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Autonome Dédiée à la Surveillance des

Ouvrages d’Art

COMPOSITION DU JURY

Président : R. Chatila DR. CNRS, Univ. Pierre et Marie Curie

Rapporteur : R. Lozano DR. CNRS, Univ. Technologie de Compiègne
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Abstract

Today, the inspection of structures is carried out through visual assessments effected

by qualified inspectors. This procedure is very expensive and can put the personal in

dangerous situations. Consequently, the development of an unmanned aerial vehicle

equipped with on-board vision systems is privileged nowadays in order to facilitate the

access to unreachable zones.

In this context, the main focus in the thesis is developing original methods to deal with

planning, reference trajectories generation and tracking issues by a hovering airborne

platform. These methods should allow an automation of the flight in the presence of air

disturbances and obstacles. Within this framework, we are interested in two kinds of

aerial vehicles with hovering capacity: airship and quad-rotors.

Firstly, the mathematical representation of an aerial vehicle in the presence of wind has

been realized using the second law of newton.

Secondly, the question of trajectory generation in the presence of wind has been studied:

the problem of minimal time was formulated, analyzed analytically and solved numeri-

cally. Then, a strategy of trajectory planning based on operational research approaches

has been developed.

Thirdly, the problem of trajectory tracking was carried out. A nonlinear robust control

law based on Lyapunov analysis has been proposed. In addition, an autopilot based on

saturation functions for quad-rotor crafts has been developed.

All methods and algorithms proposed in this thesis have been validated through simu-

lations.





Résumé

Aujourd’hui, l’inspection des ouvrages d’art est réalisée de façon visuelle par des contrôleurs

sur l’ensemble de la structure. Cette procédure est couteuse et peut être particulièrement

dangereuse pour les intervenants. Pour cela, le développement du système de vision

embarquée sur des drones est privilégié ces jours-ci afin de faciliter l’accès aux zones

dangereuses.

Dans ce contexte, le travail de cette thèse porte sur l’obtention des méthodes originales

permettant la planification, la génération des trajectoires de référence, et le suivi de

ces trajectoires par une plate-forme aéroportée stationnaire autonome. Ces méthodes

devront habiliter une automatisation du vol en présence de perturbations aérologiques

ainsi que des obstacles. Dans ce cadre, nous nous sommes intéressés à deux types de

véhicules aériens capable de vol stationnaire : le dirigeable et le quadri-rotors.

Premièrement, la représentation mathématique du véhicule volant en présence du vent a

été réalisée en se basant sur la deuxième loi de Newton. Deuxièmement, la problématique

de génération de trajectoire en présence de vent a été étudiée : le problème de temps

minimal est formulé, analysé analytiquement et résolu numériquement. Ensuite, une

stratégie de planification de trajectoire basée sur les approches de recherche opérationnelle

a été développée.

Troisièmement, le problème de suivi de trajectoire a été abordé. Une loi de commande

non-linéaire robuste basée sur l’analyse de Lyapunov a été proposée. En outre, un

pilote automatique basée sur les fonctions de saturations pour un quadri-rotors a été

développée.

Les méthodes et algorithmes proposés dans cette thèse ont été validés par des simula-

tions.
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Chapter 1

Introduction

Unmanned Aerial Vehicle technology have seen an enormous and promptly development

in the last two decades. This kind of aerial vehicles is being increasingly used in mili-

tary and civilian domains such as, surveillance, reconnaissance, mapping, cartography,

border patrol, inspection, homeland security, search and rescue, weather and hurricane

monitoring, fire detection, agricultural imaging, traffic monitoring, pollutant estimation,

etc... [40, 41, 63, 162].

Based on UAVs shapes and structures, they can be classified in the following categories,

[128, 134]:

• Fixed-wing UAV: This type of UAV is capable of flight using forward motion with

a relative velocity such that a sufficient lift is generated on wings. In addition, it

requires a runway for the take-off and landing.

• Rotary-wing UAV: This kind of aerial vehicle has the advantage of hovering capability

and high maneuverability. These aircrafts use one or more propellers to produce the

thrust force necessary for motion. In addition, the ability of rotor-crafts to take off

and land in limited spaces and to hover above targets, gives such kind of UAVs the

superiority over fixed wing aircrafts especially for missions that require hovering flight.

• Lighter than air UAV: Unlike fixed or rotary wing aerial vehicles, the lift of lighter

than air vehicles is mainly generated by buoyancy force. This characteristic makes

airships noiseless, ecological and very useful for long term environmental applications.

However, other classifications can be found in literature according to a variety of pa-

rameters that include, vehicle configuration, shapes, structures, size, weight, endurance

and range, maximum altitude, engine type among others.

1



Chapter 1. Introduction 2

1.1 Structure Inspection

The inspection of structures like bridges, dams, dikes, towers, etc... is a fundamental

tool to ensure the good quality of service and users safety. Such architectures can fail

structurally in a catastrophic fashion, or they can fall through obsolescence. However,

there are many causes that can weaken a structure. For instance, the growth from

microscopic to catastrophic lengths of undetected cyclic load-induced fatigue cracks,

the reduction in strength of steel components produced by environmentally-assisted

corrosion, etc... In most of the cases, structure failures has had various effects such as

property damage, wounded, and fatalities among others.

According to [46, 47], visual inspection is the most basic and also the most common

method by which bridges and other civil structures are evaluated. This technique relies

in visual assessments that cover the entire structure. It is a long process which requires

a large number of qualified inspectors and a various of specialized equipment. In order

to ensure the safety inspection personal, powered walkways and platforms to observe

the inaccessible zones were created. Experience had revealed that such kind of facilities

are difficult or even impossible, in some cases, to use. Consequently, the Laboratoire

Central de Ponts et Chaussées (LCPC), today known as IFSTTAR, began to explore the

possibility of using an unmanned aerial vehicle equipped with on-board vision systems

for structure inspection task in the end of the 1990’s. It was not until 2005 that the

LCPC acquired its first helicopter type UAV. This UAV has been the subject of several

improvements to include new measurement and observation sensors including wireless

communications, global positioning, etc... The imagery and data obtained from the

UAV is post-processed using a specialized software to reconstruct a virtual model of the

structure.

By making the inspection process autonomous, we take advantage of the following points:

• Reduce cost due to minimal personnel and operating costs.

• Reduce inspection time.

• Increase the safety of staff.

• facilitate the access to unreachable and dangerous zones.

• Allow the long-term structure monitoring and following-up the evolution of existing

cracks.

The inherent nature of a structure inspection mission using UAVs implies the interaction

of different research domains including, UAV stabilization, optimal control, navigation,

obstacle avoidance, wireless communications, computer vision, etc...



Chapter 1. Introduction 3

1.2 Motivation of this thesis and objective

This thesis is motivated by autonomous UAV-based bridge inspection missions. From

flight planning point of view, the neighborhood of bridges is a challenging environment

due to the presence of obstacles, and different meteorological phenomenon. In addition,

resources optimization, risk and operational cost minimization are fundamental issues

in these kind of tasks. Therefore, we are interested in optimal trajectory planning in

presence of obstacles, and meteorological turbulence such as wind shear, Venturi effect,

Karman vortex among others. The main goal of this thesis is to automatize the motion

planning and optimize the generated trajectory for bridge inspection such that the task

is accomplished in a minimal time.

The nature of inspection mission requires an aerial vehicle capable of hovering flight.

Consequently, we are interested in two types of UAVs: airships and quadrotors. The

overall UAV system architecture, as presented in Fig. 1.1 consists of five layers: motion

planner, trajectory generator, trajectory tracker, autopilots, and the vehicle.

The motion planner creates a plan for the unmanned aerial vehicle defining a set of

way-points from the vehicle initial point to the desired final one. While, the trajectory

generator creates a flyable trajectory to connect way-points in the same order as it was

given to it by the motion planner. Next, the generated trajectory is given as reference

signals to the trajectory tracker which, in turn, computes the necessary mid-level control

inputs to ensure the trajectory following. Then, these inputs are provided to autopilots

as reference values to stabilize the UAV.

Our objective is to propose and develop algorithms to deal with motion planner, tra-

jectory generator, and trajectory tracker levels. The planner and trajectory generator

must take into consideration the measurable parameters of meteorological phenomena,

the on-board energy limitations, and the presence of obstacles in the environment. To-

ward this end, a flight planning system based on optimal control was proposed. On the

other side, the trajectory tracker should ensure trajectory following in the presence of

disturbances such as wind gusts. For this purpose a control strategy based on inverse

optimality was introduced.

1.3 Contributions of this thesis

The main contributions of this thesis are the following:

• Adopting kinematic point mass model for quad-rotors crafts.

• Planning in 3D with varying velocity, heading angle, and flight path angle.
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Figure 1.1: UAV system architecture.

• Taking into consideration the presence of the wind in the trajectory generation phase

and introduce the updated trajectory principle.

• Introducing a robust control strategy to make autonomous trajectory following for

kinematic aerial vehicle, and dynamic lighter than air vehicle in a windy environment.

Parts of the work related with this thesis have been previously published.

Related with Chapter 3, the following papers have been published:

– Y. Bestaoui and E. Kahale, ”Analysis of Time Optimal 3D Paths for an Autonomous

Aircraft with a Piecewise Constant Acceleration”, In 49th AIAA Aerospace Sciences

Meeting, Orlando Florida, USA, January 2011.

– Y. Bestaoui and E. Kahale, ”Generation of Time Optimal Trajectories of an Au-

tonomous Airship”, In IEEE Workshop on Robot Motion Control (ROMOCO 2011),

Bukowy Dworek, Poland, June 2011.
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– Y. Bestaoui and E. Kahale, ”Time Optimal Trajectories of a Lighter Than Air Robot

with Second Order Constraints and a Piecewise Constant Velocity Wind”, AIAA

Journal of Aerospace Computing Information and Communication, 10(4): 155-171,

April 2013.

Related with Chapter 4, the following papers has been published:

– E. Kahale, Y. Bestaoui, and P. Castillo, ”Path tracking of a small autonomous air-

plane in wind gusts”, In EEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Vilamoura, Algarve, Portugal, October 2012.

– E. Kahale, P. Castillo, and Y. Bestaoui, ”Autonomous path tracking of a kinematic

airship in presence of unknown gust”, In International Conference on Unmanned Air-

craft Systems (ICUAS), Philadelphia, PA, USA, June 2012.

An extended version of the last paper was also published in

– E. Kahale, P. Castillo, and Y. Bestaoui, ”Autonomous path tracking of a kinematic

airship in presence of unknown gust”, Journal of Intelligent and Robotic Systems,

69(1-4): 431-446, January 2013.

1.4 Thesis outline

The manuscript is divided into Three main chapters. General equations of motion for

lighter than air vehicles and quadrotors crafts are introduced in Chapter 2. The vehicles

are modeled in two different ways: a six degree of freedom model, called rigid body model

and devoted for stability and control problem, and a three degree of freedom model,

called point mass model used in navigation and guidance control systems. Besides the

mathematical representations of the aerial vehicles, the wind gusts and Venturi effect

modeling question has been addressed.

Chapter 3 treats the trajectory generation and motion planning problems. In general,

the autonomy of a UAV is defined as its capacity to accomplish different types of tasks

with a high level of performance, maneuverability and with less oversight of human

operators [12, 92]. These tasks require flexible and Powerful algorithms that convert

high-level mission specifications from humans into low-level descriptions of the vehicle’s

motion. The terms Motion Planning and Trajectory Planning are often employed for

such kind of problems [111]. In order to connect a starting and a target points, feasible

and flyable trajectories must be defined. The feasibility criteria is carried out by motion

planning algorithms. This process produce a plan to steer the UAV safely to its target,

without taking into account its dynamical constraints. Whilst, the trajectory generation
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problem takes the solution obtained by the motion planning algorithm and determines

the way to fly along this solution with respect to the vehicle’s mechanical limitations.

In other words, it guarantees the flyable aspect of the trajectory [12, 111].

Once a feasible and flyable trajectory is generated, it becomes necessary to move one

step down into low-level control design. That means, to deal with trajectory tracking

question. This problem consists of stabilization of the state, or an output function of the

state, to a desired reference value, possibly time-varying [123]. This problem is handled

in chapter 4. Finally a general conclusion and perspective are given in chapter 5.



Chapter 2

Modeling

2.1 Introduction

In this chapter, the general equations of motion of an aerial vehicle flying in the Earth’s

atmosphere are derived and the coordinate systems in which these equations are written

are discussed. The aircraft is assumed to be a rigid body and the Newton’s laws of

motion are used.

The equations governing the translational and rotational motion of an aircraft can be

divided into the following two sets:

• Kinematic equations giving the translational and rotational position relative to

the earth reference frame.

• Dynamic equations relating forces to translational acceleration
(
Σ
−−→
Fext = m−→a

)

and moments to rotational acceleration
(
Σ
−−→
Mext = I

−→
ω̇
)
.

These equations are referred to as six degree of freedom (6DOF) equations of motion.

From navigation and guidance control system point of view, the vehicle’s rotation rates

are considered to be small. Thus, only translational equations known as three degree

of freedom (3DOF) equations of motion are used. These equations are uncoupled from

the rotational equations by assuming negligible rotation rates and neglecting the ef-

fect of control surface deflections on aerodynamic forces. For example, to maintain a

given speed for an aerial vehicle on cruise flight, the pitching moment is required to be

zero through an elevator deflection. This process contributes to the lift and drag forces

applied on the aircraft. Thus, by neglecting this contribution, the translational and

rotational equations can be uncoupled [81].

7
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On the other hand, the stability and control problems are related to the relative motion

of the center of gravity of the aircraft with respect to the ground, and the motion of the

vehicle about its center of gravity. Hence, the stability and control studies involve the

use of the six degree of freedom equations of motion.

Next, the coordinate systems used to develop the equations of motion are pointed out.

2.2 Coordinate Systems

The vehicle’s motion in the space is defined by several coordinate systems which can be

classified into two categories: Earth axis and body axis. All coordinate systems used

are right handed orthogonal [38, 81, 121].

2.2.1 Earth Axes System

There are two coordinate systems related to the Earth axes. The first one is fixed, known

as Earth Fixed Inertial Frame and denoted as RI (O, x, y, h). This axis system is

regarded as an inertial reference frame in which Newton’s laws of motion are valid,

i.e. the rotational velocity of the Earth is neglected [142]. The second reference frame

is moving, called Local Horizon Frame and referred to as RL (ARP , xL, yL, hL), see

Figure (2.1). Both Earth axes systems are related to the geographic coordinate system

NED which has the unit vectors
−→
N on x axis pointing to the North,

−→
E on y axis

pointing to the East, and
−→
D on h axis pointing toward to the center of the Earth

along the gravitational vector. Referring to Figure (2.1), Notice that the horizontal

planes defined by (O, x, y) and (ARP , xL, yL) are parallel. The previous two coordinate

systems can be distinguished by the location of their origins. The origin of RI , i.e. O, is

an arbitrary point located on the surface of the Earth while the origin of RL, i.e. ARP ,

is related to the aircraft’s reference point.

2.2.2 Body Axes

These coordinate systems have the aircraft’s reference point (ARP ) as origin, and its

axes are defined with respect to the vehicle. Three type of vehicle coordinate system

can be distinguished: Body fixed frame, Stability frame and Wind frame.
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Figure 2.1: Earth Coordinate Systems.

2.2.2.1 Body Fixed Frame

The body fixed coordinate system, RB (ARP , xB, yB, hB) is attached to the vehicle and

constrained to move with it, see Figure (2.2). Thus when the aircraft goes from its

initial flight condition the axes move with the vehicle and the motion is quantified in

terms of perturbation variables referred to the moving axes. The (xB×hB) plane defines

the plane of symmetry of the aircraft such that the xB axis is directed along the axis of

symmetry. Thus yB axis is oriented to the right while hB axis is pointed downward.

2.2.2.2 Stability Frame

The stability axes, RS (ARP , xS , yS , hS), are a special case of body-fixed axes in which

the orientation of the vehicle axis system is determined by the equilibrium flight con-

dition, see Figure (2.2). The axis xS is chosen to coincide with the velocity vector,
−→
V ,

at the start of the motion. Therefore, RS is obtained by rotating RB about yB axis

through an angle α known as the angle of attack. Remark that (xS × hS) remains in

the plane of symmetry of the vehicle and yS coincides with yB. If the reference flight is
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Figure 2.2: Aerial Vehicle’s Coordinate Systems.

not symmetric, i.e. β %= 0, then the xS axis is chosen to be the projection of
−→
V in the

plane of symmetry.

2.2.2.3 Wind Relative Frame

The axes of the wind relative coordinate system, RW (ARP , xW , yW , hW), are related to

the flight path of the vehicle, i.e. with respect to the velocity vector,
−→
V , Figure (2.2).

This coordinate system is attained by rotating RS about hS axis through the sideslip

angle, β. Notice that, the relationship between RW and RB defines the angle of attack,

α, and the sideslip angle, β. On the other hand, if the reference flight is symmetric, i.e.

β = 0 and
−→
V belongs to the plane of symmetry, then the wind relative axes coincide

with the stability axes.

Remark: The aircraft’s reference point, i.e. ARP , is an invariant point. It belongs to

the vehicle. In fixed and rotary wings aircraft ARP is chosen to be the vehicle’s center

of gravity (CG). On the other hand, for a lighter than air vehicles, the center of gravity

can not be used as a reference point because its location varies in time depending on

pressure. However, two invariant points can be proposed for modeling an airship; the

center of volume of the vehicle, CV , or its nose, N . For this thesis, the center of volume

is privileged.
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2.2.3 Coordinates Transformation

Previously, we have defined the different coordinate systems used to describe the mo-

tion of an aerial vehicle. The relations between such frames are known as coordinates

transformation, and represent the orientation of each coordinate system with respect to

the others. The transformation matrices between RI , RB, RS , and RW are the subject

of the following paragraphs.

Transformation from RI to RB The description of RI with respect to RB is made

using the following sequence of rotation [155].

Starting from the Earth fixed inertial frame:

1. Rotating about the hI axis by ”ψ”, also known as yaw angle. The positive direction

of rotation is taken so that the nose turns toward to right.

2. Rotating about the new y axis by ”θ”, called as pitch angle. The positive direction

of rotation is defined in order that the nose points to up.

3. Rotate about the new x axis by ”φ”, also named roll angle. The positive direction

of rotation is presented such that the right-side heads to down.

Conversely, to go in the opposite direction, i.e. from the body frame to the Earth fixed

inertial frame, the sequence roll, pitch, yaw must be followed. Notice that the yaw,

pitch, and roll angles ψ, θ, φ are commonly referred to as Euler angles. This process is

illustrated in Figure (2.3). From previous, we can write




xB

yB

hB


 = CB

I




xI

yI

hI


 (2.1)

where CB
I denotes the transformation matrix and is given by

CB
I =




cos θ cosψ cos θ sinψ − sin θ

− cosφ sinψ + sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ

sinφ sinψ + cosφ sin θ cosψ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ


 (2.2)

Transformation from RB to RS The transformation from body fixed frame to the

stability frame is done using the following relationship, see Figure (2.2)




xS

yS

hS


 =




cosα 0 sinα

0 1 0

− sinα 0 cosα




︸ ︷︷ ︸
CS

B




xB

yB

hB


 (2.3)
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Figure 2.3: The Euler angles.

Transformation from RS to RW From Figure (2.2), we can describe this coordinates

transformation as follows




xW

yW

hW


 =




cosβ sinβ 0

− sinβ cosβ 0

0 0 1




︸ ︷︷ ︸
CW

S




xS

yS

hS


 (2.4)

Observe that the complete rotation from body to wind axes is given by




xW

yW

hW


 =




cosα cosβ sinβ sinα cosβ

− cosα sinβ cosβ − sinα sinβ

− sinα 0 cosα




︸ ︷︷ ︸
CW

B
=CS

B
·CW

S




xB

yB

hB


 (2.5)

Transformation from RI to RW The wind relative coordinate system is related to

the Earth fixed inertial frame by a sequence of two rotations.
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Starting from RI :

1. Rotating about the yI axis by ”γ”, also called as flight path angle. The positive

direction of rotation is taken in counter-clockwise direction.

2. Rotating about the new h axis by ”χ”, also known as heading angle. The positive

direction of rotation is taken in clockwise direction.

Thus, in terms of coordinate transformations we have




xW

yW

hW


 =




cosχ cos γ sinχ cos γ − sin γ

− sinχ cosχ 0

cosχ sin γ sinχ sin γ cos γ




︸ ︷︷ ︸
CW

I




xI

yI

hI


 (2.6)

Since, the Earth fixed inertial frame and the local horizon frame are parallel to each

other. The matrix CW
I can be used as a transformation matrix from RL to RW .

In the next section, a full six-degree-of-freedom (6DOF) nonlinear mathematical model

for both; Lighter Than Air Vehicles and Quad-Rotors flying in the space is carried out.

2.3 6DOF Equations of Motion (Rigid Body Model)

This modeling is also known as Rigid Body Model because it is derived in the body

fixed coordinate system, i.e. RB, and it assumes that the aerial vehicle is a rigid body.

2.3.1 Equations of Motion for Lighter Than Air Vehicles

The development of the 6DOF nonlinear equations of motion for an airship is similar to

a fixed-wing airplane. The major differences are caused by the structure of the vehicle

as it is buoyant and the fact that its motion displaces a large volume of surrounding air.

The buoyancy, added mass and added inertia forces, neglected in modeling the airplane’s

dynamics, add more nonlinear characteristics in the airship’s dynamics [11, 59, 98].

In addition, the lighter than air vehicle is an under-actuated system because it has fewer

control inputs than degrees of freedom. It is mainly controlled through thrust force and

control surfaces. The force inputs are available from two main propellers on each side of

gondola, which provides a complementary lift to oppose the weighting mass, as well as a

forward thrust controlling the longitudinal speed [17]. Furthermore, the fact of varying

the thrust generated by each propeller, through changing the angular velocity of each

engine, provides torque to control the rolling motion near hover. On the other side,

the flight control surface; i.e. rudders and elevators, of the tail provide torque input to
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control pitching and yawing motions.

Deducing the dynamic model of airships requires the following assumptions:

• The hull is considered as a solid. Thus, the aero-elastic phenomena and the motion

of lifting gaze inside the hull are ignored.

• The mass of the blimp and its volume are considered as constant.

• The Earth is considered as flat above the flight area.

The general motion of the lighter than air vehicle in 6DOF can be described by the

following vectors [11, 59, 139]

η =
[
ηT1 , η

T
2

]T
; η1 = [x, y, z]T ; η2 = [φ, θ,ψ]T (2.7)

V =
[
V T
1 , V T

2

]T
; V1 = [u, v, w]T ; V2 = [p, q, r]T (2.8)

where, η denotes the position and orientation of CV with respect to RI and V presents

the linear and angular velocity expressed in RB. In the next section, the kinematic

equations relating the body fixed reference to the fixed Earth inertial reference will be

derived.

2.3.1.1 Kinematics

The position of all points belonging to the airship with respect to Earth fixed inertial

frame are defined through the orientation of body fixed coordinate system, and the

position of its origin, i.e. the center of volume, with respect to RI . Thus, the kinematic

equations are obtained by effecting a velocity transformation which leads to

[
η̇1

η̇2

]
=

[
J1(η2) 03×3

03×3 J2(η2)

][
V1

V2

]
(2.9)

Remember that V1 and V2, defined in Equation (2.8), denote the linear and angular

velocity of the vehicle respectively. In addition, both are described in RB. Hence, the

first line in Equation (2.9) can be regarded as a linear velocity transformation, while

the second line presents an angular velocity transformation [17, 59, 139]. On the other

hand, the transformation matrices J1(η2) and J2(η2) depend on Euler angles, i.e. φ, θ,

and ψ. J1(η2) describes the transformation matrix from RB to RI and it is related with

CB
I , Equation (2.2), by the following relationship

J1(η2) =
[
CB
I

]T
(2.10)
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Besides, from Figure (2.3) we state

V2 =




p

q

r


 =




φ̇

0

0


+Rx/φ




0

θ̇

0


+Rx/φRy/θ




0

0

ψ̇


 = J−1

2 (η2) η̇2 (2.11)

Expanding the previous equation yields to the following

J−1
2 (η2) =




1 0 0

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ


 =⇒ J2 (η2) =




1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ


 (2.12)

From Equation (2.9), Equation (2.10), and (2.12), we obtain

ẋ =(cosψ cos θ)u+ (− sinψ cosφ+ cosψ sin θ sinφ) v (2.13a)

+ (sinψ sinφ+ cosψ sin θ cosφ)w

ẏ =(sinψ cos θ)u+ (cosψ cosφ+ sinψ sin θ sinφ) v (2.13b)

+ (− cosψ sinφ+ sinψ sin θ cosφ)w

ż =(− sin θ)u+ (cos θ sinφ) v + (cos θ cosφ)w (2.13c)

φ̇ =(sinφ tan θ) q + (cosφ tan θ) r + p (2.13d)

θ̇ =(cosφ) q + (− sinφ) r (2.13e)

ψ̇ =(sinφ sec θ) q + (cosφ sec θ) r (2.13f)

The previous mathematical relationships describes the translational and rotational kine-

matic equations of a lighter than air vehicle moving in three dimensional space. In the

next section, the full 6DOF dynamical model of an airship is introduced.

2.3.1.2 Dynamics through Newton-Euler Approach

The mathematical representation of an airship’s flight dynamics describes the different

forces and moments acting on the vehicle during the flight. As this type of aerial vehicles

are filled by a light lifting gas, e.g. helium, the added mass and added inertia effects

arise due to the fact that the airship’s mass is of the same order of magnitude as the

mass of displaced air [11, 17, 98]. These effects are presented as forces and moments

with respect to linear and angular accelerations [11].

There are two different approaches used in the derivation of the 6DOF nonlinear dynam-

ical model of the lighter than air vehicles[17]. The first one is based on Newton-Euler’s

law, while the second one deals with the Lagrange-Hamilton framework.
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The Newton-Euler approach in deriving dynamic equations is basically based on New-

ton’s law of motion which relates the forces and moments applied on the vehicle to the

resulting translational and rotational accelerations. Hence, for the translational motion

we have ∑−→
F ext = m.−→a (2.14)

Where, m denotes the total mass of the vehicle, −→a presents its linear acceleration and
−−→
Fext expresses the generalized external force vector.

On the other hand, applying Newton-Euler principle and Koenig theorem in rotational

motion leads to ∑−→
M ext =

dΠV

dt
+

−→
V V × P (2.15)

where Mext describes the moment vector acting on CV ,
−→
V V denotes the velocity at the

center of volume, and ΠV presents the angular momentum with respect to CV given by:

ΠV = ΠG +
−−−−→
CV CG ×m

−→
V G (2.16)

= IG
−→
V 2 +

−−−−→
CV CG ×m

−→
V G

with

- ΠG is the angular momentum with respect to the center of gravity.

-
−−−−→
CV CG is the position vector of CG with respect to CV .

-
−→
V G is the velocity of CG.

