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Chapter 1

The data deluge and its
impact on OLAP users

This chapter introduces the context of the dissertation and outlines its contribu-
tion. Section 1.1 exposes the challenges around the management and querying
of nowadays amounts of information for decision making purpose. Section 1.2
focuses on the data warehouse context, and points out the need for tools with
better user-centric capabilities as a way to cope with the data deluge. Finally,
Section 1.3 briefly introduces the contribution and presents the dissertation out-
line.

This chapter uses materials appearing in [71] as well as the description of
the IT4BI (Information Technologies for Business Intelligence) Erasmus Mundus
Master’s Course!, and especially the needs analysis underlying this programme.

1.1 The data deluge

In nowadays knowledge society, people and organizations are immersed in a
constantly flowing torrent of information. According to a recent article of The
Economist, mankind created 150 exabytes (billion gigabytes) of data in 2005.
In 2010, it will create 1,200 exabytes 2. Data continues to grow out of control.
Since 2007, IDC has been sizing what it calls the Digital Universe, or the amount
of digital information created and replicated in a year. Last year’s report stated
the following facts. “In 2009, the Digital Universe grew by 62% to nearly 800,000
petabytes. In 2010, the Digital Universe will grow almost as fast to 1.2 million
petabytes, or 1.2 zettabytes. This explosive growth means that by 2020, our
Digital Universe will be 44 times as big as it was in 2009.”>

Businesses succeed or fail based largely on how effectively they collect, clean,
transform, integrate, store, explore, analyze, and monitor this information to

Thttp://it4bi.univ-tours.fr
2http://www.economist.com/printedition/2010-02-27
3http://idcdocserv.com/925
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predict future trends and make the best decisions. To succeed, organizations can
no longer afford to treat information technologies as administrative tools, but
need to embrace them as a strategic asset and embed them fully in their decision-
making process. With such amounts of data, it is of paramount importance to be
able to access relevant information efficiently, using sophisticated manipulation
and search tools.

This is termed usually “big data” and asks extending traditional database
architectures. Business Intelligence (BI) [26] promises an organization the capa-
bility of collecting and analyzing internal and external data to generate knowl-
edge and value, providing decision support at the strategic, tactical, and opera-
tional levels. Since its inception 20 years ago, BI has become a huge industrial
domain and a major economic driver, unaffected by the economic crisis, and
is still growing fast, consistently mentioned among the top priorities of Chief
Information Officers worldwide, as evidenced by analyst firms Forrester*, IDC?
and Gartner®.

Business Intelligence has historically been based on a combination of Data
warehousing [55, 44], the process of storing historical data in a structure designed
for efficient processing, On-Line Analytical Processing (OLAP), the process of
efficiently enabling common analytical operations on the multidimensional view
of data, and Data mining [52], the mathematical and statistical methods neces-
sary to transform this raw data into valuable information for making business
decisions. More precisely, a data warehouse can be seen as a large database with
a particular topology, where data is seen as a cube, shared by many analysts who
have various interests and viewpoints, explored interactively by sequences of so-
called OLAP queries [95] or from which knowledge is automatically extracted
using data mining algorithms.

Data warehousing and OLAP are now mature technologies, having attracted
a lot of attention from the academic and industrial community, and benefiting
from the maturity of relational databases. Noticeably, the major part of this
attention has been devoted to the efficient implementation and querying of the
warehouse, and very little attention has been paid to the quality of the analysis
and the ease of use of such technologies.

1.2 Are BI tools designed for BI users?

It has been recently observed that relational database management systems
(RDBMSs) are quite uneasy to use, driving querying or navigation into huge
amount of data a very tedious process, and that these systems should be more
user-friendly [54]. BI tools, and especially OLAP tools, which are often imple-
mented as Relational OLAP (ROLAP) engines and are thus based on relational
database technology, also suffer from the same limitation. Recent studies showed
that BI tools, although powerful, are often underused by decision makers, who

4http://www.forrester.com/rb/Research/market_overview_business_intelligence_
software_market/q/id/55034/t/2

Shttp://www.idc.com/research/viewdocsynopsis.jsp?containerId=220987

Shttp://www.gartner.com/it/page. jsp?id=856714

11


http://www.forrester.com/rb/Research/market_overview_business_intelligence_software_market/q/id/55034/t/2
http://www.forrester.com/rb/Research/market_overview_business_intelligence_software_market/q/id/55034/t/2
http://www.idc.com/research/viewdocsynopsis.jsp?containerId=220987
http://www.gartner.com/it/page.jsp?id=856714

frequently rely on static dashboards [86, 32, 17] instead of using the full poten-
tial of the tools. OLAP tools that go beyond simple reporting are considered
tedious of use. Moreover, decision making is inherently a collaborative activity,
which is largely overlooked by BI tools [17], as are the individual needs of the
decision makers [90].

To answer these limitations, it is now commonly agreed that BI should bene-
fit from a combination with Web 2.0 approaches (a focus on user empowerment,
social networks, and community collaboration), a trend often referred to as BI
2.0 [105]. Indeed, in domains related to the Web like Information Retrieval or E-
commerce, user-centric approaches like personalization or recommendation have
been proved successful (see e.g., [27]). Such approaches are very relevant in a BI
context, where the user may not accept to spend too much time conceiving the
query to browse or analyze a data warehouse. In addition, she may not accept
that the query’s answer shows too many or too few results. And, even if the size
of the answer is acceptable, she may be relieved to see the system automatically
suggesting queries that will display other answers of interest, especially if she
is left with the task of navigating the database to analyze the data it contains,
which is typical of an OLAP user navigating a data warehouse using OLAP
queries [95] that may return large answers. In such a context, being able to
personalize or recommend queries is seen as particularly relevant [90].

It turns out that user-centric approaches in databases, like query personal-
ization and query recommendation, are indeed getting more and more attention.
Using preferences to personalize queries has been investigated for the last ten
years [102], and recommending queries [101, 23] is emerging as a promising way
of supporting the user browsing large databases.

In databases, query personalization and recommendation can be seen as
techniques for computing a query ¢’ from another query ¢, using information
about the user and the context, called profile in what follows. More precisely,
they can be defined as follows:

e Query personalization: given a database query ¢ and a profile, compute a
query ¢’ C ¢7 that has an added value w.r.t. the profile.

e Query recommendation: given a database query ¢ and a profile, compute a
query ¢’ such that, in general, neither ¢’ C ¢ nor g C ¢/, that has an added
value w.r.t. the profile. Note that computing a query ¢’ that includes ¢
usually corresponds to query relaxation (see e.g., [56, 75]).

For instance, a user query asking for the Average income of female employees
in all European countries for the past year, could be personalized to focus on
France and Germany only, if the user profile indicates that in the recent past,
this user was especially interested in these countries. On the other hand, the
same query could lead to recommend to the user the query Average income of
male employees in all European countries for the past year if the user profile
indicates that other users similar to that user often evaluated this latter query
after the former one.

7In the classical sense of query inclusion, i.e., whatever the database instance, the answer
to ¢’ is always a subset of the answer to q.
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Achieving user empowerment without asking for too much formulation ef-
fort, while remaining proactive, can be done using approaches based on the
history, i.e., the traces left by the users during former activities. Actually, it
has already been pointed out the necessity to come up with flexible, powerful
means for analyzing the issued queries, and decompose, store and handle them
in a dedicated subsystem in order to better support any decisional task with
the knowledge captured in the analytical queries [57]. Evidences of this need
are given in [59], where the authors carried out tests demonstrating that brows-
ing through past SQL query sessions helped the users by speeding up query
composition.

Strangely enough, although highly relevant to BI in general and OLAP
in particular, user-centric approaches, especially the ones based on leveraging
past user queries, have attracted relatively little attention from the BI/data
warehouse community.

1.3 Leveraging OLAP query logs for user-centric
OLAP

This dissertation is a contribution to the huge task of developing user-centric
OLAP. It focuses on the use of former queries logged by an OLAP server to
enhance subsequent analyses.

