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Résumé

La gestion de la consommation d’énergie et de la température est devenue un enjeu
crucial dans les systèmes informatiques. En effet, un grand centre de données consomme
autant d’électricité qu’une ville et les processeurs modernes atteignent des températures
importantes dégradant ainsi leurs performances et leur fiabilité. Dans cette thèse, nous
étudions différents problèmes d’ordonnancement prenant en compte la consommation
d’énergie et la température des processeurs en se focalisant sur leur complexité et leur
approximabilité. Pour cela, nous utilisons le modèle de Yao et al. (1995) (modèle de
variation de vitesse) pour la gestion d’énergie et le modèle de Chrobak et al. (2008) pour
la gestion de la température.
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Abstract

Nowadays, the energy consumption and the heat dissipation of computing environments
have emerged as crucial issues. Indeed, large data centers consume as much electricity
as a city while modern processors attain high temperatures degrading their performance
and decreasing their reliability. In this thesis, we study various energy and temperature
aware scheduling problems and we focus on their complexity and approximability.

A dominant technique for saving energy is by proper scheduling of the jobs through the
operating system combined with appropriate scaling of the processor’s speed. This tech-
nique is referred to as speed scaling in the literature. The theoretical study of speed scaling
was initiated by Yao, Demers and Shenker (1995) who considered the single-processor
problem of scheduling preemptively a set of jobs, each one specified by an amount of
work, a release date and a deadline, so as to minimize the total energy consumption.
In order to measure the energy consumption of a processor, the authors considered the
well-known rule according to which the processor’s power consumption is P (t) = s(t)α at
each time t, where s(t) is the processor’s speed at t and α > 1 is a machine-dependent
constant (usually α ∈ [2, 3]). Here, we study speed scaling problems on a single pro-
cessor, on homogeneous parallel processors, on heterogeneous environments and on shop
environments. In most cases, the objective is the minimization of the energy but we also
address problems in which we are interested in capturing the trade-off between energy
and performance.

We tackle speed scaling problems through different approaches. For non-preemptive
problems, we explore the idea of transforming optimal preemptive schedules to non-
preemptive ones. Moreover, we exploit the fact that some problems can be formulated
as convex programs and we propose greedy algorithms that produce optimal solutions
satisfying the KKT conditions which are necessary and sufficient for optimality in convex
programming. In the context of convex programming and KKT conditions, we also study
the design of primal-dual algorithms. Additionally, we solve speed scaling problems by
formulating them as convex cost flow or minimum weighted bipartite matching problems.
Finally, we elaborate on approximating energy minimization problems that can be formu-
lated as integer configuration linear programs. We can obtain an approximate solution
for such a problem by solving the fractional relaxation of an integer configuration linear
program for it and applying randomized rounding.

In this thesis, we solve some new energy aware scheduling problems and we improve
the best-known algorithms for some other problems. For instance, we improve the best-
known approximation algorithm for the single-processor non-preemptive energy minimiza-
tion problem which is strongly N P-hard. When α = 3, we decrease the approximation
ratio from 2048 to 20. Furthermore, we propose a faster optimal combinatorial algorithm
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for the preemptive migratory energy minimization problem on power-homogeneous pro-
cessors, while the best-known algorithm was based on solving linear programs. Last but
not least, we improve the best-known approximation algorithm for the preemptive non-
migratory energy minimization problem on power-homogeneous processors for fractional
values of α. Our algorithm can be applied even in the more general case where the pro-
cessors are heterogeneous and, for αmax = 2.5 (which is the maximum constant α among
all processors), we get an improvement of the approximation ratio from 5 to 3.08.

In order to manage the thermal behavior of a computing device, we adopt the approach
of Chrobak, Dürr, Hurand and Robert (2011). The main assumption is that some jobs
are more CPU intensive than others and more heat is generated during their execution.
So, each job is associated with a heat contribution which is the impact of the job on the
processor’s temperature. In this setting, we study the complexity and the approximability
of multiprocessor scheduling problems where either there is a constraint on the processors’
temperature and our aim is to optimize some performance metric or the temperature is
the optimization goal itself.
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Chapter 1

Introduction

As the technology scales, the energy consumption of computer systems becomes a major
concern. This issue touches the designers and the users of almost any computing device
ranging from small portable devices to large data centers. To begin with, in server farms,
energy efficiency is very important because there are large costs incurred for buying
energy. Moreover, part of this energy is converted into heat which increases the overall
temperature of the system and this is not desirable since high temperatures affect the
processors’ performance and reliability. Furthermore, in battery systems, we would like
to conserve energy because lower energy implies higher lifetime of the battery. The above
are the principal reasons for which the energy consumption of computing devices is a
crucial topic and it has become an important field of research both in academia and in
industry the past years.

Another equally important subject that bothers modern computer scientists and en-
gineers is the thermal management in computer systems. For roughly half a century, the
processing speed of computing devices has been improving at high rates based on the
Moore’s law. It is expected that this will be no longer possible due to the large heat
dissipation of modern microprocessors. High temperatures degrade the performance and
reduce the lifetime of a microprocessor. Additionally, if the value of temperature be-
comes too high then the processor might be permanently damaged. Therefore, in order
to keep satisfying the increasing demand for performance, we need to investigate ways
of maintaing the temperature of computing devices as low as possible. In this direc-
tion, computer manufacturers incorporate cooling components but these components are
costly. Hence, managing the processors temperature has emerged as a really hot issue
recently and necessites novel approaches.

The energy consumption and thermal behavior of computing systems has always been
a concern for computer scientists. Before a decade, problems concerning these issues were
mainly tackled via hardware oriented solutions. The last decade, their management is
also addressed at the operating system’s level. Specifically, the energy expenses and the
evolution of the temperature of a processor are strongly influenced by a fundamental task
of the operating system known as job scheduling. The running software on a processor
is divided into jobs and a job is simply part of an executed program. Traditionally, the
job scheduling task consists of deciding which job is executed at each time. In order to
enforce the ability of managing the energy consumption and the temperature of computing
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2 Chapter 1. Introduction

devices, computer manufacturers have introduced an additional task for the scheduler of
the operating system known as speed scaling. At each time, the scheduler of the operating
system has now to decide not only the job to be run but the processor’s speed as well.
Speed scaling is indeed possible nowadays. For instance, speed scaling is applied to Intel
processors trough the “Turbo Boost” technology while on AMD processors it is achieved
with the “PowerNow” technology. The energy and temperature of a processor can be
reduced by properly adjusting its speed and, in this context, we would like to design
energy aware and temperature aware scheduling algorithms for the operating system
which include proper job scheduling and speed scaling policies.

An efficient scheduling algorithm should satisfy the demand for performance by ex-
ecuting the jobs as fast as possible, but at the same time it should reduce the proces-
sor’s energy consumption and maintain its temperature as low as possible. In general,
energy/temperature and performance are conflicting objectives since high processors’
speeds imply good performance at the price of high energy consumption and tempera-
tures. Hence, a successful scheduling algorithm has to be constructed so as to attain a
good trade-off between energy/temperature and performance.

Today, there are several types of computing environments including small desktops
with a single processor and large scale data centers with several processors. Moreover,
there exist special purpose processors which have been designed to execute particular
types of jobs. Due to the diversity of computing environments, the principles for designing
efficient scheduling algorithms, with respect to energy/temperature and performance,
might not be the same for every kind of computing system. Thus, we need to focus on
each type separately.

In this thesis, we study the issue of energy and thermal management in computing
systems. Our principal target is the design of energy and temperature aware schedul-
ing algorithms. In this direction, we address several scheduling problems by considering
different computational environments and various optimization goals. The main contri-
bution is the study of different algorithmic techniques which are useful in the design of
efficient scheduling algorithms taking into account energy or temperature.

1.1 Energy and Thermal Models

In this section, we describe the models that we use in this thesis in order to manage the
energy consumption and the temperature of a processor. The flow of the electric current
and the heat dissipation of a computing device are complex phenomena and they cannot
be modeled accurately. However, there exist some well-studied approximate models in the
literature that offer the possibility to study the performance and the energy/temperature
in an analytical way. In this thesis, we use the speed scaling model for managing the
energy. For completeness, we describe some alternative models for the energy appeared
in the literature, namely the power down model and the speed scaling model combined
with power down, but we do not study them. As far as the temperature is concerned,
there exists a continuous thermal model combined with speed scaling for the thermal
management. However, the one we study is a discrete thermal model.
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Speed Scaling

The speed scaling model was introduced by Yao, Demers and Shenker [62] and it is based
on the fact that the processors speed can be varied. Consider a processor that has to
execute some jobs. The processor has to execute an amount of work in order to complete
each one of these jobs. We can imagine that this amount of work corresponds to a
certain number of CPU cycles. Then, we define the processor’s speed (or frequency) as
the amount of work it executes per unit of time. Let s(t) be the processor’s speed at
time t. The amount of work that the processor executes during an interval of time [a, b)
is equal to

∫ b
a s(t)dt.

The processor consumes an amount of energy in order to execute an amount of work.
We denote by Q(t) the power, i.e. the instantaneous energy consumption, of the processor
at time t. According to the model in [62], the power consumption of a processor is a convex
function of its speed. Specifically, at any time t, we have that

Q(t) = s(t)α

where α > 1 is a constant which depends on the technical characteristics of the processor.
For instance, the processors which are constructed according to the CMOS technology
are known to satisfy the cube-root rule, i.e. α ≃ 3 (see [14]). The energy consumption of
the processor during an interval of time [a, b) is equal to

∫ b
a s(t)αdt. So, if the processor

operates at a constant speed s during an interval of time [a, b), then it executes (b − a) · s
units of work and it consumes (b − a) · sα units of energy during the same interval.

time

speed

0 1 2 3 4

2

4

6

8

time

speed

0 1 2 3 4

2

4

6

8

Figure 1.1: An example of two schedules for a processor whose power function is P (t) = s(t)2. The
processor executes w = 20 units of work during the interval of time [0, 4) in both schedules. The first
schedule consumes E1 = 1 ·42+1 ·22+1 ·82+1 ·62 = 120 units of energy while the second one consumes
E2 = 2 · 62 + 2 · 42 = 104 units of energy.

Power Down

The power down model was formalized by Irani, Gupta and Shukla [45]. In this model,
we assume that a processor can be in an active or in an inactive state. In the former
state, we say that the processor is ON and that it consumes an amount of energy for
being active even if nothing is executed while, in the latter state, we say that it is OFF,
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it consumes less (or no) energy and no execution is possible. A processor can execute a
job only when it is active.
For simplicity, let c be the power consumption, i.e. the energy consumption per unit

of time, of the processor when it is active and assume that no energy is consumed when
it is inactive. The processor can save energy by turning into the inactive state during
the idle periods where there are no jobs to be executed. However, an amount of energy
L is dissipated for switching back from the inactive to the active state. If a processor
is active for t units of time and it performs x transitions from the inactive to the active
state, then its energy consumption is

E = t · c+ x · L

Note that, the maximum amount of time that the processor can execute any job is equal
to t.

time
0 1 2 3 4 5

ON

time
0 1 2 3 4 5

ON OFF ON

Figure 1.2: An example of two schedules for a processor which has to execute some jobs during the
intervals of time [0, 1) and [4, 5). Its power consumption is c = 1 in the active state. The transition cost
from the inactive to the active state is L = 2 units of energy. In the first schedule, the processor stays
active during the whole interval [0, 5) and it consumes E1 = 5 ·1+0 ·2 = 5 units of energy. In the second
schedule, it transitions to the inactive state at the time t = 1 and goes back to the active state at the
time t = 4 and it consumes E2 = 2 · 1 + 1 · 2 = 4 units of energy.

Power Down with Speed Scaling

There exists a hybrid model which combines speed scaling with power down mechanisms
which was also introduced by Irani, Shukla and Gupta [47]. In this model, at time t, the
processor’s speed-to-power function is defined as

Q(t) = s(t)α + c

where the speed s(t) and the constant α come from the standard speed scaling setting
while c > 0 is a constant that specifies the additional power consumed at each time for
being in the active state. In the inactive state, no energy is consumed. Moreover, there
is an energy consumption L incurred for switching from the inactive to the active state.

Continuous Thermal Model with Speed Scaling

In the context of speed scaling, there exists a model for measuring the evolution of the
processor’s temperature which was introduced by Bansal, Kimbrel and Pruhs [16] and
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we refer to this model as the continuous thermal model. According to this model, the
increase of the temperature is proportional to the power supplied to the processor. More-
over, the processor’s cooling is assumed to be proportional to the difference between its
temperature and the ambient temperature (Newton’s law of cooling). The ambient tem-
perature Θ0 is constant and the processor’s temperature is never below Θ0. Furthermore,
the temperature scale is such that Θ0 = 0. Then, a first-order approximation for the rate
of change Θ′(t) of the temperature Θ(t) at time t is

Θ′(t) = b · Q(t)− c ·Θ(t)

where Q(t) is the power consumption, i.e. the instantaneous energy consumption, at time
t and b, c ≥ 0 are constants. We refer to the constant c as the cooling parameter of the
device. A consequence of the Newton’s law of cooling is that if the processor is supplied
no power, then its temperature is reduced by a constant fraction every 1/c units of time.

Discrete Thermal Model

The discrete thermal model was introduced by Chrobak, Dürr, Hurand and Robert [30].
Note that this model is not combined with speed scaling. The main assumption is that
some jobs require more effort to be executed than others and, thus, more heat is gener-
ated for their execution. So, each job is associated with a heat contribution which reflects
the impact of the job to the temperature when the job is executed. Moreover, the pro-
cessor’s cooling occurs according to the Newton’s law of cooling. That is, the processor’s
temperature is reduced at a rate proportional to the difference of its current temperature
and the ambient temperature of the processor’s surroundings which is, without loss of
generality, equal to zero. Furthermore, the thermal behavior of a processor depends on
the technical characteristics of the processor. In order to model this, we associate each
processor with constant which we call its cooling factor.

For simplicity, we assume that the time is partitioned into unit length time slots and at
every such time slot either a single job is executed during the whole slot or the processor
is idle. Formally, let us consider a processor with cooling factor c. Assume that, during
the time slot [t, t + 1), the processor executes a job with heat contribution h. Let Θ(t)
and Θ(t+ 1) be the temperatures at times t and t+ 1, respectively. Then, we have that

Θ(t+ 1) =
Θ(t) + h

c

If the processor is idle, then the processor’s temperature is modified as if a job of zero
heat contribution is executed. That is, if the processor is idle during [t, t+ 1), then

Θ(t+ 1) =
Θ(t)

c

At this point notice that Chrobak et al. [30] studied a normalization of the discrete
thermal model in which the processors have c = 2 and the jobs have heat contributions
in the interval [0, 2]. In fact, this is the case we consider in this thesis.
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1.5 1.4 1.3

0 0.75 0.375 0.888 0.444 0.872

0 1 2 3 4 5

temperature

time

1.4 1.3 1.5

0 0.7 1 0.5 1

0 1 2 3 4

Figure 1.3: An example of two schedules for a processor whose cooling factor is c = 2. In both schedules,
the processor executes three jobs with unit processing times and heat contributions 1.5, 1.4 and 1.3,
respectively. Note that the temperature does not exceed the value 1 in any schedule.

1.2 Problem Definitions

In this section, we formally establish the setting for the scheduling problems considered
in this thesis. Note that a scheduling problem is specified by a set of jobs, a processing
environment and an optimization goal.

Typically, a scheduling problem consists of a set of n jobs J = {J1, J2, . . ., Jn}. Every
job Jj has an amount of work (or processing requirement) wj which must be executed for
it. Moreover, each Jj is associated with a release date (or arrival time) rj and a deadline
dj meaning that it can only be executed during the interval [rj, dj). We say that Jj is
active during [rj, dj) and that [rj, dj) is the active interval of Jj.

In general, we tackle problems such that the parameters of the jobs are arbitrary.
However, we sometimes restrict our attention to special cases in which some parameters
might be related. First of all, we consider problems where one of the jobs’ parameters is
equal for all the jobs. For example, we study a problem such that all the jobs have equal
works, i.e. wj = wj′ for each pair of jobs Jj, Jj′ , which might arise in systems that execute
the same type of jobs. Furthermore, we consider problems where the active intervals of
the jobs have special structures. In agreeable instances, for every couple of jobs Jj and
Jj′ such that rj < rj′ , it must be the case that dj ≤ dj′ . This kind of instances include
the ones where all the jobs have active intervals of equal size and there is a sort of fairness
among the jobs. We also address problems where the active intervals of the jobs have a
laminar structure, that is, for every couple of jobs Jj and Jj′ such that rj < rj′ , it holds
that either dj ≥ dj′ or dj ≤ rj′ . Note that laminar instances occur if the jobs are created
by recursive calls of a program.

r1 d1

r2 d2

r3 d3

r4 d4

Figure 1.4: An example of an agreeable instance.



1.2. Problem Definitions 7

r1 d1

r3 d3

r5 d5 r7 d7

r4 d4

r8 d8

r2 d2

Figure 1.5: An example of a laminar instance.

In a given scheduling problem, we may or not allow preemptions and migrations of
the jobs. When preemptions of jobs are permitted, a job may start its execution, be
suspended and resumed later from the point of suspension. In computer systems with
several processors where the jobs can be preempted, if migrations of jobs are allowed,
then one job may be executed by more that one processors. However, each job can only
be executed by at most one processor at each time.

For certain types of applications, there are precedence constraints among the jobs. If
the job Jj is constrained to precede the job Jj′ , then Jj′ cannot start its execution until
Jj is completed. The precedence relations among the jobs are represented by a directed
acyclic graph G = (V, A). The set of vertices V of this graph contains one vertex for each
job and there is an arc (Jj, Jj′) if and only if there is a constraint according to which Jj

must precede Jj′ .

In general, we consider different processing environments on which the jobs must
be executed. In all the cases, a processor can only execute at most one job at each
time. First, we consider environments with a single processor. Small portable devices are
included in this type of environments. Today, for improving the performance of modern
computing systems, designers use parallelism, i.e. multiple processors running at lower
frequencies but offering better performances than a single processor. So, we also study
multiprocessor environments consisting of a set of m processors P = {P1, P2, . . . , Pm}
which run in parallel and they obey to the same speed-to-power function Q(t) = s(t)α.

Another characteristic of the multiprocessor computing systems is that they tend to
be heterogeneous consisting of processors of different types. Heterogeneity offers the
possibility of further improving the performance of the system by allowing the execution
of a job on the most appropriate type of processor. So, we also consider heterogeneous
environments with special-purpose processors designed for particular types of jobs. In
such environments, each processor Pi satisfies its own speed-to-power function Qi(t) =
s(t)αi . Furthermore, a processor Pi may execute a job Jj more efficiently than another
processor Pi′ . That is, Pi might need to execute less work than Pi′ in order to complete
Jj. Therefore, each job Jj is associated with a set of values wi,j which correspond to the
amount of work that the processor Pi has to execute in order to complete Jj.

Additionally, every job Jj might have processor-dependent release dates ri,j and dead-
lines di,j. Scheduling problems with processor-dependent release dates and deadlines have
been studied in the literature to model the situation in which the processors are connected
by a network. In this case, it is assumed that every job is initially available at some pro-
cessor and a transfer time must elapse before it becomes available for a new processor.
The transfer time is reflected by an increase in the release date and the deadline.
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In this thesis, we also consider a special type of processing environments known as
shop environments. A typical shop environment consists of a set of m special-purpose
parallel processors P = {P1, P2, . . . , Pm}. There is a set of n jobs J = {J1, J2, . . . , Jn}
and, now, every job Jj ∈ J consists of nj operations O1,j, O2,j, . . . , Onj ,j. Every operation
Ok,j has an amount of work wk,j. The processors in P are special-purpose in the sense that
each processor Pi is designed to execute a particular type of operations. Therefore, every
operation Ok,j is associated with a processor Pi on which it must be entirely executed. In
a shop environment we assume that all the operations of a job access a common resource
which is dedicated to that job. As a result, two operations of the same job cannot be
executed simultaneously.

We consider two kinds of shop environments, namely the open shop and the job
shop. In an open shop environment, each job Jj can have at most one operation on
each processor. In a job shop environment, a job Jj can have more than one operations
on the same processor and there are precedence constraints among the operations of
each job in the form of a chain. Specifically, the operations of the job Jj are numbered
as O1,j, O2,j, . . . , Onj ,j and they must be executed in this order. That is, the operation
Ok+1,j can start only once the operation Ok,j has finished.

Next, we elaborate on the optimization goals of the scheduling problems that we
study in this thesis. Firstly, we consider the objective of minimizing the total energy
consumption. Recall that our study of the energy is based on the model of Yao et al.
[62] by performing speed scaling. In most of the energy-related problems studied in this
thesis, there is always an optimal schedule where each job Jj is executed with a single
speed sj and this comes from the convexity of the speed-to-power function. In such
schedules, we only have to define one speed for each job and the energy consumption
for executing a job Jj is Ej = wjs

α−1
j . Therefore, our objective function is to minimize

E =
∑

Jj∈J Ej =
∑

Jj∈J wjs
α−1
j . In the context of shop environments, it holds that each

operation Ok,j is executed at a constant speed sk,j and the total energy consumption in
an optimal schedule is

∑

Ok,j∈O wk,js
α−1
k,j , where O is the set of all the operations.

Moreover, we study objective functions related with the thermal management. Recall
that, in all the temperature aware scheduling problems that we tackle in this thesis,
we adopt the discrete thermal model of Chrobak et al. [30] and, in this model, each
job Jj is associated with a heat contribution hj. We, first, have to ensure that the
processors’ temperature does not become too high at any time. In order to accomplish
this, we consider scheduling problems where the objective is to minimize the maximum
temperature Θmax attained at any time, i.e. Θmax = maxt∈T {Θ(t)}, where T is the time
horizon. Another objective that we address and concerns the overall thermal behavior of
a computing system is the minimization of the average temperature

∑

t∈T Θ(t).

Finally, we consider scheduling problems where the goal is to achieve high performance
under energy or thermal limitations. Specifically, we try to optimize some performance
metric under either a budget of energy E or a temperature threshold Θ which must not
be exceeded. In general, good performance means that the completion times of the jobs
are as low as possible. We denote the completion time of the job Jj by Cj .

There exist many well-known performance metrics of a schedule in the bibliography.
A first metric is the makespan Cmax which corresponds to the time at which the last job
completes, i.e. Cmax = maxJj∈J {Cj}. Clearly, we would like to construct schedules with
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minimum makespan. A generalization of the makespan is the maximum lateness of a
schedule. When this objective is considered, we assume that, once the job Jj has been
completed, an additional amount of time qj ≥ 0 has to elapse until it is delivered. The
parameter qj is known as the delivery time of the job. Then, the lateness of a job Jj

is defined as Lj = Cj + qj and the maximum lateness of the schedule is the maximum
lateness among the jobs, i.e. Lmax = maxJj∈J {Lj}. The objective now is to minimize
the maximum lateness.
Another classical metric of the quality of a schedule is the average (or total) completion

time
∑

Jj∈J Cj of all the jobs. In the literature, there exists a generalization of this
objective, namely the total flow time

∑

Jj∈J Fj of the jobs, where the flow time of a job
is defined as Fj = Cj − rj. We also consider the weighted versions of these objectives.
In this case, each job Jj has a weight βj > 0 which specifies its relevant importance with
respect to the other jobs. The higher the weight, the higher the importance of the job is.
A schedule with good performance should minimize either

∑

Jj∈J βjCj or
∑

Jj∈J βjFj.
In energy-efficient scheduling problems, another type of objective functions is to op-

timize a linear combination of the energy and a performance metric. For instance, we
consider problems in which we would like to minimize the energy consumption plus β
times the maximum lateness, where β > 0 is a parameter specifying the relevant impor-
tance between the energy and the maximum lateness. The motivation of such a problem
comes from an economic viewpoint. Specifically, we assume that we are willing to pay
β units of energy in order to get a reduction of one unit of maximum lateness. So, in
order to minimize our cost, it suffices to minimize the maximum lateness plus β times
the energy.

1.3 Notation for Scheduling Problems

In this section, we describe a notation for energy and temperature aware scheduling
problems which is a natural adaptation of the well-known three-field notation of Graham,
Lawler, Lenstra and Rinnooy Kan [37] for classical scheduling problems. According to this
notation, a scheduling problem is denoted by an expression with three fields in the form
f1|f2|f3. The field f1 corresponds to the processing environment, the field f2 concerns
the jobs’ characteristics and the field f3 specifies the objective function.
In the field for the processing environment f1, we add the parameter S to specify that

the processors are speed-scalable or the parameter T for the problems under the discrete
thermal model. If these terms are omitted, then we consider a classical scheduling problem
without energy and thermal considerations where each job Jj has a fixed processing time.
In order to indicate the processing environment, we use one of the following parameters.



10 Chapter 1. Introduction

1 Single Processor

P Homogeneous Parallel Processors

R Heterogeneous Parallel Processors

O Open Shop

J Job Shop

Table 1.1: Processing Environments for the 1st field of the 3-field Notation

As far as the job characteristics are concerned, we use wj (or wi,j in the case of hetero-
geneous or shop environments) for specifications on the works of the jobs (or operations).
We use these parameters if we want to indicate that the jobs have equal works by writing
wj = w. If we omit the term, then the jobs (or the operations) have arbitrary works. In
problems without speed scaling, i.e. the ones under the discrete thermal model or the
ones without energy/thermal considerations, we use pj for the processing times of the
jobs instead of wj. We write rj and dj (or ri,j and di,j) for clarifications concerning the
release dates and the deadlines of the jobs. If the parameter rj is not included in the
3-field notation, then all the jobs are available to the system at the time t = 0. Other-
wise, if the jobs do not have equal release dates, then we have to add rj. By omitting
dj, we mean that the jobs do not have deadlines. In order to indicate that the jobs have
equal or arbitrary deadlines, we write dj = d and dj, respectively. In problems under
the discrete thermal model, we add the term hj to specify that every job has a heat
contribution. Note that, in the case of the maximum lateness objective, each job Jj is
associated with a delivery time qj and we do not add anything in the field f2. By includ-
ing the term agrbl or lmnr, the problem is restricted to agreeable or laminar instances,
respectively. The default setting in our notation is that we do not allow preemptions and
migrations of the jobs. In order to permit them, we must include the parameters pmtn or
mgtn, respectively, in f2. Finally, we add the term prec so as to indicate that there are
precedence constraints among the jobs. The possible expressions that concern the jobs’
characteristics are summarized in the following table.

wj = w (or wi,j = w) Equal-Work Jobs (Operations)

pj = p Equal Processing Times

rj (or ri,j) Arbitrary Release Dates

dj (or di,j) Arbitrary Deadlines

dj = d Equal Deadlines

hj Heat Contributions

agrbl Agreeable Instances

lmnr Laminar Instances

pmtn Preemptions

mgtn Preemptions and Migrations

prec Precedence Constraints

Table 1.2: Expressions for the 2nd field of the 3-field Notation

Finally, in the field f3, we specify the objective function of the problem. In the case
where the objective function is a performance-related objective function with a constraint
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on the energy or the temperature, we have to indicate whether we have a budget of energy
or a temperature threshold by adding in parantheses the symbols E or Θ, respectively.
The possible objective functions are stated in the following table.

E Energy

Θmax Maximum Temperature
∑

Θt Average Temperature

Cmax(E) or Cmax(Θ) Makespan

Cmax + βE Makespan plus Energy

Lmax(E) or Lmax(Θ) Maximum Lateness

Lmax + βE Maximum Lateness plus Energy
∑

Cj(E) or
∑

Cj(Θ) Average Completion Time
∑

Cj + βE Average Completion Time plus Energy
∑

wjCj(E) or
∑

wjCj(Θ) Weighted Average Completion Time
∑

wjCj + βE Weighted Average Completion Time plus Energy
∑

Fj(E) or
∑

Fj(Θ) Total Flow Time
∑

Fj + βE Total Flow Time plus Energy
∑

wjFj(E) or
∑

wjFj(Θ) Weighted Total Flow Time
∑

wjFj + βE Weighted Total Flow Time plus Energy

Table 1.3: Objective Functions for the 3rd field of the 3-field Notation

For example, S,1|rj|Lmax(E) is the problem of minimizing the maximum lateness of
a set of jobs with release dates where the objective is the minimization of the maximum
lateness and there is a budget of energy. In the problem S,R|ri,j,di,j,mgtn|E, we would
like to minimize the energy of a set of jobs with processor-dependent release dates and
deadlines on fully heterogeneous parallel processors where preemptions and migrations of
jobs are allowed. Finally, in T,P|pj = 1,dj = d,hj|Θmax, our objective is to minimize
the maximum temperature on parallel identical processors under the discrete thermal
model, where there is a set of unit-length jobs with equal release dates and deadlines.

1.4 Algorithm Analysis

Tractability and Approximation Algorithms

The running time of an algorithm is the number of elementary operations it performs
such as primitive arithmetic operations, primitive logic operations etc. A polynomial
algorithm for a given optimization problem, is an algorithm which produces an optimal
solution for the problem in time polynomial the size of its instance |I|, i.e. the number
of the bits needed in order to encode the instance I in a binary representation.
We say that an optimization problem is tractable if it admits a polynomial algorithm.

In general, there exist problems which are tractable and others which are intractable.
However, there is also a class of problems, the N P-complete problems, for which we do
not know whether they are tractable or not. A basic aspect of the N P-complete problems
is that they all have, in a sense, equivalent difficulty. Specifically, if there was a tractable
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N P-complete problem, then this would imply tractability for every other N P-complete
problem. On the other hand, if there was an intractable N P-complete problem, then
this would imply intractability for every other N P-complete problem. The question of
the tractability of N P-complete problems in a major open question in computer science
and it is known as the P = N P question. In general, it is conjectured that P Ó= N P
which means that the N P-complete problems are intractable. The opposite is considered
unlikely.
The equivalence property of theN P-complete problems, provide a way of showing that

a problem is N P-complete through a so called N P-completeness reduction. Specifically,
assume that we are given an optimization problem Π and that we know that another
problem Π′ is N P-complete. In order to show that Π is N P-complete, it suffices to show
that if we are given an optimal polynomial algorithm for Π′, then we can use it as a black
box an define an optimal algorithm for Π.
Unless P = N P , we do not expect a polynomial-time algorithm for an N P-complete

problem. However, many N P-complete problems are very important in practice and we
would like to cope with them. One way to solve such a problem is by an approximation
algorithm. An approximation algorithm is a polynomial-time algorithm which does not
produce an optimal solution but a near-optimal solution instead. Formally, consider an
optimization problem for which we are given a polynomial-time algorithm A. For a given
instance I of the problem, we denote by CA(I) and COP T (I) the cost of the algorithm’s
solution and the cost of the optimal solution, respectively. Then, A is a ρ-approximation
algorithm if, for any possible instance I of the problem, it holds that

CA(I) ≤ ρ · COP T (I)

If a problem admits a ρ-approximation algorithm, then we can compute, in polynomial
time, a solution whose cost is at most ρ times the cost of an optimal solution. We refer
to the value ρ as the approximation ratio of the algorithm A. For some N P-complete
problems, we may define a polynomial time approximation scheme (PTAS) which is an
algorithm that computes a solution whose cost is very close to the optimal. Formally, a
PTAS is an algorithm which computes an (1+ǫ)-approximate solution in time polynomial
to the size of the instance, for any ǫ > 0. When an algorithm computes an (1 + ǫ)-
approximate solution in time polynomial to the size of the instance and 1/ǫ, for any
ǫ > 0, then we call it a fully polynomial time approximation scheme (FPTAS).

Online Algorithms

Our discussion so far has lied around the offline setting. That is, we assume that the
algorithm knows the entire instance before solving a problem. This is not the case in
the online setting in which the algorithm does not know all the instance in advance but
the knowledge comes over the time while the algorithm runs. In order to evaluate the
performance of online algorithms for some optimization problem, we adopt the competitive
analysis according to which the solution of an algorithm is compared with the solution of
an optimal offline algorithm. Assume that we are given an online algorithm A for some
optimization problem. For a given instance I of the problem, let CA(I) and COP T (I) the
cost of an algorithm’s solution and the cost of the optimal offline solution, respectively.
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We say that A is ρ-competitive if, for any possible instance I of the problem, it holds
that

CA(I) ≤ ρ · COP T (I)

1.5 Related Work

In this section, we will describe existing work on energy and temperature aware scheduling
problems which is closely related to this thesis. Initially, we present part of the literature
for speed scaling problems on a single processor, on homogeneous parallel processors and
on heterogeneous parallel processors. We also briefly describe existing work on the power
down model and the hybrid model that combines speed scaling with power down. Note
that there exist some surveys in the context of energy-efficient scheduling by Albers [2]
and by Irani and Pruhs [46]. Finally, we present existing work for thermal management
problems.

Speed Scaling on a Single Processor

Offline Energy Minimization. The theoretical study of speed scaling was initiated
in a seminal paper by Yao et al. [62] who considered the single processor problem of
scheduling a set of jobs with release dates and deadlines, preemptively, so as to minimize
the total energy consumption, i.e. S,1|rj,dj,pmtn|E. The authors showed that the
particular problem is polynomially solvable by constructing an optimal algorithm whose
running time is O(n3). Later, Li et al. [52] proposed a faster algorithm with time
complexity O(n2 log n). When the instances are restricted to be laminar, Li et al. [51]
showed that the problem can be solved in O(n) time.
Antoniadis et al. [9] were the first to consider the non-preemptive energy minimization

problem S,1|rj,dj|E for which they observed that it is stronglyN P-hard even for laminar
instances. They also presented a 24α−3-approximation algorithm for laminar instances and
a 25α−4-approximation algorithm for general instances. Furthermore, the authors noticed
that the problem can be solved optimally in polynomial time when the instances are
agreeable by observing that the optimal preemptive schedule produced by the algorithm
in [62] is always non-preemptive.
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Problem Complexity Best-known Algorithm

S,1|rj,dj,pmtn, lmnr|E Polynomial O(n) [51]

S,1|rj,dj,pmtn|E Polynomial O(n2 logn) [52]

S,1|rj,dj,agrbl|E Polynomial O(n3) [9] [62]

S,1|rj,dj, lmnr|E N P-hard 24α−3-approximation [9]

S,1|rj,dj|E N P-hard 25α−4-approximation [9]

Table 1.4: Offline Energy Minimization

Online Energy Minimization. Yao et al. [62] considered also the online version of
the problem S,1|rj,dj,pmtn|E in which each job is known at its release date. They
proposed two reasonable online algorithms, namely the AVR (Average Rate) and the
OA (Optimal Available). For AVR, they established a competitive ratio of 2α−1αα and
they showed that it cannot be better than αα. Later, Bansal et al. [12] presented a
more elementary (simpler) proof of the fact that AVR is 2α−1αα-competitive and they
concluded that this ratio is almost tight by showing that AVR’s competitive ratio cannot
be less than (2− δ)α−1αα, where δ approaches zero as α goes to infinity. In another work,
Bansal et al. [16] proved that OA is αα-competitive and they showed that this ratio is
essentially tight for OA, because there is an instance such that the energy consumption
of the OA’s schedule is αα times the energy consumption of an optimal offline schedule.
In the same work, they proposed the BKP algorithm with competitive ratio 2( α

α−1
)αeα,

which is better than OA for α ≥ 5. Finally, Bansal et al. [14] defined the qOA algorithm
which is 4α

2e1/2α1/4 -competitive. Moreover, the authors showed that qOA cannot be better

than 4α−1

α
(1− 2

α
)α/2-competitive and they established a generic lower bound eα−1

α
on the

competitive ratio of any deterministic algorithm for the problem.

Algorithm Competitive Ratio

Lower Bound Upper Bound

AVR (2− δ)α−1αα [12] 2α−1αα [62]

OA αα [16] αα [16]

BKP 2( α
α−1)

αeα [16]

qOA 4α−1
α (1− 2

α)
α/2 [14] 4α

2e1/2α1/4 [14]

Any Deterministic eα−1

α [14]

Table 1.5: Online Energy Minimization

Next, we consider single processor speed scaling problems where the objective is a
performance criterion under a budget of energy.

Offline Average Completion Time Minimization. The first work in this context
was by Pruhs et al. [56] who considered the problem of minimizing the average completion
time under a budget of energy and proposed an O(n2 log E

ǫ
) polynomial time algorithm

for the special case where the jobs have equal works, where E is the energy budget and ǫ
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is the desired accuracy. In another work, Albers et al. [5] proposed a simplified algorithm
for the problem of minimizing the average completion time plus energy which is based on
dynamic programming. These results hold for the objective of minimizing the total flow
time under a budget of energy as well.
Megow et al. [54] considered the weighted version of the average completion time

objective. For the case where all the jobs have equal release dates, they established a
polynomial time approximation scheme (PTAS) and, interestingly, they showed that this

problem is equivalent to the problem 1||
∑

wj(Cj)
α−1

α in which no speed scaling is per-
formed and every job has a fixed processing time. The complexity status of the latter
problem is an open question. Independently from [54], the equivalence of 1||

∑

wjCj(E)

with 1||
∑

wj(Cj)
α−1

α was also shown by Vásquez [60]. For the preemptive problem
S,1|rj,pmtn|

∑

wjCj(E), where the jobs have arbitrary release dates, Megow et al. [54]
proposed a (2 + ǫ)-approximation algorithm.

Problem Complexity Best-known Algorithm

S,1|rj,pj = p|
∑

Cj(E) Polynomial O(n2 log E
ǫ ) [56]

S,1||
∑

wjCj(E) ? PTAS [54]
S,1|rj,pmtn|

∑

wjCj(E) N P-hard (2 + ǫ)-approximation [54]

Table 1.6: Offline Average Completion Time Minimization

Online Total Flow Time. For the online version of the average completion time
minimization problem with a budget of energy S,1|rj,pmtn|

∑

Cj(E), where each job
is known only once it has arrived (i.e. at its release date), it is not possible to have a
constant factor competitive algorithm even if we consider instances with unit-work jobs.
A formal proof of this invariant was presented by Bansal et al. [17] where they proposed
an adversarial strategy which makes any deterministic algorithm run out of energy. For
this reason, in order to optimize both the average completion time and the energy in the
online setting, Albers et al. [5] proposed to study problems where the objective function
is the sum of the two objectives.
Albers et al. [5] initiated the study of the online non-preemptive energy-efficient

problem S,1|rj|
∑

Fj + E for which they showed that the best possible algorithm cannot
be better than Ω(n1−1/α)-competitive. So, they considered the case where the jobs have
unit works and they proposed an O(1)-competitive algorithm whose competitive ratio
is 8(1 + Φ)α( α

α−1
)α. Next, Bansal et al. [17] improved this result by showing that the

algorithm in [5] is 4-competitive for unit-work jobs. Since an optimal preemptive schedule
is non-preemptive for unit-work jobs, the competitive ratio of the algorithm in [5] is the
same for the preemptive case as well.
Bansal et al. [17] studied the more general problem S,1|rj,pmtn|

∑

Fj + E where
the jobs have arbitrary release dates and preemptions are allowed. They constructed an
algorithm with a competitive ratio equal to (1+ǫ)max{2, 2(α−1)

α−(α−1)
1− 1

α−1
}. When the value

of α is large, this ratio is approximately 2( α
lnα
)2. Later, Lam et al. [49] proposed a better

algorithm of competitive ratio 2

1−(α−1)/(α
α

α−1 )
. This ratio tends to 2 α

lnα
for large values
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of α. Next, Bansal et al. [15] made significant progress on this problem by presenting a
3-competitive algorithm. Finally, Andrew et al. [7] established the best online algorithm
for the problem which is a slight modification of the one in [15] and which is 2-competitive.
Moreover, they showed a lower bound of 2 on the competitive ratio of any algorithm in
a class of reasonable algorithms.
As far as the online problem S,1|rj,pmtn|

∑

wjFj + E of minimizing the weighted
flow time is concerned, no deterministic algorithm can be O(1)-competitive and this holds
even for the classical scheduling setting where no speed scaling is performed. The proof
of this negative result was due to Bansal et al. [13].

Problem Lower Bound Best-known Algorithm

S,1|rj|
∑

Fj +E Ω(n1− 1
α ) [5]

S,1|rj,pmtn|
∑

Fj +E 2-competitive [7]

S,1|rj,pmtn|
∑

wjFj +E no O(1)-competitive [13]

Table 1.7: Online Total Flow Time Minimization

Offline Makespan Minimization. Bunde [28] studied the non-preemptive offline
problem S,1|rj|Cmax(E) of minimizing the makespan of a set of jobs with release dates
under an energy budget. Specifically, he proposed an optimal polynomial-time algorithm
with running time O(n2). Note that, for the preemptive case of the problem, there is
always an optimal schedule which is non-preemptive. Therefore, the algorithm in [28] is
optimal for the preemptive case, too.

Speed Scaling on Homogeneous Parallel Processors

Offline Energy Minimization. Chen et al. [29] were the first to study a multi-
processor energy-efficient scheduling problem involving speed scaling. More specifically,
they proposed a polynomial-time algorithm for solving optimally the multiprocessor mi-
gratory preemptive energy minimization problem of a set of jobs with equal release
dates and deadlines. The running time of their algorithm is O(n log n). Later, Bing-
ham et al. [23] constructed an optimal algorithm for the general version of the problem
S,P|rj,dj,mgtn|E where the jobs have arbitrary release dates and deadlines. The algo-
rithm in [23] makes repetitive calls of a black-box algorithm for solving linear programs.
Then, Albers et al. [4] presented a faster combinatorial algorithm which is based on a
formulation of the problem as a maximum flow problem. It has to be noticed here that,
independently, we presented another optimal polynomial time algorithm for the same
problem which is based on the relation of the problem with the maximum flow problem.

Albers et al. [6], considered the non-migratory preemptive problem of minimizing the
energy of a set of unit-work jobs with arbitrary release dates and deadlines. The authors
showed that this problem can be solved optimally in polynomial time if the instances
are restricted to be agreeable. Moreover, they established an N P-hardness proof for
the unit-work case when the release dates and the deadlines of the jobs are arbitrary
and they proposed an αα24α-approximation algorithm for it. They also produced an
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algorithm of the same approximation ratio for arbitrary-work instances when the jobs
have either equal release dates or equal deadlines. Next, Greiner et al. [39] presented
a B⌈α⌉-approximation algorithm for the general problem S,P|rj,dj,pmtn|E with jobs
having arbitrary processing requirements, where B⌈α⌉ is the ⌈α⌉-th Bell number.

