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Préparée à l’Unité Mixte de Recherche n° 6285 Lab-STICC
Laboratoire des Sciences et Techniques de l’Information, de la Communication et de la Connaissance

UFR Sciences et Sciences de l’Ingénieur
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Pour obtenir le titre de
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE SUD
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Runtime mapping of dynamic dataflow applications on heterogeneous multiprocessor platforms Thanh Dinh Ngo 2015



Résumé

La complexité et le nombre toujours plus grandissant des appli-
cations, notamment les standards vidéo, nécessite d’étudier des
méthodes et outils pour leur déploiement sur des architectures elles
aussi toujours plus complexes. En effet, afin d’atteindre les perfor-
mances requises en matière de temps d’exécution ou consommation
énergétique, les architectures modernes proposent des éléments
de calculs hétérogènes, où chacun est spécialisé pour une fonc-
tion précise. Cette thèse s’appuie sur le modèle flot de données
pour la spécification de l’application. Ce modèle permet d’exposer
explicitement le parallélisme spatial et temporel de l’application à
travers un réseau d’acteurs interconnectés par des canaux de type
FIFO. Les acteurs, en charge du calcul, peuvent exhiber un com-
portement statique ou dynamique. Les derniers standards vidéo
contraignent à s’appuyer sur les modèles dynamiques pour obtenir
une spécification fonctionnelle. Les besoins de calcul sont alors
dépendants des données à traiter. Le déploiement d’une application
dynamique ne peut donc se faire à l’aide des approches statiques
existantes dans la littérature. L’objectif de cette thèse est de pro-
poser des algorithmes efficaces permettant de déployer à la volée
une application flot de données dynamique sur une architecture mul-
tiprocesseurs hétérogène. La première contribution est un algorithme
qui permet de trouver rapidement une solution de déploiement de
l’application. La deuxième contribution est un algorithme basé sur
les mouvements pour adapter en cours d’exécution le déploiement,
en réponse aux aspects dynamiques de l’application.

Abstract

Modern multimedia applications are subject to an increasing com-
plexity with widespread standards. This has led to the interest in
dataflow approach that offers a powerful perspective on parallel com-
putations at high level. In the meantime, the emergence of massively
parallel architectures has revealed the trend towards heterogeneous
Multi-Processor System-on-Chips (MPSoCs) to offer a better perfor-
mance and energy tradeoff than their homogeneous counterparts.
However, this also imposes challenges to the mapping of multimedia
applications on such complex architectures.
This thesis presents an adaptive methodology for mapping dataflow
applications on heterogeneous MPSoCs. This thesis focuses
on video decoders specified in RVC-CAL language, a dedicated
dataflow language for video applications. Existing static approaches
cannot capture all behaviors in dynamic dataflow applications. Thus,
this requires to adapt the mapping according to the input data. The
algorithm offers some adaptive parameters combined with our analyt-
ical communication model to improve a performance while consider-
ing load balancing. We evaluate our algorithms on a set of randomly
generated benchmarks and real video decoders like MPEG4-SP and
HEVC. Experimental results reveal that our mapping methodology
is fast enough (in milliseconds) and the runtime remapping signifi-
cantly improves the initial mapping. In the remapping process, we
take the migration cost into account because the reconfiguration time
also contributes to the overall performance.
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1
Introduction

In modern embedded systems, the complexity of systems is rapidly increasing
in hardware as well as software by the way of exploring parallelism and power
saving. Indeed, embedded devices evolve towards heterogeneous Multi-Processor
System-on-Chips (MPSoCs) that include more and more functional heterogeneous
components on a single chip to satisfy the high performance and energy efficiency
requirement of the embedded market. In the meantime the embedded software
keeps growing exponentially to solve more difficult technical problems. The emer-
gence of massively parallel architecture, along with the necessity of new parallel
programming models, has revived the interest on dataflow models thanks to its
ability to express parallelism. In consequence, the need to develop innovative
methodologies and tools for mapping application specification onto such archi-
tecture platforms is also growing in current and upcoming embedded systems.
As a design point of view, this process is necessary to bridge the gap between
hardware efficiency and software flexibility while respecting time-to-market.

1.1 Evolution and trends in parallel systems

1.1.1 In General Purpose Domain

In desktop computing and high performance computing (HPC), researches are
characterized by the assumption of homogeneous architectures and the goal of
reducing the application makespan that is the total length of the schedule of an
application. Current parallel programs typically depend on multi-threading, in
which the application is expressed as a set of parallel tasks. Programming models
are classified according to the way tasks or processes interact, as shared memory
(e.g., Pthreads [1] or OpenMP [2]) and distributed memory (e.g., Message Passing
Interface MPI [3]).

Pthreads, or Portable Operating System Interface (POSIX) Threads, are
built on the top of sequential languages like C by providing libraries. Although
Pthreads has its place in specialized situations, and in the hands of expert pro-

1
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2 Introduction

grammers, the unstructured nature of Pthreads constructs makes difficult the
development of correct and maintainable programs [4]. In OpenMP, the use
of threads is highly structured compared with Pthreads. The characteristics of
OpenMP allow for a high abstraction level, making it well suited for developing
HPC applications in shared memory systems.

As opposed to Pthreads and OpenMP, MPI was designed for distributed mem-
ory architectures. Over the last two decades, MPI has become the dominant HPC
standard approach.

Since the trend in architecture design moved toward to heterogeneous archi-
tectures, programming models were developed to apply for heterogeneous archi-
tectures. In this area, two well-known programming models are Open Comput-
ing Language (OpenCL) [5] and Nvidia’s Compute Unified Device Architecture
(CUDA) [6].

In summary, all of the above mentioned programming models won in specific
general purpose parallel domain. However, they are difficult to use in deeply
embedded systems because of multi-thread safeness and runtime overhead when
implementing them on modern embedded architectures.

1.1.2 In Embedded Domain

Today, embedded systems are everywhere and much more widespread than other
computing systems with billions sold every year [7]. As can be seen in Table 1.1,
Gartner predicts that the traditional PC market will follow the downward trend
but sales of mobile phones are expected to reach 2 billion units in 2015. Gartner
also estimates that smartphone sales will represent 88 percent of global mobile
phone sales by 2018, up from 66 percent in 2014.

Table 1.1: Worldwide device shipments by segment (thousands of units)-Source:
Gartner 6-2014 [8]

Device type 2013 2014 2015

Traditional PCs (Desk-Based and Notebook) 296,131 276,221 261,657

Ultramobiles, Premium 21,517 32,251 55,032

PC Market Total 317,648 308,472 316,689

Tablets 206,807 256,308 320,964

Mobile Phones 1,806,964 1,862,766 1,946,456

Other Ultramobiles (Hybrid and Clamshell) 2,981 5,381 7,645

Total 2,334,400 2,432,927 2,591,753

Recent reports have shown a significant drop in sales of desktop computers
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1.1. Evolution and trends in parallel systems 3

while they are significantly increasing in smartphones, tablets and other embed-
ded devices. The increasing usage of embedded systems also brings major chal-
lenges for designers. These challenges are quantifiable goals in embedded systems:
real-time performance, restricted resources, power dissipation and market cost.
Especially in multimedia embedded system, these systems process streams of
data, data being e.g. audio, all kinds of sensing data, videos and graphics.

High-performance multimedia applications, such as video codecs, are becom-
ing increasingly dynamic and complex. Fig. 1.1 illustrates the evolution of video
compression standards in the past 20 years. The latest generation video codec is
High-Efficiency Video Coding (HEVC), which can support 8K Ultra High Defi-
nition video, with a picture size up to 8192x4320 pixels.

H.261

H.263

H.264/AVC/SVC/MVC

MPEG-1 Video

H.262/MPEG-2 Video

MPEG-4 Visual

HEVC

RVC

3DVC

Figure 1.1: Evolution of video compression standards [9]

In the meantime, because of the attractive use of dataflow programming for
the development of complex signal processing systems, various dataflow model
of computations (MoCs) have been proposed and studied by academia and in-
dustries. The key characteristic of MoC is that it offers a powerful perspective
on parallel computations at high level. In consequence, dataflow is gaining re-
newed popularity. Both academia and industry use dataflow as a programming
paradigm, not only for performance analysis but also for design optimization.
They can be classified in terms of static models, e.g. Synchronous Dataflow
(SDF), Boolean Dataflow (BDF), Cyclo-Static Dataflow (CSDF) . . . , and dy-
namic models, e.g. Scenario Aware Dataflow (SADF), Kahn Process Networks
(KPN), Dataflow Process Networks (DPN).

At the target architecture level, heterogeneous Multi-Processor System on
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4 Introduction

Chip (MPSoC) architectures are becoming emerging platforms for developing
modern multimedia embedded systems because they are capable of providing
better performance and energy trade-offs than their homogeneous counterparts.

However, they also bring some challenges concerning the mapping of multi-
media applications on such a complex system. This requires to develop efficient
mapping methodologies that can handle the increasing complexity both in appli-
cations and architectures. Moreover, it also requires highly flexible and re-usable
design processes to deal with an exponential evolution in multimedia embedded
systems.

1.1.3 Embedded parallel platforms

1.1.3.1 Homogeneous versus heterogeneous platform

MPSoCs are becoming a popular solution for multimedia embedded systems
thanks to the advantages in parallelism and flexibility. MPSoCs can be divided
into two categories: homogeneous and heterogeneous MPSoCs.

(a) Homogeneous (b) Heterogeneous

Figure 1.2: Multiprocessor architecture platform

� Homogeneous platforms are composed of the same processor type, e.g. Fig.
1.2a.

� Heterogeneous platforms are composed of different types of processors, e.g.
Fig. 1.2b.

As an example of heterogeneous platform, Fig. 1.3 shows the overall structure
of the OMAP 4 platform. This architecture was designed to drive smartphones,
tablets and other multimedia-rich mobile devices.
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1.1. Evolution and trends in parallel systems 5

Figure 1.3: A OMAP44x system diagram

An important question that arises when designing an embedded system is
whether a homogeneous or heterogeneous MPSoC should be used. Amdahl’s law
[10] is used to find the maximum expected improvement to an overall system
when only part of the system is improved. The modern version of Amdahl’s law
states that if you enhance a fraction f of a computation by a speedup S, the
overall speedup is:

Speedupenhanced(f, S) =
1

(1− f) +
f

S

(1.1)

To complement this law in the multicore era, the authors in [11] offer a corol-
lary of a simple model of multicore hardware resources. For homogeneous mul-
tiprocessors with n resources, suppose we can use the resources of r base-cores
(BCs) to build one bigger core/processor, which gives a performance (relative to
1 base-core) of perf(r). If a resources for n base cores BCs are available on a chip,
and all BCs are replaced with n/r bigger cores, the overall speedup is:

Speeduphomo(f, n, S) =
1

1− f
perf(r)

+
f.r

perf(r).n

(1.2)

For heterogeneous multiprocessors, there are more possibilities to redistribute
the resources on a chip. If only r BCs are available with 1 bigger core, the overall
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6 Introduction

speedup is:

Speedupheter(f, n, S) =
1

1− f
perf(r)

+
f

perf(r) + n− r

(1.3)

Figure 1.4: Comparison of speedup obtained by combining r smaller cores into a
bigger core in homogeneous and heterogeneous systems [11, 12]

Figure 1.4 shows the speedup obtained for both homogeneous and hetero-
geneous systems, for different fractions of parallelizable software. This figure
assumes perf(f) =

√
r. The x-axis shows the number of base cores that are com-

bined into one larger core. In total there are resources for 16 BCs. The end-point
for the x-axis is when all available resources are replaced with one big core. As
can be seen, the corresponding speedup when using a heterogeneous system is
much greater than homogeneous system. We also obtained similar performance
speedups for other bigger chips, i.e. larger than 16 BCs. This demonstrates that
a heterogeneous platform can offer better speedup than a homogeneous platform.

1.1.3.2 Memory architectures in MPSoCs

The memory architecture of multi-core platforms impacts directly the program-
ming of processors. Therefore, the programming of shared memory platforms and
distributed memory platforms is usually very different.

Shared memory architectures are usually classified based upon memory access
times [13], as follow:

� Uniform Memory Access (UMA): In this architecture, all the processors
share the physical memory uniformly, as shown in Fig. 1.5a, which means
that all the processors have an equal access and access times to memory.
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1.1. Evolution and trends in parallel systems 7

� Non-Uniform Memory Access (NUMA): All processors do not have equal
access time to all memories. In other words, the memory access time varies
with the memory location relative to the processor. Fig. 1.5b shows an
example of NUMA architecture. In NUMA, when a processor accesses
a remote memory, memory local to another processor or memory shared
between processors, the access time is slower than it does from its own
local memory.

Communication media

P1 P2 P3 P4

M1 M2 M3 M4

Processors

Memories

(a) Uniform memory access

Communication media

P1 P3

M2 M4

M1 M3

P2 P4

(b) Non-uniform memory access

Figure 1.5: Shared memory architectures

Distributed memory systems, Fig. 1.6, require a communication network to
connect inter-processor memory. Each processor has its own local memory and
operates independently. When a processor needs to access to data from another
processor, it is usually the task of a programmer to define how and when data is
communicated by means of message passing techniques.

1.1.4 Embedded system design

As previously mentioned in Subsection 1.1.2, dataflow MoCs are widely used in
multimedia domain. In order to select one of such dataflow models, a designer
should take into account the trade-off among different criteria. Fig. 1.7 shows
the comparison of different dataflow MoCs based on several criteria such as ex-
pressiveness, practicality, efficiency and analyzability. Acording to [14], DPN
is the most suitable model for modern multimedia applications, which become
increasingly complex and dynamic.

Traditional design methodology focused a single application approach, which
means that an application is mapped on a set of architectures. Usually, the design-
ers must rewrite their source code not only to optimize performance but also to
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8 Introduction

Communication media

P1 P3

M4M1 M3

P4

M2

P2

Figure 1.6: Distributed memory architecture

Expressiveness Practicality Efficiency Analyzability

SDF

CSDF

DPN

SADF

KPN

PSDF

BDF

�SDF

high

low

HDF

Figure 1.7: Comparison of dataflow MoCs, extending the classification system
introduced by Stuijk et al. [15], which shows that DPN is the most suitable
model for a practical programming language [14]
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1.1. Evolution and trends in parallel systems 9

adapt these descriptions to an appropriate architecture platform. In other words,
the monolithic approach of the reference software required complete rewrites of
the code for new standards and failed to take advantage of the overlap in function-
ality. To improve the re-use and time-to-market, platform-based design method-
ology [16, 17] is being employed. The platform-based design methodology, as
illustrated in Fig. 1.8, no longer maps a single application to an architecture
that is optimal for this single application. Instead, it maps an application onto a
hardware/software platform that can also be used for different applications from
the same application space. The platform is defined as a family of architectures
so that the application designer considers it as a common/generic platform, an
essential feature to achieve re-usability.

Figure 1.8: Platform-based design approach [16, 17, 12]

At a design point of view, the designers of embedded systems should take into
account three aspects of the field: architectures, applications and method-
ologies as presented in Fig. 1.9.

An embedded system designer has to consider hardware as well as software
design and how to tradeoff between the two. On one hand, the designer exploits all
architecture components including processor architecture, memory organization,
interconnection network and so on. On the other hand, the software architectures
determine how we can take advantage of parallelism to improve performances.
Moreover, the designer have to deeply understand about characteristics of their
applications to optimize the design. The methodologies consist of modeling,
analysis, simulation, synthesis and verification, which play an important role
for successful embedded system design.

To handle the raising complexity in multimedia embedded system, models
have been used to provide high-level of abstractions. Analysis and simulation
tools are necessary to evaluate the efficiency and the design cost. Synthesis tools
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Figure 1.9: Aspects of embedded design [7]

are responsible to transform high-level specifications into optimized implemen-
tations. During the embedded design process, verification is required to ensure
that the system is reliability.

1.2 Dataflow approach

Our methodology relies on the Y-chart approach for multimedia embedded system
design which is first proposed by Kienhuis et al. [18]. It is a systematic design
flow for design space exploration (DSE).

performance

analysis

design space

exploration

synthesis

application

specification

mapping

specification

architecture

specification

Figure 1.10: Y-chart approach for designing MPSoC [18, 19]

The key idea underlying this approach is to explicitly separate the specifica-
tions as shown in Fig. 1.10. This allows to use modular system-level specifications
to facilitate rapid system modifications concerning the application, architecture
and mapping.
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1.2.1 Dataflow models of computation

Current trends in multimedia applications use dataflow model of computations
(MoCs) to define the behaviors of a program described as a dataflow graph.

Figure 1.11: Dataflow graph with 7 actors and 8 FIFO channels

A dataflow graph is a directed graph as shown in Fig. 1.11 whose vertices
are actors and edges are unidirectional FIFO channels with unbounded capacity,
connected between ports of actors. Fig. 1.12 illustrates a network of actors which
can interact by exchanging data (called tokens) through channels. Each actor has
its input and output ports. During a process (also referred as firing an action),
the actor consumes input tokens, produces output tokens and changes its internal
state.

