, each value is distinct and we only need to find the expected one through equality 

testing, this feature fits well the application scope of Smart Selection scheme. If using AREA, 

we have to decrypt full CSL page before searching, while using Smart Selection scheme only 

requires two cryptographic operations (one for encryption and one for MAC computation). As a 

result, protecting CSL using Smart Selection scheme makes more sense.  

• SKT 

Each SKT serves as a join indexes. It is organized as a table of identifiers. Each column stores 

the rows identifiers of a given table. We refer to Section 2.1 for more details. Row identifiers 

are usually small (e.g., 4 bytes). When accessing a SKT, only a subset of the columns is 

required (i.e., corresponding to projected tables). Usually, the query processor accesses not 

contiguous rows of a SKT (since rows identifiers are obtained by querying selection indexes). 
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    AREA is suitable for protecting fine granularity data accessed randomly making it a natural 

choice for SKT protection.    

• Table 

Table in row store scheme has similar access patterns to SKT. Indeed, only subset of the tuple 

can be retrieved separately and randomly (e.g., for projection purpose). However, different from 

SKT entry, the tuple may have very large attributes (e.g., 100 bytes). If using AREA, the storage 

expansion incurred by crypto-protection becomes too important (for both Flash consumption 

and IO cost at query time). For example, considering the payload is 10 bytes in AREA, for an 

attribute or a tuple with 100 bytes, it requires 10 AREA blocks to store it, and the total size of 

encrypted data could reach 160 bytes.  

AREA is however the best choice to protect tables because: (i) AREA provides integrity at 

low cost and only requires one pass of processing on projected data item, while normal methods 

require two passes of processing (see Section 2.2.2) (ii) Our context is more sensitive to read 

performance (e.g., projection tables). As each stratum is written only once, never updated and 

read intensively, the write overhead incurred by AREA becomes acceptable. (iii) Regarding 

read IOs, the IO cost largely depends on IO itself, instead of data size per IO, thus read 

performance is not impacted greatly either by the larger storage expansion factor of AREA 

(except the cases when data item size is rather large, refer to Chapter 6 for more details). (iv) 

The external NAND storage has no strict limit according to SPT manufacturers (e.g., Gemalto), 

thus the storage will not become a problem in our context. As a result, it makes sense to trade 

better performance (i.e., crypto gain) with more storage space. Performance measurements (see 

Chapter 6) will confirm these qualitative arguments.  

In summary, this section introduced the protection schemes for main data structures used in 

PDS engine (see Table 1), to meet security expectations. In next chapter, we will quantify 

cryptography impact and show their effectiveness.   
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Table 1. Data Structures and Cryptography Protection Schemes 
 

Data Structures Protection Scheme Reasons 

Cumulative 
Index 

SKA (Data Placement)  
AREA 

AREA suits for fine granularity data (less 
crypto overhead) 

KA Smart Selection sequential equality testing inside KA page 

PTR AREA AREA suits for fine granularity and random 
accessed data 

Clustered 
Index 

NDI AREA provide support for inequality evaluation 

OLI AREA AREA suits for fine granularity data (less 
crypto overhead) 

CSL Smart Selection smart selection incurs less crypto overhead 

SKT AREA AREA suits for fine granularity and random 
accessed data 

Table AREA AREA provides integrity at low cost and 
incurs less crypto overhead 

3 Secure Communication Protocols 

3.1 Introduction  

In order to implement traditional functionalities of a central server such as durability, 

availability and global processing, PDS approach has to resort to external supporting servers, 

which are supposed to serve data store, retrieve and delete requests on an unbounded storage 

area. However, supporting servers are Honest-but-Curious, i.e., they function correctly, but they 

may try to breach the confidentiality of externalized data or anonymity of participant PDSs.  

    Consequently, to achieve expected security goals while satisfying PDS application 

requirements, any externalized data is required to be encrypted, both on supporting servers and 

communication channels. Moreover, communication channels between supporting servers and 

PDSs and between PDSs themselves should use anonymizing network like Tor [DMS04], based 

on the Onion-routing protocol [GRS99], to make the communication anonymous. In addition, 

secure communication protocols between supporting servers and PDSs should be devised to 

ensure supporting servers function correctly, without any knowledge about PDSs’ identities.  

In this manuscript, we focus on designing adequate secure communication protocols, to show 

the feasibility of PDS approach. Other issues concerning security are considered as future works 

(see Chapter 7).  

In the following, we first introduce the message format and describe each field inside the 

message. Next, we give the design of message exchanging protocols. This is not straightforward. 
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For instance, the primary concern for the feasibility of PDS approach is that recipient PDSs 

must be able to retrieve messages or data sent to them. Although communications are 

anonymous, the difficulty lies in selecting the relevant messages or data without disclosing any 

information that could help the supporting servers to infer PDS identity. To address this issue, 

we propose a protocol tagging messages with anonymous markers (see Section 3.3).  

Finally, we provide protocols for handling data delete requests, as deleting obsolete/invalid 

data is necessary in PDS functionalities. Such requests are difficult for two reasons: (i) the 

requesting PDS must exhibit a proof of legitimacy to destroy the data, and (ii) the deletion must 

be effective, either in the case that an attacker spies and replicates all messages sent to the 

supporting servers, or in the case that the physical image of the targeted data has been stolen or 

cannot be physically destroyed.  

3.2 Message Format 

Table 2 gives detailed explanation about the notations used in the following protocols.  

Table 2. List of Symbols used in Protocols 
 

][MEpubX  Encryption of message M with the public key of entity X. 

][MEk  Encryption of message M with secret key k 

1M || 2M  Concatenation of messages M1 and M2 

H M[ ]  Cryptographic hash of message M 

()randk  A pseudorandom number generator using a secret key k, specific to each 
actor (PDSs or Content Providers)  

ID X( )  Publicly known identifier of entity X 

TS  Timestamp generated by a time server 

N Null value 

    The structure of the messages that are sent and stored on supporting servers is shown in 

Figure 22. Typically, a message contains following fields: 
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Figure 22. Message Structure 

• TS is acquired by the supporting servers thanks to a secure time server. It is added to the 

message to allow the recipient PDS to filter out the messages it has already received.   

• Tag is used to mark the messages intending for a given recipient PDS, thus allows the 

recipient PDS to retrieve its messages on the supporting servers.  

• Cpt is a counter associated to each sender/receiver pair (or to each marker). It is 

incremented by the sender and used by the receiver to check the correctness of the messages 

ordering. In addition, it also could be used to detect missing messages and to guarantee the 

completeness of messages. In the following protocols, this field is ignored to simplify 

description.   

• DeleteTag is a proof of legitimacy for the delete operation. It is computed by cryptographic 

hash functions and used by supporting servers to verify if the delete request comes from an 

authorized PDS or not. We will explain its usage explicitly later (see Section 3.4).   