- IG is the inertia matrix of the airship at CG.

Proceeding from Equation (2.14) and Equation (2.15), the lighter than air vehicle dy-

namic equations can be written as

MV̇ = C(V )V + τs + τa + τp (2.17)

Here, M presents the vehicle’s inertia matrix, C(V ) denotes the Coriolis matrix, τs, τp,

and τa refer to the static, propulsion system, and aerodynamic tensors respectively. The

different components of Equation (2.17) are the subject of the following paragraphs.

Inertia matrix M This matrix is given by [17, 59]

M =


 mI3×3 −m

[
rCV
CG

×
]

m
[
rCV
CG

×
]

IN


 (2.18)

where, I3×3 is the identity matrix, IN is the inertia matrix with respect to CV which,

under the assumption of the vehicle’s symmetry about xB × zB plane, takes the form
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IN = IG +m
−−−−→
CV CG ×

(−→
V 2 ×

−−−−→
CV CG

)

=




Ixx 0 −Ixz

0 Iyy 0

−Izx 0 Izz


 (2.19)

with Ixx, Iyy, and Izz are called the moments of inertia with respect to x, y, and z axes

respectively, while the rest of the elements are referred to as the products of inertia. On

the other side,
[
rCV
CG

×
]
expresses the skew-symmetric matrix associated to the distance

from CV to CG. It is given by

[
rCV
CG

×
]
=




0 −az 0

az 0 −ax

0 ax 0


 (2.20)

where,
−−−−→
CV CG =

[
ax 0 az

]T
(2.21)

Coriolis and Centrifugal tensor C(V )V It takes the following form

C(V )V =


 V2 ×mV1 − V2 ×m

[
rCV
CG

×
]
V2

V2 × IcV2 + V1 ×mV1 + V2 ×m
[
rCV
CG

×
]
V1 − V1 ×m

[
rCV
CG

×
]
V2


 (2.22)

Static tensor τs It resulted from the static forces applied on the airship independently

of its motion. These forces are; the weight force
−→
W acting down-wards on the center of

gravity, and the buoyancy force
−→
B acting up-wards on the center of buoyancy CB. The

magnitude of these forces is given by

‖W‖ = m.g (2.23)

‖B‖ = ρ.νhull.g (2.24)

where, ρ refer to the density of the air and νhull denotes the volume of the airship’s hull.

On the other hand, the resulting moments are defined as

−→
Mw =

−−−−→
CV CG ×−→g (2.25)

−→
MB =

−−−−→
CV CB ×−→g (2.26)
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with,
−−−−→
CV CG,

−−−−→
CV CB defines the position vector from the vehicle’s center of volume CV

to its center of gravity CG and buoyancy CB respectively. Then, from previous relations,

the static tensor in fixed-body coordinate system can be determined by

τs = CB
I

[ −→
W +

−→
B

−−−−→
CV CG ×

−→
W +

−−−−→
CV CB ×

−→
B

]
(2.27)

Aerodynamic Tensor τa The aerodynamics phenomena are basically depending on

the relative velocity of the vehicle. It can be categorized into two main classes: stationary

and non-stationary phenomena.

The stationary aspect is related to forces and moments resulting from the distribution

of the pressure around the body, and the friction forces due to the viscosity of air

[17, 126, 160]. Thus, the stationary phenomena tensor can be described as

τsta =
1

2
ρV 2Sref




CT

CL

CN

LrefCl

LrefCn

LrefCm




(2.28)

where Sref = ν
2/3
hull refer to the airship’s reference area, Lref presents the vehicle’s ref-

erence length, and CT , CL, CN , Cl, Cn, and Cm denote, tangential, normal, lateral,

roll, pitch, and yaw stationary coefficients respectively. These coefficients depend on the

geometry of the airship and the positions of the control surfaces [17]. In addition, it can

be obtained in two different ways. The first one is based on an experimental procedure

which consists on collecting data using wind tunnel. While, the second method uses an

analytic estimation calculated with a geometric quantities procedure [7, 11, 116].

On the other hand, considering an airship having a mass m which moves along xB axis

with a linear acceleration of u̇. The reaction of the surrounding air to this motion is

expressed as a force of non-stationary nature, i.e. depending on acceleration. This force

acts in the opposite direction of motion and it is proportional to the acceleration u̇

[59, 77]. The previous discussion can be described mathematically by

XA = −Xu̇.u̇ (2.29)

Introducing this force in the equation of motion allow us to combine the coefficient Xu̇

linearly with the mass m of the vehicle. For this reason, Xu̇ is named added mass

coefficient along the xB axis due to the acceleration u̇ [9, 17, 26, 31]. Thus, the full
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added mass and inertia matrix taking into account the symmetry of the vehicle with

respect to xB × hB plane is defined by [59]

MA = −




Xu̇ 0 Xẇ 0 Xq̇ 0

0 Yv̇ 0 Yṗ 0 Yṙ

Zu̇ 0 Zẇ 0 Zq̇ 0

0 Lv̇ 0 Lṗ 0 Lṙ

Mu̇ 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 Nṗ 0 Nṙ




(2.30)

with Xẇ = Zu̇ . . . . Moreover, the previous non-stationary phenomenon cause a Coriolis

and Centripetal effects which is referred to by the following matrix

CA(V ) =




0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0




(2.31)

where

a1 = Xu̇u+Xẇw +Xq̇q (2.32)

a2 = Yv̇v + Yṗp+ Yṙr (2.33)

a3 = Xẇu+ Zẇw + Zq̇q (2.34)

b1 = Yṗp+ Lṗp+ Lṙr (2.35)

b2 = Xq̇q + Zq̇w +Mq̇q (2.36)

b3 = Yṙv + Lṙp+Nṙr (2.37)

Hence, the aerodynamic tensor is given by

τa = τsta +MAV̇ + CA(V )V (2.38)

Propulsion system tensor τp The lighter than air vehicle is equipped with a propul-

sion system which generate the required thrust to drive the vehicle forward. Conven-

tionally, it consists of two main propellers placed on each side of the gondola in order to

maintain the vehicle’s symmetry with respect to xB×zB plane. Their position is denoted

by CP1 and CP2 for the first and the second engine respectively. These actuators provide

a total thrust force of T , i.e. 1
2T each one. Their position vector with respect to RB are
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defined by

−−−−→
CV CP1 = [Px Py Pz]

T (2.39)
−−−−→
CV CP2 = [Px − Py Pz]

T (2.40)

Thus, we have

τp =




T

0

0

0

T.Pz

0




(2.41)

From previous relations, the complete 6DOF nonlinear equations of motion for a lighter

than air vehicle using Newton-Euler approach is given by Equation (2.9) and Equation

(2.17). Remark that the previous modeling does not include the wind velocity. Assuming

that the airship is moving in a windy environment in which the wind velocity takes the

form

Vw =
[
uw vw ww pw qw rw

]T
(2.42)

Then, the lighter than air vehicle moves with the following relative velocity

Va = V − Vw (2.43)

2.3.1.3 Dynamics through Lagrangian Approach

The Lagrangian method in deriving the dynamic model of airships deals with two scalar

energy function: kinetic energy EK and potential energy EP . It involves three basic

steps. The first one is to formulate the expression of EK and EP . The second one consists

of calculating the Lagrangian, denoted as L, according to the following relationship

L = EK − EP (2.44)

While, the final step is to apply the Lagrange equation given by

d

dt

(
∂L

∂η̇

)
−

∂L

∂η
= F (2.45)

which in component form corresponds to a set of 6 second-order differential equations.

Notice that, Equation (2.45) is valid in any coordinate system, Earth fixed inertial and

fixed body frame as long as generalized coordinates are used, i.e. η [59].
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For more details about the methods used above in modeling the lighter than air vehicle’s

equations of motion, i.e. Newton-Euler and Lagrangian, we invite you to refer [7, 11,

17, 59, 77, 116, 126, 160].

2.3.2 Equations of Motion for Quad-rotors

Quad-rotor is a type of aerial vehicle belonging to rotor-craft family. Contrary to lighter

than air vehicles, the lift needed to keep flight in rotor-crafts is produced aerodynamically

through rotating wings. A quad-rotor vehicle has four rotors. The front and the rear

rotors rotate counterclockwise, while the other two rotors rotate clockwise. In this

manner, the gyroscopic effects and the aerodynamic torques tend to cancel in trimmed

flight. The force produced by each rotor is proportional to its angular velocity, and

the sum of these forces gives the main thrust of the aerial vehicle, see Figure (2.4).

Hence, the quad-rotor is an under-actuated system because it has four inputs and six

degrees of freedom. The variation of the angular speed of each rotor allow to control the

vehicle. The pitch movement is obtained by increasing/decreasing the speed of the rear

motor while decreasing/increasing the speed of the front motor. The roll movement is

obtained similarly using the lateral motors. Whereas, the yaw movement is obtained by

increasing/decreasing the speed of the front and rear motors while decreasing/increasing

the speed of the lateral motors. These motions can be accomplished whilst keeping the

main thrust of the vehicle constant.

In order to deduce the mathematical model of the quad-rotor, the following assumption

is considered:

• The vehicle is assumed to be a solid body evolving in 3D space and subject to one

force and three moments.

• The dynamic of the four rotors is relatively fast and therefore it will be neglected as

well as the flexibility of the blades.

• The center of gravity is supposed to be located at the intersection of the line joining

motors M1 and M3 and the line joining motors M2 and M4, see Figure (2.4).

The generalized coordinates of the rotor-craft are

ϕ = (ζ, η) ∈ R
6 (2.46)

where ζ = (x, y, z) ∈ R3 denotes the position of the center of gravity of the vehicle

relative to the frame RI , and η = (ψ, θ,φ) ∈ S3 presents Euler angles defined in the sub-

section 2.2.3. These angles define the orientation of the quad-rotor [32, 33, 127]. Notice

that ζ and η can be regarded as translational and rotational coordinates respectively.

The full quad-rotor dynamic model is obtained using Euler-Lagrange approach.
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Figure 2.4: The model of quad-rotor.

The kinetic energy of the rotor-craft is determined by

EK = Ttrans + Trot (2.47)

where, Ttrans and Trot refer to the translational and rotational kinetic energy respectively,

and they are given by

Ttrans !
m

2
ζ̇T ζ̇ (2.48)

Trot !
1

2
η̇T Jη̇ (2.49)

with, m denotes the mass of the vehicle, and J presents the inertia matrix for the full

rotational kinetic energy of the rotor-craft expressed directly in terms of the generalized

coordinates ϕ. On the other hand, the potential energy is

EP = mgz (2.50)

here, z presents the altitude of the aerial vehicle, and g describes the acceleration due

to gravity.
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Therefore, using Equation (2.44) the Lagrangian takes the form

L (ϕ, ϕ̇) = Ttrans + Trot − EP

=
m

2
ζ̇T ζ̇ +

1

2
η̇T Jη̇ −mgz (2.51)

The external generalized force applied on the four-rotor aerial vehicle are presented by

the following vector

F =

[
Fζ

τ

]
(2.52)

where

Fζ = CB
I F̂ ∈ R

3 (2.53)

is the translational force applied to the rotor-craft due to the main thrust, and

τ !




τψ

τθ

τφ


 ∈ R

3 (2.54)

represents the yaw, pitch, and roll moments. Finally, the rotation matrix CB
I is defined

in Equation (2.2).

From Figure (2.4), it follows that

F̂ =




0

0

u


 (2.55)

where u is the main thrust of the vehicle and it is given by

u =
4∑

i=4

fMi; fMi = kiw
2
i (2.56)

with ki > 0 is a constant and wi is the angular speed of the ith motor. On the other

side, the generalized torques are expressed as

τψ =

4∑

i=1

τMi (2.57)

τθ = ℓ (fM2 − fM4) (2.58)

τφ = ℓ (fM3 − fM1) (2.59)

here, ℓ is the distance from the motor to the center of gravity and τMi is the torque

produced by the ith motor.
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Therefore, applying the Euler-Lagrange mechanics, Equation (2.45), leads to the follow-

ing

mζ̈ +




0

0

mg


 = Fζ (2.60)

Jη̈ + C(η, η̇)η̇ = τ (2.61)

where,

C(η, η̇) = J̇−
1

2

∂

∂η

(
η̇T J

)
(2.62)

is referred to as the Coriolis terms and it contains the gyroscopic and centrifugal terms

associated with η and depending on J.

Finally, from Equation (2.60) and Equation (2.61) we obtain

mẍ =− u sin θ (2.63a)

mÿ =u cos θ sinφ (2.63b)

mz̈ =u cos θ −mg (2.63c)

ψ̈ =τ̃ψ (2.63d)

θ̈ =τ̃θ (2.63e)

φ̈ =τ̃φ (2.63f)

where, τ̃ψ, τ̃θ, and τ̃φ denote the yawing moment, pitching moment, and rolling moment

respectively. The relation between these moments and the torques τψ, τθ, and τφ is given

by

τ̃ =




τ̃ψ

τ̃θ

τ̃φ


 = J

−1 (τ − C(η, η̇)η̇) (2.64)

For more details see [32, 33, 127].

2.4 3DOF Equations of motion (Point Mass Model)

As we have seen previously, the attitude of an aerial vehicle is defined by its position,

orientation, and velocity. The value of these variables at a specific moment of time

constitute a vector known as configuration vector q. In order to reach a specified/final

configuration qf from the actual/initial one q0, the time profile of the aircraft’s attitude

variables must be determined at all the movement time. Therefore, from trajectory

generation point of view, the aerial vehicle is presented as a point (its reference point
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ARP ) and only its translational equations are considered. This modeling is known as

Point Mass Model and it describes the inertial velocity vector
−→
V with respect to RI

and the external forces acting on the vehicle.

2.4.1 Assumptions

The derivation of the equations of motion for an aerial vehicle, considered as a point

mass, flying inside the Earth’s atmosphere requires the following assumptions [81, 82]

• The Earth is flat, its rotational velocity is neglected and the acceleration of the gravity

is constant and perpendicular to the surface of the Earth.

• The flight is symmetric which involves that the sideslip angle β is assumed to be

controlled to zero, and both the thrust force and the aerodynamic forces lie in the

plane of symmetry of the vehicle. This assumption guarantees the mathematical

accuracy of the point mass modeling.

2.4.2 Kinematic Equations

Kinematic equations are used to derive the differential equations for x, y and z which

represent the location of the vehicle with respect to RI [81]. Referring to Figure (2.5),

we can state
−→
ṙ =

−→
VI (2.65)

where
−→
ṙ defines the position vector and

−→
VI denotes the inertial velocity vector which

has the form
−→
VI =

−→
V +

−→
Vw (2.66)

with
−→
V represents the relative velocity vector and

−→
Vw describes the wind velocity vector.

In addition,
−→
V ∈ RI is defined by its magnitude V , the heading angle χ (measured from

the North to the projection of
−→
V in RL), and the flight path angle γ (vertically up to

−→
V ).

−→
Vw ∈ RI is composed by [Wx Wy Wz]

T .

Therefore from the previous and Figure (2.5), the right hand of Equation (2.65) becomes

−→
VI = (V cosχ cos γ +Wx)

−→
N + (V sinχ cos γ +Wy)

−→
E + (−V sin γ −Wz)

−→
D (2.67)

On the other hand, referring to Figure (2.5), we can state

−→r = x
−→
N + y

−→
E − z

−→
D (2.68)

Where, x and y define the down-range and cross-range respectively, and z denotes the

altitude.
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Figure 2.5: Aerial Vehicle’s Inertial Velocity.

Since the unit vectors
−→
N ,

−→
E , and

−→
D are constants, Equation (2.65) take the form

(V cosχ cos γ+Wx)
−→
N + (V sinχ cos γ+Wy)

−→
E − (V sin γ+Wz)

−→
D = ẋ

−→
N + ẏ

−→
E − ż

−→
D (2.69)

Then, the previous equation leads to the following

ẋ =V cosχ cos γ +Wx (2.70a)

ẏ =V sinχ cos γ +Wy (2.70b)

ż =− ḣ = V sin γ +Wz (2.70c)

These equations define the three-dimensional translational kinematic equations of mo-

tion for an aerial vehicle taking into account the wind effect.

2.4.3 Dynamic Equations

The dynamic equations are used to deduce the differential equations that describe the

vehicle’s accelerations. It is derived from Newton’s second law of motion

m−→a =
∑−→

F (2.71)
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wherem represents the mass of the vehicle, −→a =
−→
V̇I denotes the inertial acceleration, and

−→
F describes the external forces acting on the aerial vehicle. Observe that, the Equation

(2.71) is written with respect to the Earth fixed inertial frame, because it represents a

convenient base to follow the motion of the vehicle. In addition, Remember that the

relative velocity vector is described in RW and this frame is a rotating coordinate system

in which Newton’s Laws do not apply. Hence, we need a formula which transform the

time derivative between a fixed coordinate system and rotating one [165].

Relative Angular Motion Considering two coordinate systems O1x1y1z1 and Oxyz

the first one is fixed while the second one is rotating with respect to the first one with an

angular velocity ω. Let
−→
i ,

−→
j , and

−→
k be the unit vectors along the axes of the rotating

system Figure (2.6) and
−→
A be an arbitrary vector expressed as following

−→
A = Ax

−→
i +Ay

−→
j +Az

−→
k (2.72)

where, Ax, Ay, and Az denote the components of
−→
A along the rotating axes. Since Oxyz

is rotating, its associated unit vectors
−→
i ,

−→
j , and

−→
k are function of time. Thus, the

time derivative of
−→
A with respect to the fixed coordinate system is given as

d
−→
A

dt
=

(
dAx

dt

−→
i +

dAy

dt

−→
j +

dAz

dt

−→
k

)
+

(
Ax

d
−→
i

dt
+Ay

d
−→
j

dt
+Az

d
−→
k

dt

)
(2.73)

Figure 2.6: Relative Angular Motion.
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It is known that the linear velocity at a fixed point P in a rotating frame Figure (2.7)

is given by
−→
V =

d−→r

dt
= −→ω ×−→r (2.74)

where −→r refer to the position vector. From the previous we can state

d
−→
i

dt
= −→ω ×

−→
i (2.75)

d
−→
j

dt
= −→ω ×

−→
j (2.76)

d
−→
k

dt
= −→ω ×

−→
k (2.77)

Using Equation (2.75), the second term on the right side of Equation (2.73) becomes

Ax
d
−→
i

dt
+Ay

d
−→
j

dt
+Az

d
−→
k

dt
= −→ω ×

−→
A (2.78)

Figure 2.7: Kinematics of Rotation.

Besides, as the unit vectors
−→
i ,

−→
j , and

−→
k are constant with respect to the rotating frame.

The first term on the right side of Equation (2.73 ) corresponds to the derivative of
−→
A

with respect to Oxyz and it is denoted as ∂
−→
A
∂t . Hence, the transformation relationship

of the time derivative from a rotating coordinate system to a fixed one is given by

d
−→
A

dt

∣∣∣∣∣
fixed

=
∂
−→
A

∂t

∣∣∣∣∣
rotating

+−→ω ×
−→
A (2.79)
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Coming back to the vehicle’s acceleration −→a in Equation (2.71). From Equation (2.66)

we find

−→a =
d
−→
VI

dt
=

d
−→
V

dt
+

d
−→
Vw

dt
(2.80)

Then, using Equation (2.79) we can write

d
−→
V

dt

∣∣∣∣∣
RI

=
∂
−→
V

∂t

∣∣∣∣∣
RW

+−→ω RW/RI
×
−→
V (2.81)

Where, −→ω RW/RI
denotes the angular rotation of RW with respect to RI . This angular

velocity is expressed by

−→ω RW/RI
=




0

γ̇

0




︸ ︷︷ ︸
ΩRW/y

+




cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ




︸ ︷︷ ︸
RotRW/y

·




0

0

χ̇




︸ ︷︷ ︸
ΩRW/h

=




−χ̇ sin γ

γ̇

χ̇ cos γ


 (2.82)

with ΩRW/y and ΩRW/h present the angular velocity of RW about yW and hW respec-

tively, and RotRW/y describes the rotation matrix of RW about yW . Thus, Equation

(2.81) becomes

d
−→
V

dt
=




V̇

0

0


+




−χ̇ sin γ

γ̇

χ̇ cos γ


×




V

0

0


 =




V̇

χ̇V cos γ

−γ̇V


 (2.83)

The wind rate term, i.e. the second term of the right side in Equation (2.80), is given

in RI by
dVw

dt

∣∣∣∣
RW

= CW
L

dVw

dt

∣∣∣∣
RI

(2.84)

with

dVw

dt

∣∣∣∣
RI

=




Ẇx

Ẇy

Ẇz




In the following section, we will examine the external forces acting on lighter than air

vehicles.

2.4.3.1 Translational Dynamic of Lighter Than Air Vehicles

As we have seen previously, in the section 2.3.1.2, the external forces acting on the

aircraft are: the added mass force (fAM ), the gravity force (fg), the aerodynamical force
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(fa) and the thrust force (fT ). For Point Mass Modeling method, it is more convenient

to describe these forces in RW , see Figure (2.8).

Figure 2.8: Forces acting on Lighter than air vehicles in flight.

Added mass phenomena: It is given by the relation

FAM = −(CB
W)TMaC

B
W

dV

dt
(2.85)

where Ma presents the added mass matrix resulting from the linear accelerations applied

on the aerial vehicle. It takes the form

Ma =




Xu̇ 0 Xẇ

0 Yv̇ 0

Zu̇ 0 Zẇ


 (2.86)

with Xẇ = Zu̇
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(CB
W)TMaC

B
W is a positive definite matrix with a main diagonal dominant. This matrix

can be approximated as following

(CB
W)TMaC

B
W =




m11 0 0

0 m22 0

0 0 m33




with

m11 = Xu̇ cos
2 α+ (Zu̇ +Xẇ) cosα sinα+ Zẇ sin2 α

m22 = Yv̇

m33 = Xu̇ sin
2 α− (Zu̇ +Xẇ) cosα sinα+ Zẇ cos2 α

Thus, the added mass force equation yields

FAM = −




m11 0 0

0 m22 0

0 0 m33







V̇

χ̇V cos γ

−γ̇V


 (2.87)

Gravity force: It is given by the difference between the airship weight force
−→
W , and

the buoyancy force
−→
B . Then the gravity force fg is expressed as

fg = CW
L




0

0

W −B


 =




−(W −B) sin γ

0

(W −B) cos γ


 (2.88)

where, W and B are defined in the same way as in Equation (2.23) and Equation (2.24).

Aerodynamical force: This force includes the drag force
−→
D , opposite to

−→
V , and

the lift force
−→
L , orthogonal to

−→
V , see Figure (2.8). These forces are expressed by the

following equations

L = 1
2CL(M,α)V 2Srefρ

D = 1
2CD(M,α)V 2Srefρ

(2.89)

with CL and CD denote the lift and drag parameters, respectively, M represents the

Mach number and α the attack angle.

On the other hand, atmospheric density is computed using the standard atmosphere.

Generally, the lift coefficient is a linear function of the angle of attack whilst the drag
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coefficient is a quadratic function of CL(M,α).

CL(M,α) = CL0(M) + kLα(M)α (2.90a)

CD(M,α) = CD0 +KC2
L = kD0(M) + kD1(M)α+ kD2(M)α2 (2.90b)

(2.90c)

where CL0 , CL1 and kD0 , kD1 , kD2 are resulting coefficients with respect to α. The in-

duced drag factor K can be determined from the aerodynamic efficiency Emax and the

zero-lift drag coefficient CD0 as

K =
1

4CD0E
2
max

Observe that the model parameters can be estimated via wind tunnel experiments, more

details, see [165]. Therefore, fa is denoted by

fa =




−D

0

−L


 (2.91)

Thrust force: In a symmetrical flight, the thrust vector
−→
T is always in the plane of

symmetry. This force is described in RW as

fT = CW
B




T

0

0


 =




T cosα

0

−T sinα


 (2.92)

In order to determine the equations of motion, it is more convenient to associate the

aerodynamic and thrust forces. Then

fT + fa =




T cosα−D

0

−(T sinα+ L)


 (2.93)

Notice from the previous equation that the aerodynamic and thrust forces contain two

components; FT = T cosα −D, force along the velocity vector and, FN = T sinα + L,

force orthogonal to the velocity in the symmetry plane.

In longitudinal flight, FN is in the vertical plane of the vehicle and the lateral force can

be neglected. In order to perform a turning flight, the lateral force must be included.

This force is obtained by a control action on the ailerons when rotating the vector
−→
L and
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−→
FN about

−→
V through an angle σ called bank angle, see Figure (2.9). Mathematically

the previous is written as

faT =




T cosα−D

(T sinα+ L) sinσ

−(T sinα+ L) cosσ


 (2.94)

Figure 2.9: Forces acting on Airships in turning flight.

Then, from Equations (2.80), (2.83), (2.84), (2.87), (2.88) and (2.94) we obtain

γ̇ =
(T sinα+ L) cosσ − cos γ(B −mg)

(m+m33)V
+m

Ẇx cosχ sin γ + Ẇy sinχ sin γ + Ẇz cos γ

(m+m33)V
(2.95a)

χ̇ =
(T sinα+ L) sinσ

(m+m22)V cos γ
+m

Ẇx sinχ− Ẇy cosχ

(m+m22)V cos γ
(2.95b)

V̇ =
T cosα−D − sin γ(B −mg)

m+m11
−

m

m+m11
(Ẇx cos γ cosχ+ Ẇy sinχ cos γ − Ẇz sin γ) (2.95c)

Therefore, Equation (2.70) and Equation (2.95) present the complete Point Mass Model

describing the translational equations of motion for lighter than air vehicles.

2.4.4 Translational Equations of Motion for Quad-rotor crafts

According to literature [32, 33, 127, 162], the quad-rotor aerial vehicles was always

regarded to as a rigid body and represented by its full 6DOF nonlinear translational

and rotational dynamics (see section 2.3.2). In this section, a new approach using Point
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Mass Model to describe the quad-rotor crafts is adopted. This modeling is employed to

generate the reference trajectories for the aerial vehicle.

