
HAL Id: tel-01170937
https://hal.science/tel-01170937

Submitted on 6 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging query logs for user-centric OLAP
Patrick Marcel

To cite this version:
Patrick Marcel. Leveraging query logs for user-centric OLAP. Computer Science [cs]. université de
Tours, 2012. �tel-01170937�

https://hal.science/tel-01170937
https://hal.archives-ouvertes.fr

UNIVERSITÉ FRANÇOIS - RABELAIS

DE TOURS

Année Universitaire : 2012-2013

HABILITATION À DIRIGER DES RECHERCHES

Leveraging query logs for user-centric OLAP

Discipline : Informatique

présentée et soutenue publiquement

par :
Patrick Marcel

le : 13/11/2012

JURY:
(Par ordre alphabtique)

Prénom Nom Grade Établissement d’exercice

M. Mokrane Bouzeghoub Professeur des universités Université de Versailles
Saint-Quentin-en-Yvelines

M. Jérôme Darmont Professeur des universités Université Lyon 2
M. Arnaud Giacometti Professeur des universités Université François Rabelais

Tours
M. Timos Sellis Professeur National Technical University

of Athens
M. Esteban Zimanyi Professeur Université Libre de Bruxelles

Contents

I Introduction 9

1 The data deluge and its impact on OLAP users 10
1.1 The data deluge . 10
1.2 Are BI tools designed for BI users? 11
1.3 Leveraging OLAP query logs for user-centric OLAP 13

2 An overview of user-centric approaches in databases 15
2.1 Basics of preference expression and recommendation 16

2.1.1 Basics of preference expression 16
2.1.2 Basics of recommender systems 19

2.2 Categorisation of the approaches 21
2.3 An overview of personalization in databases 23

2.3.1 Use of a dedicated operator 23
2.3.2 Query expansion . 24

2.4 An overview of recommendations in databases 25
2.4.1 Current state . 25
2.4.2 History based . 25

2.5 Conclusion: Requirements for user-centric approaches in data
warehouses . 26

II Modeling and constructing query logs 28

3 Log modeling 29
3.1 Multidimensional data and query languages 29

3.1.1 Hierarchies and dimensions 29
3.1.2 Multidimensional schemata, group-by sets and references 30
3.1.3 Facts and cubes . 32
3.1.4 Expressing multidimensional queries 33

3.2 Modeling queries and logs . 36
3.2.1 Query models in the literature 36
3.2.2 No evaluation: Queries as a collection of fragments 37
3.2.3 Partial evaluation: Queries as sets of references 39
3.2.4 Full evaluation: Queries as their results 39
3.2.5 Modeling sessions and logs 39

2

3.3 Conclusion . 40

4 Constructing the log 42
4.1 Principle and running example 42

4.1.1 Principle . 42
4.1.2 A running example . 43

4.2 Multidimensional characterization of queries 44
4.2.1 Mapping OLAP operators with relational operators . . . 44
4.2.2 From relational queries to multidimensional queries 45

4.3 Normalization of multidimensional expressions 47
4.3.1 A normal form for multidimensional expressions 47
4.3.2 Equivalence rules for the multidimensional algebra 48
4.3.3 Normalization algorithm 49

4.4 Detecting sessions . 50
4.5 Conclusion . 52

III Manipulating logs 53

5 Languages for logs 54
5.1 Binary relations over sessions . 54

5.1.1 Relations over queries . 54
5.1.2 Relations over sessions . 57

5.2 A relational language for manipulating logs 59
5.2.1 Intuitions . 59
5.2.2 Formal definitions . 59
5.2.3 Properties . 61

5.3 Advanced manipulations . 61
5.3.1 Summarizing and generalizing a log 61
5.3.2 Personalization . 62
5.3.3 Query recommendation 62

5.4 Conclusion . 62

6 Comparing sessions 64
6.1 Approaches for comparing queries and sessions 64

6.1.1 Comparing queries . 64
6.1.2 Comparing sequences . 65

6.2 Requirements for similarity measures for
OLAP sessions . 67

6.3 Similarity measures for OLAP queries 69
6.3.1 Similarities for evaluated or partially evaluated queries . . 69
6.3.2 Similarities for unevaluated queries 70

6.4 Similarity measures for OLAP sessions 72
6.4.1 An Extension of the Levenshtein Distance 73
6.4.2 An Extension of the Dice Coefficient 74
6.4.3 An Extension of Tf-Idf . 74
6.4.4 An extension of sequence alignment 76

3

6.5 Conclusion . 79

IV Log-driven user-centric analysis 81

7 Extracting profile information from the log 82
7.1 Extracting simple preferences over multidimensional data 82

7.1.1 Preference definition . 82
7.1.2 Preference extraction . 83

7.2 Extracting navigational habits 84
7.2.1 Simple navigational habits 85
7.2.2 Extracting habits . 85

7.3 Extracting analysis discoveries 86
7.3.1 Identifying relevant pairs of cells 87
7.3.2 Identifying relevant queries 89
7.3.3 Extracting investigations 90

7.4 Conclusion . 91

8 Personalizing queries with a single user log 92
8.1 Use of dedicated operators . 92

8.1.1 The MyMDX preference language 92
8.1.2 Using unevaluated queries 94
8.1.3 Using partially evaluated queries 97

8.2 Query expansion . 100
8.2.1 Using unevaluated queries 100
8.2.2 Using partially evaluated queries 101
8.2.3 Using fully evaluated queries 101

8.3 Conclusion . 102

9 Collaborative recommendations with a multi-user log 103
9.1 An history-based and current state approach 103

9.1.1 Leveraging past investigations 103
9.1.2 Computing and presenting recommendations 104

9.2 Pure history-based approaches 106
9.2.1 Leveraging similar sessions 106
9.2.2 Leveraging navigational habits 109

9.3 Conclusion . 110

V Conclusion 112

10 Towards analytical sessions of better quality 113
10.1 Summary . 113

10.1.1 The contributions . 113
10.1.2 Assessing the contributions 114
10.1.3 Critical analysis of the contributions 115

10.2 Perspectives . 116

4

10.2.1 An envisioned architecture for user-centric query answer-
ing in data warehouses . 116

10.2.2 Assessing the quality of analytical sessions 118

5

List of Figures

2.1 Examples of preference composition 18

3.1 Roll-up orders for the hierarchies in the CENSUS schema 31
3.2 Conceptual exemplification of the MDA operators 34

4.1 Exemplification of three SQL analytical queries 43

5.1 Specialization relation over sessions 58

6.1 Perceived similarities for OLAP queries 69
6.2 The time-discounting function . 78

9.1 A navigation plan . 106

10.1 The templates used to generate sessions 115
10.2 A user-centric query answering architecture 116

6

List of Tables

3.1 Query models . 37

4.1 Mapping between the relational and MDA operators 45
4.2 MDA equivalence rules . 48

6.1 Query comparison approaches at a glance 66
6.2 Queries for Example 6.4.2 . 74
6.3 Query similarities for Example 6.4.2 74
6.4 Query similarities for Example 6.4.5 78
6.5 OLAP session alignment matrix for Example 6.4.5 79

9.1 Queries for Example 9.2.1 . 108

10.1 Summary of the contributions . 114

7

List of Algorithms

1 Obtaining the MAC of a relational query 46
2 Bridging two NMACs . 51
3 Extract rules with support and confidence adjustment 85
4 Detecting investigations . 90
5 Select fragments for personalisation 95
6 makesIneffective . 95
7 similar . 96
8 Compute maximal subset . 99
9 Recommendations for a current query 105
10 recommendDrilldown . 105
11 Recommending leveraging similar sessions 107
12 Select fragments for recommending 110

8

Part I

Introduction

9

Chapter 1

The data deluge and its
impact on OLAP users

This chapter introduces the context of the dissertation and outlines its contribu-
tion. Section 1.1 exposes the challenges around the management and querying
of nowadays amounts of information for decision making purpose. Section 1.2
focuses on the data warehouse context, and points out the need for tools with
better user-centric capabilities as a way to cope with the data deluge. Finally,
Section 1.3 briefly introduces the contribution and presents the dissertation out-
line.

This chapter uses materials appearing in [71] as well as the description of
the IT4BI (Information Technologies for Business Intelligence) Erasmus Mundus
Master’s Course1, and especially the needs analysis underlying this programme.

1.1 The data deluge

In nowadays knowledge society, people and organizations are immersed in a
constantly flowing torrent of information. According to a recent article of The
Economist, mankind created 150 exabytes (billion gigabytes) of data in 2005.
In 2010, it will create 1,200 exabytes 2. Data continues to grow out of control.
Since 2007, IDC has been sizing what it calls the Digital Universe, or the amount
of digital information created and replicated in a year. Last year’s report stated
the following facts. “In 2009, the Digital Universe grew by 62% to nearly 800,000
petabytes. In 2010, the Digital Universe will grow almost as fast to 1.2 million
petabytes, or 1.2 zettabytes. This explosive growth means that by 2020, our
Digital Universe will be 44 times as big as it was in 2009.”3

Businesses succeed or fail based largely on how effectively they collect, clean,
transform, integrate, store, explore, analyze, and monitor this information to

1http://it4bi.univ-tours.fr
2http://www.economist.com/printedition/2010-02-27
3http://idcdocserv.com/925

10

http://it4bi.univ-tours.fr
http://www.economist.com/printedition/2010-02-27
http://idcdocserv.com/925

predict future trends and make the best decisions. To succeed, organizations can
no longer afford to treat information technologies as administrative tools, but
need to embrace them as a strategic asset and embed them fully in their decision-
making process. With such amounts of data, it is of paramount importance to be
able to access relevant information efficiently, using sophisticated manipulation
and search tools.

This is termed usually “big data” and asks extending traditional database
architectures. Business Intelligence (BI) [26] promises an organization the capa-
bility of collecting and analyzing internal and external data to generate knowl-
edge and value, providing decision support at the strategic, tactical, and opera-
tional levels. Since its inception 20 years ago, BI has become a huge industrial
domain and a major economic driver, unaffected by the economic crisis, and
is still growing fast, consistently mentioned among the top priorities of Chief
Information Officers worldwide, as evidenced by analyst firms Forrester4, IDC5

and Gartner6.
Business Intelligence has historically been based on a combination of Data

warehousing [55, 44], the process of storing historical data in a structure designed
for efficient processing, On-Line Analytical Processing (OLAP), the process of
efficiently enabling common analytical operations on the multidimensional view
of data, and Data mining [52], the mathematical and statistical methods neces-
sary to transform this raw data into valuable information for making business
decisions. More precisely, a data warehouse can be seen as a large database with
a particular topology, where data is seen as a cube, shared by many analysts who
have various interests and viewpoints, explored interactively by sequences of so-
called OLAP queries [95] or from which knowledge is automatically extracted
using data mining algorithms.

Data warehousing and OLAP are now mature technologies, having attracted
a lot of attention from the academic and industrial community, and benefiting
from the maturity of relational databases. Noticeably, the major part of this
attention has been devoted to the efficient implementation and querying of the
warehouse, and very little attention has been paid to the quality of the analysis
and the ease of use of such technologies.

1.2 Are BI tools designed for BI users?

It has been recently observed that relational database management systems
(RDBMSs) are quite uneasy to use, driving querying or navigation into huge
amount of data a very tedious process, and that these systems should be more
user-friendly [54]. BI tools, and especially OLAP tools, which are often imple-
mented as Relational OLAP (ROLAP) engines and are thus based on relational
database technology, also suffer from the same limitation. Recent studies showed
that BI tools, although powerful, are often underused by decision makers, who

4http://www.forrester.com/rb/Research/market_overview_business_intelligence_

software_market/q/id/55034/t/2
5http://www.idc.com/research/viewdocsynopsis.jsp?containerId=220987
6http://www.gartner.com/it/page.jsp?id=856714

11

http://www.forrester.com/rb/Research/market_overview_business_intelligence_software_market/q/id/55034/t/2
http://www.forrester.com/rb/Research/market_overview_business_intelligence_software_market/q/id/55034/t/2
http://www.idc.com/research/viewdocsynopsis.jsp?containerId=220987
http://www.gartner.com/it/page.jsp?id=856714

frequently rely on static dashboards [86, 32, 17] instead of using the full poten-
tial of the tools. OLAP tools that go beyond simple reporting are considered
tedious of use. Moreover, decision making is inherently a collaborative activity,
which is largely overlooked by BI tools [17], as are the individual needs of the
decision makers [90].

To answer these limitations, it is now commonly agreed that BI should bene-
fit from a combination with Web 2.0 approaches (a focus on user empowerment,
social networks, and community collaboration), a trend often referred to as BI
2.0 [105]. Indeed, in domains related to the Web like Information Retrieval or E-
commerce, user-centric approaches like personalization or recommendation have
been proved successful (see e.g., [27]). Such approaches are very relevant in a BI
context, where the user may not accept to spend too much time conceiving the
query to browse or analyze a data warehouse. In addition, she may not accept
that the query’s answer shows too many or too few results. And, even if the size
of the answer is acceptable, she may be relieved to see the system automatically
suggesting queries that will display other answers of interest, especially if she
is left with the task of navigating the database to analyze the data it contains,
which is typical of an OLAP user navigating a data warehouse using OLAP
queries [95] that may return large answers. In such a context, being able to
personalize or recommend queries is seen as particularly relevant [90].

It turns out that user-centric approaches in databases, like query personal-
ization and query recommendation, are indeed getting more and more attention.
Using preferences to personalize queries has been investigated for the last ten
years [102], and recommending queries [101, 23] is emerging as a promising way
of supporting the user browsing large databases.

In databases, query personalization and recommendation can be seen as
techniques for computing a query q′ from another query q, using information
about the user and the context, called profile in what follows. More precisely,
they can be defined as follows:

• Query personalization: given a database query q and a profile, compute a
query q′ ⊆ q7 that has an added value w.r.t. the profile.

• Query recommendation: given a database query q and a profile, compute a
query q′ such that, in general, neither q′ ⊆ q nor q ⊆ q′, that has an added
value w.r.t. the profile. Note that computing a query q′ that includes q
usually corresponds to query relaxation (see e.g., [56, 75]).

For instance, a user query asking for the Average income of female employees
in all European countries for the past year, could be personalized to focus on
France and Germany only, if the user profile indicates that in the recent past,
this user was especially interested in these countries. On the other hand, the
same query could lead to recommend to the user the query Average income of
male employees in all European countries for the past year if the user profile
indicates that other users similar to that user often evaluated this latter query
after the former one.

7In the classical sense of query inclusion, i.e., whatever the database instance, the answer
to q′ is always a subset of the answer to q.

12

Achieving user empowerment without asking for too much formulation ef-
fort, while remaining proactive, can be done using approaches based on the
history, i.e., the traces left by the users during former activities. Actually, it
has already been pointed out the necessity to come up with flexible, powerful
means for analyzing the issued queries, and decompose, store and handle them
in a dedicated subsystem in order to better support any decisional task with
the knowledge captured in the analytical queries [57]. Evidences of this need
are given in [59], where the authors carried out tests demonstrating that brows-
ing through past SQL query sessions helped the users by speeding up query
composition.

Strangely enough, although highly relevant to BI in general and OLAP
in particular, user-centric approaches, especially the ones based on leveraging
past user queries, have attracted relatively little attention from the BI/data
warehouse community.

1.3 Leveraging OLAP query logs for user-centric
OLAP

This dissertation is a contribution to the huge task of developing user-centric
OLAP. It focuses on the use of former queries logged by an OLAP server to
enhance subsequent analyses.

This dissertation is organized in three main parts: Part II show how a log of
OLAP queries can be modeled and constructed, and Part III focuses on how the
log can be manipulated. These two parts provide the basic framework for taking
advantage of OLAP query logs. Finally Part IV presents various personalization
and recommendation techniques for achieving user-centric OLAP by leveraging
the prepared log.

More precisely, after reviewing the basics of user-centric techniques like per-
sonalization and recommendation, and their use in a database context (chapter
2), Chapter 3 begins Part II by introducing the models of OLAP data, queries,
sessions as sequences of queries and logs as sets of sessions. The corner stone of
this modeling task is the modeling of queries, since the way queries are consid-
ered (fully, partially, or non evaluated) impacts how the log can be exploited for
user-centric techniques. Given that not all query logs produced by an OLAP
system respect such a model, Chapter 4 presents a technique to identify OLAP
sessions, based on the semantic connections between queries, in a log where
sessions need to be identified.

Part III begins with Chapter 5 that introduces a language for manipulating
and querying query logs, based on the relational algebra. In particular, the op-
erators of this language are parametrized by relations over sessions and queries.
Some such relations are introduced in this chapter, and Chapter 6 is devoted to
similarity measures to compare log objects (queries and sessions) that can be
used to build such relations. In this chapter, various similarity measures are pro-
posed, tailored for OLAP queries, and extending classical similarity measures
for sequences.

13

The last main part presents various personalization and recommendation
techniques taking advantage of query logs to support OLAP analyses. Part IV
indeed begins with Chapter 7 that presents various techniques for extracting
relevant knowledge from the query log. This knowledge includes simple pref-
erences, navigational habits and discoveries made during former explorations.
Chapter 8 describes approaches for personalizing a user’s current OLAP queries,
based on this user’s former sessions. As for classical databases, these approaches
can use dedicated operators for expressing preferences, or be based on query
expansion. Chapter 9 presents approaches for computing collaborative query
recommendations based on a multi-user log. These approaches can be based on
information extracted from the current state of the database and the query, or
be history based, i.e., leveraging the query log.

Finally chapter 10 concludes this dissertation by reviewing and discussing
the contributions, and introduces future research directions.

14

Chapter 2

An overview of user-centric
approaches in databases

This chapter provides an introduction to two popular user-centric approaches
adopted by the database community, namely personalization and recommenda-
tion. More precisely, it will try to answer the following two questions:

• Given a database query q, how to to cope with too many or too few results?
Personalization can be used to answer this question. If the query result
is too large then being able to add preferences to this query gives a way
of filtering out irrelevant results, or ranking the query results to focus on
the most relevant first. Note that, personalization may also be used if
the query result is too small, since then selection predicates, also called
hard constraints, could be turned into preferences (or soft constraints) to
weaken this query.

• Given a sequence of queries over a database, how to suggest queries to
pursue the session? In this case, what the user did in the past, or al-
ternatively, what similar users did in the past, can serve as a basis for
recommending relevant queries to complement the current query answer.

Section 2.1 recall basic definitions on preference formulation and recom-
mender systems. Section 2.2 introduces the criteria used throughout this disser-
tation to characterize the various approaches. Sections 2.3 and 2.4 respectively
overview personalization and recommendation in databases. Finally, Section 2.5
lists the peculiarities of data warehouses and OLAP, that must be taken in to
account for user-centric approaches.

This chapter uses materials appearing in [71].

15

2.1 Basics of preference expression and recom-
mendation

2.1.1 Basics of preference expression

We begin by explaining the basics of preference modeling. A more comprehen-
sive introduction can be found in [102].

Qualitative and quantitative preferences

Two types of approaches are used to express preferences. Qualitative approaches
express relative preferences i.e., ”I like a better than b”. Such a preference is
noted a > b where > is usually a Strict Partial Order (SPO). An SPO is a
binary relation > over a set O which is

• Irreflexive, i.e., for all a ∈ O, ¬(a > a)

• Asymmetric, i.e., for all a, b ∈ O, if (a 6= b) and (a > b) then ¬(b > a)

• Transitive, i.e., for all a, b, c ∈ O, if (a > b) and (b > c) then (a > c)

Given a preference relation >, the indifference relation ∼ is defined by:
(a ∼ b) if ¬(a > b) and ¬(b > a). It expresses that a and b are not comparable.
Particular partial orders of interest are Total Orders (TO) and Weak Orders
(WO). A relation > is a TO if for every a and b, either (a > b) or (b > a). > is
a WO if > is a SPO and ∼ is transitive.

Example 2.1.1 Consider the following database instance:

Movies Author Genre Price Duration
t1 Coen Comedy 5 90
t2 Coen Comedy 6 100
t3 Coen Comedy 7 80
t4 Allen Drama 7 120
t5 Lynch Drama 5 150

The preference ”I prefer Lynch movies over Allen movies and Allen movies
over Coen movies” entails that tuple t5 is preferred to tuple t4 and tuple t4 is
preferred to tuples t1, t2, t3. As preferences are assumed to be transitive, we say
that t5 dominates all the other tuples. Note that this preference says nothing
e.g., for t1 and t2, neither for t1 and t3.

Quantitative approaches express absolute preferences, i.e., I (do not) like a
to a specific degree. They are based on Scoring / Utility Functions. I like a
better than b is defined by u(a) > u(b), where u is a scoring function.

Quantitative approaches are often said to be less general than qualitative
approaches in the sense that, in order to be representable using scoring functions,
a preference relation has to be a WO, which implies that the corresponding
indifference relation has to be transitive. But on the other hand, only scoring
functions can accurately express the intensity of preferences.

16

Example 2.1.2 The preference ”I prefer Lynch movies over Allen movies and
Allen movies over Coen movies” can be expressed by the following scoring func-
tion (assuming that scores range from 0 to 1):

• ”I like Lynch” corresponds to a score of 0.9

• ”I like Allen” corresponds to a score of 0.8

• ”I like Coen” corresponds to a score of 0.5

It can easily be seen that for instance, preference ”I prefer cheaper movies,
given that author and genre are the same” (i.e., t1 is preferred to both t2 and
t3, but it is not preferred to t4 or t5) cannot be expressed with scoring functions.

Note that preferences can be expressed over sets of objects using preferences
expressed over objects [21]. Given a set of objects O and a preference relation
>O over O, subsets of O can be ordered w.r.t. >O. An example of order over
2O is given by: let X and Y be two subsets of O, X is preferred to Y , denoted
X >S Y , if for every y ∈ Y , there exists x ∈ X such that x >O y. If >O is a
PO over O, then >S is a PO over 2O.

Preference composition

Preferences can be defined extensionally under the form of relation instances,
or intentionally. In the latter case, the intentional definition is called a model
of preference. Preference composition follow the approach used to express pref-
erences and thus can be qualitative or quantitative.

Qualitative composition In what follows, let T be a set of tuples and >1 and
>2 be two preference relations over T . With single dimensional composition,
preferences are expressed over a single relation. Common single dimensional
composition includes Boolean Composition, Prioritized Composition, Pareto
Composition and Lexicographic Composition.

Boolean composition involves a boolean operator, for instance:

• Intersection, i.e., R = (>1 ∩ >2) with (t R t′) if (t >1 t
′) and (t >2 t

′)

• Union, i.e., R = (>1 ∪ >2) with (t R t′) if (t >1 t
′) or (t >2 t

′)

Prioritized Composition imposes a priority of a preference over another. It
is formally defined by R = (>1 � >2) with (t R t′) if (t >1 t

′) or (¬(t′ >1 t)
and (t >2 t

′))
Pareto Composition assumes two preferences to be equally important. It is

formally defined by1: R = (>1 ⊗ >2) with (t R t′) if ((t >1 t
′) and (t >2 t

′ or
t ∼2 t

′)) or ((t >2 t
′) and (t >1 t

′ or t ∼1 t
′)).

1Note that alternative definitions using different semantics exist, as for instance the one
given in [61].

17

Figure 2.1: Examples of preference composition

Example 2.1.3 Consider the two preferences: ”I prefer Lynch movies over
Allen movies and Allen movies over Coen movies”, called P1 and ”I also prefer
shorter movies” called P2. Various compositions are illustrated by Figure 2.1.1.
Composing them using intersection results in a particular SPO with no dom-
ination, that can be interpreted as every tuple is preferred since all tuples are
un-dominated. Composing them with union violates irreflexivity and asymme-
try, and thus the resulting relation is usually considered as not being a preference
relation. Indeed, in this case, the resulting relation would mean for instance that
both t5 should be preferred to t4 (according to P1) and t4 should be preferred to
t5 (according to P2). Composing them with prioritization results in a total or-
der reflecting P1 first and then P2 only when P2 does not contradict P1. More
precisely, we have t5 preferred to t4 preferred to t3 preferred to t1 preferred to
t2. Finally, composing them using Pareto results in a preference relation where
only t3 dominates t1 and t1 dominates t2, and neither t4 dominates t5 nor t5
dominates t4 since P1 and P2 do not agree for these two tuples.

Note that composition can be defined over T × T ′, if T and T ′ are two
relations such that >1 is a preference relation over T and >2 is a preference
relation over T ′. For instance, lexicographic composition allows to define a
lexicographic order over T × T ′. It is defined, for t1, t

′
1 ∈ T and t2, t

′
2 ∈ T ′, by:

R = (>1 � >2) with (t1, t2)R(t1, t2) if (t1 >1 t1) or (t1 ∼1 t1) and (t2 >2 t2).
Pareto Composition can also be defined for multidimensional composition

by, given t1, t
′
1 ∈ T and t2, t

′
2 ∈ T ′: R = (>1 ⊗ >2) with ((t1, t2) R (t′1, t

′
2)) if

((t1 >1 t
′
1) and (t2 >2 t

′
2 or t2 ∼2 t

′
2)) or ((t2 >2 t

′
2) and (t1 >1 t

′
1 or t1 ∼1 t

′
1)).

Note that preservation of properties (irreflexivity, etc.) under various kind
of composition operators has been deeply studied (see [102] for more details).

18

Quantitative composition Quantitative composition is generally achieved
through dedicated functions, like weighted sums, min, max, etc. An example
of quantitative composition is, given preferences P1 modeled with scoreP1 and
preference P2 modeled with scoreP2: Scoref(P1,P2)(ti) = x×scoreP1(ti)+(1−
x)× scoreP2(ti) where x is some weight [64].

Example 2.1.4 Consider the following preferences: ”I prefer Lynch movies
over Allen movies and Allen movies over Coen movies” (P1) expressed by:

• ”I like Lynch” with scoreP1 = 0.9

• ”I like Allen” with scoreP1 = 0.8

• ”I like Coen” with scoreP1 = 0.5

and ”I also prefer shorter movies” (P2) expressed by:

• ”I like (duration=80)” with scoreP2 = 1

• ”I like (duration=90)” with scoreP2 = 0.9

• ”I like (duration=150)” with scoreP2 = 0.6

Suppose we use the scoring function defined above to compose P1 and P2,
with x = 0.5. Then, for instance, the score of tuple t1 = 〈Coen,Comedy, 5, 90〉
would be: 0.5× 0.5 + 0.5× 0.9 = 0.7

2.1.2 Basics of recommender systems

We now briefly introduce the basics of recommender systems (see [3] for a more
substantial presentation).

A recommender system is typically modeled as follows. Let I be a set of
items (e.g., products in a typical e-commerce application) and U be a set of
users (e.g., customers in a typical e-commerce application). Let f be an utility
function with signature U × I → R for some totally ordered set R (typically
reals between 0 and 1). Recommending s′ to u is to choose for the user u
the item s′ that maximizes the user’s utility, i.e., s′ = argmaxIf(u, i). The
function f can be represented as a matrix M = U × I, that records for any
user u in U , any item i in I, the utility of i for u, that is f(u, i). The problem
of recommending items to users is that this matrix is both very large and very
sparse. Thus, many methods have been proposed for estimating the missing
ratings. Moreover, achieving relevant recommendations, tailored for a particular
user, is particularly difficult since it has been observed that everyone is a bit
eccentric [41], meaning that recommending popular item is likely to be seen as
not sufficient from the user’s point of view.

In general, recommendation methods are categorized [3] into: (i) Content-
based methods, that recommend items to the user u that are similar to previous
items highly rated by u, (ii) Collaborative methods, that consider users similar
(i.e. having similar profiles) to the one for which recommendations are to be
computed as a basis for estimating missing ratings and (iii) Hybrid methods,

19

that combine content-based and collaborative ones. Note that [4] propose a
multidimensional generalisation of this basic two-dimensional formulation, es-
pecially to support profiling and contextualisation.

Content-based recommendation

Typical content-based recommendation is based on the comparison between
item profiles and user profiles. For instance, it can rely on the following principle:

1. Build item profiles by using selected features and providing a score for
each feature.

2. Build user profiles from highly rated item profiles, typically by computing
a weighted average of item profiles.

3. Compare user profiles with non-rated item profiles to estimate the missing
ratings. Typical similarity measures include vector-based similarities like
cosine.

4. Recommend to the user those non-rated items achieving the best similarity
scores.

Example 2.1.5 Consider the following matrix recording ratings:

Donuts Duff Apple Tofu Water Bud Ribs
Homer 0.9 0.8 0.7
Marge 0.8 0.6
Bart 0.7 0.6 0.1 0.8
Lisa 0.2 0.8 0.6
Maggie 0.6 0.5 0.6

Suppose that the features chosen for the profiles are: (contains sugar, ok for a
diet). Item profiles are modelled as vectors recording a score for these two fea-
tures. Suppose here that the scores are automatically computed from the items’
nutrition facts. For instance, the profile for Tofu is (0, 0.9), the profile for Apple
(0.4, 0.6), the profile for Water is (0, 0.7), and the profile for Ribs is (0.8, 0.1).
Then user profiles are also modeled as vectors recording scores for the two fea-
tures, derived from the known ratings. For instance, Homer profile would be:
(0.9 × (0.9, 0) + 0.8 × (0.6, 0.1) + 0.7 × (0.6, 0.1))/3 = (0.8, 0.1)2. Lisa profile
would be: (0.3, 0.8). The similarity score for the user profile with the item pro-
file estimates the missing ratings. For instance, the similarity score for Homer
and Tofu is cosine((0.8, 0.1), (0, 0.9)) = 0.1 and that for Homer and Ribs is
cosine((0.8, 0.1), (0.8, 0.1)) = 1. It is easy to see that Ribs will be recommended
to Homer.

The limitations of content-based approaches are the following: First finding
a good set of features must be done very carefully since it impacts directly the

2This profile can be interpreted as: Homer contains sugar and is not ok for a diet.

20

score estimates and hence the quality of the recommendation. Another prob-
lem is that recommendations stick to the user profile. For instance, using the
example above, Homer will never be recommended Tofu. Finally, this approach
suffers from the cold-start problem, i.e., how to build a profile for a new user
for whom no ratings are known.

Collaborative recommendation

The main idea of collaborative approaches is to benefit from all users’ ratings
when estimating a user’s missing ratings. Depending on how the matrix is used
(row-wise or column-wise), two techniques are distinguished, that are based on
computing similarities among users or items:

• User-user collaborative approaches estimate the ratings for items based
on ratings of similar users.

• Item-item collaborative approaches estimate the ratings for items based
on ratings for all similar items (whatever the user).

Example 2.1.6 To illustrate the user-user approach, suppose that all users are
modeled as vectors having as many components as there exists items, the value of
the component being the rating for the item, or 0 if the rating is not known3. For
instance, Homer would be modeled as the following vector: (0.9,0.8,0,0,0,0.7,0).
Similarity is computed between users, with cosine for instance, to find the users
who are the most similar to the one for which the ratings are to be estimated.
These users’ ratings are derived to estimate the user’s missing ratings. For
instance, suppose that Bart is found the most similar to Homer, with a similarity
score of 0.8. Then, given that Bart has a score for Ribs and Homer has not,
Bart’s score is used to estimate Homer’s, by weighting Bart’s score with the
similarity between Bart and Homer, i.e., 0.8× 0.8 is our example.

The limitations of the collaborative approach are that it relies on heavy pre-
computation, and that new users or new items, for which no ratings are known,
cannot be taken into account.

Hybrid methods

Hybrid approaches are used to overcome the limitations of both previous ap-
proaches. Such approaches include the aggregation of a content-based score with
a collaborative score, the addition of content-based to collaborative filtering, or
the use of item profiles to cope with the new item problem.

2.2 Categorisation of the approaches

In this section, we present the criteria used to describe and categorize the ap-
proaches presented in the next sections and chapters. In what follows, the

3Note that it means treating unknown ratings and low ratings similarly.

