L. Austin, J. Austin, and C. Leondes, Statistically Linearized Estimation of Reentry Trajectories, IEEE Transactions on Aerospace and Electronic Systems, vol.17, issue.1, pp.1754-61, 1981.
DOI : 10.1109/TAES.1981.309036

. Bar-shalom, Estimation with applications to tracking and navigation: theory algorithms and software, 2004.
DOI : 10.1002/0471221279

. Barbata, Observer design for a class of singular stochastic nonlinear systems, 2014 European Control Conference (ECC), pp.294-299, 2014.
DOI : 10.1109/ECC.2014.6862596

URL : https://hal.archives-ouvertes.fr/hal-01017633

. Barbata, Exponential Observer for a Class of One-Sided Lipschitz Stochastic Nonlinear Systems, IEEE Transactions on Automatic Control, vol.60, issue.1, 2014.
DOI : 10.1109/TAC.2014.2325391

URL : https://hal.archives-ouvertes.fr/hal-01017619

. Battie, VEGA launch vehicle upper stage re-entry survivability analysis, 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), pp.1-7, 2012.
DOI : 10.1109/ESTEL.2012.6400200

. Benallouch, Observer design for one-sided Lipschitz discrete-time systems, Systems & Control Letters, vol.61, issue.9, pp.61879-886, 2012.
DOI : 10.1016/j.sysconle.2012.05.005

H. G. Bock, Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics, 1981.
DOI : 10.1007/978-3-642-68220-9_8

E. M. Brooks, Estimating characteristics of a maneuvering reentry vehicle observed by multiple sensors, 2010.

J. L. Brown, The effect of forebody geometry on turbulent heating and thermal protection system sizing for future mars mission concepts, 2008.

J. Burke, Multivariable calculus review, 2014.

C. Burns, Space junk apocalypse: just like Gravity, 2013.

. Cappe, An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo, Proceedings of the IEEE, 2007.
DOI : 10.1109/JPROC.2007.893250

. Cardillo, A track filter for reentry objects with uncertain drag. Aerospace and Electronic Systems, IEEE Transactions on, vol.35, issue.2, pp.394-409, 1999.

A. Collins, Available at http://arc, 2012.

. Dahleh, Lectures on dynamic systems and control, pp.1-100, 2004.

. Diehl, Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations, Journal of Process Control, vol.12, issue.4, pp.577-585, 2002.
DOI : 10.1016/S0959-1524(01)00023-3

. Farina, Tracking a ballistic target: comparison of several nonlinear filters, IEEE Transactions on Aerospace and Electronic Systems, vol.38, issue.3, 2002.
DOI : 10.1109/TAES.2002.1039404

. Ferreau, High-speed moving horizon estimation based on automatic code generation, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pp.687-692, 2012.
DOI : 10.1109/CDC.2012.6426428

P. Gallais, Atmospheric Re-Entry Vehicle Mechanics, 2007.

. Graton, Finite Memory Observers for linear time-varying systems: Theory and diagnosis applications, Journal of the Franklin Institute, vol.351, issue.2, pp.785-810, 2014.
DOI : 10.1016/j.jfranklin.2013.08.005

S. Hanba, Further results on the uniform observability of discretetime nonlinear systems, IEEE Transactions on Automatic Control, vol.55, issue.4, 2010.

R. Haseltine, E. L. Haseltine, and J. B. Rawlings, Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation, Industrial & Engineering Chemistry Research, vol.44, issue.8, p.44, 2005.
DOI : 10.1021/ie034308l

J. S. Imburgia, Space debris and its threat to national security: A proposal for a binding international agreement to clean up junk, Vanderbilt Journal of Transnational Law, p.44, 2011.

A. Jazwinski, Limited memory optimal filtering, IEEE Transactions on Automatic Control, vol.13, issue.5, pp.558-563, 1968.
DOI : 10.1109/TAC.1968.1098981

U. Julier, S. Julier, and J. Uhlmann, Unscented Filtering and Nonlinear Estimation, Proceedings of the IEEE, vol.92, issue.3, 2004.
DOI : 10.1109/JPROC.2003.823141

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, 1960.
DOI : 10.1115/1.3662552

. Kessler, The kessler syndrome: implications to future space operations, Advances in the Astronautical Sciences, p.137, 2010.