• KeyInfo is a session key used to encrypt the EncryptedData field. As the encryption uses 

symmetric encryption algorithms, the KeyInfo has to be transmitted along with the messages, 

and then used by the receiver to decrypt externalized data. For the KeyInfo itself, it is 

encrypted with the public key of the receiver.  

• EncryptedData is the actual content of the message, encrypted with the session key KeyInfo. 

• Digest is a hash of the previous fields, encrypted with the session key KeyInfo and used to 

check the integrity of the message, since an attacker could tamper the messages transmitted 

on communication channels.  

    Note that some fields do not play critical role for each protocol, and are deliberately not 

shown in the exchanged messages to make the description more concise.  

3.3 Protocol for Exchanging Messages  

For a given recipient PDS, the difficulty for retrieving the messages lies in the possibility to 

anonymously select messages on supporting servers, without revealing any information that 

TS  Tag  Cpt  DeleteTag    KeyInfo  EncryptedData   Digest  

 Encrypted Hash  
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could be exploited by the server to infer the identity of the PDS. To address this issue, we 

propose to resort to anonymous markers, leading to the protocol described below.  

    The protocol to establish anonymous markers works in two phases (see Figure 23). In the first 

phase, the sender computes a tag T (which will be used to tag the next messages) thanks to the 

pseudorandom number generator. The computed tag T is transmitted encrypted with the session 

key Ks, itself encrypted with the public key of the receiver. This first message between a sender 

and a receiver is itself tagged with the public identifier of the receiver ID(R). Note that, while 

the receiver identifier is transmitted in clear-text in this first message, it does not disclose 

sensitive information because (1) the sender is anonymous and (2) for a sender/receiver pair 

there is only one message of that kind. Hence, an attacker could only count the number of 

entities who established a communication with a given PDS.  

    In the second phase, data is exchanged using the defined marker T, the timestamp TS, and the 

session key Ks encrypted with the public key of the receiver. Note that the reuse of markers 

with timestamps allows a passive observer to determine that new data items are shared possibly 

between the same sender and the receiver. Since all communications are anonymous this 

information cannot be exploited further to link a particular data item to one specific sender or 

receiver. However, this information could be hidden by changing the marker periodically, 

transmitting the new marker in the last message using the current marker. 

 

Figure 23. Communication using Markers 
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3.4 Protocols for Deletion  

In this section, we tackle with two major issues for handling delete request, as mentioned in the 

introduction. First, we present how to exhibit deletion proof of legitimacy to supporting servers 

in a secure manner, while delete request could be issued by the sender or receiver (e.g., delete 

audit data). Next, we provide solutions to ensure the effectiveness of deletion, even in the case 

where physical image of the targeted data can not be destroyed or has been replicated or stolen.  

3.4.1 Deletion with proof of legitimacy 

A proof of legitimacy is required to guarantee that only the PDS which produces a data can 

delete it. Audit data is a special case where the PDS which is granted permission to delete some 

audit data (i.e., the publisher) is actually not the PDS which produces it (i.e., the subscriber). We 

illustrate below the protocol used when the delete right is delegated to the receiver. The protocol 

when the sender keeps the delete right can be deduced easily. The idea is based on 

cryptographic hash functions pre-image resistance property. The sender computes a random 

value called Delete Proof or DP and applies a cryptographic hash, thus obtaining DT, the Delete 

Tag. To transmit the delete right to the receiver, the sender simply adds DP to the data before 

encrypting it. When the receiver receives the message, it extracts DP and stores it. At delete 

time, the receiver sends a delete request, sending DP to the Supporting Server. Since given the 

hash value DT, it is computationally infeasible to find DP, such that DT = H(DP) (pre-image 

resistance property), the supporting server knows that the delete request was sent by an 

authorized PDS (see Figure 24). Moreover, the protocol for the case where the sender keeps the 

delete right can be deduced easily (see Figure 25).  
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Figure 24. delete request issued by receiver 
 

 
 

Figure 25. delete request issued by sender 

3.4.2 Secure deletion  

All data stored in the supporting servers have been carried by messages. Hence deleting a data 

item on the supporting servers amounts to deleting the corresponding message. Since the 

communications may be spied by an attacker and the messages copied, there is no other solution 

for enforcing the deletion than removing permanently the access to this message. This can be 

implemented as follows. The sender and the receiver establish a secret key using the Diffie-

Hellman key agreement protocol and use it to encrypt the message (thus do not fill the KeyInfo 

field). When, e.g., the sender decides to delete the message, he destroys his partial secret and 

sends a message to the receiver requiring deletion of his partial secret. Even if an attacker 
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tampers one of the SPT after the deletion occurs, he cannot recover the message. This idea is 

simple but the protocol to implement it is more complex due to the fact that each party must be 

able to recover this message (assuming it has not been yet deleted) in case of a SPT failure (i.e., 

to ensure the durability property). 

4 Conclusion 

In this chapter, we design a set of crypto-protection building blocks. We instantiate the building 

blocks in the PDS context, and show how they can be used to protect some representative data 

structures used in PDS engine. We also propose secure communication protocols to ensure 

external supporting servers can serve data store, retrieve and delete requests, without knowing 

the identities of PDSs participating to the communication.  

In the next chapter, we will use experiments to show the efficiency of the proposed solutions 

and their impact to the performance of PDS engine. 
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Chapter 6  

Performance Evaluation 

In this chapter, we show experimentally the effectiveness of the proposed crypto-protection 

schemes, designed for the embedded PDS engine. In the first section, we describe the 

experimental environment including hardware parameters, database schema and queries used in 

the experiments. Then we measure the performance of the crypto-protection schemes in 

isolation, compare them with other traditional methods and show their advantages. Finally, we 

measure an implementation of our techniques on the PDS engine and discuss the impact of the 

cryptographic protection.  

1 Experimental Environment   

1.1 Hardware Platform 

Developing embedded software (i.e., PDS engine) for secure microcontrollers is a complex task, 

which is normally done in two phases: (i) development and validation on simulators, 

(ii) adaptation and flashing on secure microcontrollers. Our current PDS engine prototype is in 

the phase one and runs on a software simulator of the SPT platform. This simulator is IO and 

crypto-accurate, i.e., it computes exactly the number of IOs (by pattern) and cryptographic 

operations (by type), by far the most costly operations in our context. In order to provide 

performance results in seconds, we use SPT’s basic timing information provided by our 

industrial partner Gemalto. Table 3 shows these basic timings, other hardware related 

parameters, as well as some parameters used in the prototype (for Bloom Filters). Note that, 

reading or writing on Flash can be done only at the granularity of a sector (512 B) or at the 

granularity of a page (2 KB). Indeed, to eliminate hardware errors, error correction codes (ECC) 

must be computed for each read/written sector. We read or write data by sector to minimize 

RAM usage (typically for buffering), a scarce resource on the SPT. 