21

term profile is used to denote the information associated with the user and
the context, that are leveraged by the approach. This profile may include user
preferences, description of past activities of the database users (like e.g., the
database query log), as well as external information.

We first adopt the criteria introduced in [43], that are mostly used to dif-
ferentiate personalization approaches.

• Formulation effort asked to the user: some approaches require the user to
manually specify profile elements for each query (high formulation effort),
while in others they are inferred from the context and the user’s past
actions (low formulation effort).

• Prescriptiveness: some approaches use profile elements as hard constraints
that are added to a query (prescriptive approaches) while others use them
as soft ones: tuples that satisfy as much profile criteria as possible are re-
turned even if no tuples satisfies all of them (non prescriptive approaches).

• Proactiveness: some approaches suggest new queries based on the naviga-
tion log and on the context (proactive approaches), while others change
the current query or post process its results before returning them to the
user (non proactive approaches).

• Expressiveness: some approaches allow only the formulation of basic per-
sonalization criteria (low expressiveness) while others allow more complex
formulation (high expressiveness).

To precisely distinguish between the type of data needed in the profile,
especially for recommendation techniques, we also use the taxonomy proposed
in [101]. There, three categories are identified:

• Current-state approaches, exploiting the content and schema of the cur-
rent query result and database instance. Current-state approaches can be
based either on (i) the local analysis of the properties of the result of the
posed query or (ii) the global analysis of the properties of the database.
In both cases systems exploit (i) the content and/or (ii) the schema of the
query result or the database.

• History-based approaches, using the query logs.

• External sources approaches, i.e., approaches exploiting resources external
to the database, like ontologies, web pages, etc.

Note that these categories are not exclusive in the sense that an approach
can be both current-state and history-based.

We illustrate these criteria with the following example: consider an approach
where both the query and the profile are inferred from the past users activities
on the database, the profile being composed of complex preferences and being
used to rank the query results. Such an approach would correspond to the
following category: low formulation effort, proactive, non prescriptive, high
expressiveness, history-based.

22

2.3 An overview of personalization in databases

Query personalization in databases include two types of approaches:

• The use of explicit preference operators in queries to specify profile ele-
ments. The most representative works in this category include Winnow
[28], Preference SQL [60] and Skyline [20]. This type of approaches re-
quires high formulation effort, is not prescriptive, not proactive, but is
highly expressive.

• The rewriting (expansion) of regular database queries based on a profile.
The most representative work is initiated in [64]. This approach requires
a low formulation effort, is prescriptive, not proactive and has low expres-
siveness.

Note that in these two categories, the profile is only given in terms of the
constants, attributes and tuples of the database. Thus, using the criteria intro-
duced above, all the approaches are current-state approaches.

2.3.1 Use of a dedicated operator

The basic definition of the operator computing dominating tuples is the fol-
lowing. Given a relation r with schema sch(r) and a preference C over sch(r)
defining a preference relation >C , the Winnow operator [28], denoted wC , is
defined by: wC(r) = {t ∈ r|(@t′ ∈ r)(t′ >C t)}.

This operator can be used to order the query answer. Indeed, the answer to
a query q can be partitioned according to C, i.e., q = wC(q)∪wC(q−wC(q))∪
. . . meaning that the answer can be presented by displaying wC(q) first, then
wC(q − wC(q)), etc.

Example 2.3.1 Consider the examples given in Section 2.1.1. Suppose that
preference C is ”I prefer drama”. The query ”What are my most preferred
affordable movies?” can be expressed by: wC(σPrice<7(Movies)). The answer
can be presented by displaying t5 first, and then t1 and t2.

This operator has been used with various syntaxes for expressing models of
preferences, of which we give two illustrations [20, 60].

The work of Kiessling [60] enrich the SQL syntax with a PREFERRING
clause that enables the user to specify in each query the model of preference,
through the use of of specific preference constructors. Each constructor can be
used to express a specific atomic preference. Preferences can be composed with
Pareto or prioritization.

Example 2.3.2 Consider the following queries expressed with Preference SQL:

1. SELECT * FROM Movies PREFERRING HIGHEST(Duration)

2. SELECT * FROM Movies PREFERRING Genre IN (Drama,Thriller)

23

The model of preference specified by the first query is the following: for
some duration x and y, (x >HIGHEST y) if value x is greater than value y,
meaning that movies with highest durations will be preferred. For the second
query, the model of preference says that Drama and Thriller movies will be pre-
ferred over any other genre. More formally, if x and y are two movie genres,
(x >IN(Drama,Thriller) y) if x ∈ {Drama, Thriller} and y 6∈ {Drama, Thriller}.

A restricted form of Kiessling’s SQL extension is the addition of the Skyline
operator to SQL [20]. This is a restriction in the sense that, originally, Skyline
queries feature only numerical attributes and Pareto composition. This operator
is defined as follows. The syntax of a skyline clause is:

SKYLINE OF d1 MIN, . . . , dk MIN
dk+1 MAX, . . . , dl MAX
dl+1 DIFF, . . . , dm DIFF

The semantics of such a clause is that a tuple p = (p1, . . . , pn) dominates a
tuple q = (q1, . . . , qn) if:

pi ≤ qi, for i = 1, . . . , k

pi ≥ qi, for i = k + 1, . . . , l

pi = qi, for i = l + 1, . . . ,m

2.3.2 Query expansion

In the absence of a dedicated preference operator, a regular user query can be
processed and transformed with preferences, resulting in another regular query
that is typically a subquery of the initial one. We use the work of [64] to
illustrate this approach.

In this work, preferences come from a user profile which is modeled as a
graph of atomic quantitative preferences of the form (selection condition, score),
where selection condition is a regular selection predicate (that may be used to
join two tables) and score is a real between 0 and 1 indicating the intensity of
the preference. Atomic preferences are composed using a very simple principle:
composition of preference (s1, v1) with preference (s2, v2) results in preference
(s1 ∧ s2, v1× v2).

Query expansion is performed as follows. First, given a query, the k most
relevant preferences are selected from the profile. Then the selected preferences
are added as hard constraints to the query, and the query is finally executed.

Example 2.3.3 Consider the following user query: SELECT title FROM Movies
WHERE duration < 120. Suppose that the best preference selected from the profile
of the user who wrote the query is ”I like Lynch as Author”. Then the query
is modified, resulting in: SELECT title FROM Movies WHERE duration < 120
AND Author=’Lynch’. Note that in this example, if the query is evaluated over
the instance given in Example 2.1.1, then the result is empty.

This work has been extended to take into account constraints like result
cardinality or execution time [65].

24

2.4 An overview of recommendations in databa-
ses

Recently, to our knowledge, there has been only two attempts to formalize
database query recommendations for exploration purpose [24, 101]. All the ap-
proaches presented below require a low formulation effort, are proactive (a query
is suggested) and prescriptive (no soft constraint are added to the suggested
query) and offer a low expressiveness. Note that a recent work [4] proposed an
SQL-like language to let the user formulate the way recommendations are com-
puted, for reducing prescriptiveness, but requiring a higher formulation effort.
Following [101], we use the categories introduced Section 2.2 to categorize these
approaches with respect to the type of information composing the profile.

2.4.1 Current state

In [101], the authors focus on the current state approach and propose two tech-
niques to recommend queries based on the database instance and/or the current
query answer. The first technique, called local analysis, analyzes the answer to
the user query to discover patterns and uses these patterns to recommend. The
second technique, called global analysis, extends this principle to the entire
database instance. The instance would have to be analyzed off-line, for example
to discover correlations among attribute values.

Example 2.4.1 Consider the current query: SELECT Author, Genre FROM
Movies WHERE Duration > 100. Suppose that by analyzing this query answer,
it is found that the result has a lot of tuples whose genre is Drama. Then,
a possible recommendation would be: SELECT Author, Genre FROM Movies
WHERE Genre=’Drama’. Suppose now that a global analysis of the database
instance shows that value ”Coen” for Author is correlated with value ”Comedy”
for Genre. Then, if the current query is: SELECT * FROM Movies WHERE
Author=’Coen’ a recommendation would be: SELECT * FROM Movies WHERE
Genre=’Comedy’.

2.4.2 History based

For [24], the problem of query recommendation is viewed as a sessions × tuples
matrix. With this approach, a query is represented as a vector whose arity is the
number of tuples of the database instance. The basic approach considers that
each component of such a query is either a 1, if the query used the tuple, or a 0
otherwise. A session is also represented by a binary vector which is the logical
OR of the vectors of the queries of the session. Consider a particular session Sc
called the current session. Recommendations for Sc are computed as follows.
First, sessions similar to Sc are found, using some vector similarity measures
like e.g., cosine. For those sessions closest to Sc, the queries they contain are
also compared to Sc using the same similarity measure. Finally, the queries of
those sessions that are the most similar to Sc are recommended.

25

In subsequent works [23], the authors focus on fragments (attributes, ta-
bles, joins and predicates) of queries and consider thus a sessions × query frag-
ments matrix. In this work, the matrix is used column-wise in the sense that
recommendation computation relies on fragment similarity instead of session
similarity.

We conclude this section by noting that recommendation also makes sense
to assist the user writing a query. For instance, the SnipSuggest approach [58] is
a collaborative approach that uses a query log to provide on-the-fly assistance to
users writing complex queries. The query log is analyzed to construct a graph
whose nodes are the fragments appearing in queries and edges indicate the
precedence. The edges are labelled with the probability that a fragment follows
another fragment in the logged queries. Given the beginning of a current query,
the graph is used to complete the query with the fragment that is the most
likely to appear.

Example 2.4.2 Suppose that the query log contains only the following two
queries: SELECT Title, Genre FROM Movies WHERE Actor=”C. Lee” and SE-
LECT Title FROM Movies WHERE Author=”Allen”. Suppose that a user starts
writing a query with only SELECT. It can be then suggested the attribute Title
since this attribute is the most likely to appear according to the query log.

2.5 Conclusion: Requirements for user-centric
approaches in data warehouses

This chapter presented an overview of personalization and recommendation ap-
proaches in databases, that transform queries with respect to a user profile. We
also introduced criteria to describe them: how the profile is expressed, used and
how complex it is, and what type of data is used for the profile (external to the
database, or internal, such as the instance, the query log, the schema).

To conclude this chapter, we introduce the requirements for user-centric ap-
proaches in the context of OLAP analysis of data warehouses. As evidenced by
e.g., [25, 96, 89] basic peculiarities of typical data warehouses can be summarized
by:

1. A data warehouse is a read-mostly database and its instance has an infla-
tionist evolution (data are added, never or very seldom deleted). It is for
instance likely that a user issues periodically similar sequences of queries
more than once, in the sense that queries may not be fully identical.

2. A data warehouse is a database shared by multiple users, mostly execu-
tives, whose interests are diverse and may vary over time. It is argued in
[16, 89, 45, 90] that user preferences are of particular importance in data
warehouse exploration. It would for instance be important to issue rec-
ommendations computed from other users’ habits (e.g., in a collaborative
filtering fashion) and at the same time respecting the user interests.

26

3. A data warehouse has a particular schema that reflects a known topology,
often called the lattice of cuboids, which is systematically used for nav-
igation [52]. Roll-up and drill-down operations that allow to see facts at
various levels of detail are very popular in this context.

4. A typical analysis session over a data warehouse is a sequence of queries
having an analytical goal, each one written based on the past results of the
session. They may be expressed in a dedicated query language (like e.g.,
MDX4), may produce large results that are usually visualized as cross-tabs.
Moreover, the session has a sense w.r.t. some expectations. For instance,
the user may assume a uniform distribution of the data [94, 95] or that
two populations follow the same distribution [85]. Sessions (as sequences
of queries) are of particular importance in this context since with this
sequence of queries, the user navigates to discover valuable insights w.r.t.
her expectations or assumptions.

The following parts of this dissertation aim at developing various user-centric
approaches responding to these requirements, with a focus on the use of the
query log. In particular, the next chapter introduces models for OLAP query
logs, that will serve as bases for such approaches.

4http://msdn.microsoft.com/en-us/library/ms145506.aspx

27

http://msdn.microsoft.com/en-us/library/ms145506.aspx

Part II

Modeling and constructing
query logs

28

Chapter 3

Log modeling

This chapter provides the basic formal setting used throughout this dissertation.
It first describes the multidimensional framework starting with data (Section
3.1) and then various models for queries, sessions and logs (Section 3.2).

This chapter relies on materials published in [16, 37, 39, 12, 92, 9].

3.1 Multidimensional data and query languages

In this section, we recall the classical definitions and terminology used in data
warehousing and OLAP. Basic knowledge is assumed on the relational model and
query languages, as can be found in e.g., [2]. We simply recall that an attribute
A has a domain dom(A), and, given a relation instance I over a schema including
A, the active domain of an attribute A denoted adom(A) corresponds to the
values in πA(I). t(i) denotes the ith value of a tuple t.

In this dissertation, we consider facts, as subjects of analysis, placed in
the n-dimensional space produced by the analysis dimensions. A dimension
contains an aggregation hierarchy of levels representing different granularities
(or levels of detail) to study data. A fact contains analysis indicators known as
measures (which, in turn, can be regarded as fact attributes). A level of detail
for each dimension produces a group by set (also called base) in which place
the measures.

3.1.1 Hierarchies and dimensions

To keep the formalism simple, we consider cubes under a ROLAP perspective,
described by a star schema [62]. More precisely, we consider that a dimension
consists of one hierarchy, and we consider simple hierarchies without branches,
i.e., consisting of chains of levels.

Definition 3.1.1 (Levels and members) Let L be a set of attributes called
levels, and for L ∈ L, a member is an element of Dom(L).

29

Roll-up and Drill-down are two partial mappings from L to L defined by:
Given two levels Lj and Lk, Rollup(Lj) = Lk if there exists a functional depen-
dency Lj → Lk or undefined otherwise, and Drilldown(Lj) = Ll if there exists
a functional dependency Ll → Lj or undefined otherwise.

Definition 3.1.2 (Hierarchy) A hierarchy hi is a set Lev(hi) = {L0, . . . , Ld}
of levels together with a roll-up total order �hi of Lev(hi), which is such that,
for any Lj and Lk in Lev(hi), Lk �hi Lj if Rollup(Lj) = Lk.

For each hierarchy hi, the bottom level L0 of the order determines the
finest aggregation level for the hierarchy. Conversely, the top level Ld has a
single possible value and determines the coarsest aggregation level.

A dimension is a relation used to represent a hierarchy.

Definition 3.1.3 (Dimension) A dimension D for a hierarchy hi is a relation
with schema sch(D) = Lev(hi) = {L0, . . . , Ld}, such that L0 is the primary key
of D. A dimension table for D is an instance of D.

The set of members in a dimension D is denoted π∗(D) =
⋃d
i=0 πLi(D).

Given two levels Lj , Lk of a dimension D such that Lk = Rollup(Lj), we use
mk � mj to denote that 〈mj ,mk〉 ∈ πLj ,Lk(D). � is a transitive relation.
Given a dimension D for a hierarchy hi, we note mAll

i the coarsest member of
the hierarchy, i.e., the member such that @m ∈ π∗(D) with m � mAll

i .

3.1.2 Multidimensional schemata, group-by sets and ref-
erences

Definition 3.1.4 (Multidimensional Schema) A multidimensional schema
(or, briefly, a schema) is a triple M = 〈A,H,M〉 where:

• A is a finite set of levels, whose domains are assumed pairwise disjoint,

• H = {h1, . . . , hn} is a finite set of hierarchies, (such that the Lev(hi)’s
for i ∈ {1, . . . , n} define a partition of A);

• a finite set of measure attributes M , each defined on a numerical domain
Dom(m).

A group-by set includes one level for each hierarchy, and defines a possible
way to aggregate data. It is sometimes referred to as a base in what follows. A
reference (or coordinate) of a group-by set is a point in the n-dimensional space
defined by the levels in that group-by set.

Definition 3.1.5 (Group-by Set and reference) Given a schemaM = 〈A,H,
M〉, let Dom(H) = Lev(h1) × . . . × Lev(hn); each G ∈ Dom(H) is called a
group-by set of M. Let G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1) × . . . ×
Dom(akn); each g ∈ Dom(G) is called a reference (or a coordinate) of G.

30

Figure 3.1: Roll-up orders for the five hierarchies in the CENSUS schema (Mrn
stands for MajorRacesNumber)

Let �H denote the product order1 of the roll-up orders of the hierarchies
in H. Then, (Dom(H),�H) is a lattice, that we will call group-by lattice,
whose top and bottom elements are G⊥ = 〈DIM1, . . . , DIMn〉 and G> =
〈ALL1, . . . , ALLn〉, respectively.

Example 3.1.1 We introduce a running example. IPUMS is a public database
storing census microdata for social and economic research [74]. Its CENSUS
multidimensional schema includes the five hierarchies whose roll-up orders are
shown in Figure 3.1, and measures AvgIncome, AvgCostGas, AvgCostWatr, and
AvgCostElect.

More formally, its schema is CENSUS = 〈ACENSUS , HCENSUS ,MCENSUS〉
with:

ACENSUS = {City, State,Region,AllCities,Race,RaceGroup,Mrn,
AllRaces, Y ear,AllY ears, Sex,AllSexes,Occ,AllOccs},

HCENSUS = {RESIDENCE,RACE,TIME,SEX,OCCUPATION},

and MCENSUS = {AvgIncome,AvgCostGas,AvgCostWatr,AvgCostElect}.

For instance, hierarchy RESIDENCE is the set of levels {City, State,Region,
AllCities} with AllCities �RESIDENCE Region �RESIDENCE State �RESIDENCE

City.
Examples of group-by sets are:

G0 = G⊥ = 〈City,Race,Year,Occ,Sex〉
G1 = 〈Region,Mrn,Year,Occ,Sex〉

G2 = G> = 〈AllCities,AllRaces,AllYears,AllOccs,AllSexes〉

Specialization relation over references Given two references r and r′,
we consider the classical relation over references defined by: r � r′ if, for all
dimensions Di with hierarchy �i, either r(i) = r′(i) or r(i) � r′(i).

1The product order of n total orders is a partial order on the Cartesian product of the n
totally ordered sets, such that 〈x1, . . . , xn〉 � 〈y1, . . . , yn〉 iff xi � yi for i = 1, . . . , n.

31

3.1.3 Facts and cubes

A schema is populated with facts, each recording a useful information for the
decision-making process. A fact is characterized by a group-by set G that defines
its aggregation level, by a reference of G, and by a value for each measure.

Definition 3.1.6 (Fact) Given a schema M = 〈A,H,M〉, a group-by set G ∈
Dom(H), and a measure set V = {v1, . . . , vm} ⊆M , a fact is a couple fG,V =
〈g, v〉, where g ∈ Dom(G) and v ∈ Dom(V), where Dom(V) = Dom(v1)× . . .×
Dom(vm). The space of all facts for M is

FM =
⋃

G∈Dom(H),V⊆M

(Dom(G)×Dom(V))

Example 3.1.2 An example of fact is fG1,AvgIncome = 〈〈’Pacific’, ’White’, ’2008’,
’Dentist’, ’Male’〉, 〈600〉〉. Its reference is 〈’Pacific’, ’White’, ’2008’, ’Dentist’,
’Male’〉.

An instance of a schema is a set of facts F ⊆ FM, such that no two facts
characterized by the same coordinate and measure, exist in F . A Fact table F
is a relation representing facts by tuples.

Definition 3.1.7 (Fact table) Given a schema M = 〈A,H,M〉, and a mea-
sure set V = {v1, . . . , vm} ⊆ M , a fact table F is a relation with schema
{L0

1, . . . , L
0
n, v1, . . . , vm} where for all i ∈ [1, n], L0

i is the finest aggregation
level of hi, i.e., the primary key of some dimension table Di. L

0
1, . . . , L

0
n is the

primary key of F .

Finally, an n-dimensional cube is defined as the classical n + 1 relation
instances of a star schema.

Definition 3.1.8 (Cube) An n-dimensional cube C = 〈D1, ..., Dn, F 〉 over a
multidimensional schema M = 〈A,H,M〉 is a set of relation instances where
D1, . . . , Dn are dimension tables and F is a fact table. The set of dimensions
of a cube C = 〈D1, ..., Dn, F 〉 is noted D(C) = {D1, ..., Dn}.

Definition 3.1.9 (Cells) Let C = 〈D1, ..., Dn, F 〉 be a cube, and let Li ∈
sch(Di), for all i ∈ [1, n]. A cell c is a tuple c = 〈m1, . . . ,mn, x1, . . . , xm〉
where 〈m1, . . . ,mn〉 is a reference over L1, . . . , Ln and 〈x1, . . . , xm〉 ∈ dom(V).

Given a cube C and aggregation functions agg1, . . . , aggm, a cell whose refer-
ence is 〈m1, . . . ,mn〉 over L1, . . . , Ln, is the result of the relational query (where
◦
1 is the outerjoin):

{〈m1, . . . ,mn〉}
◦
1 πv1,...,vm(σL1=m1∧...∧Ln=mn(

πL1,...,Ln;agg1(v1)→v1,...,aggm(vm)→vm(
F 1 D1 1 . . . 1 Dn)))

The xi are called the measures of the cell. In what follows we will use
measures(c) to denote the measures of the cell c. ref(C) denotes the set of all
possible references of a cube C = 〈D1, ..., Dn, F 〉, i.e., ref(C) = ×Ni=1π

∗(Di),
i ∈ [1, n].

32

Data cube Given m aggregation functions agg1, . . . , aggm, the data cube [47]
of a cube C = 〈D1, ..., Dn, F 〉, denoted CubeBy(C), is a set of relation instances
C ′ = 〈D1, ..., Dn, F

′〉 where:
F ′ = ∪

D1.L
k1
1 ∈sch(D1),...,DN .L

kN
N ∈sch(DN)

[ρ
D1.L

k1
1 →D1,...,DN .L

kN
N →DN

(

π
D1.L

k1
1 ,...,DN .L

kN
N ,agg1(v1),...,aggm(vm)

(F 1 D1 1 . . . 1 DN))]

The specialization relation over references is extended to cells as follows:
For two cells c, c′ of an n-dimensional cube C, c is more general than c′, noted
c �c c′, if r � r′ where r is the reference of c and r′ is the reference of c′. Note
that this relation corresponds to the one used in the cube lattice (see e.g., [66]).

Example 3.1.3 A cube over the CENSUS schema consists of a fact table cen-
sus with schema {city, race, year, sex, occupation, avgIncome, avgCostGas,
avgCostElec, avgCostWatr}, and dimension tables RESIDENCE, RACE, TIME,
SEX, OCCUPATION. with respective schema {city, region, state, allCities}, {race,
raceGroup, MRN, allRaces}, {year, allYear}, {sex, allSexes}, {occ, allOccs}.

3.1.4 Expressing multidimensional queries

Formally speaking, a query is a partial mapping from database instances to
database instances [2], which is distinct from its expression in a given language.
In this dissertation, we clearly distinguish between a query and a query expres-
sion, which is needed since a query can be specified by various query expressions.
We design by query expression a specification written in a given query language.
Out of this expression, a logical model of a query can be built, as will be seen
in the next section.

Though multidimensional queries can often be expressed using the extended
relational algebra [88], or a subset of it like GPSJ (Generalized Projection /
Selection / Join [49]), a better characterization in a dedicated language is often
preferred. The literature abounds with multidimensional languages, most of
them coming from the academic world ([5, 50, 51, 107] to name a few), some
from the industry like SQL99 and MDX. In this section we briefly present only
two languages, MDA, a formal algebra presented in [91], which captures the
cube-query in [62], and MDX, often referred to as the de-facto standard. Note
that, for simplicity, we consider queries centered on a single schema.

The Multidimensional Algebra MDA

MDA was proven to be closed, complete (regarding the cube-query in [62]) and
minimal, and consists of the following operators (we suggest to check Figure
3.2, where dots and triangles represent measures in a cell, for grasping their
intuition). All the operators are unary except for drill-across and set operators,
which operate over two cubes. We give below an informal description, details
can be found in [1].

• Selection (σpcube): By means of a logic predicate p compound of clauses
over levels, this operator allows to choose the subset of points of interest
out of the whole n-dimensional space.

33

Figure 3.2: Conceptual exemplification of the MDA operators

• Roll-up (γ
leveli → levelj
f(measure1),...,f(measuren)cube): It groups data instances in the

cube based on an aggregation hierarchy. This operator modifies the gran-
ularity of data by means of a many-to-one relationship which relates in-
stances of two levels in the same hierarchy, corresponding to a part-whole
relationship. About drill-down (i.e., the counterpart of roll-up, represented
with the same formalization but with a one-to-many relationship between
leveli and levelj), it can only be applied if we previously performed a roll-
up and did not loose the correspondences between instances. Therefore, a
drill-down is often seen as the sequence of roll-up operations allowing to
reach a desired granularity from the finest granularity.

• Projection (πmeasure1,...,measurencube): It selects a subset of measures.

• ChangeBase (χbase1→base2cube): This operator reallocates exactly the
same instances of a cube into a new n-dimensional space with exactly the
same number of points, by means of a one-to-one relationship. Actually,
it allows to replace the current base by one of the alternatives, if more
than one set of dimensions identifying the data instances (i.e., alternative
bases) exist.

• Drill-across (cube1 ./ cube2): This operator fuses the measures in two
cubes related by means of a one-to-one relationship. The n-dimensional
space remains exactly the same, only the instances placed on it change.

• Set Operations (cube1Θcube2): These operators allow to operate two
cubes if both are defined over the same n-dimensional space. We con-
sider union (∪), difference (\) and intersection (∩). Set operations are
defined for cubes having the same schema and such that, in the case of
union, whenever two cells have the same reference, they also have the same
measures.

The expressive power of this algebra is thoroughly discussed in [1]. Briefly,
it fully matches the well-known cube-query pattern presented in [62]. For this
reason, it is assumed to be expressive enough for capturing analytical efforts.

34

MDX

The MDX (MultiDimensional eXpressions2) language is a de-facto standard
for querying multidimensional databases. Some of its distinguishing features
are the possibility of returning query results that contain data with different
aggregation levels and the possibility of specifying how the results should be
visually arranged into a multidimensional representation. Albeit very powerful
in terms of expressiveness, it is not thoroughly formalized and is not closed under
composition [70]. In this dissertation we consider MDX queries that aggregate
data at one or more group-by sets, optionally select them using a predicate in
CNF, and return one or more measures. The semantics of such an MDX query
is that of a union of GPSJ queries3 whose group-by sets are the cross product
of n sets of levels, one for each hierarchy. This semantics corresponds to the
following subset of MDX:

• Clauses SELECT, FROM, WHERE are supported.

• All functions for navigating hierarchies are supported: AllMembers, Ancestor,
Ascendants, Children, etc.

• All functions for manipulating sets of members or tuples are supported
(Crossjoin, Except, Exists, Extract, Filter, Intersect, etc.) except the union.

• All functions for manipulating members/tuples are supported.

Example 3.1.4 We give two expressions of a query over the CENSUS schema,
that asks for the Female average income by city and race. The MDX formulation
is:

SELECT Race.MEMBERS ON COLUMNS,

City.MEMBERS ON ROWS

FROM CENSUS

WHERE (Female,AvgIncome)

This query, expressed in MDA, is:
σSex=′Female′(γ

Occ→allOccs
avg(avgIncome) (γyears→allY earsavg(avgIncome) (πavgIncome(CENSUS))))).

We have distinguished between a query and its expression in a given lan-
guage. To leverage query logs, we need to derive information from this expres-
sion and other database objects, which we call a query model. This is the topic
of the following section.

2http://msdn.microsoft.com/en-us/library/ms145506.aspx
3A GPSJ query takes form πak1 ,...,akn ,Aggrσp(χ) where, in our context: χ is the star

join between the fact table and the n dimension tables; p is a selection formula in CNF;
{ak1

, . . . , akn} is a group-by set; and Aggr is a list of aggregations of the form αj(mj), where
mj is a measure and αj is an aggregation operator.

35

http://msdn.microsoft.com/en-us/library/ms145506.aspx

3.2 Modeling queries and logs

As pointed out above, using a query model to reason about query allows to
be independent from the query expression. In this section we first review the
literature for works where database queries are modeled, and we give three
examples of logical query models used in the subsequent chapters. We use the
following definitions.

• Query: the function mapping a database instance to another database
instance.

• Query expression: the expression of the query in a given query language.

• Query model: a logical representation of the query that can include vari-
ous information about it, derived from its expression and potentially the
database objects like the instance, the schema or even the query log.

Note that a query model may correspond to more than one query expres-
sions, while a query expression corresponds to only one query model. Usually
a function is used to construct the model from the query expression (and po-
tentially the database objects). When the context is clear, we will use the term
query to refer to the query expression or model.

3.2.1 Query models in the literature

In this subsection, we review how queries are logically modeled from query
expression. We start by distinguishing the data structure used (vector, set,
etc.) to represent the query. We see that two categories are very often used:
vector and set (or set of sets). In the first category (vector), queries are modeled
as a vector of some features with either a score or a binary value for each feature.
In the second category (set), query are modeled either by one or more sets. In
the latter case, one set is used for representing a particular part of the query,
like e.g., the attributes of the query schema (projection or SELECT clause) or
the table names in the cross product (FROM clause).

The information used to model the query can be taken from the query
expression itself, e.g., under the form of its fragments (selection predicate, pro-
jection, etc.) and/or taken from the database over which the query is to be
evaluated, e.g., the database instance, schema (including usable physical struc-
tures), etc.

The part of the query expression that can be used ranges from the simple
uninterpreted query text ([110]) to the full list of query fragments [34]. When
the fragments are used, all or only parts of them can be taken into account (e.g.,
for selection predicate, only the selection attribute is used in [6]).

On the other hand, the information used to model the query can also be
taken from other sources related to the database queried. More precisely, that
can be:

• The database instance: the query model can rely on the extension of

36

the database or not, e.g., if the query result or the active domain of the
database attributes are used.

• The statistics used by the query optimizer, like e.g., table sizes, attribute
cardinalities, etc.

• The database schema, e.g., information on key definition or which index
can be used to process a selection.

• The query log, if the query model relies on the other queries that have
previously been launched on the database, e.g., a query is modeled in
terms of its link with other queries or how many times it appears in the
log.

This is summarized in the table 3.1, where S, P and C denote respectively
selection predicates, projections or group by sets, and cross product.

Ref. Model Source Part of fragment used
[48] sets S, P, C attributes, values, table names
[24] vector db instance, log
[8] vector S, P, log attributes, values
[6] vector S, db instance attributes, values
[13] vector S, P, log attributes
[35] vector S, C, db statistics
[101] (1) vector log
[101] (2) set db instance
[37] set db instance
[93] sets S, P attributes
[42] set P, db schema, db statistics attributes
[110] string SQL sentence
[109] graph S, P, C attributes, table names

Table 3.1: Query models

We now introduce three particular query models for multidimensional queries,
used throughout this dissertation.

3.2.2 No evaluation: Queries as a collection of fragments

A multidimensional query can be modeled as a set of fragments, extracted from
the query expression [9].

Definition 3.2.1 (Query Fragments from a multidimensional schema)
Given schema M = 〈A,H,M〉, a query fragment is either a level in A, a mea-
sure in M , or a simple Boolean predicate involving a level and/or a measure. A
qf-set is a set of query fragments.

A multidimensional query over a schemaM = 〈A,H,M〉 can be modeled by
a qf-set that includes at least one level for each hierarchy in H and at least one
measure in M . For instance, representing an MDX query as a qf-set q means:

1. Including a fragment m in q for each measure m returned by the MDX
query.

2. Including a fragment a in q for each level a used in the MDX query to
aggregate data.

37

3. Including a fragment (a ∈ V) in q for each simple predicate on a level or
measure a used in the MDX query to filter data.

We give an example of fragments extracted from MDX queries [9].