H. K. Khalil and J. Grizzle, Nonlinear systems, 2002.

H. Klinkrad, Re-entry prediction and on-ground risk assessment, 2005.

H. Klinkrad, Space Debris, 2006.
DOI : 10.1002/9780470686652.eae325

. Kratz, Finite memory observer based method for failure detection in dynamic system, 11th Symposium on System Identification, pp.1189-1194, 1997.

. Kraus, A Moving Horizon State Estimation algorithm applied to the Tennessee Eastman Benchmark Process, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp.377-382, 2006.
DOI : 10.1109/MFI.2006.265620

K. Kuttler, Multivariable advanced calculus, 2009.

. Liu, Input Estimation Algorithms for Reentry Vehicle Trajectory Estimation, Defence Science Journal, vol.55, issue.4, 2005.
DOI : 10.14429/dsj.55.1999

J. Liu and . López-negrete, Moving horizon state estimation for nonlinear systems with bounded uncertainties Constrained particle filter approach to approximate the arrival cost in moving horizon estimation, Chemical Engineering Science Journal of Process Control, vol.93, issue.216, pp.909-919, 2011.

L. Mamboundou, J. Mamboundou, and N. Langlois, Indirect adaptive model predictive control supervised by fuzzy logic, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp.2979-2986, 2011.
DOI : 10.1109/FUZZY.2011.6007612

L. Mamboundou, J. Mamboundou, and N. Langlois, Robustness analysis of indirect adaptive model predictive control supervised by fuzzy logic, 2012 IEEE International Conference on Industrial Technology, pp.284-291, 2012.
DOI : 10.1109/ICIT.2012.6209952

. Martínez-forero, Steady State Detection of Chemical Reaction Networks Using a Simplified Analytical Method, PLoS ONE, vol.460, issue.6, 2010.
DOI : 10.1371/journal.pone.0010823.g006

. Mason, Orbital debris???debris collision avoidance, Advances in Space Research, vol.48, issue.10, pp.481643-1655, 2011.
DOI : 10.1016/j.asr.2011.08.005

E. Mechtly, The International System of Units: Physical Constants and Conversion Factors, Scientific and Technical Information Division , National Aeronautics and Space Administration, 1964.

. Mehrholz, Detecting, tracking and imaging space debris, ESA bulletin, vol.109, 2002.

M. Michalska, H. Michalska, and D. Q. Mayne, Moving horizon observers and observer-based control, IEEE Transactions on Automatic Control, vol.40, issue.6, pp.995-1006, 1995.
DOI : 10.1109/9.388677

P. Minvielle, Tracking a ballistic re-entry vehicle with a sequential Monte-Carlo filter, Proceedings, IEEE Aerospace Conference, 2002.
DOI : 10.1109/AERO.2002.1036891

. Moe, Recommended drag coefficients for aeronomic satellites. The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, pp.349-356, 1995.

G. Moraal, P. Moraal, and J. Grizzle, Observer design for nonlinear systems with discrete-time measurements, IEEE Transactions on Automatic Control, vol.40, issue.3, pp.395-404, 1995.
DOI : 10.1109/9.376051

F. A. Morrison, Data correlation for drag coefficient for sphere, 2010.

F. A. Morrison, Space debris reentry hazards, Scientific & Technical Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space, 2012.

. Musso, Improving Regularised Particle Filters, Sequential Monte Carlo methods in practice, pp.247-271, 2001.
DOI : 10.1007/978-1-4757-3437-9_12

J. Nachbar, The inverse function theorem in R n, 2013.

. Park, . Lee, S. Park, and J. G. Lee, Improved Kalman Filter design for three-dimensional radar tracking, IEEE Transactions on Aerospace and Electronic Systems, vol.37, issue.2, 2001.