In general, the pitch angle is given as the sum of the flight path angle and the angle of

attack [155]

θ = γ + α (2.96)

But, for quad-rotor craft, the angle of attack is very small and consequently, it can be

neglected (α ≈ 0). Then, Equation (2.96) becomes

θ = γ (2.97)

Besides, as the heading angle χ is measured from the north to the projection of
−→
V in

xL × yL, this angle can be regarded as the yaw angle ψ. Thus,

χ = ψ (2.98)

Therefore, from the previous, Equation (2.70) takes the following form

ẋ =V cosψ cos θ +Wx (2.99a)

ẏ =V sinψ cos θ +Wy (2.99b)

ż =V sin θ +Wz (2.99c)

Remember that the vehicle accelerations, Equation (2.83), are given as

• Longitudinal acceleration: along = V̇

• Lateral acceleration: alat = V χ̇ cos γ

• Vertical acceleration: avert = V γ̇

Furthermore, notice, from Equation (2.70) and Equation (2.99), that γ, χ (θ, ψ for

quad-rotors), and V define the attitude of the aerial vehicle. Consequently and without

loss of generality, γ̇, χ̇, and V̇ can be considered as control inputs for lighter than air

vehicle. So
γ̇ = u1

χ̇ = u2

V̇ = u3

(2.100)

while θ̇, ψ̇, and V̇ are supposed to be the control inputs for quad-rotor craft. Then,

θ̇ = u1

ψ̇ = u2

V̇ = u3

(2.101)
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In order to incorporate the performance and structural limitations of a real airship/quad-

rotor, appropriate constraints are included in the model. These restrictions take the form

of bounds on control and some states variables, as follows

|u1| ≤U1max (2.102a)

|u2| ≤U2max (2.102b)

|u3| ≤U3max (2.102c)

|γ| ≤γmax (2.102d)

|V | ≤Vmax (2.102e)

Remember that, for quad-rotors craft γ = θ. Thus, Equation (2.102d) becomes

|θ| ≤ θmax (2.103)

For more details see [81, 82, 155]. In the rest of this thesis, Equation (2.70) and Equation

(2.100) will be used to describe the kinematic equations of motion for Lighter than

air/Quad-rotors crafts.

2.5 Wind Modeling

Wind modeling has a significant role in the design of aerial vehicles. It helps to study

and analyze the behavior of the aircraft facing the wind. In this work, we assume that

the aerial vehicle flies in the troposphere layer. The air masses are in a constant motion

and the region is characterized by gusty winds and turbulence.

As the movement of the air, in this layer, is similar to a fluid flowing over a solid object,

the troposphere can be divided into two distinct regions. In the first, the effect of

the Earth’s surface friction on the air motion is negligible and it is known as the free

atmosphere, while in the second one, the effect of viscosity cannot be neglected and it is

called the boundary layer. The second region is typically extended over a several hundred

meters to 2km roughly. It is depending on the landform and time of day/daytime, while

the entire troposphere extends to 10-20 km approximately (it is larger in the tropics and

shallower near the Polar Regions).

In general, the wind speed can be modeled as a sum of two components: a nominal

deterministic component, available through meteorological forecasts or measured with

a Doppler radar, and a stochastic component, representing deviations from the nominal
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one [56, 105]. In the following, two classical mathematical models of gusts will be

presented.

2.5.1 Gusts Modeling

Discrete Gusts: The most used approximation, representing a sharp edged gust, is

one minus cosine formulation, see Figure (2.10). The gust velocity is defined as,

Vwind =
1

2
Vm

[
1− cos

(πx
H

)]
(2.104)

where Vm denotes the gust amplitude, H is the distance from the start point to the point

at which the gust reaches a maximum value and x represents the traveled distance. This

formulation can be considered as a single representative section of the broader spectrum

of continuous turbulence. However, in order to represent random continuous gusts that

an aircraft may encounter, it became necessary to use statistical methods, particularly

the method involving the power spectral density.

Figure 2.10: Discrete gust model using one minus cosine formula.

Power Spectral Density (PSD): It is based on the frequency representation for

describing the square of a random variable which is originally considered in time do-

main. The turbulence model using this technique is assumed to be stationary, Gaussian,

random process. There are two particular approximations for the PSD function of at-

mospheric turbulence: the von Kármán and Dryden formula, each proposing a separate

function for gusts in the longitudinal, lateral and vertical directions. Dryden PSD func-

tion is more favored than von Kármán one because it is simpler. Thus, it is given

as:
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– Longitudinal wind velocity

Φu(ω) =
2σ2

uLu

πV
·

1

1 +
(
Lu

ω
V

)2 (2.105)

– Lateral wind velocity

Φv(ω) =
σ2
vLv

πV
·
1 + 3

(
Lv

ω
V

)2
[
1 +

(
Lv

ω
V

)2]2 (2.106)

– Vertical wind velocity

Φw(ω) =
σ2
wLw

πV
·
1 + 3

(
Lw

ω
V

)2
[
1 +

(
Lw

ω
V

)2]2 (2.107)

where Φi describes the PSD function, σi represents the root-mean-square (RMS) gust

velocity, Li signifies the scale of turbulence and V is the aircraft velocity. The Figure

(2.11) shows Dryden gust model with parameters σ = 7 m/sec and L = 533.4 m, more

details see [55, 121, 132].

Figure 2.11: Dryden gust.

In this thesis, the gusty wind was generated using a combination of a several discrete

gusts and a white noise as it is shown in the Figure (4.1).

2.5.2 Venturi effect

The Venturi effect was discovered in 1797 by Giovanni Battista Venturi. It applies to

confined flows and refers to the increase in fluid speed or flow rate due to a decrease of the

flow section, where the flow rate and flow cross-sectional area are inversely proportional

[164]. Since the increase in fluid speed is generally accompanied by a decrease in pressure,

the venturi effect is also used to refer to Bernoulli’s principle. Currently this terminology
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Figure 2.12: Wind gust applied to the aerial vehicle.

is being applied in the wider context of both confined and non-confined flows [24]. The

term of ”Venturi effect” can be seen in two different ways depending on the application

areas. For example, in medicine and automotive industry it describes a pressure drop

due to increase in speed. While, in wind engineering/urban aerodynamics as well as

civil engineering ”Venturi effect” means the increase in speed due to flow constriction.

The vicinity of bridges is an ideal environment to the appearance of Venturi effect due

to its structural design. In fact, the passages between pillars can be responsible for

increased wind speed, see Figure (2.13).

Figure 2.13: Venturi effect.
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From Figure (2.13) observe that Venturi effect consists of:

• An increment in wind speed magnitude.

• A divergence and a convergence of air flow around the obstacle (pillar).

In order to represent mathematically the previous statement, we first introduce the

following definitions

Definition 2.1. A Gaussian function is a continous function having the following form

G (x) = aG e
−(x−µ)2

2σ2 (2.108)

where, aG represents the height of the curve’s peak, µ denotes the position of the center

of the peak, and σ describes the deviation.

Definition 2.2. A Sigmoid function is a continous function having an ”S” shape. It is

given by

Sig(x) =
1

1 + e−asig(x−x0)
(2.109)

where, asig defines the sharpness of the curve, and x0 is the position of the switch, see

Figure (2.14).

Figure 2.14: Sigmoid curve with x0 = 0 and asig = 1.

Definition 2.3. We say that E (x) is an enable function on some interval {x1, x2} if and

only if

E (x) =

{
1 ; x1 ≤ x ≤ x2

0 ; otherwise
(2.110)

A continuous approximation for E (x) is given by

Ẽ (x) = Sig(x1)− Sig(x2) (2.111)
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Considering the presence of two pillars, supposing a horizontal plan and assuming that

the wind is in the direction of x-axis, see Figure (2.15). Then the wind velocity compo-

nents on x and y axes are given as follows

Wx = G (x) (2.112a)

Wy = Wy1 +Wy2 (2.112b)

where, Wy1 and Wy2 presents the component divergence and convergence of the air flow

for the first and the second pillar respectively. These terms are defined as following

Wy1 = ay(y − yp1)Ẽ (y1)
[
Ẽ (x1)− Ẽ (x2)

]
(2.113a)

Wy2 = ay(y − yp2)Ẽ (y2)
[
Ẽ (x1)− Ẽ (x2)

]
(2.113b)

in the previous equation,

• yp1 and yp1 are the y-coordinate of the center of the first and the second pillar respec-

tively.

• Ẽ (xi) and Ẽ (yi) (for i = 1, 2) identify the neighborhood of the first and second pillars

on x and y axes respectively.

• the term Ẽ (x1)− Ẽ (x2) associates the divergence and convergence areas, according to

x axis, to the linear variation ay(y − ypi); i = 1, 2.
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Figure 2.15: Venturi effect in the presence of two pillars.
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2.6 Conclusion

In this chapter, general equations of motion for lighter than air vehicles and quadrotors

crafts were introduced. The translational and rotational motion was uncoupled, and the

vehicles were modeled in two different ways. Firstly, a six degree of freedom equations of

motion, called rigid body model, was developed for lighter than air vehicle using Newton-

Euler approach, and for quadrotor crafts through Euler-Lagrange technique. This model

is devoted to treat the stability and control problems. Next, a three degree of freedom

translational equations of motion, called point mass model, was introduced. This model

is based on Newton’s second law and used to deal with navigation and guidance control

systems. Translational kinematics and dynamics for airships was realized, while the

kinematic model was adopted to present quadrotors crafts.

Besides the mathematical representations of the aerial vehicles, the wind modeling issue

has been addressed. Two models for gusts were presented. The first one represents

a sharp edged gust, while the second one is based on the frequency representation.

In addition, a mathematical relation modeling Venturi effect in the neighborhood of a

bridge was developed.

After describing the equations of motion of lighter than air vehicles and quadrotors

crafts, we address the questions of motion planning, trajectory generation, and tracking

for aerial vehicles in next chapters.





Chapter 3

Trajectory Generation and

Motion Planning

3.1 Introduction

One of the most important feature of an Unmanned Aerial Vehicle (UAV) is its capacity

to accomplish different type of tasks with a high level of performance, maneuverabil-

ity and with less oversight of human operators. This characteristic is also known as

autonomy [12, 92]. These tasks require flexible and Powerful algorithms that convert

high-level mission specifications from humans into low-level descriptions of the vehicle’s

motion. The terms Motion Planning and Trajectory Planning are often employed

for such kind of problems [111].

In order to connect a starting and a target points, feasible and flyable trajectories must

be defined. The feasibility criteria is carried out by motion planning algorithms. This

process produce a plan to steer the UAV safely to its target, without taking into account

its dynamical constraints. Whilst, the trajectory generation problem takes the solution

obtained by the motion planning algorithm and determines the way to fly along this so-

lution with respect to the vehicle’s mechanical limitations. In other words, it guarantees

the flyable aspect of the trajectory [12, 111].

The rest of this chapter is organized as follows: section 3.2 presents a state of art on

trajectory generation and motion planning. Section 3.3 discusses solutions proposed for

bridge inspection task. Finally, a conclusion is addressed in the section 3.4.

43
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3.2 State of Art

3.2.1 Trajectory Generation

In addition to leading an aerial vehicle from an initial configuration to a final one and

complying with the vehicle’s physical constraints, there are often other requirements to

take into account in the trajectory generation process. For instance, limiting curvature,

reducing the traveled distance and consumed energy, etc...

In general, these are integrated in the design procedure as the optimization of a suit-

able cost criterion along the trajectory. The optimality of a trajectory can be defined

according to several objectives, like minimizing the transfer time or the energy [85, 87].

Traditionally, trajectories are optimized by the application of numerical optimal control

methods that are based on the calculus of variations. Dubins [51] considered a particle

moving with a constant velocity in the plane and subjected a constraint on trajectory

curvature. This problem is equivalent to the minimum time optimal trajectory problem

under a constant velocity and limitation on heading rate, without wind. He proved the

existence of shortest paths for his problem and showed that the optimal trajectory is one

of the following six solutions: {RSL,RSR,LSR,LSL,RLR,LRL} where R for Right

turn, S for straight line and L for Left turn. Knowing that all sub paths are allowed

to have zero length. So, his optimal trajectories are a combination of arc of circles and

segments of lines. Boukraa et al [28] presented a 3D trim trajectories planner algorithm

for an autonomous plane. The proposed algorithm used a sequence of five elementary

trim trajectories to generate a 3D global trajectory in space. A family of trim trajecto-

ries in level flight is used in all these references to construct paths. In the papers cited

above, the atmosphere was considered to be an isotropic and homogeneous medium, i.e.

when there is no wind and the air density is constant with altitude.

However, the natural wind proved itself to be a major parameter to successful flights

of aerial vehicles. It mostly affects a trajectory through its speed. McGee et al [120]

have described a method for finding the minimum time path from an initial position

and orientation to a final position and orientation in the 2D plane for an airplane with

a bounded turning rate in the presence of a known constant wind with a magnitude less

than the airplane velocity. The problem statement is equivalent to finding the minimum

time path from an initial configuration to a final one, over a moving virtual target, where

the velocity of the virtual target is equal and opposite to the velocity of the wind. Nelson

et al [131] have introduced a method for a mini aerial vehicle path following based on

the concept of vector field in the presence of constant wind disturbances. Rysdyk [143]

has presented a path formulation for maneuvering of a fixed wing aircraft in wind. The

inertial path of a fixed wing aircraft circling in wind can be formulated as a trochoid



Chapter 3. Planning and Trajectory Generation 45

curve. Jardin [83] has considered the minimum time problem for an airplane traveling

horizontally between two points in a variable wind field. Bijlsma [22] has referred to

route determination for an airplane traveling horizontally between two given points so

the transition time is minimized assuming that the wind field is fully known beforehand

for the complete passage. In these papers, only 2D horizontal motion was considered.

3.2.1.1 Space-Time Separation

Considering a given trajectory Cq(t) ∈ R3, for t ∈ [0, T ], which leads the aerial vehicle

from an initial point Cq (0) = Cq0 to a final point Cq (T ) = Cqf . This trajectory can

be broken down into a geometric path Cq(s) = [x(s) y(s) z(s)]T and a timing law

s = s(t). Where s denotes the curvilinear abscissa and satisfies

s ∈ [0, L] (3.1)

with, L: the length of the path.

Then, the velocity of the vehicle can be expressed as following

V =
ds

dt
(3.2)

The previous space-time separation implies

Ċq =
dCq

dt
=

dCq

ds
·
ds

dt
= C ′

q · V (3.3)

In addition, each point of the path Cq(s) can be described using three unitary orthogonal

vectors: tangent (
−→
T ), normal (

−→
N ) and binormal (

−→
B ). These vectors form the so-called

Frenet-Serret frame.

3.2.1.2 Curvature and Torsion

The importance of curvature κ and torsion τ comes from the fact that any curve in R3

can be completely defined by these variables [102].

The curvature is directly proportional to the lateral acceleration of the vehicle and, it

is inversely proportional to the minimum curvature radius (R) that can be flew by the

aircraft. It is expressed as following

κ =
‖C ′

q × C ′′
q ‖

‖C ′
q‖

3
(3.4)

In the other side, torsion is proportional to the vertical acceleration which is also phys-

ically limited. In addition, the value of τ is inversely proportional to the minimum
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torsion radius (φ). It is presented as

τ =

(
C ′
q × C ′′

q

)
· C ′′′

q

‖C ′
q × C ′′

q ‖
2

(3.5)

The first derivative of the flight path C ′
q = [x′ y′ z′]T is deduced from equations (2.70)

and (3.3) as following

x′ =cosχ cos γ +
Wx

V
(3.6a)

y′ =sinχ cos γ +
Wy

V
(3.6b)

z′ =sin γ +
Wz

V
(3.6c)

While, the second and third derivatives are given as below

C ′′
q =

C̈q − V V ′C ′
q

V 2
(3.7)

C ′′′
q =

...
Cq − 3V ′V 2C ′′

q −
(
V ′′V + V ′2

)
C ′
qV

V 3
(3.8)

In this manner, the curvature and torsion can formally be described as:

κ = f
(
γ,χ, V, γ′,χ′, V ′,Wx,Wy,Wz,W

′
x,W

′
y,W

′
z

)
(3.9a)

τ = f

(
γ,χ, V, γ′,χ′, V ′, γ′′,χ′′, V ′′,Wx,

Wy,Wz,W
′
x,W

′
y,W

′
z,W

′′
x ,W

′′
y ,W

′′
z

)
(3.9b)

where, for lighter than air vehicles, γ′, χ′ and V ′ are obtained directly by dividing the

equation (2.95) by V as following

γ′ =
(T sinα+ L) cosσ −mg cos γ

mV 2
+

Ẇx cosχ sin γ + Ẇy sinχ sin γ + Ẇz cos γ

V
(3.10a)

χ′ =
(T sinα+ L) sinσ

mV 2 cos γ
+

Ẇx sinχ− Ẇy cosχ

V cos γ
(3.10b)

V ′ =
T cosα−D −mg sin γ

mV
− Ẇx cos γ cosχ− Ẇy sinχ cos γ + Ẇz sin γ (3.10c)

Whilst, their second derivatives are given by

γ′′ =
γ̈ − γ′V ′V

V 2
(3.11a)

χ′′ =
χ̈− χ′V ′V

V 2
(3.11b)

V ′′ =
V̈ − V ′2V

V 2
(3.11c)
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3.2.1.3 Constraints

A path is said to be flyable if it meets with the kinematic and dynamic constraints of

the vehicle. Such motion constraints are introduced as bounds on the curvature (κ) and

the torsion (τ) of the path Cq(s)

|κ| ≤ κmax (3.12a)

|τ | ≤ τmax (3.12b)

Notice that, κmax and τmax are established from constraints imposed on the control and

state variables, Equation (2.102).

3.2.1.4 Cartesian Polynomials

After determining the required path Cq (s); s ∈ [s0, sf ], the related timing law must

be chosen so that resulting trajectory respects the restrictions imposed on the vehicle,

Equation (2.102). For example, in order to take the inputs bounds introduced to the air-

craft, Equation (2.102a), Equation (2.102b), and Equation (2.102c), into consideration,

it is necessary to verify whether the inputs (linear acceleration and angular velocities)

along the planned trajectory are admissible. When this is not achieved, a uniform scal-

ing is used to slow down the timing law. To do that, it is more convenient to rewrite

the timing law by replacing t with the normalized time variable T = t/T . Then, from

Equation (2.100), Equation (3.3) and Equation (3.2) we have

γ′ = u1
ds

dT

dT

dt
= u1

ds

dT

1

T
(3.13)

χ′ = u2
ds

dT

dT

dt
= u2

ds

dT

1

T
(3.14)

V ′ = u3
ds

dT

dT

dt
= u3

ds

dT

1

T
(3.15)

Therefore, it is sufficient to increase the duration of the trajectory T to reduce uniformly

γ′, χ′ and V ′ so that the vehicle’s inputs remain within the given bounds.

Planning a trajectory directly without separating the geometric path from the timing

law could be effected by using the time variable t directly instead of the path parameter

s. A disadvantage of this approach is the fact that the duration of the trajectory must

be fixed (T = sf ). Thus, the uniform scaling cannot be used to satisfy bounds on the

vehicle’s input. That is because an increment (or decrement) of T implies a modification

on the geometric path associated to the planned trajectory [148].



Chapter 3. Planning and Trajectory Generation 48

Third-order Cartesian polynomials are known to be simple in real time implementation

[49]. Then, for two successive configurations (xi, yi, zi, γi, χi, Vi) and (xi+1, yi+1, zi+1,

γi+1, χi+1, Vi+1) we have:

x(s) =s3xi+1 − (s− 1)3xi + αxs
2(s− 1) + βxs(s− 1)2 (3.16a)

x(s) =s3yi+1 − (s− 1)3yi + αys
2(s− 1) + βys(s− 1)2 (3.16b)

x(s) =s3zi+1 − (s− 1)3zi + αzs
2(s− 1) + βzs(s− 1)2 (3.16c)

With,

αx = TVi+1 cos(γi+1) cos(χi+1)− 3xi+1; βx = TVi+1 cos(γi+1) cos(χi+1) + 3xi+1;

αy = TVi+1 cos(γi+1) sin(χi+1)− 3yi+1; βy = TVi+1 cos(γi+1) sin(χi+1) + 3yi+1;

αz = TVi+1 sin(γi+1)− 3zi+1; βz = TVi+1 sin(γi+1) + 3zi+1;

(3.17)

For more details, please refer to [17, 49, 148].

3.2.2 Motion Planning

Flight planning involves creating a plan to guide an aerial robot from its initial position

to a desired destination way point [17]. Historically, two fields have contributed to

trajectory or motion planning methods: robotics and dynamics & control. The first

topic has a stronger focus on computational issues and real-time robot control, while

the second one emphasizes the dynamic behavior and more specific aspects of trajectory

performance [69].

The aim of motion planning algorithms is to define feasible trajectories to reach a desired

location. These trajectories must ensure the safety of the flight by taking into account

obstacles, collision avoidance and dangerous regions. A dangerous region is a space with

a critical flight condition like unusual low or high pressure, hazardous wind storms, or

any other factor affecting the flight. There are a variety of motion planning problem

types that can be found in the literature. Such classification is made according to:

• The knowledge of the environment: it is said to be static for a perfect knowledge and

dynamic in the opposite case.

• The type of obstacles: it is called time-invariant if the obstacles are fixed and time-

variant when the obstacles are allowed to move.

• The presence of constraints on the vehicle: differentially constrained (or kinodynamic)

when the vehicle’s equation of motion act as constraints on the path. While for

differentially unconstrained problems, the vehicle may use infinite accelerations to

acheve a path.
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Motion planning under differential constraints can be considered as a variant of classical

Two-Point Boundary Value Problem (TPBVP) [76]. For a classical TPBVP, the

initial and final points are given, and the objective is to compute a trajectory through

the state space that connects initial and final states and which satisfies the differential

constraints. Motion planning involves the additional complication of avoiding obstacles

in the state space. Unfortunately, the techniques used to solve TPBVPs are not suitable

for motion planning because they are not designed to handle obstacles.

In next subsections, an overview on most successful differentially-constrained planning

algorithms in literature is presented.

3.2.2.1 Cell decomposition

The main idea of these approaches is to decompose the configuration space C into a

number of disjoint sets, called cells. The resulting structure of C called connectivity

graph G is considered as an important element of cell decomposition methods. Each cell

is represented as a node in this graph; and two nodes are connected by an edge if and

only if the two corresponding cells are adjacent.

Cell decomposition algorithms can be classified as exact or approximate. The major

difference between the previous two classes is the methods used to build the structure

of C. For exact methods, the union of all cells equal to the closure of the collision-free

configuration space. Whereas in approximate approaches, the structure of C is obtained

with cells which have a simple predefined shape.

3.2.2.2 Probabilistic roadmap approach

For high-dimensional planning problems, the exact algorithms are computationally too

expansive to calculate an explicit representation of the configuration space. Therefore,

probabilistic motion planning approaches have achieved a substantial attention through-

out the last decades because of their capability to solve high-dimensional problems in

acceptable execution times.

Probabilistic roadmap planers [3, 42, 94] work in two phases. The first one is a learning

phase while the second one is a query phase. In the learning phase, a graph, called

a roadmap, is built by randomly sampling the configuration space. The free-collision

configurations form the vertices of the roadmap. Then, the neighboring vertices are

connected by edges if their corresponding configurations can be connected by continuous

path through a local planner. The most common local planner simply checks a straight

line connecting the two configurations.
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On the other side, during the query phase, the algorithm tries to connect the initial and

final configurations to the roadmap. Then, it search for a path connecting these two

states.

It is important to note that if the environment is static, then the roadmap can be

reused for further queries. Therefore, the algorithms used for dynamic environment are

classified as multiple query methods. In [25] a single query variant called Lazy PRM.

In this approach, the roadmap is built in the whole configuration space instead of the

collusion-free configuration space. Once, a path has been found in the query phase, a

collision checking algorithm is used to check the feasibility of the path.

However, the performance of Probabilistic roadmap planners can degrade if the solution

has to pass through a narrow passage. To cope with a such problem, several variations

and extensions have been proposed in [80, 122]. Another difficulty is the fast growing

number of nodes and samples in the roadmap. Solutions for a such problem can be

found in [1, 27, 79, 104, 151].

3.2.2.3 Rapidly-expanding random Tree (RRT)

Another probabilistic planing approach is Rapidly-Expanding Random Tree (RRT).

The basic idea of this method is building a tree which starts from the initial configuration

and explore the collision-free configuration space. The exploration is done through a

random sampling of the state space and expanding the search tree step-by-step. The

objective is to build a graph structure covering the configuration space with nodes,

explored positions and edges describing control inputs needed to move from node to

node [17, 99].

In each step, a random state (xrand) is chosen. Next, the nearest vertex (xnear) in the

tree (with respect to a chosen metric) is selected. Then, a new edge going from xnear

and pointing to xrand as well as describing the control effort needed to reach is added.

Finally, between all potential new configurations, the closest state to the desired final

configuration (xf ) is designated as a new state (xnew) and added to the tree as a new

vertex. This process is repeated until reaching the final configurations (xf ).

The RRT was described for the first time in [111, 112]. In these two papers, the vehicle

is considered holonomic; neither dynamics nor kinematic constraints are considered.

Another variation of RRT algorithm is described in [113]. The proposed algorithm is

based on two trees. The first one is grown from the initial configuration while the second

one from the desired final state. In every step, both trees try to connect to the same state

in configuration space. Thus, a path is often found very quickly at the cost of diverging
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a lot from an optimal path. The major advantage of RRT-like methods is that they

are perfectly suitable for nonholonomic and differentially constrained planning problem

[114].

3.2.2.4 A⋆ Algorithm

The A⋆ algorithm belongs to graph search algorithms. This kind of approaches were

developed for computer science to find the shortest path between two nodes of connected

graphs. They were designed for computer networks to develop routing protocols and were

applied to path planning through decomposition of the path in waypoint sequences [44].

The A⋆ algorithm is considered as one of the most important solvers explicitly oriented to

motion-robotics [74]. It searches a graph efficiently with respect to a chosen heuristic and

cost function; and returns an optimal path if the heuristic is optimistic. An optimistic or

admissible heuristic always returns a value less than or equal to the cost of the shortest

path from the current node to the goal node within the graph. The cost function used

in A⋆ algorithm is the sum of the following two terms:

• Cost to go H : defined as a heuristic estimation of the distance from the neighbouring

cell xnear to the final one xf .

• Cost to come G : Known as the distance between the expanded cell x and the neigh-

bouring one xnear.

The G-value is 0 for the starting configuration and it increases while the algorithm

expands successive states. On the other side, the H-value is used to drive the states

expansion toward the desired final configuration, reducing this way the amount of ex-

panded cells and improving the convergence.

The input of A⋆ algorithm is the graph itself. So, the nodes can be naturally embedded

into the aerial vehicle free configuration space and have a specified coordinates. The

edges correspond to adjacent nodes and have the value of the cost appropriate to the

travel. The output of A⋆ algorithm is a back pointer path, in other words a sequence of

nodes starting from the goal configuration and coming back to the start states. More

details on A⋆ algorithm can be found in [17, 34, 44, 49].

3.2.2.5 Potential field planners

In these approaches, an artificial potential field is used in order to steer the aerial vehicle

from its initial configuration to a desired final one. The robot moves under the influence

of a potential field which is obtained as a superposition of an attractive potential to

the goal configuration and a repulsive potential from the obstacle regions. In other
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words, the key idea relies on the assignment of a potential function to the free space

and simulating the vehicle as a particle reacting to the forces resulted from the potential

field [17].

The planning arise in a step-by-step manner. At each configuration, the most promising

direction of local motion is indicated by a negative gradient. Since the value of the

potential function can be regarded as an energy, it follows that the gradient of the

potential is a force. This force points in the direction that locally maximally increases

the potential. The combination of repulsive and attractive forces should direct the

robot from the start state to the final one and guarantee collision-free aspect of the

path. When the vehicle reaches its final destination the gradient vanishes. The main

weakness of potential field methods is the local minima. In fact, the presence of a local

minima may trap the vehicle in some configuration which differ from the desired one.