Example 3.2.1 The MDX query on the CENSUS schema

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

is the union of four GPSJ queries:

πAllCities,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πAllCities,Mrn,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πRegion,AllRaces,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

πRegion,Mrn,Occ,Year,AllSexes,AV G(AvgIncome)σYear=2009(χCENSUS)

and is represented by the qf-set q = {Region,AllCities,Mrn,AllRaces,Occ,Year,
AllSexes,AvgIncome, (Year = 2009)}.

An alternate representation is to model the query by a triple better struc-
turing the 3 components of a multidimensional query: A measure set, a set of
selection predicates and a group-by set.

Definition 3.2.2 (Fragment-based OLAP query model) The model of a
query over schema M = 〈L,H,M〉 is a triple q = 〈G,P,Meas〉 where:

1. G ∈ Dom(H) is the query group-by set;

2. P = {p1, . . . , pn} is a set of Boolean predicates, one for each hierarchy,
whose conjunction defines the selection predicate for q; they are of the
form l = v, or l ∈ V , with l a level, v a value, V a set of values. Con-
ventionally, we note pi = TRUEi if no selection on hi is made in q (all
values being selected);

3. Meas ⊆M is the measure set whose values are returned by q.

Example 3.2.2 An example of model of a query on the CENSUS schema is:

q1 = 〈G⊥, TRUE,AvgIncome〉

where G⊥ = 〈AllCities,AllRaces,AllYears,AllOccs, AllSexes〉 and TRUE =
{TRUERESIDENCE, TRUERACE, TRUETIME, TRUEOCCUPATION, TRUESEX}.

38

3.2.3 Partial evaluation: Queries as sets of references

A query can be modeled as a set of tuples, obtained with a partial evaluation of
the query expression. For instance, a multidimensional query over a star schema
can be evaluated only over the dimension tables, resulting in a set of references
[16, 37, 12]. Note that obtaining this set of references from a query expression
can be computed efficiently when dimension tables fit in main memory. In that
case, a query can be expressed intentionally as a tuple of sets, one set of members
in each dimension. The cross-product of these sets is a set of references, which
forms the query model.

Definition 3.2.3 (Query modeled as a set of references) Given an n-di-
mensional cube C = 〈D1, ..., Dn, F 〉 over a multidimensional schema M =
〈A,H,M〉, let Ri be a set of members of dimension Di,∀i ∈ [1, n]. A query
expression q = 〈R1, ..., Rn〉 is a tuple of sets of members, one for each dimen-
sion Di of C. Given such an expression, the query model of q is the set of
references R1 × ...×Rn.

Example 3.2.3 consider the following MDX query on the CENSUS schema:

SELECT AvgIncome ON COLUMNS,

Crossjoin(SEX.members,{RESIDENCE.Region.Pacific,

RESIDENCE.Region.Atlantic}) ON ROWS

FROM CENSUS WHERE TIME.Year.[2001]

An example of model of this is:

{Pacific, Atlantic} × {AllRaces} × {2001} × {AllOccs} × {Male, Female}

3.2.4 Full evaluation: Queries as their results

Finally, a query can be modeled as the set of its answer when evaluated over a
database instance [39]. It can be defined as follows: Given a cube instance and
a query expression, the query models is the set of facts extracted from the data
cube by the query expression. Obviously, this set can be empty.

3.2.5 Modeling sessions and logs

In this dissertation, we use the term log to refer to the actual analytical queries
launched over a data warehouse. The term workload, very common in the
literature on query optimization, is usually seen as a set of queries (or more
precisely query expressions). This dissertation develops the idea that the actual
query log is more than a set of queries, and can be seen as a more complex
structure of which we give a more accurate definition.

Indeed, in an OLAP context, queries are often not isolated from one another,
as shown by [93], that reports a study of a query log of 18 users over a two months
period in a large chemical company. The log showed that users interactively
formulate their next query based on the result of the previous query, illustrating

39

the navigational nature of an analytical session (or analysis) over a data cube.
This is especially the case in discovery driven analysis [94, 95, 97]. We thus define
an analytical session, or session for short, as a sequence of query expressions.

Definition 3.2.4 (OLAP Session) Let C = 〈D1, ..., Dn, F 〉 be an n-dimen-
sional cube over a multidimensional schema M = 〈A,H,M〉, and SC be a
set of query expressions over C in a given language. A session s of k query
expressions s = 〈q1, . . . , qk〉 over C is a function from an ordered set pos(s) of
integers (called positions) of size k to SC .

As query models are constructed from query expressions, a session can also
be seen as a sequence of query models.

A log L is a finite set of sessions, noted L = {s1, . . . , sp}.

Definition 3.2.5 (Log) Let C = 〈D1, ..., Dn, F 〉 be an n-dimensional cube
over a multidimensional schema M = 〈A,H,M〉. A log L is a finite set of
sessions over C.

Note that if sessions are assumed to be launched one after the other (i.e.,
the sessions over the data warehouse are not concurrent), then a log itself can
be seen as a sequence of query expressions, hence as a session.

We denote the set of query expressions of a session s by queries(s) and the
set of query expressions of a log L by queries(L). We note q ∈ L for a log L if
q ∈ queries(L).

Example 3.2.4 An example of OLAP session of length 3 on the CENSUS
schema is s = 〈q1, q2, q3〉, where the fragment-based query models are:

q1 =〈G⊥, TRUE, {AvgIncome}〉
q2 =〈G1, TRUE, {AvgIncome}〉
q3 =〈G1, {Year = 2011, TRUERACE , . . .}, {AvgIncome}〉

where TRUE =
{TRUERESIDENCE, TRUERACE, TRUETIME, TRUEOCCUPATION, TRUESEX}.
Note that the user here applied a roll-up operator to move from q1 to q2,

and a slice operator to move from q2 to q3.

3.3 Conclusion

This chapter introduced various models for OLAP query logs. Logs are mod-
eled as sets of sessions, sessions being modeled as sequences of OLAP queries.
Three main ways are given for modeling queries: as unevaluated collections of
fragments (group by sets, sets of selection predicates, sets of measures), as sets
of references obtained by partially evaluating the query over dimensions, and as
their answers. Importantly, answers or sets of references can be obtained from
the collection of fragments.

40

Intuitively, these three models can be seen as three different focuses on
how the user interacts with the cube, where the importance is either the way
the query is written (unevaluated queries), or the part of the cube queried
(partially evaluated queries), or the values retrieved (fully evaluated queries).
It is also worth noting that both the effectiveness and efficiency of the user-
centric approach depends on the query model used. Indeed, a trade-off exists,
that can be expressed as follows. On the one hand, modeling queries as their
results allows to leverage the knowledge extracted with the query, but requires
important resources to store or recompute the query answer, especially in a data
warehousing context. On the other hand, using only information derived from
the query expression may give rise to efficient approaches, but not knowing
the data extracted with the query may prevent valuable deductions, like two
different query expressions lead to identical results on a given instance.

Obviously, not all query logs produced by an OLAP system, especially those
based on the ROLAP technology, naturally respect this model. The next chapter
provides a technique for obtaining a log respecting this model, from a sequence
of relational queries.

41

Chapter 4

Constructing the log

As noted in the previous chapter, the query log obtained from an OLAP server
or DBMS may not respect the model of log introduced in Definition 3.2.5. In
particular, as it is often the case in a ROLAP setting, OLAP queries can be
expressed under the form of SQL (or relational) expressions. The log may simply
be a long sequence of such expressions that may not be organized as a set of
sessions. And even though the queries are organized as sessions, they may not be
logically connected toward the exploration of an analytical goal. Consequently,
OLAP semantics must be extracted from each expression, under the form of
OLAP operations, and sessions must be identified.

This chapter introduces a technique to obtain a log respecting the model
defined in the previous chapter, i.e., a set of sessions of OLAP queries. Section
4.1 starts with an informal description of the approach, and presents the running
example. In Section 4.2, we show how to characterize each query in the query
log by means of the MultiDimensional Algebraic (MDA) operators presented in
chapter 3. Then, Section 4.3 explains how to normalize this characterization so
it can be compared to other characterizations. Finally, Section 4.4 indicates how
to detect that two consecutive queries are logically connected, which enables to
detect sessions.

This chapter relies on material published in [92] and [106]. Note that in this
chapter, the term query refers to query expression.

4.1 Principle and running example

In this section, we outline the principle of the technique and introduce a running
example to illustrate it.

4.1.1 Principle

The technique relies on the following three steps:

1. We start by characterizing each analytical relational query by means of
MDA, which gives multidimensional sense to the query. This characteri-

42

zation is an expression in the MDA language that is called a MAC (for
Multidimensional Algebraic Characterization).

2. We define a normal form for queries expressed in MDA, and propose a set
of equivalence rules, based on those of the relational algebra to transform
MDA expressions. We show how to use these rules to pull the MDA
operators up the algebraic structure, and produce a Normalized MAC,
that will be called an NMAC.

3. We consider that two queries q1, q2 could be coalesced in the same session
if we only need to add a few MD operators to obtain q2’s output from
q1’s NMAC. In other words, bridging is the process of producing the same
result as q2 by adding operators to q1’s NMAC (thus, we are bridging from
q1 to q2). Based on the length of the bridge found, we can decide whether
it makes sense or not to consider both queries in the same session.

4.1.2 A running example

We now introduce the relational queries that will be used in the subsequent ex-
amples of this chapter. We consider a scenario inspired by the TPC-DS bench-
mark [104, 88], where a relational database is accessed with queries expressed
in SQL. The database schema consists of the following relations (where foreign
keys are represented as attr1 (→ attr2)):
catalog sales (cs date (→ date), cs store (→ store), cs customer (→ customer),

cs product (→ product), cs quantity, cs amount),

date dim (date, month, quarter, year),

store dim (store, address, city, state, region),

customer dim (customer, name, address, city, state, profession, branch),

product dim (product, description, line)

Figure 4.1: Exemplification of three SQL analytical queries within the same
session

Consider queries in Figure 4.1, extracted from the query log. q1 asks for
the total sales by state and year for a product, q2 disaggregates sales by month
and q3 focuses on the south-east region. It turns out that these queries can be
expressed in MDA. Query q1 can be bridged with query q2. Indeed, it can be
detected that it corresponds to a drill-down from the year level to the month
level. Furthermore, q2 can be in turn bridged with q3 since it corresponds to
adding a selection over region. The three queries thus, should be characterized
as a single session.

43

We will also use the more complex query q4, which unites two cubes with the
total sales by customer state and month, for year 1999, for both the south-east
and south-west regions:

SELECT month, state, SUM(cs_quantity) AS sales
FROM catalog_sales, date_dim, customer_dim
WHERE cs_date = date AND cs_customer = customer AND year = 1999
AND region = ’SE’
GROUP BY month, state
UNION
SELECT month, state, SUM(cs_quantity) AS sales
FROM catalog_sales, date_dim, customer_dim
WHERE cs_date = date AND cs_customer = customer AND year = 1999
AND region = ’SW’
GROUP BY month, state;

In what follows, we consider that these queries will be applied over a cube
Sales whose schema is 〈ASales, HSales,MSales〉 with:

ASales = {date,month, quarter, year, store, city, state, region, customer,
profession, branch, product, line},
HSales = {

• 〈{date,month, quarter, year, allY ears}, allY ears � year � quarter �
month � date〉,

• 〈{store, city, state, region, allRegions}, allRegions � region � state �
city � store〉,

• 〈{customer, profession, branch, allBranches}, allBranches � branch �
profession � customer〉,

• 〈{customer, c city, c state, allStates}, allStates � c state � c city �
customer〉,

• 〈{product, line, allLines}, allLines � line � product〉}

and MSales = {quantity, amount}.

4.2 Multidimensional characterization of queries

We now present how to translate relational expressions into MDA expressions.

4.2.1 Mapping OLAP operators with relational operators

In [91], it is shown how the MDA operators presented in Chapter 3 can be
expressed in terms of restricted operators of the relational algebra. We take
advantage of this work to identify the MDA operators, given a relational query.
First, we briefly refresh the relationship between both algebras and later, we dis-
cuss how to formulate the MAC of a relational query. Without loss of generality,
we denote by raw data (over which apply the MDA operators) the universal re-
lationship of the tables in the cross product of a relational query, i.e., the join
between the fact table and all the dimension tables in the context of a star
schema.

44

Operators σ π ./ ∪ “Group by” “Aggregation”
Selection X
Projection XMeasures
Roll-up X XMeasures

Drill-across X X
ChangeBase X

Union X

Table 4.1: Mapping between the relational and MDA operators

Table 4.1 synthesizes the mapping between MDA operators and extended
relational operators. In the table, a X indicates that there is a translation
from the relational operator into the MDA one. Xmeasures indicates that the
MDA operator is equivalent to the relational one but it can be only applied
over measures. If the translation of a MDA operator combines more than one
relational operator, they appear ticked in the same row. We address the reader
to [91] for a detailed justification of this table.

Note that this table can be used to unambiguously translate relational op-
erators into their MDA counterpart. Nevertheless, translation is possible only
if the constraints inherent to the multidimensional model are satisfied.

Definition 4.2.1 (Constraints inherent to the multidimensional model)
These constraints are:

1. Fact/Dimension dichotomy must be preserved, which is reflected in that
members and measures are disjoint.

2. Summarizability necessary conditions (as in [67]) must be preserved, which
is reflected in the multiplicities of relationships used in the operations as
follows:

(a) Roll-up: leveli → levelj must be one-to-many (or many-to-one, if
it actually corresponds to a drill-down operation).

(b) ChangeBase: base1 → base2 must be one-to-one.

(c) Drill-across: cube1
 cube2 must be one-to-one.

These constraints can be easily verified using the schema of the database. A
relational query that could not be fully formulated in terms of MDA operators
would not make multidimensional sense and thus should not be considered as
an OLAP query.

4.2.2 From relational queries to multidimensional queries

We now introduce the grammar that is used to derive the MDA expression,
that is, the MAC of the relational query. By definition, a MAC is a tree-shaped
structure. Like in the relational algebra, this is because of binary operators.
From now on, we will talk about the root-side and the leaf-side of the MAC.
The tree leafs are raw data (i.e., with no transformations). Furthermore, we
call a navigation path (NP from here on) to any partially ordered set of unary

45

operations consecutive within the tree. These NPs can be thought as data ma-
nipulation to produce the desired presentation or alignment (i.e., the data cube
MD space -changeBases-, slicers -selections-, data granularity produced -roll-
ups- and subset of measures shown -projections-), whereas nodes collapsing two
branches (from here on, we simply refer to the input NPs of binary operators
as branches) are generating a new set of tuples (if desired, we may keep manip-
ulating the result with a new NP). Thus, note that a single MAC can contain
more than one NP.

Indeed, data might need to be aligned, i.e., correspond to the same group by
set, before being able to collapse them with a binary operation. For example, we
may need to roll-up to the same granularity level before uniting or drilling-across
data from two different cubes (i.e., align the input branches of binary operators
to produce the one-to-one relationship demanded by union and drill-across).

Finally, we talk about the pivotal node (i.e., the first binary ancestor of the
root) as the tree node dividing the MAC into two well-differentiated layers: the
structural layer and the presentation layer. In other words, the pivotal node
identifies the set of tuples (i.e., the structural part) over which we only apply
unary operations (i.e., a NP representing how data is presented to the user).

Definition 4.2.2 (Grammar used for the MAC) The grammar capturing
the semantics of a MAC is as follows (χ, σ, π, γ, ∪, ./ represent the MDA
operators).

MAC → rawData NP | (MAC ∪MAC)NP | (MAC ./MAC)NP Q → CB S R P
NP → Q | Q NP CB → ∅ | χCB S → ∅ | σS R → ∅ | γR P → ∅ | πP

The process used to translate a relational expression qr into its MAC qm is
summarized by Algorithm 1.

Algorithm 1 Obtaining the MAC of a relational query
Input: qr: A query expressed in the relational algebra
Output: The MAC of qr if it exists, or an exception

1: Parse qr using the grammar of Definition 4.2.2 and Table 4.1
2: if at least one constraint of Definition 4.2.1 is not satisfied then
3: return with exception ”no multidimensional characterization”
4: else
5: return qm as the result of the parsing

We illustrate this algorithm on the running example.

Example 4.2.1 The MAC of q1 is (where raw data is the universal relation for
catalog sales × store dim × date dim, i.e., tables in the FROM):

γdate→yearsum(cs quantity)(γstore→statesum(cs quantity)(γproduct→allLinessum(cs quantity) (

γcustomer→allBranchessum(cs quantity) (γcustomer→allSstatessum(cs quantity) (

πcs quantity(σcs product=′1′(raw data)))))))

For the sake of readability, roll-up operations that aggregate to the coarsest
granularity level in some dimension are omitted in subsequent examples. Thus

46

the MAC of q1 is simply noted:

γdate→yearsum(cs quantity)(γ
store→state
sum(cs quantity)(πcs quantity(σcs product=′1′(raw data))))

The MAC of query q1 expresses the roll-up to the state and year levels, the
projection over the measure (cs quantity) and the selection (of the product with
code ’1’).

The MAC of query q2 is:

πcs quantity(γdate→monthsum(cs quantity)(γ
store→state
sum(cs quantity)(σcs product=′1′(raw data))))

The MAC of q4 this query is:
(σregion=′SE′(γ

date→month
sum(cs quantity)(γ

customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data))))))
∪
(σregion=′SW ′(γ

date→month
sum(cs quantity)(γ

customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data))))))
Note that this MAC contains two NP, namely:
σregion=′SE′(γ

date→month
sum(cs quantity)(γ

customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data)))))
and

σregion=′SW ′(γ
date→month
sum(cs quantity)(γ

customer→state
sum(cs quantity)(πcs quantity(σyear=1999(

raw data))))).
In this MAC, the pivotal node is the union, because in this case it represents

the structural part. There is no presentation layer in this case, since the union
is also the root.

4.3 Normalization of multidimensional expres-
sions

In this section, we explain how the MAC of the relational expression is turned
into a normal form. We first start by the characterization of this normal form
and then present an algorithm to obtain it.

4.3.1 A normal form for multidimensional expressions

Intuitively, the final aim of normalization is to distinguish between operators
producing the set of tuples retrieved by the query (i.e., the structural layer) and
operators manipulating these tuples before being presented to the user (i.e., the
presentation layer). However, MACs can contain more than one NP (some of
them interleaved in the structural layer for aligning binary operators), although
only the root-most NP (i.e., the one amid the pivotal and root nodes) represents
the presentation layer. Thus, in the normalized MAC, operators are placed in
the presentation layer (i.e., to the MAC root-side) whenever possible. If an
operator remains stuck in the structural part after normalization then, it is
needed for retrieving tuples rather than for presentation purposes. We precise
this in the following definition.

47

Definition 4.3.1 A normalized MAC (NMAC) is a MAC with the following
properties:

i) It is composed of a presentation layer, that is a sequence of unary opera-
tions at the root of the tree, and of a structural layer, a tree of binary and
unary operations whose root is a binary operation connecting the structural
layer and the presentation layer.

ii) All operations that are not needed for aligning the inputs of binary opera-
tors appear in the presentation layer. NPs stuck in the structural part are
needed for aligning the inputs of binary operators (and not for presentation
purposes).

iii) The minimum number of Q (see Definition 4.2.2) appear at each NP, each
potentially containing χ, σ and γ, in this order.

iv) π can only appear in the topmost Q of every NP, and following the order
imposed by the containment of attributes.

Furthermore, we force a partial order aimed at facilitating the NPs compar-
ison, as follows:

i) γ in Q will be sorted by dimension and then aggregation level.
ii) σ in Q will follow the inverse order the user posed them.

iii) χ in Q will follow the inverse order the user posed them.

Example 4.3.1 Consider the MAC of query q4 given in the previous example.
This MAC is not in normal form, since properties (ii) (many operations can
be pulled up through the union), (iii) (operations in the NPs are not sorted
properly) and (iv) (the projections are not in the topmost position) do not hold.

A NMAC is produced by using the equivalence rules described below.

4.3.2 Equivalence rules for the multidimensional algebra

In our approach we benefit from the algebraic structure proposed, and we use
a set of equivalence rules to pull the MD operators up the algebraic structure.

Operator Projection Roll-up Selection ChangeBase
Projection × X X X
Roll-up X ∼ ∼ ∼
Selection X X X ∼
ChangeBase X ∼ ∼ X
Drill-across X ↗↖ ↗↖ ↗↖
Union ↗↖ ↗↖ ↗↖ ↗↖

Table 4.2: MDA equivalence rules
Thus, the MDA equivalence rules (shown in Table 4.2) are an immediate

consequence of considering the MDA operator semantics over the relational
algebra equivalence rules and considering the constraints introduced in Section
4.2. The meaning of each cell in the table is the following: if the MDA operator
in the column can be pulled up1 the operator in the row, the cell is ticked

1We recall that a MAC is a tree-shaped structure and consequently, we talk about pulling
up an operator through the structure.

48

(“X”). If there is a conflict, the cell is crossed (“×”). Like in the relational
algebra equivalence rules, a “∼” denotes a partial conflict: the operator can be
pulled up whenever the row operator does not remove the attribute needed by
the column operator. For example, a selection can only be pulled up a roll-
up if the attribute used to select is not rolled-up. Finally, a “↗↖” refers to
binary operators. A unary operator can be pulled up the binary operator if it
appears in both branches as explained below. For example, we can only pull
up a projection through a union if the same measures are projected in both
branches.

4.3.3 Normalization algorithm

The normalization algorithm is just a postorder traversal of the MAC, con-
sidering that the nodes to visit are NPs and binary operations (thus, being a
postorder algorithm, for each binary operator, it first visits its branches and
later the binary operator itself). We then deal with these two kinds of nodes in
a different way:

a) For each NP we visit, for each unary operator it contains (from root-side
to leafs-side), we pull it up in the direction of the root as much as possible
within the NP, following the rules in the white and light gray cells of Table
4.2.

b) Next, for each binary operator we visit, if both left and right branches are
non-empty NPs and some operation coincides in their topmost Qs which
can be pulled up through its successors in Q according to the light and
dark gray cells of Table 4.2, the unary operator is pulled up from both
and added once at the leafs-side of the parent NP of the binary operator.
Note that, every binary operator will always have a parent NP (in the
trivial case, the one containing the root node). Only exception, according
to Table 4.2, is that it is not necessary that a projection must coincide at
both branches of a drill-across to be pulled up.

Example 4.3.2 Consider again the MAC of query q4. Following a postorder
traversal, we would first visit both NPs,which would be sorted to result in:

πcs quantity(γcustomer→statesum(cs quantity)(γ
date→month
sum(cs quantity)(σyear=1999(σregion=′SE′(

raw data)))))
and

πcs quantity(γcustomer→statesum(cs quantity)(γ
date→month
sum(cs quantity)(σyear=1999(σregion=′SW ′(

raw data)))))
Afterwards, we would visit their parent, yielding the following:

πcs quantity(γcustomer→statesum(cs quantity)(γ
date→month
sum(cs quantity)(σyear=1999(

σregion=′SE′(raw data) ∪ σregion=′SW ′(raw data)))))
Finally, we should normalize the presentation layer, but it already is.

49

4.4 Detecting sessions

Working with algebraic expressions under normal form makes it easier to detect
if, syntactically, two expressions are similar to each other. In our context, similar
NMACs may be considered logically related from an analytical point of view,
and if two NMACs are close enough to each other, they are considered to belong
to the same analytical session. In that case, they are coalesced into a session
and both NMACs are logically related by annotating their bridging operators.
Formally, given two NMACs n1, n2, we say we can bridge them if by means
of some MDA operators, called the bridging operators, we can transform the
output of n1 into that of n2.

In our current approach, we only analyze those queries whose structural parts
coincide by comparing their presentation layers. Indeed, if structural parts do
not coincide, data retrieved by the two queries are too much different to be part
of the same session. From the presentation layer of a NMAC n, the following
components can be extracted:

• The query group by set gb(n), by looking at the γ operations.

• The query predicates pred(n), by looking at the σ operations.

• The query measure set meas(n), by looking at the final π operation.

NMACs whose structural part coincide can thus be characterize by means
of the fragment based OLAP query model introduced in the previous chapter,
i.e., for a NMAC n, the triple components(n) = 〈gb(n), pred(n),meas(n)〉.

Example 4.4.1 Consider q2’s MAC, which is normalized:

πcs quantity(γdate→monthsum(cs quantity)(γ
store→state
sum(cs quantity)(σcs product=′1′(raw data))))

This query can be modeled as:

〈〈month, state, allBranches, allStates, allLines〉,
{product = 1, TRUEY EAR, . . . , TRUESTATE},
{cs quantity}〉

Since MDA is close and every operator has its inverse, by definition, given
two NMACs n1 and n2, we can transform components(n1) into components(n2)
by means of a finite set of MDA operators applied to n1. Furthermore, given
MDA’s minimality, we know which operators can be applied in order to do
so: group-by sets can be changed with roll-up or drill-down, predicates can be
changed with σ or ∪, and measure sets can be changed with π or 1. Algorithm
2 bridges two NMACs, resulting in a set S of MDA operators.

The produced bridge is then evaluated to decide whether n1 and n2 are
similar enough, for instance by evaluating |S| against a threshold, and if so we
consider both NMACs to belong to the same session. As result, both NMACs
are stored in an ordered structure (i.e., a list of NMACs) representing the session
and we annotate their relationship with the bridging operators to keep track of
their logical connection.

50

Algorithm 2 Bridging two NMACs
Input: n1, n2: two NMACs
Output: A set of MDA operation, or an exception
Variables: S: A set of MDA operations

1: S = ∅
2: if the structural parts of n1 and n2 do not coincide then
3: return with exception ”queries non bridgeable”
4: else
5: for each level l1 ∈ gb(n1), l2 ∈ gb(n2) with l2 � l1 do

6: S = S ∪ {γl1→l2} . Roll-up to those coarser n2 levels

7: for each level l1 ∈ gb(n1), l2 ∈ gb(n2) with l1 � l2 do

8: S = S ∪ {γl1→l2} . Drill-down to those finer n2 levels

9: if ∃l2 ∈ gb(n2) such that ∀l1 ∈ gb(n1),¬(l1 = l2 ∨ l2 � l1 ∨ l1 � l2) then
10: S = S ∪ {χgb(n1)→gb(n2)} . Base is to be changed

11: if ∃s ∈ pred(n1) \ pred(n2) then
12: S = S ∪ {σ{s∈pred(n2)}} . Select only with predicates of n2

13: if ∃s ∈ pred(n2) \ pred(n1) then
14: S = S ∪ {∪(raw data)} . values not in n1 need to be fetched

15: if ∃m ∈ meas(n1) \meas(n2) then
16: S = S ∪ {π{m∈meas(n2)}} . Measures not in n2 are projected out

17: if ∃m ∈ meas(n2) \meas(n1) then
18: S = S ∪ {1 (raw data)} . Measures not in n1 need to be fetched

19: return S

Example 4.4.2 Consider q2’s MAC, which is normalized:

πcs quantity(γdate→monthsum(cs quantity)(γ
store→state
sum(cs quantity)(σcs product=′1′(raw data))))

This query can be bridged with q1. Thus, a drill-down is annotated as the
bridge from q1 to q2. Semantically, the annotated bridge means that q2’s output
can be obtained by bridging q1’s NMAC with the annotated drill-down (this is
represented in the MAC below, where the drill-down is represented by the left-
most operator):

γyear→monthsum(cs quantity)(πcs quantity(γdate→yearsum(cs quantity)(γ
store→state
sum(cs quantity)(

σcs product=′1′(raw data)))))
Finally, it is easy to see that query expressions q1, q2 and q3 can be consid-

ered as constituting a session s = 〈q′1, q′2, q′3〉 over cube Sales, and they can be
modeled as unevaluated collections of fragments:

q′1 = 〈〈allY ears, state, allBranches, allStates, allLines〉,
{product = 1, TRUEY EAR, . . . , TRUESTATE}, {cs quantity}〉

q′2 = 〈〈month, state, allBranches, allStates, allLines〉,
{product = 1, TRUEY EAR, . . . , TRUESTATE}, {cs quantity}〉

q′3 = 〈〈month, state, allBranches, allStates, allLines〉,
{product = 1, TRUEY EAR, . . . , region =′ SE′}, {cs quantity}〉

51

4.5 Conclusion

This chapter introduced a technique for constructing a log as a set of sessions of
OLAP queries, respecting the model presented in Chapter 3, from an ordered
set of SQL queries. The techniques consists of normalizing multidimensional
expressions, and checking for all pairs of successive such expressions, if a small
number of OLAP operations can be used to transform the output of the former
into the output of the latter. If the queries are not expressed in the multidi-
mensional algebra, they are translated into it. A preliminary implementation is
introduced in [106].

The next two chapters illustrate how such logs can be manipulated using a
simple language inspired by the relational algebra.

52

Part III

Manipulating logs

53

Chapter 5

Languages for logs

This chapter proposes a manipulation language dedicated to query logs, stem-
ming from the relational algebra. As this language is based on binary relations
over sessions, such binary relation over sessions are first introduced in Section
5.1. Then, Section 5.2 introduces formally the language, and Section 5.3 illus-
trates its use with various examples.

This chapter relies on materials published in [12], [40] and [11]. The work
presented in this chapter is being carried out in the scope of the doctorate thesis
of Julien Aligon.

5.1 Binary relations over sessions

This section introduced various useful binary relations over sessions, used in the
definition of the operators of the language for manipulated logs.

5.1.1 Relations over queries

We start with relations over queries, that will subsequently be used to define
relations over sessions. In this chapter, we focus on specialization relations,
i.e., partial (reflexive, antisymmetric, transitive) orders [76]. Similarities will be
considered in the next chapter. A preference relation over queries is introduced
in Chapter 8. In what follows, q � q′ denotes that a query q is more general
than a query q′.

Specialization relation over partially evaluated queries

We recall that partially evaluated queries are sets of references that can be
expressed as cross product of sets of members (see Section 3.2.3). The special-
ization relation over sets of references follows the roll-up relation, in the sense
that a query is more general than another if the former can be seen as a roll-up
of the latter. It can be intuitively defined as follows: a query q is more general
than another query q′ if for all the references of q′ there exists a reference in q

54

that generalizes it, and each reference of q generalizes at least one reference of
q′.

Definition 5.1.1 Let q and q′ be two queries over the same schema, defined as
two sets of references. q is more general than q′, noted q � q′, if ∀r′ ∈ q′,∃r ∈ q
with r � r′, and ∀r ∈ q,∃r′ ∈ q′ with r � r′.

It is easy to see that this relation is indeed a partial order. We note q>

the query {〈mAll
1 , . . . ,mAll

n 〉}, where, for each hierarchy hi, m
All
i is the coarsest

member of the hierarchy. Finally, we note Q> = {q>}.
The two following operations are used to define a common ancestor of two

queries q and q′ w.r.t. the specialization relation �.

Definition 5.1.2 (Union operator over partially evaluated queries)
Given two queries q1 = R1

1 × . . . × R1
n and q2 = R2

1 × . . . × R2
n, q1 ∪ q2 is the

query q = (R1
1 ∪R2

1)× . . .× (R1
n ∪R2

n).

Definition 5.1.3 (lca operator for partially evaluated queries) Let q =
R1×. . .×Rn be a query. For a set of members M in dimension D, let lca(M) =
{m ∈ π∗(D)|∀m′ ∈M, (m � m′) ∧ @m′′ ∈ π∗(D), (m � m′′ ∧m′′ � m′)}. Then
lca(q) = lca(R1)× . . .× lca(Rn).

A common ancestor to q and q′ with respect to � is lca(q, q′) = lca(q ∪ q′).

Example 5.1.1 Consider the following queries:
q1 = {LosAngeles} × {AllRaces} × {2001} × {AllOccs} × {Female}
q2 = {California}×{AllRaces}×{2002}×{AllOccs}×{Female,Male}.
A common ancestor with respect to � is:
q3 = {California}× {AllRaces}× {AllY ears}× {AllOccs}× {AllSexes}.