This dissertation is organized in three main parts: Part II show how a log of
OLAP queries can be modeled and constructed, and Part IIT focuses on how the
log can be manipulated. These two parts provide the basic framework for taking
advantage of OLAP query logs. Finally Part IV presents various personalization
and recommendation techniques for achieving user-centric OLAP by leveraging
the prepared log.

More precisely, after reviewing the basics of user-centric techniques like per-
sonalization and recommendation, and their use in a database context (chapter
2), Chapter 3 begins Part II by introducing the models of OLAP data, queries,
sessions as sequences of queries and logs as sets of sessions. The corner stone of
this modeling task is the modeling of queries, since the way queries are consid-
ered (fully, partially, or non evaluated) impacts how the log can be exploited for
user-centric techniques. Given that not all query logs produced by an OLAP
system respect such a model, Chapter 4 presents a technique to identify OLAP
sessions, based on the semantic connections between queries, in a log where
sessions need to be identified.

Part I1II begins with Chapter 5 that introduces a language for manipulating
and querying query logs, based on the relational algebra. In particular, the op-
erators of this language are parametrized by relations over sessions and queries.
Some such relations are introduced in this chapter, and Chapter 6 is devoted to
similarity measures to compare log objects (queries and sessions) that can be
used to build such relations. In this chapter, various similarity measures are pro-
posed, tailored for OLAP queries, and extending classical similarity measures
for sequences.

13



The last main part presents various personalization and recommendation
techniques taking advantage of query logs to support OLAP analyses. Part IV
indeed begins with Chapter 7 that presents various techniques for extracting
relevant knowledge from the query log. This knowledge includes simple pref-
erences, navigational habits and discoveries made during former explorations.
Chapter 8 describes approaches for personalizing a user’s current OLAP queries,
based on this user’s former sessions. As for classical databases, these approaches
can use dedicated operators for expressing preferences, or be based on query
expansion. Chapter 9 presents approaches for computing collaborative query
recommendations based on a multi-user log. These approaches can be based on
information extracted from the current state of the database and the query, or
be history based, i.e., leveraging the query log.

Finally chapter 10 concludes this dissertation by reviewing and discussing
the contributions, and introduces future research directions.

14



Chapter 2

An overview of user-centric
approaches in databases

This chapter provides an introduction to two popular user-centric approaches
adopted by the database community, namely personalization and recommenda-
tion. More precisely, it will try to answer the following two questions:

e Given a database query ¢, how to to cope with too many or too few results?
Personalization can be used to answer this question. If the query result
is too large then being able to add preferences to this query gives a way
of filtering out irrelevant results, or ranking the query results to focus on
the most relevant first. Note that, personalization may also be used if
the query result is too small, since then selection predicates, also called
hard constraints, could be turned into preferences (or soft constraints) to
weaken this query.

e Given a sequence of queries over a database, how to suggest queries to
pursue the session? In this case, what the user did in the past, or al-
ternatively, what similar users did in the past, can serve as a basis for
recommending relevant queries to complement the current query answer.

Section 2.1 recall basic definitions on preference formulation and recom-
mender systems. Section 2.2 introduces the criteria used throughout this disser-
tation to characterize the various approaches. Sections 2.3 and 2.4 respectively
overview personalization and recommendation in databases. Finally, Section 2.5
lists the peculiarities of data warehouses and OLAP, that must be taken in to
account for user-centric approaches.

This chapter uses materials appearing in [71].
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2.1 Basics of preference expression and recom-
mendation

2.1.1 Basics of preference expression

We begin by explaining the basics of preference modeling. A more comprehen-
sive introduction can be found in [102].

Qualitative and quantitative preferences

Two types of approaches are used to express preferences. Qualitative approaches
express relative preferences i.e., ”I like a better than b”. Such a preference is
noted a > b where > is usually a Strict Partial Order (SPO). An SPO is a
binary relation > over a set O which is

e Drreflexive, i.e., for all a € O, =(a > a)
e Asymmetric, i.e., for all a,b € O, if (a # b) and (a > b) then —(b > a)
e Transitive, i.e., for all a,b,c € O, if (a > b) and (b > ¢) then (a > ¢)

Given a preference relation >, the indifference relation ~ is defined by:
(a ~b)if =(a > b) and —(b > a). It expresses that a and b are not comparable.
Particular partial orders of interest are Total Orders (TO) and Weak Orders
(WO). A relation > is a TO if for every a and b, either (a > b) or (b > a). > is
a WO if > is a SPO and ~ is transitive.

Example 2.1.1 Consider the following database instance:

Movies Author Genre Price  Duration
t1 Coen Comedy 5 90
t2 Coen Comedy 6 100
t3 Coen Comedy 7 80
t4 Allen Drama 7 120
177] Lynch  Drama 5 150

The preference ”I prefer Lynch movies over Allen movies and Allen movies
over Coen movies” entails that tuple t5 is preferred to tuple t4 and tuple t4 is
preferred to tuples t1, t2, t3. As preferences are assumed to be transitive, we say
that t5 dominates all the other tuples. Note that this preference says nothing
e.g., for t1 and t2, neither for t1 and t3.

Quantitative approaches express absolute preferences, i.e., I (do not) like a
to a specific degree. They are based on Scoring / Utility Functions. I like a
better than b is defined by w(a) > u(b), where u is a scoring function.

Quantitative approaches are often said to be less general than qualitative
approaches in the sense that, in order to be representable using scoring functions,
a preference relation has to be a WO, which implies that the corresponding
indifference relation has to be transitive. But on the other hand, only scoring
functions can accurately express the intensity of preferences.

16



Example 2.1.2 The preference "I prefer Lynch mowvies over Allen movies and
Allen movies over Coen movies” can be expressed by the following scoring func-
tion (assuming that scores range from 0 to 1):

e "I like Lynch” corresponds to a score of 0.9
o [ like Allen” corresponds to a score of 0.8
e [ like Coen” corresponds to a score of 0.5

It can easily be seen that for instance, preference "I prefer cheaper movies,
given that author and genre are the same” (i.e., t1 is preferred to both t2 and
t3, but it is not preferred to t4 or t5) cannot be expressed with scoring functions.

Note that preferences can be expressed over sets of objects using preferences
expressed over objects [21]. Given a set of objects O and a preference relation
>0 over O, subsets of O can be ordered w.r.t. >p. An example of order over
20 is given by: let X and Y be two subsets of O, X is preferred to Y, denoted
X >g Y, if for every y € Y, there exists x € X such that x >p y. If >p is a
PO over O, then >g is a PO over 2°.

Preference composition

Preferences can be defined extensionally under the form of relation instances,
or intentionally. In the latter case, the intentional definition is called a model
of preference. Preference composition follow the approach used to express pref-
erences and thus can be qualitative or quantitative.

Qualitative composition In what follows, let T" be a set of tuples and >; and
>o be two preference relations over 7. With single dimensional composition,
preferences are expressed over a single relation. Common single dimensional
composition includes Boolean Composition, Prioritized Composition, Pareto
Composition and Lexicographic Composition.

Boolean composition involves a boolean operator, for instance:

e Intersection, i.e., R = (>1 N >g) with (¢ R¢') if (t >1 ¢') and (¢t > t)
e Union, i.e., R = (>1 U >3) with (¢ Rt') if (t >1 t') or (¢t >2 )

Prioritized Composition imposes a priority of a preference over another. It
is formally defined by R = (>1 < >3) with (¢ R /) if (¢ >1 t') or (=(t' >1 t)
and (t >4 t'))

Pareto Composition assumes two preferences to be equally important. It is
formally defined by': R = (>1 ® >5) with (¢t R ¢') if ((¢t >1 /) and (¢t >2 t' or
t ~o t/)) or ((t >9 t/) and (t >1 t'ort ~1 tl)).

