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dans cette thèse. Je ne m’attarde pas, ils savent tout le bien que je pense d’eux – c’est

l’essentiel.

iv



Au travers de collaborations scientifiques, cette thèse m’a aussi permis de travailler aux
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de collaborer avec Vincent Ranwez, qui m’a initié au monde de la recherche lors de mon

stage de Master ; un chercheur infatigable, d’une grande créativité, perspicace, toujours
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couragé, supporté, aidé et donné le sourire pendant ces trois années de thèse, merci Jane,
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Synopsis de la thèse

Mesures sémantiques à base de connaissance :
de la théorie aux applicatifs

par Sébastien Harispe

Directeur : Jacky Montmain – Encadrement: Sylvie Ranwez et Stefan Janaqi

Institut : École des mines d’Alès

(The english manuscript begins page 21)

Cet avant-propos introduit les travaux de thèse détaillés dans la suite du manuscrit

intitulé “Knowledge-based semantic measures: from theory to applications”. Il présente

dans un premier temps le contexte et le positionnement scientifique de nos travaux ainsi

que les objectifs fixés. Dans un second temps, nous discutons les différentes contributions

proposées, sans pour autant traiter des aspects techniques qui leurs sont associés. Le

lecteur désireux de s’attarder sur ces derniers pourra se référer à la partie du manuscrit

correspondante rédigée en anglais scientifique. Ce synopsis se termine par une conclusion

générale qui souligne, entre autres, les verrous scientifiques associés à la thématique

traitée et les pistes de recherche que nos contributions pourront nourrir.

I Contexte général et objectifs de la thèse

I.I Simuler une intelligence : une quête déjà ancienne

L’Intelligence Artificielle (IA) est une branche de l’informatique qui s’attache à développer

des approches permettant d’amener la résolution de problèmes complexes par l’utilisation

d’ordinateurs. Un de ses objectifs est tout naturellement de substituer l’homme1 par

la machine dans la résolution de tâches complexes nécessitant de fortes ca-

pacités cognitives, i.e. une forme d’intelligence – ici entendue comme la capacité à

acquérir et tirer parti de connaissances dans la résolution de problèmes [Oxford Dict.,

2012]. Ainsi, depuis 1956, date depuis laquelle l’intelligence artificielle est considérée

comme un champ de recherche à part entière, cette discipline fédère un grand nombre

de communautés scientifiques dans le but de permettre à l’outil informatique de raison-

ner, de manipuler la connaissance, d’apprendre, de planifier, de communiquer, ou encore

de percevoir le monde qui nous entoure [Russell and Norvig, 2009].

1ou tout du moins l’accompagner dans son processus cognitif ; cette démarche appelée “automatisa-
tion cognitive” sera discutée plus loin.
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Parmi les différentes stratégies explorées en vue de faire émerger une forme d’intelligence

artificielle, nos travaux s’intéressent plus particulièrement à celles basées sur

l’utilisation de représentations de connaissance (e.g. thésaurus, ontologies). Ces

stratégies reposent sur l’hypothèse, très souvent admise, que la connaissance est l’un

des ingrédients requis au développement d’une forme d’intelligence. Elles se concen-

trent notamment sur la définition de méthodes permettant d’automatiser la résolution

de problèmes complexes, et s’intéressent plus spécifiquement aux problèmes qui ont la

particularité de nécessiter le recours à d’importantes sources de connaissance pour être

résolus, par exemple le diagnostic médical.

Dans ce contexte, de nombreuses communautés et générations de chercheurs se sont

intéressées à la résolution d’un des problèmes fondamentaux de l’IA : exprimer

la connaissance de façon à la rendre intelligible et appréciable par l’outil

informatique [Baader et al., 2010; Davis et al., 1993]. Ce défi, toujours d’actualité,

a amené la définition de nombreux langages de représentation de connaissance. Basés

entre autres sur des formalismes de graphe ou sur des logiques descriptives, ils permettent

d’exprimer de façon formelle une connaissance qui pourra être manipulée par ordinateur.

Ils offrent, en quelque sorte, la possibilité d’établir une connexion entre la connaissance

experte et l’outil informatique, et donnent ainsi la possibilité d’initier un transfert partiel

des compétences de l’expert de domaine vers les systèmes informatiques : une condition

nécessaire à la mise en place des systèmes informatiques dits intelligents.

Ainsi, de façon imagée, une représentation de connaissance peut être considérée

comme le terreau nécessaire à l’émergence d’une forme d’intelligence simulée

au travers d’instructions machine. Des logiciels particuliers, appelés raisonneurs,

peuvent notamment les utiliser pour inférer de la connaissance exacte. Ces inférences

sont assurées par des procédures de déduction en accord avec la sémantique du langage

de représentation de connaissance. Autrement dit, la sémantique du langage définit

la façon dont l’outil informatique doit comprendre la connaissance exprimée. Les règles

d’inférence associées à cette sémantique définissent les interprétations de la connaissance

qui permettront l’élaboration de formes de raisonnement déductif, i.e. exact. Cette ca-

pacité d’inférence est aujourd’hui largement utilisée dans de nombreux domaines des

sciences et de l’industrie. Elle permet notamment l’émergence d’une intelligence artifi-

cielle sous la forme de programmes informatiques capables d’effectuer des raisonnements

déductifs complexes.

Néanmoins, les capacités d’inférence offertes par les représentations de connaissance ne

se résument pas aux interprétations strictes et rigides permises par le langage utilisé.

En effet, les représentations de connaissance peuvent aussi servir à simuler des formes

d’intelligence débridées, i.e. non contraintes aux seules règles d’inférence permises par le
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language utilisé pour exprimer la connaissance. Celles-ci, basées sur un certain nombre

d’hypothèses, permettent l’élaboration de formes de raisonnement approché. Ainsi, en

permettant de tirer parti des représentations de connaissances sans pour autant être

contraintes par la sémantique formelle qui les sous-tend, ces techniques de raisonnement

approché offrent d’intéressantes perspectives, notamment pour l’élaboration de stratégies

de découverte de connaissance. Pour cela, il est nécessaire de définir des modèles qui

permettent de comparer les éléments caractérisés au travers de représentations de con-

naissance, e.g. pour les regrouper, les analyser et les comprendre plus en détail. Ces

modèles reposent sur l’analyse sémantique des éléments comparés et essentiellement sur

la notion de mesure sémantique. Tout comme l’homme est capable d’apprécier la

similarité d’objets concrets et/ou abstraits – par exemple, pour la plupart d’entre

nous, les concepts Paix et Colombe seront proches a contrario des concepts Paix et

Pigeon –, les mesures sémantiques permettent de doter l’outil informatique

de cette capacité essentielle à l’élaboration de nombreuses fonctions cogni-

tives. Pour cela, ces mesures se basent sur la définition de modèles permettant l’analyse

de la sémantique exprimée dans des représentations de connaissance et dans des corpus

de textes, i.e. du sens porté par ces ressources. Le rôle capital que jouent ces

mesures sémantiques nous a amené à les étudier de façon approfondie et

c’est aux résultats de ces recherches que cette thèse est consacrée. Mais avant

de rentrer dans le détail de ce vaste domaine de recherche, il convient de préciser la genèse

de ces mesures et les différents cadres applicatifs dans lesquels elles interviennent.

I.II Une accélération portée par les évolutions technologiques

Dans les dernières décennies, nous avons observé une large adoption des systèmes

informatiques à base de connaissance, i.e. reposant sur l’utilisation de repré-

sentations de connaissance. A titre d’exemple, Bioportal, une plateforme dédiée aux

représentations de connaissance ayant trait à la biologie et au domaine biomédical, en

propose aujourd’hui pas moins d’une centaine [Whetzel et al., 2011]. Elles sont utilisées

dans de nombreux applicatifs aussi divers que l’assistance au diagnostic médical, la clas-

sification de maladies, l’analyse de gènes, la confection de médicaments [Guzzi et al.,

2012; Köhler et al., 2009; Pesquita et al., 2009a].

Les grands acteurs du Web ont, eux aussi, récemment franchi le pas. Ainsi depuis 2011,

Google, pour ne citer que lui, tire parti d’un graphe de connaissance composé de milliards

de faits lui permettant de structurer et de désambigüıser un grand nombre

d’entités (e.g., personnes, villes, films). C’est sur ce graphe de connaissance, ou graphe

sémantique, que se base, par exemple, son système de recherche d’information pour

désambigüıser les intentions de ses utilisateurs et améliorer ses résultats [Singhal, 2012].
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En effet, grâce à ce modèle de connaissance, une simple recherche portant sur “Alfred

Hitchcock” permet, au sein même de la page de résultats, de consulter de nombreuses

informations associées au réalisateur (date de naissance, films associés). Ainsi, le système

informatique comprend, en quelque sorte, que le centre d’intérêt de l’utilisateur porte

sur un réalisateur particulier et non pas sur une châıne de caractères jusque-là dénuée

de sens ; inutile d’insister sur les larges perspectives offertes par cette désambigüısation,

e.g. recommandations, analyse marketing, informatique décisionnelle.

De nombreuses perspectives ont été amenées par la définition de langages de repré-

sentation des connaissances. Parmi elles, l’une des plus ambitieuses et captivantes fait

référence à la volonté de tirer parti de l’infrastructure Internet pour créer un Web de

Connaissance, aussi appelé Web Sémantique. L’objectif est de former un réseau de

connaissance mondialement distribué, à la fois exploitable et intelligible par nous autres

humains, mais aussi par des agents logiciels [Berners-Lee et al., 2001; Gandon et al.,

2012]. Il permet ainsi de pallier les limitations du Web dit de documents, dont le contenu

généralement non-structuré et ambigu au regard d’un agent logiciel, n’est que difficile-

ment exploitable par des méthodes automatisées. Dans ce contexte, de nombreuses ini-

tiatives font promotion des paradigmes du Web Sémantique et des Données Liées [Heath

and Bizer, 2011; Hitzler et al., 2011]. Ces derniers proposent d’amener le développement

d’une extension du Web qui permettra une meilleure caractérisation des informations qui

y sont exprimées, et donc le développement d’une synergie entre agents logiciels

et humains. De même que le Web, à sa création, nous a offert la possibilité d’exposer

et de relier des documents (multimédias), le Web de Connaissance permet désormais

d’exprimer et d’échanger de la connaissance, e.g., “Alfred Hitchcock est né le 13 août

1899 à Leytonstone”, “Leytonstone se situe en Angleterre”. Ainsi, en désambigüısant

le contenu exprimé, et en interconnectant différentes bribes d’information existantes,

chacun peut aujourd’hui contribuer à l’émergence d’un réseau mondial de connaissance

exploitable par tous. Tous les éléments d’une nouvelle révolution numérique semblent

réunis.

De nombreux standards permettent d’exprimer des données structurées et

désambigüısées sur le Web. Ainsi, à partir de ces standards, de nombreuses initia-

tives collaboratives ont permis de créer et d’interconnecter un grand nombre de silos de

données, parfois spécialisées, e.g. DBpedia1 [Auer et al., 2007], Freebase [Bollacker et al.,

2008], UniProtKB [UniProt Consortium, 2013]. Ces données, accessibles publique-

ment et gratuitement sur le Web, peuvent être interrogées à l’instar des bases de

données classiques. De plus, grâce à la sémantique formelle des langages utilisés, ces

données peuvent servir à inférer une connaissance nouvelle, implicite, déductible.

1Pendant sémantique de Wikipédia.
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Les travaux détaillés dans ce manuscrit ont été menés dans le souci de rester

compatibles avec les standards du Web Sémantique, vecteurs d’une richesse

encore aujourd’hui largement sous-exploitée.

I.III Les mesures sémantiques au cœur de la démarche

La plupart du temps, les systèmes à base de connaissance sont définis pour inférer de la

connaissance exacte sur un domaine, i.e. déduire des faits, à partir d’un ensemble de faits

établis. Cependant, l’utilisation d’une approche déductive n’est pas adaptée à

tout type d’application. En particulier lorsque l’objectif est par définition in-

exact. C’est souvent le cas en recherche d’information. Il est fréquent de devoir répondre

à une question qui ne peut être traitée par de simples opérateurs booléens, e.g. quels

sont les groupes similaires aux “Rolling Stones” ? L’ambigüité intrinsèque à la no-

tion de similarité empêche l’utilisation (seule) de techniques de raisonnement

déductif. Cependant, la connaissance définie dans une représentation de connaissance

peut fournir des éléments de réponse utiles au système de recherche d’information.

Par exemple, l’étude des interconnexions entre les différentes entités définies dans une

représentation de connaissance relative au domaine de la musique (e.g. groupes, genres

musicaux) permettra sûrement d’établir, à juste titre, que les “Rolling Stones” semblent

davantage similaires au groupe “The Who” qu’à celui des “Spice Girls”. Dans le do-

maine biomédical, c’est sur ce même principe que des modèles permettant d’évaluer la

pertinence à réutiliser des molécules thérapeutiques ont été proposés [Eronen and Toivo-

nen, 2012]. Cette pratique, appelée extension de médicament, considère qu’une molécule

avérée effective dans le traitement d’une condition particulière peut potentiellement être

réutilisée pour traiter une condition similaire ; cette similarité est évaluée au regard des

informations définies dans des bases de connaissances biomédicales – on retrouve ici une

fois de plus la notion centrale de similarité.

De manière plus large, la plupart des approches de raisonnement approximatif ou d’ap-

prentissage automatique reposent sur une mesure permettant de comparer les entités

manipulées. Cette mesure permet notamment de regrouper des objets au regard de

leurs propriétés et de définir, parfois à partir de jeux d’apprentissage, des fonctions

discriminantes à même de les classifier. Dans un contexte biomédical, ces fonctions

permettront, par exemple, de distinguer des individus malades de ceux qui sont sains.

Ainsi, les fonctions de similarité revêtent une importance majeure pour la mise en place

de raisonnements approximatifs, pour le développement de techniques d’apprentissage

automatique ou encore, pour la mise en place de systèmes de recherche d’information.
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Les mécanismes cognitifs de l’homme reposent eux aussi fortement sur la

notion de similarité. En effet, la capacité qu’a l’homme à comparer les choses (objets,

stimuli) et à identifier des similarités et différences entre celles-ci, a depuis longtemps

été caractérisée par les sciences cognitives et la psychologie, comme un élément au coeur

de nombreux processus cognitifs [Rissland, 2006]. La similarité joue ainsi un rôle central

dans l’apprentissage, dans la prise de décision, dans l’élaboration de certains types de

raisonnement, dans la reconnaissance de formes, ou encore dans la définition de plans de

résolution [Gentner and Markman, 1997; Ross, 1987; Vosniadou and Ortony, 1989]. En

effet, la capacité à reconnâıtre des situations similaires permet, par exemple, de stimuler

notre expérience en activant des traces mentales qui nous permettront de résoudre des

problèmes nouveaux, en y appliquant des éléments de résolution appliqués avec succès à

des problèmes similaires. Il est donc clairement admis que cette notion de similarité,

ou de façon plus générale, cette capacité à comparer les choses est centrale

dans la mise en place de formes d’intelligence ; elle joue donc un rôle essentiel

pour les communautés intéressées à l’élaboration d’intelligences artificielles.

Ainsi, le développement d’agents intelligents basés sur des représentations de connais-

sance repose en grande partie sur la définition de fonctions permettant de comparer les

éléments qu’elles définissent. Cette comparaison doit être gouvernée par la connaissance

définie dans la représentation de connaissance et doit donc tout naturellement reposer

sur une mesure à même de tirer parti de la sémantique qui la caractérise. Pour cela, des

mesures sémantiques à base de connaissance sont utilisées1. De façon plus générale, ces

mesures s’inscrivent dans la classe des mesures sémantiques, qui permettent de comparer

des entités (unités lexicales, concepts, instances) par l’analyse de proxies sémantiques

(corpus de textes ou représentations de connaissance). Du fait de leur importance pour

de nombreuses communautés, une vaste littérature est dédiée à ces mesures et

de nombreuses approches ont été proposées pour différents types de traitements.

En effet, de la recommandation musicale à l’analyse de données biomédicales (dossiers

patients, gènes), en passant par l’étude de données géographiques, de nombreuses

communautés tirent aujourd’hui parti de ces mesures et contribuent à leur

étude.

Les travaux décrits dans ce mémoire ont été effectués au sein de l’équipe KID2 du lab-

oratoire LGI2P3 de l’École des mines d’Alès. Fédérés autour de l’automatisation

cognitive, les chercheurs du LGI2P s’intéressent au développement de concepts innovants,

méthodologies, et outils pour la conception, la réalisation et l’optimisation de systèmes

techniques, de processus collaboratifs ou encore d’organisation sociotechniques. Dans

1Knowledge-based semantic measures en anglais.
2Knowkedge and Image analysis for Decision making en anglais.
3Laboratoire de Génie Informatique et d’Ingénierie de Production.
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ce contexte, l’équipe KID tire parti, entre autres, des représentations de connaissance

pour la définition de techniques optimisées de découverte, interrogation et analyse de

connaissance ; techniques dans lesquelles les mesures sémantiques jouent très souvent

un rôle central [Ranwez, 2013].

Ces travaux sont ancrés dans le domaine de l’Intelligence Artificielle, et exploitent plus

particulièrement les techniques de représentation de connaissance à l’ère du Web de

Connaissance. A partir d’une analyse détaillée des mesures sémantiques, et plus parti-

culièrement de celles dédiées à la comparaison de concepts ou d’instances définies dans

des représentations de connaissances structurées sous la forme de graphes sémantiques,

nous proposons :

1. Un état de l’art étendu sur la notion de mesure sémantique. L’analyse de la

littérature nous permet notamment de catégoriser les différentes approches pro-

posées, de caractériser la terminologie d’usage dans le domaine, et de répertorier

une large collection de mesures.

2. Un cadre unificateur dédié aux mesures sémantiques à base de connaissance. Celui-

ci dote la communauté d’un outil théorique offrant un nouveau regard sur ces

mesures. Grâce à lui, nous montrons par exemple que la plupart des mesures

publiées de façon indépendante correspondent pour la plupart à des expressions

spécifiques de mesures paramétriques génériques. Nous soulignons aussi les per-

spectives que ce cadre théorique offre pour l’analyse détaillée des mesures.

3. Une librairie logicielle et un ensemble d’outils dédiés au calcul et à l’analyse de ces

mesures.

4. Des contributions algorithmiques et théoriques associées à ces mesures.

Ces différentes contributions sont détaillées dans la section qui suit.
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II Contributions scientifiques, théoriques et logicielles de

la thèse

II.I État de l’art étendu des mesures sémantiques : définitions, analyse

détaillée et catégorisation des mesures basées sur une représentation

de connaissance

Référence : Semantic Measures for the Comparison of Units of Language, Concepts or

Instances from Text and Knowledge Base Analysis. Sébastien Harispe*, Sylvie Ranwez,

Stefan Janaqi, Jacky Montmain (2013). ArXiv. Computation and Language. http://arxiv.org/

abs/1310.1285v2

La première partie de ce manuscrit propose une vision détaillée de la notion de mesure

sémantique. Nous y présentons une version condensée d’une littérature vaste, interdis-

ciplinaire, et parfois éparpillée relative au domaine. Nous introduisons de nombreuses

définitions et nous distinguons un certain nombre de propriétés (mathématiques) permet-

tant de les caractériser, notamment au regard de la sémantique qui leur est associée. Ce

travail nous a permis de proposer une classification générale des différents types

de mesures sémantiques évoqués dans la littérature.

Par la suite, du fait de la diversité du domaine, nous nous sommes concentrés sur les

mesures sémantiques à base de connaissance, et plus particulièrement sur

celles reposant sur une structuration de la connaissance sous forme de graphe

sémantique. De nombreux détails techniques relatifs à ce type de mesures sont discutés,

et une large collection de mesures proposées dans la littérature est identifiée, classifiée

et analysée.

La première contribution majeure de cette thèse est de mutualiser les contributions pro-

posées par des communautés distinctes et de les analyser au travers d’un même prisme.

En effet, nous montrons que de nombreuses contributions, pour la plupart relatives aux

mesures sémantiques, initialement proposées dans des domaines spécifiques, et parfois

exprimées dans des formalismes particuliers, ont souvent une portée plus large que celle

initialement escomptée. Ainsi, bien que souvent conçues dans un cadre applicatif bien

délimité et dédiées à une problématique très pointue, par exemple l’analyse fonctionnelle

de gènes, nous montrons que de nombreuses définitions de mesures sémantiques, pour

la plupart ad hoc, peuvent souvent profiter à un grand nombre de communautés et ainsi

amener la résolution de problèmes divers. Nous soulignons ainsi que les contributions

relatives aux mesures sémantiques s’inscrivent dans un domaine de recherche

http://arxiv.org/abs/1310.1285v2
http://arxiv.org/abs/1310.1285v2
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interdisciplinaire d’une large richesse, jusque-là mal identifié, et à l’interface

de nombreuses thématiques de recherche.

Cette synthèse ne traite pas de certains sujets importants comme la sélection des mesures.

Cependant, nous sommes convaincus qu’elle donne accès, aussi bien au néophyte qu’à

l’initié, à une meilleure compréhension des différentes approches proposées et donne ainsi

une vision globale, revisitée et organisée du domaine.

Nourris de cette analyse de l’état de l’art, nous avons ensuite distingué un certain nombre

de défis que la notion de mesure sémantique offre à nos communautés. Parmi ces défis,

nos travaux se sont essentiellement concentrés sur la proposition d’outils théoriques

et pratiques dédiés aux mesures sémantiques. En effet, un des constats de notre

étude préliminaire concerne le cloisonnement de ces mesures en partie dû au caractère

ad hoc de nombreuses formulations, et à la nature domaine-spécifique de la plupart des

contributions logicielles associées au domaine.

En réponse à ces limites, notre stratégie de recherche a notamment consisté à abstraire,

autant que possible, les mesures sémantiques de leur cadre applicatif et de leur con-

texte d’utilisation. Cette approche nous a permis d’identifier les éléments constitutifs

des mesures sémantiques, parmi lesquels : une représentation des entités manipulées,

des estimateurs des parties communes et différentes de ces représentations, une fonc-

tion permettant l’aggrégation de ces opérateurs. Ainsi, cette décomposition des mesures

nous permet de comprendre plus en détail le mode de fonctionnement et les spécificités

de ces mesures. Ce travail constitue la deuxième contribution majeure de la thèse et

sera présenté dans la section suivante. Concernant l’aspect applicatif, en réponse à

la multiplication de solutions logicielles domaine-spécifiques, nous avons développé un

outil logiciel générique, performant, représentatif de la diversité de l’état de l’art, et

indépendant d’un applicatif particulier. L’objectif visé était de proposer aux commu-

nautés utilisatrices et impliquées dans l’étude des mesures sémantiques, une plateforme

de développement, d’analyse et de calcul dédiée. Ce sera la troisième contribution,

détaillée plus loin.
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II.II Un cadre unificateur pour les mesures sémantiques à base de

connaissance

Référence :

A framework for unifying ontology-based semantic similarity measures: A study in

the biomedical domain. Sébastien Harispe*, David Sánchez, Sylvie Ranwez, Stefan Janaqi,

Jacky Montmain. Journal of Biomedical Informatics 2013. http://dx.doi.org/10.1016/j.jbi.

2013.11.006 – publication en collaboration avec David Sánchez de l’Université Rovira i Virgili de

Tarragone (Espagne).

En se concentrant sur les mesures sémantiques à base de représentation de connaissance,

nous montrons qu’un grand nombre de mesures définies dans la littérature sont des

expressions dérivées de fonctions paramétriques reposant sur un ensemble limité

de paramètres abstraits. Ainsi, dans la continuité de plusieurs travaux portant sur

l’étude des similitudes entre mesures [Blanchard, 2008; Blanchard et al., 2008; Pirró and

Euzenat, 2010a; Sánchez and Batet, 2011], nous mettons en évidence que la plupart

des mesures, jusque-là trop souvent considérées comme indépendantes, sont étroitement

liées et reposent essentiellement sur la définition d’opérateurs simples. Cette observation,

illustrée tout au long de la thèse par de multiples exemples, propose un nouveau regard

sur la large diversité de mesures sémantiques.

A partir de ces travaux, nous avons défini un cadre unificateur pour les mesures

sémantiques à base de connaissance. En distinguant (i) les composants constitutifs

de la plupart des mesures (e.g. points communs et différences), (ii) des expressions

particulières de ces composants, et (iii) des formes génériques de mesures permettant

l’agrégation de ces composants pour l’expression de mesures concrètes, nous mettons en

évidence que le cadre théorique proposé permet à la fois d’exprimer des mesures et

de les analyser en détail.

Différentes applications pratiques de ce cadre sont illustrées dans le manuscrit. Nous

montrons en particulier qu’il permet d’exprimer de nouvelles mesures, d’étudier leurs

performances, d’orienter leur sélection au travers d’optimisations paramétriques, et de

distinguer les éléments constitutifs des mesures qui semblent jouer un rôle critique dans

leur performance. Ces différents applicatifs soulignent la large portée de notre con-

tribution pour l’étude des mesures sémantiques. Par exemple, la caractérisation des

éléments centraux des mesures offre des perspectives intéressantes pour la définition, le

paramétrage et/ou la sélection des mesures. Nous montrons notamment que le degré

de granularité des analyses permises par notre approche laisse envisager l’étude des

http://dx.doi.org/10.1016/j.jbi.2013.11.006
http://dx.doi.org/10.1016/j.jbi.2013.11.006


Synopsis de la thèse 11

mesures à un niveau de détail extrêmement fin. A titre d’exemple, nous montrons com-

ment l’unification des mesures effectuée au niveau théorique, indépendamment de tout

contexte applicatif, permet la définition de mesures optimisées pour un contexte ap-

plicatif particulier, e.g. pour comparer des gènes annotés par des concepts relatifs au

domaine biomédical.

II.III La Semantic Measures Library (SML), une librairie logicielle

libre et générique dédiée aux mesures sémantiques

Références :

The Semantic Measures Library and Toolkit: fast computation of semantic similarity

and relatedness using biomedical ontologies. Sébastien Harispe*, Sylvie Ranwez, Stefan

Janaqi, Jacky Montmain. Oxford Bioinformatics 2013.

From Theoretical Framework to Generic Semantic Measures Library. Sébastien Harispe*,

Stefan Janaqi, Sylvie Ranwez, Jacky Montmain. On the Move to Meaningful Internet Systems:

OTM 2013 Workshops Lecture Notes in Computer Science Volume 8186, 2013, pp 739-742;

http://dx.doi.org/10.1007/978-3-642-41033-8_98

Site internet : http://www.semantic-measures-library.org

Tout au long de ce manuscrit, nous soulignons l’importance des évaluations empiriques

pour l’analyse des mesures sémantiques, en particulier pour évaluer leur performance.

Pourtant la plupart des solutions logicielles existantes ont été développées dans l’objectif

de répondre aux attentes d’un domaine applicatif particulier. Ainsi, bien que quelques

initiatives aient tenté de proposer des solutions génériques, celles-ci se limitent à l’analyse

de représentations de connaissance de tailles réduites et ne sont plus maintenues au-

jourd’hui – l’exemple le plus abouti reste selon nous SimPack [Bernstein et al., 2005].

Ainsi, ces solutions ne permettent pas de répondre aux besoins de nombreux applicatifs

reposant sur l’utilisation de représentations de connaissance qui définissent des milliers

d’entités – ce qui est de plus en plus fréquent, par exemple dans le domaine biomédical.

C’est dans ce contexte que nous avons initié le développement de la Semantic Mea-

sures Library (SML) avec comme objectif de rendre accessibles au plus grand nombre

des solutions logicielles robustes dédiées au calcul et à l’analyse des mesures

sémantiques. Dans le cadre de ce projet, nous avons développé une librairie logicielle

dédiée aux mesures sémantiques à base de connaissance (développée en Java). Elle met

à disposition des chercheurs du domaine un cadre de développement permettant à la fois

d’utiliser un grand nombre de mesures, de les analyser, et de facilement développer et

http://dx.doi.org/10.1007/978-3-642-41033-8_98
http://www.semantic-measures-library.org
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tester de nouvelles approches. Cette librairie implante de nombreux algorithmes relat-

ifs aux mesures sémantiques à base de connaissance. Elle permet aux chercheurs de se

concentrer sur leur thématique de recherche, en faisant abstraction par exemple des nom-

breuses difficultés associées à la manipulation de représentation de connaissance. Ainsi,

contrairement aux solutions proposées et utilisées jusque-là, le caractère générique

de la librairie ne contraint pas son utilisation à un contexte applicatif par-

ticulier. Cela est rendu possible grâce à sa compatibilité avec un certain nombre de

standards conçus pour la définition de représentation de connaissance, e.g. RDF, OBO.

Cette librairie a d’ores et déjà été utilisée dans de nombreux projets pour comparer des

entités (concepts et instances) définies dans de nombreuses représentations de connais-

sance1 - ces projets sont détaillés dans le chapitre dédié à cette contribution.

Grâce à son aspect générique, la librairie propose de fédérer différentes com-

munautés autour d’un cadre de développement commun. En effet, l’ajout de

fonctionnalités à la librairie, e.g. nouvelles implantations de mesures ou optimisations

d’algorithmes classiquement utilisés par celles-ci, bénéficiera à toutes les communautés

intéressées par les mesures sémantiques. De plus, nous l’avons démontré au travers

d’évaluations empiriques, la généricité de la librairie ne se fait pas au détriment de sa

performance. En effet, en comparant la librairie à des solutions dédiées à l’analyse de

gènes au travers de leurs annotations sémantiques, nous montrons qu’elle offre des per-

formances équivalentes, voire supérieures à celles obtenues par les solutions spécifiques

à un domaine, en particulier pour le traitement de gros volumes de données.

Le développement de cette librairie repose sur l’analyse de l’état de l’art et sur l’unification

des mesures proposées par le cadre théorique introduit dans nos travaux. En effet, bien

que théorique, le cadre unificateur des mesures que nous proposons est parfaitement

implantable. De nombreuses évaluations de mesures ont été effectuées à partir d’une

implantation (partielle) de ce dernier au sein de la librairie. On voit ici clairement le

lien étroit entre les deux contributions théorique et appliquée qui, au final s’enrichissent

mutuellement.

En se basant sur la librairie de code, nous avons aussi développé un outil logiciel utilisable

en ligne de commande. Il permet aux non-développeurs de tirer parti de certaines

fonctionnalités de la librairie, par exemple, pour exploiter les capacités de calcul qu’elle

offre. Tout comme la librairie, cet outil générique ne se restreint pas à un domaine

particulier et supporte l’utilisation de nombreuses représentations de connaissance. De

plus, afin de répondre au plus près aux attentes des utilisateurs, nous avons proposé la

mise en place d’interfaces (en ligne de commande) dédiées à des contextes applicatifs

particuliers. Elles permettent aux utilisateurs d’interagir avec l’outil générique sans

1E.g., la Gene Ontology, le MeSH, SNOMED-CT, Yago, l’ontologie de DBpedia, Schema.org.
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pour autant utiliser une terminologie différente de celle communément utilisée dans

leurs communautés.

Le développement de la librairie et de l’outil logiciel associé s’accompagne d’une large

documentation et d’un support technique assuré au travers d’un groupe de discussions

et d’une liste de diffusion. Le lecteur intéressé consultera le site internet :

http://www.semantic-measures-library.org.

Néanmoins, le projet SML ne s’arrête pas aux développements logiciels. De

façon plus générale, nous l’avons souligné, ce projet se propose de fédérer autour de

la notion de mesure sémantique. Ainsi, le travail d’état de l’art sur lequel reposent

nos travaux est partagé au travers de ce projet. Pour cela, un document technique relatif

aux mesures sémantiques (d’une centaine de pages) a été rendu public et une grande

partie de la bibliographie associée est elle aussi partagée [Harispe et al., 2013c] ; ces

travaux ont suscité un grand intérêt dans la communauté et de nombreux retours qui

devraient conduire à plusieurs collaborations internationales.

L’état de l’art détaillé des mesures et les contributions associées au cadre

théorique unificateur et au projet SML correspondent aux trois piliers théo-

riques et logiciels amenés dans cette thèse. Ils répondent à notre volonté d’initier

un état des lieux de la connaissance relative à ce large domaine d’étude, qui a, selon

nous, trop longtemps été cloisonné au sein de communautés diverses. Ces contribu-

tions répondent à l’objectif initialement fixé : proposer des outils théoriques

et pratiques dédiés aux mesures sémantiques. En parallèle de ces travaux, qui

constituent en quelque sorte le fil rouge de cette thèse, nous proposons différentes con-

tributions algorithmiques et théoriques relatives aux mesures sémantiques à base de

connaissance.

http://www.semantic-measures-library.org
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II.IV Contributions algorithmiques et autres contributions théoriques

associées aux mesures sémantiques

Références :

An information theoretic approach to improve the semantic similarity assessment

across multiple ontologies. Batet Montserrat∗, Harispe Sébastien, Ranwez Sylvie, Sánchez

David, Ranwez Vincent. Information Sciences (Elsevier) 2014 – cette contribution a été réalisée en

collaboration avec Montserrat Batet et David Sánchez de l’Université Rovira i Virgili de Tarragone

(Espagne) et Vincent Ranwez, Professeur à Montpellier SupAgro.

Robust Selection of Domain-specific Semantic Similarity Measures from Uncertain

Expertise. Stefan Janaqi*, Sébastien Harispe, Sylvie Ranwez, Jacky Montmain. IPMU 2014 –

Information Processing and Management of Uncertainty in Knowledge-Based Systems

Ces travaux portent sur des aspects spécifiques des mesures sémantiques et se détachent

parfois de la vision abstraite qui a été adoptée jusque-là, notamment lors de la définition

du cadre unificateur. Ils proposent d’étudier des aspects particuliers des mesures

et reposent sur des contributions algorithmiques ou théoriques ciblant un

type de mesure spécifique, parfois au regard d’un applicatif particulier.

Parmi ces contributions, ce manuscrit présente :

Une technique d’apprentissage semi-supervisée permettant de caractériser

les mesures sémantiques adaptées à un contexte applicatif particulier, en

tenant compte de l’incertitude intrinsèque aux jeux de tests communément

utilisés pour l’évaluation de leur performance.

Les mesures sémantiques sont, la plupart de temps, évaluées par l’étude de leur corrélation

avec des scores de similarité définis par des individus, généralement des experts de do-

maine, e.g. des médecins dans le domaine biomédical [Pakhomov et al., 2011; Pedersen

et al., 2007]. C’est, dans certains cas, cette appréciation humaine de la similarité, parfois

nourrie d’expertise, que l’on souhaite simuler par l’utilisation de mesures sémantiques.

La performance des mesures est donc souvent évaluée à l’aide de jeux de tests com-

posés de scores de similarité attendus pour un ensemble de paires d’entités : une mesure

sera alors d’autant plus performante que ses résultats seront fortement corrélés avec cet

attendu. Ce protocole d’évaluation est très largement utilisé. Cependant, jusque-là,

l’incertitude associée aux jeux de test, qui découle de l’incertitude relative aux simi-

larités associées aux paires d’entités qui les composent, n’était pas prise en compte lors

de l’évaluation. De nombreuses études le soulignent, l’appréciation de la similarité est
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subjective et imprécise, même au sein d’un groupe d’experts. La prise en compte de

l’incertitude associée à un jeu de test est donc centrale pour l’évaluation des mesures

sémantiques. Ainsi, pour répondre aux limites des protocoles d’évaluation classiques,

nous proposons d’adopter un regard nouveau sur les mesures en évaluant leur robustesse :

leur capacité de résilience au regard de l’incertitude associée aux jeux de tests classique-

ment utilisés. Une mesure sera ainsi d’intérêt si elle est fortement corrélée avec l’attendu

et si elle le reste lorsque des perturbations (simulant l’incertitude) sont appliquées sur

ce dernier. Cette proposition est illustrée par une évaluation empirique dans le domaine

biomédical. Nous montrons notamment que, couplée à cette notion de robustesse, la

décomposition des mesures permise par le cadre théorique permet d’étudier de nouvelles

propriétés des mesures sémantiques.

Une nouvelle approche pour la comparaison d’instances caractérisées au

travers d’un graphe sémantique.

Dans cette contribution nous proposons une nouvelle approche pour caractériser une in-

stance au travers de la notion de projection. Une projection est utilisée pour représenter

une propriété particulière d’une instance en exploitant différentes informations présentes

dans un graphe sémantique, e.g. relations directes, indirectes, ou encore, chose nou-

velle, en prenant en compte différentes propriétés caractérisées par les types de relation

précités. Ainsi, une instance sera analysée au travers de l’ensemble des projections qui

la caractérisent. Pour comparer une paire d’instances, ce sont ces projections qui seront

examinées à l’aide de mesures (sémantiques) adaptées. Nous proposons ensuite d’estimer

la proximité des instances comparées par agrégation des scores associés à la comparai-

son de leurs projections. L’intérêt de l’approche repose sur la caractérisation détaillée

des instances au travers de la notion de projection, et sur les perspectives intéressantes

qu’elle offre concernant la traçabilité de la sémantique du résultat produit. En effet,

cette approche explicite la sémantique d’un score au regard (i) des différentes projec-

tions qui gouvernent la comparaison, (ii) des pondérations qui leurs sont associées, et

(iii) des mesures utilisées pour les comparer. Nous soulignons l’importance de cet aspect,

en particulier pour la mise en place de systèmes informatiques pour lesquels la justifica-

tion des résultats obtenus peut représenter une plus-value non-négligeable (par exemple

dans le domaine de la décision), notamment pour la mise en place d’interactions homme-

machine. A titre d’illustration, nous montrons l’utilité de l’approche proposée pour la

définition d’un système de recommandation (semi-supervisé) de groupes de musique.

Celui-ci repose sur le paradigme des données liées et tire parti de l’analyse de données

issues de DBpedia1. L’utilisateur du système a la possibilité de préciser l’importance des

1Le prototype développé est accessible à l’adresse http://www.lgi2p.ema.fr/kid/tools/bandrec

(maintenu au minimum jusqu’en 2015).

http://www.lgi2p.ema.fr/kid/tools/bandrec
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propriétés retenues (i.e. les projections) lors de comparaison des groupes de musique.

Cela lui permet d’avoir un contrôle fin sur la sémantique des résultats. L’avantage est

double : l’utilisateur comprend le pourquoi de la recommandation et a la possibilité

d’exprimer plus finement ses attentes – cela permet d’envisager une meilleure interac-

tion avec le système. Cette contribution est détaillée dans un papier écrit en français

[Harispe et al., 2013a], cependant, le lecteur pourra aussi se référer au chapitre de la

thèse dédié à cette contribution et à [Harispe et al., 2013b].

Une approche pour la définition de mesures sémantiques permettant de com-

parer deux concepts définis dans des taxonomies différentes.

Cette étude porte sur les mesures sémantiques dédiées à la comparaison de concepts

définis dans des représentations de connaissance différentes. Nous avons notamment

proposé la redéfinition d’un opérateur communément utilisé dans la définition de ces

mesures. Pour cela, en se basant sur des contributions relatives à la théorie de l’in-

formation, nous proposons une nouvelle approche pour caractériser la partie commune

de deux concepts exprimés dans des taxonomies différentes (non-disjointes). Une fois

de plus, ces travaux ne se concentrent pas sur l’étude d’une mesure particulière. En

effet, de nombreuses mesures initialement définies pour la comparaison d’une paire de

concepts d’une même taxonomie peuvent être utilisées, dans un contexte impliquant

l’utilisation de plusieurs représentations de connaissance. En se basant sur différents

jeux d’évaluation relatifs au domaine biomédical, nous montrons que l’approche proposée

permet d’améliorer la précision des mesures sémantiques (dans le contexte d’évaluation

testé1).

Une optimisation algorithmique pour calculer certaines mesures sémantiques.

Dans cette contribution, en tirant parti du cadre théorique proposé, nous distinguons

une propriété permettant de caractériser une classe particulière de mesures sémantiques.

Nous soulignons l’intérêt et les implications algorithmiques de cette propriété pour le

calcul des mesures. Nous l’utilisons par la suite pour la définition de solutions algorith-

miques dédiées au calcul de la similarité sémantique de l’ensemble des paires de concepts

d’une taxonomie. Cette étude ne se limite pas à une analyse de la complexité théorique

des solutions proposées, les aspects pratiques des algorithmes sont eux aussi discutés.

1De manière générale, trop peu d’analyses sur les mesures sémantiques discutent le caractère poten-
tiellement généralisable des résultats produits par des évaluations empiriques domaine-spécifiques. Bien
que dans cette étude nous ayons utilisé deux jeux de tests différents, rien ne nous permet de généraliser
ce résultat.
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III Synthèse et élargissement

L’analyse détaillée d’un grand nombre de contributions associées aux mesures sémantiques

nous a permis d’identifier un certain nombre de défis relatifs à ce domaine d’étude. Six

d’entre eux, particulièrement importants à nos yeux, sont détaillés :

1. Proposer une meilleure caractérisation des mesures sémantiques.

La plupart des mesures sémantiques méritent d’être mieux caractérisées, notam-

ment en ce qui concerne leur sémantique. En effet, un score de mesure sémantique

est encore aujourd’hui trop souvent considéré comme dénué de sens et ramené à

une simple valeur numérique. Cependant, dans certains contextes applicatifs, les

implications associées à l’utilisation d’une mesure particulière peuvent être lour-

des de conséquences et le choix d’une mesure peut, dans certains, cas remettre en

cause la cohérence d’un système informatique. Pour relever ce défi, l’analyse des

propriétés mathématiques des mesures sémantiques nous semble primordiale.

2. Proposer des outils théoriques et logicielles pour l’étude des mesures sémantiques.

Nous pensons que des efforts soutenus doivent être effectués dans l’objectif de

proposer des outils théoriques et logiciels dédiés aux mesures sémantiques. Nous

avons notamment souligné l’importance des outils théoriques pour (formellement)

caractériser la diversité des mesures proposées dans la littérature. Nous avons aussi

attiré l’attention sur le fait qu’un plus grand nombre de jeux de test et d’outils

dédiés à l’évaluation empirique des mesures doivent être proposés. De plus, nous

avons insisté sur la nécessité de développer des solutions logicielles génériques,

en particulier afin de répondre aux limites rencontrées par les solutions domaine-

spécifiques majoritairement utilisées aujourd’hui.

3. Standardiser la prise en compte de représentations de connaissance.

Nous avons mis en évidence les limitations pratiques induites par le manque

de standardisation des traitements effectués sur les représentations de connais-

sance (lors ou au préalable du calcul de mesures sémantiques). Nous avons no-

tamment souligné le trop grand degré de liberté laissé aux développeurs lors de

l’implémentation d’une mesure, ce qui créé souvent un fossé entre une définition

théorique d’une mesure et son implémentation. Nous avons par exemple observé

que les scores produits par différentes solutions logicielles (en utilisant des mesures

déterministes) varient largement dans certains cas. Notre analyse souligne que

cette variation peut s’expliquer du fait de la non-standardisation de certains traite-

ments appliqués sur les représentations de connaissance, e.g. la prise en compte

des redondances taxonomiques.
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4. Faire la promotion de l’interdisciplinarité dans le domaine.

L’état de l’art relatif aux mesures sémantiques le montre bien, de nombreuses com-

munautés contribuent à leur étude. Nous pensons cependant que pour favoriser

un enrichissement mutuel de ces communautés, plus d’interactions méritent d’être

entretenues. Dans cet objectif, nous avons identifié un certain nombre de commu-

nautés aujourd’hui directement impliquées dans l’étude des mesures ou bien qui

mériteraient d’être sollicitées pour appuyer ces travaux.

5. Étudier la complexité algorithmique des mesures sémantiques.

Trop peu d’études s’attachent à analyser la complexité algorithmique des mesures

sémantiques. Cependant, du fait que la complexité d’une mesure impacte claire-

ment son utilisation pratique, celle-ci constitue souvent un critère de choix im-

portant pour l’utilisateur final, soucieux de sélectionner un mesure adaptée à son

contexte applicatif.

6. Proposer des approches permettant d’orienter la sélection de mesures sémantiques

au regard d’un contexte d’utilisation.

La sélection d’une mesure sémantique est un problème complexe et peu de solu-

tions permettent de faciliter la tâche. En effet, une mesure doit être sélectionnée en

fonction du contexte applicatif dans lequel elle sera utilisée. Néanmoins, à l’heure

actuelle, la plupart des utilisateurs sélectionnent une mesure “à l’aveugle”, en jus-

tifiant par exemple le choix d’une mesure par sa popularité. La caractérisation

des mesures proposée dans nos travaux nous a permis de souligner l’importance

à considérer à la fois les propriétés des mesures et la sémantique qui leur est as-

sociée. Ainsi, un plus grand nombre d’études méritent d’être effectuées dans ce

domaine. Cela permettrait notamment de mieux caractériser la notion de con-

texte d’utilisation d’une mesure ainsi que les caractéristiques des mesures qui lui

sont associées. De plus, des analyses comparatives empiriques doivent être ef-

fectuées dans différents domaines applicatifs afin de comparer les performances

d’un nombre représentatif de mesures sémantiques. Ces analyses sont essentielles

pour déterminer si une classe de mesures tend à obtenir de meilleures perfor-

mances qu’une autre dans certains contextes, et pour évaluer si ce résultat est, en

soit, généralisable.

Les contributions théoriques et logiciels dédiées aux mesures sémantiques qui ont été

proposées dans cette thèse fournissent des éléments de réponse à la plupart des défis dis-

tingués ci-dessus. Nous avons souligné et illustré leurs apports pour amener une meilleure

caractérisation des mesures, au regard à la fois de leurs propriétés mathématiques et de

leur sémantique. Nous avons insisté sur l’intérêt d’utiliser les propriétés des mesures

afin de les classifier et de les manipuler au travers de familles de mesures. Cela permet
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notamment de facilement dériver des propriétés intéressantes pour un grand nombre

de mesures. Ainsi, les contributions qui reposent sur ces propriétés (e.g. algorithmes

d’optimisation) bénéficient à de nombreuses mesures et trouvent tout naturellement un

public plus large. Une stratégie similaire, basée sur l’analyse de familles de mesures,

peut être envisagée pour initier l’étude de la complexité algorithmique des mesures.

Le cadre théorique et la solution logicielle proposés, tous deux détachés de contextes ap-

plicatifs particuliers, s’inscrivent dans la volonté de créer et d’alimenter des liens étroits

entre les communautés impliquées dans l’étude des mesures sémantiques. Cette inter-

action entre les différents acteurs du domaine est importante, notamment pour tenter

d’amener une réponse collective aux défis aujourd’hui offerts à ce domaine de recherche.

Nous avons par exemple mis en évidence la nécessité de détailler et de standardiser tant

que possible les traitements effectués par les différents logiciels de calcul de mesures

sémantiques. Ce travail ne peut être envisagé que si des collaborations larges et inter-

disciplinaires sont engagées.

Pour finir, nos contributions dotent les communautés de solutions pour orienter la

sélection de mesures sémantiques au regard d’un contexte d’utilisation particulier. En

effet, la littérature regorge de mesures sémantiques réputées toutes plus performantes

les unes que les autres et pourtant trop peu d’études empiriques et théoriques se sont

jusque-là intéressées à voir plus clair dans cette diversité, en particulier afin d’identifier

les mesures les plus adaptées à un contexte d’utilisation particulier. Nous sommes con-

vaincus que le cadre théorique proposé et le projet Semantic Measures Library ont leur

rôle à jouer pour relever ce défi qui s’offre aux communautés investies dans l’étude des

mesures sémantiques.





1
Introduction

Contents

1.1 General context . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.1 Knowledge in the quest to design Artificial Intelligence . . . . 23

1.1.2 The growing adoption of knowledge-based systems . . . . . . . 24

1.1.3 Towards a Web of Data/Knowledge . . . . . . . . . . . . . . . 25

1.1.4 Thinking outside the box: the importance of inexact searches . 26

1.1.5 Knowledge-based semantic measures . . . . . . . . . . . . . . . 27

1.1.6 General context of this thesis . . . . . . . . . . . . . . . . . . . 28

1.2 Ontologies from a graph perspective . . . . . . . . . . . . . . 28

1.2.1 Taxonomies and partially ordered sets . . . . . . . . . . . . . . 29

1.2.2 General discussion on ontologies as graphs . . . . . . . . . . . . 30

1.2.3 Types of ontologies considered in this thesis . . . . . . . . . . . 31

1.2.4 Similarity: a cornerstone of approximate reasoning . . . . . . . 34

1.3 Semantic Web and Linked Data paradigms . . . . . . . . . . 36

1.3.1 A natural paradigm shift . . . . . . . . . . . . . . . . . . . . . 36

1.3.2 Technologies and architecture of the Semantic Web . . . . . . . 38

1.3.3 Inexact searches: a key challenge for the Semantic Web . . . . 39

1.4 Human cognition, similarity and existing models . . . . . . 40

1.4.1 Spatial models . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.4.2 Feature models . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4.3 Structural alignment models . . . . . . . . . . . . . . . . . . . 44

1.4.4 Tranformational models . . . . . . . . . . . . . . . . . . . . . . 45

1.4.5 Unification of cognitive models of similarity . . . . . . . . . . . 45

1.5 Objectives and outlines of the thesis . . . . . . . . . . . . . . 46

1.6 Chapter summaries . . . . . . . . . . . . . . . . . . . . . . . . 48

21



Chapter 1. Introduction 22

Abstract

This first chapter introduces the general context of the thesis and presents several no-

tions and paradigms on which are based our contributions. (i) We present the notion

of ontology – how to formally express knowledge to make it understandable by soft-

ware; usages of these ontologies for knowledge inference through exact and approximate

reasoning techniques are further discussed. (ii) We introduce the Semantic Web and

Linked Data paradigms – how to take advantage of the Internet infrastructure to build

a Web of Data/Knowledge: a linked data cloud corresponding to a worldwide network of

pieces of data and knowledge interlinked together. (iii) We discuss several contributions

related to human appreciation of similarity focusing on the insight provided by cognitive

sciences. This section finally defines both objectives and outlines of the thesis as well as

chapter summaries.
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1.1 General context

1.1.1 Knowledge in the quest to design Artificial Intelligence

One of the main challenges of Artificial Intelligence (AI) is to design intelligent agents

which are able to resolve complex problems and to perform elaborated tasks. To this

end, AI federates numerous scientific communities to tackle a large diversity of problems

in the aim of giving machines the ability to reason, to understand knowledge, to learn,

to plan, to manoeuvre, to communicate, and to perceive [Russell and Norvig, 2009].

Back in the 60s, the quest for AI had originally been motivated by the assumption

“[. . . ] that every aspect of learning or any other feature of intelligence can in principle

be so precisely described that a machine can be made to simulate it [. . . ]” [McCarthy

et al., 2006]; an assumption which has today proved to be pretentious and perhaps even

unattainable. Among the various strategies explored to provide machines with intelli-

gence, i.e., the “ability to acquire and apply knowledge and skills” [Oxford Dict., 2012],

this thesis focuses on those which take advantage of formal expression of knowledge,

also denoted as ontologies. Considering that most complex problems have proved to

require the analysis of large sources of knowledge in order to be resolved (e.g., medical

diagnosis), such strategies are based on the rational assumption that knowledge is one

of the central ingredients required for the emergence of intelligence.

In this context, several communities have been involved in working to resolve one of the

major problems challenging AI: how to formally express knowledge in order to make

it understandable by software. These (on-going) efforts have led to the definition of

several languages which can be used today to express formal, computer-readable and

processable forms of knowledge. The general notion of ontology encompasses a large

range of proposals which are commonly defined as formal, explicit and shared concep-

tualisations [Gruber, 1993]. Nevertheless, more generally, ontologies should be seen as

a device used to bridge the gap between domain-specific expertise and computer re-

sources by enabling a partial transfer of expert skills to computer systems. Ontologies

will therefore often be considered as the soil from which intelligence can further be sim-

ulated using computer instructions. As an example, software denoted reasoners can

be developed to apply inference procedures defined w.r.t the semantic interpretations

associated to ontology languages, i.e., the definition of how the knowledge must be un-

derstood and processed by computers. This approach is used to simulate intelligence

by enabling programmes to automatically perform complex deductive reasoning over a

domain of interest. Nevertheless, the use of such ontologies is not only restricted to the

rigid and strict interpretations enabled by knowledge representation languages. Indeed,
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ontologies are also used to simulate more advanced forms of intelligence which, based

on assumptions, will be used to design inexact reasoning or imprecise search techniques.

Such techniques open interesting perspectives for AI by enabling the design of systems

which think out-of-the-box and will, for instance, be used to infer probable knowledge

implicitly defined in ontologies.

1.1.2 The growing adoption of knowledge-based systems

A knowledge-based system is characterised by the association between ontologies and

software which enables them to be exploited. They are essential for solving complex

problems which require the study of domain-specific knowledge to be taken into account.

They are therefore largely used in the design of expert systems which support decision

making. They are extensively used for the task of classification or, more generally, to

answer exact queries w.r.t the knowledge modelled in ontologies. Therefore, from gene

analysis to recommendation systems, knowledge-based systems are the backbones of

numerous business and research projects today.

In recent decades, we have observed, both in numerous scientific communities and indus-

trial fields, the growing adoption of knowledge-enhanced approaches. As an example,

BioPortal and the Open Biological and Biomedical Ontology foundry give access to hun-

dreds of ontologies related to biology and biomedicine [Smith et al., 2007; Whetzel et al.,

2011]. These ontologies are used to develop a large range of applications for diagnosis,

disease classification, drug design and gene analysis, to mention a few. Even large cor-

porations adopt ontologies to support their large-scale worldwide systems. The most

significant example of the recent years is surely the adoption of the Knowledge Graph

by Google, a graph built from a large collection of billions of non-ambiguous statements

used to formally describe general or domain-specific pieces of knowledge [Singhal, 2012].

This ontology is used to enhance their search engine capabilities and millions of users

benefit from it daily.

Therefore, thanks to the large efforts made to standardise the technology stack which

can be used to define and take advantage of ontologies (e.g., standard exchange formats,

languages, development environment, storage systems, reasoners), a large number of

initiatives give access to ontologies and knowledge-based systems in numerous domains

(e.g., biology, geography, cooking, sports).
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1.1.3 Towards a Web of Data/Knowledge

Numerous exciting perspectives have been opened by early knowledge modellers and

specifications of languages enabling formal machine-understandable expressions of knowl-

edge. Among them, one of the most exciting initiatives is the desire to build a Web

of Data/Knowledge and services based on shared expressions of unambiguous data/-

knowledge exposed through the Internet infrastructure. In short, the Web of hyperlinks

between documents, only understood by humans, will be augmented by the definition of

interlinked pieces of knowledge in order to make the Web a worldwide knowledge-based

system which can be automatically processed by computer agents.

Several initiatives promote the Semantic Web and Linked Data paradigms to provide

“an extension of the current [Web], in which information is given well-defined meaning,

better enabling computers and people to work in cooperation” [Berners-Lee et al., 2001].

This Semantic Web enables content publishers to add meaning to their webpages in or-

der to make them more valuable for automatic analyses. In addition, the unambiguous

characterisation of resources, a central element of these paradigms, gives collaborative

initiatives the opportunity to build large networks of knowledge according to the Um-

berto Eco quote principle: “Any fact becomes important when it is connected to another”

[Eco, 1989]. To this end, international consortiums composed of both scientists and or-

ganisations, such as the World Wide Web Consortium (W3C), led to the definition of

several standards for the publication of structured data and knowledge associated to for-

mal semantics. This knowledge can further be interrogated using a specific standardised

query language.

The Semantic Web is now emerging from its cocoon. Thanks to the efforts made to design

scalable technological solutions to store and query semantic data, a growing number

of companies consider knowledge-based systems as well as Semantic Web technologies

to support their business. Billions of pieces of unambiguous machine-understandable

knowledge are already exposed on the Internet and several large ontologies are now

available, some of them for free: DBpedia [Auer et al., 2007], Freebase [Bollacker et al.,

2008], Wikidata [Vrandečić, 2012], Yago [Hoffart et al., 2013].

Another significant example of the increasing adoption of ontologies is the joint effort

made by the major search engine companies and web organisations (e.g., Microsoft

[Bing], Google, Yahoo!, W3C) to design Schema.org1. This set of structured schemas

defines a vocabulary which can be used by publishers to define metadata with the aim

of characterising the content of their webpages in an unambiguous manner.

1http://schema.org

http://schema.org
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All these initiatives converge to the same goal: to express and publish knowledge in

a formal machine-understandable fashion in order to enable intelligent agents to take

advantage of it.

1.1.4 Thinking outside the box: the importance of inexact searches

Knowledge-based systems and ontology definitions are generally motivated by the de-

sire to reason accurately over domain-specific knowledge. Putting aside the fact that

knowledge is not always both accurate and precise, and that numerous efforts are made

to formalise such imprecise knowledge, ontologies are also extensively used to support

knowledge discovery. Contrary to deductive knowledge inferences which are commonly

used to classify and infer new facts based on exact inference procedures, knowledge

discovery relies on approximate reasoning.

Approximate reasoning or inexact search techniques are essential for numerous systems

and treatments which cannot rely only on asserted knowledge defined in an ontology,

e.g., information retrieval or recommendation. They are, for instance, required for query

answering based on imprecise goal definitions, e.g., which bands are similar to the Rolling

Stones?

Given the importance of inexact searches to solve complex problems, numerous contri-

butions have focused on designing algorithmic techniques based on ontologies to support

inexact searches, approximate reasoning and knowledge discovery. Here, the aim is not

to assert exact facts about a domain, or to search for an exact answer to a query, but

rather to evaluate the interconnections between pieces of knowledge w.r.t the ontology

in which they are defined. In other words, the aim is to design algorithms which will

think outside the box by considering specific assumptions. Such algorithms will therefore

be used to break the boundary of the formal semantics on which ontologies rely, in order

to derive pieces of knowledge neither implicitly nor explicitly defined in an ontology.

These approaches rely extensively on the capacity to distinguish features characterising

similar cases, and on the capacity to evaluate the similarity of cases represented through

specific canonical forms.

Human capacity to evaluate the similarity of things (e.g., objects, stimuli) has long been

studied by cognitive sciences and psychology. It has been characterised as a central ele-

ment of the human cognitive system, and is therefore understood nowadays as a pivotal

notion to simulate intelligence [Rissland, 2006]. Similarity is indeed a key element in

initiating the learning process in which the capacity to recognise similar situations helps

us to build our experience, to activate mental traces, to make decisions, to innovate by

resolving problems by applying experience which have been gained by resolving similar
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problems, etc. Similarity is therefore a central component in memory retrieval, categori-

sation, pattern recognition, problem solving, reasoning, as well as social judgement. It

is therefore clear that intelligent agents must also be endowed with the ability to assess

the similarity of things. To this end, new approaches need to be defined in order to take

advantage of the knowledge defined in ontologies to estimate the similarity of things;

this is done by means of knowledge-based semantic measures.

1.1.5 Knowledge-based semantic measures

Cornerstones of inexact-search algorithms on ontologies are semantic measures: func-

tions used to estimate the degree of likeness (similarity/relatedness) of semantically char-

acterised entities, e.g., concepts or instances formally characterised in ontologies. These

measures are, for example, used to estimate the proximity of resources (e.g., diseases)

indexed by concepts structured in an ontology (e.g., syndromes), or more generally, to

compare entities w.r.t the knowledge defined in an ontology.

For the sake of clarity, let us specify the notions of entities, concepts, classes and in-

stances which will be used in this manuscript. We considered the notion of concept

in a broad sense: an idea or notion; a unit of thought [W3C, 2009], class of instances

which can be of any kind (abstract/concrete, elementary/composite, real/fictive) [Smith,

2004]. Notice that we also consider that a concept can be represented through a synset,

i.e., a set of synonyms, or more generally, any group of data elements considered as

semantically equivalent. A concept can therefore be represented as any set of words or

terms referring to the same notion, e.g., the terms dog and Canis lupus familiaris refer

to the concept Dog. Note that we use both notions of concept and class interchangeably.

However, we will, as much as possible, favour the use of the term concept as specifi-

cations used to express ontologies generally refer to it. The notion of a semantically

characterised instance encompasses several situations in which an object is described

through information; information from which semantic analyses can be performed. Se-

mantic characterisations cover a wide range of canonical forms which can be used to

characterise an instance, e.g. any description using a specific ontology language or a set

of conceptual annotations. The notion of entity encompasses both the notion of concept

and instance.

Semantic measures are extensively used to mimic human appreciation of similarity. In

this case, the ontology used by the measures can be associated to the human mental

representation of knowledge, and a semantic measure can be seen as our capacity to pro-

cess our knowledge to assess the similarity of things. Semantic measures are therefore
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originally framed in cognitive sciences which have, for a long time, studied human appre-

ciation of similarity and which have proposed numerous models of mental representation

of knowledge. As we will see, given their importance to fully benefit from ontologies with-

out being restricted to their exact inference procedures, semantic measures are central

elements of numerous treatments. This is proved by the extensive literature dedicated

to semantic measures which has been published over the last decades - several references

are provided in [Harispe et al., 2013c].

1.1.6 General context of this thesis

Anchored in the field of AI, and more particularly interested in techniques based on for-

mal ontologies during the emergence of the Web of Knowledge, this PhD thesis proposes

several contributions related to the study of knowledge-based semantic measures. This

work has been supported by the KID team (Knowledge and Image analysis for Deci-

sion making1) of the LGI2P research centre2 – a laboratory of the engineering school

École des mines d’Alès (EMA). Federated around the study of cognitive automation,

the LGI2P focuses on the development of innovative concepts, methodologies and tools

for the conception, realisation and optimisation of technical systems, collaborative pro-

cesses and socio-technical organisations. In this effort, the KID team takes advantage of

ontologies to define optimised techniques for knowledge discovery, retrieval and analysis

[Ranwez, 2013]3: techniques in which semantic measures are central elements.

1.2 Ontologies from a graph perspective

This section introduces the reader to ontologies which can be processed as graphs. It

doesn’t aim at: (i) presenting the vast field of Knowledge Representation, (ii) discussing

the broad diversity of ontologies which have been proposed in the literature, and (iii)

introducing the language and specifications which can be used to express ontologies,

e.g., RDF(S), OWL. Here, we assume that the reader is already familiar with knowledge

modelling and the associated terminology. However, if required, an introduction to this

field of study is provided in Appendix A.

Numerous ontologies can be expressed as graphs. In addition, more complex ontologies

can be reduced or used to generate knowledge represented as a graph. This section

1http://kidknowledge.wp.mines-telecom.fr
2Laboratoire de Génie Informatique et d’Ingénierie de Production.
3In french.

http://kidknowledge.wp.mines-telecom.fr
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discusses specific aspects of ontologies related to graph representations. We first intro-

duce simple ontologies which can be represented as graphs (e.g., taxonomies) to further

discuss the case of more complex ontologies.

1.2.1 Taxonomies and partially ordered sets

Taxonomies are used to structure elements which have similar characteristics into or-

dered classes. They were originally used in biology to define taxa (classes), by categoris-

ing organisms sharing common properties. A taxonomy is a function of a taxonomic

scheme which defines the properties considered to distinguish classes. Depending on

this scheme, the number of classes and their ordering may vary.

The semantics carried by a taxonomy is non-ambiguous as the interpretation of the tax-

onomic relationship is formally expressed through particular properties/axioms. Indeed,

considering a set of elements C (e.g. concepts), a taxonomy is a non-strict partial order

(poset) of C. It can be defined by �C , a binary relation � over C which is1:

• Reflexive ∀c ∈ C : c � c.
• Antisymmetric ∀u, v ∈ C : (u � v ∧ v � u)⇒ u = v.

• Transitive ∀u, v, w ∈ C : (u � v ∧ v � w)⇒ u � w.

Note that in some rare cases taxonomies are totally ordered, but generally, they are only

partially ordered, i.e., ∃(u, v) ∈ C : u � v ∧ v � u. Given that they generally contain

a root element denoted > which subsumes all other elements, i.e., ∀c ∈ C, c � >, they

can be represented as a connected, Rooted and Directed Acyclic Graph (RDAG).

A taxonomy of concepts �C can therefore be formally defined as a semantic graph

O :< C,R,E,AO > with C the set of concepts, R a singleton defining the unique

predicate which can be used to order the concepts, i.e. R = {subClassOf} and E ⊆
C ×R× C the set of oriented relationships (edges) which defines the ordering of C.

Only considering O :< C,R,E > leads to a labelled graph structuring elements of C

through labelled oriented edges. Nevertheless, by defining the sets of axioms associated

to the taxonomic predicate defined in R, e.g., associated relationships are considered

reflexive, antisymmetric and transitive, AO explicitly and formally states that O is a

taxonomy per se and not a simple graph data structure. These axioms can be used

to define inference techniques and more generally to ensure the coherence of specific

algorithms w.r.t the knowledge defined in the representations. As an example, Figure

1.1 denotes an example of taxonomy represented by a graph structure.

1Note that we adopt the notation used in the literature related to poset instead of the notation
commonly used in description logics (v).
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Figure 1.1: Taxonomy of concepts represented as a graph

Although simple, taxonomies are ontologies which are used in numerous processes; they

are also the backbones of more refined ontologies and are therefore considered as es-

sential components of knowledge modelling. Numerous contributions presented in this

manuscript rely on these simple ontologies. The notion of taxonomy has been detailed

here through a taxonomy of concepts, we also consider �R the taxonomic of predicates in

which subPredicateOf refers to the taxonomic relationship defining that one predicate

inherits from another1.

1.2.2 General discussion on ontologies as graphs

As we have seen, any taxonomy of concepts can be represented as a graph, including those

expressed using a logic-based ontology – in some cases reasoners will be used to infer the

taxonomy of concepts defined through complex definitions (subsumption relationships in

description logics [Nardi and Brachman, 2003]). Nevertheless, the taxonomic knowledge

encompassed in the ontology can be (partially2) manipulated through this taxonomy.

Although some ontologies cannot be reduced to simple graphs, a large part of the knowl-

edge they model can generally be expressed as a graph. Therefore, an important aspect

to understand is that ontologies, even if they are not explicitly defined as graphs, can

be reduced into graphs. Indeed, in all cases, a partial representation of the knowledge

defined in expressive ontologies can be manipulated as a graph. The example of the

taxonomy has been underlined but this is also the case for the knowledge which links

instances to classes (also obtained by a common reasoning procedure). In this case, the

ontology can be reduced as a graph in which instances are represented as nodes and

1Generally named subPropertyOf, e.g., in RDFS.
2Note that we do not directly compare concept descriptions but rather their implicit organisation.

The reduction of a set of concept descriptions to a poset implies knowledge loss, i.e., concepts are now
considered regarding their ordering.
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linked to their class(es) by simple subject–predicate–object (spo) statements. There-

fore, any complex ontology, in which sets of concepts and instances have been defined,

can be represented as a connected graph in which nodes denote concepts or instances.

In this manuscript, we consider a graph-based formalism frequently used to ma-

nipulate ontologies. It can be used to express numerous network-based ontologies

and, sometimes through reductions, ontologies which rely on complex logic con-

structs. It corresponds to an extension of the structure O :< C,R,E,AO > which

has been presented to introduce taxonomies as graphs. Extensions have been made

to take instances, data values and multiple predicates into consideration. The next

subsection presents this formalism in detail, a more detailed discussion regarding

the mapping between complex ontologies and the specific network-based ontology

adopted is further discussed in Appendix A.2.

1.2.3 Types of ontologies considered in this thesis

Regardless of the particularities of some domain-specific ontologies and regardless of the

language considered for the modelling, all approaches used to represent knowledge share

common components:

• Concepts (Classes), set of things sharing common properties, e.g., Human.

• Instances, i.e., members of classes, e.g., alan (an instance of the class Human).

• Predicates, the types of relationships defining the semantic relationships which can

be established between instances or classes, e.g., subClassOf.

• Relationships, concrete links between classes and instances which carry a specific

semantics, e.g., alan isA Human – alan worksAt BletchleyPark. Relationships

form spo statements.

• Attributes, properties of instances, e.g., Alan hasName Turing.

• Axioms, for instance defined through properties of the predicates, e.g. taxonomic

relationships are transitive, the definition of the domain and the range (co-domain)

of predicates, or constraints on predicate and attributes, e.g., Any Human has

exactly 2 legs.

In practice, numerous ontologies do not rely on complex logical constructs or complex

concept/predicate definitions but rather correspond to a formal semantic network, here
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denoted semantic graphs. In addition, we have stressed the fact that complex ontologies

can also be regarded as semantic graphs (sometimes considering partial reductions).

A semantic graph, in which instances of classes and data values of specific datatypes are

considered, can formally be defined by O :< C,R, I, V,E,AO >, with:

• C the set of concepts.

• R the set of predicates.

• I the set of instances.

• V the set of data values.

• E the set of oriented relationships of a specific predicate r ∈ R:

E ⊆ ECC ∪ ERR ∪ EII ∪ EIC ∪ ECI ∪ ECV ∪ ERV ∪ EIV with:

– ECC ⊆ C ×R× C
– ERR ⊆ R×R×R
– EII ⊆ I ×R× I
– EIC ⊆ I ×R× C
– ECI ⊆ C ×R× I
– ECV ⊆ C ×R× V
– ERV ⊆ R×R× V
– EIV ⊆ I ×R× V

• AO the set of axioms defining the interpretations of classes and predicates.

The sets of concepts (C), predicates (R), instances (I), values (V ) are expected to be

mutually disjoint1. We consider that each instance is a member of at least one concept

and that the taxonomies of concepts �C , and predicates �R (if any), correspond to

connected RDAGs. In this manuscript we will mainly manipulate such an ontology

without considering predicate taxonomies.

In the following, we consider that a lexical reference (didactical device [Guarino and

Giaretta, 1995]) is used to refer, in an unambiguous manner, to any node which refers

to a concept/predicate/instance. Although we will use a literal in this manuscript, in

practice, this unique identifier is a URI – except data values (V) which are (typed)

literals.

Figure 1.2 presents an example of a semantic graph related to the music domain which

involves related concepts, predicates, instances and data values2.

1Note that a set of data types (D) can easily be added.
2Representation of a subgraph extracted from DBpedia [Auer et al., 2007].
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Figure 1.2: Example of a semantic graph related to the music domain. Concepts,
instances and data values are represented [Harispe et al., 2013b]

In this example, concepts are taxonomically structured in the layer C, e.g. MusicBand,

MusicGenre. Several types of instances are also defined in layer I, e.g. rollingStones,

rock. These instances can be characterised according to specific concepts, e.g. the

statement rollingStones isA MusicBand defines that rollingStones is a member

of the class MusicBand. In addition, instances can be interconnected through spe-

cific predicates, e.g., rollingStones hasGenre rock. Specific data values (layer D)

can also be used to specify information relative to both concepts and instances, e.g.,

rollingStones haveBeenFormedIn "1962-01-01"∧∧xsd:date. All relationships which

link the various nodes of the graph are directed and semantically characterised, i.e., they

carry an unambiguous and controlled semantics. Notice that extra information are not

represented in this figure, e.g., the taxonomy of predicates, axiomatic definitions of

predicate properties.

Appendix A.2 discusses the treatments which are required to obtain a semantic graph

from an ontology. Only the notations introduced in the appendix are presented below.