Specialization relation over unevaluated queries

We recall that unevaluated queries are defined as a triple 〈G,P,M〉 (see Section
3.2.2). Given a schema 〈L,H,Meas〉, the group by sets, selection predicates
and sets of measures of the queries that can be expressed over this schema,
can all be respectively arranged into a lattice. The operations for manipulating
unevaluated queries leverage this property.

Considering two group-by sets G and G′, recall that we note G �H G′ if G is
more general1 then G′ in the sense of the group-by lattice, whose top element G>

is the coarsest group by set. We define the supp and inf operations on group-by
sets, to be, supp(G,G′) = min�H{G′′ ∈ Dom(H)|G′′ �H G and G′′ �H G′}
and inf(G,G′) = max�H{G′′ ∈ Dom(H)|G �H G′′ and G′ �H G′′}.

For two sets of selection predicates P, P ′, we note P �p P ′ if P is more
selective than P ′, i.e., val(P) ⊆ val(P ′), where val(X) is the set of values used
in predicate X. Note that, whatever pi ∈ P , it is val(pi) ⊆ {TRUEi}, val(pi)∩
{TRUEi} = val(pi) and val(pi) ∪ {TRUEi} = {TRUEi}. We define the supp

1Note that G can also be interpreted as being more selective as G′, in the sense that it
asks for less values of the hierarchies to be retrieved.

55

and inf operations on sets of predicates, to be, supp(P, P ′) = val(P) ∩ val(P ′)
and inf(P, P ′) = val(P)∪ val(P ′). We recall that predicates in P (respectively
P ′) are interpreted as a conjunction of Boolean predicates that indicate the
values selected. Therefore, a query 〈G,P,M〉 where P features no selection
predicate for a hierarchy hi, is interpreted as a query selecting nothing, i.e., the
unsatisfiable query. We thus define P> as the set of sets of predicates where
there exists one such hierarchy, i.e., P> = {P |P is a set of selection predicates
for a schema 〈L,H,M〉 with n hierarchies, and |P | < n}.

For two measure sets M,M ′, we note M �m M ′ if M ⊆M ′. We define the
supp and inf operations on measure sets, to be, supp(M,M ′) = M ∩M ′ and
inf(M,M ′) = M ∪M ′.

Given a schema 〈L,H,Meas〉, we consider the set of queries over this schema
that are the less informative ones, that we note Q> = {〈G,P,M〉|G = G> ∨
P ∈ P> ∨M = ∅}. Among the queries in that set, a particular one is q> =
〈G>, ∅, ∅〉. Note that by less informative, we mean that its expression may not
reflect a user’s intention. For instance, a query 〈G,P, ∅〉 is interpreted as having
no measure, thus nothing can be said about the user’s intention in terms of
analyzing facts.

We can now define the specialization relation over queries.

Definition 5.1.4 (Specialization relation over unevaluated queries)
Let q = 〈G,P,M〉 and q′ = 〈G′, P ′,M ′〉 be two queries over the same schema. q
is more general than q′, noted q � q′, if G �H G′ and P �p P ′ and M �m M ′.

Given a schema 〈L,H,Meas〉, the set of queries over this schema together
with the specialization relation � over queries form a lattice (being the product
of three lattices). In particular, let q = 〈G,P,M〉 and q′ = 〈G′, P ′,M ′〉 be two
queries. Their most specific common ancestor is:

supp(q, q′) = 〈supp�H (G,G′), supp�p(P, P ′), supp�M (M,M ′)〉

Example 5.1.2 Consider the following queries over the CENSUS schema of
Example 3.1.1:

q1 =〈〈City,AllRaces, Y ear,AllOccs,AllSexes〉,
{Region ∈ {Pacific, Atlantic}, Y ear = ”2001”, TRUERACE ,

TRUEOCCUPATION , TRUESEX},
{AvgIncome}〉

q2 =〈〈Region,AllRaces, Y ear,AllOccs, Sex〉,
{Sex ∈ {Male, Female}, Y ear = ”2001”, TRUERACE ,

TRUERESIDENCE , TRUEOCCUPATION},
{AvgIncome}〉

Their most specific common ancestor with respect to � is

56

q3 =〈〈Region,AllRaces, Y ear,AllOccs,AllSexes〉,
{Y ear = ”2001”, TRUERACE , Sex ∈ {Male, Female}
Region ∈ {Pacific, Atlantic}, TRUEOCCUPATION},
{AvgIncome}〉

5.1.2 Relations over sessions

As for relations over queries, in this chapter, we focus on specialization relations
over sessions. However, note that the relations over sessions are defined based on
a relation � over queries whose semantics is not fixed. For instance, interpreting
� as a preference relation over queries in what follows, allows to define preference
relations over sessions.

In what follows, s � s′ denotes that a session s is more general than a
session s′.

Specialization relation over sessions

We recall that a session is a sequence of queries. In particular, we note S> the
set of sessions containing a query in Q>.

We introduce a specialization relation over sessions that is based on a spe-
cialization relation over queries.

Definition 5.1.5 (Specialization relation over sessions) A session s =
〈q1, . . . , qns〉 is more general than another session s′ = 〈q′1, . . . , q′ns′ 〉, written
s � s′, if there exists a sequence of ns′ integers {i1, . . . , ins′} with i1 = 1,
ins′ = ns and, for k ∈ {1, ns′ − 1}, ik ≤ ik+1, such that, for all j ∈ {1, . . . , ns′},
it is qij � q′j.

The intuition of this specialization relation is given Figure 5.1. Note
that if s � s′ then the sequence of integers {i1, . . . , ins′} defines a partition
P = {p1, . . . , pns} of queries(s′) where the pi’s can be ordered according to the
queries of s, and the queries in each pi, each less general than qi, constitute a
sub-session of s′. Given an integer n and a session s with n ≤ |s|, we call a
n-partition of s, a partition P = {p1, . . . , pn} of queries(s) such that, for all
i ∈ [1, n− 1], all queries of pi precede the queries in pi+1 in s.

Example 5.1.3 Consider queries q1, q2, q3 of Example 5.1.2, q3 being an ances-
tor of both q1 and q2, and sessions s1 = 〈q1, q2, q1〉, s2 = 〈q1, q3〉 and s3 = 〈q3〉.
Then we have s3 � s2 � s1.

It can easily be seen that � is a specialization relation, being a partial
order. However, note that with this specialization relation, sessions cannot be
arranged into a lattice. In particular, there is more than one more specific
common ancestor to a pair of sessions, as illustrated by the following example.

57

Figure 5.1: Specialization relation over sessions

Example 5.1.4 For the sake of simplicity, we restrict queries to their measure
sets. Consider sessions s = 〈{a, c}, {a, b}, {b, d}〉, s′ = 〈{a, c}, {b, d}〉. These
sessions have two more specific common ancestors: s′′ = 〈{a, c}, {b}〉 and s′′′ =
〈{a}, {b, d}〉.

Finding the most specific ancestors to a pair of sessions s, s′ can be done
as follows. First, note that the most specific ancestors of s, s′, assuming s
the shortest, have the length of s, noted |s|. The most specific ancestors can
thus be obtained by computing all the |s|-partitions of s′ and combining each
such partition with s. More formally, let s = 〈q1, . . . , qn〉 a session and s′

another session such that |s| ≤ |s′|. The most specific ancestors to s and s′

are anc(s, s′) = {〈supp(q1, p1), . . . , supp(qn, pn)〉|{p1, . . . , pn} is a |s|-partition

of s′}. Note that, the cardinality of this set is at most
(|s′|−1
|s|−1

)
, which is the

number of |s|-partitions of s′. Note that, from this set, we may want to remove
the sessions in S>.

Similarity relation over sessions

Suppose a function dist applied to pairs of sessions, giving the distance between
two sessions. Similarity relations over sessions can be defined from such a func-
tion. For instance, sim(s, s′) ≡ dist(s, s′) ≤ α for some real α indicates that
two sessions s and s′ are similar if their distance is below a threshold.

As another example, given a set S of sessions, and for some threshold α,
sim(s0, sn) ≡ ∃s1, . . . , sn−1 ∈ S,∀i ∈ [0, n − 1], dist(si, si+1) ≤ α indicates
that two sessions s0 and sn are similar if there exists a chain of sessions with
distance under α that can connect the two sessions. In that case, this relation
is an equivalence relation over S.

Some distances between sessions are studied in Chapter 6.

58

5.2 A relational language for manipulating logs

5.2.1 Intuitions

The language introduced below enables to manipulate logs as defined in Chapter
3, i.e., sets of sessions. It is essentially an adaptation of the relational algebra
with one main difference. The (extended) relational algebra enables the ma-
nipulation of relations, i.e., sets of tuples, that have a schema. The language
introduced here manipulates logs, i.e., sets of sessions, that does not have a
schema. The schema can therefore not be used in the expressions formed with
this language. Instead, the operations of the language are parametrized by a bi-
nary relation over sessions θ, that may for instance be used to compare sessions.
In particular, θ can be one of the specialization relations introduced above,
or one of the similarity relations over sessions defined from distances that are
presented in chapter 6.

5.2.2 Formal definitions

For the sake of simplicity, the names and symbols of the operations are the same
as the ones used in the relational algebra. The language features 5 operations.
Two of them are unary operations: selection σ and group by and aggregation
π. Three of them are binary: join 1, union ∪ and difference \.

We now introduce the formal definitions, that we illustrate with simple
examples. Advanced manipulations are given Section 5.3. In what follows, we
consider a relation sim that relates two sessions if their similarity, measured
with one of the similarity measures defined above exceeds a given threshold, or
if they can be connected through a chain of sessions as defined in Section 5.1.2.

Selection

The selection operation enables to select from a log those sessions satisfying a
given condition. This condition is given under the form of a relation to another
session.

Definition 5.2.1 Let L be a log, s be a session and θ be a binary relation over
sessions.

σθ,s(L) = {s′ ∈ L|θ(s, s′)}

Example 5.2.1 The log can be searched for sessions similar to session s, us-
ing the sim relation, with expression: σsim,s(L). This expression is called
findSimilar(s, sim,L) in what follows.

The log can be searched for sessions containing a particular query q with the
expression: σin,〈q〉(L) where in(〈q〉, s′) is true if q ∈ queries(s′). In particular,

this expression can be used to find sessions in S> if q = q>. This expression is
called findS>(L) in what follows.

59

Set operations

As logs are defined as sets of sessions, the set union and set difference operations
can be used to manipulate logs. The definitions are straightforward:

Definition 5.2.2 Let L and L′ be two logs.
L ∪ L′ = {s ∈ L or s ∈ L′} and L \ L′ = {s ∈ L|s /∈ L′}.

Example 5.2.2 Using the � specialization relation over sessions, a log L can
be searched for all sessions that are more specific than another session s, with
expression: L \ σ�,s(L).

Join

The join operation enables to combine the sessions in two logs, that are related
through a relation θ.

Definition 5.2.3 Let L and L′ be logs, f be a binary functions outputting a
session and θ be a binary relation over sessions.

L 1θ,f L
′ = {f(s, s′)|s ∈ L, s′ ∈ L′, θ(s, s′)}.

Example 5.2.3 Two logs can be compared using the join operation. For in-
stance, given two logs L and L′, the sessions that are similar among the logs
can be found with the expression: L 1sim,first L

′ ∪ L′ 1sim,first L where
first(s, s′) = s for any pair of sessions s, s′.

A log L can be searched for the best sessions it contains with respect to a
partial order �, i.e., L\(L 1�,second L), with second(s, s′) = s′. This expression
is called bestSessions(�, L) in what follows.

Note that intersection can be simulated with the join operation. Indeed,
L ∩ L′ = L 1same,first L

′ with, for any two sessions s, s′, first(s, s′) = s and
same(s, s′) ≡ (s = s′).

Note also that this join operation is not symmetric unless θ is symmetric and
f(s, s′) = f(s′, s) for all s, s′. Moreover, the f function is needed for closeness
reason. In that sense, it is inspired by the join operation defined in [5] for joining
cubes.

Grouping and aggregation

This operator allows to group sessions that are related to one another through
relation θ, and to aggregate them using an aggregation function agg.

Definition 5.2.4 Let L be a log, agg be a function aggregating a set of sessions
into a session, and θ be a binary relation over sessions.

πθ,agg(L) = {agg({s′ ∈ L|θ(s, s′)})|s ∈ L}.

Example 5.2.4 This operation can be used to transform sessions. For in-
stance, extracting from a log L the last query of each session can be expressed
by: πsame,last(L) where, for any two s, s′, it is same(s, s′) ≡ (s = s′), and

60

last({〈q1, . . . , qn〉}) = 〈qn〉 . This expression is called extractLast(L) in what
follows. If removeLast({〈q1, . . . , qn〉}) = 〈q1, . . . , qn−1〉, is used instead of last,
then the expression modifies each session of L by removing the last query. This
expression will be called extractAllButLast(L) in what follows.

This operation can also be used for extracting the best queries from a log L
in the sense of a partial order relation � over queries: πbetter,getBest(L) where,
better(s, s′) holds only if s contains at least one of the best queries of L2 and s′

does not, and getBest(S) = 〈q1, . . . , qn〉 such that the qi’s are such best queries.
This expression is called bestQueries(�, L) in what follows.

5.2.3 Properties

We briefly review the properties of the language in terms of closeness, complete-
ness and minimality.

It can easily be seen that the language is closed under composition, the
result of any operation being a set of sessions.

The language is complete. Indeed, for any pair of logs L and L′, there is
an expression that enables to transform L into L′. The transformation would
proceed as follows:

a) pick a session s in L with σ,

b) transform it into a session s′ of L′ using π,

c) repeat the previous steps until all sessions of L′ are formed,

d) union all transformed sessions to form L′.

The language is not minimal since σ can be simulated with 1. Indeed,
σθ,s(L) = L′ 1θ,f L where L′ = {s} and f(s, s′) = s′. It can easily be seen that
removing σ makes the language minimal.

5.3 Advanced manipulations

We close these chapter by illustrating the language with some expressions de-
scribing various user-centric tasks.

5.3.1 Summarizing and generalizing a log

The group by and aggregate operation can be used to summarize a log. For
instance, given the equivalence relation sim defined in Section 5.1.2, sessions can
be grouped together using sim, and then aggregated using the session in each
group that minimizes the sum of the distances to other sessions of the group,
with expression: πsim,rep(L), where rep(S) = argmin1,s∈S,s′∈S(

∑
S dist(s, s

′)),
dist being one of the distances introduced above used in the definition of sim.

A log can be generalized by computing the most specific ancestors of the
sessions it contains. The expression E1 = L 1all,anc L, where all(s, s′) holds for

2i.e., q ∈ L and @q′ ∈ L with q′ � q

61

all s, s′ ∈ L, gives the most specific ancestors of all pairs of sessions in L. Then
E2 = E1\findS>(E1) removes the sessions in S>. Finally, bestSessions(E2,�),
gives the most general sessions of E2. Calling this expression generalize(L),
more general logs can be expressed by: generalize(. . . (generalize(L) . . .).

5.3.2 Personalization

Obviously, the language can be used to express dominance queries. For instance,
assuming a preference relation prefs over sessions, extracting the preferred ses-
sions from a log L is: bestSessions(prefs, L). Besides, assuming a preference
relation prefq over queries, extracting the preferred queries from a log L is:
bestQueries(prefq, L).

Obtaining a total order over queries from a total order over sessions can
be expressed in the language. Assuming a total order pref over sessions, the
queries of a log can be ordered in a singleton where the order of queries in the
session reflects the order over sessions. More precisely, this is achieved with
πall,agg(L) with all(s, s′) holds for all s, s′ ∈ L, and agg(S) = 〈q1, . . . , qn〉 where
for all i, j ∈ {1, n}, it is i < j if either qi and qj belong to the same session s of S
and s−1(qi) < s−1(qj), or, they belong to different sessions s and s′ respectively,
and pref(s, s′) holds. This expression is called order(agg, L).

Finally, note that a partial order over queries can be expressed for the
queries of a log L as follows. First, separate all queries of the log by breaking all
the sessions: L′ = extractLast(L) ∪ extractLast(extractAllButLast(L)) ∪ . . .
Then, use the join operation to form pairs of queries (i.e., sessions of length 2)
to represent the order over the queries of L′: L′ 1θ,f L

′ with θ(〈q〉, 〈q′〉) if a
given relation between q and q′ holds (like for instance q � q′ or q ⊆ q′) and
f(〈q〉, 〈q′〉) = 〈q, q′〉.

5.3.3 Query recommendation

The language can be used to describe various query recommendation ap-
proaches. For instance, in the approach described in [37], the last queries of
past sessions that are similar to a given session, are recommended. This ap-
proach can be expressed, for a log L, by: extractLast(findSimilar(s, θ, L))
where θ is based on an extension of the edit distance to compare sessions (see
next chapter). Moreover, these recommendations can be ordered using the ex-
pression order(agg, L) defined above, where agg uses a total order on sessions
derived from a total order on queries.

5.4 Conclusion

In this chapter, we introduced a log manipulation language inspired from the
relational algebra, and relying on binary relations over queries and sessions. This
language allows to manipulate logs in a flexible way, and can be used to search,
filter, compare, combine, modify logs, and express advanced manipulations like
summarization or query recommendation.

62

At the core of this language are binary relations over sessions. We have
introduced at the beginning of this chapter some specialization relations over
queries and sessions. The next chapter focuses on similarity measures over
queries and sessions, for defining other relations to be used for log manipulation.
More relations, especially preference relations over queries, will be considered
in Part IV.

63

Chapter 6

Comparing sessions

This chapter introduces some similarities that will subsequently be used over
the multidimensional objects to be found in query logs. Note that we do not
address the comparison of multidimensional data since a comprehensive survey
of similarities that can be used over OLAP data exists in the literature [15]. We
focus on similarity measures for multidimensional queries and sessions. Section
6.1 first presents the approaches found in the literature for comparing queries
and sequences. Then desirable properties of similarity measures for queries and
sessions are listed in Section 6.2. Finally, Sections 6.3 and 6.4 introduce original
similarity measures for comparing queries and sessions, respectively.

This chapter relies on [37] and on material developed in an ongoing work
with Universita di Bologna, which is currently submitted [10].

6.1 Approaches for comparing queries and ses-
sions

6.1.1 Comparing queries

We can distinguish two main motivations for comparing database queries. The
first one is query optimization, where a query q to be evaluated is compared
to another query q′, with the goal of finding a better way of evaluating q.
This motivation attracted a lot of attention, and covers classical problems like
view usability [34, 48], query containment [2], plan selection [35], view selection
[13, 42], data prefetching [93]. The second, more recent, motivation, is to suggest
a query to the user without focusing on its evaluation. In this context, a query is
compared to another one with the goal of helping the user exploring or analyzing
a database. This includes query completion [109] and query recommendation
[101, 24, 8, 37].

From a technical point of view, the approaches found in the literature can
be classified according to (i) the query model they adopt, i.e., the structure used
to represent queries; (ii) the information source from which the model of each
query is derived; and (iii) the function used to compute similarity.

64

As seen in Chapter 3, query models range from uninterpreted text to the
set of tuples being the query’s answer.

As to the information source, it can be the query expression, e.g., the un-
interpreted query text [110] or the list of query fragments (selection predicates,
projection, etc.) [34, 109]. When fragments are used, only some of them may
be taken into account; for instance, only the selection attributes are used in
[6, 109] whereas all fragments are used in [34, 48]. The information source can
also be related to the database queried; more precisely, it can be:

• the database instance, e.g., the query result or the active domain of the
database attributes [6, 24, 37, 101]; In the former case, the query can be
either fully [101] or partially [37] evaluated;

• the statistics used by the query optimizer, like table sizes and attribute
cardinalities [35];

• the database schema, e.g., the keys defined or the index used to process a
selection [35, 42];

• the query log, if the query model relies on other queries that have previ-
ously been launched on the same database. For instance, in [24, 8, 13, 101]
a query is modeled in terms of its links with other queries or how many
times it appears in the log.

Finally, the result of query comparison can be a Boolean or a score, usually
normalized in the [0..1] interval. The first case applies when queries are tested
for equivalence [2] or view adaptation [48], or when the goal is to group queries
based on some criteria [93, 109]. In this case, the comparison can be a simple
equality test of the query schemata [93, 109] or it can be based on separate tests
of query fragments [48]. In the second case, the comparison is normally based on
classical functions applied to the query schemata. For instance, if the query is
modeled as a vector, cosine [6, 8, 24], inner product [101], or Hamming distance
[13] can be used; if the query is modeled as a set, the Jaccard index [101] or the
Hausdorff distance [37] can be used. Sometimes, more sophisticated similarity
functions are used. For instance, [110] uses a measure based on entropy to
cluster queries modelled as strings. In [42], similarity between OLAP queries is
computed based on the relative position of the query group-by sets within the
group-by lattice.

Table 6.1 summarizes the approaches reviewed in this section. Note that
[101] proposes two ways of comparing queries: (1) based on the frequency of
the query in the log, and (2) based on the query result. Letters S, P, and C
indicate the fragments used by the approach (S for selection, P for generalized
projection —including the group-by set and the aggregation operator—, and C
for cross-product).

6.1.2 Comparing sequences

Comparing sequences has attracted a lot of attention especially in the context
of string processing, with applications like information retrieval, spell-checkers,

65

Ref. Motivation Model Source Similarity Function
[48] optimization sets S, P, C fragment tests
[24] recommendation vector db instance, log cosine
[8] recommendation vector S, P, log cosine
[6] optimization vector S, db instance cosine
[13] optimization vector S, P, log Hamming distance
[35] optimization vector S, C, db statistics Hamming distance
[101] (1) recommendation vector log inner product
[101] (2) recommendation set db instance Jaccard index
[37] recommendation set db instance Hausdorff distance
[93] optimization sets S, P query schema equality
[42] optimization set P, db schema, db statistics group-by lattice
[110] recommendation string SQL sentence entropy
[109] recommendation graph S, P, C query schema equality

Table 6.1: Query comparison approaches at a glance

bioinformatics, and record linkage [29, 78]. The existing approaches are inspired
by different principles.

In token-based approaches sequences are treated as bags of elements, and
classical set similarity measures like Jaccard and Hausdorff, and all their vari-
ants, can be used or adapted. Of course, these approaches are not sensible to
the order of sequence elements. When the sequences to be compared are taken
from a corpus, the popular term frequency-inverse document frequency (Tf-Idf)
weight can be adopted, which weighs each element of a sequence using (posi-
tively) their frequency in the sequence and (negatively) their frequency in the
corpus. A cosine is then used to measure the similarity between two vectors of
weights.

Other approaches compare two sequences by comparing their subsequences.
A basic approach here is to use the size of the longest common subsequence
(LCS).1 An approach often used in statistical natural language processing relies
on n-grams, i.e., substrings of size n of a given sequence. A popular similarity
measure using n-grams is the Dice coefficient, an extension of the Jaccard index
defined as twice the number of shared n-grams over the total number of n-grams:

SimDice(s, s
′) =

2|ngrams(s) ∩ ngrams(s′)|
|ngrams(s)|+ |ngrams(s′)|

Other approaches compare sequences based on their edit distance, i.e., in
terms of the cost of the atomic operations necessary to transform one sequence
into another. Many edit distances have been proposed that differ on the number,
type, and cost of the edit operations. The most popular are the Levenshtein
distance, that allows insert, delete, and substitute, and the sequence alignment
distance, that allows match, replace, delete, and insert [29, 82].

Finally, in two-level approaches sequences are compared based on the sim-
ilarity between their elements. A simple example is the Hausdorff distance
between sets, that relies on the distance between elements of the set. In [77] the
similarity between sequences s and s′ is the average of the highest similarities

1Note that, while substrings are consecutive parts of a string, subsequences need not be.

66

between pairs of elements of s and s′:

SimM&E(s, s′) =
1

|s|
∑
si∈s

maxs′j∈s′{Simelem(si, s
′
j)}

where Simelem measures the similarity between single elements2. In soft Tf-Idf
[29, 78], the Tf-Idf weight is extended using the similarity of sequence elements;
more precisely,

Simsoft(s, s
′) =

∑
si∈Closeθ(s,s′)

T (si, s) · T (si, s
′) ·maxs′j∈s′{Simelem(si, s

′
j)}

where T (si, s) is a normalized form of the Tf-Idf of element si within sequence
s, θ is a threshold, and Closeθ(s, s

′) is the set of elements si ∈ s such that there
is at least an element s′j ∈ s′ with Simelem(si, s

′
j) > θ. While the two previous

two-level approaches do not consider the ordering of elements within sequences,
the Smith-Waterman algorithm relies on element ordering; it can be used to
efficiently find the best alignment between subsequences of two given sequences
by ignoring the non-matching parts of the sequences [100]. It is a dynamic
programming algorithm based on a matrix H whose value in position (i, j)
expresses the score for aligning subsequences of s and s′ that end in elements
si and s′j , respectively. The similarity between two sequences is then measured
as the highest alignment score in the matrix. This matrix is recursively defined
based on the following formula:

H(i, j) = max


0;

H(i− 1, j − 1) + Simelem(si, s
′
j);

maxk≥1{H(i− k, j)− ck};
maxk≥1{H(i, j − k)− ck}


where ck is the cost of introducing a gap of length k in the matching between s
and s′. Note that, here, the similarity between two elements can be negative, to
express that there is a mismatch between them; intuitively, the algorithm seeks
an optimal trade-off between the cost for introducing a gap in the matching
subsequences and the cost for including a poorly matching pair of elements.

It should be noted that these approaches measure the sequence similarity (or
distance). Tf-idf and Dice coefficient are normalized in [0,1] while Edit distance
and sequence alignment are usually not (but can easily be) normalized.

6.2 Requirements for similarity measures for
OLAP sessions

The goal of this section is to list a number of requirements to be used for (i)
understanding which approaches, among all those proposed in the literature
for query and sequence comparison, are eligible for the OLAP context; and

2M & E refer to the authors name.

67

(ii) driving the adaptation and extension of the eligible approaches towards the
development of an original approach to OLAP session comparison.

We start by proposing a first set of requirements, suggested by the specific
features of the OLAP context and by our experience in the field:

]1 Multidimensional databases store huge amounts of data, and OLAP queries
may easily return large volumes of results. To adequately address the effi-
ciency issue, we compute similarity at the intensional level, i.e., considering
only query expressions and neglecting all the extensional aspects (such as
the actual query results).

]2 It is unlikely that two OLAP sessions share identical queries; this feature
is better managed by having comparisons of single queries result in a score
rather than in a Boolean.

]3 A typical OLAP query is defined by the fact to be analyzed, one or more
measures to be computed, a set of hierarchy levels for aggregating measure
values, a predicate for filtering a subset of events, and a presentation. Though
the presentation chosen for displaying the results of an OLAP query (e.g., a
cross-tab or a pie-chart) certainly has an influence on how easily users can
interpret these results, it does not affect the actual informative content, so
it should not be considered when comparing queries.

To discover additional requirements for OLAP sessions similarity, we pre-
pared a questionnaire asking to give a qualitative evaluation of the similarity
between couples of OLAP queries and couples of OLAP sessions over a simple
multidimensional schema. The questionnaire was submitted to all the teachers
and PhD students of the First European Business Intelligence Summer School
(eBISS 2011)3, as well as to the master students of two specialistic courses on
data warehouse design at the Universities of Bologna (Italy) and Tours (France).
Overall, 41 answers were collected. The additional requirements emerging from
an analysis of the questionnaire results can be summarized as follows:

]4 The selection predicate is the most relevant component in determining the
similarity between two OLAP queries, followed by the group-by set. The less
important component is the set of measures to be returned.

]5 The order of queries is relevant in determining the similarity between two
sessions, i.e., two sessions sharing the same queries but in different orders
have low similarity.

]6 Recent queries are more relevant than old queries in determining the simi-
larity between two OLAP sessions.

]7 The longest the matching section of two sessions, the highest their similarity.

]8 Two sessions that match with one or more gaps (one or more non-matching
queries are present) are similar, but their similarity is lower than the one of
two sessions that match with no gaps.

3http://cs.ulb.ac.be/conferences/ebiss2011/

68

High

High

High

Good

Good

Good

Fair Fair

Fair

Low
Low

Low

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Measures Group-by Selection

%
 U

s
e
rs

Queries that differ in...

Figure 6.1: Perceived similarities for OLAP queries only differing in one of their
three main components

In particular, as to point]4, in Figure 6.1 we show the percentages of users
that perceive a given level of similarity for couples of queries that only differ in
either their measure sets, or their selection predicates, or their group-bys. Ap-
parently, measures are the less important component in determining similarity
since most users perceive as highly similar two queries that only differ in their
measures. The opposite holds for the selection predicate component.

6.3 Similarity measures for OLAP queries

This section introduce some similarity measures for OLAP queries.

6.3.1 Similarities for evaluated or partially evaluated
queries

When queries expressions are evaluated or partially evaluated, similarities for
multidimensional data, as reviewed in [15], can be used. We illustrate this with
a distance between sets of references that we proposed in [37], based on the
Hausdorff distance.

Queries being modeled as sets of references, comparing two queries boils
down to comparing two sets of references which can indeed be done with the
classical Hausdorff distance for comparing two sets, based on a distance between
the elements of the sets. We first introduce the distance between references.
This distance is based on the shortest path between members in a hierarchy,
defined as follows: Given a cube C and one of its hierarchies H, the distance
σmembers between two members m1, m2 in this hierarchy is the length of the
shortest path from m1 to m2 in H.

Definition 6.3.1 (Distance between references) Given an n-dimensional
cube C and two references r1 = 〈r1

1, . . . , r
n
1 〉 and r2 = 〈r1

2, . . . , r
n
2 〉, the distance

between r1 and r2 is σsp(r1, r2) =
∑n
i=1 σmembers(r

i
1, r

i
2).

69

Definition 6.3.2 (Distance between sets of references) Given two
queries q1 and q2, the Hausdorff distance between q1 and q2 is:

σH(q1, q2) = max{maxr1∈q1 minr2∈q2 σsp(r1, r2),
maxr2∈q2 minr1∈q1 σsp(r1, r2) }

Example 6.3.1 Consider the following queries:
q1 = {Pacific, Atlantic}×{AllRaces}×{2001}×{AllOccs}×{AllSexes}
q2 = {AllCities} × {AllRaces} × {2002} × {AllOccs} × {Male, Female}
Their distance is σH(q1, q2) = 1 + 0 + 2 + 0 + 1 = 4.

This distance can be normalized in [0,1] by dividing by the maximum dis-
tance σmaxH , which is, for a schema M = 〈A,H,M〉 with H = {h1, . . . , hn},
σmaxH = 2 ×

∑n
i=1 |lev(hi)|. Interestingly it is shown in [83] that this distance

is a metric in the sense that it satisfies non-negativity, symmetry and triangle
inequality.

6.3.2 Similarities for unevaluated queries

When queries are not evaluated, they can be modeled as set of fragments. In
this context, we have proposed a measure tailored for OLAP queries, under the
form of a function which is a combination of three components: one related to
group-by sets, one to selection predicates, and one to measure sets.

To define group-by set similarity, we first introduce the notion of distance
between levels in a hierarchy.

Definition 6.3.3 (Distance between hierarchy levels) Let M =
〈A,H,M〉 be a schema, hi ∈ H be a hierarchy, with Lev(hi) = {l0, . . . , ld} and
l0 �hi l1 . . . �hi ld, and lx, ly ∈ Lev(hi) be two levels. The distance between lx
and ly, Distlev(lx, ly), is the difference between the positions of lx and ly within
the roll-up order �hi , i.e., |x− y|.

