
HAL Id: tel-01151985
https://hal.science/tel-01151985

Submitted on 17 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of an LDPC decoder for the DVB-S2,
-T2 and -C2 standards

Cédric Marchand

To cite this version:
Cédric Marchand. Implementation of an LDPC decoder for the DVB-S2, -T2 and -C2 standards.
Electronics. Université de Bretagne Sud, 2010. English. �NNT : �. �tel-01151985�

https://hal.science/tel-01151985
https://hal.archives-ouvertes.fr

THESE / UNIVERSITE DE BRETAGNE SUD
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de

DOCTEUR DE L’UNIVERSITE DE BRETAGNE SUD
Mention : STIC

Ecole doctorale SICMA

présenté par

Cédric Marchand
Laboratoire : Lab-STICC

Etude et implementation
d’un décodeur LDPC pour
les nouvelles norm es de
diffusion de television

numérique (DVB-T2 et S2)

Thèse soutenue le 10 Janvier 2010
devant le jury composé de :

Jean-François Helard
Professeur des universités à l’INSA de Rennes / président

Christophe Jego
Professeur des universités à l’institut Polytechnique de Bordeaux / rapporteur

Renaut Pacalet
Directeur d’étude à Télécom Paris Tech / rapporteur

Diddier Lohy
Responsable innovation à NXP Caen / examinateur

Laura Conde-Canencia
Maitre de conférence à l’Université de Bretagne Sud / Co-directeur de thèse

Emmanuel Boutillon
Professeur des universités à l’Université de Bretagne Sud / Directeur de thèse

”If we knew what it was we were doing, it would not be called research,
would it?”

Albert Einstein (1879-1955)

i

Remerciements

Je tiens tout d’abord à remercier Emmanuel Boutillon pour m’avoir en-
cadré avec sérieux et clairvoyance. Je remercie aussi Laura Conde-Canencia
pour son aide lors de la rédaction des différents articles et de la thèse.

Je remercie tous mes encadrants qui se sont succédés dans un contexte de
plan social et de restructuration NXP: Patrick Lecluse initiateur de la thèse
CIFFRE, Jean-Baptiste DORE qui m’a été d’une grande aide en début de
thèse, puis Pascal Frederic et enfin Didier Lohy.

Je remercie mes collègues de travail au sein du group NXP: Arnaud,
Pierre-Jean, Zair, Carol et Franck.

Je n’oublie pas mes collègues à l’Univerité de Bretagne Sud dont Sébastien,
Antoine et Jérémie qui finissaient leur thèse et dont j’ai pu bénéficier des
conseils avisés; Gizlaine et Rachid, collègues de promotion et amis qui ont
commencés leur Master recherche et leur thèse en même temps que moi;
Gorgiano mon voisin d’en face; Aswhani et sa bonne humeur, le personnel
administratif et le personnel du restaurant universitaire.

Enfin, je remercie ma famille pour son soutient et Monika pour son sup-
port quotidien et ses bons petits plats.

ii

Résumé

Les codes correcteurs d’erreurs LDPC (“Low Density Parity Check” ou
matrice de parité à faible densité) font partie des codes en bloc perméttant
de s’approcher à quelques dixième de dB de la limite de Shannon. Ces re-
marquables performances associées à leur relative simplicité de décodage ren-
dent ces codes très attractifs pour les systèmes de transmissions numériques.
C’est notamment le cas pour la norme de télédiffusion numérique par satel-
lite (DVB-S2) et la norme de télédiffusion numérique terrestre (DVB-T2) qui
utilisent un code LDPC irrégulier pour la protection de la transmission des
données. Cette thèse porte sur l’optimisation de l’implémentation matérielle
d’un décodeur LDPC pour les standards DVB-S2, -T2 et -C2. Après une
étude de l’état de l’art, c’est le décodeur par couche (layered decoder) qui a
été choisi comme architecture de base à l’implémentation du décodeur. Nous
nous sommes ensuite confrontés au problème des conflits mémoires inhérents
à la structure particulière des standards DVB-S2, -T2 et -C2. Deux nouvelles
contributions ont été apportées à la résolution de ce problème. Une basée
sur la constitution d’une matrice équivalente et l’autre basée sur la répétition
de couches (layers). Les conflits mémoire dues au pipeline sont quant à eux
suprimés à l’aide d’un ordonnancement des layers et des matrices identités.
L’espace mémoire étant un différenciateur majeur de coût d’implémentation,
la réduction au minimum de la taille mémoire a été étudiée. Une saturation
optimisée et un partitionnement optimal des bancs mémoires ont permis
une réduction significative de l’espace mémoire par rapport à l’état de l’art.
De plus, l’utilisation de RAM simple port à la place de RAM double port
est aussi proposé pour réduire le coût mémoire. En dernière partie, nous
répondons à l’objectif d’un décodeur capable de décoder plusieurs flux pour
un coût réduit par rapport á l’utilisation de multiples décodeurs.

Mot-clés: Codes LDPC, Implémentation, Conflits mémoire, DVB-S2

iii

Abstract

LDPC codes are, like turbo-codes, able to achieve decoding performance
close to the Shannon limit. The performance associated with relatively easy
implementation makes this solution very attractive to the digital communi-
cation systems. This is the case for the Digital video broadcasting by satellite
in the DVB-S2 standard that was the first standard including an LDPC.

This thesis subject is about the optimization of the implementation of an
LDPC decoder for the DVB-S2, -T2 and -C2 standards. After a state-of-the-
art overview, the layered decoder is chosen as the basis architecture for the
decoder implementation. We had to deal with the memory conflicts due to
the matrix structure specific to the DVB-S2, -T2, -C2 standards. Two new
contributions have been studied to solve the problem. The first is based on
the construction of an equivalent matrix and the other relies on the repetition
of layers. The conflicts inherent to the pipelined architecture are solved by
an efficient scheduling found with the help of graph theories.

Memory size is a major point in term of area and consumption, therefore
the reduction to a minimum of this memory is studied. A well defined sat-
uration and an optimum partitioning of memory bank lead to a significant
reduction compared to the state-of-the-art. Moreover, the use of single port
RAM instead of dual port RAM is studied to reduce memory cost.

In the last chapter we answer to the need of a decoder able to decode in
parallel x streams with a reduced cost compared to the use of x decoders.

Keywords: LDPC codes, implementation, memory conflicts, DVB-S2

iv

Contents

Remerciements ii

Résumé iii

Abstract iv

Contents v

Notations x

Introduction 1

1 Background 3
1.1 Basic concepts . 3

1.1.1 Digital communication 3
1.1.2 Channel decoders . 4
1.1.3 Linear block codes . 5
1.1.4 LDPC codes . 5
1.1.5 Standard Belief Propagation LDPC decoding 7

1.2 Sub-optimal algorithms . 9
1.2.1 The normalized Min-Sum algorithm and other related

algorithms . 9
1.2.2 Serial implementation of the NMS algorithm 12

1.3 LDPC Layered decoder . 14
1.3.1 The turbo message passing schedule 14
1.3.2 Structured matrices . 15
1.3.3 Soft Output (SO) centric decoder 16
1.3.4 Architecture overview 17

1.4 The DVB-S2, -T2 and -C2 standards 18
1.4.1 Digital Terrestrial Television 18
1.4.2 DVB group . 19
1.4.3 The LDPC code in the DVB-S2, -T2 and -C2 standards 20

v

1.4.4 State-of-the-art on DVB-S2 LDPC implementation . . 24

1.5 Testing the performance of a decoder 25

1.5.1 Software and hardware simulation 26

1.5.2 Test with all-zero codewords 26

1.5.3 Test of a communication model 27

1.5.4 Channel emulator . 27

1.5.5 Interpreting results . 28

1.5.6 Standard requirements 29

2 Memory update conflicts 31

2.1 Conflicts due to the matrix structure 32

2.1.1 State-of-the-art . 33

2.2 Conflict resolution by group splitting 34

2.2.1 Construction of the sub-matrices 35

2.2.2 DDSM in DVB-X2 and simulation results 37

2.3 Parity check matrix equivalent 39

2.3.1 Principle of the split-extend process 39

2.3.2 Simulation results . 40

2.3.3 Performance improvement 41

2.4 Conflict Resolution by Layer duplication 45

2.4.1 Conflict resolution by Write Disabling the memory . . 46

2.4.2 Scheduling of the layers 46

2.4.3 Write disabling in the Mc→v memory 48

2.4.4 Write disabling the Mc→v memory when a Min-Sum
algorithm is used . 49

2.4.5 Simulations and memory size results 49

2.4.6 The write-disable architecture 52

2.4.7 Synthesis results on FPGA 53

2.4.8 Conclusion . 54

2.5 Memory update conflicts due to pipeline 54

2.5.1 Non pipelined CNP . 55

2.5.2 Pipelined CNP . 55

2.5.3 The problem of memory update conflicts 56

2.5.4 Conflict reduction by group splitting 57

2.5.5 Conflict resolution by scheduling 57

2.5.6 Conclusion . 62

2.6 Combining layers duplication and scheduling 62

2.7 Conclusion . 63

vi

3 Memory optimization 65
3.1 Saturation of the stored values 66

3.1.1 Channel LLR saturation 66
3.1.2 SO saturation . 69
3.1.3 Saturation of the extrinsic messages 70
3.1.4 Combining the saturation processes 71
3.1.5 Saturation optimization conclusion 71

3.2 Optimizing the size of the extrinsic memory 73
3.2.1 Extrinsic memory size requirements 73
3.2.2 Optimization principle 74
3.2.3 Results of optimization 74
3.2.4 Case of the sum-product algorithm 76
3.2.5 Mc→v memory optimization conclusion 76

3.3 Finite precision architecture of the layered decoder 77
3.4 Results of memory optimization 79

3.4.1 Monte-Carlo Simulations results 79
3.4.2 Synthesis results on FPGA 79
3.4.3 Memory capacity comparison 80

3.5 A single port RAM architecture 81
3.5.1 Single port ram, dual port ram, pseudo dual port ram

and dual port RAM . 81
3.5.2 Memories in ASICS and FPGA 81
3.5.3 Implementation of dual port RAM with single Port . . 82
3.5.4 FIFO memory with single port memory modules 82
3.5.5 Single port memories banks for the SO memories . . . 82

3.6 Layer scheduling for single port RAM 83
3.6.1 An example with two memory banks 83
3.6.2 Generalization for DVB-X2 matrices 84
3.6.3 Genetic algorithm to solve scheduling problem 84

3.7 Conclusion . 84

4 Multi Stream LDPC decoder 87
4.1 Introduction . 87
4.2 The parallelism option . 88

4.2.1 Area saving compared with x decoders and conclusion 89
4.3 Share resources in a dual stream decoder 90

4.3.1 Sharing principle . 90
4.3.2 Advantages, drawbacks and conclusion 90

4.4 Use of a buffer . 91
4.4.1 FIFO buffer principle 91
4.4.2 Preemptive buffer control 92

vii

4.4.3 Variable iterative decoder 93
4.4.4 FIFO Buffer size . 93
4.4.5 Advantages and drawbacks 95
4.4.6 Implementation issue 96

4.5 Conclusion . 97

5 Conclusion 99
5.1 Produced work . 101
5.2 Perspectives . 102

A DVB-S2 matrices construction 103
A.1 Standard matrices construction 103
A.2 Matrix permutations for layered structure 105

B Hardware Discrete Channel Emulator 107
B.1 Introduction . 107
B.2 Linear Feedback Shift Register 108
B.3 The alias method algorithm 108
B.4 The HDCE architecture . 109
B.5 Resulting distribution . 109

C Résumé étendu 111
C.1 Introduction . 111
C.2 Pré-requis . 112
C.3 Les conflits de mise à jour de la mémoire 113

C.3.1 Conflits dus à la structure 113
C.3.2 Conflits dus au pipelining 114

C.4 Optimisation de la taille mémoire 114
C.4.1 Optimisation de la taille des mots 115
C.4.2 Optimisation des bancs mémoire des extrinsèques . . . 115
C.4.3 Utilisation de RAM simple port 115

C.5 Un décodeur de flux multiple 116
C.5.1 Parallélisme . 116
C.5.2 Partage des ressources 116
C.5.3 Addition d’un buffer à un décodeur itératif variable . . 117

C.6 Conclusion . 117
C.6.1 Applications . 117
C.6.2 Perspectives . 118

List of figues 119

List of tables 120

viii

Bibliography 121

ix

Notations

LDPC codes notations:

x : Encoder input of length K : x = (x1, , xK).
c : Encoder output (sent codewords).
C : A channel code, i.e. the set of all the codewords: c ∈ C.
y : Decoder input (received codewords).
K : Number of information bits.
N : Number of variables.
M : Number of parity checks : M = N −K.
R : Rate of the code C : R = K/N .
H : A parity check matrix of size (N −K)N of the code C.
dc : Maximum weight of the parity checks.
Mc→v : Check to variable message.
Mv→c : Variable to check mesage.

Mathematical expressions

(.)t : Stands for transposition of vectors.
|.| : Stands for the cardinality of a set,

or for the magnitude of a real value.
⌈.⌉ : Ceil operator.
⌊.⌋ : Floor operator.

x

Abbreviations

APP : A-Posteriori Probability
ASIC : Application Specific Integrated Circuit
AWGN : Additive White Gaussian Noise
BCH : Bose and Ray-Chaudhuri
BER : Bit Error Rate
BPSK : Binary Phase-Shift Keying
CMMB : China Multimedia Mobile Broadcasting
CN : Check Node
CNP : Check Node Processor
DDSM : Double Diagonal Sub-Matrix
DPRAM : Dual Port RAM
DSNG : Digital Satellite News Gathering
DTV : Digital TeleVision
DVB : Digital Video Broadcasting
DVB-S2 : Second generation DVB System

for Satellite broadcasting and unicasting
DVB-T2 : ... Terrestrial ...
DVB-C2 : .. Cable ...
DVB-X2 : DVB-S2, -T2 and C2 standards

xi

FEC : Forward Error Correction
FER : Frame Error Rate
FPGA : Field Programmable Gate Array
GA : Genetic Algorithm
HDCE : Hardware Discrete Channel Emulator
HDTV : High-Definition TeleVision
IM : Identity Matrix
IP : Intellectual property
IVN Information Variable Node
LDPC : Low Density Parity Check
LSB : Less Significant Bit
LLR : Log-Likelihood Ratio
MSB : Most Significant Bit
MPEG : Moving Picture Experts Group
NMS : Normalized Min-Sum
OMS : Offset Min-Sum
PVN : Parity Variable Node
QPSK : Quadrature Phase Shift Keying
RAM : Random Access Memory
SNR : Signal-to-Noise Ratio
SO : Soft Output
SPRAM : Single Port RAM
TV : TeleVision
TNT : Télévision Numérique Terrestre
TSP : Traveling Salesman Problem
VN : Variable Node

xii

Introduction

In the early 90’s, C. Berrou and A. Glavieux proposed a new scheme for
channel decoding: the turbo codes. Turbo codes made possible to get close
to the Shannon limit as never before.

Besides the major impact that the turbo codes have had on telecommu-
nication systems, they also made researchers realize that iterative process
existed. Hence Low-Density Parity-Check (LDPC) codes invented in the
early sixties by Robert Gallager, have been resurrected in the mid nineties
by David MacKay. In fact, the computing resources at that time were not
powerful enough to exploit LDPC decoding, and LDPC codes have been for-
gotten for some decades. Thanks to exponential computing power capability
(Moore law), nowadays LDPC decoding can be implemented with a reduced
cost. Among all the published works on LDPC, the approach introduced in
[5] led to the conception of structured codes which are now included in stan-
dards. Among the existing standards, we can distinguish standards using
short frames (648, 1296 and 1944 bits for Wi-Fi) and standards using long
frames (64800 bits for DVB-S2). The use of long frames makes it possible
to get closer to the Shannon limit, but leads to delays that are not suitable
for internet protocols or mobile phone communications. On the other hand,
long frames are suitable for streaming or Digital Video Broadcasting (DVB).
The 2nd Generation Satellite Digital Video Broadcast (DVB-S2) standard
ratified in 2005 was the first standard including an LDPC code as forward
error corrector. The 2nd Generation Terrestrial DVB (DVB-T2) standard was
adopted in 2009 and the 2nd Generation Cable DVB (DVB-C2) was adopted
in 2010.

These three DVB standards include a common Forward Error Correction
(FEC) block. The FEC is composed of a BCH codec and an LDPC codec.
The FEC supports eleven code rates for the DVB-S2 standard and is reduced
to six code rates for the DVB-T2 standards. The LDPC codes defined by
the DVB-S2,-T2,-C2 standards are structured codes or architecture-aware
codes (AA-LDPC [42]) and they can be efficiently implemented using the
layered decoder architecture [10, 53] and [31]. The layered decoder benefits
from three architecture improvements: parallelism of structured codes, turbo
message passing, and Soft-Output (SO) based Node Processor (NP) [10, 53]
and [31]. Even if the state-of-the-art of the decoder architecture converges
to the layered decoder solution, the search of an efficient trade-off between
area, cost, low consumption, high throughput and high performance makes
the implementation of the LDPC decoder still a challenge. Furthermore, the
designer has to deal with many possible choices of algorithms, parallelisms,
quantization parameters, code rates and frame lengths. In this thesis, we

1

study the optimization of a layered LDPC decoder for the DVB-S2, -T2 and
-C2 standards. We consider the DVB-S2 standard to compare results with
the literature but our work can also be applied to the Wi-Fi and WiMAX
LDPC standards or more generally, to any layered LDPC decoder. This
thesis is organized as follows:

The first chapter gives the notation and background required for the
understanding of the thesis. The basic concepts of digital communication
are first introduced. We remind appropriate basic elements of a digital com-
munication and highlight the channel decoder. Then the LDPC decoder is
presented with the belief propagation algorithm. Sub-optimal algorithms are
described, more specially the Min-Sum algorithm and related algorithms.
After discussing on layered decoder principle and advantages, an architec-
ture overview is given. The DVB-S2, -T2 and C2 standards are presented
and more precisely the matrix construction followed by a state-of-the-art of
implementations of LDPC decoders for these standards. In order to compare
the efficiency of different algorithms and quantization options, we discuss the
testing environment used for our simulations and implementations.

The second chapter is dedicated to the resolution of the memory up-
date conflicts. Two kind of memory update conflicts are identified and solved
separately. The conflicts due to the structures of the matrices are described
and solved using two innovative solutions. The conflicts due to the pipelined
structure are identified and solved by an efficient scheduling of the layers.

The third chapter is dedicated to memory optimization. The memory
is first reduced in size. A careful study of the saturating process lead to a
reduction in number of quantized bit and in memory size. Because of the
many rates imposed by the standard, the extrinsic memory requires a wide
address range and a wide word range. The solution provided by us gives the
required flexibility to the memory with the minimum over cost in memory
size. Then, we suggest solutions in order to implement single port RAMs
instead of dual port RAMs.

The forth chapter proposes implementation solutions for multi stream
decoders. We investigate solutions based on parallelism, sharing resources
and adding a buffer to a variable iterative decoder.

A conclusion and perspectives are given at the end of this thesis.

2

Nobody told them it was im-

possible, so they made it.

Mark Twain (1867-1902)

1
Background

Summary:
This first chapter introduces the advanced techniques of channel decod-

ing. After a brief overview of digital communication and channel decoder,
notions and notations of Low Density Parity Check (LDPC) codes are pre-
sented. The layered decoder is then detailed. The LDPC included in the
DVB-S2, -T2 and -S2 standards are presented with the state-of-the-art of ex-
iting implementations. Finally, the performance and the testing environment
of error correcting codes are discussed.

1.1 Basic concepts

This section mainly refers to the introduction of the book written by John G.
Proakis [50] and presents the fundamentals of digital communication systems
and gives a special attention to channel decoding.

1.1.1 Digital communication

The subject of digital communication involves the transmission of informa-
tion in a digital form from a source that generates the information to one or
more destinations.

Figure 1.1 illustrates the functional diagram and the basic elements of
a digital communication system. In a digital communication, the messages

3

CHAPTER 1. BACKGROUND

Figure 1.1: Basic elements of a digital communication system

produced by the source are converted into binary digits. The data are com-
pressed through source encoding. The information sequence is passed to the
channel encoder. The purpose of the channel encoder is to introduce, in a
controlled manner, some redundancy in the binary information sequence that
can be used at the receiver to overcome the effects of noise in the transmis-
sion of the signal through the channel. Thus, the added redundancy serves to
increase the reliability of the received data. Encoding involves taking k infor-
mation bits at a time and mapping them into a unique n-bit sequence called
code word. The code rate of a code is defined by the rate k/n. The digital
modulator maps the binary information sequence into a signal waveform. In
this thesis, we consider the Binary Phase Shift Keying (BPSK) modulation,
which maps the binary digit 0 into the waveform s0(t) and the binary digit 1
into waveform s1(t). s0(t) and s1(t) waveform are sinusoidal signals with one
signal shifted by 180 degree from the other. For the rest of the thesis, the
BPSK modulation is considered. The communication channel is the physical
medium that is used to send the signal from the transmitter to the receiver.
The digital demodulator estimates the transmitted data symbols. The gen-
erated sequence of numbers is them passed to the channel decoder which
attempts to reconstruct the original information sequence from the knowl-
edge of the code used by the channel encoder and the redundancy contained
in the received data. Finally the source decoder decompress the data to give
to original binary digits provided by the source.

1.1.2 Channel decoders

Prior to 1993, the best channel decoder constructions were serial concate-
nated codes based on an outer Reed-Solomon error correction code combined
with an inner Viterbi-decoded short constraint length convolutional code

4

1.1. BASIC CONCEPTS

(used in the DVB-T standard [17]). In 1993, turbo codes were introduced
by C. Berrou, A. Glavieux, and P. Thitimajshima (from Telecom-Bretagne,
former ENST Bretagne, France) [3]. In a later paper [2], C. Berrou writes
“R. Gallager and M. Tanner had already imagined coding and decoding tech-
niques whose general principles are closely related,” although the necessary
calculations were impractical at that time. This is a reference to LDPC
codes that are, like turbo codes, iterative decoders. LDPC codes had been
discovered by Gallager [25] in 1963 and had been rediscovered by MacKay
[41] in 1997. Compared with turbo codes, LDPC codes have simpler pro-
cessing requirement and their decoding algorithm is inherently parallel. For
long frames, LDPC decoders offer better performance than turbo codes. This
makes LDPC decoders relevant for TV broadcasting standards. LDPC codes
are included in the linear block codes family and thus heritate from the linear
block codes proporties.

1.1.3 Linear block codes

A linear code is an error-correcting code for which any linear combination of
codewords is another codeword of the code. Block codes are one of the two
common types of channel codes (the other one being convolutional codes),
which enable reliable transmission of digital data over unreliable communi-
cation channels subject to channel noise. A block code transforms a message
consisting of a sequence of information symbols over an alphabet into a fixed-
length sequence of n symbols, called a code word. In a linear block code,
each input message has a fixed length of k < n input symbols. The redun-
dancy added to a message by transforming it into a larger code word enables
a receiver to detect and correct errors in a transmitted code word, and to
recover the original message. The redundancy is described in terms of its
information rate, or more simply in terms of its code rate r = k/n.

1.1.4 LDPC codes

The rediscovery in the nineties of the Turbo codes and, more generally,
the application of the iterative process in digital communications led to a
revolution in the digital communication community. This step forward led
to the rediscovery of Low Density Parity Check (LDPC) codes, discovered
three decades before. Several recent standards include optional or mandatory
LDPC coding methods. The first standard that included LDPC was the sec-
ond generation Digital Video Broadcasting for Satellite (DVB-S2) standard
(ratified in 2005 [18]).

5

CHAPTER 1. BACKGROUND

V N4V N1 V N2 V N3

Mv→c Mc→v

CN1 CN2

Figure 1.2: Tanner graph representation of H

LDPC codes are a class of linear block codes. The name comes from the
characteristic of their parity-check matrix which contains only a few 1’s in
comparison to the amount of 0’s. Their main advantage is that they provide
a performance which is very close to the theoretical channel capacity [58].
An LDPC decoder is defined by its parity check matrix H of M rows by
N columns. A column in H is associated to a codeword bit, and each row
corresponds to a parity check equation. A nonzero element in a row means
that the corresponding bit contributes to the parity check equation associated
to the node.

The set of valid code words x ∈ C have to satisfy the equation:

xHt = 0, ∀x ∈ C (1.1)

An LDPC decoder can be described by a Tanner graph [63], a graphical
representation of the associations between code bits and parity checks equa-
tion. Code bits are shown as so called variable nodes (VN) drawn as circles,
parity check equations as check nodes (CN), represented by squares, with
edges connecting them accordingly to the parity check matrix. Figure 1.2
shows a simple Tanner graph of matrix H .

H =

[

1 1 1 0
0 1 0 1

]

Through the edge, messages are read by the nodes. A message going
from CN to VN is called Mc→v, and a message going from VN to CN is
called Mv→c.

6

1.1. BASIC CONCEPTS

1.1.5 Standard Belief Propagation LDPC decoding

In this subsection, the soft iterative decoding of binary LDPC codes is pre-
sented. The iterative process, first introduced by Gallager [25] and rediscov-
ered by MacKay [41] is more known as the Belief Propagation (BP) algo-
rithm. This algorithm propagates probability messages to the nodes through
the edges. The probability gives a soft information about the state (0 or 1)
of a VN. In the Log-BP algorithm, the probabilities are in the log domain
and are called Log Likelihood Ratio (LLR). The LLRs are defined by the
following equation:

LLR = log
(P (v = 0)

P (v = 1)

)

(1.2)

where P (v = x) is the probability that bit v is egual to x.
The order in which the nodes are updated is called the scheduling. The

schedule proposed by Gallager is known as the flooding schedule [25]. Flood-
ing schedule consists in four steps. First step is the initialization. Second
step is the update of all the check nodes. The third step is the update of all
the variable nodes. The fourth step consists in going back to step two until
a codeword is found or a maximum number of iteration is reached. At the
end of the iterative process, a hard decision is made on the VN to output
the codeword. The update of a node means that a node reads the incoming
messages and then updates the outgoing messages. The initialization, the
VN update and the CN update are described hereafter. The test to find the
codeword or stopping criteria is described in Section 4.4.3.

Initialization

Let x denote the transmitted BPSK symbol corresponding to a codeword
bit, and let y denote the noisy received symbol, then y = z + y where z is
a Gaussian random variable with zero mean. Let us assume that x = +1
when the transmitted bit is 0 and x=-1 when the transmitted bit is 1. Let
LLRin = log p(x=+1|y)

p(x=−1|y)
denote the a-priori LLR for the transmitted bit. The

sign of LLRin gives the hard decision on the transmitted bit, whereas the
magnitude of LLRin gives an indication on the reliability of the decision: the
greater the magnitude is, the higher is the reliability. On a Gaussian channel
LLRin is given by:

LLRin = 2y/σ2

where σ is the variance of the received signal.
Decoding starts by assigning the a-priory LLR to all the outgoing edge

Mv→c of every VNs.