Reduction of an ontology into a graph: Formally, we denote G(O), shortened

as G if there is no ambiguity, the reduction of the ontology O to a semantic graph

G = O \AO. This process may involve inference techniques, reduction of some inferred

statements, etc.
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We denote GR′(O), also shorten GR′ if there is no ambiguity, the reduction of O as a

semantic graph only considering the relationships having as predicate r ∈ R′ ⊆ R. A

common reduction of an ontology as a graph is GsubClassOf, shortened by GT and named

the taxonomic reduction (layer C in Figure 1.2). GT corresponds to the taxonomy �C ,

and therefore only contains concepts. As we will see, this reduction is widely used to

compute the semantic similarity between concepts; it will be extensively used in this

manuscript.

Graph reductions can naturally be more complex. The graph GR′(O), with R′ =

{subClassOf,isA}, refers to the reduction which is composed of the relationships having

as predicate subClassOf or isA. We denote such a graph GTI (T stands for Taxonomic

and I for isA relationship). It corresponds to the graph composed of the layers C and

I in Figure 1.2 (only considering edges in ECC , EII and EIC
1).

Knowledge modelling is a vast domain and a large diversity of ontologies have been

proposed to express knowledge in a machine understandable form. This section has

briefly introduced several ontologies which can be processed as graphs. We have also

introduced the formalism adopted in this manuscript to represent such ontologies.

1.2.4 Similarity: a cornerstone of approximate reasoning

Two broad types of reasoning techniques can be used over ontologies2: exact and ap-

proximate (inexact) reasoning [Gabbay et al., 1998; Russell and Norvig, 2009].

Exact reasoning is performed by means of deductive reasoning: an exact top-down rea-

soning approach in which general rules defined in a specific domain of discourse are used

to infer exact statements. It is commonly used to infer exact facts implicitly defined in

ontologies; the validity of the inferences only relies on the validity of the premises taken

into account for their derivation – the inferences can only be correct w.r.t the ontologies

and the interpretation associated to the language used for their definition. Deductive

reasoning is central to knowledge-based systems and ontology modelling, they are, for

example, used for the tasks of classification (instance typing, subsumption relationships

inference, i.e., taxonomy inference) and for consistency checking. Deductive reasoning

on ontologies are extensively discussed in Baader et al. [2010]; Hitzler et al. [2011].

Two types of inexact reasoning techniques are distinguished:

• Inductive reasoning is based on generalisation (bottom-up approach); specific ob-

servations are used to infer general rules about a domain. In other words, the

1Triplets are rarely defined in ECI .
2Remember that we do not consider imprecise ontologies, e.g., fuzzy logics. We therefore do not

consider inexact ontologies in which uncertain or contradictory knowledge is modelled.
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conclusions cannot be guaranteed by the evidence considered [Gabbay et al., 1998;

Holland et al., 1989].

• Abductive reasoning is also an inexact procedure. It can be used to consider ob-

servations and rules to derive possible conclusions. Generally, abductive reasoning

considers a set of observations to derive conclusions which better explain them.

Contrary to deductive reasoning for which new knowledge (premise) cannot contradict

prior conclusions, in inductive reasoning and abductive reasoning, the hypotheses can

be supported or neglected by new observations (i.e., they are non-monotonic). The con-

fidence associated to specific conclusions derived from approximate reasoning techniques

is therefore a function of the confidence associated to the evidence considered.

Approximate reasoning may be performed using supervised or unsupervised learning

approaches [MacKay, 2003; Mohri et al., 2012; Witten et al., 2011]. These approaches

are used to design automatic classifiers able to correctly label objects (cases) and are

generally extensively based on measures assessing the similarity of objects. Learning

techniques applied to ontologies, and more particularly lazy learning techniques1, have

been extensively covered in D’Amato [2007].

Despite the fact that exact conclusions cannot be obtained using approximate reasoning

techniques, they can be used to better understand complex phenomena, to formulate

hypotheses (probable inferences not logically derivable), and to highlight limits of on-

tologies on which they are based. They are therefore commonly used for automatic

construction and enrichment of ontologies, to align ontologies, i.e., to find links between

ontologies, or even to evaluate ontologies; D’Amato [2007] provides several references.

Approximate reasoning is also central to the design of information retrieval techniques,

data analysis or query answering based on ontologies (without being constrained to ex-

act query via SPARQL). Approximate reasoning is therefore a key element of knowledge

discovery based on ontologies [Corby et al., 2006; Phillips and Buchanan, 2001].

Both supervised and unsupervised learning techniques rely on functions assessing the

similarity/dissimilarity of objects. As an example, lazy learning techniques use a similar-

ity function to distinguish a subset of cases which are relevant to define the discriminative

function. Clustering algorithms group cases based on their similarity to further distin-

guish hidden structures in collection of cases. (Dis-)Similarity measures are therefore

central to take advantage of classical learning approaches using ontologies; in this case,

1A kind of learning techniques in which the discriminative function (e.g. used for classifying) can be
adapted for considering the information carried by new cases.
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the measures must not be based on descriptions of objects represented using unstruc-

tured features and values, but rather take into account rich semantic characterisation of

objects (e.g., concepts, instances).

1.3 Semantic Web and Linked Data paradigms

1.3.1 A natural paradigm shift

Most people understand the Web as a Web of Documents, a graph of interlinked web-

pages exposed through the Internet. Such a web has been designed to be used by

humans; webpages contain information or data which is distilled through texts or mul-

timedia contents that people can read, visualise, listen. People naturally surf the Web,

jumping from one webpage to another by following the hyperlinks which structure its

massive network of documents. Thanks to the evolution of the Web and the emergence

of Web (2.0) communities, it is not only hyperlinks but also friends who can be followed.

Indeed, changes have allowed for the increasing social commitment of users by enabling

them to get connected and to become not only consumers and critics of web content,

but also publishers, sometimes of their own lives. . .

Webpages and more generally speaking web content have long been human-centric and

poorly understood by computers. Indeed, extraction of knowledge or interesting informa-

tion from webpages requires the use of complex Natural Language Processing techniques;

techniques which are often time consuming, imprecise, and perform poorly with ambigu-

ity (refers to the discussion related to the ambiguity of human language Section A.1.2).

Therefore, to overcome these limitations, initiatives have been proposed to semantically

characterise webpages through unambiguous metadata. More importantly, propositions

have been made to take advantage of the infrastructure offered by the Internet to build

a Web of Data/Knowledge, a linked data cloud corresponding to a worldwide network

of interlinked pieces of data and knowledge.

Over the last fifteen years, this new Web has technically been made possible through the

definition of various specifications and implementations enabling the formal description

of ontologies and resources on the Web, e.g., using RDF(S), OWL. These initiatives have

led to the Semantic Web and the Linked Data paradigms which envision “an extension

of the current [Web], in which information is given well-defined meaning, better enabling

computers and people to work in cooperation” [Berners-Lee et al., 2001].

Today, a growing amount of semi-structured and structured data sources make up the

linked data cloud. This is complementary to open data initiatives which encounter a
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Figure 1.3: Linked data cloud showing interlinked data silos available on the Web.
Original picture by Cyganiak and Jentzsch [2011]. Reduction from Zieliński [2014]

.

lot of success in governments and industries and which ease data accessibility, sharing

and reuse. The data, information and knowledge is thus being freed, structured and

semantically characterised, and a new Web conceived paving the way for a potential new

automatic process of data and knowledge exposed on this worldwide network. Figure 1.3

presents a famous picture in the Semantic Web community which shows that numerous

data silos expressed in RDF are linked together to form a worldwide cloud of semantically

characterised data, information and knowledge. Note that, according to the definition

presented in Section A.1.1, RDF can be used to express data, information and knowledge.

Nevertheless, the distinction between these notions is not generally made when talking

about Linked Data and the Semantic Web. Indeed, in some cases the notion of Web of

Data is best suited given that only data are represented; in other cases, the notion of

Web of Knowledge is more appropriate since RDF graphs are used to express Knowledge,

for instance using URI disambiguation and the semantics provided by RDFS and OWL.

In this manuscript we prefer the denomination Web of Knowledge.
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1.3.2 Technologies and architecture of the Semantic Web

We have already mentioned the central elements of the Semantic Web: URIs, RD-

F/RDFS and OWL specifications. These specifications are part of the Semantic Web

technology stack presented in Figure 1.4.

Figure 1.4: Technology stack of the Semantic Web.
From http://projects.kmi.open.ac.uk/euclid

.

The stack distinguishes several layers of specifications and protocols which must be

developed in order to envision a Semantic Web useful for both human and computer

agents. Among the different layers, we distinguish the disambiguation layer which en-

ables non-ambiguous characterisation of resources through URIs. These URIs can then

be exposed, exchanged and exploited through the HTTP protocol. They can also be

linked and further described through various RDF graphs serialisation format.

RDF graphs can be queried using SPARQL, they can also be associated to specific

semantics using vocabularies or language constructs provided by RDFS or OWL. At

this stage, RDF graphs are not simply oriented and labelled graphs; they correspond

to ontologies which can be used to formally characterise (domain-specific) knowledge.

Through procedures automatising the inferences which can be made from the semantics

of the languages in use, these ontologies can be processed to infer new pieces of knowledge

from existing ones.

The layers associated to Proof, Trust and Security refers to both, technologies which

have not yet been standardised, and ideas envisioned in the original formulations of the

http://projects.kmi.open.ac.uk/euclid
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Semantic Web. They are associated to a problem related to inference quality, confidence

associated to pieces of knowledge, privacy. . .

Finally, the layer associated to user interfaces and applications has recently been subject

to numerous contributions. Search engines have for instance been developed to query the

Semantic Web, i.e., to find URIs or ontologies, e.g., Watson [D’Aquin and Motta, 2011],

Sindice [Tummarello et al., 2007], Falcons [Cheng et al., 2008]. Large companies are

also using Semantic Web technologies to disambiguate and enrich the content of their

webpages. As an example, the BBC (British Broadcasting Corporation), Times Inc.,

Elsevier and Boeing are among the numerous companies which have production systems

which now benefit from Semantic Web technologies [D’Aquin et al., 2008; Kobilarov

et al., 2009].

1.3.3 Inexact searches: a key challenge for the Semantic Web

As we have seen, the Semantic Web and Linked Data paradigms offer the chance to

expose structured data and knowledge on the Internet in such a way as to enable their

automatic processing. The challenges associated to this research area are numerous.

One of the major challenges is to provide inexact search capabilities. There is indeed

a need to develop search engines to distinguish relevant data and sources of knowledge

defined on the Web of Knowledge. To this end, techniques must be developed to compare

resource descriptions by taking the semantics of their characterisation into account.

Resources described through RDF or represented in RDFS and OWL ontologies therefore

have to be compared [Corby et al., 2006]. To this end, once again, measures able to

assess the similarity or dissimilarity of resources w.r.t their formal descriptions have to

be defined.
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1.4 Human cognition, similarity and existing models

The human cognitive system is sensitive to similarity, which explains why the capacity

to estimate the similarity of things is essential in numerous treatments. It is indeed a key

element to initiating the process of learning in which the capacity to recognise similar

situations helps us to build our experience1, to activate mental traces, to make decisions,

to innovate by applying experience gained in solving similar problems2 [Gentner and

Markman, 1997; Holyoak and Koh, 1987; Novick, 1988; Ross, 1987, 1989; Vosniadou

and Ortony, 1989]. According to the theories of transfer, the process of learning is also

subject to similarity since new skills are expected to be easier to learn if similar to

skills already learned [Markman and Gentner, 1993]. Similarity is therefore a central

component of memory retrieval, categorisation, pattern recognition, problem solving,

reasoning, as well as social judgement, e.g., refer to [Goldstone and Son, 2004; Hahn

et al., 2003; Markman and Gentner, 1993] for associated references.

As we have seen, the notion of similarity is central in numerous fields and is particularly

important for human cognition and intelligent system design. In this subsection, we

provide a brief overview of the psychological theories of similarity by introducing the

main models proposed by cognitive sciences to study and explain (human) appreciation

of similarity. Here, the process of similarity assessment should be understood in a broad

sense, i.e., as a way to compare objects, stimuli.

Cognitive models of similarity generally aim to study the way humans evaluate the

similarity of two mental representations according to some kind of psychological space

[Tversky, 2004]. They are therefore based on assumptions regarding the mental repre-

sentation of the compared objects from which the similarity will be estimated. Indeed,

as stated by several authors, the notion of similarity, per se, can be criticised as a purely

artificial notion. In Goodman [1972], the notion of similarity is defined as “an impos-

ture, a quack” because objectively, everything is equally similar to everything else. The

authors emphasise that, conceptually, two random objects have an infinitive number of

properties in common and infinite different properties3, e.g. a flower and a computer are

both smaller than 10m, 9.99m, 9.98m. . . . An important notion to understand, which has

1Cognitive models based on categorisation consider that human classify things, e.g., experience of
life, according to their similarity to some prototype, abstraction or previous examples [Markman and
Gentner, 1993].

2Here the similarity is associated to the notion of generalisation and is measured in terms of proba-
bility of inter-stimulus-confusion errors [Nosofsky, 1992].

3 This statement also stands if we restrict the comparison of objects to a finite set of properties. The
reader may refer to Andersen’s famous story of the Ugly Duckling. Proved by Watanabe and Donovan
[1969], the Ugly Duckling theorem highlights the intrinsic bias associated to classification, showing that
all things are equal and therefore that an ugly duckling is as similar to a swan as two swans are to each
other. The important teaching is that biases are required to make a judgement and to classify, i.e., to
prefer certain categories over others.
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been underlined by cognitive sciences, is that differential degrees of similarities emerge

only when some predicates are selected or weighted more than others. As stated in Hahn

[2011], this important observation doesn’t mean that similarity is not an explanatory

notion but rather that the notion of similarity is heavily framed in psychology. Sim-

ilarity assessment must therefore not be understood as an attempt to compare object

realisations through the evaluation of their properties, but rather as a process aiming

to compare objects as they are understood by the agent which estimates the similar-

ity (e.g., a person). The notion of similarity therefore only makes sense according to

the consideration of a partial mental representation on which the estimation of object

similarity is based.

Contrary to real objects, representations of objects do not contain infinitesimal proper-

ties. As an example, our mental representations of things only capture a limited number

of dimensions of the object which is represented. Therefore, the philosophical worries re-

garding the soundness of similarity vanish given that similarity aim at comparing partial

representations of objects and not objects themselves, e.g., human mental representation

of objects [Hahn, 2011]. The similarity is thus estimated between mental representa-

tions. Considering that these representations are the ones of a human agent, the notion

of similarity may thus be understood as how similar objects appear to us. Considering

the existential requirement of representations to compare things much of the history of

research on similarity in cognitive sciences focuses on the definition of models of the

mental representation of objects.

The central role of cognitive sciences regarding the study of similarity relies on the de-

sign of cognitive models of both, mental representations and similarity. These models

are further used to study how humans store their knowledge, and to interact with, in

order to compare objects sometimes represented as pieces of knowledge. Cognitive sci-

entists then test these models according to our understanding of human appreciation

of similarity. Indeed, evaluations of human appreciation of similarity help us to distin-

guish constraints/expectations on the properties an accurate model should have. This

approach is essential to reject hypotheses and improve the models. As an example,

studies have demonstrated that appreciation of similarity is sometimes asymmetric: the

similarity between a person and his portrait is commonly expected to be lower than the

inverse.1 Therefore, the expectation of asymmetric estimation of similarity is incompat-

ible with the mathematical properties of a distance, which is symmetric by definition.

Models based on distance axioms therefore appeared inadequate and have therefore to

be revised or to be used with moderation. In this context, the introduction of cognitive

1Indeed, Tversky [1977] stresses that We say “the portrait resembles the person” rather than “the
person resembles the portrait”.
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models of similarity will be particularly useful to understand the foundations of some

approaches adopted for the definition of semantic measures.

Cognitive models of similarity are commonly organised into four different approaches: (i)

Spatial models, (ii) Feature models, (iii) Structural Models and (iv) Transformational

models. We briefly introduce these four models though a more detailed introduction

can be found in Goldstone and Son [2004] and Schwering [2008]. A captivating talk

introducing cognition and similarity, on which this introduction is based, can also be

found in Hahn [2011].

1.4.1 Spatial models

The spatial models, also named geometric models, rely on one of the most influencal

theories of similarity in cognitive sciences. They are based on the notion of psychological

distance and consider objects (here perceptual effects of stimuli or concepts) as points

in a multi-dimensional metric space.

Spatial models consider similarity as a function of the distance between the mental

representations of the compared objects. These models derive from Shepard’s spatial

model of similarity. Objects are represented in a multi-dimensional space and their

locations are defined by their dimensional differences [Shepard, 1962].

In his seminal work on generalisation, Shepard [1987] provides a statistical technique in

the form of Multi-Dimensional Scaling (MDS) to derive locations of objects represented

in a multi-dimensional space. MDS can be used to derive some potential spatial repre-

sentations of objects from proximity data (similarity between pairs of objects). Based on

these spatial representations of objects, Shepard derived the universal law of generalisa-

tion which demonstrates that various kinds of stimuli (e.g., Morse code signals, shapes,

sounds) have the same lawful relationship between distance (in an underlined MDS)

and perceive similarity measures (in terms of confusability) – the similarity between two

stimuli was defined as an exponentially decaying function of their distance1.

By demonstrating a negative exponential relationship between similarity and general-

isation, Shepard established the first sound model of mental representation on which

cognitive sciences will base their studies on similarity. The similarity is in this case

1 The similarity between two stimuli is here understood as the probability that a response to one
stimulus will be generalised to the other [Shepard, 1987]. With sim(A,B) the similarity between two
stimuli A,B and dist(A,B) their distance, we obtain the relation sim(A,B) = e−dist(A,B), that is
dist(A,B) = −log sim(A,B), a form of entropy.
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assumed to be inversely proportional to the distance separating the perceptual repre-

sentations of the compared stimuli [Ashby and Perrin, 1988]. Similarity defined as a

function of distance is therefore constrained to the axiomatic properties of distance1.

A large number of geometric models have been proposed. They have long been among

the most popular in cognitive sciences. However, despite their intuitive nature and

large popularity, geometric models have been subject to intense criticism due to the

constraints defined by the distance axioms. Indeed, several empirical analyses have

questioned and challenged the validity of the geometric framework (i.e., both the model

and the notion of psychological distance), by underlying inconsistencies with human

appreciation of similarity, e.g., violation of the symmetry, triangle inequality and identity

of the indiscernibles, e.g., [Tversky, 1977; Tversky and Gati, 1982; Tversky and Itamar,

1978]2.

1.4.2 Feature models

To respond to the limitation of the geometric models, Tversky [1977] proposes the feature

model in which evaluated objects are manipulated through sets of features. A feature

“describes any property, characteristic, or aspect of objects that are relevant to the task

under study” [Tversky and Gati, 1982]. Therefore, feature models evaluate the similarity

of two stimuli according to a feature-matching function F which makes use of their

common and distinct features:

simF (u, v) = F (U ∩ V,U \ V, V \ U) (1.1)

The function F is expected to be non-decreasing, i.e., the similarity increases when

common (distinct) features are added (removed). Feature models are therefore based on

the assumption that F is monotone and that common and distinct features of compared

objects are enough for their comparison. In addition, an important aspect is that the

feature-matching process is expressed in terms of a matching function as defined in set

theory (i.e., binary evaluation).

The similarity of two objects is further derived as a parametrised function of their

common and distinct features. Two models, the contrast model (simCM ) and the ratio

model (simRM ) were initially proposed by Tversky [1977]. They can be used to compare

1Properties which will be detailed in the following chapter, Section 2.1.3.1
2 Note that recent contributions propose to answer these inconsistencies by generalising the classical

geometric framework through quantum probability [Pothos et al., 2013]. Compared objects are repre-
sented in a quantum model in which they are not seen as points or distributions of points, but entire
subspaces of potentially very high dimensionality, or probability distributions of these spaces.
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two objects u and v represented through sets of features U and V :

simCM (u, v) = γf(U ∩ V )− αf(U \ V )− βf(V \ U) (1.2)

simRM (u, v) =
f(U ∩ V )

αf(U \ V ) + βf(V \ U) + f(U ∩ V )
(1.3)

The symmetry of the measures produced by the two models can be tuned according to

the parameters α and β. This enables the design of asymmetric measures. In addition,

one of the major constructs of the feature model is the function f which is used to capture

the salience of a (set of) feature(s). The salience of a feature is defined as a notion of

specificity: “the salience of a stimulus includes intensity, frequency, familiarity, good

form, and informational content” [Tversky, 1977]. Therefore, the operators ∩,∪ and

\ are based on feature matching (F ) and the function f evaluates the contribution of

the common or distinct features (distinguished by previous operators) to estimate the

similarity1.

1.4.3 Structural alignment models

Structural models are based on the assumption that objects are represented by struc-

tured representations. Indeed, a strong criticism of the feature model was that (features

of) compared objects are considered to be unstructured, contrary to evidence suggest-

ing that perceptual representations are well characterised by hierarchical systems of

relationships, e.g., [Gentner and Markman, 1994; Markman and Gentner, 1993].

Structural alignment models are structure mapping models in which the similarity is

estimated using matching functions which will evaluate the correspondence between the

compared elements [Gentner and Markman, 1994; Markman and Gentner, 1993]. Here,

the process of similarity assessment is expected to involve a structural alignment be-

tween two mental representations in order to distinguish correspondences. Therefore,

the greater the number of correspondences, the more similar the objects will be consid-

ered. In some cases, the similarity is estimated in an equivalent manner to analogical

mapping [Markman and Gentner, 1990] and similarity is expected to involve mapping

between both features and relationships.

1As an example, the notion of the salience associated to a feature implicitly defines the possibility of
designing measures which do not respect the identity of the indiscernibles, i.e. which enable non-maximal
self-similarity.
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Another example of a structural model was proposed by Goldstone [1994a, 1996]. The

authors proposed to model similarity as an interactive activation and mapping model

using connectionism activation networks based on mappings between representations.

1.4.4 Tranformational models

Transformational models assume that similarity is defined by the transformational dis-

tance between mental representations [Hahn et al., 2003]. The similarity is framed in

representational distortion [Chater and Hahn, 1997] and is expected to be assessed based

on the analysis of the modifications required to transform one representation to another.

The similarity, which can be explained in terms of the Kolmogorov complexity theory

[Li and Vitányi, 1993], is therefore regarded as a decreasing function of transformational

complexity [Hahn et al., 2003].

1.4.5 Unification of cognitive models of similarity

Several studies highlighted links and deep parallels between the various cognitive mod-

els. Tenenbaum and Griffiths [2001] propose a unification of spatial, feature-based and

structure-based models through a framework relying on the generalisation of Bayesian

inference (see Gentner [2001] for criticisms). Alternatively, Hahn [2011] proposes an

interpretation of the models in which the transformational model is presented as a gen-

eralisation of the spatial, feature and structure-based models.

In this section, we have briefly presented several cognitive models which have been pro-

posed to explain and study (human) appreciation of similarity. These models are charac-

terised by particular interpretations and assumptions on the way knowledge is mentally

represented and processed. The fundamental differences between the models also rely on

their conceptual approach used to explain similarity assessment and their mathematical

properties, e.g., symmetry, triangle inequality. . . Nevertheless, despite these strong dif-

ferences, several meaningful initiatives have been initiated in order to unify the cognitive

models. To this end, researchers have proposed to develop frameworks which generalise

existing models of similarity.
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1.5 Objectives and outlines of the thesis

Taking into consideration the critical importance of similarity and dissimilarity measures

for information retrieval, approximate reasoning, learning techniques, or more generally

for any treatments in which imprecise search is required, this thesis proposes an in-

depth study of knowledge-based semantic measures. These semantic measures can be

used to compare concepts or instances semantically characterised in ontologies. As we

have seen, they are central for the design of most knowledge-based systems or expert

systems which take advantage of ontologies. They also play an important role for the

communities involved in the definition and practical adoption of the Semantic Web and

Linked Data paradigms. In this context, we propose to answer specific needs related to

both the study and practical use of knowledge-based semantic measures.

Our first aim is to provide a wide overview of the interdisciplinary field related to

semantic measures. By studying and analysing numerous contributions made by different

communities, we propose to extract lessons in the aim of highlighting important research

perspectives for this domain. This analysis will help us to define the main objective of

this thesis: to develop theoretical and software tools dedicated to knowledge-

based semantic measures. It also warns us about the breadth of this field of study;

due to which we decided to mainly restrict the technical discussions presented in this

manuscript to semantic measures which rely on semantic graphs, i.e., a specific type of

commonly used network-based ontologies introduced in Section 1.2. Therefore, although

this work covers the use of any ontologies expressed as a semantic graph1, we will not

cover, as such, the comparison of complex logic-based entity descriptions.

In this manuscript, we propose an in-depth study on the theoretical basis of

semantic measures. This will help us to better understand the large diversity of

measures proposed in the literature over recent decades. Our strategy has been to focus

on the unification of numerous semantic measures. To this end, we propose a general

theoretical framework which enables the breakdown of measures through parametric

abstract formulas. As we will see, this theoretical tool opens interesting perspectives to

express and study knowledge-based semantic measures. We will, for instance, highlight

how the framework has been used to: (i) better understand the relationships between

numerous existing proposals, (ii) characterise central elements of semantic measures, (iii)

identify potential room for improvement of measures, and (iv) distinguish best suited

context-specific configurations of semantic measures.

We will also examine a general approach to define semantic measures in the

aim of comparing instances described in a semantic graph. In addition, we will

1A discussion related to the mapping of ontologies to semantic graphs is proposed in Appendix A.2.
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also explore an approach dedicated to the comparison of concepts characterised

by several semantic graphs. We are convinced that strong links can be established

between these two problems and the fields of ontology alignment/matching and instance

matching. However, this manuscript does not cover or propose any approach related

to these fields – our contributions are instead anchored on the study of inexact search

techniques for the comparison of entities defined in similar or different ontologies.

Nowadays, both the growing number of ontologies available and the development of

large semantic graphs composed of millions of facts1 challenge semantic measure design-

ers. Based on the in-depth characterisation of semantic measures carried through the

proposed framework, several optimisation techniques are proposed in the aim of im-

proving measure accuracy and reducing their computational complexity. Nevertheless,

this thesis doesn’t aim to provide an extensive study of the algorithmic complexity of

semantic measures.

Due to their interdisciplinary nature, semantic measures are generally defined consider-

ing ontologies which are not expressed using Semantic Web standardised technologies.

Since RDF(S) and OWL are cornerstones of the Semantic Web, this work will, as much

as possible, consider the definition of semantic measures w.r.t ontologies defined using

those standards. To this aim, existing limits and considerations associated to the use of

semantic measures on RDF(S) ontologies will be underlined. This effort is essential to

make concrete implementations of semantic measures possible.

The practical use of semantic measures also played a particularly important role in our

work. This is justified by two important aspects of this field of study.

First, the communities studying the Semantic Web and Linked Data, as well as knowledge-

based system designers are extremely committed to demonstrate the feasibility of their

proposals through concrete implementations. This particular aspect is critical for in-

vestors and companies who (mostly) agreed on the theoretical soundness of the paradigms

but are now waiting for their full capabilities to be unearthed. Practical applications

are also of major importance for the technological transfer from academic institutions

to businesses. This aspect has been central to our work given that this thesis has been

carried out in the LGI2P laboratory of the Engineering school École des mines d’Alès,

a laboratory focusing mainly on applied sciences2.

Secondly, the importance given to practical applications of semantic measures is also

motivated by the fact that most knowledge-based systems and evaluations of semantic

1E.g., DBpedia, Freebase.
2The school is associated to Innovup (http://www.innovup.com – french website), an incubator

supporting IT entrepreneurs.

http://www.innovup.com
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measures are governed by empirical analyses. Indeed, as we will see, several bench-

marks have been developed to assess performance of semantic measures according to

context-specific expectations. Therefore, large analysis of semantic measures can only

be supported through efficient, generic and open-source software solutions –

solutions that were not available when this thesis was initiated.

1.6 Chapter summaries

This manuscript is structured as follows:

• Chapter 2 defines the notion of semantic measures and proposes an overview of the

different types of measures which have been defined in the literature. This chapter

is therefore dedicated to an overview of the broad diversity of semantic measures.

It will help us to clearly classify the measures, to characterise important notions

on which our work relies, and to clearly define the scope of our contributions.

• Chapter 3 is dedicated to the specific state-of-the-art related to knowledge-based

semantic measures. This chapter first presents a broad overview of the different

measures which have been proposed to compare entities defined in a semantic

graph. Next, it presents a technical and detailed state-of-the-art dedicated to

knowledge-based semantic similarity measures defined for the comparison of con-

cepts defined in a semantic graph.

• Chapter 4 focuses on technical aspects relative to knowledge-based semantic sim-

ilarity measures. Based on an in-depth analysis of the core elements of similarity

measures, and on related contributions on abstract expression of measures, we

unify a large diversity of measures through a theoretical framework.

• Chapter 5 presents several use cases highlighting the theoretical and practical

perspectives opened up by the aforementioned theoretical framework. At the light

of the framework we propose: (i) a theoretical analysis of semantic measures, (ii)

an empirical analysis of a particular family of measures, (iii) a study of robustness

of semantic measures. The biomedical domain is considered for practical use case

scenario.

• Chapter 6 introduces semantic relatedness measures for comparing instances which

are semantically characterised in semantic graphs (RDF graphs). This proposal

corresponds to the definition of a new canonical form which can be used for highly

expressive characterisation of instances described in semantic graphs. Based on

this contribution, we further define a semi-supervised content-based recommenda-

tion system.
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• Chapter 7 presents two algorithmic contributions related to semantic measures.

We present algorithms to speed-up computation of a specific type of semantic

measures. In addition, we define a semantic similarity measure which can be

used to compare concepts through the use of several (non-disjoint) taxonomies.

Experimental studies and validation are performed in a use case relative to the

biomedical domain.

• Chapter 8 introduces the Semantic Measures Library and toolkit: robust open-

source software solutions dedicated to the computation, development and analysis

of semantic measures. They have been developed, distributed and maintained

during this thesis.
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Abstract

This chapter introduces the notion of semantic measures. It starts by presenting their

practical usages in different application contexts. Next, we expose general definitions

associated to the notion, positioning with regard to related contributions in Mathemat-

ics, and we propose a detailed study of the semantics associated to semantic measures.

This latter point will help us to better capture the meaning of semantic measures (re-

sults). This is done by defining the terminology classically found in the literature, i.e.,

semantic similarity/proximity/relatedness/distance/dissimilarity/etc. and by proposing

an organisation of the notions commonly used. In a second step, to better understand

the characteristics of these measures, we distinguish several central aspects of measures

which can be used to categorising the large diversity of measure proposals. As a result,

a general classification of the variety of semantic measures defined in the literature is

presented.
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2.1 From usages towards formalisation

Semantic measures are widely used to compare units of language (e.g., terms, sentences,

documents), concepts or semantically characterised instances, according to information

supporting their meaning1 [Harispe et al., 2013c]. Otherwise stated, semantic measures

can be used to estimate their semantic likeness, i.e., the strength of the semantic re-

lationship which links pairs of the aforementioned semantic elements. As we will see,

the broad notion of semantic likeness of a pair of semantic elements can in some cases

be understood intuitively as the probability of a mental activation of one element when

the other is discussed (e.g., Sand often brings to mind Beach). For clarity, let us note

that the notion of semantic measure is not framed in the rigorous mathematical defi-

nition of measure. It encompasses any theoretical tool or function which can be used

to summarise, using a (numerical) value, the result of the comparison of two semantic

elements2. In this case, the comparison is assumed to be supported by the analysis of

semantic evidence.

A large diversity of measures exists to estimate the similarity or the difference/distance

between specific mathematical objects (e.g., vectors, matrices, graphs, [fuzzy] sets), data

structures (e.g., lists, objects) and data types (e.g., numbers, strings, dates). The main

particularity of semantic measures compared to traditional similarity or distance func-

tions relies on two aspects: (i) they are dedicated to the comparison of semantic elements,

and (ii) they are based on the analysis of semantic proxies from which semantic evidence

can be extracted. This semantic evidence is expected to directly or indirectly charac-

terise the meaning of compared elements. As an example, measures used to compare

two words according to their sequence of characters cannot be considered as semantic

measures, as only word characters and their ordering is taken into account, not their

meaning. Indeed, according to such lexical measures, the two words car and vehicle

would be regarded as distant despite their closely related semantics. Semantic measures

rely on two broad types of semantic proxies: corpora of texts and ontologies.

The first type of semantic proxy corresponds to unstructured or semi-structured texts

(e.g., plain texts, dictionaries). They have been proved to contain informal evidences

of the semantic relationship(s) between units of language. Let us consider a simple

example. Since it is common to drink coffee with sugar and nothing particular links

coffee to cats, most will agree that the pair of words coffee – sugar is more semantically

coherent than the pair of words coffee – cat. Interestingly, corpus of texts can be used to

1Note that the notion of semantic measure is used in cognitive sciences since the sixties, e.g. [Moss,
1960], its use for referring to mathematical tools used to compare objects based on their meaning go
back, to our knowledge, to the end of the eighties, e.g. [Su et al., 1990].

2For convenience they will simply be denoted elements in the following.
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derive the same conclusion. To this end, a semantic measure will take advantage of the

fact that the word coffee is more likely to co-occur with the word sugar than with the

word cat. Simply stated, it is possible to use observations regarding the distribution of

words in a corpus in order to estimate the strength of their semantic relationship, e.g.,

based on the assumption that semantically related words tend to co-occur.

The second type of semantic proxy from which semantic evidence can be extracted en-

compasses the large range of existing ontologies (refer to Appendix A). From structured

vocabularies to highly formal ontologies, these proxies are structured and model, in an

explicit manner, knowledge about the elements they define. As an example, in an on-

tology defining the concepts Coffee and Sugar, a specific relationship will probably

explicitly define the link between the two concepts, e.g., that Coffee canBeDrunkWith

Sugar. Semantic measures based on knowledge analysis rely on techniques which take

advantage of network-based (e.g., thesaurus, taxonomies), or logic-based ontologies to

extract semantic evidence on which the comparison will be based.

From gene analysis to recommendation systems, semantic measures have recently been

found to cover a broad field of applications and are now essential metrics for leverage

data mining, data analysis, classification, knowledge extraction, textual processing or

even information retrieval based on text corpora or ontologies. They play an essential

role in numerous treatments requiring the analysis of the meaning of compared elements

(i.e., semantics). In this context, the study of semantic measures has always been an

interdisciplinary effort. Communities of Psychology, Cognitive Sciences, Linguistics,

Natural Language Processing, Semantic Web, and Biomedical informatics being among

the most active contributors. Due to the interdisciplinary nature of semantic measures,

recent decades have been highly prolific in contributions related to the notion of semantic

relatedness, semantic similarity and semantic distance, etc. Yet before introducing the

technical aspects required to further introduce semantic measures, we will briefly discuss

their large diversity of applications.

2.1.1 Semantic measures in action

Semantic measures are used to solve problems in a broad range of applications and

domains. They are therefore essential tools for the design of numerous algorithms and

treatments in which semantics matters. In this section, we present diverse practical

applications involving semantic measures. Three domains of application are considered

in particular: (i) Natural Language Processing, (ii) Knowledge Engineering/Semantic

Web and Linked Data, and (iii) Biomedical informatics and Bioinformatics. Since they

are transversal, additional applications related to information retrieval and clustering
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are also briefly considered. The list of the applications of semantic measures presented

in this section is far from being exhaustive. An extensive classification of contributions

related to semantic measures is proposed in the extended version of the state-of-the-art

presented in this manuscript [Harispe et al., 2013c]. This classification underlines the

broad range of applications of semantic measures and highlights the large number of

communities involved.

2.1.1.1 Natural Language Processing

Linguists have, quite naturally, been among the first to study semantic measures in the

aim of comparing units of language (e.g., words, sentences, paragraphs, documents).

The estimation of word/concept relatedness plays an important role in detecting para-

phrasing, e.g., duplicate content and plagiarism [Fernando and Stevenson, 2008], in

generating thesauri or texts [Iordanskaja et al., 1991], in summarising texts [Kozima,

1993], in identifying discourse structure, and in designing question answering systems

[Bulskov et al., 2002; Freitas et al., 2011; Wang et al., 2012a] to mention a few. The

effectiveness of semantic measures to resolve both syntactic and semantic ambiguities

has also been demonstrated on several occasions, e.g., [Patwardhan, 2003; Resnik, 1999;

Sussna, 1993].

Several surveys related to the usage of semantic measures and to the techniques used for

their design for natural language processing can be found in [Curran, 2004; Dinu, 2011;

Mohammad and Hirst, 2012a; Panchenko, 2013; Sahlgren, 2008; Weeds, 2003].

2.1.1.2 Knowledge engineering, Semantic Web and Linked Data

In this field, semantic measures can be used as part of processes aiming to integrate het-

erogeneous ontologies (refer to ontology alignment and instance matching) [Euzenat and

Shvaiko, 2013]; they are used to find similar/duplicate entities defined in different ontolo-

gies. Applications to provide inexact search capabilities over ontologies or to improve

classical information retrieval techniques have also been proposed, e.g., [Hliaoutakis,

2005; Hliaoutakis et al., 2006; Kiefer et al., 2007; Pirró, 2012; Sy et al., 2012; Varelas

et al., 2005]. In this context, semantic measures have also been successfully applied

to learning tasks using Semantic Web technologies [D’Amato, 2007]. Their benefits for

designing recommendation systems based on the Linked Data paradigm have also been

stressed, e.g., [Passant, 2010].
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2.1.1.3 Biomedical Informatics & Bioinformatics

A large number of semantic measures have been defined in biomedical informatics and

bioinformatics. In these domains, semantic measures are commonly used to take advan-

tage of biomedical ontologies in order to study various types of instances which have

been semantically characterised (genes, proteins, drugs, diseases, phenotypes)1. Several

surveys related to the usage of semantic measures underline the diversity of their ap-

plications in the biomedical domain [Guzzi et al., 2012; Pedersen et al., 2007; Pesquita

et al., 2009a]. As an illustration, here we focus on applications related to studies on the

Gene Ontology (GO) [Ashburner et al., 2000].

The GO is the preferred example with which to highlight the large adoption of ontologies

in biology2; it is extensively used to conceptually annotate gene (products) on the basis

of experimental observations or automatic inferences. A gene is classically annotated by

a set of concepts structured in the GO. These annotations formally characterise genes

regarding their molecular functions, their cellular location and the biological processes

in which they are involved. Thanks to semantic measures, these annotations make the

automatic comparison of genes possible, not on the basis of particular gene properties

(e.g. nucleotidic/proteic sequence, structural similarity, gene expression), but rather on

the analysis of biological aspects which are formalised by the GO. Genes can be further

analysed by considering their representation in a semantic space expressing our current

understanding of particular aspects of biology. In such cases, conceptual annotations

bridge the gap between global knowledge of biology defined in the GO (e.g., organisation

of molecular functions) and fine-grained understanding of specific instances (e.g., the

specific role of a gene at molecular level). In this context, semantic measures enable

computers to take advantage of this knowledge to analyse genes and therefore open

interesting perspectives for inferencing new knowledge.

As an example, various studies have highlighted the relevance of semantic measures to

assess the functional similarity of genes [Du et al., 2009; Wang et al., 2007], to build gene

clusters [Sheehan et al., 2008], to validate and to study protein-protein interactions [Xu

et al., 2008], to analyse gene expression [Xu et al., 2009], to evaluate gene set coherence

[Diaz-Diaz and Aguilar-Ruiz, 2011] or to recommend gene annotations [Couto et al.,

2006], among others. A survey dedicated to semantic measures applied to the GO can

be found in [Guzzi et al., 2012].

1Biology and biomedicine are heavy users of ontologies, e.g., BioPortal, a portal dedicated to ontolo-
gies related to biology and the biomedical domain, references hundreds of ontologies [Whetzel et al.,
2011].

2More than 11k citations between 2000 and 2013!
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2.1.1.4 Other applications

Information Retrieval (IR) uses semantic measures to overcome the limitations of

techniques based on plain lexicographic term matching, i.e., simple IR models consider

that a document is relevant according to a query only if the terms specified in the query

occur in the document. Semantic measures enable the meaning of words to be taken

into account by going over syntactic search. They can therefore be used to improve

classic models, e.g., synonyms will no longer be considered as totally different words. As

an example, semantic measures have been successfully used in the design of ontology-

based information retrieval systems and for query expansion, e.g., [Baziz et al., 2007;

Hliaoutakis, 2005; Hliaoutakis et al., 2006; Saruladha et al., 2010b; Sy et al., 2012;

Varelas et al., 2005].

An important aspect is that semantic measures based on ontologies allow for the analysis

and querying of non-textual resources and therefore do not restrict IR techniques in text

analysis, e.g., genes annotated by concepts can be queried [Sy et al., 2012].

GeoInformatics actively contributes to the study of semantic measures. In this do-

main, measures have for instance been used to compute the similarity between locations

according to semantic characterisations of their geographic features [Janowicz et al.,

2011], e.g. estimating the semantic similarity of tags defined in the OpenStreetMap

Semantic Network1 [Ballatore et al., 2012]. Readers interested in the application of

semantic measures in this field may also refer to the various references proposed in

[Harispe et al., 2013c], e.g.[Akoka et al., 2005; Andrea Rodŕıguez and Egenhofer, 2004;

Anna, 2008; Janowicz, 2006; Janowicz et al., 2008; Rodŕıguez et al., 2005].

2.1.2 Semantic measures: definitions

2.1.2.1 Generalities

The goal of semantic measures is easy to understand – they aim to capture the strength

of the semantic interaction between semantic elements (e.g., words, concepts) based on

their meaning. Are the words car and auto more semantically related than the words

car and mountain? Most people would agree that they are. This has been proved in

multiple experiments, inter-human agreement on semantic similarity ratings is high, e.g.

[Miller and Charles, 1991; Pakhomov et al., 2010; Rubenstein and Goodenough, 1965]2.

1http://wiki.openstreetmap.org/wiki/OSM_Semantic_Network
2As an example, considering three benchmarks, [Schwartz and Gomez, 2011] observed 73% to 89%

human inter-agreement between scores of semantic similarity associated to pairs of words.

http://wiki.openstreetmap.org/wiki/OSM_Semantic_Network
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Appreciation of similarity is obviously subject to multiple factors. Our personal back-

ground is an example of such a factor, e.g., elderly people and teenagers will probably

not associate the same score of semantic similarity between the two concepts Phone

and Computer1. However, most of the time, a consensus regarding the estimation of

the strength of the semantic link between elements can be reached [Miller and Charles,

1991] – this is what makes the notion of semantic measures intuitive and fascinating2.

The majority of semantic measures try to mimic the human capacity to assess the

degree of relatedness between things according to semantic evidence. However, strictly

speaking, semantic measures evaluate the strength of the semantic interactions between

things according to the analysis of semantic proxies (texts, ontologies), nothing further.

Therefore, not all measures aim at mimicking human appreciation of similarity. In

some cases, designers of semantic measures only aim to compare elements according

to the information defined in a semantic proxy, no matter if the results produced by

the measure correlate with human appreciation of semantic similarity/relatedness. This

is, for instance, often the case in the design of semantic measures based on domain-

specific ontologies. In these cases, the ontology can be associated to our brain and the

semantic measure can be regarded as our capacity to take advantage of our knowledge

to compare things. The aim, therefore, is to be coherent with the knowledge expressed

in the considered semantic proxy, without regards to the coherence of the modelled

knowledge. As an example, a semantic measure based on an ontology built by animal

experts would not consider the two concepts Sloth and Monkey to be similar, even if

most people think sloths are monkeys. Given that semantic measures aim at comparing

things according to their meaning captured from semantic evidence, it is difficult to

further define the notion of semantic measures without defining the concepts of Meaning

and Semantics.

Though risking the disappointment of the reader, this section will not face the challenge

of demystifying the notion of Meaning. As stressed by Sahlgren [2006] “Some 2000 years

of philosophical controversy should warn us to steer well clear of such pursuits”. The

reader can refer to the various theories proposed by linguists and philosophers. In this

contribution, we only consider that we are dealing with the notion of semantic meaning

proposed by linguists: how meaning is conveyed through signs or language. Regarding

the notion of semantics, it can be defined as the meaning or interpretation of any lexical

1Given that nowadays smartphones are kinds of computers and very different to the first communi-
cation devices.

2Despite some hesitations and interrogations regarding the notion of (semantic) similarity, it is com-
monly admitted that the notions related to similarity make sense. However, there are numerous examples
of authors who question their relevance, e.g. “Similarity, ever ready to solve philosophical problems and
overcome obstacles, is a pretender, an impostor, a quack.”[Goodman, 1972] or “More studies need to
performed with human subjects in order to discover whether semantic distance actually has any meaning
independent of a particular person, and how to use semantic distance in a meaningful way” [Delugach,
1993], see also [Goldstone, 1994b; Hahn and Ramscar, 2001; Murphy and Medin, 1985].
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units, linguistic expressions or instances which are semantically characterised according

to a specific context.

Definition: Semantic Measures are mathematical tools used to estimate the

strength of the semantic relationship between units of language, concepts or in-

stances, through a (numerical) description obtained according to the comparison of

information supporting their meaning.

It is important to stress the diversity of the domain (in a mathematical sense) in which

semantic measures can be used. They can be used to drive word-to-word, concept-

to-concept, text-to-text or even instance-to-instance comparisons. In this manuscript,

when we do not focus on a specific type of measure, we will refer, as much as possible, to

any element of the domain of measures through the generic term element. An element

can therefore be any unit of language (e.g. word, text), a concept/class, an instance

which is semantically characterised in an ontology (e.g., gene products, ideas, locations,

persons).

We formally define a semantic measure as a function:

σk : Ek × Ek → R (2.1)

with Ek the set of elements of type k ∈ K and K, the various types of elements which

can be compared regarding their semantics, e.g., K ={words, concepts, sentences, texts,

webpages, instances annotated by concepts. . . }.

This expression can be generalised so as to take into account the comparison of different

types of elements. This could be interesting to evaluate entailment of texts or to compare

words and concepts, among others. However, in this thesis, we restrict our study to the

comparison of pairs of elements of the same nature (already a vast subject of research).

We stress that semantic measures must implicitly or explicitly take advantage of semantic

evidence. As an example, as we have said, measures comparing words through their

syntactical similarity cannot be considered as semantic measures; recall that semantics

refers to evidence regarding the meaning of compared elements.

The distinction between approaches that can and cannot be assimilated to semantic

measures is sometimes narrow; there is no clear boundary distinguishing non-semantics

to semantic-augmented approaches, but rather a range of approaches. Some explana-

tions can be found in the difficulty of clearly characterising the notion of meaning. For

instance, someone can say that measures used to evaluate lexical distance between words
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capture semantic evidence related to the meaning of the words. Indeed, the sequence of

characters associated to a word derives from its etymology which is sometimes related

to its meaning, e.g., words created through morphology derivation such as subset from

set.

Therefore, the notion of semantic measure is sometimes difficult to distinguish from

measures used to compare specific data structures. This fine line can also be ex-

plained by the fact that some semantic measures compare elements which are represented

through canonical forms corresponding to specific data structures for which specific (non-

semantic) similarity measures have been defined. As an example, pure graph similarity

measures can be used to compare instances which are semantically characterised through

semantic graphs.

In some cases, the semantics of the measure is therefore not captured by the measure

used to compare the canonical forms of the compared elements. It is rather the process

of mapping an element (e.g., word, concept) from a semantic space (text, ontology) to a

specific data structure (e.g., vector, set), which semantically enhances the comparison.

This, however, is an interesting paradox, the definition of the rigorous semantics of

the notion of semantic measure is hard to define – this is one of the challenges this

contribution faces.

2.1.2.2 Semantic relatedness and semantic similarity

Among the various notions associated to semantic measures, this section defines the two

central notions of semantic relatedness and semantic similarity, which are among the

most commonly referred to in the literature. Several authors have already distinguished

them in different communities, e.g., [Pedersen et al., 2007; Resnik, 1999]. Based on these

works, we propose the following definitions.

Definition Semantic relatedness: the strength of the semantic interactions between

two elements with no restrictions on the types of semantic links considered.

Note that compared to the general definition of semantic measure, the notion of inter-

action used to define semantic relatedness refers to a positive value, i.e. the more two

elements interact the more related they will be considered. As an example, compared

to semantic relatedness, semantic distance refers to the degree of repulsion between the

two compared elements.
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Definition Semantic similarity : subset of the notion of semantic relatedness only

considering taxonomic relationships in the evaluation of the semantic interaction

between two elements.

In other words, semantic similarity measures compare elements regarding the consti-

tutive properties they share and those which are specific to them. The two concepts

Tea and Cup are therefore highly related despite the fact that they are not similar: the

concept Tea refers to a Drink and the concept Cup refers to a Vessel. Thus, the two

concepts share few of their constitutive properties. This highlights a potential interpre-

tation of the notion of similarity, which can be understood in term of substitution, i.e.,

evaluating the implication to substitute the compared elements: Tea by Coffee or Tea

by Cup.

In some specific cases, communities or linguists will consider a more complex definition

of the notion of semantic similarity for words. Indeed, word-to-word semantic similarity

is sometimes evaluated not only considering (near-)synonymy, or the lexical relations

which can be considered as equivalent to the taxonomic relationships for words, e.g.,

hyponymy and hypernymy or even troponymy for verbs. Indeed, in some contributions,

linguists also consider that the estimation of the semantic similarity of two words must

also take into account other lexical relationships, such as antonymy [Mohammad and

Hirst, 2012a].

In other cases, the notion of semantic similarity refers to the approach used to com-

pare the elements, not the semantics associated to the results of the measure. As an

example, designers of semantic measures relying on ontologies sometimes use the term

semantic similarity to denote measures based on a specific type of semantic relatedness

which only considers meronymy, e.g., partial ordering of concepts defined by partWhole

relationships. The semantics associated to the scores of relatedness computed from such

restrictions differs from semantic similarity. Nevertheless, as we will see, technically

speaking, most approaches defined to compute semantic similarities based on ontologies

can be used on any restriction of semantic relatedness considering a type of relationship

which is transitive, reflexive and antisymmetric. In this manuscript, for the sake of

clarity, we consider that only taxonomic relationships are used to estimate the semantic

similarity of compared elements.

Older contributions relative to semantic measures do not stress the difference between

the notions of similarity and relatedness. The reader must understand that in the

literature, authors sometimes introduce semantic similarity measures which estimate

semantic relatedness and vice versa. In addition, despite the fact that the distinction
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between the two notions is now commonly admitted by most communities, it is still

common to observe improper use of both notions.

Extensive terminology refers to the notion of semantic measures and contributions re-

lated to the domain often refer to the notions of semantic distance, closeness, nearness

or taxonomic distance, etc. The following subsection proposes to clarify the semantics

associated to the terminology which is commonly used in the literature.

2.1.2.3 The diversity of types of semantic measures

We have so far introduced the broad notion of semantic measures and have also dis-

tinguished the two central notions of semantic relatedness and semantic similarity. Ex-

tensive terminology has been used in the literature to refer to the notion of semantic

measure. Thus, we here define the meaning of the terms commonly used (the list may

not be exhaustive):

• Semantic relatedness, sometimes called proximity, closeness or nearness, refers to

the notion introduced above.

• Semantic similarity has also already been defined. In some cases, the term taxo-

nomic semantic similarity is used to stress the fact that only taxonomic relation-

ships are used to estimate the similarity.

• Semantic distance is generally considered as the inverse of semantic relatedness,

and all semantic interactions between the compared elements are considered. These

measures respect (for the most part) the mathematical properties of distances

which will be introduced later. Semantic distance is also sometimes denoted as

farness.

• Semantic dissimilarity is understood as the inverse of semantic similarity.

• Taxonomic distance also corresponds to the semantics associated to the notion of

dissimilarity. However, these measures are expected to respect the properties of

distances.

Figure 2.1 presents a graph in which the various notions related to semantic measures

are (informally) structured through semantic relationships. Most of the time, the notion

considered to be the inverse of semantic relatedness is denoted as semantic distance,

whether or not the measure respects the mathematical properties characterising a dis-

tance. Therefore, for the purpose of organising the different notions, we introduce the

term semantic unrelatedness to denote the set of measures whose semantics is the in-

verse to the one carried by semantic relatedness measures, without necessarily respecting
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the properties of a distance. To our knowledge, this notion has never been used in the

literature.

Figure 2.1: Informal semantic graph of the terminology related to semantic mea-
sures. It structures various types of semantics which have been associated to semantic
measures in the literature. Black (plain) relationships correspond to taxonomic rela-
tionships, inverse relationships refer to the semantic interpretation associated to the
score of the measure, e.g., semantic similarity and dissimilarity measures have inverse

semantic interpretations

2.1.3 From distance and similarities to semantic measures

Are semantic measures mathematical measures? What are the specific properties of a

distance or a similarity measure? Do semantic similarity measures correspond to similar-

ity measures in the way mathematicians understand them? As we have seen in Section

2.1.2, contributions related to semantic measures do not for the most part rely on for-

mal definitions of the notion of measure or distance. Indeed, generally, contributions

related to semantic measures rely on the commonly admitted and intuitive expectations

regarding these notions, i.e. similarity (resp. distance) must be higher (resp. lower) the

more (resp. less) the two compared elements share commonness1. However, the notions

of measure and distance have been rigorously defined in mathematics through specific

axioms from which particular properties derive. These notions have been expressed for

1 The works of [Blanchard et al., 2008; D’Amato, 2007] are among the exceptions.
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well-defined objects (element domain). Several contributions rely on these axiomatic def-

initions and interesting results have been demonstrated according to them. This section

briefly introduces the mathematical background relative to the notions of distance and

similarity. It will help us to rigorously define and better characterise semantic measures

in mathematical terms; it is a prerequisite to clarify the fuzzy terminology commonly

used in studies related to semantic measures.

For more information on the definition of measures, distance and similarity, the reader

can refer to: (i) the seminal work of Deza and Deza [2013] – Encyclopedia of Distances,

(ii) the work of [Hagedoorn, 2000, Chapter 2] – A theory of similarity measures, and (iii)

the definitions proposed by D’Amato [2007]. Most of the definitions proposed in this

section have been formulated based on these contributions. Therefore, for convenience,

we will not systematically refer to them. In addition, contrary to most of the definitions

presented in these works, here we focus on highlighting the semantics of the various

definitions according to the terminology introduced in Section 2.1.2.

2.1.3.1 Distance and similarity in Mathematics

For the definitions presented hereafter, based on D’Amato [2007], we consider a set D

which defines the elements of the domain we want to compare and a totally ordered set

(V,�). We also consider the element minV as the element of V such as ∀v ∈ V : minV �
v, maxV ∈ V such as ∀v ∈ V : v � maxV ; and 0V ∈ V such as minV � 0V � maxV .1

Definition Distance: a function dist : D×D → V is a distance on D if, ∀x, y ∈ D,

the function is:

• Non-negative, dist(x, y) � 0V .

• Symmetric, dist(x, y) = dist(y, x).

• Reflexive dist(x, x) = 0V and ∀y ∈ D ∧ y 6= x : dist(x, x) ≺ dist(x, y).

To be considered as a distance in a metric space, the distance must additionally

respect two properties:

• The identity of indiscernibles also known as strictness property, minimality or

self-identity, that is dist(x, y) = 0V iff x = y.

• The triangle inequality, when V ⊆ R, the distance between two points must

be the shortest distance along any path: dist(x, y) ≤ dist(x, z) + dist(z, y).

1E.g. different definitions of V could be V = R, V = [0, 1], V = {very low, low, medium, high, very
high}.
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Despite the fact that some formal definitions of similarity have been proposed, e.g.,

[Deza and Deza, 2013; Hagedoorn, 2000], contrary to the notion of distance, there is no

axiomatic definition of similarity that sets the standard; the notion appears in different

fields of mathematics, e.g., figures with the same shape are denoted similar (in geometry),

similar matrices are expected to have the same eigenvalues, etc. In this manuscript, we

consider the following definition.

Definition Similarity : a function sim : D ×D → V is a similarity on D if, for all

x, y ∈ D, the function sim is non-negative (sim(x, y) � 0V ), symmetric (sim(x, y) =

sim(y, x)) and reflexive, i.e., sim(x, x) = maxV and ∀x, y ∈ D∧ y 6= x : sim(x, x) �
sim(x, y).

Definition Normalised function: any function f on D (e.g. similarity, distance)

with values in [0, 1].

Notice that a normalised similarity sim can be transformed into a distance dist consid-

ering multiple approaches; inversely, a normalised distance can also be converted into a

similarity. Some of the approaches used for the transformations are presented in [Deza

and Deza, 2013, Chapter 1].

As we have seen, distance and similarity measures are formally defined in mathematics as

functions with specific properties. These properties are extensively used to demonstrate

results and to develop proofs. However, the benefits of fulfilling some of these prop-

erties, e.g., triangle inequality for distance metric, have been subject to debate among

researchers. As an example, Jain et al. [1999] stress that the mutual neighbour distance

used in clustering tasks does not satisfy the triangle inequality but perform well in prac-

tice – to conclude by “This observation supports the viewpoint that the dissimilarity does

not need to be a metric”.

A large number of properties which are not presented in this section have been distin-

guished to further characterise distance or similarity functions, e.g., see [Deza and Deza,

2013]. These properties are important as specific theoretical proofs require studied func-

tions to fulfil particular properties. However, as we have seen, the definition of semantic

measures proposed in the literature is not framed in the mathematical axiomatic defini-

tions of distance or similarity. In some cases, such a distortion among the terminology

creates difficulties in bridging the gap between the various communities involved in the

study of semantic measures and similarity/distance. As an example, in the Encyclope-

dia of distances, Deza and Deza [2013] do not distinguish the notions of distance and
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dissimilarity, which is the case in the literature related to semantic measures (refer to

Section 2.1.2). In this context, the following section defines the terminology commonly

adopted in the study of semantic measures w.r.t the mathematical properties already

introduced.

2.1.3.2 Flexibility of semantic measures

Notice that we haven’t introduced the precise and technical mathematical definition of

a measure proposed by measure theory. This can be disturbing considering that this

manuscript extensively refers to the notion of semantic measure. The notion of measure

we use is indeed not framed in the rigorous mathematical definition of measure. It refers

to any “measuring instruments” which can be used to “assess the importance, effect, or

value of (something)” [Oxford Dict., 2012] – in our case, any functions answering the

definitions of semantic distance/relatedness/similarity/etc. proposed in Section 2.1.2.

Various communities have used the concepts of similarity or distance without considering

the rigorous axiomatic definitions proposed in mathematics but rather using their broad

intuitive meanings1. To be in accordance with most contributions related to semantic

measures, and to facilitate the reading of this manuscript, we will not limit ourselves to

the mathematical definitions of distance and similarity.

The literature related to semantic measures generally refers to a semantic distance as any

(non-negative) function, designed to capture the inverse of the strength of the semantic

interactions linking two elements. Such functions must respect that: the higher the

strength of the semantic interactions between two elements, the lower their distance. The

axiomatic definition of a distance (metric) may not be respected. A semantic distance

is, most of the time, what we define as a function estimating semantic unrelatedness.

However, to be in accordance with the literature, we will use the term semantic distance

to refer to any function designed to capture semantic unrelatedness. We will explicitly

specify that the function respects (or does not respect) the axiomatic definition of a

distance (metric) when required.

Semantic relatedness measures are functions which are associated to an inverse semantics

of the one associated to semantic unrelatedness: the higher the strength of the semantic

interactions between two elements, the higher the function will estimate their semantic

relatedness.

1 As we have seen, researchers in cognitive science have demonstrated that human expectations
regarding (semantic) distance challenges the mathematical axiomatic definition of distance. Thus, the
communities involved in the definition of semantic measures mainly consider a common vision of these
notions without always clearly defining their mathematical properties.
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Properties Definitions

Non-negative dist(x, y) � 0V
Symmetric dist(x, y) = dist(y, x)

Reflexive dist(x, x) = 0V
Normalised V = [0, 1]

Identity of indiscernibles dist(x, y) = 0V iff x = y

Triangle inequality (V ⊆ R) dist(x, y) ≤ dist(x, z) + dist(z, y)

Table 2.1: Properties which can be used to characterise any function which aims to
estimate the notion of distance between two elements. Refer to the notations introduced

page 64.

Properties Definitions

Non-negative sim(x, y) � 0V
Symmetric sim(x, y) = sim(y, x)

Reflexive sim(x, x) = maxV
Normalised V = [0, 1]

Identity of indiscernibles sim(x, y) = maxV iff x = y

Integrity sim(x, y) � sim(x, x)

Table 2.2: Properties which can be used to characterise any function which aims
to estimate the notion of similarity/relatedness between two elements. Refer to the

notations introduced page 64.

The terminology we use (distance, relatedness, similarity) refers to the definitions pre-

sented in Section 2.1.2. To be clear, the terminology refers to the semantics of the

functions, not their mathematical properties. However, we further consider that seman-

tic measures must be characterised through mathematical properties. Table 2.1 and

Table 2.2 summarise some of the properties which can be used to formally characterise

any function designed in order to capture the intuitive notions of semantic distance and

relatedness/similarity. These properties will be used in the manuscript to characterise

some of the measures that we will consider. They are essential to further understand

the semantics associated to the measures and to distinguish semantic measures which

are adapted to specific contexts and usage.
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2.2 Classification of semantic measures

We have seen that various mathematical properties can be used to characterise technical

aspects of semantic measures. This section distinguishes other general aspects which

may be interesting to classify semantic measures. They will be used to introduce the

large diversity of approaches proposed in the literature. First we present some of the

general aspects of semantic measures which can be relevant for their classification, and

subsequently introduce two general classes of measures.

2.2.1 How to classify semantic measures

The classification of semantic measures can be made according to several aspects; we

propose to discuss four of them:

• The type of elements that the measure aims to compare.

• The semantic proxies used to extract the semantics required by the measure.

• The semantic evidence and assumptions considered during the comparison.

• The canonical form adopted to represent an element and how to handle it.

2.2.1.1 Types of elements compared: words, concepts, instances. . .

Semantic measures can be used to compare various types of elements:

• Units of language: words, sentences, paragraphs, documents.

• Concepts/Classes, groups of concepts.

• Semantically characterised instances.

Semantic measures can therefore be classified according to the type of elements they

aim to compare.

2.2.1.2 Semantic proxies from which semantics is distilled

Semantic measures require a source of information to compare two semantic elements.

It will be used to characterise compared elements and to extract the semantics required

by the measure.

Definition Semantic proxy : any source of information from which indication of the

semantics of the compared elements, which will be used by a semantic measure, can

be extracted.
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Two broad types of semantic proxies can be distinguished:

• Unstructured or semi-structured texts: text corpora, controlled vocabularies, dic-

tionaries.

• Structured: ontologies, e.g., thesaurus, structured vocabularies, taxonomies.

2.2.1.3 Semantic evidence and considered assumptions

Depending on the semantic proxy used to support the comparison of elements, various

types of semantic evidence can be considered. The nature of this evidence conditions

the assumptions associated to the measure.

Definition Semantic evidence: any clue or indication based on semantic proxy

analysis from which, often based on assumptions, a semantic measure will be based.

As an example, considering the measures which rely on text analysis, we have already

mentioned that the proximity or relatedness of terms can be assessed considering that

pairs of terms which co-occur frequently are more related. In this case, the co-occurrence

of words is considered as semantic evidence; its interpretation is governed by the assump-

tion that relatedness of terms is a function of their degree of co-occurrence.

2.2.1.4 Canonical forms used to represent compared elements

The canonical form (representation) chosen to process a specific element can also be used

to distinguish the measures defined for comparing a specific type of element. Since a

canonical form corresponds to a specific reduction of the element, the degree of granular-

ity with which the element is represented may highly impact the analysis. The selected

canonical form is of major importance since it influences the semantics associated to the

score produced by a measure, that is to say, how a score must/can be understood/in-

terpreted. This particular aspect is essential when inference must be driven from scores

produced by semantic measures.

A semantic measure is defined to process a given type of element represented through

a specific canonical form.

Figure 2.2 presents a partial overview of the landscape of semantic measures which

can be used to compare various types of elements (words, concepts, instances. . . ). It
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summarizes one of the classifications of semantic measures which can be proposed. As

we have seen, measures can first be classified based on the elements they can compare.

Based on this aspect, we distinguish two main types of measures:

• Distributional measures used to compare units of language, concepts or instances

from text analysis, i.e. unstructured semantic proxies. Distributional measures are

generally used to compare words or more generally units of language. However,

they can also be used to compare concepts or instances by considering that disam-

biguation techniques have been used to identify concepts or instance denotation

in texts.

• Knowledge-based measures which are designed for comparing entities defined in

ontologies, i.e. structured semantic proxies. Knowledge-based measures can also

be used to compare units of language, e.g., sentences or texts, for instance by

considering that disambiguation techniques have been used for establishing bridges

between texts and ontologies.

Hybrid strategies can also be defined mixing both distributional and knowledge-based

measures. Nevertheless, in the literature, measures are generally defined for comparing a

specific type of elements: units of language or entities defined in an ontology. Therefore,

classifying measures based on the elements they compare and the semantic proxy which

is used in the analysis, i.e. texts or ontologies (knowledge representation system), helps

to distinguish the general types of measures which have been proposed. These measures

are based on different semantic evidence and assumptions which are used to capture the

semantics of compared elements, e.g. the distributional hypothesis, intentional or ex-

tensional evidence expressed into ontologies. Based on these evidence and assumptions,

a model is defined for comparing two elements – such a model is generally denoted a

semantic measure. Various specific types of approaches have been proposed for distri-

butional and knowledge-based measures, the figure structures several broad categories.

Depending on the strategy which is used for defining the measure and the evidence

and assumptions which are considered, the semantics of the measure, i.e. the meaning

which can be associated to the scores it produces, may vary. Therefore, the measure can

be used to estimate, among others, the semantic relatedness or the semantic similarity

between the compared elements.
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Figure 2.2: Partial overview of the landscape of the types of semantic measures
which can be used to compare various types of elements (words, concepts, instances. . . )

[Harispe et al., 2013c]
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2.2.2 Distributional measures

2.2.2.1 Generalities

• Semantic proxy: unstructured/semi-structured texts.

• Type of elements compared: units of language, i.e., words, sentences, paragraphs,

documents.

Distributional measures enable the comparison of units of language through the analysis

of unstructured texts. They are mainly used to compare words, sentences or even doc-

uments studying the repartition of words in texts (number of occurrences, location in

texts)1. An introduction to this type of measures for the comparison of a pair of words

can be found in [Curran, 2004; Mohammad and Hirst, 2012b].

Several contributions have been proposed to tackle the comparison of pairs of sentences

or documents (text-to-text measures) [Mihalcea et al., 2006]. Some of these measures

derive from word-to-word semantic measures; others rely on specific strategies based

on lexical/ngram overlap analysis, Latent Semantic Analysis extensions [Lintean et al.,

2010], or even topic model using Latent Dirichlet Allocation [Blei et al., 2003].

Distributional measures rely on the distributional hypothesis which considers that words

occurring in similar contexts tend to be semantically close [Harris, 1981]. This hypoth-

esis is one of the main tenets of statistical semantics. It was made popular through

the idea belonging to Firth [1957]: “a word is characterised by the company it keeps”2.

Considering that the context associated to a word can be characterised by the words

surrounding it, the distributional hypothesis states that words occurring in similar con-

texts, i.e., often surrounded by the same words, are likely to be semantically similar as

“similar things are being said about both of them” [Mohammad and Hirst, 2012b]. It is

therefore possible to build a distributional profile of a word according to the contexts in

which it occurs.

A word is classically represented through the vector space model: a geometric metaphor

of meaning in which a word is represented as a point in a multidimensional space mod-

elling the diversity of the vocabulary in use [Sahlgren, 2006]. This model is used to

characterise words through their distributional properties in a specific corpus of texts.

To this end, words are generally represented through a matrix of co-occurrence – it

1 In the literature, distributional measures are sometimes defined as a specific type of a more general
type of measures, denoted as corpus-based measures [Panchenko and Morozova, 2012]. In this manuscript
we consider the most common classification by considering distributional measures as any measure which
relies on location and number of occurrences of words in text. There is therefore no need to distinguish
them from corpus-based measures.

2 Also implicitly discussed in [Weaver, 1955] originally written in 1949 [ACL, 2013].
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can either be a word-word matrix or more generally a word-context matrix in which

the context is any lexical unit (surrounding words, sentences, paragraphs or even docu-

ments). Such a characterisation of a word regarding a specific corpus, sometimes denoted

as word-space model [Sahlgren, 2006], is analogue to the vector space model which is

widely known in Information Retrieval [Salton and McGill, 1983].

Generally, the design of a semantic measure for the comparison of words corresponds to

the definition of a function which will assess the similarity of two context vectors. The

various distributional measures are therefore mainly distinguished by the:

• Type of context used to build the co-occurrence matrix.

• Frequency weighting (optional). The function used to transform the raw counts

associated to each context in order to incorporate frequency and informativeness

of the context [Curran, 2004].

• Dimension reduction technique (optional) used to reduce the co-occurrence matrix.

This aspect defines the type of co-occurrences which is taken into account (e.g. first

order, second order, etc.).

• Vector measure used to assess the similarity/distance of the vectors which represent

the words in the co-occurrence matrix. In some cases, vectors will be regarded as

(fuzzy) sets.

Several distributional measures have been proposed. Due to a lack of space these mea-

sures are not presented in this manuscript but an introduction and references to related

surveys can be found in [Harispe et al., 2013c].

2.2.2.2 Advantages and limits of distributional measures

Advantages

• Unsupervised, they can be used to compare the relatedness of words expressed in

corpora without prior knowledge regarding their meaning or usage.

Limits

• The words to compare must occur at least a few times on the considered corpus.

• They highly depend on the corpus used. This specific point can also be considered

as an advantage as the measure is context-dependent.

• Sense-tagged corpora are generally unavailable [Resnik, 1999; Sánchez and Batet,

2011]. The construction of a representative corpus of texts can be challenging in

some usage context, e.g., biomedical studies.
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• Difficulties are found when attempting to estimate the relatedness between con-

cepts or instances due to the disambiguation process required prior to the compar-

ison. Distributional measures are mainly designed for the comparison of words.

However, some pre-processing and disambiguation techniques can be used to enable

concept or instance comparison from text analysis. Nevertheless, their computa-

tional complexity is a drawback the majority of the time, making such approaches

impracticable to be used with large corpora analysis.

• Difficulty arises on estimating the semantic similarity. Though different observa-

tions are nevertheless provided in the literature, it is commonly said that distri-

butional measures can only be used to compare words regarding their semantic

relatedness, i.e., co-occurrence can only be seen as evidence of relatedness, e.g.,

[Batet, 2011a]. However, Mohammad and Hirst [2012b] specifies that similarity

can be captured performing specific pre-processing. In any case, capturing the

similarity between words from text analysis requires elaborate techniques which

are not tractable for large corpora analysis.

• There are difficulties explaining and tracing the semantics of the relatedness. The

interpretation of the score is almost only driven by the distributional hypoth-

esis; it is difficult, however, to deeply understand the semantics associated to

co-occurrences.

2.2.3 Knowledge-based measures

This section is more detailed than the previous one since our works in this thesis mainly

focused on this kind of measures.

2.2.3.1 Generalities

• Semantic proxy: network-based ontologies (e.g., thesaurus, taxonomy, semantic

graph), logic-based ontologies.

• Type of elements compared: words/terms, concepts, groups of concepts, semanti-

cally characterised instances.

Knowledge-based measures rely on any form of ontologies from which the semantics

associated to the compared elements will be extracted. A large diversity of measures

have been defined to compare both concepts1 and instances. Two main types of measures

can be distinguished considering the type of ontology which is taken into account:

1Note that predicates can also be compared using some measures defined for the comparison of
concepts.