Definition 6.3.4 (Group-by set similarity) Let q and q′ be two queries,
both over schema M, with group-by sets g and g′, respectively, and let g.hi
(g′.hi) denote the level of hi included in g (g′). The group-by set similarity
between q and q′ is

σgbs(q, q
′) = 1−

∑n
i=1

Distlev(g.hi,g
′.hi)

|Lev(hi)|−1

n

where n is the number of hierarchies in M.

Our definition of selection similarity takes into account both the attributes
and the constants that form the selection predicate. In particular, for each hier-
archy, two identical predicates are given maximum similarity, and non-identical
predicates are given decreasing similarities according to the distance between
the hierarchy levels they are expressed on.

70

Definition 6.3.5 (Distance between selection predicates) Let
M = 〈L,H,M〉 be a schema, and pi and p′i be two selection predicates
over hierarchy hi ∈ H. Let pi.hi ∈ Lev(hi) denote the level of hi involved in pi
(conventionally, TRUEi.hi = ALLi). The distance between pi and p′i is

Distpred(pi, p
′
i) =

{
0, if pi = p′i;

Distlev(pi.hi, p
′
i.hi) + 1, otherwise

According to this definition, the distance between two selection predicates on
hi is 0 if they are expressed on the same level and the same value, 1 if they are
defined on the same level but not on the same value. Note that, for the sake of
simplicity, we consider here only predicates of the form l = v (with l a level and
v a value). Should predicates of the form l ∈ V be also considered, a Jaccard
index on sets of selected values could be used, in such a way that the distance
of two predicates on the same level is a real in [0, 1].

Definition 6.3.6 (Selection similarity) Let q and q′ be two queries, both
over schema M, with selection predicates Pred and Pred′, respectively, with
Pred = {p1, . . . , pn} and Pred′ = {p′1, . . . , p′n}. The selection similarity be-
tween q and q′ is

σsel(q, q
′) = 1−

∑n
i=1

Distpred(pi,p
′
i)

|Lev(hi)|

n

Finally, to define the measure similarity, we use the Jaccard index.

Definition 6.3.7 (Measure similarity) Let q and q′ be two queries, both
over schemaM, with measure sets Meas and Meas′, respectively. The measure
similarity between q and q′ is

σmeas(q, q
′) =

|Meas ∩Meas′|
|Meas ∪Meas′|

We can now define the similarity between two OLAP queries as the weighted
average of the three similarity components defined above.

Definition 6.3.8 (Similarity of unevaluated queries) Let q and q′ be two
queries, both over schema M. The similarity between q and q′ is

σque(q, q
′) = α · σgbs(q, q′) + β · σsel(q, q′) + γ · σmeas(q, q′)

where α, β, and γ are normalized to 1.

Example 6.3.2 Let q1 and q3 be the queries of Example 3.2.4, i.e.,

q1 =〈G⊥, TRUE, {AvgIncome}〉
q3 =〈G3, {Year = 2011, TRUERESIDENCE, . . . , TRUESEX}, {AvgIncome}〉

71

where

G⊥ = 〈City,Race,Year,Occ,Sex〉
G3 = 〈Region,Race,Year,Occ,Sex〉

and TRUE = {TRUERESIDENCE, TRUERACE, TRUETIME, TRUEOCCUPATION,
TRUESEX}.
The similarity between q1 and q3 is computed as follows:

σgbs(q1, q3) =1− (2/3 + 0/3 + 0/1 + 0/1 + 0/1)

5
= 0.87

σsel(q1, q3) =1− (0/4 + 0/4 + 2/2 + 0/2 + 0/2)

5
= 0.80

σmeas(q1, q3) =1

If priority is given to selections over group-by sets and measures, with α =
0.25, β = 0.5, and γ = 0.25, then σque(q1, q3) = 0.25×0.87+0.5×0.80+0.25×1 =
0.87.

6.4 Similarity measures for OLAP sessions

In this section, we introduce various two level techniques for comparing OLAP
sessions by extending the classical sequence similarities presented Section 6.1.2.
We will use the following toy log for illustrating them. For the sake of readability,
the CENSUS schema is reduced to three hierarchies: RESIDENCE, RACE and
TIME.

Example 6.4.1 An example of OLAP session of length 3 on the CENSUS
schema is s = 〈q1, q2, q3〉, where:

q1 =〈G1, {TRUERESIDENCE, TRUERACE, TRUETIME}, {AvgIncome}〉
q2 =〈G2, {TRUERESIDENCE, TRUERACE, TRUETIME}, {AvgIncome}〉
q3 =〈G2, {TRUERESIDENCE, TRUERACE, (Year = 2011)}, {AvgIncome}〉

where the group-by sets are:

G1 = 〈City,Race,Year〉
G2 = 〈Region,Race,Year〉
G3 = 〈Region,RaceGroup,Year〉

Note that the user applied a roll-up operator to move from q1 to q2, and a slice
operator to move from q2 to q3.

72

6.4.1 An Extension of the Levenshtein Distance

The Levenshtein distance compares two strings in terms of the cost of the atomic
operations (typically insertion, deletion, and substitution of a character) nec-
essary to transform one string into another. Given two strings s and s′ of v
and v′ characters, respectively, a (v + 1) × (v′ + 1) distance matrix D of reals
is recursively defined in terms of the deletion, insertion, and substitution costs;
the Levenshtein distance between s and s′ is found in the bottom-right cell of
D, that represents the minimum sum of the operation costs to transform s in
s′.

In the traditional formulation, an operation is applied in absence of a perfect
match between the compared characters. In our case this is too restrictive,
because OLAP queries cannot be treated as atomic terms. So we consider two
queries as matching when their similarity is above a given threshold θ, and we
apply a transformation operation when the similarity is under θ. Besides, we
normalize distances using the length of the longest of the two sessions involved,
so that the cost of a single mismatch is lower for longer sessions.

Definition 6.4.1 (Levenshtein Similarity of OLAP Sessions) Let s and
s′ be two OLAP sessions on schema M, of lengths v and v′ respectively. Given
a matching threshold θ, the distance matrix for s and s′ is a (v + 1)× (v′ + 1)
matrix D of reals recursively defined as follows:

Dθ(i, j) =



0, when i = 0 or j = 0

Dθ(i− 1, j − 1), when i,j > 0 and σque(si, s
′
j) ≥ θ

min


Dθ(i− 1, j) + 1;

Dθ(i, j − 1) + 1;

Dθ(i− 1, j − 1) + 1

 , when i,j > 0 and σque(si, s
′
j) < θ

where si is the i-th query of session s. The similarity between s and s′ is:

σLevenshtein(s, s′) = 1− Dθ(v, v
′)

max{v, v′}
Note that, like in most applications of the Levenshtein distance, all transforma-
tion costs are set to 1.4 Note also that in [37], another approach is investigated,
for partially evaluated queries, where, in the case of a mismatch, the cost of a
substitution operation corresponds to the distance between queries.

Example 6.4.2 Let a log consist of three sessions, s = 〈q1, q2, q3〉, s′ =
〈q4, q5, q6, q7〉, and s′′ = 〈q8, q9〉. Table 6.2 represents each single query in
terms of our query model; the involved group-by sets are G1, G2, and G3 of
Example 6.4.1, while the selection predicates are:

c1 = {TRUERESIDENCE, TRUERACE, TRUETIME}
c2 = {TRUERESIDENCE, TRUERACE, (Year = 2011)}
c3 = {TRUERESIDENCE, (RaceGroup = Chinese), TRUETIME}

4In the formula, the three rows of the min argument deal with deletions, insertions, and
substitutions, respectively.

73

Queries
q1 q2 q3 q4 q5 q6 q7 q8 q9

Group-by set G1 G2 G2 G1 G2 G3 G3 G1 G1

Measures
AvgCostElect X X X X
AvgIncome X X X X X X X X

Selection predicates c1 c1 c2 c3 c3 c1 c2 c1 c1

Table 6.2: Queries for Example 6.4.2

q4 q5 q6 q7
q1 0.750 0.676 0.889 0.778
q2 0.676 0.750 0.963 0.852
q3 0.565 0.639 0.852 0.963

Table 6.3: Query similarities for Example 6.4.2

Table 6.3 shows the query similarities for sessions s and s′ using θ = 0.7.
The minimum cost to transform s′ to s is obtained by matching queries as
follows: 〈q1, q4〉, 〈q2, q6〉, 〈q3, q7〉 and applying a deletion operation to q5 since
σque(q1, q5) < θ. Thus, it is σLevenshtein(s, s′) = 1− 1

4 = 0.75.

6.4.2 An Extension of the Dice Coefficient

In the OLAP context, the concept of “shared” n-grams becomes that of “similar”
n-grams. Two n-grams r and r′ are similar if their queries are pairwise similar,
i.e., if their similarity is above threshold θ. To ensure symmetry while being
consistent with the original definition, in our two-level extension similarity is
defined as follows.

Definition 6.4.2 (Dice Similarity of OLAP Sessions) Let s and s′ be two
OLAP sessions on schema M, and n ≥ 1. The similarity between s and s′ is

σDice(s, s
′) =

2×min{|SNgramθ(s, s
′)|, |SNgramθ(s

′, s)|}
|Ngram(s)|+ |Ngram(s′)|

where Ngram(s) is the set of n-grams of s and SNgramθ(s, s
′) ⊆ Ngram(s) is

the set of n-grams of s that have a similar n-gram in s′, i.e., SNgramθ(s, s
′) =

{r ∈ Ngram(s)|∃r′ ∈ Ngram(s′), σque(ri, r
′
i) ≥ θ ∀i = 1, . . . , n}

Example 6.4.3 Applying the above definition to Example 6.4.2, with n=1, we

obtain σDice(s, s
′) = 2×min{1,2}

1+2 = 0.67.

6.4.3 An Extension of Tf-Idf

In the Tf-Idf approach, the similarity between two sets of tokens (in information
retrieval applications, tokens are lemmas and sets of tokens are documents)
depends on both the frequency of each token in the sets and its frequency in a
corpus. In our context, this approach can be adopted if the OLAP sessions to
be compared are taken from a log, to penalize the queries that are more frequent
in the log when assessing similarity.

74

To propose an extension we start with the definition of soft Tf-Idf [8], that
introduces a concept of similarity between tokens:

simsoft(s, s
′) =

∑
si∈Closeθ(s,s′)

T (si, s) · T (s′ji , s
′) · simtoken(si, s

′
ji)

where T (si, s) = tfidf(si,s)√∑
sk
tfidf(sk,s)2

, simtoken measures the similarity between two

tokens, s′ji = argmaxs′j∈s′{simtoken(si, s
′
j)}, θ is a threshold, and Closeθ(s, s

′)

is the set of token si ∈ s such that there is at least a token s′j ∈ s′ with
simtoken(si, s

′
j) > θ. This definition suffers from some drawbacks: (1) It uses

the “crisp” definition of Tf-Idf in T , whereas in our context a “soft” version
(i.e., one based on query similarity) should be used instead; (2) The soft Tf-Idf
is not symmetric, which is not desirable for a similarity measure; (3) There may
be more than one token s′ji in s′ that maximizes simtoken with si; (4) There is
a problem with counting that makes the similarity not normalized [78]. To cope
with the first issue, we inject the similarity σque in the definition of Tf-Idf:

tfidf(si, s) =
|Closeθ(si, s)|∑

sk∈Q |Closeθ(sk, s)|
· log |L|
|{s ∈ L|Closeθ(si, s) 6= ∅}|

where L is the log, Q is the set of all queries in L, and Closeθ(si, s) is the set
of queries of s that are similar to si. Symmetry can be achieved by modifying
the definition of similarity to work on pairs of queries, each relating a query in
one session with one of its closest queries in the other session; this set of pairs
is defined by:

Rθ(s, s
′) = {〈si, s′k〉|si ∈ s, s′k ∈ Closestθ(si, s′))}∪

{〈sl, s′j〉|s′j ∈ s′, sl ∈ Closestθ(s′j , s)}

where Closestθ(si, s) is the set of queries of s that, among those whose similarity
with si is above θ, have maximum similarity. Note that some query in a session
appears more than once in Rθ(s, s

′) if there is more than one query in the other
session with maximum similarity. This solves the third issue. Finally, to cope
with the fourth issue, the similarity is computed as the cosine of the two vectors
obtained by taking the Tf-Idf of all the first (respectively, second) queries of the
pairs.

Definition 6.4.3 (Tf-Idf Similarity of OLAP Sessions) Let s and s′ be
two OLAP sessions on schema M. The similarity between s and s′ is

σlog(s, s
′) =

∑
〈si,s′j〉∈Rθ(s,s′)

T (si, s, s
′)× T (s′j , s

′, s)× σque(si, s′j)

75

where

T (si, s, s
′) =

tfidf(si, s)√∑
〈si,s′j〉∈Rθ(s,s′) tfidf(si, s)2 +

∑
Closestθ(si,s′)=∅ tfidf(si, s)2

T (s′j , s
′, s) =

tfidf(s′j , s
′)√∑

〈si,s′j〉∈Rθ(s,s′) tfidf(s′j , s
′)2 +

∑
Closestθ(s′j ,s)=∅

tfidf(s′j , s
′)2

Example 6.4.4 The Tf-Idf similarity for sessions s and s′ of Example 6.4.2 is
0.96.

As any cosine similarity, σlog can be turned into the angle distance
arcos(σlog), which is a metric [22].

6.4.4 An extension of sequence alignment

As emerged in Section 6.2, a comparison of OLAP sessions should support
subsequence alignment, keep query ordering into account, and allow gaps in the
matching subsequences. The Smith-Waterman algorithm mentioned in Section
6.1 has all these features. It relies on a distinction between matching elements
(whose similarity is positive) and mismatching elements (whose similarity is
negative), and is based on a matrix whose cells show the score for aligning two
sequences starting from a specific couple of elements. Each score is the result of
a trade-off between the cost for introducing a gap in the matching subsequences
and the cost for including a mismatching pair of elements.

Unfortunately, none of the implementations available in the literature can
be directly applied here for different reasons:

• The algorithm was originally aimed at molecular comparison, so sequence
elements were taken from a set that is known a priori (the set of all amino
acids). This allows matching and mismatching pairs to be enumerated
and a similarity score to be assigned in advance to each possible couple of
elements. In the OLAP context matching elements are queries, and the
domain of the possible OLAP queries is huge (requirement]2); besides, the
similarity between two queries is always positive, so separating matching
and mismatching queries requires the adoption of a threshold.

• For the same reason mentioned above, in all previous implementations the
cost for introducing a gap could be assigned in advance to each possible
couple of elements. Conversely, in our case it must be determined at run-
time based on the two specific sessions being compared (requirement]8).

• In all previous implementations all matchings were considered to be
equally important, while in OLAP sessions a matching between recent
queries should be given more relevance (requirement]6).

To address all these issues, we propose an extension of the Smith-Waterman
algorithm that relies on the matrix defined below. The value in position (i, j)

76

of this matrix is a score that expresses how “well” two sessions s and s′ match
when they are aligned ending in queries si and s′j . Intuitively, each score is
recursively calculated by progressively adding the similarities between all pairs of
matching queries in the two sessions. A match threshold θ is used to distinguish
matches from mismatches; a time-discounting function ρ(i, j) is used to promote
alignments based on recent queries; finally, a gap penalty δ is used to discourage
discontinuous alignments.

Definition 6.4.4 (OLAP Session Alignment Matrix) Let s and s′ be two
OLAP sessions on schema M, of lengths v and v′ respectively. Given a match
threshold θ, the (OLAP session) alignment matrix for s and s′ is a (v+1)×(v′+1)
matrix A of reals recursively defined as follows:

A(i, j) =



0, when i = 0 or j = 0

max


0;

A(i− 1, j − 1) + (σque(si, s
′
j)− θ) · ρ(v − i, v′ − j);

max1≤k<i{A(k, j)− δ · (i− k)};
max1≤k<j{A(i, k)− δ · (j − k)}

 , else

where δ is the average similarity between all couples of queries in s and s′ whose
similarity is above θ:

δ = avg(i,j):σque(si,s′j)≥θ{σque(si, s
′
j)} ,

ρ is a two-dimensional logistic sigmoid function:

ρ(i, j) = 1− 1− ρmin
1 + eslope−i−j

,

ρmin is the minimal value assumed by ρ (i.e., the maximum time discount), and
slope rules the position where the slope is steepest (Figure 6.2).

Some observations on the above definition:

• The use of the term σque(si, s
′
j)−θ implies that query pairs whose similar-

ity is above (below) θ are considered as matches (mismatches). Although
a “sharp” threshold is used, the score of a matching pair and the cost of a
mismatching pair turn out to be proportional to the distance of that pair
similarity from θ.

• The definition given of the gap penalty δ is such that it guarantees a gap
penalty to be payed if it enables a good match (i.e. a match higher than
the average).

• The time-discounting function ρ leads match and mismatch scores to decay
when moving backwards along the two sessions; it is maximum and equal
to 1 for the ending queries of the two sessions.

77

Figure 6.2: The time-discounting function ρ(i, j) with ρmin = 0.66 and slope = 4

q4 q5 q6 q7 q8
q1 -0.004 0.171 0.120 -0.071 0.160
q2 0.013 0.208 0.151 -0.053 0.186
q3 -0.032 0.126 0.053 -0.082 0.132

Table 6.4: Query similarities for Example 6.4.5

The optimal alignment between s and s′ is determined by the highest value
in A, A(s, s′), that we call alignment score. The positions i and j such that
A(i, j) = A(s, s′) mark the end of the matching subsequences of s and s′.

The alignment score is not really a similarity value, since it is not limited
in the interval [0..1]. This creates problems when comparing sessions with dif-
ference length. Then we define OLAP session similarity by normalizing the
alignment score:

Definition 6.4.5 (Alignment-Based Similarity of OLAP Sessions) Let
s and s′ be two OLAP sessions on schema M, of lengths v and v′ respectively
(with v ≤ v′), and let A(s, s′) be the alignment score for s and s′. The
alignment-based similarity between s and s′ is

σali(s, s
′) =

A(s, s′)

(1− θ)
∑v
k=1 ρ(k, k)

where the normalizing factor is the alignment score for two identical sessions of
length v.

Example 6.4.5 Let s and s′ be the two sessions to compare introduced in Exam-
ple 6.4.2. Table 6.4 reports the query similarities, computed with α = β = γ = 1
for simplicity, after the application of the time-discounting function ρ and using
the threshold θ = 0.7. Note that a negative value represents a mismatch, and
a positive one a match. Table 6.5 shows the OLAP session alignment matrix
for s and s′; the cells in bold denote alignments between two queries (e.g., q1 is
aligned with q5), those in italics refer to gaps. Alignments on recent queries are
favored, so q3 is aligned with q8. Query q4 is not involved in the alignment due

78

q4 q5 q6 q7 q8
q1 0.000 0.171 0.120 0.000 0.160
q2 0.013 0.208 0.322 0.191 0.186
q3 0.000 0.139 0.261 0.241 0.323

Table 6.5: OLAP session alignment matrix for Example 6.4.5

to the low similarity it has with the other queries in s. In q7, a gap penalty is
paid to gain the good match between q3 and q8. The overall similarity between s
and s′ is 0.323 (the highest value in the matrix). After normalization, we obtain
σali(s, s

′)=0.387.

The properties of the proposed similarity function can be evaluated in terms
of the distance function it induces using the standard transformation σali =
1/(1 + Distali). As stated in [22] for the original Smith-Waterman approach,
Distali is not a metric because, while it is non-negative and symmetrical, it is not
reflexive and it does not satisfy the triangular inequality as shown in Example
6.4.6. In particular, the triangular inequality cannot be satisfied because this
approach is based on a local alignment.

Example 6.4.6 Let s = 〈q1, q2〉, s′ = 〈q1, q2, q3, q4〉, and s′′ = 〈q3, q4〉 be three
sequences, where σque(qi, qj) = 0 if i 6= j. It is

Distali(s, s
′′) =∞ , Distali(s, s

′) = Distali(s
′, s′′) = 0

which obviously contradicts the triangle inequality axiom. Besides, s′ has zero
distance from both s and s′′ though s 6= s′ 6= s′′.

Note that, despite its complexity and the fact that it is not a metric, this
extension of sequence alignment not only fulfills the requirements expressed in
Section 6.2, but is close to the users’ perception, without sacrificing efficiency
of computation, as noted in the conclusion below. Moreover, it can be seen
as a more demanding measure, as illustrated by the different similarity scores
computed for the sessions of Example 6.4.2 (e.g., 0.96 for the extension of Tf-Idf
against 0.387 for the extension of sequence alignment).

6.5 Conclusion

This chapter introduced various ways of measuring the similarity between
queries and sessions. These similarity measures between sessions have been
extensively tested in [10]. We briefly report the main results of these tests.

Subjective tests using the questionnaires mentioned in Section 6.2 showed
that the query similarity computed through σque, the extensions of Tf-Idf and
sequence alignment are the closest to the ones perceived by users. Objective
tests with synthetic sessions over the CENSUS schema showed that the extension
of sequence alignment outperforms the other extensions as long as the order of
queries in the sessions is considered relevant. As to efficiency, as expected, the
Dice extension is the most efficient followed by the sequence alignment extension
and Levenshtein extension, but these latter evolve less quickly due to their

79

linear programming nature. The Tf-Idf-based extension is the less efficient.
Overall, the time required for comparing two sessions is perfectly compatible
with complex applications.

The measures introduced here would be quite beneficial for different classes
of applications, like for instance workload clustering [42] or optimization [93].
The following chapters, especially Chapter 9 on query recommendations, show
how these measures can also be used for user-centric OLAP.

80

Part IV

Log-driven user-centric
analysis

81

Chapter 7

Extracting profile
information from the log

This chapter describes how relevant knowledge can be extracted from an OLAP
query log to subsequently support OLAP analyses. In the case of a log of
multidimensional queries, Section 7.1 describes how simple preferences over di-
mensions, members and measures can be discovered. Section 7.2 describes how
navigational habits can be discovered, for instance under the form of correla-
tions between query fragments. Finally, when query results can be analyzed,
the measure values queried can be the basis for discovering what the user was
looking for, which is presented in Section 7.3.

This chapter relies on material published in [16], [81], [9] and [39].

7.1 Extracting simple preferences over multidi-
mensional data

If the log consists of OLAP queries from which fragments can be extracted,
an approach inspired by that of Holland & al. [53] can be used to extract
simple preferences over dimensions, members and measures. We first start by
describing the preferences over multidimensional data, and then present the
algorithm for extracting these preferences from a log of OLAP queries.

7.1.1 Preference definition

The preferences defined here are simple preferences over dimensions, members
and measures, that allow for instance to order multidimensional queries. More
complex preferences over multidimensional data can be found in [46], e.g., to
handle preferences over levels, and in [81], to take visualization structures into
account.

We define simple preferences over multidimensional data to be: a partial
order over the dimensions, dimension-wise partial orders over members, and

82

an order over measures. Formally, given a cube C = 〈D1, ..., Dn, F 〉 over a
multidimensional schemaM = 〈A,H,M〉, such preferences are U = 〈<uD, {<uD1

, . . . , <uDn , <
u
Meas}〉 where:

• <uD is a partial order over dimensions D = {D1, . . . , Dn} of the cube.
Given two dimensions Di and Dj of D, Dj is preferred to Di if Di <

u
D Dj .

• for all i ∈ [1, n], <uDi is a partial order over the set of members in each
dimensions Di ∈ D i.e., a partial order over π∗(Di), i ∈ [1, n]. Given two
members m and m′ in Di, m is less preferred than m′ if m <uDi m

′.

• <uMeas is a partial order over the measure set M . Given two measures
meas and meas′ of M , meas is preferred to meas′ if meas′ <uMeas meas.
dimensions

Example 7.1.1 An example of simple preferences over the CENSUS schema
is:
〈
{RESIDENCE <uD TIME <uD SEX,
RESIDENCE <uD TIME <uD OCCUPATION,
RESIDENCE <uD RACE <uD SEX,
RESIDENCE <uD RACE <uD OCCUPATION},
{Male <uSEX Female},
{AvgIncome,AvgCostWatr <uMeas AvgCostGas <

u
Meas AvgCostElec}

〉.

7.1.2 Preference extraction

Obviously, an order over references can straightforwardly be derived from a log
where queries are modeled as sets of references, by counting the occurrences of
the references in the log. In what follows, we consider that logged queries are
not evaluated, and modeled as sets of fragments (qf-set).

In [53], orders on constants are derived from the frequency of occurrences of
the constants in the log. We will follow this idea and adapt it to our model of
preferences. This model relies on an order over dimensions, dimension-wise or-
ders over members, and an order over measures. This is handled by considering
that the order over dimensions is inferred from the former queries’ projections,
over levels or measures, and the orders over members are inferred from the
former queries’ selections.

The order over dimensions <uD is thus constructed as follows:

a) for each dimension D = {L0, . . . , Ld}, let count(D) be the number of times
one of its levels (different from Ld, i.e., the coarsest level) appears in a
group-by set of the queries in the log.

b) Order the dimensions accordingly, i.e., for each Di, Dj , Di <
u
D Dj , if

count(Di) < count(Dj), and considering that if count(Di) = count(Dj)
then Di ∼uD Dj .

83

It can easily be seen that the resulting order is a weak order. Note that an
order over levels in a dimension can be easily computed using this principle.

For each dimension D, the order <uD is constructed as follows:

a) for each value v in π∗(D), let count(v) be the number of times it appears
in a selection predicate of the queries in the log.

b) Order the values accordingly, considering that if count(vi) = count(vj)
then vi ∼uD vj

Finally, <uMeas is constructed as follows:

a) for each measure meas, let count(meas) be the number of times it appears
in the log.

b) Order the values accordingly, considering that if count(meas) =
count(meas′) then meas ∼uMeas meas

′

It can easily be seen that the resulting orders are weak orders.

Example 7.1.2 Consider the log L = {s1, s2} with s1 = 〈q1, q2〉, s2 = 〈q3〉 and
queries, over the CENSUS schema, are modeled as the following query fragment
sets:
q1 =
{AllCities, Sex,AllY ears,AllRaces,Occs, (Sex = Female), AvgCostElec},
q2 =
{AllCities, Sex, Y ear,AllRaces,Occs, (Sex = Female), AvgCostElec},
q3 =
{AllCities, Sex,AllY ears,RaceGroup,Occs, (Sex = Male), AvgCostGas}.

The preference extraction principle introduced above can be used to extract
from this log the simple preferences of Example 7.1.1. For instance, since predi-
cate (Sex = Female) appears twice in the log while predicate (Sex = Male) ap-
pears only once, it is Male <uSEX Female. Similarly, it is RESIDENCE <uD
TIME <uD SEX since level Sex appears three times, level Y ear appears only
once, and no level other than the coarsest level is used for dimension RESI-
DENCE.

Note that in this approach, counting is irrespective of sessions. It can be
straightforwardly extended by counting not the number of occurrences of each
fragment in the log, but the number of sessions where the fragment appears.

7.2 Extracting navigational habits

The log can be searched for patterns to characterize the navigations it contains.
Referring to such patterns, we use the term navigational habit, to denote a
pattern present in the query log, that makes explicit a behavior of the user.
Obviously, many types of patterns can be extracted from a log. We give here
a basic approach for extracting simple patterns, under the form of association

84

Algorithm 3 Extract rules with support and confidence adjustment
Input: Log: A set of queries; minSup,minConf : Floats
Output: R: A set of association rules
Uses: mine(set, float, float): An association rule extractor
Variables: stop: A Boolean; confidence, support: Floats; Covered: A set of qf-sets

1: stop =false
2: confidence = 1
3: support = 1
4: while !stop do
5: R = mine(Log, support, confidence) . Mine rules above support and confidence
6: Covered = ∅
7: for each rule r ∈ R do
8: Covered = Covered ∪ {q ∈ Log|r.ant ∪ r.cons ⊆ q}
9: if Covered = Log then . If all queries in the log are covered in R stop...

10: stop =true
11: elseelse mine again with lower thresholds
12: confidence = confidence− 0.1
13: if confidence < minConf then
14: support = support− 0.1
15: confidence = 1
16: if support < minSupp then
17: stop = true

18: return R

rules, from a log of unevaluated queries. This approach can be seen as a starting
point for extracting more sophisticated types of patterns (sequence patterns,
etc.).

7.2.1 Simple navigational habits

In the approach we present, the log consists of OLAP queries from which frag-
ments can be extracted. A navigational habit is defined by an association rule
of the form X → Y , with the intuitive meaning that whenever fragment X is
used in a query expression, then fragment Y tends to be present as well.

Definition 7.2.1 (Simple navigational habit) A simple navigational habit
is a rule of the form X → Y, (s, c), where X and Y are query fragments and s
and c, for support and confidence, are real numbers.

Example 7.2.1 The habit Y ear → Region(0.7, 0.8) indicates that queries in-
volving Y ear in the group-by set involve also Region in 80% of the cases, the
pair Y ear,Region appearing in 70% of the queries of the log.

7.2.2 Extracting habits

The input of the algorithm for extracting navigational habits is a set of qf-sets
that represents the user’s query log, while the output is a set R of association
rules. We recall that a qf-set is a set of query fragments, i.e., a set of levels,
measures or selection predicates.

Interestingly, the problem of associating a query with a set of fragments
representing user preferences bears resemblance to the problem of associating
objects with a set of most relevant labels. This problem, named label ranking, is
a form of classification. Both label ranking and classification have been proved

85

to be effectively handled by association rules (see for instance [31, 68]). In this
context, rules have as antecedent a set of features that should match the object
to be classified, and one label as consequent. We adopt a similar approach here,
and we search for rules having exactly one item as consequent, so each rule
r ∈ R takes the form ant → cons, where ant is a qf-set and cons is a single
query fragment. In the following, r.cons (resp., r.ant) denotes the consequent
(resp., antecedent) of rule r, and conf(r) its confidence.

The algorithm also uses any classical association rule extractor that is
parametrized by support and confidence thresholds (e.g., Apriori [7]). The only
issue here is to extract rules that faithfully represent the user’s query log. Since
the user is not involved, support and confidence have to be adjusted automat-
ically [31]. Algorithm 3 is used for this purpose, and it extracts rules until the
whole log is covered by the set of rules extracted, in the spirit of what is done for
class association rule extraction (see e.g., [68]). More precisely, the algorithm
starts extracting rules with confidence and support equal to 1 (lines 2,3). If the
set of rules covers the entire log, then the algorithm stops (line 9, 10). Other-
wise, extraction starts again with a lower confidence (line 14), and confidence
is decreased until the log is entirely covered or the confidence is considered too
low (line 13). In this case, confidence goes back to 1 and support is decreased
(line 14,15), and extraction is launched again. If both support and confidence
are considered too low, then the algorithm stops.

Algorithm 3 needs two thresholds, minConf and minSupp. Realistic values
for these thresholds can be learned by training the algorithm on query logs, or
be derived from log properties like size and sparseness.

Example 7.2.2 Consider the log given in Example 7.1.2. The habits will be
extracted from the log with support and confidence equal to 1. In particular,
AllCities→ Sex, (1, 1) is such a habit.

7.3 Extracting analysis discoveries

If the query expressions in the log are grouped into sessions and are modeled as
unevaluated queries (i.e., represented by their results), the log can be processed
to discover what was the goal of the user during the analysis session. In this
section, we describe a technique for detecting what the user was investigating
in the context of discovery driven analysis [94, 95, 97], by mining a log of fully
evaluated queries.

Discovery driven analysis of OLAP cubes was introduced by Sarawagi et al.
[96] to support interactive analysis of multidimensional data. It consisted in the
definition of advanced OLAP operators to guide the user towards unexpected
data in the cube or to propose to explain an unexpected result. In particular,
The DIFF operator proposed in [94] explores the reasons why an aggregate is
lower (or higher) in one cell compared to another. The RELAX operator [97]
tries to confirm at a lesser level of detail a particular significant difference, and
summarizes the exceptions to this difference.