INote that alternative definitions using different semantics exist, as for instance the one
given in [61].
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Figure 2.1: Examples of preference composition

Example 2.1.3 Consider the two preferences: I prefer Lynch movies over
Allen movies and Allen movies over Coen movies”, called P1 and "I also prefer
shorter movies” called P2. Various compositions are illustrated by Figure 2.1.1.
Composing them using intersection results in a particular SPO with no dom-
ination, that can be interpreted as every tuple is preferred since all tuples are
un-dominated. Composing them with union violates irreflexivity and asymme-
try, and thus the resulting relation is usually considered as not being a preference
relation. Indeed, in this case, the resulting relation would mean for instance that
both t5 should be preferred to t4 (according to P1) and t4 should be preferred to
t5 (according to P2). Composing them with prioritization results in a total or-
der reflecting P1 first and then P2 only when P2 does not contradict P1. More
precisely, we have t5 preferred to t4 preferred to t3 preferred to t1 preferred to
t2. Finally, composing them using Pareto results in a preference relation where
only t3 dominates t1 and t1 dominates t2, and neither t4 dominates t5 nor t5
dominates t4 since P1 and P2 do not agree for these two tuples.

Note that composition can be defined over T' x T, if T and T’ are two
relations such that >; is a preference relation over T" and >, is a preference
relation over T'. For instance, lexicographic composition allows to define a
lexicographic order over T' x T". Tt is defined, for t1,¢] € T and to,t, € T', by:
R = (>1 ® >2) with (tl,tQ)R(tl,tQ) if (tl >1 t1) or (tl ~1 tl) and (tg >9 t2).

Pareto Composition can also be defined for multidimensional composition
by7 given tl,tll € T and t2,t’2 €T’ R= (>1 X >2) with ((tl,tQ) R (tll, /2)) if
((t1 >1 t)) and (to >a th or to ~a th)) or ((t2 >2 th) and (1 >1 t] or t1 ~1 t))).

Note that preservation of properties (irreflexivity, etc.) under various kind
of composition operators has been deeply studied (see [102] for more details).
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Quantitative composition Quantitative composition is generally achieved
through dedicated functions, like weighted sums, min, max, etc. An example
of quantitative composition is, given preferences P1 modeled with scorep; and
preference P2 modeled with scoreps: Scores(py,pg)(ti) = x x scorepy (ti)+ (1 —
x) X scorepo(ti) where x is some weight [64].

Example 2.1.4 Consider the following preferences: ”I prefer Lynch mouvies
over Allen movies and Allen movies over Coen movies” (P1) expressed by:

o "I like Lynch” with scorep; = 0.9
o [ like Allen” with scorep; = 0.8
o "I like Coen” with scorepy = 0.5
and I also prefer shorter movies” (P2) expressed by:
o "I like (duration=380)" with scoreps =1
o "] like (duration=90)" with scoreps = 0.9
o "I like (duration=150)" with scoreps = 0.6

Suppose we use the scoring function defined above to compose P1 and P2,
with x = 0.5. Then, for instance, the score of tuple t1 = (Coen, Comedy, 5,90)
would be: 0.5 x 0.5+ 0.5 x0.9=0.7

2.1.2 Basics of recommender systems

We now briefly introduce the basics of recommender systems (see [3] for a more
substantial presentation).

A recommender system is typically modeled as follows. Let I be a set of
items (e.g., products in a typical e-commerce application) and U be a set of
users (e.g., customers in a typical e-commerce application). Let f be an utility
function with signature U x I — R for some totally ordered set R (typically
reals between 0 and 1). Recommending s’ to u is to choose for the user u
the item s’ that maximizes the user’s utility, i.e., s = argmaxf(u,i). The
function f can be represented as a matrix M = U x I, that records for any
user w in U, any item ¢ in I, the utility of ¢ for u, that is f(u,7). The problem
of recommending items to users is that this matrix is both very large and very
sparse. Thus, many methods have been proposed for estimating the missing
ratings. Moreover, achieving relevant recommendations, tailored for a particular
user, is particularly difficult since it has been observed that everyone is a bit
eccentric [41], meaning that recommending popular item is likely to be seen as
not sufficient from the user’s point of view.

In general, recommendation methods are categorized [3] into: (i) Content-
based methods, that recommend items to the user u that are similar to previous
items highly rated by u, (ii) Collaborative methods, that consider users similar
(i.e. having similar profiles) to the one for which recommendations are to be
computed as a basis for estimating missing ratings and (iii) Hybrid methods,
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that combine content-based and collaborative ones. Note that [4] propose a
multidimensional generalisation of this basic two-dimensional formulation, es-
pecially to support profiling and contextualisation.

Content-based recommendation

Typical content-based recommendation is based on the comparison between
item profiles and user profiles. For instance, it can rely on the following principle:

1. Build item profiles by using selected features and providing a score for
each feature.

2. Build user profiles from highly rated item profiles, typically by computing
a weighted average of item profiles.

3. Compare user profiles with non-rated item profiles to estimate the missing
ratings. Typical similarity measures include vector-based similarities like
cosine.

4. Recommend to the user those non-rated items achieving the best similarity
scores.

Example 2.1.5 Consider the following matriz recording ratings:

Donuts Duff Apple Tofu Water Bud Ribs

Homer 0.9 0.8 0.7

Marge 0.8 0.6

Bart 0.7 0.6 0.1 0.8
Lisa 0.2 0.8 0.6

Maggie 0.6 0.5 0.6

Suppose that the features chosen for the profiles are: (contains sugar, ok for a
diet). Item profiles are modelled as vectors recording a score for these two fea-
tures. Suppose here that the scores are automatically computed from the items’
nutrition facts. For instance, the profile for Tofu is (0,0.9), the profile for Apple
(0.4,0.6), the profile for Water is (0,0.7), and the profile for Ribs is (0.8,0.1).
Then user profiles are also modeled as vectors recording scores for the two fea-
tures, derived from the known ratings. For instance, Homer profile would be:
(0.9 x (0.9,0) + 0.8 x (0.6,0.1) + 0.7 x (0.6,0.1))/3 = (0.8,0.1)2. Lisa profile
would be: (0.3,0.8). The similarity score for the user profile with the item pro-
file estimates the missing ratings. For instance, the similarity score for Homer
and Tofu is cosine((0.8,0.1),(0,0.9)) = 0.1 and that for Homer and Ribs is
cosine((0.8,0.1),(0.8,0.1)) = 1. It is easy to see that Ribs will be recommended
to Homer.

The limitations of content-based approaches are the following: First finding
a good set of features must be done very carefully since it impacts directly the

2This profile can be interpreted as: Homer contains sugar and is not ok for a diet.
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score estimates and hence the quality of the recommendation. Another prob-
lem is that recommendations stick to the user profile. For instance, using the
example above, Homer will never be recommended Tofu. Finally, this approach
suffers from the cold-start problem, i.e., how to build a profile for a new user
for whom no ratings are known.

Collaborative recommendation

The main idea of collaborative approaches is to benefit from all users’ ratings
when estimating a user’s missing ratings. Depending on how the matrix is used
(row-wise or column-wise), two techniques are distinguished, that are based on
computing similarities among users or items:

e User-user collaborative approaches estimate the ratings for items based
on ratings of similar users.

e Item-item collaborative approaches estimate the ratings for items based
on ratings for all similar items (whatever the user).

Example 2.1.6 To illustrate the user-user approach, suppose that all users are
modeled as vectors having as many components as there exists items, the value of
the component being the rating for the item, or 0 if the rating is not known>. For
instance, Homer would be modeled as the following vector: (0.9,0.8,0,0,0,0.7,0).
Similarity is computed between users, with cosine for instance, to find the users
who are the most similar to the one for which the ratings are to be estimated.
These users’ ratings are derived to estimate the user’s missing ratings. For
instance, suppose that Bart is found the most similar to Homer, with a similarity
score of 0.8. Then, given that Bart has a score for Ribs and Homer has not,
Bart’s score is used to estimate Homer’s, by weighting Bart’s score with the
similarity between Bart and Homer, i.e., 0.8 X 0.8 is our example.