FIFO Actor

Consume/producetokens

FIFO

Consume/producetokens
andmodify internalstates

FIFO

Actions

State

ActorActor

Actions are implemented
sequentiallyandtheycan
besequenced

FIFO

Actor

besequenced

FIFO

Figure 1.12: A network of actors [20]

Various dataflow MoCs were studied due to their attraction in signal process-
ing domain.

1.2.1.1 Kahn process networks

Kahn process network (KPN) [21] is represented as a graph G=(V,E) such as
V is a set of vertices that are called processes and E is a set of unidirectional
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edges representing unbounded communication channels based on First In First
Out (FIFO) principles.

In KPN, writing to the FIFO channels are non-blocking, i.e. a write returns
immediately while reading to the FIFO channels are blocking. This means that
when a process attempts to read data from an empty input FIFO channel, it
must wait until the buffer has enough tokens to satisfy the read.

Each FIFO channel can carry an infinite sequence denoted X=[x1, x2, . . . ],
where each xi is an atomic data object called a token. If the sequence X is a
prefix odering of sequence Y, we can express as X v Y , e.g. Given X=[x1, x2]
and Y=[x1, x2, x3] so we have X v Y. The empty sequence is denoted ⊥, and is
obviously a prefix of any other sequence. Sp is the set of p-tuples of sequences
on the p FIFO channels. This means that X=[x1, x2, . . . , xp] ∈ Sp represents
the sequence consumed/produced by a process. The length of a sequence is given
by |X|. When an actor is fired, its firing function F that consumes sequences
of tokens on p input ports and produces sequences of tokens on q output ports
defined as:

F : Sp → Sq (1.4)

1.2.1.2 Dataflow process networks

Dataflow process network (DPN) model [22] is closely related to KPN model.
DPN allows to model any algorithm even non-deterministic ones. In this model,
an application is represented as a directed graph G=(V,E) where V is a set of
vertices that is called actors and E is a set of edges that represent FIFO channels.
DPN adds expressiveness to the KPN model by allowing actors to test an input
port either absence or presence of data. This avoids process suspension and
resumption incurred in most implementations of KPN. Thus scheduling a DPN
does not require context-switching nor concurrent processes. In DPN model, an
actor executes (or fires) when at least one of its firing rules is satisfied. In case
several firing rules are satisfied at the same time, a single one is chosen based on
priority and its corresponding firing function is executed. Each firing consumes
input tokens and produces output tokens. An actor can have N firing rules:

R = [R1, R2, . . . , RN ] (1.5)

A firing rule Ri is a finite sequence of patterns, one for each of the p input
ports of the actor:

Ri = [Ri,1, Ri,2, . . . , Ri,p] ∈ Sp (1.6)

A pattern Ri,j is a (finite) sequence. A firing rule i is satisfied if and only if
Ri,j v Xj, where Xj is the sequence of unconsumed tokens at input j. For some
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firing rules, Ri,j might be empty lists, Ri,j =⊥. In other words, any available
sequence at input j is acceptable. Let symbol ’*’ denote a token wildcard, the
sequence [*] is a prefix of any sequence with at least one token.

1.2.1.3 Synchronous dataflow

Synchronous Dataflow (SDF) model is a static dataflow model, in which an actor
produces or consumes a fixed number of tokens per firing. SDF graphs can be
scheduled at compile-time with bounded memory.

It may have a single firing rule, which is valid for any sequence Sp of a certain
size on its inputs [23]. In case an actor has several firing rules, an actor is SDF if
all its firing rules have the same consumption. In particular, any two firing rules
Ra and Rb of an SDF actor must satisfy:

|Ra| = |Rb| (1.7)

All the firing functions of an SDF actor must also produce a fixed number of
tokens on the output ports:

|f(sa)| = |f(sb)| ∀sa ∈ Sp,∀sb ∈ Sp (1.8)

1.2.1.4 Cyclo-static dataflow

The cycle-static dataflow (CSDF) [24] extends SDF actors by allowing the number
of tokens produced and consumed to vary in a periodic fashion. This variation is
modeled with a state in the actor, which returns to its initial value after a defined
number of firings. CSDF model has all characteristics of SDF model.

1.2.1.5 Quasi-static dataflow

Dataflow modeling is the question of striking the right balance between expressive
power and analyzability: On the one hand, synchronous and cyclo-static dataflow
limit the algorithms to be modeled as graphs with fixed production and consump-
tion rates for their predictability and their strong properties that allow powerful
optimizations to be applied. On the other hand, dynamic dataflow offers a large
expressiveness, until Turing-completeness, able to describe complex algorithms
with variable and data-dependent communication rate that makes their analyze
and optimization ultimately harder.

Quasi-static dataflow differs from dynamic dataflow in that there are tech-
niques that statically schedule as many operations as possible so that only data-
dependent operations are scheduled at runtime [25]. An alternative to model
quasi-static dataflow is the Parameterized Dataflow (PSDF) [26].
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In order to select one of such dataflow models, the designers need to take into
account a tradeoff between expressiveness and analyzability.

1.2.2 Taxonomy of Dataflow models of Computation

Dataflow MoCs are defined as subsets of the more general DPN model. Fig. 1.13
shows the taxonomy of dataflow models of computation.

SDF was first introduced by Lee and Messerschmitt in 1987 [23]. It is the
least expressive DPN model but easier to analyze.

CSDF [24] extends SDF actors by allowing the number of tokens, both pro-
ducer and consumer, to vary cyclically. Most of the studies in dataflow domain
use static dataflow models because they are more analytical and predictable at
compile-time. As a tradeoff between expressiveness and predictability, the defi-
nition of Quasi-static dataflow model QSDF was introduced [25]. Parameterized
dataflow [26] is a higher-level approach to model quasi-static behavior by the
extension of existing dataflow model using parameters modifiable at runtime.

KPN was proposed by Kahn in 1974 [21] as a general perpose scheme for
parallel programming. DPN [22], also known as Dynamic dataflow model (DDF),
is closely related to KPN. DPN is more expressive than KPN.

SDF

CSDF

QSDF

KPN

DPN

+

-+

-

Analyzibility Expressivness

Figure 1.13: Dataflow Models of Computation [27]

With the increasing complex multimedia applications, the analyzability-
expressiveness tradeoff moved towards more expressive models. In a practical
point of view, DPN is well suited to model modern multimedia applications [27],
by offering Turing completeness while also keeping an intuitive description.

1.2.3 Existing tools used in this thesis

1.2.3.1 Open RVC-CAL Compiler: Orcc

The rapid evolution in video codec standards increases the need to develop an
innovating framework to overcome the lack of interoperability between the several
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video codecs in the market. The Moving Picture Experts Group (MPEG) has
introduced the Reconfigurable Video Coding framework (RVC) [28, 29], which
offers reconfiguration, reusability and platform independent dataflow models. An
RVC codec is described by using a domain-specific language, called CAL Actor
Language (CAL) [30]. One of ubiquitous tools based on RVC-CAL framework is
Orcc [31, 32].

Orcc [31, 33, 32] is an open-source toolkit dedicated to develop RVC-CAL
applications. Orcc is a complete Eclipse based Integrated Development Environ-
ment, which aims at providing a compiler infrastructure to allow software/hard-
ware code to be generated from dataflow descriptions. The compiler is able to
translate RVC-CAL applications into an equivalent description not only software
but also hardware languages for various platforms (FPGA, DSP,GPP, etc). In
consequence, there are numerous back-ends in Orcc that target different languages
(C, C++, LLVM, VHDL, Verilog etc.).

Currently, Orcc is supported to generate source code with the following back-
ends:

� The C back-end produces an application described in portable ANSI C
(Windows, Linux, Mac) like Pthreads with multi-core ability. The C back-
end can be considered as the main backend of Orcc. In fact, this backend
is used by the most part of the developers for the development of new
application.

� The Java back-end generates class-based Java code that has the advantage
of being used seamlessly within the Eclipse environment.

� The Jade back-end [34] produces LLVM assembly code targeted to be used
by the JIT Adaptive Decoder Engine (Jade), which provides reconfigurabil-
ity for software that runs as fast as the code generated by the C back-end.

� The TTA backend implements a full co-design to design a multi-softcore
platform based on the Transport-Trigger Architecture and generates the
software code executed on the processors using the TTA-based Co-design
Environment (TCE) [35].

� The Verilog back-end generates Verilog description using the OpenForge
tools.

� The Promela back-end generates Promela code that can be used with the
SPIN model-checker to analyze properties of RVC-CAL applications.

Other back-ends are still developing to deal with a wide rage of modern platforms
in the market. Moreover, some advanced analysis tools have developed to offer
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predictable behaviors for dynamic dataflow applications. For example, Orcc has
a dynamic analysis tool for actor classification [36, 27] to detect predictable be-
havior within a network. Orcc also offers a profiling tool to gather some useful
profile information such as computation workload and communication workload
of an application.

1.2.3.2 SDF For Free: SDF 3

SDF 3 is an open source tool [37] for generating random SDF graphs. It also
offers many SDF analysis and transformation techniques as well as a function
to visualize SDF graphs. The tool supports to generate different SDF graph
benchmarks used in this thesis.

1.2.3.3 System-Level Architecture Model: S-LAM

S-LAM [38] is developed as a part of a prototyping tool called PREESM for Par-
allel and Real-time Embedded Executives scheduling Method. S-LAM provides
a simple description of modern architecture platforms at high level of abstrac-
tion. Its description is a topology graph defining the data exchanges in modern
platform such as heterogeneous architecture.

1.2.4 Case studies - RVC-CAL applications

Orcc provides a complete environment for users to exploit and develop current
and future video decoders by using dynamic dataflow programming. We use
the existing RVC-CAL applications such as MPEG4 Part 2 and MPEG High
Efficiency Video Coding (HEVC) which are implemented in Orcc to study all
dynamic behaviors of these complex dataflow applications.

MPEG4 Part 2 standard, also known as MPEG4 visual, was developed by the
Moving Picture Experts Group (MPEG), a working group of the International
Organization for Standardization (ISO). It was standardized in 1999 by the joint
ISO/ITU (the International Telecommunication Union). It provides a highly
flexible toolkit of coding techniques and resources. There is a set of coding
tools, organised into ‘profiles’, recommended groupings of tools suitable for certain
applications. Classes of profiles comprise ‘simple’ profiles (coding of rectangular
video frames), object-based profiles (coding of arbitrary-shaped visual objects),
still texture profiles (coding of still images or ‘texture’), scalable profiles (coding at
multiple resolutions or quality levels) and studio profiles (coding for high-quality
studio applications).

Fig. 1.14 shows RVC-based description of the MPEG4 Part 2 SP decoder. The
structure of the application graph can be partitioned into three parts, each one
corresponding to a dedicated processing: parsing, residual decoding and motion
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Figure 1.14: MPEG4 part 2 SP decoder [39]

compensation. To increase the parallelism exposed within the decoder, the parser
can separate the processing of each image components in three parallel paths (Y,
U and V). At the end of the processing, the image components are then merged
back.

MPEGH Part 2, also known as MPEG HEVC/ H.265, is the newest video
coding standard, developed conjointly by ISO/ITU. HEVC is improving the data
compression rate, as well as the image quality, in order to handle modern video
constraints such as the high image resolution 4K (3840 x 2160) and 8K (7680 x
4320). Another key feature of this new video coding standard is its capability
for parallel processing that offers scalable performance on the trendy parallel
architectures [14, 40]. The first version of the standard was completed, approved,
and published in 2013. The second version was completed and approved in 2014
and published in early 2015. An implementation of the HEVC decoder using the
RVC framework is presented in Fig. 1.15.

P

Figure 1.15: MPEG-H part 2 SP decoder [35]

Table 1.2 summarizes the properties of each description of these well-known
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decoders. Their properties are the profile of the decoder, the parallelization of
the decoding for each component, the number of actors and FIFO channels. The
RVC-based video decoders are described with an average granularity (at block
level), contrary to the traditional coarse-grain dataflow (at frame level). This fine-
grain streaming approach induces a high potential in pipeline parallelism and the
use of small communication channels, usually between 512 and 8192 rooms [14].

Table 1.2: Statistics about the RVC-CAL description of several MPEG video
decoders [14]

Standard Profile Version YUV #Actors #FIFOs

MPEG-4 Part 2

RVC yes 41 143

Xilinx no 34 86

Simple Profile Ericsson yes 42 105

EPFL no 13 29

Irisa yes 41 104

MPEG HEVC
Main RVC no 34 109

Still Picture RVC no 31 74

1.3 Mapping problem

1.3.1 Problem definition

MPEG RVC defines RVC-CAL applications as dynamic dataflow applications,
which are based on DPN model. An application is represented as a directed
graph DPN = (V,E), where the vertex set V is a set of actors A = [i1, i2, . . . , in]
and the edge set E is a set of FIFO channels F = [f1, f2, . . . , fk]. Each FIFO
channel carries a sequence of tokens X = [x1, x2, . . .], where each xi is called a
token. In the application, the actors may be compliant with different models of
computation (MoC) and so consume and produce a fixed or variable number of
tokens, additionally the execution time can be more or less variable. Fig. 1.16a
shows a simple dataflow application with 7 actors and 8 FIFO channels.

A heterogeneous MPSoc is composed of different processor types P =
[P1, P2, . . . , Pm], storage elements and interconnect. Each processor has its lo-
cal memory (LM) and communicates with other processors through several buses
and shared memories (SM). In our project, we target the Zynq platform. This
architecture includes two ARM processors and multiple Microblaze processors,
which have different hardware accelerators and frequencies as well. Thus, we
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model the target platform as MPSoC = (P,CM), where CM is defined as a set
of communication models, which are available in the platform.

Fig. 1.16b gives an example of a simple architecture platform with one ARM
processor (that can run the mapping algorithm), two Microblaze (MB) with one
hardware accelerator and all processors communicate through one bus and one
shared memory (SM).
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4
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1

2

(a) Dataflow application

Mapping

(b) Heterogeneous multi-processor
platform

Figure 1.16: Dataflow application mapping on heterogeneous multi-processor
platform

In this context, given a dynamic dataflow application, e.g. Fig. 1.16a, which
is based on different MoCs, we assume that profiling mechanisms are available
on the target platform so that we can measure at runtime the number of tokens
produced and consumed by each actor as well as the execution time of actors.
We then aim to map the dataflow actors onto various computation and commu-
nication resources, e.g. Fig. 1.16b, with the objective to optimize the application
throughput. Finding a high-quality mapping solution for such a dynamic dataflow
application on heterogeneous platform is an NP complete problem. This is why we
consider the dataflow application at high-level description and propose a heuristic
approach in order to produce an efficient solution in few milliseconds.

The application mapping problem has been addressed as one of the
most urgent problem to be solved for implementing embedded systems
[41, 42, 43].

1.3.2 Challenges in mapping problem

As mentioned in the previous section, the complexity of modern multimedia sys-
tems are increasing both in applications, e.g. video codecs, and parallel archi-
tectures, e.g. heterogeneous platforms. This brings more challenges for mapping
such a complex system. Therefore, it is difficult and time consuming to find an
optimal solution that satisfies all performance and power constraints. Moreover,
mapping problem is known as NP-hard problem [44]. This is why many studies
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employ heuristics based on the application domain knowledge to find a nearly op-
timal solution. In regard to application model, static models are restricted in the
kinds of applications they can express. This also means that static mapping ap-
proaches are not suitable because they can not handle the behaviors of dynamic
applications. As a result, the trend moves towards runtime/dynamic mapping
techniques. Runtime mapping methodologies face the challenge to map tasks/ac-
tors of a application on MPSoC platform without advance knowledge about a
dynamic changing in workload and actor migration in the platform at design
time. Furthermore, runtime mapping may have some following requirements:

� A fast solution in order not to degrade the overall system performance.

� Ability to capture runtime varying workloads in the systems and runtime
changing environments.

� Mapping a new task/actor into the system, which needs some information
concerning available resources.

� A flexible approach, which has some adaptive parameters to deal with a
wide range of applications at runtime.

� Ability to do a remapping of application, when a current mapping is not
sufficiently optimal.

1.4 Our Contributions

This thesis aims at providing an adaptive mapping method for dynamic dataflow
applications on heterogeneous multiprocessor platform at runtime. In order to
explore all issues and opportunities related to dynamic dataflow applications, we
consider several video decoders which are already specified as Dataflow Process
Network (DPN) in RVC-CAL framework. In this context, the objective is to
maximize a system throughput when mapping RVC-CAL applications on any
heterogeneous multiprocessor platform. Since DPN model is used to express
dynamic behaviors of an RVC-CAL application, the mapping method can not
longer be static. Thus, it requires a runtime mechanism to handle behaviors of a
dynamic application. The mapping algorithm has to be fast enough to produce
a decision of mapping at runtime. It should have some adaptive parameters to
improve a performance and it may be able to do a remapping when a current
mapping is not sufficiently optimal at online. Since the reconfiguration time
also contributes to the overall performance, we should take a migration cost into
account. Indeed, different mappings may incur different migration costs [45].