A number of different potential fields have been proposed to reduce the number of local

minima and the size of their region of attraction, please see [110].

In general there are two classes of potential fields known to satisfy properties of a

navigation function: those based on a harmonic function and those based on solving

optimal distance-to-go. More details in literature on this methods can be found in

[17, 37, 69, 72, 97, 141].

3.2.2.6 Maneuver automaton

The concept of Maneuver Automaton (MA) for aerial vehicles is based on the observa-

tion that the human pilots achieve agile control using a combination of trim trajectories

and maneuvers. By definition, a maneuver is a finite time non-equilibrium transition

between two trims [61]. In addition, MA approach helps to reduce the computational

complexity of the trajectory optimization because it transcribes the dynamics of the

aerial vehicle into a finite dimensional space. The main feature of a maneuver model is

the selection of appropriate motion primitives.

An exact description of the concept of maneuver automaton within the context of au-

tonomous guidance is given in [60]. The automaton set of trim and maneuvers are used

to pre-compute a cost-to-go map. Next, this map is used online with a greedy guidance

policy, while the states that are located between the pre-computed values are obtained

via interpolation. In [145] a maneuver automaton was integrated in the receding horizon

optimization framework. The fixed trim trajectories was replaced by controllable linear

modes, while the maneuvers are open-loop trajectories. This model is more faithful

to human control strategy. In [48] the authors extends the previous framework to al-

low interpolation between maneuver boundary conditions within a class of maneuvers.
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Thus, an additional flexibility for the initiation and completion of maneuvers is provided.

3.2.2.7 From operational research problems to motion planning

In most of UAV’s applications, the aerial vehicle required to visit a collections of prede-

fined regions taking into account the vehicle restrictions like consumed fuel, flight time,

etc... Such necessity resulted in the appearance of a novel class of optimal motion plan-

ning problems [144]. A region is said to be visited if the vehicle passes through it, and

the objective of the planner is to find the shortest path connecting these regions.

Such problems is similar to classical Traveling Salesman Problem (TSP) and Vehicle

Routing Problem (VRP) and their variants. Thus, the tools developed for solving TSP

and VRP can be adopted for aerial vehicles planning problems.

3.2.2.8 Traveling Salesman Problem

The traveling salesman problem (TSP) is a well known combinatorial optimization prob-

lem. The statement of the TSP is simple and yet hundreds of papers have been devoted

to this problem due to its multiple applications. The TSP consists on finding the opti-

mal route that, given a map of cities, the salesman has to visit all the cities only once

to complete a tour such that the length of the tour is the shortest among all possible

tours for that map, see Figure (3.1)

Figure 3.1: Traveling salesman problem. Initial map.

Several surveys have been written including [16, 107]. The author in [107], classifies the

TSP algorithms into exact methods and approximate methods.
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Figure 3.2: Traveling salesman problem. Optimal route.

Exact Methods

The exact algorithms are explained in the context of integer linear programming includ-

ing methods such as Branch-and-bound, the shortest spanning arborescence bound, the

shortest spanning tree bound, the 2-matching lower bound, etc. In general the formula-

tion of the TSP considers a minimization problem subject to constraints such as degree

constraints, sub-tour elimination constraints, and connectivity constraints.

Heuristic Methods

The TSP is a NP-hard problem, then heuristic methods to solve this problem is a natural

option. The research on TSP using heuristic methods has two branches, worst case per-

formance and good empirical performance. Guaranteed worst case performance methods

consider a symetrical TSP on a graph G. A simple solution is computed using the length

of a shortest spanning tree T on G. An improvement on this method is based on the fact

that the shortest spanning is in general not Eulerian. However, an Eulerian graph can

be derived by adding some links by means of a minimum cost matching algorithm, see

[35]. The good empirical performance methods include tour construction methods using

either nearest-neighbor algorithms or insertion algorithms, tour improvement methods

using k-opt algorithms, simulated annealing and composite algorithms.

Classical algorithms are known to result in exponential computational complexities.

Methods based on population optimization overcome this problems. Evolutionary Com-

putation [53], Neural Networks [75], Ant Systems [50], Particle Swarm Optimization

[52], Simulated Annealing [100] are among the problem solving techniques inspired from

observing nature.
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3.2.2.9 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) can be described as the problem of designing opti-

mal delivery or collection routes from one or several depots to a number of geographically

scattered cities or customers, subject to side constraints, see Figure (3.3). It arises nat-

urally as a central problem in the fields of transportation, distribution and logistic [43].

In addition, the VRP and its many extensions have been studied extensively in the lit-

erature, so they easily lend themselves to unmanned aerial vehicles task management

problems.

Figure 3.3: Classification of the vehicle routing problem with capacity constraints.

In [166], a vehicle routing problem algorithm was applied to an intelligence, surveillance,

and reconnaissance (ISR) scenario for multiple UAVs. Task allocation optimization

problem for a fleet of UAVs with coupled tasks and relative timing constraints is studied

in [2]. The proposed methods minimize the mission completion time for the fleet, and the

different UAV capabilities and no-fly zones were taken into account. Whereas, complex

quantitative timing constraints are incorporated into vehicle routing problem in [93]. In

that paper, the authors employ Metric Temporal Logic (MTL) as a natural language

to specify complicated tasks, and provide an algorithm based on Mixed-Integer Linear

Programming to solve the problem with an application to multi-UAV mission planning.

Recently, the authors in [157] present Fuel Constrained UAV Routing Problem (FCURP)

for a given set of targets and depots, and one unmanned aerial vehicle. Their objective

is to find a path for the UAV such that each target is visited at least once by the vehicle,

the fuel constraint in never violated along the path, and the total fuel required by the
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aerial vehicle is minimum. Other research on UAV routing and mission planning problem

can be found in [15, 57, 140, 146, 147].

Problem Formulation

Let G = (V,A) be a graph where V = {V1, V2, ..., Vn} is a set of vertices representing

locations to be visited by the UAV with its ground base at V1, and A is the set of arcs.

Suppose that C : A → R+ denote the cost function with C(Vi, Vj) representing the cost

of traveling from vertex Vi to vertex Vj . Observe that, C(Vi, Vj) can be interpreted as

consumed fuel, path length, travel time, etc...

In addition, assume that there are m vehicles available at the ground base, and all

vehicles are identical and have the same capacity. Then, the vehicle routing problem

consists of designing a set of beast-cost vehicle routes in such way that:

• Each city in {V2, ..., Vn} is visited exactly once by exactly one vehicle.

• All vehicle routes start and end at the ground base.

• Some side constraints are satisfied.

Variants of Vehicle Routing Problem

According to [161], the variants of the vehicle routing problem can be classified as shown

in Figure (3.4)

• Capacitated Vehicle Routing Problem (CVRP): CVRP is a vehicle routing problem in

which the vehicles have limited carrying capacity of the goods that must be delivered.

• Distance and Capacitated Vehicle Routing Problem (DCVRP): DCVRP is similar to

CVRP with an additional restriction on the allowed maximum distance traveled in

each tour.

• Vehicle Routing Problem with Time Windows (VRPTW):The additional restriction

in VRPTW is a time window associated with each customer, defining an interval

wherein the customer has to be supplied.

• Vehicle Routing Problem with Backhauling (VRPB): It is an extension of VRP that

includes both a set of customers to whom products are to be delivered, and a set

of vendors whose goods need to be transported back to the distribution center. In

addition, on each route all deliveries have to be made before any goods can be picked

up to avoid rearranging the loads on the vehicle.

• Vehicle Routing Problem with Backhauling and Time Windows (VRPBTW): It is a

combination between VRPB and VRPTW.

• Vehicle Routing Problem with Pickup and Delivery (VRPPD): It is a VRP in which

the customers have the possibility to return some commodities. In addition, VRPPD

must take into account that the goods can be fitted into the vehicle. This restriction
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make the planning problem more difficult and it can lead to bad utilization of the

vehicles capacities, increase traveled distance or rise the number of needed vehicles.

• Vehicle Routing Problem with Pickup and Delivery and TimeWindows (VRPPDTW):

It is a hybrid between VRPPD and VRPTW.

Figure 3.4: Vehicle routing problem with capacity constraints.

VRP approaches consist of heuristic and exact algorithms. The heuristic methods are

characterized by finding solutions that are close to optimum quickly. But they have no

worst case guarantee. On the other side, exact algorithms provide solutions for instance

of Practical sizes [93].

Exact Methods

The exact algorithms for the VRP can be classified into three broad categories:

1. Direct tree search methods.

2. Dynamic programming.

3. Integer linear programming.

As the number of proposed algorithms is very large, we refer the reader to the survey

[108].

Heuristic Methods

Heuristic algorithms for the VRP can often be derived from procedures derived from the

TSP. The nearest neighbour algorithm, insertion algorithms and tour improvement pro-

cedures can be applied to CVRPs and DVRPs almost without modifications. However,

when applying these methods to VRPs care must be taken to ensure that only feasible

vehicle routes are created. VRP heuristic methods can also be subcategorized as:
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1. One step [36], [67].

2. Two steps [68], [58].

3. Improvement methods [169], [68].

For more details, please see [39, 103].

3.3 Bridge Inspection

In this section we present a trajectory generation approach and a motion planning

strategy for an unmanned aerial vehicle dedicated to bridge inspection tasks. First of

all, a controllability analysis is carried out. Then, we deal with the problem of trajectory

generation in the presence of wind and obstacles. Finally, we develop a motion planning

strategy to respect the maximum flight time allowed for the aerial vehicle.

3.3.1 Accessibility and Controllability

3.3.1.1 Affine nonlinear system

An affine nonlinear system with drift can be defined as

Ẋ = f(X) +
m∑

i=1

gi(X)ui (3.18)

where X ∈ M ⊂ Rn with M a smooth manifold, f(X), gi(X) are smooth vector fields

on M , and U ∈ Rm. f(X) is called the drift vector field, and gi(X); i ∈ m, the input

vector fields. This class of nonlinear systems was the subject of numerous researches

[23, 88, 106, 117, 133, 158].

Notice that the Equation (2.70) and Equation (2.100) can be rewritten as an affine

nonlinear system, thus it yields

Ẋ = f(X) + g1u1 + g2u2 + g3u3 (3.19)

where

f(X) =




V cosχ cos γ +Wx

V sinχ cos γ +Wy

V sin γ +Wz

0

0

0




and

g1 = [0, 0, 0, 1, 0, 0]T

g2 = [0, 0, 0, 0, 1, 0]T

g3 = [0, 0, 0, 0, 0, 1]T
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3.3.1.2 Controllability

The system (3.18) is said to be controllable if for any two points x0 and xf in M

there exists an admissible control u(t) defined on some time interval [0, T ] such that the

system (3.18) with initial condition x0 reaches the point xf in time T [23].

In general for nonlinear systems controllability is a notion that is too difficult to verify,

however a more restricted (local) version of controllability called accessibility can be

employed. To introduce this notion it is necessary to define what it means by a reachable

set for a nonlinear system.

3.3.1.3 Reachable set

Let ψ be a neighborhood of the point X ∈ M and Rψ(x0, t) indicates the set of reachable

states from x0 at time t by trajectories remaining inside ψ and satisfying (3.18). Then,

the reachable set from x0 at time T is defined as

RM (x0, T ) =
⋃

0≤t≤T

RM (x0, t) (3.20)

3.3.1.4 Accessibility

The following four notions of accessibility can be distinguished

– System (3.18) is accessible from x0 ∈ M if for every T > 0, RM (x0, T ) contains a

nonempty open set.

– System (3.18) is locally accessible from x0 ∈ M if for every T > 0, Rψ(x0, T )

contains a nonempty open set.

– System (3.18) is said to be strongly accessible from x0 ∈ M if the set RM (x0, T )

contains a nonempty open set for any T > 0 sufficiently small.

– System (3.18) is said to be locally strongly accessible from x0 ∈ M if for any

neighborhood ψ of x0 the set Rψ(x0, T ) contains a nonempty open set for any T > 0

sufficiently small.

On the other hand, the following definitions are fundamental tools in proving accessibility

property.
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Definition 3.1. Given two vector fields f(x), g(x), their Lie bracket denoted by

[f(x), g(x)] is given as following

[f(x), g(x)] =
∂g(x)

∂x
f(x)−

∂f(x)

∂x
g(x)

Definition 3.2. The accessibility algebra A of the system (3.18) is the smallest Lie

algebra of vector fields on M that contains the vector fields f and g1, ..., gm.

Definition 3.3. The accessibility distribution △A of (3.18) is the distribution gen-

erated by the vector fields in A; i.e. A(x) is the span of vector fields v in A at x. Thus,

△A can be determined as

△A = span{v | v ∈ A} (3.21)

In other words, △A is the involutive closure of△ = span{f, g1, ..., gm}. The computation

of △A may be organized as an iterative procedure

△A = span{v | v ∈ Ai, ∀i ≥ 1}

with
△1 = △ = span{f, g1, ..., gm}

△i = △i−1 + span{[g, v] | g ∈ △1, v ∈ △i−1}; i ≥ 2
(3.22)

This procedure stops after K steps, where K is the smallest integer such that △K+1 =

△K > △A.

Remark: The accessibility distribution △A of (3.19) can be investigated as follows

△A = △3 = span





f, g1, g2, g3,

g4 = [f, g1], g5 = [f, g2],

g6 = [f, g3], g7 = [g2, [f, g2]]





Definition 3.4. Let A to be the accessibility algebra of (3.18). The strong accessi-

bility algebra A0 is defined to be the smallest sub-algebra containing g1, g2, ..., gm and

satisfies [f, v0] ∈ A0 for all v0 ∈ A0.

Definition 3.5. The strong accessibility distribution △A0 of (3.18) is defined to be

the involutive distribution generated by the vector fields in A0.
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Remark: The strong accessibility distribution △A0 of (3.19) from Definition 3.5 is given

by

△A0 = span





g1, g2, g3,

g4 = [f, g1], g5 = [f, g2],

g6 = [f, g3], g7 = [g2, [f, g2]]





(3.23)

On the other hand to prove the local accessibility property, the following theorem is

used [23].

Theorem 3.6. Consider the system (3.18) and assume that the vector fields are C∞.

If

dim△A(x0) = n (3.24)

i. e., the accessibility algebra spans the tangent space to M at x0, then for any T > 0,

the set Rψ(x0, T ) has a nonempty interior; i.e. the system has the accessibility property

from x0 for all neighborhoods ψ of x0 and all T > 0.

Remark: Applying the previous Theorem to (3.19) we obtain

− V 2 cos γ

(
V +Wz sin γ +Wy sinχ cos γ+

+Wx cosχ cos γ

)
%= 0 (3.25)

Hence, the system (3.19) verifies the Lie Algebra rank condition and is locally accessible

for V %= 0, or γ %= π
2 , or (V +Wz sin γ +Wy sinχ cos γ +Wx cosχ cos γ) %= 0.

The last condition can be rewritten as

V %= −[Wx cosχ cos γ +Wy sinχ cos γ +Wz sin γ] (3.26)

The left hand of the previous equation presents the projection of the wind velocity vector

on xW . It follows that V %= −Wx|∈RW

Similarly to prove the local strong accessibility property, the following theorem is used

[133].

Theorem 3.7. Consider the system (3.18). Suppose that

dim△A0 = n, (3.27)

then the system is locally strongly accessible from x0.
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Remark: Using Theorem 3.7 the following condition is obtained

V 2 cos γ %= 0 (3.28)

Therefore the system (3.19) is locally strongly accessible if V %= 0 or γ %= π
2 .

Notice that

1. Condition (3.24) is known as: Lie Algebra Rank Condition (LARC).

2. If the system (3.18) is driftless, i.e., f(X) = 0, the accessibility property charac-

terizes the controllability.

From the previous study, we conclude that the kinematic equations of the system can

be used to stabilize the aerial vehicle (airship/quad-rotor) around a trajectory. Observe

that, these equations do not provide us the (strong) accessibility property to stabilize

the vehicle in hovering flight mode (V = 0).

3.3.1.5 Controllability of kinematic aerial vehicle in the presence of constant

wind

In this section, we investigate another approach to find the necessary and sufficient

condition for the system (3.19) to be completely controllable. This method is a gener-

alization of the controllability analysis presented in [10] for a Dubins vehicle moving in

a plane in the presence of constant wind.

Assuming that the aircraft starts from an initial configuration q0 = [x0, y0, z0, γ0, χ0,

V0] to a final one qf = [xf , yf , zf , γf , χf , Vf ] as shown in Figure (3.5). In addition,

the wind velocity (Vw) is supposed to be a constant with a specified direction γw and

χw. Then, the guidance problem from q0 to qf in the presence of wind can be regarded

as a moving-target problem [10, 96]. For this purpose, it is more convenient to rewrite

Equation (3.19) as shown below

ẋn =V cosχ cos γ (3.29a)

ẏn =V sinχ cos γ (3.29b)

żn =V sin γ (3.29c)

γ̇ =u1 (3.29d)

χ̇ =u2 (3.29e)

V̇ =u3 (3.29f)

where, xn ! x− wxt, yn ! y − wyt, and zn ! z − wzt.
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Figure 3.5: Moving target problem.

Thus, the aerial vehicle in the presence of a constant wind, i.e. Equation (3.19), can

reach the desired final configuration qf at a time T > 0 if and only if the vehicle in the

absence of wind, i.e. Equation (3.29), intercepts at T a particle that moves along the

half-line ǫ = {−→p ∈ R3 : −→p = −→r − Vw
−→
W, t ≥ 0} with a constant wind speed Vw.

Denoting the position vectors of the vehicle, described in Equation (3.29), and the

particle by
−→
R (t) and

−→
P (t) respectively. It follows that the existence of a time T > 0

such that
−→
R (T ) = −→r − VwT

−→
W (3.30)

where,
−→
R (t) = −−→q0qi and

−→r = −−→q0qf as shown in Figure (3.5); characterize the controlla-

bility of the aerial vehicle presented in Equation (3.19).

Obviously, if Vw < ‖
−→
V ‖max, the aircraft travels faster than the particle. Moreover,

since the vehicle is locally accessible (under the conditions : V %= 0 and γ %= π
2 ), there

is some time t1 > 0 such that the vehicle intersects ǫ with a flight path angle of −γw

and a heading angle of −χw. So, both the vehicle and the particle move along ǫ. At

t = t2 > t1, the vehicle will precede the particle and reach the point
−→
R (t) sufficiently

ahead by a distance d. This distance is obtained by d = VwTd, where Td is the minimum

time required to steer the vehicle from
−→
R (t2) =

−−→q0qi to the same position with flight path

angle of γf and a heading angle of χf . Then, the aerial vehicle intercepts the particle at
−→
P (T ) =

−→
R (T ) with T ! t2 + Td. The previous discussion is illustrated in Figure (3.6).

On the other side, if Vw ≥ ‖
−→
V ‖max, the particle travels with a speed greater than or

equal to the vehicle’s speed. So, there would be a reachable set for which an interception

can take place[10].
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Figure 3.6: Sufficient condition for controllability.

The vehicle, which is assumed to be initially in q0, can move only in the direction of

its inertial velocity
−→
V I =

−→
V +

−→
W with

−→
V = [V0 cosχ0 cos γ0, V0 sinχ0 cos γ0, V0 sin γ0].

After some small time δt (sufficiently small to reach Vmax) the aerial vehicle reaches

the configuration q′0 with a flight path angle of γ = γ0 + u1δt and a heading angle of

χ = χ0 + u2δt where ui ∈ {−Uimax, Uimax}; i = 1, 2. From the Figure (3.7), it follows

that the aircraft is constrained to move along a direction that lies within the cone with

vertex q′0 and angle
̂−→

V +
I q

′
0

−→
V −

I , where
−→
V ±

I =
−→
V ± +

−→
W with

−→
V ± = [Vmax cosχ

± cos γ±,

Vmax sinχ
± cos γ±, Vmax sin γ

±]; γ± = γ0 ± U1maxδt and χ± = χ0 ± U2maxδt.

3.3.2 Trajectory Generation

The aim of this section is to compute an optimal trajectory under acceleration, heading

and flight path rates limits together with the associated control demand. The obtained

trajectories are analyzed from the point of view of the solution structure e.g. type of

control demand number and duration of active constraints.

Since the presence of an obstacle in the air flow generates meteorological turbulence

such as wind shear, Venturi effect, Karman vortex, etc... It is important to include such

elements in the trajectory generation phase. This procedure can contribute to saving

time and energy if the wind come in the direction of motion for example. This problem

is a type of Zermelo’s problem introduced in [174]. It can be formulated as follows (like

its described in [29]):



Chapter 3. Planning and Trajectory Generation 65

Figure 3.7: Reachability analysis when Vw ≥ Vmax

A ship must travel through a region of strong currents. The magnitude and direction of

the currents are known as functions of position:

u = u(x, y) and v = v(x, y) (3.31)

where, (x, y) are rectangular coordinates, and (u, v) are the velocity components of the

current in the x and y directions respectively. The magnitude of the ship’s velocity

relative to the water is V , a constant. The problem is to steer the ship in such a way as

to minimize the time necessary to go from a point A to a point B.

This problem can be extended to an aerial vehicle flying at a constant altitude. A large

number of publications dealing with Zermelo’s problem ant its extensions can be found

in the literature, e.g. [22, 70, 83, 84, 88, 159].

The originality of the work is twofold: Firstly, planning in three dimension with varying

velocity, heading angle and path angle, i.e. guarantee the continuity of the velocity time

profile along all the trajectory. Secondly, taking into account the wind effect.

3.3.2.1 Optimal Control

In this section an optimal control problem is considered in which the objective is to steer

the autonomous aircraft in a wind field from one point to another in minimum time.

By using the realistic assumption that the system is completely controllable in a weak

wind, at least one feasible path exists for every pair of initial and final states.
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Thus, an admissible control trajectory u : [0, T ] .→ Ω ⊆ ℜm must be found such that

the aerial vehicle kinematic system described by the system of nonlinear differential

equations given in Equation (2.70) and Equation (2.100), which can be expressed as

Ẋ(t) = f (X(t), U(t), t) ;
X(t) ∈ R6

U(t) ∈ R3
(3.32)

is transferred from the initial configuration

x(0) = x0, y(0) = y0, z(0) = z0,χ(0) = χ0, γ(0) = γ0, V (0) = V0 (3.33)

into an admissible final configuration

x(T ) = xf , y(T ) = yf , z(T ) = zf ,χ(T ) = χf , γ(T ) = γf , V (T ) = Vf (3.34)

and such that the corresponding state trajectory satisfies the following limitations on

the control inputs and states

|u1| ≤u1max (3.35a)

|u2| ≤u2max (3.35b)

|u3| ≤u3max (3.35c)

|γ| ≤γmax (3.35d)

|V | ≤Vmax (3.35e)

(x− xc)
2 + (y − yc)

2 + z2 ≥r2p (3.35f)

at all times t ∈ [0, T ] and such that the cost functional

min

∫ T

0
dt (3.36)

is minimised.

The initial point can be required to be the origin of the ith way point and the final point

(i+ 1)th way point or the final destination point.

Note that Equation (3.35d) and Equation (3.35e) represents the physical limitations on

the vehicle while Equation (3.35f) describes a pillar of radius rp and situated in (xc, yc)

which is considered as an obstacle.

For points that are reachable, the resolution is based on the Pontryagin Minimum Princi-

ple which constitutes a generalization of Lagrange problem of the calculus of variations.

The Pontryagin Minimum Principle to obtain optimal control for the nonlinear system
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3.32, without taking state constraints, Equation (3.35d), Equation (3.35e) and Equation

(3.35f), into account, can be summarized by the following different stages [19–21]

• Define the Hamiltonian function as

H(x(t), u(t),λ(t), t) = L(x(t), u(t), t) + λT f(t, x(t), u(t)) (3.37)

where, λ(t) is the co-state variable.

• Use the necessary condition of Weierstrass along x∗(t). Minimize H with respect to

|u(t)| ≤ umax as

H(x∗(t), u∗(t),λ∗(t), t) ≤ H(x∗(t), u(t),λ∗(t), t) (3.38)

where ∗ denote the optimal solution. This inequality must hold for any t for 0 ≤ t ≤ T .

• Solve the following set of 2n state and co-state equations:

ẋ∗ =

(
∂H

∂λ∗

)
and λ̇∗ = −

(
∂H

∂x∗

)
(3.39)

such that the boundary conditions, Equation(3.33) and Equation (3.34), be satisfied.

This kind of problem is called Two Point Boundary Value Problem.

• Verify the transversality condition : If the final time T is free or not a priori spec-

ified and the Hamiltonian does not depend explicitly on time t, then the Hamiltonian

must be identically zero when evaluated along the optimal trajectory; that is

H(x∗(t), u∗(t),λ∗(t)) = 0 ∀t ∈ [0, T ] (3.40)

Let us now apply Pontryagin Minimum Principle to our system (3.19). The Hamiltonian

is defined as:

H = 1 + λ1(V cosχ cos γ +Wx) + λ2(V sinχ cos γ +Wy) (3.41)

+λ3(V sin γ +Wz) + λ4u1 + λ5u2 + λ6u3

The optimal control input must satisfy the following set of necessary conditions

Ẋ∗ =
∂H

∂λ∗
; λ̇∗ = −

∂H

∂X∗
(3.42)

The co-state variables are free, i.e. unspecified, at both the initial and final times because

the corresponding state variables of the system are specified. A first interesting result

is the determination of a sufficient family of trajectories, i.e. a family of trajectories

containing an optimal solution for linking any two configurations.

The co-state equations are then obtained in the standard fashion by differentiating the
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negative of the Hamiltonian with respect to the states where:

λ̇1
∗
= 0 ⇒ λ∗

1 = constant (3.43a)

λ̇2
∗
= 0 ⇒ λ∗

2 = constant (3.43b)

λ̇3
∗
= 0 ⇒ λ∗

3 = constant (3.43c)

λ̇4
∗
= λ∗

1V
∗ cosχ∗ sin γ∗ + λ∗

2V
∗ sinχ∗ sin γ∗ − λ∗

3V
∗ cos γ∗ (3.43d)

λ̇5
∗
= λ∗

1V
∗ sinχ∗ cos γ∗ − λ∗

2V
∗ cosχ∗ cos γ∗ (3.43e)

= λ∗
1(ẏ

∗ −Wy)− λ∗
2(ẋ

∗ −Wx)

λ̇6
∗
= −λ∗

1 cosχ
∗ cos γ∗ − λ∗

2 sinχ
∗ cos γ∗ − λ∗

3 sin γ
∗ (3.43f)

= −λ∗
1

ẋ∗ −Wx

V ∗
− λ∗

2

ẏ∗ −Wy

V ∗
− λ∗

3

ż∗ −Wz

V ∗

Defining the Hamiltonian and multiplier dynamics in this way, the minimum principle of

Pontryagin states that the control variable must be chosen to minimize the Hamiltonian

at every instant [130, 173].