The limitations of the collaborative approach are that it relies on heavy pre-
computation, and that new users or new items, for which no ratings are known,
cannot be taken into account.

Hybrid methods

Hybrid approaches are used to overcome the limitations of both previous ap-
proaches. Such approaches include the aggregation of a content-based score with
a collaborative score, the addition of content-based to collaborative filtering, or
the use of item profiles to cope with the new item problem.

2.2 Categorisation of the approaches

In this section, we present the criteria used to describe and categorize the ap-
proaches presented in the next sections and chapters. In what follows, the

3Note that it means treating unknown ratings and low ratings similarly.
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term profile is used to denote the information associated with the user and
the context, that are leveraged by the approach. This profile may include user
preferences, description of past activities of the database users (like e.g., the
database query log), as well as external information.

We first adopt the criteria introduced in [43], that are mostly used to dif-
ferentiate personalization approaches.

e Formulation effort asked to the user: some approaches require the user to
manually specify profile elements for each query (high formulation effort),
while in others they are inferred from the context and the user’s past
actions (low formulation effort).

e Prescriptiveness: some approaches use profile elements as hard constraints
that are added to a query (prescriptive approaches) while others use them
as soft ones: tuples that satisfy as much profile criteria as possible are re-
turned even if no tuples satisfies all of them (non prescriptive approaches).

e Proactiveness: some approaches suggest new queries based on the naviga-
tion log and on the context (proactive approaches), while others change
the current query or post process its results before returning them to the
user (non proactive approaches).

e Expressiveness: some approaches allow only the formulation of basic per-
sonalization criteria (low expressiveness) while others allow more complex
formulation (high expressiveness).

To precisely distinguish between the type of data needed in the profile,
especially for recommendation techniques, we also use the taxonomy proposed
in [101]. There, three categories are identified:

e Current-state approaches, exploiting the content and schema of the cur-
rent query result and database instance. Current-state approaches can be
based either on (i) the local analysis of the properties of the result of the
posed query or (ii) the global analysis of the properties of the database.
In both cases systems exploit (i) the content and/or (ii) the schema of the
query result or the database.

e History-based approaches, using the query logs.

e External sources approaches, i.e., approaches exploiting resources external
to the database, like ontologies, web pages, etc.

Note that these categories are not exclusive in the sense that an approach
can be both current-state and history-based.

We illustrate these criteria with the following example: consider an approach
where both the query and the profile are inferred from the past users activities
on the database, the profile being composed of complex preferences and being
used to rank the query results. Such an approach would correspond to the
following category: low formulation effort, proactive, non prescriptive, high
expressiveness, history-based.
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2.3 An overview of personalization in databases

Query personalization in databases include two types of approaches:

e The use of explicit preference operators in queries to specify profile ele-
ments. The most representative works in this category include Winnow
[28], Preference SQL [60] and Skyline [20]. This type of approaches re-
quires high formulation effort, is not prescriptive, not proactive, but is
highly expressive.

e The rewriting (expansion) of regular database queries based on a profile.
The most representative work is initiated in [64]. This approach requires
a low formulation effort, is prescriptive, not proactive and has low expres-
siveness.

Note that in these two categories, the profile is only given in terms of the
constants, attributes and tuples of the database. Thus, using the criteria intro-
duced above, all the approaches are current-state approaches.

2.3.1 Use of a dedicated operator

The basic definition of the operator computing dominating tuples is the fol-
lowing. Given a relation r with schema sch(r) and a preference C over sch(r)
defining a preference relation >¢, the Winnow operator [28], denoted w¢, is
defined by: we(r) = {t € r|(Bt' € r)(t' >c t)}.
This operator can be used to order the query answer. Indeed, the answer to
a query ¢ can be partitioned according to C, i.e., ¢ = we(q) Uwe (g — we(g)) U
. meaning that the answer can be presented by displaying we(q) first, then
we (g —we(q)), ete.

Example 2.3.1 Consider the examples given in Section 2.1.1. Suppose that
preference C is ”I prefer drama”. The query ”What are my most preferred
affordable movies?” can be expressed by: we (0 price<7(Movies)). The answer
can be presented by displaying t5 first, and then t1 and t2.

This operator has been used with various syntaxes for expressing models of
preferences, of which we give two illustrations [20, 60].

The work of Kiessling [60] enrich the SQL syntax with a PREFERRING
clause that enables the user to specify in each query the model of preference,
through the use of of specific preference constructors. Each constructor can be
used to express a specific atomic preference. Preferences can be composed with
Pareto or prioritization.

Example 2.3.2 Consider the following queries expressed with Preference SQL:
1. SELECT * FROM Movies PREFERRING HIGHEST(Duration)
2. SELECT * FROM Movies PREFERRING Genre IN ( Drama, Thriller )
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The model of preference specified by the first query is the following: for
some duration x and y, (x >greuest Y) if value x is greater than value y,
meaning that movies with highest durations will be preferred. For the second
query, the model of preference says that Drama and Thriller movies will be pre-
ferred over any other genre. More formally, if x and y are two movie genres,
(> N(Drama,Thritler) ¥) if © € {Drama, Thriller} andy ¢ {Drama, Thriller}.

A restricted form of Kiessling’s SQL extension is the addition of the Skyline
operator to SQL [20]. This is a restriction in the sense that, originally, Skyline
queries feature only numerical attributes and Pareto composition. This operator
is defined as follows. The syntax of a skyline clause is:

SKYLINE OF d; MIN, ..., d; MIN
desr MAX, ..., dy MAX
dy+1 DIFF, ..., d,, DIFF

The semantics of such a clause is that a tuple p = (p1,...,p,) dominates a
tuple ¢ = (q1,...,qn) if:
pi < g, fori=1,...k

pi > q, fori=k+1,...,1

pi=gq,fori=1+1,...,m

2.3.2 Query expansion

In the absence of a dedicated preference operator, a regular user query can be
processed and transformed with preferences, resulting in another regular query
that is typically a subquery of the initial one. We use the work of [64] to
illustrate this approach.

In this work, preferences come from a user profile which is modeled as a
graph of atomic quantitative preferences of the form (selection condition, score),
where selection condition is a regular selection predicate (that may be used to
join two tables) and score is a real between 0 and 1 indicating the intensity of
the preference. Atomic preferences are composed using a very simple principle:
composition of preference (s1,v1) with preference (s2,v2) results in preference
(s1 A s2,v1 x v2).

Query expansion is performed as follows. First, given a query, the k most
relevant preferences are selected from the profile. Then the selected preferences
are added as hard constraints to the query, and the query is finally executed.

Example 2.3.3 Consider the following user query: SELECT title FROM Movies
WHERE duration < 120. Suppose that the best preference selected from the profile
of the user who wrote the query is ”I like Lynch as Author”. Then the query
is modified, resulting in: SELECT title FROM Movies WHERE duration < 120
AND Author="Lynch’. Note that in this example, if the query is evaluated over
the instance given in Example 2.1.1, then the result is empty.

This work has been extended to take into account constraints like result
cardinality or execution time [65].
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2.4 An overview of recommendations in databa-
ses

Recently, to our knowledge, there has been only two attempts to formalize
database query recommendations for exploration purpose [24, 101]. All the ap-
proaches presented below require a low formulation effort, are proactive (a query
is suggested) and prescriptive (no soft constraint are added to the suggested
query) and offer a low expressiveness. Note that a recent work [4] proposed an
SQL-like language to let the user formulate the way recommendations are com-
puted, for reducing prescriptiveness, but requiring a higher formulation effort.
Following [101], we use the categories introduced Section 2.2 to categorize these
approaches with respect to the type of information composing the profile.