Chapter 2. The notion of semantic measures 75

• Measures based on graph analysis, also denoted as semantic measures framed in

the relational setting in [D’Amato, 2007]. They consider ontologies as semantic

graphs. They rely on the analysis of the structural properties of the semantic

graph and elements are compared studying their interconnections.

• Measures relying on logic-based semantics such as description logics. These mea-

sures use a higher degree of semantic expressivity; they can take logical construc-

tors into account, and can be used to compare rich descriptions of knowledge,

mainly concepts.

Most semantic measures have been defined to compare elements defined in a single ontol-

ogy. Nevertheless, some semantic measures have also been proposed to compare elements

defined in different ontologies. In this section, we mainly consider the measures defined

for a single ontology. Semantic measures which have been defined to take advantage of

multiple ontologies are briefly presented next.

2.2.3.2 Semantic measures based on graph analysis

Semantic measures based on graph analysis do not take into account logical constructors

which can sometimes be used to define the semantics of an ontology. These measures

only consider the semantics carried by the semantic relationships (relational setting),

e.g., specific treatments can be performed regarding the type of relationship processed.

Some properties associated to the relationships defined in the graph can be considered

by the measures. The transitivity of the taxonomic relationship will for instance be

implicitly or explicitly used in the design of these measures. In other cases, the taxonomy

of predicates (i.e., the types of semantic relationships) can also be taken into account.

A large number of approaches have been proposed to express semantic measures using

this strategy. Chapter 3 is dedicated to them. Here, we only present a non-technical

overview of these measures focusing on those used to compare a pair of concepts. The

idea is to give a first insight into this type of semantic measures by presenting, through

simple and intuitive examples, the main approaches which have been proposed in the

literature.

Semantic measures based on graph analysis are commonly classified into four approaches:

(i) Structure-based, (ii) Feature-based, (iii) Information-Theory and (iv) Hybrid.
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The structural approach: Semantic measures based on the structural approach com-

pare elements defined in the semantic graph by studying the structure of the graph in-

duced by its relationships. The measures are generally expressed as a function of the

strength of the interconnections of the compared elements in the graph. Conceptually,

the structural approach corresponds, in some sense, to the design of semantic measures

according to the structural model defined in cognitive sciences (refer to Section 1.4).

The graph corresponds to a structured space in which compared elements are described.

The first measures based on this approach proposed to compare two concepts according

to the length of shortest path linking them in the graph (in terms of number of edges);

the shorter the path, higher their semantic relatedness [Rada et al., 1989]. The types of

relationships considered in order to distinguish the shortest path define the semantics of

the measures, e.g., only the taxonomic relationships will be considered to estimate the

semantic similarity. As an example, considering Figure 2.3, the length of the shortest

path between the concepts Computer and Tablet is two. Considering only the taxonomic

relationship, the length of the shortest path between the concepts Computer and Rodent

is five. As expected, the concept Computer will therefore be considered to be more

similar to the concept Tablet than to the concept Rodent.

Figure 2.3: Semantic graph representing a taxonomy of a set of concepts and their
relationships. Dotted edges refer to non-taxonomic relationships between concepts,

others are taxonomic relationships

A large diversity of structural measures have been proposed to compare elements struc-

tured in a graph as a function of the strength of their interconnections (e.g., random-walk

approaches). More refined measures take advantage of the analysis of intrinsic factors

to better estimate the similarity/relatedness, e.g., by considering non-uniform weights

of relationships.
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The feature-based approach: semantic measures associated to the feature model

defined by Tversky which was introduced in Section 1.4.2. Semantic measures are based

on the evaluation of compared elements represented through sets of properties derived

from graph analysis.

A central element of measures based on this approach is the function which characterises

the features of the elements on which their comparison will be based. Among the vari-

ous strategies proposed, the features characterising a concept can be considered as the

senses it encompasses, which corresponds to its ancestors in the graph, i.e., all concepts

which subsumes the concept according to the partial ordering defined by the taxonomy

of concepts. By adopting this strategy, the following feature-based representation of

concepts can be considered:

• Computer = { Computer, Object, Thing }
• Tablet = { Tablet, Object, Thing }
• Rodent = { Rodent, Mammal, Animal, Thing }

The comparison of two concepts represented as sets of elements, here sets of concepts,

can therefore be made by evaluating the number of features they share according to a

feature-matching function. This approach is therefore framed in set theory; relaxing the

degree of membership of elements defined in the set, semantic measures based on this

approach are also sometimes defined in terms of fuzzy set theory. Considering classical

set-based feature matching functions, i.e., the boolean function, the pair Computer -

Tablet will also be estimated as more similar than the pair Computer - Rodent as the

former pair share more senses1 than the latter.

The information theoretical approach: it is based on Shannon’s Information The-

ory [Shannon, 1948] and relies more particularly on the notion of information content

of concepts introduced by Resnik [1995]. Compared elements are regarded in terms of

the information they convey. Therefore, the elements, generally concepts, are compared

according to the amount of information they share and the one amongst them which is

distinct.

This approach relies on the central notion of Information Content (IC) which will be

covered in detail in the following chapter. In short, the IC of a concept was initially

defined as a function of its probability of occurrence in a corpus considering the ordering

defined by the taxonomy, i.e., in Figure 2.3 the concept Mammal is also considered to

occur when the concept Cat is encountered in the corpus. Therefore, the IC is defined

as inversely proportional to the probability of occurrence of the concepts; informally, the

1Note that we talk about about senses when we adopt a synset vision. If we consider concepts we
can refer to properties.
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more a concept is used (the more general it is), the less informative it will be considered.

Thus, intuitively, the IC of the concept Thing will be smaller than the IC of the concept

Cat; consider for instance the informativeness of the following sentences: Yesterday Lucie

bought a(n) Tablet (Object). Technically speaking, the original definition of the notion

of IC is based on an hybrid approach which involves both an ontology and a corpus

of texts. Nevertheless, as we will see in the next chapter, numerous approaches have

also been proposed to estimate the IC of concepts based solely on the analysis of the

structural properties of semantic graphs.

Using a measure to capture the informativeness of a concept, the similarity of two con-

cepts can easily be defined as a function of the informativeness (IC) of their Most Infor-

mative Common Ancestor (MICA), i.e., the more informative (specific) their MICA, the

more similar the two compared concepts will be considered. The MICAs of the pairs of

concepts Computer - Rodent and Computer - Tablet are respectively the concepts Thing

and Object (Figure 2.3). By definition, we know that the informativeness of the concept

Object can only be higher than the informativeness of the concept Thing. Therefore, a

measure which defines the similarity of a pair of concepts as directly proportional to the

IC of the MICA of the compared concepts will estimate the pair of concepts Computer

- Tablet more semantically similar than the pair of concepts Computer - Rodent.

The hybrid approach: semantic measures are defined mixing some of the specificities

of the approaches briefly introduced above.

2.2.3.3 Semantic measures based on logic-based semantics

Semantic measures based on the relational setting cannot be used to directly compare

complex descriptions of classes or instances which rely on logic-based semantics, e.g.

description logics (DLs). To this end, semantic measures have been proposed which

are capable of taking into account logic-based semantics. They are for example used to

compare complex concept definitions expressed in OWL.

Among the diversity of proposals, measures based on simple DLs, e.g., only allowing

concept conjunction (logic A), were initially proposed through extensions of semantic

measures based on graph analysis [Borgida et al., 2005]. More refined semantic measures

have since been designed to exploit high expressiveness of DLs, e.g. ALC, ALN , SHI,

ELH description logics [Araújo and Pinto, 2007; D’Amato et al., 2005a,b, 2008; Fanizzi

and D’Amato, 2006; Hall, 2006; Janowicz, 2006; Janowicz and Wilkes, 2009; Lehmann

and Turhan, 2012; Stuckenschmidt, 2009].
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As an example D’Amato et al. [2005a] proposed to compare complex concept descriptions

by aggregating functions which consider various components of theirALC normal forms1.

These measures rely mostly on extensions of the feature model proposed by Tversky.

They have been extensively covered in the thesis of D’Amato [2007]. The contributions

presented in this manuscript do not focus on this type of approaches.

2.2.3.4 Semantic measures for multiple ontologies

Several approaches have been designed to estimate the relatedness of concepts or in-

stances using multiple ontologies. These approaches are sometimes named cross-ontology

semantic similarity/relatedness measures in the literature, e.g., [Petrakis et al., 2006].

Their aim is twofold:

• To enable the comparison of elements which have not been defined in the same

ontology (the ontologies must model a subset of equivalent elements).

• To refine the comparison of elements by incorporating a larger amount of infor-

mation during the process.

These measures are in some senses related to those commonly used for the task of

ontology alignment and instance matching [Euzenat and Shvaiko, 2013]. Therefore, prior

to their introduction we will first highlight the relationship between these measures and

those designed for the aforementioned processes.

Comparison with ontology alignment and instance matching

The task of ontology mapping aims at finding links between the classes and predicates

defined in a collection of ontologies. These mappings are further used to build an align-

ment between ontologies. Instance matching focuses on finding similar instances defined

in a collection of ontologies. These approaches generally rely on multiple matchers which

will be aggregated for evaluating the similarity of the compared elements [Euzenat and

Shvaiko, 2013; Shvaiko and Euzenat, 2013]. The commonly distinguished matchers are:

• Terminological – based on string comparison of the labels or definitions.

• Structural – mainly based on the structuration of classes and predicates.

• Extensional – based on instance analysis.

• Logic-based – rely on logical constructs used to define the elements of the ontologies.

The score produced by these matchers is generally aggregated; a threshold is used to

estimate if two (groups of) elements are similar enough to define a mapping between

1Primitives and restrictions (both existential and universal) are considered.
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them. In some cases, the mapping will be defined between an element and a set of

elements, e.g., depending on the difference of granularity of the compared ontologies, a

concept can be mapped to a set of concepts. The problem of ontology alignment and

instance matching is a field of study in itself. The techniques used for this purpose

involve semantic similarity measures for the design of structural, extensional and logic-

based matchers (terminological matchers are not semantic). However, the measures used

in this context aim to find exact matches and are therefore generally not suited for the

comparison of non-equivalent elements defined in different ontologies. Indeed, techniques

used for ontology alignment are for instance not suited to answering questions such as:

to which degree are the two concepts Coffee and Cup related?

In every instance, technically speaking, nothing prevents the use of matching techniques

to estimate the similarity between elements defined in different ontologies. Indeed, the

problem of knowing if two elements must be considered as equivalent can be reformulated

as a function of their degree of semantic similarity. Nevertheless, a clear distinction of

the problem of ontology alignment and semantic measure design exists in the literature.

This can be partially explained by the fact that, in practice, compared to approaches

used for ontology alignment and instance matching, semantic measures based on multiple

ontologies:

• Can be used to estimate the semantic relatedness and not only the semantic sim-

ilarity of compared elements.

• Sometimes rely on strong assumptions and approximations which cannot be con-

sidered to derive alignments, e.g., measures based on shortest path techniques.

• Focus on the design of techniques for the comparison of elements defined in different

ontologies which generally consider a set of existing mappings between ontologies.

In short, ontology alignment and instance matching are complex processes which use

specific types of (semantic) similarity measures and which can be used to support the

design of semantic measures involving multiple ontologies. We briefly present the main

approaches which have been proposed for the definition of semantic measures based on

multiple ontologies.

Main approaches for the definition of semantic measures using multiple on-

tologies

The design of semantic measures for the comparison of elements defined in different

ontologies have attracted less attention than classical semantic measures designed for

single ontologies. They have been successfully used to support data integration [M.C.
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Lange, D.G. Lemay, 2007; Rodŕıguez and Egenhofer, 2003], clustering [Batet et al.,

2010b], or information retrieval tasks [Xiao and Cruz, 2005], to cite a few. In this

context, several contributions have focused on the design of semantic measures based on

multiple ontologies without focusing on specific application contexts.

The measures proposed in the literature can be distinguished according to the approach

they adopt – we consider the same classification used for semantic measures defined for

a single ontology (the list of references may not be exhaustive):

• Structural approach: [Al-mubaid and Nguyen, 2009].

• Feature-based approach: [Batet et al., 2010b, 2013; Petrakis et al., 2006; Sánchez

and Batet, 2013; Solé-Ribalta et al., 2014].

• Information Theoretical approach: [Sánchez and Batet, 2013; Saruladha, 2011;

Saruladha and Aghila, 2011; Saruladha et al., 2010a].

• Hybrid approach: [Rodŕıguez and Egenhofer, 2003].

2.2.3.5 Advantages and limits of knowledge-based measures

Advantages

• They can be used to compare all types of elements defined in an ontology, i.e.,

terms, concepts, instances. These measures can therefore be used to compare

elements which cannot be compared using text analysis, e.g., comparison of gene

products according to conceptual annotations corresponding to their molecular

functions.

• Give access to fine control on the semantic relationships taken into account to

compare the elements. This aspect is important to understand the semantics

associated to a score of semantic measures, e.g., semantic similarity/relatedness,

and can therefore be essential in a decision process.

• Generally easier and less complex to compute than distributional measures.

Limits

• Require an ontology describing the elements to compare, which can be a strong

limitation if no ontology is available for the domain to consider.

• The use of logic-based measures can be challenging to compare elements defined

in large ontologies (high computational complexity).

• Measures based on graph analysis generally require the knowledge to be modelled

in a specific manner in the graph and are not designed to take non-binary rela-

tionships into account. Such relationships are used in specific ontologies and play
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an important role in defining specific properties to relationships/statements. In

Section A.1.4.1, we show that reification techniques can be used to express such

knowledge by defining a ternary relationship, i.e., the (binary) relationship is ex-

pressed by a node of the graph. Most measures based on graph analysis are not

adapted to this case. This aspect is relative to the mapping of an ontology to a

semantic graph; a more detailed discussion of this specific aspect is proposed in

Appendix A.

2.2.4 Mixing knowledge-based and distributional approaches

Hybrid measures have been proposed to take advantage of both corpora and ontology

analyses to estimate the semantic similarity or relatedness of units of language, concepts

and instances. We distinguish two broad types of measures, Pure-hybrid measures and

Aggregated measures:

• Pure-hybrid measures correspond to measures which are not based on the aggre-

gation of several measures; they are designed by defining a strategy which takes

advantage of both corpus and ontology analysis. First and most common examples

of pure-hybrid measures are semantic measures based on the information theoret-

ical approach. As an example, Resnik [1995] proposed to estimate the amount of

information carried by a concept as the inverse of the probability of the concept

occurring in texts. The information content is the cornerstone of information the-

oretical measures, it can therefore be used to take advantage of several knowledge-

based measures by considering corpus-based information. Other authors have also

proposed to mix text analysis and structure-based measures. The extended gloss

overlap measure introduced by Banerjee and Pedersen [2002], and the two mea-

sures based on context vectors proposed by Patwardhan [2003] are good examples.

Interested readers may also consider [Banerjee and Pedersen, 2003; Patwardhan

et al., 2003; Patwardhan and Pedersen, 2006].

• Aggregated measures derive from the aggregation combining distributional and

knowledge-based semantic measures1. Scores of selected measures are aggregated

according to the average, min, max, median or any aggregation function which can

be designed to aggregate matrix of scores2.

Several studies have demonstrated the benefits of performance mixing knowledge-based

and distributional approaches in specific usage contexts [Panchenko and Morozova, 2012;

Petrakis et al., 2006].

1Pure-hybrid measures can also be part of the aggregation.
2Several aggregations will be discussed in the introduction of semantic similarity measures which can

be used to compare groups of concepts – Section 3.6.2.2.
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This chapter has introduced the notion of semantic measures. We have presented their

practical usages in different application contexts, we have proposed general definitions

associated to the notion, and we have distinguished different semantics which can be

associated to them. This latter point helped us to better capture the meaning of semantic

measures (results). To this end, we define the terminology classically found in the

literature, e.g., semantic similarity/proximity/relatedness/distance, and we proposed an

organisation of the notions commonly used, e.g. semantic similarity is a component

of semantic relatedness. In a second step, to better understand the characteristics of

semantic measures, we distinguished several central aspects of measures which can be

used to categorising the large diversity of measure proposals. As a result, a general

classification of the variety of semantic measures defined in the literature has been

presented. Such a classification highlights the similarities and differences of the numerous

measures and approaches which have been proposed in the literature. It can therefore

be used to better understand the large diversity of measures and to characterise areas

of research which have not been explored for designing measures. Importantly, this

overview of semantic measures and the proposed classification also stresses the breadth

of this field of study and the difficulty to define the notions on which are based semantic

measures, e.g., semantic relatedness and semantic similarity.
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Abstract

This chapter focuses on semantic measures based on semantic graph analysis, the mea-

sures on which the rest of thesis is dedicated to. First we underline the particular role

played by these measures in order to bring to light their preponderant role in the lit-

erature. Notations used to manipulate semantic graphs are also introduced. Particular

attention is given to the presentation of semantic evidence which can be derived from

a semantic graph, and its role in the definition of semantic measures. This will help us

to introduce the diversity of proposals which have been introduced in the literature, in

particular to compare a pair of (groups of) concepts. Based on the in-depth analysis of

this particular type of measures, and more generally on the survey which supports this

study, we finally distinguish several perspectives and challenges offered to the commu-

nities involved in the study of semantic measures.
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3.1 Importance of semantic measures based on semantic

graph analysis

As we have seen, two main families of semantic measures can be distinguished: distri-

butional measures, which take advantage of unstructured or semi-structured texts, and

knowledge-based measures which rely on ontologies.

Distributional measures are essential for comparing units of languages such as words,

or even concepts, when there is no formal expression of knowledge available to drive

the comparison. As we have stressed, these measures rely on algorithms governed by

assumptions to capture the semantics of the elements they compare (i.e., mainly the

distributional hypothesis). On the contrary, knowledge-based semantic measures rely on

formal expressions of knowledge explicitly defining how the compared elements must

be understood. Thus, they are not constrained to the comparison of units of language

and can be used to drive the comparison of any formally described pieces of knowledge,

which encompasses a large diversity of elements, e.g., concepts, genes, person, music

bands, etc.

The rest of this thesis focuses on knowledge-based measures and more particularly on

those which rely on ontologies processed as semantic graphs; this positioning is motivated

below.

We have underlined the main limitation of knowledge-based measures: their strong

dependence on the availability of an ontology – an expression of knowledge which can be

difficult to obtain and may therefore not be available for all fields of studies. However, in

recent decades, we have observed, both in numerous scientific communities and industrial

fields, the growing adoption of knowledge-enhanced approaches based on ontologies. As

an example the Open Biological and Biomedical Ontology (OBO) foundry gives access to

hundreds of ontologies related to biology and biomedicine. Moreover, thanks to the large

efforts made to standardise the technology stack which can be used to define and take

advantage of ontologies (e.g., RDF(S), OWL, SPARQL – triple stores implementations)

and thanks to the increasing adoption of the Linked Data and Semantic Web paradigms,

a large number of initiatives give access to ontologies in numerous domains (e.g., biology,

geography, cooking, sports).

In the introduction, we also point out that several large corporations adopt ontologies to

support large-scale worldwide systems. The most significant example over recent years is

the adoption of the Knowledge Graph by Google, a graph built from a large collection of

billions of non-ambiguous subject-predicate-object statements used to formally describe

general or domain-specific pieces of knowledge. This ontology is used to enhance their
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search engine capabilities and millions of users benefit from it on a daily basis. Several

examples of such large ontologies are now available: DBpedia, Freebase, Wikidata, Yago.

Another significant fact about the increasing adoption of ontologies is the joint effort

made by the major search engines companies, e.g., Bing (Microsoft), Google, Yahoo!

and Yandex, to design Schema.org, a set of structured schemas defining a vocabulary

which can be used to characterise the content of webpages in an unambiguous manner.

Another interesting aspect of the last few years is the growing adoption of graph databases

(e.g., Neo4J1, OrientDB2, Titan3). These databases rely on a graph model to describe

information in a NoSQL fashion. They actively contribute to the growing adoption of

the graph property model – thinking in terms of connected entities [Robinson et al.,

2013].

In this context, a lot of attention has been given to ontologies, which in numerous cases

merely correspond to semantic graphs – characterised elements (concepts, instances and

relationships) are defined in an unambiguous manner without using complex logical

constructs. Such semantic graphs have the interesting properties of being easily ex-

pressed and maintained while ensuring a good ratio between semantic expressivity and

effectiveness (in term of computational complexity). This justifies the large number of

contributions related to the design of semantic measures dedicated to semantic graphs

– a diversity of measures to which this chapter is dedicated.

3.2 Formal notations used to manipulate semantic graphs

We further introduce the notations used to refer to particular constitutive elements of

a semantic graph. Please refer to Section 1.2 for the notations which have already been

introduced.

3.2.1 Relationships – statements – triplets

The relationships of a semantic graph are distinguished according to their predicate

and to the pair of elements they link. The triplet (u, t, v) corresponds to the unique

relationship of type t ∈ R which links the elements u, v: u is named the subject, t the

predicate and v the object. Relationships are central elements of semantic graphs and

will be used to define algorithms and to characterise paths in the graph.

1http://www.neo4j.org/
2http://www.orientechnologies.com/orientdb/
3http://thinkaurelius.github.io/titan/

http://www.neo4j.org/
http://www.orientechnologies.com/orientdb/
http://thinkaurelius.github.io/titan/
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Since the relationships are oriented, we denote t− the type of relationship carrying the

inverse semantic of t. We therefore consider that any relationship (u, t, v) implicitly

implies (v, t−, u), even if the type of relationship t− and the relationship (v, t−, u) are

not explicitly defined in the graph. As an example, the relationship Human subClassOf

Mammal implies the inverse relationship Mammal subClassOf− Human (even if the ontol-

ogy defines subClassOf− ≡ superClassOf). The notion of inverse predicate will be

considered to discuss detailed paths. In some ontology languages, inverse relationships

between predicates are explicitly defined by specific construct, e.g., owl:inverseOf in

OWL.

3.2.2 Graph traversals

Graph traversals are often represented through paths in a graph, i.e., sequence of re-

lationships linking two nodes. To express such graph paths, we adopt the following

notations1.

Path: Sequence of relationships [(ci−1, ti, ci), (ci, ti+1, ci+1), . . .]. To lighten the formal-

ism, if a single predicate is used the path is denoted [ci−1, ci, ci+1, . . .]
t.

Path Pattern: We denote π =< t1, . . . , tn > with tn ∈ R, a path pattern which corre-

sponds to a list of predicates2. Therefore, any path which is a sequence of relationships

is an instance of a specific path pattern π.

We extend the use of the path pattern notation to express concise expressions of paths:

• < t∗ > corresponds to the set of paths of any length composed only of relationships

having for predicate t.

• < t∗∗ > corresponds to the set of paths of any length composed of relationships

associated to the predicate t or t−.

As an example, {Human, < subClassOf∗ >, Animal} refers to all paths which link con-

cepts Human and Animal and which are only composed of relationships subClassOf (they

do not contain relationships of type subClassOf−).

We also mix the notations to characterise set of paths between specific elements. As

an example, {u,< t, subClassOf∗ >, v} represents the set of paths which (i) link the

elements u and v, (ii) start by a relationship of predicate t, and (iii) end by a (possibly

empty) path of subClassOf relationships. As an example the concept membership

function I which characterises instances of a specific concept can formally be redefined

1These notations are based on an adaptation of the notations used by Lao [2012].
2In SPARQL 1.1, such paths are denoted using path properties t1/t2/t3.
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by:

I(X) = {i|{i, < isA,subClassOf∗ >, X} 6= ∅ } (3.1)

To lighten the formalism, we consider that the set of paths {u,< p∗ >, v} can be short-

ened by {u, p, v}, e.g. {Human, < subClassOf∗ >, Animal} = {Human, subClassOf, Animal}
and {Human, < subClassOf∗∗ >, Animal} = {Human, subClassOf∗, Animal}

3.2.3 Notations for taxonomies

The taxonomy GT is the semantic graph associated to the non-strict partial order defined

over the set of concepts C. We introduce the notations used to characterise GT as well

as its concepts; some of them have already been introduced and are repeated for clarity:

• C(GT ) shortened by C refers to the set of concepts defined in GT .

• E(GT ) shortened by ET refers to the set of relationships defined in GT with:

ET ⊆ C × {subClassOf} × C ⊆ ET ⊆ ECC1

• A concept v subsumes another concept u if u � v, i.e., {u, subClassOf, v} 6= ∅.
Several additional denominations will be used; it is commonly said that v is an

ancestor of u, that u is subsumed by v and that u is a descendant of v.

• C+(u) ⊆ C, with u ∈ C, the set of concepts such as:

C+(u) = {c|(u, subClassOf, c) ∈ ET }

• C−(u) ⊆ C, with u ∈ C, the set of concepts such as:

C−(u) = {c|(c, subClassOf, u) ∈ ET }

• C(u) ⊆ C, with u ∈ C, the set of neighbours of concepts such as:

C(u) = C+(u) ∪ C−(u)

• A(u) the set of concepts which subsumes u, also named the ancestors of u, i.e.,

A(u) = {c|{u, subClassOf, c} 6= ∅} ∪ {u}. We also denote A−(u) = A(u) \ {u} the

exclusive set of ancestors of u.

• parents(u) the minimal subset of A−(u) from which A−(u) can be inferred accord-

ing to the taxonomy GT , i.e., if GT doesn’t contain taxonomic redundancies2 we

obtain: parents(u) = C+(u).

1ECC were used to introduce semantic graphs
2Taxonomic redundancies are introduced in Section A.2.
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• D(u) the set of concepts which are subsumed by u, also named the descendants of u,

i.e., D(u) = {c|{c, subClassOf, u} 6= ∅}∪{u}. We also denote D−(u) = D(u)\{u}
the exclusive set of descendants of u.

• children(u) the minimal subset of D−(u) from which D−(u) can be inferred ac-

cording to the taxonomy GT , i.e., if GT doesn’t contain taxonomic redundancies

we obtain: children(u) = C−(u).

• roots(GT ), shortened by roots, the set of concepts {c|A(c) = {c}}. We call the

root, denoted as >, the unique concept (if any) which subsumes all concepts, i.e.,

∀c ∈ C, c � >.

• leaves(GT ), shortened by leaves, the set of concepts without descendants, i.e.

leaves = {c|D(c) = {c}}. We also note leaves(u) the set of leaves subsumed by a

concept (inclusive if u is a leaf), i.e., leaves(u) = D(u) ∩ leaves.

• depth(u), the length of the longest path in {u, subClassOf,>}, for convenience we

also consider depth(GT ) = argmax
c∈C

depth(c).

• G+
T (u) the graph composed of A(u) and the set of relationships which link two

concepts in A(u).

• G−T (u) the graph composed of D(u) and the set of relationships which link two

concepts in D(u).

• GT (u) = G+
T (u) ∪G−T (u) the graph induced by A(u) ∪D(u).

• Ω(u, v), the set of Non Comparable Common Ancestors (NCCAs) of the concepts

u, v. Ω(u, v) is formally defined by: ∀(x, y) ∈ Ω(u, v), (x, y) ∈ {A(u) ∩ A(v)} ×
{A(u)∩A(v)}∧x /∈ A(y)∧y /∈ A(x). NCCAs are also called the Disjoint Common

Ancestors (DCAs) in some contributions, e.g. [Couto et al., 2005]1.

• A taxonomic tree is defined as a special case of taxonomy in which: ∀c ∈ C :

|parents(c)| < 2.

Despite the fact that these notations are used to characterise the taxonomy of concepts

GT and that specific semantics is associated to the notations (e.g., parents, children),

they can be used to characterise any poset.

1The modification of the terminology has been made in agreement with the reviewers of [Harispe
et al., 2013d] which stressed that the term DCAs was misleading.
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3.3 Semantic evidence in semantic graphs and their inter-

pretations

A semantic graph carries explicit semantics, e.g. through the taxonomy defining concepts

partial ordering. It also contains implicit semantic evidence. According to Section

2.2.1.3, we consider semantic evidence as any information on which interpretations can

be based according to the meaning carried by the ontology or the elements it defines

(concepts, instances, relationships).

Semantic evidence derives from the study of specific factors (e.g., number of concepts,

depth of a concepts, average relationships associated to a concept) which can be used

to discuss particular properties of the semantic graph (e.g., coverage, expressiveness) or

particular properties of its elements (e.g. specificity of concepts). Figure 3.1 illustrates

the acquisition of semantic evidence. Based on the analysis of specific factors using

particular metrics, some properties of both the semantic graph and the elements it

defines can be obtained. Based on these properties, and either based on high assumptions

or theoretically justified by the core semantics on which relies the ontology, semantic

evidence can be obtained. As an example of semantic evidence, the number of concepts

described in a taxonomy can be interpreted as a clue on the degree of coverage of the

ontology. One can also consider that the deeper a concept w.r.t the depth of GT , the

more specific the concept.

Figure 3.1: General process showing how semantic evidence
can derive from an ontology analysis

As we will see, several properties are used to consider extra semantics from seman-

tic graphs; they are especially important for the design of semantic measures. Indeed,

semantic evidence is core elements of measures; it has been used for instance to: (i)

normalise measures, (ii) estimate the specificity of concepts and to (iii) weigh the re-

lationships defined in the graph, i.e., to estimate the strength of connotation between
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concept/instances. It is therefore central for both designers and users of semantic mea-

sures to know: (i) the properties which can be used to derive semantic evidence, (ii) how

it is computed, and (iii) the assumptions on which its interpretation relies.

Most of the properties used to derive semantic evidence are well-known graph properties

defined by graph theory. In this section, we only introduce the main properties which

are based on the study of a taxonomy of concepts (GT ). We go on to introduce two

applications of these properties: the estimation of the specificity of concepts and the

estimation of the strength of connotation between concepts.

3.3.1 Semantic evidence in taxonomies

In this section we mainly focus on semantic evidence commonly exploited in taxonomies.

Two kinds of semantic evidence can be distinguished:

• Intentional evidence which can also be called intrinsic evidence, which is based on

the analysis of properties associated to the topology of GT .

• Extensional evidence which is based on the analysis of both the topology of GT

and the distribution of concepts’ usage, i.e., the number of instances associated to

concepts.

Notice that we don’t consider semantic evidence purely extensional, i.e., only based on

concepts’ usage, without taking the taxonomy into account. Indeed, in most cases, the

distribution of concepts’ usage must be evaluated considering the transitivity of the

taxonomic relationship. If this is not the case, incoherent results could be obtained,

As an example, if the transitivity of the taxonomic relationship is not considered to

propagate the usage of concepts (instance membership), the distribution of instances

can be incoherent w.r.t the partial order defined by the taxonomy, i.e., a concept can

have more instances than one of its ancestors.

We further distinguish the evidence which is based on global properties (i.e., derived

from the full taxonomy), from that based on local properties of concepts.
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3.3.1.1 Intentional evidence

Global properties

• Depth of the taxonomy – maximal number of ancestors of a concept

The depth of the taxonomy corresponds to the maximal depth of a concept in GT . It

informs on the degree of expressiveness/granularity of the taxonomy. As an example,

the deeper GT , the more detailed the taxonomy is expected to be.

The maximal number of ancestors of a concept is also used as an estimator of the upper

bound of the degree of expressivity of a concept. Inversely, the number of concepts

defined in GT , i.e., |D(>)| if > exists, can also be used as an upper bound of the degree

of generality of a concept.

• Diameter – width of the taxonomy

The width of the taxonomy corresponds to the length of the longest shortest path1 which

links two concepts in GT . It also informs on the degree of coverage of the taxonomy.

GT is generally assumed to better cover a domain the bigger its diameter.

Local properties

• Local density

It can be considered that relationships in dense parts of a taxonomy represent smaller

taxonomic distances. Metrics such as compactness can be used to characterise local

density [Botafogo et al., 1992]2. Other metrics such as the (in/out)-branching factor

of a concept (|C+(u)|, |C−(u)|), the number of neighbours of a given concept (|C(u)|),
can also be used [Sussna, 1993]. It is generally assumed that the higher the number of

neighbours of a concept, the more general it is.

• Number of ancestors – depth – number of descendants – number of subsumed

leaves – distance to leaves.

The number of ancestors of a concept is often considered to be directly proportional to its

degree of expressiveness. The more a concept is subsumed, the more detailed/restrictive

the concept is expected to be. The number of ancestors can also be interpreted w.r.t

the maximal number of ancestors a concept of the taxonomy can have. The depth of a

concept is also expected to be directly proportional to its degree of expressiveness. The

1Backtracks, loops or detours excluded, ref: http://mathworld.wolfram.com/GraphDiameter.html.
2Author also introduces interesting factors for graph-based analysis; the depth of a node is also

introduced.

http://mathworld.wolfram.com/GraphDiameter.html
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deeper the concept (according to the maximal depth), the more detailed/restrictive the

concept is regarded1. A local depth of a concept can also be evaluated according to the

depth of the branch in which it is defined.

In a similar fashion, in some cases the distance of a concept to the leaves it subsumes, or

the number of leaves it subsumes, will be considered as an estimator of expressiveness:

the greater the distance/number the less expressive the concept is considered.

3.3.1.2 Extensional evidence

Global Properties

• Distribution of instances among the concepts.

The distribution of instances among concepts, i.e., concept usage, can be used to design

local correction factors, e.g., to correct estimations of the expressiveness of a concept.

This is generally made by evaluating the balance of the distribution.

Local Properties

• Number of instances associated to a concept

The number of instances of a concept is expected to be inversely proportional to its

expressiveness, the less instances a concept has, the more specific it is expected to be.

This semantic evidence and its interpretations have been used to characterise notions

extensively used by semantic measures. They are indeed used to estimate the specificity

of concepts as well as the strength of connotations between concepts.

3.3.2 Estimation of concept specificity

Not all concepts have the same degree of specificity. Indeed, most people will agree

that Dog is a more specific description of a LivingBeing than Animal. The notion of

specificity can be associated to the concept of salience which has been defined by Tversky

[1977] to characterise a stimulus according to its “intensity, frequency, familiarity, good

form, and informational content”. In Bell et al. [1988], it is also specified that “salience

1Note that the depth of a concept as an estimator of its degree of expressiveness can be seen as an
inverse function of the notion of status introduced by Harary et al. [1965] for organisation study.
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is a joint function of intensity and what Tversky calls diagnosticity, which is related to

the variability of a feature in a particular set [i.e., universe, collection of instances]”.

The idea is to capture the amount of information carried by a concept – this amount is

expected to be directly proportional to its degree of specificity and generality.

The notion of specificity of a concept is not totally artificial and can be explained by the

roots of taxonomies. Indeed, the transitivity of the taxonomic relationship specifies that

not all concepts have the same degree of specificity or detail. In knowledge modelling,

the ordering of two concepts u ≺ v defines that u must be considered as more abstract

(less specific) than v. In fact, the taxonomy explicitly defines that all instances of u

are also instances of v. This expression is illustrated by Figure 3.2; we can see that the

more a concept is subsumed by numerous concepts: (A) the number of properties which

characterise the concept increases (intentional interpretation), and (B) its number of

instances decreases (extensional interpretation).

Figure 3.2: Set-based representations of ordered concepts according to (A) their in-
tentional expressions in term of properties characterising the concepts, and (B), in term
of their extensional expressions, i.e., the set of instances which compose the concept.

Figure based on Blanchard [2008]

Therefore, another way of comparing the specificity of concepts defined in a total order1

is to study their usage, analysing their respective number of instances. The concept

which contains the highest number of instances will be the least specific (its universe

of interpretation is larger). In this case, it is therefore possible to assess the specificity

of ordered concepts either studying the topology of the graph, or the set of instances

associated to them.

Nevertheless, in taxonomies, concepts are generally only partially ordered. This implies

that presented evidence used to compare the specificity of two ordered concepts cannot

be used without assumptions, i.e., concepts which are not ordered are in some sense

1For any pair of concepts u, v either u � v or v � u.
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not comparable. This aspect is underlined in Figure 3.3. It is impossible to compare,

in an exact manner, the specificity of two non-ordered concepts. This is due to the

fact that the amount of shared and distinct properties between these concepts can only

be estimated w.r.t the properties which characterise the common concepts they derive

from, i.e., their NCCAs. However, this estimation can only be a lower bound of their

commonality since extra properties shared by the two concepts may not be carried by

such NCCAs.

Figure 3.3: Potential set-based representations of non-ordered concepts according to
(A) their intentional expressions in term of properties characterising the concepts, and
(B), in term of their extensional expressions, i.e., the set of instances associated to the

concepts. Figure based on Blanchard [2008]

As we will see, the estimation of the degree of specificity of concepts is of major im-

portance in the design of semantic measures. Therefore, given that discrete levels of

concept specificity are not explicitly expressed in a taxonomy, various approaches and

functions have been explored to evaluate concept specificity. We denote such a function

as θ:

θ : C → R+ (3.2)

The function θ may rely on the intrinsic and/or extrinsic properties presented above.

It must be in agreement with the taxonomic representation which defines that concepts

are always semantically broader than their specialisations1. Thus, θ must monotonically

decrease from the leaves (concepts without descendants) to the root(s) of the taxonomy:

x � y ⇒ θ(x) ≥ θ(y) (3.3)

We present examples of θ functions which have been defined in the literature.

1This explains that the specificity of concepts cannot be estimated only considering extrinsic infor-
mation.
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3.3.2.1 Basic intrinsic estimators of concept specificity

The specificity of concepts can be estimated considering the location of its corresponding

node in the graph. A naive approach will define the specificity of the concept c, θ(c), as a

function of some simple properties related to c, e.g., θ(c) = f(depth(c)), θ(c) = f(A(c))

or θ(c) = f(D(c)) with A(c) and D(c) the ancestors and descendants of c.

The main drawback of simple specificity estimators is that concepts with a similar depth

or an equal number of ancestors/descendants will have similar specificities, which is a

heavy assumption. In fact, two concepts can be described with various degrees of detail,

independently of their depth, e.g., [Yu et al., 2007a]. More refined θ functions have been

proposed to address this limitation.

3.3.2.2 Extrinsic information content

Another strategy explored by designers of semantic measures has been to characterise

the specificity of concepts according to Shannon’s Information Theory. The specificity

of a concept will further be regarded as the amount of information the concept conveys,

its Information Content (IC). The IC of a concept can for example be estimated as a

function of the size of the universe of interpretations associated to it. The IC is a common

expression of θ and was originally defined by Resnik [1995] to assess the informativeness

of concepts from a corpus of texts.

The IC of the concept c is defined as inversely proportional to p(c), the probability to

encounter an instance of c in a collection of instances (negative entropy). The original

IC definition was based on the number of occurrences of a concept in a corpus of texts.

We denote eIC any IC which relies on extrinsic information, i.e., information not pro-

vided by the ontology1 and generally provided by the analysis of concept usage in a

corpus of texts or by analysing a collection of instances for which associated concepts

are known2. We consider the formulation of eIC originally defined by Resnik [1995]:

p(c) =
|I(c)|
|I|

1Note that if the instances are represented in the graph, some eIC are indeed iIC.
2As an example, usage of concepts defined in the Gene Ontology can be known studying gene anno-

tations which provide genes and associated Gene Ontology concepts, e.g. refer to UniprotKB.
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with I(c) the set of instances of c, e.g., occurrences of c in a corpus, instances in an

ontology {i|{i, < isA, subClassOf∗ >, c} 6= ∅}.

eICResnik(c) = −log(p(c)) (3.4)

= log(|I|)− log(|I(c)|)

The suitability of the log function can be supported by the work of Shepard [1987]1.

Notice also the link with Inverse Document Frequency (IDF) which is commonly used

in information retrieval [Jones, 1972]:

IDF (c) = log(
|I|
|I(c)|

) (3.5)

= log(|I|)− log(|I(c)|)

= IC(c)

The main drawback of θ functions based on extrinsic information lies in their tight de-

pendence on concepts usage: they will automatically reflect its bias2. Nevertheless, in

some cases, the consideration of such bias is desired as all concepts which are highly

represented will be considered less informative, even the concepts which seem specific

w.r.t intrinsic factors (e.g., depth of concepts). However, in some cases, bias in concept

usage can badly affect IC estimation and may not be adapted. In addition, IC compu-

tation based on text analysis can be both time consuming and challenging given that,

in order to be accurate, complex disambiguation techniques have to be used to detect

which concept refers an occurrence of a word.

3.3.2.3 Intrinsic information content

In order to avoid the dependency of eIC calculus to concept usage, various intrinsic

IC formulations (iIC ) have been proposed. They can be used to define θ functions by

only considering structural information extracted from the ontology, e.g., the intrinsic

factors presented in Section 3.3.1. iIC formulations extend basic specificity estimators

presented above.

Multiple topological characteristics can be used to express iIC, e.g., number of descen-

dants, ancestors, depths, etc. [Sánchez et al., 2011; Schickel-Zuber and Faltings, 2007;

1Shepard derived his universal law of stimulus generalisation based on the consideration that loga-
rithm functions are suited to approximate semantic distance [Al-Mubaid and Nguyen, 2006].

2As an example, this can be problematic for GO-based studies as some genes are studied and anno-
tated more than others (e.g., drug related genes) and annotation distribution patterns among species
reflect abnormal distortions, e.g. human – mouse [Thomas et al., 2012].
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Seco et al., 2004; Zhou et al., 2008]. As an example, the formulation proposed by Zhou

et al. [2008] enables to consider the contribution of both the depth and the number of

descendants of a concept to compute its specificity:

iICZhou(c) = k

(
1− log(|D(c)|)

log(|C|)

)
+ (1− k)

log(depth(c))

log(depth(GT ))
(3.6)

with |C| the number of concepts defined in the taxonomy, depth(c) the depth of c,

depth(GT ) the maximal depth of a concept in GT and k ∈ [0, 1] a parameter used to set

the contribution of both components (originally set to 0.6).

In [Sánchez et al., 2011], the iIC incorporates additional semantic evidence in the aim of

better distinguishing the concepts with the same numbers of descendants but different

degrees of concreteness – here captured as a function of the number of ancestors a

concept has.

iICSanchez(c) = −log

 |leaves−(c)|
|A(c)| + 1

|leaves|+ 1

 (3.7)

We denote leaves−(c) the exclusive set of leaves of the concept c, i.e., if c is a leaf

leaves−(c) = ∅. Note that iICSanchez will set the same iIC for each leaf. To avoid this,

we propose the following modification:

iICSanchez′(c) = −log

 |leaves(c)|
|A(c)|

|leaves|+ 1

 (3.8)

iICs are of particular interest as only the topology of the taxonomy is considered.

They prevent errors related to bias on concept usage. However, the relevance of iIC

relies on the assumption that GT expresses enough knowledge to rigorously evaluate the

specificities of concepts. Therefore, as a counterpart, iICs are sensitive to structural

bias in the taxonomy and are therefore sensitive to unbalanced taxonomy, degrees of

completeness, homogeneity and coverage of the taxonomy [Batet et al., 2010a].

3.3.2.4 Non-taxonomic information content

Both introduced iIC and eIC only take taxonomic relationships into account. In order

to take advantage of all predicates and semantic relationships, Pirró and Euzenat [2010a]

proposed the extended IC (extIC).

extIC(c) = αEIC(c) + βIC(c) (3.9)
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EIC(c) =
∑
r∈R

∑
u∈Cr(u) iIC(u)

|Cr(u)|

With Cr(u) the set of concepts linked to the concept c by any relationship of type

r ∈ R (i.e., generalisation of C(u)). In this formula, the contribution of the various

relationships of the same predicate is averaged. However, the more a concept establishes

relationships of different predicates, the higher its EIC will be. We thus propose to

average EIC by |R|, or to weigh the contribution of the different predicates.

3.3.2.5 List of functions defined to estimate concept specificity

We have presented various strategies which can be used to estimate the specificities of

concepts defined in a partially ordered set (θ functions). It is important to understand

that these estimators are based on assumptions regarding ontologies. Table 3.1 lists

some of the properties of some of the θ functions proposed in the literature – proposals

are ordered by date.
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3.3.3 Estimation of the strength of connotations between concepts

A notion strongly linked to concept specificity is the strength of connotation between

a pair of concepts/instances, i.e., the strength of the relationship(s) which links two

concepts/instances. Otherwise stated, this notion can be used to assess the strength of

interaction associated to a specific relationship.

Considering taxonomic relationships, it is generally considered that the strength of con-

notation between concepts is stronger the deeper two concepts are in the taxonomy. As

an example, the taxonomic relationship linking SiberianTiger to Tiger will generally

be considered to be stronger than the one linking Animal to LivingBeing. Such a notion

is quite intuitive and has for instance been studied by Quillian and Collins in the early

studies of semantic networks [Collins and Quillian, 1969] – hierarchical network models

were built according to response time to questions, i.e., mental activations evaluated

w.r.t the time people took to correctly answer questions related to two concepts, e.g., a

Canary is an Animal – a Canary is a Bird – a Canary is a Canary. Based on the vari-

ation of times taken to correctly answer questions involving two ordered concepts (e.g.,

Canary – Animal), the authors highlighted human sensibility to non-uniform strength

of connotation and its link to concept specificity.

It is worth noting that the estimation of the strength of connotation of two linked con-

cepts is in some sort a measure of the semantic similarity or taxonomic distance between

the two directly ordered concepts. The models used to estimate the strength of conno-

tation between two concepts are generally based on the assumption that the taxonomic

distance associated to a taxonomic relationship shrinks with the depth of the two con-

cepts it links [Richardson et al., 1994]. Given that the strength of connotation between

concepts is not explicitly expressed in a taxonomy, it has been suggested that several

intrinsic factors need considering in order to refine its estimation, e.g., [Richardson et al.,

1994; Sussna, 1993; Young Whan and Kim, 1990].

A taxonomy only explicitly defines the partial ordering of its concepts, which means

that if a concept v subsumes another concept u, all the instances of u are also instances

of v, i.e., u � v ⇒ I(u) ⊆ I(v). Nevertheless, non-uniform strength of connotation aim

to consider that all taxonomic relationships do not convey the same semantics.

Strictly speaking, taxonomic relationships only define concept ordering and concept

inclusion. Therefore, according to the extensional interpretation which can be made of

a taxonomy, the size of the universe of interpretation of a concept, i.e., the size of the set

of its possible instances w.r.t the whole set of instances, must reduce the more a concept

is specialised1. This reduction of the universe of eligible interpretations associated to

1We here consider a finite universe.
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a concept (i.e. instances), corresponds to a specific understanding of the semantics of

non-uniform strengths of connotation. Alternative explanations which convey the same

semantics can also be expressed according to the insights of the various cognitive models

which have been introduced in Section 1.4:

• Spatial/Geometric model: it states that the distance between concepts is a non-

linear function which must take salience of concept into account.

• Feature model (which represents a concept as a set of properties): It can be seen

as the difficulty to further distinguish a concept which is relevant to characterise

the set of instances of a domain.

• Alignment and Transformational models: the effort of specialisation which must

be done to extend a concept increases the more a concept has been specialised.

All these interpretations state the same central notion – the strength of connotation

which links two concepts is a function of two factors: (i) the specificities of the linked

concepts, and (ii) the variation of these specificities. The semantic evidence introduced

in the previous section, as well as the notion of IC, can be used to assess the strength

of connotation of two concepts.

As an example, the strength of connotation w which characterises a taxonomic relation-

ship linking two concepts u, v, with u � v, can be defined as a function of the ICs of u

and v [Jiang and Conrath, 1997]: w(u, v) = IC(u)− IC(v).

It is important to stress that estimations of the strength of connotations based on the

density of concepts, the branching factor, the maximal depth or the width of the taxon-

omy, are based on assumptions regarding the definition of the ontology.

We have presented various semantic evidence which can be used to extract knowledge

from an ontology represented as a semantic graph. We have also presented two appli-

cations of such semantic evidence for assessing the specificity of a concept defined in a

taxonomy and the strength of interaction between two elements defined in a semantic

graph. As we will see, semantic evidence are central for the definition of semantic mea-

sures. We will now introduce the various semantic measures which can be considered

depending on particular of the semantic graph in use.
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3.4 Types of semantic measures w.r.t graph properties

Two main groups of measures can be distinguished w.r.t the properties of semantic

graphs:

• Measures adapted to semantic graphs composed of (multiple) predicate(s) which

potentially induce cycles.

• Measures adapted to taxonomies, i.e., acyclic semantic graphs composed of a

unique predicate inducing transitivity.

The two types are presented in this section.

3.4.1 Semantic measures on cyclic semantic graphs

Considering all predicates defined in a semantic graph potentially leads to a cyclic graph.

Nevertheless, only few semantic measures framed in the relational setting have been

designed to deal with cycles. Since these measures take advantage of all predicates, they

are generally used to evaluate semantic relatedness (and not semantic similarity). Notice

that they can be used to compare concepts and instances. Two types of measures can

be further distinguished:

• Measures based on graph traversal, i.e., pure graph-based measures. These mea-

sures have initially been proposed to study node interactions in a graph and es-

sentially derive from graph theory contributions. They can be used to estimate

the relatedness of nodes considering that greater the (direct or indirect) inter-

connection between two nodes, the more related they are. These measures are

not semantic measures per se but rather graph measures used to compare nodes.

However, they can be used on semantic graphs and can also be adapted in order

to take into account evidence of semantics defined in the graph (e.g. strength of

connotation).

• Measures based on the graph property model. These measures consider concepts or

instances as sets of properties distinguished from the graph.

The two types of measures are presented.

3.4.1.1 Semantic measures based on graph traversals

Measures based on graph traversals can be used to compare any pair of concepts or

instances represented as nodes. These measures rely on algorithms designed for graph
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analysis which are generally used in a straightforward manner. Nevertheless, some

adaptations have been proposed in order to take into account the semantics defined in

the graph. Among the large diversity of measures and metrics which can be used to

estimate the relatedness (distance, interconnection, etc.) of two nodes in a graph, we

distinguish:

• Shortest path approaches.

• Random-walk approaches.

• Other interconnection measures.

The main advantage of these measures is their unsupervised nature. Their main draw-

back is the absence of extensive control over the semantics which are taken into account;

this generates difficulties in justifying, explaining, and therefore analysing the resulting

scores. However, in some cases, these drawbacks are reduced by enabling fine-grain con-

trol over the predicates considered during the comparison. This is done by tuning the

contribution of each relationship or predicate.

Shortest path approaches

The shortest path problem is one of oldest problems of graph theory. It can be ap-

plied to compare both pairs of instances and concepts considering their relatedness as a

function of the distance between their respective nodes. More generally, the relatedness

is estimated as a function of the weight of the shortest path linking them. Classical

algorithms proposed by graph theory can be used. The algorithm to use depends on

specific properties of the graph, e.g., Do the constraints applied to the shortest path

(really) induce cycles? Are there non-negative weights associated to relationships? Is

the graph considered to be oriented?

Rada et al. [1989] were among the first to use the shortest path technique to compare two

concepts defined in a semantic graph (initially a taxonomy). This approach is sometimes

denoted as the edge-counting strategy in the literature (edge refers to relationship). As

the shortest path may contain relationships of any predicate we call it unconstrained

shortest path (usp).

One of the drawbacks of the usp in the design of semantic measures lies in the fact that

the meaning of the relationships from where the relatedness derives is not taken into ac-

count. In fact, complex semantic paths which involve multiple predicates and only those

composed of taxonomic relationships are considered equally. Therefore, propositions to

penalise any usp reflecting complex semantic relationships have been proposed [Bulskov

et al., 2002; Hirst and St-Onge, 1998]. Approaches for considering particular predicates
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in a specific manner have also been described. To this end, a weighting scheme can

be considered in order to tune the contribution of each relationship or predicate in the

computation of the final score – this weighting scheme can be derived from the notion

of strength of connotation (Section 3.3.3).

Random walk approaches

These approaches are based on a Markov chain model of random walks [Spitzer, 1964].

The random walk is defined through a transition probability associated to each relation-

ship. The walker can therefore walk from node to node – each node represents a state of

the Markov chain. Several measures can be used to compare two nodes u and v based

on this technique; a selection of measures introduced in [Fouss et al., 2007] is listed:

• The average first-passage time, hitting time, i.e., the average number of steps

needed by the walker to go from u to v.

• The average commute time, Euclidean commute time distance.

• The average first passage cost.

• The pseudo inverse of the Laplacian matrix.

These approaches are closely related to spectral clustering and spectral embedding tech-

niques [Saerens et al., 2004]. Examples of measures based on random walk techniques are

defined and discussed in [Alvarez and Yan, 2011; Fouss et al., 2007; Garla and Brandt,

2012; Hughes and Ramage, 2007; Ramage et al., 2009].

As an example, the hitting time H(u, v) of two nodes u, v is defined as the expected

number of steps needed by a random walker to go from u to v. The hitting time can

recursively be defined by:

H(u, v) = 1 +
∑

k∈N+(u)

p(u, k)H(k, v) (3.10)

With N+(u) the set of nodes which are linked to u by an outgoing relationship starting

from u and p(u, k) the transition probability of the Markov Chain:

p(u, k) =
w(u, k)∑

i∈N+(u)w(u, i)

With w(u, k) the weight of the relationship between u and k.

The commute time C(u, v) = H(u, v)+H(v, u) corresponds to the expected time needed

for a random walker to travel from u to v and back to u. Intuitively, the more paths
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that connect u and v, the smaller their commute distance becomes. Several technical

criticisms of classical approaches used to evaluate hitting and commute times, as well as

associated extensions, have been formulated in the literature, e.g., [Sarkar et al., 2008;

von Luxburg et al., 2011].

In a similar vein, approaches based on graph-kernel can also be used to estimate the

relatedness of two nodes in a graph [Kondor and Lafferty, 2002]; they have already been

applied to the design of semantic measures in [Guo et al., 2006].

Note that these measures take advantage of second-order information which is generally

hard to interpret (in terms of semantics).

Other measures based on interaction analysis

Several approaches exploiting graph structure analysis can be used to estimate the relat-

edness of two nodes through their interconnections. Chebotarev and Shamis [2006a,b]

proposed the use of indirect paths linking two nodes by means of the matrix-forest the-

orem. simRank, proposed by Jeh and Widom [2002], is an example of such a measure.

Considering N as the set of nodes of the graph, N−(n) as the nodes linked to the node n

by a single relationship ending with n (i.e., in-neighbours), simRank similarity is defined

by:

simRank(u, v) =
|N |

|N−(u)||N−(v)|
∑

x∈N−(u)

∑
y∈N−(v)

simRank(x, y) (3.11)

Note that simRank is a normalised function. Olsson et al. [2011] propose an adaptation

of the measure for semantic graphs built from Linked Data.

3.4.1.2 Semantic measures for the graph property model

The second type of measures which can be used to compare a pair of instances/concepts

defined in a (potentially) cyclic semantic graph relies on the graph property model. Here

the graph is not only considered as a data structure which highlights the interactions

between the different elements it defines. It is considered as a data model in which

concepts and instances are describes through sets of properties. The properties may

sometimes refer to specific data types. Therefore, the nodes of the graph may refer

to data values, concepts, instances or even predicates – the semantic graphs generally

correspond to RDF graphs or labelled graphs.
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In this case the measures take advantage of semantic graphs by encompassing expressive

definitions of concepts/instances through properties. The measures rely on the com-

parison of the different properties which characterise the concepts or instances being

compared. Therefore the study of these measures inherits from early work related to

both the comparison of objects defined into knowledge base and the comparison of en-

tities defined in a subset of the first order logic [Bisson, 1992, 1995]. As an example,

these measures have been extensively studied for comparing objects analysing their dif-

ferent properties. They are based on the aggregation of specific measures enabling the

comparison of each of the properties characterising compared objects [Valtchev, 1999a,b;

Valtchev and Euzenat, 1997]. Considering the domain of knowledge representation, these

contributions have formed the basis of several frameworks which are used for compar-

ing instances or concepts in the field of ontology alignment or instance matching, e.g.,

OWL Lite Alignment (OLA) method has been proposed to compare ontologies based on

aggregations of several measures [Euzenat et al., 2004; Euzenat and Valtchev, 2004].

In this presentation, we do not introduce the expressive formalisms which have been

introduced in earlier contributions [Bisson, 1992, 1995; Euzenat et al., 2004; Euzenat

and Valtchev, 2004], e.g. for comparing objects defined in a knowledge base [Valtchev,

1999a,b; Valtchev and Euzenat, 1997]. We rather distinguish two general approaches

which have been proposed and which are commonly used to compare concepts or in-

stances.

Elements represented as a list of direct property

An element can be evaluated by studying its direct properties, i.e., the set of values

associated to the element according to a specific predicate. As an example, focusing on

relationships related to instances, two types of relationships can be distinguished:

• Taxonomic relationships (isA) – relationships which link instances to concepts.

• Non-taxonomic relationships:

– Which link two instances (object properties in OWL).

– Which link instances to data values (datatype properties in OWL).

Two elements will be compared w.r.t values associated to each property considered.

To this end, for each property considered, a specific measure will be used to compare

associated values (concepts, data values, instances).

Properties which link two instances associate a set of instances to the instance which is

characterised. Considering Figure 3.4, the property genre can be used to characterise

the instance rollingStones through a set of instances {i|∃(rollingStones, genre, i)},
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i.e., {rock,...}. Such properties therefore refer to sets, they are often compared us-

ing simple set-based measures – they will for example evaluate the cardinality of the

intersection (e.g., the number of music genres that two bands have in common).

Taxonomic properties are evaluated using semantic measures adapted to concept com-

parison. These measures will be presented in Section 3.5.

Properties associated to data values can be compared using measures adapted to the type

of data considered, e.g., a measure for comparing dates if the corresponding property

refers to a date.

Figure 3.4: Example of a semantic graph related to the music domain. Concepts (C),
instances (I), and data values (D) are represented [Harispe et al., 2013b]

Finally, the scores produced by the various measures (associated to the various proper-

ties) are aggregated in order to obtain a global score of relatedness of the two elements

[Euzenat and Shvaiko, 2013]. Such a representation has been formalised in the frame-

work proposed by Ehrig et al. [2004]. This is a strategy which is commonly adopted

in ontology alignment, instance matching or link discovery between instances; SemMF

[Oldakowski and Bizer, 2005], SERIMI [Araujo et al., 2011] and SILK [Volz et al., 2009]

are all based on this approach. The reader can also refers to the extensive survey pre-

sented in [Euzenat and Shvaiko, 2013].

Consideration of indirect properties of elements

Several contributions underline the relevance of indirect properties in comparing entities

represented through graphs, especially in object models [Bisson, 1995]. Referring to
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Figure 3.4, indirect properties might be used to consider properties of music genres

(e.g., rock, rockNroll) to compare two music bands (e.g., rollingStones - doors).

This approach relies on a representation of the compared elements which is an extension

of the canonical form used to represent an element as a list of properties. This approach

can be implemented to take into account the indirect properties of compared elements,

e.g., properties induced by the elements associated to the element that we want to

characterise.

Albertoni and De Martino [2006] extended the formal framework proposed in Ehrig

et al. [2004] to allow for the consideration of some indirect properties. This framework

is dedicated to instance comparison. It formally defines an indirect property of an

instance along a path in the graph. The indirect properties to be taken into account

depend on the context of use of the framework, e.g., application context.

From a different perspective, Andrejko and Bieliková [2013] suggested an unsupervised

approach to compare two instances by considering their indirect properties. Each direct

property which is shared between the compared instances plays a role in computing the

global relatedness. When the property links two instances, a recursive process is applied

to take into account properties of associated instances with the instances being processed.

Lastly, the measure aggregates the scores obtained during the recursive process. The

authors have also proposed to weigh the contribution of the various properties in the

aggregation so as to define a personalised information retrieval approach.

All the measures which can be used on the whole semantic graph G can also be used for

any acyclic reduction GR ⊆ G. Nevertheless, numerous specific semantic measures have

been defined to work on a reduction of G. Depending on the topological properties of

the reduction, two cases can be distinguished:

1. The reduction GR leads to a cyclic graph. Measures presented for cyclic graphs

can be used.

2. GR is acyclic – particular techniques and algorithms can be used. Most semantic

measures defined for acyclic graphs focus on taxonomic relationships defined in

GR and consider the reduction to be the taxonomy of concepts GT . However,

some measures consider a specific subset of R, e.g., R = {isA, partOf}, which also

produces an acyclic graph [Wang et al., 2007]. The measures which can be used

in this case are usually a generalisation of semantic similarity measures designed

for GT .



Chapter 3. Semantic measures based on semantic graph analysis 113

3.4.2 Semantic measures on acyclic graphs

Semantic measures applied to graph-based ontologies were originally designed for tax-

onomies. Since most ontologies are usually composed mainly of taxonomic relationships

or represent poset structures, substantial literature is dedicated to semantic similarity

measures1. In particular, a large diversity of semantic measures focus on GT and have

been defined for the comparison of pairs of concepts. These measures are presented in

details in the following section.

3.5 Semantic similarity between a pair of concepts

The majority of semantic measures framed in the relational setting have been proposed

to assess the semantic similarity or taxonomic distance of a pair of concepts defined in

a taxonomy. Given that they are designed to compare two concepts, these measures are

denoted as pairwise measures in some communities, e.g., bioinformatics [Pesquita et al.,

2009a]. As we will see, extensive literature is dedicated to these measures – they can

be used to compare any pairs of nodes expressed in a graph which defines a (partial)

ordering, that is to say, any graph structured by relationships which are transitive,

reflexive and antisymmetric (e.g., isA, partOf).

In Section 2.2.3.2, we distinguished the main approaches used to compare concepts

defined in a taxonomy. Let us remember those measures which can be applied to acyclic

graphs:

• Measures based on graph structure analysis. They estimate the similarity as

a function of the degree of interconnection between concepts. They are generally

regarded as measures which are framed in the spatial model – the similarity of two

concepts is estimated as a function of their distance in the graph, e.g., based on the

analysis of the lengths of the paths which link the concepts. These measures can

also be considered as being framed in the transformational model by considering

them as functions which estimate the similarity of two concepts regarding the

difficulty to transform one concept to another.

• Measures based on concept features analysis. This approach extracts fea-

tures of concepts from the graph. These features will be subsequently analysed to

estimate the similarity as a function of shared and distinct features of the com-

pared concepts. This approach is conceptually framed in the feature model. The

1According to the literature we consider that semantic measures on GT are necessarily semantic
similarity measure.
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diversity of feature-based measures relies on the diversity of strategies which have

been proposed to characterise concept features, and to take advantage of them in

order to assess the similarity.

• Measures based on Information Theory. Based on a function used to esti-

mate the amount of information carried by a concept, i.e., its Information Content

(IC), these measures assess the similarity w.r.t the amount of information which

is shared and distinct between compared concepts. This approach is framed in

information theory; it can however be seen as a derivative of the feature-based

approach in which features are not compared using a boolean feature-matching

evaluation (shared/not shared), but also incorporate their saliency, i.e. their de-

gree of informativeness.

• Hybrid measures. Measures which are based on multiple paradigms.

The broad classification of measures that we propose is interesting as an introduction to

basic approaches defined to assess the similarity of two concepts – and to put them in

perspective with the models of similarity proposed by cognitive sciences. It is however

challenging to constrain the diversity of measures to this broad classification. It is

important to understand that these four main approaches are highly interlinked and

cannot be seen as disjoint categories. As an example, all measures rely in some sense on

the analysis of the structure of the taxonomy, i.e., they all take advantage of the partial

ordering defined by the (structure of the) taxonomy. These categories must be seen as

devices used by designers of semantic measures to introduce approaches and highlight

relationships between several proposals. Indeed, as we will see, numerous approaches

can be regarded as hybrid measures which take advantage of techniques and paradigms

used to characterise measures of a specific approach. Therefore, the affiliation of a

specific measure to a particular category is often subject to debate, e.g., as it is exposed

in [Batet, 2011b]. This can be partially explained by the fact that several measures

can be redefined or approximated using reformulations, in a way that further challenge

the classification. Indeed, the more you analyse semantic measures, the harder it is to

restrict them to specific boxes; the analogy can be made with the relationship between

cognitive models of similarity1.

Several classifications of measures have been proposed. The most common one is to

distinguish measures according to the elements of the graph that they take into account

[Pesquita et al., 2009a]. This classification distinguishes three approaches: (i) edge-

based – measures focusing on relationship analysis, (ii) node-based – measures based on

node analysis, and (iii) hybrid measures – measures which mix both approaches. In the

1Refer to dedicated Section 1.4 and more particularly to efforts made for the unification of the various
models.
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literature, edge-based measures often refer to structural measures, node-based measures

refer to measures framed in the feature-model and those based on information theory.

Hybrid measures are those which implicitly or explicitly mix several paradigms.

Another interesting way to classify measures is to study whether they are (i) intentional,

i.e., based on the explicit definition of the concepts expressed by the taxonomy, (ii)

extensional, i.e., based on the analysis of the realisations of the concepts (i.e., instances),

or (iii) hybrid, measures which mix both intentional and extensional information about

concepts. Refer to [Aimé, 2011; Gandon et al., 2005]1 for examples of such classifications.

In some cases, authors will mix several types of classifications to present measures. In this

section, we will introduce the measures according to the four approaches presented above:

(i) structural, (ii) feature-based, (iii) framed in information theory, and (iv) hybrid. We

will also specify the extensional, intentional, or hybrid nature of the measures.

Numerous concept-to-concept measures have been defined for trees, i.e. special graphs

without multiple inheritances. In the literature, these measures are generally considered

to be applied as it is on graphs. However, in graphs, some adaptations deserve to be

made and several components of measures generally need to be redefined in order to avoid

ambiguity, e.g., to be implemented on computer software. For the sake of clarity, we

first highlight the diversity of proposals by introducing the most representative measures

defined according to the different approaches. In most cases, measures will be presented

according to their original definitions. When the measures have been defined for trees,

we will not necessarily stress the modifications which must be taken into account for

them to be used on DAGs. These modifications will be discussed after the introduction

of the diversity of measures. For convenience, subClassOf relationships will be denoted

isa (there is no ambiguity with isA since GT only contains concepts).

3.5.1 Structural approach

Structural measures rely on the graph-traversal approaches presented in Section 3.4.1.1

(e.g., shortest path techniques, random walk approaches). They focus on the analysis

of the interconnection between concepts to estimate their similarity. However, most of

the time, they consider specific tuning in order to take into account specific properties

and interpretations induced by the transitivity of the taxonomic relationships. In this

context, some authors, e.g., [Hliaoutakis, 2005], have linked this approach to the spread-

ing activation theory [Collins and Loftus, 1975]. The similarity is in this case seen as a

function of propagation between concepts through the graph.

1In french.
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Back in the eighties, Rada et al. [1989] expressed the taxonomic distance of two concepts

defined in a taxonomic tree as a function of the shortest path linking them1. We denote

sp(u, isa∗, v) the shortest path between two concepts u and v, i.e., the path of minimal

length in {u, isa∗, v}. Remember that the length of a path has been defined as the sum

of the weights associated to the edges which compose the path. When the edges are not

weighted we refer to the edge-counting strategy – the length of the shortest path is the

number of edges it contains. The taxonomic distance is therefore defined by2:

distRada(u, v) = sp(u, isa∗, v) (3.12)

Distance-to-similarity conversions can also be applied to express a similarity from a

distance. A semantic similarity can therefore be defined in a straightforward manner:

simRada(u, v) =
1

distRada(u, v) + 1
(3.13)

Notice the importance of considering the transitive reduction of the tree/graph to obtain

coherent results using measures based on the shortest path. In the following presenta-

tion, we consider that the taxonomy GT doesn’t contain redundant relationships (here

redundancies refer to relationships which can be inferred due to the transitivity of tax-

onomic relationships).

In a tree, the shortest path sp(u, isa∗, v) contains a unique common ancestor of u and v.

This common ancestor is the Least Common Ancestor (LCA)3 of the two concepts ac-

cording to any function θ (since the θ function is monotonically decreasing)4. Therefore,

in trees, we obtain distRada(u, v) = sp(u, isa, LCA(u, v)) + sp(v, isa, LCA(u, v)).

Several issues with the shortest path techniques have been formulated. The edge-

counting strategy, or more generally any shortest path approach with uniform edge

weight, has been criticised for the fact that the distance represented by an edge linking

two concepts does not take concept specificities/salience into account5. Several modifi-

cations have therefore been proposed to break this constraining uniform appreciation of

edges. Implicit or explicit models defining non-uniform strength of connotation between

1It is worth noting that they didn’t invent the notion of shortest path in a graph. In addition, in
Foo et al. [1992], the authors refer to a measure proposed by Gardner et al. [1987] to compare concepts
defined in a conceptual graph using the shortest path technique.

2In this chapter, equations named dist refer to taxonomic distances.
3The Least Common Ancestor is also denoted as the Last Common Ancestor (LCA), the Most Specific

Common Ancestor (MSCA), the Least Common Subsumer/Superconcept (LCS) or Lowest SUPER-
ordinate (LSuper) in the literature.

4Here relies the importance of applying the transitive reduction of the taxonomic graph/tree, redun-
dant taxonomic relationships can challenge this statement and therefore heavily impact the semantics
of the results.

5As an example, Foo et al. [1992] quotes remarks made in Sowa personal communication.
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concepts have therefore been introduced e.g., [Richardson et al., 1994; Sussna, 1993;

Young Whan and Kim, 1990].

One of the main challenges of designers of semantic measures over the years has there-

fore been to refine measures by (implicitly or explicitly) taking advantage of semantic

evidence related to concept specificity and the strength of connotation between con-

cepts. The different strategies and factors used to appreciate concept specificity as well

as strength of connotations have already been introduced in Section 3.3. Another use

of the various semantic evidence which can be extracted from GT has been to normalise

the measures. As an example, Resnik [1995] suggested considering the maximal depth

of the taxonomy to bound the edge-counting strategy:

simResnik−eb(u, v) = 2·depth(GT )−sp(u, isa, LCA(u, v))−sp(v, isa, LCA(u, v)) (3.14)

To simulate non uniform edge weighing, Leacock and Chodorow [1998]1 introduced a

logarithmic transformation of the edge counting strategy:

simLC(u, v) = −log
(

N

2 · depth(GT )

)
= log(2 · depth(GT ))− log(N) (3.15)

with N the cardinality of the union of the sets of nodes involved in the shortest paths

sp(u, isa, LCA(u, v)) and sp(v, isa, LCA(u, v)).

Authors have also proposed taking into account the specificity of compared concepts,

e.g., [Mao and Chu, 2002], sometimes as a function of the depth of their LCA, e.g.,[Pekar

and Staab, 2002; Wang et al., 2012b; Wu and Palmer, 1994]. As an example, Wu and

Palmer [1994] proposed expressing the similarity of two concepts as a ratio taking into

account the shortest path linking the concepts as well as the depth of their LCA.

simWP (u, v) =
2 · depth(LCA(u, v))

2 · depth(LCA(u, v)) + sp(u, isa, LCA(u, v)) + sp(v, isa, LCA(u, v))
(3.16)

This function is of the form:

f(x, y, z) =
x

(x+ (y + z)/2)

with x the depth of the LCA of the two concepts u, v and y+z the length of the shortest

path linking u, v. It is easy to see that for any given non-null length of the shortest

path, this function increases with x; otherwise stated, to a given shortest path length,

simWP (u, v) increases with the depth of LCA(u, v). In addition, as expected, for a given

1Note that according to Resnik [1995], this approach was already proposed in an 1994 unpublished
paper by the same authors [Leacock and Chodorow, 1994].
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depth of the LCA, the longer the shortest path which links u, v, less similar they will

be considered.