7

CHAPTER 1. BACKGROUND

0 1 2 3 4 5
0

1

2

3

4

5

x

f(
x
)

Figure 1.3: Representation of the f(.) function defined in equation 1.5

Check node update

The CN update is computed by applying the Bayes laws in the logarithmic
domain. For implementation convenience, the sign (1.3) and the absolute
value (1.4) of the messages are updated separately:

sign(Mc→v) =
∏

v′∈vc/v

sign(Mv′→c) (1.3)

|Mc→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)
)

(1.4)

where vc is the set of all the VN connected to the check node CN and vc/v is vc
without v. The f(.) function is expressed by Equation (1.5) and represented
in Figure 1.3.

f(x) = − ln tanh(
x

2
) = ln

exp x+ 1

exp x− 1
(1.5)

Variable node update

The VN update is split in two equations (1.6) and (1.7) to show the Soft
Output (SO) value also called the A Posteriori Probability (APP). The SO

8

1.2. SUB-OPTIMAL ALGORITHMS

is calculated in (1.6) where the LLRin value is the initial soft input. Then
from this SO, the new Mv→c are computed by (1.7).

SOv = LLRin +
∑

c∈cv

Mc→v (1.6)

Mv→c = SOv −Mc→v (1.7)

The VN update is simple and with straight forward implementation. The
check node update is more complex and with many possible sub-optimal
algorithm and implementation options which are discussed in the next section

1.2 Sub-optimal algorithms

The f(x) function described in equation (1.5) and used in (1.4) is difficult
to implement.This function can be implemented us- ing look up table or
linear pieceware approximation as in [33] but can also be implemented more
efficiently by using a sub-optimal algorithm. The most used algorithms are
improved version of the well known Min-Sum algorithm [24], such as the
normalized min-sum algorithm [11], the offset min-sum algorithm [11], the λ
-min algorithm [29] or the Self-Corrected Min-Sum algorithm [55].

1.2.1 The normalized Min-Sum algorithm and other
related algorithms

A lot of researches tend to reduce computational complexity by simplifying
the Check Node Processor (CNP). The Min-Sum algorithm is the simplest
decoding method which approximates the sum-product algorithm by ignoring
other terms except the most minimum incoming message. Therefore the
complex computation of function f(x) can be eliminated. The CN Min-Sum
processing of Min-Sum algorithm can be expressed as:

|Mnew
c→v| ≈ min

v′∈vc/v
|Mv′→c| (1.8)

The Min-Sum algorithm can dramatically reduce the computation com-
plexity. However, the resulting approximated magnitude is always overesti-
mated. This inaccurate approximation causes significant degradation on the
decoding performance. In the Normalized Min-Sum (NMS) algorithm [11],
the output of the CN processor is multiplied by a normalization factor α.
This compensates the overestimation of Min-Sum approximation:

9

CHAPTER 1. BACKGROUND

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
10

−4

10
−3

10
−2

10
−1

10
0

Eb/No
db

F
E

R

Min−Sum

Normalized 0.875

BP

Offset 0.25

Figure 1.4: Performance comparison of the BP and some sub-optimal algo-
rithm for the CN update.

|Mnew
c→v| ≈ α min

v′∈vc/v
|Mv′→c| (1.9)

where α is the normalization factor, 0 < α ≤ 1.

Another way to reduce the over-estimation of the outgoing message is
to add a negative offset. In the Offset Min-Sum algorithm, equation (1.4)
becomes:

|Mnew
c→v| ≈ max

(

min
v′∈vc/v

|Mv′→c| − β, 0
)

(1.10)

where β is a positive constant.

Figure 1.4 shows the performance simulation of the BP optimal algorithm
and the Min-Sum, NMS and OMS sub-optimal algorithms for comparison.
The simulation is on a Gaussian channel with floating point computation on
short frame N=16200 DVB-S2 matrix, code rate r = 1/2, 70 iterations and
no outer BCH (Bose and Ray-Chauduri) code. The simulation shows that
the Min-Sum algorithm is at 0.4 dB from the BP algorithm and the NMS
and OMS are 0.1 dB from the BP algorithm.

10

1.2. SUB-OPTIMAL ALGORITHMS

Algorithm name CN update

log-BP |Mc→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)
)

Min-Sum [24] |Mc→v| ≈ min
v′∈vc/v

|Mv′→c|

Offset Min-Sum [11] |Mc→v| ≈ max
(

min
v′∈vc/v

|Mv′→c| − β, 0
)

Normalized Min-Sum [11] |Mc→v| ≈ α min
v′∈vc/v

|Mv′→c|

λ-Min [29] |Mc→v| ≈ f

(

∑

v′∈vλc /v

f(|Mv′→c|)
)

IF v = argminv′∈vc |Mv′→c| THEN

A-min* [35] |Mc→v| ≈ f

(

∑

v′∈vc/v

f(|Mv′→c|)
)

ELSE

|Mc→v| ≈ f
(

∑

v′∈vc
f(|Mv′→c|)

)

IF sign(M tmp
v′→c) 6= sign(M old

v′→c)
Self-Corrected Min-Sum [55] THEN Mv′→c = 0

ELSE Mv′→c = M tmp
v′→c

|Mc→v| ≈ min
v′∈vc/v

|Mv′→c|

Table 1.1: Check node update with different sub-obtimal algorithms

In the λ-min algorithm [29] only the λ most minimum Mc→v values are
computed. Let vλc be the subset of vc which contains the λ VNs linked to
CN c and having the smallest LLR magnitude. Let vλc /v be vλc without VN
v. Equation 1.4 is then approximated by:

|Mc→v| ≈ f

(

∑

v′∈vλc /v

f(|Mv′→c|)
)

(1.11)

Two cases will occur: if the VN belongs to the subset vλc , then the Mv→c

are processed over λ − 1 values of vλc /v, otherwise the Mv→c are processed
over the λ values of vλc .

The Self-Corrected Min-Sum algorithm presented in [55] modifies the vari-
able node processing by erasing unreliable Mv→c messages.

Table 1.1 summarizes the different sub-optimal algorithms for the CN
update.

11

CHAPTER 1. BACKGROUND

The advantages of these algorithms are the simplified computation of
equation (1.17) and the compression of the Mc→v messages. Instead of stor-
ing all the Mc→v messages conected to one CN, two absolute values, the in-
dex of the minimum value and sign of the Mc→v messages need to be stored.
This compression lead to significant memory saving with check node degree
greater than 4. Although all these algorithms present different performances,
the memory space they require to store the Mc→v messages is identical (con-
sidering λ = 2 for the λ-min algorithm). Hence, without loss of generality,
for the rest of the thesis, we will consider in the NMS algorithm.

An implementation of the NMS algorithm can be easily improved to a
λ-min algorithm or A-min* algorithm by adding look up tables. Many other
improvements to the Min-Sum algorithm are proposed in the litterature.In
[40], a self compensation technique update the normalization factor α as a
function of the CN incoming messages. Because of the massive required com-
putation, the method is simplified in [64] by defining a normalization factor
for the min value αmin and an other factor for the other value. Furthermore,
the factor is shunted after some iteration to improve the performance.

From the algorithms presented in table 1.1, The NMS algorithm is chosen
for the following reasons:

• performance close to the BP algorithm

• easy implementation

• low implementation area

• extrinsic memory compression

• not sensitive to scaling in the LLRin values

• possibility to improve performance by upgrading to A-min*,λ-min or
Self-Corrected Min-Sum algorithm

1.2.2 Serial implementation of the NMS algorithm

The CN generates two different values: min and submin. The min value is
the normalized minimum of all the incoming Mv→c values and the submin is
the second normalized minimum. Let indmin be the index of min i.e.,

indmin = arg min
v′∈vc/v

|Mv′→c|

For each |Mnew
c→v| values, if the index of Mnew

c→v is indmin then |Mnew
c→v| = submin

else |Mnew
c→v| = min. The Mc→v from one CN can be compressed with four

12

1.2. SUB-OPTIMAL ALGORITHMS

elements, i.e. min, submin, indmin and sign(Mnew
c→v). For matrices with a

check node degree greater than four, memory saving becomes significant.

To compute the sign, the property that the XOR of “all but one”, is equal
to the XOR of “all plus the one” is used, i.e.

⊕

v′∈vc/v

xv′ =
⊕

v′∈vc

xv′ ⊕ xv (1.12)

where xv is a sign bit (0 for a positive value and 1 for negative value). The
sign calculation of the outgoing messages is done in two steps. First, all the
incoming messages are read. The recursive property of the XOR function:

dc
⊕

i=1

xi = xdc ⊕ (xdc−1 ⊕ (xdc−2 ⊕ (xdc−3 ⊕ (· · · ⊕ (x1) · · ·)))) (1.13)

is used to compute the XOR of all the incoming messages serially. In the
second step, the sign of the outgoing messages are computed serially by
applying equation (1.12).

To compute the magnitude, the first step consists in a serial sorting of the
incoming value to produce the min, submin and indmin values. During the
second step, the min, submin and indmin values are used to serially compute
the outgoing magnitude messages.

Figure 1.5 shows the serial CN processor implementation. The Mv→c

values arrive serially in a two’s complement form and are transformed in
sign and magnitude representation to be computed separately. The figure is
split horizontally and vertically: the upper part is for the sign computation
and lower part for the magnitude computation. The left part represents the
first step computation and the right part the second step. The upper part is
a straight forward implementation of the sign computation where signT =
⊕dc

i=1xi. The upper left part implement equation (1.13) in a first step. Then
the right upper part implements equation (1.12) for the second step. The
lower part implement the magnitude computation with in a first step, the
sorting of the incoming magnitude in order to store the min, submin and
indmin values until all the incoming messages are read. Then in the second
step (lower right part) the min, submin and indmin values previously sorted
are used to serially compute the new outgoing messages. Then, the sign and
magnitude are transformed in two’s complement for later computation. Step
1 and step 2 take dc cycles to process and can easily be pipelined.

13

CHAPTER 1. BACKGROUND

XOR

A<B

A<B

symdrome
calculation

Sign

Abs

Min0

Min1

Generator

Min0

Min1

A=B

CounterCounter

Serial sorting

FIFO Mvc

Abs

Sign

Sign

New CN

Step 2Step 1

SignTSignTXOR

IndexMin0 IndexMin0

Serial Mc→v

2′s → MS

Mv→c

Mc→v

MS → 2′s

Figure 1.5: serial CN processor implementation.

1.3 LDPC Layered decoder

The layered decoder compared with the straight forward LDPC decoder ben-
efits from three improvements: the turbo message passing schedule, a struc-
tured matrix and a Soft Output (SO) centric architecture.

1.3.1 The turbo message passing schedule

The turbo decoding messages passing introduced by Mansour [43, 42] is also
known as shuffled iterative decoder [70], staggered decoding or gauss-seidel
iteration. Turbo decoding applies a different message schedule than the two
phase flooding schedule. In the case of the horizontal shuffle schedule, the
basic idea is to process the CNs one by one and to pass the newly calculated
messages immediately to the corresponding VNs. The VNs update their
outgoing messages in the same sub iteration. The next CN will thus receive
newly updated messages which improve the convergence speed. Figure 1.6
shows the Probability Density Function (PDF) of the number of iterations
before a codeword is decoded for a flooding schedule and for an horizontal
shuffle schedule. This figure shows a simulation for N=16200 bits, a code
rate of 1/2 and a constant Eb/No = 1dB. Note that the average number of
iterations (itavr) to find a codeword is about two times smaller for the shuffle

14

1.3. LDPC LAYERED DECODER

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

iteration

P
ro

b
a

b
ili

ty

flooding

horizontal

it
max

it
max

it
avr

it
avr

Figure 1.6: Probability Density Function of the number of iterations before
a codeword is found

schedule than for the flooding schedule. The same observation can be done
for the maximum number of iterations (itmax).

However, the main drawback of this schedule is that the CN are updated
serially one by one leading to low throughput. The next subsection explains
how this serial schedule can be partially parallelized.

1.3.2 Structured matrices

The semi-parallel horizontal Shuffle decoder is also known as Group hori-
zontal Shuffle or Layered Horizontal shuffle [53]. Layered decoding uses the
same principle as the Turbo decoding but instead of processing the CNs one
by one, they are processed by groups. Let P be the size of the group. Then
P CN are processed in parallel. This is possible only if the weights of the
columns in a block does not exced one. The idea is to use identity matrices
of size P×P . The IEEE WiMAx standard [60] uses this structure and is well
explained in [10] where an efficient architecture is also presented. Figure 1.7
shows the structure of the rate-2/3 short-frame DVB-S2 LDPC parity check
matrix. This structured matrix is composed of shifted identity matrices of
size P = 360, allowing for efficient parallel processing of up to 360 CNs.

15

CHAPTER 1. BACKGROUND

0 720 10,800 16,200

0
360
720

3,600

5,400

C
N

m

V Nn

Figure 1.7: Block-structured rate-2/3 DVB-S2 matrix (N=16200 bits)

1.3.3 Soft Output (SO) centric decoder

In this subsection we explain how the soft output (SO) based check node
processor (CNP) architecture is deduced. From (1.6) and (1.7), we can find
the new equation:

SOv = Mv→c +Mc→v (1.14)

The update of the VNs connected to a given CN is done serially in three
steps. First, the message from a VN to a CN (Mv→c) is calculated as:

Mv→c = SOv −M old
c→v (1.15)

The second step is the serialMc→v update, whereMc→v is a message from CN
to VN, and is also called extrinsic. Let vc be the set of all the VNs connected
to CN c and vc/v be vc without v. For implementation convenience, the sign
and the absolute value of the messages |Mnew

c→v| are updated separately:

sign(Mnew
c→v) =

∏

v′∈vc/v

sign(Mv′→c) (1.16)

|Mnew
c→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)
)

(1.17)

where f(x) = − ln tanh
(

x
2

)

. The third step is the calculation of the SOnew

value:
SOnew

v = Mv→c +Mnew
c→v (1.18)

The updated SOnew
v value can be used in the same iteration by another sub-

iteration leading to convergence which is twice as fast as the flooding schedule
[42].

16

1.3. LDPC LAYERED DECODER

CNP

++

−

NP

SOv SOnew
v

Mv→c

Mc→v
Mnew

c→v
M old

c→v

Figure 1.8: SO based Node Processor

1.3.4 Architecture overview

From equations (1.15) to (1.18), the Node Processor (NP) architecture Fig.
1.8 can be derived. The left adder of the architecture performs equation
(1.15) and the right adder performs equation (1.18). The central part is in
charge of the serial Mc→v update.

As the structured matrices are made of identity matrices of size P , P CNs
are computed in parallel. Hence, the layered decoder architecture is based
on P NPs that first read serially the Groups of P VNs linked to one layer
and then write back the SOnew

v in the VNs.
The architecture proposed in Figure 1.9 is mainly based on the archi-

tecture of a layered decoder. The counter counts up to IMbase (i.e. the
number of identity matrices in the base matrix). The ROM linked to the
counter delivers the V Gread

i addresses and the associated shift value Shifti
following the base matrix order. The V Gwrite

i adresse is given by V Gread
i

which is delayed by dc + ǫ cycles corresponding to latency to compute a new
SO value. The size of the ROM dedicated to store V Gi and Shifti is thus
IMbase × (log2(N/P) + log2(P)).

Usually, a barrel shifter is in charge of shifting the SO values by Shifti be-
fore being processed, and after processing, another barrel shifter is in charge
of shifting back the SO values in memory. In this architecture, the ∆Shift
generator allows using one barrel shifter instead of two.

As there is no barrel shifter in charge of shifting back the SO values, at
the next call of a VNG, the SOs in this group are already shifted by the shift
value of the previous call (Shiftoldi). The ∆Shift value takes into account
the shift value of the previous calls by doing the subtraction ∆Shifti =
Shiftnewi − Shiftoldi . Shiftold is stored in a RAM of size N/P × log2(P).

The Mv→c memory is implemented using a FIFO of size dc. For the SO

17

CHAPTER 1. BACKGROUND

IM number

RAM
Shift

Counter

Address

VGn Shift

ROM

+

−

−

+ +SO
RAM

B
ar

re
l

S
h
if

te
r

NP
Ps

×Ps

Shiftold
Shiftnew

Mc→v

Mv→c

∆shift

V Gread
iV Gwrite

i

D−(dc+ǫ)

Figure 1.9: Layered decoder architecture

RAM, a dual-port RAM with one port for writing and another for reading
is required for pipelining.

Figure 1.10 presents the detailed architecture of the CN update and the
Mc→v memory for the implementation of the NMS algorithm. Note that the
architecture includes the NMS update described in Figure 1.5.

1.4 The DVB-S2, -T2 and -C2 standards

1.4.1 Digital Terrestrial Television

With the establishment of the European Digital Video Broadcasting (DVB)
standard and the American Television Systems Committee (ATSC) standard,
digital TV (DTV) broadcasting is now a reality in several countries. The Ter-
restrial broadcasting or Digital Terrestrial Television (DTT), in France the
”Television numérique terrestre” (TNT) are defined by the DVB-T standard
[19]. Even if DTT requires a set top box equipment or a specific chip in
the TV, it offers many advantages. Among them, thanks to the Forward
Error Correction (FEC), DTT allows obtaining optimum picture when an
analogue tuner would only allow a poor quality picture. With DTT, the
high definition television (HDTH) is also possible. The format is the 1920
by 1080 pixel/frame format interlaced at 60 fields per second.

18

1.4. THE DVB-S2, -T2 AND -C2 STANDARDS

SignT

+

+

−
RAM_SO

B
ar

el
 S

h
if

te
r

Generator

Index

Min_1

Min_0

Sign

R
A

M
(M

/P
)

FIFO(Dc)

Sorting
Serial

XOR

Serial

generator

Check node core

VG_i^{read}VG_i^{write}

∆Shift

2
′
s
→

S
M

SerialMc→v

S
M

→
2
′
s

|Mc→v|

S
M

→
2
′
s

MC→V memory

Mv→c

Figure 1.10: Detailed SO based Node Processor

1.4.2 DVB group

The DVB Project, founded in September 1993, is a consortium of public and
private sector organizations in the television industry. Its aim is to estab-
lish the framework for the introduction of MPEG-2 based digital television
services. Now comprising over 200 organizations from more than 25 coun-
tries around the world, DVB fosters market-led systems, which meet the
real needs, and economic circumstances, of the consumer electronics and the
broadcast industry.

DVB-S (EN 300 421 [17]) was introduced as a standard in 1994 and DVB-
DSNG (EN 301 210 [18]) in 1997. The DVB-S standard specifies QPSK mod-
ulation and concatenated convolutional and Reed-Solomon channel coding,
and is now used by most satellite operators worldwide for television and data
broadcasting services. In addition to DVB-S format, the DVB-DSNG spec-
ifies the use of 8PSK and 16QAM modulation for satellite news gathering
and contributing services.

The new standard for digital video broadcast features a powerful FEC
system which enables transmission close to the theoretical limit (Shannon
limit). DVB-S2 is a single and very flexible standard which covers a variety
of applications by satellite and among them, a powerful FEC system based
on LDPC codes concatenated with BCH codes, allowing Quasi-Error-Free
operation at about 0,7dB to 1 dB from the Shannon limit, depending on
the transmission mode (AWGN channel, modulation constrained Shannon
limit). The 2nd Generation Terrestrial DVB (DVB-T2) standard adopted in
2009 and the 2nd Generation Cable DVB (DVB-C2) adopted in 2010 include a

19

CHAPTER 1. BACKGROUND

Standard lenght code rates

DVB-S2 short 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9
long 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, 9/10

DVB-T2 short 1/4, 1/2, 3/5*, 2/3, 3/4, 4/5, 5/6
long 1/2, 3/5, 2/3*, 3/4, 4/5, 5/6

DVB-C2 short 1/2, 2/3, 3/4, 4/5, 5/6, 8/9
long 2/3*, 3/4, 4/5, 5/6, 9/10

Table 1.2: code rates for DVB-S2, -T2, -C2 standards

common Forward Error Correction (FEC) block with the DVB-S2 standard.

1.4.3 The LDPC code in the DVB-S2, -T2 and -C2
standards

The DVB-S2, -T2, -C2 standards features variable coding and modulation to
optimize bandwidth utilization based on the priority of the input data, e.g.,
SDTV could be delivered using a more robust setting than the correspond-
ing HDTV service. These DVB standadards also features adaptive coding
and modulation to allow flexibly adapting transmission parameters to the
reception conditions of terminals, e.g., switching to a lower code rate during
fading.

Code rates

The DVB-S2, -T2, -C2 standards [20, 22, 21] are characterized by a wide
range of code rates (from 1/4 up to 9/10) as shown in table 1.2. Further-
more, FEC frame may have either 64800 bits (normal) or 16200 bits (short).
Each code rate and frame length corresponds to an LDPC matrix: this is 21
matrices for the DVB-S2 standard, 13 matrices for the DVB-T2 standard and
11 matrices for the DVB-C2 standard. The matrices construction is identical
for the three standards. The advantage is that the same LDPC decoder can
be used for the 3 standards. Due to the fact that the decoder is identical for
the 3 standards, hereafter DVB-X2 refers to DVB-2, -T2, -C2 standards.

Matrix construction

LDPC codes can be specified through their parity check matrices. The DVB-
X2 LDPC codes are 64800 bits long. Therefore, a certain structure is imposed

0*upgraded matrix with better performance compared to DVB-S2 standard

20

1.4. THE DVB-S2, -T2 AND -C2 STANDARDS

on parity check matrices to facilitate the description of the codes and the
encoding.

By inspecting the construction rules in [20, 22, 21], the DVB-S2, -T2 and
-C2 parity check matrices consist in two distinctive parts: a random part
dedicated to the systematic information, and a fixed part that belongs to the
parity information. Two types of VN can be distinguished: the Information
VN (IVN) and the Parity VN (PVN) corresponding to the systematic and
parity bits respectively. The connectivity between every IV Nm and CNj is
defined by the standard encoding rule:

CNj = CNj ⊕ IV Nm, j = (x+ q(m mod 360)) mod M. (1.19)

CNj is the jth parity bit, IV Nm it the mth information code bit, q and M
are code rate dependent parameters specified by the DBV-X2 standard. The
variable x is given by the Tables defined in the standard.

Table 1.3 is a copy of the Appendix C of the DVB-S2 standard [20]. This
table defines the x value used in Equation (1.19). The first line defines the
connections of the information bits m = 0× 360 to (1× 360)− 1, the second
line is for m = 1× 360 to (2× 360)− 1) and so on.

The fixed zigzag connectivity of the PVN and CN is defined by the en-
coding scheme:

CNj = CNj ⊕ CNj−1, j = 1, 2, . . . , N − 1. (1.20)

This construction scheme results in a staircase lower triangular on the
right part of the matrix. These type of LDPC codes with simple encoding
procedure are also called Irregular Repeat Accumulate (IRA) codes [34] result
in a linear complexity of encoding with respect to the frame length.

From the construction method defined in the standard, a parallelism of
360 can be deduced but it does not look like a prototype matrix ready for a
layered decoder.

In the following subsection, we describe how it is possible to build a
matrix, made of shifted identity matrices of size 360 (see Figure 1.7), by
reordering the matrix.

Matrix reordering for layer decoding

The construction process of the new matrix relies on the permutation of the
rows and columns in two steps: first the CN are permuted as described in
the following equation:

21

CHAPTER 1. BACKGROUND

0 2084 1613 1548 1286 1460 3196 4297 2481 3369 3451 4620 2622
1 122 1516 3448 2880 1407 1847 3799 3529 373 971 4358 3108
2 259 3399 929 2650 864 3996 3833 107 5287 164 3125 2350
3 342 3529
4 4198 2147
5 1880 4836
6 3864 4910
7 243 1542
8 3011 1436
9 2167 2512
10 4606 1003
11 2835 705
12 3426 2365
13 3848 2474
14 1360 1743
0 163 2536
1 2583 1180
2 1542 509
3 4418 1005
4 5212 5117
5 2155 2922
6 347 2696
7 226 4296
8 1560 487
9 3926 1640
10 149 2928
11 2364 563
12 635 688
13 231 1684
14 1129 3894

Table 1.3: matrix construction table for DVB-S2 standard, code rate of 2/3
and short frame lengh

22

1.4. THE DVB-S2, -T2 AND -C2 STANDARDS

V Gng

C
G

m
g

5 10 15 20 25 30 35 40 451

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 1.11: Base DVB-S2 matrix representation

σ(j+ i×360) = i+(j× q) mod N, i = 1, 2 . . . , q, j = 1, 2, . . . , 360. (1.21)

Then the PVN are permutated by following the same permutation equa-
tion. The obtained matrix is made of Identity Matrix (IM) sized 360.

The matrix construction and permutation process is illustrated in ap-
pendix A. Figure 1.11 illustrates the IM in the rate-2/3 short-frame matrix.
V Gi denotes the i

th group of 360 VNs and CGj denotes the j
th group of 360

CNs. A square denotes a permuted IM linking CGj and V Gi. Let im be
the identity matrix number. Each IM (im = 1, 2, . . . , IM total) can be best
described by giving the shift value δIMim and the coordinate of the IM in the
matrix which is given by the CGIM

im value and the V GIM
im value.

There is a convenient way to obtain directly the shift value δIMim , and the
address (CGIM

im and V GIM
im) values from the standard value x given in the

standard table 1.3. In this table, each x value corresponds to an identity
matrix. The line number corresponds to the VG number V GIM

im = line. The
shift value of each im is given by:

δIMim = (360− ⌊x/q⌋) mod 360. (1.22)

and the check group number is given by:

CGIM
im = x mod q. (1.23)

23

CHAPTER 1. BACKGROUND

The connectivity of the PVN and CN is built by a staircase of identity
matrices as in Figure 1.11(V G31toV G45). Each identity matrix in the stair-
case has a shift value of 0. The up right IM is a special IM with a shift of
359 and the up right connectivity removed.

The permutation of the matrices allows obtaining a structured matrix
ready to be used by a layered decoder. The DVB-S2 standard was the first
standard including an LDPC decoder and many different implementation
options have been tested in the State of the art.

1.4.4 State-of-the-art on DVB-S2 LDPC implementa-
tion

To our knowledge, the first implementation presented by F. Kienle et al
[36] with synthesis results, benefits from the parallelism of P = 360. The
implementation relies on a flooding schedule and an optimized update of CN
of degree 2. Due to the varying node degree, the functional CN units process
all incoming messages in a serial manner. This serial processing of the coming
messages is a common point to most implementations recorded in our state
of the art. Although it was able to provide a throughput far above from the
mandatory rate of 90 Mbps, the high number of processing units and the
long width of the barrel shifter require a huge silicon area. The throughput
of this first implementation was more than required by the standard.