2.4.1 Current state

In [101], the authors focus on the current state approach and propose two tech-
niques to recommend queries based on the database instance and/or the current
query answer. The first technique, called local analysis, analyzes the answer to
the user query to discover patterns and uses these patterns to recommend. The
second technique, called global analysis, extends this principle to the entire
database instance. The instance would have to be analyzed off-line, for example
to discover correlations among attribute values.

Example 2.4.1 Consider the current query: SELECT Author, Genre FROM
Movies WHERE Duration > 100. Suppose that by analyzing this query answer,
it is found that the result has a lot of tuples whose genre is Drama. Then,
a possible recommendation would be: SELECT Author, Genre FROM Movies
WHERE Genre='Drama’. Suppose now that a global analysis of the database
instance shows that value ”Coen” for Author is correlated with value ”Comedy”
for Genre. Then, if the current query is: SELECT * FROM Movies WHERE
Author="Coen’' a recommendation would be: SELECT * FROM Movies WHERE
Genre="Comedy'.

2.4.2 History based

For [24], the problem of query recommendation is viewed as a sessions X tuples
matrix. With this approach, a query is represented as a vector whose arity is the
number of tuples of the database instance. The basic approach considers that
each component of such a query is either a 1, if the query used the tuple, or a 0
otherwise. A session is also represented by a binary vector which is the logical
OR of the vectors of the queries of the session. Consider a particular session S,
called the current session. Recommendations for S. are computed as follows.
First, sessions similar to S, are found, using some vector similarity measures
like e.g., cosine. For those sessions closest to S, the queries they contain are
also compared to S, using the same similarity measure. Finally, the queries of
those sessions that are the most similar to S. are recommended.
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In subsequent works [23], the authors focus on fragments (attributes, ta-
bles, joins and predicates) of queries and consider thus a sessions x query frag-
ments matrix. In this work, the matrix is used column-wise in the sense that
recommendation computation relies on fragment similarity instead of session
similarity.

We conclude this section by noting that recommendation also makes sense
to assist the user writing a query. For instance, the SnipSuggest approach [58] is
a collaborative approach that uses a query log to provide on-the-fly assistance to
users writing complex queries. The query log is analyzed to construct a graph
whose nodes are the fragments appearing in queries and edges indicate the
precedence. The edges are labelled with the probability that a fragment follows
another fragment in the logged queries. Given the beginning of a current query,
the graph is used to complete the query with the fragment that is the most
likely to appear.

Example 2.4.2 Suppose that the query log contains only the following two
queries: SELECT Title, Genre FROM Movies WHERE Actor="C. Lee" and SE-
LECT Title FROM Movies WHERE Author="Allen”. Suppose that a user starts
writing a query with only SELECT. It can be then suggested the attribute Title
since this attribute is the most likely to appear according to the query log.

2.5 Conclusion: Requirements for user-centric
approaches in data warehouses

This chapter presented an overview of personalization and recommendation ap-
proaches in databases, that transform queries with respect to a user profile. We
also introduced criteria to describe them: how the profile is expressed, used and
how complex it is, and what type of data is used for the profile (external to the
database, or internal, such as the instance, the query log, the schema).

To conclude this chapter, we introduce the requirements for user-centric ap-
proaches in the context of OLAP analysis of data warehouses. As evidenced by
e.g., [25, 96, 89] basic peculiarities of typical data warehouses can be summarized
by:

1. A data warehouse is a read-mostly database and its instance has an infla-
tionist evolution (data are added, never or very seldom deleted). It is for
instance likely that a user issues periodically similar sequences of queries
more than once, in the sense that queries may not be fully identical.

2. A data warehouse is a database shared by multiple users, mostly execu-
tives, whose interests are diverse and may vary over time. It is argued in
[16, 89, 45, 90] that user preferences are of particular importance in data
warehouse exploration. It would for instance be important to issue rec-
ommendations computed from other users’ habits (e.g., in a collaborative
filtering fashion) and at the same time respecting the user interests.
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3. A data warehouse has a particular schema that reflects a known topology,
often called the lattice of cuboids, which is systematically used for nav-
igation [52]. Roll-up and drill-down operations that allow to see facts at
various levels of detail are very popular in this context.

4. A typical analysis session over a data warehouse is a sequence of queries
having an analytical goal, each one written based on the past results of the
session. They may be expressed in a dedicated query language (like e.g.,
MDX*), may produce large results that are usually visualized as cross-tabs.
Moreover, the session has a sense w.r.t. some expectations. For instance,
the user may assume a uniform distribution of the data [94, 95] or that
two populations follow the same distribution [85]. Sessions (as sequences
of queries) are of particular importance in this context since with this
sequence of queries, the user navigates to discover valuable insights w.r.t.
her expectations or assumptions.

The following parts of this dissertation aim at developing various user-centric
approaches responding to these requirements, with a focus on the use of the
query log. In particular, the next chapter introduces models for OLAP query
logs, that will serve as bases for such approaches.

4http://msdn.microsoft.com/en-us/library/ms145506.aspx
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Modeling and constructing
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Chapter 3

Log modeling

This chapter provides the basic formal setting used throughout this dissertation.
It first describes the multidimensional framework starting with data (Section
3.1) and then various models for queries, sessions and logs (Section 3.2).

This chapter relies on materials published in [16, 37, 39, 12, 92, 9].

3.1 Multidimensional data and query languages

In this section, we recall the classical definitions and terminology used in data
warehousing and OLAP. Basic knowledge is assumed on the relational model and
query languages, as can be found in e.g., [2]. We simply recall that an attribute
A has a domain dom(A), and, given a relation instance I over a schema including
A, the active domain of an attribute A denoted adom(A) corresponds to the
values in 74 (I). (i) denotes the i" value of a tuple t.

In this dissertation, we consider facts, as subjects of analysis, placed in
the n-dimensional space produced by the analysis dimensions. A dimension
contains an aggregation hierarchy of levels representing different granularities
(or levels of detail) to study data. A fact contains analysis indicators known as
measures (which, in turn, can be regarded as fact attributes). A level of detail
for each dimension produces a group by set (also called base) in which place
the measures.

3.1.1 Hierarchies and dimensions

To keep the formalism simple, we consider cubes under a ROLAP perspective,
described by a star schema [62]. More precisely, we consider that a dimension
consists of one hierarchy, and we consider simple hierarchies without branches,
i.e., consisting of chains of levels.

Definition 3.1.1 (Levels and members) Let L be a set of attributes called
levels, and for L € L, a member is an element of Dom(L).
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Roll-up and Drill-down are two partial mappings from £ to £ defined by:
Given two levels L; and Ly, Rollup(L;) = Ly, if there exists a functional depen-
dency L; — Ly, or undefined otherwise, and Drilldown(L;) = L; if there exists
a functional dependency L; — L; or undefined otherwise.

Definition 3.1.2 (Hierarchy) A hierarchy h; is a set Lev(h;) = {Lg,...,Lq}
of levels together with a roll-up total order =, of Lev(h;), which is such that,
for any L; and Ly, in Lev(h;), Ly =n, L; if Rollup(L;) = Ly.

For each hierarchy h;, the bottom level Ly of the order determines the
finest aggregation level for the hierarchy. Conversely, the top level Ly has a
single possible value and determines the coarsest aggregation level.

A dimension is a relation used to represent a hierarchy.

Definition 3.1.3 (Dimension) A dimension D for a hierarchy h; is a relation
with schema sch(D) = Lev(h;) = {Lo,...,La}, such that Ly is the primary key
of D. A dimension table for D is an instance of D.

The set of members in a dimension D is denoted 7*(D) = U?:o 71, (D).
Given two levels L;, Ly, of a dimension D such that L = Rollup(L;), we use
my = my to denote that (m;,my) € mp, , (D). > is a transitive relation.
Given a dimension D for a hierarchy h;, we note m#! the coarsest member of
the hierarchy, i.e., the member such that #m € 7*(D) with m = mA!.