Very little attention has been given to the non-migratory non-preemptive problem
S,P|rj,dj|E. Albers et al. [6] observed that the problem is N P-hard even in the spe-
cial case where the jobs have the same release date and the same deadline. Moreover,
they claimed that, for this special case of the problem, there exists a polynomial time
approximation scheme (PTAS) which can be derived easily from an existing PTAS of the
well-known problem P||Cmax.

Problem Complexity Best-known Algorithm

S,P|dj = d,mgtn|E Polynomial O(n logn) [29]

S,P|rj,dj,mgtn|E Polynomial max-flow based [4]

S,P|wj = 1, rj,dj,agrbl,pmtn|E Polynomial O(mn2 logn) [6]

S,P|wj = 1, rj,dj,pmtn|E N P-hard min{αα24α, B⌈α⌉}-approximation [6] [39]

S,P|rj,dj,pmtn|E N P-hard B⌈α⌉-approximation [39]

S,P|dj = d|E N P-hard PTAS [6]

Table 1.8: Offline Energy Minimization

Online Energy Minimization. For the online version of S,P|rj,dj,mgtn|E, Albers
et al. [4] proposed the online algorithms AVR and OA which are the straightforward
generalizations of the corresponding algorithms for the single processor case presented
in [62]. In [4], they showed that AVR is (3α)α

2
+ 2α-competitive and that OA is αα-

competitive.

Albers et al. [6] considered the online variant of the problem S,P|rj,dj,pmtn|E and
restricted their attention to unit work instances. For agreeable instances, they constructed
a 2( α

α−1
)αeα-competitive algorithm while, for the case where the release dates and the

deadlines of the jobs are arbitrary, they developed an αα24α-competitive algorithm. For
general instances with arbitrary release dates and works, Bell et al. [21] proposed an
online algorithm with competitive ratio 24α(logα P +αα2α−1), where P is the ratio of the
maximum work among the jobs over the minimum work.

Problem Best-known Algorithm

S,P|pj = 1, rj,dj,mgtn|E αα-competitive [4]

S,P|pj = 1, rj,dj,agrbl,pmtn|E 2( α
α−1)

αeα-competitive [6]

S,P|pj = 1, rj,dj,pmtn|E αα24α-competitive [6]

S,P|rj,dj,pmtn|E 24α(logα P + αα2α−1)-competitive [21]

Table 1.9: Online Energy Minimization



18 Chapter 1. Introduction

Online Total Flow Time Minimization. For the problem S,P|rj,pmtn|
∑

Fj + E,
Lam et al. [48], proposed an online algorithm whose competitive ratio is O(2α(logP +
2α)). Moreover, on the negative side, Leonardi et al. [50] showed that no deterministic
algorithm can be O(1)-competitive even for processors with fixed speeds which is extended
to the speed scaling setting.

Offline Makespan Minimization. Pruhs et al. [57] studied the non-migratory multi-
processor problem S,P||Cmax(E) of minimizing the makespan of a set of jobs with equal
release dates under a budget of energy and derived a PTAS for it by using as a black box
an existing PTAS for the classical scheduling problem of minimizing the ℓα norm of a load
balancing problem. Moreover, they considered the more general version where there are

precedence constraints among the jobs and they proposed an O(log1+
2
α m)-approximation

algorithm for it.

Speed Scaling on Heterogeneous Parallel Processors

There does not exist much work on environments with heterogeneous processors. In [41]
and [42], Gupta et al. considered the online problem of minimizing the flow time plus
energy and they presented online algorithms with a constant competitive ratio which are
based on resource augmentation. These works indicate that energy efficient scheduling
on heterogeneous processors may be more difficult than the homogeneous case and new
algorithms are required.

Power Down

The power down model was formalized by Irani, Gupta and Shukla [45]. Baptiste [18]
considered the single processor problem of minimizing the energy of a set of jobs with re-
lease dates and deadlines. He proposed an optimal algorithm for jobs with unit processing
times a FPTAS for the more general case where the jobs have arbitrary processing times
and preemptions are allowed. Later, Baptiste et al. [20] proposed a faster polynomial
algorithm for unit jobs and presented a polynomial algorithm for the preemptive problem
with arbitrary processing times. Further results with respect to this model can be found
in [8], [31] and [32].

Power Down with Speed Scaling

The model that combines speed scaling with power down was first studied by Irani et
al. [47] who derived a constant factor approximation for the problem of minimizing the
energy of a set of jobs with release dates and deadlines. Then, Albers et al. [3] showed
that the problem is N P-hard if the power function is of a particular form. They also
proposed an improved approximation algorithm. Finally, Bampis et al. [11] proved that
the problem is polynomially solvable for agreeable instances.
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Continuous Thermal Model

The continuous thermal model was introduced by Bansal et al. [16]. First, they consid-
ered the offline problem S,1|rj,dj,pmtn|Θmax of minimizing the maximum temperature
and they showed that it can be solved in polynomial time by applying the Ellipsoid Al-
gorithm. In the same work, they proposed an eα2α+1(6( α

α−1
)α+1)-competitive algorithm

for the online version of the problem of minimizing the maximum temperature in which
each job is known at its release date. Atkins et al. [10] developed a faster O(n2) combi-
natorial algorithm for the offline case where the jobs have equal release dates. Moreover,
they defined another algorithm for the online case with arbitrary release dates whose
competitive ratio is e

e−1
(2+3eαα). This algorithm is better than the one in [16] for some

values of α, e.g. when the cube-root rule α = 3 holds.

Discrete Thermal Model

The study of temperature-aware scheduling problems with respect to the discrete thermal
model was initiated by Chrobak et al. [30] who considered the single-processor problem
of finding schedules with maximum throughput for unit jobs. They showed that the
problem is strongly N P-hard even when the jobs have equal release dates and deadlines
and unit processing times and the processor’s cooling factor is c = 2. In this problem it
is possible that we cannot schedule feasibly all the jobs between their release dates and
their deadlines and our objective is to maximize the number of jobs which are completed
on time.

TheN P-hardness proof in [30] implies that the problemsT,1|pj = 1,dj = d,hj|Θmax

(maximum temperature minimization), T,1|pj = 1,hj|
∑

Fj(Θ) (total flow time mini-
mization) and T,1|pj = 1,hj|Cmax(Θ) (makespan minimization) are also N P-hard.

For the problem of minimizing the total flow time, Birks et al. [27] proposed a
2.618-approximation algorithm for the special case where all the jobs are released at the
same time and they established an Ω(n1/2−ǫ)-inapproximability result for instances with
arbitrary release dates, where ǫ > 0.

Chrobak et al. [30] also considered the online problem of maximizing the throughput
in which the jobs arrive over time and they proposed an algorithm with constant com-
petitive ratio. Then, Birks et al. [24], [25], [26] addressed several generalizations of the
online throughput maximization problem. In fact, in [24] the weighted throughput objec-
tive is considered. In [25] the cooling effect is generalized by multiplying the temperature
by 1/c, where c > 1, instead of one half, while in [26] the jobs have equal (non-unit)
processing times. Finally, Dürr et al. [34] considered the offline problem of maximizing
the throughput and proposed positive and negative results on the approximation ratio of
the coolest first algorithm.

1.6 Contributions

In this section, we briefly describe the contributions of this thesis.
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Single Processor

Initially, we consider the single-processor non-preemptive energy minimization problem
S,1|rj,dj|E. Recall that the study of this problem was initiated recently and it was
observed that the problem is strongly N P-hard [9].
Antoniadis et al. [9] proposed a constant factor approximation algorithm for the

non-preemptive problem through a transformation to the unrelated machine scheduling
problem with the ℓα-norm objective. Here, we explore the idea of transforming an optimal
preemptive schedule to a non-preemptive one and we show that, for unit-work instances,
this approach leads to an improved approximation ratio. In Section 2.1, we derive some
properties of optimal preemptive schedules produced by the algorithm of Yao et al. [62].
Next, in Section 2.2 we prove that the preemptive optimal solution does not preserve
enough of the structure of the non-preemptive optimal solution and, more precisely, that
the ratio between the energy consumption of an optimal non-preemptive schedule and
the energy consumption of an optimal preemptive one can be Ω(nα−1). So, with this
approach, we obtain an (1 + wmax

wmin
)α-approximation algorithm, where wmax

wmin
is the ratio

between the maximum and the minimum work among the jobs. For equal-work instances,
this algorithm is 2α-approximate which is better than the 25α−4-approximation algorithm
by Antoniadis et al. [9] proposed for arbitrary work instances.
Next, we follow another approach for solving S,1|rj,dj|E which based on a reduc-

tion of the problem to the multiprocessor non-migratory preemptive energy minimization
problem S,P|ri,j,di,j,pmtn|E in which the release dates and the deadlines of the jobs are
processor-dependent. Our reduction allows us to prove that based on a ρ-approximation
algorithm for the latter problem, we obtain a 2α−1ρ-approximate solution for the former
one.
In Section 2.3, we initiate the study of the single-processor scheduling problem of

minimizing the maximum lateness and the energy of a set of jobs. Initially, we address the
problem of minimizing the maximum lateness under a budget of energy and we propose
an optimal polynomial-time algorithm for the special case in which the jobs have equal
release dates, i.e. for the problem S,1||Lmax(E). This algorithm constructs greedily
an optimal solution satisfying the KKT conditions applied to a convex programming
formulation of the problem. Subsequently, we show that the problem S,1|rj|Lmax(E)
in which the jobs may have arbitrary release dates is strongly N P-hard. Finally, we
move our attention to the online setting in which each job is known at its release date.
Clearly, given the existing literature (see Bansal et al. [17]), we do not expect a constant
factor competitive algorithm for the problem of minimizing the maximum lateness under
a budget of energy. For this reason, following the approach of Albers et al. [5] for the
average completion time objective, we study the online problem S,1|rj|Lmax + βE of
minimizing a linear combination of the maximum lateness and the energy and we obtain
a 2-competitive algorithm by applying a batched scheduling strategy [59].

Homogeneous Parallel Processors

Subsequently, we study multiprocessor scheduling problems on homogeneous parallel pro-
cessors. Initially, we address the multiprocessor problem of minimizing the energy of a
set of jobs on parallel homogeneous processors where preemptions and migrations of jobs
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are allowed, i.e. S,P|rj,dj,mgtn|E. Recall that the previously best known algorithm
for this problem uses an optimal algorithm for solving linear programs as a black box.
So, in Section 3.1, we present a faster combinatorial algorithm which is based on maxi-
mum flow computations. Note that, independently from the algorithm presented in this
thesis, another algorithm was proposed for the same problem by Albers et al. [4] which
also explores the relation of the problem with the maximum flow problem. These results
introduce the use of maximum flow formulations in the context of speed scaling.

In order to establish the optimality of our maximum flow based algorithm and of the
one of Albers et al. [4] for S,P|rj,dj,mgtn|E, we need a series of technical lemmas. We
present an alternative algorithm for S,P|rj,dj,mgtn|E which is based on a formulation
of the problem as a minimum convex cost flow problem. This algorithm constructs an
optimal schedule through a single convex cost flow computation and its analysis is much
simpler.

Finally, in Section 3.2, we initiate the study of the multiprocessor energy minimiza-
tion problem in which migrations and preemptions of the jobs are not allowed. As for the
single processor case, we study the idea of transforming optimal migratory preemptive
schedules to non-preemptive ones. While for general instances we do not hope to obtain a
constant-factor approximation algorithm by using this idea, we obtain a constant-factor
approximation algorithm for agreeable instances. We propose an algorithm which starts
by computing an optimal multiprocessor migratory preemptive schedule for the problem
S,P|rj,dj,mgtn|E. In this way, it calculates a processing time for each job. By speeding
up the execution of each job, it constructs a feasible non-preemptive schedule and we ob-
tain a (2− 1

m
)α-approximation algorithm for agreeable instances, i.e. S,P|rj,dj, agrbl|E.

Heterogeneous Parallel Processors

Next, we study scheduling problems on heterogeneous processors in which each processor
satisfies its own speed-to-power function and the jobs have processor-dependent process-
ing requirements. As Gupta et al. [41] noticed, scheduling problems with heterogeneous
processors seem to require new techniques in order to be solved than their correspond-
ing with homogeneous processors. In order to solve energy minimization problems in
such environments, we introduce the idea of solving and rounding configuration linear
programs.

First we consider the energy minimization problem S,R|wi,j, ri,j,di,j,mgtn|E, where
preemptions and migrations of the jobs are allowed. In order to obtain an algorithm
for this problem, we formulate the problem as a configuration linear program (LP) with
an exponential number of variables. This configuration LP cannot be solved directly in
polynomial time. However, we show how to apply the Ellipsoid algorithm to its dual
LP and, then, solve the configuration linear program with only a polynomial number
variables. In this way, we obtain an (OPT + ǫ)-approximate solution in time polynomial
to the size of the problem’s instance and 1/ǫ.

Next, we move our attention to the problem S,R|wi,j, ri,j,di,j,pmtn|E in which pre-
emptions of jobs are allowed but migrations are not permitted. This problem can be
formulated as an integer configuration LP. In order to solve this LP, we show how to
solve its fractional relaxation in polynomial time by applying the Ellipsoid algorithm.
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Then we trasform the optimal fractional solution to a feasible integral one by applying
randomized rounding. Our algorithm is B̃α(1 + ǫ)-approximate, where B̃α is the gener-
alized Bell number. Subsequently, we show that the algorithm can be made faster by
solving a more compact LP and then transforming the optimal solution obtained into an
optimal fractional solution of the configuration LP.

Shop Environments

Another type of computing environments considered in this thesis are the so called shop
environments. Initially, we study the energy minimization problem S,O|dj = d,pmtn|E
in an open shop environment, where preemptions of the operations are allowed. For this
problem we follow two different approaches.

Firstly, we derive an optimal algorithm for S,O|dj = d,pmtn|E based on a primal-
dual schema in the setting of convex programming and KKT conditions. Note that there
exists much work on the use of the primal-dual method in the field of combinatorial
optimization. However, most of this work concerns applications of the method in linear
programming. This method was applied only recently to the more general setting of con-
vex programming by Devanur et al. [33] and Vegh [61]. Because of the KKT conditions,
the dual variables are related with the primal ones through a set of equalities. So, we
obtain an optimal primal solution by properly adjusting the dual variables. We prove
that our algorithm converges to the optimal solution but we are unable to prove that it
converges in polynomial time. Therefore, we performed a series of experiments showing
that the number of iterations of our algorithm increases linearly with the number of jobs
n when it holds that m Ó= n, where m is the number of the processors. However, in
the very specific case where n = m, our algorithm is slower. We are also interested in
the comparison of the execution time of our method with respect to the time spent by a
commercial solver which solves directly the corresponding convex program.

Our second approach for solving S,O|dj = d,pmtn|E is to formulate of the prob-
lem as a minimum convex cost flow problem. The main technical difficulty behind our
algorithm is that it is not obvious how the amount of flow F , which is a parameter for
the minimum convex cost formulation, can be computed. However, we show a way for
computing F through several minimum convex cost computations.

Next, we present a B̃αmax-approximation algorithm for the energy minimization prob-
lem S,J|wi,j, ri,j,di,j,pmtn|E in a job shop environment. This algorithm is based on
solving the fractional relaxation of an integer configuration LP and applying randomized
rounding in order to obtain a feasible integral solution.

Temperature Aware Scheduling

Finally, we consider scheduling problems in which our focus is no longer the management
of the energy but the management of the temperature. In this thesis, we adopt the
discrete thermal model introduced by Chrobak et al. [30] and we initiate the study
of several multiprocessor scheduling problems such that either there is a temperature
threshold which must not be exceeded, or the temperature is the optimization goal itself.

Firstly, we address the problem T,P|pj = 1,hj|Cmax(Θ) of minimizing the makespan
under a temperature threshold and we solve it by transforming any instance of the
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problem to an instance of the classical makespan minimization problem P||Cmax in
which there are no thermal considerations. Then, by using any ρ-approximation al-
gorithm for P||Cmax as a black box, we obtain a 2ρ-approximation algorithm for the
temperature-aware problem. Given that there exists a polynomial time approximation
scheme (PTAS) for P||Cmax, our transformation leads to a (2 + ǫ)-approximation ratio
for T,P|pj = 1,hj|Cmax(Θ) within a running time that is polynomial in n and expo-
nential in 1/ǫ. If instead of the PTAS we use the standard LPT rule which is (4

3
− 1

3m
)-

approximate for P||Cmax, we present a tighter analysis, improving the 2ρ-approximation
ratio to (7

3
− 1

3m
), while the overall running time is O(n log n).

Subsequently, we study the problem T,P|pj = 1,dj = d,hj|Θmax of minimizing the
maximum temperature and we propose a 4

3
-approximation algorithm. Moreover, we show

that our algorithm cannot not have better approximation ratio and our analysis is essen-
tially tight. Then, we move our attention to the problem T,P|pj = 1,dj = d,hj|

∑

Θt

of minimizing the average temperature and we show that it is polynomially solvable.
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Chapter 2

Single Processor

In this chapter, we begin the study of energy efficient scheduling problems on the basic
setting of a single processor.
First, in Section 2.1, we present an optimal algorithm for the preemptive energy min-

imization problem S,1|rj, dj,pmtn|E which was proposed by Yao et al. [62]. Then, in
Section 2.2, based on this algorithm, we derive an (1 + wmax

wmin
)α-approximation algorithm

for the non-preemptive energy minimization problem S,1|rj,dj|E, where wmax and wmin

are the maximum and the minimum work of a job, respectively. Note that our algo-
rithm is 2α-approximate for instances in which the jobs have equal works. In Section
2.2, we also propose another approximation algorithm for the non-preemptive problem
S,1|rj,dj|E which based on a transformation of the problem to the multiprocessor energy
minimization problem S,P|ri,j,di,j,pmtn|E where preemptions of jobs are allowed but
migrations are forbidden. Given a ρ-approximation algorithm for the latter problem as
a black box, we obtain a 2α−1ρ-approximation algorithm for the former problem.
Subsequently, in Section 2.3, we consider offline and online energy aware problems

where the objective is the minimization of the maximum lateness. Initially, we con-
sider the offline problem S,1|rj|Lmax(E) of minimizing the maximum lateness under
a budget of energy. For the special case in which the jobs have equal release dates, i.e.
S,1||Lmax(E), we propose an optimal polynomial time algorithm. Then, we show that the
problem becomes strongly N P-hard when the release dates of the jobs may be arbitrary.
Finally, we move our attention to the online problem S,1|rj|Lmax + βE of minimizing a
linear combination of the maximum lateness and the energy. In the online setting, each
job is known when it is released. For this problem, we propose a 2-competitive algorithm
which schedules the jobs in batches by applying repeatedly an optimal offline algorithm
for S,1||Lmax + E. Such an algorithm for S,1||Lmax + E can be obtained by using the
optimal offline algorithm for S,1||Lmax(E) as a black box and applying binary search.

2.1 Energy Minimization with Preemptions

In this section, we describe an optimal algorithm for the preemptive energy minimization
problem S,1|rj,dj,pmtn|E. This algorithm was proposed by Yao et al. [62]. Moreover,
we establish some properties of the schedules produced by this algorithm that we use in
Section 2.2 in order to derive an approximation algorithm for the non-preemptive problem

25



26 Chapter 2. Single Processor

S,1|rj,dj|E.

An instance of the problem S,1|rj,dj,pmtn|E consists of a set of jobs J = {J1, J2, . . . ,
Jn} which have to be scheduled by a single processor. Each job Jj ∈ J has an amount of
work wj, a release date rj and a deadline dj. Preemptions of jobs are allowed. That is,
a job may be executed, suspended and resumed later from the point of suspension. The
goal is to find a minimum energy schedule such that, for each job Jj ∈ J , wj units of
work are executed during the interval [rj, dj).

We consider the time points t0, t1, . . . , tτ , in increasing order, where each tk, 0 ≤ k ≤ τ ,
corresponds to either a release date or a deadline, so that for each release date and deadline
of a job there is a corresponding time point tk. Then, we define the intervals Ik,ℓ = [tk, tℓ),
for all 0 ≤ k < ℓ ≤ τ , and we denote by |Ik,ℓ| the length of Ik,ℓ, that is |Ik,ℓ| = tℓ − tk.
We say that a job Jj is strictly active in a given interval Ik,ℓ, if [rj, dj) ⊆ Ik,ℓ. The set
of strictly active jobs in the interval Ik,ℓ is denoted by A(Ik,ℓ). The density δ(Ik,ℓ) of an
interval Ik,ℓ is the total work of the jobs which are strictly active during this interval over
its length, i.e. δ(Ik,ℓ) =

1
|Ik,ℓ|

∑

Jj∈A(Ik,ℓ) wj.

Yao et al. [62] proposed a polynomial-time algorithm for finding an optimal schedule
for S,1|rj,dj,pmtn|E. Note that there is always an optimal schedule for this problem
such that each job Jj ∈ J is executed with a constant speed sj; this is a consequence
of the convexity of the speed-to-power function. This algorithm schedules the jobs in
distinct phases. More specifically, in each phase, the algorithm searches for the interval
Ik,ℓ, 0 ≤ k < ℓ ≤ τ , of the highest density. All jobs in A(Ik,ℓ) are assigned the same
speed, which is equal to the density δ(Ik,ℓ) of the interval, and they are scheduled in
Ik,ℓ using the Earliest Deadline First (EDF) policy. That is, at each time, the algorithm
schedules the job with the earliest deadline. Without loss of generality, we can assume
that, in the case where two jobs have the same deadline, the algorithm schedules first the
job of the smallest index. Then, the set of jobs A(Ik,ℓ) and the interval Ik,ℓ are eliminated
from the instance, the algorithm searches for the next interval of the highest density and
so on. Off course, in the new critical interval, the algorithm does not take into account
the subintervals in which it has already scheduled some jobs. A high-level description
of the algorithm is given in Algorithm 2.1. The Figure 2.1 illustrates an example of the
Algorithm 2.1.

Algorithm 2.1

1: while there are remaining to jobs to be scheduled do
2: Identify the densest critical interval Ik,ℓ.
3: Schedule the remaining jobs in A(Ik,ℓ) with speed δ(Ik,ℓ) according to EDF, break-

ing ties in smallest job index first.
4: Remove these jobs and the intervals occupied by them.

Given a schedule S and a job Jj, let Bj(S) and Cj(S) be the beginning and the
completion time, respectively, of Jj in S. For simplicity, we will use Bj and Cj, if the
corresponding schedule is clear from the context. Note that there are no jobs with the
same beginning times, and hence all Bj’s are distinct. For the same reason, all Cj’s are
distinct.
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Figure 2.1: An instance with two jobs and their optimal preemptive schedule produced by the Algorithm
2.1. Initially, the densest critical interval is [1, 2) and J2 is critical job. In the second step, the densest
critical interval is [0, 3) and the critical job is J1. Note that the density of the interval [0, 3) is δ0,3 = 1
in the second step of the algorithm because the job J2 and the interval [0, 1) has been removed in the
first step.

The following lemma describes some structural properties of the optimal preemptive
schedule created by the Algorithm 2.1.

Lemma 2.1. Consider the optimal preemptive schedule S∗
pr created by the Algorithm 2.1.

For any two jobs Jj and Jj′ in S∗
pr, the following hold.

(i) If Bj < Bj′, then either Cj > Cj′ or Cj < Bj′.

(ii) If Bj < Bj′ and Cj > Cj′, then the job Jj is not executed during the interval
(Bj′ , Cj′) and sj ≤ sj′.

Proof.
(i) Assume for contradiction that there are two jobs Jj and Jj′ in S∗

pr with Bj < Bj′ ,
Cj < Cj′ and Cj > Bj′ .
We prove, first, that Jj and Jj′ cannot be scheduled in a different phase of the Al-

gorithm 2.1. Without loss of generality, assume for contradiction that Jj is scheduled in
a phase before Jj′ and that Ik,ℓ is the interval of the highest density in this phase. As
Bj < Bj′ < Cj, there is a non-empty subinterval I ⊆ [Bj′ , Cj] ⊂ [Bj, Cj] ⊆ Ik,ℓ during
which Jj′ is executed in S∗

pr. By the definition of the Algorithm 2.1, every job is sched-
uled in a single phase. Moreover, the jobs scheduled at any time during Ik,ℓ cannot be
scheduled after the phase at which Jj is scheduled because the interval Ik,ℓ is ignored in
subsequent steps and we have a contradiction. Hence, Jj and Jj′ are scheduled in the
same phase.

The Algorithm 2.1 schedules Jj and Jj′ using the EDF policy. Since the EDF policy
schedules Jj′ at time Bj′ and Bj < Bj′ < Cj, it holds that dj′ ≤ dj. In a similar way,
since the EDF policy schedules Jj at time Cj and Bj′ < Cj < Cj′ , it holds that dj ≤ dj′ .
Hence, dj = dj′ . However, since Jj and Jj′ are available for execution and not completed
at Bj′ and Cj, the algorithm should have selected the same job for execution in both
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times, i.e. the job of the smallest index. Therefore, there is a contradiction on the way
that Algorithm 3.1 works.

(ii) The fact that Jj cannot be scheduled during (Bj′ , Cj′) can be proved along with the
same lines with the proof of the previous item. Similarly, we can show that Jj′ cannot be
scheduled at a phase after the one of Jj because no job is scheduled during [Bj, Cj] once
Jj has been scheduled. Hence, sj ≤ sj′ .

The Lemma 2.1 implies that, given an optimal preemptive schedule S∗
pr for a set of

jobs J constructed by the Algorithm 2.1, we can construct a tree representation of S∗
pr.

This tree representation is a directed graph T = (V, A), where V is the set of vertices, A
is the set of edges, and it is constructed as follows. For each job Jj we create a vertex.
For each pair of jobs Jj and Jj′ with [Bj′ , Cj′ ] ⊂ [Bj, Cj], we create an arc (Jj, Jj′) if and
only if there is not a job Jj′′ with [Bj′ , Cj′ ] ⊂ [Bj′′ , Cj′′ ] ⊂ [Bj, Cj]. Note that the created
graph T = (V, A) is, in general, a forest. Moreover, by Lemma 2.1, we have that for each
arc (Jj, Jj′) it holds that sj ≤ sj′ in S∗

pr. In other words, the speed of a job is at most
equal to the speed of its children in T . In what follows, we denote by Tj the subtree of
T rooted at the vertex Jj ∈ V . Moreover, let nj be the number of children of Jj in T .

Lemma 2.2. Consider an optimal preemptive schedule S∗
pr created by the Algorithm 2.1

and its tree representation T = (V, A). Then, each job Jj ∈ J is preempted at most nj

times in S∗
pr, where nj is the number of children of the node Jj in T .

Proof. Consider any job Jj. The Lemma 2.1 implies that if some job Jj′ is executed
during [Bj, Cj], then it must be the case that [Bj′ , Cj′ ] ⊆ [Bj, Cj]. Additionally, because
of Lemma 2.1, the job Jj can only be preempted at the beginning time Bj′ of a job Jj′ .
Clearly, there does not exist any job Jj′′ such that [Bj′ , Cj′ ] ⊆ [Bj′′ , Cj′′ ] ⊆ [Bj, Cj]. These
mean that Jj can only be preempted by its children in T and at most one time by each
child. The lemma follows.

2.2 Energy Minimization without Preemptions

In this section, we turn our attention to the non-preemptive energy minimization prob-
lem S,1|rj,dj|E. First, we show that the ratio between the energy consumption of any
optimal non-preemptive schedule and the energy consumption of an optimal preemp-
tive schedule can be Ω(nα−1). Next, we propose an (1 + wmax

wmin
)α-approximation algo-

rithm which is based on the idea of transforming an optimal preemptive schedule to
a non-preemptive one, where wmax = maxJj∈J {wj} and wmin = minJj∈J {wj}. This
algorithm is 2α-approximate for equal-work instances. Finally, we present another 2α−1ρ-
approximation algorithm for S,1|rj,dj|E which uses as a black box any ρ-approximation
algorithm for the multiprocessor non-migratory preemptive energy minimization problem
S,P|ri,j,di,j,pmtn|E.
In the problem S,1|rj,dj|E, there is a set of jobs J = {J1, J2, . . . , Jn} which have

to be executed non-preemptively on a single processor. The fact that we do not allow
preemptions means that each job must be executed consecutively without any interrup-
tions between its starting time and its completion time. Each job Jj ∈ J comes with an
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Figure 2.2: An instance of the problem S,1|rj,dj,pmtn|E, the optimal preemptive schedule produced
by the Algorithm 2.1 and its tree representation.

amount of work wj, a release date rj and a deadline dj. In a feasible schedule, every job
Jj ∈ J is executed entirely during the interval [rj, dj).
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2.2.1 From Single-Processor Preemptive Schedules

In the following theorem, we show that, for general instances, the ratio between the
energy consumption of an optimal non-preemptive schedule to the energy consumption
of an optimal preemptive one can be very large.

Theorem 2.1. The ratio of the energy consumption of an optimal non-preemptive sche-
dule to the energy consumption of an optimal preemptive schedule of the single-processor
energy minimization problem can be Ω(nα−1).

Proof. Consider the instance consisting of n − 1 unit-work jobs J1, J2, . . . , Jn−1 and the
job Jn of work equal to n. Each job Jj, 1 ≤ j ≤ n − 1, has release date rj = 2j − 1 and
deadline dj = 2j, while rn = 0 and dn = 2n − 1.
The optimal preemptive schedule S∗

pr (see Figure 2.3) for this instance assigns to all
jobs a speed equal to one. Each job Jj, 1 ≤ j ≤ n − 1, is executed during its whole
active interval, while Jn is executed during the remaining n unit length intervals. The
total energy consumption of this schedule is

E∗
pr = (n − 1) · 1α + n · 1α

An optimal non-preemptive schedule S∗
npr for this instance (see Figure 2.3) assigns a

speed n+2
3
to jobs J1, Jn and J2 and schedules them non-preemptively in this order during

the interval [1, 4]. Moreover, in S∗
npr, each job Jj, 3 ≤ j ≤ n−1, is assigned a speed equal

to one and it is executed during its whole active interval. The total energy consumption
of this schedule is

E∗
npr = 3 ·

(

n+ 2

3

)α

+ (n − 3) · 1α

Therefore, we have that

E∗
npr

E∗
pr

=
3 · (n+2

3
)α + (n − 3) · 1α

(n − 1) · 1α + n · 1α
= Ω(nα−1)

Now, we present an approximation algorithm, whose ratio depends on wmax and wmin.
In the case where all jobs have equal works, this algorithm achieves a 2α-approximation
ratio. The main idea of our algorithm is to transform the optimal preemptive schedule
S∗

pr created by the Algorithm 2.1 into a non-preemptive schedule Snpr, based on the
corresponding graph T = (V, A) of S∗

pr as it is defined in Section 2.1. More specifically,
the jobs are scheduled in three phases depending on the number (zero, one or at least
two) of their children in T . A formal description of our algorithm is given in Algorithm
2.2.
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Figure 2.3: An instance for which the ratio between the energy consumption of an optimal non-preemptive
schedule and an optimal preemptive schedule is Ω(nα−1). The first schedule is the optimal preemptive
one while the second is the optimal non-preemptive one.
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Algorithm 2.2

1: Apply the Algorithm 2.1 to create an optimal preemptive schedule S∗
pr and construct

the tree representation T = (V, A) of S∗
pr.

2: for each job Jj with nj = 1 do
3: Schedule non-preemptively the whole work of Jj in the biggest interval where a

part of Jj is executed in S∗
pr.

4: Mark all the remaining jobs as unlabeled.
5: for each remaining non-leaf job Jj do
6: Find an unlabeled leaf job Jj′ in Tj and label Jj′ .
7: Schedule non-preemptively Jj and Jj′ with the same speed in the interval where

Jj′ is executed in S∗
pr.

8: Schedule the remaining leaf jobs as in S∗
pr.

Theorem 2.2. Algorithm 2.2 achieves an approximation ratio of (1 + wmax
wmin

)α for the
problem S,1|rj,dj|E.

Proof. Consider first the jobs with exactly one child in T . By Lemma 2.2, every such job
Jj is preempted at most once in S∗

pr and, hence, it is executed into at most two disjoint
maximal intervals in S∗

pr. In Snpr, the whole work of Jj is scheduled in the largest of
these two intervals. Thus, the speed of Jj in Snpr is at most twice the speed of Jj in S∗

pr.
Therefore, for any job Jj with nj = 1 it holds that Enpr,j ≤ 2α−1 · E∗

pr,j, where Enpr,j and
E∗

pr,j is the energy consumption of Jj in Snpr and S∗
pr, respectively.

Consider now the remaining non-leaf jobs. As for each such job Jj it holds that nj ≥ 2,
in the subtree Tj the number of non-leaf jobs with nj ≥ 2 is smaller than the number of
leaf jobs. Hence, we can create an one-to-one assignment of the non-leaf jobs with nj ≥ 2
to leaf jobs such that each non-leaf job Jj is assigned to a different leaf job Jj′ ∈ Tj.

Consider a non-leaf job Jj with nj ≥ 2 and its assigned leaf job Jj′ ∈ Tj. Recall
that leaf jobs are executed non-preemptively in S∗

pr. Let I be the interval in which Jj′ is

executed in S∗
pr. Hence, the speed of Jj′ in S∗

pr is s∗
pr,j′ =

wj′

|I|
and its energy consumption

is E∗
pr,j′ = wj′(s∗

pr,j′)α−1. In Snpr both Jj and Jj′ are executed during I with speed

snpr,j = snpr,j′ =
wj+wj′

|I|
. Thus, the energy consumed for Jj and Jj′ in Snpr is

Enpr,j + Enpr,j′ = wj(snpr,j)
α−1 + wj′(snpr,j′)α−1

= (wj + wj′)

(

wj + wj′

|I|

)α−1

= (wj + wj′)α
(

s∗
pr,j′

wj′

)α−1

=

(

wj + wj′

wj′

)α

· wj′(s∗
pr,j′)α−1

=

(

wj + wj′

wj′

)α

· E∗
pr,j′

≤
(

wmax + wmin

wmin

)α

· (E∗
pr,j + E∗

pr,j′)
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Moreover, note that I ⊆ [rj, dj) and hence Snpr is a feasible schedule.
Finally, for each remaining leaf job Jj, it holds that Enpr,j = E∗

pr,j, concluding the
proof of the theorem.

When all jobs have equal work to execute, we get the following corollary.

Corollary 2.1. Algorithm 2.2 is 2α-approximate for S,1|wj = w, rj,dj|E.

2.2.2 From Multiprocessor Non-Migratory Preemptive Sched-
ules

Next, we present a 2α−1ρ approximation algorithm for the non-preemptive problem
S,1|rj,dj|E which uses, as a black box, a ρ-approximation algorithm for the multipro-
cessor preemptive problem S,P|ri,j,di,j,pmtn|E.
Our algorithm applies a first a transformation to the initial instance. Note that this

transformation was first introduced in an algorithm of Antoniadis et al. [9] for the same
problem. Then, we give a transformation to the heterogeneous multiprocessor speed-
scaling problem without migrations.
We consider the time points t0, t1, t2, . . . , tτ , tτ+1 as follows. Let t1 be the smallest

deadline of any job in J , i.e. t1 = minJj∈J {dj}. Let R1 ⊆ J be the subset of jobs which
are released before t1, i.e. R1 = {Jj ∈ J : rj < t1}. Next, we set t2 = minJj∈J \R1{dj}
and R2 = {Jj ∈ J : t1 ≤ rj < t2}, and we continue this procedure until all jobs are
assigned into a subset of jobs. Let τ be the number of subsets of jobs that have been
created. Moreover, let t0 = minJj∈J {rj} and tτ+1 = maxJj∈J {dj}. The way we define
the time points is depicted in the Figure 2.4.

time

t0 t1 t2 t3 t4 t5

Figure 2.4: An instance of the non-preemptive problem and the time points of the initial transformation.

Consider the intervals Iℓ = [tℓ−1, tℓ), 1 ≤ ℓ ≤ τ + 1. We say that the job Jj ∈ J
is partially active during the interval Iℓ if Iℓ ∪ [rj, dj) Ó= ∅. Let I be the set of all the
intervals Iℓ. We denote by Hj the set of intervals Ii in which the job Jj ∈ J is partially
active, i.e. Hj = {Iℓ ∈ I : Iℓ ∪ [rj, dj) Ó= ∅}. For some intervals in Hj, Jj is active during
the whole interval, while in at most two of them it is active during a part of the interval.
We consider now the non-preemptive problem in which the execution of Jj should take
place into exactly one interval Iℓ ∈ Hj. Note that the execution of Jj should respect its
release date and its deadline.
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Lemma 2.3. Let S be an optimal non-preemptive schedule for the problem in which
the execution of each job Jj ∈ J should take place into exactly one interval Iℓ ∈ Hj.
Moreover, let S∗ be the optimal schedule for our original problem. We denote by E
and OPT the energy consumption of S and S∗, respectively. Then, it holds that E ≤
2α−1OPT .

Proof. In order to get a relation between the energy consumption of the schedules S and
S∗, consider first a job Jj ∈ Rℓ which can be feasibly executed in more than one intervals,
i.e. |Hj| ≥ 2. By definition, it holds that tℓ−1 ≤ rj < tℓ. Moreover, let tℓ′−1 ≤ dj < tℓ′ ,
for some Iℓ′ such that ℓ < ℓ′. Furthermore, consider an interval Ik, ℓ ≤ k < ℓ′, and let
Jj′ ∈ Rk be the job whose deadline defines tk, i.e. dj′ = tk. By the definition of Rk and
the way we define the time points tk−1 and tk, it must be the case that tk−1 ≤ rj′ < tk.
Hence, although Jj might be active at both times tk−1 and tk, its execution in S∗ cannot
include both of them; otherwise Jj′ could not be feasibly executed as tk−1 ≤ rj′ < dj′ = tk.
Thus, in S∗ the execution of any job cannot include more than two times tℓ and tℓ+1.
Therefore, in S∗, a job cannot be scheduled into more than two consecutive intervals
[tℓ−1, tℓ) and [tℓ, tℓ+1).

Starting from S∗, we create a feasible non-preemptive schedule S ′ for the problem
in which the execution of each job Jj ∈ J takes place into exactly one interval Iℓ ∈
Hj by respecting its release date and its deadline. In order to do this, consider a job
Jj ∈ J which is executed into two intervals Iℓ and Iℓ+1 in S∗. Let pj,ℓ and pj,ℓ+1 be the
execution time of Jj into Iℓ and Iℓ+1, respectively. Assume, without loss of generality,
that pj,ℓ ≥ pj,ℓ+1. In S, we execute the whole work of Jj during Iℓ such that its execution

takes exactly
(pj,ℓ+pj,ℓ+1)

2
time. In order to do this, we just have to increase the speed

sj that Jj had in S∗ by at most a factor of 2. Hence, the energy consumption of Jj in

S∗ was (pj,ℓ + pj,ℓ+1)s
α
j , while in S ′ is

(pj,ℓ+pj,ℓ+1)

2
(2sj)

α. By summing up for all jobs we
get that the energy consumption E ′ of the schedule S ′ satisfies E ′ ≤ 2α−1OPT . Thus,
E ≤ 2α−1OPT .

Next, we describe how to pass from the transformed problem to the heterogeneous
multiprocessor speed-scaling problem without migrations S,P|ri,j,di,j,pmtn|E. For each
interval Ii, 1 ≤ i ≤ τ +1, we create a processor Pi. For each job Jj ∈ J which is partially
active in the interval Ii, 1 ≤ i ≤ τ + 1, we set (i) ri,j = 0 if rj ≤ ti−1 or ri,j = rj − ti−1 if
rj > ti−1, (ii) di,j = ti − ti−1 if dj > ti or ri,j = dj − ti−1 if dj ≤ ti. Note that we keep the
same amount of work wj for each job Jj ∈ J .
Next, we apply an approximation algorithm for S,P|ri,j,di,j,pmtn|E. This algorithm

will create a preemptive schedule S. However, we can transform S into a non-preemptive
schedule S ′ of the same energy consumption. To see this, observe that in each processor
Pi, 1 ≤ i ≤ τ + 1, each job Jj ∈ J has ri,j = 0 or di,j = ti − ti−1. Hence, by applying
the Earliest Deadline First policy to each processor separately we can get the feasible
non-preemptive schedule S ′.

Theorem 2.3. Given a ρ-approximation algorithm for the multiprocessor problem S,P|ri,j,
di,j,pmtn|E the single-processor speed-scaling problem without preemptions can be ap-
proximated within a factor of 2α−1ρ.
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2.3 Maximum Lateness Minimization

In this section, we consider non-preemptive problems of minimizing the energy and the
maximum lateness of a set of jobs. Initially, we consider the offline problem S,1|rj|Lmax(E)
of minimizing the maximum lateness under a budget of energy and we propose a poly-
nomial time algorithm for the special case where the jobs are released at the same time.
Moreover, we show that the problem is N P-hard when the release dates of the jobs are
arbitrary. Next, we move our attention to the online problem S,1|rj|Lmax + βE, where
the objective is to minimize a linear combination of the maximum lateness and the energy,
and we present a 2-competitive algorithm.

In the maximum lateness minimization problems, there is a set of n jobs J =
{J1, J2, . . . , Jn} which have to be scheduled by a single processor. A job Jj ∈ J comes
with an amount of work wj, a release date rj and a delivery time qj. The release date rj

corresponds to the arrival time of Jj. In a given a schedule S, let Cj be the completion
time of Jj. Then the lateness of Jj is defined as Lj = Cj+qj in S. In the budget problem,
our objective is to find a schedule such that the maximum lateness among the jobs, i.e.
Lmax = maxJj∈J {Lj}, is minimized and the total energy consumption of the schedule
does not exceed an energy budget equal to E. In the aggregate problem, we want to
minimize a linear combination of the maximum lateness and the energy, i.e. Lmax + βE.
In the offline setting, all the information of the problem’s instance are known in advance.
On the other hand, in the online setting, the existence of a job Jj and its parameters are
known only when the job has arrived, that is at its release date.