This thesis makes the following contributions as illustrated in Fig. 1.17:
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� We present a novel hybrid algorithm, which takes the advantages both at de-
sign time and runtime, for mapping a dataflow application on heterogeneous
multiprocessor platforms. As many studies, we also take load balancing into
account. At design space exploration, we rely on the Y-chart co-design ap-
proach to make our mapping algorithm independent from application model
and architecture model. By using this approach, we consider the co-design
flow based on higher-level of abstractions that are necessary to deal with
the growing complexity of embedded systems. Additionally, we do not need
to find all mapping solutions at DSE as a reference solution for using at
runtime. Instead, we propose a processing budget according to a dataflow
application. This method help us to save exploration time as well as a
memory for storing all mapping solutions at design time. We propose an
analytical communication model for estimating the delay (latency) of the
data on the communication media at runtime. This communication model
is flexible since it can apply either NoC or Bus based architecture. The
advantages of our algorithm are adaptability, predictability and a fast solu-
tion at runtime. This work has been published in DASIP 2014 conference
[46].

� Further, we exploit dynamic behaviors of dataflow applications to demon-
strate the need of doing the runtime remapping as well as illustrate the
impact of migrated actor at remapping phase. We then introduce a Move
Based Algorithm, namely MBA, which is compliant with Bus and NoC
models takes both computation cost and communication cost while allowing
remapping dataflow actors at runtime onto heterogeneous MPSoC. MBA
supports the adaptivity at runtime and also takes migration cost when doing
the remapping actor.

� Our mapping method can apply for mapping a dynamic dataflow applica-
tion which is based on RVC-CAL framework onto any heterogeneous mul-
tiprocessor platform. This work has been submitted for review to Journal
of Signal Processing Systems - Springer.

� We conduct the experiments with our runtime scenario based simulation for
both randomly generated dataflow graphs and MPEG4-SP applications.

1.5 Outline

The remainder of this thesis is organized as follows.

� Chapter 2 reveals not only the interest in dataflow programming models
but also the emergence of MPSoC platforms. We provides a wide survey
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Figure 1.17: Overview of our design flow based on Y-chart approach

and classification of mapping methodologies in the literature and shows the
emerging trends for multimedia embedded systems.

� Chapter 3 presents an analytical communication model. We propose a novel
hybrid algorithm for mapping dataflow actors on heterogeneous MPSoC.
This algorithm follows a greedy fashion to produce a fast mapping solution
at runtime.

� Chapter 4 extends our approach in Chapter 3 with MBA algorithm to offer
the runtime remapping.

� Chapter 5 concludes the thesis and also gives some perspectives.
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2
Mapping Methodologies of Dataflow

Applications on Parallel Architectures

In this chapter, variety of dataflow programming models are first discussed in
Section 2.1. As target architectures for these dataflow applications, we then
introduce embedded parallel architectures in Section 2.2. In this consideration,
plenty of researchers have addressed application mapping problem as one of the
most urgent problem to be solved.

Since this thesis proposes a novel method for mapping dataflow actors on
heterogeneous platforms, the remaining section focuses on classification of the
mapping methodologies in the literature and also highlights the emerging trends
in the mapping methods.

2.1 Dataflow Programming Models

As a rapid evolution in multimedia applications as well as architecture platforms,
graphical programming models became quite popular, since they provide to algo-
rithm designers a natural way of specifying an application. Commercial examples
include MATLAB Simulink [47], National Instruments LabVIEW [48] as well as
Synopsys Signal Processing Work system (SPW) [49] and System Studio [50].
Dataflow semantics are a common underpinning of most graphical programming
models.

2.1.1 Embedded dataflow models

Dataflow models, as introduced in Subsection 1.2.1, have achieved a dominant
position in performance analysis as well as design optimization of multimedia
embedded systems. Dataflow MoCs can be split into two categories: one is static
models and the other one is dynamic models.

23
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2.1.1.1 Static dataflow models

There are numerous dataflow MoCs, which are known as static models. This kind
of model assumes that actors have a fixed token production and consumption on
each firing.

SDF is also known as Weighted Marked Graphs in Petri Net literature.
Schedulability and memory consumption of SDF applications can be known at
compile-time [51]. Pioneering works on SDF graphs were published by Lee et al.
in [23]. Prof. Edward Lee is famous with the Ptolemy project [52]. This project
studies modeling, simulation, and design of concurrent, real time, embedded sys-
tems. In this project, different kinds of dataflow models have been developed
and exploited. A free tool set for generating and analyzing SDF, CSDF and so-
called Scenario-Aware Dataflow (SADF) are available in the SDF 3 project [37].
Diverse studies in the literature investigate SDF model in the field of multimedia
applications such as [53, 54, 55, 56, 57, 58]. In [59], authors present a method
for throughput analysis of SDF applications. Their approach is based on explicit
state-space exploration and avoids the translation to Homogeneous SDF (HSDF)
application. HSDF model is a special case of SDF model in which all token
production and consumption rates are 1. In [60], authors address the problem
of mapping HSDF applications on multiprocessor platform with the objective
of maximizing application throughput by using Sat-based techniques. The au-
thors in [54] propose a method to compute throughput of an SDF applications in
which the execution time of actors can be parameters. To explore the parallelism
with heterogeneous architectures, authors in [57] present a methodology for im-
proving the system throughput by using SDF transformations. Many researchers
[56, 60, 61, 58] consider their applications as SDF or HSDF model. This kind
of models is also known as static model, which is easier to analyze and predict
at design-time. Researchers in [55, 62] provide a complete approach to solve the
allocation and scheduling of SDF applications on MPSoCs.

CSDF model extends SDF with the notion of state. With CSDF model,
authors in [63] present a practical and accurate throughput analysis since their
method can give tight estimates on the minimum throughput. A comparison
between SDF and CSDF model were explored in [64]. The need for a tradeoff
between expressiveness and predictability has brought the definition of so-called
“quasi-static” dataflow model [26, 65, 66].

As static dataflow models are restricted in the kinds of applications they can
express, these models can not express the dynamic behaviors of modern video
applications. This leads to many studies of MoCs that can express the dynamic
behaviors of modern multimedia applications.
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2.1.1.2 Dynamic dataflow models

In contrast to static model, dynamic dataflow models are able to capture the
behaviors of dynamic applications. In dynamic dataflow domain, it is impossible
to know production and consumption behavior of actors at compile time since
each actor has a set of firing rules and can be fired if one of them is satisfied.

SADF [67] extends SDF with scenarios, which represent different modes of
operation based on resource requirements. This makes it possible to capture a
dynamic behavior of application to save resources. SADF improves SDF in terms
of expressiveness to express dynamism. Different scenarios may differ in their
execution time and communication rates. However, all scenarios are generated
by a probability of occurrence and each scenario can be modeled with SDF model.
Authors in [15] surveys SADF and compares different dataflow MoCs according to
their expressiveness, expressiveness, analyzability and implementation efficiency.

KPN is another MoC that can be used to express behaviors of dynamic ap-
plication. However, KPN requires a complex run-time mechanism that leads to
a large implementation overhead [15]. Lee et al. were pioneers in a theory of
dataflow process network (DPN) [22]. DPN is a special case of KPN but it can
be used to model the most general form of dataflow MoCs. Therefore, recent
researches employ KPN, DPN models as in [68, 69, 70, 15, 71].

Hence, with embedded multimedia becoming more complex, the trade-off be-
tween analyzability and expressiveness moved towards more expressive models.

2.1.2 Dataflow tools for RVC

The initial work for introducing the MPEG Reconfigurable Video Coding (RVC)
framework [29] started in 2004. Both academia and industries have developed a
set of tools supporting RVC framework. The key characteristics of MPEG RVC
are flexibility, re-usability and platform independent dataflow models. In this
innovative framework, the MPEG RVC working group has adopted CAL (the
Cal Actor Language) [30] as part of their standardization efforts as shown in Fig.
2.1. CAL actor language was developed at University of California at Berkeley in
2001. This language was born from Ptolemy II project [52] to modeling complex
signal processing systems dedicated to software and hardware code synthesis.

2.1.2.1 OpenDF

The Open Dataflow Environment (OpenDF) [72] is a dataflow toolset. OpenDF
framework is composed of editing the CAL actor, some analysis tools and multi-
target compiler. The compiler in OpenDF supports three back-ends to generate
code for different target platforms. The first one is a back-end for generation of
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Figure 2.1: Pictorial representation of CAL language and tools development and
the timeline of the steps of MPEG RVC standardization [39]

HDL (VHDL/Verilog) [73], and the second back-end generates C code for inte-
gration with the SystemC tool chain [74]. The last one is dedicated to embedded
platforms based on ARM processor [75]. As mentioned in [33], OpenDF has some
technical limitations and is no longer maintained. This leads to the birth of Open
RVC-CAL Compiler (Orcc) project in 2009.

2.1.2.2 Orcc

As mentioned in Subsection 1.2.3, Orcc is a complete framework, which has been
developed by Orcc team and widely used by academic and industrial researches.
Indeed, Orcc composes of rich eclipse-based editors, integrated simulators and
multi-target development tools [32]. Many synthesis tools for hardware and soft-
ware co-design have been developed by Orcc communities [33, 76, 77, 78, 79, 80].

2.2 Embedded parallel architectures

Early works ignored data communication and focused on scheduling [56, 60]. The
authors target homogeneous MPSoCs with the objective of maximizing system
throughput. Fig. 2.2 shows typical examples of how hardware evolution today
with OMAP and Snapdragon platform families. The solid curve presents the de-
velopment of OMAP family from Texas Instruments (TI) [82]. The OMAP5430,
which includes ARM Cortex-A15 MPCore (with 4 cores each), two ARM Cortex-
M4, a graphic processor (PowerVR), a C64x DSP, an Image Video Audio acceler-
ator (IVA) and an image signal processor, contains 14 processing elements (PEs).
We can observe the similar trend with Snapdragon family from Qualcomm [83],
the dash curve in Fig. 2.2.
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Figure 2.2: SoC Trends: Processing elements in TI OMAP Processors and Qual-
comm Snapdragon Processors [81]

As the current trend towards to a heterogeneous platform for high performance
and energy efficiency, heterogeneous architectures with many different communi-
cation standards including hardware support are available. Therefore, the role of
communication during application synthesis can no longer be ignored. Indeed, the
latency increases with the number of processors connected to it [84]. In [70, 71],
communication is modeled by annotating latencies on the edges of the applica-
tion graph. Other authors treat communication mapping in the context of single
inter-processor communication (IPC) [58] which does not correspond to the sit-
uation in today’s MPSoCs. In [58], additional actors, namely send and receive,
are bound on the buses in addition to original computation actors that are bound
on processors. The approach relies on an ILP formulation. Our goal is to embed
the application to be typically executed by an ARM processor and there is not
yet any ILP solver for this kind of embedded processor.

For such a complex platform, we need to estimate the delay for data to be
transmitted that increases with the traffic. This is typically observed in NoC [87],
where the latency increases with the injection rate. For the sake of clarity, we will
use the term latency to denote the time taken by one data to travel on the bus.
In [88], the authors investigate the performance of mapping algorithms in NoC
based heterogeneous MPSoCs with the objective of NoC congestion minimization.
They employ the Minimum Maximum Channel Load (MM), the Minimum Aver-
age Channel Load (MA) and the Best Neighbor (BN) to reduce the occupancy of
the NoC channels and also the execution time of the heuristics. Thereafter, the
authors in [85] present a number of communication-aware runtime task mapping
heuristics on NoC based MPSoCs. They extend MPSoC architecture used in
[88] to support more than one task for each processing node. Their NoC based
MPSoC architecture, as shown in Fig. 2.3a, contains a set of different nodes
such as Instruction Set Processor (ISP), Reconfigurable Area (RA) and Intellec-
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(a) NoC based MPSoC architec-
ture [85] (b) Bus based MPSoC architecture [86]

Figure 2.3: Example of NoC and Bus based MPSoC architecture

tual Property Core (IP). They interact via a communication network with 2D
mesh topology. The communication network uses wormhole packet switching,
handshake control flow, input buffer and deterministic XY routing algorithm.
Recently, many works consider NoC as a communication scheme [89, 61, 68, 90].
Their communication models are limited to NoC and very basic since they are a
number of hops, which do not correspond to flexibility communication media in
heterogeneous MPSoCs.

In [86], authors propose communication primitives, which can capture the
variety of IPC software interfaces in today’s MPSoCs. They target the Densely
Connected Platform (DCP) in Fig. 2.3b in which PEs can communicate by
various means like TI’s Keystone [91]. The PEs irisc and ltvliw are in-house cycle
accurate models developed with Synopsys Processor Designer [92]. The bus in
the DCP is a transaction accurate model of an AMBA AHB bus. For the bus and
the memories, models from the Synopsys IP library [93] are used. The runtime
manager in Figure 2.3b controls the execution of processes on the different PEs.
However, this kind of model only applies for bus based architectures with and
without pipelined communication.

2.3 Mapping Methodologies

The application mapping problem, which has been identified as one of the most
urgent problem to be solved for implementing embedded systems [41, 42, 43],
is a NP-hard problem [44]. There are different criteria to classify the mapping
methodologies such as optimization goal, target architecture, workload, etc. Fig.

Runtime mapping of dynamic dataflow applications on heterogeneous multiprocessor platforms Thanh Dinh Ngo 2015



2.3. Mapping Methodologies 29

2.4 shows a taxonomy of mapping methodologies based on workload scenarios.
In general, there are two kinds of workload, either static or dynamic. For static
workload, the mapping method can perform optimization at design time. How-
ever, for dynamic workload, the variations in terms of workload occur at runtime.
This leads to classify as static and dynamic/runtime methodologies respectively.
Both methodologies target either homogeneous or heterogeneous multiprocessor
architectures. The type of platform can be fixed platform or generic platform.
When the mapping methodology considers a fixed platform, this means that the
mapping method depends on a specific platform. In case the mapping method-
ology applies for generic platform, it can work with a wide range of platform
platform. Examples of generic heterogeneous architectures are the Texas Instru-
ments OMAP platforms [82] or Zynq platforms [94], which contain a mixture of
dedicated programmable cores, various hardware accelerators, different kinds of
interconnects and memory architectures.

Mapping 

Methodologies

Homogeneous

Architecture

Figure 2.4: A Taxonomy of Mapping Methodologies, Extending the Classification
in the Survey Introduced by [43]

2.3.1 Static mapping

Static mapping strategies are an off-line mapping which has global view of the
system at design time. These methods can explore more thoroughly system in-
formation to achieve optimal mapping solutions. They are suitable for static
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Table 2.1: Classification of static mapping methodologies

Ref. MoC Platform Optimization Goal

[56] SDF Fixed-HO Memory, Throughput

[60] HSDF Fixed-HO Throughput

[54] SDF N/A Throughput

[63] CSDF Fixed-HE Accurate Throughput

[62] SDF Fixed-HE Throughput

[57] SDF Generic-HE Throughput

[55] SDF Fixed-HO Solving time, Throughput

[59] SDF N/A Throughput

[95] N/A Fixed-HO Execution time

[96] N/A Fixed-HO Execution time

[53] SDF Fixed-HE Resource allocation

[97] SDF Fixed-HO Efficient synthesis

workload applications and fixed platforms as well. Most of the mapping method-
ologies reported in the literature are static mapping techniques [98]. Table 2.1
reveals different static approaches for static applications, based on different static
models such as SDF, CSDF, in different manners and optimization goals as well.
The methodologies target homogeneous (HO.) or heterogeneous (HE.) multi-core
platforms. There are numerous optimization goals, e.g. throughput, execution
time, solving time, resource allocation, energy consumption . . . , from different
studies in the state of the arts [43]. As throughput is one of the most important
metrics in the domain of multimedia to evaluate the system performance, authors
in [59] present a method for throughput analysis of SDF graphs. In [53], authors
propose a resource allocation for SDF graphs, which benefits from throughput
analysis in [59]. By using cyclo static dataflow model (CSDF), authors [63] give
a tight estimate on the minimum throughput for an application mapped on a
multiprocessor system.

Various strategies have been reported to solve the static mapping problem.
For example, Genetic Algorithm (GA) is used in [57], Simulated Annealing (SA)
in [95], branch-and-bound and SAT solving in [60] and Integer Linear Program-
ming (ILP) in [96]. Authors in [57] use GA algorithm to maximizing throughput
of SDF application on a heterogeneous platform. The results indicate that their
approach outperforms than other techniques such as Flextream [99] with repli-
cation heuristic and optimal ILP mapping. The disadvantages of this method

Runtime mapping of dynamic dataflow applications on heterogeneous multiprocessor platforms Thanh Dinh Ngo 2015



2.3. Mapping Methodologies 31

are high computational cost and a large buffer sizes for an application imple-
mentation. With SA algorithm in [95], authors solve the task mapping problem
based on simultaneous optimization of execution time and memory consumption.
Their SA algorithm starts with an initial solution in which all task graph nodes
are mapped to a single processing element and then iterates through various
mapping candidates to find a better solution. Authors in [96] propose an ILP for-
mulation for task mapping and scheduling problem to reduce system execution
time. These approaches provide efficient and optimal mapping solutions that can
be used as reference but they take a lot of time for searching solution of large scale
problems such as applications with large number of tasks mapped on a platform
with a lot of processors. Some approaches improve computational cost by other
search based mapping strategies. Authors in [60] address the mapping problem
of HSDF graph onto a multiprocessor platform with the objective of maximizing
system throughput. They combine both branch-and-bound and SAT-solving to
explore the design space of all possible actor-to-processor mappings. Their in-
tegrated approach reduces the solving time compared with Logic Based Benders
Decomposition approach [100] significantly. In [55], authors propose a complete
algorithm based on Constraint Programming to solve the allocation and schedul-
ing problem of SDF graph onto a multi-core platform. Their objective is minimum
throughput requirement while reducing the solving time of the algorithm.