3.1.2 Multidimensional schemata, group-by sets and ref-
erences

Definition 3.1.4 (Multidimensional Schema) A multidimensional schema
(or, briefly, a schema) is a triple M = (A, H, M) where:

e A is a finite set of levels, whose domains are assumed pairwise disjoint,

e H ={hy,...,h,} is a finite set of hierarchies, (such that the Lev(h;)’s
forie{l,...,n} define a partition of A);

e a finite set of measure attributes M, each defined on a numerical domain
Dom(m).

A group-by set includes one level for each hierarchy, and defines a possible
way to aggregate data. It is sometimes referred to as a base in what follows. A
reference (or coordinate) of a group-by set is a point in the n-dimensional space
defined by the levels in that group-by set.

Definition 3.1.5 (Group-by Set and reference) Given a schema M = (A, H,
M), let Dom(H) = Lev(hy) x ... x Lev(hy,); each G € Dom(H) is called a
group-by set of M. Let G = (ak,,- .., ai,) and Dom(G) = Dom(ay,) X ... X
Dom(ag,,); each g € Dom(G) is called a reference (or a coordinate) of G.
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City Race

{ |

State RaceGroup
Region frn Year Sex Cec
AllCtes AllRaces AllYears AllSexes AllOccs
RESIDEMCE RACE TIME SEX OCCUPATION

Figure 3.1: Roll-up orders for the five hierarchies in the CENSUS schema (Mrn
stands for MajorRacesNumber)

Let >=p denote the product order!' of the roll-up orders of the hierarchies
in H. Then, (Dom(H),>p) is a lattice, that we will call group-by lattice,
whose top and bottom elements are G+ = (DIMy,...,DIM,) and GT =
(ALLq,...,ALL,), respectively.

Example 3.1.1 We introduce a running example. IPUMS is a public database
storing census microdata for social and economic research [74]. Its CENSUS
multidimensional schema includes the five hierarchies whose roll-up orders are
shown in Figure 3.1, and measures Avglncome, AvgCostGas, AvgCostWatr, and
AvgCostElect.

More formally, its schema is CENSUS = (Acensus, Hocensus, McENsUs)
with.:

Acensus = {City, State, Region, AllC'ities, Race, RaceGroup, Mrn,

AllRaces,Year, AllY ears, Sex, AllSexes, Oce, AllOccs},

Heogpnsus = {RESIDENCE, RACE, TIME, SEX, OCCUPATION},
and Mcrnsus = {Avglncome, AvgCostGas, AvgCostWatr, AvgCostElect}.

For instance, hierarchy RESIDENCE is the set of levels {C'ity, State, Region,
AllCities} with AllCities »resipence Region >=Rresipence State ~RESIDENCE
City.

FEzxzamples of group-by sets are:

Go = G+ = (City, Race, Year, Occ, Sex)
G1 = (Region, Mrn, Year, Occ, Sex)
G,=G" = (AlICities, AllRaces, AllYears, AllOccs, AllSexes)

Specialization relation over references Given two references r and r’/,
we consider the classical relation over references defined by: r = 7/ if, for all
dimensions D; with hierarchy >;, either r(:) = r/(i) or r(i) »= r'(4).

1The product order of n total orders is a partial order on the Cartesian product of the n
totally ordered sets, such that (z1,...,2n) = (y1,...,yn) iff ; = y; fori=1,...,n.
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3.1.3 Facts and cubes

A schema is populated with facts, each recording a useful information for the
decision-making process. A fact is characterized by a group-by set G that defines
its aggregation level, by a reference of G, and by a value for each measure.

Definition 3.1.6 (Fact) Given a schema M = (A, H,M), a group-by set G €
Dom(H), and a measure set V. ={v1,...,vm} C M, a fact is a couple fav =
(g,v), where g € Dom(G) and v € Dom(V'), where Dom(V) = Dom(vy) X ... %
Dom(vy,). The space of all facts for M is

Fm = U (Dom(G) x Dom(V))
GeDom(H),VCM

Example 3.1.2 An example of fact is fG, Avgincome = (('Pacific’, "White’, 2008,

'Dentist’, "Male’), (600)). Its reference is ('Pacific’,”White’,’2008’, 'Dentist’,
"Male’).

An instance of a schema is a set of facts F' C Faq, such that no two facts
characterized by the same coordinate and measure, exist in F. A Fact table F'
is a relation representing facts by tuples.

Definition 3.1.7 (Fact table) Given a schema M = (A, H, M), and a mea-

sure set V.= {v1,...,um} C M, a fact table F is a relation with schema
{LY,..., LY vi,..., 0} where for all i € [1,n], LY is the finest aggregation
level of h;, i.e., the primary key of some dimension table D;. LY, ... LY is the

primary key of F.

Finally, an n-dimensional cube is defined as the classical n 4+ 1 relation
instances of a star schema.

Definition 3.1.8 (Cube) An n-dimensional cube C = (Dy,..., Dy, F) over a
multidimensional schema M = (A, H, M) is a set of relation instances where
Dy, ..., D, are dimension tables and F is a fact table. The set of dimensions

of a cube C = (D, ..., Dy, F) is noted D(C) = {D1,...,D,}.

Definition 3.1.9 (Cells) Let C = (Dy,...,D,, F) be a cube, and let L; €
sch(D;), for all i € [1,n]. A cell ¢ is a tuple ¢ = {(m1,...,Mp,T1,...,Tm)
where (my, ..., my) is a reference over Ly,..., L, and (x1,...,2my) € dom(V).
Given a cube C and aggregation functions agg, .. .,aggm, a cell whose refer-
ence is (my,...,my) over Ly,..., Ly, is the result of the relational query (where
X is the outerjoin):
{<m1, e 7mn>} X Ty 0m (UL1:m1/\..-/\Ln:mn(

7TL1’...,Ln;aggl(v1)%v1,...,aggm(vm)%vm(
FX Dy X...XD,)))

The z; are called the measures of the cell. In what follows we will use
measures(c) to denote the measures of the cell c. ref(C) denotes the set of all
possible references of a cube C' = (Dy, ..., D,,, F), ie., ref(C) = x 7%(D;),
i€ [l,n].
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Data cube Given m aggregation functions aggs, . . ., aggm, the data cube [47]
of a cube C = (Dy, ..., Dy, F), denoted CubeBy(C), is a set of relation instances
C' = (Dy,...,Dy,, F'") where:
F = UD ¥l eseh kN [p k1 kN (
1.Lyt €sch(D1),...,Dn. LY €sch(Dn)"" D1.Ly' —=Da,...,Dn.L " =Dn
T Dy L Doy LY 0901 (01). 30 (07 (F 7 P12 M D))

The specialization relation over references is extended to cells as follows:
For two cells ¢, ¢’ of an n-dimensional cube C, ¢ is more general than ¢/, noted
c=.c,if r = r’ where r is the reference of ¢ and r’ is the reference of ¢’. Note
that this relation corresponds to the one used in the cube lattice (see e.g., [66]).

Example 3.1.3 A cube over the CENSUS schema consists of a fact table cen-
sus with schema {city, race, year, sex, occupation, avglncome, avgCostGas,
avgCostElec, avgCostWatr}, and dimension tables RESIDENCE, RACE, TIME,
SEX, OCCUPATION. with respective schema { city, region, state, allCities}, {race,
raceGroup, MRN, allRaces}, {year, allYear}, {sex, allSexes}, {occ, allOccs}.

3.1.4 Expressing multidimensional queries

Formally speaking, a query is a partial mapping from database instances to
database instances [2], which is distinct from its expression in a given language.
In this dissertation, we clearly distinguish between a query and a query expres-
sion, which is needed since a query can be specified by various query expressions.
We design by query expression a specification written in a given query language.
Out of this expression, a logical model of a query can be built, as will be seen
in the next section.