Therefore, applying Equation (3.38) Leads to the following solution:

u∗i = δiuimax; i = 1, 2, 3 (3.44)

with δi denoting the -sign function defined as

δi =





1 for λ∗
i+3 < 0

0 for λ∗
i+3 = 0

−1 for λ∗
i+3 > 0

(3.45)

This type of control called ′′bang-bang′′ is obtained from saturating inputs at all times,

or zero for singular control.

In order to take the states constraints into account we use penalty function methods

described in [130]. Let the inequality constraints on the states be expressed as

S (X(t), t) ≥ 0 (3.46)

where, S is a p ≤ n vector function of state and assumed to have continuous first and

second partial derivatives with respect to state x(t). Thus, Equation (3.35d), Equation
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(3.35e) and Equation (3.35f) can be rewritten as follows

g1(γ) = γ2max − γ2 ≥ 0 (3.47a)

g2(V ) = V 2
max − V 2 ≥ 0 (3.47b)

g3(x, y, z) = (x− xc)
2 + (y − yc)

2 + z2 − r2p ≥ 0 (3.47c)

The key idea is to convert the inequality constraints into equality constraints. Therefore,

let us define a new state variable xn+1(t) by

Υ̇(t) = [g1(γ)]
2H(g1) + [g2(V )]2H(g2) + [g2(x, y, z)]

2H(g3) (3.48)

where H(gi) is a unit Heaviside step function defined by

H(gi) =

{
0 for gi ≥ 0

1 for gi < 0
(3.49)

The Equation (3.48) and Equation (3.49) mean that Υ̇(t) = 0 for all t when the con-

straints described in Equation (3.35d), Equation (3.35e), and Equation (3.35f) are sat-

isfied, whereas, Υ̇(t) ≥ 0 for all t, due to the square terms in Equation (3.48), if the

constraints are violated. Furthermore, let us require that the new variable Υ(t) has the

following boundary conditions

Υ(t0) = 0, and Υ(tf ) = 0 (3.50)

Let us now define the new Hamiltonian as

H = 1 + λ1(V cosχ cos γ +Wx) + λ2(V sinχ cos γ +Wy) + λ3(V sin γ +Wz) + λ4u1 (3.51)

+λ5u2 + λ6u3 + λ7

[
[g1(γ)]

2
H(g1) + [g2(V )]

2
H(g2) + [g2(x, y, z)]

2
H(g3)

]

Then, the necessary optimality conditions for the state are

Ẋ∗(t) = ∂H
∂λ

Υ̇
∗(t) = ∂H

∂λ7

(3.52)

and for the co-state
λ̇∗(t) = − ∂H

∂X

λ̇7
∗
(t) = −∂H

∂Υ
= 0

(3.53)

Observe that λ̇7
∗
(t) = 0 because the Hamiltonian does not explicitly contain the new

state variable Υ(t).
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Applying Pontryagin Minimum Principle to augmented system leads to the following

H(X∗(t),Υ∗(t), u∗(t),λ∗(t),λ∗
7(t), t) ≤ H(X∗(t),Υ∗(t), u(t),λ∗(t),λ∗

7(t), t) (3.54)

Then, the optimal control is given by

u∗i = −sign(λi+3)uimax; i = 1, 2, 3 (3.55)

Obviously, the control variables depend on co-state variables. Thus, these variables are

analyzed in the following section, to show their effect on controls.

Co-state Variables Analysis

The co-state variables λi+3(t); i = 1, 2, 3 are called ”switching functions”. In fact, when

λi+3(t) passes through zero, a switching time of the control u∗i (t) is indicated. If λi+3(t)

is zero for some finite time interval, then the minimal condition, i.e. Equation (3.38),

provides no information about how to select u∗i (t), and the control is singular ; see Figure

(3.8)).

Figure 3.8: The relationship between a time-optimal control and its corresponding
co-state variables.

From the co-states relation, Equation (3.43), it can be noticed that λ1, λ2 and λ3 are

time-invariant variables. In the other side λ4, λ5 and λ6 are time-variant variables. So,

let us calculate the time profiles of these multipliers in the time interval t ∈ [tk, tk+1]

for regular control inputs case. So, by integration of the equations (3.43) the following
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relations are obtained:

λ4 =
(

λ1V
2(χ̇+γ̇) −

λ2V̇
2(χ̇+γ̇)2

)
sin(χ+ γ) +

(
λ1V̇

2(χ̇+γ̇)2
+ λ2V

2(χ̇+γ̇)

)
cos(χ+ γ)+

+
(

λ1V
2(χ̇−γ̇) −

λ2V̇
2(χ̇−γ̇)2

)
sin(χ− γ) +

(
λ1V̇

2(χ̇−γ̇)2
+ λ2V

2(χ̇−γ̇)

)
cos(χ− γ)−

−λ3

(
V sinχ

χ̇
+ v̇ cosχ

χ̇2

)
+ λ′

4

λ5 = λ1(y − yk)− λ2(x− xk) + (λ2wx − λ1wy) (t− tk) + λ5k

λ6 = λ6k +
−λ1(sin(χ−γ)−sin(χk−γk))+λ2(cos(χ−γ)−cos(χk−γk))

2(χ̇−γ̇) +

+−λ1(sin(χ+γ)−sin(χk+γk))+λ2(cos(χ+γ)−cos(χk+γk))
2(χ̇+γ̇) + λ3(cos γ−cos γk)

γ̇

(3.56)

Where:

λ′
4 = λ4k −

(
λ1Vk

2(χ̇+γ̇) −
λ2V̇

2(χ̇+γ̇)2

)
sin(χk + γk)−

(
λ1V̇

2(χ̇+γ̇)2
+ λ2Vk

2(χ̇+γ̇)

)
cos(χk+

+γk)−
(

λ1Vk
2(χ̇−γ̇) −

λ2V̇
2(χ̇−γ̇)2

)
sin(χk − γk)−

(
λ1V̇

2(χ̇−γ̇)2
+ λ2Vk

2(χ̇−γ̇)

)
cos(χk−

−γk) + λ3

(
Vk sinχk

χ̇
+ V̇ cosχk

χ̇2

)
,

γ̇ = δ1U1max, χ̇ = δ2U2max and V̇ = δ3U3max,

γk = γ (t = tk) , χk = χ (t = tk) and Vk = V (t = tk)

(3.57)

Let us now try to define the cases when singularity on controls occurs.

Singularity on u1: In this case λ4 = λ̇4 = 0 and γ = γk. So, by substitution the

value of γ in the equation λ̇4 = 0 the singularity occurs when: V = 0 or

tan γk = λ3
λ1 cosχ+λ2 sinχ

Singularity on u2: In this case, λ5 = λ̇5 = 0 and χ = χk. So, from the equation

λ̇5 = 0 the singularity occurs when:

y = λ2
λ1
x+ (λ1wy − λ2wx)t+ λ5c, Where λ5c is the integral constant. The previous

equation present a straight line in the plane if there is no wind.

Singularity on u3: In this case λ6 = λ̇6 = 0 and v = vk. So, from the equation λ̇6 = 0

that the singularity occurs when:

z = −λ1
λ3
x− λ2

λ3
y+(λ1wx +λ2wy +λ3wz)t+λ6c where λ6c is the integral constant.

The previous equation present a straight line in the space if there is no wind. In

addition, as there is a limitation on velocity, the condition V = Vmax is added as

an additional case when a singularity on u3 must occurs.

The remaining problem is to find the initial values of co-state variables such that the two-

point boundary value problem formulated by Pontryagin minimum principle is solved,

i.e. finding the initial values of co-state variables so that the corresponding switching

times allow to steer the system from the given initial configuration point to the desired

final one.
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Optimal Trajectories Analysis

This paragraph presents the time profiles of x, y, z, γ, χ and V for a time interval

t ∈ [tk tk+1] under two types of control inputs, i.e. regular (δiUimax ∈ {+1,−1}) and

singular (δiUimax = 0) control. Only the final result of the analytical integrations is

given:

– Regular arcs:

For regular control inputs, 8 different arcs exist as shown in the table (3.1).

u1 u2 u3

Regular arc type 1 +U1max +U2max +U3max

Regular arc type 2 +U1max +U2max −U3max

Regular arc type 3 +U1max −U2max +U3max

Regular arc type 4 +U1max −U2max −U3max

Regular arc type 5 −U1max +U2max +U3max

Regular arc type 6 −U1max +U2max −U3max

Regular arc type 7 −U1max −U2max +U3max

Regular arc type 8 −U1max −U2max −U3max

Table 3.1: The different arc types of regular control

So, the general arc of regular control is given as follows:

x = xk +
v sin(χ+γ)−Vk sin(χk+γk)

2(δ2U2max+δ1U1max)
+ δ3U3max(cos(χ+γ)−cos(χk+γk))

2(δ2U2max+δ1U1max)2
+

+v sin(χ−γ)−Vk sin(χk−γk)
2(δ2U2max−δ1U1max)

+ δ3U3max(cos(χ−γ)−cos(χk−γk))
2(δ2U2max−δ1U1max)2

+ wx(t− tk)
(3.58)

y = yk −
v cos(χ+γ)−Vk cos(χk+γk)

2(δ2U2max+δ1U1max)
+ δ3U3max(sin(χ+γ)−sin(χk+γk))

2(δ2U2max+δ1U1max)2
−

−v cos(χ−γ)−Vk cos(χk−γk)
2(δ2U2max−δ1U1max)

+ δ3U3max(sin(χ−γ)−sin(χk−γk))
2(δ2U2max−δ1U1max)2

+ wy(t− tk)
(3.59)

z = zk −
v cos γ − vk cos γk

δ1U1max
+

v̇(sin γ − sin γk)

U2
1max

+ wz(t− tk) (3.60)

γ = δ1U1max(t− tk) + γk (3.61)

χ = δ2U2max(t− tk) + χk (3.62)

v = δ3U3max(t− tk) + vk (3.63)

– Singular arcs:

In this case,7 different arcs exist as shown in the table (3.2).

The equations of the first type of singular arcs: In this case u1 = u2 = u3 = 0. Which

lead us to:
x = (vk cosχk cos γk + wx)(t− tk) + xk

y = (vk sinχk cos γk + wy)(t− tk) + yk

z = (vk sin γk + wz)(t− tk) + zk

γ = γk, χ = χk, v = vk

(3.64)
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u1 u2 u3

Singular arc type 1 0 0 0

Singular arc type 2 0 0 ±U3max

Singular arc type 3 0 ±U2max 0

Singular arc type 4 0 ±U2max ±U3max

Singular arc type 5 ±U1max 0 0

Singular arc type 6 ±U1max 0 ±U3max

Singular arc type 7 ±U1max ±U2max 0

Table 3.2: The different arc types of singular control

The equations of the second type of singular arcs: In this case u1 = u2 = 0 and u3 =

δ3U3max = ±U3max. Which lead us to:

x = xk +
[
δ3U3max

2 (t2 − t2k) + (vk − δ3U3maxtk)(t− tk)
]
cosχk cos γk + wx(t− tk)

y = yk +
[
δ3U3max

2 (t2 − t2k) + (vk − δ3U3maxtk)(t− tk)
]
sinχk cos γk + wy(t− tk)

z = zk +
[
δ3U3max

2 (t2 − t2k) + (vk − δ3U3maxtk)(t− tk)
]
sin γk + wz(t− tk)

γ = γk, χ = χk

v = δ3U3max(t− tk) + vk
(3.65)

The equations of the third type of singular arcs: In this case u1 = u3 = 0 and u2 =

δ2U2max = ±U2max. Which lead us to:

x = xk +
vk cos γk
δ2U2max

(sinχ− sinχk) + wx(t− tk)

y = yk −
vk cos γk
δ2U2max

(cosχ− cosχk) + wy(t− tk)

z = zk + (vk sin γk + wz)(t− tk)

χ = δ2U2max(t− tk) + χk

γ = γk, v = vk

(3.66)

The equations of the fourth type of singular arcs: In this case u1 = 0, u2 = δ2U2max =

±U2max and u3 = δ3U3max = ±U3max. Which lead us to:

x = xk + cos γk

[
v sinχ−vk sinχk

δ2U2max
+ δ3U3max

U2
2max

(cosχ− cosχk)
]
+ wx(t− tk)

y = yk + cos γk

[
−v cosχ−vk cosχk

δ2U2max
+ δ3U3max

U2
2max

(sinχ− sinχk)
]
+ wy(t− tk)

z = zk +
[
δ3U3max

2 (t2 − t2k) + (vk − δ3U3maxtk)(t− tk)
]
sin γk + wz(t− tk)

χ = δ2U2max(t− tk) + χk

v = δ3U3max(t− tk) + vk

γ = γk

(3.67)
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The equations of the fifth type of singular arcs: In this case u1 = δ1U1max = ±U1max

and u2 = u3 = 0. Which lead us to:

x = xk +
vk cosχk
δ1U1max

(sin γ − sin γk) + wx(t− tk)

y = yk +
vk sinχk
δ1U1max

(sin γ − sin γk) + wy(t− tk)

z = zk −
vk

δ1U1max
(cos γ − cos γk) + wz(t− tk)

γ = δ1U1max(t− tk) + γk

χ = χk, v = vk

(3.68)

The equations of the sixth type of singular arcs: In this case u1 = δ1U1max = ±U1max,

u2 = 0 and u3 = δ3U3max = ±U3max. Which lead us to:

x = xk + cosχk

[
v sin γ−vk sin γk

δ1U1max
+ δ3U3max

U2
1max

(cos γ − cos γk)
]
+ wx(t− tk)

y = yk + sinχk

[
v sin γ−vk sin γk

δ1U1max
+ δ3U3max

U2
1max

(cos γ − cos γk)
]
+ wy(t− tk)

z = zk −
v cos γ−vk cos γk

δ1U1max
+ δ3U3max

U2
1max

(sin γ − sin γk) + wz(t− tk)

γ = δ1U1max(t− tk) + γk

v = δ3U3max(t− tk) + vk

χ = χk

(3.69)

The equations of the seventh type of singular arcs: In this case u1 = δ1U1max = ±U1max,

u2 = δ2U2max = ±U2max and u3 = 0. Which lead us to:

x = xk +
vk
2 (

sin(χ−γ)−sin(χk−γk)
δ2U2max−δ1U1max

+ sin(χ+γ)−sin(χk+γk)
δ2U2max+δ1U1max

) + wx(t− tk)

y = yk −
vk
2 (

cos(χ−γ)−cos(χk−γk)
δ2U2max−δ1U1max

+ cos(χ+γ)−cos(χk+γk)
δ2U2max+δ1U1max

) + wy(t− tk)

z = zk −
vk

δ1U1max
(cos γ − cos γk) + wz(t− tk)

γ = δ1U1max(t− tk) + γk

χ = δ2U2max(t− tk) + χk

v = vk

(3.70)

Numerical Solution

The basic approach for solving the optimal control problem described above is to trans-

form it into a sequence of nonlinear constrained optimization problems by discretizing

the control and/or state variables. This technique is known as Direct Collocation

Approach [156]. In this study, we employ a Nonlinear Programming solver using

MATLAB R© with respect to the discretized control. The corresponding discretized state

variables are determined recursively using a numerical integration scheme (e.g. Euler,

Heun, Runge-Kutta, etc.) [30].

Therefore, the time interval [t0, tf ] is divided into N nodes as follows

t0 = τ1 ≤ τ2 ≤ t3 ≤ · · · ≤ τN = tf (3.71)
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such that,

τk = t0 + (k − 1) · h; h :=
tf − t0
N − 1

, k = 1, . . . , N (3.72)

Thus, the vector of decision variables is composed of the control inputs over all nodes

and the final time tf as it is shown below

ξ =
[
tf , U

T
1 , U

T
2 , . . . , U

T
N

]
∈ R

Nξ ; Nξ = 3N + 1 (3.73)

and the state variables are computed recursively using Euler approximation applied to

the differential equations (3.32) which yields to the following

Xk+1 = Xk + h · f (Xk, Uk) ; k = 1, . . . , N − 1 (3.74)

with the initial and final conditions given in Equation (3.33) and Equation (3.34).

From the previous, the problem of optimal control can be described as following

Minimize J = tf (3.75a)

Subject to Ẋk+1 = f (Xk, Uk) (3.75b)

X(t1) = X0 (3.75c)

X(tN ) = Xf (3.75d)

Umin ≤ Uk ≤ Umax (3.75e)

S (Xk) ≤ 0 (3.75f)

where, k = 1, 2, . . . , N , Umin and Umax are lower and upper bounds on control inputs

across all nodes. The kth set of control rate limits, expressed in Equation (3.75e), is

given as 


γ̇min

χ̇min

V̇min


 ≤




γ̇k

χ̇k

V̇k


 ≤




γ̇max

χ̇max

V̇max


 (3.76)

While S (Xk) denotes the constraints enforced on the path. The kth set of path restric-

tions, presented in Equation (3.75f), is shown as

[
γmin

Vmin

]
≤

[
γk

Vk

]
≤

[
γmax

Vmax

]
(3.77a)

r2p − (xk − xc)
2 − (yk − yc)

2 − z2k ≤ 0 (3.77b)

Simulation Results

In order to illustrate the performance of the proposed trajectory generation approach,

two scenarios for simulations were carried out. Both are Point to Point trajectory
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with the same initial and final conditions. The first one presents a trajectory without

wind. While the second one take the presence of the wind into consideration. The

vehicle constraints and the initial/final configurations are provided in Tab. 3.7 and

Tab. 3.8 respectively. The wind is supposed to be a constant having the value of :

W = [Wx,Wy,Wz] = [2, 2, 1].

The trajectory in each case is discretized over 70 nodes, and the interior point algorithm

included in fmincon nonlinear programming solver in MATLAB" is used to compute

optimal trajectory. The obtained trajectory is described in Figure (3.9) and Figure

(3.10). The red and solid line denotes the case of the presence of the wind. The blue

dashed line is the trajectory without wind. The green arrows describe the direction of

the wind.

Table 3.3: Vehicle’s restrictions.

Minimum Variable Maximum Units

-20 γ 20 deg
-5 V 5 m/sec
-5 γ̇ 5 deg/sec
- 15 χ̇ 15 deg/sec

- 1.25 V̇ 1.25 m/sec2

Table 3.4: Initial and final configurations.

x [m] y [m] z [m] γ [Deg] χ [Deg] V [m/sec]

Initial value 0 0 0 0 0 3
Desired value 30 20 10 0 0 4

Notice that the magnitude of the wind in this scenario is ||W || = 3[m/sec] which presents

60% of the vehicle’s maximal velocity. Remark that the final configuration is reached in

tf = 7.21[sec] in the presence of the wind, while it requires tf = 10.8[sec] to be attained

if there is no wind. Such results are consistent in the sense where the wind push the

vehicle from the back. However, if the wind comes from the front of the vehicle, it is

obvious that it will slow down the velocity and consequently the aircraft will require

more time to reach its target.

3.3.2.2 Sub-Optimal Trajectory Generation Algorithm

In this section, we introduce a trajectory generation algorithm based on geometrical

solution to join two points. The provided trajectory is near-optimal, and in some cases,
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Figure 3.9: 3D view of the trajectory.
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Figure 3.10: Time profile of flight path angle γ, heading χ, velocity V and their rate
of change γ̇, χ̇, V̇ respectively.
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it can be optimal. This problem can be seen as a variant of Dubins problem introduced

in [51] and mentioned previously in Sec. 3.2.1. In fact, many publications on Dubins-

based solutions were published in the last years. For instance, the authors in [168, 172]

base upon Dubins solutions to generate 2-D paths satisfying kinematic and tactical

constraints. While an extension is proposed in [5] to guarantee the passage of the path

through (or close) assigned waypoints. A generalization of Dubins approach to 3D space

was also proposed in [4, 78]. In all these papers, the vehicle was considered to move

with a constant velocity and only a geometric path was considered.

Our approach consists of finding a trajectory to steer an aerial vehicle flying at a fixed

altitude from its initial point to a predefined target point in minimal time. The trajectory

includes time profile of x, y coordinates, heading angle (χ), velocity (V ), rate of change

of the heading angle (χ̇), and the acceleration (V̇ ). It has been shown in [51] that for

each two points separated by a distance greater than twice of turning radius, the shortest

path for a vehicle moving with a constant velocity is composed by the union of an arc of

circumference, a segment, and again an arc of circumference. In our case, the velocity

is not a constant, thus the circumference arc is replaced by a spiral.

Let Si ∈ {Siacc , Sidec} denotes the initial spiral so that it starts from the initial config-

uration q0. Where, Siacc presents the acceleration phase (from V0 to Vmax) and Sidec

the deceleration phase (from V0 to Vmin). Similarly, assume that Sf ∈ {Sfacc , Sfdec}

describes the final spiral with Sfacc for V : Vmin → Vf , and Sfdec for V : Vmax → Vf . In

addition, consider that Σij represents a circumference containing the end configuration

of Si while Σfj is a circumference containing the start configuration of Sf . The index j

defines the radius of the circumference with respect to the velocity (max for Vmax and

min for Vmin). Then, the proposed algorithm is

Algorithm 3.1 Sub-Optimal Trajectory Generation

Require: initial and final configurations (q0 and qf ).
1: Determine the turning direction for Si and Sf .
2: Compute Si and Sf .
3: for Each couples of (Siacc , Sfacc), (Siacc , Sfdec), (Sidec , Sfacc), and (Sidec , Sfdec) do
4: Compute L = common tangent.
5: if L is empty. then
6: Introduce Σij and Σfj .
7: Compute L = common tangent.
8: end if
9: Store required time ttotal, rate of change of heading χ̇, and acceleration V̇ in a

lookup table Π.
10: end for
11: Select the minimal time in Π and its corresponding trajectory.
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Example 3.1. 2D fast trajectory generation for UAV

In this example, we illustrate the functioning of the previous algorithm step by step.

Considering an aerial vehicle with constraints on heading angle, velocity and control

inputs as shown in Tab. 3.5. While the initial and final configurations are presented in

Tab. 3.6.

Table 3.5: Example 3.1: Restrictions on state and control variables.

Minimum Variable Maximum Units

0.01 V 1 m/sec
- 10 χ̇ 10 deg/sec

- 0.12 V̇ 0.12 m/sec2

Table 3.6: Example 3.1: Initial and desired orientation and velocity values.

x [m] y [m] χ [Deg] V [m/sec]

Initial value 0 0 0 0.1
Desired value 5 5 0 0.02

Step 1: Determine the turning direction for Si and Sf

In order to determine the turning direction we introduce a new coordinate system

RN (ARP , xN , yN ) related to the aerial vehicle. So that, the yN -axis coincide with

the heading of the aircraft. Then xn-axis is perpendicular to yn-axis and points

to the right. Consequently, the coordinate space can be decomposed into two

sub-spaces separated by the yn-axis. Finally the projection of the final (or initial)

point on xn-axis defines direction of the turn: to the right for a positive value and

to the left for a negative one as shown in Figure (3.11).

In our case the projection of xf on xn-axis (according to q0) is negative which

means that the turning direction of the initial Spiral is to the left. On the other

side, the projection of x0 on xn-axis (with respect to qf ) is positive, so the turning

direction of Sf is to the right. The transformation relationship between RI and

RN is detailed in appendix A.
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Figure 3.11: RN coordinate system.

Step 2: Compute Si and Sf

The spiral arcs are obtained through the following equations:

x =
V sinχ− V0 sinχ0

χ̇
+

V̇

χ̇2
(cosχ− cosχ0) + x0 (3.78a)

y =−
V cosχ− V0 cosχ0

χ̇
+

V̇

χ̇2
(sinχ− sinχ0) + y0 (3.78b)

χ =χ̇t+ χ0 (3.78c)

V =V̇ t+ V0 (3.78d)

where, χ̇ is defined through the turning direction, V̇ depends on the phase (ac-

celeration/deceleration), and the required time is obtained by Equation (3.78d).

Figure (3.12) shows the case for Siacc and Sfdec .

Step 3: Compute the common tangent

The problem of finding common tangent(s) between two functions is equivalent

to be determining two abscissa so that the two coefficients which describe the

tangent at respective points are matched. This is like finding an intersection of two

parametric curves in R2, where each axis of the plane corresponds to a coefficient

of the tangent.

Let the x and y coordinates of Si and Sf , calculated in Step 2, be characterized
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Figure 3.12: Computing initial and final spirals: the case of Siacc
and Sfdec .

by a cubic-spline as follows:

ySi = G1(x1) =ς3x
2
1 + ς2x

2
1 + ς1x1 + ς0 (3.79a)

ySf
= G2(x2) =ι3x

2
2 + ι2x

2
2 + ι1x2 + ι0 (3.79b)

where x1 ∈ {x0 → xSi(end)}, and x2 ∈ {xSf
(start) → xf}. Then the set of

tangents to Si can be defined by the equation

yG1 = aG1x+ bG1 (3.80)

where, aG1 is the slope of the line and bG1 is the constant term, called also y-

intercept. In addition, the slope of the tangent line is given by

aG1 =
df(x1)

x1
(3.81)

Therefore, from Equation (3.80) and Equation (3.81), we state the first parametric

curve as bellow

aG1 =3ς23x
2
1 + 2ς2x1 + ς1 (3.82a)

bG1 =yG1 − aG1x1 (3.82b)



Chapter 3. Planning and Trajectory Generation 82

In a similar way, the parametric curve describing the set of all tangents to Sf is

given by

aG2 =3ι23x
2
1 + 2ι2x1 + ι1 (3.83a)

bG2 =yG2 − aG2x2 (3.83b)

Consequently, the common tangent is defined by the intersection of the two curves

defined by Equation (3.82a), Equation (3.82b), Equation (3.83a), and Equation

(3.83b). This process is illustrated in Figure (3.13).

Once the tangent is obtained, it is important to define the velocity variation de-

pending on the velocity values at the end of selected Si and the beginning of Sf ,

as well as the traveled distance along the tangent. More details on this procedure

can be found in appendix B.
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Figure 3.13: Computing common tangent between Siacc
and Sfdec .

After repeating Steps 2 and 3 for all possible combinations of Si and Sf we obtain an

optimal trajectory illustrated in Figure (3.14) while the corresponding heading angle,

velocity, and control inputs are presented in Figure (3.15). Note that in this example

we didn’t need to include circumference arcs to the trajectory. Computing circular arcs

and finding common tangent between them is presented in appendix C.

A generalization of the proposed algorithm to include the presence of a constant wind

and in 3-dimension space can be done by using the equations (3.58 - 3.70) developed

previously in ”Optimal Trajectory Analysis” paragraph.
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Figure 3.14: 2D-optimal trajectory.
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Figure 3.15: Time profile of heading, velocity and control inputs along the trajectory.
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3.3.3 Updated Flight Planning

Flight planning involves creating a plan to guide an aerial vehicle from its initial position

to a destination (way-)point. A mission describes the operation of a UAV in a given

region, during a certain period of time while pursuing a specific objective. A flight plan is

defined as the ordered set of movements executed by the aerial vehicle during a mission.