Based on a specific expression of the notion of depth, a parameterised expression of

simWP has been proposed in Wang and Hirst [2011]. A variation was also proposed by

Pekar and Staab [2002]:

simPS(u, v) =
depth(LCA(u, v))

sp(u, isa, LCA(u, v)) + sp(v, isa, LCA(u, v)) + depth(LCA(u, v))
(3.17)

Zhong et al. [2002] also proposed comparing concepts taking into account the notion of

depth:

distZhong(u, v) = 2 · 1

2kdepth(LCA(u,v))
− 1

2kdepth(u)
− 1

2kdepth(v)
(3.18)

with k > 1 a factor defining the contribution of the depth.

In a similar fashion, Li et al. [2003, 2006] defined a parametric function in which both

the length of the shortest path and the depth of the LCA are taken into account:

simLB(u, v) = e−αdistRada(u,v) × df(u, v) (3.19)

with,

df(u, v) =
eβh − e−βh

eβh + e−βh

The parameter h corresponds to the depth of the LCA of the compared concepts, i.e.

h = depth(LCA(u, v)). The parameter β > 0 is used to tune the depth factor (df) and

to set the importance given to the degree of specificity of concepts. The function used to

express df corresponds to the hyperbolic tangent which is normalised between 0 and 1.

It defines the degree of non-linearity to associate to the depth of the LCA. In addition,

α ≥ 0 controls the importance of the taxonomic distance expressed as a function of the

length of the shortest path linking the two concepts.

Approaches have also been proposed to modify existing measures in order to obtain

particular properties. As an example, Slimani et al. [2006] proposed an adaptation of

the measure proposed by Wu and Palmer [1994] (Equation 3.16) in order to avoid the

fact that, in some cases, neighbour concepts can be estimated as more similar than

ordered concepts. To this end, the authors introduced simtbk which is based on a factor

used to penalise concepts defined in the neighbourhood:

simtbk(u, v) = simWP (u, v)× pf(u, v) (3.20)
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with,

pf(u, v) = (1−λ)(min(depth(u), depth(v))−depth(GT ))+λ(depth(u)+depth(v)+1)−1

In the same vein [Ganesan et al., 2012; Shenoy et al., 2012] recently proposed alternative

measures answering the same problem. The approach proposed by Shenoy et al. [2012]

is presented1:

simShenoy(u, v) =
2 · depth(GT ) · e−λL/depth(GT )

depth(u) + depth(v)
(3.21)

with L the weight of the shortest path computed by penalising paths with multiple

changes of type of relationships, e.g. a path following the pattern < isa, isa−, isa, . . . >.

Note that the penalisation of paths inducing complex semantics, e.g., which involves

multiple types of relationships, was already introduced in [Bulskov et al., 2002; Hirst

and St-Onge, 1998].

Several approaches have also been proposed to consider density of concepts, e.g., through

analysis of cluster of concepts [Al-Mubaid and Nguyen, 2006]. Other adaptations also

proposed taking into account concepts’ distance to leaves [Wu et al., 2006], and variable

strengths of connotation considering particular strategies [Lee et al., 1993; Zhong et al.,

2002], e.g., using IC variability among two linked concepts or multiple topological criteria

[Alvarez et al., 2011; Jiang and Conrath, 1997].

In terms of the spreading activation theory, measures have also been defined as a function

of transfer between the compared concepts [Schickel-Zuber and Faltings, 2007]. Wang

et al. [2007] use a similar approach based on a specific definition of the strength of

connotation. Finally, pure graph-based approaches defined for the comparison of nodes

can also be used to compare concepts defined in a taxonomy (refer to Section 3.4.1.1).

As an example, Garla and Brandt [2012] and Yang et al. [2012] define semantic similarity

measures using random walk techniques such as the personalised page rank approach.

As we have seen, most structural semantic similarity measures are extensions or refine-

ments of the intuitive shortest path distance considering intrinsic factors to consider

both the specificity of concepts and variable strengths of connotations. Nevertheless,

the algorithmic complexity of the shortest path algorithms hampers the suitability of

these measures for large semantic graphs2. To remedy this problem, we have seen that

shortest path computation can be substituted by approximation based on the depth

1Note that we assume that the paper contains an error in the equation defining the measure. The
formula is considered to be X/(Y + Z), not X/Y + Z as written in the paper.

2A linear algorithm in O(C + E) exists for DAGs; nevertheless search for sp(u, isa∗, v) requires the
consideration of cyclic graphs for which algorithms, such as Dijkstra’s, are in O(C2) or O(E +C · logC)
using sophisticated implementation.
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of the LCA of the compared concepts1, and that several measures proposed by graph

theory can be used instead.

Towards other estimators of semantic similarity

Most criticisms related to the initial edge-counting approach were linked to the uniform

consideration of edge weights. As we have seen, to remedy this, several authors proposed

considering a great deal of semantic evidence to differentiate strengths of connotation

between concepts.

One of the central findings conveyed by early developments in structure-based measures

is that the similarity function can be broken down into several components, in partic-

ular those distinguished by the feature model: commonality and difference. Indeed,

the shortest path between two concepts can be seen as the difference between the two

concepts (considering that all specialisation add properties to a concept). More partic-

ularly, in trees, or under specific constraints in graphs, we have seen that the shortest

path linking two concepts contains their LCA. It can therefore be broken down into two

parts corresponding to the shortest paths which link compared concepts to their LCA: in

most cases, sp(u, isa∗, v) = sp(u, isa, LCA(u, v)) + sp(v, isa, LCA(u, v)). Therefore, the

LCA can be seen as a proxy which partially summarises the commonality of compared

concepts2. Distances between compared concepts and their LCA can therefore be used

to estimate their differences.

The fact that measures can be broken down into specific components evaluating com-

monalities and differences is central in the design of the approaches which will further be

introduced: the feature-based strategy and the information theoretical strategy. As we

will see, they mainly define alternative strategies to characterise compared concepts in

order to express semantic measures as a function of their commonalities and differences.

1The algorithmic complexity of the LCA computation is significantly lower than the computation of
the shortest path: constant after linear preprocessing [Harel and Tarjan, 1984].

2The LCA only partially summarises commonality. Indeed, it can only be considered as an upper-
bound of the commonality since highly similar concepts (Man, Women) may have a general concept for
LCA (LivingBeing). This LCA will only encompass a partial amount of their commonalities. Please
refer to Section 3.3.2. In addition, notice that in some cases the set of NCCAs contains other concepts
than the LCA.
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3.5.2 Feature-based approach

The feature-based approach generally refers to measures which rely on a taxonomic

interpretation of the feature model proposed by Tversky [1977] (introduced in Section

1.4.2). However, as we will see, contrary to the original definition of the feature model,

this approach is not necessarily framed in set theory1.

The main idea is to represent concepts as collections of features, i.e., characteristics

describing the concepts, to further express measures based on the analysis of their com-

mon and distinct features. The score of the measures will only be influenced by the

strategy adopted to characterise concept features2, and the strategy adopted for their

comparison.

As we will see, the reduction of concepts to collections of features makes it possible to

set the semantic similarity estimation back in the context of classical binary similarity

or distance measures (e.g., set-based measures).

An approach commonly used to represent the features of a concept is to consider its

ancestors as features3. We denote A(u) the set of ancestors of the concept u. Since

the Jaccard index that was proposed 100 years ago, numerous binary measures have

been defined in various fields. A survey of these measures distinguishes 76 of them in

Choi et al. [2010]. Considering that the features of a concept u are defined by A(u), an

example of a semantic similarity measure expressed from the Jaccard index was proposed

in Maedche and Staab [2001]4:

simCMatch(u, v) =
|A(u) ∩A(v)|
|A(u) ∪A(v)|

(3.22)

Another example of a set-based expression of the feature-based approach is proposed in

Bulskov et al. [2002]:

simBulskov(u, v) = α
|A(u) ∪A(v)|
|A(u)|

+ (1− α)
|A(u) ∪A(v)|
|A(v)|

(3.23)

with α ∈ [0, 1] a parameter used to tune the symmetry of the measure.

1You will recall that the feature matching function on which the feature model is based, relies on
binary evaluations of the features “In the present theory, the assessment of similarity is described as a
feature-matching process. It is formulated, therefore, in terms of the set-theoretical notion of a matching
function rather than in terms of the geometric concept of distance” [Tversky and Itamar, 1978].

2As stressed in Schickel-Zuber and Faltings [2007], there is a narrow link with the multi-attribute
utility theory [Keeney, 1993] in which the utility of an item is a function of the preference on the
attributes of the item.

3Its implicit senses if the concept refers to a synset.
4This is actually a component of a more refined measure.
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Rodŕıguez and Egenhofer [2003] also proposed a formulation derived from the ratio model

defined by Tversky (introduced in Section 1.4.2):

simRE(u, v) =
|A(u) ∩A(v)|

γ|A(u) \A(v)|+ (1− γ)|A(v) \A(u)|+ |A(u) ∩A(v)|
(3.24)

with γ ∈ [0, 1], a parameter that enables the tuning of the symmetry of the measure.

Sánchez et al. [2012a] define the taxonomic distance of two concepts as a function of the

ratio between their distinct and shared features:

distSanchez(u, v) = log2

(
1 +

|A(u) \A(v)|+ |A(v) \A(u)|
|A(u) \A(v)|+ |A(v) \A(u)|+ |A(u) ∩A(v)|

)
(3.25)

Various refinements of these measures have been proposed, e.g., to enrich concept fea-

tures by taking their descendants into account [Ranwez et al., 2006].

The feature-based measures may not be intentional, i.e., they are not expected to solely

rely on the knowledge defined in the taxonomy. When instances of the concepts are

known, the feature of a concept can also be seen by extension and be defined on the

basis of instances associated to concepts. As an example, the Jaccard index can be used

to compare two ordered concepts according to their shared and distinct features, here

characterised by extension:

simJacExt(u, v) =
|I(u) ∩ I(v)|
|I(u) ∪ I(v)|

(3.26)

with I(u) ⊆ I the set of instances of the concept u. Note that this approach makes no

sense if the desire is to compare concepts which are not ordered – the set I(u) ∩ I(v)

will tend to be empty.

D’Amato et al. [2008] also define an extensional measures considering:

simD′Amato(u, v) =
min(|I(u)|, |I(v)|)
|I(LCA(u, v))|

(
1− |I(LCA(u, v))|

|I|

)(
1− min(|I(u)|, |I(v)|)

|I(LCA(u, v))|

)
(3.27)

Classical feature-based measures summarise the features of a concept through a set

representation which generally corresponds to a set of concepts or instances. However,

alternative approaches can also be explored. Therefore, even if, to our knowledge, such

approaches have not been defined, the features of a concept could also be represented

as a set of relationships, as a subgraph, etc.
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In addition, regardless of the strategy adopted to characterise the features of a concept

(other concepts, relationships, instances), the comparison of the features is not necessar-

ily driven by a set-based measure. Indeed, the collections of features can also be seen as

vectors. As an example, a concept u can be represented by a vector U in a chosen real

space of dimension |C|, e.g., considering that each dimension associated to an ancestor

of u is set to 1. Vector-based measures will evaluate the distance of two concepts by

studying the coordinates of their respective projections.

In this vein, Bodenreider et al. [2005] proposed the comparison of two concepts according

to their representation through the Vector Space Model. Considering a concept-to-

instance matrix, a weight corresponding to the IC1 of the concept u is associated to the

cell (u, i) of the matrix if the instance i ∈ I(u). The vectors representing two concepts

are then compared using the classical dot product of the vectors, e.g., discussed in

[Salton, 1968].

3.5.3 Information theoretical approach

The information theoretical approach relies on Shannon’s information theory [Shannon,

1948]. As with the feature-based strategy, these measures rely on the comparison of

two concepts according to their commonalities and differences, here defined in terms

of information. This approach formally introduces the notion of salience of concepts

through the definition of their informativeness – Information Content (IC) – Section

3.3.2 introduces the notion of IC.

Resnik [1995] defines the similarity of a couple of concepts as a function of the IC of

their common ancestor which maximises an IC function (originally eIC), i.e., their Most

Informative Common Ancestor (MICA).

simResnik(u, v) = IC(MICA(u, v)) (3.28)

Resnik’s measure doesn’t explicitly capture the specificities of compared concepts. In-

deed, pairs of concepts with an equivalent MICA will have the same semantic similarity,

whatever their respective ICs. To correct this limitation, several authors refined the

measure proposed by Resnik to incorporate specificities of compared concepts. We here

present the measures proposed by Lin [1998]2 – simLin , [Jiang and Conrath, 1997] –

distJC , [Mazandu and Mulder, 2013] – simNunivers, [Pirró, 2009; Pirró and Seco, 2008]

1Originally the authors used the IDF but we saw that both the IC and the IDF are similar (Section
3.3.2.2).

2Originally defined as: simLin(u, v) = 2×log(MICA(u,v))
log(u)+log(v)
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– simPSec and [Pirró and Euzenat, 2010b] – simFaith:

simLin(u, v) =
2 · IC(MICA(u, v))

IC(u) + IC(v)
(3.29)

distJC(u, v) = IC(u) + IC(v)− 2 · IC(MICA(u, v)) (3.30)

simNunivers(u, v) =
IC(MICA(u, v))

max(IC(u), IC(v))
(3.31)

simPSec(u, v) = 3 · IC(MICA(u, v))− IC(u)− IC(v) (3.32)

simFaith(u, v) =
IC(MICA(u, v))

IC(u) + IC(v)− IC(MICA(u, v))
(3.33)

Taking into account specificities of compared concepts can lead to high similarities (low

distances) when comparing general concepts. As an example, when comparing general

concepts using simLin, the maximal similarity will be obtained comparing a (general)

concept to itself. In fact, the identity of the indiscernibles is generally ensured (except

for the root which generally has an IC equal to 0). However, some treatments require this

property not to be respected. Authors have therefore proposed to lower the similarity of

two concepts according to the specificity of their MICA, e.g. [Li et al., 2010; Schlicker

et al., 2006]. The measure proposed by Schlicker et al. [2006] is presented:

simRel(u, v) = simLin(u, v)× (1− p(MICA(u, v))) (3.34)

with p(MICA(u, v)) the probability of occurrence of the MICA. An alternative approach

proposed by Li et al. [2010] relies on the IC of the MICA and can therefore be used

without extensional information on concepts, i.e., using an intrinsic expression of the

IC.

Authors have also proposed to characterise the information carried by a concept by

summing the ICs of its ancestors [Cross and Yu, 2011; Mazandu and Mulder, 2011]:

simMazandu(u, v) =
2 ·
∑

c∈A(u)∩A(v) IC(c)∑
c∈A(u) IC(c) +

∑
c∈A(v) IC(c)

(3.35)

simJacAnc(u, v) =

∑
c∈A(u)∩A(v) IC(c)∑
c∈A(u)∪A(v) IC(c)

(3.36)



Chapter 3. Semantic measures based on semantic graph analysis 125

These measures can also be considered as hybrid strategies between the feature-based

and information theory approaches. One can consider that these measures rely on a

redefinition of the way to characterise the information conveyed by a concept (by sum-

ming the IC of the ancestors). Other interpretations can simply consider that features

are weighted. Thus, following the set-based representations of features, authors have

also studied these measures as fuzzy measures [Cross, 2004, 2006; Cross and Sun, 2007;

Cross and Yu, 2010, 2011; Popescu et al., 2006], e.g., defining the membership function

of a feature corresponding to a concept as a function of its IC.

Finally, other measures based on information theory have also been proposed, e.g.,

[Cazzanti and Gupta, 2006; Maguitman and Menczer, 2005; Maguitman et al., 2006]. As

an example, in Maguitman and Menczer [2005] the similarity is estimated as a function

of prior and posterior probability regarding instances and concept membership.

3.5.4 Hybrid approach

Other techniques take advantage of the various aforementioned paradigms. Among

the numerous proposals, [Bin et al., 2009; Jiang and Conrath, 1997] defined measures

in which density, depth, strength of connotation and ICs of concepts are taken into

account. We present the measure proposed by Jiang and Conrath [1997]1. The strength

of association w(u, v) between two concepts u, v is defined as follows:

w(u, v) = (β + (1− β))
dens

|children(v)|
×
(
depth(v) + 1

depth(v)

)α
× (IC(u)− IC(v))× T (u, v)

The factor dens refers to the average density of the whole taxonomy, see Jiang and

Conrath [1997] for details. The factors α ≥ 0 and β ∈ [0, 1] control the importance

of the density factor and the depth respectively. T (u, v) defines weights associated to

predicates. Finally, the similarity is defined by the weight of the shortest path which

links compared concepts and which contains their LCA:

distJC−Hybrid(u, v) =
∑

(s,p,o)∈sp(u,isa,LCA(u,v))∪sp(v,isa,LCA(u,v))

w(s, o)

Defining α = 0, β = 1 and T (u, v) = 1, we obtain the information theoretical measure

proposed by the same authors, i.e., distJC(u, v) = IC(u) + IC(v)− 2 · IC(MICA(u, v))

(Equation 3.30).

1This measure is a parametric distance. Couto et al. [2003] discuss the implementation, Othman
et al. [2008] propose a genetic algorithm which can be used to tune the parameters and Wang and Hirst
[2011] propose a redefinition of the notion of depth and density initially proposed.
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Singh et al. [2013] proposed a mixing strategy based on [Jiang and Conrath, 1997] IC-

based measure distJC . They consider transition probabilities between concepts relying

on a depth-based estimation of the strength of connotation.

Rodŕıguez and Egenhofer [2003] also proposed mixing a feature-based approach consid-

ering structural properties such as the concepts’ depth. Finally, Paul et al. [2012] defined

multiple measures based on an aggregation of several existing measures.

3.5.5 Considerations when comparing concepts in semantic graphs

Several measures introduced in the previous sections were initially defined to compare

concepts expressed in a tree. However, despite the fact that this subject is almost never

discussed in the literature, several considerations must be taken into account in order

to estimate the similarity of concepts defined in a semantic graph [Blanchard, 2008]1 –

please refer to notations introduced in Section 3.2.

3.5.5.1 Shortest path

A tree is a specific type of graph in which multiple inheritances cannot be encountered,

i.e. ∀c ∈ C, |parents(c)| < 2. This implies that two concepts u, v which are not ordered

will have no common descendants, i.e., G−T (u) ∩ G−T (v) = ∅. Therefore, if there is no

redundant taxonomic relationship, the shortest path which links u, v always contains a

single common ancestor of u, v: LCA(u, v). However, in a graph, since two non-ordered

concepts u, v can have common descendants, i.e., G−T (u)∩G−T (v) 6= ∅, the shortest path

which links u, v can in some cases not contain one of their common ancestors. Figure

3.5 illustrates the modifications induced by multiple inheritances.

In Figure 3.5, the shortest path linking the two non-ordered concepts C5 and C7 in the

tree (i.e. without considering red dotted edges) is [C5−C3−C1−Root−C2−C4−C7].

However, if we consider multiple inheritances (red dotted edges), it is possible to link C5

and C7 through paths which do not contain one of their common ancestors, e.g., [C5−
C3−C6−C4−C7] or even [C5−C8−C7]. The shortest path which contains a common

ancestor of the compared concepts is defined in the search space corresponding to the

graphG+
T (u)∪G+

T (v). In practice, despite the fact that in most graphsG−T (u)∩G−T (v) 6= ∅
(for two non-ordered concepts), it is commonly admitted that the shortest path must

contain a single ancestor of the two compared concepts. Given this constraint, the

edge-counting taxonomic distance of u and v in G+
T (u)∪G+

T (u) is generally (implicitly2)

defined by: distSP (u, v) = sp(u, isa, LCA(u, v)) + sp(v, isa, LCA(u, v)).

1In french.
2Generalisation of measures defined from trees to graphs is poorly documented in the literature.
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Figure 3.5: The graph composed of the plain (blue) edges is a taxonomic tree, i.e.,
it doesn’t contain concepts with multiple parents. If the (red) dotted relationships are

also considered, the graph is a directed acyclic graph (e.g., a taxonomic graph)

Note that when non comparable common ancestors (NCCAs) are shared between com-

pared concepts, the ancestor which maximises the similarity is expected to be considered.

Depending on the θ function which is used, the shortest path doesn’t necessarily involve

the concept of the NCCAs which maximise θ, e.g. the deeper in the taxonomy. As an

example, in order to distinguish which NCCA to consider, Schickel-Zuber and Faltings

[2007] took into account a mix between depth and reinforcement (number of different

paths leading from one concept to another).

Nevertheless, the shortest path techniques can also be relaxed to consider paths which

do not involve common ancestors or which involve multiple common ancestors:

simSP−R(u, v) =
1

sp(u, isa∗, v) + 1



Chapter 3. Semantic measures based on semantic graph analysis 128

3.5.5.2 Notion of depth

The definition of the notion of depth must also be reconsidered when the taxonomy is

not a tree. Remember that, in a tree without redundancies, the depth of a concept has

been defined as the length of the shortest path linking the concept to the root. The

depth of a concept is a simple example of specificity estimator. In a tree, this estimator

makes perfect sense since the depth of a concept is directly correlated to its number of

ancestors since depth(c) = |A(c)| − 1.

In a graph, or in a tree with redundant taxonomic relationships, we must ensure that the

depth is monotonically decreasing according to the ordering of concepts. As an example,

to apply depth-based measures to graphs, we must ensure that depth(LCA(u, v)) is lower

or equal to both depth(u) and depth(v). To this end, the maximal depth of a concept

must be used, i.e., the length of the longest path in {u, isa,>}, denoted lp(u, isa,>).

As an example, the measure proposed by Pekar and Staab [2002] – Equation 3.17 – is

therefore implicitly generalised to:

simPS−G(u, v) =
lp(LCA(u, v), isa,>)

lp(u, isa, LCA(u, v)) + lp(v, isa, LCA(u, v)) + lp(LCA(u, v), isa,>)

3.5.5.3 Notion of least common ancestors

Most measures which have been presented take advantage of the notions of LCA or

MICA. However, in graphs, these measures do not consider the whole set of NCCAs –

denoted Ω(u, v) for the concepts u and v. To remedy this, several authors have proposed

adaptations of existing measures. As an example, Couto and Silva [2011]; Couto et al.

[2005] proposed GraSM and DiShIn strategies.

In [Couto et al., 2005] the authors proposed the modification of information theoretical

measures based on the notion of MICA. The authors recommended substituting the IC

of the MICA by the average of the ICs of the concepts which compose the set of NCCAs.

A redefinition of the measure proposed by [Lin, 1998] – Equation 3.29 – is presented:

simLin−GraSM (u, v) =
2 ·

∑
c∈Ω(u,v) IC(c)

|Ω(u,v)|

IC(u) + IC(v)
(3.37)

=
2 ·
∑

c∈Ω(u,v) IC(c)

|Ω(u, v)| × (IC(u) + IC(v))
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Wang et al. [2012b] also proposed averaging the similarity between the concepts accord-

ing to their multiple NCCAs:

simWang(u, v) =

∑
a∈Ω(u,v)

2·depth(a)2

da(>,u)×da(>,v)

|Ω(u, v)|

With da(>, u) the average length of the set of paths which contain the concept a and

which link the concept u to the root of the taxonomy (>).

As we have underlined, numerous approaches have been defined to compare pairs of

concepts defined in a taxonomy, these measures can be used to compare any pair of

nodes defined in a poset. Table 3.2 to Table 3.5 present some properties of a selection

of measures defined to compare pairs of concepts.

3.5.6 List of pairwise semantic similarity measures

Several semantic measures which can be used to compare concepts defined in a taxonomy

or any pair of elements defined in a poset. Measures are ordered according to their date of

publication. Other contributions studying some properties of pairwise measures can be

found in Slimani [2013]; Yu [2010]. IOI: Identify of the Indiscernibles. Some of the values

associated to specific measures have not been complete yet. This is generally because

the reference associated to the measure was not available or because the properties of

the measure are still under study.
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3.6 Semantic similarity between groups of concepts

Two main approaches are commonly distinguished to introduce semantic similarity mea-

sures designed for the comparison of two sets of concepts, i.e., groupwise measures:

• Direct approach, the measures which can be used to directly compare the sets of

concepts according to information characterising the sets w.r.t the information

defined in the taxonomy.

• Indirect approach, the measures which assess the similarity of two sets of concepts

using one or several pairwise measures, i.e. measures designed for the comparison

of a pair of concepts. They are generally simple aggregations of the scores of

similarities associated to the pairs of concepts defined in the Cartesian product of

the two compared sets.

Note that the sets are generally expected to not contain semantically redundant concepts,

i.e., they do not contain any pair of ordered concepts – ∀(u, v) ∈ X,u � v ∧ v � u.

Once again, a large diversity of measures have been proposed, some of which are pre-

sented in the next subsections.

3.6.1 Direct approach

The direct approach corresponds to a generalisation of the approaches defined for the

comparison of pairs of concepts in order to compare two sets of concepts. It is worth

noting that classical set-based approaches can be used. The sets can also be compared

through their vector representations, e.g., using the cosine similarity measure. Neverthe-

less, these measures are in most cases not relevant to be used considering the semantics

they convey – they do not take into account the similarity of the elements composing

compared sets1, e.g., sim({Man, Girl}, {Women, Boy}) = 0.

3.6.1.1 Structural approach

Considering G+
T (X) as the graph induced by the union of the ancestors of the concepts

which compose the set X, Gentleman [2007] defined the similarity of two sets of concepts

(U, V ) according to the length of the longest sp(c, isa,>) which links the concept c ∈
G+
T (U) ∩G+

T (V ) to the root (>).

1These simple approaches are generally used when the compared sets contain semantically redundant
concepts.
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3.6.1.2 Feature-based approach

The feature-based measures are characterised by the approach adopted to express the

features of a set of concepts.

Several measures have been proposed from set-based measures. We introduce simUI

[Gentleman, 2007]1, and the Normalised Term Overlap measure simNTO [Mistry and

Pavlidis, 2008]. For convenience, we consider C+
T (X) as the set of concepts contained in

G+
T (X):

simUI(U, V ) =
|C+
T (U) ∩ C+

T (V )|
|C+
T (U) ∪ C+

T (V )|
(3.38)

simNTO(U, V ) =
|C+
T (U) ∩ C+

T (V )|
min(|C+

T (U)|, |C+
T (V )|)

(3.39)

3.6.1.3 Information theoretical measures

Among others, Pesquita et al. [2007] proposed considering the information content of

the concepts (originally an eIC expression):

simGIC(U, V ) =

∑
c∈C+

T (U)∩C+
T (V ) IC(c)∑

c∈C+
T (U)∪C+

T (V ) IC(c)
(3.40)

3.6.2 Indirect approach

In Section 3.5, we introduced numerous measures for comparing a pair of concepts

(pairwise measures). They can be used to drive the comparison of sets of concepts.

3.6.2.1 Improvements of direct measures using concept similarity

One of the main drawbacks of basic vector-based measures is that they consider di-

mensions as mutually orthogonal and do not exploit concept relationships. In order to

remedy this, vector-based measures have been formulated to:

• Weigh dimensions considering concept specificity evaluations (e.g., IC) [Benabder-

rahmane et al., 2010b; Chabalier et al., 2007; Huang et al., 2007].

• Exploit an existing pairwise measure to perform vector products [Benabderrah-

mane et al., 2010b; Ganesan et al., 2003].

1Also published through the name Term Overlap (TO) in Mistry and Pavlidis [2008].
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Therefore, pairwise measures can be used to refine the measures proposed to compare

sets of concepts using a direct approach.

3.6.2.2 Aggregation strategies

A two-step indirect strategy can also be adopted in order to take advantage of pairwise

measures to compare sets of concepts:

1. The similarity of pairs of concepts obtained from the Cartesian product of the two

compared sets has to be computed.

2. Pairwise scores are then summarised using an aggregation strategy, also called

mixing strategy in the literature.

Classic aggregation strategies can be applied (e.g. max, min, average); more refined

strategies have also been proposed. Among the most commonly used we present: Max

average (Max-Avg), Best Match Max – BMM [Schlicker et al., 2006] and Best Match

Average – BMA [Pesquita et al., 2008]:

simAvg(U, V ) =

∑
u∈U

∑
v∈V sim(u, v)

|U | × |V |
(3.41)

simMax−Avg(U, V ) =
1

|U |
∑
u∈U

maxv∈V sim(u, v) (3.42)

simBMM (U, V ) = max(simMax−Avg(U, V ), simMax−Avg(V,U)) (3.43)

simBMA(U, V ) =
simMax−Avg(U, V ) + simMax−Avg(V,U)

2
(3.44)

3.6.3 List of groupwise semantic similarity measures
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Indirect Groupwise Measures (Mixing strategy)

Mixing strategies Range IOI

Classic approaches Max/Min/AVG, etc.
depends dependsBest Match Max (BMM)

Best Match Average [Azuaje et al., 2005]

Table 3.8: Semantic similarity measures or taxonomic distances designed using an
indirect approach (mixing strategy). These measures can be used to compare a pair of
groups of concepts defined in a taxonomy or any pair of group of elements defined in a

partially ordered set

3.7 Challenges

In the light of the state-of-the-art of the large diversity of semantic measures presented

in this chapter, and based on the survey presented in [Harispe et al., 2013c], this section

highlights some of the challenges faced by the communities involved in the study of

semantic measures.

3.7.1 Better characterise semantic measures and their semantics

Throughout the introduction of semantic measures, we have stressed the importance of

controlling their semantics, i.e., the meaning of the scores they produce. This particular

aspect is of major importance since the semantics of measures must explicitly be under-

stood by end-users: it conditions the relevance to use a specific measure in a particular

context.

Nevertheless, the semantics of semantic measures is generally not discussed in proposals

(except some broad distinction between the notion of semantic similarity and related-

ness). However, semantic similarity based on taxonomies can have different meanings

depending on the assumptions on which they rely. In this introduction, we have under-

lined that the semantics associated to semantic measures can only be understood w.r.t:

(i) the semantic proxy used to support the comparison, (ii) the mathematical properties

associated to the measures, and (iii) the semantic evidence and assumptions on which

the measures are based.

The semantics of the measures can therefore only be captured if a deep characterisation

of semantic measures is provided. In recent decades, researchers have mainly focused

on the design of semantic measures, and despite the central role of the semantics of

semantic measures, few contributions have focused on this specific aspect. This can be

partially explained by the fact that numerous semantic measures have been designed in

order to mimic human appreciation of semantic similarity/relatedness. In this case, the
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semantics to be carried by the measures is expected to be implicitly constrained by the

benchmarks used to evaluate the accuracy of measures. Nevertheless, despite evaluation

protocols based on ad hoc benchmarks being relevant to compare semantic measures in

specific contexts of use, they do not give access to a deep understanding of measures

and therefore do not sufficiently provide the information needed to take advantage of

semantic measures in other contexts of use.

There are numerous implications involved in a better characterisation of semantic mea-

sures. We have already stressed its importance for the selection of semantic measures

in specific contexts of use. Such a characterisation could also benefit cognitive sciences.

Indeed, as we saw in Section 1.4, cognitive models aiming to explain human appreciation

of similarity have been supported by the study of properties expected by the measures.

As an example, remember that spatial models have been challenged according to the fact

that human appreciation of similarity has proven not to be in accordance with axioms

of distance. Therefore, characterising: (i) which semantic measures best performed ac-

cording to human expectations of semantic similarity/relatedness and (ii) the properties

satisfied by these measures could help cognitive scientists to improve existing models of

similarity or to derive more accurate ones.

In [Harispe et al., 2013c], we have proposed an overview of the various semantic measures

which have been proposed to compare units of language, concepts or instances which are

semantically characterised. In Chapter 2, we distinguished various aspects of semantic

measures which must be taken into account for their broad classification:

• The types of elements which can be compared.

• The semantic proxies used to extract semantic evidence on which the measures

will be based.

• The canonical form adopted to represent the compared elements and therefore

enable the design of algorithms for their comparison.

In Section 2.1.3, we recalled some of the mathematical properties which can be used to

further characterise semantic measures. In Section 2.1.2, based on the several notions

introduced in the literature, we proposed a characterisation of the general semantics

which can be associated to semantic measures (e.g., similarity, relatedness, distance,

taxonomic distance). Finally, throughout this introduction, and particularly in Section

3.3, we distinguished extensive semantic evidence on which semantic measures can be

based, and we underlined the assumptions associated to their consideration.

We encourage designer of semantic measures to provide an in-depth characterisation of

measures they propose. To this end, they can use the various aspects and properties of

the measures distinguished in our survey. We also encourage the communities involved
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in the study of semantic measures to better define a good semantic measure and exactly

what makes one measure better than another. Within this goal, the study of the role

of contexts seems to be of major importance. Indeed, as discussed in [Harispe et al.,

2013c], the accuracy of measures can only be discussed w.r.t specific expectations of

measures. Several other properties of measures could also be taken into account and

further investigated:

• Algorithmic complexity.

• Degree of control on the semantics of the scores produced by the measures.

• The trust which can be associated to a score.

• The robustness of a measure, i.e., the capacity for a measure to produce robust

scores considering the uncertainty associated to expected scores, or disturbances

of the semantic proxies on which the measure relies (modification of the ontologies,

corpus modifications).

• The discriminative power of the measure, i.e., the distribution of the scores pro-

duced by a measure.

3.7.2 Provide tools for the study of semantic measures

The communities studying and using semantic measures require software solutions,

benchmarks, and theoretical tools to compute, compare and analyse semantic measures.

3.7.2.1 Develop benchmarks

There are a host of benchmarks for evaluating semantic similarity and relatedness

[Harispe et al., 2013c]. Most of them aim at evaluating the accuracy of semantic mea-

sures according to human appreciation of similarity/relatedness. For the most part, they

are composed of a reduced number of entries, e.g., pairs of words/concepts, and have

been computed using a reduced pool of subjects.

Initiatives for the development of benchmarks must be encouraged in order to obtain

larger benchmarks in various domains of study. Word-to-word benchmarks must be con-

ceptualised (as much as possible)1 in order for them to be used to evaluate knowledge-

based semantic measures. It is also important to propose benchmarks which are not

based on human appreciation of similarity, i.e., benchmarks relying on an indirect evalu-

ation strategy – evaluations based on the analysis of the performance of processes which

rely on semantic measures [Harispe et al., 2013c].

1E.g. using DBpedia URIs.



Chapter 3. Semantic measures based on semantic graph analysis 148

3.7.2.2 Develop generic open-source software

In [Harispe et al., 2013c], we proposed an overview of the main software solutions ded-

icated to semantic measures. They are of major importance to: (i) ease the use of the

theoretical contributions related to semantic measures, (ii) support large scale compar-

isons of measures and therefore (iii) better understand the measures and (iv) develop

new proposals.

Software solutions dedicated to distributional measures are generally developed without

being restricted to a specific corpus of texts. They can therefore be used in a large

diversity of contexts of use, as long as the semantic proxy considered corresponds to a

corpus of texts.

Software solutions dedicated to knowledge-based semantic measures are generally devel-

oped for a specific domain (e.g., refer to the large number of solutions developed for the

Gene Ontology alone [Harispe et al., 2013c]). Such a diversity of software is limiting

for designers of semantic measures since implementations made for a specific ontology

cannot be reused in applications relying on others ontologies. In addition, it hampers

the reproducibility of results since some of our experiments have shown that specific

implementations tend to produce different results1. In this context, we encourage the

development of generic open-source software solutions which are not restricted to spe-

cific ontologies. This is challenging since the formalism used to express ontologies is not

always the same and specificities of particular ontologies sometimes deserve to be taken

into account in order to develop semantic measures. However, there are several cases in

which generic software can be developed. As an example, numerous knowledge-based

semantic measures rely on data structures corresponding to poset or more generally se-

mantic graphs. Other measures are designed to take advantage of ontologies expressed in

standardised languages such as RDF(S), OWL. Generic software solutions can be devel-

oped to encompass these cases. Reaching such a goal could open interesting perspectives.

Indeed, based on such generic and robust software supported by several communities,

domain specific tools and various programming language interfaces can subsequently be

developed to support specific use cases and ontologies.

The diversity of software solutions is also beneficial as it generally stimulates the devel-

opment of robust solutions. Therefore, another interesting initiative, complementary to

the former, could be to provide generic and domain specific tests to facilitate both the

development and the evaluation of software solutions. Such tests could for instance be

expected scores of semantic measures for a reduced example of a corpus/ontology. This

1This will be discussed in Chapter 8.
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specific aspect is important in order to standardise software solutions dedicated to se-

mantic measures and to ensure the users of specific solutions that the score produced by

measure implementations are in accordance with the original definitions of the measures.

As discussed in [Harispe et al., 2013c], the evaluation of semantic measures is mainly gov-

erned by empirical studies used to assess their accuracy according to expected scores/be-

haviours of the measures. Therefore, the lack of open-source software solutions imple-

menting a large diversity of measures hampers the study of semantic measures. It ex-

plains, for instance, that evaluations of measures available in the literature only involve

the comparison of a subset of measures which is not representative of the diversity of

semantic measures available today. Initiatives aiming at developing robust open-source

software solutions which give access to a large catalogue of measures must therefore be

encouraged. It is worth noting the importance of these solutions being open-source.

Our communities also lack open-source software dedicated to the evaluation of seman-

tic measures. Indeed, despite some initiatives in specific domains1, evaluations are not

made through a common framework as is done in most communities, e.g. information

retrieval [NIST, 2012; Voorhees and Harman, 2005], ontology alignment [Euzenat and

Shvaiko, 2013; Grau et al., 2013].

3.7.2.3 Develop theoretical tools

It is currently difficult to study the overwhelming amount of proposed semantic mea-

sures, e.g., deriving the interesting properties of measures requires the analysis of each

measure. However, as we will see in the following chapter, several initiatives have pro-

posed theoretical tools to ease the characterisation of measures, e.g., by means of measure

unification in some cases. These contributions open interesting perspectives on study-

ing groups of measures. They are also essential to better understand the limitation of

existing measures and the benefits of new proposals. Finally, they are central to dis-

tinguishing the main components on which measures rely, and to improve families of

semantic measures based on this characterisation.

3.7.3 Standardise ontology handling

In Appendix A, we discuss the process required to transform an ontology to a semantic

graph, a data structure commonly adopted to compute semantic measures. Such a pro-

cess is currently overly subject to interpretations and deserves to be carefully discussed

1E.g., CESSM to evaluate semantic measures designed for the Gene Ontology [Pesquita et al., 2009b].
Note that this solution is not open-source, it can therefore not be used to support large scale evaluations
and it is impossible to reproduce experiments and conclusions derived from them.
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and formalised. Indeed, as an example, we stress that numerous measures consider

ontologies as semantic graphs despite the fact that the formalism on which some ontolo-

gies rely cannot be mapped to semantic graphs without reductions – this is the case for

some expressive logic-based ontologies. The impact of such a reduction of ontologies is

of major importance since it can highly impact semantic measure results1. The treat-

ment performed to map an ontology to a semantic graph is generally not documented,

which explains some of the difficulties encountered to reproduce the results of some

experiments.

3.7.4 Promote interdisciplinarity

From cognitive sciences to biomedical informatics, the study of semantic measures in-

volves numerous communities. Efforts have to be made to promote interdisciplinary

studies and to federate the contributions made in the various fields. We briefly pro-

vide a non-exhaustive list of the main communities involved in semantic measure study

and the communities/fields of study which must be relevant to solicit to further analyse

semantic measures. The list is alphabetically ordered and may not be exhaustive:

• Biomedical Informatics and Bioinformatics: very active in the definition and study

of semantic measures, these communities are also active users of semantic measures.

• Cognitive Sciences: propose cognitive models of similarity and mental representa-

tions which can be used to (i) improve the design of semantic measures and (ii)

better understand human expectations w.r.t similarity/relatedness. These com-

munities can also use empirical evaluation studies of semantic measures to discuss

the cognitive models they propose.

• Complexity Theory : important field of study which is essential to analyse com-

plexity of semantic measures.

• Geoinformatics: defines and studies semantic measures. Members of this commu-

nity are also active users of semantic measures.

• Graph Theory : several major contributions relative to graph processing have been

proposed in this domain. Such theoretical works are essential for the optimisation

of measures relying on network-based ontologies. This community will probably

play an important role on knowledge-based semantic measures in the near future,

since large semantic graphs composed of billions of relationships are now available

– processing such graphs require the development of optimisation techniques.

1Consider, for instance, a taxonomy in which redundant relationships have been defined – redundan-
cies highly impact shortest path computation. Should they be considered?
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• Information Retrieval : defines and studies semantic measures taking advantage of

corpus of texts or ontologies.

• Information Theory : it plays an important role in better understanding the notion

of information and in defining metrics which can be used to capture the amount

of information which is conveyed, shared and distinct between compared elements,

e.g., notion of information content.

• Knowledge Engineering : this community studies and defines ontologies which will

further be used by some semantic measures. It could, for instance, play an impor-

tant role in characterising the assumptions made by semantic measures.

• Linguistics and Natural Language Processing : people from this community are

actively involved in the definition of distributional measures. They propose mod-

els to characterise corpus-based semantic proxies and to define measures for the

comparison of units of language.

• Logic: defines formal methods to express and take advantage of knowledge. This

community can play an important role in characterising the complexity of knowledge-

based semantic measures, for instance.

• Machine Learning : plays an important role in the definition of techniques and

parameterised functions which can be used for the definition and tuning of semantic

measures.

• Measure Theory : defines a mathematical framework to study and define the notion

of measure. Essential for deriving properties of measures, better characterising

semantic measures and taking advantage of theoretical contributions proposed by

this community.

• Metrology : studies both theoretical and practical aspects of measurements.

• Optimisation area: important contributions which can be used to optimise mea-

sures, to study their complexity and to improve their tuning.

• Philosophy : plays an important role in the definition of essential concepts on which

semantic measures rely, e.g., definition of the notions of Meaning, Context.

• Semantic Web and Linked Data: define standards (e.g., languages, protocols) and

processes to take advantage of ontologies. The problem of ontology alignment and

instance matching are actively involved in the definition of (semantic) measures

based on ontologies.
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• Statistics and Data Mining : important contributions which can be used to char-

acterise large collection of data. Major contributions in clustering which can, for

instance, be used to better understand semantic measures.

3.7.5 Study the algorithmic complexity of semantic measures

Most contributions have focused on the definition of semantic measures. However, their

algorithmic complexity is near inexistent despite the fact that this aspect is essential

for practical applications. Therefore, to date, no comparative studies can be made

to discuss the benefits of using computationally expensive measures. These aspects

are, however, essential for comparing semantic measures. Indeed, in most application

contexts, users will prefer to reduce measure accuracy for a significant reduction of the

computational time and resources required to use a measure. To this end, designers

of semantic measures must, as much as possible, provide the algorithmic complexity of

their proposals. In addition, as the theoretical complexity and the practical efficiency

of an implementation may differ, developers of software tools must provide metrics to

discuss and compare the performance of the measures’ implementation.

3.7.6 Support context-specific selection of semantic measures

Both theoretical and software tools must be proposed to orient end-users of semantic

measures in the selection of measures according to the needs defined by their application

contexts. Indeed, despite the fact that most people only (blindly) consider benchmark

results in order to select a measure, efforts have to be made in order to orient end-users

in the selection of best suited approaches according to their usage context – understand-

ing the implications (if any) of using one approach compared to another. The numerous

properties of the measures presented in this introduction can be used to guide the se-

lection of semantic measures. In addition, numerous large-scale comparative studies

have to be performed in order to better understand the benefits of selecting a specific

semantic measure in a particular context of use.
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Abstract

A plethora of ad hoc and domain-specific semantic similarity measures have been defined

over the recent years. In order to shed some light onto the diversity of proposals, this

chapter performs an in-depth technical analysis of existing knowledge-based measures

to identify the core elements of semantic similarity assessment. Based on existing works

related to abstract expression of semantic measures, we present a unifying framework

that aims to improve the understanding of measures, to highlight their relationships

and to propose bridges linking their theoretical bases. By demonstrating that groups of

measures are simply particular instantiations of parameterised functions, we unify a large

number of state-of-the-art semantic measures through common expressions. Finally, we

underline the application of the proposed framework and its practical usefulness for

the design of measures. Other applications of the framework will be presented in the

following chapter.

Associated references on which this chapter is based:

• A framework for unifying ontology-based semantic similarity measures:

A study in the biomedical domain. Sébastien Harispe*, David Sánchez, Sylvie

Ranwez, Stefan Janaqi, Jacky Montmain. Journal of Biomedical Informatics 2013.

http://dx.doi.org/10.1016/j.jbi.2013.11.006

• From Theoretical Framework to Generic Semantic Measures Library.

Sébastien Harispe*, Stefan Janaqi, Sylvie Ranwez, Jacky Montmain. On the

Move to Meaningful Internet Systems: OTM 2013 Workshops Lecture Notes in

Computer Science Volume 8186, 2013, pp 739-742; http://dx.doi.org/10.1007/

978-3-642-41033-8_98

• Semantic Measures for the Comparison of Units of Language, Concepts

or Instances from Text and Knowledge Base Analysis. Sébastien Harispe*,

Sylvie Ranwez, Stefan Janaqi, Jacky Montmain (2013). ArXiv. Computation and

Language. http://arxiv.org/abs/1310.1285v2

Special thanks to:

• David Sànchez from the university of Tarragona (URV) who collaborates on this

work and to Montserrat Batet (URV) for her relevant advices and recommenda-

tions on early versions of the theoretical framework presented in this chapter.
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4.1 Introduction

4.1.1 Motivation

As we saw in Chapter 3, a large diversity of knowledge-based semantic measures have

been proposed over recent decades. Although some measures are context-independent,

most of them were designed in an ad hoc manner and were expressed on the basis of

domain-specific or application-oriented formalisms. Therefore, most proposals related

to these measures target a specific audience and fail to benefit other communities. In

this way, a non-specialist can only interpret the plethora of state-of-the-art proposals as

an extensive list of measures (refer to Tables presented in Sections 3.5.6 and 3.6.3). As

a consequence, the selection of an appropriate measure for a specific usage context is a

challenging task. Actually, no extensive studies have characterised the large diversity of

proposals, even though a few important contributions focusing on theoretical aspects of

knowledge-based semantic similarity measures exist, e.g., [Blanchard, 2008; Blanchard

and Harzallah, 2005; Blanchard et al., 2008; Cross, 2006; Cross and Yu, 2010, 2011;

D’Amato, 2007; Pirró and Euzenat, 2010a; Sánchez and Batet, 2011].

Despite the large number of contributions related to knowledge-based semantic simi-

larity measures nowadays, the understanding of their foundations is limited. For a de-

signer/practitioner, some fundamental questions remain: Why does one measure work

better than another one? How does one choose or design a measure? Is it possible to

distinguish families of measures sharing specific properties? How can one identify the

most appropriate measure(s) according to particular criteria?

To fill these gaps, this chapter presents an extensive study of knowledge-based semantic

similarity measures leading to our proposal of a unifying framework which dissects mea-

sures using a set of intuitive core elements. For convenience, knowledge-based semantic

measures will be denoted as semantic measures and knowledge-based semantic similarity

measures as semantic similarity measures.

4.1.2 Contributions and plan

Based on existing works on the unification of semantic measures, the framework pre-

sented in this chapter proposes to model, in a generic and flexible way, the core elements

on which most available semantic measures rely. We subsequently demonstrate that

particular semantic measures can be properly characterised and directly obtained as

instantiations of the framework components. This brings new insights for the measures

by:
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• Distinguishing the core elements on which measures rely. The theoretical charac-

terisation of semantic measures helps to understand the different measure paradigms

and the large diversity of expressions proposed in the state-of-the-art.

• Unifying measures through parameterised measures. Based on the characterisation

of the core elements of semantic measures, our framework enables the identification

of commonalities, bridges and equivalences between existing measures. Indeed,

even if many semantic measures are: (i) of an ad hoc nature, (ii) domain-specific, or

(iii) based on different theoretical principles, their design could be unified through

abstract expressions. Expressing semantic measures through parameterised func-

tions can therefore facilitate the detection of their common properties and the

analysis of their behaviour in specific applications.

• Selecting appropriate domain-specific measures. Such a framework provides a sys-

tematic, theoretically-coherent and direct way to define or tune the semantic simi-

larity assessment for particular application scenarios. semantic similarity measures

expressed through parameterised functions could therefore be used to optimise

measure tuning in domain-specific applications.

• Designing new families of semantic measures. New measures can be easily defined

due to the modularity provided by the framework. Their design can take into

account: (i) the elements that affect the semantic assessment the most (e.g. esti-

mation of concept specificity) and (ii) the particularities of ontology/application

to which it will be applied (e.g., the presence of multiple inheritances).

• Identifying the crucial aspects of semantic similarity assessment. Based on the

analysis of specific expressions of measures derived from the framework, empirical

studies could be used to highlight core elements best impacting the measures’

accuracy. As a result, the framework could be used to guide research efforts towards

the aspects that can improve measure performances.

An important aspect is that such an approach will not only benefit a single measure

designed for a domain-specific application (which is to date the focus of most related

works); it will instead result in improvements on a wide set of measures and applications.

The rest of the chapter is organised as follows. Section 4.2 introduces the reader to

previous works regarding the unification of semantic measures. Section 4.3 describes

the proposed framework from which state-of-the-art measures are unified. Section 4.4

presents a first application of the framework to design existing and new semantic simi-

larity measures. Section 4.5 concludes the chapter.
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4.2 Related work on the unification of semantic measures

This section presents state-of-the-art contributions related to the unification of semantic

measures dedicated to the comparison of concepts.

4.2.1 Similitude between semantic similarity measures

Numerous authors have underlined similitudes between semantic measures. As an exam-

ple, in a tree, the edge-counting strategy defined by Rada and Bicknell [1989] (Equation

3.12) can also be expressed as a function of the depths of compared concepts and their

LCA [Blanchard, 2008]:

distRada(u, v) = depth(u) + depth(v)− 2 · depth(LCA(u, v))

Indeed, as we have seen in Section 3.3.2, the depth of a concept can be seen as an

estimator of the specificity of a concept. In addition, we have generalised such estimators

using the function θ. The edge-counting strategy can thus be defined through an abstract

expression of the symmetric difference1:

dist4∗(u, v) = θ(u) + θ(v)− 2 · θ(LCA(u, v))

As stressed by several authors, e.g., [Blanchard et al., 2008; Cross and Yu, 2010; Sánchez

and Batet, 2011], we can see that this expression generalises the information theoretical

distance proposed by Jiang and Conrath [1997]:

distJC(u, v) = IC(u) + IC(v)− 2 · IC(MICA(u, v))

In the same manner, it has also been stressed that, in a tree2, the measure proposed by

Wu and Palmer [1994] (Equation 3.16) can be reformulated by:

simWP (u, v) =
2 · depth(LCA(u, v))

depth(u) + depth(v)

1In set theory the symmetric difference between two sets is A4B = A \B ∪B \ A. The exponent *
is used to denote abstract semantic measures, e.g., the abstract form of simx is denoted simx∗ .

2In which a transitive reduction has been performed.
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Therefore, once again, this expression can be generalised by an abstract similarity mea-

sure which corresponds to an abstract formulation of the Dice index:

simDice∗(u, v) =
2 · θ(LCA(u, v))

θ(u) + θ(v)

Such an abstract expression highlights the relationship between structural and infor-

mation theoretical approaches – here exemplified through the relationships between

simDice∗ and simLin (Equation 3.29):

simLin(u, v) =
2 · IC(MICA(u, v))

IC(u) + IC(v)

A similar approach can be adopted to underline the relationship between some feature-

based measures and information theoretical measures [Pirró and Euzenat, 2010a; Sánchez

and Batet, 2011]. Indeed, under specific tunings, comparing two concepts using a feature-

based measure (i.e., according to their shared and distinct features), can be equivalent

to considering a particular expression of an information theoretical measure. As an

example, characterising the features of the concept u by A(u), and using a semantic

measure based on simDice∗ , we obtain:

simDice−FB(u, v) =
2|A(u) ∩A(v)|
|A(v)|+ |A(u)|

Since, in a tree, two concepts have a unique LCA, this feature-based expression can be

reformulated as:

simDice−FB(u, v) =
2|A(LCA(u, v))|
|A(v)|+ |A(u)|

Thus, this expression is a specific instantiation of the abstract measure simDice∗ defining

θ(u) = |A(u)|.

Using a similar reformulation of the measure proposed by Stojanovic et al. [2001], [Blan-

chard, 2008; Blanchard et al., 2008] underlined that, in trees, several feature-based ex-

pressions can be reformulated using the depth of concepts (since |A(c)| = depth(c) + 1).

Thus, in a tree, we obtain:

simCMatch(u, v) =
|A(u) ∩A(v)|
|A(u) ∪A(v)|

=
depth(LCA(u, v)) + 1

depth(u) + depth(v)− depth(LCA(u, v)) + 1
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As we have seen, several contributions have stressed that links exist between semantic

similarity measures. Such links have also been highlighted for other (non-semantic)

measures which have been designed to compare specific mathematical objects (e.g.,

sets [Choi et al., 2010], probability distribution functions [Cha, 2007], and fuzzy sets

[Bouchon-Meunier et al., 1996]). Similarly, correspondences have also been underlined

between different types of measures. As an example, Borgida et al. [2005] discusses

logic-based semantic measures through derivation of measures proposed for semantic

graph analysis. These findings have highlighted that measures can be seen as particular

expressions of more abstract measures, i.e., abstract formula expressed using abstract

components which are commonly used to compare objects. The components required

to design such abstract measures are generally defined in abstract frameworks, some of

those proposed for semantic measures are presented hereinafter.

4.2.2 Existing frameworks of semantic measures

The feature model proposed by Tversky is probably the best known framework dedicated

to similarity [Tversky, 1977]. It distinguished parametric formulations of measures from

which several similarity measures can be expressed. We already introduced this frame-

work in Section 1.4.2. Among the assumptions associated to the feature model, compared

objects are expected to be represented by sets of features. This framework therefore re-

quires the features of compared elements to be specified in order to obtain a concrete

implementation of a measure. This is why the feature model can be considered as an

abstract framework. It doesn’t define concrete implementations but rather backbones

(i.e., constrained parametric functions) from which measures can be expressed.

To be used for the comparison of concepts defined in an ontology, the feature model

therefore requires the definition of a function characterising the features of a concept.

The similarity is then intuitively defined based on the common and distinctive features of

the compared concepts. Assessing the similarity of objects based on their common/dis-

tinct properties has been used for a long time to compare sets according to the study

of their shared and distinct elements (e.g., Jaccard Index, Dice coefficient). As we have

seen, Tversky defined the contrast model and the ratio model as functions which can be

used to compare objects represented as sets of features. Below we recall the formulation

of the ratio model :

simRM (u, v) =
f(U ∩ V )

α · f(U \ V ) + β · f(V \ U) + f(U ∩ V )
(4.1)

Such a general parameterised formulation of a similarity measure can be used to derive

a large number of concrete measures. As an example, considering the function f which
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estimates the salience of a set of features as the cardinality of the set, and α = β = 1,

the ratio model leads to the original definition of the Jaccard index. Setting α = β = 0.5

leads to the Dice coefficient, e.g. [Bradshaw, 1997]. Indeed, a large diversity of set-based

measures can be expressed from specific instances of such parameterised functions. In

other words, such general measures are abstract similarity measures which can be used

to instantiate concrete similarity measures through the definition of a limited set of

parameters. As an example, to be used in order to compute the similarity between two

elements (e.g., concepts), the ratio model requires the concrete definition of: (i) the

function mapping an object to a set of features, (ii) a function f which can assess the

salience of a set of features, and, (iii) values of the parameters α and β.

The framework proposed by Tversky constrains compared objects to be represented by

sets of features in order to further assess the similarity as a function of the commonalities

and differences of the two sets. By definition, the contrast model and the ratio model

are therefore constrained to set-based formulations of measures. To be more precise, the

feature model is thus constrained to fuzzy set theory, since, originally, Tversky defined

the commonalities and differences of two objects as a function of the salience of their

shared and distinct features (defined by the aforementioned function f). Nevertheless,

in the literature, the feature model is generally regarded as a pure set-based framework

and the function f is generally understood as the cardinality of the set, i.e. f(X) = |X|1.

Therefore, using a specialisation process, both ratio and contrast models can also be

regarded as pure parametric set-based functions. The literature relative to set-based

similarity/distance function is rich. Nevertheless, several contributions have focused on

the unification of the numerous formulations proposed over the years, e.g., [Choi et al.,

2010]. As an example, it has been shown that most set-based measures can be expressed

using Caillez and Kuntz [1996] (σα), and Gower and Legendre [1986] (σβ) parametric

measures [Blanchard et al., 2008]. Therefore, since set-based measures can be used to

design semantic measures considering that compared elements are represented as sets of

features; σα and σβ can intuitively be generalised in a straightforward manner in order

to define new feature-based models:

σfα(u, v) =
f(U ∩ V )(

f(U)α+f(V )α

2

)1/α
(4.2)

σfβ(u, v) =
β · f(U ∩ V )

f(U) + f(V ) + (β − 2) · f(U ∩ V )
(4.3)

1Originally, as stressed in Section 1.4.2, the operators ∩,∪ and \ are based on feature matching
(F ) and the function f evaluates the contribution of the common or distinct features (distinguished by
previous operators) to estimate the similarity.
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Therefore, defining the function f(X) (e.g., as the cardinality of the set of features X),

the abstract formulations σα and σβ can be used to derive a large number of set-based

measures. As an example, Simpson and Ochiai coefficients [Choi et al., 2010] can be

expressed from σα setting α to −∞ and 0 respectively. The σβ reformulation can also

be used to express other numerous measures, e.g. Sokal and Sneath (β = 0.5), Jaccard

index (β = 1) and Dice coefficient (β = 2) [Blanchard et al., 2008; Choi et al., 2010].

By extension they can also be seen as primitive abstract semantic measures.

Other frameworks and models of similarity measures have been proposed in the litera-

ture. For instance, in Roddick et al. [2003], the authors propose a model of semantic

distance relying on a graph-based approach. This model quantifies the distance between

data values as a function of graph traversals. It can therefore be generalised in order

to compare any elements structured in a graph. Nevertheless, this kind of model has

proved not to be easily workable to express and study semantic measures as it has not

been extensively studied and used in the literature.

An interesting contribution relative to the study of semantic similarity measures through

abstract functions was made by Blanchard and collaborators. They were the first to take

advantage (in an explicit manner) of abstract definitions of measures for the comparison

of a pair of concepts defined in a taxonomy [Blanchard et al., 2008]. In their studies, the

authors focused on an information theoretical expression of semantic similarity measures

to highlight relationships between several measures proposed in the literature. Their

extensive work was mainly concentrated on the comparison of concepts structured in

a tree-based taxonomy; generalisation of their framework for multiple inheritance was

then conducted. Based on the intuitive notions of commonalities and differences, and on

a particular expression of the notion of specificity, the authors underlined several links

between measures. As an example, they underlined that measures proposed by Wu and

Palmer [1994] and Lin [1998] can be derived from an abstract expression of the Dice

coefficient (see previous subsection). They also stressed that the general expression of

the Dice coefficient, here named simDice∗ , corresponds to the expression of an abstract

formulation of the ratio model defining α = β = 0.5, and can also be seen as particular

expression of σβ setting β = 21. Several other abstract expressions of measures, and links

between measures can be found in Blanchard [2008]; Blanchard and Harzallah [2005];

Blanchard et al. [2008]. In their studies, summarised in the PhD thesis [Blanchard,

2008]2, the authors stressed an essential point, which has been poorly understood by the

communities studying semantic measures: the relevance of dissecting semantic measures

through abstract expressions in order to further characterise their properties and to study

groups of measures. Nevertheless, the technical background required to fully capture the

1Also highlighted in Bradshaw [1997].
2In french.



Chapter 4. Unification of knowledge-based semantic similarity measures 162

Description Feature-based
model

Information-theoretic
model

Salience of common features f(U ∩ V ) IC(MICA(u, v))

Salience of the features of u
not shared with the features
of v

f(U \ V ) IC(u)− IC(MICA(u, v))

Salience of the features of v
not shared with the features
of u

f(V \ U) IC(v)− IC(MICA(u, v))

Table 4.1: Mapping proposed by Pirró and Euzenat [2010a] between the feature model
and the information theoretic approach (reproduction with some modifications to be in

accordance with the notions and notations introduced)

relevance of such an abstract framework hampered its use and only few contributions

related to semantic measures took advantage of this important contribution.

Next to the contributions of Blanchard and collaborators, other authors have also demon-

strated relationships between different similarity measures and have taken further ad-

vantage of abstract frameworks to design new measures or to study existing ones [Cross,

2006; Cross and Yu, 2010; Cross et al., 2013; Mazandu and Mulder, 2013; Pirró and

Euzenat, 2010a; Sánchez and Batet, 2011]. These contributions mainly focused on es-

tablishing local relationships between set-based measures and measures framed in Infor-

mation Theory. Note that several contributions have been proposed during the period

covered during this thesis; Cross et al. [2013] and Mazandu and Mulder [2013] contribu-

tions were for instance published after the design of the proposal introduced hereafter

(they will nevertheless be discussed).

Pirró and Euzenat [2010a] present an information theoretical expression of the compo-

nent distinguished by the feature model (commonalities and differences). Based on this

contribution, numerous information theoretical measures can be expressed from abstract

expressions of the ratio model and the contrast model. Table 4.1 presents the mapping

between feature-based and information theoretical similarity models proposed by the au-

thors. As an example, using the ratio model with α = β = 1, the authors proposed the

definition of a new measure which corresponds to a particular expression of an abstract

form of the Jaccard coefficient:

simFaith(u, v) =
IC(MICA(u, v))

IC(u) + IC(v)− IC(MICA(u, v))

Alternatively, Sánchez and Batet [2011] also proposed a framework grounded in infor-

mation theory. It allows several measures (i.e., edge-counting and set-based coefficients)

to be uniformly redefined according to the notion of IC. The authors defined a mapping

able to take advantage of set-based measures in order to express measures framed in
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Expressions found in
set-based similarity coef-
ficients

Approximation in terms of IC

|U | IC(u)

|V | IC(v)

|U ∩ V | IC(MICA(u, v))

|U \ V | = |U | − |U ∩ V | IC(v)− IC(MICA(u, v))

|V \ U | = |V | − |U ∩ V | IC(v)− IC(MICA(u, v))

|U ∪ V | = |U |+ |V | − |U ∩ V | IC(u) + IC(v)− IC(MICA(u, v))

|U |+ |V | IC(u) + IC(v)

Table 4.2: Mapping proposed by Sánchez and Batet [2011] between expressions found
in set-based similarity measures and the information theoretic approach (reproduction

with some modifications to be in accordance with the notations introduced)

information theory. Based on the links defined in Table 4.2, the authors derived sev-

eral semantic measures from set-based measures. This contribution extends the work

of Pirró and Euzenat [2010a] by enriching the mappings already proposed (Table 4.1).

In addition, the authors also proposed several redefinitions of structural measures using

the notion of IC. As an example, among other links between measures, they underlined

the link between the edge-counting strategy and the information theoretical measure

defined by Jiang and Conrath1 (a link which was already presented Section 4.2.1).

In the same vein, in a series of papers, Cross [2006]; Cross and Yu [2010]; Cross et al.

[2013] proposed a similar contribution in which feature-based approaches and measures

based on information theory are expressed through the frame of fuzzy set theory. This

work has recently led to a unification proposal grounded in fuzzy set theory [Cross et al.,

2013] – it only targets pairwise similarity measures and is limited to approaches relying

on canonical forms of concepts which can be expressed using fuzzy sets.

Recently, Mazandu and Mulder [2013] proposed another general framework and unified

description of measures relying on the notion of IC for the comparison of pairs of con-

cepts. Like Blanchard et al. [2008], the authors focused on an information theoretical

definition of measures to underline similarities between existing measures.

Despite the suitability of these frameworks for studying some properties of semantic

measures, few works rely on them to express measures [Cross et al., 2013; Sánchez and

Batet, 2011]. Moreover, current frameworks generally only focus on a specific paradigm

to express measures (e.g., feature-based, information theoretical). In fact, most existing

frameworks only encompass a limited number of measures and were not defined with

the purpose of unifying measures expressed using the different paradigms reviewed in

1This link has also been underlined in Blanchard [2008].
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Chapter 3. These frameworks derive from the feature model or an information theoret-

ical expression of the feature model, they are therefore limited to these paradigms by

definition.

The main limitations associated to existing works were due to the constraints induced

by the canonical forms adopted to manipulate compared elements, e.g. a set of features

for the feature-based approach, an amount of information for the information theoret-

ical approach. To overcome this limitation, we propose a new unifying framework for

semantic measures in which the representation of compared elements is defined as a

central parametric component. This framework has its roots in the teaching of cognitive

sciences in the central role played by the representation adopted to characterise com-

pared elements. Therefore, contrary to other existing frameworks, this proposal is not

limited to specific approaches constrained by a canonical form of the compared elements

(feature-based, structural, information theoretical). Indeed, this framework gives the

possibility of explicitly defining the strategy adopted to characterise the representation

of a concept (set-based representation, information-theoretical, graph-based, etc.). The

framework further distinguishes the primitive functions commonly found in measure ex-

pressions (e.g., functions used to characterise the commonalities and the differences of

the compared representations, the degree of specificity or amount of information carried

by a representation).

4.3 A unifying framework for semantic similarity measures

The analysis of the state-of-the-art allowed us to distinguish a few core elements un-

derlying most semantic similarity measures. Their notation and meaning are given in

this section. The abstract measures which can be defined as a function of these core

elements are then introduced and discussed. Finally, we illustrate the suitability of the

proposed framework to express a selection of well-known semantic similarity measures

available in the literature. Other applications will be presented in the following chapter.

4.3.1 Reminder of the notations

This subsection recall some of the notations introduced so far which will be used for

presenting the framework. These notations have already been presented in Section 3.2.3

and are repeated for clarity.

The taxonomy GT is the semantic graph associated to the non-strict partial order defined

over the set of concepts C. The notations used to characterise GT as well as its concepts

are :
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• C(GT ) shortened by C refers to the set of concepts defined in GT .

• E(GT ) shortened by ET refers to the set of relationships defined in GT with:

ET ⊆ C × {subClassOf} × C ⊆ ET ⊆ ECC1

• A concept v subsumes another concept u if u � v, i.e., {u, subClassOf, v} 6= ∅.
Several additional denominations will be used; it is commonly said that v is a

ancestor of u, that u is subsumed by v and that u is a descendant of v.

• C+(u) ⊆ C, with u ∈ C, the set of concepts such as:

C+(u) = {c|(u, subClassOf, c) ∈ ET }

• C−(u) ⊆ C, with u ∈ C, the set of concepts such as:

C−(u) = {c|(c, subClassOf, u) ∈ ET }

• C(u) ⊆ C, with u ∈ C, the set of neighbours of concepts such as:

C(u) = C+(u) ∪ C−(u)

• A(u) the set of concepts which subsumes u, also named the ancestors of u, i.e.,

A(u) = {c|{u, subClassOf, c} 6= ∅} ∪ {u}. We also denote A−(u) = A(u) \ {u} the

exclusive set of ancestors of u.

• parents(u) the minimal subset of A−(u) from which A−(u) can be inferred accord-

ing to the taxonomy GT , i.e., if GT doesn’t contain taxonomic redundancies2 we

obtain: parents(u) = C+(u).

• D(u) the set of concepts which are subsumed by u, also named the descendants of u,

i.e., D(u) = {c|{c, subClassOf, u} 6= ∅}∪{u}. We also denote D−(u) = D(u)\{u}
the exclusive set of descendants of u.

• children(u) the minimal subset of D−(u) from which D−(u) can be inferred ac-

cording to the taxonomy GT , i.e., if GT doesn’t contain taxonomic redundancies

we obtain: children(u) = C−(u).

• roots(GT ), shortened by roots, the set of concepts {c|A(c) = {c}}. We call the

root, denoted as >, the unique concept (if any) which subsumes all concepts, i.e.,

∀c ∈ C, c � >.

• leaves(GT ), shortened by leaves, the set of concepts without descendants, i.e.

leaves = {c|D(c) = {c}}. We also note leaves(u) the set of leaves subsumed by a

concept (inclusive if u is a leaf), i.e., leaves(u) = D(u) ∩ leaves.
1ECC were used to introduce semantic graphs
2Taxonomic redundancies are introduced in Section A.2.
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• depth(u), the length of the longest path in {u, subClassOf,>}, for convenience we

also consider depth(GT ) = argmax
c∈C

depth(c).

• G+
T (u) the graph composed of A(u) and the set of relationships which link two

concepts in A(u).

• G−T (u) the graph composed of D(u) and the set of relationships which link two

concepts in D(u).

• GT (u) = G+
T (u) ∪G−T (u) the graph induced by A(u) ∪D(u).

• Ω(u, v), the set of Non Comparable Common Ancestors (NCCAs) of the concepts

u, v. Ω(u, v) is formally defined by: ∀(x, y) ∈ Ω(u, v), (x, y) ∈ {A(u) ∩ A(v)} ×
{A(u)∩A(v)}∧x /∈ A(y)∧y /∈ A(x). NCCAs are also called the Disjoint Common

Ancestors (DCAs) in some contributions, e.g. [Couto et al., 2005].

4.3.2 Core elements of semantic similarity measures

We first present the core elements of semantic similarity measures which are distin-

guished by the framework. Each of them are then further detailed through concrete

examples.

As stated in Chapter 3, semantic similarity measures are designed according to spe-

cific paradigms. Therefore, designers of measures first adopt a specific paradigm from

which estimators of commonalities and differences will be defined. They then adopt a

strategy by which these estimators will be aggregated to express a similarity measure

or a taxonomic distance. Indeed, in a broad sense, when comparing two things, their

commonalities and differences are the only evidence from which similarity (or dissim-

ilarity) can be evaluated. In the aim of distinguishing the core elements of semantic

similarity measures, estimators of commonalities and differences intuitively appear as

critical elements of semantic measures. In fact, they are the roots of all existing simi-

larity measures. As we have seen, these two functions are the cornerstone of all existing

frameworks, e.g. the feature model.

The definition of the estimators of commonalities and differences depends on the paradigm

which has been chosen to formulate semantic similarity measures. For instance, for some

structural approaches, the difference of two concepts is assessed as a function of the

length of the shortest path linking them, while for feature-based approaches, concept

differences are computed as a function of the features characterising one concept (e.g.

A(u)), which are not shared with the other.
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The main differences between existing paradigms depend on the strategy adopted to

represent a concept. Such a representation will determine the expressions of the esti-

mators of commonalities/differences, and is therefore critical for the design of semantic

measures. We are therefore convinced that abstract frameworks may distinguish such a

function. Thus, we formally introduce a function aiming at representing a concept, or

more generally, a set of concepts.

Definition Semantic representation (ρ): the mapping of a set of concept C ′ ⊆ C to its

semantic representation, denoted C̃ ′, is defined by the function ρ(C ′):

ρ : P(C)→ K (4.4)

with K a domain containing any subset or subgraph of GT , e.g. C,ET .

For convenience, we note ρ(u) and ũ, the representation of a single concept u, i.e. {u}.
Remember that concrete examples of the core elements will be discussed later.

We also formally define the functions aiming to estimate the commonalities and differ-

ences of two concepts (u, v), according to their semantic representations (ũ, ṽ):

Definition Commonality of two semantic representations (Ψ): the commonality of two

concept representations (ũ, ṽ) is estimated using a function Ψ(ũ, ṽ):

Ψ : K×K→ R+ (4.5)

Definition Difference between two semantic representations (Φ): the difference between

ũ not found in ṽ is estimated using a function Φ(ũ, ṽ):

Φ : K×K→ R+ (4.6)

The three abstract functions ρ,Ψ,Φ are the core elements of most similarity measures.