Though multidimensional queries can often be expressed using the extended
relational algebra [88], or a subset of it like GPSJ (Generalized Projection /
Selection / Join [49]), a better characterization in a dedicated language is often
preferred. The literature abounds with multidimensional languages, most of
them coming from the academic world ([5, 50, 51, 107] to name a few), some
from the industry like SQL99 and MDX. In this section we briefly present only
two languages, MDA, a formal algebra presented in [91], which captures the
cube-query in [62], and MDX, often referred to as the de-facto standard. Note
that, for simplicity, we consider queries centered on a single schema.

The Multidimensional Algebra MDA

MDA was proven to be closed, complete (regarding the cube-query in [62]) and
minimal, and consists of the following operators (we suggest to check Figure
3.2, where dots and triangles represent measures in a cell, for grasping their
intuition). All the operators are unary except for drill-across and set operators,
which operate over two cubes. We give below an informal description, details
can be found in [1].

e Selection (o,cube): By means of a logic predicate p compound of clauses
over levels, this operator allows to choose the subset of points of interest
out of the whole n-dimensional space.
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‘Selection | Roll-up / Drill-down changeBase

iDrill—across
e

.

Figure 3.2: Conceptual exemplification of the MDA operators

e Roll-up (v fl(:zsmzelfffljf(mwsuren)cube): It groups data instances in the
cube based on an aggregation hierarchy. This operator modifies the gran-
ularity of data by means of a many-to-one relationship which relates in-
stances of two levels in the same hierarchy, corresponding to a part-whole
relationship. About drill-down (i.e., the counterpart of roll-up, represented
with the same formalization but with a one-to-many relationship between
level; and level;), it can only be applied if we previously performed a roll-
up and did not loose the correspondences between instances. Therefore, a
drill-down is often seen as the sequence of roll-up operations allowing to
reach a desired granularity from the finest granularity.

e Projection (mMmeqsures ..., measure, ctbe): It selects a subset of measures.

e ChangeBase (Xpase; sbase,cube): This operator reallocates exactly the
same instances of a cube into a new n-dimensional space with exactly the
same number of points, by means of a one-to-one relationship. Actually,
it allows to replace the current base by one of the alternatives, if more
than one set of dimensions identifying the data instances (i.e., alternative
bases) exist.

e Drill-across (cube; <t cubes): This operator fuses the measures in two
cubes related by means of a one-to-one relationship. The n-dimensional
space remains exactly the same, only the instances placed on it change.

e Set Operations (cube;Ocubey): These operators allow to operate two
cubes if both are defined over the same n-dimensional space. We con-
sider union (U), difference (\) and intersection (N). Set operations are
defined for cubes having the same schema and such that, in the case of
union, whenever two cells have the same reference, they also have the same
measures.

The expressive power of this algebra is thoroughly discussed in [1]. Briefly,
it fully matches the well-known cube-query pattern presented in [62]. For this
reason, it is assumed to be expressive enough for capturing analytical efforts.
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MDX

The MDX (MultiDimensional eXpressions®) language is a de-facto standard
for querying multidimensional databases. Some of its distinguishing features
are the possibility of returning query results that contain data with different
aggregation levels and the possibility of specifying how the results should be
visually arranged into a multidimensional representation. Albeit very powerful
in terms of expressiveness, it is not thoroughly formalized and is not closed under
composition [70]. In this dissertation we consider MDX queries that aggregate
data at one or more group-by sets, optionally select them using a predicate in
CNF, and return one or more measures. The semantics of such an MDX query
is that of a union of GPSJ queries® whose group-by sets are the cross product
of n sets of levels, one for each hierarchy. This semantics corresponds to the
following subset of MDX:

e (Clauses SELECT, FROM, WHERE are supported.

e All functions for navigating hierarchies are supported: AllMembers, Ancestor,
Ascendants, Children, etc.

e All functions for manipulating sets of members or tuples are supported
(Crossjoin, Except, Exists, Extract, Filter, Intersect, etc.) except the union.

e All functions for manipulating members/tuples are supported.

Example 3.1.4 We give two expressions of a query over the CENSUS schema,
that asks for the Female average income by city and race. The MDX formulation
18:

SELECT Race. MEMBERS ON COLUMNS,
City. MEMBERS ON ROWS

FROM CENSUS

WHERE (Female,Avglncome)

This query, expressed in MDA, is:

Occ—allOccs years—allY ears
0 Sex='Female’ (,yavg(angncome) (’Ym;g(avglncome) (ﬂ-avg‘rncome(OENSUS)))))'

We have distinguished between a query and its expression in a given lan-
guage. To leverage query logs, we need to derive information from this expres-
sion and other database objects, which we call a query model. This is the topic
of the following section.

2http://msdn.microsoft.com/en-us/library/ms145506.aspx

3A GPSJ query takes form wakl,m,akwAggrap(x) where, in our context: x is the star
join between the fact table and the n dimension tables; p is a selection formula in CNF;
{ak,,...,ax,} is a group-by set; and Aggr is a list of aggregations of the form a;(m;), where
m; is a measure and o is an aggregation operator.
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3.2 Modeling queries and logs

As pointed out above, using a query model to reason about query allows to
be independent from the query expression. In this section we first review the
literature for works where database queries are modeled, and we give three
examples of logical query models used in the subsequent chapters. We use the
following definitions.

e Query: the function mapping a database instance to another database
instance.

e Query expression: the expression of the query in a given query language.

e Query model: a logical representation of the query that can include vari-
ous information about it, derived from its expression and potentially the
database objects like the instance, the schema or even the query log.

Note that a query model may correspond to more than one query expres-
sions, while a query expression corresponds to only one query model. Usually
a function is used to construct the model from the query expression (and po-
tentially the database objects). When the context is clear, we will use the term
query to refer to the query expression or model.

3.2.1 Query models in the literature

In this subsection, we review how queries are logically modeled from query
expression. We start by distinguishing the data structure used (vector, set,
etc.) to represent the query. We see that two categories are very often used:
vector and set (or set of sets). In the first category (vector), queries are modeled
as a vector of some features with either a score or a binary value for each feature.
In the second category (set), query are modeled either by one or more sets. In
the latter case, one set is used for representing a particular part of the query,
like e.g., the attributes of the query schema (projection or SELECT clause) or
the table names in the cross product (FROM clause).

The information used to model the query can be taken from the query
expression itself, e.g., under the form of its fragments (selection predicate, pro-
jection, etc.) and/or taken from the database over which the query is to be
evaluated, e.g., the database instance, schema (including usable physical struc-
tures), etc.

The part of the query expression that can be used ranges from the simple
uninterpreted query text ([110]) to the full list of query fragments [34]. When
the fragments are used, all or only parts of them can be taken into account (e.g.,
for selection predicate, only the selection attribute is used in [6]).

On the other hand, the information used to model the query can also be
taken from other sources related to the database queried. More precisely, that
can be:

e The database instance: the query model can rely on the extension of
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the database or not, e.g., if the query result or the active domain of the
database attributes are used.

e The statistics used by the query optimizer, like e.g., table sizes, attribute
cardinalities, etc.

e The database schema, e.g., information on key definition or which index
can be used to process a selection.

e The query log, if the query model relies on the other queries that have
previously been launched on the database, e.g., a query is modeled in
terms of its link with other queries or how many times it appears in the
log.

This is summarized in the table 3.1, where S, P and C denote respectively
selection predicates, projections or group by sets, and cross product.

Ref. Model | Source Part of fragment used
48] sets S, P, C attributes, values, table names
24] vector | db instance, log

8] vector S, P, log attributes, values

6] vector S, db instance attributes, values

13] vector | S, P, log attributes

35] vector | S, C, db statistics

101] (1) | vector | log

101] (2) | set db instance

37] set db instance

93] sets S, P attributes

42] set P, db schema, db statistics attributes

110] string SQL sentence

109] graph S, P, C attributes, table names

Table 3.1: Query models

We now introduce three particular query models for multidimensional queries,
used throughout this dissertation.