In [14],[27] the parallelism is reduced to any integer factor of 360 by using
an efficient memory bank partitioning.

In all implementations recorded, the shuffling network implementation is
based on the use of barrel shifters. The differentiation comes from the size
and the number of shuffling networks. The size of the shuffling network will
depend on the parallelism. In [14, 36] two shuffling networks are used (one
for shuffle and the other to shuffle back), while in [27] the author saves one
shuffling network. In [27] instead of shuffle back the data, the shift value is
memorized and thanks to the linearity of the barrel shifter, the next shift
value is computed by a simple substraction.

In [14] the authors presented the first implementation that benefit from
layered decoder architecture. Implementations of layered decoder are also
presented in [57, 68, 48, 66, 65]. A layered decoder requires matrices made
of IM, but in the case of the DVB-X2 matrices, the superposition of ma-
trices appears. The superposed matrices are not compatible with a layered
decoder leading to conflicts and a patch is mandatory to solve the problem.
In [57, 48], the problem is identified and solved by the computation of the
message variation. The problem is also solved by using a ’delta’ architecture

24

1.5. TESTING THE PERFORMANCE OF A DECODER

Figure 1.12: Block diagram of a testing environment

as described in [8] and in [53]. These solutions are efficient but compared
to a standard layered decoder requires another access to the SO memory to
compute the new SO (SOnew = SOold + delta) which is costly in terms of
memory size.

A vertical layer schedule version of the layered decoder is proposed in [47].
This architecture allows iterative message passing between the de-mapper
and the LDPC decoder. In [23] an alternative approximation of CN algorithm
for DVB-S2 LDPC decoder is proposed. The alternative approximation is
based on the first series approximation of equation (1.5), the magnitude
update of the |Mc→v| is expressed with log2(x) and 2x function which can be
easily implemented by a shifter and apriority encoder.

From this state of the art, the choice of a layered decoder has been de-
cided. Based on this choice, the research is focused on an efficient solution
for the memory conflicts and an optimized implementation in term of area
and consumption. In this thesis, a testing environment has been developed
to test the performance of the different solutions. This testing environment
is described in the next section.

1.5 Testing the performance of a decoder

Advanced digital wireless communication systems often require an appropri-
ate trade-off between complexity and performance of an efficient iterative
decoder design. In practice, from the floating point to the fixed-point hard-
ware description, many parameters (reliability message length, digital word
size, rounding and quantization operations, etc.) should be jointly optimized.
However, these parameters interact in a non-linear way and the selection of
the optimal algorithm is a very high time-consuming task. Usually, the ex-

25

CHAPTER 1. BACKGROUND

pression of Bit Error Rate (BER) or the Frame Error Rate (FER) expressed
in [50] is used to predict the performance of the system. The conventional
solution is the Monte-Carlo simulation that evaluates the BER, which gives
an estimation of the error correcting capability of the decoder. Figure 1.12
shows block diagrams of a testing environment using Monte-Carlo simulation.
The source is random and the noise has a Gaussian distribution of variance
depending on the Eb/N0 ratio. In this section, two practical applications are
presented to test an LDPC decoders.

1.5.1 Software and hardware simulation

The Monte-Carlo simulation method is traditionally performed by software
programs. With this approach, a FER around 10−9 requires one or two weeks
of simulation. To speed up these very long simulations, some software ap-
proaches are proposed, such as, a reduced Monte-Carlo simulation method
[7] that re-runs only erroneous codewords obtained from an initial ”classical”
Monte-Carlo simulation. In [59] is proposed a technique called the distance-
based method which is based on the direct evaluation of a distance between
the soft output of the sub-optimal decoder and the soft output of a reference
decoder. Although these methods reduce the simulation time, the software
based execution (for instance, executing applications on a conventional CPU
cluster) is still costly due to the high power consumption and physical space
cost. Consequently, the solution used for this thesis is simulation by us-
ing a hardware accelerator based simulation. To combine the high speed of
hardware simulation and the flexibility of software simulation, the testing
environment is designed to be able to switch from software to hardware sim-
ulation at any time for C-VHDL co-simulation. Another advantage of this
solution is the use of co-simulation for debugging.

1.5.2 Test with all-zero codewords

Due to the linearity of the LDPC decoder, we can consider an ’all zero code-
word’ with a Binary Phase-Shift Keying (BPSK) transmission on a Gaussian
channel. Fig. 1.13 shows the all zero codeword model for the test of FER
or/and BER. The channel emulator block is in charge of adding a noise to
the signal to emulate a noisy channel. For a Gaussian channel, an Additive
White Gaussian Noise (AWGN) is added to the signal as in [6, 39]. We pre-
sented in [9] an Hardware Discrete Channel Emulator (HDCE) which is more
detailed in Appendix B. In the compute errors block linked with the decoder
output, each non-zero value is counted as a bit error. With the bit errors,
the BER and FER are easily deduced and the index (SNR) is incremented

26

1.5. TESTING THE PERFORMANCE OF A DECODER

Compute errors

Channel emulator

LDPC decoder

Channel

Display

Eb/No User

FER

BER

Frame

Result

deserializer

Figure 1.13: Test of an LDPC decoder, all-zero codeword model

when a maximum number of frame errors is reached. The testing environ-
ment including the HDCE is low cost and easy to design. The test patch can
be included as a part of a decoder chip or IP for built-in SNR estimation and
testing purposes at a low area cost. It would take less than 2% of the area
of a DVB-S2 LDPC decoder described in [48] .

1.5.3 Test of a communication model

To get closer to a real communication, or to test the encoder, the test of the
performance of the LDPC codes in a communication model becomes relevant.
In Figure 1.14, the codeword from the encoder is sent serially to emulate a
BPSK modulation on the AWGN channel. The FIFO stores the source words
until the codeword is decoded. Then the compute errors block compares the
two words and deduces bit errors. This model has been used to test a non
binary LDPC code in the DAVINCI project [51].

1.5.4 Channel emulator

To emulate a Gaussian channel, usually an Accurate White Gaussian Noise
(AWGN) is added to the signal as in [26, 6, 39]. An alternative is to use

27

CHAPTER 1. BACKGROUND

Compute errors

Channel emulator

LDPC decoder

LDPC encoder

FIFO

Random source

Channel

Display

Eb/No User

FER

BER

Frame

Result

deserializer

Figure 1.14: test of an LDPC decoder

the Hardware Discrete Channel Emulator (HDCE) presented in [9] and in
Appendix B. The implementation of the HDCE was part of my master’s
degree work. The HDCE directly produce a value with the required distribu-
tion. The HDCE relies on the “Alias Method” [67] and the implementation
has been optimized for high speed. The advantages of the HDCE are a re-
duced area cost, high speed, the possibility to emulate other channel and the
possibility to replay sequence for debugging.

1.5.5 Interpreting results

The error rate of iteratively decoded codes has a typical shape such as
sketched in Figure 1.15. Three regions can be easily distinguished. The
first region is where the code is not efficient, even if the number of iterations
is increased. The waterfall region is where the error rate has a huge negative
slope. Ideally the waterfall region is vertical. The more the waterfall region
is on the left side, better is the code. The error floor region is where the
curve does not fall as quickly as before. The error floor appears at low BER,
and is usually caused by trapping sets or pseudo-codewords. The error floor
has to be at a BER as low as possible for a good code.

28

1.5. TESTING THE PERFORMANCE OF A DECODER

Figure 1.15: Typical regions in an error probability curve

The Shannon limit

Stated by Claude Shannon in 1948, the theorem describes the maximum pos-
sible efficiency of error-correcting methods versus level of noise interference
and data corruption. The Shannon theorem states that given a noisy chan-
nel with channel capacity C and information transmitted at a rate R, then
if R < C there exist codes that allows the probability of error at the receiver
to be made arbitrarily small. With a given coding rate r, it is possible to
calculate the minimum possible Eb/N0(dB) value.

Eb/N0(min)(dB) = 10 log((22r − 1)/2r) (1.24)

1.5.6 Standard requirements

For the DVB-S2 standard, the standard requirement is to be within 1 dB
from the Shannon limit at Quasi Error Free (QEF). The definition of QEF
adopted for DVB-S.2 is “less than one uncorrected error-event per transmis-
sion hour at a level of a 5Mbit/s single TV service decode”, approximately
corresponding to a Transport Stream Packet Error Ratio PER < 10−7 before
de-multiplexer, where a packet is a MPEG packet of 188 bytes. In this thesis,
we will approximate the QEF at FER < 10−6 and BER< 10−10. A simula-
tion that gives results within the standard requirement must have the error
floor threshold at BER< 10−10 and Eb/N0(std)(dB) < Eb/N0(min)(dB)+1.

Table 1.4 gives for the code rates used in the DVB-X2 standards the
minimum achievable Eb/N0(min)(dB) value computed using equation 1.24.

29

CHAPTER 1. BACKGROUND

code rate 1/4 1/2 2/3 3/4 4/5 5/6 9/10

Eb/N0(min)(dB) -1.9 0 1.3 1.9 2.4 2.6 3.2
Eb/N0(std)(dB) -0.9 1 2.3 2.9 3.4 3.6 4.2

Table 1.4: Shannon limit in function of the code rate

Table 1.4 also gives the maximum Eb/N0(std)(dB) value at BER = 10−10

for a simulation to fulfill the standard requirements.

30

Take time to deliberate, but

when the time for action has

arrived, stop thinking and go

in.

Napoléon Bonaparte
(1769-1821)

2
Memory update conflicts

Summary:
In this chapter, a pipelined layered LDPC decoder is considered as the

best implementation solution for the DVB-X2 standard. The major drawback
of using a layered decoder with DVB-X2 standards are the arising memory
update conflicts due to the structure of the matrix and the pipelined archi-
tecture. Solving these memory conflicts requires efficient strategies to keep
performance, high throughput and low hardware complexity. State-of-the-art
solution includes complex control, hardware patch or idle cycle insertion. In
this chapter, we propose alternative solutions based on the “divide and con-
quer” strategy to overcome the memory conflicts. Two kinds of conflicts are
identified and solved separately: the conflicts due to the matrix structure and
the conflicts due to pipelined architecture. The number of conflict due to the
structure of the matrix is first reduced by a reordering mechanism of the ma-
trix called split algorithm that creates a new structured matrix which reduces
the parallelism. Then the remaining conflicts are solved by an equivalent ma-
trix using added punctured bits. Another solution based on a repeat of the
deficient layer and an “on time” write disable of the memory offers an even
better performance. To solve the conflict due to pipelining, the split process
is used again as a first step followed by an efficient scheduling of the layers
and identity matrices.

31

CHAPTER 2. MEMORY UPDATE CONFLICTS

0 360 720 1080

0

360

720

C
N

m

V Nn

Figure 2.1: Zoom of a rate-2/3 DVB-T2 Matrix with N=16200

A memory update conflict occurs when a data is computed by a pro-
cessing unit while this data has not been updated yet by another processing
unit. Although DVB-X2 standards define structured parity check matrices,
these matrices are not perfectly structured for layered decoder architecture,
leading to conflicts in the SO memories. In the beginning of this chapter,
our attention is focused on a particular type of conflict introduced by the
existence of overlapped shifted identity matrices in the DVB-X2 parity check
matrix structure. Then the memory update conflicts introduced by the use
of a pipelined CNP are identified and solved by an efficient scheduling.

2.1 Conflicts due to the matrix structure

Figure 2.1 shows a zoom on the first 720 VNs and CNs of the DVB-T2 LDPC
matrix illustrated in Figure 1.7. One can see that the first group of 360 CNs
is linked twice to the first group of 360 VNs by two diagonals. The sub-
matrices with a double diagonal in it will be called Double Diagonal Sub
Matrix (DDSM). The DDSM are also called overlapped identity matrices or
superposed sub-matrices and are also present in the LDPC matrices of the
Chinese Mobile Multimedia Broadcasting (CMMB) standard [61].

Let us consider the case where two CNs (C1 and C2) are computed in one
layer and connected to the same VN denoted vdd. There are two updates of
the same SO value. The calculation of the new SO (2.1) is deducted from
equation (1.15) and (1.18). Assuming ∆Mc→v = −M old

c→v +Mnew
c→v and using

(2.1), the calculation of SOnew1
vdd

and SOnew2
vdd

in (2.2) and (2.3) are obtained
respectively.

SOnew
v = SOold

v −M old
c→v +Mnew

c→v (2.1)

32

2.1. CONFLICTS DUE TO THE MATRIX STRUCTURE

V Gng

C
G

m
g

5 10 15 20 25 30 35 40 451

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2.2: Base DVB-T2 matrix representation

SOnew1

vdd
= SOold

vdd
+∆Mc1→vdd (2.2)

SOnew2

vdd
= SOold

vdd
+∆Mc2→vdd (2.3)

Because the SO is updated serially in the layered architecture, the SOnew2
vdd

will overwrite the SOnew1
vdd value. This conflict is equivalent to cut theMc1→vdd

message. This is called a cutting edge in [8] and will lead to significant per-
formance degradation. With a straightforward implemented layered decoder,
each DDSM will produce P cutting edges and dramatically annihilating the
decoding performances.

Figure 2.2 illustrates the number of DDSMs in the rate-2/3 short-frame
matrix. V Gi denotes the ith group of 360 VNs and CGj denotes the jth

group of 360 CNs. A black square represent a single permuted identity
matrix linking CGj and V Gi and a gray square corresponds to a DDSM.
Note that there are 14 DDSMs in this example.

2.1.1 State-of-the-art

Among all the literature about DVB-X2 implementation, the problem of
overlapped sub-matrices is rarely explicitly identified and solved. In [36],
the problem is avoided by applying the Gauss-Seidel technique only on the
staircase part of the parity check matrix. The architecture in [14] applies
layers decoding but does not shows the treatment to superposed sub-matrices.

33

CHAPTER 2. MEMORY UPDATE CONFLICTS

In [53] and [8] the authors present a solution to avoid memory update
conflicts based on the computation of the variation (or delta) of the SO
metrics to allow concurrent updates. The computation of this SO update
(SOnew = SOnew +∆Mc→v) requires an additional SO access which is costly
to implement.

In [48], the problem of overlapped matrices is identified and solved by
computing the variation only in case of overlapped matrices. In the architec-
ture proposed the SO update (SOnew = SO + delta) is done locally before
shifting back in the SO memory. This architecture save a triple access to the
SO memory but require two barrel shifters.

In [57], the two updated SO of two overlapped CN (SOnew1
vdd

and SOnew1
vdd

)
are stored in two different addresses and the SOnew is updated with the
following equation:

SOnew = SOnew1

vdd
+ SOnew2

vdd
− SOold. (2.4)

By developing equation (2.4) we find:

SOnew = SOold +∆Mc1→vdd +∆Mc2→vdd . (2.5)

The two proposed method are more or less based on the computation of
the varation of the SO metrics but the over-cost is limited to the concerned
SO memory. In the previously described solutions, an heavy patch and two
barrel shifters are used. We propose solutions without patch for an LDPC
decoder architecture with one barrel shifter. In [30] is proposed a parallel
updating among all the layers (processing of one CN per layer) and a serial
updating CNs. The decoding of this algorithm is quite different from the
original but it is efficient to solve conflict without performance loss and the
implemented architecture is detailed. One drawback of this method can be
the shuffling network that can not be a barrel shifter and is not detailed. In
the next section we explain how we reduce the number of DDSMs.

2.2 Conflict resolution by group splitting

To achieve the minimum required throughput of 90 Mbps in the DVB-T2
standard, parallel processing of a fraction of the 360 CNs is enough (see Sec-
tion 4.2. In [14], the authors have used 45 CNPs which lead to significant
area reduction, therefore splitting the group of 360 CNs is considered. In
[27] and [14], the splitting process has already been done implicitly through
memory mapping. [27] describes how the memory banks are sized and or-
ganized in function of the parallelism. In the next subsection, we will show

34

2.2. CONFLICT RESOLUTION BY GROUP SPLITTING

how to reorder the structured matrices initially designed with IM of size 360
to matrices with a significant reduction of DDSM and with IM of size 360/S,
where S is the number of splits.

2.2.1 Construction of the sub-matrices

Let us define Ps as the number of CN working in parallel after a split. The
values P , Ps and S are then linked by the equation:

S × Ps = P

The construction process of the new matrix relies on the permutation of the
rows and the columns in two steps. First a permutation of the rows (CNs)
with the permutation defined as:

σ(i) = (i mod S)Ps + ⌊i/S⌋ (2.6)

where ⌊x⌋ is the largest integer not greater than x. We first reorder the CN
using (2.6) where i is the CN number. Then columns (VNs) are permuted in
the same way.

Let us consider the example of a double diagonal sub matrix HDDSM

2,6

of size P = 12 in Figure 2.3(a), where the values in subscript are shift
parameters of the two diagonals i.e.: first diagonal (D1) is shifted by δD1 =
2 and the second diagonal (D2) is shifted by δD2 = 6. This DDSM will
produces 12 cutting edges. After reordering the rows using equation (2.6)
with S = 3 and Ps = 4, we obtain the new matrix H′

2,6 in Figure 2.3(b).
Then a permutation of the columns gives the equivalent matrix shown in
Figure 2.3(c). Note that H′′

2,6 is composed of shifted identity matrices of size
Ps = 4 and can be best described by its base matrix:

H′′
base

=





δ2 0 δ0
δ1 δ2 0
0 δ1 δ2





where a 0 is a null sub matrix and δi is a 4×4 IM right shifted by the i value.
In the general case, there is a convenient way to build the new base matrix

layer by layer, using the shift value δDj of the diagonal j before split. The
column position vg of the sub shifted identity matrix is given by:

vgl,Dj = (δDj + l) mod S (2.7)

where l is the layer index. The shift value is given by:

δl,Dj = ⌊δDj/S⌋+ ⌊(δDj mod S + l)/S⌋ (2.8)

35

CHAPTER 2. MEMORY UPDATE CONFLICTS

1

1

1

1

0 0 0 0

1

1 1

1

1

1 1

11

1

1

1

1

1 1

1

1

1 1

1

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1

1

1

1

1

0 0 0

0 0 0

0 0 0

1

1

1

0 0 0

0 0 0

1

1

0 0 0 1

0 0 0

1

1

1

1

1

1

1

1

1

1

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

00 0

0 0

0 0

0

00

0 0 0

0 0

0

0

0 0 0

0

00

00 0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

00

0

0 0

0

0 00

0

0

0

0

0

0

0

0

2,6

0 0 0

0

00

0

0

0

0

0 0

0

0

0 0

0 0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0 0

0 00

00

000

000

00

0

0

0 1 2 3

0

0 0

00

0

0 0

00

0 0 0 0

0

00

0

0 0

00

0

0 0

0

0 0

0

0

0

0 0

0

0 0

0

0

0

0 0

0 0

1 00

0

0

0

0 0

0

0

0 0

0

00

1

0

0 0

0 0

0

1

1

1 0

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

DDSM

2,6

0

1

2

3

0 1 2 3

0 0 0

00 0

0 0 0

0 0

0 0 0

000

0 0 0

0 0 0

0

0 0

0 0 0

0

00

00 0

0

0 0

0

0

0 0

0

0

0

0

00

0

0

00

00

0

0 0

0

0 00

0

0

0

0

0

0

0

0

0

0

0

2,6

H = H’ =

(a) Before split (b) CNs permutation

(c) VNs permutation

H’’ =

σ(0) = 0

σ(0) = 0

σ(1) = 3

σ(1) = 3

Figure 2.3: Shifted identity matrix

36

2.2. CONFLICT RESOLUTION BY GROUP SPLITTING

vgi

cg
j

10 20 30 40 50 60 70 80 901

5

10

15

20

25

30

1

Figure 2.4: Split base DVB-T2 matrix representation

It is important to mention that the splitting of a DDSM does not always
remove the double diagonals. If δD1 mod S = δD2 mod S then equation
(2.7) gives vgl,D1 = vgl,D2 and there will remains DDSMs in the sub-matrices.

2.2.2 DDSM in DVB-X2 and simulation results

The rate-2/3 base DVB-T2 matrix (Figure 2.2) is split by a factor of two and
the obtained matrix is shown in Figure 2.4. It can be observed that after
the split, the number of grey squares are reduced from 14 to 8. In terms of
cutting edges, this means a reduction from 14×360 cutting edges to 8×180.
Tables 2.1 and 2.2 provides the equivalent number of DDSMs of size 360 as a
function of the parallelism and the coding rate. An asterisk (*) in the table
means that there are multiple overlapped identity matrices greater than two
among the counted DDSMs. Table 2.1 provides results for short frames and
Table 2.2 provides results for long frames DVB-T2 LDPC codes. Significant
reduction of the number of cutting edges can be observed by the proposed
group splitting method.

Figure 2.5 gives simulation results for a normalized Min-Sum fixed point
layered decoder, with 30 iterations for short frames at a code rate of 2/3 in
Additive White Gaussian Noise (AWGN) channel. We simulate an architec-
ture where the channel value is quantified on 5 bits, the SO on 6 bits (see
Chapter 3) and the normalization factor is 0.75. The curve denoted “p45 (0
cuts)” shows the error performance with a parallelism of 45 which produces
no cutting edges. The parallelism of 60 and 90 (represented by “p60” and
“p90” respectively) result in a performance loss of 1dB from the reference
(“p45”). The dramatic performance loss motivates us to find a solution for

37

CHAPTER 2. MEMORY UPDATE CONFLICTS

Short Frame
S Ps 1/4 1/2 3/5 2/3 3/4 4/5 5/6

1 360 4 8 0 14 9 9 20*
2 180 1 2 0 4 5 8 13*
3 120 1 1 0 3 3 2 11
4 90 0 1 0 2 2 7 5*
5 72 1 1 0 5 1 1 1
6 60 0 0 0 1 1 2 6
8 45 0 1 0 0 2 2 4*
9 40 1 0 0 1 2 0 3
10 36 0 0 0 1 0 1 1

Table 2.1: Number of DDSM for N=16200

Long Frame
S Ps 1/2 3/5 2/3 3/4 4/5 5/6

1 360 8 32* 12 23* 31* 35*
2 180 4 19 5 10 13 21
3 120 2 16 4 8 15 12
4 90 2 8 2 3 6 13
5 72 0 8 2 3 9 11
6 60 1 6 1 3 5 3
8 45 0 2 0 3 3 5
9 40 2 4 1 3 4 2
10 36 0 4 1 2 2 5

Table 2.2: Number of DDSM for N=64800

38

2.3. PARITY CHECK MATRIX EQUIVALENT

1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

o
(dB)

B
E

R

p120 (1080 cuts)

p90 (720 cuts)

p60 (360 cuts)

p45 (0 cut)

Figure 2.5: BER as a function of the parallelism on a fixed point simulation

the remaining DDSMs in the next section.

2.3 Parity check matrix equivalent

In [15] and [56] a method to transform a parity check matrix by the introduc-
tion of dummy VN of degree two is presented. With the help of this method,
we build an equivalent matrix without DDSMs.

2.3.1 Principle of the split-extend process

Taking into consideration one parity equation (2.9), it can be split-extended
into two equations (2.10) and (2.11) using a dummy VN p0.

v1 + v2 + v3 + v4 = 0 mod 2 (2.9)

v1 + v2 + v3 + p0 = 0 mod 2 (2.10)

39

CHAPTER 2. MEMORY UPDATE CONFLICTS

Figure 2.6: Principle of an extended parity check matrix

v4 + p0 = 0 mod 2 (2.11)

A dummy VN has an initial LLR value equal to 0. The same splitting
process can be applied to a layer. In Figure 2.6, a layer (a) with one DDSM
is split-extended into two layers (b). The new equivalent matrix is extended
by a a Group of Dummy VN (DG). After the split-extending process, the
two layers are without DDSM. It is possible to keep the original matrix for
the encoding, which means that there is no change in the architecture of
the encoder. However, during the decoding process, the added VNs (dummy
VN) are initialized with LLR values of 0 and the new matrix is used for
the decoding process. By using the BP algorithm, a flooding schedule and
enough iterations, the performance of the extended matrix is equivalent to
the original one. The equivalent matrix is less effective for a layered decoder:
the dummy VNs of degree two are used only for the communication between
the split CNs. The messages going through the punctured VN are updated
just one time during one iteration. This means one iteration latency is needed
for the message to be sent from one split CN and received by the other. The
next subsection presents the results of simulation on a fixed point normalized
decoder as described in Chapter 3.

2.3.2 Simulation results

Figure 2.7 shows the simulation result keeping the same conditions as in
Figure 2.5 but utilizing extended matrices. The values between round bracket
represent the number of extended sub matrice. Note that the simulations
are with short frame and without the outer BCH decoder. Simulation with
standard frame and BCH correct the error floor and fulfill the standard limit.
Simulations with short frame and without BCH have the advantage of faster

40

2.3. PARITY CHECK MATRIX EQUIVALENT

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

p360(12EXT)

p72(5EXT)

p60 (1EXT)

p45 (0)

Std limit

Figure 2.7: BER as a function of the parallelism with extended matrices

simulation. One can observe the performance degradation with the increase
of the parallelism.

Figure 2.8 shows a simulation for long frames at parallelism of 40 which
is the minimum required parallelism for a 200 MHz pipelined layered decoder
to reach the expected 90 Mbps throughput (see Section 4.2). The simulation
results are presented for rates 2/3, 3/4, 4/5 and 5/6. The curves represented
by dashed lines are the references at a parallelism that gives no conflict
(see Table 2.2). The curve represented by solid lines are the results with a
parallelism of 40 and extended matrix. An error floor can be observed for
rate 2/3, 3/4 and 4/5 this shows that the proposed solution introduces a
significant degradation of performances.

2.3.3 Performance improvement

To improve the performance, it is important to find first where the error
comes from, which can be difficult to detect as this error occurs on average
only once in every 108 bits.

Problem description

Let us analyse what does happen exactly on an example. Figure 2.9 is a
Tanner representation of the figure 2.6. In this example, V G3 and V G′

3

41

CHAPTER 2. MEMORY UPDATE CONFLICTS

1.5 2 2.5 3
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

reference

extended

std 2/3

std 3/4

std 4/5

2/3 3/4 4/5 5/6

Figure 2.8: BER for standard frames with parallelism of 40 with extended
matrices

Figure 2.9: Tanner representation of Figure 2.6 (b)

42

2.3. PARITY CHECK MATRIX EQUIVALENT

represent the same variable group but they are differentiated in the Tanner
graph for better understanding.