2.3.1 Offline

We begin our study for the problem of minimizing the maximum lateness in the offline
setting.

Common Release Date

In the following, we describe an optimal algorithm for the problem S,1||Lmax(E). In
the beginning, we present a convex programming formulation for the problem. This
formulation implies directly that the problem is polynomially solvable as convex programs
can be solved in polynomial time by applying the Ellipsoid algorithm. Then, we apply the
well-known KKT conditions to the convex program and we deduce some necessary and
sufficient properties that any feasible solution of the convex program must satisfy in order
to be optimal. Based on these properties, we derive a faster combinatorial algorithm.

A convex programming formulation of the problem stems from two basic properties of
an optimal schedule. First, because of the convexity of the speed to power function, each
job Jj ∈ J runs with constant speed sj. Second, in any optimal schedule, the jobs are
scheduled according to the EDD (Earliest Due Date First) rule, or, equivalently, in non-
increasing order of their delivery times; this can be easily shown by a standard exchange
argument. Hence, we propose the following formulation where all jobs are considered to
be released at time zero and numbered according to the EDD order.
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minL

Cj + qj ≤ L 2 ≤ j ≤ n (2.1)
w1

s1
≤ C1 (2.2)

Cj−1 +
wj

sj

≤ Cj 2 ≤ j ≤ n (2.3)

n
∑

j=1

wjs
α−1
j ≤ E (2.4)

L, Cj, sj ≥ 0 1 ≤ j ≤ n (2.5)

Our objective is to minimize the maximum lateness L. The constraints (2.1) ensure
that the lateness of each job is at most L, the constraints (2.2) and (2.3) enforce the
jobs to be scheduled according to the EDD rule in non-overlapping time intervals, the
constraint (2.4) does not allow to exceed the given energy budget E and the constraints
(2.5) ensure that the maximum lateness, the completion times and the speeds of jobs are
non-negative. The constraint (2.4) is convex for α > 2 while all other constraints and the
objective function are linear. Thus, our mathematical program is indeed convex.

This convex program already implies a polynomial algorithm for our problem, as
convex programs can be solved to arbitrary precision by the Ellipsoid algorithm [55].
However, we will exploit this convex program to derive a faster combinatorial algorithm.

In what follows we deduce a number of structural properties of an optimal schedule
by applying the KKT conditions to the above convex program. The general form of
the KKT conditions can be found in the Appendix A. Note that the jobs are indexed
J1, J2, . . . , Jn according to the EDD order. That is, for any couple of jobs Jj, Jj′ ∈ J
such that j < j′, it must be the case that qj ≥ qj′ . Furthermore, in a given schedule S,
we say that the job Jj is critical if it attains the maximum lateness of the schedule, i.e.
Lj = Lmax.

Lemma 2.4. For the maximum lateness problem with an energy budget E, there is always
an optimal schedule that satisfies all the following properties.
(i) Each job Jj runs at a constant speed sj.
(ii) Jobs are scheduled according to the EDD rule.
(iii) There are no idle periods in the schedule.
(iv) The last job is critical, i.e. Ln = Lmax.
(v) Every non-critical job Jj has equal speed with the job Jj+1, i.e. sj = sj+1.
(vi) Jobs are executed in non-increasing speeds, i.e. sj ≥ sj+1.
(vii) All the energy budget is consumed.

Proof. We associate to each set of constraints from (2.1) up to (2.4) the dual variables
λi, µ1, µi, ξ, respectively. Without loss of generality, the variables L, Ci and si are positive
and, by the complementary slackness conditions, the dual variables associated to the
constraints (2.5) are equal to zero in any optimal solution of the convex program.
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Stationarity conditions give that

∇L+
n

∑

j=1

λj∇(Cj + qj − L) + µ1∇(
w1

s1
− C1)

+
n

∑

j=2

µj∇(Cj−1 +
wj

sj

− Cj) + ξ∇(
n

∑

j=1

wjs
a−1
j − E) = 0 ⇒

(1−
n

∑

j=1

λj)∇L+
n−1
∑

j=1

(λj − µj + µj+1)∇Cj

+(λn − µn)∇Cn +
n

∑

j=1

(−µjwjs
−2
j + (a − 1)ξwjs

a−2
j )∇sj = 0

Therefore, we get equivalently that

n
∑

j=1

λj = 1 (2.6)

λj = µj − µj+1 1 ≤ j ≤ n − 1 (2.7)

λn = µn (2.8)

(α − 1)ξ =
µj

sα
j

1 ≤ j ≤ n (2.9)

Moreover, complementary slackness conditions give that

λj(Cj + qj − L) = 0 1 ≤ j ≤ n (2.10)

µ1(
w1

s1
− C1) = 0 (2.11)

µj(Cj−1 +
wj

sj

− Cj) = 0 2 ≤ j ≤ n (2.12)

ξ

(

n
∑

j=1

wjs
α−1
j − E

)

= 0 (2.13)

The fact that (i) and (ii) are satisfied by an optimal schedule has been already dis-
cussed above. We claim that ξ Ó= 0. Assume for contradiction that ξ = 0. Then, by (2.9),
we get that µj = 0 for each 1 ≤ j ≤ n. This, combined with (2.7) and (2.8) yields that
∑n

j=1 λj = 0, which is a contradiction because of (2.6). Since ξ Ó= 0, we get by (2.9) that
µj Ó= 0 for each 1 ≤ j ≤ n. Then, equations (2.11) and (2.12) give that there is no idle
time in an optimal schedule since it must be the case that C1 =

w1
s1
and Cj = Cj−1 +

wj

sj
,

for 2 ≤ j ≤ n. Since ξ Ó= 0, by (2.9), it follows that µn Ó= 0 and finally, because of (2.8),
λn Ó= 0. So, the last job to finish is always a critical job, by (2.10).
Note that for every non-critical job Jj, it holds that Cj + qj < L and (2.10) implies

that λj = 0 for every such job. Hence, if a job Jj is non-critical, then λj = 0 ⇒ µj =
µj+1 ⇒ sj = sj+1, by (2.7) and (2.9), respectively. By the dual feasibility conditions and
the equations (2.7) and (2.9) we get, respectively, that λj ≥ 0 ⇒ µj ≥ µj+1 ⇒ sj ≥ sj+1.
Thus, the jobs are executed with non-increasing speeds. If the energy budget is not
entirely consumed, then by (2.13), ξ = 0, which is a contradiction, since, as we have
already proved, ξ Ó= 0.
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Note that, given any feasible schedule that satisfies the properties of the lemma, that
is a feasible solution to the convex program, we can give values to the dual variables such
that the KKT conditions are satisfied. Therefore, any schedule satisfying the properties
is optimal.

We refer to any schedule satisfying the properties of Lemma 2.4 as a regular schedule.
By (i, j) we denote a sequence of consecutive jobs Ji, Ji+1, . . . , Jj. Any regular schedule
can be partitioned into groups of jobs, of the form (i, j), where the jobs Ji−1 and Jj are
critical and the jobs Ji, Ji+1, . . . , Jj−1 are not. By Lemma 2.4, all jobs of such a group are
executed at the same speed. We denote this common speed by sj and the total amount
of work of jobs in (i, j) by w(i, j) =

∑j
k=i wk. Then, the next corollary follows easily from

Lemma 2.4.

Corollary 2.2. Let Ji, Jj, be two consecutive critical jobs of a regular schedule. The

speed of each job in the group (i+ 1, j) is equal to sj =
w(i+1,j)

qi−qj
.

Proof. Since the jobs Ji and Jj are critical, we have that Li = Lj = Lmax. Thus,
Cj − Ci = qi − qj. Because of the Lemma 2.4, the jobs in (i + 1, j) are executed with
constant speed sj between Ci and Cj. As there are no idle periods in the schedule, the
processing time of the jobs in (i+ 1, j) is equal to Cj − Ci. Hence,

w(i+ 1, j)

sj

= Cj − Ci ⇒ sj =
w(i+ 1, j)

qi − qj

So far, we have derived a clear image of the structure of any regular optimal schedule
for S,1||Lmax(E). Next, we propose Algorithm 2.3 which constructs such a schedule in
polynomial time. Note that a regular schedule is fully specified by the speeds of the
jobs. The rough idea of our algorithm is the following: First, it constructs a preliminary
schedule by finding groups of jobs running in non-increasing speeds without taking care
of the energy consumption. Second, the algorithm manages the energy consumption with
respect to the energy budget E and determines the final speeds of all jobs. Let E ′ be
the energy consumption of the current schedule at any point of the execution of the
algorithm.
Algorithm 2.3 starts from job Jn which is always a critical job and considers all jobs

but the first, in reverse order. When a job Ji, 2 ≤ i ≤ n, is considered for the first
time, its speed si is set according to Corollary 2.2, assuming that jobs Ji−1 and Ji are
critical. If si ≥ sj, for i + 1 ≤ j ≤ n, then si is called eligible speed and it is assigned
to job Ji. If this speed is not eligible, Ji is a non-critical job and it is merged with the
Ji+1’s group. More specifically, if Jc is the last job of this group, then the speeds of jobs
Ji, Ji+1, . . . , Jc are calculated by applying Corollary 2.2, assuming that Ji−1 and Jc are
critical while Ji, Ji+1, . . . , Jc−1 are not. Next, the algorithm examines whether the new
value of si is eligible. If this is the case, then it considers the job Ji−1. Otherwise, a
further merging, of the Ji’s group with the Jc+1’s group, is performed, as before. That
is, if Jc′ is the last job of the Jc+1’s group, all jobs Ji, Ji+1, . . . , Jc′ are assigned the same
speed assuming that jobs Ji−1 and Jc′ are critical, while Ji, Ji+1, . . . , Jc′−1 are not. This
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speed, according to the Corollary 2.2, is equal to s(i, c′) = w(i,c′)
qi−1−qc′

. Note that the job

Jc is no longer critical in this case. This merging procedure is repeated until job Ji is
assigned an eligible speed. In a degenerate case, jobs Ji, Ji+1, . . . , Jn are merged into one
group. When the algorithm has assigned an eligible speed to all jobs J2, J3, . . . , Jn, it sets
s1 = s2 and its first part completes.
Next, Algorithm 2.3 takes into account the available budget of energy E. If E−E ′ ≥ 0,

the current schedule’s energy consumption does not exceed the budget of energy, and the
surplus E − E ′ is assigned to the first job. Otherwise, the current schedule is regular,
except that it consumes an amount of energy greater than E. Then, the algorithm reduces
the consumed energy until it becomes equal to E. In fact, it decreases the speed of the
first group, by merging groups with the first one if necessary. This merging procedure
is different from the one of the first part of the algorithm and it is as follows: let Ji be
the critical job of maximal index with si = s1 in the current schedule. Observe that
si > si+1. The algorithm sets the speed of jobs J1, J2, . . . , Ji equal to si+1. This causes
a reduction to E ′ and there are two cases to distinguish: either E ′ ≤ E or E ′ > E. In
the first case, the algorithm adds an amount of energy E − E ′ to jobs J1, J2, . . . , Ji by
increasing their speeds uniformly, i.e. so that they are all executed with the same speed.
In the second case, at least one further merging step has to be performed. When the
algorithm terminates, it is obvious that E ′ = E.

Algorithm 2.3

1: Sort the jobs according to the EDD order.
2: for j = n to 2 do
3: Set sj assuming that Jj and Jj−1 are critical.
4: while sj is not eligible do
5: Merge the Jj’s group with the next group.
6: Set s1 = s2
7: Let E ′ be the current energy consumption.
8: if E > E ′ then
9: Assign energy E − E ′ to job 1.
10: else
11: while E < E ′ do
12: Set the speed of the first group equal to the speed of the following group.
13: Update E ′.
14: if E < E ′ then
15: Merge the first group with the next one.
16: Assign E − E ′ energy uniformly to the first group.

Theorem 2.4. Algorithm 2.3 is optimal for S,1||Lmax(E).

Proof. We shall prove that the algorithm satisfies the properties of Lemma 2.4, i.e. it
produces a regular schedule. For convenience, we distinguish two parts in the algorithm:
Part I, corresponding to lines 1-6 and Part II, corresponding to lines 7-16, respectively.
Properties (i)-(ii): The algorithm gives a single constant speed to each job and keeps

their initial EDD order.
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Property (iii): In Part I, the speeds of jobs are assigned according to Corollary 2.2.
Specifically, the algorithm fixes two consecutive critical jobs Ji and Jj, i < j, with,
potentially, some non-critical jobs between them. Then the speed of the non-critical jobs
and the one of the critical job Jj is defined such that there is no idle between the jobs.
In Part II, no idle period is added between any jobs.

Properties (iv) - (v): When the speed of job Jn is initialized, this is done by assuming
that it is critical. Next, consider the current schedule just after the completion of Part
I. This schedule can be partitioned into sequences of jobs, Ja+1, Ja+2, . . . , Jb, with a ≥ 1,
such that the jobs of each sequence are executed with the same speed which has been
assigned by applying Corollary 2.2, assuming that the jobs Ja and Jb are critical. In
fact, jobs Ja and Jb attain equal lateness. In order for such a sequence to be a group, we
should also prove that all but the last jobs are non-critical while the last job is critical.

Let Ja+1, Ja+2, . . . , Jb be a sequence of jobs. We claim that Li < Lb, for a + 1 ≤ i ≤
b − 1. Assume, by contradiction, that there exists a job Jj, where a+1 ≤ j ≤ b − 1, such
that Lj ≥ Lb, or equivalently, qj −qb ≥

∑b
i=j+1

wi

sb
. Since the last job of a sequence attains

equal lateness with the last job of the sequence that follows, we have that La = Lb. This
yields that qa − qb =

∑b
i=a+1

wi

sb
. Therefore, qa − qj ≤

∑j
i=a+1

wi

sb
.

Obviously, for any job Ji, a+ 1 ≤ i ≤ b − 1, we must have a speed si > wi

qi−1−qi
, since

otherwise, it wouldn’t have been merged with another group. That is, qi−1 − qi > wi

si
.

If we sum the last inequalities for a + 1 ≤ i ≤ j, we get that qa − qj >
∑j

i=a+1
wi

sb
, a

contradiction.

At this point, we have showed that when Part I completes, if a job Ji, 2 ≤ i ≤ n,
is critical, then it must be the right extremity of a sequence. Moreover, among all jobs
J2, J3, . . . , Jn, the last jobs of all sequences, including job Jn, attain equal lateness and
the remaining jobs attain smaller lateness. In addition, job J1 attains equal lateness with
the last job of the sequence that follows. Recall that, at this point, we set s1 = s2. Job
J1 would have equal lateness with the last job of the sequence that follows for any s1 > 0
since the speed of the second group is set by applying Corollary 2.2, assuming that J1

is critical. So, at the end of Part I, job J1, job Jn and every last job of a sequence are
critical. Therefore, after Part I finishes, Properties (iv) and (v) hold.

In Part II, if no merging step is performed, then the processing time of job J1 is
decreased by some x ≥ 0 and its lateness decreases by x, while the processing times
and speeds of the other jobs are not modified. So, the lateness of every other job also
decreases by x. Hence, the Properties (iv) and (v) hold.

If at least one merging step is performed, then the speed of the jobs in the first group
decreases and their processing time increases. Then, in the first group, every non-critical
job Ji has equal speed with the job Ji+1 that follows, while the speeds of the jobs in other
groups remain unchanged. Now, let xi be the total increase in the processing time of
job Ji, 1 ≤ i ≤ n. Note that this quantity is positive only for jobs belonging to the first
group of the current schedule. Then, the lateness of any job Ji, 1 ≤ i ≤ n, increases by
∑i

j=1 xj; if Jc1 is the critical job of the first group, it remains critical after the merging
step since its lateness and the lateness of every other job that follows, increases by the
same quantity, equal to

∑c1
j=1 xj. Note, that if a further merging step is performed, we

consider the first two groups as one group. Moreover, the lateness of any job increases by
no more than the increase of the lateness of job Jn, and thus, in the final schedule, job
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Jn remains critical and Property (iv) holds. Furthermore, each non-critical job has equal
speed with the job that follows and Property (v) holds as well.
Property (vi): At the end of Part I, the speeds of jobs are non-increasing since oth-

erwise, a merging step would be performed. Moreover, during Part II, no speed of a job
becomes less than the speed of a subsequent job.
Property (vii): Recall that E ′ is the total energy consumed when Part I completes.

If E ′ is less than the energy budget, then the energy of the first job increases until the
schedule consumes exactly E units of energy, while if E ′ is greater than the energy budget
E, then the energy consumption of the schedule is gradually decreased until it becomes
equal to E.
Let us now consider the complexity of the algorithm. Initially, jobs are sorted accord-

ing to the EDD rule in O(n log n) time. The first part of the algorithm may take O(n2)
time since each merging step takes O(n) time and there can be O(n) merging steps. Also,
the algorithm’s second part takes O(n2) time since the speed of each job may change at
most O(n) times. Therefore, the overall complexity of the algorithm is O(n2).

Arbitrary Release Dates

We now consider the budget variant of the maximum lateness problem, where the jobs
have arbitrary release dates, i.e. S,1|rj|Lmax(E), and we show that it is strongly N P-
hard. In order to establish this N P-hardness result, we present a reduction from 3-
PARTITION which is known to be strongly N P-hard [35].
In 3-PARTITION, we are given a positive integer B and a set of 3n positive integers

A = {a1, a2, . . . a3n}, where B/4 < aj < B/2 and
∑

aj∈A aj = nB, and we ask if there
exists a partition of A into n disjoint sets A1, A2 . . . , An such that

∑

aj∈Ak
aj = B, for

each 1 ≤ k ≤ n.
Our reduction is inspired by theN P-hardness proof for the classical problem 1|rj|Lmax

[35], where we are given a set of jobs J with each job Jj ∈ J having a release date rj, a
delivery time qj and a processing time pj and we seek a schedule minimizing the maximum
lateness. This problem can be viewed as a variant of our problem where the speed of each
job is part of the instance. Specifically, we consider that each job Jj has an amount of
work wj = pj and it is executed at a constant speed sj = 1. Based on this idea, we adapt
the existing N P-hardness reduction of 1|rj|Lmax by fixing an energy budget, so that all
jobs have to be executed with the same speed sj = 1 in order to get a feasible schedule.

Theorem 2.5. The problem S,1|rj|Lmax(E) is strongly N P-hard.

Proof. We construct an instance of S,1|rj|Lmax(E) from an instance of 3-PARTITION
as follows.

• For each aj, 1 ≤ j ≤ 3n, we create a job Jj with wj = aj, rj = 0 and qj = 0.

• We introduce n − 1 gadget jobs, where the gadget job Jj, 3n+ 1 ≤ j ≤ 4n − 1, has
wj = B, rj = (2j − 6n − 1)B and qj = (8n − 2j − 1)B.

• We set E = (2n − 1)B.
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j wj rj qj

1 a1 0 0
2 a2 0 0
. . . . . . . . . . . .
3n a3n 0 0
3n+ 1 B B (2n − 3)B
3n+ 2 B 3B (2n − 5)B
3n+ 3 B 5B (2n − 7)B
. . . . . . . . . . . .
4n − 2 B (2n − 5)B 3B
4n − 1 B (2n − 3)B B

Table 2.1: An instance of S,1|rj|Lmax(E) constructed from an instance of 3-PARTITION.

Our construction is depicted in the Table 2.1.
We claim that there is a feasible schedule S with Lmax = (2n − 1)B and total energy

consumption E = (2n − 1)B if and only if there exists a 3-PARTITION of A. For
convenience, we denote by J , G the set of all the jobs and the set of the gadget jobs,
respectively.
(⇐) For the first direction, assume that A1, A2 . . . , An is a partition of A, where

∑

aj∈Ak
aj = B, for 1 ≤ k ≤ n. Then, consider the schedule S in which

• each job Jj ∈ J \ G corresponding to an integer aj ∈ Ak, 1 ≤ k ≤ n, is scheduled
during the time interval ((2k − 2)B, (2k − 1)B],

• each gadget job Jj ∈ G is scheduled during ((2j − 6n − 1)B, (2j − 6n)B], and

• all jobs are executed at constant speed sj = 1.

Clearly, the schedule S is feasible and it attains maximum lateness Lmax = (2n − 1)B.
Its total energy consumption is E =

∑

Jj∈J wjs
α−1
j =

∑

Jj∈J wj = (2n − 1)B.

A1 J3n+1 A2 J3n+2 A3 J4n−1 An

0 B 2B 3B 4B 5B (2n − 3)B

(2n − 2)B

(2n − 1)B

Figure 2.5: The schedule S.

(⇒) For the opposite direction, assume that there exists a feasible schedule S with
Lmax = (2n − 1)B and total energy consumption E = (2n − 1)B. In S, each job Jj,
1 ≤ j ≤ 3n, has completion time Cj ≤ (2n − 1)B and each gadget job Jj, 3n + 1 ≤ i ≤
4n − 1, has completion time Cj ≤ (2j − 6n)B, since Lj ≤ (2n − 1)B for every job Jj. For
notational convenience, let W = (2n − 1)B be the sum of the works of all the jobs.
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It must be the case that the makespan of the schedule S is Cmax = (2n − 1)B. To see
this, assume for the sake of contradiction that Cmax < (2n − 1)B. In this case, due to
the convexity of the speed-to-power function, we know that, for the energy consumption
E(S) of the schedule S, it would hold that

E(S) ≥ Cmax

(

W

Cmax

)α

> (2n − 1)B

which is not possible because the energy is exceeded. With a similar argument, it can be
shown that there will be no idle time during (0, (2n − 1)B].
Due to the convexity of the speed-to-power function, among the schedules with

makespan Cmax = (2n−1)B which have no idle period during (0, (2n−1)B], only the ones
in which all the jobs are executed with speed equal to sj = 1 have energy consumption
not greater than E = (2n − 1). Clearly, S must be one of these schedules. Hence, every
gadget job Jj ∈ G is executed within the whole time interval ((2j −6n −1)B, (2j −6n)B]
in S.
So far we have shown that every gadget job Jj ∈ G, spans the time interval ((2j −

6n − 1)B, (2j − 6n)B] in S, while the other jobs Jj ∈ J \ G span the time intervals
((2k−2)B, (2k−1)B], for 1 ≤ k ≤ n. Therefore, during any interval ((2k−2)B, (2k−1)B],
1 ≤ k ≤ n, there will be executed a set of jobs with total amount of work B in S, as
every job Jj ∈ J is executed with constant speed sj = 1. This execution defines a
3-PARTITION for A.

2.3.2 Online

Now, we turn our attention to the online version of the maximum lateness objective.
Clearly, we do not expect a constant factor competitive algorithm for the budget problem
S,1|rj|Lmax(E). This can be shown by defining an adversarial strategy, such as the one
of Bansal et al. [17] for the average completion time objective, which makes any online
constant-factor competitive deterministic algorithm run out of energy without completing
all the jobs. Therefore, following the approach of Albers et al. [5] for the total flow time
objective, we consider the problem of minimizing a linear combination of the maximum
lateness and the energy, i.e. S,1|rj|Lmax + βE, and we derive a 2-competitive algorithm.
Our algorithm for S,1|rj|Lmax + βE schedules the jobs in a number of phases by re-

peatedly applying an optimal offline algorithm for the problem S,1||Lmax + βE. Specif-
ically, the jobs are scheduled in batches and all the jobs of the same batch are scheduled
as if they have a common release date. In the following, we first obtain an optimal offline
algorithm for S,1||Lmax + βE and, then, we present our online algorithm for the problem
with release dates.

Optimal Offline Algorithm for S,1||Lmax + βE

In order to derive an optimal algorithm for the maximum lateness plus weighted energy
problem, we follow the same line as for the budget problem. By formulating the problem
as a convex program and applying the KKT conditions, we get some necessary and suffi-
cient conditions of optimality for any feasible schedule. Then, we describe an algorithm
which always produces a solution satisfying these conditions.
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Similarly with the budget problem, there is always an optimal schedule which executes
the jobs with respect to the EDD (Earliest Due Date first) rule, i.e. in non-increasing
order of delivery times. In what follows, we number the jobs according to the EDD
order and, for a given schedule, we say that a job Jj is critical if it attains the maximum
lateness Lmax of the schedule, i.e. Lj = Lmax. Then, the problem S,1||Lmax + βE can
be formulated as follows.

minL+ β
n

∑

j=1

wjs
α−1
j (2.14)

Cj + qj ≤ L 1 ≤ j ≤ n (2.15)
w1

s1
≤ C1 (2.16)

Cj−1 +
wj

sj

≤ Cj 2 ≤ j ≤ n (2.17)

L, Cj, sj ≥ 0 1 ≤ j ≤ n (2.18)

The expression (2.14) is our objective function. Inequality (2.15) ensures that the
lateness of each job is no more than the maximum lateness L. The constraints (2.16)
and (2.17) enforce that jobs should ordered according to the EDD rule. Finally, the
constraints (2.18) ensure the non-negativity of the maximum lateness, the completion
times and the speeds of jobs, respectively. Note that the objective function and all the
constraints are convex for α > 2 and, as a result, the above mathematical program is
convex.
By applying the KKT conditions, to the above convex program we get the following

lemma whose proof is deferred in the Appendix B because it resembles with the proof of
Lemma 2.4.

Lemma 2.5. There is an optimal schedule for the maximum lateness plus weighted energy
problem satisfying the following properties.
(i) Each job Jj runs at a constant speed sj.
(ii) Jobs are scheduled according to the EDD rule.
(iii) Jobs are consecutively executed without any idle period.
(iv) The last job is critical, i.e., Ln = Lmax.
(v) Every non-critical job Jj has equal speed with the job Jj+1, i.e., sj = sj+1.
(vi) Jobs are executed in non-increasing speeds, i.e., sj ≥ sj+1.

(vii) The job executed first runs at speed s1 = (
1

(α−1)β
)
1
α .

Note that the structure of the optimal schedule for the maximum lateness plus
weighted energy problem is almost the same as that of the budget problem with one
single difference: the energy consumption is not equal to a fixed value, but it results
from the fact that the speed of the first job should always be equal to ( 1

(α−1)β
)
1
α . This

modification turns both the optimal algorithm and its analysis for the aggregated variant
simpler than those of the budget variant.

According to the following lemma, the optimal schedule S∗ for S,1||Lmax + βE attains
the same maximum lateness with the schedule Sc, in which each job is executed with
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constant speed sc = ( 1
(α−1)β

)
1
α . This observation implies that if Jj is the highest-index

critical job in Sc, then all jobs J1, J2, . . . , Jj are executed with the speed sc in S∗.

Lemma 2.6. Let Lmax be the maximum lateness of the EDD schedule Sc that executes
each job at a constant speed sc = (

1
(α−1)β

)
1
α . Moreover, let L∗

max be the maximum lateness
of an optimal schedule S∗ satisfying the conditions of Lemma 2.5. It must be the case
that Lmax = L∗

max.

Proof. We denote by sj and s∗
j the speed of the job Jj in the schedule Sc and S∗, respec-

tively. Assume, by contradiction, that Lmax Ó= L∗
max. First, suppose that Lmax > L∗

max.
This is possible only if there is at least one job Jj such that sj < s∗

j . Then, such a

job Jj has s∗
j > ( 1

(α−1)β
)
1
α which contradicts the fact that S∗ is a regular schedule. We

assume now that Lmax < L∗
max. Then, there is at least one job Jj which is executed with

different speeds in the two schedules. Let Jj be the job with the smallest index such that
sj Ó= s∗

j . Obviously, sj > s∗
j . Hence, Jj−1 is critical in S∗. But, by the way Jj was chosen,

Lmax ≥ Lj−1 = L∗
j−1 = L∗

max, a contradiction.

Based on this observation, we proceed to the description of our algorithm. In the
first step, the algorithm assigns to every job Jj a speed sj equal to ( 1

(α−1)β
)
1
α . In this

way, we identify the value of the maximum lateness and the set of jobs executed with
speed ( 1

(α−1)β
)
1
α in the optimal schedule. This can be done by determining the highest-

index critical job Jk in Sc. All jobs J1, J2, . . . , Jk are executed with speed ( 1
(α−1)β

)
1
α in

S∗. Moreover, all jobs with index greater than k have lateness strictly less than the
maximum lateness of the optimal schedule. Therefore, we can decrease their speeds in
order to reduce their energy consumption without affecting the maximum lateness of the
schedule. This is done as follows: At the beginning, the algorithm has already assigned
a speed to jobs J1, J2, . . . , Jk. For each job Jj, k + 1 ≤ j ≤ n, the algorithm defines a
candidate speed of Jj, which we denote vj. This speed is such that job Jj becomes critical
given that Jk is critical and all jobs Jk+1, Jk+2, . . . , Jj are executed at the same speed.
By Corollary 2.2, vj =

1
qk−qj

∑j
i=k+1 wi. Then, among the candidate speeds, we choose

the maximum one vmax = maxj{vj} and let Jℓ be the job with the highest index, with
vℓ = vmax. We set the speed of jobs Jk+1, Jk+2, . . . , Jℓ equal to vℓ. Then, we set k = ℓ to
be the highest index critical job in the current schedule and we proceed to the next step.
The algorithm terminates when job n becomes critical. The complexity of the algorithm
is O(n2), since each iteration of the while loop takes time at most O(n). A pseudocode
can be found in Algorithm 2.4.

Theorem 2.6. Algorithm 2.4 is optimal for S,1||Lmax + βE.

Proof. In order to prove the theorem, we must show that Algorithm 2.4 always produces
a schedule satisfying Lemma 2.5. We refer to such a schedule as regular. We will prove
this by induction on the number of steps of the algorithm. At the end of each step, if Jℓ

is the last critical job in the current schedule, then the part of the schedule, from job J1

up to job Jℓ, is a regular one.
Initially, we consider the schedule produced just after the execution of line 3. It holds

that all jobs are executed at a constant speed s = ( 1
(α−1)β

)
1
α according to the EDD rule,
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Algorithm 2.4
1: Order jobs according to the EDD order.
2: Assign to each job the speed ( 1

(α−1)β
)
1
α .

3: Let Jk be the highest-index critical job in the current schedule.
4: while k < n do
5: for j = k to n do
6: Compute vj assuming that Jk and Jj are consecutive critical jobs.
7: Set the speed of jobs Jk, Jk+1, . . . , Jn equal to vmax = maxk≤j≤n{vj}.
8: Let Jℓ be the highest-index critical job in the current schedule.
9: k = ℓ

without any idle period between them. Let Jk be the last critical job in the current
schedule. It is obvious that every non-critical job Jj, 1 ≤ j ≤ k, has equal speed with
the job that follows. Moreover, all the speeds of jobs J1, J2, . . . , Jk are equal, i.e. non-
increasing, and it is obvious that the first job is executed with speed s1 = ( 1

(α−1)β
)
1
α .

Therefore, the initial schedule is regular.
Now assume that, up to step i, the schedule for jobs J1, J2, . . . , Jk is regular, where

job Jk is the critical job with the highest index in the current schedule at the end of step
i. Let ℓ > k be the highest-index critical job at the end of step i+ 1. We will show that,
at the end of step i+ 1, the schedule for J1, J2, . . . , Jℓ is regular.
To begin with, it is clear that in the current schedule at the end of the step i + 1,

every job is executed at a constant speed, the jobs are executed according to the EDD
order and there is no idle period between any jobs. Moreover, by construction, job Jℓ

is critical. Due to induction hypothesis, every non-critical job Jj, 1 ≤ j ≤ k, has equal
speed with the job Jj+1 and the speeds of jobs 1, 2, . . . , k are in non-increasing order. At
the i+1-th step, all jobs Jk+1, Jk+2, . . . , Jn are assigned an equal speed which is less than
the sk since, otherwise, k wouldn’t be the last critical job in the current schedule at the
end of the i-th step. Therefore, in the current schedule at the end of the i+ 1-th step it
holds that every non-critical job Jj, 1 ≤ j ≤ k, has equal speed with the job Jj+1 and
the speeds of jobs J1, J2, . . . , Jℓ are in non-increasing order. Moreover, the speed of the
first job does not change and remains equal to ( 1

(α−1)β
)
1
α .

Online Algorithm for S,1|rj|Lmax + βE

Let us, now, move to our online algorithm for S,1|rj|Lmax + βE. We denote by S∗(J , t)
the optimal offline schedule of a set of jobs J with a common release date at time t.
Subsequently, we give a description of our algorithm in Algorithm 2.5.
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Algorithm 2.5

Let R0 be the set of jobs released at time t0 = 0. In the phase 0, the jobs in R0 are
scheduled according to S∗(R0, t0). Let t1 be the time at which the last job of R0 is
finished and R1 be the set of jobs released during (t0, t1]. In the phase 1, the jobs in
R1 are scheduled as in S∗(R1, t1) and so on. In general, if ti is the completion time of
S∗(Ri−1, ti−1), we denote Ri to be the set of jobs released during (ti−1, ti]. The jobs in
Ri are scheduled by computing S∗(Ri, ti).

R0 R1 Ri

t0 t1 t2 ti ti+1

Figure 2.6: The structure of the schedule produced by the Algorithm 2.5.

Next, we analyze the competitive ratio of the algorithm.

Theorem 2.7. Algorithm 2.5 is 2-competitive for the online version of the problem
S,1|rj|Lmax + βE.

Proof. Assume that Algorithm 2.5 produces a schedule in ℓ + 1 phases. Recall that the
jobs of the i-th phase, i.e. the jobs in Ri, are released during (ti−1, ti] and scheduled as
in S∗(Ri, ti). Let Lmax,i + βEi be the cost of S∗(Ri, ti), where Lmax,i is the maximum
lateness among the jobs in Ri and Ei is the energy consumed by the jobs of Ri. The
objective value of the algorithm’s schedule is

SOL = max
0≤i≤ℓ

{Lmax,i}+ β
ℓ

∑

i=0

Ei (2.19)

Now, we consider the optimal schedule. To lower bound the objective value OPT of an
optimal schedule, we round down the release dates of the jobs; the release dates of the
jobs in phase i, are rounded down to ti−1. Let S∗

d and OPTd be an optimal offline schedule
for the rounded instance and its cost, respectively. Clearly, the optimal offline schedule
for the initial instance is feasible for the rounded one. Thus, OPT ≥ OPTd.
To lower bound OPTd we consider a scheduling problem with restricted assignments,

i.e. a problem where each job can only be executed by a subset of the available processors.
We denote by S∗

m and OPTm an optimal offline schedule and its cost, respectively. The
instance of this problem consists of ℓ+ 1 processors P0, P1, . . . , Pℓ and the set of jobs J ,
where the release dates of the jobs are rounded down, as before. Jobs in R0 can only be
assigned to the processor P0 and every job in Ri, 1 ≤ i ≤ ℓ, can only be executed by
one of the processors P0 or Pi. Moreover, it is required that all jobs in Ri, 0 ≤ i ≤ ℓ,
are executed by the same processor. Obviously, OPTd ≥ OPTm since S∗

d is a feasible
schedule for the scheduling problem with restricted assignments.
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Let us now describe an optimal offline schedule S∗
m. Through a simple exchange

argument, it can be shown that all the jobs in Ri, 0 ≤ i ≤ ℓ, are executed by the
processor Pi in an optimal schedule. In such a schedule, the jobs in Ri, 1 ≤ i ≤ ℓ, are
scheduled according to S∗(Ri, ti−1), while the jobs in R0 are scheduled with respect to
S∗(R0, t0). Assume that the maximum lateness of the above schedule is attained by a
job of the set Rk, 0 ≤ k ≤ ℓ, executed by the processor Pk. So, L∗

max = L∗
max,k, where

L∗
max, L∗

max,k is the maximum lateness of the schedules S∗
m, S∗(Ri, ti−1), respectively. Let

E∗
i be the energy consumption of the schedule S∗(Ri, ti−1). Then,

OPTm = L∗
max,k + β

ℓ
∑

i=0

E∗
i (2.20)

By considering the schedules S∗(Ri, ti−1) and S∗(Ri, ti), it can be easily shown that
L∗

max,i = Lmax,i − (ti − ti−1) and E∗
i = Ei. Hence, by (2.19) and (2.20) these imply that

OPTm = SOL − (tk − tk−1). Note that tk − tk−1 is the total processing time of the jobs
in Rk−1 in the schedule produced by Algorithm 2.5 which is equal to the total processing
time of the jobs in Rk−1 in S∗

m. Recall also that the last job of each set Ri attains lateness
at most Lmax,i in S∗

m. Thus,

tk − tk−1 ≤ L∗
max,k−1 ≤ OPTm

Therefore, SOL ≤ 2OPT and the Algorithm 2.5 is 2-competitive for the online version
of the problem S,1|rj|Lmax + βE.
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Homogeneous Parallel Processors

In this chapter, we study energy aware scheduling problems on homogeneous parallel
processors. The processors are homogeneous in the sense that they all obey the same
speed-to-power function.
In Section 3.1, we begin with the energy minimization problem S,P|rj,dj,mgtn|E in

which we allow preemptions and migrations of the jobs. For this problem, we propose two
optimal polynomial time algorithms. The first algorithm is based on repeated maximum
flow computations while the second one is based on a formulation of the problem as a
convex cost flow problem.
Next, in Section 3.2, we study the non-preemptive non-migratory energy minimiza-

tion problem S,P|rj,dj, agrbl|E for agreeable instances and we present a (2 − 1
m
)α−1-

approximation algorithm.

3.1 Energy Minimization with Migrations and Pre-
emptions

In this section, we consider the problem S,P|rj,dj,mgtn|E for which we propose two
optimal polynomial time algorithms. The former one is based on a series of maximum
flow computations while the latter one is based on a single minimum convex cost flow
calculation.
In the problem S,P|rj,dj,mgtn|E, we have to schedule a set of n jobs J = {J1, J2, . . . ,

Jn} on a set of m parallel processors P = {P1, P2, . . . , Pm} so as to minimize the total
energy consumption. Each job Jj ∈ J is specified by a work wj, a release date rj and a
deadline dj and it must be entirely executed during the interval [rj, dj). We allow pre-
emptions and migrations of the jobs, i.e. a job may be executed, suspended and resumed
later from the point of suspension on the same or on another processor. However, we do
not allow parallel execution of a job. That is, each job can be executed by at most one
processor at each time.

49
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3.1.1 Optimal Algorithm based on Maximum Flow

In the following, we present a maximum flow based algorithm for S,P|rj,dj,mgtn|E. In
order to establish this polynomial algorithm, we first formulate the problem as a convex
program. This convex programming formulation gives a straightforward polynomial time
algorithm for the problem because we can solve convex programs in polynomial time by
applying the Ellipsoid algorithm. Next, we apply the KKT conditions to this convex
program and we derive some necessary and sufficient conditions for optimality. Then, we
define an optimal algorithm for the problem which always constructs a solution satisfying
the KKT conditions. The algorithm is based on a series of repeated maximum flow
computations on an appropriate graph.
We define the times t0 < t1 < . . . < tτ so that there is exactly one time tk, 0 ≤ k ≤ τ

for every possible release date and deadline. Note that τ = O(n). Let Ik = [tk−1, tk),
for 1 ≤ k ≤ τ , and I = {I1, I2, . . . , Iτ }. We denote by |Ik| the length of the interval Ik,
i.e. |Ik| = tk − tk−1. We say that the job Jj ∈ J is active during the interval Ik ∈ I if
Ik ⊆ [rj, dj). Let A(Ik) the set of the jobs which are active during Ik. Additionally, let
nk = |A(Ik)| be the number of the active jobs during Ik.
Next, we describe a problem which is a variation of our problem and we call it the

Work Assignment Problem (or WAP). We have a set of n jobs J = {J1, J2, . . . , Jn},
a set of m parallel processors P = {P1, P2, . . . , Pm} and a set of τ disjoint intervals
I = {I1, I2, · · · , Iτ }. Each job Jj is associated with an amount of work wj. For a given
interval Ik ∈ I and a job Jj ∈ J there are two cases: either the job Jj can be executed
during Ik or it cannot. In the first case, we say that Jj is active during Ik. Following
our existing definition, we denote by A(Ik) and nk the set and the number of active jobs
during Ik. During each interval Ik ∈ I there is a set P(Ik) of mk available processors.
Preemptions and migrations of jobs are allowed but no parallel execution of a job is
permitted. Moreover, we are given a speed value v. Our objective is to find whether or
not there is a feasible schedule that executes all jobs in J with constant speed v. Note
that a schedule is feasible if and only if each job is entirely executed during its active
intervals and it is executed by at most one among the available processor at each time.
Note that the WAP is a generalization of the multiprocessor feasibility scheduling

problem P|rj,dj,mgtn|− where, given a set of jobs J = {J1, J2, . . . , Jn} such that each
job Jj has a processing time pj, a release date rj and a deadline dj, and a set of identical
parallel processors, we ask whether there exists a feasible preemptive and migratory
schedule that executes each job between its release date and its deadline. The problem
P|rj,dj,mgtn|− is almost the same as the WAP with the difference that, in the WAP,
not all intervals have the same number of available processors. Note that each job has
a fixed processing time in the WAP since the speed is part of the problem’s instance.
The WAP is polynomially solvable by applying a variant of an optimal algorithm for
P|rj,dj,mgtn|− (see [1]).