To check the validity of our time estimations, we calibrate the output of this simulation with 

performance measurements done on a previous prototype named PlugDB. PlugDB has already 

reached phase two (i.e., runs on a real hardware platform), has been demonstrated [ABG+10] 

and is being experimented in the field in an experimental project of secure and portable 

medical-social folder [AAB+09]. While PlugDB is simpler (no serialization, nor stratification, 

basic crypto-protection which is done at sector granularity), and it shares some commonalities 
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with the current design. Based on our preliminary measurements (e.g., through some queries 

where the code of PlugDB has similarities with the ones we designed for PDS engine), such 

calibration has shown its rationality.  

Table 3. SPT simulator Performance Parameter 
 

Category Parameter Description Performance 

Flash 

size of a Flash sector  512 bytes 
size of Flash page 2048 bytes (i.e. 4 sectors) 
read one Flash sector (including transfer time) 37.8 µs / IO 
write one Flash page (including transfer time)  262.8 µs / IO 
transfer one byte data from NAND register to RAM 0.025 µs / byte 

CPU CPU frequency (in MHZ) 50 MHZ 

Cipher 
block size for the AES cipher 16 bytes 
CPU cycles required for encrypting block sized data 120 cycles / block 
CPU cycles required for decrypting block sized data 120 cycles / block 

Bloom Filter 
number of hash functions used  3 hash functions 
encoding size for each key 2 bytes 
false positive rate of bloom filter 0.005 (percentage) 

1.2 DBMS Settings 

1.2.1 Database  

In our experiments, we consider a synthetic medical database (see Figure 17) with cardinalities 

similar to TPCH with a scale factor SF = 0.5, leading to 3M tuples for the largest table: 

Prescription. Each table has 5 indexed attributes including ID, Dup10, Dup100, MS1, MS10 

(climbing indexes use Hybrid Skip for their cumulative part with n = 2, n being the maximal 

number of SKA pages that should be scanned before stopping). ID is the row identifier of a 

tuple (amounts to the tuple’s physical address in our settings), Dup10, DUP100, MS1 and MS10 

are all CHAR(10) type, populated such that exact match selection retrieves respectively 10 

tuples, 100 tuples, 1% and 10% of the table. Including the required foreign keys and other non-

indexed attributes, the tuple size reaches 160 bytes.  

The database schema cardinalities are given in Table 4 (see Figure 17 for the database 

schema). For each attribute, we indicate its name, its type, the table it belongs to, and the 

number of distinct values (considering a scale factor SF = 0.5). Primary key attributes are 

underlined and foreign keys are in italic. Attributes with star label (*) are indexed using a 

climbing index. This schema leads to build 30 climbing indexes, translated into 64 cumulative 
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indexes, from which 29 for the Prescription table (5 from each sub-table + 4 defined at 

Prescription level). In addition, we also built Subtree Key Tables on tables Prescription, Visit 

and Drug.  

Table 4. The medical database schema cardinalities  
 

                       Table 
      Attribute Pre Vis Doc Dru Lab Cla 

ID* INTEGER 3M 75K 7500 400K 5K 10K 
DUP10* CHAR(10) 300K 7500 750 40K 500 1K 
DUP100* CHAR(10) 30K 750 75 4K 50 100 
MS1* CHAR(10) 100 100 100 100 100 100 
MS10* CHAR(10) 10 10 10 10 10 10 
A1 CHAR(10) 3M 75K 7500 400K 5K 10K 
A2 INTEGER 3M 75K 7500 400K 5K 10K 
A3 DATE 3M 75K 7500 400K 5K 10K 
COMMENT CHAR(98) 3M   400K   
COMMENT CHAR(94)  75K     
COMMENT CHAR(90)   7500  5K 10K 
IDVIS INTEGER 75K      
IDDOC INTEGER  7500     
IDDRU INTEGER 400K      
IDLAB INTEGER    5K   
IDCLA INTEGER    10K   

1.2.2 Query 

To measure the query performance, we define a set of 18 queries (see Table 5): 12 queries, 

termed Monoi, involve an exact match selection predicate on a single table on attribute ID, 

DUP10 or DUP100, joins this table up to Prescription and projects one attribute per table. 3 

queries, termed Multii, involve 2 or 3 exact match predicates on MS1 or MS10. Finally, 3 

queries, termed Rangei, involve a range predicate on ClassOfDrug.DUP100. 

Table 5 presents for each query its name, its number of results, the SQL expression of the 

query, and its execution plan. The operators CIL, Merge, SJoin and Project are those defined in 

Chapter 4. 
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Table 5. Query Set 
 

Mono1 
(1) 

select Pre.A1 from Pre where ID = 1500000; 
Project (Pre@1500000, <Pre.A1>) 

Mono2 
(8) 

select Pre.A1, Dru.A1 from Pre, Dru where Pre.idDru=Dru.ID and Dru.ID = 20000; 
Project (L2, <Pre.A1, Dru.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru >) → L2 
  CIL (CIDru.ID, Dru.ID=20000, Pre) → L1 

Mono3 
(10) 

select Pre.A1 from Pre where Pre.DUP10 = ’VAL_150000’; 
Project (L1, <Pre.A1>) 
 CIL (CIPre.DUP10, Pre.DUP10=’VAL_150000’, Pre) → L1 

Mono4 
(30) 

select Pre.A1, Dru.A1, Cla.A1 from Pre, Dru, Cla where Pre.idDru = Dru.ID and Dru.idCla 
= Cla.ID and Cla.ID = 5000; 
Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CIL (CICla.ID, Cla.ID=5000, Pre) → L1 

Mono5 
(80) 

select Pre.A1, Dru.A1 from Pre, Dru where Pre.idDru = Dru.ID and Dru.DUP10 
= ’VAL_2000’; 
Project (L2, <Pre.A1, Dru.A1 >) 
 SJoin (L1, SKTPre, <idPre, idDru >) → L2 
  CIL (CIDru.DUP10, Dru.DUP10=’VAL_2000’, Pre) → L1 

Mono6 
(100) 

select Pre.A1 from Prescription Pre where Pre.Dup100 = ‘VAL_15000’; 
Project (L1, <Pre.A1 >) 
 CIL (CIPre.DUP100, Pre.DUP100=’VAL_15000’, Pre) → L1 

Mono7 
(300) 

select Pre.A1, Dru.A1, Cla.A1 from Pre, Dru, Cla where Pre.idDru =  Dru.ID and Dru.idCla 
= Cla.ID and Cla.DUP10=’VAL_500’; 
Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CIL (CICla.DUP10, Cla.DUP10=’VAL_500’, Pre) → L1 