Let us follow the message passing evolution of the update of one split CN
(The CNs and VNs used during this update are colored in the Tanner graph of
Figure 2.9). At the first sub-iteration it0 and first layer, the Dummy Variable
(DV) get the extrinsic message from V1, V2 and V3. Supposing a min-sum
algorithm and the V3 is a minimum value, then V3 message is transmitted to
DV . During processing of the second layer, the V3 message is transmitted to
V ′
3 through DV . In fact, when the minimum is in V1, V2 or V3, the message

passing works exactly like if the parity check were not split. Supposing now
that the minimum is in V ′

3 , this minimum is transmitted at the DV only
during the second layer processing, and the first layer of it0 does not take
benefit of this message. The first layer will benefit from this message only
at the next iteration it1. This is where the problem comes from: with this
matrix configuration, there is one iteration delay for the reading of the V ′

3

value. The probability that this delay leads to a mistake is very low, but in
practice, produces the error floor.

Proposed solution

To sum-up, the root of the problem is that DV = V ′
3(it − 1) and should be

ideallyDV = V ′
3(it). If during the read process of layer CG1, we read directly

the V ′
3 value instead of the V D value, then we read the last V ′

3 updated value
and the problem is solved. It is not allowed to write two times at the same
address during updating of one layer (it will cause overwrite) but it is allowed
to read two times at the same address without problem.

Simulation results

Figure 2.10 is a simulation in similar condition as in Figure 2.8 but for short
frames. The simulation results are presented for rates 2/3, 3/4 and 5/6. The
new curves are less than 0.05 dB from the reference.

Figure 2.11 is a simulation in similar condition as in Figure 2.8. At the
difference of Figure 2.8, the performances are well in the standard require-
ments, even without BCH.

The values given in Table 2.1 and 2.2 gives the number DDSM and also
gives the number of DV that have to be added to solve the conflicts. For a
given parallelism, the maximum value of the line multiplied by 360 gives the
required number of DV to add to the architecture as an over cost. The SO
memory over cost is 2.2 % for a parallelism Ps = 40, 3.3 % for Ps = 60, 8.8
% for Ps = 120 and 20 % for Ps = 360.

43

CHAPTER 2. MEMORY UPDATE CONFLICTS

1.5 2 2.5 3 3.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

reference

extended

std 2/3

std 3/4

std 4/5

2/3 3/4 4/5

Figure 2.10: BER for short frames with a parallelism of 40 with extended
matrices

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

reference

extended

std 2/3

std 3/4

std 4/5

2/3 3/4 4/5 5/6

Figure 2.11: BER for long frames with a parallelism of 40 with extended
matrices

44

2.4. CONFLICT RESOLUTION BY LAYER DUPLICATION

Another drawback of the solution we proposed comes from a through-
put reduction that can become significant in case of high parallelism. The
throughput is reduced due to the two added identity matrices for each DDSMs.
For example, in case of a rate-5/6 short frame with a parallelism of 40,
the 3 DDSMs are removed by adding 6 identity matrices. Comparing with
the 2055 identity matrices, this leads to a throughput reduction factor of
2055/(2055+6) which is negligible. To have a simple architecture, we choose
the solution to have a constant CN degree (dc). This means that for added
layer of Dc = 2, null operation are added to have Dc = const. The resulting
throughput is now reduced proportionally to the ratio number of DDSMs
over the number of layers. In case of a single stream decoder the proposed
solution is efficient because the required parallelism is low which means a
few DDSM to solve. In case of a multi stream decoder (See Section 4.5), the
required throughput is multiplied by the number of streams, which increase
the required parallelism and consequently the number of DDSM. With a
high number of DDSM, the throughput loss becomes significant and another
solution has to be considered.

2.4 Conflict Resolution by Layer duplication

The equivalent extended solution is efficient in term of performance but re-
duce the decoding throughput. Since the DDSM are solved by the processing
of two layers instead of one, the question arises “ can we solve the DDSM
and further benefits from the second layer processing?”. Iterative decoding
with replicas [69] shows that it is possible to update a layer two times during
an iteration. The idea is to recall the layers that have DDSM and use a write
disable when needed.

In this section, the split process (see Section 2.2) is kept to reduce the
number of DDSM and then the layers that include conflicts are now simply
duplicated and the conflicts are solved thanks to an efficient “on time” write
disable of the memory. The advantage is that the added layer solves the
DDSM problem, while still taking part in the decoding process.

This section is organized as follows: we first explain the principle of layer
duplication and on time write disable. Then we present and solve the problem
that arise in the Mc→v messages. Finally, the architecture and performance
results are presented.

45

CHAPTER 2. MEMORY UPDATE CONFLICTS

2.4.1 Conflict resolution by Write Disabling the mem-
ory

The principle of conflict resolution by write disabling is to control appropri-
ately the writing of the updated SO values when there is a DDSM. Let us
recall first where the memory update conflict comes from (see Section 2.1).
In order to facilitate the explanation, we recall equations (2.2) and (2.3).

SOnew1

vdd
= SOold

vdd
+∆Mc1→vdd (2.12)

SOnew2

vdd
= SOold

vdd
+∆Mc2→vdd (2.13)

The SOvdd value is updated sequentially two times by equation (2.12) and
then equation (2.13). The result of the layer update is:

SOLR1

vdd
= SOold

vdd
+∆Mc2→vdd (2.14)

To benefit from the two updates, Equation (2.13) should be:

SOvdd = SOold
vdd

+∆Mc2→vdd +∆Mc1→vdd (2.15)

After a first layer computation, we duplicate the layer, and compute again
this layer. By applying Equation (2.12) to the result of the first layer update
(SOLR1

vdd
) we obtain Equation (2.15) which is the result we are looking for.

Then normally, the second update apply Equation (2.13) and overwrite the
result were looking for. To overcome this problem, the SO memory is write
disabled during the second update by a write disable, SO is kept unchanged.

In Figure 2.12(a), a sub iteration layer has one DDSM and the SOs are
read and written in the same order as they appear in the matrix, from left to
right. The result of the diagonal D2 in the DDSM will overwrite the result
of the diagonal D1 (D1 in dash line shows the overwrite). Figure 2.12 (b)
and (c) is an example where the layer labeled LR1 is the first occurrence
and LR2 is the second occurrence. During the first layer, the result from
the left diagonal (D1) is overwritten but the result of the right diagonal
(D2) is updated. During the second layer occurrence, a write disable signal
is generated to disable D2 update. This time, the result of D1 is updated.
With the recall process associated with an on time write disable, the memory
overwrite still occurs but it is corrected thanks to the layer duplication.

2.4.2 Scheduling of the layers

The suspension points between Figure 2.12 (b) and (c) indicate layers be-
tween LR1 and LR2. These layers are included to avoid memory conflicts due

46

2.4. CONFLICT RESOLUTION BY LAYER DUPLICATION

WD

+
Repeat layer

W
D

O
verw

rite
Overwrite

...

Overwrite

Write Disable

Layer Repeat 1

Layer Repeat 2

O
verw

rite

(b)

(c)

(a) No layer repeat

Result

SOLDD,D2
vdd

= SOold
vdd

+∆Mc2→vdd

LR2

LDD

D1 D2

SOnew
vdd

= SOold
vdd

+∆Mc1→vdd +∆Mc2→vdd

SOLR1,D1
vdd

= SOold
vdd

+∆Mc1→vdd

SOLR1,D2
vdd

= SOold
vdd

+∆Mc2→vdd

LR1

D1 D2

SOLR2,D1
vdd

= SOLR1,D2
vdd

+∆Mc1→vdd

SOLR2,D2
vdd

= SOLR1,D2
vdd

+∆Mc2→vdd

SOLdd,D1
vdd

= SOold
vdd

+∆Mc1→vdd

Figure 2.12: repeat layer principle

47

CHAPTER 2. MEMORY UPDATE CONFLICTS

to pipeline [46] between LR1 and LR2. Furthermore, because LR1 and LR2

use the same SO values, if LR2 would be just after LR1 the result of LR2 is
identical to LR1 and there is no progress in the iterative process. If between
LR1 and LR2, the SO values are updated, then LR2 benefits from these new
updated values. In order to benefit from more updated SO values, an ef-
ficient scheduling of the layers would include a maximum number of layers
between LR1 and LR2. During the next iteration, in order for LR1 to benefit
from LR2 updating, LR2 and LR1 should also include a maximum number of
layers. Ideally, LR1 and LR2 should be separate by half the number of layers.

This repeat layer principle is quite simple. Nevertheless while the SO
Memory is write disabled, the Mc→v is still updated which will lead to errors.
In terms of hardware implementation, specific mechanisms are required in
order to keep coherence between Mc→v memory and SO memory.

2.4.3 Write disabling in the Mc→v memory

During one sub iteration with one DDSM, from equations (2.12) and (2.13),
the SOnew2

v will overwrite the SOnew1
v value. The edge of the Tanner graph

connecting c1 to vdd is virtually absent in the decoding process. Nevertheless,
at the next iteration from (1.15), the Mv→c1 is given by:

M it
vdd→c1

= SOv −M old
c1→vdd

(2.16)

The edge c1 → vdd has been cut during the previous iteration, this means
that M old

c1→vdd
should not provide the Mnew

c1→vdd
value computed during the

previous iteration. A possible implementation is to Write Disable (WD) the
MMEM

c→v memory when storing Mnew
c1→vdd . This process keeps Mc→v at address

of diagonal one (D1) in the Mc→v memory at the previous value.
Let us now focus on the DDSMs in the repeated layers in Fig 2.12 (b)

and (c). During the LR1 (b) computation, the Mc→v memory at address (D1)
is write disabled and during the LR2 (c) computation, the Mc→v memory at
address (D1) is write disabled.

Write disable algorithm

There is a need for an on time WD of the SO memory and the Mc→v memory
in function of the layer occurrence (LR1 and LR2) and the diagonal number
in the DDSM (D1 and D2). This is summed-up in Algorithm 1.

This algorithm is efficient for no compressed Mc→v memory where each
edge has an address in the memory. In case of a min-sum algorithm, there is
no more access toD1 andD2 because all the edges of one layer are compressed
and stored in one address. This problem is solved in the next subsection.

48

2.4. CONFLICT RESOLUTION BY LAYER DUPLICATION

Algorithm 1 Write disable algorithm

if LR1&D1 then
WD Mc→v MEMORY ← 1
WD SO MEMORY ← 1

else if LR2 & D2 then
WD Mc→v MEMORY ← 1
WD SO MEMORY ← 1

else
WD Mc→v MEMORY ← 0
WD SO MEMORY ← 0

end if

2.4.4 Write disabling the Mc→v memory when a Min-
Sum algorithm is used

When a Min-Sum algorithm is used, The dc Mc→v messages linking a CN are
compressed in the min, submin, indmin and sign values(see Section 1.2.1).
The goal of Algorithm 1 is to WD one specific Mc→v message which is not
possible on compressedMc→v messages. One solution is to add two additional
memories for Mc→v(D1) and Mc→v(D2). The Mc→v(D1) memory is updated
only when there is no overwrite of D1 which means second layer and first
diagonal.The Mc→v(D2) memory is updated only when there is no WD of D2

which means first layer and second diagonal. The algorithm 1 is updated in
Algorithm 2.

During the reading of the Mc→v memory, the Mc→v(D1) memory is se-
lected every time a D1 is detected (same process for D2). The next challenge
is to implement efficiently the new algorithm.

2.4.5 Simulations and memory size results

Simulation results

Figure 2.13 illustrates simulation results for a rate-2/3, short frame with a
normalized min-sum algorithm and 25 iterations. By reordering the matrix
[45], [46] and Section 2.2, it is possible to greatly reduce the number of
DDSM (at the cost of parallelism reduction). For example, a parallelism
p = 72 gives 5 DDSMs and produce a curve closer to the reference than
p=360. The reference curve is without conflict and a parallelism p = 45.
The presented simulation shows better results than in [45] where a matrix
expending process is used. Note that we used short frame without BCH
as reference curve for faster simulation giving results above the standard

49

CHAPTER 2. MEMORY UPDATE CONFLICTS

Algorithm 2 Write disable algorithm for min-sum

if Layer = LR1 then

if D1 then
WD SO MEMORY ← 1

else if D2 then
WE Mc→v(D2) MEMORY ← 1

end if
else if Layer = LR2 then

if D1 then
WE Mc→v(D1) MEMORY ← 1

else if D2 then
WD SO MEMORY ← 1

end if
else
WD SO MEMORY ← 0
WE Mc→v(D2) MEMORY ← 0
WE Mc→v(D1) MEMORY ← 0

end if

requirement. If standard frame and BCH were used, the performance would
be in the standard requirements.

To compare the curve at a constant throughput, in Figure 2.14 the num-
ber of iteration is reduced in function of the number of added layers. The
reference curve is without conflict and 30 iterations. With a parallelism of
120 (3 DDSM), 3 layers are repeated over the 15 layers. To keep a constant
throughput, the number of iterations is reduced by a factor 15/(15 + 3),
which gives 25 iterations. With a parallelism of 360 (14 DDSM), the number
of iteration is reduced by 15/(15+14) which gives 16 iterations and the curve
is at only 0.1 dB away from the reference.

Memory size

When using compressed Mc→v memory, there is a need to store the Mc→v

values for every DDSM. The Memory over cost in bits is equal to two times
the Mc→v word size times the number of DDSM times the parallelism P . In
case of a parallelism of 360 the memory over cost becomes significant i.e. 126
Kbits for long frame and rate 5/6.

When using a not compressed Mc→v memory, there is no more need of

50

2.4. CONFLICT RESOLUTION BY LAYER DUPLICATION

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

3 DDSM

5 DDSM

14 DDSM

ref 0 DDSM

standard limit

Figure 2.13: BER for short frame, 25 it, r=2/3, N=16200, without BCH

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

3 DDSM, 25 it

5 DDSM, 23 it

14 DDSM, 16 it

ref, 30 it

standard limit

Figure 2.14: BER for short frame, constant throughput, R=2/3, N=16200,
without BCH

51

CHAPTER 2. MEMORY UPDATE CONFLICTS

SignT

+

+

−
RAM_SO

B
ar

el
 S

h
if

te
r

VGnVGn2

Generator
Index

Min_1

Min_0

Sign

R
A

M
(M

/P
)

WE_SO

FIFO(Dc)

Sorting
Serial

XOR

Serial

generator

Check node core

FIFO(#DD)

FIFO(#DD)

DD

∆Shift

2
′
s
→

S
M

SerialMc→v

S
M

→
2
′
s

|Mc→v |

S
M

→
2
′
s

MV →C

M
MEM
c→v (D1)

M
MEM
c→v (D2)

DD1

MC→V memory

WE DD1

WE DD2DD2

Figure 2.15: write disable architecture

adding specific memory. Considering the memory size optimization described
in [44] and in Chapter 3, a compressed version requires 875 Kbits and a non
compressed version requires 1100 Kbits. Adding 126 Kbits on the compressed
side, the non compressed solution still leads to a 10 % memory over cost but
gives alternative to the Min-Sum algorithm. An alternative to Min-Sum
algorithm can be interesting to improve performance and to solve the error
floor problem for the low code rates.

2.4.6 The write-disable architecture

In this subsection, we describe the three main modifications added to the
layered decoder architecture 1.3.4 to implement the WD algorithm.

Layer duplicating

In the architecture overview (see Section 1.3.4, the Mc→v memory can be
made of a FIFO memory as a Mc→v update occurs only once during one
iteration. In case of repeated layers, the Mc→v are updated more that once
and the Mc→v read and write must be at the same address as during the
first call. This can be implemented using a RAM and an ad hoc address
generator. From the counter and the ROMdc, the layer number signal is
given. The ROMMcv gives a constant address when a layer is repeated.

52

2.4. CONFLICT RESOLUTION BY LAYER DUPLICATION

XQ5VLX85 LUT LUT RAM BRAM

Node Processor 143 2 0
sorting 37 0 0

gen mc→v 34 0 0
fifo mv→c 12 2 0

mc→v memory 46 0 3
Total 1 node 189 2 3
Total 45 nodes 8586 90 135

Control 667 3 0

block SO RAM 360 0 22

Channel RAM 48 0 25

Barrel shifter 945 0 0

Total 11005 93 182

Percentage [%] 5 1 50

Table 2.3: Synthesis Results for DVB-S2 LDPC decoder

Cutting edge and repeat layer detection

The cutting-edge detector principle relays on the detection of DDSM. When
there is a DDSM, during the serial read of the VNGs, two equal V NGn values
follows. This can be easily detected at the output of ROMV NGn where the
base matrix is stored. A repeat layer detector is implemented by using a
dedicated ROM. In this ROM, for each layer is stored if the layer is a repeat
layer and if the layer is the first or the second occurrence.

Knowing the status of a layer (normal, LR1 or LR2) and the status of an
IM (normal, D1 or D2), it is possible deducted from the Algorithm 2 the
states of the WD signals (WDSO , WE D1 and WE D2)

2.4.7 Synthesis results on FPGA

The architecture presented in Figure 2.15 with finite precision options de-
scribed in Section 3 was synthesized on a Virtex-V Pro FPGA (XQ5VLX110)
from Xilinx, for validation purposes. The system decodes long frames of code
rate 2/3. Table 2.3 reports the hardware resources required. The clock fre-
quency is 200 MHz, the average number of iterations is 20 and the throughput
is 90 Mbit/s, which allows the decoding of two simultaneous High-Definition
Television (HDTV) streams.

53

CHAPTER 2. MEMORY UPDATE CONFLICTS

2.4.8 Conclusion

To deal with the memory conflict problem, we proposed a solution based on
repeating the layers with DDSM. The repeating process is associated with
an efficient write disable of the memory to overcome the conflict problem.
This technique shows in worst case performance at 0.1db from the reference
without throughput loss. The implementation area benefits from the use of
only one barrel shifter and a simple memory access at the price of a slight
memory increase and control over cost. This technique shows, in worst case,
performance at 0.1db from the reference without throughput loss. The next
step is to solve the conflicts due to the pipelining.

2.5 Memory update conflicts due to pipeline

Many of the current LDPC implementations of DVB-X2 or WiMAX [60]
standard use the so-called layered architecture combined with pipeline [62,
54, 14, 57]. However, the pipeline process may introduce memory update
conflicts.

In [53] and [8] the authors present a solution based on the computation of
the variation (or delta) of the SO metrics to allow concurrent updates. The
computation of this SO update (SOnew = SOold + delta) is efficient to solve
this kind of conflict but needs either a costly additional memory access or an
increase in the clock frequency by a factor of two. In [62], the use of idle time
is proposed to deal with the conflicts. However this solution decreases the
throughput. The scheduling of the SO in [54] reduced the use of idle time
by using CNP able to deliver its outputs values in a different order than its
input values, which increase the complexity of the CNP architecture. Finally,
we should also note that [14], [54] propose an appropriate scheduling of the
check node as a solution to avoid pipeline conflict but in none of them, the
idea is fully developed.

In this section, we focus on the conflicts due to the pipelining of a layered
decoder and we propose solutions with an example on the DVB-T2 matrices.
In a first step the splitting process (see Section 2.2) solve by itself a part
of the pipeline conflicts. In order to find an efficient scheduling to solve the
remaining conflict, we show that the research of an efficient scheduling is
equivalent to the well known ”Traveling Salesman Problem”. Thus, all the
numerous methods described in the literature to solve the former problem
can be used for our scheduling problem. In this section, we present scheduling
results using a genetic algorithm.

54

2.5. MEMORY UPDATE CONFLICTS DUE TO PIPELINE

dc

SO

SOnew

ǫ

Figure 2.16: Chronogram of a non pipelined CNP

2.5.1 Non pipelined CNP

The chronogram in Figure 2.16 illustrates a non-pipelined CNP. The CNP
first reads the SO. Then after a given number of clock cycles ǫ, i.e. the CNP
latency, the CNP writes back the result of the calculation. We can see on
this chronogram that the CNP starts to read the new set of variable nodes
vci+1

only when all the previous vci have been calculated. The corresponding
throughput is given by:

D1 =
K.Fclk

(2dc + ǫ).M
P
.Nit

bit.s−1 (2.17)

where Nit is the number of iterations to decode a codeword, M is the number
of CN, P is the number of CNPs working in parallel, dc is the average number
of VNs linked to a CN, Fclk is the clock frequency and K is the number of
information bits in a codeword.

2.5.2 Pipelined CNP

Pipelining allows a more efficient use of the CNP and an increase of the
throughput [62], [4] and [54]. The pipelining consists in reading the vci of one
sub-iteration while writing on vci−1

the result of the previous sub-iteration.
This means that as soon as the reading of one sub-iteration is finished, a new
one is started. The chronogram is given in Figure 2.17 and the corresponding
throughput is given by the following equation:

D2 =
K.FClk

dc.
M
P
.Nit + dc + ǫ

bit.s−1 (2.18)

The pipelined architecture offers at least two times greater throughput
compared to the non pipelined one: D2

D1
≈ 2 + ǫ

dc
. We will see in the next

subsection that this architecture can lead to memory conflicts.

55

CHAPTER 2. MEMORY UPDATE CONFLICTS

dc

SOnew

SO

ǫ

Figure 2.17: Chronogram of a pipelined CNP without idle time

2.5.3 The problem of memory update conflicts

In this subsection, we describe the memory update conflicts and we differen-
tiate two types of conflicts.

”Type i + 1” memory conflict: In Figure 2.17 a common variable SOcom

(filled square) is used in two successive sub-iterations. During the second sub-
iteration, the SOcom is still not updated from the previous sub-iteration and
the result of the current sub-iteration will overwrite the result of the previous
sub-iteration. This is also known as a ’cutting edge’ problem because it is
equivalent to a cut in an edge of the Tanner graph representation of the
matrix. Let vgcgi be the set of all the vgi connected to cgj. During pipelining,
the P CNPs write on vgcgi while the P CNPs read on vgcgj . The layers cgi
and cgj can work one after the other without memory access conflict when
the two groups don’t share any common variable 1. Mathematically speaking,
this constraint can be expressed by:

vgcgi ∩ vgcgj = ∅

For example, we can check in Figure 2.2 that there is no vgi in common
between the set of vgi linked to the group of check node number one cg1 and
eleven cg11:

{vgcg1} ∩ {vgcg11} =
{1,2,12,16,19,24,31,45}∩{3,11,13,15,17,21,26,40,41}=∅

Thus the decoding of cg1 and cg11 can be processed consecutively without
memory update conflict. To avoid memory update conflicts, we have to take
care that at any time, two sub-iterations does not share any SO in common.

1As mentioned in [54], if dc > ǫ, it is still possible to avoid memory conflict between
two groups sharing the same common variable SOcom by an appropriate scheduling of the
SOcom inside the two consecutive layers.

56

2.5. MEMORY UPDATE CONFLICTS DUE TO PIPELINE

SO

dc

ǫ
SOnew

Figure 2.18: Conflict due to pipelining at i+ 2

”Type i+ 2” memory conflict: Figure 2.18 illustrates that the same con-
sideration must be taken with the i+ 2 sub-iteration because of the latency
ǫ. In this figure, one value of SO generated by layer i is written in memory
after it is read by layer i+ 2. This situation also leads to a memory conflict
and can be avoided by appropriate scheduling of the layers.

2.5.4 Conflict reduction by group splitting

Section 2.2 explaines how to split an identity matrix in multiple sub-identity
matrices. This process was used to reduce the number of memory update
conflicts due to the structure (Section 2.1). Again, the split process is used
to solve memory update conflict but the causes and the reasons are different.

The Figure 2.4 illustrates the new base matrix after splitting by a factor
of 2. We can see that the new base matrix is sparser than the base matrix
in Figure 2.2 (in terms of identity matrix density). In fact, the number of
identity matrices increases by 2 while the size of the base matrix is increased
by 2 × 2. Increasing the split decreases the risk of memory conflicts due to
pipelining. An appropriate scheduling of the layers can solve the remaining
conflicts.

2.5.5 Conflict resolution by scheduling

A schedule provides timing information about a series of arranged events. To
avoid the cutting edge conflict, we explore the scheduling of the layers. After
defining the scheduling strategy, we show that this problem is an instance
of the well known ”Traveling Salesman Problem”. This problem can be
efficiently solved by a Genetic Algorithm (GA).

57

CHAPTER 2. MEMORY UPDATE CONFLICTS

Scheduling of the layers

The schedule is done in the set of groups of CNs cg = {cg1, cg2, ..., cgmg}.
We define a schedule sequence index π, where π is one permutation in the
set {1, 2, ...,mg}. The number of conflicts due to the pipelining between two
check node groups cgi and cgj is given by equation (2.19).

c(i, j) = |vgcgi ∩ vgcgj | (2.19)

The number of conflicts after one full iteration using scheduling π is given
by equation (2.20).

cit(π) =

(

i=mg−1
∑

i=1

c(π(i), π(i+ 1))

)

+ c(π(mg), π(1)) (2.20)

where the second term is the cost between the last layer of an iteration
and the first layer of the following iteration. We have to find the optimal
permutation πopt that gives the smallest number of conflicts. This can be
translated into an optimization problem which consists in the minimization
of the cost function:

πopt = argmin{cit(π), π ∈ Π} (2.21)

where Π is the group of all the possible permutations of π. The use of graph
theory is dedicated to solve this kind of problem.

The Traveling Salesman Problem (TPS)

Finding the schedule to avoid cutting edge is described by the minimization
problem (2.21). An equivalent formulation in terms of graph theory is: given
a complete weighted graph (where the node would represent a group of CNs,
and the number of cutting edge would be the cost of the edge), find a Hamil-
tonian cycle with the least cost. An Hamiltonian cycle consist in visiting
each node exactly once and also return to the starting node. This problem is
also known as a TSP [38]. The TSP statement is as follows: given a number
of cities and the cost of traveling from one city to any other city, what is
the least-cost round-trip route that visits each city exactly once and then
returns to the starting city. In our case a town is a group of check node and
the traveling cost is the number of cutting edges (2.19).

The first step is to build the cost matrix Hc = {Hc(i, j) = c(i, j), i, j ∈
[1,mg]2}. This matrix gives the number of cutting edges for each possible
couple of groups of CN cgi and cgj. The cost matrix for a rate 2/3 short
frame is illustrated in Figure 2.19(a). On this graphical representation, a

58

2.5. MEMORY UPDATE CONFLICTS DUE TO PIPELINE

CGi

C
G

j

5 10 15

2

4

6

8

10

12

14

(a) Without split

CGi

C
G

j

10 20 30

5

10

15

20

25

30

(b) With a split factor of 2

Figure 2.19: Cost matrix

white square is for no cutting edge and a grey square means one (light grey)
or more (darker grey) cutting edges.