Convex Programming Formulation and KKT Conditions

In order to derive a convex program for our problem, we first observe that, in any optimal
schedule, every job Jj ∈ J is executed at a constant speed and this comes from the
convexity of the speed-to-power function. So, we introduce a variable sj and a variable
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pj,k, for each Jj ∈ J and for all Ik such that Jj ∈ A(Ik), to be the speed of job Jj and
the total execution time of job Jj during the interval Ik, respectively. Then, we propose
the following convex programming formulation for the problem S,P|rj,dj,mgtn|E.

min
∑

Jj∈J

wjs
α−1
j (3.1)

∑

Ik: Jj∈A(Ik)

pj,k =
wj

sj

Jj ∈ J (3.2)

∑

Jj∈A(Ik)

pj,k ≤ m · |Ik| Ik ∈ I (3.3)

∑

Jj∈A(Ik)

pj,k ≤ nk · |Ik| Ik ∈ I (3.4)

pj,k ≤ |Ik| Ik ∈ I, Jj ∈ A(Ik) (3.5)

pj,k ≥ 0 Ik ∈ I, Jj ∈ A(Ik) (3.6)

sj ≥ 0 Jj ∈ J (3.7)

Note that the total processing time and the total energy consumption of a job Jj

executed with speed sj is
wj

sj
and wjs

a−1
j , respectively. Thus, the term (3.1) is the total

energy consumed foe all the jobs which is our objective function. The constraints (3.2)
enforce that wj units of work must be executed for each job Jj in total. The constraints
(3.3) ensure that we use at most m processors for |Ik| units of time during any interval
Ik ∈ I. Also, we can use at most |A(Ik)| processors operating for |Ik| units of time
during any interval Ik ∈ I, otherwise we would have parallel execution of a job and this
is expressed by the constraints (3.4). The constraints (3.5) prevent any job Jj from being
executed for more than |Ik| units of time during any interval Ik ⊆ [rj, dj), otherwise
we would have parallel execution of a job. The constraints (3.6) and (3.7) ensure the
non-negativity of the variables pj,k and sj, respectively, for every job and any possible
interval during which the job is active.
The above mathematical program is indeed convex because the objective function and

the first constraint are convex for α > 2 while all the other constraints are linear. Since
our problem can be written as a convex program, it can be solved in polynomial time
by applying the Ellipsoid Algorithm. At this point, notice that once the speeds, i.e. the
processing times, of the jobs are computed, by solving the convex program, a further step
is needed in order to construct the optimal schedule. This step consists of solving the
feasibility problem P|rj,dj,mgtn|−.
Next, we apply the KKT conditions to the above convex program so as to obtain

necessary and sufficient conditions that any schedule must satisfy in order to be optimal.
The general form of the KKT conditions can be found in the Appendix A.

Lemma 3.1. There is always an optimal schedule for the problem S,P|rj,dj,mgtn|E
that satisfies the following properties:

1. Each job Jj is executed at a constant speed sj.

2. For any interval Ik ∈ I, we have that
∑

Jj∈A(Ik) pj,k = min{nk, m}|Ik|.
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3. For any interval Ik ∈ I such that nk ≤ m, it holds that pj,k = |Ik| for every job
Jj ∈ A(Ik).

4. For any interval Ik ∈ I such that nk > m, it holds that

i. All jobs Jj ∈ A(Ik) with 0 < pj,k < |Ik| have equal speeds.

ii. If a job Jj ∈ A(Ik) is not executed during Ik, i.e. pj,k = 0, then sj ≤ sj′ for
any job Jj′ ∈ A(Ik) with pj′,k > 0.

iii. If a job Jj ∈ A(Ik) is executed during the whole interval Ik, i.e. pj,k = |Ij|,
then sj ≥ sj′ for any job Jj′ ∈ A(Ik) with pj′,k < |Ij|.

Proof. The proofs of the properties 1, 2 and 3 of the lemma are omitted because thay can
be easily proved by applying the definition of convexity and simple exchange arguments.
Next, we focus on proving the property 4 based on the KKT conditions. In order to apply
the KKT conditions, we need to associate with each constraint of the convex program a
dual variable. Therefore, to each set of the constraints from (3.2) up to (3.6), we associate
the dual variables ξj, λk, µk, πj,k and σj,k, respectively. Without loss of generality, we
assume that sj > 0 for each job Jj ∈ J in any feasible schedule. Therefore, by the
complementary slackness conditions, it holds that the dual variables associated with the
constraints (3.7) are equal to zero in any optimal solution.

By stationarity conditions, we have that

∇





∑

Jj∈J

wjs
α−1
j



+
∑

Jj∈J

ξj · ∇

(

wj

sj

−
∑

Ik: Jj∈A(Ik)

pj,k

)

+
∑

Ik∈I

λk∇

(

∑

Jj∈A(Ik)

pj,k − m · |Ik|

)

+
∑

Ik∈I

µk∇

(

∑

Jj∈A(Ik)

pj,k − nk · |Ik|

)

+
∑

Ik∈I

∑

Jj∈A(Ik)

πj,k∇(pj,k − |Ik|) +
∑

Ik∈I

∑

Jj∈A(Ik)

σj,k∇(−pj,k) = 0 ⇔

∑

Ik∈I

∑

Jj∈A(Ik)

(

− ξj + λk + µk + πj,k − σj,k

)

∇pj,k

+
∑

Jj∈J

(

(α − 1)wjs
α−2
j −

ξjwj

s2j

)

∇sj = 0

We set the coefficients of the partial derivatives ∇sj and ∇pj,k equal to zero so as to
satisfy the stationarity conditions. Thus, we get equivalently that

(α − 1)sα
j = λk + µk + πj,k − σj,k Ik ∈ I, Jj ∈ A(Ik) (3.8)
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The complementary slackness are stated as follows.

λk ·

(

∑

Jj∈A(Ik)

pj,k − m · |Ik|

)

= 0 Ik ∈ I (3.9)

µk ·

(

∑

Jj∈A(Ik)

pj,k − nk · |Ik|

)

= 0 Ik ∈ I (3.10)

πj,k · (pj,k − |Ik|) = 0 Ik ∈ I, Jj ∈ A(Ik) (3.11)

σj,k · (−pj,k) = 0 Ik ∈ I, Jj ∈ A(Ik) (3.12)

We consider an interval Ik ∈ I such that nk > m. Because of the property 2 and
(3.10), we have that µk = 0. Next, we consider the following cases for the execution time
of any job Jj ∈ A(Ik) during Ik:

• 0 < pj,k < |Ik|
Complementary slackness conditions (3.11) and (3.12) imply that πj,k = σj,k = 0.
As a result, (3.8) can be written as

(α − 1)sα
j = λk. (3.13)

The variable λk is specific for the interval Ik and, thus, all such jobs have the same
speed throughout the whole schedule and the property 4(i) is valid.

• pj,k = 0
This means, by (3.11), that πj,k = 0 and (3.8) is expressed as (α − 1)sα

j = λk − σj,k.
Thus, since σj,k ≥ 0, we get that

(α − 1)sα
j ≤ λk. (3.14)

• pj,k = |Ik|
In this case, by (3.12), we get that σj,k = 0. So, (3.8) becomes (α−1)sα

j = λk+πj,k.
Because of dual feasibility conditions, πj,k ≥ 0. Hence, all jobs of this kind have

(α − 1)sα
j ≥ λk. (3.15)

By Equations (3.13), (3.14) and (3.15), we get the properties 4(ii) and 4(iii).

Given a solution of the convex program that satisfies the KKT conditions, we derived
some relations between the primal variables. Based on them, we defined some structural
properties of any optimal schedule. These properties are necessary for optimality and
we show that they are also sufficient because all schedules that satisfy these properties
attain equal energy consumptions.

Lemma 3.2. The conditions of Lemma 3.1 are also sufficient for optimality.

Proof. Assume for the sake of contradiction that there is a schedule S, that satisfies the
properties of Lemma 3.1, which is not optimal and let S∗ be an optimal schedule that also
satisfies the properties (by Lemma 3.1 we know that the schedule S∗ always exists). We
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denote E, sj and pj,k the energy consumption, the speed of job Jj and the total execution
time of job Jj during the interval Ik, respectively, in schedule S. Let E∗, s∗

j and p∗
j,k be

the corresponding values for the schedule S∗. Let J ′ be the set of jobs Jj with sj > s∗
j .

Clearly, there is at least one job Jj such that sj > s∗
j , otherwise S would not consume

more energy than S∗. So, J ′ Ó= ∅. By definition of J ′,

∑

Jj∈J ′

∑

Ik:Jj∈A(Ik)

pj,k <
∑

Jj∈J ′

∑

Ik:Jj∈A(Ik)

p∗
j,k.

Hence, there is at least one interval Ik such that

∑

Jj∈J ′∪A(Ik)

pj,k <
∑

Jj∈J ′∪A(Ik)

p∗
j,k.

If nk ≤ m, then there is at least one job Jj′ such that pj′,k < p∗
j′,k. Due to the property

3 of Lemma 3.1, it should hold that pj′,k = p∗
j′,k = |Ik| which is a contradiction. So,

it must be the case that nk > m. Then, the last equation gives that pj,k < p∗
j,k for

some job Jj ∈ A(Ik). Thus, pj,k < |Ik| and p∗
j,k > 0. Both schedules must have equal

sum of processing times
∑

Jj′ ∈A(Ik) pj′,k during the interval Ik. So, there must be a job

Jj′ /∈ J ′ such that pj′,k > p∗
j′,k. Therefore, pj′,k > 0 and p∗

j′,k < |Ik|. We conclude that
sj′ ≥ sj > s∗

j ≥ s∗
j′ , which contradicts the fact that Jj′ /∈ J ′.

Notice that the properties of Lemma 3.1 do not explain how to find an optimal
schedule. The basic reason is that they do not determine the exact speed value of each
job. Moreover, they do not specify exactly the structure of the optimal schedule. That
is, they do not specify which job is executed by each processor at each time.

Optimal Combinatorial Algorithm

Next, we propose an optimal combinatorial algorithm for the problem S,P|rj,dj,mgtn|E
that always constructs a schedule satisfying the properties of Lemma 3.1 which, as we
have already showed, are necessary and sufficient for optimality.
Our algorithm is based on the notion of critical jobs defined below. Initially, the

algorithm conjectures that all jobs are executed at the same speed in the optimal schedule
and it assigns to all of them a speed which is an upper bound on the speed that any job
has in the optimal schedule. The key idea is to continuously decrease the speeds of the
jobs step by step. At each step, it assigns a speed to the critical jobs which are ignored
in the subsequent steps and it goes on reducing the speeds of the remaining jobs. At the
end of the last step, every job has been assigned a speed. Critical jobs are recognized by
finding a minimum (s, t)-cut in an appropriate graph as we describe in the following. Once
the algorithm has computed a speed, i.e. a processing time, for each job, it constructs a
feasible schedule by applying an optimal algorithm for P|rj,dj,mgtn|−.
At a given step, the algorithm performs a binary search in order to reduce the speeds

of the jobs. The binary search is performed by solving repeatedly different instances of the
WAP. Each instance of the WAP is solved by a maximum flow computation. Specifically,
given an instance < J , P , I, v > of the WAP, the algorithm constructs a directed graph
G as follows. There is one node for each job Jj ∈ J , one node for each interval Ik ∈ I, a
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source node s and a destination node t. The algorithm introduces an arc (s, Jj), for each
Jj ∈ J , with capacity wj

v
, an arc (Jj, Ik) with capacity |Ik|, for each couple of job Jj and

interval Ik such that Jj ∈ A(Ik), and an arc (Ik, t) with capacity mk|Ik| for each interval
Ik ∈ I. We say that this is the corresponding graph of < J , P , I, v >. The algorithm
decides if an instance < J , P , I, v > of the WAP is feasible by computing a maximum
(s, t)-flow on its corresponding graph G, based on the following lemma.
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Figure 3.1: An instance of the WAP such that m processors are available during each interval Ik and its
corresponding graph.
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Theorem 3.1. There exists a feasible schedule for an instance < J , P , I, v > of the WAP
if and only if there exists a feasible (s, t)-flow of value

∑

Jj∈J
wj

v
in the corresponding graph

G.

We are ready to introduce the notion of criticality for feasible instances of the WAP.
Given a feasible instance for the WAP, we say that job Jc is critical if, for any fea-
sible schedule S and for each interval Ik such that Jj ∈ A(Ik), either pc,k = |Ik| or
∑

Jj∈A(Ik) pj,k = mk|Ik|, where pj,k is the total amount of time that the job Jj ∈ J is
processed during the interval Ik in S. Moreover, we say that an instance < J , P , I, v >
of the WAP is critical if v is the minimum speed so that the set of jobs J can be feasibly
executed during the intervals in I. We refer to this speed v as the critical speed of J , P
and I.
Based on the Theorem 3.1, we extend the notion of criticality. Let us consider a

feasible instance < J , P , I, v > of the WAP and let G = (V, A) be its corresponding
graph. Given an arc e ∈ A and a feasible (s, t)-flow F of G, we say that the arc e is
saturated by F if the amount of flow that crosses the arc e according to F is equal to the
capacity of e. Additionally, we say that a path p of G is saturated by F if there exists at
least one arc e in p which is saturated. Then, a job Jc ∈ J is critical if and only if, for
any maximum (s, t)-flow F in G, either the arc (Jc, Ik) or the arc (Ik, t) is saturated, for
each path Jc, Ik, t, i.e. for every Ik such that Jc ∈ A(Ik), according to F . In other words,
Jc is critical if every path Jc, Ik, t is saturated by any maximum (s, t)-flow F .
In order to continue our analysis, we need the following lemma which relates, in a

sense, the notions of critical job and critical instance.

Lemma 3.3. If < J , P , I, v > is a critical instance of WAP, then there is at least one
critical job Jj ∈ J .

Proof. Let G be the corresponding graph of < J , P , I, v >. Since the instance <
J , P , I, v > is critical, there exists a minimum (s, t)-cut C in G that contains either
an arc (Jj, Ik), for some Jj ∈ J and Ik ∈ I, or an arc (Ik, t), for some Ik ∈ I. If this
was not the case, the only minimum (s, t)-cut would be the one with all the arcs (s, Jj).
This means that we could reduce the speed v to v − ǫ, for an infinitesimal quantity ǫ > 0,
and the instance < J , P , I, v − ǫ > would admit a feasible flow equal to

∑

Jj∈J
wj

v−ǫ
which

contradicts the criticality of < J , P , I, v >.
Now, there must be at least one arc (s, Jc) that does not belong to C, which is a

minimum (s, t)-cut containing at least one of the arcs (Jj, Ik) or (Ik, t). If all arcs (s, Jj)
were included in C, then C would have greater capacity than the (s, t)-cut that contains
just all the arcs (s, Jj) in contradiction with the fact that C is a minimum (s, t)-cut.
Based on the definition of an (s, t)-cut, we conclude that all paths Jc, Ik, t must have
an arc that belongs in C so that if we remove the arcs of C, the nodes s and t become
disconnected. Hence, the job Jc is critical.

Note that the instance < J , P , I, v − ǫ > is not feasible if < J , P , I, v > is critical.
Up to now, the notion of a critical job has been defined only in the context of feasible
instances. We extend this notion for unfeasible instances as follows. In an unfeasible
instance < J , P , I, v − ǫ >, a job Jj is called critical if every path Jj, Ik, t is saturated
by any maximum (s, t)-flow in the corresponding graph G′.
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Let < J , P , I, v > be a critical instance of the WAP and let G be its corresponding
graph. Next, we propose a way for identifying the critical jobs of < J , P , I, v > using
the graph G′ that corresponds to the instance < J , P , I, v − ǫ >, for some sufficiently
small constant ǫ > 0 based on Lemmas 3.4 and 3.5 below. The value of ǫ is such that
the two instances have exactly the same set of critical jobs. Moreover, the critical jobs
of < J , P , I, v − ǫ > can be found by computing a minimum (s, t)-cut in the graph that
corresponds to < J , P , I, v − ǫ >.

Lemma 3.4. Given a critical instance < J , P , I, v > of the WAP, there exists a suf-
ficiently small constant ǫ > 0 such that the unfeasible instance < J , P , I, v − ǫ > and
< J , P , I, v > have exactly the same critical jobs. The same holds for any other unfea-
sible instance < J , P , I, v − ǫ′ > such that 0 < ǫ′ ≤ ǫ.

Proof. Since < J , P , I, v > is a critical instance, because of Lemma 3.3, it must contain
at least one critical job.
If all the jobs of the instance are critical, then, in the graph G that corresponds to

< J , P , I, v >, there is a minimum (s, t)-cut C that contains exactly one arc of every
path Jj, Ik, t, Ik ∈ I and Jj ∈ A(Ik). Clearly, C is a minimum (s, t)-cut for the graph G′

that corresponds to < J , P , I, v − ǫ > for any ǫ > 0, because all the arcs (s, Jj), Jj ∈ J ,
have greater capacity in G′ than in G, while all the other arcs have equal capacities in
the two graphs. Hence, for any job Jj ∈ J , either the arc (Jj, Ik) or the arc (Ik, t) is
saturated by any maximum (s, t)-flow in G′, for all Ik ∈ I such that Jj ∈ A(Ik). That
is, all jobs are critical in G′ as well and the lemma is true.
Now, assume that there is at least one non-critical job. Consider a non-critical job Jj.

We know that there must be at least one maximum (s, t)-flow F in G such that at least
one path Jj, Ik, t is not saturated by F , for some Ik ∈ I such that Jj ∈ A(Ik). Consider
such a path Jj, Ik, t. Since the path is not saturated, we have that c(Jj ,Ik) − f(Jj ,Ik) > 0
and c(Ik,t) − f(Ik,t) > 0, where ce is the capacity of the arc e and fe is the amount of flow
that passes through e according to F , respectively. Then, we set

ηj = min{c(Jj ,Ik) − f(Jj ,Ik), c(Ik,t) − f(Ik,t)}

The intuition behind the value ηj is the following. Assume that we increase the capacity
of the arc (s, Jj) while keeping the same capacities for the remaining arcs. If this increase
is less than ηj, then there is a maximum (s, t)-flow F ′ in the new graph such that neither
the arc (Jj, Ik), nor the arc (Ik, t) are saturated by F ′. The maximum (s, t)-flow F ′ in
the new graph can be easily obtained from the maximum (s, t)-flow F in G.
For every non-critical job Jj, we fix a positive value ηj as we described in the previous

paragraph. Note that we do not want to compute such a value but we only care for its
existence. Let ηmin be the minimum value ηj, among all the non-critical jobs. From the
instance < J , P , I, v >, we obtain an unfeasible instance < J , P , I, v − ǫ > as follows.
We pick an ǫ such that the total increase of the capacities of the all the arcs from the
source node to the job nodes is less than ηmin. In other words, the value ǫ must satisfy
the following inequality

∑

Jj∈J

wj

v − ǫ
<

∑

Jj∈J

wj

v
+ ηmin
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Let us, now, explain why the two instances have the same critical jobs. Initially, we
will show that if a job is non-critical in G, then it remains non-critical in G′. By the way
we picked ǫ, for any non-critical job Jj in G, there is always a maximum (s, t)-flow such
that some path from Jj to t is not saturated in G′. Therefore, each non-critical job in G,
remains a non-critical job in G′.
Next, consider a critical job Jj of < J , P , I, v >. By construction, the arc (s, Jj)

has greater capacities in G′ than in G and all the arcs (Jj, Ik) and (Ik, t), Jj ∈ A(Ik),
have equal capacities in the two graphs. We conclude that (s, Jj) cannot belong to any
minimum (s, t)-cut in G′. Thus, every path Jj, Ik, t is saturated by any maximum (s, t)-
flow in G′. Therefore, if a job is critical in G, then it is critical in G′ as well.

The following lemma is a direct consequence of the definition of criticality.

Lemma 3.5. Assume that < J , P , I, v > is a critical instance for the WAP and let G′

be the graph that corresponds to the instance < J , P , I, v − ǫ >, for any sufficiently small
constant ǫ > 0 in accordance with the Lemma 3.4. Then, any minimum (s, t)-cut C ′ of
G′ contains exactly:

i. one arc of every path Jj, Ik, t for any critical job Jj,

ii. the arc (s, Jj) for each non-critical job Jj.

We are now ready to give a high level description of our algorithm. Initially, we will
assume that the optimal schedule consumes an unbounded amount of energy and we
assume that all jobs are executed with the same speed sUB. This speed is such that there
exists a feasible schedule that executes all jobs with the same speed. Then, we decrease
the speed of all jobs up to a point where no further reduction is possible so as to obtain
a feasible schedule. At this point, all jobs are assumed to be executed with the same
speed, which is critical, and there is at least one job that cannot be executed with speed
less than this, in any feasible schedule. The jobs that cannot be executed with speed
less than the critical one form the current set of critical jobs. So, the critical job(s) is
(are) assigned the critical speed and is (are) ignored after this point. That is, in what
follows, the algorithm considers the subproblem in which some jobs are omitted (critical
jobs), because they are already assigned the lowest speed possible (critical speed) so that
they can be feasibly executed, and there are less than m processors during some intervals
because these processors are dedicated to the omitted jobs.
In detail, the algorithm consists of a number of steps, where at each step a binary

search is performed in order to determine the minimum speed so as to obtain a feasible
schedule for the remaining jobs, i.e. the critical speed. We denote scrit the critical speed
and Jcrit the set of critical jobs at a given step. In order to determine scrit and Jcrit, we
perform a binary search assuming that all the remaining jobs are executed with the same
speed. Due to the convexity of the speed-to-power function, we know that each job Jj

cannot be executed with speed less than its density δj =
wj

dj−rj
in any optimal schedule.

Therefore, given a set of jobs J , we know that there does not exist an optimal schedule
that executes all jobs with a speed s < maxJj∈J {δj}. Also, observe that if all jobs have
speed s = maxIk∈I{ 1

|Ik|

∑

Jj∈A(Ik) wj}, then we can construct a feasible schedule. These
bounds define the search space of the binary search performed in the initial step. In the
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next step the critical speed of the previous step is an upper bound on the speed of all
remaining jobs and a lower bound is the maximum density among them. We use these
updated bounds to perform the binary search of the current step and we go on like that.
Algorithm 3.1 does what we have already described.

Algorithm 3.1

1: sUB = maxk{ 1
|Ik|

∑

Jj∈A(Ik) wj}, sLB = maxJj∈J {δj}

2: while J Ó= ∅ do
3: Find the minimum speed scrit so that the instance < J , P , I, scrit > of the WAP

is feasible, using binary search in the interval [sLB, sUB] with repeated maximum
flow computations.

4: Pick a sufficiently small ǫ > 0.
5: Determine the set of critical jobs Jcrit by computing a minimum (s, t)-cut in the

graph G′ that corresponds to the instance < J , P , I, scrit − ǫ >.
6: For each Jj ∈ Jcrit, set sj = scrit.
7: J = J \Jcrit.
8: Update the set of available processors for each interval Ik ∈ I.
9: sUB = scrit, sLB = maxJj∈J {δj}
10: Apply an optimal algorithm for P |ri, di, pmtn|− to schedule the jobs, where each job

Jj has processing time wj/sj.

Algorithm 3.1 produces an optimal schedule, and this holds because any schedule
constructed by the algorithm satisfies the properties of Lemma 3.1.

Theorem 3.2. Algorithm 3.1 produces an optimal schedule.

Proof. First of all, it is obvious that each job is executed with because every job is
assigned exactly one speed in one step of the algorithm and the Property 1 of Lemma 3.1
is true.
Before proving the remaining properties, we need some definitions. Recall that, at

each step of the algorithm, the critical jobs are assigned a speed, some processors during
some intervals are dedicated to these jobs and they are ignored in subsequent steps.
Consider the i-th step of the algorithm. At the beginning of the step, the remaining jobs
J (i), processors P(i) and available intervals I(i) form the new instance of the WAP for
which the critical speed and jobs have to be determined. We denote G(i) the graph that
corresponds to the instance < J (i), P(i), I(i), v > of the WAP, where the speed v varies
between s

(i)
UB and s

(i)
LB, i.e. the bounds of the step.

Assume for contradiction that the Property 2 does not hold in the algorithm’s sched-
ule. Then, there must be an interval Ik ∈ I during which

∑

Jj∈A(Ik) pj,k < min{nk, m}|Ik|,
i.e. we can decrease the speed of some job and still get a feasible schedule. Note that
it cannot be the case that

∑

Jj∈A(Ik) pj,k > min{nk, m}|Ik| because Algorithm 3.1 as-
signs speeds only if there exists a feasible schedule with respect to these speeds. So,
there must be a job Jc ∈ A(Ik) such that pc,k < |Ik| and there is an idle period during
Ik such that Jc is not executed. Suppose that Jc became critical during the i-th step.
Then, in the graph G(i), since Jc is a critical job, either the arc (Jc, Ik) or the arc (Ik, t)
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belongs to a minimum (s, t)-cut and as a result, for any maximum flow in G(i), either

f(Jc,Ik) = |Ik| or f(Ik,t) = m
(i)
k |Ik| where m

(i)
k is the number of available processors during

Ik at the beginning of the i-th step. Hence, we have a contradiction on the fact that
∑

Jj∈A(Ik) pj,k < min{nk, m}|Ik| and pc,k < |Ik|.
For the Property 3, we claim that, for an interval Ik with nk ≤ m, if a job Jc ∈ A(Ik)

becomes critical at the i-th step, then the arc (Jc, Ik) becomes saturated by any maximum
(s, t)-flow in G(i). If this was not the case, then there would be a maximum (s, t)-flow
in G(i) such that f(Jc,Ik) < |Ik|. Also, it should hold that f(Jj ,Ik) ≤ |Ik| for any other job

Jj ∈ J (i) ∪ A(Ik). Hence, f(Ik,t) < n
(i)
k |Ik| ≤ m

(i)
k |Ik|, where n

(i)
k = |J (i)|. So, neither

the arc (Jc, Ik) nor the arc (Ik, t) would be saturated contradicting the criticality of Jc.
Therefore, the total execution time of Jc during Ik is |Ik|.
Next we prove the Property 4. Initially, consider two jobs Jj and Jj′ , active during

an interval Ik, such that 0 < pj,k < |Ik| and 0 < pj′,k < |Ik|. We will show that the
jobs are assigned equal speeds by the algorithm. For this, it suffices to show that they
are assigned a speed at the end of the same step. So, assume for contradiction that Jj

becomes critical before Jj′ , at the end of the i-th step. Then, either the arc (Jj, Ik) or
the arc (Ik, t) belongs to a minimum (s, t)-cut C in G(i). Since 0 < pj,k < |Ik|, we know
that there exists a maximum (s, t)-flow in G(i) such that 0 < f(Jj ,Ik) < |Ik|. Thus, it is

the arc (Ik, t) that belongs in C. Consequently, in G(i), the edge (Ik, t) is saturated by
any maximum (s, t)-flow, and as a result, all the processors during the interval Ik are
dedicated to the execution of some tasks at the end of the i-th step. Hence, Jj′ cannot
be assigned a speed at a step later than the i-th and we have a contradiction. That is,
Property 4(i) is true.
For the Property 4(ii), consider the case where pj,k = 0 for a job Jj during an interval

Ik ⊆ [rj, dj) and assume that Jj becomes critical at the i-th step. Then, either (Ik, t)
does not appear in G(i), that is no processors are available during Ik, or (Ik, t) belongs to
a minimum (s, t)-cut of G(i). If none of these was true, then all the arcs (Jj′ , Ik) would
belong to a minimum (s, t)-cut, for all Jj′ ∈ A(Ik) that appear in G(i). So, the arc (Jj, Ik)
would be saturated by any maximum (s, t)-flow and we have a contradiction, since the
fact that pj,k = 0 implies that there exists a maximum (s, t)-flow with f(Jj ,Ik) = 0. In

both cases, that is if Ik does not appear in G(i) or (Ik, t) belongs to a minimum (s, t)-cut
of G(i), no job executed during Ik will be assigned a speed after the i-th step. Hence, all
jobs Jj′ with pj′,k > 0 do not have lower speed than Jj.
Next, let Jj be a job with pj,k = |Ik| and assume that it is assigned a speed at the i-th

step. As we have already shown, this cannot happen after a step where a job Jj′ with
0 < pj′,k < |Ik| is assigned a speed because after such a step, the interval Ik is no longer
considered. Also, as we showed in the previous paragraph, Jj does not become critical
after a job Jj′ with pj′,k = 0. The Property 4(iii) follows.
Finally, because of Lemmas 3.4 and 3.5, Algorithm 3.1 correctly identifies the critical

jobs at each step of the algorithm. The theorem follows.

We turn, now, our attention to the complexity of the algorithm. Because of Lemma
3.3 at least one job (all critical ones) is scheduled at each step of the algorithm. Therefore,
there will be at most n steps. Assume that U is the range of all possible values of speeds
divided by our desired accuracy. Then, the binary search needs to check O(logU) values
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of speed to determine the next critical speed at one step. That is, BAL performs O(logU)
maximum flow calculations at each step. Thus, the overall complexity of our algorithm is
O(nf(n) logU) where f(|V |) is the complexity of computing a maximum flow in a graph
with |V | vertices.

3.1.2 Optimal Algorithm based on Convex Cost Flow

In the following, we present a polynomial time algorithm for S,P|rj,dj,mgtn|E by for-
mulating it as a convex cost flow problem. This formulation lies on the fact that there
is always an optimal schedule for S,P|rj,dj,mgtn|E such that each job is executed at
a constant speed. A convex cost flow computation allows us to get the optimal speed
sj for every job Jj ∈ J , and thus its total execution time pj =

wj

sj
. Then, given the

execution times of the jobs, the algorithm constructs a feasible schedule by applying a
polynomial-time algorithm for the feasibility scheduling problem P|rj,dj,mgtn|−.
Recall that, in the feasibility scheduling problem P|rj,dj,mgtn|−, we are given a set

of n jobs J = {J1, J2, . . . , Jn} and a set of m identical processors P = {P1, P2, . . . , Pm}.
Each job Jj ∈ J is characterized by a processing time pj, a release date rj and a deadline
dj. The objective is to construct a schedule such that every job Jj ∈ J is processed for
pj units of time during the interval [rj, dj) or decide that such a schedule does not exist.
An optimal polynomial algorithm for P|rj,dj,mgtn|− can be found in [1].
Given an instance of S,P|rj,dj,mgtn|E, we consider that the time is partitioned into

intervals defined by the release dates and the deadlines of jobs. That is, we define the
time points t0, t1, . . . , tτ , in increasing order, where each tk, 0 ≤ k ≤ τ , corresponds to
either a release date or a deadline, so that, for each release date and deadline of any job,
there is a corresponding tk. Then, we define the intervals Ik = [tk−1, tk), for 1 ≤ k ≤ τ ,
and we denote by |Ik| the length of Ik. We call a job Jj active in a given interval Ik, if
Ik ⊆ [rj, dj). The set of active jobs during the interval Ik is denoted by A(Ik). Moreover,
let nk be the number of the jobs which are active during Ik.
In order to establish a convex cost flow formulation (see Appendix C for the definition

of the convex cost flow problem) for S,P|rj,dj,mgtn|E, we construct a directed graph
G = (V, A), where V is the set of nodes and A the set of the arcs. In the graph G = (V, A),
we introduce a source node s, a destination node t, a node for each job Jj ∈ J , and a
node for each interval Ik ∈ I. For each Jj ∈ J , we add an arc (s, Jj) of infinite capacity
and, for each Ik ∈ I, we add an arc (Ik, t) with capacity equal to m|Ik|. If the job Jj ∈ J
is active during the interval Ik ∈ I, i.e. Jj ∈ A(Ik), then we introduce an arc (Jj, Ik)
with capacity |Ik|.
To each arc e ∈ A, we associate a convex cost function ge(x) which specifies the cost

incurred if x units of flow cross the arc e. The arcs have the following cost functions:

• g(s,Jj)(x) =
wα

j

xα−1 , for all Jj ∈ J ,

• g(Jj ,Ik)(x) = 0, for all Ik ∈ I and Jj ∈ A(Ik), and

• g(Ik,t)(x) = 0, for all Ik ∈ I.

Let F be a feasible (s, t)-flow in the graph G. We denote by fe the amount of flow
that crosses the arc e ∈ A according to F . Any feasible (s, t)-flow for the graph G
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corresponds to a feasible schedule for S,P|rj,dj,mgtn|E. Specifically, f(s,Jj) corresponds

to the processing time of job Jj. In this case,
wj

f(s,Jj)
is the speed of Jj and

wα
j

fα−1
(s,Jj)

is the

energy consumed for the execution of Jj. Furthermore, the flow passing through the edge
(Jj, Ik) represents the amount of time that the job Jj is executed during the interval Ik.
In the same vein, f(Ik,t) corresponds to the total execution time of all the jobs during
the interval Ik. Hence, the total flow that leaves the source node and arrives to the
destination node corresponds to the total execution time of all jobs. By Lemma 3.1,
we get the following corollary which specifies the total execution time of all jobs in an
optimal schedule for S,P|rj,dj,mgtn|E.

Corollary 3.1. In an optimal schedule for S,P|rj,dj,mgtn|E where each job Jj ∈ J is
executed with speed sj, the total execution time T ∗ of all the jobs is

T ∗ =
∑

Jj∈J

wj

sj

=
∑

Ik∈I

(

min{m, nk} · |Ik|

)

The above corollary indicates the total amount of flow that has to be sent from
the source node to the destination node in the graph G, concluding the formulation of
S,P|rj,dj,mgtn|E as a convex cost flow problem.
Our algorithm for S,P|rj,dj,mgtn|E can be summarized as follows.

Algorithm 3.2

1: Construct the corresponding graph G.
2: Find a convex cost (s, t)-flow F of value

∑

Ik∈I(min{m, nk} · |Ik|) in G.
3: Determine the processing time pj of each job.
4: Apply an algorithm for P|rj,dj,mgtn|− to construct a feasible schedule with respect
to pj’s.

In order to establish the optimality of our algorithm, we need the following lemma
whose proof can be found in [53]. The lemma concerns P|rj = 0,dj = d,mgtn|− which
is the special case of P|rj,dj,mgtn|− in which all jobs have a common release date and
a common deadline.

Lemma 3.6. An instance of P |pmtn, rj = 0, dj = d|− is feasible if and only if

• pj ≤ d, for each Jj ∈ J , and

•
∑

Jj∈J pj ≤ m · d.

Now, we are ready to prove that our algorithm is indeed optimal.

Theorem 3.3. Algorithm 3.2 produces an optimal schedule for S,P|rj,dj,mgtn|E.

Proof. Initially, we claim that there is a feasible schedule for S,P|rj,dj,mgtn|E such
that the total execution time of all the jobs in J is equal to T if and only if there is a
feasible (s, t)-flow of value T in G, for any T > 0.
Assume that there exists a feasible schedule for S,P|rj,dj,mgtn|E with total execu-

tion time equal to T . Let pj be the execution time of job Jj in this schedule and let pj,k

be the total amount of time that Jj is processed by any processor during the interval Ik.
Consider the following (s, t)-flow F in G.
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• f(s,Jj) = pj, for all Jj ∈ J ,

• f(Jj ,Ik) = pj,k, for all Ik ∈ I and Jj ∈ A(Ik), and

• f(Ik,t) =
∑

Jj∈Ak
pj,k, for all Ik ∈ I.

Since the parallel execution of a job is not permitted, for each job Jj ∈ J and each interval
Ik ⊆ [rj, dj), it holds that pj,k ≤ |Ik|. Note that each processor Pi ∈ P can execute at
most one job per unit of time and, as a result, it can operate for at most |Ik| units of time
during any interval Ik ∈ I. Additionally, we can have at most min{m, nk} processors
running at each time. Hence, for each Ik ∈ I, it holds that

∑

Jj∈Ak
pj,k ≤ min{m, nk}·|Ik|.

We conclude that F is a feasible (s, t)-flow in G because the capacity of any arc e ∈ A is
not exceeded.
Assume, now, that there is a feasible (s, t)-flow F of value T in G. Let fe be the

amount of flow that crosses the arc e ∈ A according to F . In order to define a feasible
schedule S for S,P|rj,dj,mgtn|E, we assign to each job Jj ∈ J a speed sj =

wj

f(s,Jj)
.

So, the total execution time of Jj is f(s,Jj). Moreover, for each interval Ik ∈ I and
job Jj ∈ A(Ik) we set the execution time of Jj during Ik to be f(Jj ,Ik). Consider, now,
any interval Ik ∈ I and let pj,k be the total time that Jj is processed by any processor
during Ik in S. Since F is a feasible (s, t)-flow, it holds that pj,k = f(Jj ,Ik) ≤ |Ik| and
∑

Jj∈A(Ik) pj,k = f(Ik,t) ≤ min{m, nk} · |Ik|. By Lemma 3.6, for each interval Ik ∈ I, we
can schedule the parts of the jobs during Ik feasibly. Thus, we can construct a feasible
schedule S for the whole instance of S,P|rj,dj,mgtn|E.
Next, we elaborate on the optimality of our algorithm. By the minimum convex cost

flow computation, the algorithm finds an (s, t)-flow of value T ∗ =
∑

Ik∈I(min{m, nk}·|Ik|)

such that the term
∑

Jj∈J

wα
j

fα−1
(s,Jj)

is minimized. By our previous claim, we may produce

a feasible schedule of total execution time
∑

Ik∈I(min{m, nk} · |Ik|) such that each job
Jj ∈ J is assigned a speed wj

f(s,Jj)
. Since the energy consumption of this schedule is equal to

∑

Jj∈J

wα
j

fα−1
(s,Jj)

, it is a minimum energy schedule among the schedules of total execution time

T ∗. By Corollary 3.1, there is always an optimal schedule for S,P|rj,dj,mgtn|E with
total execution time T ∗. Therefore, the schedule returned by the algorithm is optimal for
S,P|rj,dj,mgtn|E.

3.2 Energy Minimization without Migrations or Pre-
emptions

In this section, we consider the non-migratory non-preemptive problem S,P|rj,dj|E of
minimizing the energy of a set of jobs that have to be executed by a set of parallel
processors and we propose a (2− 1

m
)α−1-approximation algorithm for agreeable instances.

An instance of the problem consists of a set of n jobs J = {J1, J2, . . . , Jn} and a set of
m parallel processors P = {P1, P2, . . . , Pm}. Each job Jj ∈ J is specified by an amount
of work wj, a release date rj and a deadline dj. The objective is to find a schedule of
minimum energy consumption such that each job Jj ∈ J is executed during the interval
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[rj, dj). Note that a set of jobs are agreeable if, for any couple of jobs Jj, Jj′ ∈ J such
that rj < rj′ , it holds that dj ≤ dj′ . In this problem, we do not allow preemptions and
migrations of jobs, i.e. each job has to be executed without interruptions by a single
processor.
Our algorithm creates first an optimal multiprocessor migratory schedule S∗

pr by using
an optimal algorithm for S,P|rj,dj,mgtn|E as a black box. Then, it uses the processing
time p∗

j of each job Jj in S∗
pr in order to define an appropriate processing time pj for Jj.

In the algorithm’s schedule, each job Jj ∈ J is executed with a constant speed sj such
that its processing time is equal to pj. Next, the algorithm schedules the jobs in J non-
preemptively with respect to these processing times according to the Earliest Deadline
First (EDF) policy, i.e. at each time that a processor becomes idle, the non-scheduled
job with the minimum deadline is scheduled on it for pj units of time without being
interrupted. The choice of the values pj, Jj ∈ J , has been made in such a way that
the algorithm completes all the jobs before their deadlines. Our algorithm is given in
Algorithm 3.3.

Algorithm 3.3

1: Create an optimal migratory schedule S∗
pr.

2: Let p∗
j be the total execution time of the job Jj in S∗

pr.
3: Set the processing time of each job Jj equal to pj = p∗

j/(2− 1
m
).

4: Schedule the jobs in J non-preemptively according to the Earliest Deadline First
(EDF) policy with respect to the pj’s.

Theorem 3.4. The Algorithm 3.3 produces a (2 − 1
m
)α−1-approximate solution for the

problem P|rj,dj, agrbl|E.

Proof. Let Snpr be the schedule produced by the Algorithm 3.3. We consider the jobs
indexed in non-decreasing order of their release dates/deadlines. That is, for every couple
of jobs Jj, Jj′ ∈ J such that j < j′, we have that rj ≤ rj′ and dj ≤ dj′ . In what follows,
we denote by Bj the beginning time of the job Jj ∈ J in Snpr. Hence, the completion
time Cj of Jj in Snpr is Cj = Bj + pj.
First, we show that Snpr is a feasible schedule. In other words, we will prove that for

the completion time of any job Jj ∈ J , it holds that Cj ≤ dj. Once we have established
the correctness of our algorithm, then we elaborate on its approximation ratio.
Let us introduce some additional notation. Note that, at each time, either all pro-

cessors execute some job or there is at least one processor which is idle. Based on this
observation, we partition Snpr into maximal intervals: the full and the non-full intervals.
At every time in a full interval, every processor executes some job. On the other hand,
at each time during a non-full interval, there is at least one processor which is idle.
Let τ be the number of the non-full intervals. Let [uk, tk), 1 ≤ k ≤ τ , be the k-th

non-full interval. Hence, [tk−1, uk), 1 ≤ k ≤ τ + 1, is a full interval. For convenience,
t0 = 0 and uτ+1 = maxJj∈J {Cj}. Note that the schedule Snpr can start with a non-full
interval, i.e. t0 = u1, or it can end with a non-full interval, i.e. tτ = uτ+1.
Consider first a job Jj ∈ J that is released during a non-full interval [uk, tk). Since

the jobs are scheduled according to EDF policy, Jj starts its execution at its release date
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in Snpr, i.e. Bj = rj. Given that Jj has smaller processing time in Snpr than in S∗
pr and

as S∗
pr is a feasible schedule, it holds that Cj ≤ dj.

Consider now a job Jj ∈ J which is released during a full interval [tk, uk+1). We
denote by Rk = {Jj ∈ J : rj < tk} the set of jobs which are released before tk. Let Tnpr,k

be the total amount of time that the jobs in Rk are executed from tk and after in Snpr

and T ∗
pr,k be the total amount of time that the jobs in Rk are executed from tk and after

in S∗
pr. In order to go on, we need the following claim whose proof is given after the proof

of the theorem for ease of presentation.

Claim 3.1. For each k, 0 ≤ k ≤ τ , it holds that

Tnpr,k ≤
T ∗

pr,k

(2− 1
m
)

Let Jf be the first job which is released at tk or after. Obviously, rf = tk. For the job
Jj, because of our previous claim, we have that

Cj ≤ tk +
Tnpr,k +

∑j−1
j′=f pj′

m
+ pj ≤ tk +

T ∗
pr,k+

∑j−1

j′=f
p∗

j′

m
+ p∗

j

(2− 1
m
)

As S∗
pr is a feasible schedule, all jobs Jf , . . . , Jj are executed inside the interval [tk, dj) in

S∗
pr and T ∗

pr,k amount of time of the jobs in Rk is also executed in the same time interval.