Broadly, static approaches have interesting results in terms of performance.
Moreover, they show lack of flexibility: all the parameters of the dataflow appli-
cation need to be known and fixed at design time. If the applications or platforms
change, then re-computation is necessary. Further, they are unable to handle dy-
namic behaviors of dynamic dataflow applications. Even if these mapping method-
ologies are not suitable for runtime varying workloads, they can be considered as
a reference solution or initial mapping at runtime.

2.3.2 From static mapping to dynamic mapping

Authors in [101] present an iterative probabilistic analysis to accurately predict
the performance of multi-application mapped on a multiprocessor platform. They
measure that the runtime complexity of their algorithm is only 300 µs with ten
applications on a 500 MHz processor. Nonetheless, they consider SDF graph
applications in context of multi-application, the dynamic behavior is only the
variation of execution time of applications. In [102, 15], the authors express the
dynamic behavior of an application by describing several static scenarios. Conse-
quently, the programmer has to predict all possible scenarios and describe them
in a static way. Schor et al. [68] present a whole scenario-based design flow for
mapping streaming application modeled by KPN onto on-chip many-core system.
In [58], authors address multi-objective mapping problem of SDF graphs onto het-
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erogeneous multiprocessor platforms based on a combination of an evolutionary
algorithm with an ILP. They obtain up to 12x runtime efficiency compared to the
global ILP without compromising throughput optimality. However, the runtime
complexity of their algorithm significantly increases with the number of actors in
a SDF graph application. Our goal is to embed the application to be typically
executed by an ARM processor and there is not yet any ILP solver for this kind
of embedded processor.

Authors in [61] propose a method, as shown in Fig. 2.6 for efficient map-
ping of throughput constrained applications on MPSoC platforms. Their method
outperforms the time required (in milliseconds) to map throughput constrained
multimedia applications on a 4x4 MPSoC platform. In application model, they
still consider multimedia applications as SDF model.

These approaches employ static dataflow model like SDF to exploit the dy-
namic behaviors of the system. In other words, they do not use the dynamic
models to explore the dynamic behaviors of a system directly.

2.3.3 Dynamic mapping

In contrast to the static mapping, dynamic mapping is an online mapping method.
Hence, it can handle dynamic behaviors of workloads at runtime. With dynamic
dataflow applications, we can not know dynamic behaviors such as computation
time, communication time of each task and runtime changing environments at
design time. In dynamic mapping, the time taken to map each task is important
since it contributes to overall application execution time. Some evolution algo-
rithms (GA, SA . . . ) and ILP methods are not acceptable for runtime mapping
in embedded systems since they have high computational costs with large scale
problems as mentioned above. Therefore, some heuristic methods like greedy
fashion are used to trade-off between efficient mapping and mapping overhead.

The dynamic mapping methodologies reported in the literature can be divided
into three kinds of approaches, namely on-the-fly, hybrid and hybrid with runtime
remapping (Hybrid+R).

2.3.3.1 On-the-fly mapping

On-the-fly mapping is an online mapping method which is not based on any prior
analysis as illustrated in Fig. 2.5. In other words, all the processing of this
method is performed at runtime. Table 2.2 classifies based on MoC, platform
and optimization goal of this mapping methodologies. Authors in [103] present
heuristics with on-the-fly task mapping on heterogeneous MPSoCs. The target
architecture contains software and hardware processing element(PE), where each
PE can support only one task. The authors apply two runtime mapping algo-
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Figure 2.5: On-the-fly and hybrid mapping flow [43]

rithms: first free (FF) and nearest neighbor (NN) combined with their proposed
algorithms: path load (PL) and best neighbor (BN) to reduce the solving time
of FF and NN algorithms. These heuristics are suitable with NoC architecture
platforms. Authors in [104] introduce a runtime task assignment heuristic for ef-
ficiently mapping the tasks in a multi-core system containing FPGA fabric tiles.
This heuristic is capable of managing a configuration hierarchy and improves the
task assignment performance.

Table 2.2: Classification of on-the-fly methodologies

Ref. MoC Platform Optimization Goal

[103]-2010 N/A HE. Communication overhead

[104]-2008 N/A HE. Mapping time

[105]-2011 N/A HE. Execution time, Resource utilization

[85]-2010 N/A HO. Energy consumption, Communication overhead

[101]-2010 SDF Fixed-HE Performance

In [105], authors introduce runtime self-adaptability task allocation on hetero-
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geneous MPSoCs. They propose a set of key parameters, which allow dynamically
adjusting based on current resource utilization at runtime. They also introduce
an adaptive clustering approach for efficient reduction of communication load. In
this study, applications are represented as task graphs and their target platforms
are based on the architecture suggested in GENESYS with TDMA-arbitrated
NoC. Authors in [85] present mapping heuristics which allow more than one task
can be supported by each PE. Their proposed heuristics are capable of alleviat-
ing Network-on-Chip (NoC) congestion bottlenecks when compared to existing
alternatives. To reduce the communication overhead, their heuristics try to map
the adjacent communicating tasks on to the same PE. By doing this way, the
authors show that the energy saving can be up to 44% when mapping tasks of
applications onto an 8 × 8 NoC-based MPSoC.

Since on-the-fly strategies start mapping an application without any previous
analysis, they take more time to perform the required analysis at runtime. The
need of low complexity in mapping method at runtime has led to the formulation
of hybrid mapping methodologies.

2.3.3.2 Hybrid mapping

Hybrid mapping strategies, as depicted in Fig. 2.5 or Fig. 2.6, combine design
space exploration (DSE) at design-time with the runtime management to select
the best mapping by considering the workload and resource availability. This
approach takes the advantages of both static and on-the-fly strategies. The hybrid
mapping strategies have been investigated in various other works. According to
the survey in [43], hybrid mapping is one of the upcoming trend of mapping
technology at run time for modern video applications. This approach includes
two steps: design time step and runtime step, which allows to have the benefits
both at design time and run time analysis to improve the performance.

Recent work on mapping methodologies of dataflow applications are classified
and listed in Table 2.3. As can be seen, different MoCs for the applications are
employed. The methodologies target homogeneous (HO) or heterogeneous (HE)
MPSoC. The type of platform can be fixed platform or generic platform. The
table also reveals the communication model (Comm.) which is used.

Kaushik et al. [89] present a hybrid mapping method for balancing between
computation and communication load. Their technique performs clustering at
design time and then does actual mapping on NoC platform at runtime to reduce
the communication overhead and improve the load balancing. However, this
approach can not be directly used in heterogeneous platforms, since the execution
time may differ for the same task on different processor types. Moreover, this
approach may happen to no solution when the number of clusters is greater than
the number of processors in the platform.
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Table 2.3: Various approaches for dynamic mapping of multimedia applications

Ref. MoC Platform Comm. Map.

[58]-2012 SDF Generic-HE IPC Hybrid

[61]-2013 SDF Generic-HE NoC Hybrid

[90]-2013 SDF Generic-HO NoC Hybrid+R

[68]-2012 KPN Fixed-HO NoC Hybrid

[15]-2011 SADF Generic-HE x N/A

[71]-2013 DPN Generic-HO Constant Hybrid

[69]-2013 KPN Generic-HE Yes N/A

[89]-2011 N/A Fixed-HO NoC Hybrid

[86]-2012 KPN Fixed-HE Yes N/A

[106]-2010 x Fixed-HE N/A Hybrid

[70]-2013 KPN Generic-HO Constant Hybrid

[107]-2015 KPN Generic-HE Constant Hybrid+R

Ours DPN Generic-HE Yes Hybrid+R

Singh et al. [61] propose a hybrid method for efficient mapping of applications
on heterogeneous MPSoCs. The approach first performs extensive design time
analysis of the set of applications at different resource combination to provide
all mapping solutions. This is followed by a runtime strategy to select the best
mapping from available mapping solutions subject to available resources and de-
sired throughput. In this approach, the authors consider the communication cost
based on NoC architecture.
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Figure 2.6: Hybrid mapping strategy [61]

Schranzhofer et al. [106] aim to maintain low power consumption over the
system lifetime. They compute offline mapping templates and then choose an
appropriate pre-computed template online.

Schor et al. [68] propose a scenario based design flow, as shown in Fig. 2.7,
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for mapping multi-application on heterogeneous many-core systems. At design
time analysis, a set of optimal mapping is computed for using at runtime ac-
cording to runtime manager and event monitor. However, they use an evolution
algorithm, which may degrade an overall performance with large problem size, to
optimize the mappings of KPN applications at runtime. Moreover, they need a
memory space to store a set of mappings that are individually valid for a subset
of scenarios.

Figure 2.7: Overall mapping optimization approach with design time and runtime
component [68]

Castrillon et al. [69] present MAPS framework for supporting multiple
dataflow application mapped on heterogeneous MPSoCs. The framework offers
different means of performance estimation and provides variety of mapping heuris-
tics, e.g. computation balancing, output rate balancing and simulated mapping.
They consider applications as KPN model and architecture platforms containing
a list of processing elements and communication primitives. In this research, the
user has the freedom to select the heuristic to apply or can guide the tool to try
out all possible combinations.

Yviquel et al. [71] can deal with unpredictable behaviors since their approach
can produce a high performance in terms of throughput in few milliseconds. They
are using the partitioning tool METIS [108] that we present in Sec.3.3.2 and use
for comparison. However they consider first a homogeneous multicore architecture
and secondly a very specific architecture based on TTA processors.

Quan et al. [70] propose a scenario-based runtime task mapping algorithm
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for MPSoCs. They obtain 11.3% performance improvement and 13.9% energy
saving compared to just using a static mapping strategy. This algorithm only
works with homogeneous platforms.

While there are some efforts in the hybrid strategy trend [61, 68, 89, 70], their
analysis results do not address the problem of mapping storage at design time
and still ignore dynamical optimization of the mappings at runtime, i.e. keeping
the same mapping solution during the execution of certain workload scenario, or
apply on specific platforms.

2.3.3.3 The perspective of hybrid mapping with runtime remapping

Hybrid mapping with runtime remapping is a hybrid approach with more adaptive
features to allow remapping an application online. Runtime remapping have been
proposed in the case of processor failures on NoC [109]. The authors focus on
minimizing performance degradation rather than minimizing migration costs.

The approach in [90] presents runtime resource management in that mapping
of tasks are changed at runtime. They use the static scheduling information
to minimize power consumption under throughput and deadline constraints re-
spectively. However, they use SDF model and consider NoC based many-core
architecture, which is not the case for generic architecture.

Quan and Pimentel [107] propose a hybrid mapping including three steps: de-
sign time preparation, runtime mapping initialization and runtime mapping cus-
tomization. This approach allows for remapping an application at runtime. The
design time step exploits optimal mappings and store the pre-optimized mappings
in system memory for further mapping optimization. At runtime, the mapping
initialization process dynamically optimizing the throughput under a predefined
energy budget based on the pre-optimal mappings of the corresponding applica-
tions stored on the system when the new workload scenario emerges. Afterwards,
mapping customization is performed to further improve the performance of the
mapping during the execution of a certain workload scenario. In this study, the
algorithm tries to keep the migrated actors as low as possible to reduce the mi-
gration overheads. Although hybrid mapping with runtime remapping becomes a
promising method for solving mapping problem of dynamic dataflow applications
on heterogeneous multiprocessor platforms, they still lack of in-depth exploration
such as the trade-off between the design time and runtime step, the impact of
the migration cost when allowing remapping at runtime.

2.4 Conclusion

To sum up, there are two main methodologies to tackle the mapping problem of
dataflow applications on embedded MPSoCs: static mapping and dynamic/run-
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time mapping. The methodologies are analyzed to highlight their advantages as
well as drawbacks. Most of the mapping methodologies reported in the state
of the art fall under static mapping [43, 98]. Nevertheless, they can not handle
dynamic behaviors of the modern video applications. Recently, hybrid mapping
method becomes an emerging trend in solving the mapping problem in embedded
multimedia domain. With no doubt, the advantages of hybrid method make it
become a promising strategy in the field of mapping methodologies. However,
most of these approaches consider that all application behaviors must be known
entirely at design time and analysis results can be applicable only to the analyzed
platform. This kind of approach usually searches all possible mapping solutions
at design time and then makes a decision of mapping at runtime based on the
solution at design time. Thus, this also imposes challenge to investigate efficient
exploration strategies that should overcome the exploration time bottleneck and
high memory usage for storing all mapping solutions at design time. As a re-
sult, the design time analysis needs to be repeated when the application set or
platform changes [43]. Moreover, they consider all tasks/actors in a dynamic
application are fully Kahn Process Network, which might not be hold in modern
multimedia applications, such as video codecs. Actually, most signal processing
applications are far from being entirely dynamic [36]. In other words, a part of
signal processing application is static behaviors.

Existing hybrid strategy typically assumes that the mapping of an application
is not changed at runtime after launched. For example, many approaches do
not support the handling of dynamic behaviors such as a dynamic changing in
workload and actor migration in a platform that is not known at design time.
Hence its capability to support the dynamic system behavior is limited since it
may lead to higher probability of mapping failure as well as inefficient resource
usage.

Since their nascent development and lack of in-depth examination in the liter-
ature, the hybrid methodologies have some open issues that need to be addressed
and solved in the future. To the best of our knowledge, the existing runtime
mapping heuristics in the state of the art are not suitable to apply for mapping
of RVC-CAL applications on heterogeneous MPSoCs. In this context, a main
challenge is to propose a solution that can be fast enough to execute dynamically
the actor mapping on heterogeneous architectures. It may first make a decision
at the reception of the video based on default profiling data (e.g. last decoding)
without introducing any significant latency. Then the objective is to recompute
at runtime mapping decisions according to observations of real execution times.
Selection (actor mapping) is one the main steps of self-adaptive systems with
observation and configuration.

To overcome the limitation of those hybrid mapping techniques, we propose
a novel hybrid mapping algorithm, as depicted in Fig. 2.8, for heterogeneous
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Figure 2.8: Our mapping methodology

platforms, which avoids the exploration time bottleneck and memory footprint.
At runtime, our algorithm can adapt to dynamic behaviors both in application
model and architecture model and allows runtime remapping of an actor with
move based algorithm. Most of the existing runtime mapping techniques face the
challenges in load balancing, both computation and communication. However,
the mapping techniques reported in literature do not have an analytical commu-
nication model that can apply either NoC or Bus based architecture. Moreover,
they lack of considering the impact of migration cost at runtime which may have
an important contribution to overall performance. In our approach, we consider
load balancing combined with our analytical communication model. Further, we
propose a move based algorithm for remapping actor and also take the migration
cost into account. These features make our approach different from others.
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3
Communication Model Based Embedded

Mapping

Mapping a dataflow application onto a heterogeneous multiprocessor platform
cannot longer be static. It has to adapt dynamically depending on the data and
on the communication between the computation cores. This is typically the case
for mobile devices that run multimedia applications. This chapter presents an al-
gorithm fast enough to be executed at run-time. In addition to computation cost,
our approach relies on a communication model to estimate the delay for trans-
mitting data. The algorithm is compared with METIS tool for random dataflow
graphs and two video decoders, MPEG4-SP and HEVC, considering heteroge-
neous multiprocessor platforms composed of 4 to 8 processors and 6 accelerators.
Results on a virtual Zynq platform show that our algorithm is about 40x faster
than METIS tool for the same throughput (frames per second) on a platform
with 8 processors and 6 accelerators.

Our contribution is a solution that makes mapping decision possible with
high video frame rates. We also consider an heterogeneous architecture that
can be reconfigurable in case of FPGA with an architecture model based on
softcores augmented with hardware accelerators. The different components of the
heterogeneous platform need to exchange data through a communication media
(a bus or a NoC). This communication is likely to become the bottleneck and
should be taken into account by the mapping algorithm.

The contributions of this chapter are:

� A communication model for estimating the latency of the data on the com-
munication media.

� An algorithm for mapping dataflow actors onto heterogeneous MPSoC.

� Experimental results on a virtual Zynq platform for randomly generated
dataflow graphs and MPEG4-SP and HEVC video decoder applications.

41
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In the next sections, we give the formulation of the problem, then we introduce
our algorithm. Finally we present extensive results that demonstrate the viability
and the efficiency of our approach.

3.1 Problem definition

In this section, we define the problem of runtime mapping of dataflow actors on
heterogeneous multiprocessor platforms.