We can see in Figure 2.19(a) that there are only three couples cg1,11 , cg8,14
and cg10,14 that can perform consecutively without conflicts. Figure 2.19(b)
shows the cost matrix after a split factor of 2. The new matrix offers more
possible couples without memory conflict (from 3% to 20% after splitting
by two). The split process gives fewer cutting edges and a greater degree of
freedom for scheduling.

The problem of trying all permutations (|Pi| = mg!) and selecting the
minimum cost (2.21) is NP hard in O(mg!). For a long frame of rate 1/4
and split 4, the number of cities are 540. Thus a suboptimal or heuristic
algorithm is needed to solve the problem.

Principle of Genetic Algorithm

Genetic algorithms [32, 38] use techniques inspired by evolutionary biology
such as inheritance, mutation, selection and crossover. The genetic algorithm
process is summarized in Figure 2.20. First, many solutions are randomly
generated to form an initial population. Then individual solutions are se-
lected through a two round tournament selection using the fitness function
given by equation (2.20). The next step is to generate the ’children’ through
a two point crossover between solutions previously selected. The last step is
the mutation of the children for diversity purpose by swapping two randomly

59

CHAPTER 2. MEMORY UPDATE CONFLICTS

2.Fitness Test

+ =

4.Crossover

1.Initial Populaion

+?=

6.Mutation

5.Children3.Select Best Parents

One generation

7.New population

=?

Figure 2.20: Genetic algorithm

chosen cities. This generational process is repeated until a null cost is found
for an individual solution or a fixed number of generations is reached.

The result of the genetic algorithm applied to the scheduling problem is
presented in the next section.

Simulation results

In this section, we present the result of the genetic algorithm. The maximum
number of generation and the initial population were set to 1000. Every so-
lution was obtained in less than 15 minutes on a standard desktop processing
unit.

In order to take into account the ”type i + 2” cutting edge defined in
section II.D, i.e vgcgi ∩ vgcgi+2

= ∅, we modify the cost function cit defined in
(2.20) as:

c′it(π) = αcit(π) +

mg
∑

i=1

c(π(i), π((i+ 2) mod mg)) (2.22)

where α ∈ N+ and is high enough to give an absolute priority to the i + 1
conflicts against the i + 2 conflicts. The next subsection gives some results
using a genetic algorithm to find an efficient schedule.

Table 2.4 and Table 2.5 present the results found for the DVB-T2 LDPC
decoder. In these tables, a ’0’ means that the genetic algorithm found no

60

2.5. MEMORY UPDATE CONFLICTS DUE TO PIPELINE

Code rate
S Ps 1/4 1/2 3/5 2/3 3/4 4/5 5/6

1 360 1 1 0 0 0 0 0
2 180 2 2 1 0 1 0 0
3 120 2 2 1 1 1 1 0
4 90 2 2 1 1 1 2 1
5 72 2 2 1 1 2 2 1
6 60 2 2 2 2 2 2 1
8 45 2 2 2 2 2 2 1
9 40 2 2 2 2 2 2 2

Table 2.4: Scheduling solutions for short frames

Code rate
S Ps 1/2 3/5 2/3 3/4 4/5 5/6

1 360 2 1 1 1 0 0
2 180 2 1 2 1 1 0
3 120 2 1 2 2 1 1
4 90 2 1 2 2 1 1
5 72 2 1 2 2 1 1
6 60 2 2 2 2 2 1
8 45 2 2 2 2 2 2
9 40 2 2 2 2 2 2

Table 2.5: Scheduling solutions for long frames

solution that avoids ”type i+1” conflict. A ’1’ (respectively ’2’) means that it
found a scheduling solution without type i+ 1 conflict (respectively without
type i + 1 and type i + 2 conflicts). We can check that for Ps = 40, there
are schedules without conflicts at i + 2 for all code rates and frame types.
Note that, after a scheduling at i + 1, the remaining conflicts due to the
latency ǫ can be avoided using a scheduling of the vgi inside the layers [54].
This option allows a parallelism of up to 120 for long frames and 90 for short
frames.

Scheduling of the identity matrices

During the sorting process of the min-sum algorithm in equation (1.8), the
arriving order of the VG have no incidence in the result, so it is possible

61

CHAPTER 2. MEMORY UPDATE CONFLICTS

to reorder the VG in a layer without consequences. Table 2.4 and Table 2.5
show that for high parallelism there is no layer scheduling that solve equation
2.20 (type i+ 1 conflict). Even if two successive layers have a common VG,
a conflict doesn’t necessary occurs as in figure 2.17. In the figure 2.17, if
the common VG (colored square) of the first layer is read at the start of the
layer, and the common VG is at the end of the second layer, then no conflict
occurs. To generalize, if ǫ < dc − 1 then a solution exist by reordering the
IM in the layers. If ǫ > dc− 2 then there is no solution for type i+1 conflict
and idle time have to be added to the reordering of the IM to avoid conflict.
Moreover, if ǫ > dc− 2, then there are possibility of conflict between a layer
i and layer i + 2 as in Figure 2.18 (type i + 2 conflict), this conflict can be
solved by identity matrix scheduling.

2.5.6 Conclusion

Pipelining a layered decoder doubles the throughput but leads to memory
conflicts. The split process reduces the parallelism and creates sparser base
matrices. Using the new base matrices, schedules without conflicts can be
found. Due to the huge amount of combinations, a genetic algorithm is used
to find the best schedule. This algorithm finds schedules that avoid conflicts
with the next sub-iteration (i + 1) and with the second next sub-iteration
(i + 2). Combined with a scheduling of the identity matrices in the layers,
the whole scheduling process is able to solve all conflicts due to pipeline. The
proposed solution only requires an efficient scheduling and requires no change
or added patch to the layered architecture. Although this section explains
the process for matrices defined by the DVB-T2 standard, the same process
can be used for structured matrices such as the ones defined by the WiMAX
standard.

2.6 Combining layers duplication and schedul-

ing

Section 2.4 solves efficiently memory conflict due to the matrices structure.
Section 2.5 solves efficiently memory conflicts due to the pipelining. Can we
combine the two methods to solve all the memory update conflicts? The
split process explained in Section 2.2 is a common tool as a first step for
the resolution of the two causes of conflicts. The split conflict is compatible
with the two methods. Then in a second step, the resolution of pipe conflict
is solved by minimizing the cost of an Hamiltonian cycle (process all the

62

2.7. CONCLUSION

layers only once during an iteration and return to the starting layer). The
second step to solve conflicts due to the structure is to duplicate layers. The
consequence is that the iteration cycle is not any more Hamiltonian because
layers are repeated during one iteration. Thanks to the flexibility of the
Genetic Algorithm (GA) used to solve the scheduling problem, the data of
the problem has just to be updated with new layers (the duplicated layers)
without any changes in the GA algorithm.

2.7 Conclusion

In this chapter we considered the problem of memory update conflicts due to
the DVB-S2, -T2 and -C2 matrices structure and conflicts due to the use of
a pipelined layered decoder. Conflicts due to the structure has been solved
thank to two innovative solutions and Conflicts due to pipeline has been
solved by an efficient scheduling of the layers. The split procees associated
with a layer repeat architecture and an efficient layer scheduling can be effi-
ciently combined for a memory update conflict free solution. Now that the
memory conflict problems are solved, it is possible to think on reducing the
implementation cost by optimizing the architecture.

63

CHAPTER 2. MEMORY UPDATE CONFLICTS

64

If you want a thing done well,

do it yourself.

Napoléon Bonaparte
(1769-1821)

3
Memory optimization

Summary :
In this chapter, the optimization of the memory size is studied. The

DVB-S2 standard is considered to compare results with the literature. Our
work can also be applied to the DVB-T2 and -C2 standard, the Wi-Fi and
WiMAX LDPC standards or more generally to any layered LDPC decoder.
The first step concerning the memory reduction is the choice of a sub-optimal
algorithm. The already well-known Min-Sum algorithm [24] and its variants
significantly reduce the memory needs by the compression of the extrinsic
messages. Another way to reduce the memory needs is to limit the word size
by saturation. In the state-of-the-art, the way the SO and the extrinsic mes-
sages are saturated is rarely explicitly explained. In this chapter, we provide
first some discussion on efficient saturation of the extrinsic messages and
the SO values. To complete the discussion, we also introduce a methodology
to optimize the size of the extrinsic memory. In a second step, still is the
field of memory optimization, as Dual port RAM is much more costly than
Single port RAM, methodologies are given to implement the layered decoder
by using only single port RAM.

65

CHAPTER 3. MEMORY OPTIMIZATION

Figure 3.1: Resulting distribution of a quantified BPSK modulation

The area occupied by the memory of an the implementation of the DVB-
S2 LDPC decoder is around 75 %. Thus area optimization leads to the
optimization of the memory. The memory size depends on tree factors: the
quantification, the way it is implemented and the technology used. The
saturation process is first studied as a mean to reduce quantization.

3.1 Saturation of the stored values

A SO value is the sum of the channel LLR with all the incoming extrinsic
messages. Considering the case of an LDPC code of the DVB-S2 standard,
the maximum variable node degree (dv) is 13. As an exemple, considering
that the channel LLR and the Mc→v are quantized on 6 bits, the SO values
should be quantized on at least 6+ ⌈log2(13)⌉ = 10 bits to prevent overflows.
However, to avoid prohibitive word size, efficient saturation of channel LLRs
lead to a reduction of the overall quantization. Then a saturation of the SO
values and the Mc→v are considered.

3.1.1 Channel LLR saturation

For floating point simulation, it is known that the decoders using the Nor-
malized Min-Sum algorithm are not sensitive to scaling in the LLRin values.
During the initializing process, the equation LLRin = 2y/σ2 can be simplified

66

3.1. SATURATION OF THE STORED VALUES

to LLRin = y, saving the need to compute the variance.The received y value
is quantized in a way to have integer values at the input of the decoder. We
assume here that the quantized value of y denoted by LLRq is represented
on nLLR bits and the quantification function is defined as:

LLR(y)q =

⌊

sat(y,R)× 2nLLR−1 − 1

R
+ 0.5

⌋

, (3.1)

where sat(a, b) = a if a belongs to [−b, b] and sat(a, b) = sign(a)×b otherwise.
The R value is the interval range of quantization (y is quantized between
[−R,R]) and represent also the saturation threshold value. Considering the
BPSK modulation, we saturate y at R = 1 + β.

Figure B.3 shows the Probability Density Function of a quantized BPSK
modulation (-1 and +1) that is perturbed by an Additive White Gaussian
Noise (AWGN) of variance σ = 0.866 (corresponding to Eb/No = 2 dB).
The channel is quantized on 5 bits and the saturation threshold is R =
1 + β = 2, 47. The distribution filled in black shows the +1 offset, and the
unfilled distribution is the -1 offset. The quantized distribution varies from
LLRmin

q = −(24 − 1) to LLRmax
q = 24 − 1. The problematic is to find the

saturation threshold providing the best performance for for a given number of
bits of quantization. If the saturation threshold is low, then the information
given by the tail of the Gaussian curve are saturated. If the threshold is high
then the quantization error increases.

The saturation limit 1 + β can be calculated so that the proportion of
saturated values is equal to the average proportion of the other values. The
average proportion of a given value is 1/(2nLLR − 1)(probability of a value
in an uniform distribution). On the other side of the equality, the Cumulate
Distributive Function (CDF) of a -1 offset distribution applied to the negative
saturation limit will give the proportion of saturated values for a -1 offset
signal. The equality can be written as:

1

2

[

1 + erf
(−β√

2σ

)

]

=
1

2nLLR − 1
(3.2)

From equation (3.2), β can be deduced:

β = σ ×
√
2

(

erf−1
(2nLLR − 1

2nLLR + 1

)

)

(3.3)

Thus the β value is a function of nLLR and is proportional to σ. By
applying equations (3.3) and (3.1), the optimum saturation threshold and
the scaling factor can be computed. The problem of this solution is that an

67

CHAPTER 3. MEMORY OPTIMIZATION

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

3−8−4

4−9−5

5−10−6

6−11−7

Std limit

Figure 3.2: BER simulation for a rate 2/3

adaptative quantization of y is needed that requires a channel estimation of
σ .

In fact, to prevent the σ computation, an optimal scaling factor is calcu-
lated for a given SNR. If the performance requirement is reached for a given
SNR, then for higher SNR, the quantization would be sub-optimal. However,
even with sub-optimal quantization, with higher SNR, the performance are
still improving. For each code rate, a constant scaling factor ω and saturation
value 1 + β can be pre-computed saving the need for the σ value.

Effects of LLRin saturation on BER performance

Fig. 3.2 shows the simulation results for a normalized Min-Sum fixed point
layered decoder, with a maximum of 30 iterations, long frame, code rates
2/3 in Additive White Gaussian Noise channel. The normalization factor is
0.75. Let us consider the following notation: a 3-8-4 configuration refers to
a channel LLR quantized on 3 bits, an SO value word size of 8 bits and a
Mc→v word size of 4 bits. We also depicted the standard limit at 1 dB from
the Shannon limit in Eb/N0 for code rate 2/3.

The quantification values of the Mc→v and SO are not optimized and
chosen large enough to not affect the results of the channel quantification.
Fig. 3.2 shows that a quantification on 4 or 5 bit of the LLRin is enough to
fulfill the standard requirements.

68

3.1. SATURATION OF THE STORED VALUES

3.1.2 SO saturation

Once the LLRin quantized, they are stored in an SO memory wich will
evoluate with the iteration process. This SO memory need to be saturated
to limit their size

The problem of SO saturation

We first consider the saturation case where SOmax < SOnew
v during the SO

update (1.18). The saturation process will bound SOnew
v to the SOmax value.

This will introduce an error ǫv in the SOnew
v value (ǫ = SOnew

v − SOmax).
During the next iteration, the newM ′

v→c value will beM
′
v→c = SOv−Mc→v =

Mv→c − ǫv.
We now consider the worst case: during an iteration, SOv is saturated at

+SOmax, each CN confirms a positive Mc→v value, and dv=13 (i.e. SOv is
saturated 13 times). At the beginning of the next iteration, SOv = SOmax.
From (1.15) and (1.18), we can deduce that SOnew = SOold +∆Mc→v where
∆Mc→v = Mnew

c→v −M old
c→v. If ∆Mc→v < 0, the SO value decreases. The SO

value can even decrease 13 times and change its sign. To summarize, when
SO is saturated, the SO value cannot increase, but it can decrease. The
saturation introduces a non-linearity that can produce pseudo-codewords and
an error floor. A solution has to be found to overcome this problem.

A solution for SO saturation

The solution that we propose was first introduced in [16] and relies partially
on the A Priory Probability (APP) based decoding algorithm [24]. The
APP-variable decoding algorithm simplifies equation (1.15) to:

Mv→c = SOv (3.4)

which greatly reduces the architecture complexity but introduces significant
performance loss. The idea is to use equation (3.4) only when there is satu-
ration. This leads to the APP-SO saturation algorithm, which is described
as follows:

Algorithm 3 APP-SO saturation algorithm

if SOv = MaxSO then
Mv→c = SOv

else
Mv→c = SOv −Mc→v

end if

69

CHAPTER 3. MEMORY OPTIMIZATION

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

5−7−6 *

5−7−6

5−6−5 *

5−6−5

Std limit

Figure 3.3: BER simulation for a rate 2/3 showing effects of SO saturation

With this algorithm, if a SO is saturated, then the SO will remind at the
maximal value until the end of the decoding process.

Effects of SO saturation on BER performance

Fig. 3.3 shows the simulation results in the same conditions as in Fig. 3.2.
An asterisk symbol in the legend means that the APP-SO algorithm is used.
The results shows that the APP-SO algorithm, compared to a standard solu-
tion shows perfomance improvement only if the extrinsic values are satured
(curves 5-6-5* and 5-6-5).

3.1.3 Saturation of the extrinsic messages

Figure 3.4 shows the SO based node processor. One can see that the newly
updated extrinsic Mnew

c→v is used to compute SOnew
v from equation (1.18) and

Mnew
c→v is also stored in the extrinsic memory for the calculation of Mv→c

(equation 1.15) at the next iteration. Any saturation on the value Mnew
c→v

responsible for the SO update would not produce area savings and would
degrade performance. This is the reason why we do not saturate this value.
On the other hand, saturation of the Mnew

c→v message that are stored in a
memory would lead to significant area saving. Furthermore, the saturation
of the Mnew

c→v stored in the extrinsic memory is much less critical because it

70

3.1. SATURATION OF THE STORED VALUES

++

−

NP

SatMMEM
c→v

M old
c→v

SOv SOnew
v

Mnew
c→v

MFIFO
v→c

Figure 3.4: NP with saturation of the extrinsic messages

will be used only once during an iteration to compute an Mv→c and this
Mv→c will affect SO

new only if it is a minimum value (see equation 1.8).

Effects of extrinsic message saturation on BER performance

Fig. 3.5 shows the simulation results in the same conditions as in Fig. 3.2.
Simulations show that the Mc→v with the same quantification as the LLRin

(nLLR = next) gives result equivalent to higher quantification. A reduction
of the quantification lower than the LLRin quantification lead to dramatic
performance loss.

3.1.4 Combining the saturation processes

Simulations show that the combinaison of the SO saturation process and
the Mc→v saturation process lead to better performance that when they are
implemented separately. The combinaison of our saturation process allows
the use of fewer bits than the usual 6-8-6 configuration.

3.1.5 Saturation optimization conclusion

The analysis of the saturation process shows that a better trade-off between
word size and performance can be obtained with an efficient saturation of
the LLRin,the SO and the extrinsic values. Simulations show the robustness
of our saturations allowing for the use of fewer bits than the usual 6-8-6
configuration. Simulations with channel values quantified on 5 bits, SO

71

CHAPTER 3. MEMORY OPTIMIZATION

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

5−10−5

5−10−4

Std limit

Figure 3.5: BER simulation for a rate 2/3 showing effects of extrinsic mes-
sages

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

5−7−5

5−6−5

4−6−4

4−5−4

Std limit

Figure 3.6: BER simulation for a rate 2/3 when combining SO and extrinsic
saturation

72

3.2. OPTIMIZING THE SIZE OF THE EXTRINSIC MEMORY

Rate M WSign WInd WMc→v Memory

1/4 48600 4 2 14 680400
1/3 43200 5 3 16 691200
2/5 38880 6 3 17 660960
1/2 32400 7 3 18 583200
3/5 25920 9 3 21 544320
2/3 21600 10 4 22 475200
3/4 16200 14 4 26 421200
4/5 12960 18 5 31 401760
5/6 10800 22 5 35 378000
8/9 7200 27 5 40 288000
9/10 6480 30 5 43 278640

Table 3.1: Memory size of extrinsic

on 6 bits and M old
c→v on 5 bits gives the same performance as other known

implementation with fewer bits.

3.2 Optimizing the size of the extrinsic mem-

ory

This section focuses on the design of an optimal implementation for eleven
different code rates. Because the extrinsic memory size requirements strongly
depend on the coding rate, a memory dealing with many coding rate is an
issue.

3.2.1 Extrinsic memory size requirements

The memory requirements of each CN is determined by the M old
c→v messages

needed for the CN computation. In the case of the normalized Min-Sum
algorithm, the M old

c→v values are compressed with min, submin, indmin and
signMc→v. In terms of memory, one address must be allocated for every CN
which means that the RAM address range (RRAM) is given by the number of
CNs (M). The RAM word size (WRAM) is given by the size of the compressed
M old

c→v values. If we denote by Wh the word size of h, then WMc→v = W|min|+
W|submin| +Wind +Wsign. Table 3.1 presents the required memory capacity
(M ×WMc→v) for each rate. To calculate WMc→v

, we fix the value of W|min|

and W|submin| to 4 (witout sign). To deal with the eleven code rates of the

73

CHAPTER 3. MEMORY OPTIMIZATION

standard, a simple implementation would define RRAM with the maximum
M value, and WRAM with the maximum WMc→v

in Table 3.1. Here, the total
memory capacity would give: 48600× 43 = 2089800 bits. For rate 1/4, 67%
of word bits are wasted but addresses are fully used. On the other hand, for
rate 9/10, words bits are fully used but 86 % of the addresses are wasted.
Theoretically, a memory size of 691200 bits (maximum memory size in Table
3.1) would be enough to cover all the rates. An implementation solution has
to be found for a better utilization of the memory.

3.2.2 Optimization principle

The idea is to add flexibility to both the address range and the word size.
For this, we benefit from the fact that the RAM that stores the compressed
M old

c→v value is needed only once per layer. As the delay to compute the next
layer is dc cycles, we can use up to dc cycles to fetch the data in the memory.
A word can be split into two if we take two cycles to fetch the data, and
split in three if we take three cycles. If we consider a single port RAM to
implement the memory, up to ⌊dc/2⌋ cycles can be used to read data, and
⌊dc/2⌋ cycles to write new data.

Let us consider the example of a memory bank of size 48600(RRAM) ×
22(WRAM). In a first configuration, where one cycle is used, we have a
memory size of 48600 × 22 which fits to rates 1/4, 1/3, 1/2, 3/5, and 2/3.
In a second configuration, where two cycles are used, and two words of size
22 are fetched at consecutive addresses, we have the equivalent of a memory
of size 24300× 44 which fits to rates 3/4, 4/5, 5/6, 8/9 and 9/10. The total
memory size for the two-cycle option is equal to 48600 × 22 = 106920 bits.
This constitutes a memory savings of 50% compared to the straightforward
implementation.

3.2.3 Results of optimization

The previously described process can be generalized for different word sizes.
Table 3.2 gives an example with WRAM = 9. For each rate, the number
of cycles is given by ncycles = ⌈WMc→v/WRAM⌉, and RRAM is deduced from

RRAM = ncycles ×M . The global RAM range (Rglobal
RAM) is given by the maxi-

mum RRAM in Table 3.2 and the total memory capacity is Rglobal
RAM ×WRAM =

97200× 9 = 874800 bits.
Fig. 3.7 shows the total memory capacity as a function of the word length

WRAM . There are local minima for word sizes 1, 9, 14, 18 and 21 bits. As
the number of clock cycle to fetch M old

c→v is bounded by ⌊dc/2⌋, the possible
solutions are limited to WRAM greater than 7. A word size of 9 bits gives the

74

3.2. OPTIMIZING THE SIZE OF THE EXTRINSIC MEMORY

Rate M WMc→v ncycles RRAM

1/4 48600 14 2 97200
1/3 43200 16 2 86400
2/5 38880 17 2 77760
1/2 32400 18 2 64800
3/5 25920 21 3 77760
2/3 21600 22 3 64800
3/4 16200 26 3 48600
4/5 12960 31 4 51840
5/6 10800 35 4 43220
8/9 7200 40 5 36000
9/10 6480 43 5 32400

Table 3.2: Memory capacity of the extrinsic message with WRAM = 9

0 5 10 15 20 25
0

2

4

6

8

10

12

14
x 10

5

Figure 3.7: Memory capacity as a function of WRAM

75

CHAPTER 3. MEMORY OPTIMIZATION

best memory optimization of 874800 bits. This is only 26 % more than the
theoretical minimum.

We used the same memory optimization for an LDPC decoder that im-
plement a BP algorithm using Mc→v values that are not compressed (all the
Mc→v values are stored). We found a theoretical minimum of 1188000 bits,
and a total memory size of 1296000 bits with words of size 10.

3.2.4 Case of the sum-product algorithm

When using a sum-product algorithm [49] [28] [23] instead of a Min-sum
algorithm, the check node update equation (1.17) is computed for each Mc→v

value and each Mc→v value are stored. The same process as the previously
described can by used but a simpler and more efficient implementation can
be used. We can consider a dual port ram which is read every cycle to fetch
a M old

c→v value and write simultaneously a Mnew
c→v value to be stored. With

the constraint of 11 code rates, 5 bits quantification and dual port ram, the
memory requirement is given by the code rate that require the maximum
number of Mc→v values. The code rate 5/6 requires storing 237600 values
of 5 bit which give 1.2 MBits memory requirement. Although this size is
26% higher than the solution that we proposed for the Min-Sum algorithm,
the over cost can worst it, considering the performance increase especially at
low code rate. Implementation of a FIFO memory with single port modules
for allowing simultaneous read and write operations is presented in [1]. This
solution requires one memory banks for even addresses and another memory
banks for odd addresses and lead to area saving compared to the use of dual
port ram.

3.2.5 Mc→v memory optimization conclusion

The Mc→v memory optimization shows that the implementation of LDPC
decoder for multiple code rate and single port RAM to store the Mc→v is an
issue.

A careful implementation of the Min-sum algorithm gives result only 26
% more than the theoretical minimum compared to a straight forward im-
plementation with 200% over cost.

The sum-product algorithm lead to a 26% over cost compared to the Min-
Sum algorithm, but considering performance increase with low code rate, the
implementation of the sum-product can be considered.

76

3.3. FINITE PRECISION ARCHITECTURE OF THE LAYERED

DECODER

SignT

4

Generator

+

dc

+
APP

2’s

2’s

6

7

6

R
A

M

Sign

2’s

8

FIFO(Dc)

Sorting
Serial

XOR

Serial

generator

abs

4

Check node core

6

2’s

2’s

S
er

ia
l

to
 P

ar
al

le
l

1

−

6S
M

→
2
′ s

SerialMc→v

Sign

Min

Submin

Index

2
′ s

→
S
M |Mc→v |

S
M

→
2
′ s

MV →C

Mc→vMemory

SOin SOnew

Figure 3.8: Finite precision of the NP architecture

3.3 Finite precision architecture of the lay-

ered decoder

Fig. 3.8 presents the finite precision architecture of the NP (Fig. 1.8).
Word size, type (signed or absolute) and direction are detailed for every
signal connection. The architecture implements the normalized Min-Sum
algorithm.

In the Check node core, The Mv→c values arrive serially in two’s com-
plement representation from the adder modified to implement algorithm 3.
They are transformed to sign and magnitude representation so that the sign
and magnitude of the messages can be computed separately. The serial sort-
ing of the incoming magnitude values is implemented, in order to give Min,
SubMin and Index values until all the incoming messages are read. In the
serial Mc→v block, the Min, SubMin and index values previously sorted are
used to serially compute the new outgoing messages. An XOR function is
computed recursively on the incoming sign bits in the Signt, until all the
incoming messages are read. Next, an XOR function is computed in XOR
block, between the output of Signt block and the sign of the outgoing mes-
sage Mv→c from the FIFO memory of size dc. The sign and magnitude from
XOR block and serial Mc→v block, respectively, are transformed into a two’s
complement representation ready for subsequent computations.