The key idea of processing the log to discover what was the goal of the user, is

86

to detect the difference between measure values that queries investigated. More
precisely, the log is examined to discover the pairs of cells whose measures differ
significantly, to retain the most general ones (the most general difference pairs,
mgdp) as well as the queries that contains them (the most general difference
queries, mgdq). For such pairs, a structure called investigation is created that
records the set of mgdq and, at a lower level of detail, the queries that confirm
the difference (their drill-down differences), and the queries that contradicts the
difference (their exceptions).

Example 7.3.1 Consider the following set of query answers, corresponding to
a log L of 3 sessions s1 = 〈q1, q2〉, s2 = 〈q3, q4〉, s3 = 〈q5, q6, q7〉, all investigating
the average income according to sex, residence and time.

s1

q1 L.A. N.Y.
2007 Female 200 100

Male 200 250

q2 L.A. N.Y.
2008 Female 100 200

Male 200 250

s2

q3 Pacific Atlantic
2007 Female 150 150

Male 200 250

q4 Pacific Atlantic
2008 Female 100 200

Male 200 250

s3

q5 Pacific Atlantic
Female 100 200
Male 200 200

q6 California New York
Female 150 150
Male 200 250

q7 L.A. N.Y.
Female 150 150
Male 200 250

7.3.1 Identifying relevant pairs of cells

We start by defining relations over pairs of cells and over queries. First note
that the specialization relation over cells can be extended to pairs of cells in the
following way.

Definition 7.3.1 (Specialization over pairs) Let C be a cube and
c, c′, c′′, c′′′ be four cells of C. The pair 〈c, c′〉 is a generalization of 〈c′′, c′′′〉,
noted 〈c, c′〉 �c 〈c′′, c′′′〉 if both c �c c′′ and c′ �c c′′′.

If we have 〈c, c′〉 �c 〈c′′, c′′′〉, we will say that 〈c, c′〉 is a rollup pair of
〈c′′, c′′′〉 and 〈c′′, c′′′〉 is a drilldown pair of 〈c, c′〉. Moreover, if 〈c′′, c′′′〉 is a drill-
down pair of 〈c, c′〉 and sign(measure(c′′)−measure(c′′′)) 6= sign(measure(c)−
measure(c′)) we will say that 〈c′′, c′′′〉 is an exception pair of 〈c, c′〉. Given a set
S of pairs of cells, the most general pairs are the pairs of S that have no rollup
pairs in S.

Definition 7.3.2 (Most general pairs) Let S be a set of pairs of cells. The
most general pairs of S are the set max�c(S). For a given pair of cells 〈c, c′〉 of
S, the most general pairs for 〈c, c′〉 in S is the set max�c({〈c′′, c′′′〉 ∈ S|〈c′′, c′′′〉
is a rollup pair of 〈c, c′〉}).

87

Example 7.3.2 Consider the query answers of Example 7.3.1. For the sake of
readability, the cells are given using only the three hierarchies utilized. The pair:

〈〈2007, F emale, L.A., 200〉, 〈2007, Female,N.Y., 100〉〉

of query q1 is a drill-down pair of the pair:

〈〈2007, F emale, Pacific, 150〉, 〈2007, Female,Atlantic, 150〉〉

of query q3. A most general pair of this log is:

〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears, Female,Atlantic, 200〉〉

of query q5.

In what follows we will call a significant difference (or difference for short)
a pair of cells such that their measures differ significantly. This significance is
computed in two steps. First, a user-defined function fdp on which we do not
impose particular requirements, is used to detect base difference pair.

Definition 7.3.3 (Base difference pair) Let C be a cube, fdp be a boolean
function over the pairs of cells of C and c′, c be two cells of C. The pair 〈c, c′〉
is a difference pair for C and fdp if fdp(c, c′) = true.

A first operator, difference, outputs the pairs of cells of a query q that are
difference pairs, i.e., difference(fdp, q) = {〈c, c′〉 ∈ q|fdp(c, c′) is true} for
some boolean function fdp over pairs of cells.

For a base difference pair 〈c, c′〉, we define its roll-up (resp., drill-down)
difference pairs as its roll-up (resp., drill-down) pairs that show a significant
difference w.r.t. 〈c, c′〉 in the sense of a given function.

Definition 7.3.4 (Roll-up/drill-down difference pair) Let 〈c, c′〉 be a dif-
ference pair, 〈c′′, c′′′〉 be one of its roll-up (resp., drill-down) pairs and r be
Boolean function over couples of pairs of cells. We say that 〈c′′, c′′′〉 is a
roll-up difference pair (resp., 〈c, c′〉 is a drill-down difference pair) for 〈c, c′〉
if r(c, c′, c′′, c′′′) = true.

The next operators detect, for a pair 〈c, c′〉, a set of queries Q and a Boolean
function r, which are the pairs of Q that are roll-up (resp., drill-down, resp.,
exception) difference pairs for〈c, c′〉. Formally,

• rollupDifferencePairs(c, c′, Q, r) = {〈c′′, c′′′〉|q ∈ Q with 〈c′′, c′′′〉 ∈ q
and 〈c, c′〉 �c 〈c′′, c′′′〉 and r(c, c′, c′′, c′′′) = true},

• drilldownDifferencePairs(c, c′, Q, r) = {〈c′′, c′′′〉|q ∈ Q with 〈c′′, c′′′〉 ∈
q and 〈c′′, c′′′〉 �c 〈c, c′〉 and r(c, c′, c′′, c′′′) = true},

• exceptionPairs(c, c′, Q) = {〈c′′, c′′′〉|q ∈ Q with 〈c′′, c′′′〉 ∈ q being an
exception pair for 〈c, c′〉}.

88

In what follows, base difference pairs, roll-up difference pairs and drill-down
difference pairs will be called simply difference pairs.

Example 7.3.3 Consider the query answers of Example 7.3.1, and two
functions: (i) fdp that outputs true for two cells c, c′ if their mea-
sures differ by at least a factor of 2 and (ii) r that outputs true for

two pairs of cells 〈c, c′〉 and 〈c′′, c′′′〉 if measure(c)
measure(c′) '

measure(c′′)
measure(c′′′) . Then

p1 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears, Female,Atlantic, 200〉〉
is a base difference pair and drilldownDifferencePairs(p1, queries(L), r) =
{〈〈2008, F emale, Pacific, 100〉, 〈2008, Female,Atlantic, 200〉〉,
〈〈2008, Female, L.A., 100〉, 〈2008, F emale,N.Y., 200〉〉}.

The pair 〈〈2007, Female, L.A., 200〉, 〈2007, F emale,N.Y., 100〉〉 is an excep-
tion pair of p1.

7.3.2 Identifying relevant queries

We define a difference query to be a query whose result displays one or more
difference pairs. A query is a roll-up (resp., drill-down) difference query of a
difference query if its result confirms the difference at a higher (resp., lower)
level of detail. An exception is a query which result contradicts a difference at
a lower level of detail. The following definitions formalize these notions.

Definition 7.3.5 (Difference query) Let C be a cube, fdp be a boolean func-
tion over the pairs of cells of C. A query q over C is a difference query if there
exists two cells c, c′ ∈ q such that the pair 〈c, c′〉 is a difference pair for C and
fdp.

Definition 7.3.6 (Rollup/drilldown/exception difference query) Let q
and q′ be two queries and let 〈c, c′〉 be a difference pair in q. We say that
q′ is a rollup (resp., drill-down/exception) difference query for q if there exists
a difference pair 〈c′′, c′′′〉 in q′ that is a roll-up (resp., drill-down, resp., excep-
tion) difference pair of 〈c, c′〉. q′ is said to be a roll-up (resp., drill-down, resp.,
exception) difference query for q w.r.t. the pair 〈c, c′〉 .

The next operators detect, for a pair 〈c, c′〉 and a set of queries Q, which are
the queries of Q that are rollup (resp., drill-down/exception) difference queries
w.r.t. 〈c, c′〉. Formally,

• rollupDifference(c, c′, Q) = {q ∈ Q|q is a rollup difference query w.r.t.
〈c, c′〉},

• drilldownDifference(c, c′, Q) = {q ∈ Q|q is a drilldown difference query
w.r.t. 〈c, c′〉},

• exception(c, c′, Q) = {q ∈ Q|q is and exception difference query w.r.t.
〈c, c′〉}

A most general difference query (mgdq) is a query that contains a most
general difference pair.

89

Algorithm 4 Detecting investigations
Input: A log L, a boolean function fdp
Output: A set I of investigations
Variables: sets I,DP,RDP,MP

1: I,DP,RDP,MP ← ∅
2: for each query q queries(L) do . detect base difference pairs
3: DP = DP ∪ difference(fdp, q)
4: for each pair p ∈ DP do . detect all their roll-up difference pairs
5: RDP = RDP ∪ rollupDifferencePairs(p, queries(L), r)

6: MDP = max�c (RDP) . retain only the most general
7: for each m ∈MDP do
8: M = {q ∈ queries(L)|m ∈ q}
9: D = drilldownDifference(m, queries(L)) . detect drill-down difference queries

10: E = exception(m, queries(L)) . detect exception queries
11: if D 6= ∅ or E 6= ∅ then . update the set of investigations
12: I = I∪ < m,M,D,E >

13: return I

Definition 7.3.7 (mgdq) Let q be a query, S be a set of pairs of cells and
〈c, c′〉 be a pair in S. q is a mgdq if it contains a pair of S that is a most
general difference pair of S.

Example 7.3.4 Consider again the answers of Example 7.3.1. q5 is a differ-
ence query since it contains the difference pair p1. It is also a mgdq of the
queries in L. q2 and q4 are two drill-down difference queries for q5. q1 is an
exception query for q5.

7.3.3 Extracting investigations

Algorithm 4 processes each session to discover the mgdq, their drill-down dif-
ferences and exceptions. This algorithm outputs a set of what we call investi-
gations, i.e., the various queries that investigated a particular difference pair.
Note that one investigation is created per mgdq discovered in the log, provided
this mgdq comes with some drill-down difference pairs or exception pairs.

Definition 7.3.8 (Investigation) An investigation i for a log L is a tuple
〈〈c, c′〉,M,D,E〉 where 〈c, c′〉 is a most general difference pair appearing in L,
M , D and E are subsets of queries(L), M is the set of queries that contains
〈c, c′〉, D is the set of drill-down difference queries w.r.t. 〈c, c′〉, E is the set of
exception difference queries w.r.t. 〈c, c′〉, and at-least one of D, E is non-empty.

Note that a query can be at the same time mgdq or drilldown difference or
exception. Thus the queries in i are labelled with their type (mgdq, drill-down
difference or exception) and are associated with their pair of cells that is the drill-
down or exception pair w.r.t. the mgdq. In an investigation i = 〈m,M,D,E〉
m is called the difference pair of the investigation. For a set I of investigations,
mgdq (I) is the set of mgdq of every investigation in I.

Example 7.3.5 Following the previous examples, starting from Example 7.3.1,
an investigation that can be extracted from the query answers is: i1 =
〈p1, {q5}, {q2, q4}, {q1}〉. This investigation indicates that (the result of) query

90

q5 contains pair p1 that shows a high difference in the average income of Females
between Pacific and Atlantic regions. Such a difference can also be observed in
(the result of) queries q2 and q4, at a finer granularity level, while (the result of)
query q1 contradicts this observation. Another investigation for the difference
pair p2 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears,Male, Pacific, 200〉〉
is i2 = 〈p2, {q5}, {q2, q4}, ∅〉. This investigation indicates that query q5 also
shows a high difference in the Pacific region between the average income of Fe-
males and the average income of Males. Such a difference can also be observed
in queries q2 and q4, at a finer granularity level, and no contradiction to this
observation is to be found in the other queries of the log.

7.4 Conclusion

This chapter introduced various knowledge hidden in a query log, together with
techniques for extracting them. Extracted knowledge include (i) simple prefer-
ences over dimensions, members and measures, (ii) correlations between query
fragments, and (iii) investigations representing what has been seen during past
sessions for a pair of cells where measures differ significantly. Unsurprisingly, it
can be seen that, the more precise the query model used (with respect to the
database instance), the more complex the information extracted is.

The next two chapters describe how this knowledge can be leveraged for
user-centric OLAP, i.e., supporting cube analysis, by introducing personaliza-
tion and recommendation approaches that rely on the knowledge discovered.
These approaches will be presented regarding the query model used, that, as
stated in Chapter 3, reveals if the focus is to be attached to the way the query
is written (unevaluated queries), or the part of the cube queried (partially eval-
uated queries), or the values retrieved (fully evaluated queries).

91

Chapter 8

Personalizing queries with a
single user log

In this chapter, we present two approaches for personalizing multidimensional
queries, one based on the use of dedicated operators and one based on query
expansion. We essentially view query personalization as a way to deal with
the potentially large answer set returned by evaluating the query. This is of
particular importance in the context of OLAP since the databases queried are
often very large, user may not know precisely what part of the database to
explore, and the device used for visualizing the answer may not be appropriate
for visualizing large cross-tabs, which is the classical form for multidimensional
answers. Thereby, Section 8.1 presents approaches for deducing from the log the
preference constructs to be used with a user query, when a preference language
can be used. Section 8.2 presents prescriptive approaches for expanding the
user’s current query, using preferences extracted from the log.

Our work on personalization started in the context Hassina Mouloudi’s PhD
thesis [81], whose most salient publication is [16]. This chapter relies on this
material, as well as on material published in [9].

8.1 Use of dedicated operators

Using a log allows to perform personalization with a non prescriptive approach
requiring low formulation effort. In what follows, the profile consists of simple
preferences or navigational habits extracted from the log (see Chapter 7).

8.1.1 The MyMDX preference language

The language we adopt in this section to express OLAP preferences is myMDX
[19], an extension of the MDX language based on the myOLAP algebra [46].
In this section we summarize its features of interest for this work.

A (qualitative) preference on a data cube is a strict partial order (i.e., an

92

irreflexive and transitive binary relation) on the space FM of all facts. In the
myOLAP algebra, preferences are inductively engineered by writing a prefer-
ence expression that can be either a base constructor or a composition operator
applied to two preference expressions. The constructors used here are1:

• POS(a, V), where a is a level and V ⊂ Dom(a), that operates on level
values; facts for which a takes a value in V are preferred to the others.

• BETWEEN(m, vlow, vhigh), where m is a measure and vlow, vhigh ∈
Dom(m), that operates on measure values. Facts whose value of m is
between vlow and vhigh are preferred; the other facts are ranked according
to their distance from the [vlow, vhigh] interval.

• CONTAIN(h, L), where h is a hierarchy and L ⊂ Lev(h), that operates on
levels. Facts whose group-by set includes a level in L are preferred to the
others.

• CONTAIN(measures,Meas), where Meas ⊂ M , that operates on mea-
sures. Facts whose measure is in Meas are preferred to the others.

Preference composition relies on the Pareto operator (⊗), that gives the same
importance to both the composed preferences. Remarkably, the Pareto operator
is closed on the set of preferences.

The myMDX language allows an MDX query to be annotated with a pref-
erence expression through a PREFERRING clause.

Example 8.1.1 We recall the MDX query on the CENSUS schema of Example
3.2.1:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

This query can be annotated with preference expression:
BETWEEN(AvgIncome,500,1000) ⊗ POS(Occ,’Engineer’) ⊗ CONTAIN (RES-

IDENCE, Region)
to state that facts aggregated by region and related to engineers with average in-
come between 500 and 1000 kilo-euros are equally preferred. The corresponding
myMDX query is:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

1The constructors we adopt are actually a generalization of those presented in [46] from
two points of view. Firstly, the CONTAIN constructor is extended to work also on a fake
hierarchy including all measures. Secondly, all constructors except BETWEEN are extended
to operate on sets of values rather than on single values.

93

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000

AND Occ POS ’Engineer’ AND RESIDENCE CONTAIN Region

8.1.2 Using unevaluated queries

The approach for personalizing a user query with myMDX, using extracted
navigational habits of the form of rules introduced in Section 7.2.2, relies on the
following three steps:

a) Rule selection. When a user formulates an MDX query q, a subset Rq ⊆ R
of rules is selected. Each rule in Rq is pertinent w.r.t. q, meaning that
its antecedent matches with q, and effective, meaning that the preference
it would be translated into can actually induce an ordering on the facts
returned by q. Then, let a positive integer personalization degree α be
chosen by the user to express the desired preference complexity. A qf-set
Fα is generated from Rq in such a way that the final preference expression
of the myMDX statement has α base constructors, where α is user-defined.

b) Fragment translation. Each fragment in Fα is translated into a base con-
structor; the resulting base constructors are then coalesced and composed
using the Pareto operator into a preference expression p.

c) Querying. Query q is annotated with p, translated into myMDX, and
executed. As shown in [19], the user can effectively explore query results by
visually interacting with a graph-like structure that emphasizes the better-
than relationships induced by p between different sets of facts. Preferred
facts are then displayed in a multidimensional table.

The following subsections explain in detail how steps 1, 2, and 3 are car-
ried out. We recall that, r.cons (resp., r.ant) denotes the consequent (resp.,
antecedent) of rule r, and conf(r) its confidence.

Rule Selection

The navigational habits R may be a large set of rules. In this section we present
the algorithm that first selects, among the rules in R, the subset Rq of pertinent
and effective rules for query q, and then returns a qf-set Fα including a subset
of the query fragments that appear as consequents of the rules in Rq. These
fragments will be used for annotating q with a preference.

Following the approach presented in [108], the selection of query fragments
is made by associating a score to each group of rules in Rq having the same
fragment ϕ as consequent. This score is the average confidence of the rules in
the group, i.e., score(ϕ) = avgr∈Rϕconf(r) where Rϕ ⊆ Rq is the subset of
rules having ϕ as a consequent. The selected query fragments are those with
highest scores, and are limited by the number α of base preference constructors
that the user wants to annotate her queries with.

Given schemaM = 〈A,H,M〉 and a qf-set F , we adopt the following nota-
tion:

94

• F.hier(h) = F ∩ Lev(h) is the set of levels of hierarchy h ∈ H in F ;

• F.meas = F ∩M is the set of measures in F ;

• F.val(a) =
⋃

(a∈Vk)∈F Vk denotes the set of selected values for

level/measure a ∈ A ∪M in F .

Algorithm 5 Select fragments for personalisation
Input: R: A set of rules; q: A query represented as a qf-set; α: A user-defined personalization

degree
Output: Fα: A qf-set that will be used to annotate q with a preference
Variables: numBC: The current number of base constructs; Rq : The set of pertinent and effective

rules; F , Fsim: Two qf-sets
1: R = R \ {r ∈ R|r.ant 6⊆ q} . Drop non-pertinent rules
2: Rq = R \ {r ∈ R|r.cons ∈ A ∪M, r.cons 6∈ q} . Drop non-effective rules
3: F = {r.cons|r ∈ Rq} . Consequents of the rules in Rq
4: Fα = ∅
5: numBC = 0
6: while numBC ≤ α and F 6= ∅ do . Iteratively construct Fα...
7: let ϕ = argmaxF score(ϕ)starting with the fragment having highest score
8: F = F \ {ϕ}
9: if makesIneffective(ϕ, Fα, q) then . If ϕ drives the preference ineffective...

10: Fsim = {ϕ′ ∈ Fα|similar(ϕ, ϕ′)}find the similar fragments, if any...
11: Fα = Fα \ Fsimand drop them
12: if Fsim 6= ∅ then
13: numBC −−
14: else
15: if ∃ϕ′ ∈ Fα|similar(ϕ, ϕ′) then . Similar fragments were already added to Fα...
16: Fα = Fα ∪ {ϕ}so numBC must not be increased
17: else
18: if numBC < α then . Add ϕ only if this does not violate the α constraint
19: Fα = Fα ∪ {ϕ}
20: numBC + +

21: return Fα

Function 6 makesIneffective
Input: ϕ: A fragment; Fα: A qf-set; q: a query represented as a qf-set
Output: A Boolean

1: if ∃h ∈ H|ϕ ∈ Lev(h) then . ϕ is a level
2: if (Fα.hier(h) ∪ {ϕ}) = q.hier(h) then . All query hierarchies are preferred
3: return true
4: if ϕ ∈M then . ϕ is a measure
5: if (Fα.meas ∪ {ϕ}) = q.meas then . All query measures are preferred
6: return true
7: if ϕ = (a ∈ V) then . ϕ is a predicate
8: if q.val(a) 6= ∅ and !((Fα.val(a) ∪ V) ⊂ q.val(a)) then . All values for a are preferred
9: return true

10: return false

Algorithm 5 selects, among the set R of association rules mined from the
log, the consequents of rules that will be used to annotate the current query
with preferences. It starts by removing from R all non-pertinent rules (i.e., those
whose antecedent does not match q — line 1), and some non-effective rules (those
whose consequent, if it is an attribute or a measure, does not appear in the list
of group-by attributes or returned measures of q — line 2). The remaining rules
are grouped by their consequent and the score of each group is computed (line
3). Then the top consequents corresponding to α base constructors are returned

95

Function 7 similar
Input: ϕ1: A fragment; ϕ2: A fragment
Output: A Boolean

1: if ∃h ∈ H|ϕ1 ∈ Lev(h) and ϕ2 ∈ Lev(h) then . Two levels of the same hierarchy
2: return true
3: if ϕ1 ∈M and ϕ2 ∈M then . Two measures
4: return true
5: if ϕ1 = (a ∈ V1) and ϕ2 = (a ∈ V2) then . Two predicates on the same attribute
6: return true
7: return false

(lines 4-21). If a fragment ϕ that is about to be selected drives the preferences
ineffective because it states that all the query results are preferred (Function
6), it is removed together with the other similar fragments (lines 10-13).

Example 8.1.2 Consider the qf-set of Example 3.2.1, q =
{Region,AllCities,Mrn, AllRaces,Occ,Year,AllSexes,AvgIncome, (Year = 2009)}.
Let the set R of rules extracted from the log be as follows:

r1: (Region ∈ {’Pacific’,’Atlantic’}) → Year (0.8)
r2: Year → Region (0.80)
r3: Year → AllCities (0.60)
r4: AvgIncome → Region (0.60)
r5: Year → Sex (0.90)
r6: (Year = 2009)→ Region (0.70)
r7: Year → (Year = 2009) (0.50)
r8: Year → (AvgIncome ∈ [500, 1000]) (0.55)
r9: AvgIncome → Mrn (0.45)
r10: Occ → Region (0.70)
r11: Occ → Year (0.10)
r12: AvgIncome → Year (0.70)

and let Algorithm 5 be called with α = 2. First, the algorithm removes r1 (non
pertinent since its antecedent is not found in q) and r5 (non effective since its
consequent is not found in q). Then the remaining rules are grouped by their con-
sequents, resulting in the set of fragments F = {Region,AllCities, (AvgIncome ∈
[500, 1000]), (Year = 2009),Mrn,Year} (listed by decreasing order of score). The
fragments in F are now orderly explored. The first two fragments are not se-
lected since, together, they drive the preference ineffective (they are exactly the
fragments of hierarchy RESIDENCE included in q). Fragment (AvgIncome ∈
[500, 1000]) is selected. Fragment (Year = 2009) is not selected since it corre-
sponds precisely to the selection on Year of q. Then fragment Mrn is selected
and, finally, Algorithm 5 outputs Fα = {(AvgIncome ∈ [500, 1000]),Mrn}.

Deriving preference constructors

The output Fα of Algorithm 5 is a qf-set used to annotate the current query
q with a preference. To this end, each query fragment ϕ ∈ Fα is translated
into a base constructor ; the resulting base constructors are then coalesced and
composed using the Pareto operator.

96

The rules for translating fragment ϕ are explained below:

• if ϕ is a level a ∈ A, it is translated into a constructor CONTAIN(h, a),
where h is the hierarchy a belongs to.

• If ϕ is a measure m ∈ M , it is translated into a constructor
CONTAIN(measures,m).

• If ϕ is a Boolean predicate on a level, (a ∈ V), it is translated into a
constructor POS(a, V).

• If ϕ is a Boolean predicate on a measure, (m ∈ [vlow, vhigh]), it is translated
into a constructor BETWEEN(m, vlow, vhigh).

The resulting base constructors are coalesced by merging all CONTAIN’s on the
same hierarchy, all POS’s on the same level, and all BETWEEN’s on the same
measure.

Example 8.1.3 The preference expression that translates the qf-set Fα in Ex-
ample 8.1.2 is p = BETWEEN(AvgIncome,500,1000) ⊗ CONTAIN(RACE, Mrn).
The myMDX formulation for q annotated with p is:

SELECT AvgIncome ON COLUMNS,

Crossjoin(OCCUPATION.members,

Crossjoin(Descendants(RACE.AllRaces,RACE.Mrn),

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

PREFERRING AvgIncome BETWEEN 500 AND 1000 AND RACE CONTAIN Mrn

Note that, in this approach, it is assumed that navigational habits extrac-
tion is done off-line, for efficiency purpose. Should this efficiency constraint be
relaxed, the approach could be improved by using the personalization degree α,
that indicates how many preference constructs should be used for personalizing
the query, to guide rule extraction. Roughly speaking, it means that Algorithm
3 (see Section 7.2) and Algorithm 5 should be merged, to extract, for a given
support and confidence threshold, only pertinent and effective rules needed to
ensure α constructs. Confidence and/or support are decreased progressively
only if the number of constructs is not reached.

8.1.3 Using partially evaluated queries

When the user query is partially evaluated, i.e., corresponds to a set of refer-
ences, simple preferences extracted from the log can be used to define an order
over QMDX , the set of queries expressed in MDX over a given data cube. In
that case, personalizing a user query q boils down to computing the preferred
subquery of q, and using this subquery to derive the MyMDX preference con-
structs.

97

Finding the preferred subquery

Limiting the size of the answer is done using a constraint on the query. This
constraint can for instance represent the properties of the device used for dis-
playing the answer. We introduce the notion of constraint and anti-monotone
constraint.

Definition 8.1.1 - Constraint. A constraint v is a boolean function defined
over QMDX . Given a query q ∈ QMDX , we say that q satisfies the constraint v
if v(q) = true.

A constraint v is anti-monotone if for every MDX query q and q′ in QMDX ,
if q v q′ and v(q′) = true, then we have v(q) = true.

Example 8.1.4 A simple example of constraint sets the maximum number n
of references for the query. Formally, this constraint is defined by the function
v(q) = true ≡ |q| ≤ n, where q is a set of references.

The user preferences U = 〈<uD, {<uD1
, . . . , <uDN , <

u
Meas}〉 induce a lexi-

cographic order over references of the cube, noted <ur , which is defined for
all references t and t′ by: t <ur t′ if for all Dk ∈ max<D∆(t, t′), we have
t(Dk) <Dk t

′(Dk) where ∆(t, t′) = {Di ∈ D | t(Di) 6= t′(Di)}. Note that, con-
sistently with [81], this order is irrespective of <uMeas. However, this definition
can be straightforwardly extended to include <uMeas for defining a partial order
on cell schemata (instead of cell references).

Preferences over partially evaluated queries, noted <uR, can be defined as a
partial order over sets of references. Let <ur be a partial order over a set E of
references, <uR is defined on 2E by: for all subsets R1 and R2 of E, R1 <

u
R R2

if R1 6= R2 and (∀t1 ∈ R1 \R2)(∃t2 ∈ R2 \R1)(t1 <
u
r t2).

Example 8.1.5 Consider the preferences introduced in Example 7.1.1:
〈{RESIDENCE <uD TIME <uD SEX,
RESIDENCE <uD TIME <uD OCCUPATION,
RESIDENCE <uD RACE <uD SEX,
RESIDENCE <uD RACE <uD OCCUPATION},
{Male <uSEX Female},
{AvgIncome <uMeas AvgCostGas <

u
Meas AvgCostElec}〉.

And consider the two queries:
q1 = {AllCities} × {Female} × {AllY ears} × {AllRaces} × {AllOccs}
q2 = {AllCities} × {Male} × {AllY ears} × {AllRaces} × {AllOccs}.
It is q2 <uR q1 since 〈AllCities,Male,AllY ears,AllRaces,AllOccs〉 <ur

〈AllCities, Female,AllY ears,AllRaces,AllOccs〉.

It is shown in [81] that <uR is a total order if <ur is a total order. A total
order for <uR is needed to find a unique subquery to the user query, since a
partial order would not allow to distinguish between incomparable preferred
subqueries. Note that a total order consistent with <ur can be obtained from a
partial order by simply composing the partial order <ur with a given total order
(e.g., the alphabetic or lexicographic order) through prioritization.

98

The problem to find the preferred subquery of a user query q can now be
formally defined. Let q be a query in QMDX . Given user preferences U = 〈<uD
, {<uD1

, . . . , <uDN , <
u
Meas}〉 defining a total order <uR over the set of queries, and

an anti-monotone constraint v ∈ V, the problem is to find the most interesting
subquery q∗ of q such that q∗ satisfies the constraint v, i.e. v(q∗) = true.
Formally, the problem is to find the query q∗ defined by:

q∗ = max<uR{q
′ ∈ QMDX | q′ v q ∧ v(q′) = true}.

The algorithm for computing the preferred query, Algorithm 8, relies on the
fact that a query is modeled as a set of references in the cube. It uses Function
NextRef defined below, to find the next preferred reference regarding the order
over references induced by the user preferences.

Definition 8.1.2 - Function NextRef . Let R be a set of references and <r
a total order over R, NextRef is defined, for all reference x ∈ R as: x′ =
NextRef<r (x,R) if x′ <r x, (@x′′ ∈ R)(x′ <r x

′′ <r x) and x 6= min<r(R). If
x = min<r(R), NextRef<r (x,R) = null.

Algorithm 8 Compute maximal subset
Input: R: A set of reference; <r: A total order over R; v: A visualization constraint
Output: A maximal set of reference satisfying v
Variables:

1: X = ∅
2: x = max<r (R)
3: while (x 6= null) do
4: if v(X ∪ {x}) = true then
5: X = X ∪ {x}
6: x = NextRef<r (x,R)

return X

Soundness of this algorithm is shown in [81].

Example 8.1.6 Consider again the preferences introduced in Example 7.1.1,
with the query q = {AllCities}×{Female,Male}×{2011, 2010}×{AllRaces}×
{AllOccs}. Suppose the constraint v is defined by v(q) = true ≡ |q| ≤ 2.
Then Algorithm 8 constructs q∗ = {AllCities} × {Female} × {2011, 2010} ×
{AllRaces} × {AllOccs}.

Deriving preference constructors

Once the subquery q∗, i.e., the preferred set of references, is obtained, it is
used to derive the preference constructors to be added to the current query, as
follows. The principle is that this subquery q∗ corresponds to the un-dominated
references of the user query q. The preference constructs are derived as follows,
and composed with Pareto:

• If all the members of a level L of a hierarchy h appear in q∗, then derive
a CONTAIN(h,L) construct.

99

• For the set V of members for level a appearing in q∗, derive a POS(a,V)
construct.

Note that if the order induced by the preferences was over cell schemata
instead of cell references, then the CONTAIN(measures,m) construct could be
derived. Besides, if the query model used was that of fully evaluated queries,
then the BETWEEN(m, vlow, vmin) construct could be derived as well.

Example 8.1.7 Consider Example 8.1.6. Query q can be expressed in MDX
by:

SELECT {SEX.Sex.[Male],SEX.Sex.[Female]} ON COLUMNS,

{TIME.Year.[2011],TIME.Year.[2010]} ON ROWS

FROM CENSUS

The myMDX query corresponding to q∗ can be expressed by:

SELECT {SEX.Sex.[Male],SEX.Sex.[Female]} ON COLUMNS,

{TIME.Year.[2011],TIME.Year.[2010]} ON ROWS

FROM CENSUS PREFERRING Sex POS ’Female’

8.2 Query expansion

This section focuses on the second type of personalization approaches, where
query expansion is used to enrich the user query with preferences, without rely-
ing on dedicated operators. The principle is to reduce the answer to a user query
by computing the preferred subquery in the classical sense of query inclusion.
Such approaches are prescriptive by nature, and usually require low formula-
tion effort. They are presented into three categories, according to whether the
current query is unevaluated, partially evaluated, or fully evaluated.