Therefore, it holds that T ∗
pr,k +

∑j
j′=f p∗

j′ ≤ m(dj − tk) and p∗
j ≤ dj − tk. So, we have that

T ∗
pr,k +

∑j−1
j′=f p∗

j′

m
+ p∗

j =
T ∗

pr,k +
∑j

j′=f p∗
j′

m
+

(

1−
1

m

)

p∗
j ≤

(

2−
1

m

)

(dj − tk)

We conclude that

Cj ≤ tk +
(2− 1

m
)(dj − tk)

(2− 1
m
)

= dj

and, as a result, the schedule Snpr is indeed feasible.

Finally, we elaborate on the approximation ratio of our algorithm. Let S∗
npr be an

optimal non-preemptive schedule for our problem. We denote by Enpr, E∗
npr and E∗

pr

the total energy consumptions of the schedules Snpr, S∗
npr and S∗

pr, respectively. When
dividing the execution time of all jobs by (2 − 1

m
), at the same time, the speed of each

job is multiplied by the same factor. Hence, we have that

Enpr ≤
(

2−
1

m

)α−1

E∗
pr ≤

(

2−
1

m

)α−1

E∗
npr

Note that the last inequality comes from the fact that the energy consumption E∗
pr of an

optimal preemptive schedule is always a lower bound on the energy consumption E∗
npr of

the optimal non-preemptive schedule. The theorem follows.
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Proof of Claim 3.1

Next, we prove the Claim 3.1 that we needed in order to prove the Theorem 3.4.

Proof. We prove the claim by induction to k.
For the induction basis, we have two cases. If t0 Ó= u1, then Tnpr,0 = T ∗

pr,0 = 0. If
t0 = u1, then the schedule begins with a non-full interval. In this case, we have to consider
the jobs in R1 for the induction basis. Since the jobs are scheduled according to the EDF
policy in Snpr, every job Jj ∈ R1 starts at its release date, i.e. Bj = rj. Given that
pj = p∗

j/(2− 1
m
) and that S∗

pr is a feasible schedule, the claim holds.
For our induction step, assume that the claim is true for 1, 2, . . . , k. We will show

that Tnpr,k+1 ≤ T ∗
pr,k+1/(2− 1

m
). We consider two cases.

Case 1: uk+1 ≥
(1− 1

m
)tk+1+tk

(2− 1
m
)

.

Recall that Rk+1 is the set of jobs with rj < tk+1 in Snpr. We partition the jobs in
Rk+1 such that Cj > tk+1 into the following three subsets:

• A: the jobs with Bj < tk,

• B: the jobs with tk ≤ Bj < uk+1, and

• C: the jobs with uk+1 ≤ Bj < tk+1.

Let T (A) be the total amount of time that the jobs in A are executed after tk.
Obviously, T (A) ≤ Tnpr,k as A ⊆ Rk. Since the schedule Snpr is non-preemptive, each
job Jj ∈ A is processed for tk+1 − tk units of time during [tk, tk+1). Thus, we have that

Tnpr,k+1 = (T (A)− |A|(tk+1 − tk)) +
∑

Jj∈B

(Bj + pj − tk+1) +
∑

Jj∈C

(Bj + pj − tk+1)

In the extreme case, all the processors execute some job of Rk+1 during the interval
[tk, tk+1) in the schedule S∗

pr. So, we have that

T ∗
pr,k+1 ≥ T ∗

pr,k +
∑

Jj∈Rk+1\Rk

p∗
j − m · (tk+1 − tk)

≥
(

2−
1

m

)



Tnpr,k +
∑

Jj∈Rk+1\Rk

pj



 − m · (tk+1 − tk)

The second inequality comes from our induction hypothesis and the way we obtained the
processing times in Snpr from S∗

pr. Note that the amount of time (Tnpr,k+
∑

Jj∈Rk+1\Rk
pj)

is the total amount of time during which the jobs in Rk+1 are executed from tk and after
in Snpr. By definition, this amount is T (A) for the jobs in A. Recall that these jobs
have Bj < tk and Cj > tk+1 and hence |A| processors are dedicated to them during the
interval [tk, tk+1). Consider the set of jobs not in A, which are released before uk+1 and
are completed after tk. These jobs contribute to (Tnpr,k +

∑

Jj∈Rk+1\Rk
pj) with at least

(m − |A| − |B|)(uk+1 − tk) +
∑

Jj∈B(Bj + pj − tk) amount of time, since there is no idle
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period in the interval [tk, uk+1). Finally, for the jobs in C this contribution is
∑

Jj∈C pj.
Hence,

T ∗
pr,k+1 ≥

(

2−
1

m

)

(

T (A) + (m − |A| − |B|)(uk+1 − tk) +
∑

Jj∈B

(Bj + pj − tk) +
∑

Jj∈C

pj

)

−m · (tk+1 − tk)

Thus, we have

T ∗
pr,k+1

(2− 1
m
)

− Tnpr,k+1 ≥ (m − |A| − |B|)(uk+1 − tk)−
∑

Jj∈B

tk −
m(tk+1 − tk)

2− 1
m

+|A|(tk+1 − tk) +
∑

Jj∈B

tk+1 −
∑

Jj∈C

(Bj − tk+1)

= uk+1(m − |A| − |B|)− m

(

tk +
tk+1 − tk

2− 1
m

)

+(|A|+ |B|)tk+1 +
∑

Jj∈C

(tk+1 − Bj)

≥

(

(1− 1
m
)tk+1 + tk

2− 1
m

)

(m − |A| − |B|)− m

(

tk +
tk+1 − tk

2− 1
m

)

+(|A|+ |B|)tk+1

where the last inequality follows from the fact that tk+1 ≥ Bj for each job in C and using
our assumption for the case we consider. Note that |A| + |B| ≥ 1 as otherwise Tnpr,k+1

consists only of jobs in C which are scheduled at their release date in Snpr and the claim
holds directly. Therefore,

T ∗
pr,k+1

(2− 1
m
)

− Tnpr,k+1 ≥ m

(

(1− 1
m
)tk+1 + tk

2− 1
m

− tk −
tk+1 − tk

2− 1
m

)

+(|A|+ |B|)

(

tk+1 −
(1− 1

m
)tk+1 + tk

2− 1
m

)

≥
tk − tk+1

2− 1
m

+
tk+1 − tk

2− 1
m

≥ 0

Case 2: uk+1 <
(1− 1

m
)tk+1+tk

(2− 1
m
)

.

In Snpr, for a given job Jj which completes after tk+1, let pj,k+1 be the processing time
of Jj after the time tk+1. Similarly, let p∗

j,k+1, be the execution time of Jj after time tk+1

in S∗
pr. In this case, we partition the jobs of the set Rk+1 such that Cj > tk+1 as follows:

• A: the jobs with rj < tk,

• B: the jobs with tk ≤ rj < uk+1, and

• C: the jobs with uk+1 ≤ rj < tk+1.
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Consider the jobs in A. Recall that the jobs are scheduled by the algorithm ac-
cording to EDF. Since the instance is agreeable, this means that the earliest released
jobs are scheduled first. So, the jobs in A start before the jobs in B and C in the algo-
rithms schedule. This, combined with the induction hypothesis yields that

∑

Jj∈A pj,k+1 ≤
∑

Jj∈A p∗
j,k+1/(2− 1

m
).

Consider a job Jj ∈ B. Clearly, for such a job it holds that Bj < uk+1 and Cj > tk+1

in Snpr. We will show that p∗
j > tk+1 − tk. Assume for contradiction that p∗

j ≤ tk+1 − tk.
Hence, we have that

pj,k+1 = Bj + pj − tk+1

= Bj +
p∗

j

(2− 1
m
)

− tk+1

< uk+1 +
p∗

j

(2− 1
m
)

− tk+1

<
(1− 1

m
)tk+1 + tk

(2− 1
m
)

+
tk+1 − tk

(2− 1
m
)

− tk+1

= 0

which is a contradiction as, by definition, it must be the case that pj,k+1 > 0. Thus, for
the job Jj, we have that p∗

j,k+1 ≥ p∗
j + tk − tk+1 So,

p∗
j,k+1

(2− 1
m
)

− pj,k+1 =
p∗

j + tk − tk+1

(2− 1
m
)

− (Bj + pj − tk+1)

= pj +
tk − tk+1

(2− 1
m
)

− Bj − pj + tk+1

≥
tk − tk+1

(2− 1
m
)

− uk+1 + tk+1

=
(1− 1

m
)tk+1 + tk

(2− 1
m
)

− uk+1 > 0

as Bj < uk+1 and uk+1 <
(1− 1

m
)tk+1+tk

(2− 1
m
)

.

Consider now a job Jj ∈ C. This job starts its execution at its release date in Snpr,
i.e. Bj = rj. Given that Jj has smaller processing time in Snpr than in S∗

pr and that S∗
pr

is feasible, we have that p∗
j,k − pj,k > 0.

Summing up for all jobs in A∪B∪C, we get Tnpr,k ≤
T ∗

pr,k

(2− 1
m
)
, and the claim follows.



Chapter 4

Heterogeneous Environments

In this chapter, we study multiprocessor scheduling problems on heterogeneous environ-
ments. In such environments, we have a set of processors which run in parallel and they
obey to different speed-to-power functions. Moreover, the jobs have processor dependent
works, release dates and deadlines.

Initially, in Section 4.1, we propose a near optimal polynomial time algorithm for
the energy minimization problem S,R|wi,j, ri,j,di,j,mgtn|E, where preemptions and mi-
grations of jobs are allowed. This algorithm is based on solving a configuration Linear
Program (LP) with the Ellipsoid algorithm.

Next, in Section 4.2, we consider the problem S,R|wi,j, ri,j,di,j,pmtn|E of minimizing
the energy, where preemptions of jobs are allowed but migrations are forbidden. We
formulate this problem as an integer configuration LP and we show how to obtain a
constant factor approximate solution for this LP by solving its fractional relaxation and
applying randomized rounding. In order to improve the running time of our algorithm
we also formulate the problem as a compact integer LP and we show that we can obtain
a solution for the fractional relaxation of the configuration LP by solving the fractional
relaxation of the compact LP.

Finally, in Section 4.3, we address the problem of minimizing the average completion
time plus energy, i.e. S,R|wi,j|

∑

Cj + βE, and we propose an optimal polynomial time
algorithm which is based on the formulation of the problem as a minimum weighted
perfect matching problem.

4.1 Energy Minimization with Migrations and Pre-
emptions

In this section, we consider the problem S,R|wi,j, ri,j,di,j,mgtn|E and we propose a near-
optimal algorithm which returns a schedule with energy consumption at most OPT +
ǫ, where OPT is the energy consumption of an optimal solution. The algorithm is
polynomial to the size of the instance and 1/ǫ.

In the problem S,R|wi,j, ri,j,di,j,mgtn|E, we have a set of n jobs J = {J1, J2, . . . , Jn}
which have to be executed by a set of m parallel processors P = {P1, P2, . . . , Pm}. Each
job Jj ∈ J has a processor-dependent work wi,j, release date ri,j and deadline di,j on

69
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every processor Pi ∈ P. The work wi,j is the amount of work that must be executed
for Jj if it is executed entirely by the processor Pi. Note that a job Jj ∈ J can be
executed on Pi ∈ P only during the time interval [ri,j, di,j) and we say that Jj is active on
the processor Pi during this interval. The processor Pi ∈ P satisfies the speed-to-power
function Qi = sαi , where αi > 1. Assume that the amount of work executed for the job Jj

on the processor Pi is equal to w. Then, the portion of Jj executed on Pi is equal to
w

wi,j
.

A job is completed only when the total portion executed for it on all the processors is
equal to 1. The objective is to find a feasible schedule of minimum energy consumption.
We first formulate the problem as a configuration Linear Program (LP) with an expo-

nential number of variables and a polynomial number of constraints. Such an LP cannot
be solved directly in polynomial time by applying to it an existing algorithm for linear
programming. However, we can obtain a polynomial-time algorithm by solving its dual
LP with the Ellipsoid algorithm as we describe in the remainder of this section.
Let us, first, formulate the problem as a configuration LP. In order to do so, we have

to define the notion of a configuration for this problem. We define a configuration c as an
one-to-one assignment of x jobs, 0 ≤ x ≤ m, to the m processors as well as an assignment
of a speed value to every processor. Note that some processors may be idle according to
c and their speed is zero. A well defined schedule for our problem has to specify exactly
one configuration at each time t. An example of a configuration is illustrated in Figure
4.1.

t

P4

P3

P2

P1

J3

J2

J1

s = 5
s = 10

s = 2

Figure 4.1: An example of a configuration for an instance with four processors. Note that the processor
P2 executes no job and its speed is equal to zero according to this configuration.

We denote by C the set of all possible configurations. Clearly, the cardinality of C is
unbounded, since the speed of a processor can be any non-negative real value. So, we
discretize the set of possible speed values and we consider only a finite number of speeds
at which the processors can run, based on Lemma 4.1.

Lemma 4.1. There is a feasible schedule of energy consumption at most OPT + ǫ that
uses a finite (exponential to the size of the instance and 1/ǫ) number of discrete processors’
speeds.
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Proof. To discretize the speeds, we first define a lower and an upper bound on the speed
of any processor in any optimal schedule. For the lower bound, consider a job Jj ∈ J .
Recall that the release dates and the deadlines of Jj are different on different processors.
Hence, the feasible intervals of Jj on different processors may be completely disjoint, that
is the processing time of Jj in an optimal schedule can be at most

∑

Pi∈P(di,j − ri,j).
Therefore, due to the convexity of the speed-to-power function, a lower bound on the
speed of every processor is

sLB = min
Jj∈J

{

minPi∈P{wi,j}
∑

Pi∈P(di,j − ri,j)

}

For the upper bound, we consider the case where all the jobs are executed in the minimum
active interval of any job, i.e. minJj∈J {di,j − ri,j}. Hence, an upper bound on the speed
of every processor is

sUB =

∑

Jj∈J maxPi∈P{wi,j}

minJj∈J {di,j − ri,j}

Given these lower and upper bounds and a small constant η > 0, we discretize the
speed values in a geometric way. In other words, we consider only the speeds of the form
sLB, (1 + η)sLB, (1 + η)2sLB, . . . , (1 + η)ksLB, where k is the smallest integer such that
(1 + η)ksLB ≥ sUB. Hence, the number of speed values is equal to k = log1+η

sUB

sLB
, which

is polynomial to the size of the instance and to 1/ log(1 + η).

Consider now an optimal schedule for our problem. Let S be the schedule obtained
from the optimal one by rounding up the processors’ speeds to the closest discrete value.
The ratio of the energy consumption of any processor Pi ∈ P at any time t in S over the
energy consumption of Pi at t in the optimal schedule is at most (1 + η)αi . By summing
up for all processors and all times, we get that the energy consumption of S is at most
(1 + η)αmaxOPT . Finally, if we pick a value η such that η = (1 + ǫ

OP T
)1/αmax − 1, then

the energy consumption of S is at most OPT + ǫ. With this selection of η, the number of
discrete speeds is, in the worst case, exponential to the size of the instance and 1/ǫ.

In what follows, we only consder schedules that satisfy Lemma 4.1. Let t0 < t1 <
. . . < tτ be the time instants that correspond to release dates and deadlines of jobs so
that there is a time tk for every possible release date and deadline. We denote by I the
set of all possible intervals of the form [tk−1, tk), for 1 ≤ k ≤ τ . Let |I| be the length of
the interval I.

In order to formulate our problem as a configuration LP, we introduce a variable xI,c,
for each I ∈ I and c ∈ C, which corresponds to the total processing time during the
interval I ∈ I that the processors run according to the configuration c ∈ C. We denote
by Ec the instantaneous energy consumption of the processors if they run with respect
to the configuration c. Moreover, let sj,c be the speed of the job Jj according to the
configuration c. We denote by A(I, c) the set of jobs which are active during the interval
I and which are executed on some processor by the configuration c. Finally, let Pi(j,c) be
the processor in which the job Jj is assigned by the configuration c. Then, we propose
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the following configuration LP.

min
∑

I∈I,c∈C

Ec · xI,c

∑

c∈C

xI,c ≤ |I| I ∈ I (4.1)

∑

I,c: Jj∈A(I,c)

sj,c

wi(j,c),j

xI,c ≥ 1 Jj ∈ J (4.2)

xI,c ≥ 0 I ∈ I, c ∈ C

Consider the schedule for the interval I that occurs by an arbitrary order of the configu-
rations assigned to I. This schedule is feasible, as the processing time of all configurations
assigned to I is equal to the length of the interval. Hence, Inequality (4.1) ensures that
for each interval I there is exactly one configuration for each time t ∈ I. Inequality (4.2)
implies that each job Jj is entirely executed.
The above configuration LP has an exponential number of variables and a polynomial

number of constraints. We associate to the constraints (4.1) and (4.2) the dual variables
µI and λj, respectively. So, we obtain its dual LP which follows.

max
∑

Jj∈J

λj −
∑

I∈I

µI |I|

∑

Jj∈A(I,c)

sj,c

wi(j,c),j

λj − µI ≤ Ec I ∈ I, c ∈ C

µI , λj ≥ 0 I ∈ I, Jj ∈ J

The above dual LP has polynomial number of variables and an exponential number
of constraints. A well-known fact in Combinatorial Optimization is that we may solve
such LPs in polynomial time by applying the Ellipsoid algorithm. However, we need a
polynomial-time separation oracle, i.e. a polynomial algorithm which, given any solution
for the LP, it decides if this solution is feasible and, if not, it identifies a violated constraint
(which is not satisfied by the solution). Next, we show that the dual LP is polynomially
solvable because it admits a polynomial-time separation oracle.
The separation oracle for the dual LP works as follows. For each I ∈ I, we try to find

if there is a violated constraint. For a given I, it suffices to check the minimum among
the values Ec −

∑

Jj∈A(I,c)
sj,c

wi(j,c),j
λj among all possible configurations c. If this minimum

value is less than −µI , then we have a violated constraint. Otherwise, if we cannot find
any violated constraint for all I ∈ I, then the dual solution is feasible.
Recall that Ec =

∑

Jj∈A(I,c) s
αi(j,c)

j,c , and hence we want to find the minimum value

of
∑

Jj∈A(I,c)(s
αi(j,c)

j,c − sj,c

wi(j,c),j
λj). For each job Jj ∈ J that is active during I, the term

s
αi(j,c)

j,c − sj,c

wi(j,c),j
λj is minimized at the discrete value vi(j,c),j which is one of the two closest

possible discrete speeds to the value
(

λj

αi(j,c)·wi(j,c),j

)1/(αi(j,c)−1)

. To see this we just need to

notice that we minimize an one variable convex function over a set of possible discrete

values. The value
(

λj

αi(j,c)·wi(j,c),j

)1/(αi(j,c)−1)

is obtained by minimizing s
αi(j,c)

j,c − sj,c

wi(j,c),j
λj if
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there is no discretization of the speeds and it is obtained by equating the derivative of the
last expression with zero. Hence, for each interval I ∈ I, we want to find a configuration
c that minimizes

∑

Jj∈A(I,c)(v
αi(j,c)

i(j,c),j −
vi(j,c),j

wi(j,c),j
λj).

Since a configuration c assigns 0 ≤ x ≤ m jobs to m processors, the problem of
minimizing the last expression reduces to a minimum weighted matching problem on the
bipartite graph which is constructed as follows. We introduce one node for each job and
one node for each processor. There is an edge between each job Jj ∈ J , which is active
during the interval I, and each processor Pi ∈ P with weight equal to (vαi

i,j − vi,j

wi,j
λj). A

minimum weighted matching in such a bipartite graph defines a configuration c, that is
an assignment of x ≤ m jobs to m processors with their speed values.
Hence, there is a polynomial time separation oracle for the dual problem. To apply

the Ellipsoid algorithm in polynomial time, we need to check two additional technical
conditions. The first condition is that the values of all dual variables are upper bounded
by some number R. The second condition is that there is a feasible point (or solution) for
the dual program such that every point in a radius r is feasible. In this case, the running
time of the Ellipsoid algorithm is polynomial in log R

r
(see [40]).

The first condition and the bound on R can be derived from the fact that the solution
of the problem must be a vertex of the corresponding polyhedron and we know that the
value of optimal solution is bounded. The second condition is satisfied for the point
(λ, µ) defined as follows. We set λj = 1 for all Jj ∈ J and µI to be large enough so that

−µI + 1 ≤ minc

(

Ec − 2
∑

j∈(I,c)
sj,c

wi(j,c),j

)

. Hence, the inequalities are satisfied in the ball

of radius 1 around (λ, µ), that is r = 1.
As we can compute an optimal solution for the dual LP, we can also find an optimal

solution for the primal LP by solving it only with the variables corresponding to the
constraints of the dual LP that were found to be violated during the run of the Ellipsoid
algorithm to the dual LP and setting all other primal variables to be zero. The number
of these violated constraints is polynomial to the size of the instance and 1/ǫ. Thus, we
can solve the primal LP with a polynomial number of variables and the next theorem
follows.

Theorem 4.1. A schedule for the heterogeneous multiprocessor speed-scaling problem
with migrations of energy consumption OPT + ǫ can be found in polynomial time with
respect to the size of the instance and 1/ǫ.

4.2 Energy Minimization without Migrations with
Preemptions

In this section we consider the problem S,R|wi,j, ri,j,di,j,pmtn|E of scheduling a set
of jobs on parallel heterogeneous processors where preemptions of jobs are allowed but
migrations are forbidden and we propose a constant factor approximation algorithm which
is based on randomized rounding.
In this problem, we have a set of n jobs J = {J1, J2, . . . , Jn} and a set of m parallel

heterogeneous processors P = {P1, P2, . . . , Pm}. The speed-to-power function of the
processor Pi is defined as Qi = sαi . We associate to every job Jj ∈ J a work wi,j,



74 Chapter 4. Heterogeneous Environments

a release date ri,j and a deadline di,j, for every Pi ∈ P . Since migration of jobs is
forbidden, every job Jj ∈ J must be executed on a single processor among the ones in P .
If the job Jj is assigned on the processor Pi, then wi,j units of work must be executed for
it during the interval [ri,j, di,j). As we allow preemptions of jobs, a job may be executed,
suspended and resumed later from the point of suspension. The objective is to construct
a schedule of minimum energy consumption.
We propose a constant factor approximation algorithm for S,R|wi,j, ri,j,di,j,pmtn|E.

Initially, we formulate the problem as an integer configuration Linear Program (LP) with
an exponential number of variables and a polynomial number of constraints. Then, we
consider the fractional relaxation of this integer LP in which the variables are allowed to
take fractional values and we show a way of solving it optimally in polynomial time by
applying the Ellipsoid algorithm. Given an optimal solution for the fractional relaxation
of the integer LP, we apply randomized rounding to get a feasible integral solution which
corresponds to feasible schedule for our problem. At the end of this section, we show that
we can obtain a solution for the fractional relaxation of the integer configuration LP by
solving a more compact LP. This allows us to use a faster linear programming algorithm
instead of the Ellipsoid algorithm.

Integer Configuration LP

In order to formulate our problem as an integer configuration LP, we need to discretize
the time. In the following lemma we assume that all the release dates and the deadlines
are integers. Let OPT be the energy consumption of an optimal schedule for our problem.

Lemma 4.2. There is a feasible schedule with energy consumption at most ((1+ ǫ
1−ǫ
)(1+

1
n−2
))αmax · OPT such that, for every job Jj ∈ J , if Jj is executed on the processor Pi,

then each piece of Jj starts and ends at a time point ri,j + k ǫ
n3
(di,j − ri,j), where k ≥ 0 is

an integer.

Proof. Consider an optimal schedule S∗ of our problem. We will first transform S∗ to a
feasible schedule S in which the execution time of each job Jj ∈ J executed on processor
Pi ∈ P is at least ǫ

n
(di,j − ri,j) and the number of preemptions is at most n.

As the release dates and the deadlines of the jobs are integers, we can divide the time
horizon into unit length slots. Now, we can get the schedule S from S∗ as follows. We
increase the processors’ speeds so as to create an idle period of length ǫ inside every unit
slot. This can be done by increasing the speeds of all the jobs by a factor of 1 + ǫ

1−ǫ
.

In this way, the total energy consumption in S is increased by a factor of (1 + ǫ
1−ǫ
)αmax .

For each job Jj ∈ J , we reserve a period of length ǫ
n
inside each unit slot of [ri,j, di,j) on

the processor by which Jj is executed in S∗. Then, in order to obtain S, we decrease the
speed of Jj so that its total work is executed during the periods where Jj was executed
in S∗ and the additional (di,j − ri,j) reserved periods. Therefore, in the final schedule the
processing time of each job Jj ∈ J is at least ǫ

n
(di,j − ri,j). After this transformation we

apply the Earliest Deadline First (EDF) policy to each processor separately with respect
to the set of jobs assigned on this processor in S∗ and the speeds defined above. This
ensures that we have a schedule with at most n preemptions, as in EDF a job may be
interrupted only when another job is released.
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Next, we transform S to a new schedule S ′ satisfying the statement of the lemma.
For each job Jj ∈ J which is executed on the processor Pi ∈ P , we split the interval
[ri,j, di,j) into slots of length

ǫ
n3
(di,j − ri,j), i.e. we partition [ri,j, di,j) into intervals of the

form [ri,j + k ǫ
n3
(di,j − ri,j), ri,j + (k + 1)

ǫ
n3
(di,j − ri,j)), where k ≥ 0 is an integer. As the

processing time of Jj in S is at least ǫ
n
(di,j −ri,j), the execution of Jj has been partitioned

into at least n2 slots. In each of these slots, the job Jj either is executed during the whole
slot or is executed into a fraction of it. As we have applied the EDF policy, each job is
preempted at most n times, and hence at most 2n of these slots are not fully occupied by
Jj, since for each preempted piece of Jj at most two slots may not be completely covered
by it. We can modify the schedule S and get the schedule S ′ by executing the job Jj

is executed only in the slots where it was entirely executed in S. The number of these
slots is at least n2 − 2n. Thus, we have to increase the speed of Jj by a factor of at
most 1 + 1

n−2
, and hence the energy is increased by a factor of (1 + 1

n−2
)αmax . By taking

into account that the energy of S is a factor of (1 + ǫ
1−ǫ
)αmax far from OPT , the lemma

follows.

Let S be a schedule that satisfies Lemma 4.2 and Jj ∈ J be a job executed on the
processor Pi ∈ P in S. The above lemma implies that the interval [ri,j, di,j) can be
partitioned into polynomial, with respect to the size of the instance and 1/ǫ, number of
equal length slots. In each of these slots, either Jj is executed during the whole slot or is
not executed at all. In what follows we consider schedules that satisfy Lemma 4.2.
Let us, now, formulate our problem as an integer configuration LP. A configuration

c is a schedule for a single job on a single processor. Specifically, for a given job Jj,
a configuration determines the slots, with respect to Lemma 4.2, during which Jj is
executed. Given a configuration c for a job Jj ∈ J , we can compute the processing time
of Jj with respect to c which is equal to the number of slots in c multiplied by the length
of a slot. Due to the convexity of the speed-to-power function, in a minimum energy
schedule that satisfies Lemma 4.2, the job Jj runs with a constant speed sj. Hence, sj is
equal to the work of Jj over its execution time. Let C be the set of all possible feasible
configurations for all jobs on all processors.
In order to ensure the feasibility of any schedule corresponding to a solution of the

integer configuration LP, we need to further partition the time. Given a processor Pi ∈ P,
consider the time points of all jobs of the form ri,j+k ǫ

n3
(di,j −ri,j) as introduced in Lemma

4.2. Let ti,1, ti,2, . . . , ti,ℓi
be the ordered sequence of these time points. Consider now the

intervals [ti,p, ti,p+1), 1 ≤ p ≤ ℓi − 1. In a schedule that satisfies Lemma 4.2, in each such
interval either there is exactly one job that is executed during the whole interval or the
interval is idle on the processor Pi. Note also that these intervals might not have the
same length. Let I be the set of all these intervals for all processors.
We introduce the binary variable xi,j,c which is equal to one if the job Jj ∈ J is

entirely executed on the processor Pi ∈ P according to the configuration c, and zero
otherwise. Note that, given the configuration c and the processor Pi where the job
Jj is executed, we can compute the energy consumption Ei,j,c for the execution of Jj.
For ease of notation, we say that I ∈ (i, j, c) if the interval I ∈ I is included in the
configuration c ∈ C for the job Jj ∈ J on the processor Pi ∈ P , that is there is a slot
(ri,j + k ǫ

n3
(di,j − ri,j), ri,j + (k + 1)

ǫ
n3
(di,j − ri,j)] in c that contains I. Then, our problem

can be formulated as the following integer configuration LP.
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min
∑

Pi∈P

∑

Jj∈J

∑

c∈C

Ei,j,c · xi,j,c

∑

Pi∈P

∑

c∈C

xi,j,c ≥ 1 Jj ∈ J (4.3)

∑

I∈(i,j,c)

xi,j,c ≤ 1 I ∈ I (4.4)

xi,j,c ∈ {0, 1} Pi ∈ P, Jj ∈ J , c ∈ C (4.5)

Inequality (4.3) enforces that each job is entirely executed by some configuration. Inequal-
ity (4.4) ensures that at most one job is executed in each interval [ti,p, ti,p+1), 1 ≤ p ≤ ℓi−1.
We next relax the constraints (4.5) so that xi,j,c ≥ 0. As the number of variables of

the relaxed LP is exponential to the size of the instance, we cannot solve it in polynomial
time by applying directly an algorithm for linear programming. However, we propose an
alternative way for solving it similar to the one in Section 4.1, through its dual.
We associate to the constraints (4.3) and (4.4) the dual variables λj and µI , respec-

tively. The dual LP of the relaxed LP is the following.

max
∑

Jj∈J

λj −
∑

I∈I

µI

λj −
∑

I∈(i,j,c)

µI ≤ Ei,j,c Pi ∈ P, Jj ∈ J , c ∈ C

λj, µI ≥ 0 Jj ∈ J , I ∈ I

In order to solve this LP, we will show how to apply the Ellipsoid algorithm by
constructing a polynomial-time separation oracle which runs in polynomial time. That
is, given a solution to the dual LP, i.e. values to the variables λj and µI , we will define
an algorithm which decides if the solution is feasible, and if not it identifies a violated
constraint. At this point, recall our discussion in Section 4.1 on how we can solve an LP
with an exponential number of constraints.
A polynomial-time separation oracle for the dual LP works as follows. Given a solution

for the dual LP, for each job Jj ∈ J , we want to find the minimum value Ei,j,c +
∑

I:(i,j,c)∈I µI among all configurations for Jj. Recall that a configuration is defined as the
set of equal-length slots in which Jj is executed on a single processor Pi ∈ P . Despite
the fact that we have an exponential number of configurations, the number of possible
distinct values of Ei,j,c on the processor Pi is polynomial, as the slots are of equal length
and hence the energy consumption depends only on the number of slots contained in each
configuration.
Consider now the configurations of the job Jj ∈ J on a processor Pi ∈ P that contain

exactly q slots. As the quantity Ei,j,c is the same for all of these configurations, we want
to find the configuration of q slots with the minimum

∑

I∈(i,j,c) µI . Recall, that each slot
consists of a subset of intervals of I. Thus, we can compute for each slot t the quantity
∑

I∈t µI . Therefore, we have just to select the q slots with the minimum values of
∑

I∈t µI .
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In total, for each job Jj ∈ J we can compute in polynomial time the configuration
with the minimum Ei,j,c +

∑

I:(i,j,c)∈I µI , among all processors and q’s. If this quantity
is less than λj then we have a violated constraint. Otherwise, if this quantity is greater
than λj for all jobs, then the solution is feasible.
Therefore, there is a polynomial time separation oracle for the dual problem which

runs in polynomial time and by applying the Ellipsoid algorithm we can compute effi-
ciently an optimal solution for the dual program. Then, we can find an optimal solution
for the relaxed primal LP by solving it with the variables corresponding to the constraints
of the dual that were found to be violated during the run of the Ellipsoid algorithm to
the dual and setting all the other primal variables equal to zero. The number of these
constraints is polynomial to n and 1/ǫ. Thus, we can solve the relaxed primal LP with a
polynomial number of variables and we can get an ((1 + ǫ

1−ǫ
)(1 + 1

n−2
))α · OPT solution

in polynomial time.
As we noticed in Section 4.1, in order to ensure that the Ellipsoid algorithm is poly-

nomial we need to check two additional technical conditions. First, we have to show that
the values of all the dual variables are upper bounded by some number R. For this, it
suffices to argue as in Section 4.1. That is, the condition is satisfied because any optimal
solution is a vertex of the corresponding polyhedron and we know that the value of the
optimal solution is bounded. Subsequently, we have to show that there is a feasible point
(or solution) for the dual LP and every point in a radius r is feasible. This is satisfied
for the point (λ, µ) defined as follows. We set λj = 0, for all Jj ∈ J , µI = 0 for all I ∈ I
and r = mini,j,c Ei,j,c. Thus, we can indeed solve the dual LP in polynomial time with
the Ellipsoid algorithm.

Technical Lemmas

Before presenting our algorithm, we state and prove some technical lemmas that we need
for its analysis. Lemma 4.3 deals with the expressions arising when one estimates the
moments of random variables with Binomial distributions. Lemma 4.4 estimates moments
of Binomial random variables through the moments of Poisson random variables. Finally,
Lemma 4.6 estimates moments of Poisson random variables with parameter λ < 1 through
the moments of Poisson random variables with parameter 1.

Lemma 4.3. Consider a set of real numbers {X1, X2, . . . , Xn} such that Xj ∈ [0, 1]
for all j ∈ {1, . . . , n} and a set of non-negative constants {e1, e2, . . . , en}. Assume that
we split Xn to X ′

n ≥ 0 and X ′
n+1 ≥ 0 so that Xn = X ′

n + X ′
n+1. Let X ′

j = Xj, for
j ∈ {1, 2, . . . , n − 1}, and en+1 = en. Then, it holds that

∑

S⊆{1,2,...,n}

|S|α−1





∑

j∈S

ej





∏

j∈S

Xj

∏

j Ó∈S

(1−Xj) ≤
∑

S⊆{1,2,...,n+1}

|S|α−1





∑

j∈S

ej





∏

j∈S

X ′
j

∏

j Ó∈S

(1−X ′
j)

Proof. The left-hand side of the inequality of the statement can be rewritten as
∑

S′⊆{1,2,...,n−1}

∏

j∈S′

Xj

∏

j∈{1,2,...,n−1}\S′

(1− Xj)

×



(1− Xn)|S
′|α−1

∑

j∈S′

ej +Xn(|S
′|+ 1)α−1

∑

j∈S′∪{n}

ej



 (4.6)
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and the right-hand side as
∑

S′⊆{1,2,...,n−1}

∏

j∈S′

X ′
j

∏

j∈{1,2,...,n−1}\S′

(1− X ′
j)

×



(1− X ′
n)(1− X ′

n+1)|S
′|α−1

∑

j∈S′

ej +X ′
n(1− X ′

n+1)(|S
′|+ 1)α−1

∑

j∈S′∪{n}

ej

+(1− X ′
n)X

′
n+1(|S

′|+ 1)α−1
∑

j∈S′∪{n+1}

ej +X ′
nX ′

n+1(|S
′|+ 2)α−1

∑

j∈S′∪{n,n+1}

ej





(4.7)

As X ′
j = Xj, for 1 ≤ j ≤ n − 1, it suffices to compare only the terms inside the

brackets of (4.6) and (4.7). For (4.6), let c = 1 − Xn, A = |S ′|α−1(
∑

j∈S′ ej) and A′ =
(|S ′|+ 1)α−1(

∑

j∈S′∪{n} ej). Then, we can write the term inside the brackets of (4.6) as

cA+ (1− c)A′

where A < A′. For (4.7), let c1 = (1 − X ′
n)(1 − X ′

n+1), c2 = X ′
n(1 − X ′

n+1), c3 =
(1 − X ′

n)X
′
n+1 and c4 = X ′

nX ′
n+1. Note that c1 + c2 + c3 + c4 = 1 and c1 < c. As

before, A = |S ′|α−1(
∑

j∈S′ ej) and A′ = (|S ′| + 1)α−1(
∑

j∈S′∪{n} ej). Moreover, let A′′ =
(|S ′|+ 2)α−1(

∑

j∈S′∪{n,n+1} ej). So, we can write the term inside the brackets of (4.7) as

c1A+ c2A
′ + c3A

′ + c4A
′′ (4.8)

where A′ < A′′. Since A′ < A′′ and c1 + c2 + c3 + c4 = 1, we get that

c1A+ c2A
′ + c3A

′ + c4A
′′ > c1A+ (c2 + c3 + c4)A

′

= c1A+ (1− c1)A
′

> cA+ (1− c)A′

and the lemma follows.

Lemma 4.4. For any α ≥ 1, the function f(x) = xα and a parameter a ∈ [0, 1] we have

E[f(Ba)] ≤ E[f(Pa)]

where Ba is a sum of n independent Bernoulli random variables with expected value
E[Ba] = a and Pa is a Poisson random variable with parameter a.

Proof. To upper bound the expected value of f(x), we will need the following probabilistic
fact that was first proved by Hoeffding [44] for a finite sum of Bernoulli random variables
and was lately generalized for more general distributions by Berend et al. [22].

Lemma 4.5 ([22]). Let X =
∑t

i=1 Xi be the sum of t (where t is possibly equal to
infinity) independent random variables, 0 ≤ Xi ≤ 1 for i = 1, . . . , t and µ = E[X]. For
every convex function f ,

E[f(X)] ≤ E[f(Y )]

where Y is a binomial random variable with distribution Y ∼ B(t, µ/t) in case t < ∞,
and a Poisson random variable with distribution Y ∼ P (µ) otherwise.
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We define a binomial random variable B′
a as a sum of Ba and an infinite number of

Bernoulli random variables X ′
i for i = 1, . . . , ∞ such that Pr(Xi = 1) = 0. Obviously,

E[B′
a] = E[Ba] = a and E[f(B′

a)] = E[f(Ba)]. Since the function f(x) is convex we can
apply the Lemma 4.5 with parameter t = ∞, and the statement follows.

Lemma 4.6. Consider any real number α ≥ 1 and a Poisson random variable Pλ with
parameter 0 ≤ λ ≤ 1. It holds that E[(Pλ)

α] ≤ λE[(P1)
α].

Proof. Note that E[(Pλ)
α] =

∑∞
k=0 kα λke−λ

k!
. Moreover, e−(1−λ) ≥ 1− (1− λ) = λ ≥ λk−1

for k ≥ 2 and 0 ≤ λ ≤ 1. Therefore, e−1 ≥ λk−1e−λ for all k ≥ 2. For λ = 0, the
statement of the Lemma is trivial. Assume that λ > 0. Then,

E[(P1)
α]−

1

λ
E[(Pλ)

α] =
∞

∑

k=0

kα e−1 − λk−1e−λ

k!

= (e−1 − e−λ) +
∞

∑

k=2

kα e−1 − λk−1e−λ

k!

≥ (e−1 − e−λ) +
∞

∑

k=2

k
e−1 − λk−1e−λ

k!

=
∞

∑

k=0

k
e−1

k!
−
1

λ

∞
∑

k=0

k
λke−λ

k!

= 1−
1

λ
· λ = 0.

Randomized Rounding Algorithm

Next, we elaborate on our approximation algorithm which constructs a feasible schedule
for our scheduling problem.
Previously, we showed that we can compute an optimal solution for the fractional

relaxation of the integer configuration LP in polynomial time. Unfortunately, this solution
is not feasible for the integer LP and it does not correspond to a feasible schedule of our
scheduling problem. Notice, however, that any feasible solution x̃ of the relaxed LP can
be interpreted as fractional schedule. Let |I| be the length of the interval I ∈ I. Then,
every variable x̃i,j,c > 0 can be interpreted as a set of rectangular pieces, one for each
I ∈ (i, j, c). Each of these rectangular pieces has length |I| and height si,j,c, where si,j,c

is the speed of the job Jj if it is entirely executed on the processor Pi according to the
configuration c. Given this interpretation, the basic reason why the fractional solution is
not feasible is because a processor might execute more than one jobs at the same time
in the fractional schedule. Note that we can turn the fractional schedule into a feasible
schedule for our problem in the following manner. If KI jobs are executed during the
interval I in the fractional schedule, we simply have to increase the speeds of these jobs
by a factor of KI during I and schedule the jobs in a feasible manner during each interval
I. For example, see Figure 4.2.
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time
I

s1

s2

s3

J1

J2

J3

time
I

3s1

3s2

3s3

J1
J2

J3

Figure 4.2: An example of a fractional schedule in which three jobs are executed during the interval I.
That is, the only positive variables x̃i,j,c are the ones which correspond to the jobs J1, J2 and J3. By
increasing their speeds by a factor of three during I, we can turn the fractional schedule into a feasible
one for our original problem.

We are now ready to describe our algorithm. First, it solves the fractional relaxation
of the integer configuration LP. Subsequently, it applies randomized rounding in order to
choose a configuration for each job. Then, it is possible that the schedule is not feasible
because more than one jobs might have to be executed at the same time by the same
processor. So the algorithm scales the speeds of the jobs in order to produce a feasible
schedule. See Algorithm 4.1.

Algorithm 4.1

1: Compute an optimal solution x̃ for the fractional relaxation of the integer LP.
2: Schedule Jj on Pi according to the configuration c with probability x̃i,j,c.
3: Let KI be the number of selected configurations that contain the interval I. Scale
the speed of every job executed during I by a factor of KI .

Theorem 4.2. Algorithm 4.1 achieves an approximation ratio of ((1+ ε
1−ε

)(1+ 2
n−2

))αB̃αmax

for the heterogeneous multiprocessor preemptive speed-scaling problem without migrations
in time polynomial to the size of the instance and 1/ε, where αmax = maxPi∈P αi.