77

CHAPTER 3. MEMORY OPTIMIZATION

6 x 45

45 NP
Barrel

Shifter

R
A

M
_
S

O

Buffer

Channel
Control

5x45

Figure 3.9: Layered decoder architecture

In the Mc→v memory block, the Min, Submin, index and sign of each
Mc→v linked to one check node are stored in a RAM. From theMin, Submin,
index and sign values, the serial Mc→v generator computes the two’s comple-
ment representation of the Mc→v value.Min and Submin are quantified on
4 bits (absolute values) which gives Mc→v values quantified on 5 bits (with
the sign bit). Note that as signt gives the result of the parity check equa-
tion of line and the syndrome can easily be computed by using the result of
signt. The computation of the syndrome allows deciding an early termina-
tion of the decoding process leading to a significant reduction of the number
of iterations.

Fig. 3.9 is an overview of the proposed layered decoder architecture (see
[46] and [45] for a more detailed description). In this figure, the NP block
is made of 45 NP (Fig. 3.8) working in parallel. The Barrel Shifter shifts
seven words of size 45. The RAMSO block stores the SO values. Thanks to a
systematic syndrome calculation, it is possible to use a built-in stopping rule
while decoding in a variable-iteration decoder. The addition of a buffer on
the decoder input allows the exploitation of the variations in the decoding
time in the different frames. A preemptive buffer control as in [52] is used
to reduce the buffer size. Note that the quantification reduction also lead
to area reductions of the node processor and the barrel shifter. The latency
in the Check node core is also reduced due to complexity reduction of the
addition and comparison computation.

78

3.4. RESULTS OF MEMORY OPTIMIZATION

0.5 1 1.5 2 2.5 3 3.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

1/4

1/2

2/3

3/4

4/5

5/6

Figure 3.10: BER for long frames

3.4 Results of memory optimization

3.4.1 Monte-Carlo Simulations results

Fig. 3.10 shows simulation results for code rates 1/4, 1/2, 2/3, 3/4, 4/5, 5/6
and 5-6-5 configuration. The code rates 1/2, 2/3, 3/4, 4/5 and 5/6 show
results that fulfil the standard requirements. The code rate 1/4 shows poor
performances. The code rates 1/4, 1/3 and 2/5 have a check node degree
smaller than 7 (4, 5 and 6 respectively) which lead to an error floor with the
normalized min-sum algorithm. One can note that code rate 1/2 with a check
node degree of 7 start producing an error floor that can be corrected with the
BCH outer decoder. This error floor problem can be solved by implementing
an A-min* or λ-min algorithm instead of the normalized Min-Sum in the
CNP, with no change in the rest of the architecture. One can also implement
a Sum-product algorithm as in [33] combined with the proposed saturation
processes.

3.4.2 Synthesis results on FPGA

The architecture presented in Fig. 3.9 was synthesized on a Virtex-V Pro
FPGA (XQ5VLX110) from Xilinx, for validation purposes. The system de-
codes long frames of code rate 2/3. Table 3.3 gives the hardware resources

79

CHAPTER 3. MEMORY OPTIMIZATION

XQ5VLX85 LUT LUT RAM BRAM

Node Processor 143 2 0
sorting 37 0 0

gen mc→v 34 0 0
fifo mv→c 12 2 0

mc→v memory 46 0 3
Total 1 node 189 2 3
Total 45 nodes 8586 90 135

Control 667 3 0

block SO RAM 360 0 22

Channel RAM 48 0 25

Barrel shifter 945 0 0

Total 11005 93 182

Percentage [%] 5 1 50

Table 3.3: Synthesis Results for DVB-S2 LDPC decoder on Virtex-V

required. The clock frequency is 200 MHz, the average number of iterations
is 20 and the throughput is 90 Mbit/s, which allows for the decoding of at
least two simultaneous High-Definition Television (HDTV) streams.

3.4.3 Memory capacity comparison

Table 3.4 shows the number of bits for the main memory units in the lat-
est published DVB-S2 decoder IPs [48, 66, 65]. Note that no information
is provided on the ROM memories that store the matrices for every rate.

Paper [48] [66] [65] This

Parallelism 180 360 180 45
Air Throughput[Mb/s] 180 135 135 90

Extrinsic quantification [bits] 6 6 6 5
SOram quantification [bits] 10 8 8 6
Channel quantification [bits] 6 6 6 5

Buffer capacity [Mbits] 0 0 0 0.65
Total capacity[Mbits] 2.8 2.83 3.18 2.65

Table 3.4: Memory capacity comparison

80

3.5. A SINGLE PORT RAM ARCHITECTURE

In our architecture, the ROM capacity is 0.1 Mbits. A buffer of size two
frames is used to store the channel LLR values. The buffer combined with
a variable iterative decoder 4.4.3 allows increasing the throughput by two.
Our architecture provides memory saving of 28% compared to [48], for the
5-6-5 configuration (for the 4-6-4 configuration the memory savings is 40%).

3.5 A single port RAM architecture

During the implementation process, the choice between single port and dual
port RAM comes into the picture depending on the technologies used. Area,
cost, consumption and the complexity parameters have to be also taken into
account.

3.5.1 Single port ram, dual port ram, pseudo dual port
ram and dual port RAM

The difference between Single Port RAM (SPRAM) and Dual Port RAM
(DPRAM) is that SPRAM can be accessed at one address at one time, thus
you can read or write only one memory cell during each clock cycle. Dual
port RAM has ability to simultaneously read and write different memory
cells at different addresses. SPRAM uses a 6 transistors basic RAM cell,
while the dual port RAM cell uses 8 transistors cells for memory. So the
area of SPRAM is much smaller than the area of DPRAM cell and is also
more power efficient. To gain the advantages of both SPRAM (less area) and
DPRAM (high speed), Pseudo DPRAM is introduced. Pseudo DPRAM can
read and write the data in the same clock, using rising and falling edges for
the operations respectively, and using SPRAM memory cell for the storage
of data.

3.5.2 Memories in ASICS and FPGA

In FPGAs, most RAM structures are naturally dual-ported, e.g. the Virtex
Block RAMs. On the other hand, in the ASIC library you can only instantiate
some single port RAM and RAM which can be written in one port and read
from the other port. This is a powerful FPGA argument if a true dual-port
memory is needed. Because the use of DPRAM is not an issue on FPGA,
an implementation on an FPGA of an LDPC decoder for prototyping and
testing purpose is a convenient solution. However, the finale purpose of
the layered decoder is to be implemented on ASICs for mass production at
reduced cost. The studies of a SPRAM solution benefits from reduced area

81

CHAPTER 3. MEMORY OPTIMIZATION

and the fact that the layered decoder will have to be implemented later for
ASIC solution. We discuss hereafter on existing solutions to change from
DPRAM to SPRAM.

3.5.3 Implementation of dual port RAM with single
Port

For some applications 2 SPRAMs can be used in an alternate buffer configu-
ration. For dual read ports and a single write port, two RAMs are used and
ones always write to both of them together, but read from them separately,
with each treated as a separate read port. It is also possible to time-multiplex
the two ports, which will take a double-speed clock and extra logic for the
multiplexing.

3.5.4 FIFO memory with single port memory modules

In [1] is presented a FIFO memory with single port memory modules for
allowing simultaneous read and writes operations. The method includes the
following steps: (a) providing a first SPRAM for an even address of a read
or write operation; (b) providing a second SPRAM for an odd address of a
read or write operation; (c) alternating even address and odd address; and
(d) when both a read request and a write request reach either the first single
port memory module or the second single port memory module at a clock
cycle, fulfilling the read request at the current clock cycle and fulfilling the
write request at the next clock cycle.

3.5.5 Single port memories banks for the SO memories

By looking at an application, it is possible to see whether a full dual-port
RAM is really needed, or whether one is dealing with a special case where
it is possible to segregate it into independent parts. The memory can be
build from multiple smaller RAMs and decode logic added to allow doing
a simultaneous read and writing access, as long as they address separate
RAMs. If the likely access pattern is known, the chance of collisions can
be reduced by choosing which address bits select a RAM and which ones
select a word in the RAM. In our case, the access schedule to memory is well
known, and memory conflicts can be predicted and avoided by making sure
that distinct memory bank are addresses for read and write operations at any
time. Furthermore the order of the memory access can be modified if needed
(layer scheduling and VG scheduling). The number of possible combination
is huge (number of memory bank, addressing scheme in memory banks, layer

82

3.6. LAYER SCHEDULING FOR SINGLE PORT RAM

scheduling and VG scheduling). Finding the best solution will requires the
help of graph theory but even with the help of graph theory, some parameters
and implementation options have to be defined to reduce the space solution.

In [36],to avoid read/write conflicts, the SO memories are partitioned in
4 RAMs. A buffer is added to hold the data if writing is not possible due to
conflict. The two least significant bits of address determines the assignment
to a partition. This allows a simple control flow, which just has to compare
the reading and writing addresses of the current clock cycle.

With a reduced parallelism compare to [36], a reduced number of RAM
conflict can be expected. Our goal is to optimize the best addressing schedule
so that no RAM conflicts arise and no buffer overhead is required.

3.6 Layer scheduling for single port RAM

The order or schedule of the SO arriving in the CNP does not change the
result of the CNP (see Section 1.2.1) and an efficient scheduling of the SO can
solve the read/write conflicts. For ease of understanding we use an example,
we then generalize to general case giving problem and solution.

3.6.1 An example with two memory banks

In this example, a structured matrix with dc = 8 is considered and the
number of VG with even address is equal to the VG with odd addresses (4
are even and 4 are odd). Let us focus on one layer with the following VG
address 1, 2, 4, 5, 8, 10, 13, 15. Usually the schedule follow the VG address
in the increasing order. The schedule is modified such as an even number is
followed by an odd number i.e. 1, 2, 5, 4, 13, 8, 15. The same process is used
for the following layers. On this example the layered decoder has a delay of
9, which means that 9 cycles are needed between reading a value and writing
the value. When the result of an SO at an even address is written back, an
SO at an odd address is read. If all the even address are stored in memory
bank (MB1) and all the odd address are stored in memory bank two (MB2)
then it is possible to use single port RAM without risk of conflict and only
two memory banks. In case of delay that is even, then a buffer of depth one
is required in order that the writing operation fall in the previous described
solution.

As the Less Significant Bit (LSB) address give the parity (odd or even),
the implementation is straight forward by storing the SO in MB1 or MB2
depending on the SO address LSB. The benefit is the use of SPRAM instead
of DPRAM. The drawback of this solution is that a structured matrix with

83

CHAPTER 3. MEMORY OPTIMIZATION

a specific constraint is required. This could be an interesting constraint for
the design of architecture aware codes.

3.6.2 Generalization for DVB-X2 matrices

There is not always the same number of odd and even address in a layer.
A solution is to switch one or some address from even to odd, or odd to
even in order to fall in the configuration of the example. This switching of
address would lead to an implementation over cost and even by trying all the
possibilities, there is sometime no solution.

To give much more possibility, 4 memory banks are used as in [36]. The
implementation is fixed and simple with the two LSB addressing the 4 mem-
ory banks. To solve read/write conflicts, the fact that VGs in a layer can be
permuted is used. If there is a read/write conflict between two VG, one of
then is permuted and provided that the permutation does not lead to another
conflict then the conflict is solved. As the number of possible permutation is
huge, a brute force approach is not possible and the help of graph theory is
needed.

3.6.3 Genetic algorithm to solve scheduling problem

The advantage of using the Genetic algorithm (GA) is that we already used
this powerful tool to solve memory update conflicts by the scheduling of the
layers 2.5. Some modifications are required but the tool is ready. This time,
the VG in a layer are permuted and the schedule of the layer is fixed. This
work is not finalized yet.

3.7 Conclusion

In this chapter, a memory optimization for a layered LDPC decoder has
been presented. A first approach to memory savings was to analyze the sat-
uration problem in the layered decoder. A second approach relied on the
word split of the extrinsic memory. We developed a finite precision layered
decoder architecture that implements the proposed saturation process. This
architecture outperforms the state-of-the-art in terms of memory needs while
satisfying the standard requirements in terms of performances. A method-
ology is also given in order to implement single port RAM instead of dual
port RAM in the layer decoder leading to significant space saving. Even if
the DVB-S2 standard is considered in this chapter, the proposed techniques

84

3.7. CONCLUSION

can be extended to the DVB-T2 and -C2 standards and, more generally, to
any layered LDPC decoder.

85

CHAPTER 3. MEMORY OPTIMIZATION

86

Logic will get you from A to

B. Imagination will take you

everywhere.

Albert Einstein (1879-1955)

4
Multi Stream LDPC decoder

Summary:
In this chapter, the goal is to find a way to reduce the cost of decoding x

streams by using one decoder compared to the solution of using x decoders.
The state of the art gives solutions based on increasing the parallelism, shar-
ing resources or inserting a buffer to a variable iteration decoder. These
three options are considered and developed to satisfy our case study. Then
an architecture supporting multiple streams is presented

4.1 Introduction

Multi stream decoder can be interpreted in two ways. First, it can be inter-
preted as a decoder able to decode multiple kinds of standards. To be more
specific, for television broadcasting, many stream standards exist:

• Standard-Definition Television (SDTV) streams,

• Extended-Definition Television (EDTV) streams,

• High-Definition Television (HDTV) streams,

• Three Dimensions Television (3D TV) streams.

From the LDPC decoder point of view, the difference between these standards
is only in terms of required throughput. The bandwidth is highly dependent
on the standards listed here:

87

CHAPTER 4. MULTI STREAM LDPC DECODER

• the bandwidth consumption of SDTV (720 x 480 pixels) is about 5
Mbps,

• the bandwidth of HD TV (1920 x 1080 pixels) stream is about 13 Mbps,

• 3D Blu-ray uses about 50% more throughput than HDTV depending
on the compression,

• in case of 3D TV based one HD image per eye; the bandwidth is the
double of one HD TV stream.

Between single SDTV stream and a 3D TV stream, there is a factor 5 in
throughput requirement. In this interpretation, a multi stream decoder has
to fulfill the highest required throughput.

The term Multi stream decoder can also be interpreted as a decoder de-
coding simultaneously x streams. Double or twin tuners make the difference
on the market when customers want to record a movie while watching an-
other. A video surveillance application can require up to 32 streams at 30
frames per second simultaneously. The required throughput in these cases
are simply multiplied by x. In both interpretations, multi stream LDPC
decoder is a matter of throughput. Combining the two interpretations in
one decoder, i.e. a dual stream 3D TV decoder, the throughput will vary
from one STD stream to two 3D TV streams, which makes a factor 10 in
throughput variation. The decoder will be designed for the worst case which
means the highest throughput but energy saving should be managed when
the decoder is under exploited. A straight forward implementation of a multi
stream decoder would use x decoders in parallel.

In this chapter, we present the case of one decoder decoding x streams
and optimize area saving compared to the straight forward solution. The one
decoder solution is studied through three axis. The first one gives flexibility
to the throughput of a given layered decoder by reordering the matrix in
function parallelism. The second axe presents an architecture allowing shar-
ing resources for a dual stream LDPC decoder. The third option presents a
variable iterative decoder associated with a buffer allowing increasing nearly
by two of the throughput. Finally, an architecture is presented.

4.2 The parallelism option

The matrices given in the DVB-S2, -T2 and -C2 standards are structured
for a parallelism of 360. The split process of the matrices used to reduce the
number of conflicts [45] [46] described in Chapter 2 can also be used to gain

88

4.2. THE PARALLELISM OPTION

Ps 36 40 45 60 72 90 120 180 360

100 MHz 42 47 53 70 84 106 141 212 423
200 MHz 84 94 106 141 169 212 282 423 845
400 MHz 169 188 212 282 338 423 564 846 1691

Table 4.1: Throughput (Mbit/s) as a function of the parallelism Ps and the
Clock frequency with itcst = 17 and ǫ = 6

flexibility in the parallelism and thus in the throughput. The parallelism can
be reduced by using the splitting process to P = Ps provided that 360 =
Ps × S where Ps and S are natural numbers. Note that in [13] a method is
proposed in which the parallelism factor does not have to be a divider of the
original expansion size (P =360). This solution gives freedom of choosing a
parallelism factor that fits exactly the required throughput. The throughput
of a pipelined layered LDPC decoder is given by the following equation:

D2 =
K.FClk

dc.
M
Ps
.itcst + dc + ǫ

bit.s−1 (4.1)

where itcst is the average number of iterations to decode a codeword, M is
the number of CN, Ps is the number of CNPs working in parallel, dc is the
average number of VNs linked to a CN, Fclk is the clock frequency, K is the
number of information bits in a codeword and ǫ is the CN latency.

Table 4.1 gives an idea of the throughput in function of the parallelism
and the clock frequency when using standard frame and coding rate set at
2/3, ǫ = 6. A buffer is added to the decoder as presented in Section 4.4
which reduces itcst = itmax = 30 to itcst = 17 = itavr.

4.2.1 Area saving compared with x decoders and con-
clusion

To give an idea of area saving, we compare the parallelism solution with a x
decoders solution. In our case of study, an LDPC decoder for one HD stream
gives in term of area 75 % of memory, 20 % of CNP and 5 % of control. To
decode a dual stream for a given throughput, two decoders decode two frames
simultaneously with a parallelism of p while one decoder decodes one frame at
a time with parallelism of 2p. For the one decoder solution, the parallelism is
doubled but the control and the memory required is unchanged. Compared
to a two decoders solution, the area saving is 40 %. Generalizing with x
streams, the parallelism option save x− 1 memories. The area saving is 53%

89

CHAPTER 4. MULTI STREAM LDPC DECODER

for x = 3 and 60% for x = 4.

The parallelism option allows to fit with the various throughput require-
ments and provides significant memory and area savings compared to a x
decoder solution.

4.3 Share resources in a dual stream decoder

A Block-interlaced LDPC decoder is proposed in [12] with an architecture
based on the flooding schedule. The interlacing technique processes two
frames simultaneously. In this section we apply the interlacing technique to
a layered decoder and we discuss its advantages and drawbacks.

4.3.1 Sharing principle

As shown in Section 1.2.2 the check node update is split into two steps of
dc cycles. First step, the data are read, and second step, the updated data
are written back. These two steps can easily be pipelined by overlapping the
update of two layers. When one layer is updated in step one, another layer
is updated in step two. The pipelined scheme in Figure 2.17 doubles the
decoder throughput compared with the throughput in Figure 2.16.

Instead of overlapping two layers of the same frame, the decoding of
two consecutive frames is interlaced. While a layer is reading frame one
in step one, another layer is writing frame two in step two. For layered
decoders, block interlacing keeps the CNP unchanged but requires doubling
the LLR and Mc → v memories so that the CNPs can switch between the
two memories as they switch between the two different frames.

4.3.2 Advantages, drawbacks and conclusion

This solution has four advantages compared to a pipeline solution. First
advantage is that, the conflicts due to pipeline as describe in Section 2.5 are
avoided because there is no SO in common between two consecutive layers.
Second, there is no more need of a simultaneous read and write access to the
LLR memories. Instead of using dual-port RAM for the LLR memory, single
port RAM can be used without reading and writing conflict risk , leading
to significant area saving. Third advantage is that the area is saving p CNP
compared to a two (not pipelined) decoder solution. Fourth advantage: Table
2.4 shows that there is no solution for conflicts due to pipeline with high
parallelism and block interleaving avoids this conflict.

90

4.4. USE OF A BUFFER

There are two drawbacks of this solution. First drawback is that at con-
stant throughput, compared with 2 pipelined decoders, an interlaced decoder
does not lead to area saving. The interlaced solution needs as much memory
as the two decoder option and to have the same throughput as one pipelined
decoder, the parallelism of the interlaced decoder need to be doubled. Sec-
ond drawback is that the streams need to be at the same rate. In case of
two streams at different rates, which means the dc are not equal, idle time
has to be inserted to the smallest dc so that the pipelining process can work.
The rate problem can be solved by adding a buffer and some kind of control
so that only frames of the same stream are decoded simultaneously but the
buffer size need to be nearly doubled compare to a non interlaced solution.

These drawbacks make this solution not relevant for low parallelism, nev-
ertheless in case of high parallelism, this solution becomes more relevant. In
particular, with a parallelism of 180 or 360, there is no simple solution to
solve conflicts due to pipeline (See Table 2.4) and the interlaced architecture
solves the problem.

4.4 Use of a buffer

Low-density parity-check (LDPC) decoders can be designed in a way they
stop after a variable number of iterations, dependent on the difficulty of
decoding noisy received words. The number of iterations the decoder spends
on a given frame determines both the probability of successful decoding, and
the time expended. Thanks to the systematic syndrome calculation, it is
possible to use a built-in stopping rule while decoding in a variable-iteration
decoder. The addition of a small buffer on the decoder input allows the
exploitation of the variations in the decoding time of the different frames.
Whereas the speed of an LDPC decoder without a buffer is determined by the
maximum number of iteration itmax frames, the speed of a variable-iteration
decoder with sufficient buffering is determined by average number of iteration
itavr. The addition of an input buffer to an iterative decoder is presented
in [52] and is summarized in Figure 4.1. The buffer, the variable iteration
decoder and the preemptive buffer control are described in the following
subsections.

4.4.1 FIFO buffer principle

FIFO (First In First Out) memories have acquired larger interest in VLSI
design in telecom applications. Such macro cells provide an efficient way
to interface two asynchronous system, buffering data between subsystems

91

CHAPTER 4. MULTI STREAM LDPC DECODER

Stream

buffer

control

N

Variable

iterative decoder

of size B
Buffer

New frame

Full

Empty

Preemptive

Figure 4.1: Variable iteration decoder with a buffer

operating at different data rates, thus increasing the flexibility in data trans-
mission. In fact, data in FIFO memories are read in the same order in which
they have been written, without the need of providing the address of the
data.

Different approaches have been considered in literature to design FIFO
memory cells. The architecture is based on SPRAM cell as described in
Section 3.5.4. A generic architecture is defined whose size can be modified
with slight modifications to the basic structure. In order to obtain such a
result, two blocks are defined: the memory block which instantiate SPRAM
and the control logic block. The control logic is in charge of detecting two
particular states of the FIFO which are full and empty that will have effects
on the decoding process. The empty message says to the decoder that after
the current decoding, the decoder can switch to a stand-by mode to save
energy consumption. The use of the full signal is discussed in the following
subsection.

4.4.2 Preemptive buffer control

Before the buffer gets full, the full signal is sent to the decoder for an early
termination of the decoding process and the first in data of the FIFO is sent
to the decoder to let one space in the buffer to avoid a dramatic overflow. An
overflow would lead to the lost of one frame while the effect of stopping the
decoding process is limited. The effect of stopping the decoding is limited
for three reasons: first reason is if the word under decoding is hard to decode
(pseudo codeword or cycle trap), spending more iteration would not give so-
lution. Second reason is that the degree of parity bits is only two and the

92

4.4. USE OF A BUFFER

convergence of bit with low degree is slower than nodes with higher degree.
For this reason, the errors are most probably in the parity bits and not in the
information bits; this means that even if the stopping criterion is not valid,
the information bits can be valid. Third reason is that in case that just a
little more iteration would have been necessary to solve remaining bits, then
the BCH can solve the last erroneous bits if the number of erroneous bit is
lower than the BCH capability. Compared to a standard buffer, the preemp-
tive buffer control significantly reduces the size of the buffer and reduce the
average number of iteration to decode even with a buffer of size one.

4.4.3 Variable iterative decoder

A variable iterative decoder is able to detect that a codeword has been found.
This solution allows starting the decoding of a new frame. The detection of
a valid codeword, in theory is done by computing the syndrome and checking
equation (1.1). In practice, the syndrome computation can be done during
the sign calculation of the Mc→v message (See Section 1.2.2). The first step
of the sign calculation gives:

signt(v′) =
∏

v′∈vc

sign(Mv′→c) (4.2)

which is in fact the hard decision of the parity check of CN c. If all the hard
decisions of all the check nodes are valid then a codeword has been found
and the iterative process can be stopped. This stopping criterion is easy to
implement on a layered decoder and requires a very low cost control. Because
the decoding time of the variable iteration decoder is not constant, a buffer is
required at the input of the decoder to smooth the decoding time variation.

4.4.4 FIFO Buffer size

A buffer of size one would be in charge of storing the LLRin of every bit
of the codeword. The size of a codeword of a DVB-X2 decoder is N=64800
and the quantification of the LLRin in our architecture is 5. The storage
requirement of a buffer of size x is 64800× 5× x which makes the buffer size
the most critical point of the solution in terms of area. Therefore, the buffer
size must be chosen carefully.

The calculation of the optimal buffer size and the average time to decode
can be estimated using queuing theories and the probability distribution of
the number of iterations (see Figure 1.6). Queuing theory is the mathemat-
ical study of waiting lines, or queues. The theory permits the derivation
and calculation of several performance measurements including the average

93

CHAPTER 4. MULTI STREAM LDPC DECODER

waiting time in the queue, the expected number waiting and the probability
of encountering the system in certain states such as empty and full.

The calculation of the buffering requirement by using queuing theories
has been already presented successfully in [37]. In this subsection, a more
empirical approach is described to determine the optimal buffer size. In fact,
a simple patch has been added to the already existing simulation environment
of the LDPC decoder and a Monte-Carlo simulation has been lunched for dif-
ferent buffer sizes. The goal of the simulation is to find the best compromise
between buffer size, number of iteration and performance loss. We present
first a simple patch simulating a single stream, and then we generalize with
a patch simulating multiple streams.

The algorithm patch can be described by the three following points: a new
frame is added to the buffer every itcst iterations; the buffer is decremented
every time a codeword has been found; and if the buffer is full, then the
decoder stops the decoding of the current frame and takes a new frame in
the buffer to relax the buffer.

Algorithm 4 buffer simulation
it← it+ 1
if it = itcst then
Buffer ← Buffer + 1
it← 0

end if
if (word decoded = true)AND(Buffer > 0) then
Buffer ← Buffer − 1

end if
if buffer > buffer size− 1 then
decode next()
word decoded=true
it← 0

end if

The patch is sum-up in Algorithm 4 where itcst is the average number of
iteration a decoder spend to decode a codeword. Figure 1.6 shows the PDF
of the number of iteration before a codeword is found. On the figure itmax

and itavr are also presented . The itmax value is the maximum number of
iterations that a decoder spend to decode a codeword and the itavr value is
the average number of iterations before a codeword is found. On a decoder
with a constant number of iteration to decode, itcst is equal to itmax. The
advantage of a buffer associated with a variable iterative decoder is that itcst
get closer to itavr but even with a huge buffer size, itcst can not be lower than

94

4.4. USE OF A BUFFER

the average number of iteration itavr to decode a codeword. Thus, itcst will
be between itavr and itmax. As shown in equation (4.1), the throughput is
directly proportional to itcst and has to be as low as possible. The goal of the
simulations is to optimize itcst and buffer size to a minimum with the same
performance as a decoder with a constant number of iteration to decode fixed
at itcst = itmax = 30.