Multi1 
(300) 

select Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1 from Pre, Vis, Doc, Dru, Lab, Cla 
where Pre.idVis = Vis.ID and Vis.idDoc = Doc.ID and Pre.idDru = Dru.ID and Dru.idLab = 
Lab.ID and Dru.idClaID = Cla.ID and Doc.MS1 = ’VAL_50’ and Cla.MS1 = ’VAL_50’ 
Project (L4, <Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1>) 
 SJoin (L3, SKTPre, <idPre, idDoc, idVis, idDru, idLab, idCla>) → L4 
  Merge (L1∩L2}) → L3 
   CIL (CIDoc.MS1, Doc.MS1=’VAL_50’, Pre) → L2 
   CIL (CICla.MS1, Cla.MS1=’VAL_50’, Pre) → L1 

Mono8 
(600) 

select Pre.A1, Dru.A1, Lab.A1 from Pre, Dru, Lab where Pre.idDru = Dru.ID and 
Dru.idLab = Lab.ID and Lab.ID = 2500; 
Project (L2, <Pre.A1, Dru.A1, Lab.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idLab>) → L2  
  CIL (CILab.ID, Lab.ID=2500, Pre) → L1 

Mono9 
(800) 

select Pre.A1, Dru.A1 from Pre, Dru where Pre.idDru = Dru.ID and Dru.DUP100 
= ’VAL_200’; 
Project (L2, <Pre.A1, Dru.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru>) → L2   
  CIL (CIDru.DUP100, Dru.DUP100=’VAL_200’, Pre) → L1 

Mono10 
(3K) 

select Pre.A1, Dru.A1, Cla.A1 from Pre, Dru, Cla where Pre.idDru = Dru.ID and Dru.idCla 
= Cla.ID and Cla.DUP100=’VAL_50’; 
Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CIL (CICla.DUP100, Cla.DUP100=’VAL_50’, Pre) → L1 

Range1 
(3K) 

select Pre.A1, Dru.A1, Cla.A1 from Pre, Dru, Cla where Pre.idDru = Dru.ID and Dru.idCla 
= Cla.ID and Cla.DUP100 > ’VAL_99’; 
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Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CIL (CICla.DUP100, Cla.DUP100>’VAL_99’, Pre) → L1 

Multi2 
(3K) 

select Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1 from Pre, Vis, Doc, Dru, Lab, Cla 
where Pre.idVis=Vis.ID and Vis.idDoc = Doc.ID and Pre.idDru = Dru.ID and Dru.idLab = 
Lab.ID and Dru.idCla = Cla.ID and Doc.MS10 = ‘VAL_5’ and Cla.MS10 = ‘VAL_5’ and 
Lab.MS10 = ‘VAL_5’; 
Project (L5, <Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1>) 
 SJoin (L4, SKTPre, <idPre, idVis, idDoc, idDru, idLab, idCla>) → L5 
  Merge (L1∩L2∩L3}) → L4 
   CIL (CIDoc.MS10, Doc.MS10=’VAL_5’, Pre) → L3 
   CIL (CICla.MS10, Cla.MS10=’VAL_5’, Pre) → L2 
   CIL (CILab.MS10, Lab.MS10=’VAL_5’, Pre) → L1 

Mono11 
(6K) 

select Pre.A1, Dru.A1, Lab.A1 from Pre, Dru, Lab where Pre.idDru = Dru.ID and 
Dru.idLab = Lab.ID and Lab.DUP10 = ‘VAL_250’; 
Project (L2, <Pre.A1, Dru.A1, Lab.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idLab>) → L2 
  CIL (CILab.DUP10, Lab.DUP10=’VAL_250’, Pre) → L1 

Range2 
(15K) 

select Pre.A1, Dru.A1, Cla.A1 from Pre, Dru, Cla where Pre.idDru = Dru.ID and Dru.idCla 
= Cla.ID and Cla.DUP100 > ‘VAL_95’; 
Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CIL (CICla.DUP100, Cla.DUP100>’VAL_95’, Pre) → L1 

Range3 
(30K) 

select Pre.A1, Dru.A1, Cla.A1 from Pre, Dru, Cla where Pre.idDru = Dru.ID and Dru.idCla 
= Cla.ID and Cla.DUP100 > ‘VAL_90’; 
Project (L2, <Pre.A1, Dru.A1, Cla.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idCla>) → L2 
  CIL (CICla.DUP100, Cla.DUP100>’VAL_90’, Pre) → L1 

Multi3 
(30K) 

select Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1 from Pre, Vis, Doc, Dru, Lab, Cla 
where Pre.idVis=Vis.ID and Vis.idDoc = Doc.ID and Pre.idDru = Dru.ID and Dru.idLab = 
Lab.ID and Dru.idCla = Cla.ID and Cla.MS10=’VAL_5’ and Lab.MS10 = ’VAL_5’; 
Project (L4, <Pre.A1, Vis.A1, Doc.A1, Dru.A1, Lab.A1, Cla.A1>) 
 SJoin (L3, SKTPre, <idPre, idVis, idDoc, idDru, idLab, idCla>) → L4 
  Merge (L1∩L2}) → L3 
   CIL (CICla.MS10,  Cla.MS10=’VAL_5’, Pre) → L2 
   CIL (CILab.MS10, Lab.MS10=’VAL_5’, Pre) → L1 

Mono12 
(60K) 

select Pre.A1, Dru.A1 Lab.A1 from Pre, Dru, Lab where Pre.idDru = Dru.ID and Dru.idLab 
= Lab.ID and Lab.DUP100 = ‘VAL_25’; 
Project (L2, <Pre.A1, Dru.A1, Lab.A1>) 
 SJoin (L1, SKTPre, <idPre, idDru, idLab>) → L2 
  CIL (CILab.DUP100, Lab.DUP100=’VAL_25’, Pre) → L1 

2 Performance Evaluation  

In this section, we first evaluate the performance of the proposed crypto-protection techniques, 

measured in isolation (i.e., without embedding in the PDS engine), and compare their 

performance with that of traditional methods (e.g., Encrypt-then-MAC).  Next, we give the 

selection performance using cumulative indexes (only CIL operator involved) and the overall 

performance of the system (including queries, stratification and insertion cost), to analyze the 

impact of cryptography protection.   
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2.1 Performance of Crypto-Protection Techniques 

2.1.1 AREA 

AREA provides confidentiality and integrity guarantees simultaneously while integrity 

guarantee comes at low cost. Due to Nonce storage, it causes larger storage expansion compared 

to the traditional method. Figure 26 compares AREA with the traditional Encrypt-then-MAC 

method, in terms of cryptography overhead, storage expansion and overall read/write cost 

(including IO and crypto). The numbers in the figure are obtained by dividing the performance 

of AREA with the performance of traditional method. We vary the (plaintext) data item size up 

to 512 bytes (i.e., the size of a NAND Flash sector).  