In the context of semantic similarity estimation, they can be used to reformulate, in an

abstract manner, all semantic similarity measures based on commonalities and differ-

ences of compared concepts.

As an example, the shortest path linking two concepts u, v can be abstracted to the sum

of their differences, being estimated according to their LCA: sp(u, isa∗, v) ≈ Φ(ũ, ṽ) +

Φ(ṽ, ũ) where Φ(ũ, ṽ) = sp(u, isa, LCA(u, v)) and Φ(ṽ, ũ) = sp(v, isa, LCA(u, v)), with

LCA(u, v) ∈ sp(u, isa∗, v).
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Designers occasionally integrate information regarding the universe in which compared

elements are defined [Choi et al., 2010]. We therefore introduce a function with the aim

of capturing this information.

Definition Global information on the universe (ζ): the amount of knowledge defined

in GT (i.e., modelled in the taxonomy), which is neither found in ũ nor in ṽ, can be

estimated by a function ζ(ũ, ṽ):

ζ : K×K→ R+ (4.7)

Most measures can be expressed in an abstract manner using the functions ρ,Ψ,Φ and,

in some particular cases, ζ. However, there are situations in which functions Ψ and Φ

may also be expressed according to the specificity of a (group of) concept(s) or, more

generally, according to the amount of information carried by a representation (e.g.,

information theoretic measures). Thus, we further define two functions capturing these

notions.

Definition Specificity of a concept (θ): the specificity of a concept u is estimated by a

function θ(u):

θ : C → R+ (4.8)

This function has already been introduced in Section 3.3.2 and is briefly repeated for

clarity. The expressions used to compute the IC of a concept are particular expressions

of function θ.

Finally, we also generalise the notion of specificity of a concept to a semantic represen-

tation.

Definition Specificity of a semantic representation (Θ): the degree of specificity of a

semantic representation ũ can be estimated by a function Θ(ũ):

Θ : K→ R+ (4.9)

The Θ function generalises the function θ defined to estimate concept specificity. This

is required to express state-of-the-art semantic measures based on an aggregation of θ

[Mazandu and Mulder, 2011; Pesquita et al., 2007]. As an example, considering the

representation of concept ũ = A(u), in Equation 3.35, Mazandu and Mulder [2011]

defined Θ(ũ) as:

Θ(A(u)) =
∑

c∈A(u)

θ(u)
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Figure 4.1 presents an intuitive feature-based representation of the functions introduced

by the framework. The representation of the concept u, i.e. ρ(u), is here defined as A(u).

The commonalities and differences (Ψ,Φ) of two concept representations are intuitively

defined by the set operators (∩ and \ respectively). The part of the universe which is

not contained in compared representations is denoted by ζ.

Figure 4.1: Example of expressions of the framework’s core elements according to the
feature-based approach

We further detail the various core elements distinguished by the framework.

4.3.2.1 Mapping a concept to its semantic representation (ρ)

“For AI Systems, what ’exists’ is that which can be represented” [Guarino et al., 2009].

ρ : P(C)→ K

The semantic representation of a set of concepts can be viewed as a subset of the knowl-

edge that the taxonomy models. Thus, the function ρ defines the mapping between a

set of concepts and its semantic representation in the ontology. We first consider the

case in which the set of concepts only contains a single concept. This case is central for

the study of pairwise measures. Figure 4.2 shows some semantic representations of a

concept that are commonly used to design semantic measures.
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Figure 4.2: Representations of a concept commonly used to design semantic measures

One of the most general semantic representations of a concept u is GT (u), i.e., the graph

induced by the ancestors (A(u)) and the descendants (D(u)) of u. However, in most

cases, semantic similarity measures are based on G+
T (u), the graph induced by A(u).

Indeed, as stressed in Figure 4.2, from G+
T (u), multiple concept representations can be

derived, such as the set of ancestors A(u) or the set of paths linking the concept to

the root, here named {u, isa,>} or E+
T (u), i.e. E(G+

T (u)), the set of edges composing

G+
T (u).

As we saw in Section 3.5.2, representing a concept by A(u) is extensively used to express

measures based on the feature approach [Rodŕıguez and Egenhofer, 2003; Sánchez et al.,

2012a], or based on Information Theory [Jiang and Conrath, 1997; Maedche and Staab,

2001; Resnik, 1999]. Moreover, the representation of a concept through the paths linking

it to the root of the taxonomy is commonly adopted in defining measures based on

the edge-counting approach [Pekar and Staab, 2002; Rada and Bicknell, 1989; Wu and

Palmer, 1994].

Given that the function ρ is defined for a set of concepts, we consider that union oper-

ators are defined for the proposed concept representations. This is indeed the case for

all representations based on sets and of those corresponding to graphs. Formally, the

representation of a set of concepts C ′ ⊆ C can be derived from the representation of a

single concept, i.e., ρ(C ′) =
⋃
u∈C′ ρ(u), e.g., defining ρ(C ′) =

⋃
u∈C′ A(u).
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4.3.2.2 The specificity of concepts and representations (θ and Θ)

θ : C → R+

Θ : K→ R+

Numerous measures rely on the amount of information captured by a concept. Mea-

sures based on the notion of IC extensively rely on it. Other strategies, which are not

grounded in information theory, have also proposed to evaluate the specificity of a con-

cept according to, for instance, its depth in the taxonomy. In Section 3.3.2 we therefore

generalise the notion of IC by introducing a function θ which estimates the specificity of

a concept. Since the central element of the framework is the representation of a group

of concepts (ρ), we also introduce a function Θ which assesses the specificity of that se-

mantic representation. This function generalises θ and, in coherency with the taxonomic

structure, it decreases monotonically from the leaves to the root of the taxonomy when

single concept representations are compared, i.e., u � v → Θ(ũ) ≥ Θ(ṽ).

Various strategies can be defined to evaluate Θ(ũ) depending on the representation

defined by ρ. Without loss of generality, we focus here on the case where Θ(ũ) is

assessed for ũ ⊆ G+
T (u), e.g. ũ = A(u).

Two commonly used strategies are briefly discussed:

• A direct strategy which will define a way to evaluate ũ. As an example, when

ũ corresponds to a set of elements (concepts, edges, paths. . . ) the cardinality of

the set can be evaluated. Considering ũ = A(u), we obtain Θ(ũ) = |A(u)|, which

can be substituted by θ(u) so that θ(u) = |A(u)|. In this case, a commonly used

strategy is to define Θ(ũ) = maxc∈A(u)θ(c) = θ(u). This strategy was adopted by

Lin, Resnik, Wu & Palmer and numerous other designers of semantic measures.

• An indirect strategy from which the specificity of elements composing the rep-

resentations will be taken into account. As an example, the specificity of the

concept contained in A(u) will be aggregated by considering a particular θ func-

tion. This leads to Θ(ũ) =
∑

c∈A(u) θ(c). Mazandu and Mulder [2011] (Equation

3.35) recently implicitly proposed a Θ function using such a strategy to evaluate

the specificity of a concept – defining Θ(ũ) =
∑

c∈A(u) IC(c).
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4.3.2.3 Estimating the commonality of two representations (Ψ)

Ψ : K×K→ R+

The commonality between concept representations is evaluated by the function Ψ. Ac-

cording to some paradigms, the commonality can be regarded as the amount of informa-

tion captured by features shared among the semantic representations of these concepts,

i.e., intuitively Θ(ũ∩ṽ). For example, when ũ is associated to a set-based representation,

e.g. ũ = A(u), a commonly used strategy is to define the commonality to |A(u) ∩A(v)|
(simRE Equation 3.24). In other words, the function Ψ assesses the specificity of the part

of the semantic representations of the compared concepts which is shared. This stresses

that the function Ψ(ũ, ṽ) can, in some case, implicitly be seen as: Ψ(ũ, ṽ) = Θ(Ψ′(ũ, ṽ))

with, Ψ′ : K×K → K1. Nevertheless, to lighten the formalism we do not consider this

extension.

Numerous similarity measures consider taxonomies as tree structures. In a tree, there is

just a single concept ω that subsumes two other concepts u, v such as A(ω) = A(u)∩A(v).

The notions of LCA and MICA correspond to this concept ω. Thus, in trees, the function

Ψ can assess the commonalities of two concepts by just considering ω.

However, because of the presence of multiple inheritances in most widely used tax-

onomies (e.g., in the biomedical domain for instance), the notion of a single subsuming

concept ω characterising the whole commonality of two concepts is not usually fulfilled.

Therefore, in order to capture the commonalities of two concepts (u, v), Ψ(ũ, ṽ) must de-

fine an aggregation strategy while taking into account the specificity of all concepts which

compose Ω(ũ, ṽ), that is, the set of non-comparable common ancestors of concepts u and

v (NCCAs, introduced in Section 3.2.3). In other words, for most ontologies, Ω(u, v)

will (theoretically) be a more accurate estimator of the commonality than ω.

Each concept in Ω(u, v) represents a particular semantic facet of the commonality be-

tween the concepts u and v. Some approaches which evaluate the commonality explicitly

aggregate the amount of information carried by the semantic facets defined in Ω. How-

ever, most measures adopt the maximal strategy as they only exploit ω∗, that is, the

concept from Ω which maximises a selected θ function. Measures relying on the MICA

(e.g. [Lin, 1998; Resnik, 1995]) or on the LCA (e.g. [Wu and Palmer, 1994]) are exam-

ples of this strategy. Nevertheless, other aggregations have been proposed [Couto and

Silva, 2011; Couto et al., 2005]. For example, GraSM strategy proposes to average the

specificities of concepts in Ω using a specific θ function, it can therefore be generalised

1The domain of the function Φ and ζ could also be modified.
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by:

ΨGraSM (ũ, ṽ) =

∑
c∈GΩ+

θ(c)

|Ω|
(4.10)

Note that for ontologies incorporating multiple inheritances, the commonality of a pair

of concepts can also be estimated by taking into account their common descendants

(which can be seen as their shared potential extensions). The problem is symmetrical to

the estimation of the commonality based on shared ancestors Ω (which could be renamed

Ω+). Likewise, a set Ω− representing the non-comparable common descendants of two

concepts can also be expressed. Estimation of the commonality of concepts based on

the study of their descendants has been recently introduced in [Yang et al., 2012].

As we have seen, evaluating the commonalities of two concepts is, in most cases, equiv-

alent of evaluating the specificity of the semantic representation built from the group

of concepts Ω , i.e. Θ(Ω̃). Existing approaches (LCA/MICA, e.g., [Resnik, 1995; Wu

and Palmer, 1994], GraSM and DiShIn [Couto and Silva, 2011; Couto et al., 2005]) only

define an aggregation strategy over the specificity of elements defined in Ω.

4.3.2.4 Estimating the difference of two representations (Φ)

Φ : K×K→ R+

Some measures also rely on the differences between the semantic representations associ-

ated to compared concepts, which we refer to as function Φ. Considering two concepts

u,v, the amount of knowledge contained in ũ that is not in ṽ is intuitively expressed by:

Φ(ũ, ṽ) = Θ(ũ)−Ψ(ũ, ṽ) (4.11)

In practice, Φ is usually computed as Φ(ũ, ṽ) = Θ(ũ) − Θ(Ω̃). Moreover, similarly to

Ψ, numerous Φ approaches only consider ω∗1 to estimate the difference of representa-

tions associated to singleton. This results in Φ(ũ, ṽ) = Θ(ũ) − Θ(ω̃∗), which is usually

expressed by Φ(ũ, ṽ) = θ(u)− θ(ω∗). We present an example of such a formulation used

in the well-known Jiang and Conrath measure:

distJC(u, v) = IC(u) + IC(v)− 2× IC(MICA(u, v))

≈ θ(u)− θ(ω∗) + θ(v)− θ(ω∗)

≈ Φ(ũ, ṽ) + Φ(ṽ, ũ)

1The concept from Ω which maximises a selected expression of the function θ.
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We thus obtain the definition of the distance by setting: Φ(ũ, ṽ) = IC(u)−IC(MICA(u, v)).

For edge-counting approaches, as introduced in Section 3.5.1, the differences of a concept

u with respect to v are usually assessed from the length of the shortest path between

the concept and their LCA:

Φ(ũ, ṽ) = sp(u, isa, LCA(u, v)) (4.12)

Other strategies can be defined to aggregate the differences between a concept and those

contained in Ω. As an example, some information theoretical measures (e.g. simDIC ,

Equation 3.35) take into account all the information related to Ω, as follows:

Φ(ũ, ṽ) = Θ

(
A(u) \

⋃
c∈Ω

A(c)

)
= Θ (A(u) \ (A(u) ∩A(v))

Despite some measures use particular instantiations of Φ, the vast majority of measures

exploiting semantic differences estimate the difference between two concepts as Φ(ũ, ṽ) =

Θ(ũ)−Ψ(ũ, ṽ).

4.3.2.5 Other components

As we will see, most measures can be expressed using the abstract functions introduced so

far. Nevertheless, some semantic similarity measures also use supplementary functions.

They can be used, for example, to aggregate scores of multiple semantic measures or to

impact the final score produced by a measure. Table 4.3 shows some functions which

can be used to tune numerous semantic measures. This is done by taking information

not originally captured by the original measure definition.

As an example, we present two supplementary functions used for the evaluation of the

similarity of two concepts. The first function is used in conjunction with a pairwise

measure respecting the property of the identity of the indiscernibles. The idea is to

lower the score between concepts which are characterised as broader. For this, the final

score is modified according to a function aiming to capture the relevance of the score.

A technique proposed to assess such relevance is based on the evaluation of the amount

of information carried by the part shared by two representations, i.e., Θ(ũ∩ ṽ), e.g., the

IC of the MICA of the compared concepts. This function was originally proposed in

simRel (Equation 3.34).

Considering sim′ as a semantic similarity measure respecting the identity of indis-

cernibles and rfactor ∈ [0, 1] as a function capturing the relevance of a score of similarity



Chapter 4. Unification of knowledge-based semantic similarity measures 175

Name Comment

GraSM [Couto et al.,
2007] / Dishin [Couto
and Silva, 2011]

Estimation of the commonalities between a pair of concepts
averaging the information contained by all NCCAs i.e. Ω.
If θ(c) is set to IC(c), using GraSM we obtain Ψ(ũ, ṽ) =∑

c∈Ω IC(c)

|Ω|
Relevance factor [Li
et al., 2010; Schlicker
et al., 2006]

Impact the score of a measure sim which respects the identity
of indiscernibles, e.g., sim(u, v) = sim′(u, v) ∗ rfactor with
rfactor a metric which captures the relevance of the score
(rfactor ∈ [0, 1]), for example rfactor = 1− p(MICA(u, v))
[Schlicker et al., 2006] with p(MICA(u, v)) the probability of
occurrence associated to the MICA.

Descendant + Open
World Assumption
[Yang et al., 2012]

Composite measure aggregating scores of semantic measures
evaluating different aspects of the compared elements, e.g.,
coupling classical measures based on ρ(c) = G+

T (c) with a
measure taking into account shared descendants and their
uncertainty.

Table 4.3: Strategies that can be used to tune semantic measures

(e.g. θ(ω∗)) we obtain:

sim(u, v) = sim′(u, v)× rfactor

A second function can be used to aggregate pairwise scores obtained by various semantic

similarity measures on a similar pair of concepts [Yang et al., 2012]. The function can

be used to weigh the contribution of semantic similarity measures focusing on particular

aspects of the compared concepts, e.g., G+
T and G−T , respectively denoted by simG+

T
and

simG−T
. An example is proposed below:

sim(u, v) = α · simG+
T

(u, v) + β · simG−T
(u, v)

Note that other functions can also be added to design new measures.

4.3.3 Unification of abstract similarity measures

In this subsection, we demonstrate the relationships between known abstract expressions

of measures through the definition of a new parameterised measure.

In previous sections we have identified the core elements of semantic similarity measures.

Moreover, we have underlined that set-based measures can be used to express abstract

measures. By extension, we also stressed that Caillez & Kuntz σα and Gower & Legendre

σβ formulas (presented in Section 4.2.2) may be considered as abstract parameterised

measures. By focusing on the unification of measure expressions, we here demonstrate

that under some conditions, σα and σβ can be partially unified and extended through a
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common expression. Formulas used in the demonstration are abstracted and repeated

for convenience:

σα∗(ũ, ṽ) =
Ψ(ũ, ṽ)

(Θ(ũ)α+Θ(ṽ)α

2 )1/α
(4.13)

σβ∗(u, v) =
β ·Ψ(ũ, ṽ)

Θ(ũ) + Θ(ṽ) + (β − 2) ·Ψ(ũ, ṽ)
(4.14)

simRM∗(u, v) =
Ψ(ũ, ṽ)

x · Φ(ũ, ṽ) + y · Φ(ṽ, ũ) + Ψ(ũ, ṽ)

We first demonstrate that σα∗ can be easily extended to the well-known generalised mean

of order α [Webster, 1994] (Result 1). In addition, we show that σβ∗ is a particular case

of the ratio model proposed by Tversky (Result 2). Finally, based on Results 1 & 2,

we demonstrate that a new abstract tunable measure can be used to express a large

diversity of abstract measures (Result 3).

Result 1. First, note that Cauchy’s mean σα∗ implies a symmetric contribution of Θ(ũ)

and Θ(ṽ). In a straightforward manner, we extend σα∗ to the generalised mean of order

α. This is done by introducing two parameters x and y enabling us to tune Θ(ũ) and

Θ(ṽ) contributions.

σα,x,y∗(u, v) =
Ψ(ũ, ṽ)

(x ·Θ(ũ)α + y ·Θ(ṽ)α)1/α
(4.15)

with x+ y = 1 and x, y ≥ 0. σα is a special case of σα,x,y∗ when x = y = 1/2.

Result 2. We demonstrate the relationship between σβ∗ and the abstract formulation

of the ratio model (simRM∗). Recall that Θ(ũ) (resp. Θ(ṽ)) represents the amount

of knowledge carried by a concept representation ũ (resp. ṽ). The function Θ(ũ) is

commonly considered as additive, i.e., Θ(ũ ∪ ṽ) = Θ(ũ) + Θ(ṽ) for any pair of non-

comparable1 semantic representations (ũ, ṽ). With this condition we can demonstrate

the following lemma.

Lemma. Considering Θ(ũ) = Φ(ũ, ṽ) + Ψ(ũ, ṽ) for any ṽ, σβ∗ is a particular case of the

abstract formulation of the ratio model (simRM∗)
2.

1This notion depends on the consideration of the function ρ.
2By extension, this applies to any specific case derived from instantiation of the framework which

respects the given properties – such as set-based formulations.
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Proof.

Considering the inverse of both σβ∗ and the simRM∗ , we obtain:

(a) setting x = y in simRM∗ :

1

simRM∗(u, v)
= 1 + x

Φ(ũ, ṽ)

Ψ(ũ, ṽ)
+ x

Φ(ṽ, ũ)

Ψ(ũ, ṽ)

(b) in addition,

1

σβ∗(u, v)
= 1− 2

β
+

1

β

Θ(ũ)

Ψ(ũ, ṽ)
+

1

β

Θ(ṽ)

Ψ(ũ, ṽ)

= 1− 2x+ x · Θ(ũ)

Ψ(ũ, ṽ)
+ x · Θ(ṽ)

Ψ(ũ, ṽ)
(with x =

1

β
)

Thus, considering Θ(ũ) = Φ(ũ, ṽ) + Ψ(ũ, ṽ), (a) and (b), we obtain:

1

σβ∗(u, v)
= 1− 2x+ x · Φ(ũ, ṽ) + Ψ(ũ, ṽ)

Ψ(ũ, ṽ)
+ x · Φ(ṽ, ũ) + Ψ(ũ, ṽ)

Ψ(ũ, ṽ)

= 1 + x · Φ(ũ, ṽ)

Ψ(ũ, ṽ)
+ x · Φ(ṽ, ũ)

Ψ(ũ, ṽ)

=
1

simRM∗(u, v)

Therefore, σβ∗ is a particular case of the abstract ratio model simRM∗ considering an

equal contribution of Φ(ũ, ṽ) and Φ(ṽ, ũ) (i.e. x = y).

Result 3. σα,x,y∗ and the simRM∗ (which includes σβ∗ , see Result 2) may be expressed

by the general function Σα,x,y,z∗ (shorten by Σ∗).

Σ∗(u, v) =
Ψ(ũ, ṽ)

(x ·Θ(ũ)α + y ·Θ(ṽ)α + z ·Ψ(ũ, ṽ)α)1/α
(4.16)

with x, y, z ≥ 0 and x + y + z = 1. Note that by setting α = 1 and Θ(ũ) = Φ(ũ, ṽ) +

Ψ(ũ, ṽ), the abstract measure Σ∗ can also be formulated as:

Σ∗(u, v) =
Ψ(ũ, ṽ)

x · Φ(ũ, ṽ) + y · Φ(ṽ, ũ) + (x+ y + z) ·Ψ(ũ, ṽ)
(4.17)

In this subsection, we have demonstrated that existing abstract measures can be gener-

alised to the Σ∗ abstract measure and that a large diversity of measures can be derived

from it. Unifying abstract measures opens interesting perspectives for measure optimi-

sation. Indeed, expressing measures through a common parameterised formula enables

better understanding of the relationships between the various proposals. Moreover, as we
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will see, a large variety of measures can easily be instantiated by tuning few parameters.

Unification of measures is therefore a prerequisite in order to distinguish parameters

best impacting measure accuracy.

The proposed framework – abstract components and measures distinguished – can easily

be used to define semantic measures to compare a pair of concepts or groups of concepts.

In the state-of-the-art, we have seen that groupwise measures (i.e., measures used to

compare groups of concepts) can be expressed according to two strategies: direct and

indirect (Section 3.6).

Groupwise measures built using the direct approach have already been taken into account

by the proposed framework. Indeed, all the measures rely on the function ρ which has

been defined to represent a set of concepts. Therefore, all (abstract formulations of)

measures which have been defined to compare a pair of concepts can be used to derive

groupwise measures.

Measures built using the indirect approach rely on an aggregation of pairwise measures.

Therefore, to be encompassed by the current framework, we only need to consider an

extra aggregation function which will aggregate the similarity matrix corresponding to

the similarity scores of the Cartesian product of the compared sets.
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4.4 Expression of measures using the framework

4.4.1 Guidelines for framework instantiation

We define the guidelines to instantiate/design semantic similarity measures from the

proposed framework. Two main steps can be distinguished. To ease the presentation,

we focus on the design of measures for the comparison of a pair of concepts:

1. Selection of an abstract measure, such as Σ∗, σα∗ , simRM∗ (see Section 4.3.3).

2. Definition of the expression of the core elements. This step consists of selecting a

specific semantic representation of a concept (ρ function) and the definition of the

expression of the abstract operators on which the selected abstract measure relies

– for instance to estimate the commonality (Φ) or the difference (Ψ) between two

concept representations.

4.4.1.1 Selection of an abstract measure

The first step in designing a semantic measure is to select an abstract measure. This

measure is defined through the core elements distinguished by the framework. The

multiple parameterised abstract measures discussed in the previous section can be used

to express a large diversity of measures. In addition, set-based expressions proposed in

the literature can also easily be abstracted using the core elements of the framework.

Indeed, the proposed framework enables the full use of studies made for other types

of measures. As an example, the proposed core elements can be mapped to existing

theoretical tools used by other communities to study binary measures (e.g., measures

used to compare vectors or sets). Table 4.4 shows abstract expressions of the Oper-

ational Taxonomic Units (OTUs) classically used to represent binary measures. In a

similar manner to the approach relying on information theory, the amount of informa-

tion expressed in a taxonomy GT can be viewed as Θ(GT ). The amount of information

encompassed in the semantic representation of a concept is expressed by Θ(c̃), and the

amount of information expressed in GT which is not found in c̃ can be defined by Θ(c̃).

u \ v Θ(ṽ) Θ(ṽ)

Θ(ũ) Ψ(ũ, ṽ) Φ(ũ, ṽ)

Θ(ũ) Φ(ṽ, ũ) ζ(ũ, ṽ)

Table 4.4: Links between Operation Taxonomic Units (OTUs) commonly used for the
definition of binary measures and the theoretical framework core elements – see Choi

et al. [2010] for numerous expressions of binary measures using OTUs
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Name Expressions

sim∩∗ Ψ(ũ, ṽ)

simCM∗ λ ·Ψ(ũ, ṽ)− α · Φ(ũ, ṽ)− β · Φ(ṽ, ũ)

simRM∗
Ψ(ũ,ṽ)

Ψ(ũ,ṽ)+α·Φ(ũ,ṽ)+β·Φ(ṽ,ũ)

simSimpson∗
Ψ(ũ,ṽ)

min(Ψ(ũ,ṽ)+Φ(ũ,ṽ),Ψ(ũ,ṽ)+Φ(ṽ,ũ))

simBraun−Blanquet∗
Ψ(ũ,ṽ)

max(Ψ(ũ,ṽ)+Φ(ũ,ṽ),Ψ(ũ,ṽ)+Φ(ṽ,ũ))

simMaryland−Bridge∗
1
2

(
Ψ(ũ,ṽ)

Ψ(ũ,ṽ)+Φ(ũ,ṽ) + Ψ(ũ,ṽ)
Ψ(ũ,ṽ)+Φ(ṽ,ũ)

)
simBader∗

Ψ(ũ,ṽ)2

(Ψ(ũ,ṽ)+Φ(ũ,ṽ))(Ψ(ũ,ṽ)+Φ(ṽ,ũ))

simKnappe∗ k Ψ(ũ,ṽ)
Ψ(ũ,ṽ)+Φ(ũ,ṽ) + (1− k) Ψ(ũ,ṽ)

Ψ(ũ,ṽ)+Φ(ṽ,ũ)

simOchaia∗
Ψ(ũ,ṽ)√

(Ψ(ũ,ṽ)+Φ(ũ,ṽ))(Ψ(ũ,ṽ)+Φ(ṽ,ũ))

simCosine∗
Ψ(ũ,ṽ)√

(Ψ(ũ,ṽ)+Φ(ũ,ṽ))2
√

(Ψ(ũ,ṽ)+Φ(ṽ,ũ))2

Table 4.5: Examples of abstract semantic measures derived from classical binary
measures. Most of the binary measures have been abstracted from [Choi et al., 2010]

considering Table 4.4

The mapping proposed in Table 4.4 can be used to easily express semantic similarity

measures based on binary measure expressions defined through OTUs. As an exam-

ple, in Choi et al. [2010], a large characterisation of binary measures through OTUs is

performed. The authors distinguish more than seventy expressions of binary measures.

Using Table 4.4, these expressions can be used to easily express a large diversity of

abstract semantic measures. The main idea is to generalise existing binary measures

using the proposed core elements of the framework in order to derive semantic similarity

measures; examples of abstract measures are presented in Table 4.5.

The abstract measure which will be selected to instantiate a concrete measure partially

defines the semantics of the compared concepts which will be taken into account during

the comparison, e.g. commonalty (Ψ), difference (Φ), and also their weight in the

similarity assessment. As an example, we have seen that both the Jaccard index and

the Dice coefficient can be derived from the Tversky’s ratio model by setting α, β = 1

and α, β = 0.5, respectively. It is therefore explicit that the Dice coefficient gives

more importance to commonalities (and less importance to differences) for similarity

estimation, compared to the Jaccard Index. The selection of the abstract measure is
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therefore important to finely control the meaning of the scores produced by a measure.

This aspect may be particularly important for context-specific applications.

4.4.1.2 Definition of the expression of the core elements

The next step consists of defining how to represent a concept according to the ontology.

Such representation is defined by the function ρ. It is required to derive the expression of

the operators used by the abstract measure. Indeed, expressions for abstract operators

(e.g. estimators of commonalities or differences) must be defined in accordance with

the selected expression of ρ. Finally, the selection of a specific representation, e.g. set

of concepts ũ = A(u) to represent a concept u, also partially defines which semantics

will be considered in the similarity assessment. Examples will be provided in the next

subsections.

4.4.1.3 How to select adapted parameters

The users will therefore have to consider (i) specific expressions of the primitive func-

tions distinguished by the framework, (ii) abstract semantic measures and (iii) specific

parameter freedom. Two scenarios can therefore be distinguished:

1. The designer has a very clear idea about the more relevant elements that guide

the similarity assessment in the concrete scenario and their relative weights. He

thus tunes and obtains the measure accordingly. Some of the parameters on which

the measures rely can, for example, be restricted due to constraints defined by the

context of use (e.g. the measure must be symmetric: the user will therefore only

consider setting where α = β in the abstract ratio model).

2. The designer optimises semantic measure parameters using a benchmark from

which the accuracy of measures can be evaluated. As an example, the designer

has a training set of similarity scores (human-rated) that would be expected to be

produced by a semantic measure1. The scores can be used to evaluate the accu-

racy of measures resulting from the framework instantiation. The set of measures

to be evaluated can eventually be restricted according to specific properties in-

duced by specific core element expressions or abstract measures, e.g., algorithmic

complexity (cf. scenario 1). The selection of the best suited measures will there-

fore be performed empirically using the training set from which performances of

measures can be estimated. Such a training set or test sample must be composed

of expected scores of similarity for a reasonable amount of pairs of concepts. It

1This is the most common type of benchmarks in the domain. Refer to [Harispe et al., 2013c] for a
review.
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must be built alongside the experts of the domain according to the behaviour we

want the system to have. The selection of the most appropriate measures can be

made studying correlations between expected scores and semantic measures scores

of similarity.

With the aforementioned method, our framework can be used to easily instantiate exist-

ing or new semantic similarity measures, while finely controlling the semantics consid-

ered during the similarity assessment. Such a constructive approach draws interesting

perspectives for evaluating semantic measures, such as testing the influence of the vari-

ous components (i.e., abstract measures, core element expressions) over the accuracy of

concrete measures in domain-specific tasks.

4.4.2 Expression of semantic similarity measures

This subsection presents concrete examples of semantic similarity measures derived from

the framework.

4.4.2.1 Expression of pairwise measures

To illustrate the generality and potential of the proposed framework, we present some

instantiations corresponding to existing measures that can be obtained from the abstract

form of the Jaccard index:

simJaccard∗(u, v) =
Ψ(ũ, ṽ)

Ψ(ũ, ṽ) + Φ(ũ, ṽ) + Φ(ṽ, ũ)

considering Φ(ũ, ṽ) = Θ(ũ)−Ψ(ũ, ṽ),

simJaccard∗(u, v) =
Ψ(ũ, ṽ)

Θ(ũ) + Θ(ṽ)−Ψ(ũ, ṽ)

Based on specific expressions of the functions Ψ and Φ presented in Table 4.6, simJaccard∗

can be used to express simPS , simFaith or simCMatch (see Equations 4.18, 4.19, 4.20):

simPS(u, v)1 =
lp(LCA(u, v), isa,>)

lp(u, isa, LCA(u, v)) + lp(v, isa, LCA(u, v)) + lp(LCA(u, v), isa,>)
(4.18)

1Compared to Equation 3.17 presented in Section 3.5.1, depth(u, v) is here substituted by
sp(LCA(u, v), isa,>). In DAGs which contain redundancies the longest shortest path should be consid-
ered instead, i.e., the shortest path in the graph without redundancies.
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Elements simPK simFaith simCMatch simcGIC

ρ(u) = ũ G+
T (u) A(u) A(u) A(u)

Θ(ũ) lp(u, isa,>) IC(u) |A(u)|
∑

c∈A(u)

IC(c)

Ψ(ũ, ṽ) lp(LCA(u, v), isa,>) IC(MICA(u, v)) |A(u) ∩A(v)|
∑

c∈A(u)∩A(v)

IC(c)

Φ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ)

Table 4.6: Examples of particular expressions of core elements from which pairwise
semantic similarity measures can be obtained as instantiations of an abstract form of
the Jaccard index. These can also be used to obtain other measures using different

set-based coefficients

simFaith(u, v) =
IC(MICA(u, v))

IC(u) + IC(v)− IC(MICA(u, v))
(4.19)

simCMatch(u, v) =
|A(u) ∩A(v)|

|A(u)|+ |A(v)| − |A(u) ∪A(v)|
=
|A(u) ∩A(v)|
|A(u) ∪A(v)|

(4.20)

It can also be used to express simcGIC , a new1 pairwise measure based on simGIC (a

measure initially designed to compare groups of concepts, Equation 3.40):

simcGIC(u, v) =

∑
c∈A(u)∩A(v) IC(c)∑

c∈A(u) IC(c) +
∑

c∈A(v) IC(c)−
∑

c∈A(u)∩A(v) IC(c)
(4.21)

An interesting aspect of the modularity provided by the framework is that a component

of measures can easily be tuned to generate new measures best fitting specific needs. As

an example, simFaith (Equation 4.19) considers the MICA as an estimator of common-

ality. As we have seen, this estimator can be limiting for the comparison of concepts

defined in ontologies in which multiple inheritance is extensively used2. Therefore the

expression Ψ(ũ, ṽ) can be modified in order to consider the whole information contained

in Ω, the set of NCCAs of compared concepts. As an example, we present simFaith−ex,

an extended version of simFaith which considers the whole set of NCCAs according to

the mixing strategy defined by GraSM (method introduced in Section 3.5.5.3):

simFaith−ex(u, v) =

∑
c∈Ω(u,v) IC(c)

|Ω|

IC(u) + IC(v)−
∑
c∈Ω(u,v) IC(c)

|Ω|

(4.22)

1We here adopt the terminology that has been used in the literature dedicated to semantic measures
for decades; however the terms unpublished or expression are more appropriated.

2Empirical evaluations have underlined an improvement of the accuracy of measures in tested context
usages [Couto and Silva, 2011].
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Other examples of instantiations of semantic measure will be presented throughout this

manuscript, in particular in Section 5.1.2.2.

4.4.2.2 Expression of groupwise measures

Groupwise measures are used to compare groups of concepts. As we saw, they can be

expressed using an indirect strategy, by aggregating pairwise measures (those used to

compare a pair of concepts), or using a direct strategy, by generalising the approaches

used for expressing pairwise measures. Groupwise measures which are based on an indi-

rect strategy only require an aggregation strategy to be defined in order to be expressed

by the framework presented so far. We therefore focus on those which rely on a direct

strategy.

Let us remind that the framework has been designed by defining the domain of the

function ρ in order to encompass cases in which we want to represent a set of concepts,

i.e. ρ : P(C)→ K. Therefore, the framework already implicitly takes into consideration

groupwise measures. As an example, we propose to use the framework to express simGIC

(Equation 3.40) [Pesquita et al., 2007], simUI (Equation 3.38), and simLP
1.

Considering expressions presented in Table 4.7, comparing two sets of concepts U ,V ,

simLP is defined only considering Ψ(Ũ , Ṽ ). We can also see that the measures simGIC

and simUI can be expressed in a straightforward manner from an abstract expression

of the Jaccard index (simJaccard∗ , see Section 4.4.2.1).

Elements simLP simUI simGIC

ρ(U) = Ũ G+
T (U)

⋃
c∈U A(c)

⋃
c∈U A(c)

Θ(Ũ) argmax
c∈U

lp(c, isa,>) |Ũ |
∑
c∈Ũ

IC(c)

Ψ(Ũ , Ṽ ) argmax
c∈C+

T (U)∩C+
T (V )

lp(c, isa,>) |Ũ ∩ Ṽ |
∑

c∈Ũ∩Ṽ
IC(c)

Φ(Ũ , Ṽ ) Θ(Ũ)−Ψ(Ũ , Ṽ ) Θ(Ũ)−Ψ(Ũ , Ṽ ) Θ(Ũ)−Ψ(Ũ , Ṽ )

Table 4.7: Examples of particular expressions of core elements from which groupwise
semantic similarity measures can be expressed. With C+

T (U) = C(G+
T (U)).

1“For simLP the similarity measure is the depth of the longest shared path from the root node [con-
sidering a set of concepts X as the graph induced by the union of the ancestors of each concept of X,
i.e. G+

T (X) =
⋃
c∈X G

+
T (c)]” [Gentleman, 2007].
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4.5 Chapter conclusion

A large diversity of semantic similarity measures have been proposed over recent decades.

Most of them focus on specific applications or domains and have been introduced as new

formulations unrelated to existing proposals. In this chapter, in continuation of exist-

ing works which underline relationships between measures, we unified most well-known

approaches through the definition of a theoretical framework dedicated to semantic sim-

ilarity measures.

The main advantages of the proposed framework rely on the identification of the core

elements which are commonly used to design semantic similarity measures. We have

indeed underlined that most measures can be expressed considering a limited set of core

elements (functions) such as those defining (i) how to represent a concept through a

processable canonical form (ρ), (ii) how to estimate its specificity (θ) and the specificity

of its representation (Θ), and (iii) how to estimate the degree of commonality (Ψ) and

difference (Φ) between two concept representations. In fact, we demonstrate how these

core elements can be used to express a large diversity of (existing) measures based on

generic parametric measures which can be seen as the backbone of semantic measures.

The characterisation of measures through the distinguished core elements can be used to

better characterise measures relying on different paradigms and to better understand the

large diversity of measures introduced in the literature (both pairwise and groupwise).

More generally, this framework opens interesting perspectives for the study of semantic

measures as it provides a theoretical tool enabling to drive:

• Theoretical analysis and the understanding of semantic measures. Distinguishing

the core elements on which semantic similarity measures are based allows us to

highlight narrow relationships between existing proposals. Indeed, we found that

semantic similarity measures can be easily expressed through the definition of a

few intuitive core elements and that most, if not all, measures are just particular

expressions of a limited set of abstract measures. We therefore demonstrated that

several measures which rely on the same abstract measure (e.g., abstracted ratio

model), only differ due to a specific set of parameters selected to instantiate them

(e.g., strategy used to represent a concept or to assess the commonality/difference

between concept representations). This strong result is therefore important for the

theoretical analysis of semantic measures. Indeed, most applications in which the

measures are not selected through empirical analyses expect the measures to fulfil

specific properties, e.g., symmetry, respect of the identity of the indiscernibles.

Thanks to the breakdown of measures proposed by the framework, their proper-

ties can be analysed, not only regarding specific measure instantiations, but also
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focusing on both the abstract measures from which they derived and the properties

induced by core elements.

• Creation and tuning of semantic similarity measures. The separation of measures

from the core elements on which they rely enables researchers to focus not just on

new ad hoc measures, but also on the design of specific strategies to improve the

assessment of those core elements. As an example, we have seen that an accurate

estimator of the commonality between two concepts (Ψ function), which depends

on the canonical form adopted to represent a concept (ρ function), is of major

importance in defining semantic measures. Designers of measures can therefore

improve several existing measures by improving the way Ψ is estimated w.r.t a

specific representation of a concept. It is therefore important to understand that

improving the assessment of core elements distinguished by the framework leads to

improvements in multiple measures – not just to a specific measure in a concrete

context. By distinguishing the core elements of semantic similarity measures, the

theoretical tool proposed in this chapter therefore opens interesting perspectives

for the definition and improvement of semantic measures in general.
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Abstract

This chapter presents two practical applications of the theoretical framework of semantic

measures introduced in Chapter 4. Illustrations are provided considering a use case

scenario related to the biomedical domain.

First, we propose an evaluation of semantic similarity measures using the insight pro-

vided by the framework. To this end, numerous measures are expressed from two para-

metric abstract functions (simRM∗ and simCM∗); they are used to instantiate concrete

measures from specific expressions of the framework’s core elements (e.g., ρ,Ψ,Φ). The

accuracy of the concrete measures generated is next discussed – the evaluation is based

on a gold-standard benchmark built from physician and coder expectations regarding

the semantic similarity of biomedical concepts. This study will help us to discuss the

notion of semantic measure accuracy and selection. It also gives us the opportunity to

discuss the accuracy of measures at the level of granularity provided by the framework,

e.g., to discuss the impact to consider a specific expression of this or that core element.

Preliminary results are presented. They highlight the new insights and prospects offered

by such studies, in particular for the selection and design of semantic measures.

In the second practical application, we study how to extend the process which is com-

monly used to evaluate the accuracy of measures in order to incorporate uncertainties in

experts’ judgement (associated to benchmarks). This allows for the introduction, defi-

nition and discussion of the notion of semantic measures robustness w.r.t uncertainty on

expected scores. Through a use case example, we present the interesting perspectives

offered by this notion, in particular to distinguish semantic measures that best resist

aforementioned uncertainties, i.e., measures which guarantee good performance even if

the benchmark considered for their selection contains approximations. Despite its im-

portance for the practical use of semantic measures, this is, to our knowledge, an aspect

of measures which has never been studied.

Associated references on which this chapter is based:

• A framework for unifying ontology-based semantic similarity measures:

A study in the biomedical domain. Sébastien Harispe*, David Sánchez, Sylvie

Ranwez, Stefan Janaqi, Jacky Montmain. Journal of Biomedical Informatics 2013.

• Robust Selection of Domain-specific Semantic Similarity Measures from

Uncertain Expertise. Stefan Janaqi*, Sébastien Harispe, Sylvie Ranwez, Jacky

Montmain. IPMU 2014 – Information Processing and Management of Uncertainty

in Knowledge-Based Systems (In press).
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5.1 Selection and optimisation of semantic measures

5.1.1 Motivation and objectives

The selection of semantic measures is a central question which has not been deeply

studied in this thesis. It is, however, one of the main centres of interest to the end-users

of semantic measures. It is indeed common that experts in the field are asked for the best

semantic measure? Today, there are two short answers: (i) There is no best semantic

measure, (ii) I don’t know. The important thing to understand is that state-of-the-art

analyses have proved that domain-specific results cannot be generalised. Indeed, despite

the fact that specific approaches tend to often provide reasonable results in most cases

(e.g., some specific measures based on information theory), there is no guarantee that

measures which have been proved to be accurate in a specific context usage will remain

accurate in another context of use.

In all cases, to distinguish best suited measures we first have to define what a good

or the best measure is. What aspects of measures must be considered when selecting,

e.g., accuracy w.r.t expected scores, computational complexity, specific mathematical

properties? Though these questions are not deeply discussed in the literature, matters

related to the subject have briefly been proposed in [Harispe et al., 2013c]. In this study,

we distinguished four criteria for the evaluation of measures in particular:

• Their accuracy and precision.

• Their computational complexity, i.e. algorithmic complexity.

• Their mathematical properties.

• Their semantics.

Please refer to Appendix B for a brief discussion on these central aspects of measures.

In Chapter 4, we defined a framework which provides the interesting possibility to split

semantic similarity measures into two main components: (i) an abstract measure which

aggregates (ii) specific expressions of core elements commonly found in semantic mea-

sures.

The main aim of this section is to highlight the benefits of the unifying framework to

study and select semantic similarity measures. We propose, in particular, an evaluation

of semantic similarity measures using the insight provided by the framework. To this

end, numerous concrete measures are expressed from two parametric abstract measures

(simRM∗ and simCM∗). These measures have been obtained from specific expressions of

the framework’s core elements (e.g., ρ,Ψ,Φ). The accuracy of measures is next discussed

using a gold-standard benchmark built from physician and coder expectations regarding
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the semantic similarity of biomedical concepts. This study will therefore help us to

discuss the accuracy of semantic measures and the problem associated to the selection

of measures in particular contexts of use. Interestingly, the time will be right to tackle

these questions at the level of granularity provided by the framework, e.g., to evaluate

the impact to consider a specific expression of this or that core element on the accuracy

of measures. Preliminary results are presented. They highlight the new insights and

prospects offered by such studies, in particular for the selection and design of semantic

measures.

This section is structured as follows. First we define the experimental design defined

to generate the measures and to compare them. Next, we discuss the results which

have been obtained and more generally, the relevance of using the experimental protocol

defined to study and select semantic measures.

5.1.2 Experimental design

5.1.2.1 Benchmark

For this experiment, we focused on the evaluation of semantic measure accuracy. To this

end, we considered the gold-standard benchmark which was proposed in Pedersen et al.

[2007]. This benchmark is dedicated to the evaluation of semantic similarity measures.

It is commonly used in the biomedical domain to evaluate semantic similarity measures

according to human judgement of similarity. It contains 29 pairs of concepts associated

to semantic similarity scores. Similarity scores are obtained by averaging the ratings

given by two groups of experts: 9 medical coders and 3 physicians. Finally, for each pair

of concepts, three similarity scores are given: average scores of coders, averaged scores

of physicians and averaged scores of both physicians and coders. Pairs of concepts which

make up the benchmarks, associated similarities and additional information are provided

in Appendix B.2.

The evaluation of semantic similarity measures is usually tackled by computing the Pear-

son correlation against the similarity ratings given by each group of human experts. The

biomedical ontology SNOMED-CT1[Spackman, 2004] was used to extract the required

semantics, i.e. pairs of concepts denoted by labels have been manually associated to

pairs of unambiguous concepts defined in SNOMED-CT2.

1http://systems.hscic.gov.uk/data/uktc/snomed/index_html
2The mapping is provided in Appendix B.2.

http://systems.hscic.gov.uk/data/uktc/snomed/index_html
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5.1.2.2 Measure definitions from the framework

The study focuses on the evaluation of semantic similarity measures derived from two

abstracted forms of semantic measures: the contrast model (simCM∗) and the ratio

model (simCM∗) (refer to equations Table 4.5). Notice that in simCM∗ , the γ parameter,

which tunes the contribution of the commonality, was fixed to 1; α and β parameters,

which tune the importance given to the information found in u (resp. v) which is

not found in v (resp. u), were set from 0 to 15 with a step of 0.1. As a result of

this parameter tuning, 22,500 abstract expressions of both simCM∗ and simRM∗ were

instantiated and systematically evaluated. For each abstract expression we further tested

the four instantiations of the core elements shown in Table 5.1.

Elements 1 2 3 4

ρ(u) = ũ G+
T (u) A(u) A(u) A(u)

Θ(ũ) lp(u, isa,>) IC(u) |A(u)|
∑

c∈A(u)

IC(c)

Ψ(ũ, ṽ) lp(LCA(u, v), isa,>) IC(MICA(u, v)) |A(u) ∩A(v)|
∑

c∈A(u)∩A(v)

IC(c)

Φ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ) Θ(ũ)−Ψ(ũ, ṽ)

Table 5.1: Core element expressions evaluated by the experiments

Thus, for each abstract similarity measure, the four instantiations of the core elements

led to 90,000 individual measures (i.e. 22,500×4). Note that IC-dependent configu-

rations used the IC calculus model defined in [Sánchez et al., 2011] (Equation 3.7).

The final experiment is thus based on the evaluation of more than half a million mea-

sure configurations, i.e. 180,000 measure configurations for each evaluation benchmark:

physicians, coders and the average of both ratings.

Some measures available in the literature correspond to particular points in the range

of measure instantiations studied in this experiment. Table 5.2 highlights some of these

links.

For each measure configuration, the Pearson correlation with the scores provided by the

three groups of experts (coders, physicians and both) were computed.

5.1.2.3 Empirical evaluation and dataset

Empirical evaluations were performed using the Semantic Measures Library, a soft-

ware tool dedicated to the large-scale analysis and computation of semantic measures

which will be introduced in Chapter 8. The source code and detailed documentation
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Measures Eq. Ref Abstract Parameters Case

simResnik 3.28 [Resnik, 1995] simCM∗ α = 0, β = 0 2

simWP 3.16 [Wu and Palmer, 1994] simRM∗ α = 0.5, β = 0.5 1

simLin 3.29 [Lin, 1998] simRM∗ α = 0.5, β = 0.5 2

simDIC 3.35 [Mazandu and Mulder, 2011] simRM∗ α = 0.5, β = 0.5 4

simPS 3.17 [Pekar and Staab, 2002] simRM∗ α = 1, β = 1 1

simFaith 3.33 [Pirró and Euzenat, 2010b] simRM∗ α = 1, β = 1 2

simCMatch 3.22 [Maedche and Staab, 2001] simRM∗ α = 1, β = 1 3

simcGIC 4.21 [Harispe et al., 2013d] simRM∗ α = 1, β = 1 4

Table 5.2: Examples of parametric expressions of existing semantic measures. Exam-
ples of links that can be established between existing semantic similarity measures and
measure instantiations which derive from (i) the abstracted contrast and ratio models
(simCM∗ , simRM∗ – Table 4.5), and (ii) instantiations of the core elements defined in

Table 5.1

related to the experiment is open sourced and available at http://www.lgi2p.ema.fr/

~sharispe/publications/JBI2013.

5.1.3 Results and discussion

5.1.3.1 Results

Tables 5.3, 5.4 and 5.5 summarise the best results which were obtained for each config-

uration of abstract measures and for the four specific strategies used to express the core

elements (cf. Case columns and Table 5.1). These results will be discussed in the next

section.

Case
Best tuning simCM∗ Best tuning simRM∗ Correlations

α β α β simCM∗ simRM∗

1 0.5 1.0 14.9 2.1 0.764 0.849

2 0.2 0.7 13.6 3.3 0.801 0.862

3 0.5 0.4 14.9 3.5 0.613 0.865

4 0.4 0.3 8.1 1.9 0.714 0.858

Table 5.3: Best Pearson correlations – coder ratings

Case
Best tuning simCM∗ Best tuning simRM∗ Correlations

α β α β simCM∗ simRM∗

1 0.2 1.5 6.6 3.2 0.779 0.678

2 0.8 0.1 3.6 2.8 0.752 0.683

3 0.3 0.5 3.8 3.4 0.587 0.710

4 0.4 0.4 1.1 1.7 0.670 0.715

Table 5.4: Best Pearson correlations – physician ratings

http://www.lgi2p.ema.fr/~sharispe/publications/JBI2013
http://www.lgi2p.ema.fr/~sharispe/publications/JBI2013
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Case
Best tuning simCM∗ Best tuning simRM∗ Correlations

α β α β simCM∗ simRM∗

1 0.3 1.3 14.9 2.6 0.799 0.789

2 0.5 0.4 6.9 3.2 0.805 0.798

3 0.4 0.4 7.9 3.7 0.623 0.810

4 0.4 0.4 2.8 2.0 0.719 0.808

Table 5.5: Best Pearson correlations – average of physician and coder ratings

Figure 5.1 presents the results associated to the Pearson correlations of similarity mea-

sures against the average of physician and coder ratings. In these figures, only instantia-

tions which derive from Case 2 and Case 4 expressions of the core elements are provided

– Case 2 (A1, B1) and Case 4 (A2, B2) – these instantiations provide interesting results

for both abstract measures evaluated. Points of the surface which correspond to maxi-

mal correlations and published measures are specified. Additional figures are proposed

in Appendix C, in particular those associated to the results which have been obtained

with the other instantiations and benchmarks (coders and physicians alone).
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Figure 5.1: Surfaces associated to the Pearson correlations of similarity measures
against the average physician and coder ratings. Measures have been instantiated from
abstract forms of the contrast model (A) and the ratio model (B) using core elements
expressions defined in Table 5.1: Case 2 (A1, B1) and expression Case 4 (A2, B2).
Each point making up the surface corresponds to a specific tuning of α and β. For each
surface, the dot labelled max corresponds to the maximal value observed. Other dots

reflect instantiations that correspond to existing measures, cf. Table 5.2
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Figure 5.2: Plot of the Pearson correlations of the measures obtained from abstract
forms of the contrast and ratio models using instantiation Case 1 – resp. (A) and (B)
(averaged benchmark including both coder and physician scores). The inclination of
the curves enables to discuss the benefits of asymmetric tuning of α and β parameters

5.1.3.2 Discussion

To our knowledge, this is the first large scale analysis of semantic measures to be pro-

posed in the literature. Here we focus on the main conclusions which can be extracted

from the analysis of the results:

• The effect of core elements’ expressions on the measures’ accuracies depends on

the abstract measure considered : for the contrast model, core elements’ expressions

corresponding to instantiation Case 3 always resulted in the lowest correlations

(0.613, 0.587, 0.623 – Tables 5.3, 5.4, 5.5). Conversely, considering the ratio model,

instantiation Case 3 produced some of the best correlations (0.865, 0.710, 0.810). It

is therefore interesting to underline that the suitability of using specific expressions

of core elements is a function of the abstract formulation which has been selected

– an aspect which must be taken into account for the design of semantic measures

using the framework.

• The accuracy of measures is mainly explained by the selected abstract measure:

indeed, changes in the expression of the core elements only slightly modified the

shape of the surface. Moreover, most instantiations associated with well-tuned α

and β parameters produced good correlations. The maximum variation between

the best correlation observed for the ratio model was +/- 0.04 (0.678 - 0.715, see
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Table 5.4). However, using the contrast model, greater variations were observed:

+/- 0.19 (0.587 - 0.779, see Table 5.4). In other words, considering adapted pa-

rameters, each instantiation of the core elements can lead to accurate measures.

Nevertheless, we also observe that results differ depending on the abstract measure

considered. Some abstract measures appear to generate search space solutions with

an interesting global maximum regardless of the instantiation of the core elements

considered.

• The variability of scores is mainly due to the selection and tuning of the abstract

measure: by considering the contrast model, an important variability of results

is observed depending on the values α and β (see Figure 5.1 A1 A2) – very

narrow global maximums are observed. However, despite the variability of the

results for low α and β, it is also observed for the ratio model that the vari-

ability significantly decreases with large values of α and β (see Figure 5.1 B1

B2). This is indeed expected since the limit of the correlation function approaches

a constant value when (α, β) → +∞, i.e. lim(x,y)→+∞ simRM∗(u, v) = 0. Thus

lim(x,y)→+∞ corr(ssimRM∗ , s) = corr([0], s), with ssimRM∗ the vector which contains

the similarities obtained by an instantiation of simRM∗ for the pairs of concepts

which compose the benchmark, s the vector which contains the expected scores

of similarity for a scenario (e.g. coders), and [0] a vector of the same size which

contains only 0 values. It is therefore interesting to remark that for certain ab-

stract measures, the accuracy does not depend (or only faintly) on the expression

of the abstract operators evaluated, but rather on the selected abstract measure

and associated (α, β) configuration1.

• Asymmetrical measures tend to provide the best results: all experiments provided

the best correlations by tuning the measures with asymmetric contributions of α

and β parameters (see Table 5.3 to Table 5.5 and Figure 5.2). As an example,

in Figure 5.2, the asymmetry of the surfaces underlines the benefits of consider-

ing asymmetric α and β values. The improvement of an asymmetric tuning of

parameters is best outlined in the ratio model (Figure 5.2 B). This observation

refers to the results obtained in cognitive sciences which underline the necessity of

considering an asymmetric estimation to best fit human appreciation of similarity

– cf. Section 1.4.2.

1This statement obviously only considers coherent expressions of abstract elements.
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It is tempting to generalise these results and observations. Nevertheless, note that

the observations made in this experiment are only driven by the analysis of specific

configurations of measures, using a single ontology and a unique benchmark. There-

fore, more empirical analyses have to be performed in order to deeply understand

and generalise these preliminary results.

However, these results clearly stress the usefulness of such experiments and the added

value of the proposed framework to analyse semantic measures using a level of details

that have never been obtained. There are numerous applications. This is in particular

due to the fact that the adopted experimental protocol, which extensively relies on the

unifying framework, both eases and improves the understanding, selection and design

of semantic measures. Otherwise stated, this study also highlights that the proposed

approach can be of great help to optimise and to select semantic similarity measures for

domain-specific usage.

5.2 Estimation of the robustness of semantic measures

5.2.1 Motivation and objectives

We have so far introduced a theoretical framework which provides the ability to design

semantic measures by aggregating different core elements commonly used for their def-

inition. In the previous section, we have also indirectly shown that the process of the

selection and design of semantic measures can be partially1 formulated as an optimisa-

tion problem: how to select abstract measures and instantiations of the core elements

which lead to the most accurate measures?

This process is based on a benchmark from which the accuracy of measures can be

evaluated w.r.t expected scores of similarity. In this context, expected scores of sim-

ilarity provided by experts are considered to be the unquestionable truth. Therefore,

this evaluation/design process does not take into account the uncertainty associated to

benchmarks. However, each benchmark is per se associated to bias, e.g., due to abnor-

mal sampling in experts and pairs of elements evaluated. This will therefore undeniably

impact the selection/design of accurate semantic measures. As we can imagine, con-

sidering this bias – which is nothing but uncertainty w.r.t the scores of similarity that

make up the benchmark – makes the problem become more complex. Indeed, taking

1Note that here we focus on measure accuracy despite the fact that we have underlined other impor-
tant aspects of semantic measures which could be considered when selecting and designing measures for
a specific context of use. Refers to Appendix B.
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the uncertainty into account leads to the desire to evaluate semantic measures not only

based on their accuracy, but also w.r.t their capacity to be resilient to bias/uncertainty

which intrinsically mars benchmarks. This capacity is introduced through the term ro-

bustness. Therefore, this section proposes to study the consideration of uncertainty for

both the selection and design of semantic measures. This is done by formally defining

the notion of semantic measure robustness, and by proposing an approach to incorporate

uncertainty in the process commonly used to evaluate semantic measure accuracy.

This section is structured as follows. First, considering the unifying framework proposed

in Chapter 4, we formalise the process of semantic similarity measure design/selection

through an optimisation process. Next, we propose an approach to incorporate un-

certainty modelling in the aforementioned optimisation process. This will help us to

rigorously define the notion of robustness for semantic measures. The benefits of our

proposal is illustrated through a practical use case in which specific semantic measures

are evaluated w.r.t their robustness. Finally, we discuss the results which have been

obtained and the perspectives opened by the notion of robustness to better analyse

semantic measures.

5.2.2 Formalisation of the problem and definition of robustness

5.2.2.1 Design semantic measures through optimisation

Considering a particular abstract expression of a measure, here simRM∗ , the objective is

to define the right combination of parameters (ρ,Θ,Ψ,Φ, α, β). Following the framework

presented in Chapter 4, this choice proceeds with two steps:

• Step 1 : Define a finite list Π = {πl|πl = (ρl,Θl,Ψl,Φl), l = 1, . . . , L} of possible

instantiations of the core elements (ρ,Θ,Ψ,Φ)1, see Table 5.1. This choice can be

guided by semantic concerns and application constraints, e.g., based on: (i) the

analysis of the assumptions on which specific instantiations of measures rely, (ii) on

the desire to respect particular mathematical properties or (iii) the computational

complexity of measures. These aspects were discussed in Section 5.1.

• Step 2 : Choose the couple of parameters (αl, βl), l = 1, . . . , L to be associated to

πl in simRM∗ . There are at least two ways to identify the value of (αl, βl) that

better matches human appreciation of similarity. A couple (αl, βl) may be selected

in an ad hoc manner from a finite list of well-known instantiations (see Table

5.2), e.g., based on the heavy assumption that measures performing correctly in

other benchmarks are suited for our specific use cases. Alternatively, knowing the

1Note that here we consider θ to be defined; it can also be considered as a variable.
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expected similarities s(x, y) furnished by domain experts on a learning dataset,

(αl, βl) can also be obtained from a continuous optimisation process over this

dataset. The latter issue is developed hereafter.

For any instantiation (πl, αl, βl) of the abstract measure simRM∗ , let us denote sl(x, y)

for any couple of concepts:

sl(x, y) ≡ simRM∗(πl,αl,βl)(x, y) (5.1)

Suppose now that experts have given the expected similarities sk = s(xk, yk), k =

1, . . . , N for a subset of N couples of concepts (xk, yk). Let s = [s1, . . . , sN ]T be the

vector of these expected similarity values. It is possible to estimate the quality of a

particular semantic similarity measure tuning sl with the value of a fitting function.

We denote sl the vector which contains the similarities obtained by sl for each pair of

concepts evaluated to build s, with: sl = [sl(xk, yk)k=1,...,N ]. Given πl, the similarities

sl(xk, yk) only depend on (αl, βl); it is thus possible to find the optimal (α0
l , β

0
l ) values

that optimise a fitting function, e.g. the correlation between s and sl:{
maxα,β corr(s, sl)

0 ≤ α, β ≤M
(5.2)

The bound constraint of this optimisation problem is reasonable since the case α→ +∞
or β → +∞ should imply simRM∗(x, y) = 0 which has no appeal for us.

Figure 5.3: Fitting function corr(s, sl(α, β)) for the instantiation of simRM∗ Case 3
(Table 5.1) and Pedersen et al. semantic similarity benchmark
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Figure 5.4: Level line of the fitting function corr(s, sl(α, β)) for the instantiation of
simRM∗ Case 3 (Table 5.1) and expected semantic similarity scores. The (red) dot

refers to the optimal (α, β) configuration, (α, β) ' (6.2, 0.8)

Figures 5.3 and 5.4 present an experiment which has been made to distinguish the

optimal (α0
l , β

0
l ) parameters for instantiations of simRM∗ using Case 3 (refer to Table

5.2) and a biomedical benchmark dedicated to semantic similarity (the one proposed by

Pedersen et al. [2007] which was presented in Section 5.1.2 and Appendix B.2). The

maximal correlation value is 0.759, for α0
l = 6.17 and β0

l = 0.77 (the dot in Figure

5.4). The strong asymmetry in the contour lines is a consequence of Φ(ũ, ṽ) 6= Φ(ṽ, ũ).

As we saw in the previous section, this approach is efficient for deriving the optimal

configuration considering a given vector of similarities (i.e., s). Nevertheless, it does not

take into account the fact that expert assessments of similarity are inherently marred

by uncertainty. We therefore introduce an approach to consider this uncertainty in the

process of measure selection.

5.2.2.2 Uncertainty modelling

A classical way to model expert uncertainty is the Gaussian independent noise: tk =

sk + εk with εk ∼ N(0, σ2
k), k = 1, . . . , N . Thus, t = s + ε, with ε ∼ N(0,Σ),Σ =

diag(σ2
1, . . . , σ

2
N ),∀k, σ2

k ≤ σ2. In our application domain, expected similarities are often

provided in a finite ordinal linear scale of type vi = v0 + i∆, i = 1 . . . V (e.g., vi ∈
{1, 2, 3, 4} in the next section). If ∆ denotes the difference between two contiguous

levels of the scale, next we assume in this case that εk ∈ {−∆, 0,∆} with probability

p(εk = 0) = q, p(εk = −∆) = p(εk = ∆) = 1−q
2 .
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This model of uncertainty merely means that expert assessment errors cannot exceed

±∆. In addition, it allows for computing the probability distributions of the optimal

couples (αl(ε), βl(ε)) ∼ Du
αl,βl

with (αl(ε), βl(ε)) being the solution of the problem

presented in Equation 5.2, with t = s + ε instead of s as inputs, and u the uncertainty

parameter (u = σ or q) – note that (α0
l , β

0
l ) = (αl(0), βl(0)).

5.2.2.3 Semantic measure robustness

The aim is to quantify the impact of uncertainty in expert assessments on the selection

of a measure instantiation, i.e. selection of (πl, αl, βl). We are interested in the evalu-

ation of semantic similarity measure robustness w.r.t expert uncertainty, and we more

particularly focus on the relevance of considering (α0
l , β

0
l ) in case of uncertain expert

assessments.

Finding a robust solution to an optimisation problem without knowing the probability

density of data is a well-known problem, e.g., [Ben-Tal et al., 2009; Janaqi et al., 2013].

In our case, we do not use any hypothesis in the distribution of s − sl. We therefore

define a set of near optimal (αl, βl) using a threshold value r (domain-specific setting).

The near optimal solutions are those in the level set:

Lr = {[αl, βl] | corr(s, sl) ≥ r} (5.3)

The robustness is therefore given by:

R(u) =

∫∫
Lr

Du
αl,βl

dαldβl (5.4)

The bigger R, the more robust the model (α0
l , β

0
l ). Nevertheless, given that analytical

form for the distribution Du
α,β cannot be established, even in the normal case ε ∼

N(0,Σ), estimation techniques are used for its estimation, e.g., the Monte Carlo method.

The computation of Du
αl,βl

allows for the identification of a robust couple (αl, βl) for a

given uncertainty level u. An approximation of this point, here denoted (α∗l , β
∗
l ), is given

by the median of points generated by the Monte Carlo method (αl(ε), βl(ε)). Note that

(α∗l , β
∗
l ) coincides with (α0

l , β
0
l ) for u = 0 or little values of u. Therefore (α∗l , β

∗
l ) remains

inside Lr for most of u and is significantly different from (α0
l , β

0
l ) when u increases.

We have so far (i) formalised the problem of selection of a semantic measure as an

optimisation problem, (ii) incorporated uncertainty modelling to it, and (iii) defined the

robustness of a semantic measure w.r.t the uncertainty associated to the benchmark

on which the optimisation problem relies. The next section is dedicated to a use case



Chapter 5. Unifying framework: illustration of applications 202

example in which the robustness of semantic measures is discussed in a specific context

of use.

5.2.3 Selection of a robust semantic similarity measure: use case

5.2.3.1 Experimental design

As we have seen, most algorithms and treatments based on semantic similarity measures

require measures to be highly correlated with human judgement of similarity. Semantic

similarity measures are thus commonly evaluated regarding their ability to mimic hu-

man appreciation of similarity between domain-specific concepts. In this experiment,

similarly to the experiment presented in Section 5.1, we considered the benchmark in-

troduced by Pedersen and collaborators. It can be used to evaluate semantic similarity

measures w.r.t similarity scores of pairs of concepts relative to the biomedical domain

– similarity scores were provided by medical experts. Nevertheless, conversely to the

previous study, the benchmark was used considering pairs of concepts defined in the

Medical Subject Headings (MeSH) thesaurus1 [Rogers, 1963].

In the benchmark considered, the average of expert similarities is given for each pair

of concepts; initial ratings are of the form sk ∈ {1, 2, 3, 4}. As a consequence, we

considered that the uncertainty is best modelled defining εk ∈ {−1, 0, 1} with probability

distribution: p(εk = 0) = q, p(εk = −1) = p(εk = 1) = 1−q
2 .

The approach used to generate measures was defined in the previous section. Remem-

ber that the measures were obtained from simRM∗ considering instantiations of the

core elements of the framework which was introduced in Table 5.1. Optimal α and β

were found by resolving Problem 5.2; the computation of semantic similarity measures

were performed by the Semantic Measures Library and the source code related to the

resolution of the optimisation problem (i.e. solver) was developed in Matlab2.

5.2.3.2 Results and discussion

Table 5.6 shows that, considering the average of physicians and coders similarities, one

of the best results is obtained using the Case 2 expression. The optimal configuration

is obtained with:

simRM∗C2
=

ψ

18.62(IC(u)− ψ) + 4.23(IC(v)− ψ) + ψ
(5.5)

1SNOMED-CT was used in Section 5.1. Please refer to Appendix B for details on the benchmark.
2www.mathworks.com/products/matlab/. Source code available on demand (reviewing process).

www.mathworks.com/products/matlab/
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with ψ = IC(MICA(u, v))

Case 1 Case 2 Case 3 Case 4

Max correlation 0.719 0.768 0.759 0.736

Optimal (α0
l , β

0
l ) (9.89,1.36) (18.62,4.23) (6.17,0.77) (7.26,0.40)

Table 5.6: Best Pearson correlations of parametric semantic similarity measures based
on simRM∗ , refer to Table 5.1 for details on measures

It can be observed that, naturally, the choice of core elements affects the maximal

correlation; instantiations of Cases 2 and 3 always resulted in the highest correlations.

Another interesting aspect of the results is that asymmetrical measures provide the

best results. All experiments provided the best correlations by tuning the measures

with asymmetric contributions of α and β parameters. Note that the best tunings and

(α, β) ratio vary depending on the core elements considered. These observations are in

accordance with the conclusions of the study presented in the Section 5.1.3.

Setting a threshold of correlation at r = 0.75, we now focus on the instantiations which

correspond to Cases 2 and 3; they have comparable results (respectively 0.768/0.759,∆ =

0.009). The aim is to evaluate their robustness according to the framework introduced.

Considering inter-agreements between pools of experts reported in [Pedersen et al., 2007]

(0.68 and 0.78 for physicians and coders respectively), we set the level of near optimality

(Lr) to r = 0.73. We also choose uncertainty values q ∈ {0.9, 0.8, 0.7, 0.6, 0.5}. The

probability for the expert(s) to give erroneous values, i.e. their uncertainty, is 1 − q ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. For each q-value, a large number of ε-vectors are generated to

derive (α∗l , β
∗
l ). Estimated values of the robustness R(u) and (α∗l , β

∗
l ) for instantiation

of measures which derive from Cases 2 and 3 are given in Table 5.7. They are also

illustrated in Figure 5.5. Results which have been obtained for the other cases are

provided in Appendix C.1.

1− q = 0.1 1− q = 0.2 1− q = 0.3 1− q = 0.4 1− q = 0.5

RC1(u) 0.27 0.30 0.36 0.37 0.29

α∗C1, β
∗
C1 (10.24,1.22) (11.07,1.21) (8.31,1.20) (8.55,1.21) (6.24,1.31)

RC2(u) 0.83 0.70 0.56 0.49 0.39

α∗C2, β
∗
C2 (18.62,4.23) (18.62,4.23) (15.31,4.23) (16.70,4.07) (13.71,4.02)

RC3(u) 0.76 0.54 0.46 0.39 0.35

α∗C3, β
∗
C3 (6.17,0.77) (6.17,0.76) (5.52,0.71) (5.12,0.64) (4.06,0.70)

RC4(u) 0.74 0.57 0.46 0.43 0.35

α∗C4, β
∗
C4 (7.26,0.40) (6.83,0.40) (4.71,0.39) (4.98,0.39) (3.75,0.41)

Table 5.7: Robustness of tested parametric semantic similarity measures
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Figure 5.5: Plot of robustness of parametric semantic similarity measures based on
Case 2 (C2) and Case 3 (C3) for 10% and 40% of uncertainty. In each figure the
solutions (α0

l , β
0
l ),(α∗l , β

∗
l ) and Lr are plotted. Lr is represented by the area inside the

bold black line

Figure 5.5 shows the spread of the couples (α(ε), β(ε)) for Case measures 2 and 3 consid-

ering the levels of uncertainty set to 10% and 40%. An interesting aspect of the results

is that the robustness is significantly different depending on the case considered: 83%

for Case 2 and 76% for Case 3. Therefore, despite the fact that their correlations were

comparable (∆ = 0.009), Case 2 is less sensitive to uncertainty w.r.t the learning dataset

used to distinguish best-suited parameters. Indeed, only based on correlation analysis,

users of semantic similarity measures will generally prefer measures which have been

derived from Case 3 since their computational complexity is lower than those derived

from Case 2 (computation of the IC and the MICA are more complex). Nevertheless,

Case 3 appears to be a more risky choice considering the robustness of the measures

and the uncertainty inherently associated to expert evaluations. In this case, one can

reasonably conclude that (α0
l , β

0
l ) of optimised Case 2 is robust for an uncertainty lower

than 10% (1− q = 0.1;R(u) = 0.83).

The size of the level set Lr is also a relevant feature for the selection of semantic similarity

measures; it indicates the size of the set of parameters (αl, βl) that gives high correlations
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considering imprecise human expectations. Therefore, both, an analytical and graphical

estimator of robustness are introduced.

Another interesting finding of this study is that, even if human observations are marred

by uncertainty and the semantic choice of measure parameters, πl = (ρl,Θl,Ψl,Φl), is

not a precise process, the resulting semantic similarity measure is not so sensitive to all

these uncertainty factors.

5.2.4 Synthesis of the study and perspectives

Considering the large diversity of measures available, an important contribution for

end-users of semantic similarity measures would be to provide tools to select best-suited

measures for domain-specific usage. Our approach paves the way to the development of

such a tool and can more generally be used to perform detailed evaluations of semantic

similarity measures in other contexts and applications (i.e., other ontologies and training

data). In this section, we used the unifying framework established in Chapter 4 and a

well-established benchmark in order to design semantic similarity measures that fits the

objectives of practitioners and designers of semantic measures in a given application

context.