Given a dynamic dataflow application, which is based on different MoCs, we
assume that profiling mechanisms are available on the target platform so that we
can estimate and adapt at runtime the number of tokens produced and consumed
by each actor as well as the execution time of actors. We then aim to map the
dataflow actors onto various computation and communication resources with the
objective to optimize the application throughput. Finding a high-quality mapping
solution for such a dynamic dataflow application on heterogeneous platform is an
NP complete problem. This is why we consider the dataflow application at high-
level description and propose a heuristic approach in order to produce an efficient
solution close to optimal in few milliseconds. In addition, we have to take load
balancing between computation and communication into account.
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(a) Dataflow graph

ARMLM
MB

Co-processor ALM

SM LM
MB

Co-processor B

(b) Architecture platform

Figure 3.1: Dataflow graph and architecture platform specified in XDF and SLAM
files respectively

3.1.1 Application model

A dataflow application is specified with a high-level description model. It is
defined as a directed graph G = (V,E), where the vertex set V is a set of actors
and the edge set E is a set of FIFO channels. Fig. 3.1a shows an example of
dataflow graph. An actor is a computational entity with interfaces (input and
output ports), internal states and parameters. Actors can interact by exchanging
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data (called tokens) through channels, unidirectional First In - First Out (FIFO)
buffers. During a process, the actor consumes input tokens, produces output
tokens and changes its internal state. The actors may be compliant with different
models of computation (MoC) and so consume and produce a fixed or variable
number of tokens, additionally the execution time can be more or less variable.
In practice the graph is specified in an XDF file, which is an input of our mapping
algorithm as shown in Fig. 3.3.

3.1.2 Architecture model

The specification of the heterogeneous platform is based on an architecture model
that can include different types of processors with or without hardware acceler-
ators. We consider an architecture model, where each processor has its local
memory (LM) and communicates with other processors through several buses
and shared memories (SM). In this chapter, we consider a heterogeneous plat-
form where processors communicate via one bus and one shared memory. This
architecture includes one ARM processor and multiple Microblaze processors,
which have different hardware accelerators and frequencies as well. This choice
allows to make a fair comparison with METIS tool that supports only this kind of
architecture platform (i.e. an implicit bus-based architecture). Fig. 3.1b gives an
example of a simple architecture platform with one ARM processor (that can run
the mapping algorithm), two Microblaze (MB)) with one hardware accelerator
and all processors communicate through one bus and one shared memory (SM).

3.1.3 Communication model

The latency of a communication medium (bus, NoC) evolves with contention
occurrences. But access conflicts cannot be estimated with simulations when fast
partitioning is required. That is why we propose to use analytical models that can
be updated online if necessary. These models are based on what is observed in
the domain of NoC, where the latency is usually measured for different injection
rates.

In our approach, the communication model gives the relationship between
use-rate and latency since the use-rate can be estimated at run-time according
to mapping decisions or estimates. We propose a generic and parametric com-
munication model as in Fig. 3.2. The aim is to have a unique model that can fit
with different communication standards, which are supported in the platform. A
model is based on two linear functions y1 and y2, the intersection between the two
curves correspond to the saturation threshold (UT ). These functions can express
the communications of a NoC, i.e. the red curve in Fig. 3.2, or a bus, i.e. the
green line where y1 = y2. In practice the parameters of y1 and y2 can be adapted
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Figure 3.2: Communication model

online according to real profilings as depicted in Fig. 3.3.

Figure 3.3: Overall flow of our heuristic mapping algorithm
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3.2 Heuristic mapping algorithm

This section is organized as follow. First, we define some metrics that are nec-
essary to evaluate the mapping quality of dataflow actors between our algorithm
and METIS. Then, we present our approach, called GB4M2, for solving the map-
ping problem of dataflow actors on heterogeneous multiprocessor platforms.

3.2.1 Evaluation metrics

Table 3.1 presents all the parameters and variables used to formalize our mapping
algorithm.

Table 3.1: Parameters and variables used for the mapping algorithm

Parameter Definition

Application graph

NbActor Number (Nb) of actors

NbFIFO Nb of FIFO channels

Architecture graph

NbProcessor Nb of processors

MemCodej Code memory size of processor j

MemDataj Data memory size of processor j

Freqj Frequency of processor j

Profiling data

Ri Nb of firings of actor i per iteration

W i
1 Total computation time of actor i

W i
2 Instruction code size of actor i

W e
k Amount of data on channel k

Tij Execution time of actor i on processor j

Tc Communication time per token

Pk, Ck Nb of token producers and consumers on channel k

METIS

NbCon Nb of constraints

Asizei Amount of data consumed by actor i

P [i] Nb of the partition of actor i

Nadji Nb of adjacent actors other than P [i]

The total computation cost of actor i is the sum of computation times of this
actor on all processors on the heterogeneous multiprocessor platform. It means
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that all processors can execute all actors, otherwise the average computation cost
can be used instead. This parameter is computed as the metric for the first
sorting in our heuristic algorithm:

W i
1 =

∑
∀j

Ri ∗ Tij (3.1)

The amount of data to be sent to actor ith is the sum of all incoming data of
this actor:

Asizei =
∑

∀k:dst(k)=ai

W e
k (src, dst) (3.2)

The amount of data on channel kth stands for the number of tokens, which
transfer between the source actor and the destination actor of this channel:

W e
k (src, dst) = Rsrc ∗ Pk +Rdst ∗ Ck (3.3)

Instruction memory usage of each processor is the total code size of all actors
which are mapped on this processor:

memUsagej =
∑

∀i:P [ai]=j

W ai
2 (3.4)

Computation time of each processor is the sum of the execution time of all
actors which are mapped on this processor:

compTj =
∑

∀i:P [ai]=j

Ri ∗ Tij (3.5)

Communication time of each processor:

commTj =
∑

∀i:P [ai]=j

Asizei ∗Nadji ∗ Tc (3.6)

Total communication volume is the sum of all communication time of each
processor:

totalV =
∑
∀j

commTj (3.7)

Period of each processor:

Periodj = compTj + commTj (3.8)

Throughput:
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Th =
1

max(Periodj)
(3.9)

3.2.2 GB4M2 Algorithm

Our solution is based on a greedy method, this choice is motivated by the objective
of being fast to produce a solution while considering all the constraints of the
problem. In contrast to conventional existing mapping strategies, our method
differs in following aspects: i) it relies on a factor called alpha, which represents
a ratio of processor cycle budget considered during the first step (computing-
oriented) mapping; ii) it takes into account both computation and communication
workloads; iii) it performs both actor and data mappings. The algorithm is
composed of 3 steps: initial, computation and communication phases.

An overview of the heuristic environment is presented in Fig. 3.3 and the
algorithm is presented in Algo. 1. The algorithm needs the information from
the application model, architecture model and profiling data. From these input
information, the algorithm produces a mapping solution.

3.2.2.1 Initialization phase

Since the dynamic behavior of our applications makes them unpredictable at
design-time, the GB4M2 is based on low-cost profiling analysis of the execution.
Consequently, we assume that profiling mechanisms are available on the target
platform. The initialization is based on a default profiling that provides the
execution time of each actor on different processors. Then, the actor is selected
with the processor where it has a minimum execution time. This initial phase
helps to compute the initial period (line 2) of each processor without considering
the communication time. However, this step may lead to a solution where all
actors will be mapped on their best processors. It means that some processors
are not used while others have a lot of actors. We expect a load balancing
among processors so we calculate an initial average period and use this value as
a processor budget for all processors.

3.2.2.2 Computation phase

Next, we introduce a factor α, which represents a ratio of the processor budget.
This factor can vary in the range of ]0, 1]. In this step, the algorithm performs
a sorting of all actors in a descending order based on the value of their total
computation cost (W ai

1 ) Equ. 3.1. A fast sorting algorithm (a bubble sort in
the current version) is used. Then, the algorithm picks up the first actor i in
the sorting list LA1, i.e which presents the largest computation cost. Next, the
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Algorithm 1 GB4M2 Algorithm

Input: application graph, architecture graph, profiling data
Output: mapping of actors and data

1: // initialization step
2: Period init← select min Tcomp(nbActor, nbProcessor)
3: // computation step
4: LA1← Actor sorting Tcomp(nbActor)
5: while procUsej ≤ α do
6: k ← index first(LA1)
7: map actor Tcomp(k, nbProcessor)
8: update procUsej
9: k ← k + 1

10: end while
11: // communication step
12: period estimate← max(procUsej)
13: if k < nbActor then
14: LA2← actor sorting Tcomm(k, in out comm(k))
15: tcommG←

∑
k∈index(LA2)(in token(ak) + out token(ak))

16: latency ← Linit
17: Tcomm← 0.5 ∗ latency ∗ β ∗ tcommG
18: Cuse← Tcomm/period estimate
19: end if
20: for i = k to nbActor do
21: update latency
22: for j = 0 to nbProcessor − 1 do
23: tcommGuessj(i, nbProcessor)
24: periodGuessj(i, nbProcessor)
25: end for
26: map actor Tcomm(min(periodGuessj), nbProcessor)
27: update procUsej
28: update Tcomm
29: update Cuse
30: end for
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algorithm selects the best processor according to the minimum Tij. In case the
memory capacity is not satisfied, then the algorithm selects the next minimum
execution time of this actor on the remaining available processors. After the first
actor is mapped (line 5), the algorithm updates the processing use (line 6) of
the selected processor. The algorithm applies the same procedure for the next
candidate in the first sorting list until the processing use of all processors is greater
than α, which is a percentage of the processor budget.

3.2.2.3 Communication phase

The last step starts with the remaining actors which are not mapped. Then, it
applies the second sorting for all unmapped actors. This sorting is based on total
incoming and outcoming data for each actor. The idea is to take the communica-
tion cost into account in this phase. Hence, the algorithm takes the first actor in
the second sorting list and consider all the connections with other actors in the
network. If this actor and its adjacent actor are mapped on the same processor,
the communication time is zero. In order to deal with unknown information when
we estimate the use-rate of the bus (% usage of available bandwidth), we intro-
duce a factor β that represents the ratio of remaining data transfers associated
to unmapped tasks that will use the communication media (e.g. bus). Then the
latency is estimated with the communication model (Fig. 3.2) and the algorithm
makes a decision of mapping. Then, the algorithm applies the same procedure
for the next unmapped actor in the second sorting list.

P0

P2

P1

2

3

6

4

4

1

1

2

Figure 3.4: Example of a graph application

Fig. 3.4 gives an example of a graph application, which includes 7 ac-
tors {a0, a1, . . . , a6}. The target platform has three processors {P0, P1, P2}. In
the computation phase, actor a0, a2 and a4 are mapped on P1, P2 and P0 re-
spectively. Then, we have the remained actors with the second sorting list
LA2={a1, a5, a3, a6}. In order to map actor a1, the algorithm takes into account
all communication (line 21) between a1 and its adjacent actors in the graph
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application. At this step, a5 is not mapped so tcommGuessj(index(a1), 3) =
latency ∗ {(4 + 2 + β ∗ 6), (4 + 3 + β ∗ 6), (2 + 3 + β ∗ 6)}. From this information,
the algorithm computes periodGuessj (line 22). Then, the algorithm decides to
map actor a1 on a processor where a1 has the minimum value of periodGuess.
Next, the algorithm updates the procUsej, Tcomm and Cuse (line 25 to 27). All
actors in {a5, a3, a6} follows the same procedure as actor a1.

3.3 Experimental results

In this section, we present the results of our experiments about the actors map-
ping over the heterogeneous multiprocessor platforms. We apply our GB4M2
algorithm for a static dataflow as well as a dynamic dataflow. In order to evalu-
ate our heuristic approach more thoroughly, we make the comparison with METIS
tool [108] both in terms of throughput and in terms of solving time. All dataflow
applications are implemented in two parts. For the static dataflow applications,
we use SDF3 tool [37] to generate SDF benchmarks. For the dynamic dataflow
application, we examine our methodology with MPEG4 Part 2 Simple Profile
(MPEG4-SP) and High Efficiency Video Coding (HEVC). Implementation of
MPEG4-SP and HEVC are carried out with the Orcc [31] tool as in [71]. In
order to make a fair comparison between our heuristic approach and METIS,
we transform those application benchmarks into METIS’ graphs and use the
same evaluation metrics for both METIS and our heuristic. METIS supports
a function to measure its solving time and we also use this function to get our
solving time. The System-Level Architecture Model (S-LAM) [38] is employed
for the specification of different sets of heterogeneous multiprocessor platforms.
The number of processors varies from 4 to 8, combined with several hardware
accelerators. All experiments were conducted in Cadence virtual system plat-
form (VSP) [110] simulation and Linux environment on HP ProBook with core
i5-2520M CPU@2.5GHz and 8GB memory.

3.3.1 Simulation on Cadence virtual system platform -
VSP

The algorithm was implemented for Xilinx Zynq-7000 and simulated through the
Cadence Virtual System Platform (VSP) [110]. This tool simplifies the devel-
opment of virtual prototypes by providing an automated modeling and faster
hardware/software debugging framework through SystemC-TLM models, with
enough accuracy to replace hardware for development purposes. The platform is
composed of five main components: i) 32-bit processor Cortex-A9MP of Imperas
OVP [111]; ii) four cache-coherent memories; iii) bank of registers; iv) 32-bit bus;
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and v) peripherals. The system supports embedded Linux operating system. The
cross-compile tool chain is also provided by Imperas OVP.

One key aspect in embedded systems is memory and the binary size of our
algorithm is only 95.5 kB on ARM processor whereas the binary size of METIS
is 692 kB.

3.3.2 METIS - Graph partitioning for heterogeneous mul-
tiprocessor architectures

METIS is the well-known and successful graph partitioning tool. It has been
developed at the University of Minnesota and distributed as an open source. The
algorithms implemented in METIS are based on the recursive-bisection, multi-
level k-way, and multi-constraint partitioning schemes [112]. This tool quickly
produces high quality partitionings for a wide variety of irregular graphs [113].
Since METIS supports multi-constraint partitioning and allows for target parti-
tion weights, it can be adapted to compute partitionings that balance the compu-
tations on heterogeneous architectures. Furthermore, the partitioning objective
in METIS is to minimize the edge-cut so the communications among the proces-
sors are also minimized.

3.3.3 Results with SDF benchmarks

We evaluate our heuristic approach on a variety of random SDF graphs. There
are 14 SDF graph benchmarks with a number of actors that varies from 40 to 160.
Token transfers on each channel, in/out degrees of actors are randomly created
within minimum and maximum bounds and with different average and variance.
Additionally we generate an array of various execution times for each actor on
each processor. We compare the throughput and the solving time between our
heuristic and METIS. The results of the experiments show that the throughput
decreases when the number of actors increase. Fig. 3.5 and Fig. 3.6 depict the
throughput comparison between METIS and GB4M2. The value of alpha in
GB4M2 varies from 0.2 to 1. It has to be noted that setting an alpha value
of 1 in the algorithm means that the algorithm never moves to the step where
communication is taken into account, so it performs Computation Phase only.

As it can be seen, GB4M2 achieves better throughput in the majority of
benchmarks. This is especially true with 8 processors and alpha larger than
0.4. In particular, when the number of actors is 120 and alpha is 0.4, GB4M2
achieves 54% improvements in terms of throughput. During the experiments, we
observe that when the alpha value is equal to 0.4, the bandwidth requirement
is close to the result from METIS while maintaining a higher throughput than
METIS. Therefore, using alpha as the guideline for mapping not only achieves
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better trade-off between throughput and bandwidth, but also provides better
throughput than METIS. Fig. 3.7 illustrates the speed-up in terms of solving
time. As it can be seen, GB4M2 has a significant speed-up of at least one order
of magnitude in terms of solving time for all benchmarks. Even with the large
number of actors, e.g. 160, we got 48.89x faster than METIS for 4 processors
and 31.51x faster than METIS for 8 processors. The speedup tends logically
towards decreasing since METIS is designed for dealing with thousands of nodes
(i.e. actors). Finally another interesting result given in Fig. 3.8 and 3.9 is the
used bandwidth with the different solutions. It illustrated how the α parameter is
used to find a balance between throughput and bandwidth use. It also shows how
the aggressive and unique minimization of the bandwidth (case of METIS) can
negatively impact the performance, this strategy is counterproductive when the
bandwidth is available and that’s why an online estimation of the communication
cost is necessary.

Figure 3.5: Throughput: METIS vs GB4M2 - SDF3 - 4 processors

3.3.4 Results with real video applications

We use two video decoders, which are developed by the RVC group: MPEG4-
SP and the new MPEG-H Part 2 (known as HEVC/H.265). Table 3.2 describes
the properties of MPEG-4 and HEVC, as well as the number of actors and FIFO
channels. The C code of these decoders are generated with Orcc tool [31]. Options
in the tool can allow for generating additional code for intrusive profiling. All
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Figure 3.6: Throughput: METIS vs GB4M2 - SDF3 - 8 processors

Figure 3.7: Speed-up in terms of solving time - SDF3
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Figure 3.8: Bandwidth requirements - SDF3 - 4 processors

Figure 3.9: Bandwidth requirements - SDF3 - 8 processors
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actors are classified [36] as different MoCs such as SDF, CSDF, KPN and DPN.
All experiments made from different video sequences. In particular, Foreman
and Hit videos are used as input videos of MPEG-4 decoder. The resolution of
all MPEG-4 videos are 352x288, which corresponds to CIF format. Kristen and
Sara, Four people and Johnny are input videos of HEVC decoder. All HEVC
video sequences have 1280x720 resolution.