-

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

1 16 64 128 192 256 320 384 448 512

data size (bytes)

AR
EA

/E
nc

+M
AC

 p
er

fo
rm

an
ce

 ra
tio

Read(crypto+IO)

Write(crypto+IO)

Crypto

Storage

 

Figure 26. AREA vs. traditional method 

When the data item is small (e.g., no more than 16 bytes), AREA outperforms traditional 

method on each aspect (e.g., crypto cost, storage and read/write performance), i.e., ratio is less 

than 1. Regarding crypto, the ratio is 0.5 because Encrypt-then-MAC requires encrypting the 

plaintext data, then computing the MAC on the resulted encrypted text. We assumed that 

auxiliary information added for MAC computation (e.g., version, address) does not change the 

size of data to be processed, e.g., by using exclusive-or operation. AREA only requires one 

encryption step, although on a larger data. Regarding storage expansion, for traditional method, 

the MAC itself takes 16 bytes storage, thus it consumes more storage than AREA (with Nonce) 

for up to 16 B plaintext data. For read/write performance (including IO and crypto cost), since 
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the data item is small, it can be stored/accessed in one IO, leading to the same IO cost. 

Relatively to IO cost, the crypto cost difference is negligible (for small data). Therefore, AREA 

and traditional method have similar read and write cost, i.e., ratio ≈ 1.  

For large data item (e.g., larger than 64 bytes), AREA reduces the crypto overhead by about 

20% (instead of 50%), compared with traditional method. This is because AREA only processes 

10 bytes plaintext in one operation, and the remaining 6 bytes are reserved for Nonce storage. 

The storage expansion ratio of AREA is near 1.6, which can be easily deduced. Regarding 

read/write performance, both methods are similar since they largely depend on the number of 

IOs. When data item size is between 352 bytes and 480 bytes, AREA leads to 2 IOs due to its 

larger storage expansion, while traditional method only requires 1 IO, thus the performance of 

AREA (for write) is relatively bad.  

As a conclusion, AREA is adequate to encrypt and authenticate small to medium granularity 

data (up to 320 B, the overall read and write performance are better with AREA). In our context, 

we apply AREA on almost all data structures of embedded PDS engine (e.g., bases tables) 

because (i) Most PDS engine data are fine granularity (e.g., indexing data, attribute values); (ii) 

Data is written once and read intensively emphasizing the read performance; (iii) The storage 

expansion is not problematic, because the non-secured Flash storage has no strict limit in our 

context.  

2.1.2 Smart Selection 

We compare smart selection with the following methods: (i) a brute force method that encrypts 

and authenticates the whole set (i.e., one KA page); (ii) an oracle solution that only decrypts and 

checks the integrity for the results, an optimal but obviously unreachable case. The former is 

thus an upper bound while the latter is a lower bound. Both methods use AREA (remember that 

smart selection is not compatible with AREA), which has shown its significant advantages over 

traditional method in the previous experiment.  For simplicity, we consider that the size of each 

key value is small and could be processed with one cryptographic operation.  

Figure 27 shows the resulting performance. We consider that the number of values (e.g., p) in 

the set is 64, but varying this number will not change the conclusions. In the experiment, we 

vary the number of results (e.g., n) up to 64, such that all values in the set belong to the results.  
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According to the experimental results, smart selection outperforms brute force solution, since 

the former only pay crypto cost for potential results, while the latter requires decrypting all 

values in the set. Indeed, smart selection searches values on the ciphertext directly without 

decryption, paying one encryption for each result (except the last one) during the search, and 

one for checking the MAC of the last occurrence of the matching values. We did not show on 

the figure the case for no result. In that case, which should be very rare, thanks to bloom filters 

(only with false positive cases), smart selection will have to check the integrity for the whole set, 

thus leading to the performance similar to the Brute Force algorithm (although a little better 

because of storage expansion of AREA).  

 Compared with oracle solution (with AREA, one operation/result), smart selection is slightly 

more expensive. Indeed, smart selection requires two extra operations: (i) to identify the last 

result (i.e., searching for the n+1th occurrence, n being the number of results), (ii) check the 

MAC of the last result.  
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Figure 27. Smart Selection vs. traditional methods (p = 64) 

In summary, the crypto overhead for brute force solutions depends on the p value (i.e., 

number of values in the set), while oracle solution and smart selection only depend on the n 

value (i.e., number of results). Furthermore, oracle solution needs n operations, thus performs 

slightly better than smart selection scheme (requires n + 2 operations). Therefore, smart 

selection is a highly efficient way for equi-selection on encrypted values. 
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2.2 Performance of Cumulative Indexes 

This section describes the performance of cumulative indexes first without cryptography, and 

then focuses on the overhead incurred by crypto-protection.  

2.2.1 Performance without Cryptography 

We evaluate the cost of exact match lookups and insertions for the serialized indexes proposed 

in Section 4.3 of Chapter 4. Differently from conventional databases, indexes can be beneficial 

even with very low selectivity; indeed, random or sequential reads on NAND flash (with no 

FTL) have the same performance. Therefore, it makes sense to vary selectivity up to 100%. We 

consider a single table of 300K records, stored in SDB, with 11 attributes, populated with a 

varying number of distinct values (3, 15, 30, …, up to 300K), which are distributed uniformly. 

For insertions, we consider the worst case (i.e., inserting a single tuple, then committing). Figure 

28 and Figure 29 show respectively the results for exact match index lookups and insertions (in 

one single index).  

As expected, Full Index Scan has a very good insertion cost and a very bad lookup 

performance (full scan cost whatever the selectivity). Summary Scan reaches pretty good 

insertion costs but lookups do not scale well with low selectivity predicates (the whole SKA and 

KA are scanned). In low selectivity cases, its lookup performance is even worse than Full Index 

Scan, since the latter only full scan KA.  

Compared to Summary Scan, Summary Skip performs better in terms of lookup since we 

take advantage of more compact structure PTR and use inverted pointer chain to retrieve all 

results, thus the IO cost is largely reduced. However, Summary Skip needs to maintain PTR 

structure, thus its insertion performance is always worse than Summary Scan. Such performance 

is extremely expensive when the inserted value is not frequent (more expensive than any other 

type of indexes), because we have to find its previous occurrence to maintain the pointer chain 

(in the worst case, the whole SKA need to be accessed in reverse order). 
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Figure 28. Query Performance of Cumulative Indexes (without crypto) 
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Figure 29. Insertion Performance of Cumulative Indexes (without crypto) 

Hybrid Skip appears as the best compromise, with a bounded insertion cost. Indeed, when the 

selectivity is higher than 0.1% (the pointer chain is broken), it stops searching the previous 

occurrence as the number of scanned SKA pages has reached n limit. When the selectivity is 

low and the pointer chain is not broken, it has the same insertion cost as the Summary Skip. On 

the other side, Hybrid Skip has very good lookup costs. With low selectivity predicates, it even 

outperforms any other indexes, including Summary Skip, because pointers accessed in PTR are 

smaller in size (e.g., several bits). As the pointer size only depends on the number of keys 
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summarized by n SKA pages, instead of depending on the cardinality of the whole SKA. 