We particularly focused on the fact that the selection of the best-suited semantic similar-

ity measures is affected by uncertainties, in particular due to the uncertainty associated

to the ratings of human experts used to evaluate measures, etc. To our knowledge, we

are the first to propose an approach that finds/creates a best-suited semantic measure

which remains robust in the face of these uncertainties. Indeed, contrary to most ex-

isting studies which only compare measures based on their accuracy, i.e., correlation

with expected scores of similarity (e.g., human appreciation of similarity), our study

highlights the fact that robustness of measures is an interesting criteria to better un-

derstand measures’ behaviour and therefore drive their comparison and selection. We

therefore proposed two estimators of robustness, graphical and analytical, which can be

used to characterise this important property of semantic measures. Thus, by bringing to

light the limits of existing estimator of measures’ accuracy, especially when uncertainty

is regularly impacting measures (evaluation and definition), we are convinced that our

proposals open interesting perspectives for measure characterisation and will therefore

ease their accurate selection for domain specific studies.

In addition, results of the real-world example used to illustrate our approach (cf. Section

5.2.3) give us the opportunity to capture new insights about specific types of measures

(i.e. particular instantiation of an abstract measure). More benchmarks have to be
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studied to derive more general conclusions. This will help to better understand seman-

tic similarity measures and more particularly to better analyse the role and connexions

between abstract measures’ expressions, core elements instantiations and additional pa-

rameters regarding both the accuracy and robustness of semantic similarity measures.

5.3 Chapter conclusion

In this chapter, we have illustrated some of the practical applications offered by the

unifying framework of semantic similarity measures presented in Chapter 4. We have,

in particular, highlighted the interesting perspectives opened by the framework to study

specific and detailed aspects of measures, i.e., role, importance and repercussion associ-

ated to the selection of specific components commonly used to build semantic measures

(i.e., abstract measure, associated parameters, instantiation of the core elements). At

this occasion, through practical use cases related to the biomedical domain, we brought

to light some domain-specific and interesting aspects of measures (e.g., asymmetry, lim-

ited impact of the choice of specific instantiations of the core elements using particular

abstract measures). Despite the importance and implications of such results, our aim

was not to derive general conclusions, but rather to demonstrate the suitability and

practical feasibility of the proposal. To this end, we defined and formalised an approach

which can be used to take advantage of the theoretical framework to evaluate and op-

timise semantic measures. This approach can now be used to study specific aspects

of semantic measures through a degree of granularity previously unseen – there are

numerous perspectives to derive new insights on semantic measures.

We also provided a reflection associated to the consideration of uncertainty in protocols

which are commonly used to evaluate the accuracy of semantic measures. For this, we

defined an approach to incorporate uncertainty modelling in the evaluation process. We

also introduced the notion of robustness. It can be used to support semantic measure

selection w.r.t the degree of uncertainty which can be associated to the benchmark in

use. We are convinced that this proposal finds direct applications for the practical use

of semantic measures. Indeed, as we have seen, the accuracy of measures is central for

their selection, yet it is hard to have blind confidence in benchmarks which are per se

marred by uncertainty.

This led us to another central discussion on semantic measures which have been proposed

in this chapter: aspects of semantic measures which have to be discussed for their

selection. We have stressed that most studies today (legitimately) focus on the evaluation

of semantic measures through their accuracy. Nevertheless, we stressed the limits of

this sole criterion and we proposed other aspects of semantic measures which deserve
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consideration when discussing the relevance of using a particular measure in a specific

application context, i.e., mathematical properties, algorithmic complexity, semantics.

The enrichment of this discussion, which could be undeniably facilitated by the proposed

theoretical framework, is left in perspective of this thesis but we believe is essential for

assisting end-users in the selection of semantic measures w.r.t the plethora of measures

proposed in the literature.
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Abstract

Many applications take advantage of both ontologies and the Linked Data paradigm

to describe various kinds of resources (e.g., gene products, music bands, documents).

To fully exploit this knowledge, not only for an exact search but also for inexact and

imprecise search, semantic measures are used to estimate the relatedness of resources re-

garding their semantic characterisation. Such measures have proved particularly useful

for information retrieval based on semantic graphs (e.g. RDF graphs). However, existing

proposals mainly focus on specific aspects of the resources (e.g. types) or only partially

exploit the semantics expressed in the ontology. To address this limitation, this chap-

ter studies how the unifying framework of semantic similarity measures which has been

proposed in Chapter 4, can be extended to define more expressive measures to compare

instances defined in a semantic graph. As a result, we introduce a new canonical form

of an instance through projections. The main proposal relies on the possibility of taking

into consideration the complex properties of an instance: properties which are not mate-

rialised in the ontology but which can be obtained by aggregating other properties. We

then show how this canonical form can be used to easily design semantic measures. The

added value of this approach, especially pertaining to recommendation systems, is dis-

cussed. In particular, we show how, using semi-supervised techniques, this approach can

be used to track the semantics which govern the comparison of instances, and therefore

better explain the meaning of high/low scores of similarity between instances. Finally,

the practical feasibility of our proposal is illustrated through a prototype of a music band

recommender system available at http://www.lgi2p.ema.fr/kid/tools/bandrec.

Associated reference on which this chapter is based:

• Mesures Sémantiques basées sur la notion de projection RDF pour les

systèmes de recommandation. Sébastien Harispe*, Sylvie Ranwez, Stefan

Janaqi, Jacky Montmain. 24es journées francophones d’Ingénierie des Connais-

sances – IC 2013.

• Semantic Measures Based on RDF Projections: Application to Content-

Based Recommendation Systems. Sébastien Harispe*, Sylvie Ranwez, Stefan

Janaqi, Jacky Montmain. In On the Move to Meaningful Internet Systems: OTM

2013 Conferences (p. 606–615). Graz (Austria). Springer

Berlin Heidelberg. doi:10.1007/978-3-642-41030-7 44

http://www.lgi2p.ema.fr/kid/tools/bandrec
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6.1 Motivation and objectives

“Which music bands are similar to the Rolling Stones?”. It would be quite natural

to ask such a question to a friend with some knowledge of music. Most classic search

engines, however, will fail to provide an answer. In fact, the answers to such questions

constitute resources defined as MusicBands (here lies the notion of type) and must

be related to the rollingStones (notion of semantic relatedness). Answering such

questions proves essential for recommendation systems since they extensively rely on

similarity evaluations to formulate recommendations: “If you like the rollingStones,

you might also like. . . ”. So, how is it possible to define whether or not two music

bands are related by studying their properties (e.g. musicGenres, dateOfFormation)?

More generally, how can the degree of relatedness of two instances be assessed? Data

Retrieval techniques based on an exact (Boolean) search cannot be used herein; the

inaccuracy expressed by the query entails the consideration of imprecise results and

therefore requires the use of Information Retrieval (IR) techniques.

Many contributions have proposed the use of Semantic Web technologies and the Linked

Data paradigm to assess the semantic relatedness of entities based on semantic measures.

We have studied these measures in the context of IR based on semantic graphs; for the

most part, these measures are suitable in comparing pairs of (groups of) classes1, though

only a few can be used to compare instances described through expressive graph-based

representations (i.e. RDF graphs, graphs based on the property graph model). As an

example, in IR, an instance is usually represented by a reductive canonical form, e.g. bag

of concepts. Only a few approaches actually take advantage of solutions proposed in the

context of instance matching, which seeks to determine whether two instance descriptions

refer to a single domain instance. Two main approaches have thus been proposed to

estimate the degree of relatedness of instances defined in a semantic graph: a direct

one that controls the semantic model associated with the ontology, and an indirect

one that does not consider or only slightly considers this semantics, e.g. the use of

algorithms based on random walk approaches. By definition however, semantic measures

must exploit semantics and enable justifying why a strong/weak semantic relatedness

between instances is being assessed. This point is indeed critical for recommendation

system design, whereby a user must understand why a recommendation is proposed in

order to assign it credit (to avoid the black box effect).

Ehrig et al. [2004] were the first to propose a framework for defining semantic mea-

sures based on ontologies; this framework specifies how to compare instances through

1Since we will often refer to the instances of a class, we will prefer the term class over the term
concept in this chapter.
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their direct properties (e.g. types, labels). It was later extended to introduce the no-

tion of a customised similarity function which was used to develop imprecise SPARQL

(iSPARQL), in the aim of integrating imprecise evaluations of direct properties into

SPARQL [Kiefer et al., 2007]. Based on the concept of a similarity aggregation operator

originally defined by Orozco and Belanche [2004], Kiefer et al. [2007] formally defined

the notion of similarity strategy, from which a complex element defined in an RDF

graph may be compared on the basis of multiple similarity measures and an aggregation

scheme. In some cases however, instances can only be compared by incorporating their

indirect properties, e.g., information relative to properties characterising the instances

to which they are related. As an example, a comparison of artists can only be drawn by

considering the properties of their artistic productions, e.g. types, styles. To bridge this

gap, Albertoni and De Martino [2006] proposed a primary extension to the framework

defined by Ehrig et al. [2004] that included an evaluation of indirect properties as a

means of better estimating the relatedness of instances.

The present contribution extends existing frameworks by defining a canonical form based

on the notion of projection. This approach enables a fine-tuned definition of the repre-

sentation of instances according to specific use contexts. Moreover, our approach makes

it possible to express complex (indirect) properties which are not taken into account in

existing frameworks. This representation of an instance is ultimately used to define a

series of parameterised semantic measures which are well adapted to recommendation

system definitions.

Note that throughout this chapter we will consider the example of a semantic graph

which is presented in Figure 6.1 (already introduced in Chapter 2). In this representa-

tion, classes represent the concepts defined in an ontology related to music: MusicBand,

MusicGenre, etc., while the instances are music bands: rollingStones, music genres:

rock, etc. Moreover, a given instance can also establish specific relationships with other

instances or data values (e.g. a literal corresponding to the name of the band). A se-

mantic graph can therefore be dissected according to: (i) the intensional layer C (classes,

taxonomy), (ii) the extensional layer I (instances), and (iii) the data layer D.

The remainder of this chapter will be structured as follows. Section 6.2 provides an

overview of semantic measures for IR and recommendation systems; it summarises the

state-of-the-art introduced in Chapter 3 which is of interest herein and briefly discusses

the use of semantic measures for recommendation system design. Section 6.3.1 proposes a

brief discussion on the generalisation of the theoretical framework presented in Chapter 4

to consider the comparison of instances. Section 6.3 is dedicated to (i) a formal definition

of the notion of projection, (ii) the introduction of a general semantic measure which can

be used to compare instances based on this notion, and (iii) possible extensions of the
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Figure 6.1: Partial graphical representation of a semantic graph according to three
layers: concepts (C), instances (I), and data (D)

proposal. Section 6.4 discusses the application of the proposed approach for designing

a music band recommendation system; a software prototype is also presented. Finally,

conclusions are proposed in Section 6.5.

6.2 Overview of related literature

6.2.1 Semantic measures between instances

Semantic measures between instances have been widely studied to perform instance

matching in various data/knowledge bases, e.g. RDF and databases [Euzenat and

Shvaiko, 2013]. They have also been used to discover relationships between instances

[Volz et al., 2009]. In this case, the aim of the measure is to detect duplicated instances

in one or more knowledge bases. This is conceptually different to the desire to assess the

similarity/proximity of instance representations which do not refer to the same instance.

Evaluating the proximity between instances requires defining a representation (or canon-

ical form) to characterise an instance. Four approaches can be distinguished:

• Representing an instance as a graph vertex: When no specific canonical form

is adopted, the instance is represented through the vertex of the graph making

reference to it. The proximity between two instances is therefore evaluated using

measures exploiting graph structure analysis and does not explicitly rely on the

semantic carried by the graph, e.g. random walk techniques. Consequently, the
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more the compared instances are interconnected, whether directly or indirectly,

the more related they will be assumed to be, e.g., [Jeh and Widom, 2002]. The

main advantage of this approach is its lack of supervision, while its main drawback

is its absence of extensive control over the semantics which are taken into account

to estimate the proximity. Indeed, this generates difficulties in justifying and

explaining the resulting scores.

• Representing an instance using a set of classes: In this case, an instance

is associated to the set of possibly weighed concepts1. The measures defined to

compare sets of concepts can then be used for this canonical representation. Under

most conditions, such an approach is adopted whenever the knowledge about in-

stances can be summarised as a set of concepts (e.g. genes or documents are often

annotated by concepts defined in a ontology). However, such a canonical form

remains too restrictive for representing instances defined in a semantic graph (e.g.,

RDF graph) since only the types of instances or a very limited set of information

will be considered. In Figure 6.1, the instance roolingStones would therefore

be reduced to its set of affiliated concepts (e.g. {MusicBand, . . .}). Formally, an

instance i is represented by {c|∃(i, isA, c)}2.

• Representing an instance through a list of properties: An instance can be

evaluated by studying its direct properties, i.e., resources linked to the instance

by a single relationship characterised by a specific predicate (e.g. rdfs:label).

According to Section 3.4.1.2, two types of properties can be distinguished: non-

taxonomic (object and datatype properties in OWL); and taxonomic, i.e. those

involving concepts structured into a taxonomy. Non-taxonomic properties corre-

sponding to datatype properties can be compared using measures adapted to the

type of properties considered, e.g., using a measure to compare dates of music

band formations. Properties associated to instances (i.e. object properties) are,

on most occasions, compared using set-based measures, which will evaluate the

quantity of instances of shared sets (e.g. the number of music genres two groups

have in common). Moreover, taxonomic properties are evaluated using semantic

measures adapted to the comparison of concepts. Scores produced by the vari-

ous measures are thus aggregated in order to obtain a global relatedness score for

two instances [Euzenat and Shvaiko, 2013]. Such a representation is commonly

adopted in ontology alignment, instance matching or link discovery between in-

stances [Araujo et al., 2011; Oldakowski and Bizer, 2005; Volz et al., 2009]. The

study of these measures inherits from early work related to both the comparison

1E.g. the classes of which the instance is a member.
2Considering that transitive reductions have been performed. In some cases more complex approaches

will be used to associate a set of concepts to an instance, e.g., using a SPARQL query.
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of objects defined into knowledge bases and the comparison of entities defined in

a subset of the first order logic [Bisson, 1992, 1995]. Indeed, these measures have

been extensively studied for comparing objects using aggregations of specific mea-

sures used to compare each of the properties of the compared objects [Valtchev,

1999a,b; Valtchev and Euzenat, 1997]. As an example, these contributions have

formed the basis of several frameworks which are used for comparing instances

or concepts in the field of ontology alignment or instance matching, e.g., OWL

Lite Alignment (OLA) method has been proposed to compare ontologies based

on aggregations of several measures [Euzenat et al., 2004; Euzenat and Valtchev,

2004].

• Representing an instance through an extended list of properties: This

representation is an extension of the previously presented canonical form. It can be

implemented to take into account indirect properties of instances, i.e. properties

induced by the resources associated with the represented instances. As an example,

two music bands will be compared w.r.t the music genres associated to their music

productions.

Several contributions underline the relevance of indirect properties in comparing entities

represented through graphs, especially in object models [Bisson, 1995]. On reflecting

on our music-related example, such a representation might be used to consider the

characteristics (properties) of the music genres for the purpose of comparing two music

bands. A formal framework, which extends those proposed by Euzenat et al. [2004] and

Ehrig et al. [2004], has thus been proposed to capture some of the indirect properties

[Albertoni and De Martino, 2006]. This framework formally defines an indirect property

of an instance along a path in the graph. The indirect properties to be taken into

account are defined for a class and depend on a specific context, e.g. application context.

From a different perspective, Andrejko and Bieliková [2013] suggested an unsupervised

approach for comparing a pair of instances by considering their indirect properties. Each

direct property shared between the compared instances plays a role in computing the

global similarity. When the property corresponds to an object property (i.e. linking

one instance to another), the approach combines a taxonomic measure with a recursive

process to take into account the properties of instances associated with the instance

being processed. Lastly, in estimating the similarity between two instances, the measure

aggregates the scores obtained during the recursive process.
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6.2.2 Semantic measure specificities for recommendation

The purpose of a recommendation system is to propose relevant resources to users in

accordance with a context and their specific interests. Such a system takes a user model

into consideration for guiding the recommendation. The underlying model can be built

explicitly, e.g., based on queries or satisfaction forms, or in an implicit manner, by

analysing the more recent user interactions with the system or else based on a statistical

analysis of users. Many websites (e.g. Amazon, Youtube) rely extensively on recommen-

dation systems in order to facilitate both information retrieval and the exploration of the

associated knowledge base [Heitmann and Hayes, 2010]. A recommendation system is a

specific type of information retrieval that relies on three components: (i) the ontology

(intensional and extensional knowledge), (ii) information characterising system users,

and (iii) an algorithm for exploiting components (i) and (ii) in order to produce recom-

mendations [Burke, 2002]. Based on a characterisation of the relationships established

between the various instances of an ontology, the Linked Data paradigm and ontologies

have both been proven to be particularly well suited for defining such recommendation

systems, e.g., [Celma and Serra, 2008].

Despite the existence of numerous approaches for defining recommendation systems

[Burke, 2002], this contribution focuses on the content-based approach that relies on

resource properties: as an example, let us seek resources with characteristics related

to those of interest to users, without any prior knowledge of user preferences (i.e., cold

start).

In most cases, recommendation systems are fine-tuned by experts possessing an in-depth

understanding of the underlying knowledge model and who are capable of distinguishing

the properties that need to be taken into account in order to parameterise the recom-

mendation algorithm. In this context, the representation of an instance based on the

extended list of properties therefore seems to be the most appropriate strategy for defin-

ing semantic measures in most application contexts, i.e., due to its higher degree of

expressiveness.

Though expressed using a high formalism that hampers its applicability, the theoretical

framework proposed by Albertoni and De Martino [2006] enables the use of indirect

properties of instances in order to define semantic relatedness measures. However, this

framework does not take complex (indirect) properties into account, i.e. properties that

rely on combining various other (indirect) properties - this is also a limitation of other

related works [Bisson, 1995; Ehrig et al., 2004; Euzenat et al., 2004; Valtchev and Eu-

zenat, 1997]. It is impossible, for example, to evaluate a Person whose weight and

size have been specified through his body mass index (which can be computed from
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the weight and size alone), if the property bodyMassIndex is not defined in the ontol-

ogy. Moreover, this framework cannot be used to exploit the characterisation of various

types of instances. A comparison of two instances requires specifying which properties

are to be taken into account, and it is not possible to use the characterisation of in-

stances related to the ones undergoing comparison. To address this latter limitation,

Andrejko and Bieliková [2013] proposed the application of a recursive process on the

instances linked to those being evaluated. This solution, however, cannot be used to

define the direct and indirect properties which are to be taken into consideration. More-

over, comparing instances by taking all of their shared properties into account leads,

in some cases, to treatment sequences requiring long computation times. In addition,

performing a recursive treatment without defining the associated stop conditions makes

semantic relatedness scores difficult to interpret.

The direct and indirect properties to be considered when comparing two instances de-

pend, to a great extent, on the usage of the semantic measure, i.e., the semantics asso-

ciated with the measures and the semantic interpretation to be drawn from the scores.

These considerations, however, do not challenge the benefits of designing a generic ap-

proach for the definition of semantic measures. As previously observed, the expres-

siveness of existing frameworks merely enables partial characterisation of an instance

defined in a semantic graph. The difficulty lies in expressing indirect properties and the

impossibility of evaluating complex (in)direct properties limits the definition of seman-

tic measures. To remedy this shortcoming, this chapter introduces a new approach for

defining semantic measures.

6.3 Proposal to compare instances of a semantic graph

This section will define our approach to characterise both direct and indirect properties

using a canonical form of instances based on the notion of projection. We will there-

fore introduce a generic semantic measure that enables the estimation of the semantic

relatedness of two instances based on the notion of projection.

6.3.1 Towards a generalisation of the unifying framework

Let us first discuss the relationships which can be made with the theoretical framework

defined in Chapter 4 for semantic similarity measures dedicated to concept compari-

son. In the previous section, we stressed that the central element of existing approaches

designed to compare instances is the canonical form (representation) which has been
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adopted to represent an instance, i.e., bag of concepts, direct list of properties. In-

terestingly, the theoretical framework we proposed relies extensively on the canonical

form adopted to represent a concept (function ρ). As we have seen, defining such a

function, as well as the approaches used to assess the similarity and differences of two

representations, can be used to derive a large variety of measures from abstract ones.

In the context of instance comparison, we have also stressed the importance of con-

trolling the semantics associated to a measure – generally to ensure the coherency

of the treatment, but also in some cases to track the semantics of the scores which

have been produced. To this end, the commonly adopted approach for comparing in-

stances is to distinguish which properties should be taken into account in order to

perform the comparison ([in]direct list of properties), to further aggregate the scores

produced by the comparison of each property using a specific measure. In other words,

each property is represented by a specific canonical form to further be compared. As

an example, the comparison of two instances w.r.t their types leads to the compar-

ison of groups of concepts. This specific case has already been treated in the sec-

tion dedicated to the framework, i.e. remember that the definition of the function

ρ : P(C) → K. In the same vein, an approach could be defined in order to charac-

terise any property which can be used to represent an instance through a canonical form

which will enable its processing. Therefore, speaking informally, an instance i could

be seen as a set of properties ρ(i) = {p1(i), p2(i), . . . , pn(i)} or more particularly as a

set ρ(i) = {ρ1(p1(i)), ρ2(p2(i)) . . . , ρn(pn(i))}. This stresses a potential and interesting

break down of the problem through a recursive representation based on ρ functions rely-

ing on other representation functions which can be used to characterise specific aspects of

the prior layer, and so on. To encompass such cases, the formalisation of the framework

should be highly abstracted – the domain of the function ρ should be highly relaxed –

so much so that the relevance of such an enterprise would be questionable. In order to

ensure its practical application, and to ease its understanding, the proposal presented

in this chapter does not rely on an extension of the formalism on which the definition

of the unifying framework introduced is based. Nevertheless, as you will notice, this is

conceptually the case.

6.3.2 Characterising an instance through projections

A direct or indirect property of instance i corresponds to a partial representation of i.

In Figure 6.1 for example, the rollingStones instance can be represented by its name

(The Rolling Stones) or music genres ({rock, . . . }). A simple property of an instance

is therefore expressed through resources linked to the particular instance. Representing

an instance through its labels is therefore the same as considering all the l labels for
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which a path links i to l through the relationship rdf:label; in other words, a triplet

i rdf:label l exists, i.e. formally {l|∃(i, rdf:label, l)}.

Generally speaking, the path linking two resources is characterised by an ordered list of

relationships of specific predicate, i.e. a path pattern < r0, r1, . . . , rn >, with ri ∈ R1.

As with a property, a path is also associated to a range. It is defined by the type of

resources specified by the range of rn, its last relationship. It thus becomes possible to

characterise some of the properties of instances of class X through a path p : I(X)→ K′,
with I(X) the instances of class X and K′ the range of path p, a set of values that may

be included in C, I or composed of values of the type rdfs:Datatype, e.g. String2. We

distinguish three types of paths depending on the range of their last property rn:

• Data: the range is a set of data, e.g. Strings, Dates (Figure 6.2, Case 2).

• Instances: the range is a set of instances (Figure 6.2, Case 1).

• Classes: the range is a set of classes (Figure 6.2, Case 3).

Figure 6.2: Graphical representation of projections in a semantic graph

1Note that we could also use the property path notation introduced in SPARQL 1.1. For those who
are familiar to this latter notation, < r0, r1, . . . , rn > is equivalent to the notation /r0/r1/.../rn.

2In this chapter the domain K and K′ have direct relationship with the domain K introduced to
present the framework in Chapter 4.
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A path may be used for characterising simple (either direct or indirect) properties of

an instance. Complex properties, however, require several paths in order to be ex-

pressed. A comparison of two music bands through the Euclidian distance between

their places of origin does indeed involve defining a complex property encompassing the

latitude and longitude of a place that requires two paths {< hometown, geo:lat >,<

hometown, geo:long} (Figure 6.2, Case 4). In other words, the information characteris-

ing a music band via a property defining its place of origin corresponds to the projection

of the instance onto two specific resources capable of being reached through paths in

the semantic graph. In order to characterise all properties of an instance, the notion of

path can thus be generalised by introducing the notion of projection.

A projection refers to projecting a mathematical structure from one space to another1

– it is a vision of an entity which is related to the notion of point de vue discussed in

Ducournau et al. [1998]. In formal terms, a projection P is composed of a set of paths

and defined by P : I → K, with K being the set defining the types of projection k ∈ K,

onto which an instance can be projected.

The projection type corresponds to the range associated with this projection, i.e. the

type of values potentially used to characterise the instance. When simple projections

are used, i.e. when the projection is composed of a single path, then the projection

range is defined by the path range, i.e. K = K′. Yet when complex projections involving

multiple paths are used, other types of projections can be defined, in yielding K = K′∪K′′

with K′′ being a set indicating the complex objects available for use in representing the

complex properties of an instance. Let us note that complex objects are used to represent

properties which are not explicitly expressed in the ontology, e.g. geographic location

based on latitude and longitude, body mass index based on weight and size.

Four types of projections can therefore be distinguished: the three capable of being

associated with a single path (Data, Instances, Classes), and the Complex type used to

represent an instance by means of a set of complex objects combining various properties

(not necessarily simple, e.g. geolocation). Let us denote P k the projection of range

k ∈ K and P k(i) the type k projection of instance i.

To ease the formalism, a set of projections called the context of projection CPX can be

associated with a class X. This context of projection associated with a class serves to

define the approach adopted to represent an instance of this class. A context of projec-

tion thus allows for distinguishing the various properties of interest to be distinguished

1Despite the fact that links can be underlined, this notion is different to the one introduced for
conceptual graphs.
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for the purpose of characterising an instance. The following section will define a seman-

tic measure for estimating the proximity of two instances relative to their associated

projections.

6.3.3 Semantic measures that take advantage of projections

The proximity of two instances is evaluated based on the context of projection associ-

ated with the class of affiliated instances. This measure takes into account all projections

composing the context of projection for the class. The methods that enable the compar-

ison of two instances relative to a specific projection must therefore first be defined. To

this end, each projection is associated with a measure σk that enables the comparison

of a pair of instance projections of type k, we here assume that σk : k × k → [0, 1].

Two projections of the Classes type can be compared using a semantic measure adapted

to a comparison of classes. A comparison of Data type projection requires defining a

measure adapted to the type of value constituting the values sets produced by the given

projection. As an example, two strings may be compared using the Levenshtein distance.

Instance type projections, associated with a group of instances, can be compared using

set-based measures in order to evaluate the number of instances shared by the projections

of the two instances being compared. The measure that can be applied in this specific

case will be discussed later in this section. Complex projections require the definition of

a measure to enable the comparison of two complex objects. Let us note that in some

cases, complex objects or compared data values will require some data preprocessing

prior to use of the proximity function; as an example, such a preprocessing step could

consist of computing the body mass index from the size and weight of an instance of

a class Person.

Once a measure has been chosen to compare each projection, a general measure σX can

be defined between two instances u and v of type X w.r.t CPX . Here we present a

simple example based on a weighed sum:

σX(u, v)
∑

Pki ∈CPX ,∃Pki (u)∧∃Pki (v)

wi × σk(P ki (u), P ki (v)) (6.1)

where wi is the projection weight associated to the projection P ki and the sum of weights

equals 1. Such an approach for comparing objects considering instances w.r.t to spe-

cific properties and weights is common in the literature, e.g., [Bisson, 1992; Euzenat

et al., 2004; Valtchev, 1999b; Valtchev and Euzenat, 1997].The instances of the class

are compared based on a specific characterisation of all relevant properties that must

be taken into account in order to rigorously conduct the comparison. In some cases,
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due to lack of information, specific projections will not be expressible for an instance.

This measure exploits each projection shared between the compared instances. Here,

we used a weighed sum to aggregate the score of relatedness w.r.t each projection; other

aggregation can also be used.

As previously observed, a projection defines a set of resources that characterise a spe-

cific property of an instance. To estimate the similarity of two instances relative to a

specific projection, a measure σk must be specified so as to compare two sets (sometimes

singletons) of resources. Various approaches are available for evaluating these two sets,

namely:

• Cardinality : The measure evaluates the cardinality of both sets, e.g. by comparing

two instances of a class Parent with respect to the number of children they have.

• Direct method : A measure adapted for a set comparison is to be used (e.g. Jaccard

index); one example herein would be to compare instances relative to the number

of overlapping resources, e.g. the number of common friends.

• Indirect method : This method relies on evaluating the proximity of the pair of

resources able to be built by considering the compared sets (a Cartesian product

of sets), e.g., couples of strings. In this case, an aggregation strategy must be

established to aggregate the proximity scores obtained for all resource pairs built

from the Cartesian product of the two compared sets. Classic operators such as

Min, Max, Average or more refined approaches may be used to aggregate the

scores.

As pointed out above, when an indirect method is used to compare two projections, a

measure enabling the comparison of two sets of resources needs to be defined. Several

approaches are available for comparing sets of classes, strings or numerical values. Note

that the relevance of using a measure is once again defined by the context of usage and

its semantics, i.e. the meaning scores are required to carry.

Two groups of instances can be compared by using a direct or indirect approach; an

example is provided in the next section. When an indirect approach is selected, a strategy

to enable the comparison of a couple of instances must be determined. It is therefore

possible to use the context of projection defined for the class of the two instances under

comparison. This context of projection actually defines the properties that must be

taken into account when comparing two instances of this specific type. Applying such a

strategy potentially corresponds to a recursive treatment, for which a stop condition is

required. In all cases, computing the proximity of two projections should not imply the

use of the context of projection containing both projections. A proximity measure can

thus be represented through an execution graph highlighting the dependencies occurring

between contexts of projection. Consequently, this execution graph must be analysed to
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detect cycles for the purpose of ensuring computational feasibility. If a cycle is detected,

the measure will not be computable.

6.3.4 Potential extensions

Extensions of the proposed approach have not been discussed in depth; we have merely

presented the extensions to be explored while further developing the approach.

The partial ordering of classes can be exploited in order to enhance the characterisation

of an instance according to the projections associated with its inferred classes. It might,

therefore, be worthwhile to provide projection overloading mechanisms depending on the

partial ordering (note the drawback of multiple inheritance), or else to define contexts

of projection that characterise subsets of instances not framed into specific classes (e.g.

a set of instances returned by a SPARQL query in RDF graphs).

The proposed approach thus enables an easy comparison of instances of a class based

on the fine-tuned definition of their properties. The instances of different classes can

be compared according to projections shared by the least common ancestors of their

classes, i.e. projections characterising the more concrete and similar affiliated classes.

Such a strategy, however, features certain drawbacks in the context of a relatedness

evaluation since only instances of similar classes will tend to obtain high relatedness

scores. This is because the global measure is solely driven by the property (feature)

comparison of the targeted instances. In some use contexts, instances of various types

are in fact expected to show high relatedness, e.g., in mimicking the human expectation of

semantic relatedness, for example the instance rollingStones and the Tongue concept

must be highly related since the tongue is part of the band’s popular logo. These specific

dimensions of relatedness can only be captured by measures evaluating the structural

properties of the graph, i.e., the (indirect) interlinking of instances, and moreover must

be framed in a graph-theoretic model corresponding to the structural approach, e.g.

measures based on random walks. This definition of a context of projection can therefore

be relaxed in order to allow for interlinking metrics to be included. Another approach

would be to extend the notion of projection to represent an instance through abstract

properties which are processed using measures evaluating interlinking, e.g., instances

could be represented through their induced graph (weighed according to distance) so as

to take greater advantage of measures based on graph diffusion distances and interlinking

analysis.

As noted above, the notion of projection can, in some cases, be used to transcend the

(inferable) information relative to an instance, e.g. characterising an instance through

complex properties not shown in the semantic graph (e.g., the body mass index example).
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The projection paradigm introduced is thus not limited to representing an instance

through literals or numerical values but instead may be used to represent an instance

through a subset of instances or complex objects. A projection is in fact defined by

three core elements: (i) the resource(s) of the semantic graph from which the evaluated

property will be captured, (ii) a transformation function that will ultimately preprocess

the resource(s) in order to obtain the feature(s) to be evaluated by (iii) a specific measure.

Furthermore, we could also consider that the transformation function can be expected to

retrieve an image associated to a String property of an instance, representing a URL or

file location, to subsequently apply an image similarity measure as a comparison function

to assess the relatedness of two instances regarding their projection. At the dawn of the

Web of Things, driven by the use of HTTP as an application protocol, more sensors

and applications will receive greater exposure; the representation of an instance through

the notion of projection has not been framed into a conceptualised representation of

instances (and is thus compatible with inevitable societal evolutions).

6.4 Application to content-based recommendation systems

We have proposed an approach that enables semantic measures to be expressed for the

purpose of comparing instances defined in a semantic graph. This approach is partic-

ularly well suited to defining semantic measures for the design of content-based recom-

mendation systems. Keep in mind that nothing prevents enhancing the content-based

measures by incorporating other metrics in evaluating the importance or popularity of

instances or other recommendation system paradigms.

6.4.1 A music band recommendation system

This section will present an example of how to use the proposed approach to define a

music band recommendation system. The specific semantic graph employed was built

from DBpedia [Auer et al., 2007] and Yago2 [Hoffart et al., 2013]. Other examples

of Linked Data use for the purpose of deriving music recommendation systems can be

found in Baumann and Schirru [2012]; Celma and Serra [2008]; Passant [2010]. The aim

of the system proposed herein is to recommend music bands in considering a particular

music band of interest. The user specifies a band, and the recommendation system

subsequently proposes a set of bands that had been tagged as related. The relatedness

is assessed based on the information contained in the ontology, the strategy adopted to

define compared instances, as well as the proximity measures. The discussion will focus
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on both the context of projections used to leverage the comparison of bands and the

definition of interaction between the system and the user.

This recommendation system relies on a relatedness measure between two instances of

the class MusicBand. On considering the target band, i.e. the band of interest specified

by the user, e.g. rollingStones, the recommendation system proposes related music

bands to the user. The higher the score of relatedness of one music band with the target

band, the more relevant this band becomes for the recommendation. This relatedness

measure is defined using two contexts of projection associated with the classes MusicBand

and MusicGenre.

The context of projection associated with the class MusicBand is composed of three

simple projections, which serve to compare any two bands with respect to: (i) their

names, (ii) their types (e.g. Yago2 affiliated classes), and (iii) proximity of their related

music genres. Projection (i) corresponds to the maximum similarity obtained using

a Levenshtein distance. Projection (ii) is evaluated using a measure that enables the

comparison of groups of classes using the taxonomic structure of ontologies. Projection

(iii), related to the music genres associated with the music bands, is based on an average

type of aggregation strategy; the measure used to compare two music genres relies on

the context of projection defined for the class MusicGenre.

The context of projection of the class MusicGenre is composed of two simple projec-

tions, the first of which compares the labels associated with music genres. The second

projection enables the comparison of music genres by taking advantage of the structura-

tion defined by the subgenre relationship that establishes a partial ordering among the

various music genres. The measures adopted to take these projections into account are

similar to those used for the context of projection of the class MusicBand – projections

(i) and (ii), respectively.

The music bands are therefore compared through the context of projection associated

with the class MusicBand. It relies on the context of projection defined for the class

MusicGenre in the projection (iii) to be computed. Other projections can be easily

added in order to enrich the defined context of projections and therefore refine the

comparison of instances, e.g., by taking into account the musical labels associated to the

music bands. Since the goal of this experiment is to introduce the proposed approach,

only these projections will be considered herein.

To distinguish the relevant music bands when considering the target band, the three

projections composing the context of projection associated with the class MusicBand

need to be evaluated. The aim then is to distinguish those bands which are more highly

related to the target band in accordance with the various projections. To proceed,
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a vector containing the relatedness of the target band with other music bands must

be computed for each projection. The vector associated with projection (i), which

in turn is associated with the band names, therefore contains the proximity of the

target band with the other bands when only considering the band names. In terms

of algorithmic complexity, the computation of these projection vectors constitutes the

most time-consuming treatment involved in the approach. This algorithmic complexity

depends, to a great extent, on the selected projections and measures. As an example,

computing all vectors in order to provide recommendations for a single group takes

one second using our (non-optimised) implementation based on the Semantic Measures

Library1.

The aggregation of vectors used to distinguish the more highly related music bands is

not time-consuming. Such a treatment does in fact require computing a global related-

ness vector based on a weighted sum, in considering the weights associated with each

projection making up the context of projection defined for the class MusicBand. It is

therefore possible to compute the vectors of projections before run time so as to further

enable users to set the contribution of each projection by driving the recommendation

according to their will.

6.4.2 Online application and discussions

This approach has been adopted in the demonstrator made available at http://www.

lgi2p.ema.fr/kid/tools/bandrec.

Figure 6.3 presents the music bands which are directly or indirectly associated to the

musicGenre rockMusic, i.e. groups in red are associated to rockMusic and groups in

orange are annotated by a subgenre of rockMusic. Among the 30K bands characterised

in the ontology, around 14K are annotated by this music genre. This visualisation is

provided by the prototype developed for this project2.

1http://www.semantic-measures-library.org – presented in Chapter 8.
2The author of the manuscript designed and developed the prototype by himself.

http://www.lgi2p.ema.fr/kid/tools/bandrec
http://www.lgi2p.ema.fr/kid/tools/bandrec
http://www.semantic-measures-library.org
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Figure 6.3: Screenshot of the prototype of the music band recommender system which
has been developed. Information associated to the music genre rockMusic, i.e. more

general and specific music genres, associated music bands

Figure 6.4 and 6.5 present other screenshots of the prototype. In Figure 6.4 you can

see the advanced mode of the search field. The user can specify the importance to be

given to each projection through sliders which are horizontal indicators of the weight

associated to a projection. These sliders also ensure that the sum of the weights is

equal to one. Four sliders can be distinguished in the picture, three of them are for

the projections defined for the class MusicBand (Music Genres, Tags1, Name), the last

one is used to take the popularity of bands into consideration. The user therefore has

fine-grained control over the semantics of the results produced by the system. As an

example, in Figure 6.4 you can see that the system specifies (to the users) the semantics

associated to their chosen configuration “You are giving Very High importance to their

music genres, Very low importance to their tags, No importance to their names and

Medium importance to their popularity.”. Finally, Figure 6.5 presents the results which

have been obtained by the system. The user can see details of relatedness obtained

using each projection, aggregated score and information related to music bands (music

genres, DBpedia URIs. . . ). Visualisation techniques can obviously been used to polish

the presentation of the results.

1The projection named Tags refers to the Yago classes to which the music bands are associated. The
name Tags appeared to be more intuitive for users.
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Figure 6.4: Interface used for the configuration of the importance to give to each
projection. Therefore, using the sliders, the user can express the semantics he wants

the measure to have

Figure 6.5: Examples of results provided by the prototype of the music band recom-
mender system which has been developed: results obtained with the query LedZeppelin
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In order to discuss the relevance of a recommendation system based on this proposed

approach, we compared the results obtained by our demonstrator to those recommended

by Last.fm1. This evaluation has been made for information purposes and do not aim to

extensively compare both recommender systems. For each music band, Last.fm proposes

a set of bands and artists denoted as similar. This recommendation relies both on

a large database dedicated to the music and on an analysis of their user preferences.

Our demonstrator makes use of a less curated knowledge base (built from DBpedia),

although it still relies on a structured representation of knowledge. Our recommendation

system does not focus on collaborative filtering but merely exploits a content-based

approach since this approach only incorporates some of the music band characteristics

(e.g. music genres associated with the bands). We have also added the notion of music

band popularity, which enables importance to be assigned to this specific dimension

during the search (the popularity ranking was retrieved from Last.fm). Finding the

music bands output by Last.fm using our demonstrator will thus allow us to validate

the proposed approach. This evaluation step has relied on 11 queries, whose results

obtained by our approach were compared to those proposed by Last.fm, in the aim of

determining the number of recommendations offered by Last.fm that were found by

our system. For this evaluation step, we assigned high importance to the projection

associated with music genres and group popularity.

Among the 40 bands proposed by Last.fm for these 11 queries, 19 were also recom-

mended by our system. Differences between the recommendations mainly rely on the

quality of annotations associated to the bands, as well as on the importance assigned

to group popularity. It was indeed difficult to know which aspect of the system the

experiment was evaluating (ontology, projections considered, weights associated to the

projections. . . ). This result is, however, promising since many of the additional recom-

mendations proposed by our system are relevant and coherent according to the semantic

characterisation associated to the targeted band (subjective evaluation performed by

the designers of the system).

This first evaluation has shown, not only the added value of the proposed approach for

defining semantic measures that serves to compare the resources defined in a semantic

graph, but also how this approach can be used to design content-based recommendation

systems. Let us underline the importance of the selection of both the projections and

associated measures in ensuring the relevance of results output by the system. In ad-

dition, we underline that this proposed approach requires a high degree of expertise in

both the particular field and the underlying ontology. Furthermore, more experiments

and comparative studies have to be made to better characterise performance of this

proposal compared to other recommendation techniques – the main aim of this first

1http://www.last.fm

http://www.last.fm
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step was to design an approach in which the semantics of the score of relatedness will be

traceable. Indeed, the important contributions of this proposal is to provide an easy way

to describe instances and to compare instances through these descriptions by enabling

end-users to understand the meaning (semantics) associated to the scores of relatedness

which have been obtained.

6.5 Chapter conclusion

We have proposed herein a new approach for defining semantic measures between pairs

of instances contained in a semantic graph. Based on the intuitive notion of projection,

this approach allows for an improved characterisation of instances’ properties and has

thus paved the way for the design of highly specific semantic measures compatible with

a wide array of application contexts.

Based on a software prototype which implements our proposal, we have further demon-

strated the suitability of our proposal for Information Retrieval, and more particularly,

for content-based recommendation system design. More evaluations still have to be dis-

cussed to evaluate the accuracy of measures produced using this approach. Nevertheless,

an interesting aspect of this approach is that it enables domain experts to explicitly de-

fine the aspects of instances that must be taken into account to ensure the relevance of

results.

We have also demonstrated the added value of this approach including the user in the

recommendation process on providing a means to weigh the importance of the various

projections which drive the recommendation algorithm. Such an approach proves valu-

able in avoiding the black box effect of systems that rely on semantic measures and is

therefore able to associate a specific semantics to a recommendation, e.g. “This band is

recommended to you because its music genres and date of creation are related to those

of the rolling Stones”.
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Abstract

This chapter presents two algorithmic contributions related to semantic measures. First,

we focus on an algorithm for computing the similarity of all pairs of concepts defined in a

taxonomy. This treatment is generally required when using scores of semantic measures

in computational intensive applications, e.g., information retrieval systems. However,

using large taxonomies, this treatment is challenging given that it generally requires mil-

lions of pairs of concepts to be compared. Nevertheless, so far, no solutions have been

proposed to tackle this problem. Focusing on specific properties of certain semantic

measures – which are here characterised through the framework presented in Chapter

4 – we propose a practical algorithmic solution adapted to a specific class of measures.

Finally, we study the problem of assessing the semantic similarity of concepts defined in

different taxonomies. Conversely to existing approaches, we propose a measure which

is not restricted to using mappings between taxonomies in order to assess the common-

alities/differences of compared concepts. To this end, we study in particular how the

measure of pointwise mutual information, a well-known measure of association proposed

by information theory, can be adapted to analyse existing mappings in order to find pairs

of concepts which better estimate commonalities and differences of compared concepts.

Using two gold-standard benchmarks related to the biomedical domain, we demonstrate

that our proposal outperforms several existing measures, and can therefore be used to

better estimate the semantic similarity of concepts defined in different taxonomies.

Associated reference on which this chapter is based:

• An information theoretic approach to improve the semantic similarity

assessment across multiple ontologies. Batet Montserrat∗, Harispe Sébastien,

Ranwez Sylvie, Sánchez David, Ranwez Vincent. Information Sciences (Elsevier)

2014 (In press).
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7.1 Introduction

This chapter discusses some of the algorithmic problems related to semantic measures

which have been studied in this thesis. Two of them are presented in particular.

First, we focus on an algorithm for computing the similarity of all pairs of concepts de-

fined in a taxonomy. This treatment is generally required when using scores of semantic

measures in computational intensive applications, e.g., information retrieval systems. In-

deed, in these cases, the performed treatments are too complex and time consuming to

enable the computation of semantic measures to be done on-the-fly. Therefore, scores of

semantic measures are precomputed for quick access. However, using large taxonomies,

this treatment is challenging given that it generally requires millions of pairs of concepts

to be compared. Nevertheless, so far, no solutions have been proposed to tackle this

problem. Focusing on specific properties of certain semantic measures, which are here

characterised through the framework presented in Chapter 4, we propose a practical

algorithmic solution adapted to a specific class of measures.

Finally, we study the problem of assessing the semantic similarity of concepts defined

in different taxonomies. This treatment is required in knowledge base systems which

integrate several ontologies. In these cases, the comparison of concepts must take into

account the information carried by all the taxonomies, and it must, for instance, be

possible to assess the semantic similarity of concepts defined in different ontologies.

Conversely to existing approaches which have been designed for this purpose, we pro-

pose a measure which is not restricted to using mappings between taxonomies in order

to assess the commonalities/differences of compared concepts. To this end, we study in

particular, how the measure of pointwise mutual information, a well-known measure of

association proposed in the domain of information theory, can be adapted to analyse

existing mappings in order to find pairs of concepts which better estimate commonalities

and differences of compared concepts. Using two gold-standard benchmarks related to

the biomedical domain, we demonstrate that our proposal outperforms several exist-

ing measures, and can therefore be used to better estimate the semantic similarity of

concepts defined in different taxonomies.
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7.2 Computing the semantic similarity of all pairs of con-

cepts of a taxonomy using MSCA-based measures

Note: We sincerely thank Professor Vincent Ranwez (Montpellier SupAgro) for his

useful comments on this work.

7.2.1 Motivation and objectives

It is common to take advantage of semantic measures in computational intensive ap-

plications in which they are used as components of more complex algorithms, e.g., rec-

ommendation or information retrieval systems. In these cases, precomputing semantic

measure scores for their quick access is generally required. To this end, with focus on the

semantic similarity of concepts, this involves estimating the score of semantic similarity

for each pair of concepts defined in the considered taxonomy, which often represents a

large amount of computation. Indeed, as an example, considering a symmetric semantic

measure and a taxonomy composed of n = |C| concepts, this leads to
(
n
2

)
= (n×(n−1))/2

comparisons, e.g., considering the size of the Gene Ontology (n = 30 · 103), the number

of pairs of concepts for comparison is around 450 million. Moreover, in some cases, the

ontology is frequently updated (sometimes daily), which requires scores of similarity to

be updated. In this context, it is clear that the naive approach, which consists of com-

puting all semantic similarities independently, is not adapted; optimisation techniques

have to be used.

This section proposes to study optimised algorithmic solutions which can be used to

compute the semantic similarity of all pairs of concepts defined in a taxonomy. To our

knowledge, no prior contributions on the topic have been proposed. However, as we will

see, analogies can be made with well-known problems tackled by graph theory.

Given that algorithmic optimisation can only be made w.r.t the chosen semantic mea-

sure, our proposal does not aim to cover all use cases. We rather take advantage of

particular properties of certain semantic measures. The contribution we propose fo-

cuses more particularly on semantic measures for which the computational complexity

can mainly be explained by the computation of the Most Specific Common Ancestor

(MSCA) of the two compared concepts. Some of them are among the most commonly

used semantic measures. They are denoted as MSCA-based measures hereafter.

MSCA-based measures can easily be identified using the theoretical framework proposed

in Chapter 4 and the associated notations. Indeed, these measures are those which are
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based on θ maximisation over Ω. Hence, when comparing two concepts u,v, the com-

monalities and differences of u and v are mainly assessed as a function of ω∗(u, v), the

concept which maximises a selected θ function over Ω(u, v), the set of Non Compara-

ble Common Ancestors of u and v (NCCAs). Examples of θ function expressions are

presented in Section 3.3.2, e.g., intrinsic and extrinsic information contents. Therefore,

MSCA-based measures encompass numerous measures which have been proposed in the

literature, for instance, the information theoretical measures presented in Section 3.5.3.

More generally, MSCA-based measures refer to all measures which can be derived from

an abstracted form of a semantic measure (e.g., ratio/contrast models, σα and σβ),

which relies on a max aggregation over Ω. Focusing on information theoretical mea-

sures, we can for instance cite: simResnik, simLin and simRel (Equations 3.28,3.29 and

3.34 respectively). The algorithmic contributions which will be introduced hereafter are

dedicated to this specific type of measures. Therefore, for the sake of clarity, these algo-

rithms are not generalised to semantic measures which take advantage of an aggregation

strategy over Ω other than the maximum1, e.g., semantic measures based on GraSM or

DiShin strategies (refer to Section 3.5.5.3).

7.2.2 Algorithmic proposals

In practice, when semantic measures based on a θ function are computed, the θ value

of each concept is assumed to be precomputed. This is because optimisation techniques

can be used to efficiently compute all θ values by taking advantage of the partial ordering

of concepts. Therefore, to compare two concepts u and v using a MSCA-based measure,

the main complexity of the measure is encompassed by the computation of the MSCA

of u and v, i.e., the concept ω∗(u, v) for which θ(ω∗(u, v)) = arg max
c∈Ω(u,v)

θ(c).

As an example, simLin is of the form 2 · θ(ω∗(u, v))/(θ(u) + θ(v)). Thus, considering

that the access of θ values is in O(1) (they have been precomputed), the algorithmic

complexity of computing simLin(u, v) is defined by the algorithmic complexity associated

to the computation of ω∗(u, v). Optimising of MSCA-based semantic measures, thus

requires to optimise the computation of ω∗.

There is, therefore, a clear link with the detection of the Least Common Ancestor/Lowest

Common Ancestor (LCA) of two nodes in a tree or in a directed acyclic graph – a well-

known problem of graph theory [Bender et al., 2005; Czumaj et al., 2007; Harel and

Tarjan, 1984; Schieber and Vishkin, 1988]. Nevertheless, the notion of LCA used by

graph theory can be different to the notion of MSCA2. Indeed, in graph theory, the

1Nevertheless, although not explored hereafter, adaptations may be possible.
2As an example, if the θ(c) function is defined as the depth of the concept c, classical LCA search

algorithms can be used.
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LCA (in a graph without redundancies) is defined as the common ancestor of two nodes

which has the longest shortest path to the root. However, considering cases in which

|Ω| > 1, and a θ function which is not only-based on the depth of concepts, the LCA

(as defined in graph theory) might not be the MSCA. Therefore, due to this specificity,

the numerous algorithms proposed in graph theory are not adapted.

7.2.2.1 First proposal

We introduce an approach which can be used to compute in O(V 3)1 all pairs of concepts

defined in a taxonomy using any MSCA-based semantic measure. This approach is

based on a simple notion which will be explained hereafter. Let us first introduce or

recall some notations:

• D(c) (resp. D−(c)), the descendants (exclusive descendants) of the concept c

according to the partial ordering defined by the taxonomy.

• C+(c) the set of concepts for which ∀x ∈ C+(c) : ∃(c, subClassOf, x). Note that

in some cases C+(c) 6= parent(c) since we can have a pair of concepts (x, y) ∈
C+(c)× C+(c) for which x � y ∨ y � x.

• Tθ, an ordered list of concepts composed of the elements of C ordered according

to a selected θ function. We denote |Tθ| the size of the list. Tθ is ordered such as

θ(Tθ[0]) = arg max
c∈C

θ(c), i.e., ∀i, 0 < i < |Tθ| − 1, and θ(Tθ[i]) > θ(Tθ[i+ 1]).

• pos(Tθ, c) is the position of c in Tθ with ∀c ∈ C : 0 ≤ pos(Tθ, c) ≤ |Tθ| − 1.

• Ω(u, v) the set of NCCAs of the concepts (u, v) and ω∗(u, v) ∈ Ω(u, v), the concept

which maximises a select θ function, i.e., c = ω∗(u, v) =⇒ θ(c) = arg max
x∈Ω(u,v)

θ(x).

• With X a set, the notation [X] is used to manipulate X as a list (in which all

elements are associated to a specific index in the list).

• We use the notation σθ(x, y) = f(θ(ω∗) ← θ(c)), to highlight that the similarity

of the pair (x, y) w.r.t to the semantic measure σθ is made by considering θ(ω∗) =

θ(c).

Considering the notations introduced, the computation can be performed using Algo-

rithm 1.

1V refers to C and E to ET .
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Algorithm 1: Computation of the similarity of all pairs of concepts of a taxonomy
using a MSCA-based semantic measure – naive approach

Data: GT ,θ,σθ
Result: Compute σθ(u, v)∀(u, v) ∈ C × C
mapDesc← as a map such as ∀c ∈ C,mapDesc[c]← {};1

sim← as a matrix [|C|][|C|] initialised with -1 values;2

∀c ∈ C compute θ(c) ;3

Tθ ← sort C by increasing value of θ ;4

for i← 0; i < |Tθ|; i← i+ 1 do5

c← Tθ[i] ;6

mapDesc[c]← mapDesc[c] ∪ {c} ;7

computeSMscoresDesc(c,mapDesc[c], sim) ;8

for y ∈ C+(c) do9

mapDesc[y]← mapDesc[y] ∪mapDesc[c];10

end11

end12

Algorithm 2: computeSMscoresDesc
Compute the scores of semantic measure for all descendants of the given concept

Data: c ∈ C, setDc the set D(c), sim the result matrix presented in Algorithm 1.
Result: Compute the scores of semantic measure for all descendants of the given

concept c
dc← [setDc]1

for i← 0; i < |dc|; i← i+ 1 do2

x← dc[i] ;3

idx ← pos(Tθ, x) ;4

for j ← i+ 1; j < |dc|; j ← j + 1 do5

y ← dc[j] ;6

idy ← pos(Tθ, y) ;7

if sim[idx][idy] = −1 then8

// =⇒ ω∗(x, y) = c9

sim[idx][idy]← σθ(x, y) = f(θ(ω∗)← θ(c)) ;
sim[idy][idx]← σθ(y, x) = f(θ(ω∗)← θ(c)) ;10

end11

end12

end13

Note that so as not to over-complicate algorithms, this section will not discuss the treat-

ment which can be made to reduce the result matrix (i.e., sim). In addition mapDesc[c]

which stores the descendants for the concept c can also be created and removed on-

the-fly in order to avoid memory consumption (this approach will be used in the next

algorithm).
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Algorithm 1 can simply be explained by stressing that:

1. We know that ∀x ∈ D(c) : pos(Tθ, x) < pos(Tθ, c). This is ensured by the fact

that θ is strictly decreasing from the leaves to the root of the taxonomy and that

Tθ is built ordering elements of C according to θ. We therefore have u � v =⇒
pos(Tθ, u) ≤ pos(Tθ, v). A bottom-up approach according to the θ ordering of

concepts ensures that descendants of each concept can be propagated during the

process. By ensuring that D(c) is computed when the concept c is processed we

avoid useless computation of D(c) at each iteration.

2. Therefore, according to (1), we have the guarantee that when a concept c is pro-

cessed in loop Line 5, for each (x, y) ∈ D(c)×D(c), pos(Tθ, ω
∗(x, y)) ≤ pos(Tθ, c).

The proof is trivial since for any pair (x, y) ∈ D(c) ×D(c), if pos(Tθ, ω
∗(x, y)) >

pos(Tθ, c), it must mean that θ(c) > θ(ω∗(x, y)). Nevertheless, since (x, y) ∈
D(c)×D(c) =⇒ c ∈ A(u) ∩A(v), it would mean that there is a concept c which

is a common ancestor of u and v and for which θ(c) > θ(ω∗(x, y)). This contradict

the definition of ω∗(x, y). Thus, in Line 8 of Algorithm 2, if the similarity of the

pair (x, y) is not already computed, this means that ω∗(x, y) = c.

3. We have the guarantee that the similarity is computed for all pairs of concepts if

the taxonomy is rooted by a concept >1. This is ensured by the fact that at each

iteration in which the concept c is processed, we are ensured that the similarity

of all pairs (x, y) ∈ D(c) × D(c) is computed. Thus, at the last iteration we are

ensured that we process all pairs (x, y) ∈ D(>)×D(>) = C × C.

Despite the theoretical soundness of this algorithm, its practical use is hampered by

the size of the result matrix sim. Indeed, recall that
(
n
2

)
similarities must be com-

puted for n = |C|. Considering large ontologies, this leads to the manipulation of a

matrix corresponding to tens of gigabits, which cannot generally be stored into mem-

ory. Persistent storage techniques are therefore used in these cases. Nevertheless, using

these techniques, performance of read-write treatments on the matrix are highly reduced

compared to in-memory preprocessing. This drawback therefore highly impacts the per-

formance and questions the practicability of the algorithm. This is particularly true in

Line 8 of Algorithm 2, we check if sim(x, y) has already been computed, and for each

iteration of the loop defined in Line 5 Algorithm 1, this process is made |D(c) ×D(c)|
times. Therefore, the number of value checkings is quickly important (bounded by |C|3)

and make the treatment intractable. As an example, considering the Gene Ontology

(n = 30 · 103), the last iteration in which the root is processed requires checking that all

pairs of concepts in C × C have been computed – recall
(

303

2

)
' 450 · 106 comparisons.

1MSCA-based measures expect the taxonomy to contain a unique root.
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If we consider that the persistent storage enables us to check if sim(x, y) has been com-

puted in 0.001 sec (which is a good performance), the last iteration alone would take

more than five days1... We therefore introduce a refinement of the approach to avoid

useless checking in the persistent storage and reduce descendant storage, i.e. memory

required for maintaining mapDesc.

7.2.2.2 Refined approach

The pseudocode presented in Algorithm 3 is similar to Algorithm 1 except that additional

data structures are used to avoid useless checking of similarity computation.

Algorithm 3: Computation of the similarity of all pairs of concepts of a taxonomy
using a MSCA-based semantic measure

Data: GT ,θ,σθ
Result: Compute σθ(u, v)∀(u, v) ∈ C × C
mapDesc← empty map ;1

previousNotDesc← empty map ;2

∀c ∈ C compute θ(c) ;3

Tθ ← sort C by increasing value of θ ;4

for i← 0; i < |Tθ|; i← i+ 1 do5

c← Tθ[i] ;6

if not exists(mapDesc[c]) then mapDesc[c]← {} end7

mapDesc[c]← mapDesc[c] ∪ {c} ;8

computeSMscoresDesc Opt(c,mapDesc[c]) ;9

for y ∈ C+(c) do10

if not exists(mapDesc[y]) then mapDesc[y]← {} end11

mapDesc[y]← mapDesc[y] ∪mapDesc[x]12

end13

remove(mapDesc[c]) ;14

end15

1450 · 106 × 1−3 = 450 · 103 (s) /60 = 7500 (min) /60 = 125 (h) /24 ' 5.21 days.
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Algorithm 4: computeSMscoresDesc Opt

Compute the scores of semantic measures for all descendants of the given concept –

optimised version

Data: c ∈ C, setDc the set D(c).

Result: Compute the scores of similarity for all descendants of the given concept c

for x ∈ setDc do1

write σθ(c, x) = f(θ(ω∗)← θ(c))a ;2

write σθ(x, c) = f(θ(ω∗)← θ(c)) ;3

end4

previousNotDesc[c]← Tθ[0, ..., pos(Tθ, c)] \ setDc ;5

for x ∈ setDc \ {c} do6

for y ∈ previousNotDesc[x] ∩ setDc do7

write σθ(x, y) = f(θ(ω∗)← θ(c)) ;8

write σθ(y, x) = f(θ(ω∗)← θ(c)) ;9

previousNotDesc[x]← previousNotDesc[x] \ {y}10

end11

end12

aConsider that writes in the persistent storage are made by chunks of data, e.g., each 103 call of the
function write.

The map previousNotDesc is used to store, for each concepts c, the set of concepts

preceding c in Tθ and which are not descendants of c.

Once again this algorithm relies on several simple ideas:

1. If for each Iteration i on Tθ, we compute the MSCA of all pairs of concepts of

{c} × {Tθ[0, ..., i]} with c = Tθ[i], the MSCAs required to compare all pairs of

concepts in C × C will be found.

2. In addition, we know that when the concept c is processed, c is either the MSCA

or subsumes the MSCA of all pairs of concepts in D(c)×D(c).

3. Considering (1) and (2), we know that processing a concept c at Iteration i, c is

the MSCA of each pair in:
⋃
x∈D(c){x} × {{Tθ[0, ..., pos(Tθ, x)]} ∩D(c)} for which

no MSCA has been found in Iteration j < i.

For convenience, we define Wci = previousNotDesc[ci]. Thus, considering that at each

Iteration i > j, we store the set of concepts Wci = {Tθ[0, ..., i]} \ D(ci) associated to

the concept ci = Tθ[pos(Tθ, i)], and that each time we compute the similarity for the

pair (ci, cj) we have Wci = Wci \ {cj}, we can ensure that at each Iteration i, the pairs⋃
x∈D(ci)

{x}×{Wx∩D(ci)} will not be computed twice and that ci will be their MSCA.

In addition, given that at each Iteration i we resolve the computation of the pairs of
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concepts in D(ci) × D(ci) which have not been resolved, we still ensure that all the

results will be computed if the graph is connected.

The process of the algorithm is graphically illustrated in Appendix C.3.

The algorithmic complexity of Algorithms 1 and 3 is in O(V 3)1 even if, in practice, the

complexity is much lower (a taxonomy in which a transitive reduction has been applied

is sparse per definition).

7.2.3 Synthesis

We have presented two O(V 3) algorithms which can be used to compute the score of

semantic similarity for each pair of concepts of a taxonomy. To our knowledge, no solu-

tion has been proposed so far for this problem. These algorithms can be used with any

semantic measures which are based on the Most Specific Common Ancestor (MSCA)

of compared concepts – otherwise stated, according to the notations and measure char-

acterisation provided by the framework presented in Chapter 4, any semantic measure

which is based on the maximisation of a θ function over Ω. We also proposed an algo-

rithmic optimisation which can be used to reduce the computational time required in

practical use cases.

1Which is similar to a naive approach in which we compute the similarity for each pair of the taxonomy
independently from the others.
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7.3 An information theoretic approach to improve seman-

tic similarity assessments across multiple ontologies

From the different methods and paradigms proposed to define knowledge-based semantic

similarity measures, those based on quantifying the Information Content (IC) of con-

cepts are the most widespread solutions due to their high accuracy in most evaluations

performed in the literature. However, these measures were initially designed to exploit

a single ontology. They thus cannot be leveraged in many contexts in which multi-

ple ontologies are considered. In this section, we propose a new approach to achieve

accurate IC-based similarity assessments for concept pairs spread throughout several

ontologies. Based on information theory, this method defines a strategy to accurately

measure the degree of commonality between concepts belonging to different ontologies

– a cornerstone for estimating their semantic similarity. Based on this proposal, classic

IC-based measures can therefore be directly applied in a multiple ontology setting. Using

well-established benchmarks and ontologies related to the biomedical domain, empiri-

cal evaluations illustrate the accuracy of our approach. We demonstrate, in particular,

that the proposed approach enables similarity estimations that are significantly more

correlated with human ratings of similarity than those obtained via evaluated measures.

Associated reference on which this section is based:

• An information theoretic approach to improve the semantic similarity

assessment across multiple ontologies. Batet Montserrat∗, Harispe Sébastien,

Ranwez Sylvie, Sánchez David, Ranwez Vincent. Information Sciences (Elsevier)

2014 (In press).

This work has been done in collaboration with Montserrat Batet and David Sànchez

from the University of Tarragona, and Professor Vincent Ranwez from Montpellier

SupAgro.
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7.3.1 Motivation and objectives

Semantic similarity measures coping with multiple ontologies are central in numerous

contexts in which information retrieval or knowledge discovery techniques have to be

applied in a multiple ontology setting. Nevertheless, these measures have seldom been

considered in the literature [Al-mubaid and Nguyen, 2009; Batet et al., 2013; Rodŕıguez

and Egenhofer, 2003; Sánchez and Batet, 2013; Saruladha, 2011] – refer to Chapter

3 for a brief overview. In this section, we study the adaptation of the information

theoretical approach which is based on quantifying the Information Content (IC) of

concepts. These measures are interesting given that they have been extensively studied

in the single ontology setting, and are among the most widespread solutions due to the

high accuracy they achieved in most evaluations performed in the literature.

As we saw in Chapter 3 and 4, in the context of IC-based measures, the identification

of the Most Informative Common Ancestor (or MICA) is essential for similarity assess-

ments. Indeed, it plays a central role in estimating the commonality between compared

concepts (and sometimes in deriving their differences). Therefore, different authors have

proposed to define the notion of MICA for concepts defined in different ontologies. In

this case, the MICA refers to the pair of concepts of the two ontologies which best

summarises the commonality of the compared concepts – we therefore denote it as the

Most Informative Mapping among their Ancestors MIMA. As an example, existing works

based on IC [Sánchez and Batet, 2013; Saruladha, 2011] retrieve the MIMA of a pair

of concepts belonging to different ontologies by looking for equivalences of concept an-

cestors. In these cases, equivalent concepts are those which share the same labels (i.e.,

terminological matchings). These approaches have two main drawbacks related to the

fact that mappings can only convey a partial amount of the information which should

be considered in order to estimate the similarity:

1. Mappings can be difficult to find, particularly when using simple techniques. Cur-

rently used terminologically-based approaches are naturally hampered by the fact

that ontologies do not always model concepts in the same way or refer to them

using the same label (e.g., due to synonymy) [Sánchez et al., 2012c]. Indeed, in

many cases, current semantic measures are based on techniques which either select

ancestors which are too abstract as MIMA or which cannot discover any equiv-

alence at all because they miss suitable concepts which share similar meanings

but are referred to with different labels (e.g. tumor/neoplasm). In other cases,

more refined mappings are obtained using elaborated alignment techniques but

the problem is not always solved. Indeed, in numerous cases, important mappings

are missed. This is particularly true when numerous large ontologies are taken
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into consideration and less error-prone semi-supervised mapping techniques can

no longer be used.

2. Even optimal mappings will fail to convey relevant information. In some cases, a

perfect match cannot be defined between two concepts. Nevertheless, they could

be linked by a relationship carrying distinct semantics (e.g., partOf). It could be

relevant to consider these links when assessing the semantic similarity of concepts.

As an example, Figure 7.1 illustrates a situation in which we want to compare the

two concepts IntracranialHemorrhage and BrainNeoplasm defined respectively

in the SNOMED-CT and the MeSH. Considering the exact mapping which has

been found between their ancestors (i.e., strict equivalence), only the pair of con-

cepts Disease-Diseases will be considered as mapping. Nevertheless, it is clear

that the two concepts DiseaseOfHead and BrainDiseases should also be consid-

ered as a clue to capture the commonality of the two compared concepts more

finely.

Figure 7.1: Comparison of concepts defined in different ontologies

Therefore, in numerous cases, the MIMA which will be found by existing approaches will

be too general. This will inevitably lead to largely underestimated concept similarity.

Considering the two aforementioned issues, we observe that:
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1. Advanced mapping techniques should be used. Indeed, it is clear that terminolog-

ical mapping is not sufficient and that more advanced techniques should be used

instead. In this section, we will not tackle the problem of ontology alignment.

This is indeed a complex and prolific field of study which has only been touched

upon in this thesis. We will therefore consider that a set of concept-to-concept

mappings have been found prior to estimating the semantic similarity – whatever

the approach used for their computation. These mappings will be extensively used

to assess the similarity of two concepts defined in different ontologies.

2. Techniques have to be designed to overcome inherent limitations of mappings. As

stressed in the example provided in Figure 7.1, we want to avoid the estimation of

the commonality of two concepts by only considering the most specific mapping

found among their ancestors (MIMA). As we have seen, it can indeed only be a

lower bound estimator of their real commonality.

The main objective of this study is therefore to propose a solution to overcome issue

2. To this end, we propose a new method to assess the commonality of two concepts

defined in different ontologies. This method aims at not restricting the estimation of the

commonality of two concepts to the information carried by their MIMA. Indeed, based

on information theory and solely exploiting taxonomic knowledge and a set of mappings

between concepts, our approach measures the degree of taxonomic relationship between

concepts belonging to different ontologies. Next, this notion is used to select a MIMA

that is more suitable to assess the commonality of two concepts defined in different

ontologies.

The rest of this section is organised as follows. Subsection 7.3.2 presents and formalises

our approach. In Subsection 7.3.3, we detail the evaluation process and discuss the

results obtained for several benchmarks, ontologies and measures. Finally, this section

ends with the synthesis and perspectives of this study.

7.3.2 Improving semantic similarity assessment from multiple ontolo-

gies

In this section, we present a method to enable accurate IC-based similarity calculus

when concepts belong to different ontologies. Our method goes beyond the termino-

logical matching used in related works and is able to discover semantically similar (but

not necessarily terminologically identical) subsumers of two concepts between different

ontologies. To do so, and in Line with the notion of IC-based similarity, our approach

takes advantage of the notion of mutual information to quantify the degree of taxonomic

relationship between pairs of concept from different ontologies. Once two concepts are
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compared, the Most Informative Link among their Ancestors (MILA) is computed. Note

that the notion of MILA is different from the previously discussed notion of MIMA. In-

deed, as we will see, contrary to the MIMA, the MILA does not obviously refer to a

concrete mapping – yet rather, conceptually speaking, refers to the notion of MICA,

which is commonly used in single ontology setting. Thus, this MILA will be used to

estimate the semantic similarity between the two concepts using standard IC-based

measures. Note that for convenience, the definition of compared concepts in different

ontologies will systematically be considered.

7.3.2.1 Estimating the commonality of two concepts

To lighten the formalism, we denote the taxonomy G instead of GT . In addition, since

we will manipulate multiple taxonomies, we will use subscripts to ease the reading. For

instance, we define Ci = C(Gi). Thus, if u ∈ G1, ∀c ∈ A(u) we are certain that c ∈ C1.

Nevertheless, to highlight which taxonomy is associated to a notation, we will denote

Ai(u) the ancestors of u in Gi. We denote 〈u, v〉 the mapping between u and v and

M(U, V ) the set of mappings defined between the two sets of concepts (U ,V ). As an

example, the mapping defined between the ancestors of u and v will be denoted as

M(A1(u), A2(v)).

Considering two concepts defined in different taxonomies, u ∈ G1 and v ∈ G2, the notion

of MIMA(u, v) doesn’t refer to a single concept, but rather to a pair of concepts (x, y),

with x ∈ A1(u) and y ∈ A2(v)1. We consider that at least one mapping exists among

them i.e. M(A1(u), A2(v)) 6= ∅. Thus, to ensure that a MIMA always exists between two

concepts, we consider that all taxonomies are rooted by a concept which corresponds to

the more abstract notion commonly defined in knowledge modelling (e.g., Thing). Thus,

for each taxonomy Gi we consider a root >i, and for any pair of taxonomies (Gi, Gj),

we admit the mapping 〈>i,>j〉.

We now formally define the notions used to introduce our proposal.

Definition MIMA : Ci × Cj → Ci × Cj : The MIMA of two concepts u, v defined

in different taxonomies refers to the Most Informative Mapping among their Ancestors,

i.e., the mapping found in M(A1(u), A2(v)) which respects:

MIMA(u, v) = arg max
〈x,y〉∈M(A1(u),A2(v))

IC(x) + IC(y) (7.1)

1Strictly speaking, this is different from the original definition of the MICA function (e.g. different
co-domains), but its role is similar.
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Naturally, the maximisation of the sum of ICs of matched ancestors ensures that, in case

of multiple matches in M(A1(u), A2(v)), the most informative pair is taken. For con-

venience, we will systematically denote the mapping MIMA(u, v) as 〈bm1(u), bm2(v)〉
(bm refers to best mapping).