It can be decomposed in phases. Each phase is described by the coordinates of a pair of

way-points and by the speed at which the airship is to fly between these way-points. A

phase is completed when the second way-point is reached by the aerial vehicle. Along

the way, there may be a set of regions to visit and a set of regions to avoid. In addition,

the traveling object may have certain motion constraints. The mission planning strategy

could be either static or dynamic depending on whether the mission planning problem is

to create a path in static or in dynamic environment. Flight planning routines attempt

to create paths that are fully consistent with the physical constraints of the vehicle, the

obstacle avoidance, shortest and optimum flight path and weighed regions. Weighed

regions are regions with abnormally low or high pressure, wind speeds or any other

factor affecting flight. Mission planning in an autonomous vehicle provides the level of

autonomy by having minimal ground control. Vehicle autonomy is a discipline fertilized

by the robotics and computer science fields.

The evolution of air traffic is subject to many natural sources of uncertainty, roughly

classified into two classes.

• Nominal uncertainty, that affects all flights, result of generic perturbations due to

weather, variability in the mass of the airship, variability in the settings of the Flight

Management System. Nominal uncertainty gives rise to quantitative differences be-

tween the actual air traffic and the model used to predict its evolution.

• Non nominal uncertainty that affects certain flights, result of things as malfunctions,

errors of the human operators, extreme weather conditions. Non nominal uncertainty

gives rise to qualitative structural differences between the actual air traffic and the

model used to predict its evolution.

Flight planning requires an awareness of the environment in which it is operating. Maps

and charts are available and can be encoded into digital forms which are then stored

onboard the lighter than air robot. The rapid advances in computing technology have

made it possible to construct a digital representation of the airspace environment which

incorporates terrain, airspace boundaries, weather and other aircrafts. This digital world

is the key to constructing the situational awareness required by the mission planner

to perform onboard mission planning. The assumption is made that the information

required will be available. Consideration is not given in this section to the sensing side

of the problem. The vehicle must be aware of the location of other aircrafts and weather
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(e.g. storms). A number of methods exists for obtaining this information, as a radar

based system of the airborne dependent surveillance broadcast can provide the location

and speed of nearby aircraft.

Similarly, weather radar can also provide information for adverse weather condition.

In addition to the location of the entities within the world, their dimensions must be

known. Once the digital representation of the world (i.e. situational awareness) has

been created, high level activities such as mission planning can be performed.

In this study, the idea is simple: as uncertainty always exists due to numerous reasons, a

way of taking care of it is to update periodically the reference paths. If due to the wind

effect, the aerial vehicle has overshoot the way point it was supposed to go through, then

the next way point should be considered. The immediate measurements of the position

and orientation are taken as initial conditions for the next reference trajectories.

3.3.3.1 Basic Problem Statement

The basic problem is to move the vehicle from an initial configuration to the next

configuration. This question was solved in the previous section. The actual measured

wind velocity is assumed to be constant between two updates of the reference trajectories.

The constraints are first expressed in terms of thrust and velocities and then transformed

into limitations on flight path and heading angles.

3.3.3.2 Hierarchical Planning Structure

The structure necessary for the update of the reference trajectories is described in this

paragraph. A hierarchical structure appears because of the choice of the predicted arrival

time at each update. There exists an upper level of decision making and a lower level

where the time optimal problem is solved. One clock, associated with the lower level,

allows the reference trajectories computing. It is reset at each update. The following

concepts must be introduced to describe this hierarchical structure operation

• Periodic Updates : First, periodic updates are introduced. The period ∆ may be 10 to

100 times greater than the integration step of the differential equation. This depends

on the nature of the next way-point: fly-by, fly-over or destination point.

• Anticipated Updates : An important perturbation may occur between two periodic

updates. To handle this situation, a new reference trajectory is required. The concept

of anticipated update is thus important. To decide whether an important perturbation

occurs the System needs a supervision level.

• Supervision level: The supervision system is based on a spatiotemporal criterion.
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◦ The temporal part: It depends on the value of a parameter called ect computed

continuously in the lower level. The parameter ect gives an evaluation of the arrival

time predicted in the kth update and the arrival time predicted continuously on the

basis of the measured configuration, Tc:

ect = |T k − Tc − h| (3.84)

where h is the time given by the clock. If ect > εmin then an update occurs; εmin is

user-fixed relatively to the environment

◦ The spatial part: The spatial parameter is defined as es = |Xr − X| where Xr is

the reference configuration and X the measured one. If ex > δmin then an update

must take place; εmin as δmin influence the number of updates.

Simulation results

In order to illustrate the updated flight planning idea, some simulations were carried

out. For this purpose, we take just the spatial part of supervision level shown in the pre-

vious section. The proposed scenario consist of updating point to point trajectory with

respect to wind variation. The vehicle’s limitations and the initial/final configurations

are provided in Tab. 3.7 and Tab. 3.8 respectively.

Table 3.7: Vehicle’s restrictions.

Minimum Variable Maximum Units

-0.35 γ 0.35 rad
-4 V 4 m/sec

-0.26 γ̇ 0.26 rad/sec
- 0.52 χ̇ 0.52 rad/sec

- 1.25 V̇ 1.25 m/sec2

Table 3.8: Initial and final configurations.

x [m] y [m] z [m] γ [Rad] χ [Rad] V [m/sec]

Initial value 0 0 0 0.25 0.5 2
Desired value 16 14 20 0 0 0.5

The wind is supposed to be equal to zero on y and z axes and piecewise constant function

(composed of three parts) on x axis. At the start of the simulation the value of the wind

is considered to be Wx = 0.3[m/sec] which is relatively weak (it presents about 7.5% of

the vehicle’s maximal velocity). At t = 10[sec] the magnitude of the wind changes and

becomes Wx = 1.5[m/sec] producing 37.5% of Vmax. Finally, at t = 25[sec] wind speed
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slow down to Wx = 0.5[m/sec] (12.5% of Vmax). Note that this value is equal to Vf .

The previous is presented in Figure (3.16).

Figure 3.16: The wind variation on x axis.

The resulting updated reference trajectory is illustrated in Figure (3.17) - Figure (3.19).

In those figures, the red line marked with triangle denotes the reference trajectories

given for the UAV while the solid blue line describe the computed trajectory from the

initial/actual configuration to the desired one.

A 3D view of the updated trajectory is shown in Figure (3.17). Whereas a side views of

this trajectory in the plane x.y and x.z are shown in the Figure (3.18) and Figure (3.19)

respectively.

Note that discontinuities on the reference trajectories are present. This is due to the

updates, when the real situation is taken into account.

3.3.4 UAV Routing Problem for Bridge Inspection

In this part, we consider the problem of bridge inspection using a small UAV. This

problem has been addressed in [70, 71]. In those papers, the authors have proposed two

solutions based on a hybridization between Zermelo’s navigation problem and TSP/VRP

approaches. The wind was supposed to vary linearly and the pillar was assumed as

points of interest to be visited by the vehicle. In other words, the configuration space

was considered to be obstacle-free. In addition, each point was characterized by only
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Figure 3.17: 3D view of the updated Trajectory.

Figure 3.18: Side view of the updated Trajectory on the x.y plane.
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Figure 3.19: Side view of the updated Trajectory on the x.z plane.

its position without including its orientation and velocity into account. Our work is a

complement to those papers. In our approach, the Venturi effect (wind acceleration) is

implemented and we take the presence of obstacles into consideration. Also, each point

is defined by its position, orientation and velocity.

3.3.4.1 Problem Statement

The UAV routing problem for structures inspection can be formulated as follows

Let q = {q1, q2, ..., qn} be a set of points such that q2, ..., qn are the points, situated on

the bridge, which must be inspected and q1 is the departing position representing the

ground base.

Suppose that the travel cost matrix C represents the required flight time between every

pair qi, qj ; i %= j.

In addition, assume that TReq, called inspection vector, is a vector specifying the required

time to inspect the point qi.

Finally, consider that TMax is the maximum time allowed for the vehicle to fly. Then,

the UAV routing problem for structure inspection is to plan a set of tours in such a way

that:

• Each point in {q2, ..., qn} is visited once.

• All tours start and end at the ground base q1.
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• The maximum time allowed to fly is never violated.

• The total time required to all tours is the minimum.

It is important to state here that the travel cost matrix is asymmetric. So, the required

time to fly from a point qi with an orientation of γi,χi and a velocity of Vi and arriving

at another point qj with an orientation of γj ,χj and a velocity of Vj may not be equal

to the required time to fly in the inverse direction.

3.3.4.2 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem is an interesting approach for structures

monitoring tasks. In fact, the limited carrying capacity of goods are replaced by an

allowed maximum flight time, and the number of vehicle can be regarded as the number

of vehicles required in UAVs fleet; Or the number of flights (for one aerial vehicle) needed

to cover the points of interest. To solve such a problem, a wide variety of methods have

been developed. These approaches are, frequently, classified as follows

• Constructive Methods: savings and insertion

• Improvement Methods: 2-change, 3-change, 2-relocate, 3-relocate, sweep, GENI.

In the following section, we present the savings method developed for solving CVRP.

Savings Method

The savings approach is an heuristic algorithm which was first proposed in 1964 by

Clarke and Wright [36] to solve a CVRP in which the number of vehicles is free. Its

basic idea is very simple. Considering a depot D and n demand points. Supposing that

initially the solution to the VRP consists of using n vehicles and dispatching one vehicle

to each one of the n demand points. Then, obviously, the total tour length of a such

solution is 2
∑n

i=1C(D, i).

Now, if we use a single vehicle to serve two points, e.g. i and j, on a single trip, the total

distance traveled is reduced by the following amount

S(i, j) = 2C(D, i) + 2C(D, j)− [C(D, i) + C(i, j) + C(D, j)]

= C(D, i) + C(D, j)− C(i, j)
(3.85)

The quantity S(i, j) is known as the savings resulting from combining points i and j

into a single tour. Whenever the value of S(i, j) larger, combining i and j in a single

tour becomes more desirable. However, i and j cannot be combined if the resulting tour

violates one or more of the constraints of the VRP.

Before describing the algorithm, we introduce the following definition
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Definition 3.8. A point i is said to be interior to a route if it is not adjacent to the

depot D in the order of the traversal of points.

The savings algorithm of Clarke and Wright can now be presented (as expressed in [109])

as follows

Step 1 Compute the savings S(i, j) = C(D, i) +C(D, j)−C(i, j) for i, j = 2, .., n, and

i %= j.

Step 2 Rank the savings in descending order of magnitude.

Step 3 For the savings S(i, j) under consideration, include the arc (i, j) in a route if

the constraints imposed on the route will not be violated, and if

a. Neither i nor j have already been assigned to a route. In this case, a new

route is initiated including both i and j.

b. Exactly one of the two points (i or j) has already been included in an existing

route and that point is not interior to that route. In this case, the arc (i, j)

is added to the same route.

c. Both i and j have already been included in two different existing routes and

neither point is interior to its route. In this case, both routes are merged.

Step 4 If the savings list S(i, j) has not been exhausted, return to Step 3 and shift to

the next entry in the list;

otherwise, stop.

Note that, any points that have not been assigned yet to a route during Step 3 must

be served by a vehicle route that begins at the depot D visits the unassigned point and

returns to D.

The Clarke-Wright algorithm can be programmed to run very efficiently and, since

it involves very simple manipulations of the data set, it can be used with large-scale

problems. Since nodes are added to routes once or twice at a time, an additional

advantage of the algorithm is that it is possible to check whether each addition would

violate any set of constraints, even when that set is quite complicated. For example,

besides the constraints on maximum capacity and maximum distance, other constraints

might be included, such as a maximum number of points that any vehicle may visit.

A number of variants of this method was proposed, e.g. [67, 135]. The Clarke and

Wright algorithm suppose that the cost matrix C is symmetric, i.e. C(i, j) = C(j, i).

In addition it implicitly ignores vehicle fixed costs and fleet size. Vehicle costs f can

easily be taken into account by adding this constant to every Cj (j = 2, ..., n). Solutions

with a fixed number of vehicles can be obtained by repeating Step 3 until the required

number of routes has been reached, even if the savings become negative.
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Table 3.9: Base station and way-points to be visited during the traveled trajectory.

x [m] y [m] χ [deg] V [m/sec]

q1 0 0 0 0.1
q2 10 2 90 0.1
q3 14 6 180 0.1
q4 10 10 -90 0.1
q5 6 6 0 0.1
q6 10 18 90 0.1
q7 14 22 180 0.1
q8 10 26 -90 0.1
q9 6 22 0 0.1

Simulation Results

In this section we consider a scenario of bridge inspection mission. The vehicle is assumed

to start from a base station (q1) and to visit eight points situated on two pillars. These

points are provided in Tab. 3.9, the vehicle’s constraints in Tab. 3.7, and the entire

environment is described in Figure (3.20). The wind is composed of two parts: the first

is constant covering the whole environment with a magnitude of 0.2 [m/sec], and the

second characterizes Venturi effect, as it is described in Sec. 2.5.2, with a maximum

magnitude of 0.07 [m/sec]. At first glance, it seems that the wind is very weak with a

magnitude of 0.27 [m/sec] (about 5.4% of Vmax). But, remark that the desired velocity

at each point is equal to 0.1 [m/sec] which makes gives the wind speed an important

weight with respect to vehicle’s velocity (2.7 times bigger).

The required time for data collection at each point is estimated to be TReqi = 5 [unit

of time]. While the vehicle is capable to flight during TMax = 68 [unit of time].

The cost matrix C is defined to be the required minimal time to connect all possible

pair (qi, qj); i %= j which gives a matrix of dimension 9 × 9 with a 72 elements to

be determined (excluding the diagonal items). For this end, the trajectory generation

approach presented in 3.3.2, is employed for each case of C. Therefore, as in the previous

simulations scenario, each trajectory is discretized over 70 nodes, and the interior point

algorithm included in fmincon nonlinear programming solver in MATLAB" is used to

find the optimal trajectory.

The resulted flight plan consists of three flights shown in Figure (3.21) - Figure (3.23).

The obtained solution includes three flight routes:

The first route, illustrated in Figure (3.21), is the cycle q1 → q9 → q8 → q1 with:

Required time from q1 to q9 = 10.96 [Unit of time].

Required time from q9 to q8 = 19.08 [Unit of time].
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Figure 3.20: Simulation’s environment.
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Figure 3.21: Flight number 1: q1 → q9 → q8 → q1.
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Figure 3.22: Flight number 2: q1 → q2 → q6 → q3 → q1.
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Figure 3.23: Flight number 3: q1 → q5 → q7 → q4 → q1.
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Required time from q8 to q1 = 13.57 [Unit of time].

Total flight time on the route T = 53.62 [Unit of time].

The second route, presented in Figure (3.22), is the cycle q1 → q2 → q6 → q3 → q1 with:

Required time from q1 to q2 = 6.42 [Unit of time].

Required time from q2 to q6 = 10.43 [Unit of time].

Required time from q6 to q3 = 8.72 [Unit of time].

Required time from q3 to q1 = 8.91 [Unit of time].

Total flight time on the route T = 49.49 [Unit of time].

The third route, described in Figure (3.23), is the cycle q1 → q5 → q7 → q4 → q1 with:

Required time from q1 to q5 = 6.86 [Unit of time].

Required time from q5 to q7 = 12.97 [Unit of time].

Required time from q7 to q4 = 7.55 [Unit of time].

Required time from q4 to q1 = 10.00 [Unit of time].

Total flight time on the route T = 52.39 [Unit of time].

Notice that the total time for each route respects the vehicle’s capacity.

3.4 Conclusion

In this chapter, we have investigated the motion planning and trajectory generation

question for small UAV-based structure inspection missions. First of all, the accessibility

and controllability issues were considered. It has been proved that a kinematic aerial

vehicle is strongly accessible under the condition that its velocity is not equal to zero

and its flight path angle do not reach ninety degrees. Even-more, it has been shown that

the vehicle could be completely controllable if the wind velocity is strictly less than the

vehicle’s velocity.

Next, the problem of trajectory generation was addressed. An analysis of the time-

optimal trajectories of a kinematic aerial vehicle considering second-order constraints,

with a piecewise constant wind and the presence of obstacles was presented. The

minimum-time flight problem is formulated as a problem of the calculus of variations.

This formulation is converted to nonlinear constrained optimization problems and the

solution is obtained through a direct collocation approach. Geometric characterization

of the candidate trajectories satisfying the necessary conditions for time optimality was

also described. This characterization is used to develop a sub-optimal fast trajectory

generation algorithm. Besides, an updated flight planning is presented using the receding

horizon control as wind is considered to be piecewise constant.
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Likewise, a strategy for trajectory planning was developed. The proposed method is

based on operational research approaches, especially capacitated vehicle routing prob-

lem. In fact, the solution is a modified CVRP algorithm that includes the maximum

flight time and loitering in optimization objective.



Chapter 4

Trajectory Tracking

Once a feasible and flyable trajectory is generated, it becomes necessary to move one

step down into low-level control design, that means, to deal with trajectory tracking

question. Such problem consists in stabilizing the state, or an output function of the

state, to a desired reference value, possibly time-varying [123]. The control strategies

proposed for this aim include two categories: traditional control methods and advanced

control [118]. The classical control algorithms (like PID) have the advantage to be easily

implemented and to provide reliable control performance. On the other hand, advanced

control methods are mainly developed to improve its control performance in a complex

and unstable flight environment.

4.1 Introduction

In order to make an unmanned aerial vehicle asymptotically track a desired reference tra-

jectory, several control methods have been developed in literature such as backstepping

control, robust control, model-prediction control and other intelligent control methods

[17, 33].

In [167], a robust control method for an airship is introduced. The control strategy

consists of an inner H∞ controller for the dynamics and an outer Single Input Sin-

gle Output Proportional or Proportional-Integral controller for the remaining states.

Similarly different solutions are also proposed, namely one-loop-at-a-time PID [125]

and Proportional-Integral control [54], sliding modes techniques [45, 171], vision-based

[8, 64, 73, 95, 149, 150, 163], fuzzy logic [138] and fuzzy logic improved with genetic al-

gorithms [137]. Other approaches include dynamic inversion for lateral and longitudinal

control with desired dynamics given by a linear optimal compensator[124] and input-

output linearization with a nonlinear controller [18, 170]. In the same way in [153], a

97
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nonlinear control strategy based on extended linearization is proposed to stabilize the

aerodynamic speed, altitude and heading of a small sized airship in cruise flight phase.

A popular technique used to control lighter than air vehicles is the backstepping method-

ology. In [14], the authors propose a time-varying controller, based on this approach, to

stabilize both the orientation and the position of this aerial vehicle to a fixed value. In

[13], a backstepping tracking feedback control for ascent and descent flight maneuvers is

also introduced. In this work the desired trajectories were constrained to be trimming.

In a similar way, in [139] and [11] the authors introduce a trajectory tracking controller

for the airship based on this approach. Furthermore, a control strategy based on com-

bination of backstepping and Exact Tracking Error Dynamics Passive Output Feedback

(ETDPOE) is proposed in [129].

Artificial neural network is another approach currently applied to airship control de-

signs. For example in [136], a neural network is applied to compensate the underlying

model errors and to control velocity, pitch and yaw angles for an airship. Likewise in

[86], a Particle Swarm Optimization algorithm and an updated neural network model to

approximate a tri-turbofan airship are presented. On the other hand, robust controllers

to stabilize airships have been also proposed. In [175], a robust adaptive controller us-

ing Lyapunov method and Matrosov theorem are presented. Similarly in [66], a model

predictive control is introduced to stabilize the airship system taking into account in-

equality constraints on position, velocity and thrust. In addition in [65], the inverse

optimal control approach was employed to design a trajectory tracking controller to sta-

bilize an airship in ideal environment. The proposed method takes only the uncertainties

into account without paying any attention to the potential perturbations applied on the

vehicle such wind gusts.

Even though there are a lot of modern control techniques which can be adopted for

unmanned aerial vehicle control, robust controllers remain interesting for real appli-

cations of these vehicles when they are exposed to unknown environment (like wind

gusts). In this chapter, we focus on introducing a robust control strategy to make au-

tonomous trajectory following of lighter than air/quad-rotors vehicles in the presence

of wind gust. The control algorithm is based on Robust Control Lyapunov Function

and Sontag’s universal stabilizing feedback. This method has been successfully applied

to the PVTOL aircraft and quad-rotors craft exposed to crosswind with a constant set

point [127, 128], neverthless it has never been applied to trajectory tracking for 3DOF

translational model of lighter than air vehicle and quad-rotors craft.

The rest of this chapter is organized as follows: The section 4.2 is dedicated to introduce

the concept of the Robust Control Lyapunov Function. While, the section 4.4 presents a
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nonlinear controller to stabilize kinematic airship/quad-rotors vehicles. The section 4.5

addresses the stabilization problem for a lighter than air vehicle tacking its dynamics, i.e.

Equation (2.95), into consideration. Finally, the section 4.6 describes autopilot design

strategy to a quad-rotors craft, based on its rigid body model, i.e. Equation (2.63).

4.2 Robust Control Lyapunov Function

Mathematical models of actual systems contain uncertainty terms representing the de-

signer’s lack of knowledge about parameter values and disturbances. These quantities

and inaccuracies in mathematical modeling itself, contribute to performance degradation

of feedback control system [176]. Self-tuning and adaptive control methods are based

on estimating the unknown system’s parameters and uncertainties through on-line iden-

tification algorithms. Then, this estimated parameters are used to provide a suitable

adaptive globally stable controller. The main disadvantage of these approaches is their

complexity.

On the other side, the deterministic control approaches provide a fixed nonlinear feed-

back control law which can be used directly to stabilize the system over a specified range

of system variations and perturbations. One of the main methods used in deterministic

control of uncertain systems is the Lyapunov control design technique.

In [119] Aleksandr Lyapunov proved that the stability of a dynamical system is guar-

anteed by the existence of a scalar valued function (called a Lyapunov function) of

the system state which has a strict minimum at the equilibrium state and whose value

decrease along every trajectory of the system. Since Lyapunov stability theory was de-

veloped for systems without inputs , it has been classically employed to test the stability

of closed loop control systems for which the control inputs has been replaced through

the predetermined feedback control. Anyway, an extension to the Lyapunov theory has

been made by using a candidate Lyapunov functions in the feedback control designing

procedure itself [6, 154]. The idea is to stabilize a control system by choosing a control

law in order to make the Lyapunov derivative negative. Such objective led to the intro-

duction of the control Lyapunov function (CLF). Therefore, considering the following

control system

ẋ = f (x, u) (4.1)
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a control Lyapunov function (CLF) for a such system is a C1 ∗, positive definite, radially

unbounded † function L (x) such that

x %= 0 ⇒ inf
u∈U

∇L (x).f(x, u) < 0 (4.2)

where U is a convex set of admissible values of the control variable u.

Freemann and Kokotović had generalized the CLF methodology to systems having both

control and disturbance inputs. Their work resulted in introducing the Robust Control

Lyapunov Function (RCLF). In addition, they proved that the existence of a RCLF

is necessary and sufficient to guarantee the robust stabilizability [62].

Considering the following three finite-dimensional Euclidean spaces X , U , W to be

the state, control and disturbances spaces respectively. Assuming a continuous function

f : X × U × W ×ℜ → X , we define the nonlinear control system Σ as

ẋ = f (x, u, w, t) (4.3)

where x ∈ X is the state variables, u ∈ U is the control inputs, w ∈ W is the disturbance

input, and t ∈ ℜ is the time variable.

Definition 4.1. Suppose that ϕ1 and ϕ2 are class K∞
‡ functions. The set of all C1

functions L : X ×ℜ → ℜ+ such that

ϕ1 (||x||) ≤ L (x, t) ≤ ϕ2 (||x||) (4.4)

is called the set of all candidate Lyapunov functions for testing the robust stability of

the system Σ, and denoted by V (X ).

Definition 4.2. The set P (X ) ⊃ V (X ) is the set of all continuous functions ϕ :

X ×ℜ → ℜ+ such that there exist F1,F2 ∈ K ‡ satisfying

F1 (||x||) ≤ ϕ (x, t) ≤ F2 (||x||) (4.5)

Definition 4.3. The Lyapunov derivative of L ∈ V (X ) is given by the following

relationship

LfL (x, u, w, t) := Lt (x, t) + Lx (x, t) .f (x, u, w, t) (4.6)

where Lt and Lx denote the partial derivatives of L with respect to time (t) and states

(x) consequently.

∗. A function f(x) is said to be C1 if it is differentiable and its derivative is continuous.
†. A function f(x) : ℜn → ℜ is said to be radially unbounded if it satisfies the condition: ||x|| →

∞ ⇒ f(x) → ∞.
‡. A continuous function f : [0, a[ → [0,∞[ is said to belong to class K if it is strictly increasing and

f(0) = 0. It is said to belong to class K∞ if a = ∞ and f(r) → ∞ as r → ∞.



Chapter 4. Trajectory Tracking 101

Definition 4.4. Let Y to be a finite-dimensional Euclidean space presenting the output

space, y ∈ Y to describe an output, t ∈ ℜ to present a time, and c ∈ ℜ+ to denote a

constant. We define the set Q (y, c, t) to be

Q (y, c, t) := {x ∈ X : y ∈ Y (x, t) and L (x, t) ≥ c} (4.7)

In other words, Q (y, c, t) is the set of all states x ∈ X which lie outside the c-level set

of L and which are consistent with the output y.

Based on the previous definitions, a function L ∈ V (X ) is said to be a Robust

Control Lyapunov Function (RCLF) for the system Σ, Equation (4.3), when there

exist cv ∈ ℜ+ and ϕv ∈ P (X ) such that

inf
u∈U

sup
x∈Q

sup
w∈W

[LfL (x, u, w, t) + ϕv (x, t)] < 0 (4.8)

for all y ∈ Y , all t ∈ ℜ and all c > cv [62].

Remark Supposing that Σ1 is a time-invariant system with full-state feedback, i.e.

X = Y and y(x) = {x} for all x ∈ X . Then, Equation (4.3) becomes

ẋ = f (x, u, w) (4.9)

Thus, the time-invariant function L ∈ V (X ) is said to be a RCLF for Σ1 if and only

if there exist cv ∈ ℜ+ and a time-invariant function ϕv ∈ P (X ) such that

inf
u∈U

sup
w∈W

[LfL (x, u, w) + ϕv (x)] < 0 (4.10)

whenever L (x) > cv.

After defining a robust control Lyapunov function, the remaining task is to construct

a feedback control inputs which guarantee the stability of the system. This task is the

subject of the next section.