Therefore, the PTR structure is more compact leading to less IOs.  

2.2.2 Analysis for Cryptography Impact 

This section describes the crypto impact to the cumulative indexes. To simplify analysis, we 

measured the indexes performance with and without enforcing cryptography respectively, and 

use the performance ratio to quantify such impact (the subsequent analysis in the following 

sections are done in the same way). The obtained results are shown in Figure 30. Note that, the 

ratio with 1 means the cryptography does not incur any extra overhead.  
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Figure 30. Crypto Impact on Cumulative Indexes for Selection 

For Full Scan Index, the lookup cost is increased significantly after enforcing cryptography, 

i.e., ratio amounts to 8. This is caused by three reasons. (i) KA is protected by AREA, thus 

consumes more space due to Nonce storage, thus requires more IOs to do full scan KA. More 

precisely, the number of IOs is increased by 60% (since the storage expansion factor of AREA 

is 1.6).  (ii) All values in the KA page need to be decrypted during scan, thus incurs prohibitive 

cost, i.e., 307.2 µs / IO (vs. 37.8 µs / IO for Flash sector read).    
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The lookup performance for other indexes including Summary Scan, Summary Skip and 

Hybrid Skip are less impacted than Full Scan Index, since they speedup lookup process by using 

BF, pointer chain etc, thus decrypt much less data.  

More precisely, for Summary Scan, when the selectivity is high (e.g., less than 1%), its 

lookup cost is doubled at most. The extra cost mainly comes from IOs, this is because (i) few 

results are retrieved (and decrypted), (ii) SKA adopts data placement strategy and leads to 

largely reduced crypto overhead, i.e., only interesting data are decrypted.  

Hybrid Skip has similar performance as Summary Scan, since both of them have similar IOs 

to load SKA, PTR (or KA for Summary Scan). The exceptional point in the curve for Hybrid 

Skip is due to the different selectivity limit (with/without crypto), when the pointer chain (in 

PTR) is broken (with fixed n value): when selectivity is equal to 0.05%, the Hybrid Skip 

(without cryptography) performs as the Summary Skip (the pointer chain is not broken, see 

Figure 28). After encryption, it performs as Summary Scan (the chain is broken), hence leads to 

complete different performance. As a result, the ratio between both is quite large. Note that this 

does not mean that Hybrid Skip is a bad strategy with crypto protection (the graph presents 

ration and not absolute values or comparable values between techniques). In contrast, Summary 

Skip has less crypto overhead compared to others, because it only scans partial SKA to find the 

last occurrence of searched value.  

When the selectivity becomes lower (e.g., larger than 1%), the crypto overhead increases 

significantly for all three indexes, because a large number of results need to be decrypted and 

there is less and less benefit in using smart strategies, like SKA, smart selection or reverse 

pointer chains. Note that, on absolute values, Hybrid Skip remains with or without crypto the 

best strategy. 

Regarding crypto impact on insertions for cumulative indexes (only considering insertion on 

KA, SKA and PTR), the crypto overhead incurred becomes less significant, as shown in Figure 

31. Indeed, for each insertion (insert only one tuple then committing), the cost is dominated by 

expensive write (e.g., 272.8 µs / IO). The overhead increases by about 40% on average for Full 

Index Scan and Summary Scan, because only 1 IO is needed per insertion (for KA, since SKA is 

only computed and stored at the moment one KA sector is full). The incurred overhead is 

smaller for Summary Skip and Hybrid Skip, about 20% because 2 IOs are needed per insertion 

(one for inserting key in KA and one for inserting pointer in PTR), thus mitigating the crypto 
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impact. Note that, when the selectivity is low, the crypto overhead increases due to smart 

selection behavior in KA. Indeed, we have to perform several encryptions to find the previous 

occurrence of the inserted value, starting from the first one of the KA page (for maintaining the 

reverse chaining). 
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Figure 31. Crypto Impact on Insertions for Cumulative Indexes 

In summary, the crypto overhead for selection is low for high selectivity and can reach a 

factor of 8 in very low selective cases. Such impact seems rather large, but, as we will see in the 

next section, the selection cost is not dominant in the whole query (which includes accessing 

SKT, projection etc) in these cases. In addition, the crypto overhead for insertions in cumulative 

indexes is acceptable.   

2.3 Performance of Overall System 

For the performance of overall system, we describe it on three aspects: queries, stratification and 

insertions (including insertions to SKT and base tables). As for cumulative indexes, we first 

address their performance without crypto-protection and then analyze the crypto-protection 

impact.  

2.3.1 Query Performance and Cryptography  
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We measure the query response time with 3 settings: (1) the database has just been reorganized 

and thus SDB = ∅; (2) SDB = 50K; (3) SDB = 300K; and we compare with the same queries 

executed over a database traditionally accessed through a Flash Translation Layer (FTL). The 

index model is the same in all settings. For the FTL case, we do the optimistic assumption that 

the database is fully clustered, as in CDB, while traditional B-Tree is only filled at about 69% 

[Yao78]. Figure 32 presents the measurements for the 18 queries, ordered by the number of 

resulting tuples (X axis). We split the graph in two in order to have different scales for response 

time (0-400ms, 0-10s). 

For selective queries (1-800 results), selection cost is relatively important with large SDB 

(300K) while with SDB = 50K the response time is very near the clustered one. Considering 

several predicates (Multi1) increases this cost, as expected, because it needs to traverse several 

indexes to obtain the same number of results as the others. The FTL approach is less efficient as 

soon as the number of results exceeds 300 for an SDB of 300K (or 30 for 50K). Note, the cost 

of Mono1 is almost zero because it retrieves a prescription having a specific ID, which is the 

tuple’s physical address in our setting. 

For less selective queries (3K-60K results), the cost is dominated by the projection step. 