Proof. For each interval I ∈ I on every processor, we estimate its expected energy con-
sumption. So, consider an interval I for a processor Pi. Let Xj be the probability that
the job Jj is assigned to be processed during the interval I by the randomized rounding.
We have that

Xj =
∑

Pi∈P

∑

c∈C

x̃i,j,c

By the constraint (4.4), we know that
∑

Jj∈J Xj ≤ 1. The expected energy that the job
Jj consumes during the interval I under the condition that Jj is assigned to be processed
in the interval I without considering the other jobs is

Ej =
∑

Pi∈P

∑

c∈Cj

|I|sαi
i,j,cx̃i,j,c

Xj
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The energy consumption during the interval I achieved by the optimal fractional solution
of the relaxed LP is

LP ∗ =
∑

Jj∈J

Ej · Xj

If the randomized rounding assigns the set S of jobs to be processed during the interval
I, then we need to speed up the execution of all jobs in the interval I by a factor of
|S|. This means that the energy consumption increases by the factor |S|αi−1. Therefore,
during the interval I, the expected energy consumption in the final schedule is

E =
∑

S⊆J

|S|αi−1





∑

Jj∈S

Ej



 Pr(S)

where Pr(S) is the probability that exactly the jobs in the set S are selected during I.
Therefore, we have that

E =
∑

S⊆J

|S|αi−1





∑

Jj∈S

Ej





∏

Jj∈S

Xj

∏

Jj∈J \S

(1− Xj)

We can assume that there exists a Q ∈ N such that Xj =
qj

Q
, Jj ∈ J , for some qj ∈ N

since the numbers Xj come from solving an LP with rational coefficients. Note that we
do not make any assumptions on the encoding length of these numbers and we use them
only for analysis purposes. Clearly, qj ≤ Q for every Jj ∈ J , since Xj ≤ 1. Hence, we can
chop each Xj into qj pieces Xj,1, Xj,2, . . . , Xj,qj

such that Xj,ℓ =
1
Q
= X, for 1 ≤ ℓ ≤ qj.

Let q =
∑n

j=1 qj be the number of all chopped pieces and ej,ℓ = Ej, for 1 ≤ j ≤ n and
1 ≤ ℓ ≤ qj. Note that, q ≤ Q since

∑n
j=1 Xj ≤ 1. For the ease of exposition we identify

the set {1, 2, . . . , q} with the set of all pairs (j, ℓ) such that 1 ≤ j ≤ n and 1 ≤ ℓ ≤ qj.
By using Lemma 4.3 we get

E ≤
∑

S⊆{1,2,...,q}

|S|αi−1





∑

(j,ℓ)∈S

ej,ℓ



 X |S|(1− X)q−|S|

=
q

∑

k=1

∑

S⊆{1,2,...,q},|S|=k





∑

(j,ℓ)∈S

ej,ℓ



 kαi−1Xk(1− X)q−k

By changing the order of the sums in the above inequality we get
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E ≤





n
∑

j=1

qj
∑

ℓ=1

ej,ℓ





q
∑

k=1

(

q − 1

k − 1

)

kαi−1Xk(1− X)q−k

=





∑

Jj∈J

qjEj





q
∑

k=1

(

q

k

)

(

q−1
k−1

)

(

q
k

) kαi−1Xk(1− X)q−k

=





1

q

∑

Jj∈J

qjEj





q
∑

k=1

(

q

k

)

kαiXk(1− X)q−k

=
Q

q
LP ∗

q
∑

k=1

(

q

k

)

kαiXk(1− X)q−k

≤
Q

q
LP ∗

E[(Bq/Q)
αi ]

where
(

q−1
k−1

)

is the number of sets of cardinality k that contain Jj. Moreover, Bq/Q is

a random variable with expectation q
Q
which corresponds to the sum of q independent

Bernoulli random variables. Therefore,

E ≤
Q

q
LP ∗ · E[(Bq/Q)

αi ] ≤
Q

q
LP ∗ · E[(Pq/Q)

αi ] ≤
Q

q
LP ∗ ·

q

Q
E[(P1)

αi ]

where the second inequality follows from Lemma 4.4 and the last inequality follows from
Lemma 4.6. Therefore, by summing over all intervals and processors and as αmax =
maxi∈P αi, we get

E ≤ LP ∗ · E[(P1)
αmax ] = LP ∗ · B̃αmax

Compact Linear Programming Relaxation

Before, we showed a way of solving the fractional relaxation of the integer configuration
LP for our problem by applying the Ellipsoid algorithm. Subsequently, we present another
way of solving this LP by using as a black box any algorithm for linear programming.
Therefore, we can obtain an optimal fractional solution by using a faster algorithm instead
of the Ellipsoid algorithm.
Our approach is the following. We formulate the problem as a compact integer LP

with a polynomial number of contraints and we show that the fractional relaxation of
this LP is equivalent with the relaxed configuration LP. Specifically, we show that, given
an optimal fractional solution of the compact LP, we can obtain an optimal fractional
solution for the configuration LP in polynomial time.
In the following we define a compact formulation for the problem without migrations

and we show that the relaxations of the compact and the configuration LPs are equivalent.
Recall that, by Lemma 4.2, there is always an ((1+ ε

1−ε
)(1+ 2

n−2
))α-approximate schedule

for our problem such that if the job Jj ∈ J is executed on the processor Pi ∈ P, then
its feasibility interval [ri,j, di,j) can be partitioned into equal-length slots. Given such a
slot t, Jj is either executed during the whole t or it is not executed at all during t. The
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number of these slots is n3

ε
, while each slot t has length ℓt =

ε
n3
(di,j − ri,j). Recall also

that I denotes the set of all intervals occurred by merging the slots for all jobs.
In order to formulate our problem as a compact LP, we introduce a binary variable

yi,j,q which is equal to one if the job Jj is executed on the processor Pi during exactly q
slots and zero otherwise. Moreover, we introduce a binary variable zi,j,q,t which is equal
to one if the job Jj is executed on the processor Pi during the slot t and it is executed
during exactly q slots in total. Otherwise, zi,j,q,t is equal to zero. We define the constants

pi,j,q = q ε
n3
(di,j − ri,j) and Ei,j,q =

w
αi
i,j

p
αi−1
i,j,q

. Clearly, pi,j,q and Ei,j,q correspond to the total

execution time and the energy consumption, respectively, of the job Jj if it is entirely
executed on the processor Pi during exactly q slots. Then, our problem can be formulated
as follows.

min
∑

Pi∈P

∑

Jj∈J

n3/ǫ
∑

q=1

Ei,j,q · yi,j,q

∑

Pi∈P

n3/ǫ
∑

q=1

yi,j,q = 1 Jj ∈ J (4.9)

n3/ǫ
∑

t=1

zi,j,q,t = q · yi,j,q Pi ∈ P, Jj ∈ J , q ∈ {1, 2, . . . , n3

ε
} (4.10)

∑

Jj∈J

n3/ǫ
∑

q=1

∑

t:I⊆t

zi,j,q,t ≤ 1 Pi ∈ P, I ∈ I (4.11)

yi,j,q, zi,j,q,t ∈ {0, 1} Pi ∈ P, Jj ∈ J , q, t ∈ {1, 2, . . . , n3

ε
} (4.12)

The constraints (4.9) ensure that each job is entirely executed on some processor. The
constraints (4.10) establish the relationship between the variables zi,j,q,t and yi,j,q. If
yi,j,q = 1, then exactly q variables zi,j,q,t must be equal to one. The constraint (4.11)
enforces that at most one job is executed by each processor at each time. Recall that,
given a job Jj ∈ J which is executed on the processor Pi ∈ P, if Jj is executed during the

slot t ∈ {1, 2, . . . , n3

ε
}, then Jj is executed during every interval I ∈ I such that I ⊆ t.

Note that the numbers of both the variables and the constraints of the above LP are
polynomial to n and 1/ε.
The configuration and the compact formulations are equivalent, as they both lead to

a minimum energy schedule satisfying Lemma 4.2. Consider now the LP’s that occur
if we relax constraints (4.5) and (4.12), respectively. In Lemma 4.7 we prove that the
equivalence is also true for these relaxations, through a transformation of a solution
for the relaxed configuration LP to a solution for the relaxed compact LP of the same
energy consumption, and vice versa. As a result, given a solution of the relaxed compact
LP obtained by any polynomial time algorithm, we can get a solution for the relaxed
configuration LP in polynomial time. Then, we can apply the randomized rounding
presented in the previous section and get the approximation ratio of Theorem 4.2.

Lemma 4.7. The relaxations of the configuration LP and the compact LP are equivalent.

Proof. We will show that any feasible solution for the relaxed configuration LP can be
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transformed to a feasible solution for the relaxed compact LP of the same energy con-
sumption and vice versa.

Assume that we are given a feasible solution for the relaxation of the configuration
LP. Such a solution corresponds to a schedule of the jobs on the processors. Specifically,
the value of the variable xi,j,c specifies the part of the job Jj ∈ J executed on processor
Pi ∈ P during the slots that belong to the configuration c ∈ C. Then, we define zi,j,q,t =
∑

c∈C:t∈c xi,j,c. This defines a feasible solution for the relaxation of the compact LP with
the same energy consumption.

Assume that we are given a feasible solution for the compact LP. We will define a set of
configurations and we will assign a non-zero value for each variable xi,j,c that corresponds
to these configurations. The number of these configurations should be polynomial to n
and 1

ε
. The remaining variables of the configuration LP will be set to zero.

Consider a non-zero variable yi,j,q (and its corresponding variables zi,j,q,t) in the so-
lution of the compact LP. We partition the part of the schedule defined by yi,j,q into a
set of configurations with q slots and we specify the values of the variables xi,j,c that
correspond to these configurations. To do this, for each variable yi,j,q and its associated
variables zi,j,q,t, we construct a bipartite graph G = (A ∪ B, E) as follows. The set A
contains q nodes, i.e. A = {a1, a2, . . . , aq}. Intuitively, each of these nodes corresponds
to one of the q slots of the configurations that will correspond to yi,j,q. The set B con-

tains n3

ε
nodes, one for each possible slot of Jj on the processor Pi (see Lemma 4.2), i.e.

B = {b1, b2, . . . , bn3

ε

}. We will define the set of edges E and their weights, such that each

node ak ∈ A has weighted degree exactly yi,j,q and each node bt ∈ B has weighted degree
exactly zi,j,q,t. Note that, the total weight of all the edges will be q · yi,j,q =

∑

t zi,j,q,t. We
start by adding edges from a1 to b1, b2, . . . of weight zi,j,q,1, zi,j,q,2, . . ., respectively, as long
as

∑k
t=1 zi,j,q,t ≤ yi,j,q. The first time where

∑k
t=1 zi,j,q,t > yi,j,q we add an edge between

a1 and bk of weight yi,j,q −
∑k−1

t=1 zi,j,q,t. Moreover, we add an edge between a2 and bk of
weight zi,j,q,k − (yi,j,q −

∑k−1
ℓ=1 zi,j,q,t). We continue adding edges from a2 to bk+1, bk+2, . . .

of weight zi,j,q,k+1, zi,j,q,k+2, . . ., respectively, until the sum of their weights is bigger than
yi,j,q. At this point we add an edge of appropriate weight. Then, we start from a3 and
we continue like this. Note that, by construction each node bt ∈ B has degree either one
or two.

Consider now the weighted graph G′ that occurs from G if all edge weights are divided
by yi,j,q. In G′, the weighted degree of each node ak ∈ A is exactly one while the weighted
degree of each node bt ∈ B is at most one. The following lemma follows directly from the
integrality of the bipartite perfect matching polytope (see [58] for a thorough discussion
on the topic).

Proposition 4.1. Let G = (A ∪ B, E) be a bipartite graph in which each node in A
has weighted degree exactly one and each node in B has weighted degree at most one.
There are perfect matchings M1, M2, . . . , Mr (i.e., matchings having exactly |A| edges)
and coefficients λ1, λ2, . . . , λr such that

∑r
i=1 λi = 1, and for each edge e it holds that

∑

i:e∈Mi
λi = we, where we is the weight of the edge e.

Note that each matching in G′ corresponds to a feasible configuration for the job Jj.
Hence, applying the above proposition to G′, we get a set of r configurations for Jj. Note
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that r is at most the number of the edges of G′ which is polynomial to n and to 1/ε. For
each configuration c that corresponds to the matching Mc, we set xi,j,c = λc · yi,j,q.
It is easy to see that the solution obtained for the configuration LP is feasible. The

fact that constraints (4.3) are satisfied comes from constraints (4.9) and (4.10) while the
constraints (4.4) are satisfied due to the constraints (4.11).

4.3 Average Completion Time Plus Energy Minimiza-
tion

In this section, we consider the problem S,R|wi,j|
∑

Cj + βE of minimizing a linear com-
bination of the sum of completion times of a set of jobs and their total energy consumption
on parallel heterogeneous processors and we propose an optimal polynomial algorithm
which is based on a formulation of the problem as a minimum weighted maximum match-
ing problem.
In S,R|wi,j|

∑

Cj + βE, there is a set of n jobs J = {J1, J2, . . . , Jn} which have to
be scheduled on a set of m parallel heterogeneous processors P = {P1, P2, . . . , Pm}. The
fact that the processors are heterogeneous means that each processor Pi ∈ P satisfies its
own speed-to-power function Qi = sαi . In this problem, we do not allow preemptions and
migrations of jobs. That is, each job has to be executed on a single processor without
interruptions. Each job Jj ∈ J has an amount of work wi,j to accomplish if it is executed
on the processor Pi ∈ P. All the jobs are released at the time t = 0. The goal is to
minimize the sum of completion times of all the jobs plus β times their total energy
consumption. The parameter β > 0 is used to specify the relevant importance of the
average completion time criterion versus the total energy consumption criterion.
For S,R|wi,j|

∑

Cj + βE, we propose an optimal polynomial time algorithm. The
main idea of our algorithm is to formulate this problem as a minimum weighted maximum
matching problem on an appropriate bipartite graph. This formulation is based on three
observations. Firstly, based on the convexity of the speed-to-power function of each
processor, we can show that there is always an optimal schedule for the problem such
that each job Jj ∈ J is executed with constant speed and there is no idle time on any
processor Pi ∈ P until the last job on Pi completes. Secondly, the fact that preemption
and migration of jobs is not allowed means that there is an order of the jobs executed by
any processor in any feasible schedule. Given such a schedule, if ℓ jobs are executed by
the processor Pi ∈ P, then we can consider that there are ℓ available positions on Pi, one
for the execution of each of these ℓ jobs. If the job Jj is executed in the k-th position of
the processor Pi, then k − 1 jobs precede Jj and ℓ − k jobs succeed Jj. Clearly, there can
be at most n such positions for each processor. Finally, the contribution of a job Jj to the
objective function depends only on its position on the processor by which it is executed
and it is independent of where the other jobs are executed. Overall, our problem reduces
to assigning every job to a position of a processor so that our objective is minimized.
In order to formulate S,R|wi,j|

∑

Cj + βE as a minimum weighted maximum match-
ing problem, we define a bipartite graph G whose edges are weighted. The following
lemma is our guide for assigning weights to the edges of G and fixes the cost, i.e. the
contribution to the objective function, of executing a job Jj to the k-th position of any
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processor.

Lemma 4.8. Assume that, in an optimal schedule for S,R|wi,j|
∑

Cj + βE, the job Jj ∈
J is executed with speed sj on processor Pi in the k-th position from the end of Pi.
Then, the contribution of Jj to the objective function is minimized if it holds that sj =
( k
(αi−1)β

)1/αi.

Proof. Let sj be the speed of Jj. As Jj is executed on the processor Pi, its processing
time is wi,j

sj
. Since k − 1 jobs follow Jj on Pi, the term

wi,j

sj
is added k times on the sum

of completion times of all the jobs. Moreover, wi,j · sαi−1
j units of energy are consumed

for the execution of the job Jj. Hence, the total contribution of Jj to the objective is
k · wi,j

sj
+ β · wi,j · sαi−1

j . By differentiating the last term with respect to sj and setting

this derivative equal to zero, we can get the value of sj for which this contribution is
minimized.

The above lemma specifies the speed that the job Jj must have in an optimal schedule,
if it is executed on the k-th position of the processor Pi. In the following, we denote this
speed as s∗

i,j,k. In order to formulate our problem as a minimum weighted maximum
matching, we create the complete bipartite graph G = (V ∪ U, A) as follows: (i) for each
job Jj ∈ J , we add a vertex in V , (ii) for every pair of processor Pi ∈ P, and position
k, 1 ≤ k ≤ n, (counting from the end) we add a vertex in U , and (iii) for each edge
(Jj, (Pi, k)) ∈ A, we set its weight ci,j,k = k · wj

s∗
i,j,k

+ β · wi,j · (s∗
i,j,k)

αi−1.

P1, 1 P1, k P1, n P2, 1 Pi, 1 Pi, k Pi, n Pn, 1 Pn, k Pn, n

J1 Jj Jn

ci,j,k

A description of our algorithm follows.

Algorithm 4.2

1: Construct the bipartite graph G.
2: Find a minimum weighted maximum matching M in G.
3: for each (Jj, (Mi, k)) ∈ M do
4: Schedule Jj to the position k of Pi with speed s∗

i,j,k.

Theorem 4.3. Algorithm 4.2 is optimal for S,R|wi,j|
∑

Cj + βE.
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Proof. By the construction of G, the vertex Jj ∈ J can belong to at most one edge of
the matching. Moreover, the number of the job nodes is less than the number of the
processor-position nodes and every job node is connected with every processor-position
node. Hence, every job node belongs to a maximum matching of G. Therefore, each job
is scheduled on a single processor and, as a result, the schedule produced by the algorithm
is feasible.
We next prove the optimality of our algorithm. Among the matchings with cardinality

n, the algorithm finds the one so that the total contribution of each job Jj ∈ J to the
objective of minimizing the average completion time plus energy is minimized. Note that
the speed sj of the job Jj is selected in an optimal way according to Lemma 4.8. In
other words, given the construction of the bipartite graph G, the algorithm finds the
schedule with the minimum average completion time plus energy. Hence, our algorithm
is optimal.
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Chapter 5

Shop Environments

In this chapter, we consider speed scaling problems in shop environments.
Initially, in Section 5.1, we address the problem S,O|dj = d,pmtn|E of minimizing

the energy consumption in an open shop. For this problem, we present two optimal
algorithms. Firstly, we construct an optimal algorithm which is based on a primal-dual
schema. Unfortunately, we do not know how to compute the worst-case running time of
this algorithm. So, we evaluate its performance experimentally. Our experiments indicate
that, in general, the algorithm’s running time is linear with the number of the jobs.
However, in the very specific case where the number of the jobs is equal to the number of
the processors, there is a burst in its running time. We also compare the execution of the
primal-dual algorithm with a commercial solver. Subsequently, we describe an optimal
polynomial-time algorithm for the open shop problem which is based on a formulation as
a convex cost flow problem.
Next, in Section 5.2, we study the energy minimization problem S,J|ri,j,di,j,pmtn|E

in a job shop environment and we propose a (1 + ǫ)B̃αmax-approximation algorithm,
where B̃αmax is the αmax-th generalized Bell number. First, we formulate the problem
as an integer configuration linear program. Then we give an algorithm which solves its
fractional relaxation and applies randomized rounding in order to compute a feasible
schedule.

5.1 Energy Minimization in an Open Shop

In this section, we study the energy minimization problem S,O|dj = d,pmtn|E in an
open shop environment. In this problem, there is a set of n jobs J = {J1, J2, . . . , Jn} and
a set of m processors P = {P1, P2, . . . , Pm}. Each job Jj ∈ J consists of m operations
O1,j, O2,j, . . . , Om,j. For every operation Oi,j, Pi ∈ P and Jj ∈ J , we are given an amount
of work wi,j ≥ 0. The open shop constraint enforces that no two operations of the same
job can be executed at the same time. Each operation Oi,j must be entirely executed
by the processor Pi. That is, each job Jj ∈ J has exactly one operation Oi,j on each
processor Pi ∈ P. Obviously, if wi,j = 0, then the processor Pi does not have to execute
anything for the job Jj. In this setting, we allow preemptions of the operations, i.e. an
operation may be executed, suspended and resumed later from the point of suspension.
The objective is to find a minimum energy schedule such that all the operations are
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executed during the interval [0, d).

5.1.1 Optimal Primal-Dual Algorithm

In the following, we present an optimal algorithm for S,O|dj = d,pmtn|E which is based
on a primal-dual schema. Initially, we propose a convex programming formulation for the
problem. Then, we associate to each constraint of this formulation a dual variable and
we apply the KKT conditions which relate the primal variables to the dual variables with
a set of equalities. Next, we define a primal-dual algorithm which produces an optimal
solution for the convex program by properly modifying the dual variables. Note that a
modification of the dual variables has a direct impact on the primal variables because of
the KKT conditions. By solving the convex program we obtain a set of optimal speeds,
i.e. processing times, for all the operations. If the operation Oi,j is assigned the speed si,j,
then its processing time is equal to wi,j

si,j
. Finally, we apply an optimal algorithm for the

feasibility scheduling problem O|dj = d,pmtn|− in order to produce the final optimal
schedule.

In the problem O|dj = d,pmtn|−, we are given a set of n jobs J = {J1, J2, . . . , Jn}
and a set of m processors P = {P1, P2, . . . , Pm}. Each job Jj ∈ J consists of a set
of m operations as it is the case for S,O|dj = d,pmtn|E. The operation Oi,j, Pi ∈ P
and Jj ∈ J , must be entirely executed by the processor Pi and it has a processing
time pi,j ≥ 0. We are constrained not to execute any pair of operations of a job at the
same time. The goal is to find a feasible schedule such that all operations are scheduled
preemptively during the interval [0, d) or decide that such a schedule does not exist. This
problem is polynomially solvable and an optimal algorithm can be found in [36].

Let us, now, give a convex programming formulation for S,O|dj = d,pmtn|E. Our
formulation is based on the fact that there is always an optimal schedule in which each
operation Oi,j runs at a constant speed si,j, which comes from the convexity of the
speed-to-power function. In order to establish a convex program, we also need some
necessary and sufficient properties for the existence of a feasible schedule when we know
the processing times of the operations. The following lemma describes such properties.
Its proof is omitted and it can be found in [36].

Lemma 5.1. An instance of O|dj = d,pmtn|− is feasible if and only if

•
∑

Jj∈J pi,j ≤ d for all Pi ∈ P, and

•
∑

Pi∈P pi,j ≤ d for all Jj ∈ J .

For notational convenience, we say that Oi,j ∈ Jj and Oi,j ∈ Pi if wi,j > 0. We ignore
any operation Oi,j with wi,j = 0. Moreover, let O be the set of all the operations Oi,j,
Pi ∈ P and Jj ∈ J , such that wi,j > 0. Then, we formulate our problem as the following
convex program.
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min
∑

Oi,j∈O

wi,js
α−1
i,j (5.1)

∑

Oi,j∈Pi

wi,j

si,j

≤ d Pi ∈ P (5.2)

∑

Oi,j∈Jj

wi,j

si,j

≤ d Jj ∈ J (5.3)

si,j ≥ 0 Oi,j ∈ O (5.4)

The term (5.1) is the total energy consumption of all the operations which is our
objective function. The constraints (5.2) and (5.3) enforce that all the operations of
each processor and each job, respectively, are executed during the interval [0, d). Due to
Lemma 5.1, these constraints ensure that the optimal solution of the convex program is
a feasible optimal solution for the problem S,O|dj = d,pmtn|E. The constraints (5.4)
forbid negative speeds. The objective function is convex for α > 2 while all the constraints
are linear. Hence, the above mathematical program is indeed convex.

Note that we can solve the above convex program in polynomial time by apply-
ing the Ellipsoid algorithm. Therefore, we propose the Algorithm 5.1 for the problem
S,O|dj = d,pmtn|E.

Algorithm 5.1

1: Solve the convex program and determine a speed si,j for each operation Oi,j ∈ O.
2: Set pi,j =

wi,j

si,j
for all Oi,j ∈ O.

3: Apply an optimal algorithm for O|dj = d,pmtn|− with respect to the pi,j’s.

In the following, we propose a faster algorithm for solving the convex program instead
of using the Ellipsoid algorithm. Our algorithm is based on a primal-dual schema.

In order to describe our algorithm, we apply the KKT conditions to the convex pro-
gram (see their general form in Appendix A). First, we associate the dual variables λi and
µj, to the constraints (5.2) and (5.3), respectively. Clearly, for every operation Oi,j ∈ O, it
must be the case that si,j > 0. Thus, because of the complementary slackness conditions,
the dual variables associated to the constraints (5.4) must be equal to zero.

By the stationarity conditions we get that

∇





∑

Oi,j∈O

wi,js
a−1
i,j



+
∑

Pi∈P

λi · ∇





∑

Oi,j∈Pi

wi,j

si,j

− d



+
∑

Jj∈J

µj · ∇





∑

Oi,j∈Jj

wi,j

si,j

− d



 = 0 ⇔

∑

Oi,j∈O

(

(a − 1)wi,js
a−2
i,j − (λi + µj)

wi,j

s2i,j

)

∇si,j = 0 ⇔

sα
i,j =

λi + µj

α − 1
Oij ∈ O (5.5)
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The complementary slackness conditions for the constraints (5.2) and (5.3) are ex-
pressed as follows.

λi ·





∑

Oi,j∈Pi

wi,j

si,j

− d



 = 0 Pi ∈ P (5.6)

µj ·





∑

Oi,j∈Jj

wi,j

si,j

− d



 = 0 Jj ∈ J (5.7)

The KKT conditions give strong relations between the primal and the dual variables.
Indeed, the Equations (5.5) connect directly the primal variables si,j with the dual vari-
ables λi and µj. Intuitively, each dual variable λi, Pi ∈ P, can be considered as the
contribution of the processor Pi to the speed of the operations Oi,j, Jj ∈ J . In a similar
way, each dual variable µj, Jj ∈ J , can be considered as the contribution of the job Jj

to the speed of the operations Oi,j, Pi ∈ P.
Next, we describe our primal-dual algorithm for solving the convex program. The

main idea of the algorithm is to determine the optimal values of dual variables λi and µj,
and hence the speeds of operations, by modifying them greedily. Our algorithm initializes
the dual variables according to the following lemma that provides upper and lower bounds
for them.

Lemma 5.2. In any optimal solution of the convex program, it holds that

(i) 0 ≤ λi ≤ (α − 1)

(∑

Oi,j∈Pi
wi,j

d

)α

Pi ∈ P

(ii) 0 ≤ µj ≤ (α − 1)

(∑

Oi,j∈Jj
wi,j

d

)α

Jj ∈ J

Proof. The lower bound on every λi and µj comes from the fact that any optimal solution
of the convex program satisfies the KKT conditions and, as a result, the dual feasibility
conditions.
Consider a processor Pi ∈ P. As we search for an upper bound on λi, we assume that

λi > 0. Hence, by (5.6) and (5.5), we have, respectively, that

∑

Oi,j∈Pi

wi,j

si,j

− d = 0 ⇔
∑

Oi,j∈Pi

wi,j

α

√

λi+µj

α−1

= d

To obtain the upper bound on λi, we can consider that the speed of each operation
Oi,j ∈ Pi depends only on the contribution of the processor Pi, that is µj = 0 for all
Oi,j ∈ Pi. Hence, we have that

∑

Oi,j∈Pi

wi,j

α

√

λi

α−1

≥ d ⇔ λi ≤ (α − 1)

(∑

Oi,j∈Pi
wi,j

d

)α

We can upper bound every γj with similar arguments.
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Based on the previous lemma, we initialize each dual variable λi, Pi ∈ P, to its lower
bound and each dual variable µj, Jj ∈ J , to its upper bound. Given these initial values,
the obtained schedule may not be feasible. More specifically, the total processing time
of all the operations of some processor Pi may be more than d, i.e.

∑

Oi,j∈Pi

wi,j

α

√

µj
α−1

> d

and there might be more than one such processors. For such a processor Pi, we in-
crease λi so that that the total processing time of Pi’s operations becomes exactly d, i.e.
∑

Oi,j∈Pi

wi,j

α

√

λi+µj
α−1

= d. We refer to this step as an infeasible-to-feasible step. The increas-

ing of λi might have as a result some jobs to become non-tight, i.e.
∑

Oi,j∈Jj

wi,j

α

√

λi+µj
α−1

< d.

If there is a non-tight job Jj whose dual variable µj is positive, then the corresponding
equation 5.7 of the complementary slackness conditions is not satisfied. For such a job Jj,
we decrease µj until it becomes equal to the maximum between zero and the value of µj

needed so that Jj becomes again tight, i.e.
∑

Oi,j∈Jj

wi,j

α

√

λi+µj
α−1

= d. We refer to this step as

a non-tight-to-tight step. The decreasing of µj’s has as a result some processors to become
non-feasible, and we go on with an infeasible-to-feasible step and so on. The criterion to
terminate this procedure is when after a non-tight-to-tight step all the complementary
slackness conditions are satisfied. A formal description of the above procedure is given
in Algorithm 5.2.

Algorithm 5.2

1: For each Pi ∈ P, set λi = 0.

2: For each Jj ∈ J , set µj = (α − 1)

(∑

Oi,j ∈Jj
wi,j

d

)α

.

3: while the complementary slackness conditions are not satisfied do
4: for each Pi ∈ P such that the processor Pi is not feasible do

5: Choose λi such that





∑

Oi,j∈Jj

wi,j

α

√

λi+µj
α−1

− d



 = 0;

6: for each Jj ∈ J such that the job Jj is not tight do

7: Choose the maximum value of µj such that µj ·



d −
∑

Oi,j∈Jj

wi,j

α

√

λi+µj
α−1



 = 0;

Note that, the algorithm modifies a dual variable λi only if the processor Pi is non-
feasible in such a way to make it feasible (and tight). In order to accomplish this, the
speed of each operation Oi,j ∈ Pi is increased by increasing λi. By the definition of the
algorithm, Pi can be in a feasible and non-tight state only if λi = 0. In a similar way the
algorithm modifies a dual variable µj only if the job Jj is non-tight (and feasible) in such
a way to make it tight. To do this, the speed of each operation Oi,j ∈ Jj is decreased
by decreasing µj. By the definition of the algorithm, Jj cannot be in an infeasible state.
Based on these observations, the following lemma follows.

Lemma 5.3.
(i) For each Pi ∈ P, the value of λi is always non-decreasing.
(ii) For each Jj ∈ J , the value of µj is always non-increasing.
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Theorem 5.1. Algorithm 5.2 converges to an optimal solution of the convex program.

Proof. In each iteration the algorithm modifies at least one dual variable; otherwise
the complementary slackness conditions are satisfied and the algorithm terminates. By
Lemma 5.3 the modification of the dual variables is monotone, while by Lemma 5.2 there
are well-defined lower and upper bounds for them. Therefore, the algorithm terminates.
In order to show that the algorithm converges in an optimal solution, we just have to

observe that the final solution satisfies the KKT conditions. The stationarity conditions

(5.5) hold for any operation Oi,j as its speed is set as si,j =
α

√

λi+µj

α−1
. The comple-

mentary slackness conditions (5.6) hold since after the final non-tight-to-tight step any
processor Pi is either tight or λi = 0; if not then the algorithm would have executed a
new iteration. The complementary slackness conditions (5.7) hold since we force that

µj ·



d −
∑

Oi,j∈Jj

wi,j

α

√

λi+µj
α−1



 = 0 in the last non-tight-to-tight step.

5.1.2 Experimental Evaluation of the Primal-Dual Algorithm

In the following we test our primal-dual algorithm experimentally towards two directions.
The first direction is to observe the behavior of our algorithm when the size of the instance
increases. The second direction is to compare the execution time of the primal-dual
approach against the execution time of a baseline algorithm which is a commercial solver
that solves directly the corresponding convex program.

System Specification and Benchmark Generation

Our simulations have been performed on a machine with a CPU Intel Xeon X5650 with
8 cores, running at 2.67GHz. The operating system of the machine is a Linux Debian
6.0. We used Matlab with the CVX toolbox. The solver used for the convex program
is SeDuMi. For both our algorithm and the convex program, we set ε = 10−7 to be the
desired accuracy of the returned solution.
The instance of the problem consists of a matrix m × n that corresponds to the work

of the operations, the value of α and the deadline d. However, we experiment with two
more parameters: (i) the density p of the instance, that is the number of non-zero work
operations, and (ii) the range [1, wmax] of the values of works.
We have considered several combinations for the parameters m, 1 ≤ m ≤ 50, and n,

1 ≤ n ≤ 200. For each combination, we have first decided randomly with probability p if
there is a non-zero work operation in each position of the m × n matrix. The value of p
has been selected to be 0.5 or 0.75 or 1. If the created instance did not correspond to the
selected values of m and n, we rejected it and we replaced it by another. In other words,
we reject a matrix iff there exists a line or a column in which each value is equal to zero.
Then, for each operation with non-zero work, we selected at random an integer in the
range of [1, wmax]. Note here that wmax and the deadline d are strongly related. Indeed,
given a matrix of works and a deadline d, if we increase all works and the deadline by
the same factor, then the optimal solutions of the two instances will tend to have very
similar (if not the same) speeds and energy consumption. For this reason, we have fixed
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the value of d = 1000 and we examined three different values for wmax, i.e., wmax = 10,
wmax = 50 and wmax = 100. These values are selected, in general, in the direction of
creating instances in which the average speed in the optimal solution is greater than one,
almost equal to one and smaller than one, respectively. Finally, as in most applications
the value of α is between two and three, we used three different values for it, that is
α = 2, α = 2.5 and α = 3.

For each combination of parameters we have repeated the experiments with 30 differ-
ent matrices. All results we present below, concern the average of these 30 instances.

Results

The main goal of our experiments is to study the behavior of the primal-dual algorithm
when the size of the instance increases. However, during our experiments we noticed that
the speed of convergence strongly depends on the relation between the number of jobs n
and the number of processors m.

In Table 5.1, we show how the size of the instance affects the number of modifications
of the dual variables made by the primal-dual algorithm. We observe that, if n > m
then the number of modifications increases linearly with the size of the instance (see also
Figure 5.1 for a graphical representation). Moreover, the parameters α, wmax and the
density p do not play any role to the number of modifications.

n m = 5 m = 10 m = 15 m = 20 m = 25 m = 30 m = 40 m = 50
5 40101 1 2 2 2 2 2 2
10 151 279611 3 4 3 4 4 4
20 255 295 384 – 34 7 7 10
30 355 410 443 500 593 – 12 15
40 455 510 565 572 640 756 – 32
50 555 610 665 720 768 755 947 –
60 655 710 765 820 872 864 1040 1294
70 755 810 865 920 975 1030 1034 1250
100 1055 1110 1165 1220 1275 1330 1440 1495
150 1555 1610 1665 1720 1775 1830 1940 2050
200 2055 2110 2165 2220 2275 2330 2440 2550

Table 5.1: The number of modifications of the dual variables done by the primal-dual algorithm. The
values of the table correspond to α = 2, wmax = 10, p = 1. Each entry of the table is the average over
30 instances. The empty entries correspond to cases with m = n and take time longer than 30 minutes
each and are interrupted.
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Figure 5.1: The number of modifications of the dual variables made by the primal-dual algorithm if
n > m (α = 2, wmax = 10, p = 1).

Note also that if n < m then the number of modifications increases linearly with the
size of the instance. In fact the two cases n > m and n < m should be symmetric.
However, the initialization step of our algorithm breaks this symmetry. Recall that the
algorithm initializes the dual variables that correspond to processors (λi’s) to zero and
the dual variables that correspond to jobs (µj’s) to their upper bounds. In the case
where n < m, we expect to have all jobs tight and most of the processors non-tight in the
optimal schedule of a random instance. Hence, the number of non-zero λi’s is expected
to be very small. The initialization step helps in this direction, and this is the reason
why the number of modifications is very small if n < m.
However, if n = m the behavior of our algorithm completely changes. For example,

for m = 10 and n = 10 we need 279611 modifications, while for m = 10 and n = 20
we need only 295. Even more, for m = n = 20 the primal-dual algorithm does not even
converges in 30 minutes. Furthermore, if m = n then the parameters α, wmax and p affect
the convergence of the algorithm. For example, in the case where m = 10 and n = 10,
then Table 5.2 shows the number of modifications of the dual variables performed by our
algorithm when we fix the two of the three parameters. Note that in the last line of the
table, the algorithm did not terminate within the time threshold.
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Parameters Modifications

α = 2
p = 0.5 344

wmax = 10
p = 0.75 23915
p = 1 179611

wmax = 10
α = 2 279611

p = 1
α = 2.5 59785
α = 3 10716

α = 2
wmax = 10 279611

p = 1
wmax = 50 406608
wmax = 100 –

Table 5.2: The table shows how the parameters α, p and wmax affect the performance of the primal-dual
algorithm when n = m = 10.

In Table 5.3 we give a comparison of the execution time of the primal-dual algorithm
with the execution time of solving directly the convex program using the SeDuMi solver
in Matlab. We observe again the difference between n Ó= m and n = m. In the first case,
our algorithm highly outperforms the solver (see Figure 5.2). In the second case, our
algorithm does not even terminates within 30 minutes if n = m = 20, while the execution
time of the solver is not affected by this. Note also that the execution time of the solver
as well as the execution time of the primal-dual algorithm when n = m depend on the
parameters α, wmax and p.

n
m = 10 m = 20 m = 30 m = 40 m = 50

CP PD CP PD CP PD CP PD CP PD
5 0.59 0.00 0.99 0.00 1.41 0.01 1.83 0.01 2.11 0.01
10 1.22 147.93 1.26 0.01 1.81 0.01 2.42 0.01 2.59 0.01
20 1.25 0.06 3.12 – 2.57 0.02 3.11 0.02 3.92 0.03
30 1.72 0.08 2.58 0.12 5.57 – 4.36 0.03 5.30 0.04
40 2.17 0.10 3.28 0.13 4.38 0.21 8.31 – 6.48 0.05
50 2.67 0.12 4.00 0.16 5.19 0.19 6.72 0.33 11.49 –
60 3.47 0.15 4.96 0.18 6.72 0.23 8.39 0.29 9.87 0.47
70 3.86 0.16 5.99 0.21 7.73 0.26 9.84 0.28 11.42 0.40
100 5.85 0.22 8.62 0.27 11.85 0.32 13.86 0.38 17.56 0.42
150 9.31 0.31 14.34 0.38 19.30 0.47 24.66 0.52 31.10 0.56
200 12.89 0.42 19.87 0.51 28.78 0.59 36.83 0.68 46.31 0.74

Table 5.3: A comparison of the execution time of the primal-dual approach (PD) with the execution
time of the SeDuMi solver for convex programs (CP). The execution times are computed in seconds. The
values of the table correspond to α = 2, wmax = 10, p = 1. Each entry of the table is the average over
30 instances. The empty entries correspond to cases with m = n and take time longer than 30 minutes
each and are interrupted.



98 Chapter 5. Shop Environments

Figure 5.2: A comparison of the execution times of the primal-dual algorithm and the SeDuMi solver for
convex programs if n > m (m = 10, α = 2, wmax = 10, p = 1).

The results presented above motivated us to further explore the case n = m. For this
reason, we performed more experiments for m = 10, 20, 30 and n = m−5, m−4, . . . , m+
4, m + 5. The results of these experiments are shown in Figure 5.3. The horizontal axis
corresponds to the difference m − n, while the vertical axis corresponds to the logarithm
of the modifications of the dual variables made by our algorithm.

Figure 5.3: The vertical axis represents the logarithm of the modifications of the dual variables made by
the primal-dual algorithm (α = 2, wmax = 10, p = 1).

We observe that the behavior of the primal-dual algorithm dramatically changes when
n = m, while there is a much smaller perturbation when n = m ± 1 and n = m ± 2.
In all other cases the number of modifications seems to increase linearly with the size of
the instance. The problem with the case where n = m probably occurs because in an
optimal solution of a random instance almost all processors and jobs are tight, that is the
total execution time of each processor and each job is equal to the deadline d. In other
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words, all λi’s and µj’s are expected to be non-zero. The primal-dual algorithm, in each
iteration “corrects” first the values of λi’s and then the values of µj’s. As all of them are
expected to be non-zero in the optimal solution the required precision plays a significant
role to the speed of the convergence of the algorithm.

5.1.3 Optimal Algorithm based on Minimum Convex Cost Flow

Next, we describe an optimal algorithm for S,O|dj = d,pmtn|E which comes from a for-
mulation of the problem as a convex cost flow problem. The main difficulty in establishing
this formulation is the fact that we are not able tos compute directly the total processing
time T ∗ of all the operations in an optimal schedule. We overcome this difficulty by
calculating the value of T ∗ algorithmically. Specifically, we apply a sort of binary search
with repeated convex cost flow computations. Once we have calculated T ∗, a convex cost
flow calculation gives the speeds, and hence the execution times, of the operations in an
optimal schedule for S,O|dj = d,pmtn|E. In order to construct a feasible schedule, we
then apply an optimal algorithm for the feasibility problem O|dj = d,pmtn|−.
Recall that, in O|dj = d,pmtn|−, we are given a set of n jobs J = {J1, J2, . . . , Jn}

and a set of m parallel processors P = {P1, P2, . . . , Pm}. Each job Jj ∈ J is composed of
m operations O1,j, O2,j, . . . , Om,j. The operation Oi,j of the job Jj ∈ J has an amount of
work wi,j ≥ 0 and it must be entirely executed on the processor Pi ∈ P. Two operations
of the same job must not be executed simultaneously. Preemptions of jobs are allowed.
The objective of the problem is to construct a feasible schedule or decide that such a
schedule does not exist.
Next, we formulate S,O|dj = d,pmtn|E as a convex cost flow problem (the definition

of the latter problem can be found in the Appendix C). We construct a graph G = (V, A)
which consists of a source node s, a destination node t, a job node Jj, for each job Jj ∈ J ,
and a processor node Pi, for each processor Pi ∈ P. The graph G contains an arc (s, Jj)
with capacity d for each Jj ∈ J , an arc (Pi, t) with capacity capacity d for each processor
Pi ∈ P and an arc (Jj, Pi) of infinite capacity, for every Pi ∈ P and Jj ∈ J such that
wi,j > 0. Apart from a capacity, each arc e ∈ A of G comes with a convex cost function
ge(x) which specifies the cost incurred if x units of flow cross the arc e. The cost functions
of the arcs are defined as follows.