4.3 Inverse Optimality Design

Optimal feedback controllers are very interesting because, above ensuring the stability

of the closed-loop system, they guarantee many desired characteristics through the asso-

ciated cost functional which depends on the state and control variables. Therefore, the

optimality property plays an important role in the selection of the control inputs among
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the entire set of stabilizing control laws [62]. In order to benefit of such an advantage, it

is required to solve the steady-state Hamilton-Jacobi-Issacs (HJI) equation, which is the

optimality condition for the robust stabilization problem. The complexity of these con-

trollers comes from the fact that solving the HJI equation is an extremely difficult task

for a high order nonlinear system. Therefore, the robust optimal feedback stabilization

problem can be summarized as follows: Given a general time-invariant nonlinear system

and cost functional

ẋ = f (x, u, w) , J =

∫ ∞

0
K (x, y) dt (4.11)

find the feedback control u which achieves asymptotic stability of the equilibrium x = 0,

and minimizes the cost functional J . The steady-state HJI equation for this problem is

written as

0 = min
u

max
w

[K (x, u) +∇L .f (x, u, w)] (4.12)

where the value function L is the unknown. However, it is possible to avoid solving the

steady-state HJI equation through many methods proposed in literature. One of these

approaches is the inverse optimality design methodology. The idea is to find a meaningful

cost functional such that the given RCLF is the corresponding value function, hence, the

solution of the steady-state HJI equation is obtained indirectly which allows to compute

the stabilizing optimal control law.

In [62] Freemann and Kokotović showed that every RCLF solves the steady-state HJI

equation associated with a meaningful game. Moreover, they proposed an explicit math-

ematical relationship to generate an optimal feedback control law, called pointwise min-

norm, which involves only the RCLF, the system equations and design parameters with-

out solving the HJI equation nor to construct the cost functional. Hence, their approach

is described as follows:

Assume that the system Σ1 given in Equation (4.9) can be written as a nonlinear control

system affine in controls and disturbances

ẋ = f0(x) + f1(x)u+ f2(x)w (4.13)

where x ∈ X describes the state variables, u ∈ U denotes the control inputs, w ∈ W

represents the disturbances, and f0(x) f1(x), f2(x) are continuous functions.

In addition, suppose that the disturbance is subjected to a constraint W : X # W

which is continuous with nonempty compact § values, and convex in u [62]. Then, a

disturbance w is said to be admissible when w ∈ W (x) for all x ∈ X .

§. A set A is said to be compact if it is closed and bounded.
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Given a Robust Control Lyapunov Function L for the system Σ1, we define D : X×U →

ℜ and K : X # U by

D(x, u) := max
w∈W(x)

[LfL (x, u, w) + ϕv(x)] (4.14)

K(x) := {u ∈ U (x) : D(x, u) < 0} (4.15)

Then the above relationship implies that

D(x, u) = ̟0(x) +̟T
1 (x)u (4.16)

K(x) =
{
u ∈ U : ̟0(x) +̟T

1 (x)u < 0
}

(4.17)

where,

̟0(x) = ∇L (x).f0(x) + ‖∇L (x).f2(x)‖+ ϕv(x) (4.18)

̟1(x) = [∇L (x).f1(x)]
T (4.19)

and ϕv(x) > 0.

Remark that D is continuous and convex in u. Moreover K is lower semi continuous

(lsc) ¶ with nonempty convex values on L −1 (cv,∞). A such set has a unique element

of minimum norm which can be defined using the projection theorem described in [101].

Theorem 4.5. [The projection theorem] Let G ⊂ H be a Hilbert subspace ‖ and let

x ∈ H.

Then,

1. There exist a unique element x̂ ∈ G (called the projection of x onto G) such

that

‖x− x̂‖ = inf
y∈G

‖x− y‖ (4.20)

where ‖ · ‖ is the norm generated by the inner product associated with H.

2. x̂ is (uniquely) characterized by

(x− x̂) ∈ G⊥ (4.21)

with, G⊥ denotes the orthogonal complement to G in H.

Therefore the control law that stabilize the system (4.13) is:

u(x) := argmin {‖u‖ : u ∈ K(x)} (4.22)

¶. A set-valued function F : X # Z is said to be lower semi continuous when ∀x ∈ X , and for
every open set U ⊂ Z such that x ∈ F−1 (U) there exists a neighborhood V of x such that V ⊂ F−1 (U).

‖. A Hilbert space is a pair (H, (·, ·)) such that: H is a vector space, (·, ·) is an inner product, and
the normed space (H, ‖ · ‖) is complete, where ‖ · ‖ is the norm generated by (·, ·).
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From Equation (4.16), Equation (4.17), and the projection theorem (Theorem 4.5), the

Equation (4.22) becomes

u =





−̟0(x)̟1(x)

̟T
1 (x)̟1(x)

; ̟0(x) > 0

0 ; ̟0(x) ≤ 0
(4.23)

Observe that the control law, Equation (4.23) depends on ϕv through the ̟0 function.

Notice also that, there is never division by zero because the set K(x) is nonempty for

all x ∈ L −1 (cv,∞).

Remark: The function ϕv represents the desired negativity of the Lyapunov deriva-

tive, and it can be adjusted to achieve a tradeoff between the control effort and the rate

of convergence of the state to zero.

4.4 Robust nonlinear controller for the kinematic aerial

vehicles

In chapter 2, we modeled a kinematic aerial vehicle by the Equation (2.70) and Equation

(2.100). Remark that these equations can be rewritten in the form of (4.13) as it is shown

below [90, 91]

Ẋ =




V cosχ cos γ

V sinχ cos γ

V sin γ

0

0

0




+




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




U +




1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0




W (4.24)

with X = [x y z γ χ V ]T , U = [u1 u2 u3]
T , and W = [Wx Wy Wz]

T .

Considering the following Lyapunov function

L (X) =
1

2
XTPX (4.25)

where P6×6 is a symmetric and positive definite matrix defined as the solution of the

following algebraic Riccati equation

ATX +XA−XBR−1BTX +Q = 0 (4.26)
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with, A and B denoting the state and input matrices of the linearized nominal system

(about an operation point XO, UO) respectively. As f1 and f2 are constant matrices,

then A and B are given by the following relationships

A =
∂f0(X)

∂X

∣∣∣∣
XO

(4.27)

B = f1 (4.28)

Thus, from previous it follows

A =




0 0 0 −V cosχ sin γ −V sinχ cos γ cosχ cos γ

0 0 0 −V sinχ sin γ V cosχ cos γ sinχ cos γ

0 0 0 V cos γ 0 sin γ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(4.29a)

B =




0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




(4.29b)

Then , the derivative of the Lyapunov function becomes

∇L (X) =
1

2

∂[XTPX]

∂X
= PX =

[
∇L1 ∇L2 ∇L3 ∇L4 ∇L5 ∇L6

]T

with

∇Li
= PiX ; Pi is the i− th row of P.

In addition, from Equation (4.18) and Equation (4.19), ̟0(X) and ̟1(X) takes the

following form

̟0(X) = ∇L1V cosχ cos γ +∇L2V sinχ cos γ +∇L3V sin γ + ϕv(X)

+
√
∇2

L1
+∇2

L2
+∇2

L3
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and

̟1(X) =




∇L4

∇L5

∇L6




where ϕv(X) = XTMX and M6×6 is a diagonal positive matrix, such that,

ϕv(X) = M11x
2 +M22y

2 +M33z
2 ++M44γ

2 +M55χ
2 +M66V

2

Consequently, the robust control laws yields

u1 =





−̟0(X).∇L4

∇2
L4

+∇2
L5

+∇2
L6

; ̟0(X) > 0

0 ; ̟0(X) ≤ 0

u2 =





−̟0(X).∇L5

∇2
L4

+∇2
L5

+∇2
L6

; ̟0(X) > 0

0 ; ̟0(X) ≤ 0

u3 =





−̟0(X).∇L6

∇2
L4

+∇2
L5

+∇2
L6

; ̟0(X) > 0

0 ; ̟0(X) ≤ 0

(4.30)

4.4.1 Simulation Results

In order to validate the performance of the closed-loop system, two scenarios for sim-

ulations were carried out. The first one presents a trajectory with a line form while

the second one a trajectory with a curved form. The wind employed in these simu-

lations consists of an average value on each axis, and two gusts. The first begins at

time = 400[sec] while the second take place at time = 700[sec]. This wind is introduced

in the Figure (4.1). On the other hand, the constraints on flight path angle, velocity

and control variables are provided in Table 4.1.

Moreover, solving algebraic Riccati Equation (4.26) requires the identification of the

weight matrices Q and R. The matrix Q has a dimension of n×n; n = 6 and it must be

symmetric, positive semi-definite. Beside, the matrix R is a symmetric positive definite

and has a dimension of m×m; m = 3. The selection of the elements of Q and R matrices

play an important role in the closed loop response. Choosing Q to be large means that

the error variables (e = X −Xref ) must be smaller which implies a large control efforts.

On the contrary, taking large values for R matrix means that the control inputs must

be smaller resulting in large values of error variables. The selected values for Q and R

are
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Figure 4.1: Wind gust applied to the aerial vehicle.

Table 4.1: Restrictions on state and control variables

Minimum Variable Maximum Units

- 45 γ 45 deg

0.1 V 20 m/sec

- 10 γ̇ 10 deg/sec

- 20 χ̇ 20 deg/sec

- 1.25 V̇ 1.25 m/sec2

Q =




100 0 0 0 0 0

0 100 0 0 0 0

0 0 104 0 0 0

0 0 0 10 0 0

0 0 0 0 0 10




(4.31)

R = 104 ∗




1/u21max 0 0

0 1/u22max 0

0 0 1/u23max


 (4.32)

The M matrix is chosen to be symmetric positive semi-definite. In addition (like Q and
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R matrices) it is adjusted to achieve a tradeoff between the control effort and the rate

of convergence of the error variables to zero. In general, smaller values of M leads to

smaller control magnitudes and slower convergence. The selected values are

M =




0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.001 0 0

0 0 0 0 105 0

0 0 0 0 0 106




(4.33)

4.4.1.1 Trajectory with a line form

Fixing the orientation of the vehicle (flight path and heading angles) to a constant

value leads to a trajectory with a line form. Hence, our objective in this section is to

stabilize the aerial vehicle around the desired orientation and velocity (which will be

also constant) without forgetting to maintain the spatial motion of the vehicle at the

desired one.

The initial position of the vehicle is x0 = y0 = z0 = 0 while the initial and the desired

orientation and velocity values are shown in Table 4.2. Remark that the velocity of

the first and the second gusts is up to 46 % and 120 % of the aerial vehicle velocity

respectively.

Table 4.2: Initial and desired orientation and velocity values

γ [Deg] χ [Deg] V [m/sec]

Initial value 0 0 5

Desired value 15 60 13

Basing on Q, R, M , the desired values of γ, χ, V and from the Equation (4.26), we have
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P =




260 80 20 −560 −2480 390

80 350 40 −960 1430 680

20 40 1700 17770 0 490

−560 −960 17770 384850 0 4170

−2480 1430 0 0 76850 0

390 680 490 4170 0 3320




(4.34)

The response of the system to the proposed control strategy is illustrated in Figure (4.2)

- Figure (4.9). The position errors along x, y and z axes are presented in the Figure

(4.2), Figure (4.3) and Figure (4.4) respectively. Also, the time profile of the vehicle’s

orientation (presented by its flight path and heading angles) and its velocity are shown

in Figure (4.5), Figure (4.6) and Figure (4.7). A three dimensional view of the spatial

trajectory is displayed in the Figure (4.9). In these figures, the red line represents the

desired signal while the blue line represents the system response. Additionally, the

control inputs are depicted in Figure (4.8).
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Figure 4.2: Relative error on x position (trajectory with a line form).
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Figure 4.5: Flight Path Angle response in closed-loop (trajectory with a line form).
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Figure 4.6: Heading Angle response in the closed-loop (trajectory with a line form).
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Figure 4.7: Velocity response in the closed-loop (trajectory with a line form).
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Figure 4.8: Control inputs responses u1, u2 and u3 (trajectory with a line form).

The previous figures reveal the system reaction facing unknown perturbations. For the

first wind gust, the control inputs increase the velocity value to 16[m/sec] and the flight

path angle to 40[deg]. Observe that as the first wind burst affects only the z axis, then

the system will not need to change heading angle. Next, when the second wind gust

appear, the control inputs increase the flight path angle to 45[deg] and the heading angle

to 130[deg], while the vehicle’s velocity is decreased to 5[m/sec]. Further, from Figure

(4.2), Figure (4.3) and Figure (4.4) remark that the largest relative error on x, y and z

positions in the presence of disturbances (wind gusts) remains reasonable (about 0.5%,

0.22% and 0.75% respectively). Thus, the closed-loop system has a good performance

even in the presence of unknown wind gusts.
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Figure 4.9: Three dimensional view of the trajectory.

4.4.1.2 Trajectory with a curved form

By definition, a curve is a line which gradually deviates from being straight for some or

all of its length. This deviation implies that the orientation and the velocity of the aerial

vehicle must vary with time. Thus, our objective in this section is to stabilize the aerial

vehicle around the desired trajectory (spatial motion, orientation and velocity) which is

also time variant.

The proposed simulation scenario consists of two phases. In the first one, which lasts 600

seconds, the aircraft starts at the position (x0 = 0, y0 = 0, z0 = 0) with an orientation

of (γ0 = 0, χ0 = 0) and a velocity of V0 = 7[m/sec]. Then, it performs a turning flight of

360 degrees (heading angle) and in the same time it climbs with an angle of 10 degrees

(flight path angle) and maintains the velocity at V0. Once the first phase is achieved,

the second one begins and lasts from t = 600[sec] to tf = 1200[sec]. In this stage, the

aircraft flies in a straight line at a constant altitude and a velocity of 13 [m/sec].

In order to maintain the stability of the aerial vehicle along the trajectory, four operating

point had been chosen. These points are presented in Table 4.3. Thus, the Lyapunov

function (4.25) and consequently the control laws will change four times during the

trajectory depending on the actual operating point. The selected P for each operating

point is
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P1 =




210 0 0 0 −2860 0

0 400 40 −620 0 800

0 40 9440 56960 0 860

0 −620 56960 690750 0 7070

−2860 0 0 0 77590 0

0 800 860 7070 0 3320




(4.35)

P2 =




400 0 40 620 0 800

0 210 0 0 2860 0

−40 0 9440 56960 0 860

−620 0 56960 690750 0 7070

0 −2860 0 0 77590 0

800 0 860 7070 0 3320




(4.36)

P3 =




210 0 0 0 2860 0

0 400 −40 620 0 −800

0 −40 9440 56960 0 860

0 620 56960 690750 0 7070

2860 0 0 0 77590 0

0 −800 860 7070 0 3320




(4.37)

P4 =




400 0 40 −620 0 800

0 210 0 0 2860 0

40 0 9440 56960 0 860

−620 0 56960 690750 0 7070

0 2860 0 0 77590 0

800 0 860 7070 0 3320




(4.38)

Table 4.3: The four selected operating points

γ [Deg] χ [Deg] V [m/sec]

OP1 10 90 13

OP2 10 180 13

OP3 10 270 13

OP4 10 360 13
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The response of the system to the proposed control strategy is illustrated in Figure (4.10)

- Figure (4.17). The position errors along x, y and z axes are presented in the Figure

(4.10), Figure (4.11) and Figure (4.12) respectively. Also, the time profile of the vehicle’s

orientation (presented by its flight path and heading angles) and its velocity are shown in

Figure (4.13), Figure (4.14) and Figure (4.15). A three dimensional view of the spatial

trajectory is displayed in the Figure (4.17). In these figures, the red line represents

the desired signal while the blue line represents the system response. Additionally, the

control inputs are depicted in Figure (4.16).
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Figure 4.10: Relative error on x position (trajectory with a curve form).
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Figure 4.11: Relative error on y position (trajectory with a curve form).



Chapter 4. Trajectory Tracking 116

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

Time [sec]

e
z
 %

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

400 420 440 460 480 500
0

0.5

1

1.5

2

Figure 4.12: Relative error on z position (trajectory with a curve form).
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Figure 4.13: Flight Path Angle response in closed-loop (trajectory with a curve form).
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Figure 4.14: Heading Angle response in the closed-loop (trajectory with a curve
form).
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Figure 4.15: Velocity response in the closed-loop (trajectory with a curve form).
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Figure 4.16: Control inputs responses u1, u2 and u3 (trajectory with a curve form).

Figure 4.17: Three dimensional view of the trajectory.

As for the trajectory with a line form, the Figure (4.10) - Figure (4.17) reveal the system

reaction facing unknown perturbations. For the first wind gust, the control inputs

increase the velocity value to 11.6[m/sec] and the flight path angle to 45[deg]. Observe

that, in contrast to the case of a trajectory with a line form, the heading angle here

is disturbed. Hence, control efforts is exerted to ensure the stability of χ. Next, when

the second wind gust appear, the control inputs decrease the heading angle to 320[deg]

and the velocity to 7[m/sec], while the flight path angle does not change because the

aircraft flies at a constant altitude, i.e. γ is a constant, and the second burst affects only

x and y axes. Further, from Figure (4.2), Figure (4.3) and Figure (4.4) remark that the

largest relative error on x, y and z positions in the presence of disturbances (wind gusts)

remains reasonable (about 1.5%, 0.55% and 1.65% respectively). Thus, the closed-loop

system has a good performance even in the presence of unknown wind gusts.
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4.5 Robust nonlinear controller for lighter than air vehicle

Translational motion of airships is characterized by six nonlinear differential equations

(three for kinematics and three for dynamics) detailed in chapter (2). This modeling

often employs angle of attack α, bank angle σ and thrust T as three control variables,

which yields the model to be non affine in control inputs.

To overcome this obstacle, the nonlinear state equation is transformed into an augmented

state space model in which the new control appears in a linear fashion [115, 152]. For

this purpose, the control variables are added to the state vector and regarded as extra

state variables, while its derivatives are used as virtual control inputs. So, the new state

vector becomes [x y z γ χ V T σ α]. Whilst, the virtual control inputs turn into [Ṫ σ̇

α̇] [89].

From the previous description and Equation (2.70 and Equation 2.95), translational

motion of a lighter than air vehicle can be mathematically represented by the following

nonlinear differential equations affine in control and disturbances inputs:

Ẋ = f0 + f1U + f2W (4.39)

where,

X =


x y z︸ ︷︷ ︸

X1

γ χ V︸ ︷︷ ︸
X2

T σ α︸ ︷︷ ︸
X3



T

(4.40)

U = Ẋ3 =
[
Ṫ σ̇ α̇

]T
(4.41)

W =


Wx Wy Wz︸ ︷︷ ︸

W1

Ẇx Ẇy Ẇz︸ ︷︷ ︸
W2




T

(4.42)

f0 =
[
Ξa (X2) Ξb (X2, X3) 03×1

]T
(4.43)

f1 =
[
03×3 03×3 I3×3

]T
(4.44)

f2 =




I3×3 03×3

03×3 Bw

03×3 03×3


 (4.45)

with,

Ξa (X2) =




V cosχ cos γ

V sinχ cos γ

V sin γ


 (4.46)
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Likewise

Ξb (X2, X3) =




(T sinα+L) cosσ−cos γ(B−mg)
(m+m33)V

(T sinα+L) sinσ

(m+m22)V cos γ
T cosα−D−sin γ(B−mg)

m+m11


 (4.47)

Indeed,

Bw =




m cosχ sin γ
(m+m33)V

m sinχ sin γ
(m+m33)V

m cos γ
(m+m33)V

m sinχ
(m+m22)V cos γ

−m cosχ
(m+m22)V cos γ 0

−m cos γ cosχ
m+m11

−m sinχ cos γ
m+m11

m sin γ
m+m11


 (4.48)

Considering the following Lyapunov function

L (X) =
1

2
XTPX (4.49)

where P9×9 is the solution of algebraic Riccati equation (4.26). Thus, the derivative of

Lyapunov function is given by

∇L (X) =
1

2

∂
[
XTPX

]

∂X
= PX =

[
∇L1 ∇L2 ∇L3

]T
(4.50)

with dim (∇Li
) = 3; i = 1, 2, 3. Then, ̟0 (X) and ̟1 (X) defined in equations (4.18

and 4.19) respectively can be written as

̟0 (X) = ∇L · f0 (X) + ‖
[
∇L1 ∇L2 ·Bw

]
‖+ ϕv (X) (4.51)

̟1 (X) = ∇L3 (4.52)

with ϕv (X) = XTMX and M9×9 defines a diagonal positive matrix, which leads to

ϕv (X) = M11x
2 +M22y

2 +M33z
2 +M44γ

2 +M55χ
2 +M66V

2 +M77T
2 +M88σ

2 +M99α
2 (4.53)

Hence, the control inputs take the following form

For ̟ (X) > 0

u1 = Ṫ =
−̟0 (X) ·∇L3(1)

∇2
L3

(1) +∇2
L3

(2) +∇2
L3

(3)
(4.54a)

(4.54b)

u2 = σ̇ =
−̟0 (X) ·∇L3(2)

∇2
L3

(1) +∇2
L3

(2) +∇2
L3

(3)
(4.54c)

(4.54d)

u3 = α̇ =
−̟0 (X) ·∇L3(3)

∇2
L3

(1) +∇2
L3

(2) +∇2
L3

(3)
(4.54e)

whilst, for ̟0 (X) ≤ 0, u1 = u2 = u3 = 0.
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Remark: Solving algebraic Riccati equation (4.26) requires the linearized nominal

system which is given by the equation

Ẋ = AX +BU (4.55)

where,

A =




03×3 Aa 03×3

03×3 Ab Ac

03×3 03×3 03×3


 (4.56)

B =




03×3

03×3

I3×3


 (4.57)

with,

Aa =




−V cosχ cos γ −V sinχ cos γ cosχ cos γ

−V sinχ sin γ V cosχ cos γ sinχ cos γ

V cos γ 0 sin γ


 (4.58)

likewise,

Ab =




sin γ(B−mg)
(m+m33)V

0 Lv cosσ
(m+m33)

− cosσ(T sinα+L)−cos γ(B−mg)
(m+m33)V 2

sin γ sinσ(T sinα+L)
(m+m22)V cos2 γ

0 Lv sinσ
(m+m22)V cosσ − sinσ(T sinα+L)

(m+m22)V 2 cos γ
− cos γ(B−mg)

m+m11
0 −Dv

m+m11


 (4.59)

Indeed,

Ac =




sinα cosσ
(m+m33)V

− sinσ(T sinα+L)
(m+m33)V

Lα cosσ+T cosα
(m+m33)V

sinα sinσ
(m+m22)V cos γ

cosσ(T sinα+L)
(m+m22)V cos γ

Lα sinσ+T cosα
(m+m22)V cos γ

cosα
m+m11

0 −Dα+T sinα
m+m11


 (4.60)

4.5.1 Simulation Results

The simulation scenario proposed in this section consists of an initial configuration,

a final one and three way-configurations. Hence, the trajectory is divided into four

segments. The first sector presents a maneuver in which the aerial vehicle makes a left

turn with ascent to reach the first way-configuration q1. Next, in the second section,

the airship flies in a climbing straight line to attain q2. Then, it performs a right turn

with descent until it arrives to q3. Finally, in the forth segment, the lighter than air

vehicle moves in a straight line with a constant altitude to its final configuration. These

configurations are presented in Table 4.4.
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Table 4.4: Configurations to be visited during the traveled trajectory

x [m] y [m] z [m] γ [deg] χ [deg] V [m/sec]

q0 0 0 0 0 0 10

q1 1800 750 100 5 45 10

q2 4620 3560 445 5 45 10

q3 6400 4312 533 0 0 10

qf 13406 4312 533 0 0 10

Besides, along the previous trajectory, the aerial vehicle is exposed to two wind gusts

introduced in Figure (4.18). The first blast begin at t = 330[sec], while the second one

take place at t = 800[sec]. Their velocity is up to 70 % and 122 % of the vehicle velocity

respectively.
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Figure 4.18: Wind gusts applied to the airship.

Also, the vehicle is subjected to different limitations and restrictions due to its actuators

and structure. These constraints are provided in table (4.5). On the other hand, table

(4.6) determines the different baseline airship design parameters used in this study.

From table (4.4), notice that each one of fligt path angle, heading angle and velocity

vary between two values along the proposed trajectory. Then, in order to calculate the
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Table 4.5: Restrictions on the lighter than air vehicle

Minimum Variable Maximum Units

-45 γ 45 deg

0.1 V 20 m/sec

-15 γ̇ 15 deg/sec

-20 χ̇ 20 deg/sec

-1.25 V̇ 1.25 m/sec2

0 T 10000 N

-15 σ 15 deg

-15 α 15 deg

-50 Ṫ 50 N/sec

-5 σ̇ 5 deg/sec

-2 α̇ 2 deg/sec

Table 4.6: Baseline lighter than air vehicle design parameters

Design parameter Symbol Value

Volume Uh 2181.7 [m3]

Mass m 1750 [kg]

Added mass coefficient, x axis kx 0.082

Added mass coefficient, y axis ky 0.860

Added mass coefficient, z axis kz 0.860

Lift coefficient CL0 0.3118

Drag coefficient CD0 0.37
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P matrix (defined in Equation (4.26)) only one operating point is considered. This point

is defined as OP ⇔ γOP = 5 [deg], χOP = 45 [deg] and V = 10 [m/sec]. Furthermore,

the selected Q and R matrices for this case are

Q =




103 0 0 0 0 0 0 0 0

0 103 0 0 0 0 0 0 0

0 0 104 0 0 0 0 0 0

0 0 0 10 0 0 0 0 0

0 0 0 0 10 0 0 0 0

0 0 0 0 0 10 0 0 0

0 0 0 0 0 0 10 0 0

0 0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 0 10




(4.61)

R = 104 ·




1/u21max 0 0

0 1/u22max 0

0 0 1/u23max


 (4.62)

Therefore, the resulting P matrix takes the following form

P = 106 ·







































0.0096 0.0054 0.0510 0.0662 −0.0622 0.0532 0 −0.0256 −0.0577

0.0054 0.0096 0.0510 0.0662 0.0622 0.0532 0 0.0256 −0.0577

0.0510 0.0510 0.4920 0.9377 0 0.4983 0.0002 0 0.1240

0.0662 0.0662 0.9377 2.9910 0 0.9384 0.0003 0 2.3457

−0.0622 0.0622 0 0 2.7642 0 0 1.5174 0

0.0532 0.0532 0.4983 0.9384 0 0.5167 0.0002 0 0.2013

0 0 0.0002 0.0003 0 0.0002 0 0 0

−0.0256 0.0256 0 0 1.5174 0 0 1.2496 0

−0.0577 −0.0577 0.1240 2.3457 0 0.2013 0 0 8.3352







































(4.63)

Furthermore, the chosen M matrix is

M =




10−2 0 0 0 0 0 0 0 0

0 10−2 0 0 0 0 0 0 0

0 0 10−2 0 0 0 0 0 0

0 0 0 104 0 0 0 0 0

0 0 0 0 104 0 0 0 0

0 0 0 0 0 105 0 0 0

0 0 0 0 0 0 106 0 0

0 0 0 0 0 0 0 102 0

0 0 0 0 0 0 0 0 105




(4.64)

The response of the system to the proposed control strategy is illustrated in Figure (4.19)
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- Figure (4.29). The tracking position errors along x, y and z axes are presented in the

Figure (4.19), Figure (4.20) and Figure (4.21) respectively. Also, the time profile of the

vehicle’s orientation (presented by its flight path and heading angles) and its velocity are

shown in Figure (4.22), Figure (4.23) and Figure (4.24). Further, the thrust, bank angle

and the angle of attack variables are demonstrated in Figure (4.25), Figure (4.26) and

Figure (4.27) respectively. In addition, a three dimensional view of the spatial trajectory

is displayed in the Figure (4.29). In these figures, the red line represents the desired

signal while the blue line represents the system response. Finally, the control inputs are

depicted in Figure (4.28).