Simulations on a decoder with a parallelism of 40 show us that a buffer
of size two gives already the required performances. The performances can
be slightly improved by using a buffer of size 3 and a buffer of size greater
than 3 does not give significant improvement. With a buffer size two, itcst =
17 which is close to itavr = 16 and nearly the half of itmax thus nearly
double the throughput compared to a constant iterative decoder. Note that
once itcst is found, one should check if Equation (4.1) gives a throughput
higher than the required throughput, and if not, increases the parallelism in
proportion. Note also that the simulation emulates on an ideal case making
some assumptions which are simplifying the architecture constraints. Among
the simplifications, we consider that the FIFO buffer is read and written
without latency, the decoder can stop a decoding process without delay,
and decoder load a new word without latency. These assumptions can be
acceptable if the latencies are negligible compared to the time unit of the
simulation which is expressed in terms of iterations.

A SDRAM with a transfer rate of 64bit per cycle would require at least
6075 cycles to transfer the 64800 × 6 bits of one frame which is roughly
equivalent to one iteration time for a rate 2/3 with a parallelism of 40.

In case of multi stream, if the streams are serialized, then Algorithm 4
can be used without modifications. If the streams arrive in parallel, then the
patch is modified as follow: n frames are added to the buffer every n× itcst
iterations. The Algorithm 4 is upgraded to Algorithm 5 where RAMwrite

and RAMread represent the time to write (read) a new frame in number of
iteration.

For dual stream, with a decoder with doubled parallelism, simulations
using Algorithm 5 show us that a buffer of size 5 fulfill the required perfor-
mances.

4.4.5 Advantages and drawbacks

The only drawback of this solution is the buffer size. The main advantage
of this solution is the improved throughput by nearly two. It is also possible
to get advantage of additional iterations to decode a codeword if the buffer
is empty by increasing itmax. In the same way of thinking, itmax can evolve
in function of the buffer state. If the buffer is about to get full then decrease

95

CHAPTER 4. MULTI STREAM LDPC DECODER

Algorithm 5 buffer simulation 2
it← it+ 1
if it = n× itcst then
it← 0

end if
if it = n× itcst −RAMwrite then
Buffer ← Buffer + n

end if
if it = RAMreadAND(Buffer > 0) then
Buffer ← Buffer − 1

end if
if buffer > buffer size− 1 then
decode next()
it← 0

end if

itmax and if the buffer is about to be empty then increase itmax.

4.4.6 Implementation issue

The parallelism option and the addition of a buffer give the throughput and
flexibility required by the decoding of multi streams. The parallelism option
has been integrated in the design of the VHDL code as a parameter. To
change parallelism, the parallelism parameter is changed and the VHDL is
synthesized again to implement the modification.

The circular buffer can be implemented using a FIFO associated with an
appropriate control. The control is in charge of sending the full signal and
the empty signal. In case of multi stream, for example dual stream decoder,
the FIFO can be modified to have two inputs and one output. Figure 4.2
shows an architecture example where two streams are filling the top of the
buffer. Another buffer is added to the output of the decoder to synchronize
with the BCH. The output buffer stores the hard decision of the decoder and
the buffer control is in charge of reordering the stream one and two.

The buffer can be implemented in Synchronous Dynamic RAMs (SDRAMs)
to save cost. SDRAM devices are low-cost, high-density storage resources
that are widely available. To reduce the read and write operation latency,
the SDRAM can be read and write by using a burst-mode. For a dual stream
decoder, two memory banks are written simultaneously while one memory
bank is read. Two memory banks are added as FIFO storage (See Section
4.4.4). This makes a total of 5 memory banks.

96

4.5. CONCLUSION

control

Stream 2

Stream 1

Variable

iterative decoder
New frame

Full

Empty

Stream 1

Stream 2

buffer

Figure 4.2: Variable iteration decoder with a buffer

The loading of a new word in the decoder can be time consuming and
reduce the throughput. One solution is to use two SO memories in “ping
pong”. While one memory is used for the decoding process, the other one
is loading a new word. When a codeword is found, the two memories are
switched.

4.5 Conclusion

The fact of sharing resources to decode two streams simultaneously gives
more drawbacks than advantages, especially at low parallelism. The paral-
lelism option combined with the addition of a buffer gives the throughput
and flexibility required by the decoding of multi streams. The parallelism of
the decoder is chosen in function of the required throughput. To deal with
the variable throughput requirement, a buffer added to a variable iterative
decoder gives furthermore the advantage of reducing the average number of
iterations the decoder spend to decode a codeword.

97

CHAPTER 4. MULTI STREAM LDPC DECODER

98

An investment in knowledge

always pays the best interest.

Benjamin Franklin
(1706 - 1790)

5
Conclusion

In this thesis, we provide solutions for implementing an LDPC decoder for
the second generation Satellite Digital Video Broadcast (DVB-S2) standard,
the DVB-T2 (terrestrial) standard and the DVB-C2 (Cable) standard.

In Chapter 1 we introduced the advanced techniques of channel decod-
ing. After a brief overview of digital communication and channel decoder,
notions and notations of Low Density Parity Check (LDPC) codes have been
presented and more specifically the layered decoder and the Believe Propa-
gation (BP) sub-algorithms are detailed. Then the LDPC included in the
DVB-S2, -T2 and -C2 standards is presented with the state-of-the-art of ex-
isting implementations. Finally, we present a testing environment designed
to evalutate the performance of error correcting codes. From the state-of-
the-art of exiting implementations, the layered decoder is identified as the
most efficient architecture. This architecture uses the Normalized Min-Sum
algorithm for the check node update because of its good performance and
low area cost of implementation. In the aim of most efficient implementation,
the check node processors are pipelined to double the throughput.

The implementation of this defined architecture led in practice to memory
update conflicts. Two types of memory update conflicts have been identified
in Chapter 2: the conflicts inherent to the presence of overlapped sub-
matrices and the conflicts due to the pipelined architecture. To improved
the exiting solutions, we decided to find a pach free solution to keep the
efficiency of the layered decoder.

99

CHAPTER 5. CONCLUSION

We proposed two innovative solutions to solve the conflicts inherent to
the overlapped-sub-matrices. The first solution that we presented in [45] is
based on a “divide and conquer” strategy. The number of conflict is first
reduced by a reordering mechanism of the matrix called split algorithm that
creates a new equivalent structured matrix with reduced parallelism. With
this first step, lower is the parallelism and lower is the number conflicts.

The remaining conflicts are solved with a “split-extended” matrix. The
split extend proced operates on deficient layer by cutting the layer in two
separate layers. Each obtened layer contain one of the overlapped submatri-
ces. To keep the check equation valid, the two layers are extended with a
commun group of dummy bits. This first solution is efficient especially for
layered decoder that can deal with not constant check node degree and low
parallelism.

The other solution is in a patent process and it is based on a repeat of
the deficient layers and an “on time” write disable of the memories. This
second solution is especially efficient for architecture using not compressed
extrinsic memory and is efficient even at high parallelism.

The two proposed solution are not 100% patch free, but the added com-
plexity is low and require just a slight increase of control. This added control
is not in the critical path and does not degrade the throughput.

In Section 2.5 and in [46], we solve the conflicts due to pipelining. The
split process is used again as a first step. This first step reduced conflict
constraints allowing finding solutions by a scheduling of the layers. The
layer scheduling required the need of graph theory to be solved in a reaonable
computing time. We showed that the research of an efficient scheduling is
equivalent to the well known ”Traveling Salesman Problem” (TSP). Then a
genetic algorithm heuritic has been used to solve the TSP.

All the proposed method are compatible between each other. It means
that the methods can be combined in a single implementation to solve both
conflicts due the overlapped matrices and conflicts due to pipelining.

After the memory conflict problems solved, we focused on finding different
ways of optimizing the layered decoder implementation in Chapter 3. As
80% of the decoder is memory, we explored how to reduce the memory size.
The memory is directly proportional to the word length and we reduce it by
a specific saturation. We identified the saturation effects determinig which
value are less sensitive to aturation and we conteract unwanted effect of
saturation. cost in memory and .interaction between the SO values and the
extrinsic messages. Then we presented a finite precision layered decoder
architecture that implements the proposed saturation processes. With all
the code rates, extrinsic memory address range and word size are subject to

100

5.1. PRODUCED WORK

significant variation. We discussed the best way to implement this variation
with the minimum memory over cost. The saturation process and extrinsic
memory optimization have been presented in [44] and implemented on an
FPGA giving performances in the standard requirement and significant area
reduction compared to the state-of-the-art. After that, still in the memory
optimization field, we discussed efficient solutions to implement the LDPC
decoder using only single port RAM instead of dual port RAM. Once the
conflicts have been solved and the layered decoder has been optimized, we
finally focused on the multi-stream problem.

In chapter 4, we explored the problematic of finding the best way to
implement a decoder that decodes multiple streams simultaneously. In our
proposed solution, the parallelism of the decoder allows to reach the required
throughput while the addition of a buffer to one variable iteration decoder
gives an answer to the flexible throughput requirement.

5.1 Produced work

Besides the publication and searching process [45, 46, 44], we also produced
generic tools useful for the testing and designing of an LDPC decoder. First
of all, we produced a general ANSI-C model of an LDPC decoder with the
associated testing environment to test the possible algorithms and scheduling
options. The following step was to design another ANI-C model close to the
layered architecture for co-simulation C-VHDL. Then we have implemented
on FPGA two versions of LDPC decoders. The first decoder implemented is a
generic layered decoder. This decoder is able to decode any true layered codes
such as codes defined for the WiMAX and WiFi standards. The implemented
decoder is also able to decode DVB-S2, -T2 and -C2 codes but only for some
parallelisms where no overlapped sub-matrices appear. This version allows
also scheduling layers and thus avoiding memory update conflicts due to
pipeline as described in Section 2.5. An upgraded version of the layered
decoder allowing repeating layers and controlling the write enable of the
SO and extrinsic memory have been designed. This second version is able to
deal with the conflict due to overlapped sub-matrices and it is relevant for the
DVB-X2 standards and also for the Chinese Multimedia Mobile Broadcasting
(CMMB) standard.

To test the efficiency of the LDPC decoder even at low bit-error rate (be-
low 10−10), a testing environment has been designed. The testing environ-
ment has been designed in C and VHDL which allows C-VHDL co-simulation.
The testing environment is an efficient tool to test, to design and to debug
an LDPC decoder or in fact any channel decoder.

101

CHAPTER 5. CONCLUSION

5.2 Perspectives

Future work will be dedicated to the hardware implementation optimization
(area, frequency and performance) of the proposed decoder architecture and
to the evaluation of its performance at low bit error rate. The implementation
of a Bose and Ray-Chaudhuri (BCH) decoder is also considered to complete
the transmission chain of the testing environment. Implementing and testing
a multi stream decoder with the associated buffer and control should be done
to confirm our estimation of the optimal buffer size (see Section 4.4.4).

The performance of low code rates (1/4, 1/3, and 2/5) should be slightly
improved to fulfill the standard requirement. One solution consists in upgrad-
ing the Normalized Min-Sum Algorithm to a λ−min or A−min∗ algorithm.
To achieve this, a patch with Look up table can be added to the check node
processors without significant modification in the architecture. An upgraded
version of the existing layered decoder is also considered. This upgraded
version would be able to decode all rates and would implement the struc-
ture of the extrinsic message memory proposed in Section 3.2. This version
would integrate the upgraded Min-sum algorithm that fulfills the DVB-X2
requirement for low rate codes.

Standards give lots of challenges to today’s researchers and to all working
in this field to find improvement options. An improving solution which would
provide better reception to the customers and would enable to offer better
services by keeping the costs in a reasonable range or even decrease it. The
current economic crisis, the demanding market needs urge the companies and
the researches to find answers and respond to these great challenges. This
thesis has a potential answer to a small part of these challenges, but certainly
an important one.

102

Simplicity is the ultimate so-

phistication.

Leonardo da Vinci
(1452-1519)

A
DVB-S2 matrices construction

The DVB-X2 standard provide a guidline to construct matrices. The result-
ing matrices are structured but they are not made of shifted identity matrices
as the matrices defined by the WiFi or WiMAX standards [60] and they are
not ready for layered decoding. Some permutations are required to make the
identity matrices appear. In this appendix, a simple example is provided to
visualise the initial structure of the matrices, the required permutations and
the final structure.

A.1 Standard matrices construction

The matrices defined by the standard fall in the IRA codes types. The
matrices are caracterized by two parts: the information part is linking the
Information VNs (IVN) to the CNs and the parity part linking the Parity
VNs(PVN) to the CNs. The standard provides a matrix construction proto-
col for the information part relaying on the use of a table and an equation.
For ease of understanding, in this example a parallelism of 8 instead of a
parallelism of 360 and codeword length of 40 instead of 16200 are given. In
this example, coding rate is 2/5 and q = 3.

Table A.1 has only three values in it but will be used as a table from the
standard (Table 1.3). The values in the first line give the connection between
the first eight VNs (IV N0 to IV N7) and the CNs. A value x in the table is

103

APPENDIX A. DVB-S2 MATRICES CONSTRUCTION

2 7

1

Table A.1: example table

IVN PVN

C
N

0 7 8 0 7 15 23
0

7

15

23

Figure A.1: matrix resulting from Table A.1

computed in Equation (1.19) with the new parameters p=8 and q=3.

CNj = CNj ⊕ IV Nm, j = (x+ q(m mod 8)) mod M. (A.1)

The first value in the first line of the table by applying Equation (A.1)
will give the connections between V N0(m=0) and CN2, V N1(m=1) and CN5,
and so on. The value in the second line gives the connection between the
second group of eight VNs (V N8 to V N15) and the CNS.

The fixed zigzag connectivity of the PVN and CN is defined by the en-
coding scheme given by equation A.2.

CNj = CNj ⊕ CNj−1, j = 1, 2, . . . , N − 1. (A.2)

Figure A.1 shows the resulting parity check matrix. For ease of lisibility,
the 0 in the parity check matrix are not presented and the 1 are represented
by a colored square. The square colors correspond with the x value given in
Table A.1.

104

A.2. MATRIX PERMUTATIONS FOR LAYERED STRUCTURE

IVN PVN

C
N

0 7 15 7 15 23

7

15

23

Figure A.2: First permutation

A.2 Matrix permutations for layered struc-

ture

The permutation process is splitted in two steps. First a permutation of the
CNs with the permutation equation A.3

σ(j + i× 8) = i+ (j ×Q) mod N, i = 1, 2, 3 j = 1, 2, . . . , 8. (A.3)

Figure A.2 shows the result of this first permutation. It can be seen
that the information part of the matrix is now made of identity matrices
but the parity part needs a permutation of the PVN. The second step is a
permutation of the PVN by following the permutation of Equation (A.3).

Figure A.3 shows the resulting matrix made of IM of size 8. One can
observe the particularity of the IM in the upper right corner where the con-
nection between the first CN (CN0) and the last PVN (PV N23) does not
exist. This particularity can be easisly implemented but can not be ignored.

From the layered decoder point of view, this permutation allows an effi-
cient decoding of the DVB-X2 matrices. One will note that a permutation
of the PVN is required before the decoding process and a patch is needed for
the upper right identity matrix.

105

APPENDIX A. DVB-S2 MATRICES CONSTRUCTION

IVN PVN

C
N

0 7 15 7 15 23
0

7

15

23

Figure A.3: Second permutation

106

It does not matter how slowly

you go so long as you do not

stop.

Confucius (551BC-479BC)

B
Hardware Discrete Channel Emulator

B.1 Introduction

The emulation environment named Hardware Discrete Channel Emulator
(HDCE) has been developed as a coherent framework to emulate on a hard-
ware device (FPGA as the implementation platform) and simulate on a
computer the effect of an Additive White Gaussian Noise (AWGN) in a base
band channel. The HDCE is able to generate more than 180 M samples
per second for a very low hardware cost, which has been achieved in an effi-
cient architecture. Using the HDCE, the performance evaluation of a coding
scheme for a BER of 10−9 requires only one minute of emulation time.

In the state-of-the-art, a Random Value (RV) with an uniform distri-
bution is generated, and this uniform distribution is modified to obtain a
gaussian distribution [26, 6, 39]. This accurate white gaussian noise is added
to a signal and then quantified. With the HDCE, a quantified output with
the required distribution is directly produced.

The uniform distribution is generated using a Linear Feedback Shift Reg-
ister (LFSR) presented in the first section. Then the alias method is devel-
oped and the architecture is presented.

107

APPENDIX B. HARDWARE DISCRETE CHANNEL EMULATOR

Figure B.1: LFSR

B.2 Linear Feedback Shift Register

A Linear Feedback Shift Register (LFSR) is a shift register whose input is
a linear function of its previous state. LFSR can produce a sequence of bits
which appears random. In Fig. B.1, LFSR are concatened in a FIFO giving
an efficient implementation of a RV generator. Two control signals read seed
and load seed are added to allow the possibility to load the LFSR and to
read the LFRS in order to be able to replay a sequence.

B.3 The alias method algorithm

The alias method was initially proposed by A. J. Walker in [67]. The alias
method algorithm can be described in two steps. In the first step, two in-
dependent uniform distributions Ps0 and Prv are generated. In the second
step, a test is performed on Prv. If Prv < Threshold(Ps0), then the system
output is Ps0. Otherwise, the system produces the alternative value given
by Ps1 = alias(Ps0). The alias values and the threshold values are stored in
the alias table. With a given alias table, a distribution can be predicted. It
is also possible to give an alias table in function of the required distribution.
The computation of the alias table can be done by software and then the
alias table can be updated.

108

B.4. THE HDCE ARCHITECTURE

Figure B.2: HDCE architecture

B.4 The HDCE architecture

The implementation of the alias method is straight forward by following
the alias method algorithm. A RV generator is instanciated by the use of
LFSR and produces the Ps0 and Prv signals. A RAM stores the alias table
and produces an Alias signal and a Treshold signal as a function of Ps0. A
comparator compares the two values Treshold and Prv and produces a signal
which drives a multiplexeur that selects the Pso signal or the Alias signal.
Figure B.2 shows an improved HDCE architecture. In this architecture, one
uniform distribution is split to generate the two uniform distributions Ps0
and Prv. The comparator is pipelined to decrease the delay and an index is
added to address different distributions.

B.5 Resulting distribution

Figure B.3 shows the Probability Density Fonction of the HDCE output
with the following parameters: channel quantization on 5 bits, threshold
quantification on 10 bits and two distributions. The two ditributions are

109

APPENDIX B. HARDWARE DISCRETE CHANNEL EMULATOR

Figure B.3: Resulting distribution of a BPSKmodulation emulated by HDCE

emulating a BPSK modulation (-1 and +1) which is perturbed by an AWGN
of variance σ = 0.866 (corresponding to a Eb/No = 2 dB).

110

Rien ne vaut la recherche

lorsque l’on veut trouver

quelque chose.

J.R.R.Tolkien (1892-1973)

C
Résumé étendu

Résumé
This is a french extented summary of this thesis, as required by the pub-

lisher.

C.1 Introduction

Shannon a montré en 1948 qu’il existe une limite au débit d’information
transmis en présence de bruit, appelé capacité du canal, mais il n’a pas
explicité les moyens de l’approcher. Quarante ans plus tard, Claude Berrou et
Alain Glavieuxl [3] ont montré comment réussir à s’approcher de la limite de
Shannon. Cette révolution a ouvert de nombreuses voies de recherches dans
le domaine des codes correcteurs d’erreurs et notamment la redécouverte
par MacKay [41] des codes Gallager [25] aussi appelés codes LDPC (Low
density Parity Check) du fait de la faible densité de la matrice de parité.
La compréhension de l’algorithme de décodage d’un code LDPC est facilité
par sa représation graphique ou graphe de Tanner [63]. Dans un graphe de
Tanner, chaque symbole du mot de code est représenté par un nœud appelé
Nœud Variable (NV), et chaque contrainte de parité correspondant à chaque
ligne de la matrice de parité est représentée par un Nœud de Parité (NP).
Les NP et NV sont connectés a chaque fois qu’un 1 apparait dans la matrice
de parité. Pendant le processus de décodage, des messages sont échangés
entre les VNs et CNs.

111

APPENDIX C. RÉSUMÉ ÉTENDU

Grâce à l’utilisation de matrices structurées, le décodage des codes LDPC
a été facilité et les codes LDPC sont maintenant utilisés dans de nombreux
standards. Le premier standard à inclure un code LDPC a été la norme de
transmission vidéo par satellite de seconde génération (DVB-S2 pour Digital
Video Broadcasting by Satellite of 2nd generation) [20]. Les codes LDPC
sont maintenant inclus dans de nombreux standard dont les standard WiFi,
WiMAX [60], STiMi, DVB-T2 (T pour terrestre)[22] et DVB-C2(C pour
Cable)[21]. Ces deux derniers standards ont la particuliaritée d’utiliser les
mêmes matrices que les matrices du standard DVB-S2. Les decodeurs LDPC
pour les standards DVB-S2, -T2 et -C2 étant identiques, les trois standards
seront denommés standards DVB-X2.

Cette thèse porte sur l’optimisation de l’implémentation matérielle d’un
décodeur LDPC pour les standards DVB-X2. Après une étude de l’état de
l’art, c’est le “layered decoder” ou décodeur par couche qui a été choisi comme
architecture de base à l’implémentation du décodeur. Nous nous sommes en-
suite confrontés à deux types de conflits de mise à jour mémoire. Les conflicts
inhérents à la structure particulière aux standards DVB-X2 sont résolus grâce
à deux nouvelles contributions. Une est basée sur la constitution d’une ma-
trice équivalente et l’autre basée sur la répétition de couches (layers). Les
conflits mémoire dus au pipeline sont quant à eux suprimés à l’aide d’un
ordonnancement des couches et des matrices identités. L’espace mémoire
étant un différenciateur majeur de coût d’implémentation, la réduction au
minimum de la taille mémoire a été étudiée. Une saturation précise et un
partitionnement optimal des bancs mémoires ont permi une réduction sig-
nificative par rapport à l’état de l’art. De plus, l’utilisation de RAM sim-
ple port à la place de RAM double port est étudiée pour réduire le coût
mémoire. En dernière partie, nous répondons à l’objectif d’un décodeur ca-
pable de décoder plusieurs flux pour un coût réduit par rapport à l’utiliation
de multiples décodeurs.

C.2 Pré-requis

Ce premier chapitre présente les termes et pré-requis utilisés dans cette thèse.
Nous présentons d’abord d’une manière générale une transmission numérique
puis un décodeur de canal. Le principe du décodeur itératif est brièvement
rappelé puis le décodeur LDPC et le “layered” décodeur ou décodeur par
couche sont davantage expliqués. Le standard DVB est ensuite décrit et plus
particulièrement la construction des matrices LDPC à partir du standard
est développé. Enfin l’environnement permettant le test du decodeur est
présenté.

112

C.3. LES CONFLITS DE MISE À JOUR DE LA MÉMOIRE

C.3 Les conflits de mise à jour de la mémoire

Les conflits de mise à jour mémoire ont lieu lorsque deux unités de calcul
mettent à jour simultanément une même donnée en mémoire. Le résultat de
la première unité de calcul sera alors ecrasée par le second résultat. Dans
ce chapitre, deux types de conflits mémoire sont identifiés puis résolus: les
conflits dus à la structure de la matrice et les conflits dus au pipelining du
CNP.

C.3.1 Conflits dus à la structure

Les matrices définies par les standards DVB-X2 ne sont pas idéalement struc-
turés pour un décodage par couches. En effet, l’existance de Matrice Identités
(MI) Superposés entrâınent un écrasement des Probabilités A Postériorie
(PAP) mis à jour par la première MI (MI1) par la seconde (MI2). Pour
résoudre ce problème, dans une première étape, une réduction du parallélisme
entrâıne une forte réduction du nombre de conflits. puis pour la deuxième
étape, deux solutions innovantes sont proposées pour résoudre les conflits
restants.

Réduction du paralléllisme

La réduction du parallélisme est réalisée à l’aide de la permutation de la
matrice de parité de manière à obtenir des matrices identités réduitent par
un facteur S et donc de taille Ps = 360/S avec P et s entiers naturels. Ce
procédé permet de séparer les MI Supperposées (MIS) avec une probabilité
de 1− 1/S. Donc une diminution du paralléllisme entrâıne une réduction de
la probabilité de MIS. Cependant, cette solution à elle seule ne suffit pas car
les simulations montrent que toutes les MIS doivent être résolus sous peine
de performances qui ne satisfont pas le standard.

Matrice équivalente

Le procédé décrit ici repose sur la construction d’une matrice équivalente. Les
couches avec une MIS sont coupées en deux, de manière à séparer les deux IMs
de la MIS dans les deux couches obtenues. Pour créer la matrice équivalente,
des bits poinçonnés sont additionnés. Ces bits additionnés entrainent un
besoin en mémoire supplémentaire ce qui est un désavantage de cette solution.
Un autre désavantage de cette solution est un retard dans la propagation
des messages qui entraine un plancher d’erreur. Une modification lors de
la lecture permet de régler ce plancher d’erreur et de rendre cette méthode

113

APPENDIX C. RÉSUMÉ ÉTENDU

efficace pour résoudre un nombre restraint de MIS. Cette méthode se révèle
moins efficace avec un parallélisme élevé où le nombre de MIS à résoudre est
important, entrainant une baisse notable des performances et surtout une
baisse de débit. Etant donné notre volonté de pouvoir faire face à des débits
élevés avec de forts degrés de parallélisme une autre solution a été envisagée.

Répétition des couches

Cette solution consiste à répéter les couches qui comportent des MIS. Pour
eviter l’écrasement des données de MI1, un signal empèche l’écriture de MI2.
Les données de MI2 seront ensuite mises à jour lors de la répétition. Cette
méthode entrâıne une faible perte de performance (inférieure à 0.1 dB) même
avec un parallélisme maximum et sans perte de débit.

C.3.2 Conflits dus au pipelining

Le pipelining des processeurs permet de doubler le débit mais il y a un risque
d’utiliser des Probabilités A Postériori(PAP) qui ne sont par encore mis à
jour. Pour cela, il suffit d’éviter d’avoir des PAPs en commun entre deux
couches qui se suivent. Il est possible de changer l’ordre ou l’ordonnancement
des couches de manière à réduire le nombre de conflits. Avec un parallélisme
de 360, il n’y a pas de solution sans conflit possible, mais en réduisant le
parallélisme, des solutions peuvent être trouvées. En réduisant le parallélisme
par un facteur s, le nombre de couches est mutiplié par s et l’ensemble
des combinaisons possibles devient impossible à calculer par la force brute
(évaluation de l’ensemble des possibilitées) et il devient nécessaire de faire
appel à la théorie des graphes pour trouver une solution dans un temps
limité. L’utilisation d’un algorithme génétique permet de rechercher des
solutions pour tous les parallélismes. elle permet également, après une simple
modification de la fonction de coût, de trouver des solutions pour qu’il n’y
ait pas de PAPs en commun entre une couche et les deux suivantes à tous
moments.