• g(s,Jj)(x) = 0, for all Jj ∈ J ,

• g(Pi,t)(x) = 0, for all Pi ∈ P, and

• g(Jj ,Pi)(x) =
wα

i,j

xα−1 , for all Jj ∈ J and Pi ∈ P such that wi,j > 0.
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Figure 5.4: The graph for the convex cost flow formulation of S,0|dj = d,pmtn|E. The arcs (s, Jj) and

(Pi, t) have zero cost functions while each arc (Jj , Pi) has cost function g(Jj ,Pi) =
wα

i,j

xα−1 .

We can imagine that any feasible (s, t)-flow in the graph G corresponds to a feasible
schedule for S,O|dj = d,pmtn|E. The flow traversing the arcs of G corresponds to
the execution time of the jobs. Consider a feasible (s, t)-flow F in G and let fe be the
amount of flow that crosses the arc e ∈ A according to F . The value f(Jj ,Pi) corresponds

to the execution time of the operation Oi,j, i.e.
wi,j

f(Jj ,Pi)
is the speed of Oi,j and

wα
j

fα−1
(Jj ,Pi)

is

the energy consumed for the execution of Oi,j. Furthermore, f(s,Jj) represents the total
execution time of all the operations of the job Jj. Similarly, f(Pi,t) corresponds to the
total time that Pi executes any operation. Hence, the total flow that leaves the source
node s and arrives to the destination node t corresponds to the total execution time of
all the operations.
In order to complete our convex cost flow formulation for S,O|dj = d,pmtn|E, it

remains to specify the amount of flow T ∗ that has to be sent from s to t. Notice
that T ∗ must be the total processing time of all the operations in an optimal sched-
ule for S,O|dj = d,pmtn|E. Unfortunately, the value T ∗ cannot be computed through
a straightforward formula. However we describe how to compute it algorithmically at
the end of this section. For the moment, we assume that we can indeed compute T ∗

efficiently. Then, we propose the following algorithm for S,O|dj = d,pmtn|E.

Algorithm 5.3

1: Construct the graph G.
2: Compute the total execution time of all operations T ∗ in an optimal schedule.
3: Find a convex cost (s, t)-flow F of value T ∗ in G.
4: Determine the processing time pi,j of each operation.
5: Apply an algorithm for O|dj = d,pmtn|− to find a feasible schedule with respect to
the pi,j’s.
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Let us, now, show that our algorithm is optimal.

Theorem 5.2. Algorithm 5.3 finds an optimal schedule for S,O|dj = d,pmtn|E.

Proof. We first prove that there exists a feasible schedule of total execution time T for
S,O|dj = d,pmtn|E if and only if there is a feasible (s, t)-flow F of value T in the graph
G, for any T > 0.
Suppose that there exists a feasible schedule of total execution time T . Let pi,j be the

execution time of the operation Oi,j. Hence, the speed of Oi,j is
wi,j

pi,j
. Then, consider the

flow in G which is defined as follows.

• f(s,Jj) =
∑

Pi∈P pi,j for all Jj ∈ J

• f(Jj ,Pi) = pi,j for all Pi ∈ P and Jj ∈ J

• f(Pi,t) =
∑

Jj∈J pi,j for all Pi ∈ P

Recall that every operation must be executed during the interval [0, d). Because of the
open shop constraint, it must hold that

∑

Pi∈P pi,j ≤ d. Moreover, due to the fact that each
processor can execute at most one operation at each time, we have that

∑

Jj∈J pi,j ≤ d.
Therefore, the above flow is of value T and it is a feasible flow in the graph G.
To the other direction, assume that there exists a feasible flow of value T in G. We can

then define a feasible schedule for S,O|dj = d,pmtn|E by setting the processing time of
each operation Oi,j to be equal to f(Jj ,Ii), i.e. by setting the speed of Oi,j equal to

wi,j

f(Jj ,Ii)
.

Since the flow is feasible, it must hold that
∑

Pi∈P f(Jj ,Ii) ≤ d and
∑

Jj∈J f(Jj ,Ii) ≤ d. By
Lemma 5.1, we can construct a feasible schedule for S,O|dj = d,pmtn|E.
We conclude the proof with the optimality of our algorithm. Among the feasible flows

of value T ∗, the algorithm finds the one which minimizes the term
∑

Pi∈P

∑

Jj∈J

wα
i,j

fα−1
(Jj ,Pi)

.

In other words, given our convex cost flow formulation, the algorithm finds the schedule
with the minimum energy among the schedules of total execution time T ∗. But, we have
assumed that there exists an optimal schedule of total execution time equal to T ∗ and
we can compute T ∗ efficiently. Hence, our algorithm is optimal.

It remains to show how we can compute the total execution time T ∗ of all operations in
an optimal schedule for S,O|dj = d,pmtn|E. Let us first introduce some additional no-
tation. Given a feasible schedule S, we denote by pi,j the execution time of the operation
Oi,j, for Pi ∈ P and Jj ∈ J , in S. Then, let þp = (p1,1, p2,1, . . . , pm,1, p1,2, . . . , pm,n) be the
vector of the execution times of all the operations in S. Then, let T (þp) =

∑

Pi∈P

∑

Jj∈J pi,j

and E(þp) =
∑

Pi∈P

∑

Jj∈J

wα
i,j

pα−1
i,j

be the functions that map any vector of execution times

þp to the total execution time and the total energy consumption of the schedule S. Note
that, E(þp) is convex with respect to the vector þp as a sum of convex functions. Fur-
thermore, we define the function E∗(T ) = min{E(þp) : T (þp) = T} which indicates the
minimum energy consumption when the sum of execution times of all operations must
be equal to T .
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Lemma 5.4. E∗(T ) is convex with respect to T .

Proof. Consider three values of total execution times T1, T2, T3 > 0, and let þp1, þp2, þp3 be
three corresponding optimal vectors of execution times, respectively. That is, T (þp1) = T1,
T (þp2) = T2, T (þp3) = T3 and E∗(T1) = E(þp1), E∗(T2) = E(þp2), E∗(T3) = E(þp3). In
other words, þp1, þp2, þp3 define optimal schedules (w.r.t. to minimizing the total energy
consumption) given that the total execution time of all the operations must be equal to
T1, T2, T3, respectively. Without loss of generality, assume that T1 ≤ T3 ≤ T2. Clearly,
there must be a θ ∈ [0, 1] such that T3 = θT1 + (1 − θ)T2. Consider, now, the vector
þp = θ þp1 + (1− θ)þp2. As T (þp) is linear with respect to þp, it holds that

T (þp) = T (θ þp1 + (1− θ)þp2) = θT (þp1) + (1− θ)T (þp2) = T (þp3) = T3

By the definition of E∗(T ), it holds that E∗(T3) ≤ E(þp). Moreover, recall that the
function E(þp) is convex with respect to þp. In all, we have that

E∗(θT1 + (1− θ)T2) = E∗(T3)

≤ E(þp)

= E (θ þp1 + (1− θ)þp2)

≤ θE(þp1) + (1− θ)E(þp2)

= θE∗(T1) + (1− θ)E∗(T2)

and, hence, the function E∗(T ) is convex with respect to T .

Next, we give the search algorithm that finds the value T ∗ = argminT {E∗(T )}. Con-
sider any T1, T2, T3 > 0 such that T1 < T3 and T2 =

T1+T3
2
. Clearly, T1 < T2 < T3. As

E∗(T ) is convex with respect to T , we have that E∗(T2) ≤ E∗(T1)+E∗(T3)
2

. Therefore, it
follows that either E∗(T2) ≤ E∗(T1) or E∗(T2) ≤ E∗(T3) (or both). If only the first is
true, then we reduce our search space to [T2, T3]. Accordingly, if only the second is true,
then we reduce our search space to [T1, T2]. Finally, if both are true, then we reduce our
search space to one of the following intervals: [T1, T2], [T2, T3] or [

T1+T2
2

, T2+T3
2
]. Notice

that T1+T2
2

< T2 < T2+T3
2

and that (T1+T2
2

+ T2+T3
2
)/2 = T2. Thus, due to the convexity of

E∗(T ), we have that E∗(T2) ≤ (E∗(T1+T2
2
) + E∗(T2+T3

2
))/2. So, it must be the case that

either E∗(T2) ≤ E∗(T1+T2
2
) or E∗(T2) ≤ E∗(T2+T3

2
)) (or both). If only the first is true,

then the search space is reduced to [T2, T3]. Similarly, if only the second is true, then
the search space is reduced to [T1, T2]. Finally, if both are true, then the search space
is reduced to [T1+T2

2
, T2+T3

2
]. The correctness of all the cases is based on the fact that

E∗(T ) is convex. The Algorithm 5.4 performs this procedure. All the possible cases of
the search space of the binary search are illustrated in Figure 5.5. The values T1, T2 and
T3 are initialized as follows: T1 = 0, T2 =

TUB

2
and T3 = TUB, respectively, where TUB is

an upper bound on the sum of execution times for all operations in any optimal schedule.
For instance, TUB = m · d.
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Algorithm 5.4

1: TUB = m · d.
2: T1 = 0, T2 =

TUB

2
, T3 = TUB.

3: while T3 − T1 > ǫ do
4: Compute the values E∗(T1), E∗(T2) and E∗(T3) by computing convex cost flows of

values T1, T2 and T3, respectively, in the graph G.
5: if E∗(T1) ≥ E∗(T2) and E∗(T2) > E∗(T3) then
6: T ′

1 = T2, T ′
2 =

T2+T3
2
, T ′

3 = T3.
7: if E∗(T1) < E∗(T2) and E∗(T2) ≤ E∗(T3) then
8: T ′

1 = T1, T ′
2 =

T1+T2
2
, T ′

3 = T2.
9: if E∗(T1) ≥ E∗(T2) and E∗(T2) ≤ E∗(T3) then
10: Compute the values E∗(T1+T2

2
) and E∗(T2+T3

2
) by computing convex cost flows of

values T1+T2
2

and T2+T3
2
, respectively, in the graph G.

11: if E∗(T1+T2
2
) ≥ E∗(T2) and E∗(T2) > E∗(T2+T3

2
) then

12: T ′
1 = T2, T ′

2 =
T2+T3

2
, T ′

3 = T3.
13: if E∗(T1+T2

2
) < E∗(T2) and E∗(T2) ≤ E∗(T2+T3

2
) then

14: T ′
1 = T1, T ′

2 =
T1+T2

2
, T ′

3 = T2.
15: if E∗(T1+T2

2
) ≥ E∗(T2) and E∗(T2) ≤ E∗(T2+T3

2
) then

16: T ′
1 =

T1+T2
2
, T ′

2 = T2, T ′
3 =

T2+T3
2
.

17: T1 = T ′
1, T2 = T ′

2, T3 = T ′
3.

18: return T2;

Lemma 5.5. Algorithm 5.4 returns a value T ∗ such that the term E∗(T ∗) is minimized.

Proof. At each iteration of the algorithm, the search space is reduced. This reduction is
accomplished by removing one of the intervals [T1, T2), (T2, T3], or [T1,

T1+T2
2
)∪ (T2+T3

2
, T3]

from the search space. In order to establish the correctness of our algorithm, it suffices to
show that, at the end of each iteration, there is a value T ∗ in the algorithm’s remaining
search space that minimizes the term E∗(T ∗).
Consider some iteration of Algorithm 5.4 and suppose that it removes the interval

(T2, T3] from the search space. We assume for the sake of contradiction that T ∗ ∈ (T2, T3],
for any T ∗ = argminT {E∗(T )}. Since the interval (T2, T3] is removed by the algorithm,
we have one of the following cases:

• either E∗(T1) < E∗(T2) ≤ E∗(T3),

• or E∗(T2) ≤ E∗(T1), E∗(T2) ≤ E∗(T3) and E∗(T1+T2
2
) < E∗(T2).

Initially, we consider the former case. Let T ∗ be the total execution time of an optimal
solution. Since T ∗ ∈ (T2, T3], it holds that T2 ∈ [T1, T ∗). Therefore, we know that there
is a θ ∈ [0, 1] such that T2 = θT1 + (1− θ)T ∗. Then, due to the convexity of the function
E∗(T ), we have that E∗(T2) ≤ θE∗(T1)+ (1− θ)E∗(T ∗). But, E∗(T1) < E∗(T2) and, as a
result, E∗(T2) < θE∗(T2) + (1 − θ)E∗(T ∗), or, equivalently, E∗(T2) < E∗(T ∗). But, this
contradicts the fact that T ∗ minimizes E∗(T ∗).
We, now, consider the latter case. Let T ∗ ∈ (T2, T3] be some value minimizing E∗(T ∗).

Then, by arguing as before, there is a θ ∈ [0, 1] such that T2 = θ(T1+T2
2
) + (1− θ)T ∗. By
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the convexity of the function E∗(T ) and the fact that E∗(T1+T2
2
) < E∗(T2), which reach

a contradiction on the optimality of T ∗ as before.

Note that, if the interval ignored by the algorithm is [T1, T2), then the fact that there
is a value T ∗ ∈ [T2, T3] minimizing E∗(T ∗) can be proved with almost the same manner
as in the case where the interval (T2, T3] is removed.

Finally, suppose that the algorithm reduces the search space to [T1+T2
2

, T2+T3
2
]. This

happens when E∗(T2) ≤ E∗(T1), E∗(T2) ≤ E∗(T1+T2
2
), E∗(T2) ≤ E∗(T2+T3

2
) and E∗(T2) ≤

E∗(T3). Assume for contradiction that T ∗ ∈ (T2+T3
2

, T3] (note that we must also consider
the case where T ∗ ∈ [T1,

T1+T2
2
) but it can be handled analogously). Due to the convexity

of the function E∗(T ), we have that E∗(T2+T3
2
) ≤ E∗(T2)+E∗(T3)

2
. Thus, E∗(T2+T3

2
) ≤

E∗(T3). Given that T2 ≤ T2+T3
2

< T ∗ ≤ T3 and E∗(T2), E∗(T2+T3
2
) ≤ E∗(T3), we can reach

a contradiction on the fact that there is an optimal solution T ∗ such that T ∗ ∈ (T2+T3
2

, T3]
as before.

5.2 Energy Minimization in a Job Shop

In this section, we consider the energy minimization problem in a job shop environment
in which preemption of operations are allowed, i.e. S,J|ri,j,di,j,pmtn|E, and we present
an (1 + ǫ)B̃α-approximation algorithm. Our algorithm solves the fractional relaxation of
an integer configuration linear program (LP) and computes a solution for the problem
by applying randomized rounding.

The instance of the problem consists of a set of jobs J , where each job Jj ∈ J
consists of nj operations Oj,1, Oj,2, . . . , Oj,nj

, which must be executed in this order. That
is, Ok+1,j can start only once the operation Oj,k has finished. Let ñ be the number
of all the operations, i.e. ñ =

∑

j∈J nj. Each operation Oj,k has an amount of work
wj,k. Moreover, we are given a set of m heterogeneous processors P . Each operation
Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, is associated with a single processor Pi ∈ P on which
it must be entirely executed. Note that more than one operations of the same job may
have to be executed on the same processor. Furthermore, for each operation Oj,k, we
are given a release date rj,k and a deadline dj,k. For each Jj ∈ J , we can assume that
rj,1 ≤ rj,2 ≤ . . . ≤ rj,nj

as well as dj,1 ≤ dj,2 ≤ . . . ≤ dj,nj
. Preemptions of operations are

allowed. The objective is to find a feasible schedule of minimum energy consumption.

Initially, we formulate the job shop problem as an integer configuration LP. In order to
define the notion of a configuration, we discretize the time into a number of slots which is
polynomial to the size of the instance and to 1/ε. Once we have discretized the time, we
consider a variation of our problem in which, during every such slot on a processor Pi ∈ P,
either a single operation is executed or the Pi is idle. The optimal energy consumption
of the new problem is at most a factor of (1 + ǫ) the energy consumption of the original
job shop problem. Then, we define a configuration as a schedule for a job, i.e. a schedule
for all the operations of the job. Due to the convexity of the speed-to-power function of
every processor, there is always an optimal schedule such that each operation is executed
at a constant speed. Therefore, a well-defined configuration has to specify the set of slots
during which every operation of a job is executed.
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Figure 5.5: The possible cases of the binary search Algorithm 5.4.
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We partition the time into intervals as follows. We define the time points t0, t1, . . . , tτ ,
in increasing order, where each tℓ corresponds to either a release date or a deadline, so
that for each release date and deadline of an operation there is a corresponding tℓ. Then,
we define the intervals Iℓ = [tℓ−1, tℓ), for 1 ≤ ℓ ≤ τ , and we denote by |Iℓ| the length of Iℓ.
Note that there are no release dates or deadlines inside any interval Iℓ, 1 ≤ ℓ ≤ τ . Then
we further discretize the time in each interval Iℓ. In the following lemma we assume that
the release dates and the deadlines of all operations are integers.

Lemma 5.6. There is a feasible schedule with energy consumption at most (1 + ǫ)αmax ·
OPT in which each piece of every operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, executed
during the interval Iℓ, 1 ≤ ℓ ≤ τ , starts and ends at a time point tℓ−1+ r ǫ

ñ(1+ǫ)
|Iℓ|, where

r ≥ 0 is an integer.

Proof. Consider an optimal schedule S∗ for the job shop problem. For the interval Iℓ,
1 ≤ ℓ ≤ τ , we define the time points q0 < q1 < q2 < . . . < qu, where q0 = tℓ−1 and qu = tℓ,
so that each qp, 0 ≤ p ≤ u, corresponds to either a begin time or a completion time of a
piece of an operation on any processor during Iℓ in S, and there is a corresponding time
point qp for every possible begin time and completion time. We call the interval (qp−1, qp],
for 1 ≤ p ≤ u, a slice. By Baptiste et al. [19], we know that there exists an optimal
schedule S∗ with at most ñ slices during Iℓ, i.e. u = O(ñ).
We will now transform an optimal schedule S∗ to a feasible schedule S satisfying the

lemma. Consider an interval Iℓ, 1 ≤ ℓ ≤ τ . We first create an idle period of length
ǫ

1+ǫ
|Iℓ|. This can be done by increasing the speeds of all processors of all slices in Iℓ by

a factor of 1 + ǫ. Hence, the energy consumption is at most a factor of (1 + ǫ)αmax far
from the energy of S∗. In order to obtain S, we round up the length of each slice to the
closest r ǫ

ñ(1+ǫ)
|Iℓ|. Hence, the length of each slice is increased by at most

ǫ
ñ(1+ǫ)

|Iℓ|. Since
the number of slices is at most ñ, the total processing time in Iℓ is increased by at most
ñ( ǫ

ñ(1+ǫ)
|Iℓ|) =

ǫ
1+ǫ

|Iℓ|, which is the length of the created idle period. Thus, S is a feasible
schedule, and the lemma follows.

Lemma 5.7. There is a feasible schedule with energy consumption at most (1+ǫ)αmax(1+
2

ñ−2
)αmax(1 + ǫ

1−ǫ
)αmax · OPT and for each operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, there

are two time points bj,k and cj,k as defined in Lemma 5.6 such that each piece of Oj,k

starts and ends at a time point bj,k + h ǫ
ñ3
(cj,k − bj,k) in (bj,k, cj,k], where h ≥ 0 is an

integer.

Proof. Consider a schedule S satisfying Lemma 5.6. According to this, we have parti-
tioned the interval Iℓ, 1 ≤ ℓ ≤ τ , into polynomial to ñ and to 1/ǫ number of equal length
slots. In each of these slots, each operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, either is
executed during the whole slot or is not executed at all. Let bj,k and cj,k be the starting
time of the first piece and the completion time of the last piece, respectively, of Oj,k in
S.
We will first transform the schedule S to a feasible schedule S ′ in which the execution

time of each operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, is at least
ǫ
ñ
(cj,k − bj,k) as follows.

For each slot s of Lemma 5.6 we increase the processors’ speeds so as to create an idle
period of length ǫ|s|, where |s| is the length of the slot. This can be done by increasing
the speeds by a factor of 1+ ǫ

1−ǫ
, and hence the total energy consumption in S is increased
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by a factor of (1 + ǫ
1−ǫ
)α. For each operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, we reserve an

ǫ|s|
ñ
period to each slot s in (bj,k, cj,k]. In S ′, we decrease the speed of Oj,k so that its total

work is executed during the periods where Oj,k was executed in S and the additional
cj,k − bj,k reserved periods. Therefore, in the final schedule the processing time of each
operation Oj,k is at least

ǫ
ñ
(cj,k − bj,k). After this transformation we apply the Earliest

Deadline First (EDF) policy to the operations of each processor separately, considering as
release date and deadline of each operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, the time points
bj,k and cj,k, respectively. This ensures that we have a feasible schedule with at most ñ
preemptions, as in EDF an operation may be interrupted only when another operation
is released.

Next, we transform S ′ to a new schedule S ′′ in order to satisfy the statement of the
lemma. For each operation Oj,k, Jj ∈ J and 1 ≤ k ≤ nj, we split the interval (bj,k, cj,k]
into slots of length ǫ

ñ3
(cj,k − bj,k), i.e., we partition (bj,k, cj,k] into intervals of the form

(bj,k+h ǫ
ñ3
(cj,k−bj,k), bj,k+(h+1) ǫ

µ3
(cj,k−bj,k)], where h ≥ 0 is an integer. As the processing

time of Jj in S is at least ǫ
ñ
(cj,k − bj,k), the execution of Oj,k has been partitioned into

at least ñ2 slots. In each of these slots, the operation Oj,k either is executed during the
whole slot or is executed into a fraction of it. As we have applied the EDF policy, each
operation is preempted at most ñ times, and hence at most 2ñ of these slots are not
fully occupied by Oj,k, since for each preempted piece of Oj,k at most two slots may not
be completely covered by it. We can modify the schedule S ′ and get the schedule S ′′ in
which the operation Oj,k is executed only to the slots where it was entirely executed in
S ′. The number of these slots is at least ñ2 − 2ñ. Thus, we have to increase the speed of
Oj,k by a factor of 1 +

2
ñ−2
, and hence the energy is increased by a factor of (1 + 2

ñ−2
)α.

By taking into account Lemma 5.6 and the fact that S ′′ is a factor of (1 + ǫ
1−ǫ

)α far from
the optimal, the lemma follows.

Henceforth, we consider schedules that satisfy the above lemma. According to this, we
consider that for each operation Oj,k there are some time points bj,k and cj,k, as defined in
Lemma 5.6, such that the interval (bj,k, cj,k] is partitioned into polynomial to ñ and to 1/ǫ
number of equal length slots. In each of these slots, the operation Oj,k either is executed
during the whole slot or is not executed at all. Moreover, Oj,k is executed entirely during
(bj,k, cj,k].

We formulate now our problem as an integer program using the idea of configurations
as in Section 4.2. Here, a configuration c is a schedule for a single job, that is a feasible
schedule for all its operations. Specifically, a configuration determines the time points,
with respect to Lemma 5.6, and the slots, with respect to Lemma 5.7, during which each
operation of one job is executed. Let Cj be the set of all possible feasible configurations
for job j ∈ J .
Moreover, in order to ensure the feasibility we merge the slots for all operations as

in Section 4.2. Specifically, given a processor Pi ∈ P , consider the time points of all
operations of the form bj,k + h ǫ

ñ3
(cj,k − bj,k) as introduced in Lemmas 5.6 and 5.7. Let

ti,1, ti,2, . . . , ti,ℓi
be the ordered sequence of these time points. Consider now the intervals

(ti,p, ti,p+1], 1 ≤ p ≤ ℓi − 1. In a schedule that satisfies Lemmas 5.6 and 5.7, in each such
interval either there is exactly one operation that is executed during the whole interval
or the interval is idle. Note also that these intervals might not have the same length. Let



108 Chapter 5. Shop Environments

I be the set of all these intervals for all processors. According to Lemmas 5.6 and 5.7,
the size of I is polynomial to the size of the instance and to 1/ǫ.

Note that, given the configuration according to which the job Jj is executed, we can
compute the energy consumption Ej,c for the execution of Jj. For notational convenience,
we say that I ∈ (j, c), if the interval I ∈ I is included in the configuration c for an
operation of the job Jj ∈ J . That is, there is an operation Oj,k, two time points bj,k and
cj,k, and a slot (bj,k + h ǫ

µ3
(cj,k − bj,k), bj,k + (h+ 1)

ǫ
µ3
(cj,k − bj,k)] in c that contains I.

min
∑

Jj∈J

∑

c∈Cj

Ej,c · xj,c

∑

c∈Cj

xj,c ≥ 1 ∀Jj ∈ J (5.8)

∑

c:I∈(j,c)

xj,c ≤ 1 ∀I ∈ I (5.9)

xj,c ∈ {0, 1} ∀Jj ∈ J , c ∈ Cj (5.10)

Constraints (5.8) enforce that each job is entirely executed according to exactly one
configuration. Constraints (5.9) ensure that at most one job is executed in each interval
I ∈ I. We consider the fractional relaxation of the above integer program where the
integrality constraints xj,c ∈ {0, 1} are replaced by the constraints xj,c ≥ 0, for all Jj ∈ J
and c ∈ Cj. This relaxation contains an exponential number of variables, while the number
of constraints is polynomial to the size of the instance and to 1/ǫ. In order to solve it in
polynomial time, we follow the same technique as in Section 4.1. Specifically, we show
how to apply the Ellipsoid algorithm for the dual program, by defining a polynomial-time
separation oracle for it. The dual of the fractional relaxation is the following.

min
∑

Jj∈J

λj −
∑

I∈I

µI

λj −
∑

I∈(j,c)

µI ≤ Ej,c ∀Jj ∈ J , c ∈ Cj (5.11)

λj, µI ≥ 0 ∀Jj ∈ J , c ∈ Cj (5.12)

Assume that we are given a solution (λj, µI) for the dual LP. The separation oracle
work as follows. For each job Jj ∈ J , we try to minimize the term Ej,c +

∑

I∈(j,c) µI .
If the value minc{Ej,c +

∑

I∈(j,c) µI} is less than λj, then we have a violated constraint.
Otherwise, if there is no violated constraint for any Jj, then the solution is feasible.

In order to find the configuration that minimizes the above expression, we use dynamic
programming. Let Ak,c be the part of Ej,c+

∑

I∈(j,c) µI which corresponds to the operations
Oj,1, Oj,2, . . . , Oj,k. Let Bk,I be the minimum among value Ak,c if all the operations
Oj,1, Oj,2, . . . , Oj,k have to be completed at most at the right endpoint of interval I which
corresponds to a time-point as defined in Lemma 5.6. Let Ck,ℓ,I′,I be the minimum possible
contribution of the operation Ok,j to Bk,I if it has to be executed during exactly ℓ slots
between the right endpoint of I ′ and the right endpoint of I. Again we assume that the
right endpoints of intervals I ′ and I correspond to time points as defined in Lemma 5.6.
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Let Dk,I′,I = minℓ{Ck,ℓ,I′,I}. For notational convenience, if the interval I ′ precedes the
interval I we write I ′ < I. Then, we consider the following dynamic program

Bk,I = min
I′<I

{Bk−1,I′ +Dk,I′,I}

By definition, the term Dk,I′,I is the minimum among Ck,ℓ,I′,I , for all ℓ. The term Ck,ℓ,I′,I

can be computed in polynomial time for any k, ℓ, I ′ and I. Indeed, as the slots of Oj,k

are of equal length, the energy consumption using ℓ slots does not depend on the slots
that are included to the configuration. Hence, the quantity Ej,c is fixed for a given ℓ.
Consider now a slot s of Oj,k between the right endpoint of I ′ and the right endpoint of
I. We call

∑

I∈s µI the value of s. In order to minimize Ck,ℓ,I′,I , we have to find the ℓ
slots with minimum value

∑

I∈s µI . As the number of slots is polynomial to the size of
the instance and to 1/ǫ, this can be done in polynomial time.
Thus, for each job Jj ∈ J , we can compute in polynomial time the minimum Ej,c +

∑

I∈(j,c) µI among all the configurations c ∈ Cj, and hence we have a polynomial-time
separation oracle. Therefore, we can apply the Ellipsoid algorithm to the dual and obtain
a polynomial-time algorithm for the fractional relaxation as in Section 4.2. Then, by
applying the same randomized rounding algorithm and analysis as in Section 4.2 we get
the following theorem.

Theorem 5.3. There exists algorithm for the preemptive energy minimization problem
in a job shop which is polynomial to ñ and 1/ǫ and achieves an approximation ratio of
(1 + ǫ)α(1 + 2

µ−2
)α(1 + ǫ

1−ǫ
)αB̃α.
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Chapter 6

Temperature-Aware Scheduling

In this chapter, we switch our attention to temperature-aware scheduling and we study
multiprocessor problems under the discrete thermal model.
Initially, in Section 6.1, we study the approximability of T,P|pj = 1,hj|Cmax(Θ)

in which the objective is the minimization of the makespan under a threshold on the
temperature which must not be exceeded. First, we show that there is no (4

3
− ǫ)-

approximation algorithm, unless P = N P , through a reduction from the Numerical
3-Dimensional Matching problem. Then, we propose a constant factor approximation
algorithm which is based on a transformation of the problem to the problem P||Cmax.
Our algorithm uses any ρ-approximation algorithm for P||Cmax as black box and it
achieves an approximation ratio of 2ρ. Given that the best known algorithm for the
latter problem is a polynomial time approximation scheme (PTAS), we obtain a (2 + ǫ)-
approximation algorithm for T,P|pj = 1,hj|Cmax(Θ). In order to obtain a faster running
time, we consider the case of using the LPT (Longest Processing Time first) as a black
box algorithm, instead of the PTAS, which is known to be 4/3-approximate for P||Cmax.
Based on our previous analysis, the approximation ratio of our algorithm is 8/3. However,
we improve this ratio to 7

3
− 1

3m
through an LPT-oriented analysis.

Subsequently, in Section 6.2, we address problems in which the temperature is the
objective function. We begin with the maximum temperature minimization problem
T,P|pj = 1,hj,dj = d|Θmax and we present a tight

4
3
-approximation algorithm. Recall

that this problem is strongly N P-hard (see [30]). Then, we turn our attention to the
problem T,P|pj = 1,hj,dj = d|

∑

Θt of minimizing the average temperature and we
show that it can be solved in polynomial time.

6.1 Makespan Minimization

In this section, we study the approximability of the multiprocessor makespan minimiza-
tion problem T,P|pj = 1,hj|Cmax(Θ). In this problem, we are given a set of n jobs
J = {J1, J2, . . . , Jn} with unit processing times which have to be scheduled by a set of
m parallel identical processors P = {P1, P2, . . . , Pm}. Each job Jj is associated with a
heat contribution hj ∈ [0, 2]. The time horizon can be partitioned into unit-length slots
[0, 1), [1, 2), . . . , [t, t + 1), . . . such that, at every time slot [t, t + 1), on a given processor
Pi ∈ P, either a single job is executed on Pi during the whole slot or Pi is idle. We

111
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consider the temperatures only at integer times and if the temperature of the processor
Pi is Θt at time t, then Pi’s temperature Θt+1 at time t+ 1 can be computed as follows.
If the job Jj ∈ J is executed on Pi during the time slot [t, t+ 1), then

Θt+1 =
Θt + hj

2

If Pi is idle during [t, t+ 1), then

Θt+1 =
Θt

2

Without loss of generality, we assume that the initial temperature is equal to zero, i.e.
Θ0 = 0. At each integer time t, the temperature of any processor must not exceed a
temperature threshold which is equal to one, i.e. it must be the case that Θt ≤ 1. Our
objective is to find a feasible schedule with minimum makespan.

6.1.1 Inapproximability

We start with a negative result on the approximability of our problem. The proof of the
next theorem is inspired by the NP-hardness reduction for the throughput maximization
problem under the same model which can be found in [30].

Theorem 6.1. There is no polynomial time algorithm achieving an absolute approxima-
tion ratio better than 4/3 for the minimum makespan problem T,P|pj = 1,hj|Cmax(Θ),
unless P = N P.

Proof. We give a reduction from Numerical 3-Dimensional Matching (N3DM) where we
are given three sets A, B, C of n integers each and an integer β, and the question is
whether A ∪ B ∪ C can be partitioned into n disjoint triples (a, b, c) ∈ A × B × C such
that each triple contains exactly one integer from each set A, B, C and a + b + c = β
for every such triple. Without loss of generality, we assume that

∑

x∈A∪B∪C x = βn and
x ≤ β for each x ∈ A ∪ B ∪ C. The N3DM problem is known to be NP-complete (see
[35]).
Given an instance I of N3DM, we construct an instance I ′ ofT,P|pj = 1,hj|Cmax(Θ)

consisting of n processors and 3n jobs, one for each integer in A ∪ B ∪ C. Considering
the function f(x) = 1

25

(

1 + x
8β

)

, we set h(a) = 8f(a)+1 for each a ∈ A, h(b) = 4f(b)+1

for each b ∈ B and h(c) = 2f(c) + 1 for each c ∈ C.
The reduction works by showing that it is hard to decide whether the optimal schedule

is of length three or not.

Claim 6.1. There is a N3DM for the instance I if and only if there is a feasible schedule
for the instance I ′ of T,P|pj = 1,hj|Cmax(Θ) of length three.

Proof. (⇒) Assume that there is a solution for N3DM. For the i-th triple (ai, bi, ci),
1 ≤ i ≤ n, in this solution, we schedule on the processor Pi the jobs corresponding
to ai, bi and ci in the first, second and third slots, respectively. For the temperatures,
Θ(ai),Θ(bi),Θ(ci), on the processor Pi after each one of those executions we have



6.1. Makespan Minimization 113

Θ(ai) =
8f(ai)+1

2
≤ 8f(β)+1

2
=

8
25(1+

β
8β )+1

2
= 34

50
≤ 1

Θ(bi) =
8f(ai)+1

4
+ 4f(bi)+1

2
= 3

4
+ 2

(

1
25

(

1 + ai

8β

)

+ 1
25

(

1 + bi

8β

))

≤ 3
4
+ 4

25
+ β

100β
= 93

100
≤ 1

Θ(ci) =
8f(ai)+1

8
+ 4f(bi)+1

4
+ 2f(ci)+1

2
= 7

8
+ 1

25

(

1 + ai

8β

)

+ 1
25

(

1 + bi

8β

)

+ 1
25

(

1 + ci

8β

)

=
7
8
+ 3

25
+ β

200β
= 1

and hence there is a feasible schedule of length three.

P1 h(a1) h(b1) h(c1)

P2 h(a2) h(b2) h(c2)

Pn h(an) h(bn) h(cn)

0 1 2 3

Figure 6.1: The schedule produced from a given N3DM (a1, b1, c1), (a2, b2, c2), . . . , (an, bn, cn) of the set
A.

(⇐) Assume, now, that there is a feasible schedule of length three. In this schedule
there are exactly three jobs in each processor, since there are 3n jobs in total.
If a job corresponding to an integer a ∈ A is scheduled to the second slot of a processor,

then the temperature threshold Θ = 1 is violated after the third slot of this processor.
Indeed the temperature at this slot will be at least

2f(0)+1
8

+ 8f(0)+1
4

+ 2f(0)+1
2

= 7
8
+ 1

25

(

1 + 0
8β

) (

2
8
+ 8

4
+ 2

2

)

= 201
200

> 1.

In a similar way, we can show that a job corresponding to an integer a ∈ A cannot be
scheduled to the third slot of a processor:

2f(0)+1
8

+ 2f(0)+1
4

+ 8f(0)+1
2

= 7
8
+ 1

25

(

1 + 0
8β

) (

2
8
+ 2

4
+ 8

2

)

= 213
200

> 1.

Hence, each of the n jobs corresponding to one of the n integers a ∈ A is scheduled to the
first slot of a processor. Moreover, we can show that a job corresponding to an integer
b ∈ B cannot be scheduled to the third slot of a processor:

8f(0)+1
8

+ 2f(0)+1
4

+ 4f(0)+1
2

= 7
8
+ 1

25

(

1 + 0
8β

) (

8
8
+ 2

4
+ 4

2

)

= 203
200

> 1.

In all, in each processor exactly three jobs are scheduled: a job a ∈ A in the first slot, a
job b ∈ B in the second slot, and a job c ∈ C in the third slot. Therefore, the jobs of a
processor correspond to a feasible triple for N3DM.
To finish our proof, we have to show that each triple sums up to β. If this does not

hold then there is a triple (a, b, c) for which a+ b+ c > β, since
∑

x∈A∪B∪C x = βn. The
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temperature of the third slot of the processor in which the corresponding jobs to this
triple are scheduled is

8f(a)+1
8

+ 4f(b)+1
4

+ 2f(c)+1
2

= 7
8
+ 1

25

(

3 + a+b+c
8β

)

> 7
8
+ 1

25

(

3 + β
8β

)

= 1,

which is a contradiction that there is a feasible schedule.

This completes the proof of Theorem 6.1 since an approximation ratio better than
4/3 would be able to decide the problem N3DM.

Note that the result of Theorem 6.1 allows the possibility of an asymptotic PTAS or
even an additive constant approximation ratio.

6.1.2 Approximation Algorithm based on a transformation to
P ||Cmax

In what follows, we present an approximation algorithm for T,P|pj = 1,hj|Cmax(Θ)
which is based on a transformation of the instance to an instance of the problem P||Cmax.
Note that, in order to respect the temperature threshold, a schedule may have to

contain idle slots. To argue about the number of idle slots that are needed before the
execution of each job, we will introduce first an appropriate partition of the set of jobs
according to their heat contribution. In particular, for each integer k ≥ 0, we can argue
separately for jobs whose heat contribution belongs to the interval (2− 1

2k−1 , 2− 1
2k ]; recall

that hj ≤ 2, for Jj ∈ J . Moreover, the interval to which a job of heat contribution hj

belongs to is indexed by kj, that is

kj = max{k ∈ N | hj > 2−
1

2k−1
}

Our algorithm and its analysis are based on the following proposition for the structure
of any feasible schedule.

Lemma 6.1.
(i) Let J ′ be the set of jobs of heat contribution hj > 1; |J ′| = n′. Any feasible schedule
can be transformed into another feasible one of at most the same length where exactly
min{n′, m} jobs in J ′ are executed in the first slot of the processors.
(ii) Any schedule where every Jj is executed right after kj consecutive idle slots is feasible.
(iii) In an optimal schedule, if a job Jj′ is executed before a job Jj on the same processor,
where hj′ , hj > 1, then there are at least kj − 1 slots between Jj′ and Jj, which are either
idle or execute jobs of heat contribution at most one.

Proof.
(i) Consider a feasible schedule that has less than min{n′, m} jobs in J ′ executed in the
first slot of the processors.
Assume, first, that in this schedule there is a processor Pi ∈ P in which a job Jj ∈

J \ J ′ is executed in its first slot and there is at least one job of J ′ executed on Pi.
Let Jj′ ∈ J ′ be the earliest of these jobs which is executed in slot t > 1. By swapping
the jobs Jj and Jj′ , the temperature Θ′

t of processor Pi after slot t is decreased. Indeed,
let Θt be the temperature of processor Pi after slot t and Θ′ be the contribution of jobs
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executed in slots 2, 3, . . . , t − 1 to Θt, that is Θt =
hj

2t +Θ
′ +

hj′

2
. After the swap it holds

that Θ′
t =

hj′

2t +Θ
′ + hj

2
< Θt, since hj < hj′ . Thus, the temperature of any slot t′ ≥ t in

Pi is decreased. Moreover, by assumption, each slot t′, 2 ≤ t′ ≤ t−1, of Pi executes a job
in J \ J ′. Hence, no new idle slots are required for these jobs, although the temperature
before their execution is increased. Therefore, the new schedule is feasible and it has the
same length.
If there is not such a processor, then let Jj ∈ J \ J ′ be a job executed in the first

slot of some processor Pi and Jj′ ∈ J ′ be a job executed in t-th, t > 1, slot of processor
Pi′ . By swapping the jobs Jj and Jj′ the temperature of any slot t′ ≥ t of processor Pi′

is decreased as hj < hj′ . Moreover, by assumption, the processor Pi contains only jobs
in J \ J ′, and, as in the previous case, no new idle slots are required for these jobs.
Therefore, after the swap we get a feasible schedule of the same length.

(ii) Consider a schedule that is feasible up until the execution of the job preceding Jj. Let
x be the number of idle slots before the execution of job Jj and let Θ

′ be the temperature
of the processor before the first of these x slots. Since the schedule is feasible before Jj,

we have that Θ′ ≤ 1. The temperature will become Θ
′

2x , after the last idle slot, and
Θ′

2x+hj

2

after the execution of job Jj. For such a schedule to be feasible we need that
Θ′

2x+hj

2
≤ 1,

that is, 2x ≥ Θ′

2−hj
. Since hj ≤ 2kj+1−1

2kj
, it follows that Θ′

2−hj
≤ 1

2− 2
kj+1−1

2
kj

= 2kj . This means

that with at least kj idle slots, feasibility is ensured.

(iii) Let Θt be the temperature of the processor before executing Jj′ . Next, after the

execution of Jj′ we have Θt+1 =
Θt+hj′

2
. Then, after x slots (idles or executing jobs of

heat contribution h ≤ 1) we get a temperature Θt+x+1 ≥
Θt+hj′

2
· 1
2x . In order for Jj to

be executed in the next slot, it should hold that Θt+x+1 + hj ≤ 2, that is 2x ≥
Θt+hj′

2(2−hj)
.

Since, Θt ≥ 0, hj′ > 1 and hj > 2
kj′ −1

2kj −1 we get 2
x ≥

Θt+hj′

2(2−hj)
> 1

2(2− 2
kj −1

2
kj −1 )

= 1
2

2
kj −1

= 2kj−2,

that is x ≥ kj − 1.