The first profiling is performed on a desktop computer. For these experiments,
we specify the size of the FIFO channels used for communication between 512
and 8192 bytes. We introduce some usual hardware accelerators that can provide
significant speed-up when associated with Microblaze (MB) softcore on Xilinx
FPGAs. Our objective is the runtime mapping of actors on different heteroge-
neous architecture corresponding to different possible terminals, so we consider in
this example four different platforms based on 1 ARM and 7 MB processors. By
using S-LAM modelling, we specify 4 different heterogeneous platforms detailed
in Table 3.3.

Table 3.2: Properties of different tested MPEG video decoders

Decoder Profile YUV #Actors #FIFOs

MPEG-4 Part 2 SP yes 41 104

HEVC/ H.265 Main no 27 185

Table 3.3: Accelerators used in different platforms

Platform MB1 MB2 MB3 MB4 MB5 MB6 MB7

7.1 Merger IDCT Parser Inter IQ+IAP Add IDCT

7.2 IQ+IAP IDCT Parser Inter IDCT Merger IDCT

7.3 Parser xIT Intra Inter Merger DPB xIT

7.4 Merger xIT Intra Inter xIT Parser xIT

3.3.4.1 The need of run-time mapping

According to profiling information, we observe the percentage differences in terms
of workload of each actor. The workload of an actor is defined as the ratio of
the computation time in given time interval. Table 3.4 and 3.5 show percentage
differences in workload between two different input video sequences of MPEG-4
decoder and HEVC decoder respectively. These tables just pick up several actors
in the decoder, which present more different workload. Then, we compare the
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Table 3.4: Example of percentage difference in terms of workload of different
MPEG4 video sequences

Actor Foreman Hit % difference

decoder texture U idct2d 64 46 32.73

decoder texture V IQ 49 38 25.29

decoder texture V idct2d 69 38 57.94

Table 3.5: Example of percentage difference in terms of workload of different
HEVC video sequences

Actor Kristen & Sara Four People % difference

HevcDecoder xIT 615 546 11.89

HevcDecoder InterPred Inter y 1642 1392 16.48

HevcDecoder SAOFilter Sao U 193 214 10.32

actor mapping result of different video sequences. The results show that some
actors in the decoder have different mapping on the same target platform. This is
true both in MPEG-4 and HEVC decoders. For example, we get 9.76 % different
actor mapping between Foreman and Hit videos. With HEVC decoder, the
difference in actor mapping is 33.33 % between Kristen and Sara and Four People
videos. We also get 25.93 % differences when we compare the actor mapping
result of Four People and Johnny videos. This difference can be explained by the
fact that we have some dynamic actors both in MPEG4-SP and HEVC decoders.
These differences clearly demonstrate the need of run-time mapping for dynamic
dataflow actors.

3.3.4.2 MPEG4-SP and HEVC decoder

The results of both experiments in terms of throughput (frames per second)
are shown in Table 3.6. We almost have better throughput in comparison with
METIS. For MPEG-4 decoder, the GB4M2 always achieves higher throughput
with the platform 7.x than METIS. We also have the speed-up when we compare
the throughput of the HEVC applications between GB4M2 and METIS with the
platform 7.3. However, the GB4M2 has slightly lower throughput with platform
7.4 than METIS. This can be explained that MPEG-4 decoder has well imple-
mentation while HEVC decoder is more complexity and still being developed.
As indicated in Table 3.7, we obtain a significant speed-up in terms of solving
time for different sets of heterogeneous platform. GB4M2 took only 4.54 ms for
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Table 3.6: Result with MPEG4-SP and HEVC mapped on 8 processors in the
heterogeneous platform

Input video Platform GB4M2 METIS Speed-up

MPEG4-Foreman
7.1 51.37 fps 51.06 fps 1.01x

7.2 50.13 fps 49.40 fps 1.01x

MPEG4-Hit
7.1 49.26 fps 46.70 fps 1.05x

7.2 48.00 fps 46.52 fps 1.03x

HEVC-Kristen
7.3 10.38 fps 6.84 fps 1.52x

7.4 9.71 fps 9.78 fps 0.99x

HEVC-FourPeople
7.3 13.16 fps 9.13 fps 1.44x

7.4 9.09 fps 10.25 fps 0.89x

HEVC-Johnny
7.3 14.38 fps 10.29 fps 1.40x

7.4 9.63 fps 9.87 fps 0.98x

finding the mapping solution of the Foreman video sequence. The results show
that we offer a better trade-off between performance (throughput) of the applica-
tion and the solving time of the GB4M2. We conclude that our GB4M2 is more
efficient at run-time than METIS. These examples also demonstrate that in case
of a reconfigurable architecture, our solution can be used to decide conjointly
and at runtime, the best platform and the best actor mapping for the dataflow
application to be executed.

3.4 Conclusion

In this chapter we present a new mapping algorithm for heterogeneous multipro-
cessor architectures that includes a simple analytical communication model. Our
solution is extremely fast and can be used at runtime for the mapping of actors
of dynamic dataflow applications for which, by definition, no optimal solution
can be found offline. Reconfigurable video coder is a typical domain where such
a solution is required. We have compared our algorithm with the fast METIS
partitioning algorithm. We demonstrate on a large set of representative synthetic
graphs as well as on MPEG4-SP and HEVC real life examples that our algorithm
is at least one order of magnitude faster (hundred of µs) on an ARM embedded
processor, while producing better results when the alpha parameter is larger than
0.4. Our approach is between two extreme partitioning techniques: solutions that
consider bandwidth as available but do not take it into account and methods like
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Table 3.7: Solving time

Input video Platform GB4M2 METIS Speed-up

MPEG4-Foreman
7.1 4.54 ms 200 ms 44.08x

7.2 3.74 ms 190 ms 50.76x

MPEG4-Hit
7.1 4.25 ms 190 ms 44.66x

7.2 3.63 ms 190 ms 52.34x

HEVC-Kristen
7.3 5.33 ms 130 ms 24.39x

7.4 4.99 ms 120 ms 24.05x

HEVC-FourPeople
7.3 4.88 ms 130 ms 26.64x

7.4 4.99 ms 120 ms 24.05x

HEVC-Johnny
7.3 4.88 ms 120 ms 24.59x

7.4 5.10 ms 140 ms 27.45x

METIS that minimize communication without taking advantage of the available
bandwidth to improve the throughput.

Considering the evolution towards highly variable dataflow applications based
on an increasing impact of dynamic actors, we must target at runtime the best
matching between dataflow graphs and heterogeneous multiprocessor platform.
Thus the mapping must be dynamically adapted depending on data and on com-
munication loads between the computation cores. This is typically the case for
mobile devices that run multimedia applications.
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The problem of mapping a dataflow application, e.g. a network of computational
actors, on a multiprocessor platform can be modeled as a problem of partition-
ing where the cells are the dataflow actors and the partitions are the processors.
While the benefit of executing a computational part by one processor rather than
another one is usually well shown, the migration overhead is also usually not con-
sidered. This chapter presents a dynamic mapping algorithm that is performed
at runtime, based on a single-move possibility that jointly considers the cost and
benefit of possible migrations. The method is first applied on a set of randomly
generated benchmarks with different features and different scenarios. Then it is
applied to a MPEG4 simple profile video decoder with different input sequences.
The results systematically show that the runtime mapping significantly improves
the initial mapping. It is fast enough to be executed at runtime in order to
track the best mapping according to data variations. The other observation is
that not considering the migration cost of the new mapping could lead to worst
performance than the original one.

In comparison with the state of art, the contributions in this chapter can be
stated as follows:

� A fast solution at design time step of hybrid mapping methods while solving
the problem of storage requirements.

� An analytical communication model for estimating the delay (latency) of the
data on the communication media. This communication model is flexible
since it can apply either NoC or Bus based architecture.

� A novel hybrid algorithm, namely Move Based Algorithm, compliant with
Bus and NoC models takes both computation cost and communication cost
while allowing remapping dataflow actors at runtime onto heterogeneous
MPSoC. This algorithm supports the adaptivity at runtime and also takes
migration cost when doing the remapping actor.

59
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� Dealing with modern multimedia applications which are based on RVC-CAL
framework.

� Simulation results with our runtime scenario based simulation for both ran-
domly generated dataflow graphs and MPEG4-SP applications

The remainder of this chapter is organised as follows. Section 4.1 provides
some definitions of the problem. Next, we present a detailed description of our
hybrid mapping algorithm in Section 4.2. Our proposed method is composed of
two main steps. Firstly, the design time gets some information from the appli-
cation model, architecture model and profiling information. In this step, we just
need to find a processing budget as explained in Subsection 4.2.2. By doing this
way, we solve the problem of exploration time and memory footprint as mentioned
above. At second step, we split into two phases, runtime mapping initialization
and runtime remapping to further improve the performance. Section 4.3 intro-
duces the experimental environment and presents the results of our experiments.
Section 4.4 concludes the chapter.

4.1 Problem definition

In this section, we define the problem of runtime mapping of dataflow actors on
heterogeneous multiprocessor platforms. Given a dynamic dataflow application,
which is based on different MoCs, we assume that profiling mechanisms are avail-
able on the target platform so that we can measure at runtime the number of
tokens produced and consumed by each actor as well as the execution time of
actors. We then aim to map the dataflow actors onto various computation and
communication resources with the objective to optimize the application through-
put. Finding a high-quality mapping solution for such a dynamic dataflow ap-
plication on heterogeneous platform is an NP complete problem. This is why we
consider the dataflow application at high-level description and propose a heuristic
approach in order to produce an efficient solution in few milliseconds. In addi-
tion, we have to take load balancing between computation and communication
into account.

4.1.1 Application model

In this chapter, we target the multimedia application domain. We use different
MoCs to specify the application. An application is represented as a directed
graph G = (V,E), where the vertex set V is a set of actors A = [i1, i2, . . . , in] and
the edge set E is a set of FIFO channels. Each FIFO channel carries a sequence
of tokens X = [x1, x2, . . .], where each xi is called a token. Fig. 4.1a shows an
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Figure 4.1: Dataflow graph and architecture platform specified in XDF and SLAM
files respectively

example of dataflow graph. An actor is a computational entity with interfaces
(input and output ports), internal states and parameters. Actors can interact by
exchanging data (called tokens) through channels, unidirectional First In - First
Out (FIFO) buffers. During a process, the actor consumes input tokens, produces
output tokens and changes its internal state. The actors may be compliant with
different models of computation (MoC) and so consume and produce a fixed or
variable number of tokens, additionally the execution time can be more or less
variable. In practice the graph is specified in an XDF file, which is an input of
our mapping algorithm as shown in Fig. 4.2.

4.1.2 Architecture model

The specification of the heterogeneous platform is based on an architecture model
that can include different types of processors with or without hardware acceler-
ators. We consider an architecture model, where each processor has its local
memory (LM) and communicates with other processors through several buses
and shared memories (SM). In this chapter, we consider a heterogeneous platform
where processors communicate via one bus and one shared memory. This archi-
tecture includes one ARM processor and multiple Microblaze processors, which
have different hardware accelerators and frequencies as well. Fig. 4.1b gives an
example of a simple architecture platform with one ARM processor (that can run
the mapping algorithm), two Microblaze (MB) with one hardware accelerator and
all processors communicate through one bus and one shared memory (SM).
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Figure 4.2: Flow overview

4.1.3 Communication model

The latency of a communication medium (bus, NoC) evolves with contention
occurrences. But access conflicts cannot be estimated with simulations when fast
partitioning is required. That is why we propose to use analytical models that can
be updated online if necessary. These models are based on what is observed in
the domain of NoC, where the latency is usually measured for different injection
rates.

In our approach, the communication model gives the relationship between
use-rate and latency since the use-rate can be estimated at runtime according
to mapping decisions or estimates. We propose a generic and parametric com-
munication model as in Fig. 4.3. The aim is to have a unique model that can
fit with different communication standards, which are supported in the platform.
A model is based on two linear functions y1 = a1x + b1 and y2 = a2x + b2, the
intersection between the two curves correspond to the saturation threshold (UT ).
These functions can express the communications of a NoC, i.e. the dashed curve
in Fig. 4.3, or a bus, i.e. the dash-dot line where y1 = y2. In practice the parame-
ters of y1 (a1, b1) and y2 (a2, b2) can be adapted online according to real profiling
as depicted in Fig. 4.2.

The communication latency is so defined as a function of a use-rate on the
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bus, equ 4.1.

fcl(x) =

{
y1 if x ≤ threshold(UT )
y2 otherwise

(4.1)

4.2 Move based mapping algorithm

The move based mapping algorithm can be divided into three steps: pre-
processing (PP), runtime mapping initialization (RMI) and runtime remapping
(RR). In the pre-processing step, the goal is to quickly find an initial average
period. Therefore, PP ignores communication cost and memory capacity. It
computes the initial average period based on a minimum execution time of each
actor on the heterogeneous platform from the profiling data. Then, the RMI
uses this initial average period as an input to specify a processing budget for all
processors. The objective of this process is to maximize the system throughput
while considering both computation cost and communication cost at RMI step.
In order to further improve the system performance at runtime, the RR step tries
to do a remapping and makes a trade-off between the cost of remapping and the
mapping performance improvement. The details of three steps are explained in
the following subsections.

4.2.1 Parameters and evaluation metrics

In this section, Table 4.1 presents all the parameters and variables used to for-
malize our move based algorithm. Then, some metrics, which are necessary to
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evaluate the mapping quality of dataflow actors, are defined.

Table 4.1: Parameters and variables used for the mapping algorithm

Parameter Definition

DPN application graph (DPNapp)

|A| Number (Nb) of actors

|F| Nb of FIFO channels

Architecture graph (arch)

|P| Nb of processors

MCodej Code memory size of processor j

MDataj Data memory size of processor j

Freqj Frequency of processor j

Profiling data (profile)

Ri Nb of firings of actor i per iteration

W i Total computation time of actor i

Csi Instruction code size of actor i

W e
k Amount of data on channel k

Tij Execution time of actor i on processor j

Tc Communication time per token

Prodk, Consk Nb of token produced & consumed on k

The total computation cost of actor i is the sum of computation times of this
actor on all processors on the heterogeneous multiprocessor platform. It means
that all processors can execute all actors, otherwise the average computation cost
can be used instead. This parameter is computed as the metric for the first
sorting in our heuristic algorithm:

W i =
∑
j∈P

Ri ∗ Tij ∀i ∈ A (4.2)

The amount of data on channel k stands for the number of tokens, which transfer
between the source actor and the destination actor of this channel:

W e
k (src, dst) = Rsrc ∗ Prodk +Rdst ∗ Consk ∀k ∈ F (4.3)

Instruction memory usage of processor j is the total code size of all actors, which
are mapped on this processor:

memUsagej =
∑

i:P[i]=j

Csi ∀j ∈ P (4.4)

Computation time of processor j is the sum of the execution time of all actors
which are mapped on this processor:

compTj =
∑

i:P[i]=j

Ri ∗ Tij ∀j ∈ P (4.5)
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Communication time of each processor is the total communication time of all
actors, which are mapped on this processor. Our analytical communication model
is employed to compute commTj:

commTj =
∑

i:P[i]=j

0.5 ∗ fcl(x) ∗ comm(i) ∗ Tc (4.6)

where comm(i) is defined as the total number of tokens transferred on the com-
munication media of actor i.

Period of each processor is the sum of total computation time and total com-
munication time:

Periodj = compTj + commTj ∀j ∈ P (4.7)

Throughput is defined as the inverse of the maximum period that takes the longest
time to execute one iteration of all actors mapped to its processor.

Th =
1

max
j∈P

(Periodj)
(4.8)

Comp. time

Comp. time

Comp. time

Comm. time

Comm. time

Comm. time

P3

P1

P2

t
Maximum Period

Figure 4.4: An example of maximum period

Fig. 4.4 presents an example of the measured periods during one iteration
on 3 different processors in a heterogeneous platform after mapping a dataflow
application. Given a partition, regardless of the scheduling, the period with
the longest duration imposes on the lower bound of the throughput. In order
to maximize the system throughput, we turn this objective to minimize the
maximum period.

4.2.2 Pre-processing - PP

Since the dynamic behaviors of modern video applications make them difficult
to predict at design-time, the pre-processing step, which is outlined in algorithm
2, is based on low-cost profiling analysis of the execution time. Consequently,
we assume that profiling mechanisms are available on the target platform. The
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algorithm 2 gets data from a default profiling (line 1 in Algo. 2) that gathers
the execution time of each actor on different processors. Then, for each actor,
the function SelectMinExe returns the value of the minimum execution time of
the given actor among the processors (line 3 in Algo. 2). In other words, each
actor has the best performance in terms of execution time on the platform. This
step helps to compute the initial period of each processor without considering
the communication time. However, this step may lead to a solution where all
actors will be mapped on their best processors. It means that some processors
are not used while others have a lot of actors. We expect a load balancing among
processors, so we calculate an initial average period (line 5 in Algo. 2) and use
this value as a processing budget for all processors.