0 500 1000 1500
0

50

100

150

200

250

300

350

Time [sec]

| 
x

re
f −

 x
 |
 [

m
]

Figure 4.19: Relative error on x position (lighter than air vehicle).
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Figure 4.20: Relative error on y position (lighter than air vehicle).
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Figure 4.21: Relative error on z position (lighter than air vehicle).
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Figure 4.22: Flight Path Angle response in closed-loop (lighter than air vehicle).
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Figure 4.23: Heading Angle response in the closed-loop (lighter than air vehicle).
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Figure 4.24: Velocity response in the closed-loop (lighter than air vehicle).
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Figure 4.25: Thrust response in the closed-loop (lighter than air vehicle).
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Figure 4.26: Bank angle response in the closed-loop (lighter than air vehicle).
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Figure 4.27: Angle of attack response in the closed-loop (lighter than air vehicle).
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Figure 4.28: Control inputs responses u1, u2 and u3 (lighter than air vehicle).
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Figure 4.29: Three dimensional view of the trajectory.
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Figure (4.19) - Figure (4.29) illustrate the attitude of the system tracking a reference

trajectory and facing unknown disturbances. Notice that when the first wind gust arrives

(at t = 300 [sec]), the control inputs increase the thrust to 8900 Newton while the angle

of attack varies between 0.3 and 15 degrees before it stabilized at 6.12 degrees. Observe

also that there is no changes on the bank angle response to the first gust because this

blast affects only the z axis and when it arrives, the horizontal orientation of the vehicle

is already stabilized at a constant value. On the other hand, when the second gust

arrives (at t = 800 [sec]), the control inputs make the thrust to vary between 2120 and

4950 Newton, the bank angle to change between -5.6 and 12 degrees and the angle of

attack to be increased to 15 degrees. These changes affect directly the behavior of each

of γ, χ and V as it is demonstrated in Figure (4.22), Figure (4.23) and Figure (4.24).

From previous we conclude that the proposed control strategy has a good performance

guaranteeing the trajectory tracking even in the presence of unknown wind gusts.

4.6 Trajectory Tracking for Quadrotors

The aim of this section is to examine the applicability and compatibility of the reference

trajectories with the dynamics of the quadrator. For this purpose, we employ the trajec-

tory generated by the previous method to the rotorcraft’s rigid body model, Equation

(2.63) as reference signals; and we design an autopilot to ensure the trajectory tracking.

The control strategy used here is based on the control laws introduced in [32] and [33]

for stabilizing quadrotor at hover.

The controller regulates each one of the state variables in a sequence according to a

predefined priority rule as follows:

First of all, the desired altitude (z) is reached using the control input u. Then, the

yaw angle (ψ) is controlled through τψ. Next, the desired values of pitch angle (φ) and

y-displacement are reached by controlling τφ. Finally, the control input τθ is used to

obtain the desired pitch angle (θ) and x-displacement values.

Next, the following definition is fundamental for the control strategy.

Definition 4.6. The function σ (t) is said to be a saturation function if and only if

|σ (t) | ≤ M ; ∀M ∈ R
+ (4.65)
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4.6.1 Altitude and Yaw Control

The control of z-displacement is ensured through the following control input

u = sec(θ) sec(φ)r̄ (4.66)

where

r̄ = −Kz1 (ż − żref )− Kz2 (z − zref ) +mg (4.67)

with, Kz1 and Kz2 are positive constant, żref and zref are the desired vertical velocity

and altitude respectively. In addition, θ and φ are assumed to be limited such that they

can not reach 90 degrees.

On the other side, the yaw angle is controlled by applying

τψ = −σψ1

(
Kψ1

(
ψ̇ − ψ̇ref

))
− σψ2 (Kψ2 (ψ − ψref )) (4.68)

Substituting Equation (4.67) and Equation (4.68) into Equation (2.63c) and Equation

(2.63d), it follows that: ż .→ żref , z .→ zref , ψ̇ .→ ψ̇ref and ψ .→ ψref .

4.6.2 Roll and Lateral Position Control

Once ż and z are stabilized, the Equation (2.63a) and Equation (2.63b) can be reduced

to

ẍ = −g tan(θ) sec(φ) (4.69a)

ÿ = g tan (φ) (4.69b)

Considering the subsystem (φ, y) given by Equation (4.69b) and Equation (2.63f). Then,

the control input for this subsystem is given by

τφ = −σφ1 (Kφ1 (ẏ − ẏref ))− σφ2 (Kφ2 (y − yref ))

−σφ3

(
Kφ3

(
φ̇
))

− σφ4 (Kφ4 (φ− φref ))
(4.70)

where the controller gain parameters Kφ1, Kφ2, Kφ3 and Kφ4 are positive constant.

4.6.3 Pitch and Forward Position Control

From Equation (4.70) and Equation (4.69b) it follows that φ .→ 0. Then, the Equation

(4.69a) becomes ẍ = −g tan(θ) Finally, the subsystem (θ, x) is controlled through τθ
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which is given by

τθ = σθ1 (Kθ1 (ẋ− ẋref )) + σθ2 (Kθ2 (x− xref ))

−σθ3

(
Kθ3

(
θ̇
))

− σθ4 (Kθ4 (θ − θref ))
(4.71)

where the controller gain parameters Kθ1, Kθ2, Kθ3 and Kθ4 are positive constant.

4.7 Simulation Results

In this section, we consider a scenario of a quadrotor flying at fixed altitude. The trajec-

tory consists of an initial configuration, an initial one, and several way-configurations to

be visited by the aerial vehicle. Then, the optimization process described in sec. 3.3.2.1

is applied for every segment separately. Once the reference trajectory is generated, an

autopilot is designed to evaluate the validity of a such trajectory.

The constraints on pitch angle, velocity, and control variables are provided in Table 4.7.

Table 4.7: Restrictions on state and control variables

Minimum Variable Maximum Units

- 15 θ 15 deg
0.001 V 0.2 m/sec

- 5 θ̇ 5 deg/sec

- 10 ψ̇ 10 deg/sec

- 0.01 V̇ 0.01 m/sec2

As the vehicle is moving only in the horizontal plane (x× y), both θ̇ and θ are equal to

zero. In addition we assume the lack of wind in the environment. Then, the equations of

motion presented in Equation (2.99) and Equation (2.101) are reduced to the following

ẋ = V cosψ

ẏ = V sinψ

ψ̇ = u1

V̇ = u2
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Figure 4.30: Flying at a constant altitude trajectory.
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ψ̇, V̇ respectively.
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The number of nodes (N) used in each segment is 84, and the interior point algorithm

included in fmincon solver in MATLAB R© is used to compute optimal trajectory. The

initial configuration q0, the final one qf , and the way-configurations qi, in this case, are

presented in Table 4.8. The position, orientation, velocity, and control inputs of the

aerial vehicle are illustrated in Figure (4.30) and Figure (4.31).

Table 4.8: Configurations to be visited during the traveled trajectory

x [m] y [m] ψ [deg] V [m/sec]

q0 0 0 0 0.01
q1 10 5 90 0.1
q2 0 15 90 0.1
q3 10 25 90 0.1
q4 0 30 90 0.1
qf 10 35 0 0.01

Notice the final configuration is reached in tf = 323.2 [sec].

Once the reference trajectory is generated we go forward to the tracking problem in

order to evaluate the applicability and the validity of the calculated reference trajectory

with the dynamics of quadrotor. For this end, we take the results found above as refer-

ences for the full dynamic quadrotor model presented in Equation (2.63). The control

parameters and the limitations of saturation functions values were chosen to ensure a

stable well-damped response specially for x, y and ψ variables.

The performance of the designed autopilot is illustrated in the Figure (4.32) - Figure

(4.35). In these figures, the solid line represents the system response and the dashed

line describes the desired value or trajectory. The time profile of the yaw angle and its

derivative are shown in Figure (4.32). While, the time profile of the x and y displacement

and their absolute error are presented in Figure (4.33) and Figure (4.34) respectively.

In Figure (4.35), the time profile of pitch and roll angles are depicted.

Note that the controller has a good performance to tracks the yaw angle, x and y

displacements. While, it has not the same efficiency to follow the yaw angular velocity.

This behavior is due to the fact that the gain assigned to yaw angle (i.e. Kφ2 ) is

more important than the one dedicated to its derivative (i.e. Kφ1). On the other hand,

observe that the desired pitch and roll angles are set to be zeros but the real θ and
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Figure 4.32: Yaw angle of quadrotor.

φ differs for some periods of time which is due to movements on x and y axis and

acceleration/deceleration effects.
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Figure 4.33: x-displacement of quadrotor.
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Figure 4.34: y-displacement of quadrotor.
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Chapter 4. Trajectory Tracking 138

4.8 Conclusion

In this chapter, Firstly, we have formulated and solved inverse optimal robust stabiliza-

tion problem to guarantee the trajectory tracking for a kinematic aerial vehicle and for a

dynamic lighter than air vehicle. These systems belongs to a specified class of nonlinear

control systems which are affine in control and disturbances inputs. The formulas (4.22)

and (4.23) introduced in [62] are used to generate robust control laws which have the

desirable properties of optimality and do not require the solution of HJI equation. Some

numerical simulations were carried out and some graphs were presented to illustrate the

good performance of the closed-loop system even in presence of unknown disturbances.

Secondly, an autopilot for an autonomous quadrotor has been designed. We formulated

a minimum time optimal control problem to generate the reference trajectory using the

vehicle’s point mass model. While the control strategy in the tracking problem was

designed through the quadrotor’s rigid body model.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

UAV’s are a promising solution to the structure inspection problem. In fact the nature of

such missions implies the interaction of different research domains including, automatic

control, computer vision, image processing, wireless communications, aerial vehicle de-

sign, etc... The goal of this thesis is the development of motion planning, trajectory

generation and tracking algorithms in the presence of wind. Since inspection missions

require an aerial vehicle with a hovering capability, we were interested by two types of

unmanned aerial vehicles: Lighter than air vehicle and quadrotors. Thereby, we begin

with the mathematical representation for those aerial vehicles. Firstly, a six degree of

freedom equations of motion, called rigid body model, was developed for lighter than air

vehicle using Newton- Euler approach, and for quadrotor crafts through Euler-Lagrange

technique. This model is devoted to treat the stability and control problems. Next, a

three degree of freedom translational equations of motion, called point mass model, in-

cluding the wind was introduced. This model is based on Newton’s second law and used

to deal with navigation and guidance control systems. Translational kinematics and

dynamics for airships was realized, while the kinematic model was adopted to present

quadrotors crafts.

First of all, the accessibility and controllability issues were considered. It has been

proved that a kinematic aerial vehicle is strongly accessible under the condition that the

velocity is not equal to zero and if its flight path angle do not reach π
2 . Moreover, it

has been shown that the vehicle could be completely controllable if the wind velocity is

strictly less than the vehicle’s velocity.

The proposed methods for reference trajectory generation are based on optimality no-

tion. The objective is chosen to be the traveling time. The minimum-time flight problem
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is formulated as a problem of the calculus of variations. Then, this formulation is con-

verted to a nonlinear constrained optimization problem and it is solved through a direct

collocation approach. Geometric characterization of the candidate trajectories satisfying

the necessary conditions for time optimality is also described. Simulations are carried

out to validate the proposed algorithm. These results show the wind effect on the com-

puted trajectory. In fact, it can be a benefit in the sense where the wind push the vehicle

from the back, and a disadvantage if it comes from the front of the vehicle. Next, a sub-

optimal fast trajectory generation algorithm based on geometrical solution is proposed,

and an illustrative example is carried out. The main advantage of this algorithm is its

rapidity, while its main weakness is its applicability when the distance separating the

initial and final configurations is too small.

Besides, an updated flight planning strategy is proposed in which, the wind was con-

sidered as a constant piecewise function. The basic idea is to supervise the trajectory

with a spatiotemporal criterion and to decide when the reference trajectory has to be

updated. Simulation results reveal the presence of discontinuities in reference trajectory.

This phenomenon is caused by the updates when the real situation is taken into account.

The proposed motion planning method takes into consideration the energy limitation of

UAV as a maximal allowed flight time. In fact, a modification of a capacitated vehicle

routing problem is proposed. The limited carrying capacity of goods are replaced by an

allowed maximum flight time. Simulation results show that the proposed approach is

capable of finding time-optimal routes, taking into account the wind, while respecting

the maximum flight time of the vehicle.

Trajectory tracking problem is also addressed in this thesis. The proposed control strat-

egy should face the presence of unknown gusts. Then, a robust nonlinear control law

based on inverse optimality and robust Lyapunov Control Function is introduced for

kinematic aerial vehicle and for a dynamic lighter than air vehicle. The carried out

simulations prove the good performance of the controller.
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5.2 Future Work

This thesis has highlighted a number of areas that would merit further investigation.

Some of these are listed below:

• All algorithms, introduced in this work, have been validated in simulations. Therefore,

an experimental validation should be carried out to confirm simulation results.

• The proposed sub-optimal fast algorithm takes into consideration only a planar flight

case, i.e. flying at a constant altitude. It will be interesting to improve this algorithm

to include a 3D case.

• In this work, all state variables and wind velocity are assumed to be available, which

could not be the case in real systems. Then, it becomes necessary to develop a state

and wind estimators to overcome such problem.

• The input of the trajectory planner is supposed to be a set of points predefined by the

user which is very difficult to handle for large-scale structures. Thus, an automatic

selection of points of interest methods is needed to be developed. This can be done

through meshing techniques for example.

• All developed methods and algorithms, in this thesis, are dedicated for a translational

flight. Consequently, a study on the stability of a hovering flight will be needed to

complete our work.





Appendix A

Determining the Direction of

Turn

Considering three points O, P , and M . Where, O presents the origin of Earth fixed

inertial coordinate system, P is the actual position and orientation of the aerial vehicle,

and M denotes the desired destination configuration. Lets RN to be a new coordinate

system having its origin located at P . So that, its yN -axis coincide with the heading

of the vehicle while its xN -axis, perpendicular to yN , points to the right direction.

Therefore, in order to define in which direction the aircraft must go to reach its final

destination, it is sufficient to look at the projection of M in RN , see Figure (3.11).

The projection of M in RN is obtained through a translation and a rotation.

A.1 Translation

The position of M with respect to P is defined through the vector
−−→
PM . From Figure

(A.1) we state
−−→
PM =

−−→
PO +

−−→
OM (A.1)

where,

−−→
PO =(xO − xP )

−→
i + (yO − yP )

−→
j (A.2a)

−−→
OM =(xM − xO)

−→
i + (yM − yO)

−→
j (A.2b)

Therefore,
−−→
PM = (xM − xP )

−→
i + (yM − yP )

−→
j (A.3)
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Figure A.1: Translation.

A.2 Rotation

The orientation of the vehicle with respect to RI can be described through a counter-

clockwise rotation with an angle θ, see Figure (A.2). Then, we have

[ −→
i ′

−→
j ′

]
=

[
cos θ sin θ

− sin θ cos θ

][ −→
i
−→
j

]
(A.4)

Therefore,

P (xP , yP )|−→i ′,
−→
j ′

=

[
cos θ sin θ

− sin θ cos θ

][
xP

−→
i

yP
−→
j

]
(A.5)

with, θ = 3π
2 + χ.

Consequently, the projection of the destination goal M onto RN is expressed by the

following relationship

M (xM , yM )|−→
i ′,

−→
j ′

=

[
cos

(
3π
2 + χ

)
sin

(
3π
2 + χ

)

− sin
(
3π
2 + χ

)
cos

(
3π
2 + χ

)
] [

(xM − xP )
−→
i

(yM − yP )
−→
j

]
(A.6)
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Figure A.2: Rotation.





Appendix B

Linear Phase Calculation

Remember that the equations of motion for an aerial vehicle flying at a fixed altitude is

given by

ẋ =V cosχ (B.1a)

ẏ =V sinχ (B.1b)

χ̇ =u1 (B.1c)

V̇ =u2 (B.1d)

Flying in a straight line means that the orientation of the aircraft is fixed, i.e. χ = χ0.

This implies that χ̇ = u2 = 0. Then, integrating the Equation (B.1) leads to the

following

x =
1

2
u2 cosχ0t

2 + V0 cosχ0t+ x0 (B.2a)

y =
1

2
u2 sinχ0t

2 + V0 sinχ0 + y0 (B.2b)

χ =χ0 (B.2c)

V =u2t+ V0 (B.2d)

with u2 = ±u2max for acceleration and deceleration phases, while u2 = 0 entails the

constant velocity case.

B.1 Problem Statement

Considering two configurations q1 = [x1, y1,χ1, V1] and q2 = [x2, y2,χ2, V2], with χ1 =

χ2 = cte. In addition, assuming that reaching q2 from q1 can be done through a straight
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line. Then, the basic problem is to find a control u2 ∈ {0,±u2max} such that the

continuity of the aerial vehicle’s velocity is guaranteed. In other words, defining the

acceleration, deceleration, and constant velocity segments along the trajectory.

B.2 Proposed Solution

To deal with the previous problem, we propose the following algorithm

Algorithm B.1 Linear Segments Calculation

Require: initial and final configurations (q1 and q2).
1: Compute the distance (d) between q1 and q2.
2: Determine the required distance for the acceleration/deceleration phase (dacc and

ddec).
3: if d > dacc + ddec then
4: Three linear segments are required to reach q2:

Compute switching points and traveled time for acceleration, deceleration, and
constant velocity segments.

5: else
6: Two linear segments are required to reach q2:

Compute the time and the point to switch between the acceleration and deceler-
ation phases.

7: end if
8: return Switching time and configurations as well as control inputs along the tra-

jectory.

In the following, we describe in details the previous algorithm.

Step 1: Calculate the distance (d) between q1 and q2

This distance is given by:

d =
√

(x2 − x1)2 + (y2 − y1)2 (B.3)

Step 2: Determine the required distance for the acceleration/deceleration phase (dacc

and ddec)

The required time to acceleration phase is obtained by

tacc =
Vmax − V1

u2max
(B.4)

Thus, from Equation (B.2a) and Equation (B.2b) we obtain

xacc =
1

2
u2max cosχ0t

2
acc + V0 cosχ0tacc + x1 (B.5a)

yacc =
1

2
u2max sinχ0t

2
acc + V0 sinχ0tacc + y1 (B.5b)
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where, (xacc, yacc) presents the end point of acceleration phase. Therefore, the

traveled distance during the acceleration phase is given by

dacc =
√
(xacc − x1)2 + (yacc − y1)2 (B.6)

In a similar way, we state

tdec =
Vf − Vmax

−u2max
(B.7)

xdec =x2 −
1

2
(−u2max) cosχ0t

2
dec − Vmax cosχ0tdec (B.8a)

ydec =y2 −
1

2
(−u2max) sinχ0t

2
dec − Vmax sinχ0tdec (B.8b)

ddec =
√

(xf − xdec)2 + (yf − ydec)2 (B.9)

with, tdec is the required time to decelerate from Vmax to V2, (xdec, ydec) is the

start point of the deceleration phase, and ddec is the traveled distance during the

deceleration phase.

Step 4: Calculate switching points and traveled time for acceleration, deceleration, and

constant velocity segments

The switching points as well as the traveled time for acceleration and deceleration

phases has been already calculated in step 2. Then it remains to calculate the

traveled time for the constant segment. This one is given by

tconst =
dconst
Vmax

(B.10)

where, dconst denotes the traveled distance which is obtained through the following

relationship

dconst =
√
(xdec − xacc)2 + (ydec − yacc)2 (B.11)

Step 6: Calculate the time and the point to switch between the acceleration and decel-

eration phases

Assuming two particles moving on the same line in an opposite direction. The first

one, P1, located at q1, while the second one, P2, based at q2. In addition, both

are in acceleration phase. Then the interception point of these two particles corre-

sponds to the switching time and point between the acceleration and deceleration

phases.

Next, we distinguish the following three cases:
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Case 1: V1 = V2

From Equation (B.2a), we state

xP1 =
1

2
u2max cosχ1t

2 + V1 cosχ1t+ x1 (B.12a)

xP1 =
1

2
u2max cos(χ2 + π)t2 + V2 cos(χ2 + π)t+ x2 (B.12b)

where, xP1 and xP2 denote the time profile of x-coordinate for the first and

second particle respectively. Then, at the interception point, we have xP1 =

xP2 . So,

1

2
u2max (cosχ1 − cos(χ1 + π)) t2+(V1 cosχ1 − V2 cos(χ1 + π)) t+x1−x2 = 0 (B.13)

Since the time is the only unknown variable in the previous equation, then

solving this equation gives the switching time, tswt. Consequently, the switch-

ing velocity is given by

Vswt = u2maxtswt + V1 (B.14)

Case 2: V1 < V2

In this case, we compute the acceleration time tn required to reach a new

configuration qn such that Vn = V2. Then, we adopt the same strategy

described in case 1, after substituting q1 by qn, to compute the switching

configuration.

Case 3: V1 > V2

This situation is the opposite of case 2. So, we compute the acceleration time

tn necessary to reach a new configuration qn such that Vn = V1. Next, we we

compute the switching configuration in a similar way to case 1 after replacing

q2 by qn.



Appendix C

Trajectory Generation and

Circular Arcs

Assuming that the condition presented in the line 5 of the algorithm B.1 is not satisfied,

then two circumference Σij and Σfj containing the end configuration of Si and the start

configuration of Sf respectively must be included to the trajectory. The index j defines

the radius of the circumference with respect to the velocity (max for Vmax and min for

Vmin). Remember that in this case the velocity is a constant.

C.1 Circular arc equations

Flying in a circular motion implies that the velocity of the aerial vehicle is fixed while its

orientation is linearly changing. Then, the equations characterizing the circular motion

are

x =x0 +
V0

u1
(sinχ− sinχ0) (C.1a)

y =y0 −
V0

u1
(cosχ− cosχ0) (C.1b)

χ =χ0 + u1t (C.1c)

V =V0 (C.1d)

where, u1 = ±u1max for left or right turn, and q0 = [x0, y0,χ0, V0] is the vehicle’s initial

configuration.
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C.2 Common Tangent between Two Circles

In general, two circles have four common tangent (two outer tangents and two inner

tangents). To defines these tangents we need, first of all, to find the center and the

radius of the circles. Then, we can compute the tangential points on each circle.

C.2.1 Determining the Center of Circle

Defining the center of a circle which contains a configuration q1 = [x1, y1,χ1, V1] can be

done by the following four stages.

Step 1: This step consist of determining the radius of turn. Since the velocity of an

object traveling the circle is:

V1 =
2πr

T
= ωr (C.2)

where, r is the radius, T is the time required for one rotation, and ω is the angular

velocity. So we have:

r =
V1

ω
(C.3)

Step 2: Defining the straight line, L1 which passes in (x1, y1) in the direction of χ1.

L1 : y = a1x+ b1 (C.4)

with a1 = tan−1 (χ1) and b = y1 − a1x1.

Step 3: Characterizing the perpendicular line to L2.

L2 : y = a2x+ b2 (C.5)

with a2 = − 1
a2

and b2 = y1 − a2x1.

Step 4: The intersection of L2 with the circle having a radius r and centered at (x1, y1):

y =a2x+ b2 (C.6a)

r2 =(x− x1)
2 + (y − y1)

2 (C.6b)

gives the center of turn.
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C.2.2 Tangential Points

Considering the following two circles:

C1 : (x− a)2 + (y − b)2 = r21 (C.7a)

C2 : (x− c)2 + (y − d)2 = r22 (C.7b)

where (a, b), r1, (c, d), and r2 present the center and the radius of C1 and C2 respectively.

In addition assuming that r1 > r2 as it is shown in Figure (C.1). Then, the intersection

point of outer tangents Po is given by

xPo =
r2a− r1c

r2 − r1
(C.8a)

yPo =
r2b− r1d

r2 − r1
(C.8b)

Thus, the tangential points of the outer tangents located at C1 are:

xto1,2 =
r21(xPo − a)± r1(yPo − b)

√
(xPo − a)2 + (yPo − b)2 − r21

(xPo − a)2 + (yPo − b)2
+ a (C.9a)

yto1,2 =
r21(yPo − b)∓ r1(xPo − a)

√
(xPo − a)2 + (yPo − b)2 − r21

(xPo − a)2 + (yPo − b)2
+ b (C.9b)

In a similar way, the tangential points located at C2, i.e. xto3,4 , yto3,4 , can be computed

through Equation (C.9) by replacing a → c, b → d, and r1 → r2.

Therefore, the outer tangents are characterized by the equations

Lto1 : y =

(
yto3 − yto1
xto3 − xto1

)
x+

(
yto3

(
yto3 − yto1
xto3 − xto1

))
xto3 (C.10a)

Lto2 : y =

(
yto4 − yto2
xto4 − xto2

)
x+

(
yto4

(
yto4 − yto2
xto4 − xto2

))
xto4 (C.10b)

Besides, the intersection point of the two inner tangents is

xPi =
r1c+ r2a

r1 + r2
(C.11a)

yPi =
r1d+ r2b

r1 + r2
(C.11b)
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Then, the tangential points located at C1 are defined as

xti1,2 =
r21(xPi − a)± r1(yPi − b)

√
(xPi − a)2 + (yPi − b)2 − r21

(xPi − a)2 + (yPi − b)2
+ a (C.12a)

yti1,2 =
r21(yPi − b)∓ r1(xPi − a)

√
(xPi − a)2 + (yPi − b)2 − r21

(xPi − a)2 + (yPi − b)2
+ b (C.12b)

while xti3,4 and yti3,4 are obtained from Equation (C.12) by substitution a with c, b with

d, and r1 with r2. So, the equations of the inner tangents are

Lti1 : y =

(
yti3 − yti1
xti3 − xti1

)
x+

(
yti3

(
yti3 − yti1
xti3 − xti1

))
xti3 (C.13a)

Lti2 : y =

(
yti4 − yti2
xti4 − xti2

)
x+

(
yti4

(
yti4 − yti2
xti4 − xti2

))
xti4 (C.13b)

Figure C.1: Common Tangents to Two Circles (r1 > r2).

Note that when r1 = r2 the Equation (C.9) can not be used to compute tangential points

due to the non existance of the intersection point Po. In fact, in this case, the outer
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tangents becomes parallel to each other as well as to the line passes by (a, b) and (c, d)

as it is illustrated in Figure (C.2).

Figure C.2: Common Tangents to Two Circles (r1 = r2).

Let LC denotes the line passing through the center of C1 and C2. Then, the tangential

points are the intersections between C1/C2 and the perpendicular lines to LC at (a, b)

and (c, d) respectively.
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