In what follows we consider instances with n > m, for otherwise the problem becomes
trivial. By Lemma 6.1(i), we also assume that the number of jobs of heat contribution
hi > 1 is greater than m. If this is not the case, all jobs can be executed without any idle
slot before them and the length of an optimal schedule is exactly ⌈ n

m
⌉. We consider the

jobs in non-increasing order of their heat contributions, i.e., h1 ≥ h2 ≥ . . . ≥ hn, and we
define A = {J1, J2, . . . , Jm} and B = {Jm+1, Jm+2, . . . , Jn}. Our algorithm schedules first
the jobs in A to the first slot of each processor. Each one of the jobs in B is scheduled
by leaving before its execution exactly kj idle slots, according to the Lemma 6.1(ii). In
this way, our problem, for the jobs in B, is transformed to an instance of the classical
makespan problem on parallel machines, P||Cmax, where the processing time of each job
is pj = kj +1, that is kj idle slots plus its original unit processing time. Then, these jobs
are scheduled using any known approximation algorithm for P||Cmax. A pseudocode of
our algorithm is given in Algorithm 6.1.
From now on we fix an instance of our problem and we denote by SOL the length of

the schedule S provided by Algorithm 6.1 and by OPT the length of an optimal schedule
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S∗ for our original scheduling problem. For the presentation and the analysis of our
algorithm, we denote by IB and I+

B the instances of P||Cmax consisting only of jobs in B
with processing times pj = kj and pj = kj + 1, respectively, for each Jj ∈ B.

Algorithm 6.1

1: Sort the jobs so that h1 ≥ h2 ≥ . . . ≥ hn.
2: Let A = {J1, J2, . . . , Jm}, and B = {Jm+1, Jm+2, . . . , Jn}.
3: Schedule each job Jj ∈ A to the first slot of processor Pj ∈ P.
4: Run an algorithm R of P||Cmax for the instance I+

B .

For an instance I ofP||Cmax, we denote by S(I) the schedule found by an algorithmR
and by C(I) the length of this schedule. In a similar way, we denote by S∗(I) and C∗(I)
an optimal schedule for P||Cmax and the length of this optimal schedule, respectively.
Clearly, SOL = 1 + C(I+

B ). To analyze the Algorithm 6.1, we need a lower bound on
the optimal makespan. To derive this bound we will utilize an optimal schedule S∗(IB).
Note that for jobs with hj ∈ (0, 1], kj = 0, hence the schedule S∗(IB) involves only jobs
for which hj > 1.

Lemma 6.2. For the optimal makespan it holds that

OPT ≥ max{
n

m
, 1 + C∗(IB)}

Proof. The first bound on the optimal makespan follows trivially by considering all jobs
requiring a single slot for their execution.

For the second bound, let A∗, |A∗| = m, be the set of jobs executed in the first slot
of the m processors in an optimal solution and B∗ = J \ A∗.

Consider, first, an auxiliary schedule of length OPT −, identical to the optimal apart
from the fact that each job in B∗ ∩ A has been replaced by a different job in A∗ ∩ B.
Observe that in this schedule, the jobs executed in the first slot of the processors remain
A∗ while the jobs executed in the remaining slots are the jobs in B. Since each job in B
has smaller or equal heat contribution than any job in A, it follows that OPT ≥ OPT −.

Consider, next, the schedule S∗(IB). For this schedule it holds that, OPT − ≥ 1 +
C∗(IB), since by Lemma 6.1(i),(iii) each job in B requires at least kj slots to be executed;
recall that we consider instances where the number of jobs of heat contribution hj > 1 is
greater than m and that jobs in B with hj ≤ 1, and hence kj = 0, do not appear in the
schedule S∗(IB).

It is well-known that the P||Cmax problem is strongly NP-hard and a series of constant
approximation algorithms and PTASs have been proposed, e.g. [43]. Our main result in
this section is that in step 4 of Algorithm 6.1 we can use any algorithm R for P||Cmax

to obtain twice the approximation ratio of R for our problem.

Theorem 6.2. Algorithm 6.1 is 2ρ-approximate ratio for T,P|pi = 1,hi|Cmax(Θ), where
ρ is the approximation ratio of the algorithm R for P||Cmax.
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Proof. A ρ-approximation algorithm R implies that
C(I+B )

C∗(I+B )
≤ ρ. Hence, SOL =

1 + C(I+
B ) ≤ 1 + ρ · C∗(I+

B ).
To obtain an upper bound to C∗(I+

B ) we start from the schedule S∗(IB). The pro-
cessing times of jobs in the latter schedule are reduced by one with respect to the former
one, and the jobs in B with hj ≤ 1 do not appear in schedule S∗(IB). Let B′ ⊆ B be this
set of jobs.
We transform the schedule S∗(IB) to a new schedule S ′(I+

B ) in two successive steps:
(i) we increase the processing time of jobs in B \ B′ from kj to kj + 1, and (ii) we
introduce the jobs in B′ with unit processing time, at the end of the resulting schedule
in a first-fit manner. Clearly, for the length, C ′(I+

B ), of this new schedule it holds that
C∗(I+

B ) ≤ C′(I+
B ) as both of them refer to the same instance I+

B . Let us now bound C ′(I+
B )

in terms of C∗(IB).

If C ′(I+
B ) ≤ 2C∗(IB), then

SOL
OP T

≤ 1+2ρC∗(IB)
1+C∗(IB)

≤ 2ρ, since ρ ≥ 1.

If C ′(I+
B ) > 2C∗(IB), then we consider the construction of S ′(I+

B ) and we argue about
the completion time of a critical processor in S∗(IB), i.e., the processor that finishes last.
By step (i), the length of schedule S∗(IB) increases at most twice, since each job in B \B′

has processing time at least one and this is increased by 1. As C ′(I+
B ) > 2C∗(IB), in the

last slot of S ′(I+
B ) all non-idle processors execute jobs of B′. By step (ii), all but the last

time slots of S ′(I+
B ) are busy. Hence, the critical processor in S∗(IB) finishes in S ′(I+

B )
the earliest at time C ′(I+

B ) − 1. Moreover, this processor is assigned the minimum total
increase at the end of the transformation, since it finishes last in S∗(IB). As the total
increase of the processing times from S∗(IB) to S ′(I+

B ) is n−m, it follows that the length
of the critical processor increases at most by n−m

m
. Hence, C ′(I+

B ) − 1 ≤ C∗(IB) +
n−m

m
,

that is C ′(I+
B ) ≤ C∗(IB) +

n
m
. Thus, by Lemma 6.2 we get SOL

OP T
≤

1+ρ(C∗(IB)+ n
m
)

max{ n
m

,1+C∗(IB)}
≤

1+ρC∗(IB)
1+C∗(IB)

+
ρ n

m
n
m

≤ 2ρ.

For the case of a single processor the 1||Cmax problem is trivially polynomial, whereas
for multiple processors there are well known PTAS’s, e.g. [43]. Hence the main implica-
tion of Theorem 6.2 is:

Corollary 6.1. For any ǫ > 0, there is a (2+ǫ)-approximation algorithm for the problem
T,P|pj = 1,hj|Cmax(Θ). For the case of a single processor, there is an algorithm that
achieves an approximation ratio of 2.

6.1.3 LPT oriented Approximation Algorithm

To obtain the ratio of 2 + ǫ, as stated above, one needs to use a PTAS for the classical
makespan problem in step 4 of Algorithm 6.1, resulting in a running time that is ex-
ponential in 1/ǫ. To achieve more practical running times, we can investigate the use
of other algorithms for step 4. In particular, if the standard Longest Processing Time
(LPT) algorithm is used, then Theorem 6.2 leads to a 2(4

3
− 1

3m
) approximation ratio

within O(n log n) time. Recall that the LPT algorithm greedily assigns the next job (in
non-increasing order of their processing times) to the first available processor [38]. In the
next theorem we are able to improve this ratio to 7/3, based on an LPT oriented analysis
of Algorithm 6.1.
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Theorem 6.3. Algorithm 6.1 using the LPT rule in step 4 achieves an approximation
ratio of 7

3
− 1

3m
for T,P|pi = 1,hi|Cmax(Θ) within O(n log n) time.

Proof. Our proof follows the standard analysis given in [38], for the classical multiproces-
sor scheduling problem. For the lower bound on the length of an optimal schedule we use

Lemma 6.2 and the fact that C∗(IB) ≥
∑n

j=m+1
kj

m
. Hence, OPT ≥ max{ n

m
, 1+

∑n

j=m+1
kj

m
},

and by the standard average argument we get

OPT ≥
m+

∑n

j=m+1
kj+n

2m
= 1 +

∑n

j=m+1
(kj+1)

2m
.

To upper bound the length SOL of the schedule S returned by Algorithm 6.1 we
consider the job Jℓ which finishes last in S. Clearly ℓ > m, for otherwise there are at
most m jobs to be scheduled and the problem becomes trivial.

The job Jℓ will start being executed not later than 1 +

∑n

j=m+1,j Ó=ℓ
(kj+1)

m
, and hence, it

holds that

SOL ≤ 1 +

∑n

j=m+1,j Ó=ℓ
(kj+1)

m
+ (kℓ + 1) = 1 +

∑n

j=m+1
(kj+1)

m
+

(

1− 1
m

)

(kℓ + 1).

Thus, we get SOL ≤ 2OPT − 1 +
(

1− 1
m

)

(kℓ + 1).

If kℓ ≤ OPT/3, then the theorem follows directly.
If kℓ > OPT/3, then we consider the subinstance, I ′, of the original problem that

contains only the jobs of heat contribution at least hℓ, i.e., J ′ = {J1, J2, . . . , Jℓ}. Obvi-
ously, k1 ≥ k2 ≥ . . . ≥ kℓ > OP T

3
and kℓ ≥ 1, as kℓ is an integer. Moreover, for the length

of an optimal schedule, C∗(I ′), of the subinstance I ′ it holds that C∗(I ′) ≤ OPT . As
ℓ > m, the lengths of the schedules returned by Algorithm 6.1 for instances I and I ′ are
equal, i.e., C(I ′) = SOL. Hence, SOL

OP T
≤ C(I′)

C∗(I′)
.

In an optimal schedule of I ′ there are at most three jobs in each processor, for other-
wise, if there is a processor with four assigned jobs, the length of that schedule will be,
by Lemma 6.1(iii), at least 1 + 3kℓ > OPT , a contradiction. Hence, ℓ ≤ 3m.
Algorithm 6.1 schedules the jobs of I ′ as follows: the job Jj, 1 ≤ j ≤ m, is scheduled

to the first slot of processor Pj, the job Jm+j, 1 ≤ j ≤ m, to the (1 + (km+j + 1))-th slot
of processor Pj and job J2m+j, 1 ≤ j ≤ m, accordingly to the LPT rule.
If m < ℓ ≤ 2m, then the length of the above schedule is C(I ′) = 1 + (km+1 + 1) =

2 + km+1. By Lemma 6.2 it follows that C∗(I ′) ≥ 1 + km+1, since there is a processor

executing at least two jobs in {J1, J2, . . . , Jm+1}. Hence,
SOL
OP T

≤ C(I′)
C∗(I′)

≤ 2+km+1

1+km+1
≤ 3

2
, as

km+1 ≥ kℓ ≥ 1.
If 2m < ℓ ≤ 3m, then the Algorithm 6.1 schedules in the first processor either the jobs

J1 and Jm+1 or the jobs J1, Jm+1 and Jℓ. In the first case, the job Jℓ starts its execution
not later than the slot 1 + (km+1 + 1), for otherwise Jℓ would have been scheduled by
Algorithm 6.1 in processor P1, that is C(I ′) ≤ 1 + (km+1 + 1) + (kℓ + 1). In the second
case, Jℓ is the job that finishes last, that is C(I ′) = 1 + (km+1 + 1) + (kℓ + 1). Thus, in
both cases it holds that C(I ′) ≤ 3 + km+1 + kℓ.
For an optimal schedule for I ′, Lemma 6.2 implies as before that C∗(I ′) ≥ 1 + km+1.

Moreover, in such a schedule there is a processor with at least three jobs, and hence
C∗(I ′) ≥ 1 + 2kℓ. Combining these two bounds we get C∗(I ′) ≥ 1 + km+1

2
+ kℓ.
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Therefore, we get SOL
OP T

≤ C(I′)
C∗(I′)

≤ 6+2km+1+2kℓ

2+km+1+2kℓ
. This ratio is decreasing with kℓ and as

kℓ ≥ 1 we get SOL
OP T

≤ 8+2km+1

4+km+1
= 2, and the proof is completed.

Note that the
(

4
3

− 1
3m

)

-approximation ratio of the LPT algorithm for the classical ma-
kespan problem on parallel machines is tight. Concerning the tightness of our algorithm,
we are able to give an instance where it achieves a 2-approximation ratio. This instance
consists of m(k + 2) jobs: a set A of m jobs of heat contribution hj = 2, a set B of
m jobs of heat contribution hj = 2 − 3

2k+1 , and a set C of mk jobs of heat contribution
hj =

1
2(2k−1)

.
An optimal solution for this instance is to schedule the jobs in the following way:

every processor executes a job of A in the first slot, k jobs of C in slots 2, 3, . . . , k + 1,
and a job of B in slot k + 2. The temperature of every processor after slot k + 1 is
1
2k +

1
2(2k−1)

· 2k−1
2k = 3

2k+1 , and hence a job of B can be executed in slot k + 2. Moreover,
as the jobs of C have heat contribution hj ≤ 1, this schedule is feasible. On the other
hand, our algorithm schedules in every processor a job of A in the first slot, a job of B
in the slot k + 2, and k jobs of C in slots k + 3, k + 4, · · · , 2k + 2. Therefore, the ratio
achieved by our algorithm is 2k+2

k+2
≃ 2.

6.2 Maximum and Average Temperature Minimiza-
tion

Next, we consider multiprocessor problems in which temperature is the optimization goal.
In these problems, there is no explicit threshold on the processors’ temperatures. The lack
of such a threshold is counterbalanced by studying the problems of minimizing the max-
imum and average temperature of a schedule, i.e. Θmax = maxt{Θt} and

∑

tΘt. For the
problem S,P|pj = 1,dj = d,hj|Θmax we propose a tight 4/3-approximation algorithm
and we show that the problem S,P|pj = 1,dj = d,hj|

∑

Θt is polynomially solvable.
In these problems, we are given a set of n jobs J = {J1, J2, . . . , Jn} and a set of

m parallel identical processors P = {P1, P2, . . . , Pm}. Each job Jj ∈ J is has a unit
processing time pj = 1, a zero release date rj = 0 and a deadline dj = d. Moreover, Jj

is associated with a heat contribution hj. We partition the time into unit-length slots
[0, 1), [1, 2), . . . , [t, t+1), . . . etc. Consider a processor Pi ∈ P. At every time slot [t, t+1),
either a single job is executed on Pi during the whole slot or Pi is idle. If the temperature
of a processor Pi ∈ P is Θt at time t and the job Jj ∈ J is executed on Pi during the
time slot [t, t+ 1), then the processor’s temperature at time t+ 1 becomes equal to

Θt+1 =
Θt + hj

2

On the other hand, if Pi is idle during [t, t+ 1), then

Θt+1 =
Θt

2

The initial temperature at time t = 0 is Θ0 = 0.
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For any instance of the maximum or average temperature problems, any schedule of
length at least ⌈ n

m
⌉ is feasible, independently of the range of the jobs’ heat contributions.

However, the optimum value of our objectives depends on the time available to execute
the given set of jobs: the maximum or average temperature of a schedule of length equal
to ⌈ n

m
⌉ is, clearly, greater than that of a schedule of longer length, where we are allowed to

introduce idle slots. In what follows, we are interested in minimizing these two objective
functions with respect to a given schedule length (makespan or deadline) of d ≥ ⌈ n

m
⌉.

Such a schedule will contain md − n idle slots and we can consider them as executing
md − n fictitious jobs of heat contribution equal to zero. This length d is part of our
problems’ instances, denotes the time available to complete the execution of all the jobs
and represents the need to complete them within a given time at the price of higher
temperatures. Thus, in both problems we consider (minimizing the maximum and the
average temperature) we are accounting the temperatures at the end of any of the md
slots available on the m processors.

Maximum Temperature Minimization

Now, we turn our attention to the problem of minimizing the maximum temperature,
i.e. T,P|pj = 1,dj = d,hj|Θmax. In the sequel, we will denote by Θ

∗
max the maximum

temperature of an optimal schedule.
We start with the observation that any algorithm for this problem achieves a 2 approx-

imation ratio. Indeed, it holds that Θ∗
max ≥ hmax/2, no matter how we schedule the job of

maximum heat contribution. It also holds that for any algorithm, Θmax ≤ hmax, withΘmax

being the maximum temperature of the algorithm’s schedule. Therefore, Θmax ≤ 2 ·Θ∗
max.

To improve this trivial ratio we propose the Algorithm 6.2 below, which is based on
the intuitive idea of alternating the execution of hot and cool jobs.

Algorithm 6.2

1: Sort the jobs so that h1 ≥ h2 ≥ . . . ≥ hn.
2: Using the order of Step 1, schedule the ⌈d

2
⌉m hottest jobs to the odd slots of the

processors using Round-Robin.
3: Using the reverse order of Step 1, schedule the ⌊d

2
⌋m coolest jobs to the even slots of

the processors using Round-Robin.

To elaborate a little more on how the algorithm works, note that processor P1 will
be assigned the job J1, followed by Jn, then followed by Jm+1, and then by Jn−m and
this alternation of hot and cool jobs will continue till the end of the schedule. Similarly
processor P2 will be assigned the jobs J2, Jn−1, Jm+2, Jn−m−1, and so on. The schedule
is illustrated further in Table 6.1.
To analyze the Algorithm 6.2, we start with the lemma below, which is implied by

the Round-Robin scheduling of jobs in Steps 2 and 3 of the algorithm.

Lemma 6.3. In the schedule returned by Algorithm 6.2:
(i) A job Jj, j ≥ (⌊d

2
⌋+ 1)m+ 1, is succeeded by the job Jn−j+m+1.

(ii) A job Jj, m+ 1 ≤ j ≤ ⌈d
2
⌉m, is preceded by the job Jn−j+m+1.
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P1 J1 Jn Jm+1 Jn−m J2m+1 ...
P2 J2 Jn−1 Jm+2 Jn−m−1 J2m+2 ...
... ... ... ... ... ... ...
Pm Jm Jn−m+1 J2m Jn−2m+1 J3m ...

Table 6.1: The schedule produced by Algorithm 6.2.

The maximum temperature may occur at various points of the schedule of Algorithm
6.2. The next lemma states that one of these points satisfies a certain property regarding
the heat contribution of the job executed right before.

Lemma 6.4. In the schedule returned by Algorithm 6.2, the maximum temperature is
achieved after the execution of a job Jj, with j ≤ (⌊d

2
⌋+ 1)m.

Proof. Assume that all the points where the maximum temperature Θmax occurs are
after the execution of a job Jj, with j ≥ (⌊d

2
⌋ + 1)m + 1. By Lemma 6.3, such a job is

succeeded by a job Jj′ , j′ = n − i +m + 1, in the schedule returned by Algorithm 6.2.
It is easy to check that j > j′, hence hj′ ≥ hj. Let Θ,Θ′ ≤ Θmax be the temperatures

before the execution of Jj and after the execution of Jj′ , respectively. Then, Θmax =
Θ+hj

2

and hj ≥ Θmax, since Θmax ≥ Θ. Moreover, Θ′ =
Θmax+hj′

2
≥ Θmax, since hj′ ≥ hj. This

implies that Θ′ = Θmax, since Θ
′ ≤ Θmax. But this means that the maximum temperature

is also achieved after the execution of job Jj′ , which is a contradiction because

j′ = n − j +m+ 1 ≤ m(d − ⌊d
2
⌋) ≤ m(⌊d

2
⌋+ 1)

contrary to what we assumed in the beginning of the proof.

Lemma 6.5. For the maximum temperature of an optimal schedule it holds that Θ∗
max ≥

hn−j+m+1

4
+ hj

2
, for any j ≥ m+ 1.

Proof. Consider a job Jj and let Jj′ be its previous job in the same processor in an
optimal schedule S∗. The jobs executed in the first slot of each processor in S∗ do not
have a previous one. To simplify the presentation of our proof, we assume that they are
preceded by hypothetical jobs Jn+j′′ , 1 ≤ j′′ ≤ m.

If j′ ≤ n − j +m+ 1, then Θ∗
max ≥

hj′

4
+ hj

2
≥ hn−j+m+1

4
+ hj

2
, since hj′ ≥ hn−j+m+1.

If j′ > n − j+m+1, then let B = {Jn−j+m+2, Jn−j+m+3, . . . , Jn, Jn+1, . . . , Jn+m} and
let A be the set of jobs that precede the jobs J1, J2, . . . , Jj−1 in the optimal schedule.
Clearly, |B| = |A| = j − 1, Jj′ ∈ B and Jj′ /∈ A since Jj′ precedes Jj in S∗.
Therefore, there is a job Jk′ ∈ A such that Jk′ /∈ B, that is k′ < n−j+m+2. The job

Jk′ precedes a job Jk in S∗ and since Jk′ ∈ A it follows, by the definition of the set A, that
k < j. Hence, Θ∗

max ≥ hk′

4
+ hk

2
≥ hn−j+m+1

4
+ hj

2
, since hk ≥ hj and hk′ ≥ hn−j+m+1.

Theorem 6.4. Algorithm 6.2 achieves a 4
3
approximation ratio for T,P|pj = 1,dj = d,hj|

Θmax.

Proof. By Lemma 6.4 the maximum temperature in the schedule, S, obtained by Algo-
rithm 6.2 occurs after the execution of a job Jj, j ≤ (⌊d

2
⌋ + 1)m (the maximum may be

achieved in other timeslots as well).
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If 1 ≤ j ≤ m, then the maximum occurs at the first processor and Θmax =
h1
2

≤ Θ∗
max

and, hence, the algorithm returns an optimal schedule.
If m+1 ≤ j ≤ ⌈d

2
⌉m then by Lemma 6.3, the job Jj is preceded in the schedule S by

the job Jn−j+m+1. Let Θ be the temperature before the execution of the job Jn−j+m+1.

By Lemma 6.5, and since Θ ≤ Θmax, Θmax =
Θ
4
+ hn−j+m+1

4
+ hj

2
≤ Θmax

4
+ Θ∗

max. Hence,
Θmax ≤ 4

3
·Θ∗

max.
Note that if d is odd, then ⌈d

2
⌉m = (⌊d

2
⌋ + 1)m and the analysis of the previous case

holds. Hence the only remaining case is that d is even and ⌈d
2
⌉m+ 1 ≤ j ≤ (⌊d

2
⌋+ 1)m.

For this case, let Θ′ ≤ Θmax be the temperature before the execution of Jj. Then,

hj ≥ Θmax, since Θmax =
Θ′+hj

2
and Θmax ≥ Θ′. Thus, there are at least ⌈d

2
⌉m + 1

jobs of heat contribution at least Θmax. Note that, in any schedule, each processor can
execute at most ⌈d

2
⌉ jobs without any pair of them scheduled in two consecutive slots.

Hence, in an optimal schedule, there are at least two jobs Jk and Jℓ, k, ℓ ≤ j, of heat
contribution at least Θmax executed in consecutive slots in the same processor. Therefore,
Θ∗
max ≥ hk

4
+ hℓ

2
≥ Θmax

4
+ Θmax

2
= 3

4
·Θmax, that is Θmax ≤ 4

3
·Θ∗

max.

For the tightness of the analysis of Algorithm 6.2 consider an instance ofm processors,
mn2 jobs and d = n2; suppose that there are mn hot jobs of heat contribution h = 2
and mn(n − 1) cool jobs of heat contribution h = ǫ. We consider n to be sufficiently
large and that ǫ tends to 0. The algorithm in each processor alternates n hot jobs
with n − 1 cool jobs and schedules n(n − 2) + 1 cool jobs at the end. The maximum
temperature of the algorithm’s schedule is attained exactly after the execution of the
last hot job on each processor. This job is executed at slot 2n − 1, and thus Θmax =
2

22n−1 +
ǫ

22n−2 +
2

22n−3 +
ǫ

22n−4 + . . .+ ǫ
22
+ 2
21

≃ 2
1
2

1− 1
4

= 4
3
. On the other hand, the optimal

solution alternates in each processor a hot job with n − 1 cool jobs. The temperature
before the execution of any hot job tends to zero and the maximum temperature is one.

Average Temperature Minimization

Subsequently, we look at the problem of minimizing the average temperature, that is
T,P|pj = 1,dj = d,hj|

∑

Θt, instead of the maximum temperature. We will again con-
sider a schedule length d and assume that the number of jobs is n = md. Contrary to the
maximum temperature, we show that minimizing the average temperature of a schedule
is solvable in polynomial time. Our algorithm is based on the following lemma.

Lemma 6.6. In any optimal solution for the average temperature, jobs are scheduled in
a coolest first order, i.e., for any pair of jobs Jj, Jj′ such that hj > hj′ scheduled at slots
t and t′, respectively, it holds that t′ ≤ t, regardless of the processor they are assigned to.

Proof. Consider the job Jj to be scheduled at slot t of some processor Pi in a schedule
S. The contribution of job Jj to the temperature of the s-th slot of processor Pi (with

t ≤ s ≤ d), is hj

2s−t+1 , while this job does not affect the temperature of any other slot
in any processor. Hence, the contribution of job Jj to the objective function,

∑

Θt, of
schedule S is

∑d
s=t

hj

2s−t+1 = hj ·
∑d−t+1

s=1
1
2s = hj · (1− 1

2d−t+1 ) = hj · 2
d+1−2t

2d+1 .
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Therefore, the later job Jj is scheduled, the smaller its contribution to the objective
function becomes.

Assume, now, that in an optimal schedule S∗ the job Jj is scheduled at slot t of some
processor, while the job Jj′ at slot t′ > t in any processor. By swapping the execution
of this pair of jobs the contribution of the job Jj to the objective function decreases by

hj · 2
t′

−2t

2d+1 and the contribution of job Jj′ increases by hj′ · 2
t′

−2t

2d+1 . As hj > hj′ , it follows that
the resulting schedule contradicts the optimality of the schedule S∗ and this completes
the proof of the lemma.

The previous lemma leads directly to the next simple algorithm.

Algorithm 6.3

1: Sort the jobs so that h1 ≤ h2 ≤ . . . ≤ hn.
2: According to this order schedule the jobs to processors using Round-Robin.

Algorithm 6.3 finds a schedule in O(n log n) time. The optimality of this schedule
follows directly by the Round-Robin scheduling of the jobs in non-decreasing order of
their heat contributions and Lemma 6.6.

Theorem 6.5. An optimal schedule for the problem T,P|pj = 1,dj = d,hj|
∑

Θt of min-
imizing the average temperature can be found in polynomial time.

In what follows, we consider a time-dependent weighted version of average temper-
ature minimization. In particular, we consider each slot t of every processor Pi to be
associated with a given positive weight wi,t, 1 ≤ t ≤ d, and our problem is denoted
as T,P|pj = 1,dj = d,hj|

∑

wi,tΘi,t. The weights wi,t could represent the interest of
the system manager to keep its processors/computers cool during specific time periods
of peak loads. This leads to some special, but more practical cases, of our formulation
where the weights of some slots (e.g., the slot corresponding to some given time t in all
processors, or an interval of consecutive slots for some processor) could be considered
equal. Moreover, our analysis allows the weight of the t-th slot of processor Pi to depend
on the processor too and we denote this by wi,t, 1 ≤ t ≤ d, 1 ≤ i ≤ m.

Similarly with the unweighted case, we consider a job Jj of heat contribution hj

scheduled in the t-th slot of processor Pi in a schedule S. The contribution of this
job to the weighted temperature of the s-th slot of processor Pi, with t ≤ s ≤ d, is
wi,s · hj

2s−t+1 , and this job does not affect the temperature of any other slot in any processor.
Hence, the contribution of job Jj to the total weighted temperature of the schedule S is
∑d

s=t wi,s · hj

2s−t+1 = hj ·
∑d

s=t
wi,s

2s−t+1 . Clearly, the quantity ci,t =
∑d

s=t
wi,s

2s−t+1 is a constant
that depends only on the slot t of processor Pi and not on the job executed in this slot.

Based on this, we transform our problem to a weighted bipartite matching problem
and we prove the next theorem.

Theorem 6.6. The problem T,P|pj = 1,dj = d,hi|
∑

wi,tΘi,t of minimizing the weighted
average temperature is polynomially solvable.
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Proof. We transform the problem to a weighted bipartite matching problem. Consider a
complete bipartite graph G = (V, U ;E) where the vertices in V correspond to the n jobs
and the vertices in U to the m · d slots available in all processors. We set the weight of
the edge between a job Jj and the slot t of processor Pi to be equal to hj · ci,t. Hence,
the weight of this edge represents the contribution of job Jj to the objective function, if
it is scheduled in slot t of processor Pi. A perfect matching in the graph G corresponds
to a feasible schedule and the weight of such a matching to the value of the objective
function for this schedule. Therefore, a minimum weight perfect matching corresponds
to an optimal solution for our problem. Such a matching can be found in polynomial
time.

P1, 1 P1, t P1, md P2, 1 Pi, 1 Pi, t Pi, md Pn, 1 Pn, t Pn, md

J1 Jj Jn

hj · ci,t

Figure 6.2: The bipartite graph for T,P|pj = 1,dj = d,hi|
∑

wi,tΘi,t.
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Conclusion

In this thesis, we considered energy and temperature aware scheduling problems on var-
ious computing environments with different optimization goals.

Initially, we studied non-preemptive speed scaling problems with the objective of
minimizing the energy. In order to solve such problems, we applied the intuitive idea
of transforming optimal preemptive schedules to non-preemptive ones. We showed that
this approach does not lead to constant-factor approximation algorithms for arbitrary
instances. However, we obtained a 2α-approximation algorithm for the single processor
problem S,1|wj = w, rj,dj|E with equal work jobs. An intriguing open question concerns
the complexity status of this problem, i.e. whether it is polynomial or N P-hard. By
applying the same idea, we proposed a (2 − 1

m
)α−1 approximation algorithm for the

multiprocessor non-preemptive problem S,P|rj,dj, agrbl|E with agreeable instances.

One way for solving an energy aware problem is by formulating it as a convex pro-
gram. Note that a convex program can be solved in polynomial time with the Ellipsoid
algorithm. However, we may obtain a faster algorithm for such a problem in the follow-
ing way. We can first apply the well-known KKT conditions to the convex programming
formulation of the problem and deduce a set of properties which are necessary and suf-
ficient for optimality. Then, it suffices to derive an algorithm which always produces
solutions satisfying these properties. Following this strategy, we proposed an optimal
greedy algorithm for the problem of minimizing the maximum lateness with a budget of
energy S,1||Lmax(E) and an optimal algorithm for the multiprocessor migratory problem
S,P|rj,dj,mgtn|E of minimizing the energy which is based on repeated maximum flow
computations.

Subsequently, we observed that convex cost flow formulations fit well for solving energy
minimization problems. Specifically, we showed that the problems S,P|rj,dj,mgtn|E
and S,O|dj = d,pmtn|E can be solved in polynomial time by using as a black box an
optimal convex cost flow algorithm on appropriate graphs. An interesting future direction
is to investigate further extensions of this idea in the speed scaling setting.

Next, we proposed another optimal algorithm for the energy minimization problem
S,O|dj = d,pmtn|E which is based on a primal-dual schema in the context of convex
programming and KKT conditions. This algorithm is much faster than the convex cost
flow algorithm when it holds that n Ó= m. Nevertheless, new ideas are required in order
to define a faster algorithm for the case where n = m. The primal-dual method seems
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to be a useful tool in obtaining algorithms for speed scaling problems. For instance, we
could expect an optimal primal-dual algorithm for S,P|rj,dj,mgtn|E which would be
faster than the best known algorithm for this problem.
Another technique that we used in order to tackle speed scaling problems is by solving

configuration linear programs and applying randomized rounding. With this approach
we obtained a near-optimal algorithm for the problem S,R|wi,j, ri,j,di,j,mgtn|E and a
constant factor approximation algorithm for S,R|wi,j, ri,j,di,j,pmtn|E on heterogeneous
environments. For the latter problem, our algorithm achieves the same approximation ra-
tio with the best-known algorithm for the case where the processors are homogeneous. So,
any improvement of our algorithm or an inapproximability result should address the ho-
mogeneous case first. Through a transformation of the single-processor non-preemptive
problem to a multiprocessor preemptive problem combined with randomized rounding
of an integer configuration linear program, we improved the best-known algorithm for
S,1|rj,dj|E. For α = 3, we reduced the approximation ratio from 2048 to 20. Fur-
ther improving this approximation ratio or obtaining an inapproximability result is a
challenging open question.
Another important open question in speed scaling is the complexity status of the fun-

damental problem S,1|rj,pmtn|
∑

Cj of minimizing the average completion time under
a budget of energy. In this thesis, we showed that the problem is polynomially solvable
when the jobs have equal release dates. Moreover, an optimal polynomial time algorithm
is known for the special case of the problem where the jobs have unit works.
The following table summarizes the main results of this thesis for speed scaling prob-

lems.

Technique Problem Result Section
Preemptive to S,1|wj = w, rj,dj|E 2α-approx 2.2
Non-Preemptive S,P|rj,dj, agrbl|E (2− 1

m
)α−1-approx 3.2

KKT and Greedy
S,1||Lmax(E) OPT 2.3

S,P|rj,dj,mgtn|E OPT 3.1
Batched Algorithm S,1|rj|Lmax + βE 2-compet 2.3

Convex Cost Flow
S,P|rj,dj,mgtn|E OPT 3.1
S,O|dj = d,pmtn|E OPT 5.1

Primal-Dual S,O|dj = d,pmtn|E OPT 5.1
S,R|wi,j, ri,j,di,j,mgtn|E OPT 4.1

Configuration LP S,R|wi,j, ri,j,di,j,pmtn|E B̃α-approx 4.2
Randomized Rounding S,J|wi,j, ri,j,di,j,pmtn|E B̃α-approx 5.2

S,1|rj,dj|E 2α−1B̃α-approx 2.2, 4.2

Table 7.1: Main Results of the Thesis.

Finally, we considered temperature-aware scheduling problems under the discrete ther-
mal problem and we proposed constant factor approximation algorithms for the problems
T,P|pj = 1,hj|Cmax(Θ) of minimizing the makespan under a temperature threshold and
T,P|pj = 1,dj = d,hj|Θmax of minimizing the maximum temperature. For the former
problem we obtained a 2 + ǫ-approximation algorithm while for the latter one our al-
gorithm achieves a 4/3-approximation ratio. Improving these results is an interesting
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future direction even for the single processor case. Another important open question in
the context of the discrete thermal model is whether we can improve the best known
algorithm for the online problem of maximizing the throughput which is 2-competitive.
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Appendix A

General Form of KKT Conditions

In this appendix, we give the general form of the KKT conditions. Assume that we
are given the following convex program.

min f(x)

gi(x) ≤ 0 1 ≤ i ≤ m

hj(x) = 0 1 ≤ j ≤ ℓ

x ∈ Rn

Suppose that the program is strictly feasible, i.e. there is a point x such that gi(x) < 0
and hj(x) = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ ℓ, where all functions gi and hj are
differentiable at x. Let λi and µj be the dual variables associated to the constraints
gi(x) ≤ 0 and hj(x) = 0, respectively. The Karush-Kuhn-Tucker (KKT) conditions are
the following.

gi(x) ≤ 0 1 ≤ i ≤ m (A.1)

hj(x) = 0 1 ≤ j ≤ ℓ (A.2)

λi ≥ 0 1 ≤ i ≤ m (A.3)

λigi(x) = 0 1 ≤ i ≤ m (A.4)

∇f(x) +
m

∑

i=1

λi∇gi(x) +
ℓ

∑

j=1

µj∇hj(x) = 0 (A.5)

KKT conditions are necessary and sufficient for solutions x ∈ Rn, λ ∈ Rm and µ ∈ Rℓ

to be primal and dual optimal, where λ = (λ1, λ2, . . . , λm) and µ = (µ1, µ2, . . . , µℓ). We
refer to the conditions (A.1) and (A.2) as primal feasible, to the (A.3) as dual feasible,
to the (A.4) as complementary slackness and and to the (A.5) as stationarity conditions,
respectively.
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Appendix B

KKT Conditions for Maximum
Lateness plus Energy

Here we apply the KKT conditions to a convex programming formulation for the
problem S,1||Lmax + βE. As we showed in Section 2.3, this problem can be formulated
as the following convex program.

minL+ β
n

∑

j=1

wjs
α−1
j (B.1)

Cj + qj ≤ L 1 ≤ j ≤ n (B.2)
w1

s1
≤ C1 (B.3)

Cj−1 +
wj

sj

≤ Cj 2 ≤ j ≤ n (B.4)

L, Cj, sj ≥ 0 1 ≤ j ≤ n (B.5)

By applying the KKT conditions we get the following lemma which describes some
necessary and sufficient properties for a feasible schedule to be optimal.

Lemma B.1. There is an optimal schedule for the maximum lateness plus energy problem
satisfying the following properties.
(i) Each job Jj runs at a constant speed sj.
(ii) Jobs are scheduled according to the EDD rule.
(iii) Jobs are consecutively executed without any idle period.
(iv) The last job is critical, i.e., Ln = Lmax.
(v) Every non-critical job Jj has equal speed with the job Jj+1, i.e. sj = sj+1.
(vi) Jobs are executed in non-increasing speeds, i.e., sj ≥ sj+1.

(vii) The job executed first runs at speed s1 = (
1

(α−1)β
)
1
α .

Proof. The Properties (i) and (ii) can be easily verified through simple exchange argu-
ments and have been discussed in Section 2.3. We prove the remaining properties by
applying the KKT conditions to the above convex program.
To the constraints (B.2), (B.3) and (B.4), we associate the dual variables λj, µ1, µj,

respectively. Without loss of generality, we may assume that L, Cj, sj > 0, for 1 ≤ j ≤ n,
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in any optimal schedule. Hence, by complementary slackness conditions, we get that the
dual variables associated to the constraints (B.5) are equal to zero.
Stationarity conditions give that

∇(L+ β
n

∑

j=1

wjs
α−1
j ) +

n
∑

j=1

µj∇(Cj + qj − L) +

µ1∇(
w1

s1
− C1) +

n
∑

j=2

µj∇(Cj−1 +
wj

sj

− Cj) = 0 ⇒

(1−
n

∑

j=1

λj)∇L+
n−1
∑

j=1

(λj − µj + µj+1)∇Cj +

(λn − µn)∇Cn +
n

∑

j=1

(

(α − 1)βwjs
α−2
j − λjwjs

−2
j

)

∇sj = 0

The above equation gives equivalently that

n
∑

j=1

λj = 1 (B.6)

λj = µj − µj+1 for 1 ≤ j ≤ n − 1 (B.7)

λn = µn (B.8)

µj = (α − 1)βsα
j (B.9)

Furthermore, complementary slackness conditions can be stated as

λj(Cj + qj − L) = 0 1 ≤ j ≤ n (B.10)

µ1(
w1

s1
− C1) = 0 (B.11)

µj(Cj−1 +
wj

sj

− Cj) = 0 2 ≤ j ≤ n (B.12)

(iii) Since sj > 0, (B.9) gives that µj > 0 for each 1 ≤ j ≤ n. Hence, by (B.11) and
(B.12) we have that C1 =

w1
s1
and Cj = Cj−1 +

wj

sj
for 2 ≤ j ≤ n. Therefore, there is no

idle period in an optimal schedule.
(iv) Since sn > 0, by (B.9) it follows that µn > 0 and due to (B.8), λn > 0. So, the

last job to finish is always a critical job by (B.10).
(v) Because of (B.10), if a job is non-critical, then λj = 0. Therefore, by (B.7) and

(B.9) we have, respectively, that λj = 0 ⇒ µj = µj+1 ⇒ sj = sj+1 which means that each
non-critical job Jj has equal speed with the job Jj+1.
(vi) By dual feasibility conditions, λj ≥ 0. Therefore, (B.7) and (B.9) give that

µj ≥ µj+1 and sj ≥ sj+1, respectively. Thus, the jobs will be executed in non-increasing
order of speeds.
(vii) By plugging (B.7) and (B.8) into (B.6) we get that µ1 = 1. Consequently,

s1 = (
1

(α−1)β
)
1
α by (B.9).
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Flows and Matchings

Finally, we define some problems related to flows an matchings, namely the maximum
flow, the convex cost flow, the maximum matching and the minimum weighted maximum
(or perfect) matching problems. All these problems are polynomially solvable (see [1]).

Maximum and Convex Cost Flows

An instance of the maximum flow problem consists of a directed graph G = (V, A), where
V is a set of vertices (or nodes) and A ⊆ V × V is a set of arcs between the nodes. Each
arc e ∈ A is associated with a capacity ce ≥ 0 which is an upper bound on the amount
of flow that can cross the edge (i, j). Moreover, we are given a source node s ∈ V and a
destination node t ∈ V . An (s, t)-flow F is a mapping F : E → R

+ such that

∑

u:(u,v)∈E

f(u,v) =
∑

u:(v,u)∈E

f(v,u)

for each node v ∈ V \ {s, t}. The value |F| of an (s, t)-flow F is

|F| =
∑

u:(s,u)∈E

f(s,u)

In the maximum flow problem, we want to find an (s, t)-flow F of maximum value.
An instance of the convex cost flow problem consists of a directed graph G = (V, A),

where V is a set of nodes and A ⊆ V × V is a set of arcs between the nodes. As in the
case of the maximum flow problem, we are given a source node s ∈ V , a destination node
t ∈ V and each arc e ∈ A is associated with a capacity ce ≥ 0. Now, each arc e ∈ A is
also specified by a cost function ge(x) ≥ 0, where x ≥ 0. The function ge(x) is convex
with respect to x and it is the cost incurred if x units of flow pass through the arc e.
Moreover, we are given an amount of flow |F|. The objective is to find an (s, t)-flow F of
value |F| with minimum cost such that the amount of flow that crosses each edge e does
not exceed the capacity ce, for each e ∈ A.

Matchings

Assume that we are given a bipartite graph G = (V, U ;E), where each edge e ∈ E has
one endpoint in the set V and the one endpoint in the set U . A matching M of G is a
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subset of edges, i.e. M ⊆ E, such that no two edges in M have a common endpoint. A
matching of maximum cardinality is a matching that contains the maximum number of
edges among all the possible matchings in G. A matching is perfect if it has cardinality
|V | = |U |. In the minimum weighted maximum (or perfect) matching problem, each edge
e of G is associated with a weight we ≥ and the objective is to find a maximum (perfect)
matching of minimum weight.
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