Algorithm 2 Pre-processing - PP
Input: DPNapp, arch, profile
Output: initial average period

1: getInitExe(A,P,profile)
2: for all i ∈ A do
3: initSum+=SelectMinExe(i,P,profile)
4: end for
5: initPeriod=initSum/|P|
6: return initPeriod

4.2.3 Runtime mapping initialization - RMI

4.2.3.1 Algorithm principle

In this subsection, we inherit GB4M2 from our work in [46]. We propose a
modified greedy algorithm combined with a speculative approach to find a good
initial mapping. This choice is motivated by the objective of being fast to produce
a solution while considering all the constraints of the problem. In contrast to
conventional existing mapping strategies, our method differs in following aspects:
i) it relies on a factor called alpha (α), which represents a ratio of processor
cycle budget considered during the first step (computing-oriented) mapping; ii)
it takes into account both computation and communication workloads; iii) it
performs both actor and data mappings. Our RMI algorithm, which is outlined
in Algorithm 3, can be divided into a computation phase and a communication
phase.
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Algorithm 3 Runtime mapping initialization - RMI
Input: DPNapp, arch, profile, α
Output: mapping of actors and data

1: {computation phase}
2: LA1← Actor sorting Tcomp(A,P)
3: while procUse ≤ α do
4: k ← index first(LA1)
5: map actor Tcomp(k, arch)
6: procUse← min

j∈P
(procUsej)

7: k ← k + 1
8: end while
9: {communication phase}

10: period estimate ← procUse
11: if k < |A| then
12: LA2 ← actor sorting Tcomm(k,in out comm(k))
13: tcommG←

∑
k∈index(LA2)

(in token(ik) + out token(ik))

14: latency ← Linit
15: Tcomm← 0.5 ∗ latency ∗ β ∗ tcommG
16: Cuse← Tcomm/period estimate
17: end if
18: for all i ∈ LA2 do
19: update latency
20: for all j ∈ |P| do
21: tcommGuessj(i, arch)
22: periodGuessj(i, arch)
23: end for
24: map actor Tcomm(min(periodGuessj), arch)
25: update procUse
26: update Tcomm
27: update Cuse
28: end for
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4.2.3.2 Computation phase

We introduce a factor α, which represents a ratio of the processor budget. This
factor can vary in the range of ]0, 1]. In this step, the algorithm performs a
sorting of all actors in a descending order with respect to the value of their total
computation cost (W i) Eq. 4.2. A fast sorting algorithm (a bubble sort in the
current version) is used. Then, the algorithm picks up the first actor i in the
sorted list LA1, i.e. the actor with the largest computation cost. Next, the
algorithm selects the best processor, in the list of available processors, according
to the minimum Tij. When the current actor is mapped (line 5 in Algo. 3),
the algorithm updates the processing use (line 6 in Algo. 3) of the selected
processor. At the beginning, all processors are available. As long as the actors
are mapped, the processors are removed from the available list if the memory
capacity is exceeded or if the processing use (ProcUse) is greater that the factor
α. Then the algorithm selects the next minimum execution time of this actor on
the remaining available processors. This approach is a modified first-fit decreasing
bin-packing heuristic, which is a straightforward greedy approximation algorithm.
The algorithm applies the same procedure for the next candidate in the first
sorted list until the processing use of all processors is greater than α, which is a
percentage of the processor budget.

4.2.3.3 Communication phase

The communication phase starts with the remaining actors, which are not
mapped. Then, it applies the second sorting for all unmapped actors. This
sorting is based on total incoming and outgoing data for each actor. The idea is
to take the communication cost into account in this phase. Hence, the algorithm
takes the first actor in the second sorting list and considers all the connections
with other actors in the network. If this actor and its adjacent actor are mapped
on the same processor, the communication time is zero. In order to deal with
unknown information when we estimate the use-rate of the bus (% usage of avail-
able bandwidth), we introduce a factor β that represents the ratio of remaining
data transfers associated to unmapped actors that will use the communication
media (e.g. bus). Then the latency is estimated with the communication model
(Fig. 4.3) and the algorithm makes a decision of mapping. Then, the algorithm
applies the same procedure for the next unmapped actor in the second sorting
list.

Fig. 4.5 gives an example of a graph application, which includes 7 actors
{i1, i2, . . . , i7}. The target platform has three processors {P1, P2, P3}. In the
computation phase, actor i1, i3 and i5 are mapped on P2, P3 and P1 respectively.
Then, we have the remained actors with the second sorting list LA2={i2, i6, i4, i7}.
In order to map actor i2, the algorithm takes into account all communication
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Figure 4.5: Example of a graph application

(line 21 in Algo. 3) between i2 and its adjacent actors in the graph application.
At this step, i6 is not mapped so tcommGuessj(index(i2), 3) = latency ∗ {(4 +
2 + β ∗ 6), (4 + 3 + β ∗ 6), (2 + 3 + β ∗ 6)}. From this information, the algorithm
computes periodGuessj (line 22 in Algo. 3). Then, the algorithm decides to map
actor i2 on a processor, where i2 has the minimum value of periodGuess. Next,
the algorithm updates the procUsej, Tcomm and Cuse (line 25 to 27 in Algo.
3). All actors in {i6, i4, i7} follow the same procedure as actor i2.

4.2.4 Runtime remapping - RR

After the first mapping is found, the application is launched and the system
monitors the workload. The RR is activated to determine whether or not a
performance arises and then make a decision of remapping. All procedures of
RR step are presented in Algorithm 4. We modify the Fiduccia and Mattheyses
algorithm (FM) [114] in terms of actor moves and gain concept to apply in our
context. The cost of remapping tries to balance between migration cost and
performance improvement.

Costremap = max(gainT (i)) (4.9)

Where the gainT is the gain of moving actor i from current processor to another
one.

The main steps of our RR algorithm are described below.

4.2.4.1 Finding the possible moves

The RR starts with an initial mapping obtained from RMI solution, while FM
uses an initial random mapping. The algorithm inherits the idea of “cell moves”
from FM and changes to a concept of “actor moves”. This “actor moves” allows a
significant time complexity improvement since we do not need all-pair swap gain
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computation like in Kernighan and Lin algorithm [114]. Instead of considering all
actor moves as in FM [114], we limit the number of actor moves where only actors
on the processor with maximum period are moved to other processors. Indeed,
the study of migration cost in the context of real-time system is very expensive
[115], [116]. Moreover, we need a very fast algorithm, in order not to disrupt
operation for long. Therefore, we just need to find the processor which has the
maximum period.

Firstly, we get the information of initial actor mapping (line 1 in Algo. 4)
based on RMI solution. According to the changing of workload, we update the
period of each processor. Then, we find the maximum initial period (line 3 in
Algo. 4). At the end of this procedure, we have a list of actor move candidates
(C), which belong to the processor with maximum period.

Algorithm 4 Runtime remapping - RR
Input: graph, arch, init map, profile
Output: a better mapping

1: get mapping info(graph, arch, init map, profilie)
2: ActorMove estimation(graph, latency,move)
3: C← compute maxPerI()
4: for i ∈ C do
5: Move gain(graph, latency, initL, arch, profile)
6: PerG(i) {equation 4.11}
7: Costmig(i) {lose cache miss}
8: end for
9: selectmax

i∈C
(gainT (i))

4.2.4.2 Trade-off between migration cost and performance improve-
ment

We perform the following three steps before making the decision of actor move:
(i) unlock all actors in the list of actor move candidates, (ii) compute the gain of
performance and a migration cost, and (iii) find the maximum gain. We repeat
three steps at every move until all actors in the list are locked. Since FM applies
for bipartitioning problem, we modified the gain concept of FM, which can handle
multi-way partitioning problem as in [117].

In this chapter, the impact of actor migration is considered when doing the
remapping of dynamic dataflow application. Some researches in [45], [116] and
[107] show the important role of the migration cost of multimedia applications
on embedded multiprocessors. Different mapping may incur different migration
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cost [45]. In order to simplify, we make the assumption that all the binary code
of actors are contained in a shared memory. The cost of actor migration is
proportional to the size of the binary code compiled for the processor travelling
on a communication media in a platform. Therefore, we compute the migration
cost as a function of cache miss (Eq. 4.10) that happens when moving actor from
one processor to another one. More sophisticated models can be proposed but we
believe that in the context of runtime mapping of dynamic actors/applications a
simple model is enough (an accurate model would be very complicated to model
all the dynamic aspects).

Costmig(i) = fcl(x) ∗ Csi (4.10)

Our MBA algorithm tries to minimize the maximum period to obtain a max-
imum performance in terms of throughput. In other words, we can obtain a
better mapping when a maximum new period is less than the maximum initial
period. We define maxPerI as the maximum initial period. The maxPerN is the
maximum new period, which is obtained after moving actor to other processors.
Then, we have the performance improvement PerG in terms of period as in Eq.
4.11.

PerG(i) = maxPerI −maxPerN(i) (4.11)

Finally, we get the gainT, which is a trade-off between migration cost (Eq.
4.10) and performance improvement (Eq. 4.11) as in Eq. 4.12. We select the
actor with the maximum gainT to move. The gain of moving actor i from current
processor to another one is computed:

gainT (i) = PerG(i)− Costmig(i) (4.12)

Table 4.2: Example of actor move candidates - At time t1, t2 and t3

time actorm CostmigP1 maxPerNP1 gainTP1 CostmigP2 maxPerNP2 gainTP2 CostmigP3 maxPerNP3 gainTP3 CostmigP4 maxPerNP4 gainTP4

t1
i5 141.01 159251.86 -63779.24 x x x 140.93 120064.4 -24591.7 140.99 113228.34 -17755.7

i6 96.8 109489.48 -13972.66 x x x 96.82 91865.92 3650.89 96.86 91865.95 3650.81

t2
i5 141.01 162131.86 -66649.84 x x x 140.92 122104.77 -26622.67 140.99 114677.75 -19195.71

i6 96.79 108280.07 -12753.84 x x x 96.81 93065.92 2460.29 96.86 93065.95 2460.21

t3
i4 x x x 491.15 175831.22 -82905.95 490.71 125350.86 -32425.16 490.83 117917.62 -24992.04

i1 x x x 87.17 115639.17 -22309.93 87.17 89700.34 3628.9 87.21 89700.39 3628.82

As an example, let’s consider the application graph, composed of the network
of actors A = [i1, i2, . . . , i7], as shown in Fig. 4.5 on a heterogeneous platform in-
cluding 4 different processors, P = [P1, P2, P3, P4]. Table 4.2 shows the results
of the estimation of gainT at different time steps. We assume an initial map-
ping as P1{i4, i1}, P2{i5, i6}, P3{i3}, P4{i7, i2}. From this result, the maxPerI
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is 95613.62 time units. The maxPerN , Costmig and gainT in Table 4.2 are ex-
pressed in time units. According to the profiling workloads, at time t1 and t2,
we have the maximum period on processor P2. Hence, the RR estimates gainT
when moving i5 and i6 from P2 to the other processors. At time t1, we have the
maximum gain when moving actor i6 from processor P2 to processor P3. At time
t2, we get the same result of remapping with different gainT value. As a result,
we obtain a new mapping as P1{i4, i1}, P2{i5}, P3{i3, i6}, P4{i7, i2}. At time t3,
the maximum period is now on processor P1, which has actor i4 and i1 and if
actor i1 moves from processor P1 to processor P3, we can expect the maximum
gainT . The new mapping is P1{i4}, P2{i5, i6}, P3{i3, i1}, P4{i7, i2}. This table
shows how the algorithm selects an actor from a list of candidates.

4.2.5 Runtime scenario based simulation - RSS

RSS is used to test and compare the performance of runtime actor mapping algo-
rithms with various scenarios. We provide a mechanism for generating different
scenarios that can be used as benchmarks. The goal is to simulate the behavior
of dynamic actors in an application graph. We have three graph applications,
where each actor in the application graph has different standard deviations. To
simulate different input videos, we create 3 scenarios for each application graph.
They are different in terms of percentage of dynamic actors. Since we consider
the application model based on different MoCs. This also means that each ap-
plication model may contain both static actors (SDF, CSDF . . . ) and dynamic
actors (KPN, DPN). We define the percentage of dynamic actors as the ratio of
number of dynamic actors over number of actors in the application graph. Each
scenario has 100 time steps and contents information of execution time of dy-
namic actors, which varies from time to time for different processor types on the
heterogeneous platform.

Table 4.3: Various scenarios in each application graph

Graph |A| |F| NbScenario Nbtime-steps/scenario

1 20 38 3 100

2 40 110 3 100

3 60 158 3 100

Table 4.3 shows the various scenarios in each application graph. We generate
different scenarios by using Gaussian distribution defined by Eq. 4.13. A normal
distribution is

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.13)
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� The parameter µ is the mean or expectation of the distribution

� The parameter σ is its standard deviation

We also have the minimum and maximum parameter for the generation func-
tion. In order to specify the number of dynamic actors for each application graph,
we introduce the δ parameter, which is defined as the ratio of dynamic actors in
each application graph. Then we apply the generation function for these dynamic
actors to create different scenarios. The following steps describe how to create
different scenarios:

1. Use SDF3 tool [37] to generate XDF file that contains the structure of
the graph. This file also provides the profiling information of actors and
channels in the graph

2. Create a data file to contain only workload information both in computation
and communication

3. Choose a percentage of dynamic actors of the graph and specify the dynamic
actors

4. Use our mechanism with the data file (step 2) to generate execution time
of the dynamic actors at different time steps

5. Change the percentage of dynamic actors (step 3) and follow step 4 to have
another scenario

4.3 Experimental results

In this section, we present the results of our experiments by exploring different
aspects of our MBA algorithm of runtime mapping of dataflow actors on the
heterogeneous multiprocessor platforms. We apply our MBA algorithm for both
generated dynamic dataflow and real dynamic dataflow application. In order to
evaluate our heuristic approach more thoroughly, we make the comparison with
[46].

4.3.1 Setup environment

For the generated dynamic dataflow applications, we use SDF3 tool [37] combined
with our RSS to generate dynamic workload scenarios at different time steps. For
the real dataflow applications, we test our methodology with MPEG4-SP Part 2
Simple Profile (MPEG4-SP). Implementation of MPEG4-SP is carried out with
ORCC [31] tool as in [71]. The System-Level Architecture Model (S-LAM) [38]
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is employed for the specification of different sets of heterogeneous multiprocessor
platforms. The number of processors varies from 4 to 8, combined with several
hardware accelerators. All experiments were conducted in Linux environment on
HP ProBook with core i5-2520M CPU@2.5GHz and 8GB memory.

4.3.2 The need of runtime remapping

In this subsection, we illustrate the variation in terms of workload for different
MPEG4 video sequences. We take into account both computation workload and
communication workload, which are computed as in Eq. 4.14 and Eq. 4.15,
respectively. We formulate Eq. 4.14 and Eq. 4.15 based on these definitions in
[14]. In this chapter, we use the term “workload” to represent both computation
and communication workload.

The computation workload of an actor is defined as the ratio of its computa-
tion time in a given time interval.

Compw(i) =
W i∑

n∈A
W n

∀i ∈ A (4.14)

The communication workload of a channel is measured as a ratio of the number
of tokens over the total number of tokens in a given time interval. It has to
be noticed that computing the workload on the produced or consumed tokens
only is enough. Indeed, all produced tokens are also consumed. Computing the
workload with the consumed tokens also will just double the number of tokens
and the ratio will still be the same.

Commw(k) =
Prodk∑

f∈F
Prodf

∀k ∈ F (4.15)

This work is a direct use of the work presented in [35] with a slight modification
for the sliding time window profiling used in section 4.3.5.

We use the GB4M2 algorithm [46] to find a mapping solution for each MPEG4
video sequence. According to profiling information, we obtain different mapping
results for different input MPEG4 video sequences on the same target platform.
This difference can be explained by the fact that we have some dynamic actors
in MPEG4-SP decoder. Moreover, different input video sequences have different
variation in terms of workload. In order to demonstrate the dynamic behaviors,
we keep the same mapping solution at different time step. In this experiment,
we observe that the change concerns not only the computation time but also the
communication time for each video sequence and every 10 frames (Fig. 4.6). The
communication time has fewer variations because we apply the same mapping
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solution at every 10 frames. We observe 3 input video sequences from [118]:
foreman, stefan and coastguard during the length of each video. There are more
complex movements in the foreman video than the coastguard video, so that we
can see more dynamic behaviors of the foreman video as shown in Fig. 4.6a,
4.6c. The result shows that the workload varies over the time. This means that
we should have an adaptive algorithm for mapping at runtime. In conclusion,
these differences clearly demonstrate the need of runtime remapping for dynamic
dataflow actors.

4.3.3 Generated application graphs

We use three generated application graphs which are created by SDF3 tool [37]
and our RSS, as explained in subsection 4.2.5. The properties of application
graphs were described in Table 4.3. There are 3 dynamic application graphs with
the number of actors that varies from 20 to 60. Considering the reference in
[36], the MPEG4-SP application contains up to 45% of dynamic actors, so we
create 3 scenarios with percentage of dynamic actors varied from 20% to 60% for
each application graph. Token transfers on each channel, in/out degrees of actors
are randomly created within minimum and maximum bounds and with different
average and variance.

We then apply our mapping flow for each scenario on a heterogeneous platform
that includes 4 processors with different hardware accelerators. We assume that
the actors can be executed by all different processor types on the heterogeneous
platform.