C. C. Qu and J. Hahn, Computation of arrival cost for moving horizon estimation via unscented Kalman filtering, Journal of Process Control, vol.19, issue.2, pp.358-363, 2009.
DOI : 10.1016/j.jprocont.2008.04.005

C. Rao, Moving horizon strategies for the constrained monitoring and control of nonlinear discrete-time systems, 2000.

. Rao, Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations, IEEE Transactions on Automatic Control, vol.48, issue.2, 2003.
DOI : 10.1109/TAC.2002.808470

B. Rawlings, J. B. Rawlings, and B. R. Bakshi, Particle filtering and moving horizon estimation, Computers & Chemical Engineering, vol.30, issue.10-12, p.30, 2006.
DOI : 10.1016/j.compchemeng.2006.05.031

. Rengaswamy, Receding-Horizon Nonlinear Kalman (RNK) Filter for State Estimation, IEEE Transactions on Automatic Control, vol.58, issue.8, p.58, 2013.
DOI : 10.1109/TAC.2013.2253271

. Ristic, Beyond the Kalman filter: Particle filters for tracking applications, 2004.

. Ristic, Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry, IEEE Proceedings-Radar Sonar Navigation, 2003.
DOI : 10.1049/ip-rsn:20030212

C. Romanenko, A. Romanenko, and J. A. Castro, The unscented filter as an alternative to the EKF for nonlinear state estimation: a simulation case study, Computers & Chemical Engineering, vol.28, issue.3, 2004.
DOI : 10.1016/S0098-1354(03)00193-5

. Sang, Estimation of ballistic coefficients of low altitude debris objects from historical two line elements, Advances in Space Research, vol.52, issue.1, pp.117-124, 2013.
DOI : 10.1016/j.asr.2013.03.010

M. Dyakonov, A. Buning, P. Scallion, W. , N. et al., Aerodynamic challenges for the mars science laboratory entry, descent and landing, 2009.

D. Simon, Kalman filtering with state constraints: a survey of linear and nonlinear algorithms, IET Control Theory & Applications, vol.4, issue.8, 2010.
DOI : 10.1049/iet-cta.2009.0032

D. Smits, A. J. Smits, and J. Dussauge, Turbulent Shear Layers in Supersonic Flow, 2006.

. Sui, Linear Moving Horizon Estimation With Pre-Estimating Observer, IEEE Transactions on Automatic Control, vol.55, issue.10, p.55, 2010.
DOI : 10.1109/TAC.2010.2053060

. Suwantong, Space debris trajectory estimation during atmospheric reentry using moving horizon estimator, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012.
DOI : 10.1109/CDC.2012.6426215

URL : https://hal.archives-ouvertes.fr/hal-00747358

. Suwantong, Robustness analysis of a Moving Horizon Estimator for space debris tracking during atmospheric reentry, 52nd IEEE Conference on Decision and Control, 2013.
DOI : 10.1109/CDC.2013.6760759

URL : https://hal.archives-ouvertes.fr/hal-00918899

S. Ungarala, Computing arrival cost parameters in moving horizon estimation using sampling based filters, Journal of Process Control, vol.19, issue.9, pp.1576-1588, 2009.
DOI : 10.1016/j.jprocont.2009.08.002

V. Neumann, G. Neumann, J. Goldstine, and H. H. , Numerical inverting of matrices of high order, Bulletin of the American Mathematical Society, vol.53, issue.11, pp.531021-1099, 1947.
DOI : 10.1090/S0002-9904-1947-08909-6

V. Zavala, A fast moving horizon estimation algorithm based on nonlinear programming sensitivity, Journal of Process Control, vol.18, issue.9, 2008.
DOI : 10.1016/j.jprocont.2008.06.003

. Zhang, A Note on Observers for Discrete-Time Lipschitz Nonlinear Systems, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.59, issue.2, 2012.
DOI : 10.1109/TCSII.2011.2174671

E. Zolfagharifard, Available at http://www.dailymail.co.uk/sciencetech/article-2596500/ Space-station-sidesteps-space-junk-again, 2014.