The MIMA only refers to a lower bound of the commonality of two concepts. Indeed,

nothing ensures that all matchings have been obtained and that no more informative

mappings can be considered. Indeed, in some cases, a more specific pair of concepts

defined in A1(u) × A2(v) should be considered as MIMA, nevertheless, the mapping

has not been found. We model this aspect by introducing the notion of MILA, with

MILA(u, v), the Most Informative Link among the Ancestors of u and v. In the best

case, if the mappings are very good, the MILA is the MIMA. Otherwise stated,

the MILA must be more specific or as equally specific as the MIMA. Therefore, we

consider that the MILA is defined in the set cMILA, which refers to the set of pairs

of concepts which are possible MILA candidates. Considering the two concepts u and

v, cMILA(u, v) refers to the set of pairs of concepts from A1(u) × A2(v), which are

taxonomically equal or below their MIMA(u, v) = 〈bm1(u), bm2(v)〉. Formally, the set

cMILA of two concepts is defined by:

cMILA(u, v) = {(x, y) ∈ {A1(u)×A2(v)}|(x � bm1(u)) ∧ (y � bm2(v))} (7.2)

Considering the given definition of cMILA for two concept u, v, let us precise that we

do not consider the pairs (x, y) ∈ {A1(u)×A2(v)} which are not subsumed by the pair

of concepts defined by the MIMA(u, v) - this has been highlighted by Jérôme Euzenat

in personal communication. We therefore may miss interesting MILA candidates. Nev-

ertheless, the consideration of such pairs highly complicate the approach and we let the

evaluation of such a strategy to another study.

Note that, according to the subsumption relation �, cMILA(u, v) contains the pairs

(u, v) and (bm1(u), bm2(v)), they are therefore considered as potential MILA for as-

sessing the semantic similarity of u,v.

Among the candidate pairs included in cMILA(u, v), we define the pair with the highest

degree of taxonomic relationship as MILA(u, v), i.e., the pair (x, y) ∈ cMILA(u, v) such

as x subsumes most of the semantics of y and vice-versa. The rationale for this criterion is

that we consider that the more two concepts subsume concepts for which mappings have

been found, the more similar the semantics they subsume. We can therefore assume that

they are interchangeable and correspond to a relevant semantic link worth considering

when assessing the similarity of compared concepts.
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We therefore need to design an estimator of the strength of the taxonomic relation-

ship which links two concepts defined in different ontologies, w.r.t the mappings defined

between their descendants. To this end, we propose to adapt the notion of Mutual Infor-

mation (MI) and more particularly the notion of Pointwise Mutual Information (PMI)

[Church and Hanks, 1990]. Similar to the IC calculus, the PMI between two concepts

can be computed according to their probabilities of (co-)occurrence. Formally, consid-

ering two concepts u and v, the PMI quantifies the difference between the probability

that u and v co-occur given their joint and marginal probabilities.

PMI(u, v) = log
p(u, v)

p(u)p(v)
(7.3)

The PMI function is symmetric. Given the above expression, PMI(u, v) = 0 means

that u, v are completely independent, i.e. p(u, v) = 0, whereas increasing positive values

indicate an increasing degree of association between the concepts. On the contrary,

negative values reflect mutual exclusion, which is quite uncommon among concepts or

words, since most of them tend to be semantically related to a certain degree [Anandan

and Clifton, 2011].

A common criticism concerning PMI is that it tends to provide relatively high scores

for rare events [Bouma, 2009]. For example, we have p(u) = p(v) = p(u, v) when two

terms only occur together and it then follows from Equation 7.3 that PMI(u, v) =

−log(p(u, v)). This means that, for perfectly correlated concepts, their PMI value will

be higher when they appear less frequently. Moreover, PMI has no fixed upper bounds,

which complicates its interpretation since it is thus hard to know from a given PMI

value, if two concepts are almost perfectly associated (respectively almost independent).

These problems may be partly solved by using the Normalised Pointwise Mutual Infor-

mation (NPMI). Indeed, NPMI values are bound within the interval [−1, 1] and are less

impacted by low frequency data [Bouma, 2009]. Therefore, NPMI normalisation is done

by dividing the PMI ratio by the actual probability of co-occurrence between the two

terms:

NPMI(u, v) =
PMI(u, v)

−log(p(u, v))
=

log p(u,v)
p(u)p(v)

−log(p(u, v))
(7.4)

NPMI results in a maximum value of 1 for perfect correlation, a minimal value of -1 for

mutually exclusive concepts, and a value of 0 for independent concepts since their PMI

is null.

Given the above arguments and properties, NPMI provides a sound way to measure

concept mutuality. In the next section, we detail how the NPMI is computed considering

only the topology of taxonomies and the set of mappings between their concepts. We
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will also show how it can be used to derive the MILA of two concepts defined in different

ontologies.

7.3.2.2 Adaptation of the NPMI

The estimator selected for estimating the co-occurrence probability p(u, v) is crucial to

ensure that NPMI(u, v) correctly reflects the strength of the taxonomic relationship

between two concepts. As for the IC estimation, this probability can be estimated using

suitable corpora, by counting the number of simultaneous appearances of those two

concepts (this can also be done with instances). In our setting, this results in two main

issues:

1. Corpora-based probability calculus is hampered by data sparseness and restricted

by corpora availability (refer to Section 2.2.2.2).

2. Term co-occurrences are not usually disambiguated, i.e., the kind of semantic re-

lationship, taxonomic or non-taxonomic, on which the co-occurrences rely are not

defined. Therefore, the co-occurrence frequency only reflects the semantic related-

ness between concepts [Bollegala et al., 2009]. Indeed, co-occurrence frequencies

and (N)PMI measures based on them have already been applied to evaluate sev-

eral types of semantic association, e.g., word collocation [Bouma, 2009; Sánchez

and Isern, 2009], taxonomic subsumption [Vicient et al., 2013], and a variety of

non-taxonomic relationships [Sánchez, 2010; Sánchez et al., 2012b]. However, in

our case, the use of co-occurrence frequency to estimate p(u, v) may result in

high NMPI scores although the strength of the taxonomic relationship between

u and v may be weak. For example, let us consider the concepts: Cancer and

Chemotherapy. Assuming the availability of an appropriate corpus, their degree

of textual co-occurrence is likely to be high, resulting in an equally high NPMI

value. However, since Chemotherapy is a common treatment for Cancer, those

numerous co-occurrences reflect a semantic relatedness rather than a degree of

taxonomic relationship. This issue becomes problematic since we are interested

here in unravelling concepts with strong taxonomic relationship in order to find

the suitable MILA of two concepts.

We propose to tackle these problems by using probability estimations derived from the

taxonomies in which concepts are modelled. The probabilities of individual concepts are

computed intrinsically, according to the premises of the intrinsic IC calculus discussed

in Section 3.3.2. Specifically, as in some intrinsic IC models, we rely on the fact that the

meaning of a concept is partially defined and bound by its set of descendants [Sánchez

et al., 2011; Seco et al., 2004]. Hence, from the leaves to the roots of taxonomies,
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the number of shared descendants between two concepts gives us a good idea of their

common taxonomic trigger potential, i.e., the concepts they might both refer to when

they are mentioned/encountered. Indeed, shared descendants of two concepts are the

concepts among their descendants which partially refer to the same concepts when they

are mentioned. Therefore, as the overlap between the descendant sets of two concepts

increases, their meanings become more equivalent. Note that this notion, which is the

core of our subsumer matching method, differs from that of similarity quantified by IC-

based measures. Indeed, two sibling concepts (e.g. BreastCancer and LungCancer) may

be highly similar (according to their IC-based similarity) while sharing no descendants

and, hence, being completely different w.r.t their taxonomic trigger potential.

Considering the concepts u in G1 and v in G2, our desire is to approximate p(u, v), the

joint probability of (u, v), as a function of the number of mappings founds between the

descendants of u and v (i.e., |M(D1(u), D2(v))|), and the number of mappings founds

between C1 and C2, i.e., |M(C1, C2)|. Nevertheless, some considerations have to be

made. Indeed, comparing two concepts u,v, we can theoretically obtain a number of

mappings between u,v which is completely different to their number of descendants, e.g.,

max(|D1(u)|, |D2(v)|) � |M(D1(u), D2(v))|. Otherwise stated, it is not the number of

mappings which matters but rather the number of concepts involved in these mappings.

Thus, the notions of intersection and union of concepts defined in different ontologies

have to be redefined. To this end, we propose considering the size of the intersection

between a set S1 of concepts of G1 and a set S2 of concepts of G2 as:

|S1 ∩ S2| =
|{c1 ∈ S1|∃(c2 ∈ S2 ∧ 〈c1, c2〉)}|+ |{c2 ∈ S2|∃(c1 ∈ S1 ∧ 〈c1, c2〉)}|

2
(7.5)

The size of the union is then simply defined as the complement of the defined intersection:

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|.

Note that the defined union and intersection are not necessarily associated to integer

values. However, they ensure consistent results even with ontologies that have heteroge-

neous granularities, i.e., for which 1:M or even N:M matchings between concepts can be

found. For instance, if S1 = {u, v}; S2 = {x} and the mappings 〈u, x〉 and 〈v, x〉 have

been defined, then |S1 ∩ S2| = 1.5 and |S1 ∪ S2| = 1.5. Therefore, in accordance to our

desire, thanks to the higher cardinality of descendant sets associated to general concepts,

and the reduction of the ambiguity which increases with the specificity of concepts, the

chance of obtaining a representative number of matchings increases in comparison with

subsumer sets.
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Based on the union and intersection operators which have been introduced, we can

formally define the joint probability of u and v, p(u, v), by:

p(u, v) ' |D1(u) ∩D2(v)|
|C1 ∪ C2|

(7.6)

We also define the marginal probability of an individual subsumer u as:

p(u) ' |D1(u)|
|C1 ∪ C2|

(7.7)

Given the above instantiations of joint and marginal probabilities, we define the intrinsic

NPMI of a pair of concepts as follows. Given u ∈ G1 and v ∈ G2, their intrinsic NPMI

(or iNPMI ) is defined as:

iNPMI(u, v) =
log p(u,v)

p(u)p(v)

−log(p(u, v))

=

log
|D1(u)∩D2(v)|
|C1∪C2|

|D1(u)|
|C1∪C2|

× |D2(v)|
|C1∪C2|

−log |D1(u)∩D2(v)|
|C1∪C2|

(7.8)

which can for instance be simplified by:

iNPMI(u, v) =
log |D1(u)∩D2(v)|
|D1(u)|×|D2(v)|

log |C1∪C2|
|D1(u)∩D2(v)|

(7.9)

Numerically, iNPMI(u, v) = 0 indicates that u and v have no overlapping and, there-

fore, that these two concepts cannot serve as MILA. On the contrary, an iNPMI(u, v)

value close to 1 indicates that there is a strong taxonomic link between u and v since

they share most of their descendants. In our approach, the MILA of two concepts is

thus the candidate with the highest iNPMI value.

Therefore, the MILA for u ∈ G1 and v ∈ G2 is a pair of concepts from cMILA(u, v).

First, we consider:

MILA∗(u, v) = arg max
(x,y)∈cMILA(u,v)

iNPMI(x, y) (7.10)

In rare cases, Equation 7.10 will lead to multiple pairs of concepts. In these cases, the

MILA is the pair with the maximum sum of IC values (i.e. the most informative one,

in coherency with the notion of MICA):

MILA(u, v) = arg max
(x,y)∈MILA∗(u,v)

{IC(x) + IC(y)} (7.11)
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The above-described method can be generalised for encompassing cases in which u

and/or v belong to several disjoint sets of ontologies (e.g., u belongs to G1 and G3,

and v belongs to G2 and G4). In that case, the proposed method is applied for each

combination of pairs of ontologies (e.g., G1 −G2, G1 −G4, G3 −G2 and G3 −G4). The

MILA of two concepts is selected as the pair of their subsumers, from the different pairs

of ontologies, that produces the highest iNPMI value. The rationale is that, comparing

two concepts u and v, the more the iNPMI increases among a pair (x, y) ∈ cMILA(u, v),

the higher the number of mappings between the descendants of (x, y) and hence, the

pair (x, y) will be suitable for comparing concepts u and v. Remember that the iNPMI is

normalised and has bound outputs. This is quite convenient for comparing NPMI values

computed from different ontologies, regardless of their size and degree of granularity.

7.3.2.3 IC-based similarity calculus

The MILA of two concepts is a pair of concepts. However, for comparing two concepts,

most IC-based measures have been designed for aggregating the IC of their MICA,

i.e. a single IC value. Therefore, to be used in a straightforward manner with existing

measures, our notion of MILA should be associated to a single IC value. As we saw in

Section 3.3.2, the IC of the MICA should always be lower than any of its descendants;

this is required to ensure the consistency of IC-based similarity measures [Resnik, 1995].

Therefore, to ensure that this property will be fulfilled in our setting, we define the

intrinsic IC of the MILA as the minimum IC value of its concept (computed from their

respective taxonomy). Thus, considering MILA(u, v) = (x, y) with x ∈ G1 and y ∈ G2,

we define IC ′(x, y)1 by:

IC ′(MILA(u, v)) = min(IC(x), IC(y)) (7.12)

Note that using this definition we ensure that:

IC ′(MILA(u, v)) ≤ IC(x) ∧ IC ′(MILA(u, v)) ≤ IC(y)

The proof is trivial considering that: (i) MILA(u, v) = (x, y), (ii) u � x and v � y,

(iii) IC decreases monotonically from the leaves to the root on a taxonomy, i.e. IC(x) ≤
IC(u) and IC(y) ≤ IC(v). Thus, we have IC ′(MILA(u, v)) = min(IC(x), IC(y)) ≤
IC(x) ≤ IC(u) and IC ′(MILA(u, v)) = min(IC(x), IC(y)) ≤ IC(y) ≤ IC(v).

1Denote IC′ since the domain of the function is C × C rather than C for the IC.
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Thanks to the definition of the MILA proposed in this section, all IC-based measures

which rely on the notion of IC and MICA can now be used to compare pairs of concepts

defined in different taxonomies.

7.3.3 Evaluation

In this section, we evaluate the proposed method in comparison with related works.

Since our final goal is to enable a precise IC-based assessment of similarity in a multiple

ontologies setting, we focused on cases where each concept that is to be evaluated belongs

to a different ontology. In such scenarios, similarity assessments directly depend on the

adequacy of the subsumer pair selected as MILA and the subsequent IC calculus, as

detailed in the previous subsection. Hence, by quantifying the accuracy of the similarity

assessment, we also indirectly test the relevance of our MILA identification strategy

– which is finally a substitute for the MICA identification strategy. The accuracy of

the proposed method is compared with those of related works also focusing on multiple

ontologies IC-based similarity calculus [Sánchez and Batet, 2013; Saruladha, 2011]. We

also compare our approach with results obtained in an ideal single ontology setting, i.e.,

when similarities are computed from a single ontology.

To enable an objective evaluation, the accuracy of similarity assessments was quantified

by comparing them with human judgements of similarity for two well-known term pair

benchmarks [Pakhomov et al., 2010; Pedersen et al., 2007]. The accuracy of alternative

similarity estimations has been measured through their correlation with human ratings

via the Pearson’s correlation coefficient, as done in many similar studies [Al-mubaid and

Nguyen, 2009; Bollegala et al., 2009; Pirró, 2009; Sánchez and Batet, 2011; Sánchez et al.,

2012a]. A correlation value near 1 indicates that both ratings are very close and, hence,

that the computerised assessment accurately reflects human judgement of similarity.

Tested methods propose different solutions to identify the MICA of concepts from differ-

ent ontologies and to estimate its IC, which can next be used to compute the semantic

similarity using IC-based measures like those introduced in Section 3.5.3. In our tests,

the IC of individual concepts was computed intrinsically according to the equation de-

fined in [Sánchez et al., 2011] (Equation 3.7). Moreover, since the accuracies of tested

methods may depend on the IC-based measure chosen for similarity calculus, we tested

them with several measures: Resnik’s, Lin’s and Jiang and Conrath’s (please refer to

Section 3.5.3 for equations and references).

The evaluation was conducted on biomedical datasets because of the availability of

different ontologies and similarity benchmarks in this field. In particular, SNOMED-CT

and the MeSH ontologies have been used. Alternative methods have been compared
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using two biomedical benchmarks, i.e. the one proposed by Pedersen et al. [2007] and

the one proposed by Pakhomov et al. [2010]. The former consists of a set of medical

term pairs whose similarity was assessed by a group of medical experts from the Mayo

Clinic: 9 medical coders who were introduced to the notion of semantic similarity and

3 physicians who rated terms without any special training. Term pairs included in

the benchmark were specifically selected by the authors to maximise the inter-rating

agreement, resulting in a correlation value of 0.68 obtained for physicians and of 0.78

for coders. The benchmark built by Pakhomov et al. consists of one set of concept

pairs associated with similarity and relatedness ratings given by four medical residents

from the University of Minnesota. We took the similarity ratings since we were focusing

specifically on semantic similarity. Note that for the Pakhomov et al. benchmark, the

inter-rating agreement (0.47) is significantly lower than that obtained for the dataset of

Pedersen et al.

Even though such benchmarks are intended to evaluate similarity measures in a single

ontology setting, related works have already used them in a multiple ontology framework

by artificially considering that each term of each pair belongs to a different ontology.

According to the same protocol as in Batet et al. [2013]; Sánchez and Batet [2013], we

took the 25 term pairs from the Pedersen et al. benchmark and the 150 concept pairs

from the Pakhomov et al. benchmark, such that both elements of the pair could be

found in SNOMED-CT as well as in MeSH. Hence, it was possible for the 175 pairs

considered in our evaluation procedure to assess their pairwise similarity in a single

ontology setting. Since similarity estimations are obviously harder and more precarious

in a multiple ontology setting, we can consider that the single ontology results give

us a reasonable approximated upper bounds of the best accuracies we can expect in

a multiple ontology setting. For each benchmark, we conducted two different multiple

ontology evaluations. In the first case, referred to as SNOMED-CT + MeSH, the first

concept of each pair was retrieved from SNOMED-CT and the second one from MeSH.

Whereas in the second case, referred to as MeSH + SNOMED-CT, the first concept was

retrieved from MeSH and the second one from SNOMED-CT.

The SNOMED-CT release of July 2012 (20120731) and the MeSH 2013 release were

used for the evaluation. semantic measures were implemented using the Semantic

Measures Library1. Mappings between ontologies were computed using a terminolog-

ical comparison of the labels associated to concepts. Details on the evaluation and

on the computation of mappings, as well as the source code and associated datasets

used in this experiment, can be checked and downloaded from the dedicated webpage:

http://www.lgi2p.ema.fr/~sharispe/publications/IS2013/.

1Open source library dedicated to semantic measures which will be introduced in the next chapter.

http://www.lgi2p.ema.fr/~sharispe/publications/IS2013/
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Measure ontologies MICA discovery Physicians Coders Both

Resnik SNOMED-CT None 0.553 0.598 0.602
MeSH None 0.608 0.668 0.670
SNOMED-CT + MeSH Sánchez and Batet 0.489 0.544 0.542
SNOMED-CT + MeSH Saruladha et al. 0.474 0.546 0.535
SNOMED-CT + MeSH This work 0.617 0.624 0.649
MeSH + SNOMED-CT Sánchez and Batet 0.444 0.534 0.512
MeSH + SNOMED-CT Saruladha et al. 0.432 0.536 0.508
MeSH + SNOMED-CT This work 0.562 0.639 0.632

Lin SNOMED-CT None 0.566 0.628 0.625
MeSH None 0.614 0.674 0.676
SNOMED-CT + MeSH Sánchez and Batet 0.512 0.561 0.561
SNOMED-CT + MeSH Saruladha et al. 0.501 0.569 0.560
SNOMED-CT + MeSH This work 0.637 0.654 0.674
MeSH + SNOMED-CT Sánchez and Batet 0.446 0.542 0.517
MeSH + SNOMED-CT Saruladha et al. 0.432 0.543 0.511
MeSH + SNOMED-CT This work 0.561 0.648 0.637

JC SNOMED-CT None 0.538 0.612 0.602
MeSH None 0.618 0.670 0.676
SNOMED-CT + MeSH Sánchez and Batet 0.514 0.573 0.569
SNOMED-CT + MeSH Saruladha et al. 0.505 0.580 0.569
SNOMED-CT + MeSH This work 0.637 0.651 0.673
MeSH + SNOMED-CT Sánchez and Batet 0.423 0.527 0.498
MeSH + SNOMED-CT Saruladha et al. 0.404 0.524 0.487
MeSH + SNOMED-CT This work 0.542 0.638 0.622

Table 7.1: Correlation values of different IC-based measures against human ratings
for term pairs extracted from the Pedersen et al. benchmark in single and multiple

ontology scenarios. Rows in boldface show the results of our proposal

Tables 7.1 and 7.2 show the correlation values for the two benchmarks for each IC-based

similarity measure. Tables show the cases in which both concepts are retrieved from

SNOMED-CT, when both are evaluated in MeSH, and when each concept is considered

in a different ontology (SNOMED-CT + MeSH and MeSH + SNOMED-CT), using the

MICA discovery and calculus strategies of Sánchez and Batet [2013], Saruladha [2011]

and the one presented in this section.

Methods based only on terminological matchings resulted in correlation values that were

below the worst single ontology setting, i.e. those of SNOMED-CT in these tests. Given

that, in our testing protocol, all methods relied on the same IC calculus [Sánchez et al.,

2011], the differences between the method of Sánchez and Batet and that of Saruladha

et al. were minor. In fact, since both methods look for the most specific pair of matching

subsumers, the only practical difference for the evaluated scenarios regards the criterion

of the IC calculus for the discovered pair. Indeed, Saruladha et al. select the minimum

IC from the matched pair, whereas Sanchez and Batet take the maximum value1.

1Note that, as discussed with the authors, selecting the higher IC of the two concepts is problematic
as it can lead to incoherent results (since IC(MILA(u, v)) might be greater than IC(u) or IC(v)).
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Measure ontologies MICA discovery Experts

Resnik SNOMED-CT None 0.513
MeSH None 0.511
SNOMED-CT + MeSH Sánchez and Batet 0.315
SNOMED-CT + MeSH Saruladha et al. 0.305
SNOMED-CT + MeSH This work 0.493
MeSH + SNOMED-CT Sánchez and Batet 0.260
MeSH + SNOMED-CT Saruladha et al. 0.243
MeSH + SNOMED-CT This work 0.429

Lin SNOMED-CT None 0.505
MeSH None 0.519
SNOMED-CT + MeSH Sánchez and Batet 0.320
SNOMED-CT + MeSH Saruladha et al. 0.310
SNOMED-CT + MeSH This work 0.505
MeSH + SNOMED-CT Sánchez and Batet 0.257
MeSH + SNOMED-CT Saruladha et al. 0.244
MeSH + SNOMED-CT This work 0.447

JC SNOMED-CT None 0.456
MeSH None 0.520
SNOMED-CT + MeSH Sánchez and Batet 0.313
SNOMED-CT + MeSH Saruladha et al. 0.232
SNOMED-CT + MeSH This work 0.505
MeSH + SNOMED-CT Sánchez and Batet 0.257
MeSH + SNOMED-CT Saruladha et al. 0.199
MeSH + SNOMED-CT This work 0.448

Table 7.2: Correlation values of different IC-based measures against human ratings
for term pairs extracted from the Pakhomov et al. benchmark in single and multiple

ontology scenarios. Rows in boldface show the results of our proposal

The difference in performance between those two methods and the single ontology set-

tings strongly depends on the considered dataset and IC-based measures. In some cases,

this difference could be small (e.g. 0.534-0.546 vs. 0.598-0.668 for Resnik’s measure and

the Pedersen et al. coder ratings) or significantly large (e.g. 0.199-0.313 vs. 0.456-0.520

for Jiang and Conrath’s measure and the Pakhamov et al. expert ratings, which repre-

sents a more challenging dataset). As discussed, those two methods are hampered by

the fact that, in many cases, the matching subsumer pair is more abstract than it should

be, and these results in an underestimation of the true similarity between the compared

concepts. This issue is specifically tackled by our approach, which looks for a pair of

subsumers with a higher degree of taxonomic relationship than those involved in the best

matching. A more suitable pair of ancestors can therefore be found, hence improving sim-

ilarity assessments. As an example, Figure 7.1 page 244, presents the result which were

obtained using the proposed approach. The two concepts IntracranialHemorrhage

and BrainNeoplasms were compared. In this case, the iNPMI function defined the pair

of concepts (DiseaseOfHead, BrainDiseases) as MILA – note that their MIMA was

initially 〈Disease, Diseases〉. Note also that not all results appear as appealing as this

one, even if, finally, the correlation with expected scores was improved.
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Indeed, in the performed evaluation, correlations obtained using our method noticeably

improve those of related works (e.g., 0.624-0.639 vs. 0.534-0.546 for Resnik’s measure

and the Pedersen et al. coder ratings, and 0.448-0.505 vs. 0.199-0.313 for Jiang and

Conrath’s measure and the Pakhomov et al. expert ratings). In fact, these results are

close to those obtained in single ontology contexts, e.g. 0.624-0.639 vs. 0.598-0.668

for Resnik’s measure and the Pedersen et al. coder ratings, and 0.448-0.505 vs. 0.456-

0.520 for Jiang and Conrath’s measure and the Pakhomov et al. expert ratings. These

differences are also more uniform for all measures and datasets than those of related

works. Recall that, as stated above, correlation values reported in both tables for single

ontology settings give us a reasonable approximation of the best correlation that can be

achieved in multiple ontology scenarios.

Regarding IC-based similarity, our results confirm that Lin’s and Jiang and Conrath’s

measures tend to lead to better results than those of Resnik. This is expected as the

Resnik measure, unlike the two other measures, associates the same similarity to pairs

of concepts with identical MICA, regardless of the IC of the compared concepts.

Note, finally, that computed similarities are more congruent with human ratings for the

Pedersen et al. benchmark than for those of Pakhomov et al. This result is coherent

with the difference in inter-human agreement figures for the two benchmarks: 0.68-0.78

for Pedersen et al. compared to 0.47 for Pakhamov et al. The influence of the reliability

of human ratings is also evident with the Pedersen et al. benchmark, where computed

similarities are better correlated with the coders’ ratings (which are more consistent, i.e.

inter-rating agreement of 0.78) than with the physicians’ ratings (which are less con-

sistent, i.e. inter-rating agreement of 0.68). The higher inter-rating agreement among

coders is certainly related to the fact that they were trained on the notion of semantic

similarity, whereas the physicians rated pairs of terms without previous training [Ped-

ersen et al., 2007].

7.3.4 Discussion

The applicability of IC-based semantic measures is hampered by the fact that they were

designed to deal with a single ontology. This constitutes a serious limitation given the

increasing importance of scenarios in which multiple heterogeneous ontologies have to

be used [Batet, 2011a; Coates et al., 2010; M.C. Lange, D.G. Lemay, 2007].

In this section, a method is proposed to enable accurate IC-based similarity assessments

from multiple ontologies. It proposed to overcome shortcomings of existing proposals and

in particular to revisit the way the MICA of two concepts defined in different ontologies

can be computed. Our approach, grounded on the foundations of the information theory,
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and on an intrinsic redefinition of the NPMI, looks for the available pair of concepts that

can act as the best estimator of the commonality of the compared concepts – even if

no mapping has been found between them. This proposal overcomes the limitation

of related works which solely rely on an existing set of mappings. Conversely, our

method proposes a way to measure the strength of the taxonomic link between two

concepts defined in different taxonomies by analysing the topology of the taxonomies

and associated mappings. As a result, we discover pairs of ancestors that better represent

the commonalities of the compared concepts and that therefore enable more accurate

semantic similarity assessments.

The empirical evaluation, carried out on several well-established benchmarks, ontolo-

gies and measures, sustained the theoretical hypothesis: our method achieved similarity

results that correlated significantly better with human ratings than those of tested re-

lated works. In addition, the results obtained were very close to those obtained in the

“optimal” single ontology setting. More evaluations using other benchmarks, ontologies

and mapping acquisition techniques have to be performed in order to generalise these

encouraging results.

7.4 Chapter conclusion

This section has presented two algorithmic contributions related to semantic measures.

First, we presented an algorithm for computing the semantic similarity of all pairs of

concepts defined in a taxonomy. Using the framework proposed in Chapter 4, we char-

acterised specific properties of semantic measures which can be used to design efficient

algorithm to tackle this problem. Based on these findings, we proposed an efficient and

practical algorithmic solution.

Finally, in the last section, jointly with Montserrat Batet, David Sànchez and Vincent

Ranwez, we proposed a new approach to designing semantic similarity measures for

comparing concepts defined in different taxonomies. Based on well-known notions of

information theory, we proposed a new approach to finding estimators of the common-

alities and differences of compared concepts. Interestingly, this approach has proved to

increase the accuracy of several semantic measures in two gold-standard benchmarks

related to biomedicine.
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Abstract

The Semantic Measures Library and Toolkit are robust open source software solutions

dedicated to semantic measures. They can be used for large-scale computation and anal-

ysis of semantic similarities, proximities or distances between terms or concepts defined

in ontologies, e.g., structured vocabularies, taxonomies, RDF graphs. The comparison

of instances (e.g., documents, patient records, genes) annotated by concepts is also sup-

ported. An important aspect of these new solutions is that they are generic and are

therefore not tailored to a specific application context. They can thus be used with var-

ious controlled vocabularies and knowledge representation languages (e.g. OBO, RDF,

OWL). The project targets both designers and practitioners of semantic measures pro-

viding a Java source code library, as well as a command-line toolkit which can be used

on personal computers or computer clusters.

The library implements a large collection of state-of-the-art measures and several para-

metric measures provide fine-grained tuning capabilities for specific usage contexts. The

Application Programming Interface associated to the library, and the numerous algo-

rithms and metrics implemented, equip developers with an extensive framework for the

development of new measures. It also provides researchers with a development plat-

form particularly suited for the comparison and evaluation of semantic measures. In

addition, it also enables developers to easily take advantage of semantic measures and

to use the functionalities of the library in their development projects. The library and

toolkit have been extensively used for several use case scenarios in which fast compu-

tation of semantic measures were required, e.g., large-scale analysis and computation

of semantic measures, development of conceptual information retrieval systems. In-

terestingly, despite their generic aspect, they have proved to compete or even outper-

form the performances of domain-specific solutions. In short, the Semantic Measures

Library and Toolkit aim at equipping communities studying and using semantic mea-

sures with robust, reliable and efficient, open source, generic and tools dedicated to

them. Downloads, documentations, updates and community support are available at

http://www.semantic-measures-library.org

Associated references on which this chapter is based:

• The Semantic Measures Library and Toolkit: fast computation of semantic

similarity and relatedness using biomedical ontologies. Sébastien Harispe*, Sylvie

Ranwez, Stefan Janaqi, Jacky Montmain. Oxford Bioinformatics 2013.

• From Theoretical Framework to Generic Semantic Measures Library. Sébastien

Harispe*, Stefan Janaqi, Sylvie Ranwez, Jacky Montmain. On the Move to Meaningful

Internet Systems: OTM 2013 Workshops Lecture Notes in Computer Science Volume 8186,

2013, pp 739-742; http://dx.doi.org/10.1007/978-3-642-41033-8_98

http://www.semantic-measures-library.org
http://dx.doi.org/10.1007/978-3-642-41033-8_98
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8.1 Motivation

Throughout this manuscript we have stressed that numerous communities are involved

in the study of semantic measures, e.g. Natural Language Processing, Artificial In-

telligence, Semantic Web and Bioinformatics, to mention a few. Moreover, we also

underlined that, due to their popularity, a large number of semantic measures have been

proposed for a wide range of applications and ontologies. In addition, we stressed that

the evaluation of semantic measures, more often than not, relies extensively on empiri-

cal analysis aiming to support the added value of specific proposals for a specific task,

e.g. disambiguation, clustering, correlation with human expectations regarding semantic

similarity.

Nevertheless, no extensive software tools dedicated to semantic measures were available

at the start of this thesis. A state-of-the-art outlining the software solutions available

for the computation and analysis of semantic measures was published in [Harispe et al.,

2013c]. In summary, most software solutions focusing on those dedicated to knowledge-

based semantic measures, have been developed for a specific usage context and are

dedicated to a specific ontology, e.g., Wordnet [Pedersen et al., 2004], UMLS [McInnes

et al., 2009], the Gene Ontology1(GO) or the Disease Ontology (DO) [Li et al., 2011].

Table 8.1 summarises some characteristics of existing libraries/tools.

As an example, a large number of tools have been developed for the GO alone (only some

of them are presented in the Table 8.1). Nevertheless, besides some particular aspects

requiring ad hoc or domain specific tuning, all measures defined for particular usage

contexts can be expressed using the same graph-based formalism. This was particularly

underlined in Chapter 4 which is dedicated to the unification of semantic similarity

measures. Thus, from a theoretical point of view, nothing prevents the definition of a

generic software or library dedicated to semantic measures. However, to our knowledge,

only four attempts to develop generic libraries related to semantic measures1 exist,

i.e., OWLSim, SimPack, OntoSim and SemMF, the rest being dedicated to particular

ontologies. We briefly discuss some of the characteristics of these generic libraries.

SemMF2 is a library which can be used to evaluate the similarity of instances repre-

sented as RDF graphs [Oldakowski and Bizer, 2005]. The library proposes, among other

matching techniques, some taxonomic matchers relying on Lin’s measure or the shortest

weighted path restricted by the Least Common Ancestor. SemMF is nevertheless no

1Note that half a dozen libraries/tools are dedicated to the Gene Ontology: http://www.

geneontology.org/GO.tools_by_type.semantic_similarity.shtml
1Note that semantic measures here only refers to semantic measures relying on an ontology.
2http://semmf.ag-nbi.de

http://www.geneontology.org/GO.tools_by_type.semantic_similarity.shtml
http://www.geneontology.org/GO.tools_by_type.semantic_similarity.shtml
http://semmf.ag-nbi.de
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Name ontology Types Measures Language

FastSemSim1 GO CLI, LIB P, G Python
Similarity Library
[Pirró and Euzenat, 2010a] Wordnet,MeSH,GO CLI, LIB P, G Java
DOSim
[Li et al., 2011] DO CLI, LIB P, G R
WordNet-Similarity
[Pedersen et al., 2004] WordNet CLI, LIB P, G Perl
UMLS-Similarity
[McInnes et al., 2009] UMLS LIB P Perl
OWLSim
[Washington et al., 2009] OWL, RDF, OBO LIB P Java
SimPack
[Bernstein et al., 2005] OWL, RDF LIB P Java
SemMF
[Oldakowski and Bizer, 2005] OWL, RDF LIB P, G Java
OntoSim
[David and Euzenat, 2008] OWL, RDF LIB P Java

SML
[Harispe et al., 2014] OWL, RDF, OBO CLI, LIB P, G Java

Table 8.1: Some characteristics of a selection of libraries/software enabling the compu-
tation of knowledge-based semantic measures. Types: Command Line Interface (CLI),
Library (LIB). Measures: pair of concepts (Pairwise – P), pair of groups of concepts

(Groupwise – G).

longer supported (last version 2008). OWLSim1 proposes a reduced implementation of

semantic measures to be applied to ontologies and focuses mainly on the comparison of

OWL objects [Washington et al., 2009].

Among the three generic solutions evaluated, SimPack2 is probably the most extensive

library providing numerous types of semantic measures [Bernstein et al., 2005]. Focus-

ing on measures dedicated to the comparison of concepts, some information theoretical

measures (e.g. Lin’s measure), or measures based on the structural approach, are pro-

posed. However, this library does not provide ways to compare sets of concepts, and,

more importantly, SimPack is no longer under active development (last version pub-

lished in 2008). Finally, our tests reveal that this library cannot be used in numerous

use cases since it is impossible to load relatively large ontologies, such as those available

in the biomedical domain today. As an example, during our evaluations, we failed to

load the Disease Ontology (only 8656 concepts) despite the 6Go memory allocated to

the process. This aspect is today highly problematic since ontologies tend to grow in

size – let us note for instance that the GO structures more than 30 · 103 concepts. The

SimPack source code analysis which was been performed revealed that the underlying

data structure manipulated by the library was not adapted to handle large ontologies.

1https://code.google.com/p/owltools/wiki/OwlSim
2https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack

https://code.google.com/p/owltools/wiki/OwlSim
https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack
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Unfortunately, the modification of this data structure implied too many profound mod-

ifications to be conceivable. Finally, SimPack is only suited to experienced developers

as no command-line interface is provided for end-users.

OntoSim provides a generic framework for defining various similarities for comparing

entities defined in an ontology. It can therefore be used to compare instances or

concepts defined in an ontology, as well as for comparing ontologies. This software

solution provides several measures which can be aggregated. It also relies on external

libraries for specific types of measures, e.g., SimPack for comparing two concepts

defined in a taxonomy. Note that OntoSim has not been evaluated and compared to

the other solutions. However, strictly speaking OntoSim does not focus on measures

for comparing a pair of (groups of) concepts and is therefore commonly used for other

usage context, e.g. to compare ontologies. Nevertheless, we strongly encourage the

reader to visit the dedicated website, to refer to the documentation and to test the

solution: http://ontosim.gforge.inria.fr .

Not only focusing on generic solutions, another limit of existing software solutions is

that they only give access to a limited set of measures which is not representative of

the large numbers of measures available today. It is worth noting that most measures

which have been proposed in the literature have generally not been implemented in a

software solution. This situation challenged both the use and the study of semantic

measures. Indeed, semantic measures users were constrained to using domain-specific

tools which often only propose few measures (generally no more than five), and do not

include theoretical findings made by other communities, e.g., more accurate measures

or algorithmic optimisations. Thus, semantic measure users were limited to available

ontology-specific implementations; if no software solutions had been developed (and were

supported) for their ontology of interest, it often meant that you had to develop your

own source code, often from scratch.

Semantic measure designers and more generally semantic measure studies were also lim-

ited by the lack of extensive and efficient generic software solutions dedicated to semantic

measures. Indeed, to date, most evaluations of semantic measures have been made us-

ing private and closed source code, a situation which highly challenges comparisons of

semantic measure and experiment reproducibility1. The situation was very limiting as

experiment reproducibility, one of the main tenets of the scientific method, is the only

way to validate empirical results.

1We personally spent hours trying to reproduce published results before, most often, giving up. . .

http://ontosim.gforge.inria.fr
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Therefore, to federate efforts related to the design and analysis of semantic measures, and

to respond to the need for a generic and extensive open source software tool dedicated to

them, this chapter introduces the Semantic Measures Library, a software solution dedi-

cated to the computation and analysis of semantic measures which has been developed

during this thesis1.

8.2 The Semantic Measure Library: generic software so-

lutions for the computation and analysis of semantic

measures

The Semantic Measures Library (SML) is a source code library dedicated to the com-

putation, development and analysis of semantic measures. Numerous functionalities

provided by the SML are also available within the SML-Toolkit, a command-line pro-

gramme which can be used by non-developers to easily compute semantic measures on

personal computers or computer clusters. The SML and the toolkit are distributed un-

der the open source CeCILL license2 (GPL-compatible). They both use cross-platform

Java programming language which is available for most operating systems (version 1.7).

The SML and the toolkit can be used to compute semantic similarities of concepts or

structured terms defined in ontologies. They can also be used to assess the semantic

similarity of pairs of instances annotated by concepts, e.g., patient records annotated by

groups of concepts, genes annotated by GO terms, PubMed articles annotated by MeSH

descriptors. . . Considering a pair of entities (concepts/instances), these tools provide an

easy way to compute a score of semantic similarity, relatedness or distance depending

on the measure considered. The SML and associated toolkit can be downloaded from

their dedicated website: http://www.semantic-measures-library.org.

We briefly present the SML, associated toolkit and other contributions related to this

project.

1Note that the development, maintenance, packaging, support, and documentation writing of the
solutions presented in this chapter have only been supported by the author of the manuscript.

2http://www.cecill.info/index.en.html

http://www.semantic-measures-library.org
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8.2.1 SML: a source code library dedicated to semantic measures

The SML is a generic Java source code library dedicated to semantic measures. Develop-

ers can easily embed source code referring to the library to compute semantic measures

in their own algorithms and applications. The library supports various ontology formats

and specifications (e.g., OBO1, RDF, OWL). It takes advantage of the Sesame library

to handle RDF graphs [Broekstra et al., 2002]. The SML relies on a graph-based data

model and is therefore adapted to compute semantic measures on any ontologies relying

on graph representations or which can be reduced to such a representation. Specific

ontology loaders are provided to handle several widely used domain-specific ontologies

distributed using specific formats. As an example, specific loaders for biomedical termi-

nologies such as the MeSH and SNOMED-CT, or for other ontologies such as WordNet,

are available. Custom ontology loaders can also be easily added for processing specific

data formats.

Low-level access to the library enables developers to finely control the underlying graph-

based data model in order to apply specific treatments which are sometimes required for

the computation of semantic measures (e.g. transitive reduction to remove taxonomic

redundancies or annotation redundancies). This aspect is often essential to ensure the

coherency of the computation of semantic measures.

A large collection of semantic measures are provided out-of-the-box, version 0.7 of the

SML supports numerous state-of-the-art semantic measures relying on different strate-

gies (e.g., information theoretical, structure-based, feature-based). Thanks to the fine-

grained control provided by the library, this leads to about 1500 specific measure config-

urations that can be specified for context-specific applications (considering the various

ICs, measures and aggregation strategies implemented). The library also gives access to

several parametric measures which can be used by developers for fine-grained tuning in

specific usage contexts.

In addition, the algorithms developed in the SML provide designers of semantic measures

an extensive Application Programming Interface (API) and framework to easily develop,

test and evaluate new measures. Interestingly, due to its generic underlying graph

data model, semantic measures developed using the SML will benefit a large audience.

Indeed, measures developed using the SML are not restricted to a specific ontology and

can therefore be used with the various ontologies supported by the library. Note that

measures based on complex DL constructs are currently not supported.

The SML has been developed for the large-scale computation and analysis of seman-

tic measures. It supports multi-threaded processes for fast parallel computation on

1Open Biomedical Ontologies format [OBO, 2013].
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multi-core processors. The library can therefore be used to compute semantic measures

between entities characterised in graphs composed of millions of triplets. Nevertheless,

the in-memory data model on which the library now relies may be limiting when process-

ing large collections of triplets on classic computers (e.g. hundreds of millions/billions

of triplets)1.

Figure 8.1 presents a source code example which shows how semantic measure scores

can easily be computed using the SML – in this simple example, the semantic similarity

between two concepts structured in a taxonomy is computed using the measure defined

by [Lin, 1998] and the information content proposed by Sánchez et al. [2011] (Equations

3.29 and 3.7 respectively).

Figure 8.1: Example of Java source code which relies on the SML to compute the
semantic similarity between two concepts (Whale and Horse)

1Reflections have been initiated on this specific aspect and prototyping (which appeared unsatisfac-
tory) has been made during the thesis – efficient handling of large ontologies through graph traversals
is still an open problem (note that triplestores are not adapted in this case).
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8.2.2 SML-toolkit for non-developers

Numerous functionalities provided by the SML are also available within the SML-

Toolkit, a command-line programme which can be used by non-developers to easily

compute semantic measures on personal computers or computer clusters. Indeed, the

toolkit provides access to some functionalities of the library through command-line soft-

ware. This is particularly important since most users of semantic measures are not

developers and only use semantic measures for knowledge-based data analysis, e.g., in

bioinformatics users analyse gene products through their GO annotations, for instance

based on the analyse of clusters computed using semantic measures.

The SML-Toolkit is highly tuneable and enables context specific configurations to be

specified depending on the experiment performed: knowledge base to use (ontologies,

conceptual annotations), required data pre-processing (e.g., the removal of taxonomic

or annotation redundancies), measure constraints (e.g., algorithmic complexity, mathe-

matical properties), set of queries to perform (i.e. concept or instance identifiers), and

other (optional) parameters (e.g. output file, computer resources allocated).

Detailed configurations can be specified using an XML file. An example is provided in

Figure 8.2; the configuration specifies how to compute the semantic similarity of pairs of

gene products considering their GO annotations and more particularly the annotations

related to the biological processes in which they are involved. We briefly detail the

meaning of this XML configuration:

• A – The user can specify global configurations, such as the number of threads

to use during the computation. Variables can also be defined in order to reduce

the size of the configuration file and to ease its modification. Namespaces are

sometimes required to load prefixed URIs used in certain data files.

• B – The knowledge base used during the process is composed of the ontology,

here the GO, and the annotations which specify the GO terms associated to each

gene. As you can see, the user can specify pre-processing treatments to perform

prior to semantic measure computation. In this example, the user defines that

only the biological process aspect of the GO must be considered; the taxonomy

of the ontology is modified using the REROOTING command, other concepts and

associated annotations will be removed. Note that gene annotations associated to

GO terms not found in the ontology will be excluded. Advanced configurations

can also be used to define the behaviour to adopt if, for instance, annotations are

not found or compared genes have no associated annotations, e.g., to set the score

to a specific value, to throw an error/a warning. . . – this can be done in D.
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• C – The configuration of semantic measures. Multiple measure configura-

tions can also be specified if one wishes to compute multiple scores of semantic

measures in the same run, i.e., the toolkit will compute the score of each semantic

measure configuration for each pair of gene products specified. In this example,

the configuration of the measure corresponds to an indirect groupwise measure.

Comparing two genes u, v, which corresponds here to the comparison of two sets

of GO terms U and V , the maximal score of similarity which has been obtained

by comparing each pair of GO terms composing the Cartesian product U ×V will

be considered. The semantic similarity of each pair of GO terms of the Cartesian

product is computed using an information theoretical measure (Resnik’s measure

considering an information content computed according to the annotation usage

in the set of annotations provided w.r.t the partial ordering of concepts defined in

the GO).

• D – The user finally specifies the input file which contains the pairs of gene

products for which the semantic similarity must be computed; the output file

and extra configurations are also defined.

Considering that the configuration file presented in Figure 8.2 is saved in the file named

sm conf human bp.xml, the execution can easily be launched using the following command-

line:

java -jar sml-toolkit-[version].jar -t sm -xmlconf sm_conf_human_bp.xml

The XML interface provides advanced possibilities for tuning the SML-Toolkit config-

uration. Nevertheless, such an interface may still appear too complex, or unnecessarily

complex for numerous users and use cases. We have therefore also developed kinds

of domain-specific command-line interfaces which can be used to take advantage of the

toolkit in specific use cases. This aspect is particularly important given that the usage of

semantic measures is largely interdisciplinary. Indeed, most of the time, users do not un-

derstand what the documentation means when we talk, for instance, about conceptually

annotated entities or instances of an RDF graph; a molecular biologist wants to read:

gene products annotated by GO terms. Thus, specific command line interfaces, called

profiles, are also developed to ease the use of the SML-Toolkit in specific application

contexts.

As an example, a profile has been developed to estimate the similarity of genes regarding

their GO term annotations. Users can therefore easily compute the semantic similarity

between GO terms structured in the GO or between genes which are conceptually char-

acterised by GO terms. The following command-line can therefore be used to compute
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Figure 8.2: Example of SML-Toolkit XML configuration file which can be used to
compute semantic similarities of pairs of gene products annotated by Gene Ontology

terms. Please consult last release documentation
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the semantic similarity between pairs of GO terms specified in the file (query.tsv1).

Providing the GO (go.obo), the output file (results.tsv) and a measure configuration

(-pm schlicker -ic sanchez), the following command-line can be used:

java -jar sml-toolkit-<version>.jar -t sm -profile GO -go go.obo

-mtype p -queries query.tsv

-output results.tsv

-pm schlicker -ic sanchez -aspect BP

Such profiles are interesting since they hide the advanced capabilities of the library and must

be associated to domain-specific documentation. They therefore enable users to focus on the

important aspects of the domain use case. It therefore improves the experience for users who

are only interested in computing semantic measure scores in a specific context of use (e.g. gene

or disease analysis). The development of more profiles is a short term objective.

8.2.3 Website & other contributions

The development of the SML and associated toolkit goes alongside several initiatives to both

promote them and to ease their use. As an example, the website of the SML project is available

at: http://www.semantic-measures-library.org.

It gives access to:

• Downloads (library, toolkit, javadoc, tutorials).

• Extensive documentations associated to the library and the toolkit, as well as technical

documentations associated to semantic measures. Tutorials which show how to use the

toolkit are also provided.

• Community support associated to a Google group sml-support2 and a mailing list.

• An extensive literature related to the field. A Mendeley group has also been created in

order to share references associated to semantic measures3.

• News & updates related to the project.

1 Tabular separated file (can be customised), e.g.:
P16591 Q00839

Q00839 E2QRD5

E2QRD5 Q9H9B1

Q9H9B1 Q9H9B4

...
2https://groups.google.com/forum/#!forum/sml-support
3http://www.mendeley.com/groups/2907161/semantic-measures-library-bibliography

http://www.semantic-measures-library.org
https://groups.google.com/forum/#!forum/sml-support
http://www.mendeley.com/groups/2907161/semantic-measures-library-bibliography
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8.3 Comparison with domain specific tools

8.3.1 Aim of the comparison

This section presents an evaluation which has been performed in order to compare the perfor-

mance of the SML w.r.t other domain-specific solutions dedicated to semantic measures. Here,

we focus on the comparison of the SML-Toolkit with other solutions developed to compute

semantic measures using the GO.

This section has been written according to the documentation and results of the sm-tools-

evaluation project which was made during this thesis. Documentation and material associated

to the project are available at https://github.com/sharispe/sm-tools-evaluation.

Important: this evaluation does not aim to criticise tools or denigrate the work made by

their developers – we only define a strict evaluation protocol in order to provide objective

metrics which can be relevant when comparing tools. Please keep in mind that tools which

do not perform well on the tests defined herein may have other advantages that are not

discussed in this evaluation. In addition, this evaluation does not pretend to cover all

aspects which could be useful to consider in order to evaluate software solutions. Here, we

focus on objective metrics and mainly aim at evaluating the speed of the programme given

specific resource constraints (memory allocated to the tool, computational time).

We only provide results which are strictly reproducible given the source code and information

considered during the evaluation. The aim is not to discuss aspects relative to the (subjec-

tive) individual user experience or other important aspects such as documentation and code

quality, usability, overall sustainability, community support, release updates. . . We do, how-

ever, encourage users to refer to corresponding tool documentation and websites to evalu-

ate these aspects. More general information related to software evaluation can be found at

http://www.software.ac.uk/software-evaluation-guide (other references are provided in

the project documentation).

The source code used to perform this evaluation is open source; it can therefore be used to

reproduce the results presented herein by simply downloading the repository and following the

instructions. Note that results may vary considering the hardware configuration of the machine

on which the test is performed; nevertheless, rankings must be the same.

The tools which have been compared are:

• The Semantic Measures Library Toolkit (SML) – version 0.71

• GOSim – version 1.2.7.72

• GOSemSim – version 1.18.03

1http://www.semantic-measures-library.org
2http://cran.r-project.org/src/contrib/Archive/GOSim
3http://www.bioconductor.org/packages/release/bioc/html/GOSemSim.html

https://github.com/sharispe/sm-tools-evaluation
http://www.software.ac.uk/software-evaluation-guide
http://www.semantic-measures-library.org
http://cran.r-project.org/src/contrib/Archive/GOSim
http://www.bioconductor.org/packages/release/bioc/html/GOSemSim.html
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• FastSemSim (FSS) – version 0.7.11

8.3.2 Evaluation protocol

Tools are compared regarding their computation time. Two tests are presented in this section:

• Computation of the semantic similarity between GO terms.

• Computation of the semantic similarity between gene products annotated by GO terms.

For both tests the following datasets have been used:

• Gene Ontology – lite version of 2013 03 02, so as to be in accordance with GOSim and

GOSemSim which both rely on Bioconductor2 R package [Gentleman et al., 2004].

• Gene annotations – Human gene annotations provided in Bioconductor version 2.12.

8.3.2.1 Semantic similarity between Gene Ontology terms

This test aims to compare the tools for the computation of semantic similarities between a pair

of GO terms. Four tests of different sizes were generated: 1K, 10K, 1M and 100M pairs of GO

terms3. Each test is therefore composed of a set of pairs of terms for which we want the semantic

similarity to be computed. All the samples can be downloaded at project webpage.

For each test of size x (e.g. 1M), three random samples of size x were generated in order to

reduce the probability that the evaluation of the performance is biased by abnormal sampling.

As an example, the test composed of 1M pairs of terms is composed of three different samples

r0, r1, r2 which each contains 1M pairs of GO terms. For each sample (e.g., r1), three runs (r1.0,

r1.1, r1.2) were performed. This is to reduce the probability of results being biased by abnormal

operating system behaviour or material lags.

The sets of pairs of terms which make up the 3 samples of each test were generated using the

tool provided in the project. Both the tool and its source code are open-sourced and publicly

available. This tool is used to generate benchmarks composed of pairs of GO terms. As we

said, for each size of benchmarks (1K, 10K, 1M and 100M), three samples are generated. These

benchmarks were built selecting random pairs of terms specified in the Biological Process aspect

of the GO (all pairs of terms are composed of terms subsumed by the term GO:0008150). In

addition, all terms which appear in the test are used to annotate at least one gene defined in

the gene annotations considered. Indeed, some libraries cannot compute the similarity of terms

which are not used to annotate at least one gene – this is due to the computation of Resnik’s

Information Content (IC).

We selected Lin IC-based measure (Equation 3.29) to evaluate the tools performance, the formula

is presented in Chapter 3. Lin’s measure is commonly used to compare two concepts/terms

1http://sourceforge.net/projects/fastsemsim
2http://www.bioconductor.org/packages/2.12
3K= 103, M= 106

http://sourceforge.net/projects/fastsemsim
http://www.bioconductor.org/packages/2.12
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defined in a taxonomy. It requires the Most Informative Common Ancestor of the compared

terms and (by default) Resnik IC to be computed. This choice of measure configuration was

made given that (i) IC-based measures are the most commonly used measures, and (ii) MICA

determination and IC computation are the two most time consuming treatments of all IC-based

measures.

Specific constraints were specified in order to simulate user expectations using the tools:

• Memory consumption: processes cannot use more than 6Go of memory – we expect the

tools to be used on personal computers.

• Time constraint : processes cannot take more than two hours.

If these constraints are not respected, the execution of the program stops.

Note that GOSim and GOSemSim do not have command line interfaces. We therefore developed

scripts which can be used to compute all the similarities for the pairs of entries (terms or gene

products) contained in a file. The scripts are provided in the source code associated to the

project.

8.3.2.2 Semantic similarity between gene products

This test aims to compare tools for the computation of semantic similarities between pairs of gene

products annotated by GO terms. The protocol is similar to the one used for the comparison

based on the computation of GO term semantic similarity. However, in this case, the comparison

of a pair of gene products (groups of concepts) was made using a indirect groupwise measure,

i.e., comparing to group of concepts U and V , the maximal similarity of the pairs of concepts in

U × V was computed (using the measure used for the previous test, i.e. Lin’s proposal). Four

tests were designed. Each test is composed of a set of pairs of gene products for which we want

the semantic similarity to be computed. Similarly to the other tests, four sizes were considered:

10k, 100k, 1M and 100M pairs of gene products.

The sets of pairs of gene products were generated using the open source tool used to generate

the aforementioned tests. Note that no restriction is applied on the Evidence Code associated to

the annotations linked to the considered gene products (e.g., inferred electronically annotations

[IEA] have been considered). In addition, only annotations related to gene products’ Biological

Process (BP) were used during this test.

In this test the constraints considered are: Memory consumption – 6Go of memory, and time

constraint – four hours.
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8.3.3 Results

First we discuss the correlation between the semantic similarity results provided by software

solutions evaluated. We then present the computational performance obtained for the two tests.

8.3.3.1 Result correlations and associated discussion

We evaluated the Pearson correlations between the results obtained by the tested tools. The

correlations were computed taking GO term to GO term 10K r0.0 sample into consideration.

Remember that the semantic similarities were computed using Lin’s measure. The Pearson

correlations between the results produced by the tools are presented in Table 8.2. The details

can be found in the project webpage1.

FastSemSim FSS ISA SML GOSim GOSemSim

FastSemSim 1 0.68 0.69 0.85 0.86

FSS ISA 1 0.99 0.58 0.58

SML 1 0.57 0.58

GOSim 1 0.99

GOSemSim 1

Table 8.2: Correlation of pairwise similarity results obtained using various tools

FSS ISA corresponds to the results obtained using a special build of the FastSemSim library

only considering subClassOf2 relationships, version 0.7.1.1. This version is not an official release

supported by Marco Mina, the developer of FastSemSim. This build was made in order to change

undesired behaviour relative to the way version 0.7.1 compute parents/ancestors. Indeed, version

7.1 considers all types of relationships as subClassOf relationships when parents are computed.

This behaviour changes the common ancestors or the MICA of the two terms which will be

considered by the measures.

Both GOSIM and GOSemSim rely on GO.db R package3. They also consider concepts which

subsumes a concept x, not only according to subClassOf relationships, as ancestors of x. See

GO.db documentation4, and more particularly details of the function GOBPPARENTS on which

the tools rely: “Each GO BP term is mapped to a named vector of GO BP terms. The name

associated with the parent term will be either is-a, has-a or part-of, where is-a indicates

that the child term is a more specific version of the parent, and has-a and part-of indicate

that the child term is a part of the parent. For example, a telomere is part of a chromosome.”.

We therefore suspect that GOSim and GOSemSim do not differentiate the type of relationships

when the common ancestors are computed.

1https://github.com/sharispe/sm-tools-evaluation
2Note that in the OBO format specification, the taxonomic relationship (denoted subClassOf in this

manuscript) is denoted is-a.
3http://www.bioconductor.org/packages/2.12/data/annotation/html/GO.db.html
4http://www.bioconductor.org/packages/2.13/data/annotation/manuals/GO.db/man/GO.db.

pdf

https://github.com/sharispe/sm-tools-evaluation
http://www.bioconductor.org/packages/2.13/data/annotation/manuals/GO.db/man/GO.db.pdf
http://www.bioconductor.org/packages/2.13/data/annotation/manuals/GO.db/man/GO.db.pdf
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We observe that GOSIM and GOSemSim have a maximal Pearson correlation (0.99). This was

expected since both tools rely on GO.db package. They also both have a strong correlation

with FastSemSim (0.85). The differences between GOSIM/GOSemSim and FastSemSim can be

potentially explained by the way the tools compute the information content.

The SML however produces scores which are faintly correlated to FastSemSim, GOSIM and

GOSemSim. We investigated the results to understand the causes of the differences. We found

that FastSemSim, GOSIM and GOSemSim perform treatments which are not in accordance with

the original definition of Information Content based measures. Indeed, IC-based measures clearly

rely on the taxonomic graph in order to be computed. The taxonomic graph is the subgraph of the

ontology which only contains taxonomic relationships1. This graph is considered to compute the

ancestors of a term and is therefore important to compute the MICA (or NCCAs) in information

content based measures. FastSemSim, GOSIM and GOSemSim consider relationships other than

taxonomic ones to compute the ancestors, which explains the variation obtained. They also

consider part-of relationships to define ancestors (regulates is even used in the tested version

of FastSemSim).

To ensure that the poor correlations were down to this difference, we built a modified version of

the FastSemSim library (available at project webpage). This version can be used to compute the

similarities using FastSemSim source code and only considering taxonomic relationships when

ancestors are computed. Considering this modification we obtained the expected correlation

between FastSemSim and the SML (0.99 – Table 8.2). Therefore, the results produced by the

SML appeared to be in accordance with the original definition of the evaluated measure.

Nevertheless, an important (and worrying) finding highlighted in this experiment is that high

variations can be observed between the results produced by available software solutions. These

variations appear to stem from the differences between the various interpretations and imple-

mentations of measures proposed by tested libraries.

8.3.3.2 Evaluation of computational performances

The tests were performed on a personal computer with an Intel(R) Core(TM) i5 CPU M 560 @

2.67GHz with 6Go allocated to the tools. The obtained results are presented in Tables 8.3 and

8.4. They correspond to the average computational times obtained for each sample associated

to each evaluated set (e.g., 1M) – in each case the variation between the samples was low; they

are therefore not presented in the results. Complete results can be consulted from the dedicated

repository. Also remember that they can be reproduced following the instructions detailed in

the documentation.

1I.e. is-a relationship in this case.
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1K 10K 1M 100M

FastSemSim 0m12.3 0m12.83 0m31.68 X

GoSim 0m49.46 3m21.5 X X

GoSemSim 1m34.69 16m21.34 X X

SML 0m9.23 0m9.76 0m19.55 16m30.24

SML parallel 0m9.22 0m9.56 0m14.47 8m58.29

Table 8.3: Running times of tools dedicated to the computation of GO terms semantic
similarity. Four tests were performed considering random samples of pairs of GO terms
with fixed sizes (see columns, K= 103, M= 106). SML parallel corresponds to the SML
configured with four threads. ’X’ specifies that the process required more than 6Go of

RAM or took more than 2 hours

1K 10K 1M 100M

FastSemSim 0m13.36 0m16.79 7m8.14 X

GoSim X X X X

GoSemSim 27m02.66 X X X

SML 0m10.01 0m11.18 1m38.87 133m27.44

SML parallel 0m9.80 0m10.24 0m47.62 58m

Table 8.4: Running times of tools dedicated to the computation of gene products
semantic similarity. Four tests were performed considering random samples of gene
pairs with fixed sizes (see columns, K= 103, M= 106). SML parallel corresponds to the
SML configured with four threads. ’X’ specifies that the process required more than

6Go of RAM or took more than 4 hours

8.3.4 Discussion

The results of the two tests presented in Table 8.3 and Table 8.4 stress that the SML is perfectly

adapted for the large-scale computation of semantic measures. Indeed, although the SML is

generic and not tailored to a specific ontology and usage (contrary to the other solutions), it

outperformed domain-specific solutions in all the evaluated cases.

The poor performance obtained using GOSim and GOSemSim can be explained by the fact that

these libraries manipulate persistent data (via Bioconductor), which requires more computation

time1. This is indeed extremely limiting for the fast computation of semantic measure scores, e.g.,

in our evaluation, GoSemSim took more than 27 minutes to compute the semantic similarities

between 1000 pairs of gene products (Table 8.4). Nevertheless, this also means that these libraries

1Contrary to other tools which work in-memory.
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can theoretically handle larger datasets than the current implementation of FastSemSim and

SML. However, in most use cases involving large datasets, the performance obtained by GOSim

and GOSemSim cannot be admitted and severely hampers their use.

Another insight provided by these experiments is that the SML gives an important reduction

of computation time for extensive computation – any bigger than 1 million computations. As

an example the SML took 1 minute and 39 seconds to compare 1 million pairs of genes despite

FastSemSim taking 7 minutes 8 seconds (Table 8.4). More importantly, the SML enables com-

putations which were not possible using other software solutions, e.g., 100 million computation.

Therefore, simply put, despite its generic layer, the SML appears to be an efficient and reliable

software library for the computation of semantic measures.

8.4 The Semantic Measures Library in action

The SML and the toolkit are not limited to a specific ontology and can therefore be used

in a broad field of application, (scientific) projects and software solutions. We present some

of the applications which have been made, focusing on those which are tightly linked to the

contributions presented in this manuscript:

• Analysis of semantic measures.

• Large-scale computation of semantic similarities.

• Application to a content-based recommendation system.

• Integration to a conceptual information retrieval system.

8.4.1 Analysis of semantic measures

Throughout this thesis, the SML has been used to analyse semantic measures. The analyses

performed were related to the comparison of semantic measures for specific usage contexts. The

SML was also extensively used in the contribution related to the practical application of the

abstract framework which was presented in Chapter 5. In both studies, the generic aspect of

the library, the large number of (parametric) measures implemented and its performance were

required. More broadly, throughout this thesis, the generic aspect of the library gives us the

opportunity to study and use semantic measures with several ontologies: the Gene Ontology,

the Disease Ontology, the MeSH, SNOMED-CT, Wordnet, the DBpedia Ontology and Yago, to

mention a few.

8.4.2 Large-scale computation of semantic similarity

The SML has often been used for large-scale computation of semantic measure scores. This is

particularly true in the collaboration initiated with Clément Jonquet (LIRMM Montpellier) for



Chapter 8. The Semantic Measures Library 278

the SIFR project (Semantic Indexing of French Biomedical Data Resources)1. We have been

solicited in order to take advantage of the capabilities offered by the SML to face large-scale

computation of semantic measure scores. One of the aims of this collaboration is to compute

semantic measure scores using the collection of ontologies provided by BioPortal – a portal ded-

icated to ontologies related to the biomedical domain which contains more than one hundred

ontologies2. The main aim is to give access via a web service to semantic similarities of pairs of

concepts computed using several semantic measures. The astronomical number of computation

required, i.e., hundreds of billions of concept-to-concept semantic similarity computation, chal-

lenged the SML but the computational part of the objective was reached. This project has also

been supported by two master’s students. The students used the library to compute the scores

of similarity and therefore integrate the results onto SIFR platform.

More information about this project can be found at: http://www.lirmm.fr/sifr/positions/

2014_TER_M1_Jonquet_semsim_web_service.html.

8.4.3 Application to the design of a content-based music recommen-

dation system

The library has also been used in the development of the projection-based approach which

has been proposed for the comparison of instances characterised through a semantic graph –

please refer to the contribution presented in Chapter 6. This framework has been used to

develop a simple recommender system which was implemented using the SML. Despite the fact

that numerous utility functions provided by the SML have been used in this project, the SML

has mainly been used to compute semantic measures involving the comparison of (groups of)

concepts.

A prototype of the recommender system applied to music band recommendation is available at:

http://www.lgi2p.ema.fr/kid/tools/bandrec.

8.4.4 Use in the design of an conceptual information retrieval system

During this thesis, the SML was also integrated into OBIRS – Ontology-Based Information

Retrieval System (version 2) [Sy et al., 2012]. Given a set of concepts as a query and a collection

of instances semantically characterised by groups of concepts (e.g., documents annotated by

MeSH descriptors, genes annotated by GO terms), OBIRS returns the more relevant instances

w.r.t the query. In this context, the capabilities and the performance offered by the SML were

essential to ensure the performance of the information retrieval system. The development of this

new version of OBIRS was performed by an engineer with the assistance of the SML support

team for the technical aspects related to semantic measure computation. An instance of the

new version of OBIRS, which is based on the SML, and which enables PubMed documents

1http://www.lirmm.fr/sifr
2 http://bioportal.bioontology.org

http://www.lirmm.fr/sifr/positions/2014_TER_M1_Jonquet_semsim_web_service.html
http://www.lirmm.fr/sifr/positions/2014_TER_M1_Jonquet_semsim_web_service.html
http://www.lgi2p.ema.fr/kid/tools/bandrec
http://www.lirmm.fr/sifr
http://bioportal.bioontology.org
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related to Cancer to be queried w.r.t their associated MeSH descriptors, is available at: http:

//obirs.itcancer.mines-ales.fr.

8.5 Chapter conclusion

This chapter presented the Semantic Measures Library (SML) and associated toolkit, which were

developed to respond to the need of efficient, extensive and robust open source software tools

dedicated to semantic measures.

The first major benefit of these two tools lies in their generic aspect which enable them to be

used to compute semantic measures over a large diversity of ontologies and in a wide array of

applications. In addition, by conducting reproducible evaluations using a rigorous test protocol,

we demonstrate that the generic aspect of these tools does not hamper their computational

performance as both the SML and the toolkit have proved to outperformed domain-specific tools

in several use cases. This aspect is essential for the adoption of semantic measures and their use

in practical applications; this has for instance been shown through the several applications of the

SML which have already been made (e.g., recommendation and information retrieval systems).

Finally, these tools give access to a large collection of measures and related metrics/algorithms

and thus offer a development platform of choice for the comparison and selection of semantic

measures. Therefore, these contributions, targeting both users and designers of measures, open

interesting perspectives for the large adoption of semantic measures, as well as their large-scale

computation and analysis.

The main challenge for the SML is to federate semantic measure developers and users (i) by

providing extensive updated documentation, (ii) by ensuring constant development/improvement

of the tools, and (iii) by stimulating community support – something we already initiated through

the website and the mailing list. We also think that the evaluation of the several tools we made,

stresses the importance of performing more extensive comparisons of existing solutions. Thus,

we are convinced that discussions and collaborations have to be initiated between developers of

tools related to semantic measures in order to define a standardised and recognised evaluation

campaign. This is necessary to reduce the differences we observed between the results provided

by the different tools as much as possible. This could also be the occasion to formalise ontology

handling to limit the different strategies today adopted by the different implementations. Among

others, another important challenge is to test and design internal persistent and/or distributed

data models of ontologies. They are prerequisites for developing tools which can be used to

compute semantic measures over very large ontologies composed of hundreds of millions of triplets

(e.g., complete DBpedia or Freebase ontologies).

http://obirs.itcancer.mines-ales.fr
http://obirs.itcancer.mines-ales.fr
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This section concludes our work. We summarise the contributions which have been presented in

this manuscript by emphasising their added-value, as well as their limitations. This will help us

in particular to define several perspectives of this work.

[A] A broad overview of the landscape of semantic measures, and an in-depth

analysis of knowledge-based semantic measures. Chapters 2 and 3 are dedicated

to the introduction of the notion of semantic measure. To this end, we have presented a digested

version of the extensive, interdisciplinary and sometimes disrupted literature related to the field.

Several definitions and properties related to semantic measures have been introduced; they can

be used for better characterising semantic measures and more specifically their semantics. As an

example, we used some of these definition and properties to bring to light a classification of the

different types of semantic measures which have been proposed in the literature so far. Next,

we focused more particularly on knowledge-based semantic measures, and to be more precise,

we focused on those which rely on the analysis of network-based ontologies. Many technical

details have been introduced for this type of measures, and a large collection of measures have

been identified, classified and analysed. Although, this work is only partial, and does not cover

important topics such as the selection of semantic measures in detail, we are convinced that we

give practitioners and designers of semantic measures access to a better understanding of the

field as a whole.

An important aspect of this work has been to federate efforts made by several distinct commu-

nities. Focusing on semantic measures, our desire has been to emphasise that domain-specific

contributions generally have an interdisciplinary scope as they can benefit other communities

facing different problems. This is, for instance, the case of cognitive models which were initially

proposed by cognitive scientists to study human appreciation of similarity. As we have seen,

they are now used by designers of semantic measures to define semantic similarity models. By

extension, they will therefore be used to define approaches in the aim of analysing a broad variety

of entities, e.g., conceptually annotated genes or diseases.

The detailed vision of the field provided by our preliminary analysis helped us to derive several

perspectives and goals related to the study of semantic measures. Therefore, Section 3.7 was

dedicated to underlining some of the teachings of this work. As a result, six goals have been

identified in particular:

1. To better characterise semantic measures and their semantics. It is clear that measures

have to be analysed through specific mathematical properties, and that the semantics

associated to their scores must be clearly understood, i.e., end-users must understand the

implications associated to a score of semantic similarity/relatedness. As we have seen, this

impacts the benefits of using a specific approach w.r.t a particular usage context.
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2. To provide tools for the study of semantic measures. Both theoretical and practical tools

must be proposed in order to gain new insight of semantic measures. This is necessary in

order to (formally) characterise the large diversity of measures defined in the literature.