Consequently, the SDB size has little influence. The FTL approach performs very badly under 

this setting because of the high number of IOs generated at projection time (then the indirection 

overhead incurred by FTL). 
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Figure 32. Performance of 18 queries with different settings 

Regarding updates and deletes, measurements (SDB=50K) and (SDB=300K) have been done 

after having deleted randomly 3000 tuples (with cascade delete option) and having updated 

3000 tuples (uniformly distributed on DUP10, DUP100, MS1, MS10 and A1 attributes of each 

table). We observed a small influence of updates and deletes on performance, because they are 

evenly distributed. Considering more focused updates (on the queried attribute value) may lead 

to bigger degradation, which stay rather limited thanks to massive indexation of UPD.  
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Figure 33. Crypto Impact on Queries 



 123 

Figure 33 shows the crypto impact on all queries. For selective queries (1-800 results) with 

cumulative indexes, their total cost is doubled at maximum. Because (i) the selection cost is 

relatively important with larger SDB (e.g., 300K), and less for smaller SDB (e.g., 50K), as 

discussed before. (ii) The selection cost is roughly doubled after enforcing cryptography (refer 

to Figure 30). (iii) SKT and tables are protected by AREA, thus the incurred crypto workload 

for projection purpose is minimal.   

When the selectivity becomes lower (e.g., more than 800 results), the crypto impact becomes 

less significant, i.e., increases the total cost by 10% ~ 20% only (except the query with several 

predicates, i.e., Multi2) because projection cost is dominant due to large number of IOs. 

On the other side, the query cost on purely clustered database increases by 6% ~ 18% due to 

cryptography, independently of selectivity (excluding the queries with several predicates). 

Because (i) the Clustered Indexes are highly efficient structures and naturally sorted after 

stratification, which support efficient retrieving (e.g., dichotomy algorithm) even after 

encryption (using AREA). (ii) For the data protected by smart selection scheme in CDB (i.e., 

CSL), they do not have redundant duplicates (i.e., each key in CSL is unique). Therefore, it 

allows efficient selection requiring only 2 cryptographic operations (the algorithm is slightly 

adapted to avoid searching the next element). 

Based on above observations, we can conclude that the overhead incurred by cryptography is 

acceptable and does not impact query performance greatly.  

2.3.2 Stratification Performance and Cryptography 

For stratification, we describe first its performance without cryptography. We consider a fixed 

size for CDB and vary the size of SDB (varying the Prescription table from 50K to 300K tuples, 

other tables grow accordingly). The reorganization cost varies linearly from 7 min (for 50K 

SDB) to 8.9 min (for 300K SDB). The stratification cost mainly results from (i) reorganizing 

IND, DEL and UPD and (ii) reading CDBi and rewriting CDBi+1. Consequently, different SDB 

settings do not change the cost greatly.  

     During the stratification, IND, DEL and UPD are reorganized, thus generate intermediate 

results to allow efficient merge. Since these intermediated results are processed in batch and do 

not support queries, we protect them using AREA. After encryption, the stratification cost 

grows to 18 min (for 50K) and 22.1 min (for 300K). The incurred overhead is rather large, 
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because (i) all data need to be decrypted and re-encrypted during processing, and (ii) storage 

expansion after encryption induces more IOs. 

    Even with large overhead increase after enforcing cryptography, the stratification 

performance will not become the problem in our context. Indeed stratification runs in 

background, and does not block queries. In addition, the time spent on stratification is still 

reasonable.  

2.3.3 Insertion Performance and Cryptography 

Let us finally consider the crypto impact on insertion cost for one tuple (we compute average 

cost by inserting different numbers of tuples up to flushing), including insertions to table, SKT 

and all its indexes (assumed using Hybrid Skip). Since the number of cumulative indexes 

depends on the table, the insertion cost also depends on the table (Hybrid Skip insertion cost is 

rather stable w.r.t., the selectivity – see Figure 29).  

Without cryptography, the insertion cost varies between 1.8 ms for Doctor table to about 6.8 

ms for Prescription table. With cryptography, the cost increases to 2 ms for Doctor table and to 

8 ms for Prescription table, i.e., it increases the cost by about 20%. The explanation is similar to 

the ones for insertions of cumulative indexes. Indeed, the write IO cost is very expensive 

compared to the extra crypto cost, thus making the cryptography impact less significant. 

Consequently, we can infer that cryptography does not appear a bottleneck regarding insertion 

performance. 

3 Conclusion 

In this chapter, we compare our proposed crypto-protection solutions with other traditional 

methods, and the experimental results show the effectiveness of our solutions. Furthermore, we 

implement our crypto-protection solutions on PDS engine, measure the system performance 

with and without cryptography respectively, in terms of queries, insertion and stratification, and 

analyze the crypto impact. The experiments show the effectiveness of our solutions, the incurred 

overhead is acceptable and does not violate user patience expectations. Note that, a large portion 

of overhead comes from increased IOs due to storage expansion (unavoidable) after encryption, 

while IO cost is dominant in our context. 
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Chapter 7  

Conclusion and Future Works 

Our ultimate goal is to provide personal and secure data management facilities, resisting to 

privacy violations and security vulnerabilities, resulting, e.g., from abusive usage or attacks 

(even those conducted by internals or administrators). To progress in this direction, we proposed 

the Personal Data Server (PDS) vision, where personal data is securely managed by a self-

administrated DBMS embedded into a secure device remaining under the control of its owner. 

In this vision, we did resort to a new hardware called Secure Portable Token, combining the 

tamper resistance of a smart card microcontroller with the mass storage capacity of NAND 

Flash.  

    To enforce advanced access control over the embedded personal data, and as well to enable 

powerful applications to be developed on top of the user’s personal database, a full-fledged 

DBMS engine (the PDS engine) had to be embedded in the SPT. One of the challenges was to 

cope with the hardware constraints (e.g., limited RAM and NAND Flash particularities) 

exhibited by the SPT. Initial contributions were the design of a query engine able to deal with 

Gigabytes of data without resorting to external resources. A massive indexing scheme inspired 

by the data warehouse context was devised to circumvent this issue. In addition, to match the 

NAND Flash constraints, the notion of serialization of all the database structures (including 

indexes, buffers, logs, etc.) was introduced. For scalability reasons, the idea of database 

stratification, where database structures are periodically rebuild (and clustered) in background, 

was proposed.  

The first goal of this thesis was, given those existing contributions, to provide security 

solutions to protect the personal database footprint, stored in the external NAND Flash of the 

SPT (and thus being outside of the tamper resistant sphere).  

To restore common features of traditional DBMS systems, like data durability, availability, 

data sharing and other global processing functionalities, supporting servers were introduced. 

Those servers were assumed not to be trusted, but Honest-but-Curious, i.e., they may breach the 

confidentiality of externalized data or violate the anonymity of the participant PDSs’ identities. 

The second objective of this thesis was to propose security protocols to protect the 
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communications between personal data servers (PDSs), and the interactions with the supporting 

servers.  

We summarize below the main contributions of this manuscript, and then present some 

research perspectives.  