8.2.1 Using unevaluated queries

The principle introduced in [64] can be directly applied: the simple preferences
extracted over members (see Section 7.1 in Chapter 7) can be used to generate
a user profile consisting of weights on selection conditions over members. This
profile could be exploited using the algorithm described in [64].

Alternatively, if the profile consists in the navigational habits, the principle
presented in Section 8.1.2 can be used. Instead of deriving preference construc-
tors from the relevant habits, these habits are used to enforce hard constraints,
or to discard group by sets. In the approach presented Section 8.1.2, only the
fragment translation step has to be adapted. It should now consist in the fol-
lowing, according to the query fragment used for personalization:

• if the fragment is a selection predicate, propagate this predicate to the
user query,

• if the fragment is a level in a hierarchy, discard the other levels of this
hierarchy that the query features,

100

• if the fragment is a measure, discard the other measures that the query
features.

Note that, in that case, preferences correspond to hard constraint combined
using intersection, whereas in the previous section, they correspond to soft con-
straints combined using Pareto.

Example 8.2.1 Consider the MyMDX query of 8.1.3. Using a query expansion
approach, with the same preferences as the ones used in the annotations of this
query, the resulting MDX query would be:

SELECT Filter(OCCUPATION.members,

AvgIncome BETWEEN 500 AND 1000) ON COLUMNS,

Crossjoin((RACE.Mrn,

Descendants(RESIDENCE.AllCities,RESIDENCE.Region))) ON ROWS

FROM CENSUS WHERE TIME.Year.[2009]

8.2.2 Using partially evaluated queries

If queries are modeled as sets of references, the subquery of the current query
is directly the one computed using the principle given in Section 8.1.3. The
MDX expression can straightforwardly be derived from the set of references by
cross-joining the sets of members in each dimension that appear in the subquery.

Example 8.2.2 Consider the MyMDX query of 8.1.6. Using a query expan-
sion approach with the same preferences as the ones used in Example 8.1.6, the
resulting MDX expression would be:

SELECT {SEX.Sex.[Female]} ON COLUMNS,

{TIME.Year.[2011],TIME.Year.[2010]} ON ROWS

FROM CENSUS

8.2.3 Using fully evaluated queries

If the current query is fully evaluated, i.e., corresponds to a set of facts, investi-
gations extracted from the user’s former sessions (see Section 7.3 of Chapter 7)
can be used to expand the current query by restricting the set of cells to those
showing information related to the discoveries detected in the log. Roughly
speaking, the expanded query would somehow be the result of the discovery
driven operators used on its cells.

More precisely, the difference pairs of the current query answer q are ex-
tracted and compared to the most general difference pairs of each investigations
extracted from the log. For each investigation i = 〈〈c, c′〉,M,D,E〉 such that
a difference pair of the current query is a drill-down pair of 〈c, c′〉, the current
query q is expanded as follows: q′ =

⋃
m∈M (q∩m)∪

⋃
d∈D(q∩d)∪

⋃
e∈E(q∩ e).

Recall that in this case, a query is modeled as a set of facts and consequently
it may not be expressed as the result of a cross product.

101

Example 8.2.3 Consider Example 7.3.1 and Example 7.3.5 where the inves-
tigations extracted from the log were i1 = 〈p1, {q5}, {q2, q4}, {q1}〉 and i2 =
〈p2, {q5}, {q2, q4}, ∅〉 with

p1 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears, Female,Atlantic, 200〉〉
and

p2 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears,Male, Pacific, 200〉〉
and

q1 L.A. N.Y.
2007 Female 200 100

Male 200 250

q2 L.A. N.Y.
2008 Female 100 200

Male 200 250

q4 Pacific Atlantic
2008 Female 100 200

Male 200 250

q5 Pacific Atlantic
Female 100 200
Male 200 200

Consider also the current query:

qcurrent Pacific Atlantic California New York L.A. N.Y.
2008 Female 100 200 100 200 100 200

Male 200 250 150 250 200 250
2007 Female 150 150 100 200 200 100

Male 200 250 200 250 200 250
AllYears Female 100 200 150 150 150 150

Male 200 200 200 250 200 250

Expanding this current query using investigation i2 = 〈p2, {q5}, {q2, q4}, ∅〉
would result in the query:

qcurrent Pacific Atlantic L.A. N.Y.
2008 Female 100 200 100 200

Male 200 250 200 250
AllYears Female 100 200

Male 200 200

8.3 Conclusion

This chapter introduced various approaches for personalizing OLAP queries
leveraging the knowledge extracted from query logs. The approaches are either
prescriptive, requiring a low formulation effort, or not prescriptive and expres-
sive, while demanding a higher formulation effort.

Importantly, these approaches are consistent with the requirements stated
in the conclusion of Chapter 2. In particular, (i) they rely on user navigational
habits extracted from past analytical sessions, (ii) the profile elements used
respect the multidimensional model, and (iii) they can take advantage of the
user’s past discoveries in the data.

The approaches presented in the present chapter assume the log of a single
user. The next chapter show how to complement these approaches with query
recommendations, using a multi-user log.

102

Chapter 9

Collaborative
recommendations with a
multi-user log

This chapter presents various query recommendation techniques using informa-
tion extracted from an OLAP query log. Though all the approaches presented
here are inherently history-based, we use the categorization introduced in Chap-
ter 2 Section 2.4 to distinguish the approaches that are hybrid in the sense that
they are both history-based and current state (Section 9.1) from those that are
purely history-based (Section 9.2). Most of the materials used in this chapter
comes from the thesis of Elsa Negre [83], which have been published in [36],
[37], [38] and [39].

9.1 An history-based and current state ap-
proach

In this section, we describe a query recommendation approach that uses both
the information extracted from the log and the current state of the database,
more precisely, the content of the fully evaluated query. In this approach, the
profile is a set of investigations extracted from a multi-user log.

9.1.1 Leveraging past investigations

Recommendations are computed on the basis of the differences discovered in
the log. The key idea is to detect the difference that the current query is
investigating and to recommend the queries in the log that investigated the same
difference. Recall from Chapter 7 that an investigation records the set of mgdq
(the most general difference queries, i.e., the queries containing a difference pair
at the coarsest granularity level in the log) and, at a lower level of detail, the

103

queries that confirm the difference (the mgdq’s drill-down differences), and the
queries that contradicts the difference (their exceptions). Recommendations are
computed online each time a current query is added to the current session by
the current user. The current query is analyzed to detect to which investigations
it corresponds (this query may be itself a mgdq, a drill-down difference, or an
exception of what is detected in the log). Then a navigation plan (a set of
queries arranged in a graph) is proposed for the current user to see drill-down
differences or exceptions to the mgdq, by using the queries of the investigations.

Example 9.1.1 We recall from Example 7.3.1 and Example 7.3.5 that the
investigations extracted from the log were i1 = 〈p1, {q5}, {q2, q4}, {q1}〉 and
i2 = 〈p2, {q5}, {q2, q4}, ∅〉 with:

p1 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears, Female,Atlantic, 200〉〉
p2 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears,Male, Pacific, 200〉〉

and:

q1 L.A. N.Y.
2007 Female 200 100

Male 200 250

q2 L.A. N.Y.
2008 Female 100 200

Male 200 250

q4 Pacific Atlantic
2008 Female 100 200

Male 200 250

q5 Pacific Atlantic
Female 100 200
Male 200 200

These two investigations will be used to compute recommendations to current
queries.

9.1.2 Computing and presenting recommendations

Given a current query q and a set of investigations I, the recommender system is
implemented by Algorithm 9, that uses the operators defined in Section 7.3. It
first identifies in I the set of mgdp to which q can be related. For such an mgdp
m, q can be either a drill-down difference query w.r.t. m, a roll-up difference
query w.r.t. m, or an exception difference query w.r.t. m. In each case a specific
function is used to construct the recommendation from the investigation whose
difference pair is m.

Function recommendDrilldown is given by Algorithm 10. The idea is to
recommend each session which mgdq is a rollup difference query of the current
query, with the queries of the session arranged in a given order (first the mgdq,
then the drilldown differences of the current query, etc.). The recommendation
is a navigation plan, i.e., a graph of queries rooted in the current query q (see
Figure 9.1). The other functions used in Algorithm 9 for recommending sessions
follow the same general principle. For instance, if the current query q is detected
as an exception of the mgdq of an investigation, then it makes sense to present
first the exceptions of the mgdq that are the rollup difference queries of q, and
then the exceptions of the mgdq that are drilldown difference queries of q, since
it will probably help the user to understand to which extends q contributes to
being an exception of the mgdq.

104

Algorithm 9 Recommendations for a current query
Input: q: The current query, I: A set of investigations, fdp: A Boolean function
Output: A graph G of recommended queries
Variables: G: A graph , C: A set of queries

1: G = 〈∅, ∅〉
2: M = mgdq(I)
3: for each difference pair 〈c, c〉′ of difference(q,fdp) do
4: C = rollupDifference(c, c′,M) . first check if q is a drill-down difference
5: if C 6= ∅ then
6: G = G ∪ recommendDrilldown(c, c′, q, C)

7: C = drilldownDifference(c, c′,M) . then check if q is a rollup difference
8: if C 6= ∅ then
9: G← G ∪ recommendRollup(c, c′, q, C)

10: for each difference pair 〈x, x′〉 of m ∈M do . finally check if q is an exception
11: C = exceptions(x, x′, {q})
12: if C 6= ∅ then
13: G = G ∪ recommendException(c, c′, q, C)

14: return G

Function 10 recommendDrilldown
Input: 〈c, c′〉: A difference pair, q: A current query, C: A set of difference pairs
Output: A graph G of recommended queries
Variables: E: A set of edges, V : A set of vertices

1: E = ∅
2: V = ∅
3: for each pair m ∈ C do
4: let i = 〈m,M,D,X〉 . get the investigation having m as mgdp
5: V = V ∪M ∪D ∪X . create vertices and then create edges
6: let S1 = drilldownDifference(c, c′, D) . the drill-down differences of q
7: let S2 = exceptions(c, c′,M) . the exceptions to q in M
8: let S3 = D \ S1 . the drill-down diff. to m which are not drill-down diff. of q
9: let S4 = E \ S2 . the exceptions to m which are not exceptions of q

10: E = (q ×M) ∪ (M ×M) . Link q to the most general queries M
11: E = E ∪ (M × S1) ∪ (S1× S1) . Link the most general queries to the drill-down diff. of q
12: E = E ∪ (S1× S2) ∪ (S2× S2) . Link the drill-down diff. of q to the exceptions to q
13: E = E ∪ (S2× S3) ∪ (S3× S3) . Link the exceptions of q to the drill-down diff. to m
14: E = E ∪ (S3× S4) ∪ (S4× S4) . Link the drill-down diff. of m to the exceptions to m

15: return G = 〈V,E〉

Example 9.1.2 Consider the following current query:

qcurrent California New York
2008 Female 100 200

Male 150 250

We call Algorithm 9 with parameters: qcurrent (the current query),
{i1, i2} (the investigations extracted from the log recalled in the previous
example) and the function fdp that outputs true for two cells c, c′ if their
measures differ by at least a factor of 2. It is detected that the pair p1 =
〈〈2008, F emale, California, 100〉, 〈2008, Female,NewY ork, 200〉〉 of q8 is a
drilldown pair of p1 = 〈〈AllY ears, Female, Pacific, 100〉, 〈AllY ears, Female,
Atlantic, 200〉〉 and thus qcurrent is a drilldown differ-
ence. Function 10 is used to construct the following graph:
{qcurrent, q1, q2, q4, q5}, {(qcurrent, q5), (q5, q2), (q5, q4), (q2, q1), (q4, q1)}. Us-
ing this graph, the user can navigate first to q5, that will show that the
difference observed in the average income of Females between California and
New York is somehow not surprising in the sense that it is also valid for regions
Pacific and Atlantic, whatever the year. Then, the user can navigate to q2 and

105

Figure 9.1: A navigation plan

q4 to see other instances of this difference. Finally, the user can navigate to
the only exception to this observation by looking at query q1.

9.2 Pure history-based approaches

We now describe query recommendation approaches that use only the history
of the database, that is the unevaluated queries of the log.

9.2.1 Leveraging similar sessions

In this section, we present a general framework for computing history-based
recommendations, where a query is recommended by using both the server log,
i.e., the set of sessions already posed to navigate the cube, and the sequence of
queries of the current session. Note that this framework can be used whatever
the query model (unevaluated, partially evaluated, fully evaluated), by adapt-
ing the similarity used for queries (and thus sessions). However, since Section
9.1 already presented an approach being both history-based and current state
(based on fully evaluated queries), in this section we focus on pure history-based
approaches, where the query model is that of unevaluated query.

The framework consists in three steps, as illustrated by Algorithm 11: (i)
Matching, i.e., searching the log for sessions related to the current session,
(ii) Predicting, i.e., generating candidate recommendations by predicting what
could be the next query, and (iii) Ranking, i.e., ordering the candidate recom-
mendations to present the queries to the user in interest order. This framework
is flexible in the sense that it does not lay down a specific method for matching,
predicting or ranking. Instead of that, each of these steps is parametrized with
functions and relations. By changing these parameters, the way recommenda-
tions are computed changes. We now present these steps into more details.

106

Algorithm 11 Recommending leveraging similar sessions
Input: Sc: The current session, L: The query log, θ: A relation over sessions, Pred: A prediction

function, Ranking: A query ranking function, ≺: An order over queries, Default: A function
that returns a default recommendation.

Output: An ordered set of recommended queries
Variables: CandSessions: A set of sessions, CandQ: A set of queries

1: CandSessions ← σθ,Sc (L) . Matching
2: CandQ ← Pred(Sc, CandSessions) . Predicting
3: if CandQ 6= ∅ then
4: return Ranking(CandQ,≺) . Ranking

5: return Default(L,≺)

Matching: Looking for similar ways of querying

The first step of the approach consists of using the selection operator on sessions
defined in Section 5.2 of Chapter 5, to return a set of sessions related to the
current session. The underlying idea is to find among the sessions of the log,
those that are related to the current session and to recommend one of these
queries to the user. As indicated in Section 5.2, the θ relation can use one
of the similarities presented in Chapter 6 to compare the current session Sc
with each session of the log, and output the closest to Sc or the top-k most
similar. As session similarities can rely on a query similarity, any of the query
similarities introduced in Chapter 6 can be used. Obviously the choice of the
query similarity and session similarity to used is related to the query model
used, but may also be related to the importance attached to the frequency of
queries in the log or the importance of order of the queries in the session. For
instance, if the order of queries is relevant but the frequency is not, then the
Levenshtein distance combined with the Hausdorff distance can be used for the
θ relation, as in [37].

Example 9.2.1 Consider a log consisting of two sessions, s′ = 〈q4, q5, q6,
q7, q8〉, and s′′ = 〈q9, q10〉, and let s = 〈q1, q2, q3〉 be the current session. Table
9.2.1 represents each single query in terms of the unevaluated query model; the
involved group-by sets are:

G1 = 〈State,Race,Year,AllSex,Occ〉
G2 = 〈State,RaceGroup,Year,AllSex,Occ〉
G3 = 〈Region,AllRaces,Year,Sex,Occ〉

while the selection predicates are:

c1 = {TRUERESIDENCE, . . . , (Year = 2005), . . . , TRUESEX}
c2 = {TRUERESIDENCE, (RaceGroup = Chinese), . . . , . . . , TRUESEX}
c3 = {TRUERESIDENCE, (RaceGroup = Chinese), (Year = 2005), . . . , TRUESEX}

Suppose algorithm 11 is called with this log, s as the current session, and
θ(s, s′) ≡ sim(s, s′) ≥ 0.5 where sim is the extension of Tf-Idf introduced in

107

Queries
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Group-by set g1 g2 g2 g2 g2 g3 g3 g2 g1 g1

Measures

AvgCostWatr X X X X X X X X
AvgCostElect X X X X X X
AvgCostGas X X X
AvgIncome X X X

Selection predicates c1 c1 c1 c2 c3 c1 c1 c1 c1 c1

Table 9.1: Queries for Example 9.2.1

Chapter 6. CandSessions = {s′} since sim(s, s′) = 0.673 and sim(s, s′′) = 0
(because queries similar to q3 and q8 can be found in each session of the log).

Predicting: choosing the queries to recommend

In the second step of the approach, Function Pred is used to obtain, from the
set of sessions matching the current session, queries to recommend. In [37],
we propose to return the last query of each candidate session, since this query,
being the point where the user stopped the analysis, is likely to contain relevant
information for the session. Note that this step can be expressed using the
language for manipulating logs, as shown in Section 5.3.3.

We briefly list some other possibilities for this function:

• Summarize the queries of each candidate session by one single query, re-
spectively, using the approach described Section 5.3.1.

• Return the query of each candidate session that is the closest to the last
query of the current session.

• Return the query of each candidate session that is the best query in the
sense of a preference relation over queries.

These various possibilities for the Pred function may lead to very diverse
recommended queries. As in other contexts where recommendation is used,
like Information Retrieval, diversity in recommendation is probably also very
relevant for the OLAP user, and it may be desirable for a recommender system
to use more than one Pred function.

As previously noted, the set of candidate recommendations can be empty.
In that case, it might be useful to still be able to provide the user with a
default recommendation. Thus,the function Default(L) allows to obtain such
a recommendation directly from the log. Various default recommendations can
be proposed to the user. Considering that our set of sessions of the log can be
seen as a graph where each node is a query and where the edges are the sequence
of queries, borrowing an idea from [63] we propose as a default recommendation
the nodes being the authorities (resp., the hubs), i.e., the nodes that have the
highest number of successors (resp., predecessors).

Ranking the recommendations

During the previous step, a set of candidate queries to recommend is computed.
The aim of this final step is to rank the queries, given a satisfaction criteria

108

or order relation ≺, that can be expressed by the user. The ranking function
Ranking(CandQ,≺) returns the ordered set of recommended queries. Again
there are many ways of ranking the candidates, from very basic to sophisticated
ones. Recommendations can be ranked according to how close they are from the
last query of the current session, by their number of references not already seen
by the user in the current session, or by using preferences expressed over queries.
In particular, for partially evaluated queries, the order <uR stemming from the
user profile (see Chapter 8) can be used for ≺. Using the language for log
manipulation introduced in Chapter 5, Ranking(CandQ,≺) can be expressed
by aggθ,agg(L) where:

• CandQ is turned into a log L by having each query converted into a session
of length 1.

• θ(s, s′) holds for all s, s′ ∈ L,

• agg(S) = 〈q1, . . . , qn〉 where for all i, j ∈ {1, n}, it is i < j if qi ≺ qj holds.

Example 9.2.2 Continuing Example 9.2.1, suppose Algorithm 11 is called
with, for both Pred and Ranking, a function choosing the query closest to q3

(the last query of the current session), in the sense of the similarity between un-
evaluated queries defined in Chapter 6. It can easily be seen that candQ = {q8},
which is the query closest to q3. This query is returned as the recommendation.

9.2.2 Leveraging navigational habits

Navigational habits can be extracted from a multi-user query log (see Chapter
7). This knowledge can be exploited to derive recommendations, disregarding
former sessions, in a spirit similar to the one used in Chapter 8, Section 8.1.2. In
this case, the set of rules is searched for pertinent rules, i.e., whose antecedent
matches the user query. The main difference is that the rules need not be
effective, since the goal is not to reduce the answer set. Then pertinent rules’
consequents are used to derive the recommendation.

Rule selection

Recall that the semantics of the rule describing a navigational habit is: if the
antecedent appears in the query then the consequent tends to appear together
with it. Hence the query recommended should be constructed starting from the
current query, and should not be a subquery of it.

The selection of the rules follows the principle of Algorithm 5, with the
differences that:

• The consequents selected need not be part of the current query.

• Parameter α is not needed any more, since what is needed to construct
the recommended query is, at least, one fragment for the query group-by
set and one fragment for the measures.

Algorithm 12 is an adaptation of Algorithm 5 in that sense, where score(r)
for a rule r being, e.g., its confidence.

109

Algorithm 12 Select fragments for recommending
Input: R: A set of rules; q: A query represented as a qf-set
Output: F : A qf-set that will be used as a recommendation
Variables: F : A qf-set

1: R = R \ {r ∈ R|r.ant 6⊆ q} . Drop non-pertinent rules
2: R = R \ {r ∈ R|r.cons ∈ A ∪M, r.cons ∈ q} . Drop effective rules
3: F = ∅
4: end = false
5: while end = false and R 6= ∅ do . Iteratively construct the answer...
6: let r = argmaxR score(r)starting with the rule having highest score
7: R = R \ {r}
8: F = F ∪ {r.cons, r.ant}
9: if ∃ϕ ∈ F |∃h ∈ H,ϕ ∈ Lev(h) and ∃ϕ′ ∈ F |ϕ′ ∈M then

10: end = true
11: return F

Deriving recommendation

A basic idea developed here is to construct the recommended query using only
the following fragments: 1) those of the user query that appear as antecedents of
the selected rules, and 2) those appearing as consequents of the selected rules. If
a group by set cannot be formed because some hierarchies do not appear in the
qf-set, then the qf-set is completed with the coarsest levels of these hierarchies.

Example 9.2.3 Consider the qf-set describing the current query q = {Region,
AllCities,Mrn,AllRaces, Occ,Year,AllSexes,AvgIncome, (Year = 2009)}. Let the
set R of rules extracted from the log be as follows:

r1: (Region ∈ {’Pacific’,’Atlantic’}) → Year (0.8)
r2: Year → Region (0.80)
r3: Year → AllCities (0.60)
r4: AvgIncome → Cities (0.60)
r5: Year → Sex (0.90)
r6: (Year = 2009)→ Region (0.70)
r7: Year → (Year ∈ 2009) (0.50)
r8: Year → (AvgIncome ∈ [500, 1000]) (0.55)
r9: AvgIncome → Mrn (0.45)
r10: Occ → Region (0.70)
r11: Occ → Year (0.10)
r12: AvgIncome → Year (0.70)

Algorithm 12 outputs the qf-set {AvgIncome,Cities,Year,Sex, (AvgIncome ∈
[500, 1000])}, using only rules r4, r5, r8 that are pertinent and non effective. This
qf-set is completed with the coarsest levels of the missing hierarchies, resulting
in {AvgIncome,Cities,Year,Sex,AllOccs,AllRaces, (AvgIncome ∈ [500, 1000])}.

9.3 Conclusion

This chapter introduced various approaches for recommending OLAP queries
based on the knowledge extracted from multi-user query logs. The approaches

110

either rely on the log and on the database instance, and in that case the rec-
ommended queries indicate potential discoveries made by other users analyzing
a related set of data, or they exploit past unevaluated queries only, by looking
for similar user intensions or navigational habits.

As for the personalization approaches presented in the previous chapter,
the recommendation approaches are aligned with the requirements stated in
Chapter 2, being tailored for the multidimensional model and the ways users
analyze a cube.

The following chapter concludes the dissertation, with a brief report on the
experiments conducted to assess the approaches introduced in the chapter and
the previous one, and draws research perspectives.

111

Part V

Conclusion

112

Chapter 10

Towards analytical sessions
of better quality

This chapter concludes the dissertation by summarizing the contributions (Sec-
tion 10.1) and discussing future research directions (Section 10.2). It relies
partly on submitted material [14] following a Dagstuhl Seminar on Data Ware-
housing [98].

10.1 Summary

10.1.1 The contributions

This dissertation is a contribution to developing user-centric OLAP, focusing on
the use of former queries logged by an OLAP server to enhance subsequent anal-
yses. It showed how logs of OLAP queries can be modeled, constructed (Part
II), manipulated, compared (Part III), and finally leveraged for personalization
and recommendation (Part IV).

Logs are modeled as sets of sessions, sessions being modeled as sequences of
OLAP queries. Three main approaches are presented for modeling queries: as
unevaluated collections of fragments (e.g., group by sets, sets of selection pred-
icates, sets of measures), as sets of references obtained by partially evaluating
the query over dimensions, or as query answers.

Such logs can be constructed even from sets of SQL query expressions, by
translating these expressions into a multidimensional algebra, and bridging the
translations to detect analytical sessions.

Logs can be searched, filtered, compared, combined, modified and summa-
rized with a language inspired by the relational algebra and parametrized by
binary relations over sessions. In particular, these relations can be specialization
relations or based on similarity measures over queries and sessions.

Logs can be mined for various hidden knowledge, that, depending on the
query model used, accurately represents the user behavior extracted. This

113

Model of query
Unevaluated Partially evaluated Fully evaluated

Personalization Operator Section 8.1.2, [9] Section 8.1.3
Query Section 8.2.1 Section 8.2.2 Section 8.2.3
expansion [16], [81]

Recommendation Current Section 9.1
& history [38], [39]
History Sections 9.2.1, 9.2.2 Section 9.2.1[37] Section 9.2.1

Table 10.1: Summary of the contributions

knowledge can be used for query personalization, i.e., coping with a current
query too few or too many results, or query recommendation, i.e., suggesting
queries to pursue an analytical session. This is summarized in Table 10.1, that
shows the contributions in terms of sections of this dissertations, publications,
approaches (personalization or recommendation) and query models.

10.1.2 Assessing the contributions

We now briefly present the objective tests conducted to assess the contributions.
The detailed results of the tests can be found in [81], [37], [9], [39] and [83].
Note that subjective tests with real logs and/or involving users, to tune the
approaches, are part of the perspectives, as underlined below.

The implemented approaches have been developed using mostly open source
technologies, especially Java and the Mondrian OLAP engine, often coupled
with MySQL. The approach of [16, 81] was implemented as a web service, in
a mobile context, where personalization was used to reduce the size of query
answers to have them fit the screen of a mobile device.

The logs used where synthetic logs generated with various log generators we
developed on purpose. As representative illustrations, we mention:

• The generators used in [39] and [9], that simulated discovery driven anal-
yses. Each session of that log consists of queries obtained using the Icube
operators1 that either roll-up or drill-down to meaningful zone of a cube
given the answer of the current query. A specific parameter rules the
density of the log. It represents the number of dimensions that can be
manipulated in a session to explore the cube. The higher this number, the
higher the probability of exploring different parts of the cube, and hence
the sparser the log.

• The generator used in [10], that produces pairs of sessions based on the
templates depicted in Figure 10.1, that model intuitive notions of what
similar sessions could be:

– In template ∧, the two sessions have similar starting queries then
they diverge to radically different queries.

– In template ∨, the two sessions have radically different starting
queries then they converge to similar ending queries.

1http://www.it.iitb.ac.in/~sunita/icube/index.htm

114

http://www.it.iitb.ac.in/~sunita/icube/index.htm

∧ ∨ + || ��
Figure 10.1: The templates used to generate sessions. Overlapping circles rep-
resent identical queries, near circles represent similar queries. For template ||,
the queries are pairwise separated by one atomic OLAP operation

– In template +, the two sessions converge to the same query then they
diverge.

– In template ||, the second session is constructed by “shifting” all
queries in the first session by one OLAP operation.

– In template ��, the two sessions have the same queries in reverse
order.

Regarding effectiveness, [81] and [9] report effectiveness in terms of reduc-
tion of the answer set using personalization techniques. [37] and [39] report
effectiveness in terms of prediction of queries existing in a given part of a log
when the technique is trained on other parts of this log. As expected, the log
density, i.e., the fact that the log explores a small part of a cube, plays a signif-
icant role in the effectiveness of the approach. Indeed, the more dense the log,
the more effective the approach.

Regarding efficiency, [37] and [39] showed that recommending an OLAP
query can be computed efficiently for logs of reasonable sizes. [81] and [9] showed
that personalization puts no significant overhead in the querying process, and
that personalized queries are evaluated faster than non personalized queries.

10.1.3 Critical analysis of the contributions

This dissertation is a contribution to the huge task of developing user-centric
OLAP, and as such is perfectible. We underline its main weaknesses, focusing
on the foundations of query log management for user empowerment on the one
hand, and on the confrontation of the proposed approaches on the other hand.

Regarding the first aspect, a better characterization of the complexity of the
problems tackled in part IV (extracting knowledge from the log and using this
knowledge for personalization and recommendation) is needed. These problems
have been treated by essentially proposing algorithms and empirical tests, a
more theoretical study remains to be conducted. Besides this characterization,
the logical properties of log manipulation for user-centric OLAP should be in-
vestigated. This should be realized by using the language introduced in Chapter
5, that can be seen as a preliminary contribution to the foundations of OLAP
query log management.

115

Figure 10.2: A user-centric query answering architecture

As to the second aspect, while the user-centric approaches proposed in this
dissertations can obviously still be developed and improved, they have been
devised mostly independently from each other. Investigating whether they can
be combined or what approach better fits a given analytical context is still an
open issue. For instance, it is open deciding if the most powerful approach for
user empowerment is the one demanding a low formulation effort and being not
prescriptive, proactive, highly expressive, both current state and history-based,
while using knowledge external to the database. In that sense, a better modeling
of the user’s various analytical goals is still missing (the notion of investigation
as defined in Chapter 7 can be seen as a first step towards such a model). Such
a model would not only allow to assess the quality of analytical sessions, but
also to track the evolution of the user’s understanding while navigating a data
warehouse.

This second aspect is developed in the following section.

10.2 Perspectives

The perspectives are presented starting from the short term ones, where is
introduced an envisioned architecture for user-centric query answering (Section
10.2.1), to the longer term ones, focusing on quality of the analytical sessions
(Section 10.2.2).

10.2.1 An envisioned architecture for user-centric query
answering in data warehouses

The various techniques presented in the previous chapters could be integrated
in a complete architecture for User-Centric Query Answering (UCQA) in data
warehouses. In [14], such an architecture is envisioned (see Figure 10.2).

The UCQA Layer which is at the core of the architecture, is organized in a
modular fashion, based on the following sub-components which handle specific

116

tasks of the whole advanced query answering phase.

Query Rewriting

This component takes as input the User Query (the query directly input via the
user interface, that can be a set of keywords or expressed in natural language)
and returns as output the User-Centric Query (UC Query, the query that can
be evaluated directly by the data warehouse server).

In a data warehousing context, the end user is not expected to master a
query language for expressing OLAP queries. Instead, the ubiquitous search
engine interface should be favored [54]. The user-centric query expressed in the
database language, SQL or MDX, should be deduced from the user keywords,
profile, context, etc., by means of query rewriting paradigms that meaningfully
combine multidimensional data stored in the target data warehouse, knowledge
patterns from the External Source Layer, and, finally, knowledge components
and constructs from the Knowledge Layer.

To this end, user-centric techniques like personalization and recommenda-
tion can be used to infer the UC Query [99, 103] from a keyword-based query.
More precisely, in such a context, user empowerment should be achieved: 1)
by using non prescriptive techniques, resulting in a flexible query expression, to
help keyword and context disambiguation, 2) without demanding a high formu-
lation effort, and 3) by using proactive suggestions. We briefly comment these
options. With respect to the first aspect, a flexible query language, tailored
for multidimensional queries, like the one proposed by [46], will enable the for-
mulation of the UC Query without imposing hard constraints. Instead, user
keywords and analytical context will be interpreted as soft constraints. In the
second perspective, usage patterns capturing former traces (in particular, pre-
vious queries) should be leveraged for inferring the user’s interests [9, 69, 103]
and similarity with former sessions [39, 10] should help inferring the analytical
context. Constraints imposed by the device should also be taken into account
[16]. With respect to the third aspect, query suggestion can be used for gener-
ating the user-centric query as well as anticipating the forthcoming queries [39].
Coordinating these various approaches, in particular to rank the candidate UC
Queries, will be facilitated with the use of a language that helps express both
a data warehouse query and preferences, since a query in this language can be
seen as an ordered set of classical queries [46].