To this end, we underlined that theoretical frameworks must be used in order to both

classify measures and highlight relationships between existing proposals. We have also

stressed that more benchmarks and evaluation protocols used for analysing and comparing

semantic measures have to be developed. In addition, we highlighted the fact that the

development of software solutions which enable a larger adoption and analysis of measures

must be encouraged. In this regard, we underline the potential limitations of restricted and

domain-specific implementations, to further highlight the benefits of developing generic

open source solutions dedicated to semantic measures.

3. To standardise ontology handling. We also discuss some of the practical limitations in-

duced by the lack of standardisation in the way ontologies are processed prior to semantic

measure computation. We stress in particular the fact that a too large degree of freedom

is given to developers of measures. It often creates a gap between theoretical definitions

and practical implementations of measures. This has been exemplified by the compari-

son of the results produced by the SML to those produced by other tools. Correlations

have proven to be particularly low, despite the deterministic nature of the measure in

use. Excluding implementation errors, this worrying result is due to the fact that specific

treatments are not clearly standardised and defined, which forces developers to select par-

ticular strategies, e.g., in the way ontologies are reduced prior to being used as semantic

graphs: are the taxonomic redundancies removed (even if they do not directly impact the

coherence of the measure)?; are redundant annotations considered for the computation

of extrinsic information content?; If you define that propB subPropertyOf propA, how

many relationships do you consider in the graph defined by the triplet X propB Y? There

are numerous examples of interpretation in the way ontologies have to be handled. Never-

theless, they have to be clearly defined and if possible standardised, to ensure that scores of

semantic measures are not dependant on the implementation used for their computation.

4. To promote interdisciplinary studies. As we have seen, numerous communities are involved

in the study of semantic measures. We underline that narrower bridges must be created

between them. The development of interdisciplinary theoretical and software tools is a

step in this direction. In addition, we also mention some of the communities that are

currently not involved in the study of semantic measures but whom it could be of interest

to work with in the future.

5. To study algorithmic complexity of measures. We underline that only few studies focus on

the algorithmic complexity of semantic measures. This is a clear limitation since it clearly

impacts the practical use of semantic measures. It is therefore of major importance in

order to help end-users of semantic measures which feel the need to select a semantic

measures.

6. To support context-specific selection of semantic measures. It is, at present, difficult to

select a semantic measure w.r.t a specific usage context. Thus, most users select measures
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according to their popularity and availability in tools, generally without considering the

properties which characterise the measure and the semantics associated to the scores it

produces. Therefore, more studies are needed on this topic, in particular to better define

what a context of use is and which aspects of measures are important w.r.t them. Moreover,

empirical comparative analyses of a representative sample of the diversity of available

measures have to be performed in different domains. These analyses are essential to

identify the potential existence of classes of measures which tend to perform better than

others, and if these results can be generalised.

In the scope of Goal 2, we chose to focus our efforts in this thesis on the development of theoretical

and practical tools for the analysis of knowledge-based semantic measures. Our choice was

incited by the growing adoption of ontologies and associated semantic measures, and by the large

impact and perspectives which can potentially arise from the resolution of this challenge. Indeed,

focusing on knowledge-based semantic measures, theoretical and practical tools are central to

their analysis. They can have a clear impact on each of the goals outlined above. In this context

the two main contributions of our work are the following.

[B] A unifying framework for knowledge-based semantic similarity measures.

As we demonstrated in Chapter 4, most of these measures can be broken down through para-

metric functions which rely on a limited set of abstract elements. Thus, we highlight the fact

that most measures are only specific expressions of generic abstract measures. This finding,

which stems from the detailed analysis of prior works on relationships between measures, pro-

vides a new insight into the diversity of measure proposals. It opens interesting perspectives for

characterising central elements in assessing semantic similarity and more generally for designing

semantic measures.

Some examples of the practical usage of this framework were presented in Chapter 4 and 5.

We showed, in particular, how it can be used to study the accuracy of measures, to support

context-specific design of measures through parametric optimisations, and more generally, to

identify potential rooms for improvement of these measures. We also proposed a new angle of

analysis for semantic measures through the study of their robustness, i.e., their degree of resilience

w.r.t the uncertainty which intrinsically hampers benchmarks used for evaluating their accuracy.

Through these studies, we underlined how the proposed framework appears to be particularly

adapted for fine-grained analyses of semantic measures. We then drew special attention to the

fact that the framework can be used to analyse properties of measures and to classify them

according to these properties. This was used in Chapter 7 to characterise some properties of

MSCA-based measures, i.e., measures which compare pairs of concepts by mainly exploiting their

Most Specific Common Ancestor. Finally, based on these properties, we proposed an optimised

algorithm to compute the semantic similarity of all pairs of concepts defined in a taxonomy.

Despite the fact that the proposed framework has proven to be particularly useful for analysing

semantic measures, as underlined by the multiple examples provided in this manuscript, some

potential hesitations deserve to be discussed. The main limitation is surely due to the main

strength of the framework: its degree of abstraction. Most designers of semantic measures are

governed by practical applications in specific usage contexts, which explains the large diversity of
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semantic measures defined by numerous communities. Therefore, it is clear that it will be difficult

to federate future contributions related to the field through a common formalism introducing

a layer of abstraction. Indeed, such an abstraction can limit the expression of domain-specific

measures in a way that can be understood by members of communities who are most often non-

experts in the design of semantic measures. Nevertheless, we are convinced that the approach

adopted in this thesis proposes a solution to regulate and better understand the incessant flow

of new measures published in the communities directly or indirectly related to semantic mea-

sures. This is particularly important given that a growing number of specialised communities

are adopting semantic measures to support data analysis or algorithm designs.

Therefore, to ensure that the efforts made in this thesis are not futile, we strongly believe that

further studies of the theoretical framework must be made, in particular to further exemplify

its added value for our communities. This can be made by doing extensive studies of measures

in particular usage contexts, e.g. by analysing the impact of selecting specific measures core

elements on the performance of measures. In addition, more efforts have to be made to encompass

measures which are now difficult to study through the insight provided by the framework, e.g.,

some graph-based measures which rely on random-walk approaches. To this end, adaptations

and extensions of the framework may be required. Nevertheless, as underlined by two recent

publications related to the unification of knowledge-based semantic similarity measures [Cross

et al., 2013; Mazandu and Mulder, 2013] (published independently and after the design of our

proposal), we are convinced that such an initiative for unifying semantic measures had to be

initiated. Thus, with sincere humility, we are pleased to lay one of the stones composing the

base which will support this enterprise.

[C] The Semantic Measures Library: fast, open-source and generic software

solutions dedicated to semantic measures. Throughout this manuscript we have

stressed the importance of empirical evaluations for assessing the accuracy of semantic mea-

sures. We have underlined that most software solutions dedicated to semantic measures were

dedicated to domain- specific ontologies. Thus, despite some initiatives a few years ago propos-

ing software solutions which were independent of a specific usage context (i.e., SimPack), no

extensive software solutions dedicated to large-scale computation of knowledge-based semantic

measures were available at the beginning of our study. Therefore, as highlighted in Chapter 8, we

invested a lot of effort in studying the feasibility of developing such a solution, and subsequently

designing, developing, promoting, supporting and maintaining the Semantic Measure Library

(SML).

The SML provides fast and robust open software tools for computing and analysing knowledge-

based semantic measures. It is compatible with numerous ontologies, and with standardised

ontology languages (RDF[S], OWL). By providing a source code library which implements nu-

merous semantic measures and associated algorithms, it can be used for designing and studying

semantic measures in a large variety of usage contexts. Its suitability for these tasks has been

shown through multiple experiments presented in this manuscript. We also mentioned that the

SML has already been used in several projects, e.g., OBIRS, an Ontology-based Information

Retrieval System, the semantic-based recommender system presented in Chapter 6, or even for
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the large-scale computation of semantic similarities between concepts related to BioPortal on-

tologies. This shows the broad-spectrum of applications of the SML and that it can already

be used in demanding applications. In addition, and this is an important aspect, efforts have

been made to give non-developers access to some of the functionalities provided by the library,

in particular to compute scores of semantic measures.

Though it is still early days for the SML, the increasingly high numbers of solicitations it has

generated over the last month underlines the need for such a contribution. Similarly to the unify-

ing framework, efforts have to be made to improve user experience, as well as the functionalities

and computational performance of the SML. To this end, we proposed to decline domain-specific

tools in order to facilitate usage of the command-line interface. Documentation must also be

improved to clearly explain the capabilities and limits of these tools; this is a continuous work.

In Chapter 2, we showed also how, associated to the proposed theoretical framework, the li-

brary can be used for the detailed analysis of semantic measures, and to better understand the

importance of each component of semantic measures w.r.t a specific usage context. Thus, once

again, we are pleased to provide tools for studying and analysing semantic measures: the main

aim of this thesis. Such tools are prerequisite to better understanding the landscape of measures

proposed in the literature, and to tackling the complex subject of semantic measure selection.

The important challenge now is to federate users and developers of the library in order to ensure

a long life for both the library and associated software solutions. Initiatives are being taken to

this end, an example being an introductive session to the SML in a national workshop which has

already been planned to ensure that this goal will be reached1 – similar events will be proposed

in international conferences.

[D] Algorithmic contributions related to semantic measures. Concurrently to

the main contributions which have been summarised so far, we also studied other problems

related to semantic measures.

In Chapter 6, we presented a new approach for characterising and comparing instances defined

in a semantic graph, e.g., an RDF graph. This work extends existing proposals by defining

the notion of projection of an instance into a semantic graph. Based on this notion, we then

proposed a new canonical form which can be used to better characterise instances, in particular

by taking into account some of their properties which are not expressed in the ontology per se

(remember the example of the body mass index). In addition, we showed how this approach can

be used for comparing instances by explaining the meaning of results, i.e., by ensuring that the

semantics of the scores of relatedness will be traceable. Finally, using a prototype of a music

band recommender, we underlined the practical feasibility of the approach, and we showed how

it can be used for designing a semi-supervised recommender system which takes advantage of

Open Linked Data. More work has to be done in this field, in particular to better characterise

the performance of this approach w.r.t related works and other datasets. We also plan to study

how machine learning techniques could be used to learn which relevant projections and weights

should be considered in specific usage contexts. This opens the door to personalised information

125èmes Journées Francophones d’Ingénierie des Connaissances (IC 2014), Monday 12 May.
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retrieval and knowledge discovery based on ontology analysis, two fields of study in which our

team plans to invest time and energy.

Complementary to the contributions presented so far, we also studied some algorithmic aspects

of semantic measures, three of which have been mentioned in this manuscript (Chapter 7). We

therefore defined algorithms to: (i) compute the semantic similarity of all pairs of concepts

defined in a taxonomy by using a specific type of semantic measures, and (ii) extend informa-

tion theoretical measures for comparing concepts defined in different ontologies, without being

restricted to the mappings defined between ontologies.

All PhD theses come to an end. This one will conclude with a quote from Isaac Asimov:

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not

’Eureka!’ but ’That’s funny. . . ”

Between a perpetual fight against an overwhelming literature, and difficulties in convincing others

of the relevance of measure unification, this thesis wasn’t funny every day, but we did have our

share, thanks to the devoted team who contributed to this work. I hope our contributions will

serve our communities and I wish the readers a lot of fun in their career.
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A
From ontologies to semantic graphs

A.1 Ontologies: a brief introduction

This section briefly introduces the reader to the field of knowledge representation to define the

notion of ontology considered in this manuscript. We use the general term ontology to refer to

any computational artefact used to express knowledge in a machine understandable form [Davis

et al., 1993]. Indeed, as stressed in [Guarino et al., 2009], “For AI Systems, what ’exists’ is

that which can be represented”. It is therefore commonly stressed that ontologies should be

considered as surrogates, enabling things to be manipulated by computers, and, by extension,

give the opportunity to study a domain without acting on its constitutive elements. Ontologies

express how a domain must be understood and what types of logical reasoning can be applied

to it. This is done by defining (i) its key elements, (ii) the formal ontological commitments on

which it relies, and (iii) the interpretations which can be made on it. The different goals which

can motivate the development of ontologies are well summarised in the literature, e.g., [Noy

et al., 2001; Uschold and Gruninger, 1996]:

• To describe non-ambiguous information and knowledge which can be understood and reused

among people or software agents. Non-ambiguous characterisation of things is central for

human and human-machine communication and therefore interaction. This is also essen-

tial for existing knowledge to be reused and for systems using ontologies to be interlinked

and aggregated. Simple examples are classifications; for instance, the International Clas-

sification of Diseases1 (ICD) encodes diseases and symptoms which can be used to track

diagnostics in a formal way.

• To make domain assumptions explicit and to separate domain knowledge from the opera-

tional knowledge. To be able to provide explicit expressions of the assumptions governing

a domain is central to ensure that the notions which are manipulated represent a consen-

sus among domain experts. Indeed, non-explicit expressions of domain assumptions, such

as source code, highly reduce the amount of people who will be able to understand the

representation of the domain.

1http://www.who.int/classifications/icd
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• To analyse and automatically take advantage of domain knowledge. The explicit and non-

ambiguous character of ontologies enables domain-knowledge to be studied, shared and

better characterised. It also enables the emphasis on central elements of the domain or

even incoherences regarding its current understanding. Therefore, probably the most im-

portant aspects of ontologies is that they enable computers to process an expression of our

knowledge, automatically check its consistency and reason on it. As we have said, ontolo-

gies are surrogates which enable domains to be manipulated by computers by interacting

in an abstract manner with their main constitutive elements and the rules which define

their interactions.

Note that, despite the fact that ontologies are also essential for people to share knowledge, we

will mainly consider ontologies as a way to convey knowledge to machines. For more information

related to the large field of study of knowledge representation, the reader can refer to some of

the seminal contributions on which this brief introduction is based, e.g., [Baader et al., 2010;

Borst, 1997; Davis et al., 1993; Gruber, 1993; Guarino et al., 2009; Hitzler et al., 2011; Minsky,

1975; Noy et al., 2001; Robinson and Bauer, 2011; Sowa, 1984; Studer et al., 1998]

This section is structured as follows. (1) We first clarify the notions of data, information and

knowledge by presenting their common definitions. (2) We informally discuss the process of

defining forms of knowledge which can be understood by computers and the implications for

computer science. (3) From simple taxonomies to expressive logic-based ontologies, several

types of ontologies are briefly introduced. (4) We discuss the notion of semantics which will be

considered throughout this manuscript. (5) A technical section briefly introducing the reader to

the languages and specifications used to express ontologies is also proposed, and finally, (6) we

introduce reasoning techniques which can be made on ontologies.

A.1.1 From data to knowledge. . . and beyond

We will often refer to the notions of data, information and knowledge. They have been extensively

discussed in the literature and alternative definitions have been proposed. They are generally

structured in a bottom-up fashion; data can be processed to obtain information, which can

be further analysed to derive knowledge, which in turn leads to wisdom. Figure A.1 presents

the relationships between the various notions proposed in [Bellinger et al., 2004]. The figure

represents the different levels of understanding required to derive knowledge and wisdom from

data.

Data: “The quantities, characters, or symbols on which operations are performed by a computer,

which may be stored and transmitted in the form of electrical signals and recorded on magnetic,

optical, or mechanical recording media” [Oxford Dict., 2012].

Data is often considered as raw, signs, stimuli or signals [Bellinger et al., 2004]. It is also

commonly admitted that “data is [. . . ] discrete, atomistic, tiny packets that have no inherent

structure or necessary relationship between them” [Hey, 2004]. They correspond to elementary

facts which can be captured by a device, stored and shared for reuse and analysis. Moreover,
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Figure A.1: Representation of the relationships between Data, Information, Knowl-
edge and Wisdom. Reproduction from [Bellinger et al., 2004].

data are generally considered to be useless without the context in which they have been obtained.

An example of data could be:

...0,1,0,0,1;1,0,1,0,0;2,0,0,1,0...

Information: “What is conveyed or represented by a particular arrangement or sequence of

things” [Oxford Dict., 2012].

By definition, information is something which informs; it is generally defined as “data that has

been given meaning by way of relational connection” [Bellinger et al., 2004]. Information is

therefore obtained by giving meaning to aggregation of data processed in a given context. The

raw data previously presented can, for instance, be processed to obtain the following information:

user id Drug A Drug B Placebo Cured

0 yes no no yes

1 no yes no no

2 no no yes no

Knowledge:“Facts, information, and skills acquired through experience or education; the theo-

retical or practical understanding of a subject” [Oxford Dict., 2012].

Knowledge emerges when patterns are understood from information. Knowledge is therefore any

understanding which has been gained by means of study and analysis of experiment outcomes

represented by information. It generally refers to conclusions which lead to a proper understand-

ing of problems and domains of study. As an example, the previous information can be analysed

to extract a piece of knowledge, for instance, the fact that:

Drug A seems to cure the disease.
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Wisdom: “The quality of having experience, knowledge, and good judgement; the quality of

being wise” [Oxford Dict., 2012].

Wisdom can be associated to the understanding of the principles explaining knowledge and the

use of judgement to discern relevant pieces of knowledge.

Drug A seems to cure the disease by altering vital organs;

it must therefore not be used.

Data and information are easy to store on computer. Numerous mathematical techniques and

theories have been developed to extract knowledge from them, e.g., Information Theory, Data

Mining techniques. Knowledge and wisdom are abstract notions and are therefore more complex

to manipulate through computers. Knowledge is assimilated to facts derived from experiences

and can therefore be conveyed through language. This implies that formal languages which

are sufficiently expressive can be used to express knowledge in a machine understandable form.

Conversely, wisdom refers to the existence of conscience and requires forms of judgement, notions

with which computers are currently unequipped. In this manuscript, we will mainly manipulate

the notions of information and knowledge.

A.1.2 Communicating knowledge to computers

The challenging problem tackled by the field of knowledge representation, i.e., how to formally

express knowledge, has received a lot of attention in AI given that numerous processes require

the modelling of complex domains in order to be performed, e.g., medical diagnosis. Such an

enthusiasm for knowledge modelling is therefore naturally explained by the large perspectives

opened by formal expressions of knowledge in computer science, i.e., to give computers and

algorithms access to our knowledge.

Language is an essential ingredient to communication; it enables the transmission of messages

which carry information in order to reach a specific goal, e.g., to explain, to convince, to give

orders. Nevertheless, not all forms of language have the interesting property of being formal

and unambiguous, i.e., to ensure that messages are conveyed without being distorted during the

communication process. As an example, the complex human language is subject to subjective

interpretation, which explains that communication between humans are sometimes challenging.

It is, for instance, common to think that an agreement has been reached only to subsequently

realise that the result doesn’t conform to your original expectations.

Most human-machine communication protocols are (obviously) not based on ambiguous lan-

guages which are subject to potentially different interpretations. As an example, satellite be-

haviour is defined by on-board computers which control and monitor their speed and altitude in

order to achieve a predefined mission, e.g., to point to a specific position in space. Therefore, ex-

cluding material or software problems, there is no chance that the instructions communicated to

satellites will lead to unpredicted behaviour. Indeed, when software developers write source code

in a specific programming language, the instructions executed by machines are non-ambiguous;
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the machines will therefore execute them according to their exact definitions, which explains

that heretic machine behaviour can only be a direct result of human or material errors.

A cornerstone of human-machine interaction is therefore the ability to communicate in a non-

ambiguous fashion. As an example, to express that Tigers are Animals, we need a vocabulary

to disambiguate what we understand by the strings of characters Tigers, Animals and are. We

also need to clearly define the implications associated to this specific association/ordering of the

three words. Otherwise stated, we need to define the meaning, i.e., the semantics, of the terms,

as well as the meaning of the given relationship established between them. As we will see in the

following overview of ontologies, formal expressive ontologies require the definition of complete

logic: vocabulary, syntax, semantics, as well as the interpretation of the syntax (the rules of

inferences).

A.1.3 An overview of the diversity of ontologies

From simple controlled vocabularies and taxonomies to complex ontologies based on descrip-

tion logics, a large range of ontologies of increasing expressiveness and complexity have been

introduced in the literature. See Figure A.2 for a graphical representation. Two broad and non-

distinct categories are generally distinguished depending on the level of formalism used to model

the knowledge: network-based (or structure-based) and logic-based ontologies, e.g., [Baader et al.,

2010]. These ontologies can also be distinguished w.r.t their degree of expressivity, interoper-

ability and standardisation [Studer et al., 1998].

Figure A.2: Overview of the diversity of ontologies from non-formal network-based
(i.e., structure-based) ontologies to logic-based ontologies – adapted from [Jimeno-Yepes

et al., 2009].



Appendix A. From ontologies to semantic graphs 294

A.1.3.1 Network-based ontologies

Network-based ontologies do not rely on logic-based formalisms and are commonly used in natural

language processing and computational linguistics. In their simplest forms, they are generally

used to characterise domain knowledge through semantic networks: graphs composed of nodes

and oriented edges. Nodes refer to terms, concepts or instances, and edges, which are associated

to a specific label, define relationships between pairs of nodes.

Among the first contributions related to network-based ontologies, we can cite the work of

[Collins and Quillian, 1969] in which semantic networks are built by studying retrieval time from

semantic memory. The relationships between elements were defined as a function of the response

time people took to correctly answer questions involving two elements, e.g., Is a Canary a Bird?

– Is a Canary an Animal?. Approaches used to define such ontologies are generally derived from

cognition; they often rely on non-formal textual descriptions and simply correspond to structured

and controlled vocabularies, e.g., thesaurus, non-formal taxonomies. In these ontologies, terms

with similar meaning or groups of similar objects are characterised by a unique preferred name;

they are next structured through linguistic relationships without formally defining the interpre-

tations associated to a specific relationship, i.e., the semantics of the relationship is implicitly

defined by its name or a textual description.

As an example, WordNet models the lexical knowledge of native English speakers in a lexical

database [Fellbaum, 2010; Miller, 1998]. It is defined through a semantic network composed of

sets of synonyms (called synsets) which are linked by semantic and lexical relationships, e.g.,

hyperonymy, hyponymy, meronymy. Synsets are associated to a unique preferred name and the

semantics of both synsets and semantic relationships are defined by a short description (i.e.,

gloss). Figure A.3 presents a graphical representation of a simple semantic network similar to

Wordnet.

Figure A.3: Example of a semantic network.
source: http://docs.yworks.com/yfilesdotnet/developers-guide/figures/

semantic.png

http://docs.yworks.com/yfilesdotnet/developers-guide/figures/semantic.png
http://docs.yworks.com/yfilesdotnet/developers-guide/figures/semantic.png
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Another example of a non-formal ontology is the MeSH (Medical Subject Header) [Rogers,

1963]1, a medical thesaurus which provides a structured and controlled vocabulary composed of

hierarchies of biological and medical terms. Figure A.4 presents a graphical representation of

the MeSH.

Figure A.4: Partial representation of the Medical Subject Header thesaurus (MeSH).
The structuring of the vocabulary is given by means of several trees (nodes refer to
concepts). C16 refers to the concept “congenital, hereditary, and neonatal diseases and
abnormalities”, C16.131 to “abnormalities”, C16.131.077 to “abnormalities, multi-

ple”, and C16.131.077.065 refers to a particular genetic disorder

More complex semantic networks can also be defined by enabling nodes to refer to predicates

(types of relationships) or complete statements, e.g. to define properties associated to a specific

statement.

Network-based ontologies have encountered a large success and are widely used to model ex-

tensive domain knowledge. This can be partially explained by the fact that they provide an

intuitive and graphical way to represent and structure knowledge. Nevertheless, network-based

ontologies were originally structured by poorly characterised semantic relationships which are

not understood, per se, by computers. For instance, for a computer, taxonomies defined in a non-

formal language are only graphs with the specific property of being acyclic. In order to utilise

them for inferences, developers have to programmatically define the expected behaviour induced

by taxonomic relationships, i.e., considering that the statement Human subClassOf Mammal has

been specified in a taxonomy, the program will consider that all instances of the class Human are

also instances of the class Mammal. In other words, the semantics of the predicate subClassOf,

in this case its implications, are hard-coded in a program. Therefore, if a knowledge designer

express another taxonomy using subClass-Of, isA or aKindOf as the taxonomic relationship

(instead of subClassOf), the program will no longer work as expected. In other cases, ambiguity

will be explained by the fact that predicates with the same label will not have the same intended

semantics across ontologies (e.g., several semantics can be associated to the predicate partOf).

Therefore, one of the limits of early network-based ontologies is that their semantics were often

defined at implementation level. They only defined approaches to express knowledge by means

1 http://www.ncbi.nlm.nih.gov/mesh

http://www.ncbi.nlm.nih.gov/mesh
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of a simple graph structure without defining common vocabularies which can be unambiguously

reused in ontologies. Another important aspect is that the semantics of the element defined is

informally defined through descriptions.

Several limitations are associated to the ambiguous expression of semantics. The first is obvi-

ously the fact that heretic behaviour can be observed using ontologies associated to semantic

interpretations which are software dependant. This is not compatible with the desire to define an

explicit specification of a domain. The second drawback is the lack of interoperability between

this type of ontologies. Indeed, since the elements used to express knowledge are not formally

expressed, it is difficult to reuse ontologies without collaborating with knowledge modellers, and

without carefully analysing ontologies.

To overcome the limitations of early network-based ontologies relying on weak semantics, lan-

guages and vocabularies have been proposed to add formal semantics to graph structures. As

an example, the Resource Description Framework (RDF) provides a graph data model and a

vocabulary which enable the unambiguous characterisation of resources through graphs. In ad-

dition, the semantics of RDF graphs can be enriched using RDF-Schema (RDFS) which provides

a vocabulary to define and structure concepts. RDFS also defines the interpretations which can

be made in order to reason over the vocabulary. RDF(S) can therefore be used to formally

express simple forms of domain specific knowledge. As an example, defining a taxonomy of con-

cepts using RDFS, the semantics of the taxonomic relationship used to order classes, denoted

rdfs:subClassOf, is formally defined by standardised entailment rules [W3C, 2004]. These

rules define how to interpret RDFS vocabulary and therefore standardise expected behaviour at

implementation level, e.g., RDFS rule number 11 states that any relationship associated to the

predicate rdfs:subClassOf is transitive, which means that:

(Human rdfs:subClassOf Mammal) ∧ (Mammal rdfs:subClassOf Animal)

⇒ Human rdfs:subClassOf Animal

In this case, the meaning carried by the relationship rdfs:subClassOf is not ambiguous and, by

defining statements using this predicate, one can easily express a formal taxonomy of concepts.

Several extensions based on RDF have been proposed to express specific types of knowledge. As

an example, SKOS (Simple Knowledge Organization System) can be used to express thesauri,

taxonomies and classifications. We will later introduce RDF and RDFS in more detail; what is

important to understand for now is that by defining a graph data model, vocabularies, and as-

sociated entailment regimes, solutions have been proposed to express non-ambiguous and formal

knowledge expressions through graph structures.

Other network-based ontologies have been derived from semantic networks. For instance, it has

been proposed to represent knowledge through interlinked frames which define facts about par-

ticular objects [Minsky, 1975]. Conceptual graphs also correspond to another type of ontologies

based on a graph formalism [Sowa, 1984], they are logically founded, framed in first-order logic,

and still extensively studied [Chein and Mugnier, 2009]. These ontologies have not been covered

in this thesis. In accordance with [Baader et al., 2010], we therefore consider that taxonomies,
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thesaurus, semantic networks, frames and conceptual graphs can be seen as network-based on-

tologies.

Formal graph expressions of knowledge, such as RDF(S) graphs, are based on ontology languages

which only provide a limited set of semantic constructs and therefore do not allow the definition of

certain complex forms of knowledge. As an example, these ontology languages cannot be used to

express that the concept Father refers to any Person who is not a Women and who hasForChild

at least one Person. Neither can they be used to define that a predicate implies symmetry, e.g.,

that the statement Mike isMarriedTo Lora implies Lora isMarriedTo Mike, or that classes

are disjoint together, e.g., that you cannot find a person which is member of both classes Rich and

Poor1. To this end, more refined ontology languages have therefore been proposed to formally

express knowledge through logic-based languages. These ontology languages rely on variants of

first-order predicate calculus and are generally defined by a description logic [Baader et al., 2010];

they are used to express ontologies which cannot be expressed by simple graph structures2.

A.1.3.2 Logic-based ontologies

As of yet, no distinction has been made between the different types of knowledge which can be

represented in an ontology. Nevertheless, in knowledge modelling, a rather conceptual distinction

is considered most of the time [De Giacomo and Lenzerini, 1996]:

• The TBox (Terminological Box), i.e., the general, abstract and generally static knowledge

relative to a domain. This encompasses the statements relative to concepts, predicates,

and their respective taxonomies, i.e., Mammal subClassOf Animal. The analogy with

schema data encountered in the database world is often encountered.

• The ABox (Assertional Box), i.e., knowledge relative to instances which is generally more

specific and more tied to a specific context of used, e.g., bob isA Man. Instance definitions

are expected to be compliant with the TBox. As an example, if it is defined that Man and

Women are two disjoint concepts, the conceptualisation is violated by the definition of both

statements bob isA Man and bob isA Women.

Therefore an ontology can also be seen as a pair composed of a TBox and an ABox. In some

cases, the ontology only encompasses the TBox and the association of both is denoted as a

knowledge base.

Logic-based ontologies have been introduced to overcome the limitations of non-formal network-

based ontologies and more generally to enhance the expressivity of network-based ontologies.

Note that conceptually speaking they are not distinct from network-based ontologies as they can

be used to express formal network-based ontologies. Logic-based ontologies are mainly based

on Description Logics (DLs), a family of languages which can be used to formulate expressive

1E.g., only considering the amount of money it has.
2For the sake of clarity, it is nevertheless important to stress that complex ontologies can be expressed

using graphs such as RDF graphs, but that the semantics of these graphs is no longer only carried by
their structures. In other words, the graph here is used as a way to serialise a complex ontology which
cannot be represented as a graph per se.
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ontologies (TBox and ABox), through the definition of complex concepts and predicates and

instances1.

Most DLs can be seen as decidable and expressive fragments of first order logic, they enable

definitions of concepts, predicates, instances and axioms based on a large variety of logical

constructs: Boolean constructs, e.g., conjunction (u), disjunction (t), negation (¬), as well as

existential or value restrictions [Baader et al., 2010]. Hereafter, we only briefly present some of

the statements which can be expressed based on a selection of logical constructs:

• Man u Woman ≡ ⊥, the concepts Man and Women are disjoint, that is to say, there is no

Man which are also Women, i.e., by considering I(Man) the instances of the concept Man we

obtain I(Man) ∩ I(Woman) = ∅.

• Man ≡ Person u Male, the concept Man refers to Person which are also Male.

• Man ≡ Person u ¬Woman, Man refers to Person which are not Women.

• Father ≡ Manu ≥ 1.hasForChild.Person, Father refers to any Person which is not a

Women and which hasForChild at least one Person.

• Man v Person, the concept Person subsumes the concept Man which implies I(Man) ⊆
I(Person).

These constructs can also be used to express statements which will constrain the possible in-

terpretation of concepts or predicates. Therefore, they have been used to define numerous DL

syntaxes with various degrees of expressivity and complexity. The presentation of the various

logical constructors proposed in DLs, and the DLs syntaxes which can be formed from them, is

out of the scope of this manuscript.

A.1.4 Definition of ontologies: RDF(S) and OWL

We briefly present some of the standard languages which can be used to semantically describe

resources and to define ontologies. These standards have been proposed by the W3C and derive

from other works which will not be discussed hereafter, e.g., DAML (+) OIL.

A.1.4.1 RDF – Describing resources through graphs

The Resource Description Framework (RDF) was initially proposed by the W3C as a graph-

based data model to expose and exchange information in the Web and more particularly to

express metadata [W3C, 2004]. RDF is, however, not restricted to use on the Web and several

ontology languages are based on it. Being an abstract data model, RDF can be expressed and

exchanged using several notations and serialisation formats (e.g., XML, Turtle).

1Note that predicates are called roles and instances are denoted individuals.
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Similarly to other data models such as the entity-relationship model, RDF provides a way to

describe resources through intuitive subject predicate object (spo) statements; we already

used them to introduce ontologies, e.g., Human rdfs:subClassOf Animal. A set of statements

forms an RDF graph which is a labelled directed graph.

An important aspect of RDF is that resources are identified by Uniform Resource Identifiers

(URIs)1. In short, URIs generalise URLs by providing a way to unambiguously denote resources.

As an example, the unique URI http://purl.uniprot.org/taxonomy/9685 will replace the

different lexical identifiers which may be used to refer to the concept Cat (e.g., Cat, Chat,

Felis catus). A short prefix can be defined to shorten URIs, e.g., defining tax as a prefix

for http://purl.uniprot.org/taxonomy/, the URI associated to the concept Cat can also be

written as tax:9695. In this manuscript, the prefixes will be removed as much as possible in

order to facilitate reading.

Using URIs, the sentence “Bob is a cat” can be expressed by the RDF statement bob rdf:type

tax:9695 (Cat). The meaning associated to URIs is therefore defined through spo statements.

In this case, the URI rdf:type is used to denote the membership of an instance to a class2 – as

formally defined by the semantics of RDF(S).

Any spo statement must respect the following restrictions:

• The subject can be a URI or a blank node. A blank node is a reference to an anonymous

resource: it unambiguously refers to something for which we don’t want to define a specific

URI.

• The predicate is always a URI.

• The object can be a URI, a blank node or a string literal. Literals can be used to repre-

sent typed data values by specifying a datatype, e.g., "2013-09-09 "∧∧xsd:date specifies

that the literal "2013-09-09 " must be understood as a date, i.e. according to the defini-

tion of a date unambiguously defined by the URI xsd:date (http://www.w3.org/2001/

XMLSchema#date).

By providing a graph (meta)data model and a built-in vocabulary, RDF can be used to charac-

terise resources through simple spo statements. In addition, reification techniques can be used

to define properties about a statement. RDF provides the vocabulary dedicated to this purpose.

As an example, to model the knowledge associated to the statement that “Luc Bar sent an email

to his friend Marc Foo the 2013-09-09 ”, we can define the RDF graph presented in Figure A.5.

Among the various alternatives which have been proposed to query RDF, SPARQL3 is the W3C

recommendation defined to manipulate and query RDF [W3C, 2013b].

RDF also provides a framework for the definition of ontology languages, we further presents two

of them: RDF Schema (RDFS) and the Web Ontology Language (OWL).

1In accordance with the literature we will mainly refer to the term URI in this manuscript despite
the fact that Internationalized Resource Identifiers (IRIs) would be more appropriate.

2 http://www.w3.org/1999/02/22-rdf-syntax-ns
3Recursive acronym, SPARQL Protocol and RDF Query Language – current version 1.1.

http://purl.uniprot.org/taxonomy/9685
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/1999/02/22-rdf-syntax-ns
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Figure A.5: Example of a reification in an RDF graph. The graph models the
statement that “Luc Bar sent an email to his friend Marc Foo the 2013-09-09 ”.

A.1.4.2 RDFS – Add formal semantics to RDF

We have seen that RDF defines a vocabulary to express statement with specific meaning, e.g.,

rdf:type, rdf:statement. RDF Schema (RDFS) provides a vocabulary to extend the semantics

of RDF graphs [W3C, 2004], and defines how this vocabulary must be interpreted for reasoning.

It can be used to define simple ontologies by means of taxonomies of concepts and predicates,

as well as predicate restrictions, i.e., the domain and the co-domain (range) which must be

associated to a specific predicate. The vocabulary and semantics provided by RDFS can be used

to define simple terminological knowledge of ontologies.

RDFS is associated to an entailment regime which specifies the semantics of its constructs. This

semantics is defined through deductive rules, e.g., the implications of the taxonomic relationship.

Let us consider the semantics carried by predicate restrictions: using RDFS, it is possible to

define the type of instances which are involved in a specific statement. For this, the domain

and the range of a specific predicate can be specified. As an example, it can be defined that

the predicate hasFather has Person for domain and Man for range. In other words, this means

that only Person have fathers and that fathers can only be Man, i.e., members of the class Man.

Therefore, defining that jean hasFather marc, we can infer that jean is a Person and that

marc is a Man. In addition, by defining that Man is a subclass of Person and that hasFather is a

subproperty of hasParent, we can also infer that marc is a Person and that the statement jean

hasParent marc holds. A graphical representation of this example is presented in Figure A.6,

red dotted relationships correspond to some of the spo statements which can be inferred from

the RDF graph defined by bold relationships considering RDFS semantics.

Notice that RDFS defines the semantics of RDF graphs by constraining the interpretations

which can be made from them, i.e., by defining how the vocabulary has to be understood. It

is, however, important to understand that in most cases RDFS cannot be used to evaluate the

validity of a specific statement. Indeed, considering the statements bobJunior rdf:type Cat

and bobJunior hasFather bob, considering the domain associated to the predicate hasFather

(i.e., Person), a reasoner will infer bobJunior rdf:type Person, even if we consider that an

instance cannot be both a member of the classes Cat and Person. Indeed, using RDFS, it is
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Figure A.6: RDF graph in which the semantics defined by RDFS is considered for
statement inference. Red dotted relationships correspond to some of the statements

which can be inferred from the rest of the graph.

impossible to express that an instance cannot be a member of two classes, i.e., that two classes

are disjoint together. Thus, the reduced vocabulary and semantics (entailment regime) provided

by RDFS can be limiting to model certain domains. More expressive languages, also based on

RDF, have therefore been proposed.

A.1.4.3 OWL – Web Ontology Language

OWL (now version 21) is the Web Ontology Language proposed as a W3C recommendation for

the definition of rich ontologies based on Description Logic (DL)2 [W3C, 2013a]. OWL is a

family of languages which can be used to define ontologies with various degree of expressivity.

Ordered by increasing degree of expressiveness, the sublanguages OWL Lite, OWL DL and OWL

Full have been distinguished3. OWL DL is the most commonly used as it ensures completeness,

decidability, and also provides an interesting threshold between expressivity and reasoning effi-

ciency [Nardi and Brachman, 2003]. Indeed, it is worth noting that expressivity has a price as

it negatively impacts efficiency of reasoning procedures in term of computational complexity.

OWL provides a vocabulary and model theory to define expressive ontologies which cannot be

defined using RDF(S). Among the various capabilities offered by the OWL vocabulary, it is

possible to define extra relationships between concepts (e.g., disjointness), to restrict predicates

using cardinality (e.g., to express statement such as people have exactly one brain), to define

properties of predicates (e.g., symmetry) and between predicates (e.g., inverse), etc. We will not

cover OWL in detail in this thesis.

1As with RDF, no versioning are mentioned using acronyms.
2OWL is compatible with the description logic SROIQ.
3New profiles have been proposed in OWL 2.
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A.2 Building a semantic graph from an ontology

In this manuscript, since most knowledge-based semantic measures consider ontologies as network-

based structures, we will mainly manipulate ontologies through their representation into seman-

tic graphs. Nevertheless, even if most ontologies can be expressed, stored and exchanged using

graph-based formalisms such as RDF, it doesn’t mean that they can be processed as graph in a

straightforward manner. Indeed, as an example, since graph syntax based on triplets are limiting

for expressing certain facts (e.g., restrictions), many OWL constructs are encoded into a set of

triplets. Therefore, otherwise stated, the semantics of the graph is not carried by its structure.

Therefore, for manipulating expressive ontologies as semantic graphs, specific transformations

and sometimes reductions have to be performed, e.g., for materialising knowledge implicitly

defined in ontologies into their corresponding semantic graphs. As an example, if a specific

domain C is associated to a predicate p, any triplet of the form u p v means that u is a C.

The membership of u into the class C (i.e. relationship u isA C), is implicitly defined into the

ontology. However, if we consider this ontology as a semantic graph without pre-processing, this

knowledge cannot be inferred by means of traversal, i.e., no semantically coherent traversal links

u to the class C. Therefore, in order to be processed as a semantic graph, a specific relationship

linking u to d must therefore be explicitly defined.

Due to the complexity and vast extend of this topic, we will not propose a systematic way

to convert any ontologies into a semantic graph. Nevertheless, this appendix discusses specific

aspects of this issue and defines how expressive ontologies can be reduced into a semantic graph

in order to be processed by semantic measures. In particular, we present the main steps which

have to be considered to process an ontology as a semantic graph.

A general methodology can be defined to model the main steps which can be applied to obtain

a semantic graph from any ontology. Figure A.7 illustrates this general process.

The main steps are:

1. Knowledge modelling : Steps 1 and 2 represent the modelling of a piece of knowledge to a

machine understandable and computational representation. Step 2 defines the expression

of an ontology in a specific language, e.g., OWL, RDF(S), OBO. The language which is

used conditions the expressivity of the language constructs and therefore the possibility

to represent the knowledge defined in the ontology into a semantic graph.

2. Knowledge inference: Step 3 represents the optional use of a reasoner to infer knowledge

implicitly defined in the ontology. As an example, in an ontology expressed in RDF(S),

this step may correspond to the entailment of the RDF graph according to the semantics

defined by RDFS, i.e., the use of a reasoner to infer triplets according to RDFS entailment

rules. Reasoners may also be used to build the taxonomy of concepts from complex logic-

based ontologies.

3. Mapping to a graph representation: Step 4 is of major importance. It corresponds to

the mapping of the ontology to a graph representation which can be processed by most
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Figure A.7: Main steps which can be applied for building a semantic graph from any
ontology

semantic measures. In some cases, this step is implicit since the ontology is already

expressed through a network-based structure, e.g., graphs corresponding to taxonomies,

WordNet lexical database. Depending on the language used to express the ontology, this

phase may imply a loss of knowledge and must therefore be carefully considered. It is

therefore important to understand that some ontology defined using expressive ontology

languages, such as some logic-based ontology language, may only partially be modelled in

a graph structure as expected by most semantic measures.

4. Graph reduction / cleaning : Step 5 corresponds to the reduction of the semantic graph in

order to focus on specific knowledge. As an example, in some cases, only the taxonomy

of concepts will be considered. In other cases, this is the semantic graph induced by both

concepts and instances which will be considered. After the reduction a cleaning phase may

also be required, it corresponds of the removal of some relationships or concepts defined

in the graph. It may be required for ensuring the coherency of semantic measures.

We further discuss the notion of graph reduction and graph cleaning.

Formally, we denote G(O), shorten G if there is no ambiguity, the reduction of the ontology O to

a semantic graph G. In addition, we denote GR′(O), also shorten GR′ if there is no ambiguity,

the reduction of O as a semantic graph only considering the relationships having as predicate

r ∈ R′ ⊆ R. A common reduction of an ontology as a graph is GsubClassOf, shortened by GT

and named the taxonomic reduction (to be more precise, this is the taxonomic reduction of
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the ontology which is made only considering the concepts defined in O). In other words, GT

corresponds to the taxonomy �C represented as a graph, and therefore only contains concepts,

i.e., the vertices of the graph only refer to concepts. This reduction is widely used for computing

the semantic similarity between concepts.

Graph reductions can naturally be more complex. The graphGRx(O), withRx = {subClassOf,isA},
refers to the reduction which is composed of the relationships having for predicate subClassOf

or isA. Conversely to GT , the vertices of this graph refer to both instances and concepts. We

denote such a graph GTI (T stands for Taxonomic and I for isA relationships).

Studies relying on semantic graphs can be conducted taking the full semantic graph into account

or focusing on a particular subgraph. Depending on the amount of information considered, some

properties of the graph may change (e.g., acyclicity), along with the strategies and algorithmic

treatments used for their processing. Since most semantic measures require the graph to fulfil

specific properties, we briefly discuss the link between the properties of the graph structure and

semantic measures.

Considering all types of semantic relationships, a semantic graph generally forms a connected

directed graph which can contain cycles, i.e. path from a node to itself. The taxonomic reduction

(GT ), also leads to a graph given that a concept can inherit from multiple concepts. Nevertheless,

due to the transitivity of taxonomic relationships, GT is expected to be acyclic. Taxonomic

reductions composed of a unique concept which subsumes the others form a Rooted Directed

and Acyclic Graph (RDAG). DAG properties enable efficient graph treatments to be performed;

numerous semantic measures take advantage of them. The graph GTI is also a RDAG.

Figure A.8 presents some of the reductions of a semantic graph which are usually performed prior

to consider semantic measures treatments. This example is based on the reduction of the Gene

Ontology (GO) in order to extract the taxonomic knowledge which is related to a specific aspect

of the GO. Such a reduction is generally performed before comparing pairs of concepts. The figure

shows the GO, which is composed of three subparts (sub-graphs): Molecular Function (MF),

Biological Processes (BP), and Cellular Component (CC). The GO originally forms a cyclic graph

composed of concepts linked by various semantic relationships. The first reduction shows the

isolation of the MF subgraph. Only concepts composing the MF subpart and the relationships

involving a pair of MF concepts are considered. The resulting graph can be cyclic. The final

reduction only contains MF concepts linked by taxonomic relationships, which corresponds to a

RDAG (Rooted Directed Acyclic Graph).

The accuracy of treatments relying on semantic measures and the semantics of their results highly

depends on the semantic graph which is processed. In this context, the quality of semantic graphs

(w.r.t semantic measures) relies on the way knowledge is defined. As an example, a semantic

graph may contain relationship redundancies. Such redundancies can impact semantic measures’

results and thus have to be removed, e.g., documented in [Park et al., 2011]. They appear when

a direct semantic relationship between two elements can be inferred (explained) by an indirect
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Figure A.8: Example of a reduction of an ontology and its effects on graph properties

one, i.e., expressed in term of graph traversal1. Redundancies involve transitive relationships.

As an example, since the taxonomic relationship is transitive, if the semantic graph defines

that Human subClassOf Mammal and Mammal subClassOf Animal a semantic reasoner can

infer that Human subClassOf Animal. In this case, a redundancy occurs when an explicit

(non-inferred) relationship defines Human subClassOf Animal.

Most knowledge-based semantic measures proposed in the literature have been defined for se-

mantic graphs. However, they are generally presented as if they were suited for all ”ontologies”.

Nevertheless, despite this aspect is generally not mentioned in the literature, not all ontologies

can be used per se for computing semantic measures. This leads developers to face complex prob-

lems for implementing semantic measures, and therefore hampers practical usages of measures.

Indeed, some semantic measures expect processed knowledge to be expressed into a semantic

graph. Therefore, this requires expressive ontologies to be expressed as semantic graphs. In this

appendix, we have underlined that the transformation of ontologies into semantic graphs is not

a trivial process. We stressed that this process must be carefully considered and, as an initial

contribution, we distinguished its main steps. These steps have to be considered for modifying

an ontology into a semantic graph, and are therefore required for processing any ontology by tak-

ing advantage of the large diversity of knowledge-based semantic measures relying on semantic

graph analysis.

1For those familiar to RDF(S), the domain and the range (co-domain) of a predicate, even if repre-
sented as a relationship, cannot induce redundancies, e.g. the triplet isAParentOf rdfs:domain Human

doesn’t mean that the triplet Jean rdf:type Human is redundant considering that Jean isAParentOf

Louise is specified in the ontology. Here redundancies are evaluated by mean of graph traversal.





B
A discussion on the evaluation

of semantic measures

This appendix discusses information relative to the selection of semantic measures. The aim is

not to provide an exhaustive state-of-the-art related to reflections on the subject but rather to

distinguish central aspects of measures which it may be of interest to discuss in order to guide

both selection and comparison of semantic measures. More information about the subject can

be found in [Harispe et al., 2013c].

Evaluation protocols and benchmarks are essential for the analysis of the benefits and drawbacks

of existing or newly proposed semantic measures. They are of major importance in objectively

evaluating new contributions and in guiding users of semantic measures in the selection of best

suited measures w.r.t their needs (e.g., application context). Nevertheless, despite the vast

literature related to semantic measures, only few contributions focus on this specific topic, e.g.,

[Al-Mubaid and Nagar, 2008; Lee et al., 2008; Petrakis and Varelas, 2006; Slimani, 2013].

Generally, any evaluation aims to distinguish the benefits and drawbacks of compared alternatives

according to specific criteria. Such comparisons are generally used to rank the goodness of

measures regarding the selected criteria. Therefore, to be compared, three important questions

deserve to be answered:

1. What criteria can be used to compare semantic measures?

2. How can the goodness of a measure be evaluated w.r.t a specific set of criteria?

3. Which criteria must be considered in order to evaluate semantic measures for a specific

usage?

This appendix mainly focuses on the criteria which can be considered to compare semantic

measures. We will nevertheless also present some benchmarks which are commonly used to

evaluate semantic measure accuracy.

307
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B.1 Criteria for the evaluation of semantic measures

Several criteria can be used to evaluate measures. Among them, we distinguish:

• Their accuracy and precision.

• Their computational complexity, i.e., algorithmic complexity.

• Their mathematical properties.

• Their semantics.

As we will see, these (non-disjoint) criteria can be used to evaluate several aspects of measures.

Each one is briefly introduced.

Accuracy and Precision

The accuracy of a measure can only be discussed according to predefined expectations regarding

the results produced by the measure. Indeed, as defined in metrology, the science of measurement,

the accuracy of a measurement must be understood as the closeness of the measurement of a

quantity regarding the true value of that quantity [BIPM et al., 2012].

The precision of a measure (system of measurement) corresponds to the degree of reproducibility

or repeatability of the score produced by the measure under unchanged conditions. Since most

semantic measures are based on deterministic algorithms, i.e., they produce the same result

given a specific input, here we focus on the notion of accuracy. Note that the precision of a

measure can be regarded as a mathematical property since some semantic measures are non-

deterministic (e.g., semantic measures based on random-walk approaches). Given that most

measures are deterministic, the precision of semantic measures will not be discussed hereafter.

The notion of accuracy of a measure is compulsory tight to a context, e.g., benchmark, semantic

proxy (specific corpus, ontology, etc.), tuning of measure parameters (if any). Indeed, there

is no guarantee that a measure which has been proved accurate in a specific context, will be

accurate in all contexts. As we will see, the accuracy of semantic measures is therefore evaluated

according to expected results.

Computational complexity

The computational complexity or algorithmic complexity of semantic measures is of major im-

portance in most applications. It is indeed worth noting that given the growing volumes of

datasets processed in semantic analysis (large corpus of texts and ontologies), the algorithmic

complexity of measures plays an important role towards their large adoption.

Considering equivalent accuracy in a specific context, most users of semantic measures will

prefer to make concessions on measure accuracy for a significant reduction of computational

time. However, the literature relative to semantic measures is very limited on this subject. It
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is therefore difficult to discuss algorithmic implications of current proposals; this hampers non-

empirical evaluations and burdens the selection of measures. It is, however, difficult to blame

designer of semantic measures for not providing detailed algorithmic analyses of their proposal.

Indeed, computational complexity analyses of measures are both technical and difficult to make.

In addition, most of the time, these analyses depend on the specific data structure which is used

to represent the semantic proxy taken into account by measures (e.g., ontology), a degree of

detail which is generally not discussed in contributions related to semantic measures – note that

this sometimes creates a gap between theoretical possibilities and practical implementations.

Despite its major importance, the evaluation of semantic measures regarding their computational

complexity is still difficult today.

Mathematical properties

Several mathematical properties of interest for semantic measures were distinguished in Chapter

2, e.g., symmetry, identity of the indiscernibles, normalisation. These mathematical properties

are of particular importance for the selection of semantic measures. They are, for instance,

essential for the application of specific optimisation techniques (e.g., based on the normalisation

of measures). They also play an important role in better understanding the semantics carried

by measures, i.e., the meaning carried by their results.

Mathematical properties are central for the comparison of measures since they are generally

required to ensure the coherence of treatments which rely on semantic measures. This, for

instance, is the case when inferences have to be made based on scores produced by semantic

measures. As an example, the implication of the non-respect of the identity of the indiscernibles

has to be carefully considered; it can be conceptually disturbing that the comparison of a concept

to itself produces non-maximal or even low similarity scores. It is, however, the case using some

measures in specific contexts1.

Analyses of mathematical properties of measures are thus required to deeply understand their

expected behaviour and to evaluate their relevance for domain-specific applications.

Semantics of measures

The meaning (semantics) of semantic measure results deserves to be thoroughly understood by

end-users. This aspect is central for the selection of a measure. The semantics of semantic

measures is defined by the assumptions on which their algorithmic design relies. Some of these

assumptions can be understood through the mathematical properties of the measures. The

semantics is also defined by the cognitive model on which the measure relies, the semantic proxy

in use and the semantic evidences analysed. As we saw in Section 3.3, semantic evidence taken

1As an example, using Resnik’s measure based on the notion of information content of concepts
(Equation 3.28), the semantic similarity of a general concept (near to the root – low θ) to itself will be
low.
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into account by the measure generally defines its type/general semantics (e.g., the measure

evaluates semantic similarity, relatedness. . . ).

It is difficult to compare measures regarding the semantics they carry. It is, however, essential for

semantic measure users to understand that measure selection may in some cases strongly impact

the conclusions which can be supported by the measurement, e.g., it for instance not adapted to

perform substitutions (for example in the context of recommendation) which are supported by

semantic relatedness instead of semantic similarity.

Existing protocols to evaluate accuracy of semantic measures

The accuracy of semantic measures is today considered as the de-facto criterion to evaluate

measures. It can be evaluated using a direct or an indirect approach. In most cases, measures

are evaluated using a direct approach, i.e., based on expected scores of measurement of pairs

of elements (e.g., similarity, relatedness). In all cases, the evaluation is performed w.r.t specific

expectations/assumptions:

• Direct evaluation: based on the correlation of semantic measures with expected scores or

results produced by other metrics. Measures are, for instance, evaluated regarding their

capacity to mimic human rating of semantic similarity/relatedness. In this case, the accu-

racy of measures is discussed based on their correlations with gold-standard benchmarks

composed of pairs of terms/concepts associated to expected ratings. For domain-specific

studies, a set of experts is used to assess expected scores which will make up the bench-

mark (e.g., physicians in biomedical studies). In other cases, measures will be evaluated

regarding their capacity to produce scores highly correlated to specific metrics. These

metrics are expected to summarise our knowledge of compared elements. This strategy

is adopted in bioinformatics to evaluate semantic measures which have been designed to

compare gene products according to their conceptual annotations, i.e., the evaluation can

be based on their correlation with other measures which are commonly used to compare

genes (e.g., sequence similarity), e.g., [Lord, 2003].

• Indirect evaluation: The evaluation of measures relies on the analysis of the performance

of applications or algorithms which take advantage of semantic measures. The treatment

considered is domain-specific, e.g., accuracy of terms’ disambiguation techniques, perfor-

mance of classifiers, clustering techniques or synonymy detection systems which rely on

semantic measures.

B.2 Benchmarks for semantic measures evaluation

This section presents the benchmark of [Pedersen et al., 2007] which was used in this manuscript

to evaluate measures. Other benchmarks are presented in [Harispe et al., 2013c].
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Pedersen benchmark for semantic similarity

Term A Term B Physician Coder Avg

Renal failure Kidney Failure 4 4 4

Heart Myocardium 3.3 3 3.15

Stroke Infarct 3 2.8 2.9

Abortion Miscarriage 3 3.3 3.15

Delusion Schizophrenia 3 2.2 2.6

Congestive Heart Failure Pulmonary Edema 3 1.4 2.2

Metastasis Adenocarcinoma 2.7 1.8 2.25

Calcification Stenosis 2.7 2 2.35

Diarrhea Stomach cramps 2.3 1.3 1.8

Mitral Stenosis Atrial Fibrillation 2.3 1.3 1.8

Chronic obstructive pulmonary disease Lung infiltrates 2.3 1.9 2.1

Rheumatoid Arthritis Lupus 2 1.1 1.55

Brain tumor Intracranial Hemorrhages 2 1.3 1.65

Carpel Tunnel Syndrome Osteoarthritis 2 1.1 1.55

Diabetes Mellitus Hypertension 2 1 1.5

Acne Syringes 2 1 1.5

Antibiotic Allergy 1.7 1.2 1.45

Cortisone Total knee replacement 1.7 1 1.35

Pulmonary fibrosis Lung cancer 1.7 1.4 1.55

Cholangiocarcinoma Colonoscopy 1.3 1 1.15

Lymphoid hyperplasia Laryngeal Cancer 1.3 1 1.15

Multiple Sclerosis Psychosis 1 1 1

Appendicitis Osteoporosis 1 1 1

Rectal polyp Aorta 1 1 1

Xerostomia Alcoholic Cirrhosis 1 1 1

Peptic Ulcer disease Myopia 1 1 1

Depression Cellulites 1 1 1

Varicose vein Entire knee meniscus 1 1 1

Hyperlipidemia Metastasis 1 1 1

Table B.1: Pedersen et al. [2007] benchmark for semantic similarity. Scores of seman-
tic similarity for pairs of terms related to the biomedical domain. Scores of similarities
are provided for Physicians – Coders – Physicians + Coders (Avg). Mappings to con-

cepts defined in the MeSH and SNOMED-CT are provided in Table B.2
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Term A Term B Concept
A MeSH

Concept
B MeSH

Concept A
SNOMED

Concept B
SNOMED

Renal Insufficiency Kidney Failure D051437 D051437 42399005 42399005

Heart Myocardium D006321 D009206 80891009 74281007

Stroke Infarction D020521 D007238 230690007 55641003

Abortion, Habitual Miscarriage D000026 D000022 70317007 17369002

Delusions Schizophrenia D003702 D012559 48500005 58214004

Heart Failure Pulmonary Edema D006333 D011654 42343007 19242006

Neoplasm Metas-
tasis

Adenocarcinoma D009362 D000230 128462008 443961001

Calcinosis Constriction,
Pathologic

D002114 D003251 125369001 415582006

Mitral Valve
Stenosis

Atrial Fibrillation D008946 D001281 79619009 49436004

Arthritis, Rheuma-
toid

Lupus Erythe-
matosus

D001172 D008180 69896004 200936003

Brain Neoplasms Intracranial Hem-
orrhages

D001932 D020300 254935002 1386000

Carpal Tunnel
Syndrome

Osteoarthritis D002349 D010003 57406009 396275006

Diabetes Mellitus Hypertension D003920 D006973 73211009 38341003

Acne Vulgaris Syringes D000152 D013594 11381005 61968008

Anti-Bacterial
Agents

Hypersensitivity D000900 D006967 255631004 106190000

Cortisone Arthroplasty, Re-
placement, Knee

D003348 D019645 32498003 179344006

Pulmonary Fibro-
sis

Lung Neoplasms D011658 D008175 51615001 363358000

Cholangiocarcinoma Colonoscopy D018281 D003113 70179006 73761001

Pseudolymphoma Laryngeal Neo-
plasms

D019310 D007822 128863005 363429002

Multiple Sclerosis Psychotic Disor-
ders

D009103 D011618 24700007 69322001

Appendicitis Osteoporosis D001064 D010024 74400008 64859006

Xerostomia Liver Cirrhosis, Al-
coholic

D014987 D008104 87715008 420054005

Peptic Ulcer Myopia D010437 D009216 13200003 57190000

Depression Cellulitis D003863 D002481 35489007 128045006

Hyperlipidemias Neoplasm Metas-
tasis

D006949 D009362 55822004 363346000

Table B.2: Mapping between terms used in Pedersen et al. [2007] semantic similarity
benchmark (Table B.1) and MeSH descriptors and SNOMED-CT concepts



C
Empirical analysis:

supplementary results

This appendix provides additional results for several experiments and discussions which are

presented in the manuscript.

C.1 Study of semantic measures in the biomedical domain:

additional results

Supplementary results of Section 5.1. The figures show the surfaces of correlation obtained w.r.t

Pedersen et al. [2007] benchmark (average coder-physician) and semantic similarity measures

derived from abstract formulations of the contrast and ratio models (Figures C.1 and C.2 re-

spectively). In each figure, the red dot refers to the maximal correlation. Refer to Table 5.1

for details on measures (Case i corresponds to a specific column in the table). In each figure,

four pairs of surfaces are shown, i.e., one per instantiation (case). Note that, even if it is not

specified in these figures, numerous points of the surfaces refer to specific measures proposed in

the literature.

313
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Figure C.1: Surface of correlation considering Pedersen et al. [2007] benchmark (av-
erage Coders – Physicians) and semantic similarity measures derived from an abstract
formulation of the contrast model (γ = 1) – Table 4.5 (simCM∗). The red dot represents

the maximum correlation value.
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Figure C.2: Surface of correlation considering Pedersen et al. [2007] benchmark (av-
erage Coders – Physicians) and semantic similarity measures derived from an abstract
formulation of the ratio model – Table 4.5 (simRM∗). The red dot represents the

maximum correlation value.
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C.2 Reflection on the robustness of semantic measures:

additional results

Supplementary results of the Section 5.2. In each figure, the red dot corresponds to (α0
l , β

0
l ) and

the red triangle refers to (α∗l , β
∗
l ). Refer to Table 5.1 for details on measures (Ci corresponds

to case i). Note also that in some cases the two points overlap and that Lr is represented by

the area inside the bold black line. Finally, recall that semantic similarity measures refers to

knowledge-based semantic similarity measures.

Figure C.3: Plot of robustness of parametric semantic similarity measures considering
10% of uncertainty.
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Figure C.4: Plot of robustness of parametric semantic similarity measures considering
20% of uncertainty
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Figure C.5: Plot of robustness of parametric semantic similarity measures considering
30% of uncertainty
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Figure C.6: Plot of robustness of parametric semantic similarity measures considering
40% of uncertainty
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Figure C.7: Plot of robustness of parametric semantic similarity measures considering
50% of uncertainty

C.3 Illustration the algorithm presented in Chapter 7

The process of the algorithm presented in Section 7.2.2.2 is graphically illustrated based on the

taxonomy presented in Figure C.8. The concept ω∗(u, v) refers to MSCA of the concepts u, v.

In this example, we consider the following Tθ ordering:

Tθ = [C,B,A,D,E, F,R]



Bibliography 321

R

F

E

C

D

A B

Figure C.8: Taxonomy used to illustrate the algorithm

Iteration i = 0 ; c = C

i Tθ mapDesc previousNotDesc

0 C {C} {}
1 B null null
2 A null null
3 D null null
4 E {C} null
5 F null null
6 R null null



ω∗ C B A D E F R

��@@C C . . . . . .
B ? ? . . . . .
A ? ? ? . . . .
D ? ? ? ? . . .
E ? ? ? ? ? . .
F ? ? ? ? ? ? .
R ? ? ? ? ? ? ?


Iteration i = 1 ; c = B

i Tθ mapDesc previousNotDesc

0 C null {}
1 B {B} {C}
2 A null null
3 D {B} null
4 E {C,B} null
5 F null null
6 R null null



ω∗ C B A D E F R

��@@C C . . . . . .
B ? B . . . . .
A ? ? ? . . . .
D ? ? ? ? . . .
E ? ? ? ? ? . .
F ? ? ? ? ? ? .
R ? ? ? ? ? ? ?


Iteration i = 2 ; c = A

i Tθ mapDesc previousNotDesc

0 C null {}
1 B null {C}
2 A {A} {C,B}
3 D {B,A} null
4 E {C,B,A} null
5 F null null
6 R null null



ω∗ C B A D E F R

��@@C C . . . . . .
B ? B . . . . .
A ? ? A . . . .
D ? ? ? ? . . .
E ? ? ? ? ? . .
F ? ? ? ? ? ? .
R ? ? ? ? ? ? ?
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Iteration i = 3 ; c = D

i Tθ mapDesc previousNotDesc

0 C null {}
1 B null {C}
2 A null {C}
3 D {B,A,D} {C}
4 E {C,B,A,D} null
5 F null null
6 R {B,A,D} null



ω∗ C B A D E F R

��@@C C . . . . . .
B ? B . . . . .
A ? D A . . . .
D ? D D D . . .
E ? ? ? ? ? . .
F ? ? ? ? ? ? .
R ? ? ? ? ? ? ?



Iteration i = 4 ; c = E

i Tθ mapDesc previousNotDesc

0 C null {}
1 B null {}
2 A null {}
3 D null {}
4 E {C,B,A,D,E} {}
5 F {C,B,A,D,E} null
6 R {B,A,D,C,E} null



ω∗ C B A D E F R

��@@C C . . . . . .

��@@B E B . . . . .

��ZZA E D A . . . .

��ZZD E D D D . . .

��@@E E E E E E . .
F ? ? ? ? ? ? .
R ? ? ? ? ? ? ?



Iteration i = 5 ; c = F

i Tθ mapDesc previousNotDesc

0 C null {}
1 B null {}
2 A null {}
3 D null {}
4 E null {}
5 F {C,B,A,D,E, F} {}
6 R {B,A,D,C,E, F} null



ω∗ C B A D E F R

��@@C C . . . . . .

��@@B E B . . . . .

��ZZA E D A . . . .

��ZZD E D D D . . .

��@@E E E E E E . .

�@F F F F F F F .
R ? ? ? ? ? ? ?



Iteration i = 6 ; c = R

i Tθ mapDesc previousNotDesc

0 C null {}
1 B null {}
2 A null {}
3 D null {}
4 E null {}
5 F null {}
6 R {B,A,D,C,E, F,R} {}



ω∗ C B A D E F R

��@@C C . . . . . .

��@@B E B . . . . .

��ZZA E D A . . . .

��ZZD E D D D . . .

��@@E E E E E E . .

�@F F F F F F F .

��ZZR R R R R R R R



Iteration i = 7

i > |Tθ| =⇒ Algorithm complete.
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Abstract

The notions of semantic proximity, distance, and similarity have long been considered essential for the elaboration of numerous
cognitive processes, and are therefore of major importance for the communities involved in the development of artificial
intelligence. This thesis studies the diversity of semantic measures which can be used to compare lexical entities, concepts
and instances by analysing corpora of texts and ontologies. Strengthened by the development of Knowledge Representation
and Semantic Web technologies, these measures are arousing increasing interest in both academic and industrial fields.

This manuscript begins with an extensive state-of-the-art which presents numerous contributions proposed by several
communities, and underlines the diversity and interdisciplinary nature of this domain. Thanks to this work, despite the
apparent heterogeneity of semantic measures, we were able to distinguish common properties and therefore propose a general
classification of existing approaches. Our work goes on to look more specifically at measures which take advantage of ontologies
expressed by means of semantic graphs, e.g. RDF(S) graphs. We show that these measures rely on a reduced set of abstract
primitives and that, even if they have generally been defined independently in the literature, most of them are only specific
expressions of generic parametrised measures. This result leads us to the definition of a unifying theoretical framework
for semantic measures, which can be used to: (i) design new measures, (ii) study theoretical properties of measures, (iii)
guide end-users in the selection of measures adapted to their usage context. The relevance of this framework is demonstrated
in its first practical applications which show, for instance, how it can be used to perform theoretical and empirical analyses
of measures with a previously unattained level of detail. Interestingly, this framework provides a new insight into semantic
measures and opens interesting perspectives for their analysis.

Having uncovered a flagrant lack of generic and efficient software solutions dedicated to (knowledge-based) semantic measures,
a lack which clearly hampers both the use and analysis of semantic measures, we consequently developed the Semantic
Measures Library (SML): a generic software library dedicated to the computation and analysis of semantic
measures. The SML can be used to take advantage of hundreds of measures defined in the literature or those derived from the
parametrised functions introduced by the proposed unifying framework. These measures can be analysed and compared using
the functionalities provided by the library. The SML is accompanied by extensive documentation, community support and
software solutions which enable non-developers to take full advantage of the library. In broader terms, this project proposes
to federate the several communities involved in this domain in order to create an interdisciplinary synergy around the notion
of semantic measures: http://www.semantic-measures-library.org

This thesis also presents several algorithmic and theoretical contributions related to semantic measures: (i) an
innovative method for the comparison of instances defined in a semantic graph – we underline in particular its benefits
in the definition of content-based recommendation systems, (ii) a new approach to compare concepts defined in overlapping
taxonomies, (iii) algorithmic optimisation for the computation of a specific type of semantic measure, and (iv) a semi-supervised
learning-technique which can be used to identify semantic measures adapted to a specific usage context, while simultaneously
taking into account the uncertainty associated to the benchmark in use. These contributions have been validated by several
international and national publications.

Résumé

Les notions de proximité, de distance et de similarité sémantiques sont depuis longtemps jugées essentielles dans l’élaboration
de nombreux processus cognitifs et revêtent donc un intérêt majeur pour les communautés intéressées au développement
d’intelligences artificielles. Cette thèse s’intéresse aux différentes mesures sémantiques permettant de comparer des unités
lexicales, des concepts ou des instances par l’analyse de corpus de textes ou de représentations de connaissance (i.e. ontologies).
Encouragées par l’essor des technologies liées à l’Ingénierie des Connaissances et au Web sémantique, ces mesures suscitent
de plus en plus d’intérêt à la fois dans le monde académique et industriel.

Ce manuscrit débute par un vaste état de l’art qui met en regard des travaux publiés dans différentes communautés et
souligne l’aspect interdisciplinaire et la diversité des recherches actuelles dans ce domaine. Cela nous a permis, sous l’apparente
hétérogénéité des mesures existantes, de distinguer certaines propriétés communes et de présenter une classification générale
des approches proposées. Par la suite, ces travaux se concentrent sur les mesures qui s’appuient sur une structuration de
la connaissance sous forme de graphes sémantiques, e.g. graphes RDF(S). Nous montrons que ces mesures reposent sur un
ensemble réduit de primitives abstraites, et que la plupart d’entre elles, bien que définies indépendamment dans la littérature,
ne sont que des expressions particulières de mesures paramétriques génériques. Ce résultat nous a conduits à définir un
cadre théorique unificateur pour les mesures sémantiques. Il permet notamment : (i) d’exprimer de nouvelles
mesures, (ii) d’étudier les propriétés théoriques des mesures et (iii) d’orienter l’utilisateur dans le choix d’une mesure adaptée
à sa problématique. Les premiers cas concrets d’utilisation de ce cadre démontrent son intérêt en soulignant notamment qu’il
permet l’analyse théorique et empirique des mesures avec un degré de détail particulièrement fin, jamais atteint jusque-là.
Plus généralement, ce cadre théorique permet de poser un regard neuf sur ce domaine et ouvre de nombreuses perspectives
prometteuses pour l’analyse des mesures sémantiques.

Le domaine des mesures sémantiques souffre d’un réel manque d’outils logiciels génériques et performants ce qui complique à
la fois l’étude et l’utilisation de ces mesures. En réponse à ce manque, nous avons développé la Semantic Measures Library
(SML), une librairie logicielle dédiée au calcul et à l’analyse des mesures sémantiques. Elle permet d’utiliser
des centaines de mesures issues à la fois de la littérature et des fonctions paramétriques étudiées dans le cadre unificateur
introduit. Celles-ci peuvent être analysées et comparées à l’aide des différentes fonctionnalités proposées par la librairie. La
SML s’accompagne d’une large documentation, d’outils logiciels permettant son utilisation par des non informaticiens, d’une
liste de diffusion, et de façon plus large, se propose de fédérer les différentes communautés du domaine afin de créer une
synergie interdisciplinaire autour la notion de mesures sémantiques : http://www.semantic-measures-library.org

Cette étude a également conduit à différentes contributions algorithmiques et théoriques, dont (i) la définition d’une
méthode innovante pour la comparaison d’instances définies dans un graphe sémantique – nous montrons son intérêt pour
la mise en place de système de recommandation à base de contenu, (ii) une nouvelle approche pour comparer des concepts
représentés dans des taxonomies chevauchantes, (iii) des optimisations algorithmiques pour le calcul de certaines mesures
sémantiques, et (iv) une technique d’apprentissage semi-supervisée permettant de cibler les mesures sémantiques adaptées à
un contexte applicatif particulier en prenant en compte l’incertitude associée au jeu de test utilisé. Ces travaux ont été validés
par plusieurs publications et communications nationales et internationales.
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