1 Summary 

The main contribution of the thesis is linked to the cryptographic protection of the embedded 

database footprint (objective 1). A second important contribution is to propose the basis for a set 

of secure protocols to validate the PDS vision (objective 2). A third aspect of the PhD was 

linked to the prototyping effort. Those three aspects are summarized below. 

1.1 Cryptographic building blocks 

To protect Flash resident data from confidentiality and integrity attacks, we proposed a set of 

crypto-protection building blocks. To ensure the efficiency of the proposed building blocks (and 

maintain good system performance), the cryptographic overhead had to be minimized. 

Therefore, our design has taken into account the specificities of the PDS engine (e.g., fine 

granularity data accesses, specific access patterns), the resource limitations of the platform (e.g., 

constrained NOR Flash size) and the particularity of the database storage media (i.e., NAND 

Flash memory). The proposed crypto-protection building blocks include version management 

techniques, adaptation of the AREA encryption method, a specific encryption model called the 

smart selection enabling equality search in a dataset avoiding decryption and data placement 

strategy. We summarize below those different aspects of the proposal.  

(1) Version management. We have proposed to only store the stratum number (as the version 

number) in the secure memory (i.e., internal NOR Flash). This is an important advantage 

inherited from the serialization and stratification paradigms. At the time of version 

checking (integrity), we only check if the accessed data item belongs to the good stratum. 

As this strategy only keeps a minimal number of versions (i.e., stratum numbers) in the 

secure memory, it avoids the traditional problems linked with the storage of multitude of 

version numbers (usually, one version number per data item). In addition, our technique 

does not cause any extra overhead at query time (since NOR Flash is in direct access, like 

RAM), and makes versions updating problem on NAND Flash (since the NAND Flash 

provides poor support for random writes) vanish.   
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(2) Adaptation of the AREA encryption scheme. AREA is an authenticated encryption method 

based on traditional block cipher (e.g., AES algorithm). It provides integrity guarantees at 

low cost, and requires only one pass of processing on the targeted data items. On the 

contrary, traditional integrity methods either introduce complex algorithms (e.g., 

Authenticated Encryption algorithms like OCB), or require two passes of processing (e.g., 

Encrypt-then-MAC), which is much more expensive in terms of cryptographic operations. 

The only drawback of AREA is that it incurs a storage expansion due to the embedded 

Nonce. The original AREA, as proposed by Elbaz et al. in [ECL+07], was requiring to 

keep the Nonce secret. This was problematic in our context (secure NOR Flash is not large 

enough, and storing Nonce on NAND Flash would highly increase the query cost). 

However, we found that AREA is in fact independent of the secrecy of Nonce (see Section 

2.2.2, in Chapter 5) 

(3) Smart selection scheme. Smart selection allows selection to be done directly on ciphertext 

(without data decryption). The selection process thus incurs a minimal crypto workload, 

being proportional to the number of results. More precisely, it requires one crypto 

operation (i.e., encryption) for each result, and two additional crypto operations for 

locating the last occurrence and checking its integrity. This solution is near the optimal 

(oracle) case (regarding crypto overhead), which consists in decrypting only the qualified 

results. Note that, this scheme only supports equality queries. 

(4) Specific data placement strategies. Using adequate data placement strategy (by changing 

the data layout), the query process only decrypts data-of-interest and skips the 

uninteresting ones. Therefore, the cryptographic overhead is largely reduced. Its benefits 

come for free as soon as it does not hurt the IO patterns at query time. In our context, due 

to SWS definition, this requires applying data placement at the NAND Flash page level.  

1.2 Secure protocols for the PDS 

Regarding communications with external supporting servers, we proposed a preliminary design 

for the main communication protocols required in the PDS architecture. In particular, we have 

proposed secure protocols to enable the supporting servers to serve retrieve, store and delete 

requests. Using our protocols, the confidentiality of the externalized data is preserved and the 

anonymity of each participant PDS is guaranteed. Note that we have focused on showing the 

feasibility of the PDS approach in terms of global architecture, and have let concrete 

implementations considerations for future works.   



 129 

1.3 Prototyping and experience in the field 

A part of the PhD thesis has been dedicated to prototyping. First, a demonstrator has been 

implemented on a hardware token furnished by Gemalto (our industrial partner) to demonstrate 

the query processing engine endowed with a preliminary version of our cryptographic 

techniques. This prototype has been demonstrated at SIGMOD 2010 [ABG+10].  

    Second, a PDS like system prototype, dedicated to a social-medical application, has been 

developed by the SMIS team. A field experiment has started in September 2011. It is supposed 

to involve up to 120 users including doctors, patients and social workers. Cryptographic 

techniques have been used in that prototype. It was an important prerequisite to obtain the 

agreement of the French CNIL for conducting this experience. More details on this prototype, 

on the related projects and funding can be obtained at: http://www-

smis.inria.fr/~DMSP/dmsp_presentation.php.  

2 Research Perspectives 

Our first perspective, for the very short term, concerns the secure communication protocols. In 

this manuscript, we just proposed a preliminary design to attest the feasibility of the PDS 

approach, without going into implementation details.  

Besides, we plan to extend our results to a more general setting. The following directions can be 

investigated: 

• The crypto-protection building blocks that are proposed in this manuscript are dedicated to 

the structures designed for the PDS engine. We plan to identify other contexts where the 

underlying data structures share similarities with the ones considered in PDS. For example, 

we will study techniques analogous with ours in the contexts of log-structured file systems 

and DBMSs.  

• We also plan to characterize the database structures employed in traditional DBMS, and 

devise some cryptographic protection using the same approach as the one we used for the 

PDS structures. We are pretty convinced that we can obtain interesting results, at least for 

structures having a sequential behavior like bitmap indexes or join indices, even though 

adaptation of our techniques are needed to support update-in-place (our version 

management proposal must be revised).   
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• A third axis can be to improve the AREA scheme, by “chaining” the consecutive AREA 

blocks when encrypting large data items (where several consecutive AREA blocks are 

required). This could enable reducing the storage overhead by making the Nonce size 

smaller in each intermediate element of the chain (considering consecutive elements are 

keeping a link with each other, like in the CBC mode, more concise Nonce information are 

used). For example, we could embed address/version information in the Nonce of the first 

AREA block (with normal Nonce size), and in the subsequent blocks embed their offset (to 

the first block) and order (among all blocks) instead of a “full” Nonce.  

• Another possible extension can be to try using of the smart selection scheme in the context 

of outsourced database (or in the Database as a Service model). Indeed, the whole selection 

process using smart selection does not involve any decryption operations. It can thus be 

used on the un-trusted party. Moreover, compared with existing DaS execution techniques, 

it would not generate any false positive (that have to be subsequently filtered out at the 

client side). We can thus expect some gains in the case of equi-selection queries. 
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