Query Execution

This component is in charge of executing the UC query generated by the Query
Rewriting component. To this end, the Query Execution component only ac-
cesses the target data warehouse where the multidimensional data of interest to
the end-user are stored. The query rewriting process is obviously, transparent to
the end-user and the query execution task produces as output the User-Centric
Query Answer (UC Query Answer), the extensional answer that is retrieved by
the data warehouse server in response to the UC query.

117

Answer Processing

The goal of the Answer Processing component consists in further enhancing
the knowledge expressed by the UC query answer with some additional knowl-
edge using cooperative query answering methods [79, 80]. As output, the User-
Centric Enhanced Query Answer (UC Enhanced Query Answer, the answer aug-
mented using cooperative techniques, to be presented under the form of dash-
board) is finally provided to the end-user. To devise this User-Centric Enhanced
Query Answer, data mining techniques on the extensional answer, internal (in-
tegrity constraints, usage patterns) and external knowledge should be used for
complementing the answer with information outside the cube. These alternate
answers can be ranked not only by leveraging the user history and preferences,
but also by using criteria such as the answer’s compactness or reliability. We
note that, as no general model has been proposed for cooperative answers, find-
ing the best form of the cooperative answer in a data warehouse context remains
a challenging research problem. A first approach, tailored for OLAP sessions, is
investigated in [72]. Another important research aspect related to cooperative
query answering methods of the proposed user-centric data warehouse architec-
ture, concerns the issue of meaningfully visualizing the so-retrieved results, in a
concise and meaningful answer, even in an appealing graphical fashion.

10.2.2 Assessing the quality of analytical sessions

The previous section briefly described objective tests we performed to assess the
effectiveness of the contributions. Subjective test involving users and user traces
will have to be run. To conduct and simulate such tests, a perspective is the
development of a platform for assessing the quality of an analytical session over a
cube. Indeed, although data quality is a well studied area of data management,
the quality of the querying process has not yet been investigated. Data quality
is modeled according to quality dimensions (like e.g., accuracy.), each of them
grouping quality factors (like e.g., semantic correction, or syntactic correction),
each of them measured by various metrics [18]. A similar approach could be
used to model the quality of analytical queries and the quality of analytical
sessions. In addition, such a model would allow the development of a platform
for assessing and validating user-centric approaches in the context of OLAP.

Notably, in domains like Information Retrieval, benchmarks are used [33]
to validate approaches aiming at supporting browsing and exploratory search
results. In the domain of data warehousing, the existing benchmarks are exclu-
sively focused on performance (see for instance [104, 84, 30]), and effectiveness
of the querying process in terms of how successful the analytical session is, is
simply not addressed. So far, validating personalization or recommendation ap-
proaches is based on synthetic query logs [75] or the processing of existing logs
with no guarantee of being realistic [24].

A platform for assessing user-centric approaches should allow to measure
to which extent approaches are effective in that answers found are relevant,
the effort spent to conduct the analysis is reduced, etc. Such a platform could
benefit from previous effort to develop a benchmark to validate personalization

118

approaches in databases [87].
Finally, an even longer term perspective is extending OLAP to exploratory

search. Exploratory search can be defined by an elaborated activity that goes
beyond lookup and involves learning and investigating [73]. Modeling the over-
all decision making process under the form of exploratory search will allow to
take advantage of how the user understanding of data evolves along her/his
interaction with the data warehouse.

119

Bibliography

[1] Alberto Abelló, José Samos, and Fèlix Saltor. YAM2: a multidimensional
conceptual model extending UML. Inf. Syst., 31(6):541–567, 2006.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] Gediminas Adomavicius and Alexander Tuzhilin. Toward the Next Gen-
eration of Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. IEEE Trans. Knowl. Data Eng., 17(6):734–749, 2005.

[4] Gediminas Adomavicius, Alexander Tuzhilin, and Rong Zheng. RE-
QUEST: A Query Language for Customizing Recommendations. Infor-
mation Systems Research, 22(1):99–117, 2011.

[5] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling Multidi-
mensional Databases. In Proceedings of the Thirteenth International Con-
ference on Data Engineering, April 7-11, 1997 Birmingham U.K, pages
232–243, 1997.

[6] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi. Context-sensitive
ranking. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, pages
383–394, 2006.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. In VLDB’94, Proceedings of 20th
International Conference on Very Large Data Bases, September 12-15,
1994, Santiago de Chile, Chile, pages 487–499, 1994.

[8] Javad Akbarnejad, Gloria Chatzopoulou, Magdalini Eirinaki, Suju Koshy,
Sarika Mittal, Duc On, Neoklis Polyzotis, and Jothi Swarubini Vindhiya
Varman. SQL QueRIE Recommendations. PVLDB, 3(2):1597–1600, 2010.

[9] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa
Turricchia. Mining Preferences from OLAP Query Logs for Proactive
Personalization. In Advances in Databases and Information Systems -
15th International Conference, ADBIS 2011, Vienna, Austria, September
20-23, 2011. Proceedings, pages 84–97, 2011.

120

[10] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa
Turricchia. Similarity measures for OLAP sessions. Submitted, 2012.

[11] Julien Aligon, Haoyuan Li, Patrick Marcel, and Arnaud Soulet. Towards
a logical framework for OLAP query log manipulation. In PersDB 2012,
6th International Workshop on Personalized Access, Profile Management,
and Context Awareness in Databases (invited paper), 2012.

[12] Julien Aligon, Patrick Marcel, and Elsa Negre. Résumés et interrogations
de logs de requête OLAP. In Extraction et gestion des connaissances
(EGC’2011), Actes, 25 au 29 janvier 2011, Brest, France, pages 239–250,
2011.

[13] Kamel Aouiche, Pierre-Emmanuel Jouve, and Jérôme Darmont.
Clustering-Based Materialized View Selection in Data Warehouses. In Ad-
vances in Databases and Information Systems, 10th East European Con-
ference, ADBIS 2006, Thessaloniki, Greece, September 3-7, 2006, Pro-
ceedings, pages 81–95, 2006.

[14] Marie-Aude Aufaure, Alfredo Cuzzocrea, Cécile Favre, Patrick Marcel,
and Rokia Missaoui. Modeling and supporting user-centric query activities
on data warehouses. Submitted to IJDWM, 2012.

[15] Eftychia Baikousi, Georgios Rogkakos, and Panos Vassiliadis. Similarity
measures for multidimensional data. In Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, pages 171–182, 2011.

[16] Ladjel Bellatreche, Arnaud Giacometti, Patrick Marcel, Hassina
Mouloudi, and Dominique Laurent. A personalization framework for
OLAP queries. In DOLAP 2005, ACM 8th International Workshop on
Data Warehousing and OLAP, Bremen, Germany, November 4-5, 2005,
Proceedings, pages 9–18, 2005.

[17] Henrike Berthold, Philipp Rösch, Stefan Zöller, Felix Wortmann, Alessio
Carenini, Stuart Campbell, Pascal Bisson, and Frank Strohmaier. An ar-
chitecture for ad-hoc and collaborative business intelligence. In Proceed-
ings of the 2010 EDBT/ICDT Workshops, Lausanne, Switzerland, March
22-26, 2010, 2010.

[18] Laure Berti-Equille, Isabelle Comyn-Wattiau, Mireille Cosquer, Zoubida
Kedad, Sylvaine Nugier, Verónika Peralta, Samira Si-Said Cherfi, and
Virginie Thion-Goasdoué. Assessment and analysis of information quality:
a multidimensional model and case studies. IJIQ, 2(4):300–323, 2011.

[19] Paolo Biondi, Matteo Golfarelli, and Stefano Rizzi. Preference-based dat-
acube analysis with MYOLAP. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Han-
nover, Germany, pages 1328–1331, 2011.

121

[20] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline
Operator. In Proceedings of the 17th International Conference on Data
Engineering, April 2-6, 2001, Heidelberg, Germany, pages 421–430, 2001.

[21] Ronen I. Brafman, Carmel Domshlak, Solomon Eyal Shimony, and Y. Sil-
ver. Preferences over sets. In AAAI, pages 1101–1106. AAAI Press, 2006.

[22] Benjamin Bustos and Tomás Skopal. Non-metric similarity search prob-
lems in very large collections. In Serge Abiteboul, Klemens Böhm,
Christoph Koch, and Kian-Lee Tan, editors, ICDE, pages 1362–1365.
IEEE Computer Society, 2011.

[23] Gloria Chatzopoulou, Magdalini Eirinaki, Suju Koshy, Sarika Mittal,
Neoklis Polyzotis, and Jothi Swarubini Vindhiya Varman. The QueRIE
system for Personalized Query Recommendations. IEEE Data Eng. Bull.,
34(2):55–60, 2011.

[24] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. Query
Recommendations for Interactive Database Exploration. In Scientific and
Statistical Database Management, 21st International Conference, SSDBM
2009, New Orleans, LA, USA, June 2-4, 2009, Proceedings, pages 3–18,
2009.

[25] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Ware-
housing and OLAP Technology. SIGMOD Record, 26(1):65–74, 1997.

[26] Surajit Chaudhuri, Umeshwar Dayal, and Vivek R. Narasayya. An
overview of business intelligence technology. Commun. ACM, 54(8):88–98,
2011.

[27] Pei-Yu Sharon Chen, Shin yi Wu, and Jungsun Yoon. The Impact of
Online Recommendations and Consumer Feedback on Sales. In Proceed-
ings of the International Conference on Information Systems, ICIS 2004,
December 12-15, 2004, Washington, DC, USA, pages 711–724, 2004.

[28] Jan Chomicki. Preference formulas in relational queries. ACM Trans.
Database Syst., 28(4):427–466, 2003.

[29] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg.
A Comparison of String Distance Metrics for Name-Matching Tasks. In
Proceedings of IJCAI-03 Workshop on Information Integration on the Web
(IIWeb-03), August 9-10, 2003, Acapulco, Mexico, pages 73–78, 2003.

[30] Jérôme Darmont, Fadila Bentayeb, and Omar Boussaid. Benchmarking
data warehouses. IJBIDM, 2(1):79–104, 2007.

[31] Cláudio Rebelo de Sá, Carlos Soares, Aĺıpio Mário Jorge, Paulo J.
Azevedo, and Joaquim Pinto da Costa. Mining Association Rules for
Label Ranking. In Advances in Knowledge Discovery and Data Mining -
15th Pacific-Asia Conference, PAKDD 2011, Shenzhen, China, May 24-
27, 2011, Proceedings, Part II, pages 432–443, 2011.

122

[32] Françoise Fogelman-Soulié. Industrializing Data Mining, Challenges
and Perspectives. In Machine Learning and Knowledge Discovery in
Databases, European Conference, ECML/PKDD 2008, Antwerp, Bel-
gium, September 15-19, 2008, Proceedings, Part I, page 1, 2008.

[33] National Institute for Standards and Technology (NIST). Text retrieval
conference (trec) home page. http://trec.nist.gov/, June 2012.

[34] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom.
Database Systems: The Complete Book, Second edition. Prentice Hall,
2008.

[35] Antara Ghosh, Jignashu Parikh, Vibhuti S. Sengar, and Jayant R. Haritsa.
Plan Selection Based on Query Clustering. In VLDB 2002, Proceedings of
28th International Conference on Very Large Data Bases, August 20-23,
2002, Hong Kong, China, pages 179–190, 2002.

[36] Arnaud Giacometti, Patrick Marcel, and Elsa Negre. A framework for
recommending OLAP queries. In DOLAP 2008, ACM 11th International
Workshop on Data Warehousing and OLAP, Napa Valley, California,
USA, October 30, 2008, Proceedings, pages 73–80, 2008.

[37] Arnaud Giacometti, Patrick Marcel, and Elsa Negre. Recommending Mul-
tidimensional Queries. In Data Warehousing and Knowledge Discovery,
11th International Conference, DaWaK 2009, Linz, Austria, August 31 -
September 2, 2009, Proceedings, pages 453–466, 2009.

[38] Arnaud Giacometti, Patrick Marcel, Elsa Negre, and Arnaud Soulet.
Query recommendations for OLAP discovery driven analysis. In DOLAP
2009, ACM 12th International Workshop on Data Warehousing and
OLAP, Hong Kong, China, November 6, 2009, Proceedings, pages 81–88,
2009.

[39] Arnaud Giacometti, Patrick Marcel, Elsa Negre, and Arnaud Soulet.
Query Recommendations for OLAP Discovery-Driven Analysis. IJDWM,
7(2):1–25, 2011.

[40] Arnaud Giacometti, Patrick Marcel, and Arnaud Soulet. A Relational
View of Pattern Discovery. In Database Systems for Advanced Applica-
tions - 16th International Conference, DASFAA 2011, Hong Kong, China,
April 22-25, 2011, Proceedings, Part I, pages 153–167, 2011.

[41] Sharad Goel, Andrei Z. Broder, Evgeniy Gabrilovich, and Bo Pang.
Anatomy of the long tail: ordinary people with extraordinary tastes. In
Proceedings of the Third International Conference on Web Search and
Web Data Mining, WSDM 2010, New York, NY, USA, February 4-6,
2010, pages 201–210, 2010.

[42] Matteo Golfarelli. Handling Large Workloads by Profiling and Cluster-
ing. In Data Warehousing and Knowledge Discovery, 5th International

123

Conference, DaWaK 2003, Prague, Czech Republic, September 3-5,2003,
Proceedings, pages 212–223, 2003.

[43] Matteo Golfarelli. Personalization of OLAP queries. In 6èmes journées
francophones sur les Entrepôts de Données et l’Analyse en ligne (EDA
2010), Djerba, Tunisie, volume B-6 of RNTI, page 1, Toulouse, Juin 2010.
Cépaduès. Invited paper.

[44] Matteo Golfarelli and Stefano Rizzi. Data Warehouse Design: Modern
Principles and Methodologies. McGraw-Hill, 2009.

[45] Matteo Golfarelli and Stefano Rizzi. Expressing OLAP Preferences. In
Scientific and Statistical Database Management, 21st International Con-
ference, SSDBM 2009, New Orleans, LA, USA, June 2-4, 2009, Proceed-
ings, pages 83–91, 2009.

[46] Matteo Golfarelli, Stefano Rizzi, and Paolo Biondi. myOLAP: An Ap-
proach to Express and Evaluate OLAP Preferences. IEEE Trans. Knowl.
Data Eng., 23(7):1050–1064, 2011.

[47] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Total. In Proceedings of the Twelfth International Confer-
ence on Data Engineering, February 26 - March 1, 1996, New Orleans,
Louisiana, pages 152–159, 1996.

[48] A. Gupta and I. Mumick. Materialized views: techniques, implementa-
tions, and applications. MIT Press, 1999.

[49] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-Query
Processing in Data Warehousing Environments. In VLDB’95, Proceedings
of 21th International Conference on Very Large Data Bases, September
11-15, 1995, Zurich, Switzerland, pages 358–369, 1995.

[50] Marc Gyssens and Laks V. S. Lakshmanan. A Foundation for Multi-
dimensional Databases. In VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, pages 106–115, 1997.

[51] Mohand-Said Hacid, Patrick Marcel, and Christophe Rigotti. A Rule-
Based Data Manipulation Language for OLAP Systems. In Deductive
and Object-Oriented Databases, 5th International Conference, DOOD’97,
Montreux, Switzerland, December 8-12, 1997, Proceedings, pages 417–418,
1997.

[52] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

124

[53] Stefan Holland, Martin Ester, and Werner Kießling. Preference Mining:
A Novel Approach on Mining User Preferences for Personalized Appli-
cations. In Knowledge Discovery in Databases: PKDD 2003, 7th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceed-
ings, pages 204–216, 2003.

[54] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian,
Yunyao Li, Arnab Nandi, and Cong Yu. Making database systems usable.
In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Beijing, China, June 12-14, 2007, pages 13–24, 2007.

[55] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vassil-
iadis, editors. Fundamentals of Data Warehouses (2nd Edition). Springer-
Verlag, 2003.

[56] Abhijit Kadlag, Amol V. Wanjari, Juliana Freire, and Jayant R. Har-
itsa. Supporting Exploratory Queries in Databases. In Database Systems
for Advances Applications, 9th International Conference, DASFAA 2004,
Jeju Island, Korea, March 17-19, 2004, Proceedings, pages 594–605, 2004.

[57] Nodira Khoussainova, Magdalena Balazinska, Wolfgang Gatterbauer,
YongChul Kwon, and Dan Suciu. A Case for A Collaborative Query
Management System. In CIDR 2009, Fourth Biennial Conference on In-
novative Data Systems Research, Asilomar, CA, USA, January 4-7, 2009,
Online Proceedings, 2009.

[58] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan
Suciu. SnipSuggest: Context-Aware Autocompletion for SQL. PVLDB,
4(1):22–33, 2010.

[59] Nodira Khoussainova, YongChul Kwon, Wei-Ting Liao, Magdalena Bal-
azinska, Wolfgang Gatterbauer, and Dan Suciu. Session-Based Browsing
for More Effective Query Reuse. In Scientific and Statistical Database
Management - 23rd International Conference, SSDBM 2011, Portland,
OR, USA, July 20-22, 2011. Proceedings, pages 583–585, 2011.

[60] Werner Kießling. Foundations of Preferences in Database Systems. In
VLDB 2002, Proceedings of 28th International Conference on Very Large
Data Bases, August 20-23, 2002, Hong Kong, China, pages 311–322, 2002.

[61] Werner Kießling. Preference Queries with SV-Semantics. In Advances in
Data Management 2005, Proceedings of the Eleventh International Con-
ference on Management of Data, January 6, 7, and 8, 2005, Goa, India,
pages 15–26, 2005.

[62] Ralph Kimball. The Data Warehouse Toolkit: Practical Techniques for
Building Dimensional Data Warehouses. John Wiley, 1996.

125

[63] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment.
J. ACM, 46(5):604–632, 1999.

[64] Georgia Koutrika and Yannis E. Ioannidis. Personalization of Queries in
Database Systems. In Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA,
USA, pages 597–608, 2004.

[65] Georgia Koutrika and Yannis E. Ioannidis. Personalized Queries under
a Generalized Preference Model. In Proceedings of the 21st International
Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo,
Japan, pages 841–852, 2005.

[66] Laks V. S. Lakshmanan, Jian Pei, and Yan Zhao. QC-Trees: An Efficient
Summary Structure for Semantic OLAP. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pages 64–75, 2003.

[67] Hans-Joachim Lenz and Arie Shoshani. Summarizability in OLAP and
Statistical Data Bases. In Ninth International Conference on Scientific
and Statistical Database Management, Proceedings, August 11-13, 1997,
Olympia, Washington, USA, pages 132–143, 1997.

[68] Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient
classification based on multiple class-association rules. In Nick Cercone,
Tsau Young Lin, and Xindong Wu, editors, ICDM, pages 369–376. IEEE
Computer Society, 2001.

[69] Alexander Löser, Sebastian Arnold, and Tillmann Fiehn. The GoOLAP
Fact Retrieval Framework. In Marie-Aude Aufaure, Esteban Zimányi,
Wil Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, and
Clemens Szyperski, editors, Business Intelligence, volume 96 of Lecture
Notes in Business Information Processing. Springer Berlin Heidelberg,
2012.

[70] Andreas S. Maniatis, Panos Vassiliadis, Spiros Skiadopoulos, and Yannis
Vassiliou. Cpm: A cube presentation model for olap. In Yahiko Kam-
bayashi, Mukesh K. Mohania, and Wolfram Wöß, editors, DaWaK, vol-
ume 2737 of Lecture Notes in Computer Science, pages 4–13. Springer,
2003.

[71] Patrick Marcel. Olap query personalisation and recommendation: An
introduction. In Marie-Aude Aufaure, Esteban Zimányi, Wil Aalst, John
Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyperski,
editors, Business Intelligence, volume 96 of Lecture Notes in Business
Information Processing, pages 63–83. Springer Berlin Heidelberg, 2012.

[72] Patrick Marcel, Rokia Missaoui, and Stefano Rizzi. Towards intensional
answers to OLAP queries for analytical sessions. In Il-Yeol Song and
Matteo Golfarelli, editors, DOLAP. ACM, 2012.

126

[73] Gary Marchionini. Exploratory search: from finding to understanding.
Commun. ACM, 49(4):41–46, 2006.

[74] Minnesota Population Center. Integrated public use microdata series.
http://www.ipums.org, 2008.

[75] Chaitanya Mishra and Nick Koudas. Interactive query refinement. In
EDBT 2009, 12th International Conference on Extending Database Tech-
nology, Saint Petersburg, Russia, March 24-26, 2009, Proceedings, pages
862–873, 2009.

[76] Tom M. Mitchell. Generalization as Search. Artif. Intell., 18(2):203–226,
1982.

[77] Alvaro E. Monge and Charles Elkan. An Efficient Domain-Independent
Algorithm for Detecting Approximately Duplicate Database Records. In
DMKD, pages 0–, 1997.

[78] Erwan Moreau, François Yvon, and Olivier Cappé. Robust Similarity
Measures for Named Entities Matching. In COLING 2008, 22nd Interna-
tional Conference on Computational Linguistics, Proceedings of the Con-
ference, 18-22 August 2008, Manchester, UK, pages 593–600, 2008.

[79] Amihai Motro. Intensional answers to database queries. IEEE Trans.
Knowl. Data Eng., 6(3):444–454, 1994.

[80] Amihai Motro. Cooperative database systems. Encyclopedia of Library
and Information Science, 66:79–97, 2000.

[81] Hassina Mouloudi. Personalisation of OLAP queries and visualisations
under constraints (in french). PhD thesis, Université François Rabelais
Tours, 2007.

[82] Gonzalo Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001.

[83] Elsa Negre. Collaborative exploration of data cubes (in french). PhD
thesis, Université François Rabelais Tours, 2009.

[84] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Re-
vilak. The Star Schema Benchmark and Augmented Fact Table Index-
ing. In Performance Evaluation and Benchmarking, First TPC Technol-
ogy Conference, TPCTC 2009, Lyon, France, August 24-28, 2009, Revised
Selected Papers, pages 237–252, 2009.

[85] Carlos Ordonez and Zhibo Chen. Evaluating Statistical Tests on OLAP
Cubes to Compare Degree of Disease. IEEE Transactions on Information
Technology in Biomedicine, 13(5):756–765, 2009.

127

[86] Torben Bach Pedersen. How Is BI Used in Industry?: Report from a
Knowledge Exchange Network. In Data Warehousing and Knowledge
Discovery, 6th International Conference, DaWaK 2004, Zaragoza, Spain,
September 1-3, 2004, Proceedings, pages 179–188, 2004.

[87] Veronika Peralta, Dimitre Kostadinov, and Mokrane Bouzeghoub. Apmd-
workbench: A benchmark for query personalization. In Workshop on Con-
textual Information Access, Seeking and Retrieval Evaluation (CIRSE),
2009.

[88] Meikel Pöss, Raghunath Othayoth Nambiar, and David Walrath. Why
You Should Run TPC-DS: A Workload Analysis. In Proceedings of the
33rd International Conference on Very Large Data Bases, University of
Vienna, Austria, September 23-27, 2007, pages 1138–1149, 2007.

[89] Stefano Rizzi. OLAP preferences: a research agenda. In DOLAP 2007,
ACM 10th International Workshop on Data Warehousing and OLAP, Lis-
bon, Portugal, November 9, 2007, Proceedings, pages 99–100, 2007.

[90] Stefano Rizzi. New Frontiers in Business Intelligence: Distribution and
Personalization. In Advances in Databases and Information Systems - 14th
East European Conference, ADBIS 2010, Novi Sad, Serbia, September 20-
24, 2010. Proceedings, pages 23–30, 2010.

[91] Oscar Romero and Alberto Abelló. On the Need of a Reference Algebra for
OLAP. In Data Warehousing and Knowledge Discovery, 9th International
Conference, DaWaK 2007, Regensburg, Germany, September 3-7, 2007,
Proceedings, pages 99–110, 2007.

[92] Oscar Romero, Patrick Marcel, Alberto Abelló, Verónika Peralta, and
Ladjel Bellatreche. Describing Analytical Sessions Using a Multidimen-
sional Algebra. In Data Warehousing and Knowledge Discovery - 13th
International Conference, DaWaK 2011, Toulouse, France, August 29-
September 2,2011. Proceedings, pages 224–239, 2011.

[93] Carsten Sapia. PROMISE: Predicting Query Behavior to Enable Predic-
tive Caching Strategies for OLAP Systems. In Data Warehousing and
Knowledge Discovery, Second International Conference, DaWaK 2000,
London, UK, September 4-6, 2000, Proceedings, pages 224–233, 2000.

[94] Sunita Sarawagi. Explaining Differences in Multidimensional Aggregates.
In VLDB’99, Proceedings of 25th International Conference on Very Large
Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 42–53,
1999.

[95] Sunita Sarawagi. User-Adaptive Exploration of Multidimensional Data. In
VLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, September 10-14, 2000, Cairo, Egypt, pages 307–316, 2000.

128

[96] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-
Driven Exploration of OLAP Data Cubes. In Advances in Database Tech-
nology - EDBT’98, 6th International Conference on Extending Database
Technology, Valencia, Spain, March 23-27, 1998, Proceedings, pages 168–
182, 1998.

[97] Gayatri Sathe and Sunita Sarawagi. Intelligent Rollups in Multidimen-
sional OLAP Data. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma,
Italy, pages 531–540, 2001.

[98] Markus Schneider, Gottfried Vossen, and Esteban Zimányi. Data Ware-
housing: from Occasional OLAP to Real-time Business Intelligence
(Dagstuhl Seminar 11361). Dagstuhl Reports, 1(9):1–25, 2011.

[99] Alkis Simitsis, Georgia Koutrika, and Yannis E. Ioannidis. Précis: from
unstructured keywords as queries to structured databases as answers.
VLDB J., 17(1):117–149, 2008.

[100] Temple Smith and Michael Waterman. Identification of common molecular
subsequences. Journal of Molecular Biology, 147:195–197, 1981.

[101] K. Stefanidis, M. Drosou, and E. Pitoura. ”You May Also Like” results
in relational databases. In Proceedings International Workshop on Per-
sonalized Access, Profile Management and Context Awareness: Databases,
Lyon, France, 2009.

[102] Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. A survey
on representation, composition and application of preferences in database
systems. ACM Trans. Database Syst., 36(3):19, 2011.

[103] Raphaël Thollot, Nicolas Kuchmann-Beauger, and Marie-Aude Aufaure.
Semantics and usage statistics for multi-dimensional query expansion. In
Sang goo Lee, Zhiyong Peng, Xiaofang Zhou, Yang-Sae Moon, Rainer
Unland, and Jaesoo Yoo, editors, DASFAA (2), volume 7239 of Lecture
Notes in Computer Science, pages 250–260. Springer, 2012.

[104] The Transaction Processing Performance Council (TPC). Tpc bench-
mark ds (tpc-ds): The new decision support benchmark standard.
http://www.tpc.org/tpcds/, April 2012.

[105] Juan Trujillo and Alejandro Maté. Business intelligence 2.0: A general
overview. In Marie-Aude Aufaure, Esteban Zimányi, Wil Aalst, John
Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyperski,
editors, Business Intelligence, volume 96 of Lecture Notes in Business
Information Processing, pages 98–116. Springer Berlin Heidelberg, 2012.

[106] Jovan Varga. Multidimensional query recommendation. Master’s thesis,
Universitat Polytecnica de Catalunya, 2011.

129

[107] Panos Vassiliadis and Spiros Skiadopoulos. Modelling and Optimisation
Issues for Multidimensional Databases. In Advanced Information Systems
Engineering, 12th International Conference CAiSE 2000, Stockholm, Swe-
den, June 5-9, 2000, Proceedings, pages 482–497, 2000.

[108] Adriano Veloso, Humberto Mossri de Almeida, Marcos André Gonçalves,
and Wagner Meira Jr. Learning to rank at query-time using association
rules. In Proceedings of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR
2008, Singapore, July 20-24, 2008, pages 267–274, 2008.

[109] Xiaoyan Yang, Cecilia M. Procopiuc, and Divesh Srivastava. Recommend-
ing Join Queries via Query Log Analysis. In Proceedings of the 25th In-
ternational Conference on Data Engineering, ICDE 2009, March 29 2009
- April 2 2009, Shanghai, China, pages 964–975, 2009.

[110] Qingsong Yao, Aijun An, and Xiangji Huang. Finding and Analyzing
Database User Sessions. In Database Systems for Advanced Applications,
10th International Conference, DASFAA 2005, Beijing, China, April 17-
20, 2005, Proceedings, pages 851–862, 2005.

130

	I Introduction
	The data deluge and its impact on OLAP users
	The data deluge
	Are BI tools designed for BI users?
	Leveraging OLAP query logs for user-centric OLAP

	An overview of user-centric approaches in databases
	Basics of preference expression and recommendation
	Basics of preference expression
	Basics of recommender systems

	Categorisation of the approaches
	An overview of personalization in databases
	Use of a dedicated operator
	Query expansion

	An overview of recommendations in databases
	Current state
	History based

	Conclusion: Requirements for user-centric approaches in data warehouses

	II Modeling and constructing query logs
	Log modeling
	Multidimensional data and query languages
	Hierarchies and dimensions
	Multidimensional schemata, group-by sets and references
	Facts and cubes
	Expressing multidimensional queries

	Modeling queries and logs
	Query models in the literature
	No evaluation: Queries as a collection of fragments
	Partial evaluation: Queries as sets of references
	Full evaluation: Queries as their results
	Modeling sessions and logs

	Conclusion

	Constructing the log
	Principle and running example
	Principle
	A running example

	Multidimensional characterization of queries
	Mapping OLAP operators with relational operators
	From relational queries to multidimensional queries

	Normalization of multidimensional expressions
	A normal form for multidimensional expressions
	Equivalence rules for the multidimensional algebra
	Normalization algorithm

	Detecting sessions
	Conclusion

	III Manipulating logs
	Languages for logs
	Binary relations over sessions
	Relations over queries
	Relations over sessions

	A relational language for manipulating logs
	Intuitions
	Formal definitions
	Properties

	Advanced manipulations
	Summarizing and generalizing a log
	Personalization
	Query recommendation

	Conclusion

	Comparing sessions
	Approaches for comparing queries and sessions
	Comparing queries
	Comparing sequences

	Requirements for similarity measures for OLAP sessions
	Similarity measures for OLAP queries
	Similarities for evaluated or partially evaluated queries
	Similarities for unevaluated queries

	Similarity measures for OLAP sessions
	An Extension of the Levenshtein Distance
	An Extension of the Dice Coefficient
	An Extension of Tf-Idf
	An extension of sequence alignment

	Conclusion

	IV Log-driven user-centric analysis
	Extracting profile information from the log
	Extracting simple preferences over multidimensional data
	Preference definition
	Preference extraction

	Extracting navigational habits
	Simple navigational habits
	Extracting habits

	Extracting analysis discoveries
	Identifying relevant pairs of cells
	Identifying relevant queries
	Extracting investigations

	Conclusion

	Personalizing queries with a single user log
	Use of dedicated operators
	The MyMDX preference language
	Using unevaluated queries
	Using partially evaluated queries

	Query expansion
	Using unevaluated queries
	Using partially evaluated queries
	Using fully evaluated queries

	Conclusion

	Collaborative recommendations with a multi-user log
	An history-based and current state approach
	Leveraging past investigations
	Computing and presenting recommendations

	Pure history-based approaches
	Leveraging similar sessions
	Leveraging navigational habits

	Conclusion

	V Conclusion
	Towards analytical sessions of better quality
	Summary
	The contributions
	Assessing the contributions
	Critical analysis of the contributions

	Perspectives
	An envisioned architecture for user-centric query answering in data warehouses
	Assessing the quality of analytical sessions