As it can be seen, MBA achieves better throughput at different time steps of
all scenarios in Fig. 4.7, Fig. 4.8 and Fig. 4.9. During the experiments, we ob-
serve that the variation in workload of the dynamic dataflow applications makes
a significant impact on the performance. The more the workload varies, the more
dynamic behaviors we have. This is true for all scenarios. This observation also
confirms that we can not keep the same mapping for all input video sequences
even with the same video decoder.
For instance, in Fig. 4.7c, we have a list of actor move candidates
{i5, i10, i6, i18, i17} on processor 3 after applying RMI algorithm. Then we use
RR algorithm to obtain 2.47% speedup when moving actor i10 from processor 3
to processor 4 at time step 16. From time step 17 to 30, actor i17 is selected to
move from processor 3 to processor 1 to achieve the performance improvement.
During this time, the maximum speedup is 18.32% at time step 26.

Fig. 4.10 shows the range of speedup, from min value to max value, when
applying MBA algorithm for all scenarios of different application graphs. We
observe the range of speedup of 3 graph applications as in Table 4.3. As it can
be seen, in graph application with 20 actors, when we increase the percentage
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(a) Foreman

(b) Stefan

(c) Coastguard

Figure 4.6: Variation in both computation time and communication time of dif-
ferent input video sequences
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(a) Scenario 1 - 20% of dynamic actors (b) Scenario 2 - 40% of dynamic actors

(c) Scenario 3 - 60% of dynamic actors

Figure 4.7: Application graph with 20 actors and 38 channels

(a) Scenario 1 - 20% of dynamic actors (b) Scenario 2 - 40% of dynamic actors

(c) Scenario 3 - 60% of dynamic actors

Figure 4.8: Application graph with 40 actors and 110 channels
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(a) Scenario 1 - 20% of dynamic actors (b) Scenario 2 - 40% of dynamic actors

(c) Scenario 3 - 60% of dynamic actors

Figure 4.9: Application graph with 60 actors and 158 channels

Figure 4.10: Speedup in different scenarios
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of dynamic actors in the application, we get more dynamic range of speedup in
terms of performance. However, this is not true for other graph applications with
40 actors and 60 actors. This typically happens when less dynamic actors are
mapped on the processor with maximum period.

In these experiments, we observe that the frequency of moving does not hap-
pen fast. In other words, we can have the same mapping at different time step
(time interval) with different performance improvement. This is an interesting
result since it leads to an idea to have a parameter in MBA algorithm to make
a decision of remapping, move an actor from one processor to another one, at a
good time. This parameter is defined as percentage of performance improvement
and makes our algorithm more adaptive. For example, after we select the best
actor move candidate in the list, if we estimate the performance improvement
greater than 5% then the decision of moving is made. Otherwise, we keep the
current mapping. In some cases, if we do a remapping actor, we gain a very small
speedup. The results also illustrate our MBA algorithm can deal with a wide
variety of dataflow application model.

4.3.4 Impact of migration cost at runtime

In order to demonstrate the impact of migration cost, we use three different com-
munication models in Fig. 4.11a for the same scenario. Fig. 4.11b presents the
results of number of actors that need to be migrated to improve the performance
when applying our MBA algorithm for graph application with 20 actors and 38
channels. This application has three scenarios. As mentioned before, scenario 1
has 20% of dynamic actors, scenario 2 has 40% of dynamic actors and scenario
3 has 60% of dynamic actors. Different colors indicate the number of migrated
actors from different scenarios. We run 100 time steps for each scenario. We ex-
plore the behavior of all three runtime scenarios for changing the communication
models (c1, c2 and c3). Fig. 4.11b shows that the number of migrated actors
decreases when the available bandwidth decreases. With communication c3, we
cannot enhance the performance of scenario 1 as well as scenario 2 by remapping
actor because we have a limited available bandwidth. For scenario 3, although we
have the same number of migrated actors for different communication models, we
can not have the same actor move because of the different migration costs. We
also see that different workload scenarios may have different number of migrated
actors on the same platform at the same time interval.

4.3.5 Real application graphs

We use MPEG4-SP video decoder, which is developed by the RVC group. Ta-
ble 4.4 describes the properties of MPEG4-SP, as well as the number of actors and
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Figure 4.11: Impact of migration cost at runtime

FIFO channels. The C code of these decoders are generated with Orcc tool [31].
Some options in the tool can allow for generating additional code for intrusive
profiling. In these experiments, we obtain the runtime profiling workload by using
two ways: one bases on the average time (AT10), i.e. updating profiling work-
load after 10 frames, another one bases on sliding time window (STW10), i.e.
updating profiling workload every 10 frames. All actors are classified [36, 27] as
different MoCs such as SDF, CSDF, KPN and DPN. All experiments made from
different video sequences. In particular, Foreman, Stefan and Coastguard videos
are used as input videos of MPEG4-SP decoder. The resolution of all MPEG4-SP
videos is 352x288, which corresponds to CIF format.

The first profiling is performed on a desktop computer. For these experiments,
we specify the size of the FIFO channels used for communication between 512
and 8192 bytes. We introduce some usual hardware accelerators as in Table 4.5.
These hardware accelerators can provide significant speed-up when associated
with Microblaze (MB) softcore on Xilinx FPGAs. We consider in this example
a heterogeneous platform based on 1 ARM and 7 MB processors. By using S-
LAM modelling, we specify various hardware accelerators in the heterogeneous
platform detailed in Table 4.5.

Table 4.4: Properties of MPEG4-SP video decoder

Decoder Profile YUV #Actors #FIFOs

MPEG4 Part 2 SP yes 41 104

Fig. 4.12, 4.13 and Fig. 4.14 present the results in terms of throughput
(frames per second). We have better throughput in comparison with the hybrid
approach without runtime remapping in [46]. We enhance the throughput by
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Table 4.5: Accelerators used in platform 7.1

Platform MB1 MB2 MB3 MB4 MB5 MB6 MB7

7.1 Merger IDCT Parser Inter IQ+IAP Add IDCT

taking into account the dynamicity to do the remapping of an actor at runtime.
In addition, we realize that the way using to obtain runtime profiling workload
also affects the system performance at runtime. In case we update runtime pro-
filing workload every 10 frames (STW10), we observe more variable in terms of
runtime system throughput than the input runtime profiling workload with the
average time manner. At the first 10 frames, we should have the same runtime
profiling workload for each video sequence but the results show a slightly differ-
ent throughput as in Fig. 4.12, 4.13 and 4.14. This can be explained that the
runtime profiling mechanism with average time or STW10 manner use Eq. 4.14
and Eq. 4.15 to compute the workload. As a definition of workload in [14], the
workload of a processor is the sum of the workloads of all its actors plus a small
overhead introduced by their scheduling. As a result, the scheduling makes a
slightly different throughput at the first 10 frames of each video sequence.

Figure 4.12: Foreman - Platform 7.1

Our runtime solution improves the performances by adapting the mapping
at runtime according to observations. However the observation window has an
impact on the dynamicity and the performance results. The best choice for the
runtime profiling method actually depends on the video sequence. For instance,
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Figure 4.13: Stefan - Platform 7.1

Figure 4.14: Coastguard - Platform 7.1
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the result in Fig.4.13 displays the best improvement with the input runtime pro-
filing workload using a full average computation from frames 20 to frame 80.
This behavior also happens with foreman video sequence from frame 10 to frame
70, but the STW10 method offers better results from frame 130 to frame 270. In
Fig. 4.14, we also see a slight improvement due to STW10 method compared with
the one based on AT10. To investigate the dynamicity of workload, we compute
a standard deviation of a period, the sum of total computation time and total
communication time, at every 10 frames during their whole video lengths. We
observe that different input video sequences have different standard deviations.
Foreman video has the value of standard deviation of 12795 while it is 9020 and
7171 for stefan and coastguard videos respectively. As can be seen in Fig. 4.6,
foreman video sequence is more dynamic than the others. Our conclusion is that
a sliding window is a promising solution for runtime adaptation, the choice of the
window length can be fixed to default value (e.g. 20) but it may be refined ac-
cording to the variation rate of the video sequence. This second-order adaptation
is a part of our future work.

Table 4.6: Solving time of Runtime remapping algorithm on Zynq platform

Input video Platform Runtime remapping

Foreman 7.1 43.55 ms

Stefan 7.1 54.07 ms

Coastguard 7.1 54.01 ms

As indicated in Table 4.6, we measure the solving time of runtime remapping
algorithm executed on ARM processor with different input video sequences. RR
algorithm took 43.55 ms on average for finding the better mapping while consid-
ering the tradeoff between performance improvement and migration cost. The
results show that our RR algorithm is fast enough to do a remapping at runtime.

4.4 Conclusion

This chapter is based on two observations. First dataflow applications will use an
increasing number of dynamic actors with variable execution and communication
times. Secondly the energy efficiency and performances of embedded system can
be significantly improved by means of heterogeneous architectures. As a response
to the question of dynamicity and the need for performances, we introduce a novel
algorithm for runtime actor mapping on heterogeneous multiprocessor architec-
tures.
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The originality of the proposed solution is a move-based algorithm adapted to
the context of data flow applications. Our approach is fast and designed to handle
runtime variations. It deliberately relies on simple analytical models for commu-
nication latency and migration costs. These models can be simply adapted to
different architecture templates and tuned at runtime according to real observa-
tions. We investigate different aspects of our MBA algorithm to improve system
performance by offering the remapping solution at runtime. Our approach has
been firstly validated with large sets of synthetic graphs and execution scenarios.
Secondly it has been validated with real video sequences and architecture models
based on Xilinx Zynq devices. Our results demonstrate that significant improve-
ments of throughput can be obtained with a highly flexible MBA algorithm. The
proposed solution fits with the Reconfigurable Video Coding paradigm, and is
compliant with the ORCC framework. According to the evolution of video stan-
dard, it is designed to start with profiling data performed offline, that can be
delivered in the header of a video file. Then it adapts the mapping choices ac-
cording to runtime observations based on a profiling window that can be tailored
to application dynamicity.
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Conclusion

5.1 Conclusion

There are widespread standards of multimedia applications with increasing com-
plexity and dynamicity, such as video codecs, that impact the evolution in design
methodologies of multimedia embedded systems. Actually, today embedded sys-
tems are becoming increasingly more complex to support a large number of ap-
plications or functions in a single device, making traditional analysis techniques
unsuitable. More and more processors are integrated into a single chip namely
MPSoCs. The trend moves toward heterogeneous MPSoCs to achieve higher per-
formance while saving energy. In the application domain, dataflow MoC shows
a powerful perspective on parallel computations at high level descriptions. As a
result, the designers have to provide an efficient mapping methodology for such
modern multimedia application on heterogeneous multiprocessor platforms with
respect to time to market and cost demand requirements. Additionally, a reusable
and flexible mapping method is also required in order to deal with the evolution
of current and future multimedia embedded systems.

To provide re-usability and flexibility in such embedded systems, we rely on
the Y-chart combined with platform based design approach, which facilitates
rapid system modifications concerning the application, architecture and map-
ping. Since MPEG RVC allows reconfiguration and re-usability and also provides
platform-independent dataflow models, we consider the real world RVC-CAL ap-
plications, which are based upon the general DPN model. The fact is that these
dataflow applications are complex and dynamic. Fortunately, they are far from
being entirely dynamic, which means that parts of dataflow application can be
modeled as static. For example, MPEG4 SP has up to 45% of dynamic actors.
Because of the variation workload in both computation and communication, the
complete analysis at design time is not feasible. Existing techniques of run-
time mapping are still nascent development and lack of complete environment
to bridge the gap between hardware efficiency and software flexibility. Thus an
efficient runtime mechanism is required to handle this dynamism.

85
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In Chapter 3, a novel runtime mapping algorithm for heterogeneous MPSoCs
is presented. This approach relies on hybrid method, which combines DSE at
design time and the system status at runtime to select the best mapping of
newly arriving actors. This algorithm addresses computation and communica-
tion jointly with a simple analytical communication model. We use an abstract
model, which allows to easy model MPSoC interconnects. This communication
model can capture either Bus-based or NoC-based architectures. By introduc-
ing processing budget for each processor, we also avoid memory overhead, which
may occur in existing hybrid approaches as they need to store analysis results
found at DSE. Our solution is extremely fast and can be used at runtime for
the mapping of actors of dynamic dataflow applications for which, by definition,
no optimal solution can be found offline. Reconfigurable video coder is a typical
domain where such a solution is required. Our algorithm outperforms the fast
METIS partitioning algorithm. We demonstrate on a large set of representative
synthetic graphs as well as on MPEG4-SP and HEVC real life examples that
our algorithm is at least one order of magnitude faster (hundred of µs) on an
ARM embedded processor, while producing better performance when the alpha
parameter is larger than 0.4. Our approach is between two extreme partitioning
techniques: solutions that consider bandwidth as available but do not take it into
account and methods like METIS that minimize communication without taking
advantage of the available bandwidth to improve the throughput.

Further, we present a move-based algorithm for runtime remapping dataflow
actors in Chapter 4. This solution is based on a pragmatic approach with two
observations. Firstly dataflow applications will use an increasing number of dy-
namic actors with variable execution and communication times. Secondly the
energy efficiency and performances of embedded system can be significantly im-
proved by means of heterogeneous architectures. As a response to the question
of dynamicity and the need for performances, we introduce a complete algorithm
for runtime actor mapping on heterogeneous multiprocessor architectures.

The originality of the proposed solution is a move-based algorithm adapted
to the context of data flow applications. Our approach is fast and designed
to handle runtime variations. It deliberately relies on simple analytical models
for communication latency and migration costs. These models can be simply
adapted to different architecture templates and tuned at runtime according to
real observations. We investigate different aspects of our move-based algorithm
to improve system performance by offering the remapping solution at runtime.
Our approach has been firstly validated with large sets of synthetic graphs and
execution scenarios. Secondly it has been validated with real video sequences and
architecture models based on Xilinx Zynq devices. Our results demonstrate that
significant improvements of throughput can be obtained with a highly flexible
move-based algorithm. The proposed solution fits with the Reconfigurable Video
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Coding paradigm, and is compliant with the Orcc framework. According to the
evolution of video standard, this solution is designed to start with profiling data
performed offline, that can be delivered in the header of a video file. Online, it
is possible to execute a runtime mapping before playing a movie if the header
contains the require information such as network of actors and profiling data.
Then it adapts the mapping choices according to runtime observations based on
a profiling window that can be tailored to application dynamicity.

5.2 Perspectives

This thesis presents the solutions for different aspects in mapping methodolo-
gies of dataflow applications on heterogeneous platforms. However, this work
can serve as basis for future researches. Some promising issues in the method-
ologies remain to improvement for future implementation on real heterogeneous
platforms.

5.2.1 Short term

� Applications: The trend moves toward more expressive model required
by today’s and upcoming applications while the designers want to know
how the applications would perform with the given resources. Thus, we
need to have benchmarks, which would help to further understand dynamic
behaviors. For instance, if we have the information of the standard deviation
of each actor in an application at every n frames, we can reduce the solving
time of the remapping phase because we can reduce the number of actor
move candidates. This understanding could enrich the heuristics developed
in this work.

� Profiling mechanism: Currently, we assume that the profiling mechanism
is available on the platform. The mapping algorithm makes decisions based
on profiling information at runtime. This imposes a challenge to have an
efficient profiling tool embedded in the architecture to monitor accurate
information without degrading the overall system performance.

� Reliability: In order to reduce occurrence of faults in the systems, it
requires to have preventive measures, which are available on a platform.
The current version of our algorithm does not take this information into
account. With this kind of information, the mapping algorithm can avoid
faulty processors on the platform. For example, when a system detects a
faulty processor, the mapping solution will do a remapping of application
on the remaining processors.

Runtime mapping of dynamic dataflow applications on heterogeneous multiprocessor platforms Thanh Dinh Ngo 2015



88 Conclusion

5.2.2 Long term

� Adaptive runtime manager: In this study, we propose some parame-
ters, which make our solution more flexible and adaptive at runtime. The
heuristics in this study aim at performance improvement and efficient im-
plementations. However, we do not have a real runtime manager, which
would allow for measuring and gathering the current system status. This
would help to tune the analytical model proposed in this study to the ap-
plication. Additionally, future work should focus on making the algorithms
energy-aware in order to exploit for energy efficiency. Nonetheless, this will
need energy measurement techniques at the electronic system level.

� Memory mapping: Mapping of dataflow application has to assign not
only actors to processors but also FIFO channels to memory components.
In our approach, the shared memory contains the communication channels
that connect two actors mapped onto two different processors. The lo-
cal memory contains the communication channels that connect two actors
mapped on the same processor. However, the implementation of FIFOs
channels of RVC-CAL applications require the ability to check the num-
ber of tokens available during the execution due to the firing rule of DPN
model. This makes the implementation of FIFO channels quite challenging.
Additionally, memory architectures may affect an efficient implementation
of dynamic dataflow application. Thus we need to have a smart memory
architecture to deal with non-deterministic of DPN model concerning the
checking of incoming tokens without consuming them, to evaluate which
action will be fired.
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