C.4 Optimisation de la taille mémoire

Par optimisation est sous entendue la taille du décodeur et sa consomma-
tion. Bien entendu cette optimisation doit se faire sans dégradation des per-
formances. Etant donné que 70 à 80 % du décodeur est occupé par l’espace
mémoire, l’optimisation du décodeur passe essentiellement par l’optimisation
de la mémoire. L’optimisation de la mémoire est réalisée sous trois approches.

114

C.4. OPTIMISATION DE LA TAILLE MÉMOIRE

D’une part, l’optimisation de la taille des mots à enregistrer (et à traiter)
entrâıne une diminution de la taille mémoire (et une diminution de la com-
plexité des processeurs). D’autre part, la flexibilité demandée par les rende-
ments de codage entrâıne l’utilisation d’une mémoire importante pour stocker
les méssages extrinsèques qui peut être réduite par une légère modification
de l’architecture et un choix judicieux de la taille des bancs mémoire. Enfin,
l’implémentation de la mémoire en utilisant uniquement des RAM simple
port entrâıne une diminution de surface et de consommation par rapport à
l’utilisation de RAM double ports.

C.4.1 Optimisation de la taille des mots

L’optimisation de la taille des mots est réalisée à l’aide d’une saturation ef-
ficace des mots lors des différentes étapes de calculs. Lors de l’initialisation,
la saturation et le facteur d’échelle sont calculés au mieux pour une utilisa-
tion optimal de la mémoire. Les PAPs sont saturées en tenant compte de
la corrélation entre les PAPs et les messages extrinsèques à l’aide d’un algo-
rithme spécifique. Enfin les extrinsèques sont saturés avant d’être mémorisés.

C.4.2 Optimisation des bancs mémoire des extrinsèques

Une première optimisation de la taille mémoire des extrinsèques consiste a
utiliser un algorithme de type Min-Sum. Au lieu de mémoriser les messages
de toutes les connexions d’un NP, seulement la valeur absolue du plus petit
message, son index, la seconde plus petite valeur et le signe des messages sont
enregistrés. Le gain est d’autant plus important que le degré des NP (dc)
est important. La taille de la mémoire des extrinsèques pour une matrice
est donnée par la taille du mot(fonction de dc et de la quantification des
extrinsèques) multipliée par la taille de l’adressage (définie par le nombre de
NPs M).

Le problème est que dc et le nombre de NP varie en fonction du taux de
codage. Pour satisfaire cette variation, une solution consiste à choisir une
mémoire avec la taille de mots maximal multipliée par la valeur maximal de
M . La solution proposée consiste à pouvoir reconfigurer des bancs mémoires
de manière à faire varier la taille des mots et de l’adressage. Une taille de
banc optimale est ensuite déterminée.

C.4.3 Utilisation de RAM simple port

L’utilisation de RAM simple port à la place de RAM double port permet
de faire un gain de surface et une réduction de consommation. L’utilisation

115

APPENDIX C. RÉSUMÉ ÉTENDU

de RAM simple port est surtout problématique pour la mémoire PAP. La
solution proposée repose sur un ordonancement des couches et si besoin, un
ordonnancement des groupes de variables a l’intérieur des couches.

C.5 Un décodeur de flux multiple

Un décodeur de flux multiple peut être vu comme un décodeur capable
de décoder plusieurs types de flux. Un décodeur peut être susceptible de
décoder un flux de télévision standard (SDTV) puis un flux de télévision
haute définission (HD TV) ou bien encore un flux de télévision en trois di-
mensions (3D TV). Du point de vue du décodeur LDPC, la différence entre
ces trois flux s’interpréte en terme de débit. En effet la différence de débit en-
tre un flux SDTV et 3D TV est un rapport de l’ordre de 1 à 5. Un décodeur
de flux multiple peut aussi être interprété comme un décodeur capable de
traiter x flux simultanément. A nouveau, au niveau du décodeur cela peut
être interprété en terme de débit. Le problème peut donc être vu comme un
problème de débits variable.

Nous allons traiter le décodeur de flux multiple sous trois angles: le par-
allélisme, le partage des ressources et l’addition d’un buffer à un decodeur
itératif.

C.5.1 Parallélisme

La variation du parallélisme permet de répondre facilement à une demande
de débit supplémentaire. Cependant, une fois un parallisme établi, le par-
allélisme ne peut pas être modifié et le débit sera toujours maximal.

C.5.2 Partage des ressources

Le traitement de deux flux simultanément permet de partager les ressources
des processeurs de calcul. Cependant la mémoire ne peut pas être partagé et
le partage des processeurs de calcul n’apporte pas de gain par rapport à un
processeur pipeliné. L’avantage de cette solution peut venir d’une diminution
des contraintes d’accés mémoire et de ce fait, peut fournir des solutions aux
conflcts mémoire en cas de fort parallélisme.

116

C.6. CONCLUSION

C.5.3 Addition d’un buffer à un décodeur itératif vari-
able

Un décodeur itératif variable est capable de détecter si un mot de code a été
trouvé et ainsi arrêter le décodage en cours et commencer le décodage d’un
nouveau mot ou bien s’arrêter pour économiser de l’énergie. L’avantage de
ce type de décodeur vient du fait que le nombre d’itérations pour décoder
un mot de code est réduit d’une valeur maximale à une valeur moyenne.
L’inconvénient est qu’un buffer est néscessaire en entrée et en sortie du
décodeur pour palier au caractère asynchrone du décodeur. La taille du buffer
est réduite au minimum par simulation sans perte de performance et un débit
doublé par rapport à un décodeur à iterations constantes. L’addition d’un
buffer permet aussi de répondre au caractère non constant du débit imposé
par de multiple flux.

C.6 Conclusion

Pendant cette thèse nous avons cherché à optimiser l’implémentation d’un
décodeur LDPC pour les standards DVB-S2, -T2 et -C2. Nous avons d’abord
implementé un décodeur par couche sur FPGA capable de décoder des codes
de type “layered” comme ceux definis par les standards WiFi ou WiMAX.
Ce décodeur intègre les optimisations concernant la taille mémoire. Une
deuxième version améliorée permet de décoder des flux des standards DVB-
S2, -T2 et -C2. Ce nouveau décodeur est capable de répéter les couches et
de désactiver l’écriture des mémoire PAP et extrinsèque permettant ainsi de
résoudre efficacement les conflicts de mise à jour dus à la structure partic-
ulière des matrices des standards DVB-X2.

C.6.1 Applications

Les optimisations mémoires sont applicables pour tous les décodeur de type
“layered”, et il en est de même pour la résolution des conflicts de mis à jour
de la mémoire dus au pipeline des processeurs. La résolution des conflicts de
mise à jour mémoire dus aux IM supperposées peut être étendue aux stan-
dard STiMi qui comporte lui aussi des MI supperposés. L’etude concernant
les décodeurs multi flux peut, quant à elle, être etendue ‘̀a l’ensemble des
décodeurs itératifs.

117

APPENDIX C. RÉSUMÉ ÉTENDU

C.6.2 Perspectives

L’architecture proposée peut être opimisée en surface, vitesse et performance.
Les performances pour les codes de rendement de codage faible (1/4, 1/3
et 2/5) doivent être améliorées pour remplir les conditions inposées par les
standards. Une solution simple consiste à utiliser une version améliorée de
l’algorithme Min-Sum tel que l’agorithme λ−min ouA−min∗. L’environnement
de test peut être etendue en incluant la possibilité d’émuler un canal de
Rayleigh et en intégrant un code BCH pour compléter l’émulation de la
transmission numérique.

118

List of Figures

1.1 Basic elements of a digital communication system 4

1.2 Tanner graph representation of H 6

1.3 Representation of the f(.) function defined in equation 1.5 . . 8

1.4 Performance comparison of the BP and some sub-optimal al-
gorithm for the CN update. 10

1.5 serial CN processor implementation. 14

1.6 Probability Density Function of the number of iterations be-
fore a codeword is found . 15

1.7 Block-structured rate-2/3 DVB-S2 matrix (N=16200 bits) . . 16

1.8 SO based Node Processor . 17

1.9 Layered decoder architecture 18

1.10 Detailed SO based Node Processor 19

1.11 Base DVB-S2 matrix representation 23

1.12 Block diagram of a testing environment 25

1.13 Test of an LDPC decoder, all-zero codeword model 27

1.14 test of an LDPC decoder . 28

1.15 Typical regions in an error probability curve 29

2.1 Zoom of a rate-2/3 DVB-T2 Matrix with N=16200 32

2.2 Base DVB-T2 matrix representation 33

2.3 Shifted identity matrix . 36

2.4 Split base DVB-T2 matrix representation 37

2.5 BER as a function of the parallelism on a fixed point simulation 39

2.6 Principle of an extended parity check matrix 40

2.7 BER as a function of the parallelism with extended matrices . 41

2.8 BER for standard frames with parallelism of 40 with extended
matrices . 42

2.9 Tanner representation of Figure 2.6 (b) 42

2.10 BER for short frames with a parallelism of 40 with extended
matrices . 44

119

LIST OF FIGURES

2.11 BER for long frames with a parallelism of 40 with extended
matrices . 44

2.12 repeat layer principle . 47
2.13 BER for short frame, 25 it, r=2/3, N=16200, without BCH . . 51
2.14 BER for short frame, constant throughput, R=2/3, N=16200,

without BCH . 51
2.15 write disable architecture . 52
2.16 Chronogram of a non pipelined CNP 55
2.17 Chronogram of a pipelined CNP without idle time 56
2.18 Conflict due to pipelining at i+ 2 57
2.19 Cost matrix . 59
2.20 Genetic algorithm . 60

3.1 Resulting distribution of a quantified BPSK modulation 66
3.2 BER simulation for a rate 2/3 68
3.3 BER simulation for a rate 2/3 showing effects of SO saturation 70
3.4 NP with saturation of the extrinsic messages 71
3.5 BER simulation for a rate 2/3 showing effects of extrinsic mes-

sages . 72
3.6 BER simulation for a rate 2/3 when combining SO and ex-

trinsic saturation . 72
3.7 Memory capacity as a function of WRAM 75
3.8 Finite precision of the NP architecture 77
3.9 Layered decoder architecture 78
3.10 BER for long frames . 79

4.1 Variable iteration decoder with a buffer 92
4.2 Variable iteration decoder with a buffer 97

A.1 matrix resulting from Table A.1 104
A.2 First permutation . 105
A.3 Second permutation . 106

B.1 LFSR . 108
B.2 HDCE architecture . 109
B.3 Resulting distribution of a BPSK modulation emulated by

HDCE . 110

120

List of Tables

1.1 Check node update with different sub-obtimal algorithms . . . 11
1.2 code rates for DVB-S2, -T2, -C2 standards 20
1.3 matrix construction table for DVB-S2 standard, code rate of

2/3 and short frame lengh . 22
1.4 Shannon limit in function of the code rate 30

2.1 Number of DDSM for N=16200 38
2.2 Number of DDSM for N=64800 38
2.3 Synthesis Results for DVB-S2 LDPC decoder 53
2.4 Scheduling solutions for short frames 61
2.5 Scheduling solutions for long frames 61

3.1 Memory size of extrinsic . 73
3.2 Memory capacity of the extrinsic message with WRAM = 9 . . 75
3.3 Synthesis Results for DVB-S2 LDPC decoder on Virtex-V . . 80
3.4 Memory capacity comparison 80

4.1 Throughput (Mbit/s) as a function of the parallelism Ps and
the Clock frequency with itcst = 17 and ǫ = 6 89

A.1 example table . 104

121

Bibliography

[1] Andreev, Alexander, Bolotov, Anatoli, Scepanovic, and Ranko. Fifo
memory with single port memory modules for allowing simultaneous
read and write operations. US patent 7181563, February 2007.

[2] C. Berrou. The ten-year-old turbo codes are entering into service. In
Communication Magazine, IEEE, pages 110–116, August 2003.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima. Near shannon limit
error-correcting coding and decoding: Turbo-codes. volume 2, pages
1064–1070 vol.2, 1993.

[4] T. Bhatt, V. Sundaramurthy, V. Stolpman, and D. McCain. Pipelined
block-serial decoder architecture for structured LDPC codes. In Acous-
tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on, volume 4, page IV, Toulouse,
France, May 2006.

[5] E. Boutillon, J. Castura, and F.R. Kschischang. Decoder first code
design. In In Proc. 2nd International Symposium on Turbo Codes &
Related Topics, pages 459–462, Brest, France, September 2000.

[6] E. Boutillon, J.L Danger, and A. Ghazel. Design of high speed AWGN
communication channel emulator. In Proc. AICSP, volume 34, pages
133–142, 2003.

[7] E. Boutillon, C. Douillard, and G. Montorsi. Iterative decoding of con-
catenated convolutional codes: Implementation issues. In Proceedings
of the IEEE, volume 95, June 2007.

[8] E. Boutillon and F. Guilloud. LDPC decoder, corresponding method,
system and computer program. US patent 7,174,495 B2, February 2007.

[9] E. Boutillon, Y. Tang, C. Marchand, and P. Bomel. Hardware discrete
channel emulator. In IEEE International Conference on High Perfor-

122

BIBLIOGRAPHY

mance Computing and Simulation (HPCS 2010), pages 452–458, Caen,
France, June 2010.

[10] T. Brack, M. Alles, F. Kienle, and N. Wehn. A synthesizable IP core for
WIMAX 802.16e LDPC code decoding. In Personal, Indoor and Mobile
Radio Communications, 2006 IEEE 17th International Symposium on,
pages 1–5, Helsinki, Finland, September 2006.

[11] J. Chen and M. Fossorier. Density evolution of two improved bp-based
algorithms for LDPC decoding. IEEE Communication letters, March
2002.

[12] A. Darabiha, A. C. Carusone, and F. R. Kschischang. Block-interlaced
ldpc decoder with reduced interconnect complexity. IEEE transaction
on circuits and systems-II: Express Brief, 55:74–78, January 2008.

[13] J. Dielissen and A. Hekstra. Non-fractional parallelism in LDPC decoder
implementations. In Design, Automation and Test in Europe Conference
and Exhibition, pages 1–6, May 2007.

[14] J. Dielissen, A. Hekstra, and V. Berg. Low cost LDPC decoder for
DVB-S2. In Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings, volume 2, pages 1–6, Munich, Germany, March 2006.

[15] D. Divsalar, S. Dolinar, and C. Jones. Construction of protrograph
LDPC codes with linear minimum distance. In Information Theory,
2006 IEEE International Symposium on, pages 664–668, Washington,
USA, July. 2006.

[16] J.B. Doré. Optimisation conjointe de codes LDPC et de leurs archi-
tecture de decodage et mise en oeuvre sur FPGA. PhD thesis, INSA,
Rennes, France, 2007.

[17] Digital Video Broadcasting (DVB). Framing structure, channel cod-
ing and modulation for 11/12 ghz satellite services. ETSI EN 300 421
(V1.1.2), 1994.

[18] Digital Video Broadcasting (DVB). Digital video broadcasting (dvb);
framing structure, channel coding and modulation for digital satellite
news gathering (dsng) and other contribution applications by satellite.
ETSI EN 301 210, 1997.

[19] Digital Video Broadcasting (DVB). Framing structure, channel cod-
ing and modulation for digital terrestrial television. ETSI EN 300 744
(v1.6.1, 2009.

123

BIBLIOGRAPHY

[20] Digital Video Broadcasting (DVB). Second generation framing struc-
ture, channel coding and modulation systems for broadcasting, interac-
tive services, news gathering and other broadband satellite applications
(DVB-S2). European Standard (Telecommunications series)ETSI EN
302 307 V1.2.1 (2009-08), 2009.

[21] Digital Video Broadcasting (DVB). Frame structure channel coding and
modulation for a second generation digital transmission system for cable
systems (DVB-C2). DVB Document A138, 2010.

[22] Digital Video Broadcasting (DVB). Frame structure channel coding
and modulation for the second generation digital terrestrial television
broadcasting system (DVB-T2). DVB Document A122, 2010.

[23] O. Eljamaly and P. Sweeney. Alternative approximation of check node
algorithm for DVB-S2 LDPC decoder. In Second International Confer-
ence on Systems and Networks Communications (ICSNC 2007), pages
157–162, October 2007.

[24] M.P.C Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity iter-
ative decoding of low-density parity check codes based on belief propa-
gation. IEEE Transactions on communications, 47:673–680, May 1999.

[25] R.G. Gallager. Low-Density Parity-Check Codes. PhD thesis, Cam-
bridge, 1963.

[26] A. Ghazel, E. Boutillon, J.L Danger, and G.Gulak. Design and perfor-
mance analysis of a high speed awgn communication channel emulator.
In Proc. PACRIM, volume 2, pages 374–377, 2001.

[27] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao.
Flexible parallel architecture for DVB-S2 LDPC decoders. In Global
Telecommunications Conference, 2007. GLOBECOM ’07. IEEE, pages
3265–3269, Washington, USA, November 2007.

[28] M. Gones, G. Falcao, J. Goncalves, V. Silva, M. Falcao, and P. Faia.
HDL library of processing units for generic and DVB-S2 LDPC decod-
ing. In International Conference on Signal Processing and Multimdia
Applications (SIGMAP2006), Setubal, Portugal, 2006.

[29] F. Guilloud, E. Boutillon, and J.-L. Danger. lambda-min decoding al-
gorithm of regular and irregular LDPC codes. Proceedings of the 3rd
International Symposium on Turbo Codes and Related Topics, Septem-
ber 2003.

124

BIBLIOGRAPHY

[30] K. Guo, Y. Hei, and S. Qiao. A parallel-layered belief-propagation de-
coder for non-layered ldpc codes. In Journal of Communications, vol-
ume 5, pages 400–408, May 2010.

[31] D.E. Hocevar. A reduced complexity decoder architecture via layered
decoding of LDPC codes. In Signal Processing Systems, 2004. SIPS
2004. IEEE Workshop on, pages 107–112, Austin, USA, October 2004.

[32] John H. Holland. Adaptation in natural and artificial systems. MIT
Press, Cambridge, MA, USA, 1992.

[33] Xiao-Yu Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia. Effi-
cient implementations of the sum-product algorithm for decoding LDPC
codes. In Global Telecommunications Conference, 2001. GLOBECOM
’01. IEEE, volume 2, pages 1036–1036E vol.2, 2001.

[34] H. Jin, K. handekar, and R. McEliece. Irregular repeat-accumulate
codes. In In Proc. 2nd International Symposium on Turbo Codes &
Related Topics, pages 1–8, Brest, France, September 2000.

[35] C. Jones, E. Valles, M. Smith, and J. Villasenor. Approximate-min*
constraint node updating for LDPC code decoding. In IEEE Military
Communication Conference, pages 157–162, October 2003.

[36] F. Kienle, T. Brack, and N. Wehn. A synthesizable IP core for DVB-
S2 LDPC code decoding. In DATE ’05: Proceedings of the conference
on Design, Automation and Test in Europe, pages 100–105, Munich,
Germany, March 2005. IEEE Computer Society.

[37] S. L. Fogal, S. Dolinar, and K. Andrews. Buffering requirement for
variable-iteration ldpc decoder. In Information Theory and Application
Workshop,ITA.2008, pages 523–530, San Diego, CA, January 2008.

[38] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic.
Genetic algorithms for the travelling salesman problem: A review of
representations and operators. Artif. Intell. Rev., 13(2):129–170, 1999.

[39] D. Lee, W. Luk, J.V. Villasenor, G. Zhang, and P. Leong. A hardware
gaussian noise generator using the box-muller method and its error anal-
ysis. In IEEE Trans Computers, volume 55, pages 659–671, 2006.

[40] Y.C Liao, C.C Lin, H.C Chang, and C.W Liu. Self-compensation tech-
nique for simplified belief-propagation algorithm. In IEEE Transaction
on Signal Processing, pages 3061–3072, vol.55, June 2007.

125

BIBLIOGRAPHY

[41] D.J.C. MacKay and R.M. Neal. Near shannon limit performance of low
density parity check codes. Electronics Letters, 33:457–458, March 1997.

[42] M. M. Mansour and N. R. Shanbhag. High-throughput LDPC de-
coders. IEEE Transactions on Very Large Scale Integration VLSI Sys-
tems, 11:976–996, December 2003.

[43] M.M. Mansour and N.R. Shanbhag. Low-power VLSI decoder archi-
tectures for LDPC codes. In Low Power Electronics and Design, 2002.
ISLPED ’02. Proceedings of the 2002 International Symposium on, pages
284–289, Monterey, USA, August 2002.

[44] C. Marchand, L. Conde-Canencia, and E. Boutillon. Architecture and
finite precision optimization for layered LDPC decoders. In Signal Pro-
cessing Systems, 2010. SiPS 2010. IEEE Workshop on, San Francisco,
USA, October 2010.

[45] C. Marchand, J.-B. Doré, L. Conde-Canencia, and E. Boutillon. Conflict
resolution by matrix reordering for DVB-T2 LDPC decoders. In Global
Telecommunications Conference, 2009. GLOBECOM 2009. IEEE, pages
1–6, Honolulu, USA, November 2009.

[46] C. Marchand, J.-B. Doré, L. Conde-Canencia, and E. Boutillon. Con-
flict resolution for pipelined layered LDPC decoders. In Signal Pro-
cessing Systems, 2009. SiPS 2009. IEEE Workshop on, pages 220–225,
Tampere, Finlande, November 2009.

[47] L. Meng, C Abdel Nour, C. Jego, and C. Douillard. Design and FPGA
prototype of a bit-interleaved coded modulation receiver for the DVB-T2
standard. In IEEE workshop on Signal Processing System. SIPS 2010,
pages ???–???, Sam Francisco, USA, October 2010.

[48] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn.
A novel LDPC decoder for DVB-S2 IP. In Design, Automation & Test
in Europe Conference & Exhibition,2009. Date ’09., Nice, France, April
2009.

[49] S. Papaharalabos and P.T. Mathiopoulos. Simplified sum-product algo-
rithm for decoding LDPC codes with optimale performance. Electronics
letters, 45:536–539, June 2009.

[50] J.G. Proakis. Digital communication, Fourth Edition. McGraw-Hill
International Editions, 2000.

126

BIBLIOGRAPHY

[51] DAVINCI project. Design And Versatil Implementation of Non-
binary wireless Communications based on Innovative LDPD Codes,
(DAVINCI). DAVINCI project, 2010.

[52] M. Rovini and A. Martinez. On the addition of an input buffer to an
iterative decoder for LDPC codes. In IEEE 65th Vehicular Technologie
Conference,VTC2007, pages 1995–1999, Dublin, Ireland, April 2007.

[53] M. Rovini, F. Rossi, P. Ciao, N. L’Insalata, and L. Fanucci. Layered
decoding of non-layered LDPC codes. In Digital System Design: Ar-
chitectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on, pages 537–544, Dubrovnick, Croatia, September 2006.

[54] Massimo Rovini, Giuseppe Gentile, Francesco Rossi, and Luca Fanucci.
A minimum-latency block-serial architecture of a decoder for IEEE
802.11n LDPC codes. In Very Large Scale Integration, 2007. VLSI -
SoC 2007. IFIP International Conference on, pages 236–241, Atlanta,
USA, October 2007.

[55] V. Savin. Self-corrected min-sum decoding of ldpc codes. pages 146–150,
2008.

[56] V. Savin. Split-extended ldpc codes for coded cooperation. In Inter-
national Symposium on Information Theory and its Applications, pages
???–???, Taichung, Taiwan, October 2010.

[57] A. Segard, F. Verdier, D. Declercq, and P. Urard. A DVB-S2 compli-
ant LDPC decoder integrating the horizontal shuffle schedule. In IEEE
International Symposium on Intelligent Signal Processing and Commu-
nication Systems (ISPACS 2006), Tottori, Japan, December 2006.

[58] C. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379423, 1948.

[59] A. Singh, A. Al-Ghouwayel1, G. Masera, and E. Boutillon. A new per-
formance evaluation metric for sub-optimal iterative decoders. IEEE
Communications letters, 13:513–515, 2009.

[60] IEEE std. Air interface for fixed and mobile broadband wireless access
systems. In P802.16e/D12 Draft, pages 100–105, Washington, DC, USA,
2005. IEEE.

[61] IEEE Std. Wireless lan medium access control (MAC) and physical layer
(PHY) specifications-enhancement for higher throughput(draft). IEEE
P802.11n/D1.05, October 2006.

127

BIBLIOGRAPHY

[62] Y. Sun, M. Karkooti, and J.R. Cavallaro. High throughput, parallel,
scalable LDPC encoder/decoder architecture for OFDM systems. In
Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS
Workshop on, pages 39–42, Richarson, USA, October 2006.

[63] R. Tanner. A recursive approach to low complexity codes. Information
Theory, IEEE Transactions on, 27:533–547, September 1981.

[64] C.J Tsai and M.C Chen. Efficient ldpc decoder implementation for
DVB-S2 system. In VLSI Design Automation and Test (VLSI-DAT),
2010 International Symposium on, pages 37–40, June 2010.

[65] P. Urard, L. Paumier, V. Heinrich, N. Raina, and N. Chawla. A 360mw
105b/s DVB-S2 compliant codec based on 64800b LDPC and BCH codes
enabling satellite- transmission portble devices. In Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE In-
ternational, pages 310–311, San Francisco, USA, February 2008.

[66] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars,
E. Lantreibecq, and B. Gupta. A 135mb/s DVB-S2 compliant codec
based on 64800b LDPC and BCH codes. In Solid-State Circuit Con-
ference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE Interna-
tional, pages 446–447, Sam Francisco, USA, February 2005.

[67] A.J. Walker. An efficient method for generating discrete random vari-
ables with general distributions. In ACM Transaction on Mathematical
Software (TOMS), volume 3, September 1977.

[68] Y. Yan, B. Dan, H. Shuangqu, Bo X., C. Yun, and Z Xiaoyang. A cost
efficient LDPC decoder for DVB-S2. In ASIC, 2009. ASICON ’09. IEEE
8th International Conference on, pages 1007 – 1010, Changsa,China,
October 2009.

[69] J. Zhang, Y. Wang, M. P. C. Fossorier, and J. S. Yedidia. Iterative
decoding with replicas. Information Theory, IEEE Transactions on,
53:1644–1663, May 2007.

[70] Juntan Zhang and M.P.C. Fossorier. Shuffled iterative decoding. Com-
munications, IEEE Transactions on, 53:209–213, February 2005.

128