3.2.2 No evaluation: Queries as a collection of fragments

A multidimensional query can be modeled as a set of fragments, extracted from
the query expression [9].

Definition 3.2.1 (Query Fragments from a multidimensional schema)
Given schema M = (A, H, M), a query fragment is either a level in A, a mea-
sure in M, or a simple Boolean predicate involving a level and/or a measure. A
qf-set is a set of query fragments.

A multidimensional query over a schema M = (A, H, M) can be modeled by
a qf-set that includes at least one level for each hierarchy in H and at least one
measure in M. For instance, representing an MDX query as a qf-set ¢ means:

1. Including a fragment m in ¢ for each measure m returned by the MDX
query.

2. Including a fragment a in ¢ for each level a used in the MDX query to
aggregate data.
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3. Including a fragment (a € V) in ¢ for each simple predicate on a level or
measure ¢ used in the MDX query to filter data.

We give an example of fragments extracted from MDX queries [9].

Example 3.2.1 The MDX query on the CENSUS schema

SELECT Avglncome ON COLUMNS,

Crossjoin(OCCUPATION.members,
Crossjoin(Descendants(RACE.AlIRaces,RACE.Mrn),
Descendants(RESIDENCE.AlICities, RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

is the union of four GPSJ queries:

T AllCities,AllRaces,Occ, Year,AllSexes, AV G (Avglncome) O Year=2009 | X CENSUS

T AliCities,Mrn,Occ, Year,AllSexes, AV G (Avglncome) 9 Year=2009 (XCENSUS
TRegion,AllRaces,Occ, Year,AllSexes, AV G (Avgincome) 0 Year=2009 (XCENSUS

TRegion,Mrn,Occ, Year,AllSexes, AV G (Avglncome) O Year=2009 XCENSUS)

and is represented by the qf-set ¢ = {Region, AllCities, Mrn, AllRaces, Occ, Year,
AllSexes, Avglncome, (Year = 2009)}.

An alternate representation is to model the query by a triple better struc-
turing the 3 components of a multidimensional query: A measure set, a set of
selection predicates and a group-by set.

Definition 3.2.2 (Fragment-based OLAP query model) The model of a
query over schema M = (L, H, M) is a triple ¢ = (G, P, Meas) where:

1. G € Dom(H) is the query group-by set;

2. P ={p1,...,pn} is a set of Boolean predicates, one for each hierarchy,
whose conjunction defines the selection predicate for q; they are of the
forml=wv, orl € V, with | a level, v a value, V a set of values. Con-
ventionally, we note p; = TRUE; if no selection on h; is made in q (all
values being selected);

3. Meas C M 1is the measure set whose values are returned by q.
Example 3.2.2 An example of model of a query on the CENSUS schema is:

= (G*, TRUE, Avgincome)

where G+ = (AllCities, AllRaces, AllYears, AllOccs, AllSexes) and TRUE =
{T RUERgsipence, TRUErace, TRUETIME, TRUEoccupaTion, T RUESEx } .
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3.2.3 Partial evaluation: Queries as sets of references

A query can be modeled as a set of tuples, obtained with a partial evaluation of
the query expression. For instance, a multidimensional query over a star schema
can be evaluated only over the dimension tables, resulting in a set of references
[16, 37, 12]. Note that obtaining this set of references from a query expression
can be computed efficiently when dimension tables fit in main memory. In that
case, a query can be expressed intentionally as a tuple of sets, one set of members
in each dimension. The cross-product of these sets is a set of references, which
forms the query model.

Definition 3.2.3 (Query modeled as a set of references) Given an n-di-
mensional cube C = (D1, ..., Dy, F) over a multidimensional schema M =
(A,H, M), let R; be a set of members of dimension D;,Vi € [1,n]. A query
expression ¢ = (R1, ..., R,) is a tuple of sets of members, one for each dimen-
sion D; of C. Given such an expression, the query model of q is the set of
references Ry X ... X Ry,.

Example 3.2.3 consider the following MDX query on the CENSUS schema:

SELECT Avglncome ON COLUMNS,
Crossjoin(SEX.members,{ RESIDENCE.Region.Pacific,
RESIDENCE.Region.Atlantic}) ON ROWS

FROM CENSUS WHERE TIME.Year.[2001]

An example of model of this is:

{Pacific, Atlantic} x {AllRaces} x {2001} x {AllOccs} x {Male, Female}

3.2.4 Full evaluation: Queries as their results

Finally, a query can be modeled as the set of its answer when evaluated over a
database instance [39]. It can be defined as follows: Given a cube instance and
a query expression, the query models is the set of facts extracted from the data
cube by the query expression. Obviously, this set can be empty.

3.2.5 Modeling sessions and logs

In this dissertation, we use the term log to refer to the actual analytical queries
launched over a data warehouse. The term workload, very common in the
literature on query optimization, is usually seen as a set of queries (or more
precisely query expressions). This dissertation develops the idea that the actual
query log is more than a set of queries, and can be seen as a more complex
structure of which we give a more accurate definition.

Indeed, in an OLAP context, queries are often not isolated from one another,
as shown by [93], that reports a study of a query log of 18 users over a two months
period in a large chemical company. The log showed that users interactively
formulate their next query based on the result of the previous query, illustrating
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the navigational nature of an analytical session (or analysis) over a data cube.
This is especially the case in discovery driven analysis [94, 95, 97]. We thus define
an analytical session, or session for short, as a sequence of query expressions.

Definition 3.2.4 (OLAP Session) Let C = (Dy,...,D,, F) be an n-dimen-
sional cube over a multidimensional schema M = (A, H,M), and Sc be a
set of query expressions over C in a given language. A session s of k query
expressions s = (q1,...,qx) over C is a function from an ordered set pos(s) of
integers (called positions) of size k to Sc.

As query models are constructed from query expressions, a session can also
be seen as a sequence of query models.
A log L is a finite set of sessions, noted L = {s1,...,sp}.

Definition 3.2.5 (Log) Let C = (Dy,...,Dy, F) be an n-dimensional cube
over a multidimensional schema M = (A, H,M). A log L is a finite set of
sessions over C.

Note that if sessions are assumed to be launched one after the other (i.e.,
the sessions over the data warehouse are not concurrent), then a log itself can
be seen as a sequence of query expressions, hence as a session.

We denote the set of query expressions of a session s by queries(s) and the
set of query expressions of a log L by queries(L). We note ¢ € L for a log L if
q € queries(L).

Example 3.2.4 An example of OLAP session of length 38 on the CENSUS
schema is s = {q1, g2, q3), where the fragment-based query models are:

q1 =(G+, TRUE, { Avgincome})
g2 =(G1, TRUE, {Avglncome})
g3 =(G1,{Year = 2011, TRUERACE, - - -}, {Avglncome})

where TRUE =
{TRUEResipence, T RUErace, T RUETIvE, T RUEoccupaTion, T RUEsex } .
Note that the user here applied a roll-up operator to move from qi to qo,
and a slice operator to move from qs to q3.

3.3 Conclusion

This chapter introduced various models for OLAP query logs. Logs are mod-
eled as sets of sessions, sessions being modeled as sequences of OLAP queries.
Three main ways are given for modeling queries: as unevaluated collections of
fragments (group by sets, sets of selection predicates, sets of measures), as sets
of references obtained by partially evaluating the query over dimensions, and as
their answers. Importantly, answers or sets of references can be obtained from
the collection of fragments.
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Intuitively, these three models can be seen as three different focuses on
how the user interacts with the cube, where the importance is either the way
the query is written (unevaluated queries), or the part of the cube queried
(partially evaluated queries), or the values retrieved (fully evaluated queries).
It is also worth noting that both the effectiveness and efficiency of the user-
centric approach depends on the query model used. Indeed, a trade-off exists,
that can be expressed as follows. On the one hand, modeling queries as their
results allows to leverage the knowledge extracted with the query, but requires
important resources to store or 